Refactor gold to enable support for MIPS-64 relocation format.
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73   Output_section* output_section;
74   const Output_section::Input_section* owner;
75 };
76
77 inline bool
78 is_branch_reloc(unsigned int r_type);
79
80 template<int size, bool big_endian>
81 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
82 {
83 public:
84   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
85   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
86   typedef Unordered_map<Address, Section_refs> Access_from;
87
88   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
89                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
90     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
91       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
92       opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
93       e_flags_(ehdr.get_e_flags()), st_other_()
94   {
95     this->set_abiversion(0);
96   }
97
98   ~Powerpc_relobj()
99   { }
100
101   // Read the symbols then set up st_other vector.
102   void
103   do_read_symbols(Read_symbols_data*);
104
105   // The .got2 section shndx.
106   unsigned int
107   got2_shndx() const
108   {
109     if (size == 32)
110       return this->special_;
111     else
112       return 0;
113   }
114
115   // The .opd section shndx.
116   unsigned int
117   opd_shndx() const
118   {
119     if (size == 32)
120       return 0;
121     else
122       return this->special_;
123   }
124
125   // Init OPD entry arrays.
126   void
127   init_opd(size_t opd_size)
128   {
129     size_t count = this->opd_ent_ndx(opd_size);
130     this->opd_ent_.resize(count);
131   }
132
133   // Return section and offset of function entry for .opd + R_OFF.
134   unsigned int
135   get_opd_ent(Address r_off, Address* value = NULL) const
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     gold_assert(this->opd_ent_[ndx].shndx != 0);
140     if (value != NULL)
141       *value = this->opd_ent_[ndx].off;
142     return this->opd_ent_[ndx].shndx;
143   }
144
145   // Set section and offset of function entry for .opd + R_OFF.
146   void
147   set_opd_ent(Address r_off, unsigned int shndx, Address value)
148   {
149     size_t ndx = this->opd_ent_ndx(r_off);
150     gold_assert(ndx < this->opd_ent_.size());
151     this->opd_ent_[ndx].shndx = shndx;
152     this->opd_ent_[ndx].off = value;
153   }
154
155   // Return discard flag for .opd + R_OFF.
156   bool
157   get_opd_discard(Address r_off) const
158   {
159     size_t ndx = this->opd_ent_ndx(r_off);
160     gold_assert(ndx < this->opd_ent_.size());
161     return this->opd_ent_[ndx].discard;
162   }
163
164   // Set discard flag for .opd + R_OFF.
165   void
166   set_opd_discard(Address r_off)
167   {
168     size_t ndx = this->opd_ent_ndx(r_off);
169     gold_assert(ndx < this->opd_ent_.size());
170     this->opd_ent_[ndx].discard = true;
171   }
172
173   bool
174   opd_valid() const
175   { return this->opd_valid_; }
176
177   void
178   set_opd_valid()
179   { this->opd_valid_ = true; }
180
181   // Examine .rela.opd to build info about function entry points.
182   void
183   scan_opd_relocs(size_t reloc_count,
184                   const unsigned char* prelocs,
185                   const unsigned char* plocal_syms);
186
187   // Perform the Sized_relobj_file method, then set up opd info from
188   // .opd relocs.
189   void
190   do_read_relocs(Read_relocs_data*);
191
192   bool
193   do_find_special_sections(Read_symbols_data* sd);
194
195   // Adjust this local symbol value.  Return false if the symbol
196   // should be discarded from the output file.
197   bool
198   do_adjust_local_symbol(Symbol_value<size>* lv) const
199   {
200     if (size == 64 && this->opd_shndx() != 0)
201       {
202         bool is_ordinary;
203         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
204           return true;
205         if (this->get_opd_discard(lv->input_value()))
206           return false;
207       }
208     return true;
209   }
210
211   Access_from*
212   access_from_map()
213   { return &this->access_from_map_; }
214
215   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
216   // section at DST_OFF.
217   void
218   add_reference(Relobj* src_obj,
219                 unsigned int src_indx,
220                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
221   {
222     Section_id src_id(src_obj, src_indx);
223     this->access_from_map_[dst_off].insert(src_id);
224   }
225
226   // Add a reference to the code section specified by the .opd entry
227   // at DST_OFF
228   void
229   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
230   {
231     size_t ndx = this->opd_ent_ndx(dst_off);
232     if (ndx >= this->opd_ent_.size())
233       this->opd_ent_.resize(ndx + 1);
234     this->opd_ent_[ndx].gc_mark = true;
235   }
236
237   void
238   process_gc_mark(Symbol_table* symtab)
239   {
240     for (size_t i = 0; i < this->opd_ent_.size(); i++)
241       if (this->opd_ent_[i].gc_mark)
242         {
243           unsigned int shndx = this->opd_ent_[i].shndx;
244           symtab->gc()->worklist().push_back(Section_id(this, shndx));
245         }
246   }
247
248   // Return offset in output GOT section that this object will use
249   // as a TOC pointer.  Won't be just a constant with multi-toc support.
250   Address
251   toc_base_offset() const
252   { return 0x8000; }
253
254   void
255   set_has_small_toc_reloc()
256   { has_small_toc_reloc_ = true; }
257
258   bool
259   has_small_toc_reloc() const
260   { return has_small_toc_reloc_; }
261
262   void
263   set_has_14bit_branch(unsigned int shndx)
264   {
265     if (shndx >= this->has14_.size())
266       this->has14_.resize(shndx + 1);
267     this->has14_[shndx] = true;
268   }
269
270   bool
271   has_14bit_branch(unsigned int shndx) const
272   { return shndx < this->has14_.size() && this->has14_[shndx];  }
273
274   void
275   set_stub_table(unsigned int shndx, unsigned int stub_index)
276   {
277     if (shndx >= this->stub_table_index_.size())
278       this->stub_table_index_.resize(shndx + 1);
279     this->stub_table_index_[shndx] = stub_index;
280   }
281
282   Stub_table<size, big_endian>*
283   stub_table(unsigned int shndx)
284   {
285     if (shndx < this->stub_table_index_.size())
286       {
287         Target_powerpc<size, big_endian>* target
288           = static_cast<Target_powerpc<size, big_endian>*>(
289               parameters->sized_target<size, big_endian>());
290         unsigned int indx = this->stub_table_index_[shndx];
291         gold_assert(indx < target->stub_tables().size());
292         return target->stub_tables()[indx];
293       }
294     return NULL;
295   }
296
297   void
298   clear_stub_table()
299   {
300     this->stub_table_index_.clear();
301   }
302
303   int
304   abiversion() const
305   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
306
307   // Set ABI version for input and output
308   void
309   set_abiversion(int ver);
310
311   unsigned int
312   ppc64_local_entry_offset(const Symbol* sym) const
313   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
314
315   unsigned int
316   ppc64_local_entry_offset(unsigned int symndx) const
317   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
318
319 private:
320   struct Opd_ent
321   {
322     unsigned int shndx;
323     bool discard : 1;
324     bool gc_mark : 1;
325     Address off;
326   };
327
328   // Return index into opd_ent_ array for .opd entry at OFF.
329   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
330   // apart when the language doesn't use the last 8-byte word, the
331   // environment pointer.  Thus dividing the entry section offset by
332   // 16 will give an index into opd_ent_ that works for either layout
333   // of .opd.  (It leaves some elements of the vector unused when .opd
334   // entries are spaced 24 bytes apart, but we don't know the spacing
335   // until relocations are processed, and in any case it is possible
336   // for an object to have some entries spaced 16 bytes apart and
337   // others 24 bytes apart.)
338   size_t
339   opd_ent_ndx(size_t off) const
340   { return off >> 4;}
341
342   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
343   unsigned int special_;
344
345   // For 64-bit, whether this object uses small model relocs to access
346   // the toc.
347   bool has_small_toc_reloc_;
348
349   // Set at the start of gc_process_relocs, when we know opd_ent_
350   // vector is valid.  The flag could be made atomic and set in
351   // do_read_relocs with memory_order_release and then tested with
352   // memory_order_acquire, potentially resulting in fewer entries in
353   // access_from_map_.
354   bool opd_valid_;
355
356   // The first 8-byte word of an OPD entry gives the address of the
357   // entry point of the function.  Relocatable object files have a
358   // relocation on this word.  The following vector records the
359   // section and offset specified by these relocations.
360   std::vector<Opd_ent> opd_ent_;
361
362   // References made to this object's .opd section when running
363   // gc_process_relocs for another object, before the opd_ent_ vector
364   // is valid for this object.
365   Access_from access_from_map_;
366
367   // Whether input section has a 14-bit branch reloc.
368   std::vector<bool> has14_;
369
370   // The stub table to use for a given input section.
371   std::vector<unsigned int> stub_table_index_;
372
373   // Header e_flags
374   elfcpp::Elf_Word e_flags_;
375
376   // ELF st_other field for local symbols.
377   std::vector<unsigned char> st_other_;
378 };
379
380 template<int size, bool big_endian>
381 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
382 {
383 public:
384   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
385
386   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
387                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
388     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
389       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
390   {
391     this->set_abiversion(0);
392   }
393
394   ~Powerpc_dynobj()
395   { }
396
397   // Call Sized_dynobj::do_read_symbols to read the symbols then
398   // read .opd from a dynamic object, filling in opd_ent_ vector,
399   void
400   do_read_symbols(Read_symbols_data*);
401
402   // The .opd section shndx.
403   unsigned int
404   opd_shndx() const
405   {
406     return this->opd_shndx_;
407   }
408
409   // The .opd section address.
410   Address
411   opd_address() const
412   {
413     return this->opd_address_;
414   }
415
416   // Init OPD entry arrays.
417   void
418   init_opd(size_t opd_size)
419   {
420     size_t count = this->opd_ent_ndx(opd_size);
421     this->opd_ent_.resize(count);
422   }
423
424   // Return section and offset of function entry for .opd + R_OFF.
425   unsigned int
426   get_opd_ent(Address r_off, Address* value = NULL) const
427   {
428     size_t ndx = this->opd_ent_ndx(r_off);
429     gold_assert(ndx < this->opd_ent_.size());
430     gold_assert(this->opd_ent_[ndx].shndx != 0);
431     if (value != NULL)
432       *value = this->opd_ent_[ndx].off;
433     return this->opd_ent_[ndx].shndx;
434   }
435
436   // Set section and offset of function entry for .opd + R_OFF.
437   void
438   set_opd_ent(Address r_off, unsigned int shndx, Address value)
439   {
440     size_t ndx = this->opd_ent_ndx(r_off);
441     gold_assert(ndx < this->opd_ent_.size());
442     this->opd_ent_[ndx].shndx = shndx;
443     this->opd_ent_[ndx].off = value;
444   }
445
446   int
447   abiversion() const
448   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
449
450   // Set ABI version for input and output.
451   void
452   set_abiversion(int ver);
453
454 private:
455   // Used to specify extent of executable sections.
456   struct Sec_info
457   {
458     Sec_info(Address start_, Address len_, unsigned int shndx_)
459       : start(start_), len(len_), shndx(shndx_)
460     { }
461
462     bool
463     operator<(const Sec_info& that) const
464     { return this->start < that.start; }
465
466     Address start;
467     Address len;
468     unsigned int shndx;
469   };
470
471   struct Opd_ent
472   {
473     unsigned int shndx;
474     Address off;
475   };
476
477   // Return index into opd_ent_ array for .opd entry at OFF.
478   size_t
479   opd_ent_ndx(size_t off) const
480   { return off >> 4;}
481
482   // For 64-bit the .opd section shndx and address.
483   unsigned int opd_shndx_;
484   Address opd_address_;
485
486   // The first 8-byte word of an OPD entry gives the address of the
487   // entry point of the function.  Records the section and offset
488   // corresponding to the address.  Note that in dynamic objects,
489   // offset is *not* relative to the section.
490   std::vector<Opd_ent> opd_ent_;
491
492   // Header e_flags
493   elfcpp::Elf_Word e_flags_;
494 };
495
496 template<int size, bool big_endian>
497 class Target_powerpc : public Sized_target<size, big_endian>
498 {
499  public:
500   typedef
501     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
502   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
503   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
504   static const Address invalid_address = static_cast<Address>(0) - 1;
505   // Offset of tp and dtp pointers from start of TLS block.
506   static const Address tp_offset = 0x7000;
507   static const Address dtp_offset = 0x8000;
508
509   Target_powerpc()
510     : Sized_target<size, big_endian>(&powerpc_info),
511       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
512       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
513       tlsld_got_offset_(-1U),
514       stub_tables_(), branch_lookup_table_(), branch_info_(),
515       plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
516       stub_group_size_(0), savres_section_(0)
517   {
518   }
519
520   // Process the relocations to determine unreferenced sections for
521   // garbage collection.
522   void
523   gc_process_relocs(Symbol_table* symtab,
524                     Layout* layout,
525                     Sized_relobj_file<size, big_endian>* object,
526                     unsigned int data_shndx,
527                     unsigned int sh_type,
528                     const unsigned char* prelocs,
529                     size_t reloc_count,
530                     Output_section* output_section,
531                     bool needs_special_offset_handling,
532                     size_t local_symbol_count,
533                     const unsigned char* plocal_symbols);
534
535   // Scan the relocations to look for symbol adjustments.
536   void
537   scan_relocs(Symbol_table* symtab,
538               Layout* layout,
539               Sized_relobj_file<size, big_endian>* object,
540               unsigned int data_shndx,
541               unsigned int sh_type,
542               const unsigned char* prelocs,
543               size_t reloc_count,
544               Output_section* output_section,
545               bool needs_special_offset_handling,
546               size_t local_symbol_count,
547               const unsigned char* plocal_symbols);
548
549   // Map input .toc section to output .got section.
550   const char*
551   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
552   {
553     if (size == 64 && strcmp(name, ".toc") == 0)
554       {
555         *plen = 4;
556         return ".got";
557       }
558     return NULL;
559   }
560
561   // Provide linker defined save/restore functions.
562   void
563   define_save_restore_funcs(Layout*, Symbol_table*);
564
565   // No stubs unless a final link.
566   bool
567   do_may_relax() const
568   { return !parameters->options().relocatable(); }
569
570   bool
571   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
572
573   void
574   do_plt_fde_location(const Output_data*, unsigned char*,
575                       uint64_t*, off_t*) const;
576
577   // Stash info about branches, for stub generation.
578   void
579   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
580               unsigned int data_shndx, Address r_offset,
581               unsigned int r_type, unsigned int r_sym, Address addend)
582   {
583     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
584     this->branch_info_.push_back(info);
585     if (r_type == elfcpp::R_POWERPC_REL14
586         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
587         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
588       ppc_object->set_has_14bit_branch(data_shndx);
589   }
590
591   void
592   do_define_standard_symbols(Symbol_table*, Layout*);
593
594   // Finalize the sections.
595   void
596   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
597
598   // Return the value to use for a dynamic which requires special
599   // treatment.
600   uint64_t
601   do_dynsym_value(const Symbol*) const;
602
603   // Return the PLT address to use for a local symbol.
604   uint64_t
605   do_plt_address_for_local(const Relobj*, unsigned int) const;
606
607   // Return the PLT address to use for a global symbol.
608   uint64_t
609   do_plt_address_for_global(const Symbol*) const;
610
611   // Return the offset to use for the GOT_INDX'th got entry which is
612   // for a local tls symbol specified by OBJECT, SYMNDX.
613   int64_t
614   do_tls_offset_for_local(const Relobj* object,
615                           unsigned int symndx,
616                           unsigned int got_indx) const;
617
618   // Return the offset to use for the GOT_INDX'th got entry which is
619   // for global tls symbol GSYM.
620   int64_t
621   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
622
623   void
624   do_function_location(Symbol_location*) const;
625
626   bool
627   do_can_check_for_function_pointers() const
628   { return true; }
629
630   // Adjust -fsplit-stack code which calls non-split-stack code.
631   void
632   do_calls_non_split(Relobj* object, unsigned int shndx,
633                      section_offset_type fnoffset, section_size_type fnsize,
634                      const unsigned char* prelocs, size_t reloc_count,
635                      unsigned char* view, section_size_type view_size,
636                      std::string* from, std::string* to) const;
637
638   // Relocate a section.
639   void
640   relocate_section(const Relocate_info<size, big_endian>*,
641                    unsigned int sh_type,
642                    const unsigned char* prelocs,
643                    size_t reloc_count,
644                    Output_section* output_section,
645                    bool needs_special_offset_handling,
646                    unsigned char* view,
647                    Address view_address,
648                    section_size_type view_size,
649                    const Reloc_symbol_changes*);
650
651   // Scan the relocs during a relocatable link.
652   void
653   scan_relocatable_relocs(Symbol_table* symtab,
654                           Layout* layout,
655                           Sized_relobj_file<size, big_endian>* object,
656                           unsigned int data_shndx,
657                           unsigned int sh_type,
658                           const unsigned char* prelocs,
659                           size_t reloc_count,
660                           Output_section* output_section,
661                           bool needs_special_offset_handling,
662                           size_t local_symbol_count,
663                           const unsigned char* plocal_symbols,
664                           Relocatable_relocs*);
665
666   // Scan the relocs for --emit-relocs.
667   void
668   emit_relocs_scan(Symbol_table* symtab,
669                    Layout* layout,
670                    Sized_relobj_file<size, big_endian>* object,
671                    unsigned int data_shndx,
672                    unsigned int sh_type,
673                    const unsigned char* prelocs,
674                    size_t reloc_count,
675                    Output_section* output_section,
676                    bool needs_special_offset_handling,
677                    size_t local_symbol_count,
678                    const unsigned char* plocal_syms,
679                    Relocatable_relocs* rr);
680
681   // Emit relocations for a section.
682   void
683   relocate_relocs(const Relocate_info<size, big_endian>*,
684                   unsigned int sh_type,
685                   const unsigned char* prelocs,
686                   size_t reloc_count,
687                   Output_section* output_section,
688                   typename elfcpp::Elf_types<size>::Elf_Off
689                     offset_in_output_section,
690                   unsigned char*,
691                   Address view_address,
692                   section_size_type,
693                   unsigned char* reloc_view,
694                   section_size_type reloc_view_size);
695
696   // Return whether SYM is defined by the ABI.
697   bool
698   do_is_defined_by_abi(const Symbol* sym) const
699   {
700     return strcmp(sym->name(), "__tls_get_addr") == 0;
701   }
702
703   // Return the size of the GOT section.
704   section_size_type
705   got_size() const
706   {
707     gold_assert(this->got_ != NULL);
708     return this->got_->data_size();
709   }
710
711   // Get the PLT section.
712   const Output_data_plt_powerpc<size, big_endian>*
713   plt_section() const
714   {
715     gold_assert(this->plt_ != NULL);
716     return this->plt_;
717   }
718
719   // Get the IPLT section.
720   const Output_data_plt_powerpc<size, big_endian>*
721   iplt_section() const
722   {
723     gold_assert(this->iplt_ != NULL);
724     return this->iplt_;
725   }
726
727   // Get the .glink section.
728   const Output_data_glink<size, big_endian>*
729   glink_section() const
730   {
731     gold_assert(this->glink_ != NULL);
732     return this->glink_;
733   }
734
735   Output_data_glink<size, big_endian>*
736   glink_section()
737   {
738     gold_assert(this->glink_ != NULL);
739     return this->glink_;
740   }
741
742   bool has_glink() const
743   { return this->glink_ != NULL; }
744
745   // Get the GOT section.
746   const Output_data_got_powerpc<size, big_endian>*
747   got_section() const
748   {
749     gold_assert(this->got_ != NULL);
750     return this->got_;
751   }
752
753   // Get the GOT section, creating it if necessary.
754   Output_data_got_powerpc<size, big_endian>*
755   got_section(Symbol_table*, Layout*);
756
757   Object*
758   do_make_elf_object(const std::string&, Input_file*, off_t,
759                      const elfcpp::Ehdr<size, big_endian>&);
760
761   // Return the number of entries in the GOT.
762   unsigned int
763   got_entry_count() const
764   {
765     if (this->got_ == NULL)
766       return 0;
767     return this->got_size() / (size / 8);
768   }
769
770   // Return the number of entries in the PLT.
771   unsigned int
772   plt_entry_count() const;
773
774   // Return the offset of the first non-reserved PLT entry.
775   unsigned int
776   first_plt_entry_offset() const
777   {
778     if (size == 32)
779       return 0;
780     if (this->abiversion() >= 2)
781       return 16;
782     return 24;
783   }
784
785   // Return the size of each PLT entry.
786   unsigned int
787   plt_entry_size() const
788   {
789     if (size == 32)
790       return 4;
791     if (this->abiversion() >= 2)
792       return 8;
793     return 24;
794   }
795
796   Output_data_save_res<size, big_endian>*
797   savres_section() const
798   {
799     return this->savres_section_;
800   }
801
802   // Add any special sections for this symbol to the gc work list.
803   // For powerpc64, this adds the code section of a function
804   // descriptor.
805   void
806   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
807
808   // Handle target specific gc actions when adding a gc reference from
809   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
810   // and DST_OFF.  For powerpc64, this adds a referenc to the code
811   // section of a function descriptor.
812   void
813   do_gc_add_reference(Symbol_table* symtab,
814                       Relobj* src_obj,
815                       unsigned int src_shndx,
816                       Relobj* dst_obj,
817                       unsigned int dst_shndx,
818                       Address dst_off) const;
819
820   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
821   const Stub_tables&
822   stub_tables() const
823   { return this->stub_tables_; }
824
825   const Output_data_brlt_powerpc<size, big_endian>*
826   brlt_section() const
827   { return this->brlt_section_; }
828
829   void
830   add_branch_lookup_table(Address to)
831   {
832     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
833     this->branch_lookup_table_.insert(std::make_pair(to, off));
834   }
835
836   Address
837   find_branch_lookup_table(Address to)
838   {
839     typename Branch_lookup_table::const_iterator p
840       = this->branch_lookup_table_.find(to);
841     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
842   }
843
844   void
845   write_branch_lookup_table(unsigned char *oview)
846   {
847     for (typename Branch_lookup_table::const_iterator p
848            = this->branch_lookup_table_.begin();
849          p != this->branch_lookup_table_.end();
850          ++p)
851       {
852         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
853       }
854   }
855
856   bool
857   plt_thread_safe() const
858   { return this->plt_thread_safe_; }
859
860   int
861   abiversion () const
862   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
863
864   void
865   set_abiversion (int ver)
866   {
867     elfcpp::Elf_Word flags = this->processor_specific_flags();
868     flags &= ~elfcpp::EF_PPC64_ABI;
869     flags |= ver & elfcpp::EF_PPC64_ABI;
870     this->set_processor_specific_flags(flags);
871   }
872
873   // Offset to to save stack slot
874   int
875   stk_toc () const
876   { return this->abiversion() < 2 ? 40 : 24; }
877
878  private:
879
880   class Track_tls
881   {
882   public:
883     enum Tls_get_addr
884     {
885       NOT_EXPECTED = 0,
886       EXPECTED = 1,
887       SKIP = 2,
888       NORMAL = 3
889     };
890
891     Track_tls()
892       : tls_get_addr_(NOT_EXPECTED),
893         relinfo_(NULL), relnum_(0), r_offset_(0)
894     { }
895
896     ~Track_tls()
897     {
898       if (this->tls_get_addr_ != NOT_EXPECTED)
899         this->missing();
900     }
901
902     void
903     missing(void)
904     {
905       if (this->relinfo_ != NULL)
906         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
907                                _("missing expected __tls_get_addr call"));
908     }
909
910     void
911     expect_tls_get_addr_call(
912         const Relocate_info<size, big_endian>* relinfo,
913         size_t relnum,
914         Address r_offset)
915     {
916       this->tls_get_addr_ = EXPECTED;
917       this->relinfo_ = relinfo;
918       this->relnum_ = relnum;
919       this->r_offset_ = r_offset;
920     }
921
922     void
923     expect_tls_get_addr_call()
924     { this->tls_get_addr_ = EXPECTED; }
925
926     void
927     skip_next_tls_get_addr_call()
928     {this->tls_get_addr_ = SKIP; }
929
930     Tls_get_addr
931     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
932     {
933       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
934                            || r_type == elfcpp::R_PPC_PLTREL24)
935                           && gsym != NULL
936                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
937       Tls_get_addr last_tls = this->tls_get_addr_;
938       this->tls_get_addr_ = NOT_EXPECTED;
939       if (is_tls_call && last_tls != EXPECTED)
940         return last_tls;
941       else if (!is_tls_call && last_tls != NOT_EXPECTED)
942         {
943           this->missing();
944           return EXPECTED;
945         }
946       return NORMAL;
947     }
948
949   private:
950     // What we're up to regarding calls to __tls_get_addr.
951     // On powerpc, the branch and link insn making a call to
952     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
953     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
954     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
955     // The marker relocation always comes first, and has the same
956     // symbol as the reloc on the insn setting up the __tls_get_addr
957     // argument.  This ties the arg setup insn with the call insn,
958     // allowing ld to safely optimize away the call.  We check that
959     // every call to __tls_get_addr has a marker relocation, and that
960     // every marker relocation is on a call to __tls_get_addr.
961     Tls_get_addr tls_get_addr_;
962     // Info about the last reloc for error message.
963     const Relocate_info<size, big_endian>* relinfo_;
964     size_t relnum_;
965     Address r_offset_;
966   };
967
968   // The class which scans relocations.
969   class Scan : protected Track_tls
970   {
971   public:
972     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
973
974     Scan()
975       : Track_tls(), issued_non_pic_error_(false)
976     { }
977
978     static inline int
979     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
980
981     inline void
982     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
983           Sized_relobj_file<size, big_endian>* object,
984           unsigned int data_shndx,
985           Output_section* output_section,
986           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
987           const elfcpp::Sym<size, big_endian>& lsym,
988           bool is_discarded);
989
990     inline void
991     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
992            Sized_relobj_file<size, big_endian>* object,
993            unsigned int data_shndx,
994            Output_section* output_section,
995            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
996            Symbol* gsym);
997
998     inline bool
999     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1000                                         Target_powerpc* ,
1001                                         Sized_relobj_file<size, big_endian>* relobj,
1002                                         unsigned int ,
1003                                         Output_section* ,
1004                                         const elfcpp::Rela<size, big_endian>& ,
1005                                         unsigned int r_type,
1006                                         const elfcpp::Sym<size, big_endian>&)
1007     {
1008       // PowerPC64 .opd is not folded, so any identical function text
1009       // may be folded and we'll still keep function addresses distinct.
1010       // That means no reloc is of concern here.
1011       if (size == 64)
1012         {
1013           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1014             <Powerpc_relobj<size, big_endian>*>(relobj);
1015           if (ppcobj->abiversion() == 1)
1016             return false;
1017         }
1018       // For 32-bit and ELFv2, conservatively assume anything but calls to
1019       // function code might be taking the address of the function.
1020       return !is_branch_reloc(r_type);
1021     }
1022
1023     inline bool
1024     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1025                                          Target_powerpc* ,
1026                                          Sized_relobj_file<size, big_endian>* relobj,
1027                                          unsigned int ,
1028                                          Output_section* ,
1029                                          const elfcpp::Rela<size, big_endian>& ,
1030                                          unsigned int r_type,
1031                                          Symbol*)
1032     {
1033       // As above.
1034       if (size == 64)
1035         {
1036           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1037             <Powerpc_relobj<size, big_endian>*>(relobj);
1038           if (ppcobj->abiversion() == 1)
1039             return false;
1040         }
1041       return !is_branch_reloc(r_type);
1042     }
1043
1044     static bool
1045     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1046                               Sized_relobj_file<size, big_endian>* object,
1047                               unsigned int r_type, bool report_err);
1048
1049   private:
1050     static void
1051     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1052                             unsigned int r_type);
1053
1054     static void
1055     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1056                              unsigned int r_type, Symbol*);
1057
1058     static void
1059     generate_tls_call(Symbol_table* symtab, Layout* layout,
1060                       Target_powerpc* target);
1061
1062     void
1063     check_non_pic(Relobj*, unsigned int r_type);
1064
1065     // Whether we have issued an error about a non-PIC compilation.
1066     bool issued_non_pic_error_;
1067   };
1068
1069   bool
1070   symval_for_branch(const Symbol_table* symtab,
1071                     const Sized_symbol<size>* gsym,
1072                     Powerpc_relobj<size, big_endian>* object,
1073                     Address *value, unsigned int *dest_shndx);
1074
1075   // The class which implements relocation.
1076   class Relocate : protected Track_tls
1077   {
1078    public:
1079     // Use 'at' branch hints when true, 'y' when false.
1080     // FIXME maybe: set this with an option.
1081     static const bool is_isa_v2 = true;
1082
1083     Relocate()
1084       : Track_tls()
1085     { }
1086
1087     // Do a relocation.  Return false if the caller should not issue
1088     // any warnings about this relocation.
1089     inline bool
1090     relocate(const Relocate_info<size, big_endian>*, unsigned int,
1091              Target_powerpc*, Output_section*, size_t, const unsigned char*,
1092              const Sized_symbol<size>*, const Symbol_value<size>*,
1093              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1094              section_size_type);
1095   };
1096
1097   class Relocate_comdat_behavior
1098   {
1099    public:
1100     // Decide what the linker should do for relocations that refer to
1101     // discarded comdat sections.
1102     inline Comdat_behavior
1103     get(const char* name)
1104     {
1105       gold::Default_comdat_behavior default_behavior;
1106       Comdat_behavior ret = default_behavior.get(name);
1107       if (ret == CB_WARNING)
1108         {
1109           if (size == 32
1110               && (strcmp(name, ".fixup") == 0
1111                   || strcmp(name, ".got2") == 0))
1112             ret = CB_IGNORE;
1113           if (size == 64
1114               && (strcmp(name, ".opd") == 0
1115                   || strcmp(name, ".toc") == 0
1116                   || strcmp(name, ".toc1") == 0))
1117             ret = CB_IGNORE;
1118         }
1119       return ret;
1120     }
1121   };
1122
1123   // Optimize the TLS relocation type based on what we know about the
1124   // symbol.  IS_FINAL is true if the final address of this symbol is
1125   // known at link time.
1126
1127   tls::Tls_optimization
1128   optimize_tls_gd(bool is_final)
1129   {
1130     // If we are generating a shared library, then we can't do anything
1131     // in the linker.
1132     if (parameters->options().shared())
1133       return tls::TLSOPT_NONE;
1134
1135     if (!is_final)
1136       return tls::TLSOPT_TO_IE;
1137     return tls::TLSOPT_TO_LE;
1138   }
1139
1140   tls::Tls_optimization
1141   optimize_tls_ld()
1142   {
1143     if (parameters->options().shared())
1144       return tls::TLSOPT_NONE;
1145
1146     return tls::TLSOPT_TO_LE;
1147   }
1148
1149   tls::Tls_optimization
1150   optimize_tls_ie(bool is_final)
1151   {
1152     if (!is_final || parameters->options().shared())
1153       return tls::TLSOPT_NONE;
1154
1155     return tls::TLSOPT_TO_LE;
1156   }
1157
1158   // Create glink.
1159   void
1160   make_glink_section(Layout*);
1161
1162   // Create the PLT section.
1163   void
1164   make_plt_section(Symbol_table*, Layout*);
1165
1166   void
1167   make_iplt_section(Symbol_table*, Layout*);
1168
1169   void
1170   make_brlt_section(Layout*);
1171
1172   // Create a PLT entry for a global symbol.
1173   void
1174   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1175
1176   // Create a PLT entry for a local IFUNC symbol.
1177   void
1178   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1179                              Sized_relobj_file<size, big_endian>*,
1180                              unsigned int);
1181
1182
1183   // Create a GOT entry for local dynamic __tls_get_addr.
1184   unsigned int
1185   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1186                    Sized_relobj_file<size, big_endian>* object);
1187
1188   unsigned int
1189   tlsld_got_offset() const
1190   {
1191     return this->tlsld_got_offset_;
1192   }
1193
1194   // Get the dynamic reloc section, creating it if necessary.
1195   Reloc_section*
1196   rela_dyn_section(Layout*);
1197
1198   // Similarly, but for ifunc symbols get the one for ifunc.
1199   Reloc_section*
1200   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1201
1202   // Copy a relocation against a global symbol.
1203   void
1204   copy_reloc(Symbol_table* symtab, Layout* layout,
1205              Sized_relobj_file<size, big_endian>* object,
1206              unsigned int shndx, Output_section* output_section,
1207              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1208   {
1209     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1210     this->copy_relocs_.copy_reloc(symtab, layout,
1211                                   symtab->get_sized_symbol<size>(sym),
1212                                   object, shndx, output_section,
1213                                   r_type, reloc.get_r_offset(),
1214                                   reloc.get_r_addend(),
1215                                   this->rela_dyn_section(layout));
1216   }
1217
1218   // Look over all the input sections, deciding where to place stubs.
1219   void
1220   group_sections(Layout*, const Task*, bool);
1221
1222   // Sort output sections by address.
1223   struct Sort_sections
1224   {
1225     bool
1226     operator()(const Output_section* sec1, const Output_section* sec2)
1227     { return sec1->address() < sec2->address(); }
1228   };
1229
1230   class Branch_info
1231   {
1232    public:
1233     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1234                 unsigned int data_shndx,
1235                 Address r_offset,
1236                 unsigned int r_type,
1237                 unsigned int r_sym,
1238                 Address addend)
1239       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1240         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1241     { }
1242
1243     ~Branch_info()
1244     { }
1245
1246     // If this branch needs a plt call stub, or a long branch stub, make one.
1247     bool
1248     make_stub(Stub_table<size, big_endian>*,
1249               Stub_table<size, big_endian>*,
1250               Symbol_table*) const;
1251
1252    private:
1253     // The branch location..
1254     Powerpc_relobj<size, big_endian>* object_;
1255     unsigned int shndx_;
1256     Address offset_;
1257     // ..and the branch type and destination.
1258     unsigned int r_type_;
1259     unsigned int r_sym_;
1260     Address addend_;
1261   };
1262
1263   // Information about this specific target which we pass to the
1264   // general Target structure.
1265   static Target::Target_info powerpc_info;
1266
1267   // The types of GOT entries needed for this platform.
1268   // These values are exposed to the ABI in an incremental link.
1269   // Do not renumber existing values without changing the version
1270   // number of the .gnu_incremental_inputs section.
1271   enum Got_type
1272   {
1273     GOT_TYPE_STANDARD,
1274     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1275     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1276     GOT_TYPE_TPREL      // entry for @got@tprel
1277   };
1278
1279   // The GOT section.
