gold/
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74   typedef Unordered_map<Address, Section_refs> Access_from;
75
76   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80       opd_ent_(), access_from_map_(), has14_(), stub_table_()
81   { }
82
83   ~Powerpc_relobj()
84   { }
85
86   // The .got2 section shndx.
87   unsigned int
88   got2_shndx() const
89   {
90     if (size == 32)
91       return this->special_;
92     else
93       return 0;
94   }
95
96   // The .opd section shndx.
97   unsigned int
98   opd_shndx() const
99   {
100     if (size == 32)
101       return 0;
102     else
103       return this->special_;
104   }
105
106   // Init OPD entry arrays.
107   void
108   init_opd(size_t opd_size)
109   {
110     size_t count = this->opd_ent_ndx(opd_size);
111     this->opd_ent_.resize(count);
112   }
113
114   // Return section and offset of function entry for .opd + R_OFF.
115   unsigned int
116   get_opd_ent(Address r_off, Address* value = NULL) const
117   {
118     size_t ndx = this->opd_ent_ndx(r_off);
119     gold_assert(ndx < this->opd_ent_.size());
120     gold_assert(this->opd_ent_[ndx].shndx != 0);
121     if (value != NULL)
122       *value = this->opd_ent_[ndx].off;
123     return this->opd_ent_[ndx].shndx;
124   }
125
126   // Set section and offset of function entry for .opd + R_OFF.
127   void
128   set_opd_ent(Address r_off, unsigned int shndx, Address value)
129   {
130     size_t ndx = this->opd_ent_ndx(r_off);
131     gold_assert(ndx < this->opd_ent_.size());
132     this->opd_ent_[ndx].shndx = shndx;
133     this->opd_ent_[ndx].off = value;
134   }
135
136   // Return discard flag for .opd + R_OFF.
137   bool
138   get_opd_discard(Address r_off) const
139   {
140     size_t ndx = this->opd_ent_ndx(r_off);
141     gold_assert(ndx < this->opd_ent_.size());
142     return this->opd_ent_[ndx].discard;
143   }
144
145   // Set discard flag for .opd + R_OFF.
146   void
147   set_opd_discard(Address r_off)
148   {
149     size_t ndx = this->opd_ent_ndx(r_off);
150     gold_assert(ndx < this->opd_ent_.size());
151     this->opd_ent_[ndx].discard = true;
152   }
153
154   bool
155   opd_valid() const
156   { return this->opd_valid_; }
157
158   void
159   set_opd_valid()
160   { this->opd_valid_ = true; }
161
162   // Examine .rela.opd to build info about function entry points.
163   void
164   scan_opd_relocs(size_t reloc_count,
165                   const unsigned char* prelocs,
166                   const unsigned char* plocal_syms);
167
168   // Perform the Sized_relobj_file method, then set up opd info from
169   // .opd relocs.
170   void
171   do_read_relocs(Read_relocs_data*);
172
173   bool
174   do_find_special_sections(Read_symbols_data* sd);
175
176   // Adjust this local symbol value.  Return false if the symbol
177   // should be discarded from the output file.
178   bool
179   do_adjust_local_symbol(Symbol_value<size>* lv) const
180   {
181     if (size == 64 && this->opd_shndx() != 0)
182       {
183         bool is_ordinary;
184         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
185           return true;
186         if (this->get_opd_discard(lv->input_value()))
187           return false;
188       }
189     return true;
190   }
191
192   Access_from*
193   access_from_map()
194   { return &this->access_from_map_; }
195
196   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
197   // section at DST_OFF.
198   void
199   add_reference(Object* src_obj,
200                 unsigned int src_indx,
201                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
202   {
203     Section_id src_id(src_obj, src_indx);
204     this->access_from_map_[dst_off].insert(src_id);
205   }
206
207   // Add a reference to the code section specified by the .opd entry
208   // at DST_OFF
209   void
210   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
211   {
212     size_t ndx = this->opd_ent_ndx(dst_off);
213     if (ndx >= this->opd_ent_.size())
214       this->opd_ent_.resize(ndx + 1);
215     this->opd_ent_[ndx].gc_mark = true;
216   }
217
218   void
219   process_gc_mark(Symbol_table* symtab)
220   {
221     for (size_t i = 0; i < this->opd_ent_.size(); i++)
222       if (this->opd_ent_[i].gc_mark)
223         {
224           unsigned int shndx = this->opd_ent_[i].shndx;
225           symtab->gc()->worklist().push(Section_id(this, shndx));
226         }
227   }
228
229   // Return offset in output GOT section that this object will use
230   // as a TOC pointer.  Won't be just a constant with multi-toc support.
231   Address
232   toc_base_offset() const
233   { return 0x8000; }
234
235   void
236   set_has_small_toc_reloc()
237   { has_small_toc_reloc_ = true; }
238
239   bool
240   has_small_toc_reloc() const
241   { return has_small_toc_reloc_; }
242
243   void
244   set_has_14bit_branch(unsigned int shndx)
245   {
246     if (shndx >= this->has14_.size())
247       this->has14_.resize(shndx + 1);
248     this->has14_[shndx] = true;
249   }
250
251   bool
252   has_14bit_branch(unsigned int shndx) const
253   { return shndx < this->has14_.size() && this->has14_[shndx];  }
254
255   void
256   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
257   {
258     if (shndx >= this->stub_table_.size())
259       this->stub_table_.resize(shndx + 1);
260     this->stub_table_[shndx] = stub_table;
261   }
262
263   Stub_table<size, big_endian>*
264   stub_table(unsigned int shndx)
265   {
266     if (shndx < this->stub_table_.size())
267       return this->stub_table_[shndx];
268     return NULL;
269   }
270
271 private:
272   struct Opd_ent
273   {
274     unsigned int shndx;
275     bool discard : 1;
276     bool gc_mark : 1;
277     Address off;
278   };
279
280   // Return index into opd_ent_ array for .opd entry at OFF.
281   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
282   // apart when the language doesn't use the last 8-byte word, the
283   // environment pointer.  Thus dividing the entry section offset by
284   // 16 will give an index into opd_ent_ that works for either layout
285   // of .opd.  (It leaves some elements of the vector unused when .opd
286   // entries are spaced 24 bytes apart, but we don't know the spacing
287   // until relocations are processed, and in any case it is possible
288   // for an object to have some entries spaced 16 bytes apart and
289   // others 24 bytes apart.)
290   size_t
291   opd_ent_ndx(size_t off) const
292   { return off >> 4;}
293
294   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
295   unsigned int special_;
296
297   // For 64-bit, whether this object uses small model relocs to access
298   // the toc.
299   bool has_small_toc_reloc_;
300
301   // Set at the start of gc_process_relocs, when we know opd_ent_
302   // vector is valid.  The flag could be made atomic and set in
303   // do_read_relocs with memory_order_release and then tested with
304   // memory_order_acquire, potentially resulting in fewer entries in
305   // access_from_map_.
306   bool opd_valid_;
307
308   // The first 8-byte word of an OPD entry gives the address of the
309   // entry point of the function.  Relocatable object files have a
310   // relocation on this word.  The following vector records the
311   // section and offset specified by these relocations.
312   std::vector<Opd_ent> opd_ent_;
313
314   // References made to this object's .opd section when running
315   // gc_process_relocs for another object, before the opd_ent_ vector
316   // is valid for this object.
317   Access_from access_from_map_;
318
319   // Whether input section has a 14-bit branch reloc.
320   std::vector<bool> has14_;
321
322   // The stub table to use for a given input section.
323   std::vector<Stub_table<size, big_endian>*> stub_table_;
324 };
325
326 template<int size, bool big_endian>
327 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
328 {
329 public:
330   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
331
332   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
333                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
334     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
335       opd_shndx_(0), opd_ent_()
336   { }
337
338   ~Powerpc_dynobj()
339   { }
340
341   // Call Sized_dynobj::do_read_symbols to read the symbols then
342   // read .opd from a dynamic object, filling in opd_ent_ vector,
343   void
344   do_read_symbols(Read_symbols_data*);
345
346   // The .opd section shndx.
347   unsigned int
348   opd_shndx() const
349   {
350     return this->opd_shndx_;
351   }
352
353   // The .opd section address.
354   Address
355   opd_address() const
356   {
357     return this->opd_address_;
358   }
359
360   // Init OPD entry arrays.
361   void
362   init_opd(size_t opd_size)
363   {
364     size_t count = this->opd_ent_ndx(opd_size);
365     this->opd_ent_.resize(count);
366   }
367
368   // Return section and offset of function entry for .opd + R_OFF.
369   unsigned int
370   get_opd_ent(Address r_off, Address* value = NULL) const
371   {
372     size_t ndx = this->opd_ent_ndx(r_off);
373     gold_assert(ndx < this->opd_ent_.size());
374     gold_assert(this->opd_ent_[ndx].shndx != 0);
375     if (value != NULL)
376       *value = this->opd_ent_[ndx].off;
377     return this->opd_ent_[ndx].shndx;
378   }
379
380   // Set section and offset of function entry for .opd + R_OFF.
381   void
382   set_opd_ent(Address r_off, unsigned int shndx, Address value)
383   {
384     size_t ndx = this->opd_ent_ndx(r_off);
385     gold_assert(ndx < this->opd_ent_.size());
386     this->opd_ent_[ndx].shndx = shndx;
387     this->opd_ent_[ndx].off = value;
388   }
389
390 private:
391   // Used to specify extent of executable sections.
392   struct Sec_info
393   {
394     Sec_info(Address start_, Address len_, unsigned int shndx_)
395       : start(start_), len(len_), shndx(shndx_)
396     { }
397
398     bool
399     operator<(const Sec_info& that) const
400     { return this->start < that.start; }
401
402     Address start;
403     Address len;
404     unsigned int shndx;
405   };
406
407   struct Opd_ent
408   {
409     unsigned int shndx;
410     Address off;
411   };
412
413   // Return index into opd_ent_ array for .opd entry at OFF.
414   size_t
415   opd_ent_ndx(size_t off) const
416   { return off >> 4;}
417
418   // For 64-bit the .opd section shndx and address.
419   unsigned int opd_shndx_;
420   Address opd_address_;
421
422   // The first 8-byte word of an OPD entry gives the address of the
423   // entry point of the function.  Records the section and offset
424   // corresponding to the address.  Note that in dynamic objects,
425   // offset is *not* relative to the section.
426   std::vector<Opd_ent> opd_ent_;
427 };
428
429 template<int size, bool big_endian>
430 class Target_powerpc : public Sized_target<size, big_endian>
431 {
432  public:
433   typedef
434     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
435   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
436   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
437   static const Address invalid_address = static_cast<Address>(0) - 1;
438   // Offset of tp and dtp pointers from start of TLS block.
439   static const Address tp_offset = 0x7000;
440   static const Address dtp_offset = 0x8000;
441
442   Target_powerpc()
443     : Sized_target<size, big_endian>(&powerpc_info),
444       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
445       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
446       tlsld_got_offset_(-1U),
447       stub_tables_(), branch_lookup_table_(), branch_info_(),
448       plt_thread_safe_(false)
449   {
450   }
451
452   // Process the relocations to determine unreferenced sections for
453   // garbage collection.
454   void
455   gc_process_relocs(Symbol_table* symtab,
456                     Layout* layout,
457                     Sized_relobj_file<size, big_endian>* object,
458                     unsigned int data_shndx,
459                     unsigned int sh_type,
460                     const unsigned char* prelocs,
461                     size_t reloc_count,
462                     Output_section* output_section,
463                     bool needs_special_offset_handling,
464                     size_t local_symbol_count,
465                     const unsigned char* plocal_symbols);
466
467   // Scan the relocations to look for symbol adjustments.
468   void
469   scan_relocs(Symbol_table* symtab,
470               Layout* layout,
471               Sized_relobj_file<size, big_endian>* object,
472               unsigned int data_shndx,
473               unsigned int sh_type,
474               const unsigned char* prelocs,
475               size_t reloc_count,
476               Output_section* output_section,
477               bool needs_special_offset_handling,
478               size_t local_symbol_count,
479               const unsigned char* plocal_symbols);
480
481   // Map input .toc section to output .got section.
482   const char*
483   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
484   {
485     if (size == 64 && strcmp(name, ".toc") == 0)
486       {
487         *plen = 4;
488         return ".got";
489       }
490     return NULL;
491   }
492
493   // Provide linker defined save/restore functions.
494   void
495   define_save_restore_funcs(Layout*, Symbol_table*);
496
497   // No stubs unless a final link.
498   bool
499   do_may_relax() const
500   { return !parameters->options().relocatable(); }
501
502   bool
503   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
504
505   void
506   do_plt_fde_location(const Output_data*, unsigned char*,
507                       uint64_t*, off_t*) const;
508
509   // Stash info about branches, for stub generation.
510   void
511   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
512               unsigned int data_shndx, Address r_offset,
513               unsigned int r_type, unsigned int r_sym, Address addend)
514   {
515     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
516     this->branch_info_.push_back(info);
517     if (r_type == elfcpp::R_POWERPC_REL14
518         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
519         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
520       ppc_object->set_has_14bit_branch(data_shndx);
521   }
522
523   Stub_table<size, big_endian>*
524   new_stub_table();
525
526   void
527   do_define_standard_symbols(Symbol_table*, Layout*);
528
529   // Finalize the sections.
530   void
531   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
532
533   // Return the value to use for a dynamic which requires special
534   // treatment.