1280   Output_data_got_powerpc<size, big_endian>* got_;
1281   // The PLT section.  This is a container for a table of addresses,
1282   // and their relocations.  Each address in the PLT has a dynamic
1283   // relocation (R_*_JMP_SLOT) and each address will have a
1284   // corresponding entry in .glink for lazy resolution of the PLT.
1285   // ppc32 initialises the PLT to point at the .glink entry, while
1286   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1287   // linker adds a stub that loads the PLT entry into ctr then
1288   // branches to ctr.  There may be more than one stub for each PLT
1289   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1290   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1291   Output_data_plt_powerpc<size, big_endian>* plt_;
1292   // The IPLT section.  Like plt_, this is a container for a table of
1293   // addresses and their relocations, specifically for STT_GNU_IFUNC
1294   // functions that resolve locally (STT_GNU_IFUNC functions that
1295   // don't resolve locally go in PLT).  Unlike plt_, these have no
1296   // entry in .glink for lazy resolution, and the relocation section
1297   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1298   // the relocation section may contain relocations against
1299   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1300   // relocation section will appear at the end of other dynamic
1301   // relocations, so that ld.so applies these relocations after other
1302   // dynamic relocations.  In a static executable, the relocation
1303   // section is emitted and marked with __rela_iplt_start and
1304   // __rela_iplt_end symbols.
1305   Output_data_plt_powerpc<size, big_endian>* iplt_;
1306   // Section holding long branch destinations.
1307   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1308   // The .glink section.
1309   Output_data_glink<size, big_endian>* glink_;
1310   // The dynamic reloc section.
1311   Reloc_section* rela_dyn_;
1312   // Relocs saved to avoid a COPY reloc.
1313   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1314   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1315   unsigned int tlsld_got_offset_;
1316
1317   Stub_tables stub_tables_;
1318   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1319   Branch_lookup_table branch_lookup_table_;
1320
1321   typedef std::vector<Branch_info> Branches;
1322   Branches branch_info_;
1323
1324   bool plt_thread_safe_;
1325
1326   bool relax_failed_;
1327   int relax_fail_count_;
1328   int32_t stub_group_size_;
1329
1330   Output_data_save_res<size, big_endian> *savres_section_;
1331 };
1332
1333 template<>
1334 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1335 {
1336   32,                   // size
1337   true,                 // is_big_endian
1338   elfcpp::EM_PPC,       // machine_code
1339   false,                // has_make_symbol
1340   false,                // has_resolve
1341   false,                // has_code_fill
1342   true,                 // is_default_stack_executable
1343   false,                // can_icf_inline_merge_sections
1344   '\0',                 // wrap_char
1345   "/usr/lib/ld.so.1",   // dynamic_linker
1346   0x10000000,           // default_text_segment_address
1347   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1348   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1349   false,                // isolate_execinstr
1350   0,                    // rosegment_gap
1351   elfcpp::SHN_UNDEF,    // small_common_shndx
1352   elfcpp::SHN_UNDEF,    // large_common_shndx
1353   0,                    // small_common_section_flags
1354   0,                    // large_common_section_flags
1355   NULL,                 // attributes_section
1356   NULL,                 // attributes_vendor
1357   "_start",             // entry_symbol_name
1358   32,                   // hash_entry_size
1359 };
1360
1361 template<>
1362 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1363 {
1364   32,                   // size
1365   false,                // is_big_endian
1366   elfcpp::EM_PPC,       // machine_code
1367   false,                // has_make_symbol
1368   false,                // has_resolve
1369   false,                // has_code_fill
1370   true,                 // is_default_stack_executable
1371   false,                // can_icf_inline_merge_sections
1372   '\0',                 // wrap_char
1373   "/usr/lib/ld.so.1",   // dynamic_linker
1374   0x10000000,           // default_text_segment_address
1375   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1376   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1377   false,                // isolate_execinstr
1378   0,                    // rosegment_gap
1379   elfcpp::SHN_UNDEF,    // small_common_shndx
1380   elfcpp::SHN_UNDEF,    // large_common_shndx
1381   0,                    // small_common_section_flags
1382   0,                    // large_common_section_flags
1383   NULL,                 // attributes_section
1384   NULL,                 // attributes_vendor
1385   "_start",             // entry_symbol_name
1386   32,                   // hash_entry_size
1387 };
1388
1389 template<>
1390 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1391 {
1392   64,                   // size
1393   true,                 // is_big_endian
1394   elfcpp::EM_PPC64,     // machine_code
1395   false,                // has_make_symbol
1396   false,                // has_resolve
1397   false,                // has_code_fill
1398   true,                 // is_default_stack_executable
1399   false,                // can_icf_inline_merge_sections
1400   '\0',                 // wrap_char
1401   "/usr/lib/ld.so.1",   // dynamic_linker
1402   0x10000000,           // default_text_segment_address
1403   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1404   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1405   false,                // isolate_execinstr
1406   0,                    // rosegment_gap
1407   elfcpp::SHN_UNDEF,    // small_common_shndx
1408   elfcpp::SHN_UNDEF,    // large_common_shndx
1409   0,                    // small_common_section_flags
1410   0,                    // large_common_section_flags
1411   NULL,                 // attributes_section
1412   NULL,                 // attributes_vendor
1413   "_start",             // entry_symbol_name
1414   32,                   // hash_entry_size
1415 };
1416
1417 template<>
1418 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1419 {
1420   64,                   // size
1421   false,                // is_big_endian
1422   elfcpp::EM_PPC64,     // machine_code
1423   false,                // has_make_symbol
1424   false,                // has_resolve
1425   false,                // has_code_fill
1426   true,                 // is_default_stack_executable
1427   false,                // can_icf_inline_merge_sections
1428   '\0',                 // wrap_char
1429   "/usr/lib/ld.so.1",   // dynamic_linker
1430   0x10000000,           // default_text_segment_address
1431   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1432   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1433   false,                // isolate_execinstr
1434   0,                    // rosegment_gap
1435   elfcpp::SHN_UNDEF,    // small_common_shndx
1436   elfcpp::SHN_UNDEF,    // large_common_shndx
1437   0,                    // small_common_section_flags
1438   0,                    // large_common_section_flags
1439   NULL,                 // attributes_section
1440   NULL,                 // attributes_vendor
1441   "_start",             // entry_symbol_name
1442   32,                   // hash_entry_size
1443 };
1444
1445 inline bool
1446 is_branch_reloc(unsigned int r_type)
1447 {
1448   return (r_type == elfcpp::R_POWERPC_REL24
1449           || r_type == elfcpp::R_PPC_PLTREL24
1450           || r_type == elfcpp::R_PPC_LOCAL24PC
1451           || r_type == elfcpp::R_POWERPC_REL14
1452           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1453           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1454           || r_type == elfcpp::R_POWERPC_ADDR24
1455           || r_type == elfcpp::R_POWERPC_ADDR14
1456           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1457           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1458 }
1459
1460 // If INSN is an opcode that may be used with an @tls operand, return
1461 // the transformed insn for TLS optimisation, otherwise return 0.  If
1462 // REG is non-zero only match an insn with RB or RA equal to REG.
1463 uint32_t
1464 at_tls_transform(uint32_t insn, unsigned int reg)
1465 {
1466   if ((insn & (0x3f << 26)) != 31 << 26)
1467     return 0;
1468
1469   unsigned int rtra;
1470   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1471     rtra = insn & ((1 << 26) - (1 << 16));
1472   else if (((insn >> 16) & 0x1f) == reg)
1473     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1474   else
1475     return 0;
1476
1477   if ((insn & (0x3ff << 1)) == 266 << 1)
1478     // add -> addi
1479     insn = 14 << 26;
1480   else if ((insn & (0x1f << 1)) == 23 << 1
1481            && ((insn & (0x1f << 6)) < 14 << 6
1482                || ((insn & (0x1f << 6)) >= 16 << 6
1483                    && (insn & (0x1f << 6)) < 24 << 6)))
1484     // load and store indexed -> dform
1485     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1486   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1487     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1488     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1489   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1490     // lwax -> lwa
1491     insn = (58 << 26) | 2;
1492   else
1493     return 0;
1494   insn |= rtra;
1495   return insn;
1496 }
1497
1498
1499 template<int size, bool big_endian>
1500 class Powerpc_relocate_functions
1501 {
1502 public:
1503   enum Overflow_check
1504   {
1505     CHECK_NONE,
1506     CHECK_SIGNED,
1507     CHECK_UNSIGNED,
1508     CHECK_BITFIELD,
1509     CHECK_LOW_INSN,
1510     CHECK_HIGH_INSN
1511   };
1512
1513   enum Status
1514   {
1515     STATUS_OK,
1516     STATUS_OVERFLOW
1517   };
1518
1519 private:
1520   typedef Powerpc_relocate_functions<size, big_endian> This;
1521   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1522   typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1523
1524   template<int valsize>
1525   static inline bool
1526   has_overflow_signed(Address value)
1527   {
1528     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1529     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1530     limit <<= ((valsize - 1) >> 1);
1531     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1532     return value + limit > (limit << 1) - 1;
1533   }
1534
1535   template<int valsize>
1536   static inline bool
1537   has_overflow_unsigned(Address value)
1538   {
1539     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1540     limit <<= ((valsize - 1) >> 1);
1541     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1542     return value > (limit << 1) - 1;
1543   }
1544
1545   template<int valsize>
1546   static inline bool
1547   has_overflow_bitfield(Address value)
1548   {
1549     return (has_overflow_unsigned<valsize>(value)
1550             && has_overflow_signed<valsize>(value));
1551   }
1552
1553   template<int valsize>
1554   static inline Status
1555   overflowed(Address value, Overflow_check overflow)
1556   {
1557     if (overflow == CHECK_SIGNED)
1558       {
1559         if (has_overflow_signed<valsize>(value))
1560           return STATUS_OVERFLOW;
1561       }
1562     else if (overflow == CHECK_UNSIGNED)
1563       {
1564         if (has_overflow_unsigned<valsize>(value))
1565           return STATUS_OVERFLOW;
1566       }
1567     else if (overflow == CHECK_BITFIELD)
1568       {
1569         if (has_overflow_bitfield<valsize>(value))
1570           return STATUS_OVERFLOW;
1571       }
1572     return STATUS_OK;
1573   }
1574
1575   // Do a simple RELA relocation
1576   template<int fieldsize, int valsize>
1577   static inline Status
1578   rela(unsigned char* view, Address value, Overflow_check overflow)
1579   {
1580     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1581     Valtype* wv = reinterpret_cast<Valtype*>(view);
1582     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1583     return overflowed<valsize>(value, overflow);
1584   }
1585
1586   template<int fieldsize, int valsize>
1587   static inline Status
1588   rela(unsigned char* view,
1589        unsigned int right_shift,
1590        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1591        Address value,
1592        Overflow_check overflow)
1593   {
1594     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1595     Valtype* wv = reinterpret_cast<Valtype*>(view);
1596     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1597     Valtype reloc = value >> right_shift;
1598     val &= ~dst_mask;
1599     reloc &= dst_mask;
1600     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1601     return overflowed<valsize>(value >> right_shift, overflow);
1602   }
1603
1604   // Do a simple RELA relocation, unaligned.
1605   template<int fieldsize, int valsize>
1606   static inline Status
1607   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1608   {
1609     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1610     return overflowed<valsize>(value, overflow);
1611   }
1612
1613   template<int fieldsize, int valsize>
1614   static inline Status
1615   rela_ua(unsigned char* view,
1616           unsigned int right_shift,
1617           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1618           Address value,
1619           Overflow_check overflow)
1620   {
1621     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1622       Valtype;
1623     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1624     Valtype reloc = value >> right_shift;
1625     val &= ~dst_mask;
1626     reloc &= dst_mask;
1627     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1628     return overflowed<valsize>(value >> right_shift, overflow);
1629   }
1630
1631 public:
1632   // R_PPC64_ADDR64: (Symbol + Addend)
1633   static inline void
1634   addr64(unsigned char* view, Address value)
1635   { This::template rela<64,64>(view, value, CHECK_NONE); }
1636
1637   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1638   static inline void
1639   addr64_u(unsigned char* view, Address value)
1640   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1641
1642   // R_POWERPC_ADDR32: (Symbol + Addend)
1643   static inline Status
1644   addr32(unsigned char* view, Address value, Overflow_check overflow)
1645   { return This::template rela<32,32>(view, value, overflow); }
1646
1647   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1648   static inline Status
1649   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1650   { return This::template rela_ua<32,32>(view, value, overflow); }
1651
1652   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1653   static inline Status
1654   addr24(unsigned char* view, Address value, Overflow_check overflow)
1655   {
1656     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1657                                              value, overflow);
1658     if (overflow != CHECK_NONE && (value & 3) != 0)
1659       stat = STATUS_OVERFLOW;
1660     return stat;
1661   }
1662
1663   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1664   static inline Status
1665   addr16(unsigned char* view, Address value, Overflow_check overflow)
1666   { return This::template rela<16,16>(view, value, overflow); }
1667
1668   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1669   static inline Status
1670   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1671   { return This::template rela_ua<16,16>(view, value, overflow); }
1672
1673   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1674   static inline Status
1675   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1676   {
1677     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1678     if ((value & 3) != 0)
1679       stat = STATUS_OVERFLOW;
1680     return stat;
1681   }
1682
1683   // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1684   static inline Status
1685   addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1686   {
1687     Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1688     if ((value & 15) != 0)
1689       stat = STATUS_OVERFLOW;
1690     return stat;
1691   }
1692
1693   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1694   static inline void
1695   addr16_hi(unsigned char* view, Address value)
1696   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1697
1698   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1699   static inline void
1700   addr16_ha(unsigned char* view, Address value)
1701   { This::addr16_hi(view, value + 0x8000); }
1702
1703   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1704   static inline void
1705   addr16_hi2(unsigned char* view, Address value)
1706   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1707
1708   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1709   static inline void
1710   addr16_ha2(unsigned char* view, Address value)
1711   { This::addr16_hi2(view, value + 0x8000); }
1712
1713   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1714   static inline void
1715   addr16_hi3(unsigned char* view, Address value)
1716   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1717
1718   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1719   static inline void
1720   addr16_ha3(unsigned char* view, Address value)
1721   { This::addr16_hi3(view, value + 0x8000); }
1722
1723   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1724   static inline Status
1725   addr14(unsigned char* view, Address value, Overflow_check overflow)
1726   {
1727     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1728     if (overflow != CHECK_NONE && (value & 3) != 0)
1729       stat = STATUS_OVERFLOW;
1730     return stat;
1731   }
1732
1733   // R_POWERPC_REL16DX_HA
1734   static inline Status
1735   addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1736   {
1737     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1738     Valtype* wv = reinterpret_cast<Valtype*>(view);
1739     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1740     value += 0x8000;
1741     value = static_cast<SignedAddress>(value) >> 16;
1742     val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1743     elfcpp::Swap<32, big_endian>::writeval(wv, val);
1744     return overflowed<16>(value, overflow);
1745   }
1746 };
1747
1748 // Set ABI version for input and output.
1749
1750 template<int size, bool big_endian>
1751 void
1752 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1753 {
1754   this->e_flags_ |= ver;
1755   if (this->abiversion() != 0)
1756     {
1757       Target_powerpc<size, big_endian>* target =
1758         static_cast<Target_powerpc<size, big_endian>*>(
1759            parameters->sized_target<size, big_endian>());
1760       if (target->abiversion() == 0)
1761         target->set_abiversion(this->abiversion());
1762       else if (target->abiversion() != this->abiversion())
1763         gold_error(_("%s: ABI version %d is not compatible "
1764                      "with ABI version %d output"),
1765                    this->name().c_str(),
1766                    this->abiversion(), target->abiversion());
1767
1768     }
1769 }
1770
1771 // Stash away the index of .got2 or .opd in a relocatable object, if
1772 // such a section exists.
1773
1774 template<int size, bool big_endian>
1775 bool
1776 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1777     Read_symbols_data* sd)
1778 {
1779   const unsigned char* const pshdrs = sd->section_headers->data();
1780   const unsigned char* namesu = sd->section_names->data();
1781   const char* names = reinterpret_cast<const char*>(namesu);
1782   section_size_type names_size = sd->section_names_size;
1783   const unsigned char* s;
1784
1785   s = this->template find_shdr<size, big_endian>(pshdrs,
1786                                                  size == 32 ? ".got2" : ".opd",
1787                                                  names, names_size, NULL);
1788   if (s != NULL)
1789     {
1790       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1791       this->special_ = ndx;
1792       if (size == 64)
1793         {
1794           if (this->abiversion() == 0)
1795             this->set_abiversion(1);
1796           else if (this->abiversion() > 1)
1797             gold_error(_("%s: .opd invalid in abiv%d"),
1798                        this->name().c_str(), this->abiversion());
1799         }
1800     }
1801   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1802 }
1803
1804 // Examine .rela.opd to build info about function entry points.
1805
1806 template<int size, bool big_endian>
1807 void
1808 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1809     size_t reloc_count,
1810     const unsigned char* prelocs,
1811     const unsigned char* plocal_syms)
1812 {
1813   if (size == 64)
1814     {
1815       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1816         Reltype;
1817       const int reloc_size
1818         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1819       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1820       Address expected_off = 0;
1821       bool regular = true;
1822       unsigned int opd_ent_size = 0;
1823
1824       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1825         {
1826           Reltype reloc(prelocs);
1827           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1828             = reloc.get_r_info();
1829           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1830           if (r_type == elfcpp::R_PPC64_ADDR64)
1831             {
1832               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1833               typename elfcpp::Elf_types<size>::Elf_Addr value;
1834               bool is_ordinary;
1835               unsigned int shndx;
1836               if (r_sym < this->local_symbol_count())
1837                 {
1838                   typename elfcpp::Sym<size, big_endian>
1839                     lsym(plocal_syms + r_sym * sym_size);
1840                   shndx = lsym.get_st_shndx();
1841                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1842                   value = lsym.get_st_value();
1843                 }
1844               else
1845                 shndx = this->symbol_section_and_value(r_sym, &value,
1846                                                        &is_ordinary);
1847               this->set_opd_ent(reloc.get_r_offset(), shndx,
1848                                 value + reloc.get_r_addend());
1849               if (i == 2)
1850                 {
1851                   expected_off = reloc.get_r_offset();
1852                   opd_ent_size = expected_off;
1853                 }
1854               else if (expected_off != reloc.get_r_offset())
1855                 regular = false;
1856               expected_off += opd_ent_size;
1857             }
1858           else if (r_type == elfcpp::R_PPC64_TOC)
1859             {
1860               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1861                 regular = false;
1862             }
1863           else
1864             {
1865               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1866                            this->name().c_str(), r_type);
1867               regular = false;
1868             }
1869         }
1870       if (reloc_count <= 2)
1871         opd_ent_size = this->section_size(this->opd_shndx());
1872       if (opd_ent_size != 24 && opd_ent_size != 16)
1873         regular = false;
1874       if (!regular)
1875         {
1876           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1877                        this->name().c_str());
1878           opd_ent_size = 0;
1879         }
1880     }
1881 }
1882
1883 template<int size, bool big_endian>
1884 void
1885 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1886 {
1887   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1888   if (size == 64)
1889     {
1890       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1891            p != rd->relocs.end();
1892            ++p)
1893         {
1894           if (p->data_shndx == this->opd_shndx())
1895             {
1896               uint64_t opd_size = this->section_size(this->opd_shndx());
1897               gold_assert(opd_size == static_cast<size_t>(opd_size));
1898               if (opd_size != 0)
1899                 {
1900                   this->init_opd(opd_size);
1901                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1902                                         rd->local_symbols->data());
1903                 }
1904               break;
1905             }
1906         }
1907     }
1908 }
1909
1910 // Read the symbols then set up st_other vector.
1911
1912 template<int size, bool big_endian>
1913 void
1914 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1915 {
1916   this->base_read_symbols(sd);
1917   if (size == 64)
1918     {
1919       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1920       const unsigned char* const pshdrs = sd->section_headers->data();
1921       const unsigned int loccount = this->do_local_symbol_count();
1922       if (loccount != 0)
1923         {
1924           this->st_other_.resize(loccount);
1925           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1926           off_t locsize = loccount * sym_size;
1927           const unsigned int symtab_shndx = this->symtab_shndx();
1928           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1929           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1930           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1931                                                       locsize, true, false);
1932           psyms += sym_size;
1933           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1934             {
1935               elfcpp::Sym<size, big_endian> sym(psyms);
1936               unsigned char st_other = sym.get_st_other();
1937               this->st_other_[i] = st_other;
1938               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1939                 {
1940                   if (this->abiversion() == 0)
1941                     this->set_abiversion(2);
1942                   else if (this->abiversion() < 2)
1943                     gold_error(_("%s: local symbol %d has invalid st_other"
1944                                  " for ABI version 1"),
1945                                this->name().c_str(), i);
1946                 }
1947             }
1948         }
1949     }
1950 }
1951
1952 template<int size, bool big_endian>
1953 void
1954 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1955 {
1956   this->e_flags_ |= ver;
1957   if (this->abiversion() != 0)
1958     {
1959       Target_powerpc<size, big_endian>* target =
1960         static_cast<Target_powerpc<size, big_endian>*>(
1961           parameters->sized_target<size, big_endian>());
1962       if (target->abiversion() == 0)
1963         target->set_abiversion(this->abiversion());
1964       else if (target->abiversion() != this->abiversion())
1965         gold_error(_("%s: ABI version %d is not compatible "
1966                      "with ABI version %d output"),
1967                    this->name().c_str(),
1968                    this->abiversion(), target->abiversion());
1969
1970     }
1971 }
1972
1973 // Call Sized_dynobj::base_read_symbols to read the symbols then
1974 // read .opd from a dynamic object, filling in opd_ent_ vector,
1975
1976 template<int size, bool big_endian>
1977 void
1978 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1979 {
1980   this->base_read_symbols(sd);
1981   if (size == 64)
1982     {
1983       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1984       const unsigned char* const pshdrs = sd->section_headers->data();
1985       const unsigned char* namesu = sd->section_names->data();
1986       const char* names = reinterpret_cast<const char*>(namesu);
1987       const unsigned char* s = NULL;
1988       const unsigned char* opd;
1989       section_size_type opd_size;
1990
1991       // Find and read .opd section.
1992       while (1)
1993         {
1994           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1995                                                          sd->section_names_size,
1996                                                          s);
1997           if (s == NULL)
1998             return;
1999
2000           typename elfcpp::Shdr<size, big_endian> shdr(s);
2001           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2002               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2003             {
2004               if (this->abiversion() == 0)
2005                 this->set_abiversion(1);
2006               else if (this->abiversion() > 1)
2007                 gold_error(_("%s: .opd invalid in abiv%d"),
2008                            this->name().c_str(), this->abiversion());
2009
2010               this->opd_shndx_ = (s - pshdrs) / shdr_size;
2011               this->opd_address_ = shdr.get_sh_addr();
2012               opd_size = convert_to_section_size_type(shdr.get_sh_size());
2013               opd = this->get_view(shdr.get_sh_offset(), opd_size,
2014                                    true, false);
2015               break;
2016             }
2017         }
2018
2019       // Build set of executable sections.
2020       // Using a set is probably overkill.  There is likely to be only
2021       // a few executable sections, typically .init, .text and .fini,
2022       // and they are generally grouped together.
2023       typedef std::set<Sec_info> Exec_sections;
2024       Exec_sections exec_sections;
2025       s = pshdrs;
2026       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2027         {
2028           typename elfcpp::Shdr<size, big_endian> shdr(s);
2029           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2030               && ((shdr.get_sh_flags()
2031                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2032                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2033               && shdr.get_sh_size() != 0)
2034             {
2035               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2036                                             shdr.get_sh_size(), i));
2037             }
2038         }
2039       if (exec_sections.empty())
2040         return;
2041
2042       // Look over the OPD entries.  This is complicated by the fact
2043       // that some binaries will use two-word entries while others
2044       // will use the standard three-word entries.  In most cases
2045       // the third word (the environment pointer for languages like
2046       // Pascal) is unused and will be zero.  If the third word is
2047       // used it should not be pointing into executable sections,
2048       // I think.
2049       this->init_opd(opd_size);
2050       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2051         {
2052           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2053           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2054           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2055           if (val == 0)
2056             // Chances are that this is the third word of an OPD entry.
2057             continue;
2058           typename Exec_sections::const_iterator e
2059             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2060           if (e != exec_sections.begin())
2061             {
2062               --e;
2063               if (e->start <= val && val < e->start + e->len)
2064                 {
2065                   // We have an address in an executable section.
2066                   // VAL ought to be the function entry, set it up.
2067                   this->set_opd_ent(p - opd, e->shndx, val);
2068                   // Skip second word of OPD entry, the TOC pointer.
2069                   p += 8;
2070                 }
2071             }
2072           // If we didn't match any executable sections, we likely
2073           // have a non-zero third word in the OPD entry.
2074         }
2075     }
2076 }
2077
2078 // Set up some symbols.
2079
2080 template<int size, bool big_endian>
2081 void
2082 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2083     Symbol_table* symtab,
2084     Layout* layout)
2085 {
2086   if (size == 32)
2087     {
2088       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2089       // undefined when scanning relocs (and thus requires
2090       // non-relative dynamic relocs).  The proper value will be
2091       // updated later.
2092       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2093       if (gotsym != NULL && gotsym->is_undefined())
2094         {
2095           Target_powerpc<size, big_endian>* target =
2096             static_cast<Target_powerpc<size, big_endian>*>(
2097                 parameters->sized_target<size, big_endian>());
2098           Output_data_got_powerpc<size, big_endian>* got
2099             = target->got_section(symtab, layout);
2100           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2101                                         Symbol_table::PREDEFINED,
2102                                         got, 0, 0,
2103                                         elfcpp::STT_OBJECT,
2104                                         elfcpp::STB_LOCAL,
2105                                         elfcpp::STV_HIDDEN, 0,
2106                                         false, false);
2107         }
2108
2109       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2110       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2111       if (sdasym != NULL && sdasym->is_undefined())
2112         {
2113           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2114           Output_section* os
2115             = layout->add_output_section_data(".sdata", 0,
2116                                               elfcpp::SHF_ALLOC
2117                                               | elfcpp::SHF_WRITE,
2118                                               sdata, ORDER_SMALL_DATA, false);
2119           symtab->define_in_output_data("_SDA_BASE_", NULL,
2120                                         Symbol_table::PREDEFINED,
2121                                         os, 32768, 0, elfcpp::STT_OBJECT,
2122                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2123                                         0, false, false);
2124         }
2125     }
2126   else
2127     {
2128       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2129       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2130       if (gotsym != NULL && gotsym->is_undefined())
2131         {
2132           Target_powerpc<size, big_endian>* target =
2133             static_cast<Target_powerpc<size, big_endian>*>(
2134                 parameters->sized_target<size, big_endian>());
2135           Output_data_got_powerpc<size, big_endian>* got
2136             = target->got_section(symtab, layout);
2137           symtab->define_in_output_data(".TOC.", NULL,
2138                                         Symbol_table::PREDEFINED,
2139                                         got, 0x8000, 0,
2140                                         elfcpp::STT_OBJECT,
2141                                         elfcpp::STB_LOCAL,
2142                                         elfcpp::STV_HIDDEN, 0,
2143                                         false, false);
2144         }
2145     }
2146 }
2147
2148 // Set up PowerPC target specific relobj.
2149
2150 template<int size, bool big_endian>
2151 Object*
2152 Target_powerpc<size, big_endian>::do_make_elf_object(
2153     const std::string& name,
2154     Input_file* input_file,
2155     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2156 {
2157   int et = ehdr.get_e_type();
2158   // ET_EXEC files are valid input for --just-symbols/-R,
2159   // and we treat them as relocatable objects.
2160   if (et == elfcpp::ET_REL
2161       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2162     {
2163       Powerpc_relobj<size, big_endian>* obj =
2164         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2165       obj->setup();
2166       return obj;
2167     }
2168   else if (et == elfcpp::ET_DYN)
2169     {
2170       Powerpc_dynobj<size, big_endian>* obj =
2171         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2172       obj->setup();
2173       return obj;
2174     }
2175   else
2176     {
2177       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2178       return NULL;
2179     }
2180 }
2181
2182 template<int size, bool big_endian>
2183 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2184 {
2185 public:
2186   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2187   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2188
2189   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2190     : Output_data_got<size, big_endian>(),
2191       symtab_(symtab), layout_(layout),
2192       header_ent_cnt_(size == 32 ? 3 : 1),
2193       header_index_(size == 32 ? 0x2000 : 0)
2194   {
2195     if (size == 64)
2196       this->set_addralign(256);
2197   }
2198
2199   // Override all the Output_data_got methods we use so as to first call
2200   // reserve_ent().
2201   bool
2202   add_global(Symbol* gsym, unsigned int got_type)
2203   {
2204     this->reserve_ent();
2205     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2206   }
2207
2208   bool
2209   add_global_plt(Symbol* gsym, unsigned int got_type)
2210   {
2211     this->reserve_ent();
2212     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2213   }
2214
2215   bool
2216   add_global_tls(Symbol* gsym, unsigned int got_type)
2217   { return this->add_global_plt(gsym, got_type); }
2218
2219   void
2220   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2221                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2222   {
2223     this->reserve_ent();
2224     Output_data_got<size, big_endian>::
2225       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2226   }
2227
2228   void
2229   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2230                            Output_data_reloc_generic* rel_dyn,
2231                            unsigned int r_type_1, unsigned int r_type_2)
2232   {
2233     this->reserve_ent(2);
2234     Output_data_got<size, big_endian>::
2235       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2236   }
2237
2238   bool
2239   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2240   {
2241     this->reserve_ent();
2242     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2243                                                         got_type);
2244   }
2245
2246   bool
2247   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2248   {
2249     this->reserve_ent();
2250     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2251                                                             got_type);
2252   }
2253
2254   bool
2255   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2256   { return this->add_local_plt(object, sym_index, got_type); }
2257
2258   void
2259   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2260                      unsigned int got_type,
2261                      Output_data_reloc_generic* rel_dyn,
2262                      unsigned int r_type)
2263   {
2264     this->reserve_ent(2);
2265     Output_data_got<size, big_endian>::
2266       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2267   }
2268
2269   unsigned int
2270   add_constant(Valtype constant)
2271   {
2272     this->reserve_ent();
2273     return Output_data_got<size, big_endian>::add_constant(constant);
2274   }
2275
2276   unsigned int
2277   add_constant_pair(Valtype c1, Valtype c2)
2278   {
2279     this->reserve_ent(2);
2280     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2281   }
2282
2283   // Offset of _GLOBAL_OFFSET_TABLE_.
2284   unsigned int
2285   g_o_t() const
2286   {
2287     return this->got_offset(this->header_index_);
2288   }
2289
2290   // Offset of base used to access the GOT/TOC.
2291   // The got/toc pointer reg will be set to this value.
2292   Valtype
2293   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2294   {
2295     if (size == 32)
2296       return this->g_o_t();
2297     else
2298       return (this->output_section()->address()
2299               + object->toc_base_offset()
2300               - this->address());
2301   }
2302
2303   // Ensure our GOT has a header.
2304   void
2305   set_final_data_size()
2306   {
2307     if (this->header_ent_cnt_ != 0)
2308       this->make_header();
2309     Output_data_got<size, big_endian>::set_final_data_size();
2310   }
2311
2312   // First word of GOT header needs some values that are not
2313   // handled by Output_data_got so poke them in here.
2314   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2315   void
2316   do_write(Output_file* of)
2317   {
2318     Valtype val = 0;
2319     if (size == 32 && this->layout_->dynamic_data() != NULL)
2320       val = this->layout_->dynamic_section()->address();
2321     if (size == 64)
2322       val = this->output_section()->address() + 0x8000;
2323     this->replace_constant(this->header_index_, val);
2324     Output_data_got<size, big_endian>::do_write(of);
2325   }
2326
2327 private:
2328   void
2329   reserve_ent(unsigned int cnt = 1)
2330   {
2331     if (this->header_ent_cnt_ == 0)
2332       return;
2333     if (this->num_entries() + cnt > this->header_index_)
2334       this->make_header();
2335   }
2336
2337   void
2338   make_header()
2339   {
2340     this->header_ent_cnt_ = 0;
2341     this->header_index_ = this->num_entries();
2342     if (size == 32)
2343       {
2344         Output_data_got<size, big_endian>::add_constant(0);
2345         Output_data_got<size, big_endian>::add_constant(0);
2346         Output_data_got<size, big_endian>::add_constant(0);
2347
2348         // Define _GLOBAL_OFFSET_TABLE_ at the header
2349         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2350         if (gotsym != NULL)
2351           {
2352             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2353             sym->set_value(this->g_o_t());
2354           }
2355         else
2356           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2357                                                Symbol_table::PREDEFINED,
2358                                                this, this->g_o_t(), 0,
2359                                                elfcpp::STT_OBJECT,
2360                                                elfcpp::STB_LOCAL,
2361                                                elfcpp::STV_HIDDEN, 0,
2362                                                false, false);
2363       }
2364     else
2365       Output_data_got<size, big_endian>::add_constant(0);
2366   }
2367
2368   // Stashed pointers.
2369   Symbol_table* symtab_;
2370   Layout* layout_;
2371
2372   // GOT header size.
2373   unsigned int header_ent_cnt_;
2374   // GOT header index.
2375   unsigned int header_index_;
2376 };
2377
2378 // Get the GOT section, creating it if necessary.
2379
2380 template<int size, bool big_endian>
2381 Output_data_got_powerpc<size, big_endian>*
2382 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2383                                               Layout* layout)
2384 {
2385   if (this->got_ == NULL)
2386     {
2387       gold_assert(symtab != NULL && layout != NULL);
2388
2389       this->got_
2390         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2391
2392       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2393                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2394                                       this->got_, ORDER_DATA, false);
2395     }
2396
2397   return this->got_;
2398 }
2399
2400 // Get the dynamic reloc section, creating it if necessary.
2401
2402 template<int size, bool big_endian>
2403 typename Target_powerpc<size, big_endian>::Reloc_section*
2404 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2405 {
2406   if (this->rela_dyn_ == NULL)
2407     {
2408       gold_assert(layout != NULL);
2409       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2410       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2411                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2412                                       ORDER_DYNAMIC_RELOCS, false);
2413     }
2414   return this->rela_dyn_;
2415 }
2416
2417 // Similarly, but for ifunc symbols get the one for ifunc.