535   uint64_t
536   do_dynsym_value(const Symbol*) const;
537
538   // Return the PLT address to use for a local symbol.
539   uint64_t
540   do_plt_address_for_local(const Relobj*, unsigned int) const;
541
542   // Return the PLT address to use for a global symbol.
543   uint64_t
544   do_plt_address_for_global(const Symbol*) const;
545
546   // Return the offset to use for the GOT_INDX'th got entry which is
547   // for a local tls symbol specified by OBJECT, SYMNDX.
548   int64_t
549   do_tls_offset_for_local(const Relobj* object,
550                           unsigned int symndx,
551                           unsigned int got_indx) const;
552
553   // Return the offset to use for the GOT_INDX'th got entry which is
554   // for global tls symbol GSYM.
555   int64_t
556   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
557
558   void
559   do_function_location(Symbol_location*) const;
560
561   bool
562   do_can_check_for_function_pointers() const
563   { return true; }
564
565   // Relocate a section.
566   void
567   relocate_section(const Relocate_info<size, big_endian>*,
568                    unsigned int sh_type,
569                    const unsigned char* prelocs,
570                    size_t reloc_count,
571                    Output_section* output_section,
572                    bool needs_special_offset_handling,
573                    unsigned char* view,
574                    Address view_address,
575                    section_size_type view_size,
576                    const Reloc_symbol_changes*);
577
578   // Scan the relocs during a relocatable link.
579   void
580   scan_relocatable_relocs(Symbol_table* symtab,
581                           Layout* layout,
582                           Sized_relobj_file<size, big_endian>* object,
583                           unsigned int data_shndx,
584                           unsigned int sh_type,
585                           const unsigned char* prelocs,
586                           size_t reloc_count,
587                           Output_section* output_section,
588                           bool needs_special_offset_handling,
589                           size_t local_symbol_count,
590                           const unsigned char* plocal_symbols,
591                           Relocatable_relocs*);
592
593   // Emit relocations for a section.
594   void
595   relocate_relocs(const Relocate_info<size, big_endian>*,
596                   unsigned int sh_type,
597                   const unsigned char* prelocs,
598                   size_t reloc_count,
599                   Output_section* output_section,
600                   typename elfcpp::Elf_types<size>::Elf_Off
601                     offset_in_output_section,
602                   const Relocatable_relocs*,
603                   unsigned char*,
604                   Address view_address,
605                   section_size_type,
606                   unsigned char* reloc_view,
607                   section_size_type reloc_view_size);
608
609   // Return whether SYM is defined by the ABI.
610   bool
611   do_is_defined_by_abi(const Symbol* sym) const
612   {
613     return strcmp(sym->name(), "__tls_get_addr") == 0;
614   }
615
616   // Return the size of the GOT section.
617   section_size_type
618   got_size() const
619   {
620     gold_assert(this->got_ != NULL);
621     return this->got_->data_size();
622   }
623
624   // Get the PLT section.
625   const Output_data_plt_powerpc<size, big_endian>*
626   plt_section() const
627   {
628     gold_assert(this->plt_ != NULL);
629     return this->plt_;
630   }
631
632   // Get the IPLT section.
633   const Output_data_plt_powerpc<size, big_endian>*
634   iplt_section() const
635   {
636     gold_assert(this->iplt_ != NULL);
637     return this->iplt_;
638   }
639
640   // Get the .glink section.
641   const Output_data_glink<size, big_endian>*
642   glink_section() const
643   {
644     gold_assert(this->glink_ != NULL);
645     return this->glink_;
646   }
647
648   bool has_glink() const
649   { return this->glink_ != NULL; }
650
651   // Get the GOT section.
652   const Output_data_got_powerpc<size, big_endian>*
653   got_section() const
654   {
655     gold_assert(this->got_ != NULL);
656     return this->got_;
657   }
658
659   // Get the GOT section, creating it if necessary.
660   Output_data_got_powerpc<size, big_endian>*
661   got_section(Symbol_table*, Layout*);
662
663   Object*
664   do_make_elf_object(const std::string&, Input_file*, off_t,
665                      const elfcpp::Ehdr<size, big_endian>&);
666
667   // Return the number of entries in the GOT.
668   unsigned int
669   got_entry_count() const
670   {
671     if (this->got_ == NULL)
672       return 0;
673     return this->got_size() / (size / 8);
674   }
675
676   // Return the number of entries in the PLT.
677   unsigned int
678   plt_entry_count() const;
679
680   // Return the offset of the first non-reserved PLT entry.
681   unsigned int
682   first_plt_entry_offset() const;
683
684   // Return the size of each PLT entry.
685   unsigned int
686   plt_entry_size() const;
687
688   // Add any special sections for this symbol to the gc work list.
689   // For powerpc64, this adds the code section of a function
690   // descriptor.
691   void
692   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
693
694   // Handle target specific gc actions when adding a gc reference from
695   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
696   // and DST_OFF.  For powerpc64, this adds a referenc to the code
697   // section of a function descriptor.
698   void
699   do_gc_add_reference(Symbol_table* symtab,
700                       Object* src_obj,
701                       unsigned int src_shndx,
702                       Object* dst_obj,
703                       unsigned int dst_shndx,
704                       Address dst_off) const;
705
706   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
707   const Stub_tables&
708   stub_tables() const
709   { return this->stub_tables_; }
710
711   const Output_data_brlt_powerpc<size, big_endian>*
712   brlt_section() const
713   { return this->brlt_section_; }
714
715   void
716   add_branch_lookup_table(Address to)
717   {
718     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
719     this->branch_lookup_table_.insert(std::make_pair(to, off));
720   }
721
722   Address
723   find_branch_lookup_table(Address to)
724   {
725     typename Branch_lookup_table::const_iterator p
726       = this->branch_lookup_table_.find(to);
727     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
728   }
729
730   void
731   write_branch_lookup_table(unsigned char *oview)
732   {
733     for (typename Branch_lookup_table::const_iterator p
734            = this->branch_lookup_table_.begin();
735          p != this->branch_lookup_table_.end();
736          ++p)
737       {
738         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
739       }
740   }
741
742   bool
743   plt_thread_safe() const
744   { return this->plt_thread_safe_; }
745
746  private:
747
748   class Track_tls
749   {
750   public:
751     enum Tls_get_addr
752     {
753       NOT_EXPECTED = 0,
754       EXPECTED = 1,
755       SKIP = 2,
756       NORMAL = 3
757     };
758
759     Track_tls()
760       : tls_get_addr_(NOT_EXPECTED),
761         relinfo_(NULL), relnum_(0), r_offset_(0)
762     { }
763
764     ~Track_tls()
765     {
766       if (this->tls_get_addr_ != NOT_EXPECTED)
767         this->missing();
768     }
769
770     void
771     missing(void)
772     {
773       if (this->relinfo_ != NULL)
774         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
775                                _("missing expected __tls_get_addr call"));
776     }
777
778     void
779     expect_tls_get_addr_call(
780         const Relocate_info<size, big_endian>* relinfo,
781         size_t relnum,
782         Address r_offset)
783     {
784       this->tls_get_addr_ = EXPECTED;
785       this->relinfo_ = relinfo;
786       this->relnum_ = relnum;
787       this->r_offset_ = r_offset;
788     }
789
790     void
791     expect_tls_get_addr_call()
792     { this->tls_get_addr_ = EXPECTED; }
793
794     void
795     skip_next_tls_get_addr_call()
796     {this->tls_get_addr_ = SKIP; }
797
798     Tls_get_addr
799     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
800     {
801       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
802                            || r_type == elfcpp::R_PPC_PLTREL24)
803                           && gsym != NULL
804                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
805       Tls_get_addr last_tls = this->tls_get_addr_;
806       this->tls_get_addr_ = NOT_EXPECTED;
807       if (is_tls_call && last_tls != EXPECTED)
808         return last_tls;
809       else if (!is_tls_call && last_tls != NOT_EXPECTED)
810         {
811           this->missing();
812           return EXPECTED;
813         }
814       return NORMAL;
815     }
816
817   private:
818     // What we're up to regarding calls to __tls_get_addr.
819     // On powerpc, the branch and link insn making a call to
820     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
821     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
822     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
823     // The marker relocation always comes first, and has the same
824     // symbol as the reloc on the insn setting up the __tls_get_addr
825     // argument.  This ties the arg setup insn with the call insn,
826     // allowing ld to safely optimize away the call.  We check that
827     // every call to __tls_get_addr has a marker relocation, and that
828     // every marker relocation is on a call to __tls_get_addr.
829     Tls_get_addr tls_get_addr_;
830     // Info about the last reloc for error message.
831     const Relocate_info<size, big_endian>* relinfo_;
832     size_t relnum_;
833     Address r_offset_;
834   };
835
836   // The class which scans relocations.
837   class Scan : protected Track_tls
838   {
839   public:
840     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
841
842     Scan()
843       : Track_tls(), issued_non_pic_error_(false)
844     { }
845
846     static inline int
847     get_reference_flags(unsigned int r_type);
848
849     inline void
850     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
851           Sized_relobj_file<size, big_endian>* object,
852           unsigned int data_shndx,
853           Output_section* output_section,
854           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
855           const elfcpp::Sym<size, big_endian>& lsym,
856           bool is_discarded);
857
858     inline void
859     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
860            Sized_relobj_file<size, big_endian>* object,
861            unsigned int data_shndx,
862            Output_section* output_section,
863            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
864            Symbol* gsym);
865
866     inline bool
867     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
868                                         Target_powerpc* ,
869                                         Sized_relobj_file<size, big_endian>* ,
870                                         unsigned int ,
871                                         Output_section* ,
872                                         const elfcpp::Rela<size, big_endian>& ,
873                                         unsigned int r_type,
874                                         const elfcpp::Sym<size, big_endian>&)
875     {
876       // PowerPC64 .opd is not folded, so any identical function text
877       // may be folded and we'll still keep function addresses distinct.
878       // That means no reloc is of concern here.
879       if (size == 64)
880         return false;
881       // For 32-bit, conservatively assume anything but calls to
882       // function code might be taking the address of the function.
883       return !is_branch_reloc(r_type);
884     }
885
886     inline bool
887     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
888                                          Target_powerpc* ,
889                                          Sized_relobj_file<size, big_endian>* ,
890                                          unsigned int ,
891                                          Output_section* ,
892                                          const elfcpp::Rela<size, big_endian>& ,
893                                          unsigned int r_type,
894                                          Symbol*)
895     {
896       // As above.
897       if (size == 64)
898         return false;
899       return !is_branch_reloc(r_type);
900     }
901
902     static bool
903     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>* object,
904                               unsigned int r_type, bool report_err);
905
906   private:
907     static void
908     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
909                             unsigned int r_type);
910
911     static void
912     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
913                              unsigned int r_type, Symbol*);
914
915     static void
916     generate_tls_call(Symbol_table* symtab, Layout* layout,
917                       Target_powerpc* target);
918
919     void
920     check_non_pic(Relobj*, unsigned int r_type);
921
922     // Whether we have issued an error about a non-PIC compilation.
923     bool issued_non_pic_error_;
924   };
925
926   Address
927   symval_for_branch(const Symbol_table* symtab, Address value,
928                     const Sized_symbol<size>* gsym,
929                     Powerpc_relobj<size, big_endian>* object,
930                     unsigned int *dest_shndx);
931
932   // The class which implements relocation.
933   class Relocate : protected Track_tls
934   {
935    public:
936     // Use 'at' branch hints when true, 'y' when false.
937     // FIXME maybe: set this with an option.
938     static const bool is_isa_v2 = true;
939
940     Relocate()
941       : Track_tls()
942     { }
943
944     // Do a relocation.  Return false if the caller should not issue
945     // any warnings about this relocation.
946     inline bool
947     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
948              Output_section*, size_t relnum,
949              const elfcpp::Rela<size, big_endian>&,
950              unsigned int r_type, const Sized_symbol<size>*,
951              const Symbol_value<size>*,
952              unsigned char*,
953              typename elfcpp::Elf_types<size>::Elf_Addr,
954              section_size_type);
955   };
956
957   class Relocate_comdat_behavior
958   {
959    public:
960     // Decide what the linker should do for relocations that refer to
961     // discarded comdat sections.
962     inline Comdat_behavior
963     get(const char* name)
964     {
965       gold::Default_comdat_behavior default_behavior;
966       Comdat_behavior ret = default_behavior.get(name);
967       if (ret == CB_WARNING)
968         {
969           if (size == 32
970               && (strcmp(name, ".fixup") == 0
971                   || strcmp(name, ".got2") == 0))
972             ret = CB_IGNORE;
973           if (size == 64
974               && (strcmp(name, ".opd") == 0
975                   || strcmp(name, ".toc") == 0
976                   || strcmp(name, ".toc1") == 0))
977             ret = CB_IGNORE;
978         }
979       return ret;
980     }
981   };
982
983   // A class which returns the size required for a relocation type,
984   // used while scanning relocs during a relocatable link.
985   class Relocatable_size_for_reloc
986   {
987    public:
988     unsigned int
989     get_size_for_reloc(unsigned int, Relobj*)
990     {
991       gold_unreachable();
992       return 0;
993     }
994   };
995
996   // Optimize the TLS relocation type based on what we know about the
997   // symbol.  IS_FINAL is true if the final address of this symbol is
998   // known at link time.