2418
2419 template<int size, bool big_endian>
2420 typename Target_powerpc<size, big_endian>::Reloc_section*
2421 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2422                                                    Layout* layout,
2423                                                    bool for_ifunc)
2424 {
2425   if (!for_ifunc)
2426     return this->rela_dyn_section(layout);
2427
2428   if (this->iplt_ == NULL)
2429     this->make_iplt_section(symtab, layout);
2430   return this->iplt_->rel_plt();
2431 }
2432
2433 class Stub_control
2434 {
2435  public:
2436   // Determine the stub group size.  The group size is the absolute
2437   // value of the parameter --stub-group-size.  If --stub-group-size
2438   // is passed a negative value, we restrict stubs to be always before
2439   // the stubbed branches.
2440   Stub_control(int32_t size, bool no_size_errors)
2441     : state_(NO_GROUP), stub_group_size_(abs(size)),
2442       stub14_group_size_(abs(size) >> 10),
2443       stubs_always_before_branch_(size < 0),
2444       suppress_size_errors_(no_size_errors),
2445       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2446   {
2447   }
2448
2449   // Return true iff input section can be handled by current stub
2450   // group.
2451   bool
2452   can_add_to_stub_group(Output_section* o,
2453                         const Output_section::Input_section* i,
2454                         bool has14);
2455
2456   const Output_section::Input_section*
2457   owner()
2458   { return owner_; }
2459
2460   Output_section*
2461   output_section()
2462   { return output_section_; }
2463
2464   void
2465   set_output_and_owner(Output_section* o,
2466                        const Output_section::Input_section* i)
2467   {
2468     this->output_section_ = o;
2469     this->owner_ = i;
2470   }
2471
2472  private:
2473   typedef enum
2474   {
2475     NO_GROUP,
2476     FINDING_STUB_SECTION,
2477     HAS_STUB_SECTION
2478   } State;
2479
2480   State state_;
2481   uint32_t stub_group_size_;
2482   uint32_t stub14_group_size_;
2483   bool stubs_always_before_branch_;
2484   bool suppress_size_errors_;
2485   uint64_t group_end_addr_;
2486   const Output_section::Input_section* owner_;
2487   Output_section* output_section_;
2488 };
2489
2490 // Return true iff input section can be handled by current stub
2491 // group.
2492
2493 bool
2494 Stub_control::can_add_to_stub_group(Output_section* o,
2495                                     const Output_section::Input_section* i,
2496                                     bool has14)
2497 {
2498   uint32_t group_size
2499     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2500   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2501   uint64_t this_size;
2502   uint64_t start_addr = o->address();
2503
2504   if (whole_sec)
2505     // .init and .fini sections are pasted together to form a single
2506     // function.  We can't be adding stubs in the middle of the function.
2507     this_size = o->data_size();
2508   else
2509     {
2510       start_addr += i->relobj()->output_section_offset(i->shndx());
2511       this_size = i->data_size();
2512     }
2513   uint64_t end_addr = start_addr + this_size;
2514   bool toobig = this_size > group_size;
2515
2516   if (toobig && !this->suppress_size_errors_)
2517     gold_warning(_("%s:%s exceeds group size"),
2518                  i->relobj()->name().c_str(),
2519                  i->relobj()->section_name(i->shndx()).c_str());
2520
2521   if (this->state_ != HAS_STUB_SECTION
2522       && (!whole_sec || this->output_section_ != o)
2523       && (this->state_ == NO_GROUP
2524           || this->group_end_addr_ - end_addr < group_size))
2525     {
2526       this->owner_ = i;
2527       this->output_section_ = o;
2528     }
2529
2530   if (this->state_ == NO_GROUP)
2531     {
2532       this->state_ = FINDING_STUB_SECTION;
2533       this->group_end_addr_ = end_addr;
2534     }
2535   else if (this->group_end_addr_ - start_addr < group_size)
2536     ;
2537   // Adding this section would make the group larger than GROUP_SIZE.
2538   else if (this->state_ == FINDING_STUB_SECTION
2539            && !this->stubs_always_before_branch_
2540            && !toobig)
2541     {
2542       // But wait, there's more!  Input sections up to GROUP_SIZE
2543       // bytes before the stub table can be handled by it too.
2544       this->state_ = HAS_STUB_SECTION;
2545       this->group_end_addr_ = end_addr;
2546     }
2547   else
2548     {
2549       this->state_ = NO_GROUP;
2550       return false;
2551     }
2552   return true;
2553 }
2554
2555 // Look over all the input sections, deciding where to place stubs.
2556
2557 template<int size, bool big_endian>
2558 void
2559 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2560                                                  const Task*,
2561                                                  bool no_size_errors)
2562 {
2563   Stub_control stub_control(this->stub_group_size_, no_size_errors);
2564
2565   // Group input sections and insert stub table
2566   Stub_table_owner* table_owner = NULL;
2567   std::vector<Stub_table_owner*> tables;
2568   Layout::Section_list section_list;
2569   layout->get_executable_sections(&section_list);
2570   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2571   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2572        o != section_list.rend();
2573        ++o)
2574     {
2575       typedef Output_section::Input_section_list Input_section_list;
2576       for (Input_section_list::const_reverse_iterator i
2577              = (*o)->input_sections().rbegin();
2578            i != (*o)->input_sections().rend();
2579            ++i)
2580         {
2581           if (i->is_input_section()
2582               || i->is_relaxed_input_section())
2583             {
2584               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2585                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2586               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2587               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2588                 {
2589                   table_owner->output_section = stub_control.output_section();
2590                   table_owner->owner = stub_control.owner();
2591                   stub_control.set_output_and_owner(*o, &*i);
2592                   table_owner = NULL;
2593                 }
2594               if (table_owner == NULL)
2595                 {
2596                   table_owner = new Stub_table_owner;
2597                   tables.push_back(table_owner);
2598                 }
2599               ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2600             }
2601         }
2602     }
2603   if (table_owner != NULL)
2604     {
2605       const Output_section::Input_section* i = stub_control.owner();
2606
2607       if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2608         {
2609           // Corner case.  A new stub group was made for the first
2610           // section (last one looked at here) for some reason, but
2611           // the first section is already being used as the owner for
2612           // a stub table for following sections.  Force it into that
2613           // stub group.
2614           tables.pop_back();
2615           delete table_owner;
2616           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2617             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2618           ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2619         }
2620       else
2621         {
2622           table_owner->output_section = stub_control.output_section();
2623           table_owner->owner = i;
2624         }
2625     }
2626   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2627        t != tables.end();
2628        ++t)
2629     {
2630       Stub_table<size, big_endian>* stub_table;
2631
2632       if ((*t)->owner->is_input_section())
2633         stub_table = new Stub_table<size, big_endian>(this,
2634                                                       (*t)->output_section,
2635                                                       (*t)->owner);
2636       else if ((*t)->owner->is_relaxed_input_section())
2637         stub_table = static_cast<Stub_table<size, big_endian>*>(
2638                         (*t)->owner->relaxed_input_section());
2639       else
2640         gold_unreachable();
2641       this->stub_tables_.push_back(stub_table);
2642       delete *t;
2643     }
2644 }
2645
2646 static unsigned long
2647 max_branch_delta (unsigned int r_type)
2648 {
2649   if (r_type == elfcpp::R_POWERPC_REL14
2650       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2651       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2652     return 1L << 15;
2653   if (r_type == elfcpp::R_POWERPC_REL24
2654       || r_type == elfcpp::R_PPC_PLTREL24
2655       || r_type == elfcpp::R_PPC_LOCAL24PC)
2656     return 1L << 25;
2657   return 0;
2658 }
2659
2660 // If this branch needs a plt call stub, or a long branch stub, make one.
2661
2662 template<int size, bool big_endian>
2663 bool
2664 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2665     Stub_table<size, big_endian>* stub_table,
2666     Stub_table<size, big_endian>* ifunc_stub_table,
2667     Symbol_table* symtab) const
2668 {
2669   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2670   if (sym != NULL && sym->is_forwarder())
2671     sym = symtab->resolve_forwards(sym);
2672   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2673   Target_powerpc<size, big_endian>* target =
2674     static_cast<Target_powerpc<size, big_endian>*>(
2675       parameters->sized_target<size, big_endian>());
2676   if (gsym != NULL
2677       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2678       : this->object_->local_has_plt_offset(this->r_sym_))
2679     {
2680       if (size == 64
2681           && gsym != NULL
2682           && target->abiversion() >= 2
2683           && !parameters->options().output_is_position_independent()
2684           && !is_branch_reloc(this->r_type_))
2685         target->glink_section()->add_global_entry(gsym);
2686       else
2687         {
2688           if (stub_table == NULL)
2689             stub_table = this->object_->stub_table(this->shndx_);
2690           if (stub_table == NULL)
2691             {
2692               // This is a ref from a data section to an ifunc symbol.
2693               stub_table = ifunc_stub_table;
2694             }
2695           gold_assert(stub_table != NULL);
2696           Address from = this->object_->get_output_section_offset(this->shndx_);
2697           if (from != invalid_address)
2698             from += (this->object_->output_section(this->shndx_)->address()
2699                      + this->offset_);
2700           if (gsym != NULL)
2701             return stub_table->add_plt_call_entry(from,
2702                                                   this->object_, gsym,
2703                                                   this->r_type_, this->addend_);
2704           else
2705             return stub_table->add_plt_call_entry(from,
2706                                                   this->object_, this->r_sym_,
2707                                                   this->r_type_, this->addend_);
2708         }
2709     }
2710   else
2711     {
2712       Address max_branch_offset = max_branch_delta(this->r_type_);
2713       if (max_branch_offset == 0)
2714         return true;
2715       Address from = this->object_->get_output_section_offset(this->shndx_);
2716       gold_assert(from != invalid_address);
2717       from += (this->object_->output_section(this->shndx_)->address()
2718                + this->offset_);
2719       Address to;
2720       if (gsym != NULL)
2721         {
2722           switch (gsym->source())
2723             {
2724             case Symbol::FROM_OBJECT:
2725               {
2726                 Object* symobj = gsym->object();
2727                 if (symobj->is_dynamic()
2728                     || symobj->pluginobj() != NULL)
2729                   return true;
2730                 bool is_ordinary;
2731                 unsigned int shndx = gsym->shndx(&is_ordinary);
2732                 if (shndx == elfcpp::SHN_UNDEF)
2733                   return true;
2734               }
2735               break;
2736
2737             case Symbol::IS_UNDEFINED:
2738               return true;
2739
2740             default:
2741               break;
2742             }
2743           Symbol_table::Compute_final_value_status status;
2744           to = symtab->compute_final_value<size>(gsym, &status);
2745           if (status != Symbol_table::CFVS_OK)
2746             return true;
2747           if (size == 64)
2748             to += this->object_->ppc64_local_entry_offset(gsym);
2749         }
2750       else
2751         {
2752           const Symbol_value<size>* psymval
2753             = this->object_->local_symbol(this->r_sym_);
2754           Symbol_value<size> symval;
2755           typedef Sized_relobj_file<size, big_endian> ObjType;
2756           typename ObjType::Compute_final_local_value_status status
2757             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2758                                                        &symval, symtab);
2759           if (status != ObjType::CFLV_OK
2760               || !symval.has_output_value())
2761             return true;
2762           to = symval.value(this->object_, 0);
2763           if (size == 64)
2764             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2765         }
2766       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2767         to += this->addend_;
2768       if (stub_table == NULL)
2769         stub_table = this->object_->stub_table(this->shndx_);
2770       if (size == 64 && target->abiversion() < 2)
2771         {
2772           unsigned int dest_shndx;
2773           if (!target->symval_for_branch(symtab, gsym, this->object_,
2774                                          &to, &dest_shndx))
2775             return true;
2776         }
2777       Address delta = to - from;
2778       if (delta + max_branch_offset >= 2 * max_branch_offset)
2779         {
2780           if (stub_table == NULL)
2781             {
2782               gold_warning(_("%s:%s: branch in non-executable section,"
2783                              " no long branch stub for you"),
2784                            this->object_->name().c_str(),
2785                            this->object_->section_name(this->shndx_).c_str());
2786               return true;
2787             }
2788           bool save_res = (size == 64
2789                            && gsym != NULL
2790                            && gsym->source() == Symbol::IN_OUTPUT_DATA
2791                            && gsym->output_data() == target->savres_section());
2792           return stub_table->add_long_branch_entry(this->object_,
2793                                                    this->r_type_,
2794                                                    from, to, save_res);
2795         }
2796     }
2797   return true;
2798 }
2799
2800 // Relaxation hook.  This is where we do stub generation.
2801
2802 template<int size, bool big_endian>
2803 bool
2804 Target_powerpc<size, big_endian>::do_relax(int pass,
2805                                            const Input_objects*,
2806                                            Symbol_table* symtab,
2807                                            Layout* layout,
2808                                            const Task* task)
2809 {
2810   unsigned int prev_brlt_size = 0;
2811   if (pass == 1)
2812     {
2813       bool thread_safe
2814         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2815       if (size == 64
2816           && this->abiversion() < 2
2817           && !thread_safe
2818           && !parameters->options().user_set_plt_thread_safe())
2819         {
2820           static const char* const thread_starter[] =
2821             {
2822               "pthread_create",
2823               /* libstdc++ */
2824               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2825               /* librt */
2826               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2827               "mq_notify", "create_timer",
2828               /* libanl */
2829               "getaddrinfo_a",
2830               /* libgomp */
2831               "GOMP_parallel",
2832               "GOMP_parallel_start",
2833               "GOMP_parallel_loop_static",
2834               "GOMP_parallel_loop_static_start",
2835               "GOMP_parallel_loop_dynamic",
2836               "GOMP_parallel_loop_dynamic_start",
2837               "GOMP_parallel_loop_guided",
2838               "GOMP_parallel_loop_guided_start",
2839               "GOMP_parallel_loop_runtime",
2840               "GOMP_parallel_loop_runtime_start",
2841               "GOMP_parallel_sections",
2842               "GOMP_parallel_sections_start",
2843               /* libgo */
2844               "__go_go",
2845             };
2846
2847           if (parameters->options().shared())
2848             thread_safe = true;
2849           else
2850             {
2851               for (unsigned int i = 0;
2852                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2853                    i++)
2854                 {
2855                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2856                   thread_safe = (sym != NULL
2857                                  && sym->in_reg()
2858                                  && sym->in_real_elf());
2859                   if (thread_safe)
2860                     break;
2861                 }
2862             }
2863         }
2864       this->plt_thread_safe_ = thread_safe;
2865     }
2866
2867   if (pass == 1)
2868     {
2869       this->stub_group_size_ = parameters->options().stub_group_size();
2870       bool no_size_errors = true;
2871       if (this->stub_group_size_ == 1)
2872         this->stub_group_size_ = 0x1c00000;
2873       else if (this->stub_group_size_ == -1)
2874         this->stub_group_size_ = -0x1e00000;
2875       else
2876         no_size_errors = false;
2877       this->group_sections(layout, task, no_size_errors);
2878     }
2879   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2880     {
2881       this->branch_lookup_table_.clear();
2882       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2883            p != this->stub_tables_.end();
2884            ++p)
2885         {
2886           (*p)->clear_stubs(true);
2887         }
2888       this->stub_tables_.clear();
2889       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2890       gold_info(_("%s: stub group size is too large; retrying with %d"),
2891                 program_name, this->stub_group_size_);
2892       this->group_sections(layout, task, true);
2893     }
2894
2895   // We need address of stub tables valid for make_stub.
2896   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2897        p != this->stub_tables_.end();
2898        ++p)
2899     {
2900       const Powerpc_relobj<size, big_endian>* object
2901         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2902       Address off = object->get_output_section_offset((*p)->shndx());
2903       gold_assert(off != invalid_address);
2904       Output_section* os = (*p)->output_section();
2905       (*p)->set_address_and_size(os, off);
2906     }
2907
2908   if (pass != 1)
2909     {
2910       // Clear plt call stubs, long branch stubs and branch lookup table.
2911       prev_brlt_size = this->branch_lookup_table_.size();
2912       this->branch_lookup_table_.clear();
2913       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2914            p != this->stub_tables_.end();
2915            ++p)
2916         {
2917           (*p)->clear_stubs(false);
2918         }
2919     }
2920
2921   // Build all the stubs.
2922   this->relax_failed_ = false;
2923   Stub_table<size, big_endian>* ifunc_stub_table
2924     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2925   Stub_table<size, big_endian>* one_stub_table
2926     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2927   for (typename Branches::const_iterator b = this->branch_info_.begin();
2928        b != this->branch_info_.end();
2929        b++)
2930     {
2931       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2932           && !this->relax_failed_)
2933         {
2934           this->relax_failed_ = true;
2935           this->relax_fail_count_++;
2936           if (this->relax_fail_count_ < 3)
2937             return true;
2938         }
2939     }
2940
2941   // Did anything change size?
2942   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2943   bool again = num_huge_branches != prev_brlt_size;
2944   if (size == 64 && num_huge_branches != 0)
2945     this->make_brlt_section(layout);
2946   if (size == 64 && again)
2947     this->brlt_section_->set_current_size(num_huge_branches);
2948
2949   typedef Unordered_set<Output_section*> Output_sections;
2950   Output_sections os_need_update;
2951   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2952        p != this->stub_tables_.end();
2953        ++p)
2954     {
2955       if ((*p)->size_update())
2956         {
2957           again = true;
2958           (*p)->add_eh_frame(layout);
2959           os_need_update.insert((*p)->output_section());
2960         }
2961     }
2962
2963   // Set output section offsets for all input sections in an output
2964   // section that just changed size.  Anything past the stubs will
2965   // need updating.
2966   for (typename Output_sections::iterator p = os_need_update.begin();
2967        p != os_need_update.end();
2968        p++)
2969     {
2970       Output_section* os = *p;
2971       Address off = 0;
2972       typedef Output_section::Input_section_list Input_section_list;
2973       for (Input_section_list::const_iterator i = os->input_sections().begin();
2974            i != os->input_sections().end();
2975            ++i)
2976         {
2977           off = align_address(off, i->addralign());
2978           if (i->is_input_section() || i->is_relaxed_input_section())
2979             i->relobj()->set_section_offset(i->shndx(), off);
2980           if (i->is_relaxed_input_section())
2981             {
2982               Stub_table<size, big_endian>* stub_table
2983                 = static_cast<Stub_table<size, big_endian>*>(
2984                     i->relaxed_input_section());
2985               off += stub_table->set_address_and_size(os, off);
2986             }
2987           else
2988             off += i->data_size();
2989         }
2990       // If .branch_lt is part of this output section, then we have
2991       // just done the offset adjustment.
2992       os->clear_section_offsets_need_adjustment();
2993     }
2994
2995   if (size == 64
2996       && !again
2997       && num_huge_branches != 0
2998       && parameters->options().output_is_position_independent())
2999     {
3000       // Fill in the BRLT relocs.
3001       this->brlt_section_->reset_brlt_sizes();
3002       for (typename Branch_lookup_table::const_iterator p
3003              = this->branch_lookup_table_.begin();
3004            p != this->branch_lookup_table_.end();
3005            ++p)
3006         {
3007           this->brlt_section_->add_reloc(p->first, p->second);
3008         }
3009       this->brlt_section_->finalize_brlt_sizes();
3010     }
3011   return again;
3012 }
3013
3014 template<int size, bool big_endian>
3015 void
3016 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3017                                                       unsigned char* oview,
3018                                                       uint64_t* paddress,
3019                                                       off_t* plen) const
3020 {
3021   uint64_t address = plt->address();
3022   off_t len = plt->data_size();
3023
3024   if (plt == this->glink_)
3025     {
3026       // See Output_data_glink::do_write() for glink contents.
3027       if (len == 0)
3028         {
3029           gold_assert(parameters->doing_static_link());
3030           // Static linking may need stubs, to support ifunc and long
3031           // branches.  We need to create an output section for
3032           // .eh_frame early in the link process, to have a place to
3033           // attach stub .eh_frame info.  We also need to have
3034           // registered a CIE that matches the stub CIE.  Both of
3035           // these requirements are satisfied by creating an FDE and
3036           // CIE for .glink, even though static linking will leave
3037           // .glink zero length.
3038           // ??? Hopefully generating an FDE with a zero address range
3039           // won't confuse anything that consumes .eh_frame info.
3040         }
3041       else if (size == 64)
3042         {
3043           // There is one word before __glink_PLTresolve
3044           address += 8;
3045           len -= 8;
3046         }
3047       else if (parameters->options().output_is_position_independent())
3048         {
3049           // There are two FDEs for a position independent glink.
3050           // The first covers the branch table, the second
3051           // __glink_PLTresolve at the end of glink.
3052           off_t resolve_size = this->glink_->pltresolve_size;
3053           if (oview[9] == elfcpp::DW_CFA_nop)
3054             len -= resolve_size;
3055           else
3056             {
3057               address += len - resolve_size;
3058               len = resolve_size;
3059             }
3060         }
3061     }
3062   else
3063     {
3064       // Must be a stub table.
3065       const Stub_table<size, big_endian>* stub_table
3066         = static_cast<const Stub_table<size, big_endian>*>(plt);
3067       uint64_t stub_address = stub_table->stub_address();
3068       len -= stub_address - address;
3069       address = stub_address;
3070     }
3071
3072   *paddress = address;
3073   *plen = len;
3074 }
3075
3076 // A class to handle the PLT data.
3077
3078 template<int size, bool big_endian>
3079 class Output_data_plt_powerpc : public Output_section_data_build
3080 {
3081  public:
3082   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3083                             size, big_endian> Reloc_section;
3084
3085   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3086                           Reloc_section* plt_rel,
3087                           const char* name)
3088     : Output_section_data_build(size == 32 ? 4 : 8),
3089       rel_(plt_rel),
3090       targ_(targ),
3091       name_(name)
3092   { }
3093
3094   // Add an entry to the PLT.
3095   void
3096   add_entry(Symbol*);
3097
3098   void
3099   add_ifunc_entry(Symbol*);
3100
3101   void
3102   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3103
3104   // Return the .rela.plt section data.
3105   Reloc_section*
3106   rel_plt() const
3107   {
3108     return this->rel_;
3109   }
3110
3111   // Return the number of PLT entries.
3112   unsigned int
3113   entry_count() const
3114   {
3115     if (this->current_data_size() == 0)
3116       return 0;
3117     return ((this->current_data_size() - this->first_plt_entry_offset())
3118             / this->plt_entry_size());
3119   }
3120
3121  protected:
3122   void
3123   do_adjust_output_section(Output_section* os)
3124   {
3125     os->set_entsize(0);
3126   }
3127
3128   // Write to a map file.
3129   void
3130   do_print_to_mapfile(Mapfile* mapfile) const
3131   { mapfile->print_output_data(this, this->name_); }
3132
3133  private:
3134   // Return the offset of the first non-reserved PLT entry.
3135   unsigned int
3136   first_plt_entry_offset() const
3137   {
3138     // IPLT has no reserved entry.
3139     if (this->name_[3] == 'I')
3140       return 0;
3141     return this->targ_->first_plt_entry_offset();
3142   }
3143
3144   // Return the size of each PLT entry.
3145   unsigned int
3146   plt_entry_size() const
3147   {
3148     return this->targ_->plt_entry_size();
3149   }
3150
3151   // Write out the PLT data.
3152   void
3153   do_write(Output_file*);
3154
3155   // The reloc section.
3156   Reloc_section* rel_;
3157   // Allows access to .glink for do_write.
3158   Target_powerpc<size, big_endian>* targ_;
3159   // What to report in map file.
3160   const char *name_;
3161 };
3162
3163 // Add an entry to the PLT.
3164
3165 template<int size, bool big_endian>
3166 void
3167 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3168 {
3169   if (!gsym->has_plt_offset())
3170     {
3171       section_size_type off = this->current_data_size();
3172       if (off == 0)
3173         off += this->first_plt_entry_offset();
3174       gsym->set_plt_offset(off);
3175       gsym->set_needs_dynsym_entry();
3176       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3177       this->rel_->add_global(gsym, dynrel, this, off, 0);
3178       off += this->plt_entry_size();
3179       this->set_current_data_size(off);
3180     }
3181 }
3182
3183 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3184
3185 template<int size, bool big_endian>
3186 void
3187 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3188 {
3189   if (!gsym->has_plt_offset())
3190     {
3191       section_size_type off = this->current_data_size();
3192       gsym->set_plt_offset(off);
3193       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3194       if (size == 64 && this->targ_->abiversion() < 2)
3195         dynrel = elfcpp::R_PPC64_JMP_IREL;
3196       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3197       off += this->plt_entry_size();
3198       this->set_current_data_size(off);
3199     }
3200 }
3201
3202 // Add an entry for a local ifunc symbol to the IPLT.
3203
3204 template<int size, bool big_endian>
3205 void
3206 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3207     Sized_relobj_file<size, big_endian>* relobj,
3208     unsigned int local_sym_index)
3209 {
3210   if (!relobj->local_has_plt_offset(local_sym_index))
3211     {
3212       section_size_type off = this->current_data_size();
3213       relobj->set_local_plt_offset(local_sym_index, off);
3214       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3215       if (size == 64 && this->targ_->abiversion() < 2)
3216         dynrel = elfcpp::R_PPC64_JMP_IREL;
3217       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3218                                               this, off, 0);
3219       off += this->plt_entry_size();
3220       this->set_current_data_size(off);
3221     }
3222 }
3223
3224 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3225 static const uint32_t add_2_2_11        = 0x7c425a14;
3226 static const uint32_t add_2_2_12        = 0x7c426214;
3227 static const uint32_t add_3_3_2         = 0x7c631214;
3228 static const uint32_t add_3_3_13        = 0x7c636a14;
3229 static const uint32_t add_11_0_11       = 0x7d605a14;
3230 static const uint32_t add_11_2_11       = 0x7d625a14;
3231 static const uint32_t add_11_11_2       = 0x7d6b1214;
3232 static const uint32_t addi_0_12         = 0x380c0000;
3233 static const uint32_t addi_2_2          = 0x38420000;
3234 static const uint32_t addi_3_3          = 0x38630000;
3235 static const uint32_t addi_11_11        = 0x396b0000;
3236 static const uint32_t addi_12_1         = 0x39810000;
3237 static const uint32_t addi_12_12        = 0x398c0000;
3238 static const uint32_t addis_0_2         = 0x3c020000;
3239 static const uint32_t addis_0_13        = 0x3c0d0000;
3240 static const uint32_t addis_2_12        = 0x3c4c0000;
3241 static const uint32_t addis_11_2        = 0x3d620000;
3242 static const uint32_t addis_11_11       = 0x3d6b0000;
3243 static const uint32_t addis_11_30       = 0x3d7e0000;
3244 static const uint32_t addis_12_1        = 0x3d810000;
3245 static const uint32_t addis_12_2        = 0x3d820000;
3246 static const uint32_t addis_12_12       = 0x3d8c0000;
3247 static const uint32_t b                 = 0x48000000;
3248 static const uint32_t bcl_20_31         = 0x429f0005;
3249 static const uint32_t bctr              = 0x4e800420;
3250 static const uint32_t blr               = 0x4e800020;
3251 static const uint32_t bnectr_p4         = 0x4ce20420;
3252 static const uint32_t cmpld_7_12_0      = 0x7fac0040;
3253 static const uint32_t cmpldi_2_0        = 0x28220000;
3254 static const uint32_t cror_15_15_15     = 0x4def7b82;
3255 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3256 static const uint32_t ld_0_1            = 0xe8010000;
3257 static const uint32_t ld_0_12           = 0xe80c0000;
3258 static const uint32_t ld_2_1            = 0xe8410000;
3259 static const uint32_t ld_2_2            = 0xe8420000;
3260 static const uint32_t ld_2_11           = 0xe84b0000;
3261 static const uint32_t ld_2_12           = 0xe84c0000;
3262 static const uint32_t ld_11_2           = 0xe9620000;
3263 static const uint32_t ld_11_11          = 0xe96b0000;
3264 static const uint32_t ld_12_2           = 0xe9820000;
3265 static const uint32_t ld_12_11          = 0xe98b0000;
3266 static const uint32_t ld_12_12          = 0xe98c0000;
3267 static const uint32_t lfd_0_1           = 0xc8010000;
3268 static const uint32_t li_0_0            = 0x38000000;
3269 static const uint32_t li_12_0           = 0x39800000;
3270 static const uint32_t lis_0             = 0x3c000000;
3271 static const uint32_t lis_2             = 0x3c400000;
3272 static const uint32_t lis_11            = 0x3d600000;
3273 static const uint32_t lis_12            = 0x3d800000;
3274 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3275 static const uint32_t lwz_0_12          = 0x800c0000;
3276 static const uint32_t lwz_11_11         = 0x816b0000;
3277 static const uint32_t lwz_11_30         = 0x817e0000;
3278 static const uint32_t lwz_12_12         = 0x818c0000;
3279 static const uint32_t lwzu_0_12         = 0x840c0000;
3280 static const uint32_t mflr_0            = 0x7c0802a6;
3281 static const uint32_t mflr_11           = 0x7d6802a6;
3282 static const uint32_t mflr_12           = 0x7d8802a6;
3283 static const uint32_t mtctr_0           = 0x7c0903a6;
3284 static const uint32_t mtctr_11          = 0x7d6903a6;
3285 static const uint32_t mtctr_12          = 0x7d8903a6;
3286 static const uint32_t mtlr_0            = 0x7c0803a6;
3287 static const uint32_t mtlr_12           = 0x7d8803a6;
3288 static const uint32_t nop               = 0x60000000;
3289 static const uint32_t ori_0_0_0         = 0x60000000;
3290 static const uint32_t srdi_0_0_2        = 0x7800f082;
3291 static const uint32_t std_0_1           = 0xf8010000;
3292 static const uint32_t std_0_12          = 0xf80c0000;
3293 static const uint32_t std_2_1           = 0xf8410000;
3294 static const uint32_t stfd_0_1          = 0xd8010000;
3295 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3296 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3297 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3298 static const uint32_t xor_2_12_12       = 0x7d826278;
3299 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3300
3301 // Write out the PLT.
3302
3303 template<int size, bool big_endian>
3304 void
3305 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3306 {
3307   if (size == 32 && this->name_[3] != 'I')
3308     {
3309       const section_size_type offset = this->offset();
3310       const section_size_type oview_size
3311         = convert_to_section_size_type(this->data_size());
3312       unsigned char* const oview = of->get_output_view(offset, oview_size);
3313       unsigned char* pov = oview;
3314       unsigned char* endpov = oview + oview_size;
3315
3316       // The address of the .glink branch table
3317       const Output_data_glink<size, big_endian>* glink
3318         = this->targ_->glink_section();
3319       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3320
3321       while (pov < endpov)
3322         {
3323           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3324           pov += 4;
3325           branch_tab += 4;
3326         }
3327
3328       of->write_output_view(offset, oview_size, oview);
3329     }
3330 }
3331
3332 // Create the PLT section.
3333
3334 template<int size, bool big_endian>
3335 void
3336 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3337                                                    Layout* layout)
3338 {
3339   if (this->plt_ == NULL)
3340     {
3341       if (this->got_ == NULL)
3342         this->got_section(symtab, layout);
3343
3344       if (this->glink_ == NULL)
3345         make_glink_section(layout);
3346
3347       // Ensure that .rela.dyn always appears before .rela.plt  This is
3348       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3349       // needs to include .rela.plt in its range.
3350       this->rela_dyn_section(layout);
3351
3352       Reloc_section* plt_rel = new Reloc_section(false);
3353       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3354                                       elfcpp::SHF_ALLOC, plt_rel,
3355                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3356       this->plt_
3357         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3358                                                         "** PLT");
3359       layout->add_output_section_data(".plt",
3360                                       (size == 32
3361                                        ? elfcpp::SHT_PROGBITS
3362                                        : elfcpp::SHT_NOBITS),
3363                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3364                                       this->plt_,
3365                                       (size == 32
3366                                        ? ORDER_SMALL_DATA
3367                                        : ORDER_SMALL_BSS),
3368                                       false);
3369     }
3370 }
3371
3372 // Create the IPLT section.
3373
3374 template<int size, bool big_endian>
3375 void
3376 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3377                                                     Layout* layout)
3378 {
3379   if (this->iplt_ == NULL)
3380     {
3381       this->make_plt_section(symtab, layout);
3382
3383       Reloc_section* iplt_rel = new Reloc_section(false);
3384       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3385       this->iplt_
3386         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3387                                                         "** IPLT");
3388       this->plt_->output_section()->add_output_section_data(this->iplt_);
3389     }
3390 }
3391
3392 // A section for huge long branch addresses, similar to plt section.
3393
3394 template<int size, bool big_endian>
3395 class Output_data_brlt_powerpc : public Output_section_data_build
3396 {
3397  public:
3398   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3399   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3400                             size, big_endian> Reloc_section;
3401
3402   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3403                            Reloc_section* brlt_rel)
3404     : Output_section_data_build(size == 32 ? 4 : 8),
3405       rel_(brlt_rel),
3406       targ_(targ)
3407   { }
3408
3409   void
3410   reset_brlt_sizes()
3411   {
3412     this->reset_data_size();
3413     this->rel_->reset_data_size();
3414   }
3415
3416   void
3417   finalize_brlt_sizes()
3418   {
3419     this->finalize_data_size();
3420     this->rel_->finalize_data_size();
3421   }
3422
3423   // Add a reloc for an entry in the BRLT.
3424   void
3425   add_reloc(Address to, unsigned int off)
3426   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3427
3428   // Update section and reloc section size.
3429   void
3430   set_current_size(unsigned int num_branches)
3431   {
3432     this->reset_address_and_file_offset();
3433     this->set_current_data_size(num_branches * 16);
3434     this->finalize_data_size();
3435     Output_section* os = this->output_section();
3436     os->set_section_offsets_need_adjustment();
3437     if (this->rel_ != NULL)
3438       {
3439         unsigned int reloc_size
3440           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3441         this->rel_->reset_address_and_file_offset();
3442         this->rel_->set_current_data_size(num_branches * reloc_size);
3443         this->rel_->finalize_data_size();
3444         Output_section* os = this->rel_->output_section();
3445         os->set_section_offsets_need_adjustment();
3446       }
3447   }
3448
3449  protected:
3450   void
3451   do_adjust_output_section(Output_section* os)
3452   {
3453     os->set_entsize(0);
3454   }
3455
3456   // Write to a map file.
3457   void
3458   do_print_to_mapfile(Mapfile* mapfile) const
3459   { mapfile->print_output_data(this, "** BRLT"); }
3460
3461  private:
3462   // Write out the BRLT data.
3463   void
3464   do_write(Output_file*);
3465
3466   // The reloc section.