999
1000   tls::Tls_optimization
1001   optimize_tls_gd(bool is_final)
1002   {
1003     // If we are generating a shared library, then we can't do anything
1004     // in the linker.
1005     if (parameters->options().shared())
1006       return tls::TLSOPT_NONE;
1007
1008     if (!is_final)
1009       return tls::TLSOPT_TO_IE;
1010     return tls::TLSOPT_TO_LE;
1011   }
1012
1013   tls::Tls_optimization
1014   optimize_tls_ld()
1015   {
1016     if (parameters->options().shared())
1017       return tls::TLSOPT_NONE;
1018
1019     return tls::TLSOPT_TO_LE;
1020   }
1021
1022   tls::Tls_optimization
1023   optimize_tls_ie(bool is_final)
1024   {
1025     if (!is_final || parameters->options().shared())
1026       return tls::TLSOPT_NONE;
1027
1028     return tls::TLSOPT_TO_LE;
1029   }
1030
1031   // Create glink.
1032   void
1033   make_glink_section(Layout*);
1034
1035   // Create the PLT section.
1036   void
1037   make_plt_section(Symbol_table*, Layout*);
1038
1039   void
1040   make_iplt_section(Symbol_table*, Layout*);
1041
1042   void
1043   make_brlt_section(Layout*);
1044
1045   // Create a PLT entry for a global symbol.
1046   void
1047   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1048
1049   // Create a PLT entry for a local IFUNC symbol.
1050   void
1051   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1052                              Sized_relobj_file<size, big_endian>*,
1053                              unsigned int);
1054
1055
1056   // Create a GOT entry for local dynamic __tls_get_addr.
1057   unsigned int
1058   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1059                    Sized_relobj_file<size, big_endian>* object);
1060
1061   unsigned int
1062   tlsld_got_offset() const
1063   {
1064     return this->tlsld_got_offset_;
1065   }
1066
1067   // Get the dynamic reloc section, creating it if necessary.
1068   Reloc_section*
1069   rela_dyn_section(Layout*);
1070
1071   // Similarly, but for ifunc symbols get the one for ifunc.
1072   Reloc_section*
1073   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1074
1075   // Copy a relocation against a global symbol.
1076   void
1077   copy_reloc(Symbol_table* symtab, Layout* layout,
1078              Sized_relobj_file<size, big_endian>* object,
1079              unsigned int shndx, Output_section* output_section,
1080              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1081   {
1082     this->copy_relocs_.copy_reloc(symtab, layout,
1083                                   symtab->get_sized_symbol<size>(sym),
1084                                   object, shndx, output_section,
1085                                   reloc, this->rela_dyn_section(layout));
1086   }
1087
1088   // Look over all the input sections, deciding where to place stubs.
1089   void
1090   group_sections(Layout*, const Task*);
1091
1092   // Sort output sections by address.
1093   struct Sort_sections
1094   {
1095     bool
1096     operator()(const Output_section* sec1, const Output_section* sec2)
1097     { return sec1->address() < sec2->address(); }
1098   };
1099
1100   class Branch_info
1101   {
1102    public:
1103     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1104                 unsigned int data_shndx,
1105                 Address r_offset,
1106                 unsigned int r_type,
1107                 unsigned int r_sym,
1108                 Address addend)
1109       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1110         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1111     { }
1112
1113     ~Branch_info()
1114     { }
1115
1116     // If this branch needs a plt call stub, or a long branch stub, make one.
1117     void
1118     make_stub(Stub_table<size, big_endian>*,
1119               Stub_table<size, big_endian>*,
1120               Symbol_table*) const;
1121
1122    private:
1123     // The branch location..
1124     Powerpc_relobj<size, big_endian>* object_;
1125     unsigned int shndx_;
1126     Address offset_;
1127     // ..and the branch type and destination.
1128     unsigned int r_type_;
1129     unsigned int r_sym_;
1130     Address addend_;
1131   };
1132
1133   // Information about this specific target which we pass to the
1134   // general Target structure.
1135   static Target::Target_info powerpc_info;
1136
1137   // The types of GOT entries needed for this platform.
1138   // These values are exposed to the ABI in an incremental link.
1139   // Do not renumber existing values without changing the version
1140   // number of the .gnu_incremental_inputs section.
1141   enum Got_type
1142   {
1143     GOT_TYPE_STANDARD,
1144     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1145     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1146     GOT_TYPE_TPREL      // entry for @got@tprel
1147   };
1148
1149   // The GOT section.
1150   Output_data_got_powerpc<size, big_endian>* got_;
1151   // The PLT section.  This is a container for a table of addresses,
1152   // and their relocations.  Each address in the PLT has a dynamic
1153   // relocation (R_*_JMP_SLOT) and each address will have a
1154   // corresponding entry in .glink for lazy resolution of the PLT.
1155   // ppc32 initialises the PLT to point at the .glink entry, while
1156   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1157   // linker adds a stub that loads the PLT entry into ctr then
1158   // branches to ctr.  There may be more than one stub for each PLT
1159   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1160   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1161   Output_data_plt_powerpc<size, big_endian>* plt_;
1162   // The IPLT section.  Like plt_, this is a container for a table of
1163   // addresses and their relocations, specifically for STT_GNU_IFUNC
1164   // functions that resolve locally (STT_GNU_IFUNC functions that
1165   // don't resolve locally go in PLT).  Unlike plt_, these have no
1166   // entry in .glink for lazy resolution, and the relocation section
1167   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1168   // the relocation section may contain relocations against
1169   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1170   // relocation section will appear at the end of other dynamic
1171   // relocations, so that ld.so applies these relocations after other
1172   // dynamic relocations.  In a static executable, the relocation
1173   // section is emitted and marked with __rela_iplt_start and
1174   // __rela_iplt_end symbols.
1175   Output_data_plt_powerpc<size, big_endian>* iplt_;
1176   // Section holding long branch destinations.
1177   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1178   // The .glink section.
1179   Output_data_glink<size, big_endian>* glink_;
1180   // The dynamic reloc section.
1181   Reloc_section* rela_dyn_;
1182   // Relocs saved to avoid a COPY reloc.
1183   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1184   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1185   unsigned int tlsld_got_offset_;
1186
1187   Stub_tables stub_tables_;
1188   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1189   Branch_lookup_table branch_lookup_table_;
1190
1191   typedef std::vector<Branch_info> Branches;
1192   Branches branch_info_;
1193
1194   bool plt_thread_safe_;
1195 };
1196
1197 template<>
1198 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1199 {
1200   32,                   // size
1201   true,                 // is_big_endian
1202   elfcpp::EM_PPC,       // machine_code
1203   false,                // has_make_symbol
1204   false,                // has_resolve
1205   false,                // has_code_fill
1206   true,                 // is_default_stack_executable
1207   false,                // can_icf_inline_merge_sections
1208   '\0',                 // wrap_char
1209   "/usr/lib/ld.so.1",   // dynamic_linker
1210   0x10000000,           // default_text_segment_address
1211   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1212   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1213   false,                // isolate_execinstr
1214   0,                    // rosegment_gap
1215   elfcpp::SHN_UNDEF,    // small_common_shndx
1216   elfcpp::SHN_UNDEF,    // large_common_shndx
1217   0,                    // small_common_section_flags
1218   0,                    // large_common_section_flags
1219   NULL,                 // attributes_section
1220   NULL,                 // attributes_vendor
1221   "_start"              // entry_symbol_name
1222 };
1223
1224 template<>
1225 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1226 {
1227   32,                   // size
1228   false,                // is_big_endian
1229   elfcpp::EM_PPC,       // machine_code
1230   false,                // has_make_symbol
1231   false,                // has_resolve
1232   false,                // has_code_fill
1233   true,                 // is_default_stack_executable
1234   false,                // can_icf_inline_merge_sections
1235   '\0',                 // wrap_char
1236   "/usr/lib/ld.so.1",   // dynamic_linker
1237   0x10000000,           // default_text_segment_address
1238   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1239   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1240   false,                // isolate_execinstr
1241   0,                    // rosegment_gap
1242   elfcpp::SHN_UNDEF,    // small_common_shndx
1243   elfcpp::SHN_UNDEF,    // large_common_shndx
1244   0,                    // small_common_section_flags
1245   0,                    // large_common_section_flags
1246   NULL,                 // attributes_section
1247   NULL,                 // attributes_vendor
1248   "_start"              // entry_symbol_name
1249 };
1250
1251 template<>
1252 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1253 {
1254   64,                   // size
1255   true,                 // is_big_endian
1256   elfcpp::EM_PPC64,     // machine_code
1257   false,                // has_make_symbol
1258   false,                // has_resolve
1259   false,                // has_code_fill
1260   true,                 // is_default_stack_executable
1261   false,                // can_icf_inline_merge_sections
1262   '\0',                 // wrap_char
1263   "/usr/lib/ld.so.1",   // dynamic_linker
1264   0x10000000,           // default_text_segment_address
1265   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1266   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1267   false,                // isolate_execinstr
1268   0,                    // rosegment_gap
1269   elfcpp::SHN_UNDEF,    // small_common_shndx
1270   elfcpp::SHN_UNDEF,    // large_common_shndx
1271   0,                    // small_common_section_flags
1272   0,                    // large_common_section_flags
1273   NULL,                 // attributes_section
1274   NULL,                 // attributes_vendor
1275   "_start"              // entry_symbol_name
1276 };
1277
1278 template<>
1279 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1280 {
1281   64,                   // size
1282   false,                // is_big_endian
1283   elfcpp::EM_PPC64,     // machine_code
1284   false,                // has_make_symbol
1285   false,                // has_resolve
1286   false,                // has_code_fill
1287   true,                 // is_default_stack_executable
1288   false,                // can_icf_inline_merge_sections
1289   '\0',                 // wrap_char
1290   "/usr/lib/ld.so.1",   // dynamic_linker
1291   0x10000000,           // default_text_segment_address
1292   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1293   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1294   false,                // isolate_execinstr
1295   0,                    // rosegment_gap
1296   elfcpp::SHN_UNDEF,    // small_common_shndx
1297   elfcpp::SHN_UNDEF,    // large_common_shndx
1298   0,                    // small_common_section_flags
1299   0,                    // large_common_section_flags
1300   NULL,                 // attributes_section
1301   NULL,                 // attributes_vendor
1302   "_start"              // entry_symbol_name
1303 };
1304
1305 inline bool
1306 is_branch_reloc(unsigned int r_type)
1307 {
1308   return (r_type == elfcpp::R_POWERPC_REL24
1309           || r_type == elfcpp::R_PPC_PLTREL24
1310           || r_type == elfcpp::R_PPC_LOCAL24PC
1311           || r_type == elfcpp::R_POWERPC_REL14
1312           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1313           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1314           || r_type == elfcpp::R_POWERPC_ADDR24
1315           || r_type == elfcpp::R_POWERPC_ADDR14
1316           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1317           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1318 }
1319
1320 // If INSN is an opcode that may be used with an @tls operand, return
1321 // the transformed insn for TLS optimisation, otherwise return 0.  If
1322 // REG is non-zero only match an insn with RB or RA equal to REG.
1323 uint32_t
1324 at_tls_transform(uint32_t insn, unsigned int reg)
1325 {
1326   if ((insn & (0x3f << 26)) != 31 << 26)
1327     return 0;
1328
1329   unsigned int rtra;
1330   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1331     rtra = insn & ((1 << 26) - (1 << 16));
1332   else if (((insn >> 16) & 0x1f) == reg)
1333     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1334   else
1335     return 0;
1336
1337   if ((insn & (0x3ff << 1)) == 266 << 1)
1338     // add -> addi
1339     insn = 14 << 26;
1340   else if ((insn & (0x1f << 1)) == 23 << 1
1341            && ((insn & (0x1f << 6)) < 14 << 6
1342                || ((insn & (0x1f << 6)) >= 16 << 6
1343                    && (insn & (0x1f << 6)) < 24 << 6)))
1344     // load and store indexed -> dform
1345     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1346   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1347     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1348     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1349   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1350     // lwax -> lwa
1351     insn = (58 << 26) | 2;
1352   else
1353     return 0;
1354   insn |= rtra;
1355   return insn;
1356 }
1357
1358 // Modified version of symtab.h class Symbol member
1359 // Given a direct absolute or pc-relative static relocation against
1360 // the global symbol, this function returns whether a dynamic relocation
1361 // is needed.
1362
1363 template<int size>
1364 bool
1365 needs_dynamic_reloc(const Symbol* gsym, int flags)
1366 {
1367   // No dynamic relocations in a static link!
1368   if (parameters->doing_static_link())
1369     return false;
1370
1371   // A reference to an undefined symbol from an executable should be
1372   // statically resolved to 0, and does not need a dynamic relocation.
1373   // This matches gnu ld behavior.
1374   if (gsym->is_undefined() && !parameters->options().shared())
1375     return false;
1376
1377   // A reference to an absolute symbol does not need a dynamic relocation.
1378   if (gsym->is_absolute())
1379     return false;
1380
1381   // An absolute reference within a position-independent output file
1382   // will need a dynamic relocation.
1383   if ((flags & Symbol::ABSOLUTE_REF)
1384       && parameters->options().output_is_position_independent())
1385     return true;
1386
1387   // A function call that can branch to a local PLT entry does not need
1388   // a dynamic relocation.