3467   Reloc_section* rel_;
3468   Target_powerpc<size, big_endian>* targ_;
3469 };
3470
3471 // Make the branch lookup table section.
3472
3473 template<int size, bool big_endian>
3474 void
3475 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3476 {
3477   if (size == 64 && this->brlt_section_ == NULL)
3478     {
3479       Reloc_section* brlt_rel = NULL;
3480       bool is_pic = parameters->options().output_is_position_independent();
3481       if (is_pic)
3482         {
3483           // When PIC we can't fill in .branch_lt (like .plt it can be
3484           // a bss style section) but must initialise at runtime via
3485           // dynamic relocats.
3486           this->rela_dyn_section(layout);
3487           brlt_rel = new Reloc_section(false);
3488           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3489         }
3490       this->brlt_section_
3491         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3492       if (this->plt_ && is_pic)
3493         this->plt_->output_section()
3494           ->add_output_section_data(this->brlt_section_);
3495       else
3496         layout->add_output_section_data(".branch_lt",
3497                                         (is_pic ? elfcpp::SHT_NOBITS
3498                                          : elfcpp::SHT_PROGBITS),
3499                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3500                                         this->brlt_section_,
3501                                         (is_pic ? ORDER_SMALL_BSS
3502                                          : ORDER_SMALL_DATA),
3503                                         false);
3504     }
3505 }
3506
3507 // Write out .branch_lt when non-PIC.
3508
3509 template<int size, bool big_endian>
3510 void
3511 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3512 {
3513   if (size == 64 && !parameters->options().output_is_position_independent())
3514     {
3515       const section_size_type offset = this->offset();
3516       const section_size_type oview_size
3517         = convert_to_section_size_type(this->data_size());
3518       unsigned char* const oview = of->get_output_view(offset, oview_size);
3519
3520       this->targ_->write_branch_lookup_table(oview);
3521       of->write_output_view(offset, oview_size, oview);
3522     }
3523 }
3524
3525 static inline uint32_t
3526 l(uint32_t a)
3527 {
3528   return a & 0xffff;
3529 }
3530
3531 static inline uint32_t
3532 hi(uint32_t a)
3533 {
3534   return l(a >> 16);
3535 }
3536
3537 static inline uint32_t
3538 ha(uint32_t a)
3539 {
3540   return hi(a + 0x8000);
3541 }
3542
3543 template<int size>
3544 struct Eh_cie
3545 {
3546   static const unsigned char eh_frame_cie[12];
3547 };
3548
3549 template<int size>
3550 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3551 {
3552   1,                                    // CIE version.
3553   'z', 'R', 0,                          // Augmentation string.
3554   4,                                    // Code alignment.
3555   0x80 - size / 8 ,                     // Data alignment.
3556   65,                                   // RA reg.
3557   1,                                    // Augmentation size.
3558   (elfcpp::DW_EH_PE_pcrel
3559    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3560   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3561 };
3562
3563 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3564 static const unsigned char glink_eh_frame_fde_64v1[] =
3565 {
3566   0, 0, 0, 0,                           // Replaced with offset to .glink.
3567   0, 0, 0, 0,                           // Replaced with size of .glink.
3568   0,                                    // Augmentation size.
3569   elfcpp::DW_CFA_advance_loc + 1,
3570   elfcpp::DW_CFA_register, 65, 12,
3571   elfcpp::DW_CFA_advance_loc + 4,
3572   elfcpp::DW_CFA_restore_extended, 65
3573 };
3574
3575 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3576 static const unsigned char glink_eh_frame_fde_64v2[] =
3577 {
3578   0, 0, 0, 0,                           // Replaced with offset to .glink.
3579   0, 0, 0, 0,                           // Replaced with size of .glink.
3580   0,                                    // Augmentation size.
3581   elfcpp::DW_CFA_advance_loc + 1,
3582   elfcpp::DW_CFA_register, 65, 0,
3583   elfcpp::DW_CFA_advance_loc + 4,
3584   elfcpp::DW_CFA_restore_extended, 65
3585 };
3586
3587 // Describe __glink_PLTresolve use of LR, 32-bit version.
3588 static const unsigned char glink_eh_frame_fde_32[] =
3589 {
3590   0, 0, 0, 0,                           // Replaced with offset to .glink.
3591   0, 0, 0, 0,                           // Replaced with size of .glink.
3592   0,                                    // Augmentation size.
3593   elfcpp::DW_CFA_advance_loc + 2,
3594   elfcpp::DW_CFA_register, 65, 0,
3595   elfcpp::DW_CFA_advance_loc + 4,
3596   elfcpp::DW_CFA_restore_extended, 65
3597 };
3598
3599 static const unsigned char default_fde[] =
3600 {
3601   0, 0, 0, 0,                           // Replaced with offset to stubs.
3602   0, 0, 0, 0,                           // Replaced with size of stubs.
3603   0,                                    // Augmentation size.
3604   elfcpp::DW_CFA_nop,                   // Pad.
3605   elfcpp::DW_CFA_nop,
3606   elfcpp::DW_CFA_nop
3607 };
3608
3609 template<bool big_endian>
3610 static inline void
3611 write_insn(unsigned char* p, uint32_t v)
3612 {
3613   elfcpp::Swap<32, big_endian>::writeval(p, v);
3614 }
3615
3616 // Stub_table holds information about plt and long branch stubs.
3617 // Stubs are built in an area following some input section determined
3618 // by group_sections().  This input section is converted to a relaxed
3619 // input section allowing it to be resized to accommodate the stubs
3620
3621 template<int size, bool big_endian>
3622 class Stub_table : public Output_relaxed_input_section
3623 {
3624  public:
3625   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3626   static const Address invalid_address = static_cast<Address>(0) - 1;
3627
3628   Stub_table(Target_powerpc<size, big_endian>* targ,
3629              Output_section* output_section,
3630              const Output_section::Input_section* owner)
3631     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3632                                    owner->relobj()
3633                                    ->section_addralign(owner->shndx())),
3634       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3635       orig_data_size_(owner->current_data_size()),
3636       plt_size_(0), last_plt_size_(0),
3637       branch_size_(0), last_branch_size_(0), eh_frame_added_(false),
3638       need_save_res_(false)
3639   {
3640     this->set_output_section(output_section);
3641
3642     std::vector<Output_relaxed_input_section*> new_relaxed;
3643     new_relaxed.push_back(this);
3644     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3645   }
3646
3647   // Add a plt call stub.
3648   bool
3649   add_plt_call_entry(Address,
3650                      const Sized_relobj_file<size, big_endian>*,
3651                      const Symbol*,
3652                      unsigned int,
3653                      Address);
3654
3655   bool
3656   add_plt_call_entry(Address,
3657                      const Sized_relobj_file<size, big_endian>*,
3658                      unsigned int,
3659                      unsigned int,
3660                      Address);
3661
3662   // Find a given plt call stub.
3663   Address
3664   find_plt_call_entry(const Symbol*) const;
3665
3666   Address
3667   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3668                       unsigned int) const;
3669
3670   Address
3671   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3672                       const Symbol*,
3673                       unsigned int,
3674                       Address) const;
3675
3676   Address
3677   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3678                       unsigned int,
3679                       unsigned int,
3680                       Address) const;
3681
3682   // Add a long branch stub.
3683   bool
3684   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3685                         unsigned int, Address, Address, bool);
3686
3687   Address
3688   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3689                          Address) const;
3690
3691   bool
3692   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3693   {
3694     Address max_branch_offset = max_branch_delta(r_type);
3695     if (max_branch_offset == 0)
3696       return true;
3697     gold_assert(from != invalid_address);
3698     Address loc = off + this->stub_address();
3699     return loc - from + max_branch_offset < 2 * max_branch_offset;
3700   }
3701
3702   void
3703   clear_stubs(bool all)
3704   {
3705     this->plt_call_stubs_.clear();
3706     this->plt_size_ = 0;
3707     this->long_branch_stubs_.clear();
3708     this->branch_size_ = 0;
3709     this->need_save_res_ = false;
3710     if (all)
3711       {
3712         this->last_plt_size_ = 0;
3713         this->last_branch_size_ = 0;
3714       }
3715   }
3716
3717   Address
3718   set_address_and_size(const Output_section* os, Address off)
3719   {
3720     Address start_off = off;
3721     off += this->orig_data_size_;
3722     Address my_size = this->plt_size_ + this->branch_size_;
3723     if (this->need_save_res_)
3724       my_size += this->targ_->savres_section()->data_size();
3725     if (my_size != 0)
3726       off = align_address(off, this->stub_align());
3727     // Include original section size and alignment padding in size
3728     my_size += off - start_off;
3729     this->reset_address_and_file_offset();
3730     this->set_current_data_size(my_size);
3731     this->set_address_and_file_offset(os->address() + start_off,
3732                                       os->offset() + start_off);
3733     return my_size;
3734   }
3735
3736   Address
3737   stub_address() const
3738   {
3739     return align_address(this->address() + this->orig_data_size_,
3740                          this->stub_align());
3741   }
3742
3743   Address
3744   stub_offset() const
3745   {
3746     return align_address(this->offset() + this->orig_data_size_,
3747                          this->stub_align());
3748   }
3749
3750   section_size_type
3751   plt_size() const
3752   { return this->plt_size_; }
3753
3754   bool
3755   size_update()
3756   {
3757     Output_section* os = this->output_section();
3758     if (os->addralign() < this->stub_align())
3759       {
3760         os->set_addralign(this->stub_align());
3761         // FIXME: get rid of the insane checkpointing.
3762         // We can't increase alignment of the input section to which
3763         // stubs are attached;  The input section may be .init which
3764         // is pasted together with other .init sections to form a
3765         // function.  Aligning might insert zero padding resulting in
3766         // sigill.  However we do need to increase alignment of the
3767         // output section so that the align_address() on offset in
3768         // set_address_and_size() adds the same padding as the
3769         // align_address() on address in stub_address().
3770         // What's more, we need this alignment for the layout done in
3771         // relaxation_loop_body() so that the output section starts at
3772         // a suitably aligned address.
3773         os->checkpoint_set_addralign(this->stub_align());
3774       }
3775     if (this->last_plt_size_ != this->plt_size_
3776         || this->last_branch_size_ != this->branch_size_)
3777       {
3778         this->last_plt_size_ = this->plt_size_;
3779         this->last_branch_size_ = this->branch_size_;
3780         return true;
3781       }
3782     return false;
3783   }
3784
3785   // Add .eh_frame info for this stub section.  Unlike other linker
3786   // generated .eh_frame this is added late in the link, because we
3787   // only want the .eh_frame info if this particular stub section is
3788   // non-empty.
3789   void
3790   add_eh_frame(Layout* layout)
3791   {
3792     if (!this->eh_frame_added_)
3793       {
3794         if (!parameters->options().ld_generated_unwind_info())
3795           return;
3796
3797         // Since we add stub .eh_frame info late, it must be placed
3798         // after all other linker generated .eh_frame info so that
3799         // merge mapping need not be updated for input sections.
3800         // There is no provision to use a different CIE to that used
3801         // by .glink.
3802         if (!this->targ_->has_glink())
3803           return;
3804
3805         layout->add_eh_frame_for_plt(this,
3806                                      Eh_cie<size>::eh_frame_cie,
3807                                      sizeof (Eh_cie<size>::eh_frame_cie),
3808                                      default_fde,
3809                                      sizeof (default_fde));
3810         this->eh_frame_added_ = true;
3811       }
3812   }
3813
3814   Target_powerpc<size, big_endian>*
3815   targ() const
3816   { return targ_; }
3817
3818  private:
3819   class Plt_stub_ent;
3820   class Plt_stub_ent_hash;
3821   typedef Unordered_map<Plt_stub_ent, unsigned int,
3822                         Plt_stub_ent_hash> Plt_stub_entries;
3823
3824   // Alignment of stub section.
3825   unsigned int
3826   stub_align() const
3827   {
3828     if (size == 32)
3829       return 16;
3830     unsigned int min_align = 32;
3831     unsigned int user_align = 1 << parameters->options().plt_align();
3832     return std::max(user_align, min_align);
3833   }
3834
3835   // Return the plt offset for the given call stub.
3836   Address
3837   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3838   {
3839     const Symbol* gsym = p->first.sym_;
3840     if (gsym != NULL)
3841       {
3842         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3843                     && gsym->can_use_relative_reloc(false));
3844         return gsym->plt_offset();
3845       }
3846     else
3847       {
3848         *is_iplt = true;
3849         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3850         unsigned int local_sym_index = p->first.locsym_;
3851         return relobj->local_plt_offset(local_sym_index);
3852       }
3853   }
3854
3855   // Size of a given plt call stub.
3856   unsigned int
3857   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3858   {
3859     if (size == 32)
3860       return 16;
3861
3862     bool is_iplt;
3863     Address plt_addr = this->plt_off(p, &is_iplt);
3864     if (is_iplt)
3865       plt_addr += this->targ_->iplt_section()->address();
3866     else
3867       plt_addr += this->targ_->plt_section()->address();
3868     Address got_addr = this->targ_->got_section()->output_section()->address();
3869     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3870       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3871     got_addr += ppcobj->toc_base_offset();
3872     Address off = plt_addr - got_addr;
3873     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3874     if (this->targ_->abiversion() < 2)
3875       {
3876         bool static_chain = parameters->options().plt_static_chain();
3877         bool thread_safe = this->targ_->plt_thread_safe();
3878         bytes += (4
3879                   + 4 * static_chain
3880                   + 8 * thread_safe
3881                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3882       }
3883     unsigned int align = 1 << parameters->options().plt_align();
3884     if (align > 1)
3885       bytes = (bytes + align - 1) & -align;
3886     return bytes;
3887   }
3888
3889   // Return long branch stub size.
3890   unsigned int
3891   branch_stub_size(Address to)
3892   {
3893     Address loc
3894       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3895     if (to - loc + (1 << 25) < 2 << 25)
3896       return 4;
3897     if (size == 64 || !parameters->options().output_is_position_independent())
3898       return 16;
3899     return 32;
3900   }
3901
3902   // Write out stubs.
3903   void
3904   do_write(Output_file*);
3905
3906   // Plt call stub keys.
3907   class Plt_stub_ent
3908   {
3909   public:
3910     Plt_stub_ent(const Symbol* sym)
3911       : sym_(sym), object_(0), addend_(0), locsym_(0)
3912     { }
3913
3914     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3915                  unsigned int locsym_index)
3916       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3917     { }
3918
3919     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3920                  const Symbol* sym,
3921                  unsigned int r_type,
3922                  Address addend)
3923       : sym_(sym), object_(0), addend_(0), locsym_(0)
3924     {
3925       if (size != 32)
3926         this->addend_ = addend;
3927       else if (parameters->options().output_is_position_independent()
3928                && r_type == elfcpp::R_PPC_PLTREL24)
3929         {
3930           this->addend_ = addend;
3931           if (this->addend_ >= 32768)
3932             this->object_ = object;
3933         }
3934     }
3935
3936     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3937                  unsigned int locsym_index,
3938                  unsigned int r_type,
3939                  Address addend)
3940       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3941     {
3942       if (size != 32)
3943         this->addend_ = addend;
3944       else if (parameters->options().output_is_position_independent()
3945                && r_type == elfcpp::R_PPC_PLTREL24)
3946         this->addend_ = addend;
3947     }
3948
3949     bool operator==(const Plt_stub_ent& that) const
3950     {
3951       return (this->sym_ == that.sym_
3952               && this->object_ == that.object_
3953               && this->addend_ == that.addend_
3954               && this->locsym_ == that.locsym_);
3955     }
3956
3957     const Symbol* sym_;
3958     const Sized_relobj_file<size, big_endian>* object_;
3959     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3960     unsigned int locsym_;
3961   };
3962
3963   class Plt_stub_ent_hash
3964   {
3965   public:
3966     size_t operator()(const Plt_stub_ent& ent) const
3967     {
3968       return (reinterpret_cast<uintptr_t>(ent.sym_)
3969               ^ reinterpret_cast<uintptr_t>(ent.object_)
3970               ^ ent.addend_
3971               ^ ent.locsym_);
3972     }
3973   };
3974
3975   // Long branch stub keys.
3976   class Branch_stub_ent
3977   {
3978   public:
3979     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
3980                     Address to, bool save_res)
3981       : dest_(to), toc_base_off_(0), save_res_(save_res)
3982     {
3983       if (size == 64)
3984         toc_base_off_ = obj->toc_base_offset();
3985     }
3986
3987     bool operator==(const Branch_stub_ent& that) const
3988     {
3989       return (this->dest_ == that.dest_
3990               && (size == 32
3991                   || this->toc_base_off_ == that.toc_base_off_));
3992     }
3993
3994     Address dest_;
3995     unsigned int toc_base_off_;
3996     bool save_res_;
3997   };
3998
3999   class Branch_stub_ent_hash
4000   {
4001   public:
4002     size_t operator()(const Branch_stub_ent& ent) const
4003     { return ent.dest_ ^ ent.toc_base_off_; }
4004   };
4005
4006   // In a sane world this would be a global.
4007   Target_powerpc<size, big_endian>* targ_;
4008   // Map sym/object/addend to stub offset.
4009   Plt_stub_entries plt_call_stubs_;
4010   // Map destination address to stub offset.
4011   typedef Unordered_map<Branch_stub_ent, unsigned int,
4012                         Branch_stub_ent_hash> Branch_stub_entries;
4013   Branch_stub_entries long_branch_stubs_;
4014   // size of input section
4015   section_size_type orig_data_size_;
4016   // size of stubs
4017   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4018   // Whether .eh_frame info has been created for this stub section.
4019   bool eh_frame_added_;
4020   // Set if this stub group needs a copy of out-of-line register
4021   // save/restore functions.
4022   bool need_save_res_;
4023 };
4024
4025 // Add a plt call stub, if we do not already have one for this
4026 // sym/object/addend combo.
4027
4028 template<int size, bool big_endian>
4029 bool
4030 Stub_table<size, big_endian>::add_plt_call_entry(
4031     Address from,
4032     const Sized_relobj_file<size, big_endian>* object,
4033     const Symbol* gsym,
4034     unsigned int r_type,
4035     Address addend)
4036 {
4037   Plt_stub_ent ent(object, gsym, r_type, addend);
4038   unsigned int off = this->plt_size_;
4039   std::pair<typename Plt_stub_entries::iterator, bool> p
4040     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4041   if (p.second)
4042     this->plt_size_ = off + this->plt_call_size(p.first);
4043   return this->can_reach_stub(from, off, r_type);
4044 }
4045
4046 template<int size, bool big_endian>
4047 bool
4048 Stub_table<size, big_endian>::add_plt_call_entry(
4049     Address from,
4050     const Sized_relobj_file<size, big_endian>* object,
4051     unsigned int locsym_index,
4052     unsigned int r_type,
4053     Address addend)
4054 {
4055   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4056   unsigned int off = this->plt_size_;
4057   std::pair<typename Plt_stub_entries::iterator, bool> p
4058     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4059   if (p.second)
4060     this->plt_size_ = off + this->plt_call_size(p.first);
4061   return this->can_reach_stub(from, off, r_type);
4062 }
4063
4064 // Find a plt call stub.
4065
4066 template<int size, bool big_endian>
4067 typename Stub_table<size, big_endian>::Address
4068 Stub_table<size, big_endian>::find_plt_call_entry(
4069     const Sized_relobj_file<size, big_endian>* object,
4070     const Symbol* gsym,
4071     unsigned int r_type,
4072     Address addend) const
4073 {
4074   Plt_stub_ent ent(object, gsym, r_type, addend);
4075   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4076   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4077 }
4078
4079 template<int size, bool big_endian>
4080 typename Stub_table<size, big_endian>::Address
4081 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4082 {
4083   Plt_stub_ent ent(gsym);
4084   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4085   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4086 }
4087
4088 template<int size, bool big_endian>
4089 typename Stub_table<size, big_endian>::Address
4090 Stub_table<size, big_endian>::find_plt_call_entry(
4091     const Sized_relobj_file<size, big_endian>* object,
4092     unsigned int locsym_index,
4093     unsigned int r_type,
4094     Address addend) const
4095 {
4096   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4097   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4098   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4099 }
4100
4101 template<int size, bool big_endian>
4102 typename Stub_table<size, big_endian>::Address
4103 Stub_table<size, big_endian>::find_plt_call_entry(
4104     const Sized_relobj_file<size, big_endian>* object,
4105     unsigned int locsym_index) const
4106 {
4107   Plt_stub_ent ent(object, locsym_index);
4108   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4109   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4110 }
4111
4112 // Add a long branch stub if we don't already have one to given
4113 // destination.
4114
4115 template<int size, bool big_endian>
4116 bool
4117 Stub_table<size, big_endian>::add_long_branch_entry(
4118     const Powerpc_relobj<size, big_endian>* object,
4119     unsigned int r_type,
4120     Address from,
4121     Address to,
4122     bool save_res)
4123 {
4124   Branch_stub_ent ent(object, to, save_res);
4125   Address off = this->branch_size_;
4126   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4127     {
4128       if (save_res)
4129         this->need_save_res_ = true;
4130       else
4131         {
4132           unsigned int stub_size = this->branch_stub_size(to);
4133           this->branch_size_ = off + stub_size;
4134           if (size == 64 && stub_size != 4)
4135             this->targ_->add_branch_lookup_table(to);
4136         }
4137     }
4138   return this->can_reach_stub(from, off, r_type);
4139 }
4140
4141 // Find long branch stub offset.
4142
4143 template<int size, bool big_endian>
4144 typename Stub_table<size, big_endian>::Address
4145 Stub_table<size, big_endian>::find_long_branch_entry(
4146     const Powerpc_relobj<size, big_endian>* object,
4147     Address to) const
4148 {
4149   Branch_stub_ent ent(object, to, false);
4150   typename Branch_stub_entries::const_iterator p
4151     = this->long_branch_stubs_.find(ent);
4152   if (p == this->long_branch_stubs_.end())
4153     return invalid_address;
4154   if (p->first.save_res_)
4155     return to - this->targ_->savres_section()->address() + this->branch_size_;
4156   return p->second;
4157 }
4158
4159 // A class to handle .glink.
4160
4161 template<int size, bool big_endian>
4162 class Output_data_glink : public Output_section_data
4163 {
4164  public:
4165   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4166   static const Address invalid_address = static_cast<Address>(0) - 1;
4167   static const int pltresolve_size = 16*4;
4168
4169   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4170     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4171       end_branch_table_(), ge_size_(0)
4172   { }
4173
4174   void
4175   add_eh_frame(Layout* layout);
4176
4177   void
4178   add_global_entry(const Symbol*);
4179
4180   Address
4181   find_global_entry(const Symbol*) const;
4182
4183   Address
4184   global_entry_address() const
4185   {
4186     gold_assert(this->is_data_size_valid());
4187     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4188     return this->address() + global_entry_off;
4189   }
4190
4191  protected:
4192   // Write to a map file.
4193   void
4194   do_print_to_mapfile(Mapfile* mapfile) const
4195   { mapfile->print_output_data(this, _("** glink")); }
4196
4197  private:
4198   void
4199   set_final_data_size();
4200
4201   // Write out .glink
4202   void
4203   do_write(Output_file*);
4204
4205   // Allows access to .got and .plt for do_write.
4206   Target_powerpc<size, big_endian>* targ_;
4207
4208   // Map sym to stub offset.
4209   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4210   Global_entry_stub_entries global_entry_stubs_;
4211
4212   unsigned int end_branch_table_, ge_size_;
4213 };
4214
4215 template<int size, bool big_endian>
4216 void
4217 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4218 {
4219   if (!parameters->options().ld_generated_unwind_info())
4220     return;
4221
4222   if (size == 64)
4223     {
4224       if (this->targ_->abiversion() < 2)
4225         layout->add_eh_frame_for_plt(this,
4226                                      Eh_cie<64>::eh_frame_cie,
4227                                      sizeof (Eh_cie<64>::eh_frame_cie),
4228                                      glink_eh_frame_fde_64v1,
4229                                      sizeof (glink_eh_frame_fde_64v1));
4230       else
4231         layout->add_eh_frame_for_plt(this,
4232                                      Eh_cie<64>::eh_frame_cie,
4233                                      sizeof (Eh_cie<64>::eh_frame_cie),
4234                                      glink_eh_frame_fde_64v2,
4235                                      sizeof (glink_eh_frame_fde_64v2));
4236     }
4237   else
4238     {
4239       // 32-bit .glink can use the default since the CIE return
4240       // address reg, LR, is valid.
4241       layout->add_eh_frame_for_plt(this,
4242                                    Eh_cie<32>::eh_frame_cie,
4243                                    sizeof (Eh_cie<32>::eh_frame_cie),
4244                                    default_fde,
4245                                    sizeof (default_fde));
4246       // Except where LR is used in a PIC __glink_PLTresolve.
4247       if (parameters->options().output_is_position_independent())
4248         layout->add_eh_frame_for_plt(this,
4249                                      Eh_cie<32>::eh_frame_cie,
4250                                      sizeof (Eh_cie<32>::eh_frame_cie),
4251                                      glink_eh_frame_fde_32,
4252                                      sizeof (glink_eh_frame_fde_32));
4253     }
4254 }
4255
4256 template<int size, bool big_endian>
4257 void
4258 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4259 {
4260   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4261     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4262   if (p.second)
4263     this->ge_size_ += 16;
4264 }
4265
4266 template<int size, bool big_endian>
4267 typename Output_data_glink<size, big_endian>::Address
4268 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4269 {
4270   typename Global_entry_stub_entries::const_iterator p
4271     = this->global_entry_stubs_.find(gsym);
4272   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4273 }
4274
4275 template<int size, bool big_endian>
4276 void
4277 Output_data_glink<size, big_endian>::set_final_data_size()
4278 {
4279   unsigned int count = this->targ_->plt_entry_count();
4280   section_size_type total = 0;
4281
4282   if (count != 0)
4283     {
4284       if (size == 32)
4285         {
4286           // space for branch table
4287           total += 4 * (count - 1);
4288
4289           total += -total & 15;
4290           total += this->pltresolve_size;
4291         }
4292       else
4293         {
4294           total += this->pltresolve_size;
4295
4296           // space for branch table
4297           total += 4 * count;
4298           if (this->targ_->abiversion() < 2)
4299             {
4300               total += 4 * count;
4301               if (count > 0x8000)
4302                 total += 4 * (count - 0x8000);
4303             }
4304         }
4305     }
4306   this->end_branch_table_ = total;
4307   total = (total + 15) & -16;
4308   total += this->ge_size_;
4309
4310   this->set_data_size(total);
4311 }
4312
4313 // Write out plt and long branch stub code.
4314
4315 template<int size, bool big_endian>
4316 void
4317 Stub_table<size, big_endian>::do_write(Output_file* of)
4318 {
4319   if (this->plt_call_stubs_.empty()
4320       && this->long_branch_stubs_.empty())
4321     return;
4322
4323   const section_size_type start_off = this->offset();
4324   const section_size_type off = this->stub_offset();
4325   const section_size_type oview_size =
4326     convert_to_section_size_type(this->data_size() - (off - start_off));
4327   unsigned char* const oview = of->get_output_view(off, oview_size);
4328   unsigned char* p;
4329
4330   if (size == 64)
4331     {
4332       const Output_data_got_powerpc<size, big_endian>* got
4333         = this->targ_->got_section();
4334       Address got_os_addr = got->output_section()->address();
4335
4336       if (!this->plt_call_stubs_.empty())
4337         {
4338           // The base address of the .plt section.
4339           Address plt_base = this->targ_->plt_section()->address();
4340           Address iplt_base = invalid_address;
4341
4342           // Write out plt call stubs.
4343           typename Plt_stub_entries::const_iterator cs;
4344           for (cs = this->plt_call_stubs_.begin();
4345                cs != this->plt_call_stubs_.end();
4346                ++cs)
4347             {
4348               bool is_iplt;
4349               Address pltoff = this->plt_off(cs, &is_iplt);
4350               Address plt_addr = pltoff;
4351               if (is_iplt)
4352                 {
4353                   if (iplt_base == invalid_address)
4354                     iplt_base = this->targ_->iplt_section()->address();
4355                   plt_addr += iplt_base;
4356                 }
4357               else
4358                 plt_addr += plt_base;
4359               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4360                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4361               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4362               Address off = plt_addr - got_addr;
4363
4364               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4365                 gold_error(_("%s: linkage table error against `%s'"),
4366                            cs->first.object_->name().c_str(),
4367                            cs->first.sym_->demangled_name().c_str());
4368
4369               bool plt_load_toc = this->targ_->abiversion() < 2;
4370               bool static_chain
4371                 = plt_load_toc && parameters->options().plt_static_chain();
4372               bool thread_safe
4373                 = plt_load_toc && this->targ_->plt_thread_safe();
4374               bool use_fake_dep = false;
4375               Address cmp_branch_off = 0;
4376               if (thread_safe)
4377                 {
4378                   unsigned int pltindex
4379                     = ((pltoff - this->targ_->first_plt_entry_offset())
4380                        / this->targ_->plt_entry_size());
4381                   Address glinkoff
4382                     = (this->targ_->glink_section()->pltresolve_size
4383                        + pltindex * 8);
4384                   if (pltindex > 32768)
4385                     glinkoff += (pltindex - 32768) * 4;
4386                   Address to
4387                     = this->targ_->glink_section()->address() + glinkoff;
4388                   Address from
4389                     = (this->stub_address() + cs->second + 24
4390                        + 4 * (ha(off) != 0)
4391                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4392                        + 4 * static_chain);
4393                   cmp_branch_off = to - from;
4394                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4395                 }
4396
4397               p = oview + cs->second;
4398               if (ha(off) != 0)
4399                 {
4400                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4401                   p += 4;
4402                   if (plt_load_toc)
4403                     {
4404                       write_insn<big_endian>(p, addis_11_2 + ha(off));
4405                       p += 4;
4406                       write_insn<big_endian>(p, ld_12_11 + l(off));
4407                       p += 4;
4408                     }
4409                   else
4410                     {
4411                       write_insn<big_endian>(p, addis_12_2 + ha(off));
4412                       p += 4;
4413                       write_insn<big_endian>(p, ld_12_12 + l(off));
4414                       p += 4;
4415                     }
4416                   if (plt_load_toc
4417                       && ha(off + 8 + 8 * static_chain) != ha(off))
4418                     {
4419                       write_insn<big_endian>(p, addi_11_11 + l(off));
4420                       p += 4;
4421                       off = 0;
4422                     }
4423                   write_insn<big_endian>(p, mtctr_12);
4424                   p += 4;
4425                   if (plt_load_toc)
4426                     {
4427                       if (use_fake_dep)
4428                         {
4429                           write_insn<big_endian>(p, xor_2_12_12);
4430                           p += 4;
4431                           write_insn<big_endian>(p, add_11_11_2);
4432                           p += 4;
4433                         }
4434                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4435                       p += 4;
4436                       if (static_chain)
4437                         {
4438                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4439                           p += 4;
4440                         }
4441                     }
4442                 }
4443               else
4444                 {
4445                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4446                   p += 4;
4447                   write_insn<big_endian>(p, ld_12_2 + l(off));
4448                   p += 4;
4449                   if (plt_load_toc
4450                       && ha(off + 8 + 8 * static_chain) != ha(off))
4451                     {
4452                       write_insn<big_endian>(p, addi_2_2 + l(off));
4453                       p += 4;
4454                       off = 0;
4455                     }
4456                   write_insn<big_endian>(p, mtctr_12);
4457                   p += 4;
4458                   if (plt_load_toc)
4459                     {
4460                       if (use_fake_dep)
4461                         {
4462                           write_insn<big_endian>(p, xor_11_12_12);
4463                           p += 4;
4464                           write_insn<big_endian>(p, add_2_2_11);
4465                           p += 4;
4466                         }
4467                       if (static_chain)
4468                         {
4469                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4470                           p += 4;
4471                         }
4472                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4473                       p += 4;
4474                     }
4475                 }
4476               if (thread_safe && !use_fake_dep)
4477                 {
4478                   write_insn<big_endian>(p, cmpldi_2_0);
4479                   p += 4;
4480                   write_insn<big_endian>(p, bnectr_p4);
4481                   p += 4;
4482                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4483                 }
4484               else
4485                 write_insn<big_endian>(p, bctr);
4486             }
4487         }
4488
4489       // Write out long branch stubs.
4490       typename Branch_stub_entries::const_iterator bs;
4491       for (bs = this->long_branch_stubs_.begin();
4492            bs != this->long_branch_stubs_.end();
4493            ++bs)
4494         {
4495           if (bs->first.save_res_)
4496             continue;
4497           p = oview + this->plt_size_ + bs->second;
4498           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4499           Address delta = bs->first.dest_ - loc;
4500           if (delta + (1 << 25) < 2 << 25)
4501             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4502           else
4503             {
4504               Address brlt_addr
4505                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4506               gold_assert(brlt_addr != invalid_address);
4507               brlt_addr += this->targ_->brlt_section()->address();
4508               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4509               Address brltoff = brlt_addr - got_addr;
4510               if (ha(brltoff) == 0)
4511                 {
4512                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4513                 }
4514               else
4515                 {
4516                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
4517                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
4518                 }
4519               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4520               write_insn<big_endian>(p, bctr);
4521             }
4522         }
4523     }
4524   else
4525     {
4526       if (!this->plt_call_stubs_.empty())
4527         {
4528           // The base address of the .plt section.
4529           Address plt_base = this->targ_->plt_section()->address();
4530           Address iplt_base = invalid_address;
4531           // The address of _GLOBAL_OFFSET_TABLE_.
4532           Address g_o_t = invalid_address;
4533
4534           // Write out plt call stubs.