1389   if ((flags & Symbol::FUNCTION_CALL) && gsym->has_plt_offset())
1390     return false;
1391
1392   // A reference to any PLT entry in a non-position-independent executable
1393   // does not need a dynamic relocation.
1394   // Except due to having function descriptors on powerpc64 we don't define
1395   // functions to their plt code in an executable, so this doesn't apply.
1396   if (size == 32
1397       && !parameters->options().output_is_position_independent()
1398       && gsym->has_plt_offset())
1399     return false;
1400
1401   // A reference to a symbol defined in a dynamic object or to a
1402   // symbol that is preemptible will need a dynamic relocation.
1403   if (gsym->is_from_dynobj()
1404       || gsym->is_undefined()
1405       || gsym->is_preemptible())
1406     return true;
1407
1408   // For all other cases, return FALSE.
1409   return false;
1410 }
1411
1412 // Modified version of symtab.h class Symbol member
1413 // Whether we should use the PLT offset associated with a symbol for
1414 // a relocation.  FLAGS is a set of Reference_flags.
1415
1416 template<int size>
1417 bool
1418 use_plt_offset(const Symbol* gsym, int flags)
1419 {
1420   // If the symbol doesn't have a PLT offset, then naturally we
1421   // don't want to use it.
1422   if (!gsym->has_plt_offset())
1423     return false;
1424
1425   // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
1426   if (gsym->type() == elfcpp::STT_GNU_IFUNC)
1427     return true;
1428
1429   // If we are going to generate a dynamic relocation, then we will
1430   // wind up using that, so no need to use the PLT entry.
1431   if (needs_dynamic_reloc<size>(gsym, flags))
1432     return false;
1433
1434   // If the symbol is from a dynamic object, we need to use the PLT
1435   // entry.
1436   if (gsym->is_from_dynobj())
1437     return true;
1438
1439   // If we are generating a shared object, and this symbol is
1440   // undefined or preemptible, we need to use the PLT entry.
1441   if (parameters->options().shared()
1442       && (gsym->is_undefined() || gsym->is_preemptible()))
1443     return true;
1444
1445   // If this is a call to a weak undefined symbol, we need to use
1446   // the PLT entry; the symbol may be defined by a library loaded
1447   // at runtime.
1448   if ((flags & Symbol::FUNCTION_CALL) && gsym->is_weak_undefined())
1449     return true;
1450
1451   // Otherwise we can use the regular definition.
1452   return false;
1453 }
1454
1455 template<int size, bool big_endian>
1456 class Powerpc_relocate_functions
1457 {
1458 public:
1459   enum Overflow_check
1460   {
1461     CHECK_NONE,
1462     CHECK_SIGNED,
1463     CHECK_BITFIELD
1464   };
1465
1466   enum Status
1467   {
1468     STATUS_OK,
1469     STATUS_OVERFLOW
1470   };
1471
1472 private:
1473   typedef Powerpc_relocate_functions<size, big_endian> This;
1474   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1475
1476   template<int valsize>
1477   static inline bool
1478   has_overflow_signed(Address value)
1479   {
1480     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1481     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1482     limit <<= ((valsize - 1) >> 1);
1483     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1484     return value + limit > (limit << 1) - 1;
1485   }
1486
1487   template<int valsize>
1488   static inline bool
1489   has_overflow_bitfield(Address value)
1490   {
1491     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1492     limit <<= ((valsize - 1) >> 1);
1493     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1494     return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
1495   }
1496
1497   template<int valsize>
1498   static inline Status
1499   overflowed(Address value, Overflow_check overflow)
1500   {
1501     if (overflow == CHECK_SIGNED)
1502       {
1503         if (has_overflow_signed<valsize>(value))
1504           return STATUS_OVERFLOW;
1505       }
1506     else if (overflow == CHECK_BITFIELD)
1507       {
1508         if (has_overflow_bitfield<valsize>(value))
1509           return STATUS_OVERFLOW;
1510       }
1511     return STATUS_OK;
1512   }
1513
1514   // Do a simple RELA relocation
1515   template<int valsize>
1516   static inline Status
1517   rela(unsigned char* view, Address value, Overflow_check overflow)
1518   {
1519     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1520     Valtype* wv = reinterpret_cast<Valtype*>(view);
1521     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1522     return overflowed<valsize>(value, overflow);
1523   }
1524
1525   template<int valsize>
1526   static inline Status
1527   rela(unsigned char* view,
1528        unsigned int right_shift,
1529        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1530        Address value,
1531        Overflow_check overflow)
1532   {
1533     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1534     Valtype* wv = reinterpret_cast<Valtype*>(view);
1535     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1536     Valtype reloc = value >> right_shift;
1537     val &= ~dst_mask;
1538     reloc &= dst_mask;
1539     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1540     return overflowed<valsize>(value >> right_shift, overflow);
1541   }
1542
1543   // Do a simple RELA relocation, unaligned.
1544   template<int valsize>
1545   static inline Status
1546   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1547   {
1548     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1549     return overflowed<valsize>(value, overflow);
1550   }
1551
1552   template<int valsize>
1553   static inline Status
1554   rela_ua(unsigned char* view,
1555           unsigned int right_shift,
1556           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1557           Address value,
1558           Overflow_check overflow)
1559   {
1560     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1561       Valtype;
1562     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1563     Valtype reloc = value >> right_shift;
1564     val &= ~dst_mask;
1565     reloc &= dst_mask;
1566     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1567     return overflowed<valsize>(value >> right_shift, overflow);
1568   }
1569
1570 public:
1571   // R_PPC64_ADDR64: (Symbol + Addend)
1572   static inline void
1573   addr64(unsigned char* view, Address value)
1574   { This::template rela<64>(view, value, CHECK_NONE); }
1575
1576   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1577   static inline void
1578   addr64_u(unsigned char* view, Address value)
1579   { This::template rela_ua<64>(view, value, CHECK_NONE); }
1580
1581   // R_POWERPC_ADDR32: (Symbol + Addend)
1582   static inline Status
1583   addr32(unsigned char* view, Address value, Overflow_check overflow)
1584   { return This::template rela<32>(view, value, overflow); }
1585
1586   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1587   static inline Status
1588   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1589   { return This::template rela_ua<32>(view, value, overflow); }
1590
1591   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1592   static inline Status
1593   addr24(unsigned char* view, Address value, Overflow_check overflow)
1594   {
1595     Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1596     if (overflow != CHECK_NONE && (value & 3) != 0)
1597       stat = STATUS_OVERFLOW;
1598     return stat;
1599   }
1600
1601   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1602   static inline Status
1603   addr16(unsigned char* view, Address value, Overflow_check overflow)
1604   { return This::template rela<16>(view, value, overflow); }
1605
1606   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1607   static inline Status
1608   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1609   { return This::template rela_ua<16>(view, value, overflow); }
1610
1611   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1612   static inline Status
1613   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1614   {
1615     Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1616     if (overflow != CHECK_NONE && (value & 3) != 0)
1617       stat = STATUS_OVERFLOW;
1618     return stat;
1619   }
1620
1621   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1622   static inline void
1623   addr16_hi(unsigned char* view, Address value)
1624   { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1625
1626   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1627   static inline void
1628   addr16_ha(unsigned char* view, Address value)
1629   { This::addr16_hi(view, value + 0x8000); }
1630
1631   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1632   static inline void
1633   addr16_hi2(unsigned char* view, Address value)
1634   { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1635
1636   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1637   static inline void
1638   addr16_ha2(unsigned char* view, Address value)
1639   { This::addr16_hi2(view, value + 0x8000); }
1640
1641   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1642   static inline void
1643   addr16_hi3(unsigned char* view, Address value)
1644   { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1645
1646   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1647   static inline void
1648   addr16_ha3(unsigned char* view, Address value)
1649   { This::addr16_hi3(view, value + 0x8000); }
1650
1651   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1652   static inline Status
1653   addr14(unsigned char* view, Address value, Overflow_check overflow)
1654   {
1655     Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1656     if (overflow != CHECK_NONE && (value & 3) != 0)
1657       stat = STATUS_OVERFLOW;
1658     return stat;
1659   }
1660 };
1661
1662 // Stash away the index of .got2 or .opd in a relocatable object, if
1663 // such a section exists.
1664
1665 template<int size, bool big_endian>
1666 bool
1667 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1668     Read_symbols_data* sd)
1669 {
1670   const unsigned char* const pshdrs = sd->section_headers->data();
1671   const unsigned char* namesu = sd->section_names->data();
1672   const char* names = reinterpret_cast<const char*>(namesu);
1673   section_size_type names_size = sd->section_names_size;
1674   const unsigned char* s;
1675
1676   s = this->template find_shdr<size, big_endian>(pshdrs,
1677                                                  size == 32 ? ".got2" : ".opd",
1678                                                  names, names_size, NULL);
1679   if (s != NULL)
1680     {
1681       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1682       this->special_ = ndx;
1683     }
1684   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1685 }
1686
1687 // Examine .rela.opd to build info about function entry points.
1688
1689 template<int size, bool big_endian>
1690 void
1691 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1692     size_t reloc_count,
1693     const unsigned char* prelocs,
1694     const unsigned char* plocal_syms)
1695 {
1696   if (size == 64)
1697     {
1698       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1699         Reltype;
1700       const int reloc_size
1701         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1702       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1703       Address expected_off = 0;
1704       bool regular = true;
1705       unsigned int opd_ent_size = 0;
1706
1707       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1708         {
1709           Reltype reloc(prelocs);
1710           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1711             = reloc.get_r_info();
1712           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1713           if (r_type == elfcpp::R_PPC64_ADDR64)
1714             {
1715               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1716               typename elfcpp::Elf_types<size>::Elf_Addr value;
1717               bool is_ordinary;
1718               unsigned int shndx;
1719               if (r_sym < this->local_symbol_count())
1720                 {
1721                   typename elfcpp::Sym<size, big_endian>
1722                     lsym(plocal_syms + r_sym * sym_size);
1723                   shndx = lsym.get_st_shndx();
1724                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1725                   value = lsym.get_st_value();
1726                 }
1727               else
1728                 shndx = this->symbol_section_and_value(r_sym, &value,
1729                                                        &is_ordinary);
1730               this->set_opd_ent(reloc.get_r_offset(), shndx,
1731                                 value + reloc.get_r_addend());
1732               if (i == 2)
1733                 {
1734                   expected_off = reloc.get_r_offset();
1735                   opd_ent_size = expected_off;
1736                 }
1737               else if (expected_off != reloc.get_r_offset())
1738                 regular = false;
1739               expected_off += opd_ent_size;
1740             }
1741           else if (r_type == elfcpp::R_PPC64_TOC)
1742             {
1743               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1744                 regular = false;
1745             }
1746           else
1747             {
1748               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1749                            this->name().c_str(), r_type);
1750               regular = false;
1751             }
1752         }
1753       if (reloc_count <= 2)
1754         opd_ent_size = this->section_size(this->opd_shndx());
1755       if (opd_ent_size != 24 && opd_ent_size != 16)
1756         regular = false;
1757       if (!regular)
1758         {
1759           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1760                        this->name().c_str());
1761           opd_ent_size = 0;
1762         }
1763     }
1764 }
1765
1766 template<int size, bool big_endian>
1767 void
1768 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1769 {
1770   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1771   if (size == 64)
1772     {
1773       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1774            p != rd->relocs.end();
1775            ++p)
1776         {
1777           if (p->data_shndx == this->opd_shndx())
1778             {
1779               uint64_t opd_size = this->section_size(this->opd_shndx());
1780               gold_assert(opd_size == static_cast<size_t>(opd_size));
1781               if (opd_size != 0)
1782                 {
1783                   this->init_opd(opd_size);
1784                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1785                                         rd->local_symbols->data());
1786                 }
1787               break;
1788             }
1789         }
1790     }
1791 }
1792
1793 // Call Sized_dynobj::do_read_symbols to read the symbols then
1794 // read .opd from a dynamic object, filling in opd_ent_ vector,
1795
1796 template<int size, bool big_endian>
1797 void
1798 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1799 {
1800   Sized_dynobj<size, big_endian>::do_read_symbols(sd);
1801   if (size == 64)
1802     {
1803       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1804       const unsigned char* const pshdrs = sd->section_headers->data();
1805       const unsigned char* namesu = sd->section_names->data();
1806       const char* names = reinterpret_cast<const char*>(namesu);
1807       const unsigned char* s = NULL;
1808       const unsigned char* opd;
1809       section_size_type opd_size;
1810
1811       // Find and read .opd section.
1812       while (1)
1813         {
1814           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1815                                                          sd->section_names_size,
1816                                                          s);
1817           if (s == NULL)
1818             return;
1819
1820           typename elfcpp::Shdr<size, big_endian> shdr(s);
1821           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1822               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1823             {
1824               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1825               this->opd_address_ = shdr.get_sh_addr();
1826               opd_size = convert_to_section_size_type(shdr.get_sh_size());
1827               opd = this->get_view(shdr.get_sh_offset(), opd_size,
1828                                    true, false);
1829               break;
1830             }
1831         }
1832
1833       // Build set of executable sections.
1834       // Using a set is probably overkill.  There is likely to be only
1835       // a few executable sections, typically .init, .text and .fini,
1836       // and they are generally grouped together.