4535           typename Plt_stub_entries::const_iterator cs;
4536           for (cs = this->plt_call_stubs_.begin();
4537                cs != this->plt_call_stubs_.end();
4538                ++cs)
4539             {
4540               bool is_iplt;
4541               Address plt_addr = this->plt_off(cs, &is_iplt);
4542               if (is_iplt)
4543                 {
4544                   if (iplt_base == invalid_address)
4545                     iplt_base = this->targ_->iplt_section()->address();
4546                   plt_addr += iplt_base;
4547                 }
4548               else
4549                 plt_addr += plt_base;
4550
4551               p = oview + cs->second;
4552               if (parameters->options().output_is_position_independent())
4553                 {
4554                   Address got_addr;
4555                   const Powerpc_relobj<size, big_endian>* ppcobj
4556                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4557                        (cs->first.object_));
4558                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4559                     {
4560                       unsigned int got2 = ppcobj->got2_shndx();
4561                       got_addr = ppcobj->get_output_section_offset(got2);
4562                       gold_assert(got_addr != invalid_address);
4563                       got_addr += (ppcobj->output_section(got2)->address()
4564                                    + cs->first.addend_);
4565                     }
4566                   else
4567                     {
4568                       if (g_o_t == invalid_address)
4569                         {
4570                           const Output_data_got_powerpc<size, big_endian>* got
4571                             = this->targ_->got_section();
4572                           g_o_t = got->address() + got->g_o_t();
4573                         }
4574                       got_addr = g_o_t;
4575                     }
4576
4577                   Address off = plt_addr - got_addr;
4578                   if (ha(off) == 0)
4579                     {
4580                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4581                       write_insn<big_endian>(p +  4, mtctr_11);
4582                       write_insn<big_endian>(p +  8, bctr);
4583                     }
4584                   else
4585                     {
4586                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4587                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4588                       write_insn<big_endian>(p +  8, mtctr_11);
4589                       write_insn<big_endian>(p + 12, bctr);
4590                     }
4591                 }
4592               else
4593                 {
4594                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4595                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4596                   write_insn<big_endian>(p +  8, mtctr_11);
4597                   write_insn<big_endian>(p + 12, bctr);
4598                 }
4599             }
4600         }
4601
4602       // Write out long branch stubs.
4603       typename Branch_stub_entries::const_iterator bs;
4604       for (bs = this->long_branch_stubs_.begin();
4605            bs != this->long_branch_stubs_.end();
4606            ++bs)
4607         {
4608           if (bs->first.save_res_)
4609             continue;
4610           p = oview + this->plt_size_ + bs->second;
4611           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4612           Address delta = bs->first.dest_ - loc;
4613           if (delta + (1 << 25) < 2 << 25)
4614             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4615           else if (!parameters->options().output_is_position_independent())
4616             {
4617               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4618               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4619               write_insn<big_endian>(p +  8, mtctr_12);
4620               write_insn<big_endian>(p + 12, bctr);
4621             }
4622           else
4623             {
4624               delta -= 8;
4625               write_insn<big_endian>(p +  0, mflr_0);
4626               write_insn<big_endian>(p +  4, bcl_20_31);
4627               write_insn<big_endian>(p +  8, mflr_12);
4628               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4629               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4630               write_insn<big_endian>(p + 20, mtlr_0);
4631               write_insn<big_endian>(p + 24, mtctr_12);
4632               write_insn<big_endian>(p + 28, bctr);
4633             }
4634         }
4635     }
4636   if (this->need_save_res_)
4637     {
4638       p = oview + this->plt_size_ + this->branch_size_;
4639       memcpy (p, this->targ_->savres_section()->contents(),
4640               this->targ_->savres_section()->data_size());
4641     }
4642 }
4643
4644 // Write out .glink.
4645
4646 template<int size, bool big_endian>
4647 void
4648 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4649 {
4650   const section_size_type off = this->offset();
4651   const section_size_type oview_size =
4652     convert_to_section_size_type(this->data_size());
4653   unsigned char* const oview = of->get_output_view(off, oview_size);
4654   unsigned char* p;
4655
4656   // The base address of the .plt section.
4657   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4658   Address plt_base = this->targ_->plt_section()->address();
4659
4660   if (size == 64)
4661     {
4662       if (this->end_branch_table_ != 0)
4663         {
4664           // Write pltresolve stub.
4665           p = oview;
4666           Address after_bcl = this->address() + 16;
4667           Address pltoff = plt_base - after_bcl;
4668
4669           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4670
4671           if (this->targ_->abiversion() < 2)
4672             {
4673               write_insn<big_endian>(p, mflr_12),               p += 4;
4674               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4675               write_insn<big_endian>(p, mflr_11),               p += 4;
4676               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4677               write_insn<big_endian>(p, mtlr_12),               p += 4;
4678               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4679               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4680               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4681               write_insn<big_endian>(p, mtctr_12),              p += 4;
4682               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4683             }
4684           else
4685             {
4686               write_insn<big_endian>(p, mflr_0),                p += 4;
4687               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4688               write_insn<big_endian>(p, mflr_11),               p += 4;
4689               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4690               write_insn<big_endian>(p, mtlr_0),                p += 4;
4691               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4692               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4693               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4694               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4695               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4696               write_insn<big_endian>(p, mtctr_12),              p += 4;
4697               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4698             }
4699           write_insn<big_endian>(p, bctr),                      p += 4;
4700           while (p < oview + this->pltresolve_size)
4701             write_insn<big_endian>(p, nop), p += 4;
4702
4703           // Write lazy link call stubs.
4704           uint32_t indx = 0;
4705           while (p < oview + this->end_branch_table_)
4706             {
4707               if (this->targ_->abiversion() < 2)
4708                 {
4709                   if (indx < 0x8000)
4710                     {
4711                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4712                     }
4713                   else
4714                     {
4715                       write_insn<big_endian>(p, lis_0 + hi(indx)),      p += 4;
4716                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4717                     }
4718                 }
4719               uint32_t branch_off = 8 - (p - oview);
4720               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4721               indx++;
4722             }
4723         }
4724
4725       Address plt_base = this->targ_->plt_section()->address();
4726       Address iplt_base = invalid_address;
4727       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4728       Address global_entry_base = this->address() + global_entry_off;
4729       typename Global_entry_stub_entries::const_iterator ge;
4730       for (ge = this->global_entry_stubs_.begin();
4731            ge != this->global_entry_stubs_.end();
4732            ++ge)
4733         {
4734           p = oview + global_entry_off + ge->second;
4735           Address plt_addr = ge->first->plt_offset();
4736           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4737               && ge->first->can_use_relative_reloc(false))
4738             {
4739               if (iplt_base == invalid_address)
4740                 iplt_base = this->targ_->iplt_section()->address();
4741               plt_addr += iplt_base;
4742             }
4743           else
4744             plt_addr += plt_base;
4745           Address my_addr = global_entry_base + ge->second;
4746           Address off = plt_addr - my_addr;
4747
4748           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4749             gold_error(_("%s: linkage table error against `%s'"),
4750                        ge->first->object()->name().c_str(),
4751                        ge->first->demangled_name().c_str());
4752
4753           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4754           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4755           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4756           write_insn<big_endian>(p, bctr);
4757         }
4758     }
4759   else
4760     {
4761       const Output_data_got_powerpc<size, big_endian>* got
4762         = this->targ_->got_section();
4763       // The address of _GLOBAL_OFFSET_TABLE_.
4764       Address g_o_t = got->address() + got->g_o_t();
4765
4766       // Write out pltresolve branch table.
4767       p = oview;
4768       unsigned int the_end = oview_size - this->pltresolve_size;
4769       unsigned char* end_p = oview + the_end;
4770       while (p < end_p - 8 * 4)
4771         write_insn<big_endian>(p, b + end_p - p), p += 4;
4772       while (p < end_p)
4773         write_insn<big_endian>(p, nop), p += 4;
4774
4775       // Write out pltresolve call stub.
4776       if (parameters->options().output_is_position_independent())
4777         {
4778           Address res0_off = 0;
4779           Address after_bcl_off = the_end + 12;
4780           Address bcl_res0 = after_bcl_off - res0_off;
4781
4782           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4783           write_insn<big_endian>(p +  4, mflr_0);
4784           write_insn<big_endian>(p +  8, bcl_20_31);
4785           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4786           write_insn<big_endian>(p + 16, mflr_12);
4787           write_insn<big_endian>(p + 20, mtlr_0);
4788           write_insn<big_endian>(p + 24, sub_11_11_12);
4789
4790           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4791
4792           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4793           if (ha(got_bcl) == ha(got_bcl + 4))
4794             {
4795               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4796               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4797             }
4798           else
4799             {
4800               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4801               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4802             }
4803           write_insn<big_endian>(p + 40, mtctr_0);
4804           write_insn<big_endian>(p + 44, add_0_11_11);
4805           write_insn<big_endian>(p + 48, add_11_0_11);
4806           write_insn<big_endian>(p + 52, bctr);
4807           write_insn<big_endian>(p + 56, nop);
4808           write_insn<big_endian>(p + 60, nop);
4809         }
4810       else
4811         {
4812           Address res0 = this->address();
4813
4814           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4815           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4816           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4817             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4818           else
4819             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4820           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4821           write_insn<big_endian>(p + 16, mtctr_0);
4822           write_insn<big_endian>(p + 20, add_0_11_11);
4823           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4824             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4825           else
4826             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4827           write_insn<big_endian>(p + 28, add_11_0_11);
4828           write_insn<big_endian>(p + 32, bctr);
4829           write_insn<big_endian>(p + 36, nop);
4830           write_insn<big_endian>(p + 40, nop);
4831           write_insn<big_endian>(p + 44, nop);
4832           write_insn<big_endian>(p + 48, nop);
4833           write_insn<big_endian>(p + 52, nop);
4834           write_insn<big_endian>(p + 56, nop);
4835           write_insn<big_endian>(p + 60, nop);
4836         }
4837       p += 64;
4838     }
4839
4840   of->write_output_view(off, oview_size, oview);
4841 }
4842
4843
4844 // A class to handle linker generated save/restore functions.
4845
4846 template<int size, bool big_endian>
4847 class Output_data_save_res : public Output_section_data_build
4848 {
4849  public:
4850   Output_data_save_res(Symbol_table* symtab);
4851
4852   const unsigned char*
4853   contents() const
4854   {
4855     return contents_;
4856   }
4857
4858  protected:
4859   // Write to a map file.
4860   void
4861   do_print_to_mapfile(Mapfile* mapfile) const
4862   { mapfile->print_output_data(this, _("** save/restore")); }
4863
4864   void
4865   do_write(Output_file*);
4866
4867  private:
4868   // The maximum size of save/restore contents.
4869   static const unsigned int savres_max = 218*4;
4870
4871   void
4872   savres_define(Symbol_table* symtab,
4873                 const char *name,
4874                 unsigned int lo, unsigned int hi,
4875                 unsigned char* write_ent(unsigned char*, int),
4876                 unsigned char* write_tail(unsigned char*, int));
4877
4878   unsigned char *contents_;
4879 };
4880
4881 template<bool big_endian>
4882 static unsigned char*
4883 savegpr0(unsigned char* p, int r)
4884 {
4885   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4886   write_insn<big_endian>(p, insn);
4887   return p + 4;
4888 }
4889
4890 template<bool big_endian>
4891 static unsigned char*
4892 savegpr0_tail(unsigned char* p, int r)
4893 {
4894   p = savegpr0<big_endian>(p, r);
4895   uint32_t insn = std_0_1 + 16;
4896   write_insn<big_endian>(p, insn);
4897   p = p + 4;
4898   write_insn<big_endian>(p, blr);
4899   return p + 4;
4900 }
4901
4902 template<bool big_endian>
4903 static unsigned char*
4904 restgpr0(unsigned char* p, int r)
4905 {
4906   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4907   write_insn<big_endian>(p, insn);
4908   return p + 4;
4909 }
4910
4911 template<bool big_endian>
4912 static unsigned char*
4913 restgpr0_tail(unsigned char* p, int r)
4914 {
4915   uint32_t insn = ld_0_1 + 16;
4916   write_insn<big_endian>(p, insn);
4917   p = p + 4;
4918   p = restgpr0<big_endian>(p, r);
4919   write_insn<big_endian>(p, mtlr_0);
4920   p = p + 4;
4921   if (r == 29)
4922     {
4923       p = restgpr0<big_endian>(p, 30);
4924       p = restgpr0<big_endian>(p, 31);
4925     }
4926   write_insn<big_endian>(p, blr);
4927   return p + 4;
4928 }
4929
4930 template<bool big_endian>
4931 static unsigned char*
4932 savegpr1(unsigned char* p, int r)
4933 {
4934   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4935   write_insn<big_endian>(p, insn);
4936   return p + 4;
4937 }
4938
4939 template<bool big_endian>
4940 static unsigned char*
4941 savegpr1_tail(unsigned char* p, int r)
4942 {
4943   p = savegpr1<big_endian>(p, r);
4944   write_insn<big_endian>(p, blr);
4945   return p + 4;
4946 }
4947
4948 template<bool big_endian>
4949 static unsigned char*
4950 restgpr1(unsigned char* p, int r)
4951 {
4952   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4953   write_insn<big_endian>(p, insn);
4954   return p + 4;
4955 }
4956
4957 template<bool big_endian>
4958 static unsigned char*
4959 restgpr1_tail(unsigned char* p, int r)
4960 {
4961   p = restgpr1<big_endian>(p, r);
4962   write_insn<big_endian>(p, blr);
4963   return p + 4;
4964 }
4965
4966 template<bool big_endian>
4967 static unsigned char*
4968 savefpr(unsigned char* p, int r)
4969 {
4970   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4971   write_insn<big_endian>(p, insn);
4972   return p + 4;
4973 }
4974
4975 template<bool big_endian>
4976 static unsigned char*
4977 savefpr0_tail(unsigned char* p, int r)
4978 {
4979   p = savefpr<big_endian>(p, r);
4980   write_insn<big_endian>(p, std_0_1 + 16);
4981   p = p + 4;
4982   write_insn<big_endian>(p, blr);
4983   return p + 4;
4984 }
4985
4986 template<bool big_endian>
4987 static unsigned char*
4988 restfpr(unsigned char* p, int r)
4989 {
4990   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4991   write_insn<big_endian>(p, insn);
4992   return p + 4;
4993 }
4994
4995 template<bool big_endian>
4996 static unsigned char*
4997 restfpr0_tail(unsigned char* p, int r)
4998 {
4999   write_insn<big_endian>(p, ld_0_1 + 16);
5000   p = p + 4;
5001   p = restfpr<big_endian>(p, r);
5002   write_insn<big_endian>(p, mtlr_0);
5003   p = p + 4;
5004   if (r == 29)
5005     {
5006       p = restfpr<big_endian>(p, 30);
5007       p = restfpr<big_endian>(p, 31);
5008     }
5009   write_insn<big_endian>(p, blr);
5010   return p + 4;
5011 }
5012
5013 template<bool big_endian>
5014 static unsigned char*
5015 savefpr1_tail(unsigned char* p, int r)
5016 {
5017   p = savefpr<big_endian>(p, r);
5018   write_insn<big_endian>(p, blr);
5019   return p + 4;
5020 }
5021
5022 template<bool big_endian>
5023 static unsigned char*
5024 restfpr1_tail(unsigned char* p, int r)
5025 {
5026   p = restfpr<big_endian>(p, r);
5027   write_insn<big_endian>(p, blr);
5028   return p + 4;
5029 }
5030
5031 template<bool big_endian>
5032 static unsigned char*
5033 savevr(unsigned char* p, int r)
5034 {
5035   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5036   write_insn<big_endian>(p, insn);
5037   p = p + 4;
5038   insn = stvx_0_12_0 + (r << 21);
5039   write_insn<big_endian>(p, insn);
5040   return p + 4;
5041 }
5042
5043 template<bool big_endian>
5044 static unsigned char*
5045 savevr_tail(unsigned char* p, int r)
5046 {
5047   p = savevr<big_endian>(p, r);
5048   write_insn<big_endian>(p, blr);
5049   return p + 4;
5050 }
5051
5052 template<bool big_endian>
5053 static unsigned char*
5054 restvr(unsigned char* p, int r)
5055 {
5056   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5057   write_insn<big_endian>(p, insn);
5058   p = p + 4;
5059   insn = lvx_0_12_0 + (r << 21);
5060   write_insn<big_endian>(p, insn);
5061   return p + 4;
5062 }
5063
5064 template<bool big_endian>
5065 static unsigned char*
5066 restvr_tail(unsigned char* p, int r)
5067 {
5068   p = restvr<big_endian>(p, r);
5069   write_insn<big_endian>(p, blr);
5070   return p + 4;
5071 }
5072
5073
5074 template<int size, bool big_endian>
5075 Output_data_save_res<size, big_endian>::Output_data_save_res(
5076     Symbol_table* symtab)
5077   : Output_section_data_build(4),
5078     contents_(NULL)
5079 {
5080   this->savres_define(symtab,
5081                       "_savegpr0_", 14, 31,
5082                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
5083   this->savres_define(symtab,
5084                       "_restgpr0_", 14, 29,
5085                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5086   this->savres_define(symtab,
5087                       "_restgpr0_", 30, 31,
5088                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5089   this->savres_define(symtab,
5090                       "_savegpr1_", 14, 31,
5091                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
5092   this->savres_define(symtab,
5093                       "_restgpr1_", 14, 31,
5094                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
5095   this->savres_define(symtab,
5096                       "_savefpr_", 14, 31,
5097                       savefpr<big_endian>, savefpr0_tail<big_endian>);
5098   this->savres_define(symtab,
5099                       "_restfpr_", 14, 29,
5100                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5101   this->savres_define(symtab,
5102                       "_restfpr_", 30, 31,
5103                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5104   this->savres_define(symtab,
5105                       "._savef", 14, 31,
5106                       savefpr<big_endian>, savefpr1_tail<big_endian>);
5107   this->savres_define(symtab,
5108                       "._restf", 14, 31,
5109                       restfpr<big_endian>, restfpr1_tail<big_endian>);
5110   this->savres_define(symtab,
5111                       "_savevr_", 20, 31,
5112                       savevr<big_endian>, savevr_tail<big_endian>);
5113   this->savres_define(symtab,
5114                       "_restvr_", 20, 31,
5115                       restvr<big_endian>, restvr_tail<big_endian>);
5116 }
5117
5118 template<int size, bool big_endian>
5119 void
5120 Output_data_save_res<size, big_endian>::savres_define(
5121     Symbol_table* symtab,
5122     const char *name,
5123     unsigned int lo, unsigned int hi,
5124     unsigned char* write_ent(unsigned char*, int),
5125     unsigned char* write_tail(unsigned char*, int))
5126 {
5127   size_t len = strlen(name);
5128   bool writing = false;
5129   char sym[16];
5130
5131   memcpy(sym, name, len);
5132   sym[len + 2] = 0;
5133
5134   for (unsigned int i = lo; i <= hi; i++)
5135     {
5136       sym[len + 0] = i / 10 + '0';
5137       sym[len + 1] = i % 10 + '0';
5138       Symbol* gsym = symtab->lookup(sym);
5139       bool refd = gsym != NULL && gsym->is_undefined();
5140       writing = writing || refd;
5141       if (writing)
5142         {
5143           if (this->contents_ == NULL)
5144             this->contents_ = new unsigned char[this->savres_max];
5145
5146           section_size_type value = this->current_data_size();
5147           unsigned char* p = this->contents_ + value;
5148           if (i != hi)
5149             p = write_ent(p, i);
5150           else
5151             p = write_tail(p, i);
5152           section_size_type cur_size = p - this->contents_;
5153           this->set_current_data_size(cur_size);
5154           if (refd)
5155             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5156                                           this, value, cur_size - value,
5157                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5158                                           elfcpp::STV_HIDDEN, 0, false, false);
5159         }
5160     }
5161 }
5162
5163 // Write out save/restore.
5164
5165 template<int size, bool big_endian>
5166 void
5167 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5168 {
5169   const section_size_type off = this->offset();
5170   const section_size_type oview_size =
5171     convert_to_section_size_type(this->data_size());
5172   unsigned char* const oview = of->get_output_view(off, oview_size);
5173   memcpy(oview, this->contents_, oview_size);
5174   of->write_output_view(off, oview_size, oview);
5175 }
5176
5177
5178 // Create the glink section.
5179
5180 template<int size, bool big_endian>
5181 void
5182 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5183 {
5184   if (this->glink_ == NULL)
5185     {
5186       this->glink_ = new Output_data_glink<size, big_endian>(this);
5187       this->glink_->add_eh_frame(layout);
5188       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5189                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5190                                       this->glink_, ORDER_TEXT, false);
5191     }
5192 }
5193
5194 // Create a PLT entry for a global symbol.
5195
5196 template<int size, bool big_endian>
5197 void
5198 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5199                                                  Layout* layout,
5200                                                  Symbol* gsym)
5201 {
5202   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5203       && gsym->can_use_relative_reloc(false))
5204     {
5205       if (this->iplt_ == NULL)
5206         this->make_iplt_section(symtab, layout);
5207       this->iplt_->add_ifunc_entry(gsym);
5208     }
5209   else
5210     {
5211       if (this->plt_ == NULL)
5212         this->make_plt_section(symtab, layout);
5213       this->plt_->add_entry(gsym);
5214     }
5215 }
5216
5217 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5218
5219 template<int size, bool big_endian>
5220 void
5221 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5222     Symbol_table* symtab,
5223     Layout* layout,
5224     Sized_relobj_file<size, big_endian>* relobj,
5225     unsigned int r_sym)
5226 {
5227   if (this->iplt_ == NULL)
5228     this->make_iplt_section(symtab, layout);
5229   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5230 }
5231
5232 // Return the number of entries in the PLT.
5233
5234 template<int size, bool big_endian>
5235 unsigned int
5236 Target_powerpc<size, big_endian>::plt_entry_count() const
5237 {
5238   if (this->plt_ == NULL)
5239     return 0;
5240   return this->plt_->entry_count();
5241 }
5242
5243 // Create a GOT entry for local dynamic __tls_get_addr calls.
5244
5245 template<int size, bool big_endian>
5246 unsigned int
5247 Target_powerpc<size, big_endian>::tlsld_got_offset(
5248     Symbol_table* symtab,
5249     Layout* layout,
5250     Sized_relobj_file<size, big_endian>* object)
5251 {
5252   if (this->tlsld_got_offset_ == -1U)
5253     {
5254       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5255       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5256       Output_data_got_powerpc<size, big_endian>* got
5257         = this->got_section(symtab, layout);
5258       unsigned int got_offset = got->add_constant_pair(0, 0);
5259       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5260                           got_offset, 0);
5261       this->tlsld_got_offset_ = got_offset;
5262     }
5263   return this->tlsld_got_offset_;
5264 }
5265
5266 // Get the Reference_flags for a particular relocation.
5267
5268 template<int size, bool big_endian>
5269 int
5270 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5271     unsigned int r_type,
5272     const Target_powerpc* target)
5273 {
5274   int ref = 0;
5275
5276   switch (r_type)
5277     {
5278     case elfcpp::R_POWERPC_NONE:
5279     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5280     case elfcpp::R_POWERPC_GNU_VTENTRY:
5281     case elfcpp::R_PPC64_TOC:
5282       // No symbol reference.
5283       break;
5284
5285     case elfcpp::R_PPC64_ADDR64:
5286     case elfcpp::R_PPC64_UADDR64:
5287     case elfcpp::R_POWERPC_ADDR32:
5288     case elfcpp::R_POWERPC_UADDR32:
5289     case elfcpp::R_POWERPC_ADDR16:
5290     case elfcpp::R_POWERPC_UADDR16:
5291     case elfcpp::R_POWERPC_ADDR16_LO:
5292     case elfcpp::R_POWERPC_ADDR16_HI:
5293     case elfcpp::R_POWERPC_ADDR16_HA:
5294       ref = Symbol::ABSOLUTE_REF;
5295       break;
5296
5297     case elfcpp::R_POWERPC_ADDR24:
5298     case elfcpp::R_POWERPC_ADDR14:
5299     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5300     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5301       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5302       break;
5303
5304     case elfcpp::R_PPC64_REL64:
5305     case elfcpp::R_POWERPC_REL32:
5306     case elfcpp::R_PPC_LOCAL24PC:
5307     case elfcpp::R_POWERPC_REL16:
5308     case elfcpp::R_POWERPC_REL16_LO:
5309     case elfcpp::R_POWERPC_REL16_HI:
5310     case elfcpp::R_POWERPC_REL16_HA:
5311       ref = Symbol::RELATIVE_REF;
5312       break;
5313
5314     case elfcpp::R_POWERPC_REL24:
5315     case elfcpp::R_PPC_PLTREL24:
5316     case elfcpp::R_POWERPC_REL14:
5317     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5318     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5319       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5320       break;
5321
5322     case elfcpp::R_POWERPC_GOT16:
5323     case elfcpp::R_POWERPC_GOT16_LO:
5324     case elfcpp::R_POWERPC_GOT16_HI:
5325     case elfcpp::R_POWERPC_GOT16_HA:
5326     case elfcpp::R_PPC64_GOT16_DS:
5327     case elfcpp::R_PPC64_GOT16_LO_DS:
5328     case elfcpp::R_PPC64_TOC16:
5329     case elfcpp::R_PPC64_TOC16_LO:
5330     case elfcpp::R_PPC64_TOC16_HI:
5331     case elfcpp::R_PPC64_TOC16_HA:
5332     case elfcpp::R_PPC64_TOC16_DS:
5333     case elfcpp::R_PPC64_TOC16_LO_DS:
5334       ref = Symbol::RELATIVE_REF;
5335       break;
5336
5337     case elfcpp::R_POWERPC_GOT_TPREL16:
5338     case elfcpp::R_POWERPC_TLS:
5339       ref = Symbol::TLS_REF;
5340       break;
5341
5342     case elfcpp::R_POWERPC_COPY:
5343     case elfcpp::R_POWERPC_GLOB_DAT:
5344     case elfcpp::R_POWERPC_JMP_SLOT:
5345     case elfcpp::R_POWERPC_RELATIVE:
5346     case elfcpp::R_POWERPC_DTPMOD:
5347     default:
5348       // Not expected.  We will give an error later.
5349       break;
5350     }
5351
5352   if (size == 64 && target->abiversion() < 2)
5353     ref |= Symbol::FUNC_DESC_ABI;
5354   return ref;
5355 }
5356
5357 // Report an unsupported relocation against a local symbol.
5358
5359 template<int size, bool big_endian>
5360 void
5361 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5362     Sized_relobj_file<size, big_endian>* object,
5363     unsigned int r_type)
5364 {
5365   gold_error(_("%s: unsupported reloc %u against local symbol"),
5366              object->name().c_str(), r_type);
5367 }
5368
5369 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5370 // dynamic linker does not support it, issue an error.
5371
5372 template<int size, bool big_endian>
5373 void
5374 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5375                                                       unsigned int r_type)
5376 {
5377   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5378
5379   // These are the relocation types supported by glibc for both 32-bit
5380   // and 64-bit powerpc.
5381   switch (r_type)
5382     {
5383     case elfcpp::R_POWERPC_NONE:
5384     case elfcpp::R_POWERPC_RELATIVE:
5385     case elfcpp::R_POWERPC_GLOB_DAT:
5386     case elfcpp::R_POWERPC_DTPMOD:
5387     case elfcpp::R_POWERPC_DTPREL:
5388     case elfcpp::R_POWERPC_TPREL:
5389     case elfcpp::R_POWERPC_JMP_SLOT:
5390     case elfcpp::R_POWERPC_COPY:
5391     case elfcpp::R_POWERPC_IRELATIVE:
5392     case elfcpp::R_POWERPC_ADDR32:
5393     case elfcpp::R_POWERPC_UADDR32:
5394     case elfcpp::R_POWERPC_ADDR24:
5395     case elfcpp::R_POWERPC_ADDR16:
5396     case elfcpp::R_POWERPC_UADDR16:
5397     case elfcpp::R_POWERPC_ADDR16_LO:
5398     case elfcpp::R_POWERPC_ADDR16_HI:
5399     case elfcpp::R_POWERPC_ADDR16_HA:
5400     case elfcpp::R_POWERPC_ADDR14:
5401     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5402     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5403     case elfcpp::R_POWERPC_REL32:
5404     case elfcpp::R_POWERPC_REL24:
5405     case elfcpp::R_POWERPC_TPREL16:
5406     case elfcpp::R_POWERPC_TPREL16_LO:
5407     case elfcpp::R_POWERPC_TPREL16_HI:
5408     case elfcpp::R_POWERPC_TPREL16_HA:
5409       return;
5410
5411     default:
5412       break;
5413     }
5414
5415   if (size == 64)
5416     {
5417       switch (r_type)
5418         {
5419           // These are the relocation types supported only on 64-bit.
5420         case elfcpp::R_PPC64_ADDR64:
5421         case elfcpp::R_PPC64_UADDR64:
5422         case elfcpp::R_PPC64_JMP_IREL:
5423         case elfcpp::R_PPC64_ADDR16_DS:
5424         case elfcpp::R_PPC64_ADDR16_LO_DS:
5425         case elfcpp::R_PPC64_ADDR16_HIGH:
5426         case elfcpp::R_PPC64_ADDR16_HIGHA:
5427         case elfcpp::R_PPC64_ADDR16_HIGHER:
5428         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5429         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5430         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5431         case elfcpp::R_PPC64_REL64:
5432         case elfcpp::R_POWERPC_ADDR30:
5433         case elfcpp::R_PPC64_TPREL16_DS:
5434         case elfcpp::R_PPC64_TPREL16_LO_DS:
5435         case elfcpp::R_PPC64_TPREL16_HIGH:
5436         case elfcpp::R_PPC64_TPREL16_HIGHA:
5437         case elfcpp::R_PPC64_TPREL16_HIGHER:
5438         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5439         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5440         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5441           return;
5442
5443         default:
5444           break;
5445         }
5446     }
5447   else
5448     {
5449       switch (r_type)
5450         {
5451           // These are the relocation types supported only on 32-bit.
5452           // ??? glibc ld.so doesn't need to support these.
5453         case elfcpp::R_POWERPC_DTPREL16:
5454         case elfcpp::R_POWERPC_DTPREL16_LO:
5455         case elfcpp::R_POWERPC_DTPREL16_HI:
5456         case elfcpp::R_POWERPC_DTPREL16_HA:
5457           return;
5458
5459         default:
5460           break;
5461         }
5462     }
5463
5464   // This prevents us from issuing more than one error per reloc
5465   // section.  But we can still wind up issuing more than one
5466   // error per object file.
5467   if (this->issued_non_pic_error_)
5468     return;
5469   gold_assert(parameters->options().output_is_position_independent());
5470   object->error(_("requires unsupported dynamic reloc; "
5471                   "recompile with -fPIC"));
5472   this->issued_non_pic_error_ = true;
5473   return;
5474 }
5475
5476 // Return whether we need to make a PLT entry for a relocation of the
5477 // given type against a STT_GNU_IFUNC symbol.
5478
5479 template<int size, bool big_endian>
5480 bool
5481 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5482      Target_powerpc<size, big_endian>* target,
5483      Sized_relobj_file<size, big_endian>* object,
5484      unsigned int r_type,
5485      bool report_err)
5486 {
5487   // In non-pic code any reference will resolve to the plt call stub
5488   // for the ifunc symbol.
5489   if ((size == 32 || target->abiversion() >= 2)
5490       && !parameters->options().output_is_position_independent())
5491     return true;
5492
5493   switch (r_type)
5494     {
5495     // Word size refs from data sections are OK, but don't need a PLT entry.
5496     case elfcpp::R_POWERPC_ADDR32:
5497     case elfcpp::R_POWERPC_UADDR32:
5498       if (size == 32)
5499         return false;
5500       break;
5501
5502     case elfcpp::R_PPC64_ADDR64:
5503     case elfcpp::R_PPC64_UADDR64:
5504       if (size == 64)
5505         return false;
5506       break;
5507
5508     // GOT refs are good, but also don't need a PLT entry.
5509     case elfcpp::R_POWERPC_GOT16:
5510     case elfcpp::R_POWERPC_GOT16_LO:
5511     case elfcpp::R_POWERPC_GOT16_HI:
5512     case elfcpp::R_POWERPC_GOT16_HA:
5513     case elfcpp::R_PPC64_GOT16_DS:
5514     case elfcpp::R_PPC64_GOT16_LO_DS:
5515       return false;
5516
5517     // Function calls are good, and these do need a PLT entry.
5518     case elfcpp::R_POWERPC_ADDR24:
5519     case elfcpp::R_POWERPC_ADDR14:
5520     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5521     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5522     case elfcpp::R_POWERPC_REL24:
5523     case elfcpp::R_PPC_PLTREL24:
5524     case elfcpp::R_POWERPC_REL14:
5525     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5526     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5527       return true;
5528
5529     default:
5530       break;
5531     }
5532
5533   // Anything else is a problem.
5534   // If we are building a static executable, the libc startup function
5535   // responsible for applying indirect function relocations is going
5536   // to complain about the reloc type.
5537   // If we are building a dynamic executable, we will have a text
5538   // relocation.  The dynamic loader will set the text segment
5539   // writable and non-executable to apply text relocations.  So we'll
5540   // segfault when trying to run the indirection function to resolve
5541   // the reloc.
5542   if (report_err)
5543     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5544                object->name().c_str(), r_type);
5545   return false;
5546 }
5547
5548 // Scan a relocation for a local symbol.
5549
5550 template<int size, bool big_endian>
5551 inline void
5552 Target_powerpc<size, big_endian>::Scan::local(
5553     Symbol_table* symtab,
5554     Layout* layout,
5555     Target_powerpc<size, big_endian>* target,
5556     Sized_relobj_file<size, big_endian>* object,
5557     unsigned int data_shndx,
5558     Output_section* output_section,
5559     const elfcpp::Rela<size, big_endian>& reloc,
5560     unsigned int r_type,
5561     const elfcpp::Sym<size, big_endian>& lsym,
5562     bool is_discarded)
5563 {
5564   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5565
5566   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5567       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5568     {
5569       this->expect_tls_get_addr_call();
5570       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5571       if (tls_type != tls::TLSOPT_NONE)
5572         this->skip_next_tls_get_addr_call();
5573     }
5574   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5575            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5576     {
5577       this->expect_tls_get_addr_call();
5578       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5579       if (tls_type != tls::TLSOPT_NONE)
5580         this->skip_next_tls_get_addr_call();
5581     }
5582
5583   Powerpc_relobj<size, big_endian>* ppc_object
5584     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5585
5586   if (is_discarded)
5587     {
5588       if (size == 64
5589           && data_shndx == ppc_object->opd_shndx()
5590           && r_type == elfcpp::R_PPC64_ADDR64)
5591         ppc_object->set_opd_discard(reloc.get_r_offset());
5592       return;
5593     }
5594
5595   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5596   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5597   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5598     {
5599       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5600       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5601                           r_type, r_sym, reloc.get_r_addend());
5602       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5603     }
5604
5605   switch (r_type)
5606     {
5607     case elfcpp::R_POWERPC_NONE:
5608     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5609     case elfcpp::R_POWERPC_GNU_VTENTRY:
5610     case elfcpp::R_PPC64_TOCSAVE:
5611     case elfcpp::R_POWERPC_TLS:
5612     case elfcpp::R_PPC64_ENTRY:
5613       break;
5614
5615     case elfcpp::R_PPC64_TOC:
5616       {
5617         Output_data_got_powerpc<size, big_endian>* got
5618           = target->got_section(symtab, layout);
5619         if (parameters->options().output_is_position_independent())
5620           {
5621             Address off = reloc.get_r_offset();
5622             if (size == 64
5623                 && target->abiversion() < 2
5624                 && data_shndx == ppc_object->opd_shndx()
5625                 && ppc_object->get_opd_discard(off - 8))
5626               break;
5627
5628             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5629             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5630             rela_dyn->add_output_section_relative(got->output_section(),
5631                                                   elfcpp::R_POWERPC_RELATIVE,
5632                                                   output_section,
5633                                                   object, data_shndx, off,
5634                                                   symobj->toc_base_offset());
5635           }
5636       }
5637       break;
5638
5639     case elfcpp::R_PPC64_ADDR64:
5640     case elfcpp::R_PPC64_UADDR64:
5641     case elfcpp::R_POWERPC_ADDR32:
5642     case elfcpp::R_POWERPC_UADDR32:
5643     case elfcpp::R_POWERPC_ADDR24:
5644     case elfcpp::R_POWERPC_ADDR16:
5645     case elfcpp::R_POWERPC_ADDR16_LO:
5646     case elfcpp::R_POWERPC_ADDR16_HI:
5647     case elfcpp::R_POWERPC_ADDR16_HA:
5648     case elfcpp::R_POWERPC_UADDR16:
5649     case elfcpp::R_PPC64_ADDR16_HIGH:
5650     case elfcpp::R_PPC64_ADDR16_HIGHA:
5651     case elfcpp::R_PPC64_ADDR16_HIGHER:
5652     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5653     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5654     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5655     case elfcpp::R_PPC64_ADDR16_DS:
5656     case elfcpp::R_PPC64_ADDR16_LO_DS:
5657     case elfcpp::R_POWERPC_ADDR14:
5658     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5659     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5660       // If building a shared library (or a position-independent
5661       // executable), we need to create a dynamic relocation for
5662       // this location.
5663       if (parameters->options().output_is_position_independent()
5664           || (size == 64 && is_ifunc && target->abiversion() < 2))
5665         {
5666           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5667                                                              is_ifunc);
5668           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5669           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5670               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5671             {
5672               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5673                                      : elfcpp::R_POWERPC_RELATIVE);
5674               rela_dyn->add_local_relative(object, r_sym, dynrel,
5675                                            output_section, data_shndx,
5676                                            reloc.get_r_offset(),
5677                                            reloc.get_r_addend(), false);
5678             }
5679           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5680             {
5681               check_non_pic(object, r_type);
5682               rela_dyn->add_local(object, r_sym, r_type, output_section,
5683                                   data_shndx, reloc.get_r_offset(),
5684                                   reloc.get_r_addend());
5685             }
5686           else
5687             {
5688               gold_assert(lsym.get_st_value() == 0);
5689               unsigned int shndx = lsym.get_st_shndx();
5690               bool is_ordinary;
5691               shndx = object->adjust_sym_shndx(r_sym, shndx,
5692                                                &is_ordinary);
5693               if (!is_ordinary)
5694                 object->error(_("section symbol %u has bad shndx %u"),
5695                               r_sym, shndx);
5696               else
5697                 rela_dyn->add_local_section(object, shndx, r_type,
5698                                             output_section, data_shndx,
5699                                             reloc.get_r_offset());
5700             }
5701         }
5702       break;
5703
5704     case elfcpp::R_POWERPC_REL24:
5705     case elfcpp::R_PPC_PLTREL24:
5706     case elfcpp::R_PPC_LOCAL24PC:
5707     case elfcpp::R_POWERPC_REL14:
5708     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5709     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5710       if (!is_ifunc)
5711         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5712                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5713                             reloc.get_r_addend());
5714       break;
5715
5716     case elfcpp::R_PPC64_REL64:
5717     case elfcpp::R_POWERPC_REL32:
5718     case elfcpp::R_POWERPC_REL16:
5719     case elfcpp::R_POWERPC_REL16_LO:
5720     case elfcpp::R_POWERPC_REL16_HI:
5721     case elfcpp::R_POWERPC_REL16_HA:
5722     case elfcpp::R_POWERPC_REL16DX_HA:
5723     case elfcpp::R_POWERPC_SECTOFF:
5724     case elfcpp::R_POWERPC_SECTOFF_LO:
5725     case elfcpp::R_POWERPC_SECTOFF_HI:
5726     case elfcpp::R_POWERPC_SECTOFF_HA:
5727     case elfcpp::R_PPC64_SECTOFF_DS:
5728     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5729     case elfcpp::R_POWERPC_TPREL16:
5730     case elfcpp::R_POWERPC_TPREL16_LO:
5731     case elfcpp::R_POWERPC_TPREL16_HI:
5732     case elfcpp::R_POWERPC_TPREL16_HA:
5733     case elfcpp::R_PPC64_TPREL16_DS:
5734     case elfcpp::R_PPC64_TPREL16_LO_DS:
5735     case elfcpp::R_PPC64_TPREL16_HIGH:
5736     case elfcpp::R_PPC64_TPREL16_HIGHA:
5737     case elfcpp::R_PPC64_TPREL16_HIGHER:
5738     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5739     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5740     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5741     case elfcpp::R_POWERPC_DTPREL16:
5742     case elfcpp::R_POWERPC_DTPREL16_LO:
5743     case elfcpp::R_POWERPC_DTPREL16_HI:
5744     case elfcpp::R_POWERPC_DTPREL16_HA:
5745     case elfcpp::R_PPC64_DTPREL16_DS:
5746     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5747     case elfcpp::R_PPC64_DTPREL16_HIGH:
5748     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5749     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5750     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5751     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5752     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5753     case elfcpp::R_PPC64_TLSGD:
5754     case elfcpp::R_PPC64_TLSLD:
5755     case elfcpp::R_PPC64_ADDR64_LOCAL:
5756       break;
5757
5758     case elfcpp::R_POWERPC_GOT16:
5759     case elfcpp::R_POWERPC_GOT16_LO:
5760     case elfcpp::R_POWERPC_GOT16_HI:
5761     case elfcpp::R_POWERPC_GOT16_HA:
5762     case elfcpp::R_PPC64_GOT16_DS:
5763     case elfcpp::R_PPC64_GOT16_LO_DS:
5764       {
5765         // The symbol requires a GOT entry.
5766         Output_data_got_powerpc<size, big_endian>* got
5767           = target->got_section(symtab, layout);
5768         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5769
5770         if (!parameters->options().output_is_position_independent())
5771           {
5772             if (is_ifunc
5773                 && (size == 32 || target->abiversion() >= 2))
5774               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5775             else
5776               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5777           }
5778         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5779           {
5780             // If we are generating a shared object or a pie, this
5781             // symbol's GOT entry will be set by a dynamic relocation.
5782             unsigned int off;
5783             off = got->add_constant(0);
5784             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5785
5786             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5787                                                                is_ifunc);
5788             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5789                                    : elfcpp::R_POWERPC_RELATIVE);
5790             rela_dyn->add_local_relative(object, r_sym, dynrel,
5791                                          got, off, 0, false);
5792           }
5793       }
5794       break;
5795
5796     case elfcpp::R_PPC64_TOC16:
5797     case elfcpp::R_PPC64_TOC16_LO:
5798     case elfcpp::R_PPC64_TOC16_HI:
5799     case elfcpp::R_PPC64_TOC16_HA:
5800     case elfcpp::R_PPC64_TOC16_DS:
5801     case elfcpp::R_PPC64_TOC16_LO_DS:
5802       // We need a GOT section.
5803       target->got_section(symtab, layout);
5804       break;
5805
5806     case elfcpp::R_POWERPC_GOT_TLSGD16:
5807     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5808     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5809     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5810       {
5811         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5812         if (tls_type == tls::TLSOPT_NONE)
5813           {
5814             Output_data_got_powerpc<size, big_endian>* got
5815               = target->got_section(symtab, layout);
5816             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5817             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5818             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5819                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5820           }
5821         else if (tls_type == tls::TLSOPT_TO_LE)
5822           {
5823             // no GOT relocs needed for Local Exec.
5824           }
5825         else
5826           gold_unreachable();
5827       }
5828       break;
5829
5830     case elfcpp::R_POWERPC_GOT_TLSLD16:
5831     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5832     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5833     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5834       {
5835         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5836         if (tls_type == tls::TLSOPT_NONE)
5837           target->tlsld_got_offset(symtab, layout, object);
5838         else if (tls_type == tls::TLSOPT_TO_LE)
5839           {
5840             // no GOT relocs needed for Local Exec.
5841             if (parameters->options().emit_relocs())
5842               {
5843                 Output_section* os = layout->tls_segment()->first_section();
5844                 gold_assert(os != NULL);
5845                 os->set_needs_symtab_index();
5846               }
5847           }
5848         else
5849           gold_unreachable();
5850       }
5851       break;
5852
5853     case elfcpp::R_POWERPC_GOT_DTPREL16:
5854     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5855     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5856     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5857       {
5858         Output_data_got_powerpc<size, big_endian>* got
5859           = target->got_section(symtab, layout);
5860         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5861         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5862       }
5863       break;
5864
5865     case elfcpp::R_POWERPC_GOT_TPREL16:
5866     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5867     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5868     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5869       {
5870         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5871         if (tls_type == tls::TLSOPT_NONE)
5872           {
5873             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5874             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5875               {
5876                 Output_data_got_powerpc<size, big_endian>* got
5877                   = target->got_section(symtab, layout);
5878                 unsigned int off = got->add_constant(0);
5879                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5880
5881                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5882                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5883                                                       elfcpp::R_POWERPC_TPREL,
5884                                                       got, off, 0);
5885               }
5886           }
5887         else if (tls_type == tls::TLSOPT_TO_LE)
5888           {
5889             // no GOT relocs needed for Local Exec.
5890           }
5891         else
5892           gold_unreachable();
5893       }
5894       break;
5895
5896     default:
5897       unsupported_reloc_local(object, r_type);
5898       break;
5899     }
5900
5901   switch (r_type)
5902     {
5903     case elfcpp::R_POWERPC_GOT_TLSLD16:
5904     case elfcpp::R_POWERPC_GOT_TLSGD16:
5905     case elfcpp::R_POWERPC_GOT_TPREL16:
5906     case elfcpp::R_POWERPC_GOT_DTPREL16:
5907     case elfcpp::R_POWERPC_GOT16:
5908     case elfcpp::R_PPC64_GOT16_DS:
5909     case elfcpp::R_PPC64_TOC16:
5910     case elfcpp::R_PPC64_TOC16_DS:
5911       ppc_object->set_has_small_toc_reloc();
5912     default:
5913       break;
5914     }
5915 }
5916
5917 // Report an unsupported relocation against a global symbol.
5918
5919 template<int size, bool big_endian>
5920 void
5921 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5922     Sized_relobj_file<size, big_endian>* object,
5923     unsigned int r_type,
5924     Symbol* gsym)
5925 {
5926   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5927              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5928 }
5929
5930 // Scan a relocation for a global symbol.
5931
5932 template<int size, bool big_endian>
5933 inline void
5934 Target_powerpc<size, big_endian>::Scan::global(
5935     Symbol_table* symtab,
5936     Layout* layout,
5937     Target_powerpc<size, big_endian>* target,
5938     Sized_relobj_file<size, big_endian>* object,
5939     unsigned int data_shndx,
5940     Output_section* output_section,
5941     const elfcpp::Rela<size, big_endian>& reloc,
5942     unsigned int r_type,
5943     Symbol* gsym)
5944 {
5945   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5946     return;
5947
5948   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5949       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5950     {
5951       this->expect_tls_get_addr_call();
5952       const bool final = gsym->final_value_is_known();
5953       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5954       if (tls_type != tls::TLSOPT_NONE)
5955         this->skip_next_tls_get_addr_call();
5956     }
5957   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5958            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5959     {
5960       this->expect_tls_get_addr_call();
5961       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5962       if (tls_type != tls::TLSOPT_NONE)
5963         this->skip_next_tls_get_addr_call();
5964     }
5965
5966   Powerpc_relobj<size, big_endian>* ppc_object
5967     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5968
5969   // A STT_GNU_IFUNC symbol may require a PLT entry.
5970   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5971   bool pushed_ifunc = false;
5972   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5973     {
5974       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5975                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5976                           reloc.get_r_addend());
5977       target->make_plt_entry(symtab, layout, gsym);
5978       pushed_ifunc = true;
5979     }
5980
5981   switch (r_type)
5982     {
5983     case elfcpp::R_POWERPC_NONE:
5984     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5985     case elfcpp::R_POWERPC_GNU_VTENTRY:
5986     case elfcpp::R_PPC_LOCAL24PC:
5987     case elfcpp::R_POWERPC_TLS:
5988     case elfcpp::R_PPC64_ENTRY:
5989       break;
5990
5991     case elfcpp::R_PPC64_TOC:
5992       {
5993         Output_data_got_powerpc<size, big_endian>* got
5994           = target->got_section(symtab, layout);
5995         if (parameters->options().output_is_position_independent())
5996           {
5997             Address off = reloc.get_r_offset();
5998             if (size == 64
5999                 && data_shndx == ppc_object->opd_shndx()
6000                 && ppc_object->get_opd_discard(off - 8))
6001               break;
6002
6003             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6004             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6005             if (data_shndx != ppc_object->opd_shndx())
6006               symobj = static_cast
6007                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6008             rela_dyn->add_output_section_relative(got->output_section(),
6009                                                   elfcpp::R_POWERPC_RELATIVE,
6010                                                   output_section,
6011                                                   object, data_shndx, off,
6012                                                   symobj->toc_base_offset());
6013           }
6014       }
6015       break;
6016
6017     case elfcpp::R_PPC64_ADDR64:
6018       if (size == 64
6019           && target->abiversion() < 2
6020           && data_shndx == ppc_object->opd_shndx()
6021           && (gsym->is_defined_in_discarded_section()
6022               || gsym->object() != object))
6023         {
6024           ppc_object->set_opd_discard(reloc.get_r_offset());
6025           break;
6026         }
6027       // Fall thru
6028     case elfcpp::R_PPC64_UADDR64:
6029     case elfcpp::R_POWERPC_ADDR32:
6030     case elfcpp::R_POWERPC_UADDR32:
6031     case elfcpp::R_POWERPC_ADDR24:
6032     case elfcpp::R_POWERPC_ADDR16:
6033     case elfcpp::R_POWERPC_ADDR16_LO:
6034     case elfcpp::R_POWERPC_ADDR16_HI:
6035     case elfcpp::R_POWERPC_ADDR16_HA:
6036     case elfcpp::R_POWERPC_UADDR16:
6037     case elfcpp::R_PPC64_ADDR16_HIGH:
6038     case elfcpp::R_PPC64_ADDR16_HIGHA:
6039     case elfcpp::R_PPC64_ADDR16_HIGHER:
6040     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6041     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6042     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6043     case elfcpp::R_PPC64_ADDR16_DS:
6044     case elfcpp::R_PPC64_ADDR16_LO_DS:
6045     case elfcpp::R_POWERPC_ADDR14:
6046     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6047     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6048       {
6049         // Make a PLT entry if necessary.
6050         if (gsym->needs_plt_entry())
6051           {
6052             // Since this is not a PC-relative relocation, we may be
6053             // taking the address of a function. In that case we need to
6054             // set the entry in the dynamic symbol table to the address of
6055             // the PLT call stub.
6056             bool need_ifunc_plt = false;
6057             if ((size == 32 || target->abiversion() >= 2)
6058                 && gsym->is_from_dynobj()
6059                 && !parameters->options().output_is_position_independent())
6060               {
6061                 gsym->set_needs_dynsym_value();
6062                 need_ifunc_plt = true;
6063               }
6064             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6065               {
6066                 target->push_branch(ppc_object, data_shndx,
6067                                     reloc.get_r_offset(), r_type,
6068                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6069                                     reloc.get_r_addend());
6070                 target->make_plt_entry(symtab, layout, gsym);
6071               }
6072           }
6073         // Make a dynamic relocation if necessary.
6074         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6075             || (size == 64 && is_ifunc && target->abiversion() < 2))
6076           {
6077             if (!parameters->options().output_is_position_independent()
6078                 && gsym->may_need_copy_reloc())
6079               {
6080                 target->copy_reloc(symtab, layout, object,
6081                                    data_shndx, output_section, gsym, reloc);
6082               }
6083             else if ((((size == 32
6084                         && r_type == elfcpp::R_POWERPC_ADDR32)
6085                        || (size == 64
6086                            && r_type == elfcpp::R_PPC64_ADDR64
6087                            && target->abiversion() >= 2))
6088                       && gsym->can_use_relative_reloc(false)
6089                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
6090                            && parameters->options().shared()))
6091                      || (size == 64
6092                          && r_type == elfcpp::R_PPC64_ADDR64
6093                          && target->abiversion() < 2
6094                          && (gsym->can_use_relative_reloc(false)
6095                              || data_shndx == ppc_object->opd_shndx())))
6096               {
6097                 Reloc_section* rela_dyn
6098                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6099                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6100                                        : elfcpp::R_POWERPC_RELATIVE);
6101                 rela_dyn->add_symbolless_global_addend(
6102                     gsym, dynrel, output_section, object, data_shndx,
6103                     reloc.get_r_offset(), reloc.get_r_addend());
6104               }
6105             else
6106               {
6107                 Reloc_section* rela_dyn
6108                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6109                 check_non_pic(object, r_type);
6110                 rela_dyn->add_global(gsym, r_type, output_section,
6111                                      object, data_shndx,
6112                                      reloc.get_r_offset(),
6113                                      reloc.get_r_addend());
6114               }
6115           }
6116       }
6117       break;
6118
6119     case elfcpp::R_PPC_PLTREL24:
6120     case elfcpp::R_POWERPC_REL24:
6121       if (!is_ifunc)
6122         {
6123           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6124                               r_type,
6125                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6126                               reloc.get_r_addend());
6127           if (gsym->needs_plt_entry()
6128               || (!gsym->final_value_is_known()
6129                   && (gsym->is_undefined()
6130                       || gsym->is_from_dynobj()
6131                       || gsym->is_preemptible())))
6132             target->make_plt_entry(symtab, layout, gsym);
6133         }
6134       // Fall thru
6135
6136     case elfcpp::R_PPC64_REL64:
6137     case elfcpp::R_POWERPC_REL32:
6138       // Make a dynamic relocation if necessary.
6139       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6140         {
6141           if (!parameters->options().output_is_position_independent()
6142               && gsym->may_need_copy_reloc())
6143             {
6144               target->copy_reloc(symtab, layout, object,
6145                                  data_shndx, output_section, gsym,
6146                                  reloc);
6147             }
6148           else
6149             {
6150               Reloc_section* rela_dyn
6151                 = target->rela_dyn_section(symtab, layout, is_ifunc);
6152               check_non_pic(object, r_type);
6153               rela_dyn->add_global(gsym, r_type, output_section, object,
6154                                    data_shndx, reloc.get_r_offset(),
6155                                    reloc.get_r_addend());
6156             }
6157         }
6158       break;
6159
6160     case elfcpp::R_POWERPC_REL14:
6161     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6162     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6163       if (!is_ifunc)
6164         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6165                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6166                             reloc.get_r_addend());
6167       break;
6168
6169     case elfcpp::R_POWERPC_REL16:
6170     case elfcpp::R_POWERPC_REL16_LO:
6171     case elfcpp::R_POWERPC_REL16_HI:
6172     case elfcpp::R_POWERPC_REL16_HA:
6173     case elfcpp::R_POWERPC_REL16DX_HA:
6174     case elfcpp::R_POWERPC_SECTOFF:
6175     case elfcpp::R_POWERPC_SECTOFF_LO:
6176     case elfcpp::R_POWERPC_SECTOFF_HI:
6177     case elfcpp::R_POWERPC_SECTOFF_HA:
6178     case elfcpp::R_PPC64_SECTOFF_DS:
6179     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6180     case elfcpp::R_POWERPC_TPREL16:
6181     case elfcpp::R_POWERPC_TPREL16_LO:
6182     case elfcpp::R_POWERPC_TPREL16_HI:
6183     case elfcpp::R_POWERPC_TPREL16_HA:
6184     case elfcpp::R_PPC64_TPREL16_DS:
6185     case elfcpp::R_PPC64_TPREL16_LO_DS:
6186     case elfcpp::R_PPC64_TPREL16_HIGH:
6187     case elfcpp::R_PPC64_TPREL16_HIGHA:
6188     case elfcpp::R_PPC64_TPREL16_HIGHER:
6189     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6190     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6191     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6192     case elfcpp::R_POWERPC_DTPREL16:
6193     case elfcpp::R_POWERPC_DTPREL16_LO:
6194     case elfcpp::R_POWERPC_DTPREL16_HI:
6195     case elfcpp::R_POWERPC_DTPREL16_HA:
6196     case elfcpp::R_PPC64_DTPREL16_DS:
6197     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6198     case elfcpp::R_PPC64_DTPREL16_HIGH:
6199     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6200     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6201     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6202     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6203     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6204     case elfcpp::R_PPC64_TLSGD:
6205     case elfcpp::R_PPC64_TLSLD:
6206     case elfcpp::R_PPC64_ADDR64_LOCAL:
6207       break;
6208
6209     case elfcpp::R_POWERPC_GOT16:
6210     case elfcpp::R_POWERPC_GOT16_LO:
6211     case elfcpp::R_POWERPC_GOT16_HI:
6212     case elfcpp::R_POWERPC_GOT16_HA:
6213     case elfcpp::R_PPC64_GOT16_DS:
6214     case elfcpp::R_PPC64_GOT16_LO_DS:
6215       {
6216         // The symbol requires a GOT entry.
6217         Output_data_got_powerpc<size, big_endian>* got;
6218
6219         got = target->got_section(symtab, layout);
6220         if (gsym->final_value_is_known())
6221           {
6222             if (is_ifunc
6223                 && (size == 32 || target->abiversion() >= 2))
6224               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6225             else
6226               got->add_global(gsym, GOT_TYPE_STANDARD);
6227           }
6228         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6229           {
6230             // If we are generating a shared object or a pie, this
6231             // symbol's GOT entry will be set by a dynamic relocation.
6232             unsigned int off = got->add_constant(0);
6233             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6234
6235             Reloc_section* rela_dyn
6236               = target->rela_dyn_section(symtab, layout, is_ifunc);
6237
6238             if (gsym->can_use_relative_reloc(false)
6239                 && !((size == 32
6240                       || target->abiversion() >= 2)
6241                      && gsym->visibility() == elfcpp::STV_PROTECTED
6242                      && parameters->options().shared()))
6243               {
6244                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6245                                        : elfcpp::R_POWERPC_RELATIVE);
6246                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6247               }
6248             else
6249               {
6250                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6251                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6252               }
6253           }
6254       }
6255       break;
6256
6257     case elfcpp::R_PPC64_TOC16:
6258     case elfcpp::R_PPC64_TOC16_LO:
6259     case elfcpp::R_PPC64_TOC16_HI:
6260     case elfcpp::R_PPC64_TOC16_HA:
6261     case elfcpp::R_PPC64_TOC16_DS:
6262     case elfcpp::R_PPC64_TOC16_LO_DS:
6263       // We need a GOT section.
6264       target->got_section(symtab, layout);
6265       break;
6266
6267     case elfcpp::R_POWERPC_GOT_TLSGD16:
6268     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6269     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6270     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6271       {
6272         const bool final = gsym->final_value_is_known();
6273         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6274         if (tls_type == tls::TLSOPT_NONE)
6275           {
6276             Output_data_got_powerpc<size, big_endian>* got
6277               = target->got_section(symtab, layout);
6278             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6279             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6280                                           elfcpp::R_POWERPC_DTPMOD,
6281                                           elfcpp::R_POWERPC_DTPREL);
6282           }
6283         else if (tls_type == tls::TLSOPT_TO_IE)
6284           {
6285             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6286               {
6287                 Output_data_got_powerpc<size, big_endian>* got
6288                   = target->got_section(symtab, layout);
6289                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6290                 if (gsym->is_undefined()
6291                     || gsym->is_from_dynobj())
6292                   {
6293                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6294                                              elfcpp::R_POWERPC_TPREL);
6295                   }
6296                 else
6297                   {
6298                     unsigned int off = got->add_constant(0);
6299                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6300                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6301                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6302                                                            got, off, 0);
6303                   }
6304               }
6305           }
6306         else if (tls_type == tls::TLSOPT_TO_LE)
6307           {
6308             // no GOT relocs needed for Local Exec.
6309           }
6310         else
6311           gold_unreachable();
6312       }
6313       break;
6314
6315     case elfcpp::R_POWERPC_GOT_TLSLD16:
6316     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6317     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6318     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6319       {
6320         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6321         if (tls_type == tls::TLSOPT_NONE)
6322           target->tlsld_got_offset(symtab, layout, object);
6323         else if (tls_type == tls::TLSOPT_TO_LE)
6324           {
6325             // no GOT relocs needed for Local Exec.
6326             if (parameters->options().emit_relocs())
6327               {
6328                 Output_section* os = layout->tls_segment()->first_section();
6329                 gold_assert(os != NULL);
6330                 os->set_needs_symtab_index();
6331               }
6332           }
6333         else
6334           gold_unreachable();
6335       }
6336       break;
6337
6338     case elfcpp::R_POWERPC_GOT_DTPREL16:
6339     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6340     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6341     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6342       {
6343         Output_data_got_powerpc<size, big_endian>* got
6344           = target->got_section(symtab, layout);
6345         if (!gsym->final_value_is_known()
6346             && (gsym->is_from_dynobj()
6347                 || gsym->is_undefined()
6348                 || gsym->is_preemptible()))
6349           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6350                                    target->rela_dyn_section(layout),
6351                                    elfcpp::R_POWERPC_DTPREL);
6352         else
6353           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6354       }
6355       break;
6356
6357     case elfcpp::R_POWERPC_GOT_TPREL16:
6358     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6359     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6360     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6361       {
6362         const bool final = gsym->final_value_is_known();
6363         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6364         if (tls_type == tls::TLSOPT_NONE)
6365           {
6366             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6367               {
6368                 Output_data_got_powerpc<size, big_endian>* got
6369                   = target->got_section(symtab, layout);
6370                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6371                 if (gsym->is_undefined()
6372                     || gsym->is_from_dynobj())
6373                   {
6374                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6375                                              elfcpp::R_POWERPC_TPREL);
6376                   }
6377                 else
6378                   {
6379                     unsigned int off = got->add_constant(0);
6380                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6381                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6382                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6383                                                            got, off, 0);
6384                   }
6385               }
6386           }
6387         else if (tls_type == tls::TLSOPT_TO_LE)
6388           {
6389             // no GOT relocs needed for Local Exec.
6390           }
6391         else
6392           gold_unreachable();
6393       }
6394       break;
6395
6396     default:
6397       unsupported_reloc_global(object, r_type, gsym);
6398       break;
6399     }
6400
6401   switch (r_type)
6402     {
6403     case elfcpp::R_POWERPC_GOT_TLSLD16:
6404     case elfcpp::R_POWERPC_GOT_TLSGD16:
6405     case elfcpp::R_POWERPC_GOT_TPREL16:
6406     case elfcpp::R_POWERPC_GOT_DTPREL16:
6407     case elfcpp::R_POWERPC_GOT16:
6408     case elfcpp::R_PPC64_GOT16_DS:
6409     case elfcpp::R_PPC64_TOC16:
6410     case elfcpp::R_PPC64_TOC16_DS:
6411       ppc_object->set_has_small_toc_reloc();
6412     default:
6413       break;
6414     }
6415 }
6416
6417 // Process relocations for gc.
6418
6419 template<int size, bool big_endian>
6420 void
6421 Target_powerpc<size, big_endian>::gc_process_relocs(
6422     Symbol_table* symtab,
6423     Layout* layout,
6424     Sized_relobj_file<size, big_endian>* object,
6425     unsigned int data_shndx,
6426     unsigned int,
6427     const unsigned char* prelocs,
6428     size_t reloc_count,
6429     Output_section* output_section,
6430     bool needs_special_offset_handling,
6431     size_t local_symbol_count,
6432     const unsigned char* plocal_symbols)
6433 {
6434   typedef Target_powerpc<size, big_endian> Powerpc;
6435   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6436       Classify_reloc;
6437
6438   Powerpc_relobj<size, big_endian>* ppc_object
6439     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6440   if (size == 64)
6441     ppc_object->set_opd_valid();
6442   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6443     {
6444       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6445       for (p = ppc_object->access_from_map()->begin();
6446            p != ppc_object->access_from_map()->end();
6447            ++p)
6448         {
6449           Address dst_off = p->first;
6450           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6451           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6452           for (s = p->second.begin(); s != p->second.end(); ++s)
6453             {
6454               Relobj* src_obj = s->first;
6455               unsigned int src_indx = s->second;
6456               symtab->gc()->add_reference(src_obj, src_indx,
6457                                           ppc_object, dst_indx);
6458             }
6459           p->second.clear();
6460         }
6461       ppc_object->access_from_map()->clear();
6462       ppc_object->process_gc_mark(symtab);
6463       // Don't look at .opd relocs as .opd will reference everything.
6464       return;
6465     }
6466
6467   gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6468     symtab,
6469     layout,
6470     this,
6471     object,
6472     data_shndx,
6473     prelocs,
6474     reloc_count,
6475     output_section,
6476     needs_special_offset_handling,
6477     local_symbol_count,
6478     plocal_symbols);
6479 }
6480
6481 // Handle target specific gc actions when adding a gc reference from
6482 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6483 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6484 // section of a function descriptor.
6485
6486 template<int size, bool big_endian>
6487 void
6488 Target_powerpc<size, big_endian>::do_gc_add_reference(
6489     Symbol_table* symtab,
6490     Relobj* src_obj,
6491     unsigned int src_shndx,
6492     Relobj* dst_obj,
6493     unsigned int dst_shndx,
6494     Address dst_off) const
6495 {
6496   if (size != 64 || dst_obj->is_dynamic())
6497     return;
6498
6499   Powerpc_relobj<size, big_endian>* ppc_object
6500     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6501   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6502     {
6503       if (ppc_object->opd_valid())
6504         {
6505           dst_shndx = ppc_object->get_opd_ent(dst_off);
6506           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6507         }
6508       else
6509         {
6510           // If we haven't run scan_opd_relocs, we must delay
6511           // processing this function descriptor reference.
6512           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6513         }
6514     }
6515 }
6516
6517 // Add any special sections for this symbol to the gc work list.
6518 // For powerpc64, this adds the code section of a function
6519 // descriptor.
6520
6521 template<int size, bool big_endian>
6522 void
6523 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6524     Symbol_table* symtab,
6525     Symbol* sym) const
6526 {
6527   if (size == 64)
6528     {
6529       Powerpc_relobj<size, big_endian>* ppc_object
6530         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6531       bool is_ordinary;
6532       unsigned int shndx = sym->shndx(&is_ordinary);
6533       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6534         {
6535           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6536           Address dst_off = gsym->value();
6537           if (ppc_object->opd_valid())
6538             {
6539               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6540               symtab->gc()->worklist().push_back(Section_id(ppc_object,
6541                                                             dst_indx));
6542             }
6543           else
6544             ppc_object->add_gc_mark(dst_off);
6545         }
6546     }
6547 }
6548
6549 // For a symbol location in .opd, set LOC to the location of the
6550 // function entry.
6551
6552 template<int size, bool big_endian>
6553 void
6554 Target_powerpc<size, big_endian>::do_function_location(
6555     Symbol_location* loc) const
6556 {
6557   if (size == 64 && loc->shndx != 0)
6558     {
6559       if (loc->object->is_dynamic())
6560         {
6561           Powerpc_dynobj<size, big_endian>* ppc_object
6562             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6563           if (loc->shndx == ppc_object->opd_shndx())
6564             {
6565               Address dest_off;
6566               Address off = loc->offset - ppc_object->opd_address();
6567               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6568               loc->offset = dest_off;
6569             }
6570         }
6571       else
6572         {
6573           const Powerpc_relobj<size, big_endian>* ppc_object
6574             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6575           if (loc->shndx == ppc_object->opd_shndx())
6576             {
6577               Address dest_off;
6578               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6579               loc->offset = dest_off;
6580             }
6581         }
6582     }
6583 }
6584
6585 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6586 // compiled with -fsplit-stack.  The function calls non-split-stack
6587 // code.  Change the function to ensure it has enough stack space to
6588 // call some random function.
6589
6590 template<int size, bool big_endian>
6591 void
6592 Target_powerpc<size, big_endian>::do_calls_non_split(
6593     Relobj* object,
6594     unsigned int shndx,
6595     section_offset_type fnoffset,
6596     section_size_type fnsize,
6597     const unsigned char* prelocs,
6598     size_t reloc_count,
6599     unsigned char* view,
6600     section_size_type view_size,
6601     std::string* from,
6602     std::string* to) const
6603 {
6604   // 32-bit not supported.
6605   if (size == 32)
6606     {
6607       // warn
6608       Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6609                                  prelocs, reloc_count, view, view_size,
6610                                  from, to);
6611       return;
6612     }
6613
6614   // The function always starts with
6615   //    ld %r0,-0x7000-64(%r13)  # tcbhead_t.__private_ss
6616   //    addis %r12,%r1,-allocate@ha
6617   //    addi %r12,%r12,-allocate@l
6618   //    cmpld %r12,%r0
6619   // but note that the addis or addi may be replaced with a nop
6620
6621   unsigned char *entry = view + fnoffset;
6622   uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6623
6624   if ((insn & 0xffff0000) == addis_2_12)
6625     {
6626       /* Skip ELFv2 global entry code.  */
6627       entry += 8;
6628       insn = elfcpp::Swap<32, big_endian>::readval(entry);
6629     }
6630
6631   unsigned char *pinsn = entry;
6632   bool ok = false;
6633   const uint32_t ld_private_ss = 0xe80d8fc0;
6634   if (insn == ld_private_ss)
6635     {
6636       int32_t allocate = 0;
6637       while (1)
6638         {
6639           pinsn += 4;
6640           insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6641           if ((insn & 0xffff0000) == addis_12_1)
6642             allocate += (insn & 0xffff) << 16;
6643           else if ((insn & 0xffff0000) == addi_12_1
6644                    || (insn & 0xffff0000) == addi_12_12)
6645             allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6646           else if (insn != nop)
6647             break;
6648         }
6649       if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6650         {
6651           int extra = parameters->options().split_stack_adjust_size();
6652           allocate -= extra;
6653           if (allocate >= 0 || extra < 0)
6654             {
6655               object->error(_("split-stack stack size overflow at "
6656                               "section %u offset %0zx"),
6657                             shndx, static_cast<size_t>(fnoffset));
6658               return;
6659             }
6660           pinsn = entry + 4;
6661           insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6662           if (insn != addis_12_1)
6663             {
6664               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6665               pinsn += 4;
6666               insn = addi_12_12 | (allocate & 0xffff);
6667               if (insn != addi_12_12)
6668                 {
6669                   elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6670                   pinsn += 4;
6671                 }
6672             }
6673           else
6674             {
6675               insn = addi_12_1 | (allocate & 0xffff);
6676               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6677               pinsn += 4;
6678             }
6679           if (pinsn != entry + 12)
6680             elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6681
6682           ok = true;
6683         }
6684     }
6685
6686   if (!ok)
6687     {
6688       if (!object->has_no_split_stack())
6689         object->error(_("failed to match split-stack sequence at "
6690                         "section %u offset %0zx"),
6691                       shndx, static_cast<size_t>(fnoffset));
6692     }
6693 }
6694
6695 // Scan relocations for a section.