1837       typedef std::set<Sec_info> Exec_sections;
1838       Exec_sections exec_sections;
1839       s = pshdrs;
1840       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1841         {
1842           typename elfcpp::Shdr<size, big_endian> shdr(s);
1843           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1844               && ((shdr.get_sh_flags()
1845                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1846                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1847               && shdr.get_sh_size() != 0)
1848             {
1849               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1850                                             shdr.get_sh_size(), i));
1851             }
1852         }
1853       if (exec_sections.empty())
1854         return;
1855
1856       // Look over the OPD entries.  This is complicated by the fact
1857       // that some binaries will use two-word entries while others
1858       // will use the standard three-word entries.  In most cases
1859       // the third word (the environment pointer for languages like
1860       // Pascal) is unused and will be zero.  If the third word is
1861       // used it should not be pointing into executable sections,
1862       // I think.
1863       this->init_opd(opd_size);
1864       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1865         {
1866           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1867           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1868           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1869           if (val == 0)
1870             // Chances are that this is the third word of an OPD entry.
1871             continue;
1872           typename Exec_sections::const_iterator e
1873             = exec_sections.upper_bound(Sec_info(val, 0, 0));
1874           if (e != exec_sections.begin())
1875             {
1876               --e;
1877               if (e->start <= val && val < e->start + e->len)
1878                 {
1879                   // We have an address in an executable section.
1880                   // VAL ought to be the function entry, set it up.
1881                   this->set_opd_ent(p - opd, e->shndx, val);
1882                   // Skip second word of OPD entry, the TOC pointer.
1883                   p += 8;
1884                 }
1885             }
1886           // If we didn't match any executable sections, we likely
1887           // have a non-zero third word in the OPD entry.
1888         }
1889     }
1890 }
1891
1892 // Set up some symbols.
1893
1894 template<int size, bool big_endian>
1895 void
1896 Target_powerpc<size, big_endian>::do_define_standard_symbols(
1897     Symbol_table* symtab,
1898     Layout* layout)
1899 {
1900   if (size == 32)
1901     {
1902       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
1903       // undefined when scanning relocs (and thus requires
1904       // non-relative dynamic relocs).  The proper value will be
1905       // updated later.
1906       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1907       if (gotsym != NULL && gotsym->is_undefined())
1908         {
1909           Target_powerpc<size, big_endian>* target =
1910             static_cast<Target_powerpc<size, big_endian>*>(
1911                 parameters->sized_target<size, big_endian>());
1912           Output_data_got_powerpc<size, big_endian>* got
1913             = target->got_section(symtab, layout);
1914           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1915                                         Symbol_table::PREDEFINED,
1916                                         got, 0, 0,
1917                                         elfcpp::STT_OBJECT,
1918                                         elfcpp::STB_LOCAL,
1919                                         elfcpp::STV_HIDDEN, 0,
1920                                         false, false);
1921         }
1922
1923       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
1924       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
1925       if (sdasym != NULL && sdasym->is_undefined())
1926         {
1927           Output_data_space* sdata = new Output_data_space(4, "** sdata");
1928           Output_section* os
1929             = layout->add_output_section_data(".sdata", 0,
1930                                               elfcpp::SHF_ALLOC
1931                                               | elfcpp::SHF_WRITE,
1932                                               sdata, ORDER_SMALL_DATA, false);
1933           symtab->define_in_output_data("_SDA_BASE_", NULL,
1934                                         Symbol_table::PREDEFINED,
1935                                         os, 32768, 0, elfcpp::STT_OBJECT,
1936                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
1937                                         0, false, false);
1938         }
1939     }
1940 }
1941
1942 // Set up PowerPC target specific relobj.
1943
1944 template<int size, bool big_endian>
1945 Object*
1946 Target_powerpc<size, big_endian>::do_make_elf_object(
1947     const std::string& name,
1948     Input_file* input_file,
1949     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1950 {
1951   int et = ehdr.get_e_type();
1952   // ET_EXEC files are valid input for --just-symbols/-R,
1953   // and we treat them as relocatable objects.
1954   if (et == elfcpp::ET_REL
1955       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
1956     {
1957       Powerpc_relobj<size, big_endian>* obj =
1958         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
1959       obj->setup();
1960       return obj;
1961     }
1962   else if (et == elfcpp::ET_DYN)
1963     {
1964       Powerpc_dynobj<size, big_endian>* obj =
1965         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1966       obj->setup();
1967       return obj;
1968     }
1969   else
1970     {
1971       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
1972       return NULL;
1973     }
1974 }
1975
1976 template<int size, bool big_endian>
1977 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
1978 {
1979 public:
1980   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1981   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1982
1983   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
1984     : Output_data_got<size, big_endian>(),
1985       symtab_(symtab), layout_(layout),
1986       header_ent_cnt_(size == 32 ? 3 : 1),
1987       header_index_(size == 32 ? 0x2000 : 0)
1988   { }
1989
1990   unsigned int
1991   add_constant_pair(Valtype c1, Valtype c2)
1992   {
1993     this->reserve_ent(2);
1994     unsigned int got_offset = this->add_constant(c1);
1995     this->add_constant(c2);
1996     return got_offset;
1997   }
1998
1999   // Offset of _GLOBAL_OFFSET_TABLE_.
2000   unsigned int
2001   g_o_t() const
2002   {
2003     return this->got_offset(this->header_index_);
2004   }
2005
2006   // Offset of base used to access the GOT/TOC.
2007   // The got/toc pointer reg will be set to this value.
2008   Valtype
2009   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2010   {
2011     if (size == 32)
2012       return this->g_o_t();
2013     else
2014       return (this->output_section()->address()
2015               + object->toc_base_offset()
2016               - this->address());
2017   }
2018
2019   // Ensure our GOT has a header.
2020   void
2021   set_final_data_size()
2022   {
2023     if (this->header_ent_cnt_ != 0)
2024       this->make_header();
2025     Output_data_got<size, big_endian>::set_final_data_size();
2026   }
2027
2028   // First word of GOT header needs some values that are not
2029   // handled by Output_data_got so poke them in here.
2030   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2031   void
2032   do_write(Output_file* of)
2033   {
2034     Valtype val = 0;
2035     if (size == 32 && this->layout_->dynamic_data() != NULL)
2036       val = this->layout_->dynamic_section()->address();
2037     if (size == 64)
2038       val = this->output_section()->address() + 0x8000;
2039     this->replace_constant(this->header_index_, val);
2040     Output_data_got<size, big_endian>::do_write(of);
2041   }
2042
2043 private:
2044   void
2045   reserve_ent(unsigned int cnt = 1)
2046   {
2047     if (this->header_ent_cnt_ == 0)
2048       return;
2049     if (this->num_entries() + cnt > this->header_index_)
2050       this->make_header();
2051   }
2052
2053   void
2054   make_header()
2055   {
2056     this->header_ent_cnt_ = 0;
2057     this->header_index_ = this->num_entries();
2058     if (size == 32)
2059       {
2060         Output_data_got<size, big_endian>::add_constant(0);
2061         Output_data_got<size, big_endian>::add_constant(0);
2062         Output_data_got<size, big_endian>::add_constant(0);
2063
2064         // Define _GLOBAL_OFFSET_TABLE_ at the header
2065         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2066         if (gotsym != NULL)
2067           {
2068             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2069             sym->set_value(this->g_o_t());
2070           }
2071         else
2072           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2073                                                Symbol_table::PREDEFINED,
2074                                                this, this->g_o_t(), 0,
2075                                                elfcpp::STT_OBJECT,
2076                                                elfcpp::STB_LOCAL,
2077                                                elfcpp::STV_HIDDEN, 0,
2078                                                false, false);
2079       }
2080     else
2081       Output_data_got<size, big_endian>::add_constant(0);
2082   }
2083
2084   // Stashed pointers.
2085   Symbol_table* symtab_;
2086   Layout* layout_;
2087
2088   // GOT header size.
2089   unsigned int header_ent_cnt_;
2090   // GOT header index.
2091   unsigned int header_index_;
2092 };
2093
2094 // Get the GOT section, creating it if necessary.
2095
2096 template<int size, bool big_endian>
2097 Output_data_got_powerpc<size, big_endian>*
2098 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2099                                               Layout* layout)
2100 {
2101   if (this->got_ == NULL)
2102     {
2103       gold_assert(symtab != NULL && layout != NULL);
2104
2105       this->got_
2106         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2107
2108       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2109                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2110                                       this->got_, ORDER_DATA, false);
2111     }
2112
2113   return this->got_;
2114 }
2115
2116 // Get the dynamic reloc section, creating it if necessary.
2117
2118 template<int size, bool big_endian>
2119 typename Target_powerpc<size, big_endian>::Reloc_section*
2120 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2121 {
2122   if (this->rela_dyn_ == NULL)
2123     {
2124       gold_assert(layout != NULL);
2125       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2126       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2127                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2128                                       ORDER_DYNAMIC_RELOCS, false);
2129     }
2130   return this->rela_dyn_;
2131 }
2132
2133 // Similarly, but for ifunc symbols get the one for ifunc.
2134
2135 template<int size, bool big_endian>
2136 typename Target_powerpc<size, big_endian>::Reloc_section*
2137 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2138                                                    Layout* layout,
2139                                                    bool for_ifunc)
2140 {
2141   if (!for_ifunc)
2142     return this->rela_dyn_section(layout);
2143
2144   if (this->iplt_ == NULL)
2145     this->make_iplt_section(symtab, layout);
2146   return this->iplt_->rel_plt();
2147 }
2148
2149 class Stub_control
2150 {
2151  public:
2152   // Determine the stub group size.  The group size is the absolute
2153   // value of the parameter --stub-group-size.  If --stub-group-size
2154   // is passed a negative value, we restrict stubs to be always before
2155   // the stubbed branches.
2156   Stub_control(int32_t size)
2157     : state_(NO_GROUP), stub_group_size_(abs(size)),
2158       stub14_group_size_(abs(size)),
2159       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2160       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2161   {
2162     if (stub_group_size_ == 1)
2163       {
2164         // Default values.
2165         if (stubs_always_before_branch_)
2166           {
2167             stub_group_size_ = 0x1e00000;
2168             stub14_group_size_ = 0x7800;
2169           }
2170         else
2171           {
2172             stub_group_size_ = 0x1c00000;
2173             stub14_group_size_ = 0x7000;
2174           }
2175         suppress_size_errors_ = true;
2176       }
2177   }
2178
2179   // Return true iff input section can be handled by current stub
2180   // group.
2181   bool
2182   can_add_to_stub_group(Output_section* o,
2183                         const Output_section::Input_section* i,
2184                         bool has14);
2185
2186   const Output_section::Input_section*
2187   owner()
2188   { return owner_; }
2189
2190   Output_section*
2191   output_section()
2192   { return output_section_; }
2193
2194  private:
2195   typedef enum
2196   {
2197     NO_GROUP,
2198     FINDING_STUB_SECTION,
2199     HAS_STUB_SECTION
2200   } State;
2201
2202   State state_;
2203   uint32_t stub_group_size_;
2204   uint32_t stub14_group_size_;
2205   bool stubs_always_before_branch_;
2206   bool suppress_size_errors_;
2207   uint64_t group_end_addr_;
2208   const Output_section::Input_section* owner_;
2209   Output_section* output_section_;
2210 };
2211
2212 // Return true iff input section can be handled by current stub
2213 // group.
2214
2215 bool
2216 Stub_control::can_add_to_stub_group(Output_section* o,
2217                                     const Output_section::Input_section* i,
2218                                     bool has14)
2219 {
2220   uint32_t group_size
2221     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2222   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2223   uint64_t this_size;
2224   uint64_t start_addr = o->address();
2225
2226   if (whole_sec)
2227     // .init and .fini sections are pasted together to form a single
2228     // function.  We can't be adding stubs in the middle of the function.
2229     this_size = o->data_size();
2230   else
2231     {
2232       start_addr += i->relobj()->output_section_offset(i->shndx());
2233       this_size = i->data_size();
2234     }
2235   uint64_t end_addr = start_addr + this_size;
2236   bool toobig = this_size > group_size;
2237
2238   if (toobig && !this->suppress_size_errors_)
2239     gold_warning(_("%s:%s exceeds group size"),
2240                  i->relobj()->name().c_str(),
2241                  i->relobj()->section_name(i->shndx()).c_str());
2242
2243   if (this->state_ != HAS_STUB_SECTION
2244       && (!whole_sec || this->output_section_ != o)
2245       && (this->state_ == NO_GROUP
2246           || this->group_end_addr_ - end_addr < group_size))
2247     {
2248       this->owner_ = i;
2249       this->output_section_ = o;
2250     }
2251
2252   if (this->state_ == NO_GROUP)
2253     {
2254       this->state_ = FINDING_STUB_SECTION;
2255       this->group_end_addr_ = end_addr;
2256     }
2257   else if (this->group_end_addr_ - start_addr < group_size)
2258     ;
2259   // Adding this section would make the group larger than GROUP_SIZE.
2260   else if (this->state_ == FINDING_STUB_SECTION
2261            && !this->stubs_always_before_branch_
2262            && !toobig)
2263     {
2264       // But wait, there's more!  Input sections up to GROUP_SIZE
2265       // bytes before the stub table can be handled by it too.
2266       this->state_ = HAS_STUB_SECTION;
2267       this->group_end_addr_ = end_addr;
2268     }
2269   else
2270     {
2271       this->state_ = NO_GROUP;
2272       return false;
2273     }
2274   return true;
2275 }
2276
2277 // Look over all the input sections, deciding where to place stubs.
2278
2279 template<int size, bool big_endian>
2280 void
2281 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2282                                                  const Task*)
2283 {
2284   Stub_control stub_control(parameters->options().stub_group_size());
2285
2286   // Group input sections and insert stub table
2287   Stub_table<size, big_endian>* stub_table = NULL;
2288   Layout::Section_list section_list;
2289   layout->get_executable_sections(&section_list);
2290   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2291   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2292        o != section_list.rend();
2293        ++o)
2294     {
2295       typedef Output_section::Input_section_list Input_section_list;
2296       for (Input_section_list::const_reverse_iterator i
2297              = (*o)->input_sections().rbegin();
2298            i != (*o)->input_sections().rend();
2299            ++i)
2300         {
2301           if (i->is_input_section())
2302             {
2303               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2304                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2305               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2306               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2307                 {
2308                   stub_table->init(stub_control.owner(),
2309                                    stub_control.output_section());
2310                   stub_table = NULL;
2311                 }
2312               if (stub_table == NULL)
2313                 stub_table = this->new_stub_table();
2314               ppcobj->set_stub_table(i->shndx(), stub_table);
2315             }
2316         }
2317     }
2318   if (stub_table != NULL)
2319     {
2320       const Output_section::Input_section* i = stub_control.owner();
2321       if (!i->is_input_section())
2322         {
2323           // Corner case.  A new stub group was made for the first
2324           // section (last one looked at here) for some reason, but
2325           // the first section is already being used as the owner for
2326           // a stub table for following sections.  Force it into that
2327           // stub group.
2328           gold_assert(this->stub_tables_.size() >= 2);
2329           this->stub_tables_.pop_back();
2330           delete stub_table;
2331           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2332             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2333           ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2334         }
2335       else
2336         stub_table->init(i, stub_control.output_section());
2337     }
2338 }
2339
2340 // If this branch needs a plt call stub, or a long branch stub, make one.
2341
2342 template<int size, bool big_endian>
2343 void
2344 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2345     Stub_table<size, big_endian>* stub_table,
2346     Stub_table<size, big_endian>* ifunc_stub_table,
2347     Symbol_table* symtab) const
2348 {
2349   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2350   if (sym != NULL && sym->is_forwarder())
2351     sym = symtab->resolve_forwards(sym);
2352   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2353   if (gsym != NULL
2354       ? use_plt_offset<size>(gsym, Scan::get_reference_flags(this->r_type_))
2355       : this->object_->local_has_plt_offset(this->r_sym_))
2356     {
2357       if (stub_table == NULL)
2358         stub_table = this->object_->stub_table(this->shndx_);
2359       if (stub_table == NULL)
2360         {
2361           // This is a ref from a data section to an ifunc symbol.
2362           stub_table = ifunc_stub_table;
2363         }
2364       gold_assert(stub_table != NULL);
2365       if (gsym != NULL)
2366         stub_table->add_plt_call_entry(this->object_, gsym,
2367                                        this->r_type_, this->addend_);
2368       else
2369         stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2370                                        this->r_type_, this->addend_);
2371     }
2372   else
2373     {
2374       unsigned int max_branch_offset;
2375       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2376           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2377           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2378         max_branch_offset = 1 << 15;
2379       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2380                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2381                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2382         max_branch_offset = 1 << 25;
2383       else
2384         return;
2385       Address from = this->object_->get_output_section_offset(this->shndx_);
2386       gold_assert(from != invalid_address);
2387       from += (this->object_->output_section(this->shndx_)->address()
2388                + this->offset_);
2389       Address to;
2390       if (gsym != NULL)
2391         {
2392           switch (gsym->source())
2393             {
2394             case Symbol::FROM_OBJECT:
2395               {
2396                 Object* symobj = gsym->object();
2397                 if (symobj->is_dynamic()
2398                     || symobj->pluginobj() != NULL)
2399                   return;
2400                 bool is_ordinary;
2401                 unsigned int shndx = gsym->shndx(&is_ordinary);
2402                 if (shndx == elfcpp::SHN_UNDEF)
2403                   return;
2404               }
2405               break;
2406
2407             case Symbol::IS_UNDEFINED:
2408               return;
2409
2410             default:
2411               break;
2412             }
2413           Symbol_table::Compute_final_value_status status;
2414           to = symtab->compute_final_value<size>(gsym, &status);
2415           if (status != Symbol_table::CFVS_OK)
2416             return;
2417         }
2418       else
2419         {
2420           const Symbol_value<size>* psymval
2421             = this->object_->local_symbol(this->r_sym_);
2422           Symbol_value<size> symval;
2423           typedef Sized_relobj_file<size, big_endian> ObjType;
2424           typename ObjType::Compute_final_local_value_status status
2425             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2426                                                        &symval, symtab);
2427           if (status != ObjType::CFLV_OK
2428               || !symval.has_output_value())
2429             return;
2430           to = symval.value(this->object_, 0);
2431         }
2432       to += this->addend_;
2433       if (stub_table == NULL)
2434         stub_table = this->object_->stub_table(this->shndx_);
2435       if (size == 64 && is_branch_reloc(this->r_type_))
2436         {
2437           unsigned int dest_shndx;
2438           Target_powerpc<size, big_endian>* target =
2439             static_cast<Target_powerpc<size, big_endian>*>(
2440                 parameters->sized_target<size, big_endian>());
2441           to = target->symval_for_branch(symtab, to, gsym,
2442                                          this->object_, &dest_shndx);
2443         }
2444       Address delta = to - from;
2445       if (delta + max_branch_offset >= 2 * max_branch_offset)
2446         {
2447           if (stub_table == NULL)
2448             {
2449               gold_warning(_("%s:%s: branch in non-executable section,"
2450                              " no long branch stub for you"),
2451                            this->object_->name().c_str(),
2452                            this->object_->section_name(this->shndx_).c_str());
2453               return;
2454             }
2455           stub_table->add_long_branch_entry(this->object_, to);
2456         }
2457     }
2458 }
2459
2460 // Relaxation hook.  This is where we do stub generation.
2461
2462 template<int size, bool big_endian>
2463 bool
2464 Target_powerpc<size, big_endian>::do_relax(int pass,
2465                                            const Input_objects*,
2466                                            Symbol_table* symtab,
2467                                            Layout* layout,
2468                                            const Task* task)
2469 {
2470   unsigned int prev_brlt_size = 0;
2471   if (pass == 1)
2472     {
2473       bool thread_safe = parameters->options().plt_thread_safe();
2474       if (size == 64 && !parameters->options().user_set_plt_thread_safe())
2475         {
2476           static const char* const thread_starter[] =
2477             {
2478               "pthread_create",
2479               /* libstdc++ */
2480               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2481               /* librt */
2482               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2483               "mq_notify", "create_timer",
2484               /* libanl */
2485               "getaddrinfo_a",
2486               /* libgomp */
2487               "GOMP_parallel_start",
2488               "GOMP_parallel_loop_static_start",
2489               "GOMP_parallel_loop_dynamic_start",
2490               "GOMP_parallel_loop_guided_start",
2491               "GOMP_parallel_loop_runtime_start",
2492               "GOMP_parallel_sections_start",
2493             };
2494
2495           if (parameters->options().shared())
2496             thread_safe = true;
2497           else
2498             {
2499               for (unsigned int i = 0;
2500                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2501                    i++)
2502                 {
2503                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2504                   thread_safe = (sym != NULL
2505                                  && sym->in_reg()
2506                                  && sym->in_real_elf());
2507                   if (thread_safe)
2508                     break;
2509                 }
2510             }
2511         }
2512       this->plt_thread_safe_ = thread_safe;
2513       this->group_sections(layout, task);
2514     }
2515
2516   // We need address of stub tables valid for make_stub.
2517   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2518        p != this->stub_tables_.end();
2519        ++p)
2520     {
2521       const Powerpc_relobj<size, big_endian>* object
2522         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2523       Address off = object->get_output_section_offset((*p)->shndx());
2524       gold_assert(off != invalid_address);
2525       Output_section* os = (*p)->output_section();
2526       (*p)->set_address_and_size(os, off);
2527     }
2528
2529   if (pass != 1)
2530     {
2531       // Clear plt call stubs, long branch stubs and branch lookup table.
2532       prev_brlt_size = this->branch_lookup_table_.size();
2533       this->branch_lookup_table_.clear();
2534       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2535            p != this->stub_tables_.end();
2536            ++p)
2537         {
2538           (*p)->clear_stubs();
2539         }
2540     }
2541
2542   // Build all the stubs.
2543   Stub_table<size, big_endian>* ifunc_stub_table
2544     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2545   Stub_table<size, big_endian>* one_stub_table
2546     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2547   for (typename Branches::const_iterator b = this->branch_info_.begin();
2548        b != this->branch_info_.end();
2549        b++)
2550     {
2551       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2552     }
2553
2554   // Did anything change size?
2555   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2556   bool again = num_huge_branches != prev_brlt_size;
2557   if (size == 64 && num_huge_branches != 0)
2558     this->make_brlt_section(layout);
2559   if (size == 64 && again)
2560     this->brlt_section_->set_current_size(num_huge_branches);
2561
2562   typedef Unordered_set<Output_section*> Output_sections;
2563   Output_sections os_need_update;
2564   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2565        p != this->stub_tables_.end();
2566        ++p)
2567     {
2568       if ((*p)->size_update())
2569         {
2570           again = true;
2571           (*p)->add_eh_frame(layout);
2572           os_need_update.insert((*p)->output_section());
2573         }
2574     }
2575
2576   // Set output section offsets for all input sections in an output
2577   // section that just changed size.  Anything past the stubs will
2578   // need updating.
2579   for (typename Output_sections::iterator p = os_need_update.begin();
2580        p != os_need_update.end();
2581        p++)
2582     {
2583       Output_section* os = *p;
2584       Address off = 0;
2585       typedef Output_section::Input_section_list Input_section_list;
2586       for (Input_section_list::const_iterator i = os->input_sections().begin();
2587            i != os->input_sections().end();
2588            ++i)
2589         {
2590           off = align_address(off, i->addralign());
2591           if (i->is_input_section() || i->is_relaxed_input_section())
2592             i->relobj()->set_section_offset(i->shndx(), off);
2593           if (i->is_relaxed_input_section())
2594             {
2595               Stub_table<size, big_endian>* stub_table
2596                 = static_cast<Stub_table<size, big_endian>*>(
2597                     i->relaxed_input_section());
2598               off += stub_table->set_address_and_size(os, off);
2599             }
2600           else
2601             off += i->data_size();
2602         }
2603       // If .branch_lt is part of this output section, then we have
2604       // just done the offset adjustment.
2605       os->clear_section_offsets_need_adjustment();
2606     }
2607
2608   if (size == 64
2609       && !again
2610       && num_huge_branches != 0
2611       && parameters->options().output_is_position_independent())
2612     {
2613       // Fill in the BRLT relocs.
2614       this->brlt_section_->reset_brlt_sizes();
2615       for (typename Branch_lookup_table::const_iterator p
2616              = this->branch_lookup_table_.begin();
2617            p != this->branch_lookup_table_.end();
2618            ++p)
2619         {
2620           this->brlt_section_->add_reloc(p->first, p->second);
2621         }
2622       this->brlt_section_->finalize_brlt_sizes();
2623     }
2624   return again;
2625 }
2626
2627 template<int size, bool big_endian>
2628 void
2629 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2630                                                       unsigned char* oview,
2631                                                       uint64_t* paddress,
2632                                                       off_t* plen) const
2633 {
2634   uint64_t address = plt->address();
2635   off_t len = plt->data_size();
2636
2637   if (plt == this->glink_)
2638     {
2639       // See Output_data_glink::do_write() for glink contents.
2640       if (size == 64)
2641         {
2642           // There is one word before __glink_PLTresolve
2643           address += 8;
2644           len -= 8;
2645         }
2646       else if (parameters->options().output_is_position_independent())
2647         {
2648           // There are two FDEs for a position independent glink.
2649           // The first covers the branch table, the second
2650           // __glink_PLTresolve at the end of glink.
2651           off_t resolve_size = this->glink_->pltresolve_size;
2652           if (oview[9] == 0)
2653             len -= resolve_size;
2654           else
2655             {
2656               address += len - resolve_size;
2657               len = resolve_size;
2658             }
2659         }
2660     }
2661   else
2662     {
2663       // Must be a stub table.
2664       const Stub_table<size, big_endian>* stub_table
2665         = static_cast<const Stub_table<size, big_endian>*>(plt);
2666       uint64_t stub_address = stub_table->stub_address();
2667       len -= stub_address - address;
2668       address = stub_address;
2669     }
2670
2671   *paddress = address;
2672   *plen = len;
2673 }
2674
2675 // A class to handle the PLT data.
2676
2677 template<int size, bool big_endian>
2678 class Output_data_plt_powerpc : public Output_section_data_build
2679 {
2680  public:
2681   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2682                             size, big_endian> Reloc_section;
2683
2684   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2685                           Reloc_section* plt_rel,
2686                           unsigned int reserved_size,
2687                           const char* name)
2688     : Output_section_data_build(size == 32 ? 4 : 8),
2689       rel_(plt_rel),
2690       targ_(targ),
2691       initial_plt_entry_size_(reserved_size),
2692       name_(name)
2693   { }
2694
2695   // Add an entry to the PLT.
2696   void
2697   add_entry(Symbol*);
2698
2699   void
2700   add_ifunc_entry(Symbol*);
2701
2702   void
2703   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2704
2705   // Return the .rela.plt section data.