6696
6697 template<int size, bool big_endian>
6698 void
6699 Target_powerpc<size, big_endian>::scan_relocs(
6700     Symbol_table* symtab,
6701     Layout* layout,
6702     Sized_relobj_file<size, big_endian>* object,
6703     unsigned int data_shndx,
6704     unsigned int sh_type,
6705     const unsigned char* prelocs,
6706     size_t reloc_count,
6707     Output_section* output_section,
6708     bool needs_special_offset_handling,
6709     size_t local_symbol_count,
6710     const unsigned char* plocal_symbols)
6711 {
6712   typedef Target_powerpc<size, big_endian> Powerpc;
6713   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6714       Classify_reloc;
6715
6716   if (sh_type == elfcpp::SHT_REL)
6717     {
6718       gold_error(_("%s: unsupported REL reloc section"),
6719                  object->name().c_str());
6720       return;
6721     }
6722
6723   gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6724     symtab,
6725     layout,
6726     this,
6727     object,
6728     data_shndx,
6729     prelocs,
6730     reloc_count,
6731     output_section,
6732     needs_special_offset_handling,
6733     local_symbol_count,
6734     plocal_symbols);
6735 }
6736
6737 // Functor class for processing the global symbol table.
6738 // Removes symbols defined on discarded opd entries.
6739
6740 template<bool big_endian>
6741 class Global_symbol_visitor_opd
6742 {
6743  public:
6744   Global_symbol_visitor_opd()
6745   { }
6746
6747   void
6748   operator()(Sized_symbol<64>* sym)
6749   {
6750     if (sym->has_symtab_index()
6751         || sym->source() != Symbol::FROM_OBJECT
6752         || !sym->in_real_elf())
6753       return;
6754
6755     if (sym->object()->is_dynamic())
6756       return;
6757
6758     Powerpc_relobj<64, big_endian>* symobj
6759       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6760     if (symobj->opd_shndx() == 0)
6761       return;
6762
6763     bool is_ordinary;
6764     unsigned int shndx = sym->shndx(&is_ordinary);
6765     if (shndx == symobj->opd_shndx()
6766         && symobj->get_opd_discard(sym->value()))
6767       {
6768         sym->set_undefined();
6769         sym->set_visibility(elfcpp::STV_DEFAULT);
6770         sym->set_is_defined_in_discarded_section();
6771         sym->set_symtab_index(-1U);
6772       }
6773   }
6774 };
6775
6776 template<int size, bool big_endian>
6777 void
6778 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6779     Layout* layout,
6780     Symbol_table* symtab)
6781 {
6782   if (size == 64)
6783     {
6784       Output_data_save_res<size, big_endian>* savres
6785         = new Output_data_save_res<size, big_endian>(symtab);
6786       this->savres_section_ = savres;
6787       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6788                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6789                                       savres, ORDER_TEXT, false);
6790     }
6791 }
6792
6793 // Sort linker created .got section first (for the header), then input
6794 // sections belonging to files using small model code.
6795
6796 template<bool big_endian>
6797 class Sort_toc_sections
6798 {
6799  public:
6800   bool
6801   operator()(const Output_section::Input_section& is1,
6802              const Output_section::Input_section& is2) const
6803   {
6804     if (!is1.is_input_section() && is2.is_input_section())
6805       return true;
6806     bool small1
6807       = (is1.is_input_section()
6808          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6809              ->has_small_toc_reloc()));
6810     bool small2
6811       = (is2.is_input_section()
6812          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6813              ->has_small_toc_reloc()));
6814     return small1 && !small2;
6815   }
6816 };
6817
6818 // Finalize the sections.
6819
6820 template<int size, bool big_endian>
6821 void
6822 Target_powerpc<size, big_endian>::do_finalize_sections(
6823     Layout* layout,
6824     const Input_objects*,
6825     Symbol_table* symtab)
6826 {
6827   if (parameters->doing_static_link())
6828     {
6829       // At least some versions of glibc elf-init.o have a strong
6830       // reference to __rela_iplt marker syms.  A weak ref would be
6831       // better..
6832       if (this->iplt_ != NULL)
6833         {
6834           Reloc_section* rel = this->iplt_->rel_plt();
6835           symtab->define_in_output_data("__rela_iplt_start", NULL,
6836                                         Symbol_table::PREDEFINED, rel, 0, 0,
6837                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6838                                         elfcpp::STV_HIDDEN, 0, false, true);
6839           symtab->define_in_output_data("__rela_iplt_end", NULL,
6840                                         Symbol_table::PREDEFINED, rel, 0, 0,
6841                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6842                                         elfcpp::STV_HIDDEN, 0, true, true);
6843         }
6844       else
6845         {
6846           symtab->define_as_constant("__rela_iplt_start", NULL,
6847                                      Symbol_table::PREDEFINED, 0, 0,
6848                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6849                                      elfcpp::STV_HIDDEN, 0, true, false);
6850           symtab->define_as_constant("__rela_iplt_end", NULL,
6851                                      Symbol_table::PREDEFINED, 0, 0,
6852                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6853                                      elfcpp::STV_HIDDEN, 0, true, false);
6854         }
6855     }
6856
6857   if (size == 64)
6858     {
6859       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6860       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6861
6862       if (!parameters->options().relocatable())
6863         {
6864           this->define_save_restore_funcs(layout, symtab);
6865
6866           // Annoyingly, we need to make these sections now whether or
6867           // not we need them.  If we delay until do_relax then we
6868           // need to mess with the relaxation machinery checkpointing.
6869           this->got_section(symtab, layout);
6870           this->make_brlt_section(layout);
6871
6872           if (parameters->options().toc_sort())
6873             {
6874               Output_section* os = this->got_->output_section();
6875               if (os != NULL && os->input_sections().size() > 1)
6876                 std::stable_sort(os->input_sections().begin(),
6877                                  os->input_sections().end(),
6878                                  Sort_toc_sections<big_endian>());
6879             }
6880         }
6881     }
6882
6883   // Fill in some more dynamic tags.
6884   Output_data_dynamic* odyn = layout->dynamic_data();
6885   if (odyn != NULL)
6886     {
6887       const Reloc_section* rel_plt = (this->plt_ == NULL
6888                                       ? NULL
6889                                       : this->plt_->rel_plt());
6890       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6891                                       this->rela_dyn_, true, size == 32);
6892
6893       if (size == 32)
6894         {
6895           if (this->got_ != NULL)
6896             {
6897               this->got_->finalize_data_size();
6898               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6899                                             this->got_, this->got_->g_o_t());
6900             }
6901         }
6902       else
6903         {
6904           if (this->glink_ != NULL)
6905             {
6906               this->glink_->finalize_data_size();
6907               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6908                                             this->glink_,
6909                                             (this->glink_->pltresolve_size
6910                                              - 32));
6911             }
6912         }
6913     }
6914
6915   // Emit any relocs we saved in an attempt to avoid generating COPY
6916   // relocs.
6917   if (this->copy_relocs_.any_saved_relocs())
6918     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6919 }
6920
6921 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6922 // reloc.
6923
6924 static bool
6925 ok_lo_toc_insn(uint32_t insn)
6926 {
6927   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6928           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6929           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6930           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6931           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6932           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6933           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6934           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6935           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6936           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6937           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6938           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6939           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6940           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6941           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6942               && (insn & 3) != 1)
6943           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6944               && ((insn & 3) == 0 || (insn & 3) == 3))
6945           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6946 }
6947
6948 // Return the value to use for a branch relocation.
6949
6950 template<int size, bool big_endian>
6951 bool
6952 Target_powerpc<size, big_endian>::symval_for_branch(
6953     const Symbol_table* symtab,
6954     const Sized_symbol<size>* gsym,
6955     Powerpc_relobj<size, big_endian>* object,
6956     Address *value,
6957     unsigned int *dest_shndx)
6958 {
6959   if (size == 32 || this->abiversion() >= 2)
6960     gold_unreachable();
6961   *dest_shndx = 0;
6962
6963   // If the symbol is defined in an opd section, ie. is a function
6964   // descriptor, use the function descriptor code entry address
6965   Powerpc_relobj<size, big_endian>* symobj = object;
6966   if (gsym != NULL
6967       && gsym->source() != Symbol::FROM_OBJECT)
6968     return true;
6969   if (gsym != NULL)
6970     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6971   unsigned int shndx = symobj->opd_shndx();
6972   if (shndx == 0)
6973     return true;
6974   Address opd_addr = symobj->get_output_section_offset(shndx);
6975   if (opd_addr == invalid_address)
6976     return true;
6977   opd_addr += symobj->output_section_address(shndx);
6978   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6979     {
6980       Address sec_off;
6981       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6982       if (symtab->is_section_folded(symobj, *dest_shndx))
6983         {
6984           Section_id folded
6985             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6986           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6987           *dest_shndx = folded.second;
6988         }
6989       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6990       if (sec_addr == invalid_address)
6991         return false;
6992
6993       sec_addr += symobj->output_section(*dest_shndx)->address();
6994       *value = sec_addr + sec_off;
6995     }
6996   return true;
6997 }
6998
6999 // Perform a relocation.
7000
7001 template<int size, bool big_endian>
7002 inline bool
7003 Target_powerpc<size, big_endian>::Relocate::relocate(
7004     const Relocate_info<size, big_endian>* relinfo,
7005     unsigned int,
7006     Target_powerpc* target,
7007     Output_section* os,
7008     size_t relnum,
7009     const unsigned char* preloc,
7010     const Sized_symbol<size>* gsym,
7011     const Symbol_value<size>* psymval,
7012     unsigned char* view,
7013     Address address,
7014     section_size_type view_size)
7015 {
7016   if (view == NULL)
7017     return true;
7018
7019   const elfcpp::Rela<size, big_endian> rela(preloc);
7020   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7021   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7022     {
7023     case Track_tls::NOT_EXPECTED:
7024       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7025                              _("__tls_get_addr call lacks marker reloc"));
7026       break;
7027     case Track_tls::EXPECTED:
7028       // We have already complained.
7029       break;
7030     case Track_tls::SKIP:
7031       return true;
7032     case Track_tls::NORMAL:
7033       break;
7034     }
7035
7036   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7037   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7038   typedef typename Reloc_types<elfcpp::SHT_RELA,
7039                                size, big_endian>::Reloc Reltype;
7040   // Offset from start of insn to d-field reloc.
7041   const int d_offset = big_endian ? 2 : 0;
7042
7043   Powerpc_relobj<size, big_endian>* const object
7044     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7045   Address value = 0;
7046   bool has_stub_value = false;
7047   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7048   if ((gsym != NULL
7049        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7050        : object->local_has_plt_offset(r_sym))
7051       && (!psymval->is_ifunc_symbol()
7052           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7053     {
7054       if (size == 64
7055           && gsym != NULL
7056           && target->abiversion() >= 2
7057           && !parameters->options().output_is_position_independent()
7058           && !is_branch_reloc(r_type))
7059         {
7060           Address off = target->glink_section()->find_global_entry(gsym);
7061           if (off != invalid_address)
7062             {
7063               value = target->glink_section()->global_entry_address() + off;
7064               has_stub_value = true;
7065             }
7066         }
7067       else
7068         {
7069           Stub_table<size, big_endian>* stub_table
7070             = object->stub_table(relinfo->data_shndx);
7071           if (stub_table == NULL)
7072             {
7073               // This is a ref from a data section to an ifunc symbol.
7074               if (target->stub_tables().size() != 0)
7075                 stub_table = target->stub_tables()[0];
7076             }
7077           if (stub_table != NULL)
7078             {
7079               Address off;
7080               if (gsym != NULL)
7081                 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7082                                                       rela.get_r_addend());
7083               else
7084                 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7085                                                       rela.get_r_addend());
7086               if (off != invalid_address)
7087                 {
7088                   value = stub_table->stub_address() + off;
7089                   has_stub_value = true;
7090                 }
7091             }
7092         }
7093       // We don't care too much about bogus debug references to
7094       // non-local functions, but otherwise there had better be a plt
7095       // call stub or global entry stub as appropriate.
7096       gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7097     }
7098
7099   if (r_type == elfcpp::R_POWERPC_GOT16
7100       || r_type == elfcpp::R_POWERPC_GOT16_LO
7101       || r_type == elfcpp::R_POWERPC_GOT16_HI
7102       || r_type == elfcpp::R_POWERPC_GOT16_HA
7103       || r_type == elfcpp::R_PPC64_GOT16_DS
7104       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7105     {
7106       if (gsym != NULL)
7107         {
7108           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7109           value = gsym->got_offset(GOT_TYPE_STANDARD);
7110         }
7111       else
7112         {
7113           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7114           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7115           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7116         }
7117       value -= target->got_section()->got_base_offset(object);
7118     }
7119   else if (r_type == elfcpp::R_PPC64_TOC)
7120     {
7121       value = (target->got_section()->output_section()->address()
7122                + object->toc_base_offset());
7123     }
7124   else if (gsym != NULL
7125            && (r_type == elfcpp::R_POWERPC_REL24
7126                || r_type == elfcpp::R_PPC_PLTREL24)
7127            && has_stub_value)
7128     {
7129       if (size == 64)
7130         {
7131           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7132           Valtype* wv = reinterpret_cast<Valtype*>(view);
7133           bool can_plt_call = false;
7134           if (rela.get_r_offset() + 8 <= view_size)
7135             {
7136               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7137               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7138               if ((insn & 1) != 0
7139                   && (insn2 == nop
7140                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7141                 {
7142                   elfcpp::Swap<32, big_endian>::
7143                     writeval(wv + 1, ld_2_1 + target->stk_toc());
7144                   can_plt_call = true;
7145                 }
7146             }
7147           if (!can_plt_call)
7148             {
7149               // If we don't have a branch and link followed by a nop,
7150               // we can't go via the plt because there is no place to
7151               // put a toc restoring instruction.
7152               // Unless we know we won't be returning.
7153               if (strcmp(gsym->name(), "__libc_start_main") == 0)
7154                 can_plt_call = true;
7155             }
7156           if (!can_plt_call)
7157             {
7158               // g++ as of 20130507 emits self-calls without a
7159               // following nop.  This is arguably wrong since we have
7160               // conflicting information.  On the one hand a global
7161               // symbol and on the other a local call sequence, but
7162               // don't error for this special case.
7163               // It isn't possible to cheaply verify we have exactly
7164               // such a call.  Allow all calls to the same section.
7165               bool ok = false;
7166               Address code = value;
7167               if (gsym->source() == Symbol::FROM_OBJECT
7168                   && gsym->object() == object)
7169                 {
7170                   unsigned int dest_shndx = 0;
7171                   if (target->abiversion() < 2)
7172                     {
7173                       Address addend = rela.get_r_addend();
7174                       code = psymval->value(object, addend);
7175                       target->symval_for_branch(relinfo->symtab, gsym, object,
7176                                                 &code, &dest_shndx);
7177                     }
7178                   bool is_ordinary;
7179                   if (dest_shndx == 0)
7180                     dest_shndx = gsym->shndx(&is_ordinary);
7181                   ok = dest_shndx == relinfo->data_shndx;
7182                 }
7183               if (!ok)
7184                 {
7185                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7186                                          _("call lacks nop, can't restore toc; "
7187                                            "recompile with -fPIC"));
7188                   value = code;
7189                 }
7190             }
7191         }
7192     }
7193   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7194            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7195            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7196            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7197     {
7198       // First instruction of a global dynamic sequence, arg setup insn.
7199       const bool final = gsym == NULL || gsym->final_value_is_known();
7200       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7201       enum Got_type got_type = GOT_TYPE_STANDARD;
7202       if (tls_type == tls::TLSOPT_NONE)
7203         got_type = GOT_TYPE_TLSGD;
7204       else if (tls_type == tls::TLSOPT_TO_IE)
7205         got_type = GOT_TYPE_TPREL;
7206       if (got_type != GOT_TYPE_STANDARD)
7207         {
7208           if (gsym != NULL)
7209             {
7210               gold_assert(gsym->has_got_offset(got_type));
7211               value = gsym->got_offset(got_type);
7212             }
7213           else
7214             {
7215               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7216               gold_assert(object->local_has_got_offset(r_sym, got_type));
7217               value = object->local_got_offset(r_sym, got_type);
7218             }
7219           value -= target->got_section()->got_base_offset(object);
7220         }
7221       if (tls_type == tls::TLSOPT_TO_IE)
7222         {
7223           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7224               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7225             {
7226               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7227               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7228               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7229               if (size == 32)
7230                 insn |= 32 << 26; // lwz
7231               else
7232                 insn |= 58 << 26; // ld
7233               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7234             }
7235           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7236                      - elfcpp::R_POWERPC_GOT_TLSGD16);
7237         }
7238       else if (tls_type == tls::TLSOPT_TO_LE)
7239         {
7240           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7241               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7242             {
7243               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7244               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7245               insn &= (1 << 26) - (1 << 21); // extract rt
7246               if (size == 32)
7247                 insn |= addis_0_2;
7248               else
7249                 insn |= addis_0_13;
7250               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7251               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7252               value = psymval->value(object, rela.get_r_addend());
7253             }
7254           else
7255             {
7256               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7257               Insn insn = nop;
7258               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7259               r_type = elfcpp::R_POWERPC_NONE;
7260             }
7261         }
7262     }
7263   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7264            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7265            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7266            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7267     {
7268       // First instruction of a local dynamic sequence, arg setup insn.
7269       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7270       if (tls_type == tls::TLSOPT_NONE)
7271         {
7272           value = target->tlsld_got_offset();
7273           value -= target->got_section()->got_base_offset(object);
7274         }
7275       else
7276         {
7277           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7278           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7279               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7280             {
7281               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7282               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7283               insn &= (1 << 26) - (1 << 21); // extract rt
7284               if (size == 32)
7285                 insn |= addis_0_2;
7286               else
7287                 insn |= addis_0_13;
7288               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7289               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7290               value = dtp_offset;
7291             }
7292           else
7293             {
7294               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7295               Insn insn = nop;
7296               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7297               r_type = elfcpp::R_POWERPC_NONE;
7298             }
7299         }
7300     }
7301   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7302            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7303            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7304            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7305     {
7306       // Accesses relative to a local dynamic sequence address,
7307       // no optimisation here.
7308       if (gsym != NULL)
7309         {
7310           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7311           value = gsym->got_offset(GOT_TYPE_DTPREL);
7312         }
7313       else
7314         {
7315           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7316           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7317           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7318         }
7319       value -= target->got_section()->got_base_offset(object);
7320     }
7321   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7322            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7323            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7324            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7325     {
7326       // First instruction of initial exec sequence.
7327       const bool final = gsym == NULL || gsym->final_value_is_known();
7328       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7329       if (tls_type == tls::TLSOPT_NONE)
7330         {
7331           if (gsym != NULL)
7332             {
7333               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7334               value = gsym->got_offset(GOT_TYPE_TPREL);
7335             }
7336           else
7337             {
7338               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7339               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7340               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7341             }
7342           value -= target->got_section()->got_base_offset(object);
7343         }
7344       else
7345         {
7346           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7347           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7348               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7349             {
7350               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7351               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7352               insn &= (1 << 26) - (1 << 21); // extract rt from ld
7353               if (size == 32)
7354                 insn |= addis_0_2;
7355               else
7356                 insn |= addis_0_13;
7357               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7358               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7359               value = psymval->value(object, rela.get_r_addend());
7360             }
7361           else
7362             {
7363               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7364               Insn insn = nop;
7365               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7366               r_type = elfcpp::R_POWERPC_NONE;
7367             }
7368         }
7369     }
7370   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7371            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7372     {
7373       // Second instruction of a global dynamic sequence,
7374       // the __tls_get_addr call
7375       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7376       const bool final = gsym == NULL || gsym->final_value_is_known();
7377       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7378       if (tls_type != tls::TLSOPT_NONE)
7379         {
7380           if (tls_type == tls::TLSOPT_TO_IE)
7381             {
7382               Insn* iview = reinterpret_cast<Insn*>(view);
7383               Insn insn = add_3_3_13;
7384               if (size == 32)
7385                 insn = add_3_3_2;
7386               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7387               r_type = elfcpp::R_POWERPC_NONE;
7388             }
7389           else
7390             {
7391               Insn* iview = reinterpret_cast<Insn*>(view);
7392               Insn insn = addi_3_3;
7393               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7394               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7395               view += d_offset;
7396               value = psymval->value(object, rela.get_r_addend());
7397             }
7398           this->skip_next_tls_get_addr_call();
7399         }
7400     }
7401   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7402            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7403     {
7404       // Second instruction of a local dynamic sequence,
7405       // the __tls_get_addr call
7406       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7407       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7408       if (tls_type == tls::TLSOPT_TO_LE)
7409         {
7410           Insn* iview = reinterpret_cast<Insn*>(view);
7411           Insn insn = addi_3_3;
7412           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7413           this->skip_next_tls_get_addr_call();
7414           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7415           view += d_offset;
7416           value = dtp_offset;
7417         }
7418     }
7419   else if (r_type == elfcpp::R_POWERPC_TLS)
7420     {
7421       // Second instruction of an initial exec sequence
7422       const bool final = gsym == NULL || gsym->final_value_is_known();
7423       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7424       if (tls_type == tls::TLSOPT_TO_LE)
7425         {
7426           Insn* iview = reinterpret_cast<Insn*>(view);
7427           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7428           unsigned int reg = size == 32 ? 2 : 13;
7429           insn = at_tls_transform(insn, reg);
7430           gold_assert(insn != 0);
7431           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7432           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7433           view += d_offset;
7434           value = psymval->value(object, rela.get_r_addend());
7435         }
7436     }
7437   else if (!has_stub_value)
7438     {
7439       Address addend = 0;
7440       if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7441         addend = rela.get_r_addend();
7442       value = psymval->value(object, addend);
7443       if (size == 64 && is_branch_reloc(r_type))
7444         {
7445           if (target->abiversion() >= 2)
7446             {
7447               if (gsym != NULL)
7448                 value += object->ppc64_local_entry_offset(gsym);
7449               else
7450                 value += object->ppc64_local_entry_offset(r_sym);
7451             }
7452           else
7453             {
7454               unsigned int dest_shndx;
7455               target->symval_for_branch(relinfo->symtab, gsym, object,
7456                                         &value, &dest_shndx);
7457             }
7458         }
7459       Address max_branch_offset = max_branch_delta(r_type);
7460       if (max_branch_offset != 0
7461           && value - address + max_branch_offset >= 2 * max_branch_offset)
7462         {
7463           Stub_table<size, big_endian>* stub_table
7464             = object->stub_table(relinfo->data_shndx);
7465           if (stub_table != NULL)
7466             {
7467               Address off = stub_table->find_long_branch_entry(object, value);
7468               if (off != invalid_address)
7469                 {
7470                   value = (stub_table->stub_address() + stub_table->plt_size()
7471                            + off);
7472                   has_stub_value = true;
7473                 }
7474             }
7475         }
7476     }
7477
7478   switch (r_type)
7479     {
7480     case elfcpp::R_PPC64_REL64:
7481     case elfcpp::R_POWERPC_REL32:
7482     case elfcpp::R_POWERPC_REL24:
7483     case elfcpp::R_PPC_PLTREL24:
7484     case elfcpp::R_PPC_LOCAL24PC:
7485     case elfcpp::R_POWERPC_REL16:
7486     case elfcpp::R_POWERPC_REL16_LO:
7487     case elfcpp::R_POWERPC_REL16_HI:
7488     case elfcpp::R_POWERPC_REL16_HA:
7489     case elfcpp::R_POWERPC_REL16DX_HA:
7490     case elfcpp::R_POWERPC_REL14:
7491     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7492     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7493       value -= address;
7494       break;
7495
7496     case elfcpp::R_PPC64_TOC16:
7497     case elfcpp::R_PPC64_TOC16_LO:
7498     case elfcpp::R_PPC64_TOC16_HI:
7499     case elfcpp::R_PPC64_TOC16_HA:
7500     case elfcpp::R_PPC64_TOC16_DS:
7501     case elfcpp::R_PPC64_TOC16_LO_DS:
7502       // Subtract the TOC base address.
7503       value -= (target->got_section()->output_section()->address()
7504                 + object->toc_base_offset());
7505       break;
7506
7507     case elfcpp::R_POWERPC_SECTOFF:
7508     case elfcpp::R_POWERPC_SECTOFF_LO:
7509     case elfcpp::R_POWERPC_SECTOFF_HI:
7510     case elfcpp::R_POWERPC_SECTOFF_HA:
7511     case elfcpp::R_PPC64_SECTOFF_DS:
7512     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7513       if (os != NULL)
7514         value -= os->address();
7515       break;
7516
7517     case elfcpp::R_PPC64_TPREL16_DS:
7518     case elfcpp::R_PPC64_TPREL16_LO_DS:
7519     case elfcpp::R_PPC64_TPREL16_HIGH:
7520     case elfcpp::R_PPC64_TPREL16_HIGHA:
7521       if (size != 64)
7522         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7523         break;
7524     case elfcpp::R_POWERPC_TPREL16:
7525     case elfcpp::R_POWERPC_TPREL16_LO:
7526     case elfcpp::R_POWERPC_TPREL16_HI:
7527     case elfcpp::R_POWERPC_TPREL16_HA:
7528     case elfcpp::R_POWERPC_TPREL:
7529     case elfcpp::R_PPC64_TPREL16_HIGHER:
7530     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7531     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7532     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7533       // tls symbol values are relative to tls_segment()->vaddr()
7534       value -= tp_offset;
7535       break;
7536
7537     case elfcpp::R_PPC64_DTPREL16_DS:
7538     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7539     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7540     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7541     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7542     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7543       if (size != 64)
7544         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7545         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7546         break;
7547     case elfcpp::R_POWERPC_DTPREL16:
7548     case elfcpp::R_POWERPC_DTPREL16_LO:
7549     case elfcpp::R_POWERPC_DTPREL16_HI:
7550     case elfcpp::R_POWERPC_DTPREL16_HA:
7551     case elfcpp::R_POWERPC_DTPREL:
7552     case elfcpp::R_PPC64_DTPREL16_HIGH:
7553     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7554       // tls symbol values are relative to tls_segment()->vaddr()
7555       value -= dtp_offset;
7556       break;
7557
7558     case elfcpp::R_PPC64_ADDR64_LOCAL:
7559       if (gsym != NULL)
7560         value += object->ppc64_local_entry_offset(gsym);
7561       else
7562         value += object->ppc64_local_entry_offset(r_sym);
7563       break;
7564
7565     default:
7566       break;
7567     }
7568
7569   Insn branch_bit = 0;
7570   switch (r_type)
7571     {
7572     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7573     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7574       branch_bit = 1 << 21;
7575     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7576     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7577       {
7578         Insn* iview = reinterpret_cast<Insn*>(view);
7579         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7580         insn &= ~(1 << 21);
7581         insn |= branch_bit;
7582         if (this->is_isa_v2)
7583           {
7584             // Set 'a' bit.  This is 0b00010 in BO field for branch
7585             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7586             // for branch on CTR insns (BO == 1a00t or 1a01t).
7587             if ((insn & (0x14 << 21)) == (0x04 << 21))
7588               insn |= 0x02 << 21;
7589             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7590               insn |= 0x08 << 21;
7591             else
7592               break;
7593           }
7594         else
7595           {
7596             // Invert 'y' bit if not the default.
7597             if (static_cast<Signed_address>(value) < 0)
7598               insn ^= 1 << 21;
7599           }
7600         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7601       }
7602       break;
7603
7604     default:
7605       break;
7606     }
7607
7608   if (size == 64)
7609     {
7610       // Multi-instruction sequences that access the TOC can be
7611       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7612       // to             nop;           addi rb,r2,x;
7613       switch (r_type)
7614         {
7615         default:
7616           break;
7617
7618         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7619         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7620         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7621         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7622         case elfcpp::R_POWERPC_GOT16_HA:
7623         case elfcpp::R_PPC64_TOC16_HA:
7624           if (parameters->options().toc_optimize())
7625             {
7626               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7627               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7628               if ((insn & ((0x3f << 26) | 0x1f << 16))
7629                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7630                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7631                                        _("toc optimization is not supported "
7632                                          "for %#08x instruction"), insn);
7633               else if (value + 0x8000 < 0x10000)
7634                 {
7635                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7636                   return true;
7637                 }
7638             }
7639           break;
7640
7641         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7642         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7643         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7644         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7645         case elfcpp::R_POWERPC_GOT16_LO:
7646         case elfcpp::R_PPC64_GOT16_LO_DS:
7647         case elfcpp::R_PPC64_TOC16_LO:
7648         case elfcpp::R_PPC64_TOC16_LO_DS:
7649           if (parameters->options().toc_optimize())
7650             {
7651               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7652               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7653               if (!ok_lo_toc_insn(insn))
7654                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7655                                        _("toc optimization is not supported "
7656                                          "for %#08x instruction"), insn);
7657               else if (value + 0x8000 < 0x10000)
7658                 {
7659                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7660                     {
7661                       // Transform addic to addi when we change reg.
7662                       insn &= ~((0x3f << 26) | (0x1f << 16));
7663                       insn |= (14u << 26) | (2 << 16);
7664                     }
7665                   else
7666                     {
7667                       insn &= ~(0x1f << 16);
7668                       insn |= 2 << 16;
7669                     }
7670                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7671                 }
7672             }
7673           break;
7674
7675         case elfcpp::R_PPC64_ENTRY:
7676           value = (target->got_section()->output_section()->address()
7677                    + object->toc_base_offset());
7678           if (value + 0x80008000 <= 0xffffffff
7679               && !parameters->options().output_is_position_independent())
7680             {
7681               Insn* iview = reinterpret_cast<Insn*>(view);
7682               Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7683               Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7684
7685               if ((insn1 & ~0xfffc) == ld_2_12
7686                   && insn2 == add_2_2_12)
7687                 {
7688                   insn1 = lis_2 + ha(value);
7689                   elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7690                   insn2 = addi_2_2 + l(value);
7691                   elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7692                   return true;
7693                 }
7694             }
7695           else
7696             {
7697               value -= address;
7698               if (value + 0x80008000 <= 0xffffffff)
7699                 {
7700                   Insn* iview = reinterpret_cast<Insn*>(view);
7701                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7702                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7703
7704                   if ((insn1 & ~0xfffc) == ld_2_12
7705                       && insn2 == add_2_2_12)
7706                     {
7707                       insn1 = addis_2_12 + ha(value);
7708                       elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7709                       insn2 = addi_2_2 + l(value);
7710                       elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7711                       return true;
7712                     }
7713                 }
7714             }
7715           break;
7716
7717         case elfcpp::R_POWERPC_REL16_LO:
7718           // If we are generating a non-PIC executable, edit
7719           //    0:      addis 2,12,.TOC.-0b@ha
7720           //            addi 2,2,.TOC.-0b@l
7721           // used by ELFv2 global entry points to set up r2, to
7722           //            lis 2,.TOC.@ha
7723           //            addi 2,2,.TOC.@l
7724           // if .TOC. is in range.  */
7725           if (value + address - 4 + 0x80008000 <= 0xffffffff
7726               && relnum != 0
7727               && preloc != NULL
7728               && target->abiversion() >= 2
7729               && !parameters->options().output_is_position_independent()
7730               && gsym != NULL
7731               && strcmp(gsym->name(), ".TOC.") == 0)
7732             {
7733               const int reloc_size
7734                 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7735               Reltype prev_rela(preloc - reloc_size);
7736               if ((prev_rela.get_r_info()
7737                    == elfcpp::elf_r_info<size>(r_sym,
7738                                                elfcpp::R_POWERPC_REL16_HA))
7739                   && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
7740                   && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
7741                 {
7742                   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7743                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
7744                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
7745
7746                   if ((insn1 & 0xffff0000) == addis_2_12
7747                       && (insn2 & 0xffff0000) == addi_2_2)
7748                     {
7749                       insn1 = lis_2 + ha(value + address - 4);
7750                       elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
7751                       insn2 = addi_2_2 + l(value + address - 4);
7752                       elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
7753                       if (relinfo->rr)
7754                         {
7755                           relinfo->rr->set_strategy(relnum - 1,
7756                                                     Relocatable_relocs::RELOC_SPECIAL);
7757                           relinfo->rr->set_strategy(relnum,
7758                                                     Relocatable_relocs::RELOC_SPECIAL);
7759                         }
7760                       return true;
7761                     }
7762                 }
7763             }
7764           break;
7765         }
7766     }
7767
7768   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7769   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7770   switch (r_type)
7771     {
7772     case elfcpp::R_POWERPC_ADDR32:
7773     case elfcpp::R_POWERPC_UADDR32:
7774       if (size == 64)
7775         overflow = Reloc::CHECK_BITFIELD;
7776       break;
7777
7778     case elfcpp::R_POWERPC_REL32:
7779     case elfcpp::R_POWERPC_REL16DX_HA:
7780       if (size == 64)
7781         overflow = Reloc::CHECK_SIGNED;
7782       break;
7783
7784     case elfcpp::R_POWERPC_UADDR16:
7785       overflow = Reloc::CHECK_BITFIELD;
7786       break;
7787
7788     case elfcpp::R_POWERPC_ADDR16:
7789       // We really should have three separate relocations,
7790       // one for 16-bit data, one for insns with 16-bit signed fields,
7791       // and one for insns with 16-bit unsigned fields.
7792       overflow = Reloc::CHECK_BITFIELD;
7793       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7794         overflow = Reloc::CHECK_LOW_INSN;
7795       break;
7796
7797     case elfcpp::R_POWERPC_ADDR16_HI:
7798     case elfcpp::R_POWERPC_ADDR16_HA:
7799     case elfcpp::R_POWERPC_GOT16_HI:
7800     case elfcpp::R_POWERPC_GOT16_HA:
7801     case elfcpp::R_POWERPC_PLT16_HI:
7802     case elfcpp::R_POWERPC_PLT16_HA:
7803     case elfcpp::R_POWERPC_SECTOFF_HI:
7804     case elfcpp::R_POWERPC_SECTOFF_HA:
7805     case elfcpp::R_PPC64_TOC16_HI:
7806     case elfcpp::R_PPC64_TOC16_HA:
7807     case elfcpp::R_PPC64_PLTGOT16_HI:
7808     case elfcpp::R_PPC64_PLTGOT16_HA:
7809     case elfcpp::R_POWERPC_TPREL16_HI:
7810     case elfcpp::R_POWERPC_TPREL16_HA:
7811     case elfcpp::R_POWERPC_DTPREL16_HI:
7812     case elfcpp::R_POWERPC_DTPREL16_HA:
7813     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7814     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7815     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7816     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7817     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7818     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7819     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7820     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7821     case elfcpp::R_POWERPC_REL16_HI:
7822     case elfcpp::R_POWERPC_REL16_HA:
7823       if (size != 32)
7824         overflow = Reloc::CHECK_HIGH_INSN;
7825       break;
7826
7827     case elfcpp::R_POWERPC_REL16:
7828     case elfcpp::R_PPC64_TOC16:
7829     case elfcpp::R_POWERPC_GOT16:
7830     case elfcpp::R_POWERPC_SECTOFF:
7831     case elfcpp::R_POWERPC_TPREL16:
7832     case elfcpp::R_POWERPC_DTPREL16:
7833     case elfcpp::R_POWERPC_GOT_TLSGD16:
7834     case elfcpp::R_POWERPC_GOT_TLSLD16:
7835     case elfcpp::R_POWERPC_GOT_TPREL16:
7836     case elfcpp::R_POWERPC_GOT_DTPREL16:
7837       overflow = Reloc::CHECK_LOW_INSN;
7838       break;
7839
7840     case elfcpp::R_POWERPC_ADDR24:
7841     case elfcpp::R_POWERPC_ADDR14:
7842     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7843     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7844     case elfcpp::R_PPC64_ADDR16_DS:
7845     case elfcpp::R_POWERPC_REL24:
7846     case elfcpp::R_PPC_PLTREL24:
7847     case elfcpp::R_PPC_LOCAL24PC:
7848     case elfcpp::R_PPC64_TPREL16_DS:
7849     case elfcpp::R_PPC64_DTPREL16_DS:
7850     case elfcpp::R_PPC64_TOC16_DS:
7851     case elfcpp::R_PPC64_GOT16_DS:
7852     case elfcpp::R_PPC64_SECTOFF_DS:
7853     case elfcpp::R_POWERPC_REL14:
7854     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7855     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7856       overflow = Reloc::CHECK_SIGNED;
7857       break;
7858     }
7859
7860   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7861   Insn insn = 0;
7862
7863   if (overflow == Reloc::CHECK_LOW_INSN
7864       || overflow == Reloc::CHECK_HIGH_INSN)
7865     {
7866       insn = elfcpp::Swap<32, big_endian>::readval(iview);
7867
7868       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7869         overflow = Reloc::CHECK_BITFIELD;
7870       else if (overflow == Reloc::CHECK_LOW_INSN
7871                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7872                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7873                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7874                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7875                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7876                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7877         overflow = Reloc::CHECK_UNSIGNED;
7878       else
7879         overflow = Reloc::CHECK_SIGNED;
7880     }
7881
7882   bool maybe_dq_reloc = false;
7883   typename Powerpc_relocate_functions<size, big_endian>::Status status
7884     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7885   switch (r_type)
7886     {
7887     case elfcpp::R_POWERPC_NONE:
7888     case elfcpp::R_POWERPC_TLS:
7889     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7890     case elfcpp::R_POWERPC_GNU_VTENTRY:
7891       break;
7892
7893     case elfcpp::R_PPC64_ADDR64:
7894     case elfcpp::R_PPC64_REL64:
7895     case elfcpp::R_PPC64_TOC:
7896     case elfcpp::R_PPC64_ADDR64_LOCAL:
7897       Reloc::addr64(view, value);
7898       break;
7899
7900     case elfcpp::R_POWERPC_TPREL:
7901     case elfcpp::R_POWERPC_DTPREL:
7902       if (size == 64)
7903         Reloc::addr64(view, value);
7904       else
7905         status = Reloc::addr32(view, value, overflow);
7906       break;
7907
7908     case elfcpp::R_PPC64_UADDR64:
7909       Reloc::addr64_u(view, value);
7910       break;
7911
7912     case elfcpp::R_POWERPC_ADDR32:
7913       status = Reloc::addr32(view, value, overflow);
7914       break;
7915
7916     case elfcpp::R_POWERPC_REL32:
7917     case elfcpp::R_POWERPC_UADDR32:
7918       status = Reloc::addr32_u(view, value, overflow);
7919       break;
7920
7921     case elfcpp::R_POWERPC_ADDR24:
7922     case elfcpp::R_POWERPC_REL24:
7923     case elfcpp::R_PPC_PLTREL24:
7924     case elfcpp::R_PPC_LOCAL24PC:
7925       status = Reloc::addr24(view, value, overflow);
7926       break;
7927
7928     case elfcpp::R_POWERPC_GOT_DTPREL16:
7929     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7930     case elfcpp::R_POWERPC_GOT_TPREL16:
7931     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7932       if (size == 64)
7933         {
7934           // On ppc64 these are all ds form
7935           maybe_dq_reloc = true;
7936           break;
7937         }
7938     case elfcpp::R_POWERPC_ADDR16:
7939     case elfcpp::R_POWERPC_REL16:
7940     case elfcpp::R_PPC64_TOC16:
7941     case elfcpp::R_POWERPC_GOT16:
7942     case elfcpp::R_POWERPC_SECTOFF:
7943     case elfcpp::R_POWERPC_TPREL16:
7944     case elfcpp::R_POWERPC_DTPREL16:
7945     case elfcpp::R_POWERPC_GOT_TLSGD16:
7946     case elfcpp::R_POWERPC_GOT_TLSLD16:
7947     case elfcpp::R_POWERPC_ADDR16_LO:
7948     case elfcpp::R_POWERPC_REL16_LO:
7949     case elfcpp::R_PPC64_TOC16_LO:
7950     case elfcpp::R_POWERPC_GOT16_LO:
7951     case elfcpp::R_POWERPC_SECTOFF_LO:
7952     case elfcpp::R_POWERPC_TPREL16_LO:
7953     case elfcpp::R_POWERPC_DTPREL16_LO:
7954     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7955     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7956       if (size == 64)
7957         status = Reloc::addr16(view, value, overflow);
7958       else
7959         maybe_dq_reloc = true;
7960       break;
7961
7962     case elfcpp::R_POWERPC_UADDR16:
7963       status = Reloc::addr16_u(view, value, overflow);
7964       break;
7965
7966     case elfcpp::R_PPC64_ADDR16_HIGH:
7967     case elfcpp::R_PPC64_TPREL16_HIGH:
7968     case elfcpp::R_PPC64_DTPREL16_HIGH:
7969       if (size == 32)
7970         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7971         goto unsupp;
7972     case elfcpp::R_POWERPC_ADDR16_HI:
7973     case elfcpp::R_POWERPC_REL16_HI:
7974     case elfcpp::R_PPC64_TOC16_HI:
7975     case elfcpp::R_POWERPC_GOT16_HI:
7976     case elfcpp::R_POWERPC_SECTOFF_HI:
7977     case elfcpp::R_POWERPC_TPREL16_HI:
7978     case elfcpp::R_POWERPC_DTPREL16_HI:
7979     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7980     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7981     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7982     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7983       Reloc::addr16_hi(view, value);
7984       break;
7985
7986     case elfcpp::R_PPC64_ADDR16_HIGHA:
7987     case elfcpp::R_PPC64_TPREL16_HIGHA:
7988     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7989       if (size == 32)
7990         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7991         goto unsupp;
7992     case elfcpp::R_POWERPC_ADDR16_HA:
7993     case elfcpp::R_POWERPC_REL16_HA:
7994     case elfcpp::R_PPC64_TOC16_HA:
7995     case elfcpp::R_POWERPC_GOT16_HA:
7996     case elfcpp::R_POWERPC_SECTOFF_HA:
7997     case elfcpp::R_POWERPC_TPREL16_HA:
7998     case elfcpp::R_POWERPC_DTPREL16_HA:
7999     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8000     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8001     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8002     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8003       Reloc::addr16_ha(view, value);
8004       break;
8005
8006     case elfcpp::R_POWERPC_REL16DX_HA:
8007       status = Reloc::addr16dx_ha(view, value, overflow);
8008       break;
8009
8010     case elfcpp::R_PPC64_DTPREL16_HIGHER:
8011       if (size == 32)
8012         // R_PPC_EMB_NADDR16_LO
8013         goto unsupp;
8014     case elfcpp::R_PPC64_ADDR16_HIGHER:
8015     case elfcpp::R_PPC64_TPREL16_HIGHER:
8016       Reloc::addr16_hi2(view, value);
8017       break;
8018
8019     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8020       if (size == 32)
8021         // R_PPC_EMB_NADDR16_HI
8022         goto unsupp;
8023     case elfcpp::R_PPC64_ADDR16_HIGHERA:
8024     case elfcpp::R_PPC64_TPREL16_HIGHERA:
8025       Reloc::addr16_ha2(view, value);
8026       break;
8027
8028     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8029       if (size == 32)
8030         // R_PPC_EMB_NADDR16_HA
8031         goto unsupp;
8032     case elfcpp::R_PPC64_ADDR16_HIGHEST:
8033     case elfcpp::R_PPC64_TPREL16_HIGHEST:
8034       Reloc::addr16_hi3(view, value);
8035       break;
8036
8037     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8038       if (size == 32)
8039         // R_PPC_EMB_SDAI16
8040         goto unsupp;
8041     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8042     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8043       Reloc::addr16_ha3(view, value);
8044       break;
8045
8046     case elfcpp::R_PPC64_DTPREL16_DS:
8047     case elfcpp::R_PPC64_DTPREL16_LO_DS:
8048       if (size == 32)
8049         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
8050         goto unsupp;
8051     case elfcpp::R_PPC64_TPREL16_DS:
8052     case elfcpp::R_PPC64_TPREL16_LO_DS:
8053       if (size == 32)
8054         // R_PPC_TLSGD, R_PPC_TLSLD
8055         break;
8056     case elfcpp::R_PPC64_ADDR16_DS:
8057     case elfcpp::R_PPC64_ADDR16_LO_DS:
8058     case elfcpp::R_PPC64_TOC16_DS:
8059     case elfcpp::R_PPC64_TOC16_LO_DS:
8060     case elfcpp::R_PPC64_GOT16_DS:
8061     case elfcpp::R_PPC64_GOT16_LO_DS:
8062     case elfcpp::R_PPC64_SECTOFF_DS:
8063     case elfcpp::R_PPC64_SECTOFF_LO_DS:
8064       maybe_dq_reloc = true;
8065       break;
8066
8067     case elfcpp::R_POWERPC_ADDR14:
8068     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8069     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8070     case elfcpp::R_POWERPC_REL14:
8071     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8072     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8073       status = Reloc::addr14(view, value, overflow);
8074       break;
8075
8076     case elfcpp::R_POWERPC_COPY:
8077     case elfcpp::R_POWERPC_GLOB_DAT:
8078     case elfcpp::R_POWERPC_JMP_SLOT:
8079     case elfcpp::R_POWERPC_RELATIVE:
8080     case elfcpp::R_POWERPC_DTPMOD:
8081     case elfcpp::R_PPC64_JMP_IREL:
8082     case elfcpp::R_POWERPC_IRELATIVE:
8083       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8084                              _("unexpected reloc %u in object file"),
8085                              r_type);
8086       break;
8087
8088     case elfcpp::R_PPC_EMB_SDA21:
8089       if (size == 32)
8090         goto unsupp;
8091       else
8092         {
8093           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
8094         }
8095       break;
8096
8097     case elfcpp::R_PPC_EMB_SDA2I16:
8098     case elfcpp::R_PPC_EMB_SDA2REL:
8099       if (size == 32)
8100         goto unsupp;
8101       // R_PPC64_TLSGD, R_PPC64_TLSLD
8102       break;
8103
8104     case elfcpp::R_POWERPC_PLT32:
8105     case elfcpp::R_POWERPC_PLTREL32:
8106     case elfcpp::R_POWERPC_PLT16_LO:
8107     case elfcpp::R_POWERPC_PLT16_HI:
8108     case elfcpp::R_POWERPC_PLT16_HA:
8109     case elfcpp::R_PPC_SDAREL16:
8110     case elfcpp::R_POWERPC_ADDR30:
8111     case elfcpp::R_PPC64_PLT64:
8112     case elfcpp::R_PPC64_PLTREL64:
8113     case elfcpp::R_PPC64_PLTGOT16:
8114     case elfcpp::R_PPC64_PLTGOT16_LO:
8115     case elfcpp::R_PPC64_PLTGOT16_HI:
8116     case elfcpp::R_PPC64_PLTGOT16_HA:
8117     case elfcpp::R_PPC64_PLT16_LO_DS:
8118     case elfcpp::R_PPC64_PLTGOT16_DS:
8119     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8120     case elfcpp::R_PPC_EMB_RELSDA:
8121     case elfcpp::R_PPC_TOC16:
8122     default:
8123     unsupp:
8124       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8125                              _("unsupported reloc %u"),
8126                              r_type);
8127       break;
8128     }
8129
8130   if (maybe_dq_reloc)
8131     {
8132       if (insn == 0)
8133         insn = elfcpp::Swap<32, big_endian>::readval(iview);
8134
8135       if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8136           || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8137               && (insn & 3) == 1))
8138         status = Reloc::addr16_dq(view, value, overflow);
8139       else if (size == 64
8140                || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8141                || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8142                || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8143                || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8144         status = Reloc::addr16_ds(view, value, overflow);
8145       else
8146         status = Reloc::addr16(view, value, overflow);
8147     }
8148
8149   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8150       && (has_stub_value
8151           || !(gsym != NULL
8152                && gsym->is_undefined()
8153                && is_branch_reloc(r_type))))
8154     {
8155       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8156                              _("relocation overflow"));
8157       if (has_stub_value)
8158         gold_info(_("try relinking with a smaller --stub-group-size"));
8159     }
8160
8161   return true;
8162 }
8163
8164 // Relocate section data.
8165
8166 template<int size, bool big_endian>
8167 void
8168 Target_powerpc<size, big_endian>::relocate_section(
8169     const Relocate_info<size, big_endian>* relinfo,
8170     unsigned int sh_type,
8171     const unsigned char* prelocs,
8172     size_t reloc_count,
8173     Output_section* output_section,
8174     bool needs_special_offset_handling,
8175     unsigned char* view,
8176     Address address,
8177     section_size_type view_size,
8178     const Reloc_symbol_changes* reloc_symbol_changes)
8179 {
8180   typedef Target_powerpc<size, big_endian> Powerpc;
8181   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8182   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8183     Powerpc_comdat_behavior;
8184   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8185       Classify_reloc;
8186
8187   gold_assert(sh_type == elfcpp::SHT_RELA);
8188
8189   gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
8190                          Powerpc_comdat_behavior, Classify_reloc>(
8191     relinfo,
8192     this,
8193     prelocs,
8194     reloc_count,
8195     output_section,
8196     needs_special_offset_handling,
8197     view,
8198     address,
8199     view_size,
8200     reloc_symbol_changes);
8201 }
8202
8203 template<int size, bool big_endian>
8204 class Powerpc_scan_relocatable_reloc
8205 {
8206 public:
8207   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8208       Reltype;
8209   static const int reloc_size =
8210       Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8211   static const int sh_type = elfcpp::SHT_RELA;
8212
8213   // Return the symbol referred to by the relocation.
8214   static inline unsigned int
8215   get_r_sym(const Reltype* reloc)
8216   { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
8217
8218   // Return the type of the relocation.
8219   static inline unsigned int
8220   get_r_type(const Reltype* reloc)
8221   { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
8222
8223   // Return the strategy to use for a local symbol which is not a
8224   // section symbol, given the relocation type.
8225   inline Relocatable_relocs::Reloc_strategy
8226   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8227   {
8228     if (r_type == 0 && r_sym == 0)
8229       return Relocatable_relocs::RELOC_DISCARD;
8230     return Relocatable_relocs::RELOC_COPY;
8231   }
8232
8233   // Return the strategy to use for a local symbol which is a section
8234   // symbol, given the relocation type.
8235   inline Relocatable_relocs::Reloc_strategy
8236   local_section_strategy(unsigned int, Relobj*)
8237   {
8238     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8239   }
8240
8241   // Return the strategy to use for a global symbol, given the
8242   // relocation type, the object, and the symbol index.
8243   inline Relocatable_relocs::Reloc_strategy
8244   global_strategy(unsigned int r_type, Relobj*, unsigned int)
8245   {
8246     if (r_type == elfcpp::R_PPC_PLTREL24)
8247       return Relocatable_relocs::RELOC_SPECIAL;
8248     return Relocatable_relocs::RELOC_COPY;
8249   }
8250 };
8251
8252 // Scan the relocs during a relocatable link.
8253
8254 template<int size, bool big_endian>
8255 void
8256 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8257     Symbol_table* symtab,
8258     Layout* layout,
8259     Sized_relobj_file<size, big_endian>* object,
8260     unsigned int data_shndx,
8261     unsigned int sh_type,
8262     const unsigned char* prelocs,
8263     size_t reloc_count,
8264     Output_section* output_section,
8265     bool needs_special_offset_handling,
8266     size_t local_symbol_count,
8267     const unsigned char* plocal_symbols,
8268     Relocatable_relocs* rr)
8269 {
8270   typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
8271
8272   gold_assert(sh_type == elfcpp::SHT_RELA);
8273
8274   gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
8275     symtab,
8276     layout,
8277     object,
8278     data_shndx,
8279     prelocs,
8280     reloc_count,
8281     output_section,
8282     needs_special_offset_handling,
8283     local_symbol_count,
8284     plocal_symbols,
8285     rr);
8286 }
8287
8288 // Scan the relocs for --emit-relocs.
8289
8290 template<int size, bool big_endian>
8291 void
8292 Target_powerpc<size, big_endian>::emit_relocs_scan(
8293     Symbol_table* symtab,
8294     Layout* layout,
8295     Sized_relobj_file<size, big_endian>* object,
8296     unsigned int data_shndx,
8297     unsigned int sh_type,
8298     const unsigned char* prelocs,
8299     size_t reloc_count,
8300     Output_section* output_section,
8301     bool needs_special_offset_handling,
8302     size_t local_symbol_count,
8303     const unsigned char* plocal_syms,
8304     Relocatable_relocs* rr)
8305 {
8306   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8307       Classify_reloc;
8308   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8309       Emit_relocs_strategy;
8310
8311   gold_assert(sh_type == elfcpp::SHT_RELA);
8312
8313   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8314     symtab,
8315     layout,
8316     object,
8317     data_shndx,
8318     prelocs,
8319     reloc_count,
8320     output_section,
8321     needs_special_offset_handling,
8322     local_symbol_count,
8323     plocal_syms,
8324     rr);
8325 }
8326
8327 // Emit relocations for a section.
8328 // This is a modified version of the function by the same name in
8329 // target-reloc.h.  Using relocate_special_relocatable for
8330 // R_PPC_PLTREL24 would require duplication of the entire body of the
8331 // loop, so we may as well duplicate the whole thing.
8332
8333 template<int size, bool big_endian>
8334 void
8335 Target_powerpc<size, big_endian>::relocate_relocs(
8336     const Relocate_info<size, big_endian>* relinfo,
8337     unsigned int sh_type,
8338     const unsigned char* prelocs,
8339     size_t reloc_count,
8340     Output_section* output_section,
8341     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8342     unsigned char*,
8343     Address view_address,
8344     section_size_type,
8345     unsigned char* reloc_view,
8346     section_size_type reloc_view_size)
8347 {
8348   gold_assert(sh_type == elfcpp::SHT_RELA);
8349
8350   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8351     Reltype;
8352   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8353     Reltype_write;
8354   const int reloc_size
8355     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8356   // Offset from start of insn to d-field reloc.
8357   const int d_offset = big_endian ? 2 : 0;
8358
8359   Powerpc_relobj<size, big_endian>* const object
8360     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8361   const unsigned int local_count = object->local_symbol_count();
8362   unsigned int got2_shndx = object->got2_shndx();
8363   Address got2_addend = 0;
8364   if (got2_shndx != 0)
8365     {
8366       got2_addend = object->get_output_section_offset(got2_shndx);
8367       gold_assert(got2_addend != invalid_address);
8368     }
8369
8370   unsigned char* pwrite = reloc_view;
8371   bool zap_next = false;
8372   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8373     {
8374       Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
8375       if (strategy == Relocatable_relocs::RELOC_DISCARD)
8376         continue;
8377
8378       Reltype reloc(prelocs);
8379       Reltype_write reloc_write(pwrite);
8380
8381       Address offset = reloc.get_r_offset();
8382       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8383       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8384       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8385       const unsigned int orig_r_sym = r_sym;
8386       typename elfcpp::Elf_types<size>::Elf_Swxword addend
8387         = reloc.get_r_addend();
8388       const Symbol* gsym = NULL;
8389
8390       if (zap_next)
8391         {
8392           // We could arrange to discard these and other relocs for
8393           // tls optimised sequences in the strategy methods, but for
8394           // now do as BFD ld does.
8395           r_type = elfcpp::R_POWERPC_NONE;
8396           zap_next = false;
8397         }
8398
8399       // Get the new symbol index.
8400       Output_section* os = NULL;
8401       if (r_sym < local_count)
8402         {
8403           switch (strategy)
8404             {
8405             case Relocatable_relocs::RELOC_COPY:
8406             case Relocatable_relocs::RELOC_SPECIAL:
8407               if (r_sym != 0)
8408                 {
8409                   r_sym = object->symtab_index(r_sym);
8410                   gold_assert(r_sym != -1U);
8411                 }
8412               break;
8413
8414             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8415               {
8416                 // We are adjusting a section symbol.  We need to find
8417                 // the symbol table index of the section symbol for
8418                 // the output section corresponding to input section
8419                 // in which this symbol is defined.
8420                 gold_assert(r_sym < local_count);
8421                 bool is_ordinary;
8422                 unsigned int shndx =
8423                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
8424                 gold_assert(is_ordinary);
8425                 os = object->output_section(shndx);
8426                 gold_assert(os != NULL);
8427                 gold_assert(os->needs_symtab_index());
8428                 r_sym = os->symtab_index();
8429               }
8430               break;
8431
8432             default:
8433               gold_unreachable();
8434             }
8435         }
8436       else
8437         {
8438           gsym = object->global_symbol(r_sym);
8439           gold_assert(gsym != NULL);
8440           if (gsym->is_forwarder())
8441             gsym = relinfo->symtab->resolve_forwards(gsym);
8442
8443           gold_assert(gsym->has_symtab_index());
8444           r_sym = gsym->symtab_index();
8445         }
8446
8447       // Get the new offset--the location in the output section where
8448       // this relocation should be applied.
8449       if (static_cast<Address>(offset_in_output_section) != invalid_address)
8450         offset += offset_in_output_section;
8451       else
8452         {
8453           section_offset_type sot_offset =
8454             convert_types<section_offset_type, Address>(offset);
8455           section_offset_type new_sot_offset =
8456             output_section->output_offset(object, relinfo->data_shndx,
8457                                           sot_offset);
8458           gold_assert(new_sot_offset != -1);
8459           offset = new_sot_offset;
8460         }
8461
8462       // In an object file, r_offset is an offset within the section.
8463       // In an executable or dynamic object, generated by
8464       // --emit-relocs, r_offset is an absolute address.
8465       if (!parameters->options().relocatable())
8466         {
8467           offset += view_address;
8468           if (static_cast<Address>(offset_in_output_section) != invalid_address)
8469             offset -= offset_in_output_section;
8470         }
8471
8472       // Handle the reloc addend based on the strategy.
8473       if (strategy == Relocatable_relocs::RELOC_COPY)
8474         ;
8475       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8476         {
8477           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8478           gold_assert(os != NULL);
8479           addend = psymval->value(object, addend) - os->address();
8480         }
8481       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8482         {
8483           if (size == 32)
8484             {
8485               if (addend >= 32768)
8486                 addend += got2_addend;
8487             }
8488           else if (r_type == elfcpp::R_POWERPC_REL16_HA)
8489             {
8490               r_type = elfcpp::R_POWERPC_ADDR16_HA;
8491               addend -= d_offset;
8492             }
8493           else if (r_type == elfcpp::R_POWERPC_REL16_LO)
8494             {
8495               r_type = elfcpp::R_POWERPC_ADDR16_LO;
8496               addend -= d_offset + 4;
8497             }
8498         }
8499       else
8500         gold_unreachable();
8501
8502       if (!parameters->options().relocatable())
8503         {
8504           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8505               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8506               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8507               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8508             {
8509               // First instruction of a global dynamic sequence,
8510               // arg setup insn.
8511               const bool final = gsym == NULL || gsym->final_value_is_known();
8512               switch (this->optimize_tls_gd(final))
8513                 {
8514                 case tls::TLSOPT_TO_IE:
8515                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8516                              - elfcpp::R_POWERPC_GOT_TLSGD16);
8517                   break;
8518                 case tls::TLSOPT_TO_LE:
8519                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8520                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8521                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8522                   else
8523                     {
8524                       r_type = elfcpp::R_POWERPC_NONE;
8525                       offset -= d_offset;
8526                     }
8527                   break;
8528                 default:
8529                   break;
8530                 }
8531             }
8532           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8533                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8534                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8535                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8536             {
8537               // First instruction of a local dynamic sequence,
8538               // arg setup insn.
8539               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8540                 {
8541                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8542                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8543                     {
8544                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
8545                       const Output_section* os = relinfo->layout->tls_segment()
8546                         ->first_section();
8547                       gold_assert(os != NULL);
8548                       gold_assert(os->needs_symtab_index());
8549                       r_sym = os->symtab_index();
8550                       addend = dtp_offset;
8551                     }
8552                   else
8553                     {
8554                       r_type = elfcpp::R_POWERPC_NONE;
8555                       offset -= d_offset;
8556                     }
8557                 }
8558             }
8559           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8560                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8561                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8562                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8563             {
8564               // First instruction of initial exec sequence.
8565               const bool final = gsym == NULL || gsym->final_value_is_known();
8566               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8567                 {
8568                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8569                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8570                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8571                   else
8572                     {
8573                       r_type = elfcpp::R_POWERPC_NONE;
8574                       offset -= d_offset;
8575                     }
8576                 }
8577             }
8578           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8579                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8580             {
8581               // Second instruction of a global dynamic sequence,
8582               // the __tls_get_addr call
8583               const bool final = gsym == NULL || gsym->final_value_is_known();
8584               switch (this->optimize_tls_gd(final))
8585                 {
8586                 case tls::TLSOPT_TO_IE:
8587                   r_type = elfcpp::R_POWERPC_NONE;
8588                   zap_next = true;
8589                   break;
8590                 case tls::TLSOPT_TO_LE:
8591                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8592                   offset += d_offset;
8593                   zap_next = true;
8594                   break;
8595                 default:
8596                   break;
8597                 }
8598             }
8599           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8600                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8601             {
8602               // Second instruction of a local dynamic sequence,
8603               // the __tls_get_addr call
8604               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8605                 {
8606                   const Output_section* os = relinfo->layout->tls_segment()
8607                     ->first_section();
8608                   gold_assert(os != NULL);
8609                   gold_assert(os->needs_symtab_index());
8610                   r_sym = os->symtab_index();
8611                   addend = dtp_offset;
8612                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8613                   offset += d_offset;
8614                   zap_next = true;
8615                 }
8616             }
8617           else if (r_type == elfcpp::R_POWERPC_TLS)
8618             {
8619               // Second instruction of an initial exec sequence
8620               const bool final = gsym == NULL || gsym->final_value_is_known();
8621               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8622                 {
8623                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8624                   offset += d_offset;
8625                 }
8626             }
8627         }
8628
8629       reloc_write.put_r_offset(offset);
8630       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8631       reloc_write.put_r_addend(addend);
8632
8633       pwrite += reloc_size;
8634     }
8635
8636   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8637               == reloc_view_size);
8638 }
8639
8640 // Return the value to use for a dynamic symbol which requires special
8641 // treatment.  This is how we support equality comparisons of function
8642 // pointers across shared library boundaries, as described in the
8643 // processor specific ABI supplement.
8644
8645 template<int size, bool big_endian>
8646 uint64_t
8647 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8648 {
8649   if (size == 32)
8650     {
8651       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8652       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8653            p != this->stub_tables_.end();
8654            ++p)
8655         {
8656           Address off = (*p)->find_plt_call_entry(gsym);
8657           if (off != invalid_address)
8658             return (*p)->stub_address() + off;
8659         }
8660     }
8661   else if (this->abiversion() >= 2)
8662     {
8663       Address off = this->glink_section()->find_global_entry(gsym);
8664       if (off != invalid_address)
8665         return this->glink_section()->global_entry_address() + off;
8666     }
8667   gold_unreachable();
8668 }
8669
8670 // Return the PLT address to use for a local symbol.
8671 template<int size, bool big_endian>
8672 uint64_t
8673 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8674     const Relobj* object,
8675     unsigned int symndx) const
8676 {
8677   if (size == 32)
8678     {
8679       const Sized_relobj<size, big_endian>* relobj
8680         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8681       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8682            p != this->stub_tables_.end();
8683            ++p)
8684         {
8685           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8686                                                   symndx);
8687           if (off != invalid_address)
8688             return (*p)->stub_address() + off;
8689         }
8690     }
8691   gold_unreachable();
8692 }
8693
8694 // Return the PLT address to use for a global symbol.
8695 template<int size, bool big_endian>
8696 uint64_t
8697 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8698     const Symbol* gsym) const
8699 {
8700   if (size == 32)
8701     {
8702       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8703            p != this->stub_tables_.end();
8704            ++p)
8705         {
8706           Address off = (*p)->find_plt_call_entry(gsym);
8707           if (off != invalid_address)
8708             return (*p)->stub_address() + off;
8709         }
8710     }
8711   else if (this->abiversion() >= 2)
8712     {
8713       Address off = this->glink_section()->find_global_entry(gsym);
8714       if (off != invalid_address)
8715         return this->glink_section()->global_entry_address() + off;
8716     }
8717   gold_unreachable();
8718 }
8719
8720 // Return the offset to use for the GOT_INDX'th got entry which is
8721 // for a local tls symbol specified by OBJECT, SYMNDX.
8722 template<int size, bool big_endian>
8723 int64_t
8724 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8725     const Relobj* object,
8726     unsigned int symndx,
8727     unsigned int got_indx) const
8728 {
8729   const Powerpc_relobj<size, big_endian>* ppc_object
8730     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8731   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8732     {
8733       for (Got_type got_type = GOT_TYPE_TLSGD;
8734            got_type <= GOT_TYPE_TPREL;
8735            got_type = Got_type(got_type + 1))
8736         if (ppc_object->local_has_got_offset(symndx, got_type))
8737           {
8738             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8739             if (got_type == GOT_TYPE_TLSGD)
8740               off += size / 8;
8741             if (off == got_indx * (size / 8))
8742               {
8743                 if (got_type == GOT_TYPE_TPREL)
8744                   return -tp_offset;
8745                 else
8746                   return -dtp_offset;
8747               }
8748           }
8749     }
8750   gold_unreachable();
8751 }
8752
8753 // Return the offset to use for the GOT_INDX'th got entry which is
8754 // for global tls symbol GSYM.
8755 template<int size, bool big_endian>
8756 int64_t
8757 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8758     Symbol* gsym,
8759     unsigned int got_indx) const
8760 {
8761   if (gsym->type() == elfcpp::STT_TLS)
8762     {
8763       for (Got_type got_type = GOT_TYPE_TLSGD;
8764            got_type <= GOT_TYPE_TPREL;
8765            got_type = Got_type(got_type + 1))
8766         if (gsym->has_got_offset(got_type))
8767           {
8768             unsigned int off = gsym->got_offset(got_type);
8769             if (got_type == GOT_TYPE_TLSGD)
8770               off += size / 8;
8771             if (off == got_indx * (size / 8))
8772               {
8773                 if (got_type == GOT_TYPE_TPREL)
8774                   return -tp_offset;
8775                 else
8776                   return -dtp_offset;
8777               }
8778           }
8779     }
8780   gold_unreachable();
8781 }
8782
8783 // The selector for powerpc object files.
8784
8785 template<int size, bool big_endian>
8786 class Target_selector_powerpc : public Target_selector
8787 {
8788 public:
8789   Target_selector_powerpc()
8790     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8791                       size, big_endian,
8792                       (size == 64
8793                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8794                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8795                       (size == 64
8796                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8797                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8798   { }
8799
8800   virtual Target*
8801   do_instantiate_target()
8802   { return new Target_powerpc<size, big_endian>(); }
8803 };
8804
8805 Target_selector_powerpc<32, true> target_selector_ppc32;
8806 Target_selector_powerpc<32, false> target_selector_ppc32le;
8807 Target_selector_powerpc<64, true> target_selector_ppc64;
8808 Target_selector_powerpc<64, false> target_selector_ppc64le;
8809
8810 // Instantiate these constants for -O0
8811 template<int size, bool big_endian>
8812 const int Output_data_glink<size, big_endian>::pltresolve_size;
8813 template<int size, bool big_endian>
8814 const typename Output_data_glink<size, big_endian>::Address
8815   Output_data_glink<size, big_endian>::invalid_address;
8816 template<int size, bool big_endian>
8817 const typename Stub_table<size, big_endian>::Address
8818   Stub_table<size, big_endian>::invalid_address;
8819 template<int size, bool big_endian>
8820 const typename Target_powerpc<size, big_endian>::Address
8821   Target_powerpc<size, big_endian>::invalid_address;
8822
8823 } // End anonymous namespace.