2706   Reloc_section*
2707   rel_plt() const
2708   {
2709     return this->rel_;
2710   }
2711
2712   // Return the number of PLT entries.
2713   unsigned int
2714   entry_count() const
2715   {
2716     if (this->current_data_size() == 0)
2717       return 0;
2718     return ((this->current_data_size() - this->initial_plt_entry_size_)
2719             / plt_entry_size);
2720   }
2721
2722   // Return the offset of the first non-reserved PLT entry.
2723   unsigned int
2724   first_plt_entry_offset()
2725   { return this->initial_plt_entry_size_; }
2726
2727   // Return the size of a PLT entry.
2728   static unsigned int
2729   get_plt_entry_size()
2730   { return plt_entry_size; }
2731
2732  protected:
2733   void
2734   do_adjust_output_section(Output_section* os)
2735   {
2736     os->set_entsize(0);
2737   }
2738
2739   // Write to a map file.
2740   void
2741   do_print_to_mapfile(Mapfile* mapfile) const
2742   { mapfile->print_output_data(this, this->name_); }
2743
2744  private:
2745   // The size of an entry in the PLT.
2746   static const int plt_entry_size = size == 32 ? 4 : 24;
2747
2748   // Write out the PLT data.
2749   void
2750   do_write(Output_file*);
2751
2752   // The reloc section.
2753   Reloc_section* rel_;
2754   // Allows access to .glink for do_write.
2755   Target_powerpc<size, big_endian>* targ_;
2756   // The size of the first reserved entry.
2757   int initial_plt_entry_size_;
2758   // What to report in map file.
2759   const char *name_;
2760 };
2761
2762 // Add an entry to the PLT.
2763
2764 template<int size, bool big_endian>
2765 void
2766 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
2767 {
2768   if (!gsym->has_plt_offset())
2769     {
2770       section_size_type off = this->current_data_size();
2771       if (off == 0)
2772         off += this->first_plt_entry_offset();
2773       gsym->set_plt_offset(off);
2774       gsym->set_needs_dynsym_entry();
2775       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
2776       this->rel_->add_global(gsym, dynrel, this, off, 0);
2777       off += plt_entry_size;
2778       this->set_current_data_size(off);
2779     }
2780 }
2781
2782 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
2783
2784 template<int size, bool big_endian>
2785 void
2786 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
2787 {
2788   if (!gsym->has_plt_offset())
2789     {
2790       section_size_type off = this->current_data_size();
2791       gsym->set_plt_offset(off);
2792       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2793       if (size == 64)
2794         dynrel = elfcpp::R_PPC64_JMP_IREL;
2795       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
2796       off += plt_entry_size;
2797       this->set_current_data_size(off);
2798     }
2799 }
2800
2801 // Add an entry for a local ifunc symbol to the IPLT.
2802
2803 template<int size, bool big_endian>
2804 void
2805 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
2806     Sized_relobj_file<size, big_endian>* relobj,
2807     unsigned int local_sym_index)
2808 {
2809   if (!relobj->local_has_plt_offset(local_sym_index))
2810     {
2811       section_size_type off = this->current_data_size();
2812       relobj->set_local_plt_offset(local_sym_index, off);
2813       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2814       if (size == 64)
2815         dynrel = elfcpp::R_PPC64_JMP_IREL;
2816       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
2817                                               this, off, 0);
2818       off += plt_entry_size;
2819       this->set_current_data_size(off);
2820     }
2821 }
2822
2823 static const uint32_t add_0_11_11       = 0x7c0b5a14;
2824 static const uint32_t add_2_2_11        = 0x7c425a14;
2825 static const uint32_t add_3_3_2         = 0x7c631214;
2826 static const uint32_t add_3_3_13        = 0x7c636a14;
2827 static const uint32_t add_11_0_11       = 0x7d605a14;
2828 static const uint32_t add_12_2_11       = 0x7d825a14;
2829 static const uint32_t add_12_12_11      = 0x7d8c5a14;
2830 static const uint32_t addi_11_11        = 0x396b0000;
2831 static const uint32_t addi_12_12        = 0x398c0000;
2832 static const uint32_t addi_2_2          = 0x38420000;
2833 static const uint32_t addi_3_2          = 0x38620000;
2834 static const uint32_t addi_3_3          = 0x38630000;
2835 static const uint32_t addis_0_2         = 0x3c020000;
2836 static const uint32_t addis_0_13        = 0x3c0d0000;
2837 static const uint32_t addis_11_11       = 0x3d6b0000;
2838 static const uint32_t addis_11_30       = 0x3d7e0000;
2839 static const uint32_t addis_12_12       = 0x3d8c0000;
2840 static const uint32_t addis_12_2        = 0x3d820000;
2841 static const uint32_t addis_3_2         = 0x3c620000;
2842 static const uint32_t addis_3_13        = 0x3c6d0000;
2843 static const uint32_t b                 = 0x48000000;
2844 static const uint32_t bcl_20_31         = 0x429f0005;
2845 static const uint32_t bctr              = 0x4e800420;
2846 static const uint32_t blr               = 0x4e800020;
2847 static const uint32_t blrl              = 0x4e800021;
2848 static const uint32_t bnectr_p4         = 0x4ce20420;
2849 static const uint32_t cmpldi_2_0        = 0x28220000;
2850 static const uint32_t cror_15_15_15     = 0x4def7b82;
2851 static const uint32_t cror_31_31_31     = 0x4ffffb82;
2852 static const uint32_t ld_0_1            = 0xe8010000;
2853 static const uint32_t ld_0_12           = 0xe80c0000;
2854 static const uint32_t ld_11_12          = 0xe96c0000;
2855 static const uint32_t ld_11_2           = 0xe9620000;
2856 static const uint32_t ld_2_1            = 0xe8410000;
2857 static const uint32_t ld_2_11           = 0xe84b0000;
2858 static const uint32_t ld_2_12           = 0xe84c0000;
2859 static const uint32_t ld_2_2            = 0xe8420000;
2860 static const uint32_t lfd_0_1           = 0xc8010000;
2861 static const uint32_t li_0_0            = 0x38000000;
2862 static const uint32_t li_12_0           = 0x39800000;
2863 static const uint32_t lis_0_0           = 0x3c000000;
2864 static const uint32_t lis_11            = 0x3d600000;
2865 static const uint32_t lis_12            = 0x3d800000;
2866 static const uint32_t lwz_0_12          = 0x800c0000;
2867 static const uint32_t lwz_11_11         = 0x816b0000;
2868 static const uint32_t lwz_11_30         = 0x817e0000;
2869 static const uint32_t lwz_12_12         = 0x818c0000;
2870 static const uint32_t lwzu_0_12         = 0x840c0000;
2871 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
2872 static const uint32_t mflr_0            = 0x7c0802a6;
2873 static const uint32_t mflr_11           = 0x7d6802a6;
2874 static const uint32_t mflr_12           = 0x7d8802a6;
2875 static const uint32_t mtctr_0           = 0x7c0903a6;
2876 static const uint32_t mtctr_11          = 0x7d6903a6;
2877 static const uint32_t mtctr_12          = 0x7d8903a6;
2878 static const uint32_t mtlr_0            = 0x7c0803a6;
2879 static const uint32_t mtlr_12           = 0x7d8803a6;
2880 static const uint32_t nop               = 0x60000000;
2881 static const uint32_t ori_0_0_0         = 0x60000000;
2882 static const uint32_t std_0_1           = 0xf8010000;
2883 static const uint32_t std_0_12          = 0xf80c0000;
2884 static const uint32_t std_2_1           = 0xf8410000;
2885 static const uint32_t stfd_0_1          = 0xd8010000;
2886 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
2887 static const uint32_t sub_11_11_12      = 0x7d6c5850;
2888 static const uint32_t xor_11_11_11      = 0x7d6b5a78;
2889
2890 // Write out the PLT.
2891
2892 template<int size, bool big_endian>
2893 void
2894 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
2895 {
2896   if (size == 32 && this->name_[3] != 'I')
2897     {
2898       const section_size_type offset = this->offset();
2899       const section_size_type oview_size
2900         = convert_to_section_size_type(this->data_size());
2901       unsigned char* const oview = of->get_output_view(offset, oview_size);
2902       unsigned char* pov = oview;
2903       unsigned char* endpov = oview + oview_size;
2904
2905       // The address of the .glink branch table
2906       const Output_data_glink<size, big_endian>* glink
2907         = this->targ_->glink_section();
2908       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
2909
2910       while (pov < endpov)
2911         {
2912           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
2913           pov += 4;
2914           branch_tab += 4;
2915         }
2916
2917       of->write_output_view(offset, oview_size, oview);
2918     }
2919 }
2920
2921 // Create the PLT section.
2922
2923 template<int size, bool big_endian>
2924 void
2925 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
2926                                                    Layout* layout)
2927 {
2928   if (this->plt_ == NULL)
2929     {
2930       if (this->got_ == NULL)
2931         this->got_section(symtab, layout);
2932
2933       if (this->glink_ == NULL)
2934         make_glink_section(layout);
2935
2936       // Ensure that .rela.dyn always appears before .rela.plt  This is
2937       // necessary due to how, on PowerPC and some other targets, .rela.dyn
2938       // needs to include .rela.plt in its range.
2939       this->rela_dyn_section(layout);
2940
2941       Reloc_section* plt_rel = new Reloc_section(false);
2942       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
2943                                       elfcpp::SHF_ALLOC, plt_rel,
2944                                       ORDER_DYNAMIC_PLT_RELOCS, false);
2945       this->plt_
2946         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
2947                                                         size == 32 ? 0 : 24,
2948                                                         "** PLT");
2949       layout->add_output_section_data(".plt",
2950                                       (size == 32
2951                                        ? elfcpp::SHT_PROGBITS
2952                                        : elfcpp::SHT_NOBITS),
2953                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2954                                       this->plt_,
2955                                       (size == 32
2956                                        ? ORDER_SMALL_DATA
2957                                        : ORDER_SMALL_BSS),
2958                                       false);
2959     }
2960 }
2961
2962 // Create the IPLT section.
2963
2964 template<int size, bool big_endian>
2965 void
2966 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
2967                                                     Layout* layout)
2968 {
2969   if (this->iplt_ == NULL)
2970     {
2971       this->make_plt_section(symtab, layout);
2972
2973       Reloc_section* iplt_rel = new Reloc_section(false);
2974       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
2975       this->iplt_
2976         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
2977                                                         0, "** IPLT");
2978       this->plt_->output_section()->add_output_section_data(this->iplt_);
2979     }
2980 }
2981
2982 // A section for huge long branch addresses, similar to plt section.
2983
2984 template<int size, bool big_endian>
2985 class Output_data_brlt_powerpc : public Output_section_data_build
2986 {
2987  public:
2988   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2989   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2990                             size, big_endian> Reloc_section;
2991
2992   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
2993                            Reloc_section* brlt_rel)
2994     : Output_section_data_build(size == 32 ? 4 : 8),
2995       rel_(brlt_rel),
2996       targ_(targ)
2997   { }
2998
2999   void
3000   reset_brlt_sizes()
3001   {
3002     this->reset_data_size();
3003     this->rel_->reset_data_size();
3004   }
3005
3006   void
3007   finalize_brlt_sizes()
3008   {
3009     this->finalize_data_size();
3010     this->rel_->finalize_data_size();
3011   }
3012
3013   // Add a reloc for an entry in the BRLT.
3014   void
3015   add_reloc(Address to, unsigned int off)
3016   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3017
3018   // Update section and reloc section size.
3019   void
3020   set_current_size(unsigned int num_branches)
3021   {
3022     this->reset_address_and_file_offset();
3023     this->set_current_data_size(num_branches * 16);
3024     this->finalize_data_size();
3025     Output_section* os = this->output_section();
3026     os->set_section_offsets_need_adjustment();
3027     if (this->rel_ != NULL)
3028       {
3029         unsigned int reloc_size
3030           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3031         this->rel_->reset_address_and_file_offset();
3032         this->rel_->set_current_data_size(num_branches * reloc_size);
3033         this->rel_->finalize_data_size();
3034         Output_section* os = this->rel_->output_section();
3035         os->set_section_offsets_need_adjustment();
3036       }
3037   }
3038
3039  protected:
3040   void
3041   do_adjust_output_section(Output_section* os)
3042   {
3043     os->set_entsize(0);
3044   }
3045
3046   // Write to a map file.
3047   void
3048   do_print_to_mapfile(Mapfile* mapfile) const
3049   { mapfile->print_output_data(this, "** BRLT"); }
3050
3051  private:
3052   // Write out the BRLT data.
3053   void
3054   do_write(Output_file*);
3055
3056   // The reloc section.
3057   Reloc_section* rel_;
3058   Target_powerpc<size, big_endian>* targ_;
3059 };
3060
3061 // Make the branch lookup table section.
3062
3063 template<int size, bool big_endian>
3064 void
3065 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3066 {
3067   if (size == 64 && this->brlt_section_ == NULL)
3068     {
3069       Reloc_section* brlt_rel = NULL;
3070       bool is_pic = parameters->options().output_is_position_independent();
3071       if (is_pic)
3072         {
3073           // When PIC we can't fill in .branch_lt (like .plt it can be
3074           // a bss style section) but must initialise at runtime via
3075           // dynamic relocats.
3076           this->rela_dyn_section(layout);
3077           brlt_rel = new Reloc_section(false);
3078           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3079         }
3080       this->brlt_section_
3081         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3082       if (this->plt_ && is_pic)
3083         this->plt_->output_section()
3084           ->add_output_section_data(this->brlt_section_);
3085       else
3086         layout->add_output_section_data(".branch_lt",
3087                                         (is_pic ? elfcpp::SHT_NOBITS
3088                                          : elfcpp::SHT_PROGBITS),
3089                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3090                                         this->brlt_section_,
3091                                         (is_pic ? ORDER_SMALL_BSS
3092                                          : ORDER_SMALL_DATA),
3093                                         false);
3094     }
3095 }
3096
3097 // Write out .branch_lt when non-PIC.
3098
3099 template<int size, bool big_endian>
3100 void
3101 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3102 {
3103   if (size == 64 && !parameters->options().output_is_position_independent())
3104     {
3105       const section_size_type offset = this->offset();
3106       const section_size_type oview_size
3107         = convert_to_section_size_type(this->data_size());
3108       unsigned char* const oview = of->get_output_view(offset, oview_size);
3109
3110       this->targ_->write_branch_lookup_table(oview);
3111       of->write_output_view(offset, oview_size, oview);
3112     }
3113 }
3114
3115 static inline uint32_t
3116 l(uint32_t a)
3117 {
3118   return a & 0xffff;
3119 }
3120
3121 static inline uint32_t
3122 hi(uint32_t a)
3123 {
3124   return l(a >> 16);
3125 }
3126
3127 static inline uint32_t
3128 ha(uint32_t a)
3129 {
3130   return hi(a + 0x8000);
3131 }
3132
3133 template<int size>
3134 struct Eh_cie
3135 {
3136   static const unsigned char eh_frame_cie[12];
3137 };
3138
3139 template<int size>
3140 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3141 {
3142   1,                                    // CIE version.
3143   'z', 'R', 0,                          // Augmentation string.
3144   4,                                    // Code alignment.
3145   0x80 - size / 8 ,                     // Data alignment.
3146   65,                                   // RA reg.
3147   1,                                    // Augmentation size.
3148   (elfcpp::DW_EH_PE_pcrel
3149    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3150   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3151 };
3152
3153 // Describe __glink_PLTresolve use of LR, 64-bit version.
3154 static const unsigned char glink_eh_frame_fde_64[] =
3155 {
3156   0, 0, 0, 0,                           // Replaced with offset to .glink.
3157   0, 0, 0, 0,                           // Replaced with size of .glink.
3158   0,                                    // Augmentation size.
3159   elfcpp::DW_CFA_advance_loc + 1,
3160   elfcpp::DW_CFA_register, 65, 12,
3161   elfcpp::DW_CFA_advance_loc + 4,
3162   elfcpp::DW_CFA_restore_extended, 65
3163 };
3164
3165 // Describe __glink_PLTresolve use of LR, 32-bit version.
3166 static const unsigned char glink_eh_frame_fde_32[] =
3167 {
3168   0, 0, 0, 0,                           // Replaced with offset to .glink.
3169   0, 0, 0, 0,                           // Replaced with size of .glink.
3170   0,                                    // Augmentation size.
3171   elfcpp::DW_CFA_advance_loc + 2,
3172   elfcpp::DW_CFA_register, 65, 0,
3173   elfcpp::DW_CFA_advance_loc + 4,
3174   elfcpp::DW_CFA_restore_extended, 65
3175 };
3176
3177 static const unsigned char default_fde[] =
3178 {
3179   0, 0, 0, 0,                           // Replaced with offset to stubs.
3180   0, 0, 0, 0,                           // Replaced with size of stubs.
3181   0,                                    // Augmentation size.
3182   elfcpp::DW_CFA_nop,                   // Pad.
3183   elfcpp::DW_CFA_nop,
3184   elfcpp::DW_CFA_nop
3185 };
3186
3187 template<bool big_endian>
3188 static inline void
3189 write_insn(unsigned char* p, uint32_t v)
3190 {
3191   elfcpp::Swap<32, big_endian>::writeval(p, v);
3192 }
3193
3194 // Stub_table holds information about plt and long branch stubs.
3195 // Stubs are built in an area following some input section determined
3196 // by group_sections().  This input section is converted to a relaxed
3197 // input section allowing it to be resized to accommodate the stubs
3198
3199 template<int size, bool big_endian>
3200 class Stub_table : public Output_relaxed_input_section
3201 {
3202  public:
3203   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3204   static const Address invalid_address = static_cast<Address>(0) - 1;
3205
3206   Stub_table(Target_powerpc<size, big_endian>* targ)
3207     : Output_relaxed_input_section(NULL, 0, 0),
3208       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3209       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3210       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3211   { }
3212
3213   // Delayed Output_relaxed_input_section init.
3214   void
3215   init(const Output_section::Input_section*, Output_section*);
3216
3217   // Add a plt call stub.
3218   void
3219   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3220                      const Symbol*,
3221                      unsigned int,
3222                      Address);
3223
3224   void
3225   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3226                      unsigned int,
3227                      unsigned int,
3228                      Address);
3229
3230   // Find a given plt call stub.
3231   Address
3232   find_plt_call_entry(const Symbol*) const;
3233
3234   Address
3235   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3236                       unsigned int) const;
3237
3238   Address
3239   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3240                       const Symbol*,
3241                       unsigned int,
3242                       Address) const;
3243
3244   Address
3245   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3246                       unsigned int,
3247                       unsigned int,
3248                       Address) const;
3249
3250   // Add a long branch stub.
3251   void
3252   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3253
3254   Address
3255   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3256                          Address) const;
3257
3258   void
3259   clear_stubs()
3260   {
3261     this->plt_call_stubs_.clear();
3262     this->plt_size_ = 0;
3263     this->long_branch_stubs_.clear();
3264     this->branch_size_ = 0;
3265   }
3266
3267   Address
3268   set_address_and_size(const Output_section* os, Address off)
3269   {
3270     Address start_off = off;
3271     off += this->orig_data_size_;
3272     Address my_size = this->plt_size_ + this->branch_size_;
3273     if (my_size != 0)
3274       off = align_address(off, this->stub_align());
3275     // Include original section size and alignment padding in size
3276     my_size += off - start_off;
3277     this->reset_address_and_file_offset();
3278     this->set_current_data_size(my_size);
3279     this->set_address_and_file_offset(os->address() + start_off,
3280                                       os->offset() + start_off);
3281     return my_size;
3282   }
3283
3284   Address
3285   stub_address() const
3286   {
3287     return align_address(this->address() + this->orig_data_size_,
3288                          this->stub_align());
3289   }
3290
3291   Address
3292   stub_offset() const
3293   {
3294     return align_address(this->offset() + this->orig_data_size_,
3295                          this->stub_align());
3296   }
3297
3298   section_size_type
3299   plt_size() const
3300   { return this->plt_size_; }
3301
3302   bool
3303   size_update()
3304   {
3305     Output_section* os = this->output_section();
3306     if (os->addralign() < this->stub_align())
3307       {
3308         os->set_addralign(this->stub_align());
3309         // FIXME: get rid of the insane checkpointing.
3310         // We can't increase alignment of the input section to which
3311         // stubs are attached;  The input section may be .init which
3312         // is pasted together with other .init sections to form a
3313         // function.  Aligning might insert zero padding resulting in
3314         // sigill.  However we do need to increase alignment of the
3315         // output section so that the align_address() on offset in
3316         // set_address_and_size() adds the same padding as the
3317         // align_address() on address in stub_address().
3318         // What's more, we need this alignment for the layout done in
3319         // relaxation_loop_body() so that the output section starts at
3320         // a suitably aligned address.
3321         os->checkpoint_set_addralign(this->stub_align());
3322       }
3323     if (this->last_plt_size_ != this->plt_size_
3324         || this->last_branch_size_ != this->branch_size_)
3325       {
3326         this->last_plt_size_ = this->plt_size_;
3327         this->last_branch_size_ = this->branch_size_;
3328         return true;
3329       }
3330     return false;
3331   }
3332
3333   // Add .eh_frame info for this stub section.  Unlike other linker
3334   // generated .eh_frame this is added late in the link, because we
3335   // only want the .eh_frame info if this particular stub section is
3336   // non-empty.
3337   void
3338   add_eh_frame(Layout* layout)
3339   {
3340     if (!this->eh_frame_added_)
3341       {
3342         if (!parameters->options().ld_generated_unwind_info())
3343           return;
3344
3345         // Since we add stub .eh_frame info late, it must be placed
3346         // after all other linker generated .eh_frame info so that
3347         // merge mapping need not be updated for input sections.
3348         // There is no provision to use a different CIE to that used
3349         // by .glink.
3350         if (!this->targ_->has_glink())
3351           return;
3352
3353         layout->add_eh_frame_for_plt(this,
3354                                      Eh_cie<size>::eh_frame_cie,
3355                                      sizeof (Eh_cie<size>::eh_frame_cie),
3356                                      default_fde,
3357                                      sizeof (default_fde));
3358         this->eh_frame_added_ = true;
3359       }
3360   }
3361
3362   Target_powerpc<size, big_endian>*
3363   targ() const
3364   { return targ_; }
3365
3366  private:
3367   class Plt_stub_ent;
3368   class Plt_stub_ent_hash;
3369   typedef Unordered_map<Plt_stub_ent, unsigned int,
3370                         Plt_stub_ent_hash> Plt_stub_entries;
3371
3372   // Alignment of stub section.
3373   unsigned int
3374   stub_align() const
3375   {
3376     if (size == 32)
3377       return 16;
3378     unsigned int min_align = 32;
3379     unsigned int user_align = 1 << parameters->options().plt_align();
3380     return std::max(user_align, min_align);
3381   }
3382
3383   // Return the plt offset for the given call stub.
3384   Address
3385   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3386   {
3387     const Symbol* gsym = p->first.sym_;
3388     if (gsym != NULL)
3389       {
3390         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3391                     && gsym->can_use_relative_reloc(false));
3392         return gsym->plt_offset();
3393       }
3394     else
3395       {
3396         *is_iplt = true;
3397         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3398         unsigned int local_sym_index = p->first.locsym_;
3399         return relobj->local_plt_offset(local_sym_index);
3400       }
3401   }
3402
3403   // Size of a given plt call stub.
3404   unsigned int
3405   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3406   {
3407     if (size == 32)
3408       return 16;
3409
3410     bool is_iplt;
3411     Address plt_addr = this->plt_off(p, &is_iplt);
3412     if (is_iplt)
3413       plt_addr += this->targ_->iplt_section()->address();
3414     else
3415       plt_addr += this->targ_->plt_section()->address();
3416     Address got_addr = this->targ_->got_section()->output_section()->address();
3417     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3418       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3419     got_addr += ppcobj->toc_base_offset();
3420     Address off = plt_addr - got_addr;
3421     bool static_chain = parameters->options().plt_static_chain();
3422     bool thread_safe = this->targ_->plt_thread_safe();
3423     unsigned int bytes = (4 * 5
3424                           + 4 * static_chain
3425                           + 8 * thread_safe
3426                           + 4 * (ha(off) != 0)
3427                           + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3428     unsigned int align = 1 << parameters->options().plt_align();
3429     if (align > 1)
3430       bytes = (bytes + align - 1) & -align;
3431     return bytes;
3432   }
3433
3434   // Return long branch stub size.
3435   unsigned int
3436   branch_stub_size(Address to)
3437   {
3438     Address loc
3439       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3440     if (to - loc + (1 << 25) < 2 << 25)
3441       return 4;
3442     if (size == 64 || !parameters->options().output_is_position_independent())
3443       return 16;
3444     return 32;
3445   }
3446
3447   // Write out stubs.
3448   void
3449   do_write(Output_file*);
3450
3451   // Plt call stub keys.
3452   class Plt_stub_ent
3453   {
3454   public:
3455     Plt_stub_ent(const Symbol* sym)
3456       : sym_(sym), object_(0), addend_(0), locsym_(0)
3457     { }
3458
3459     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3460                  unsigned int locsym_index)
3461       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3462     { }
3463
3464     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3465                  const Symbol* sym,
3466                  unsigned int r_type,
3467                  Address addend)
3468       : sym_(sym), object_(0), addend_(0), locsym_(0)
3469     {
3470       if (size != 32)
3471         this->addend_ = addend;
3472       else if (parameters->options().output_is_position_independent()
3473                && r_type == elfcpp::R_PPC_PLTREL24)
3474         {
3475           this->addend_ = addend;
3476           if (this->addend_ >= 32768)
3477             this->object_ = object;
3478         }
3479     }
3480
3481     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3482                  unsigned int locsym_index,
3483                  unsigned int r_type,
3484                  Address addend)
3485       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3486     {
3487       if (size != 32)
3488         this->addend_ = addend;
3489       else if (parameters->options().output_is_position_independent()
3490                && r_type == elfcpp::R_PPC_PLTREL24)
3491         this->addend_ = addend;
3492     }
3493
3494     bool operator==(const Plt_stub_ent& that) const
3495     {
3496       return (this->sym_ == that.sym_
3497               && this->object_ == that.object_
3498               && this->addend_ == that.addend_
3499               && this->locsym_ == that.locsym_);
3500     }
3501
3502     const Symbol* sym_;
3503     const Sized_relobj_file<size, big_endian>* object_;
3504     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3505     unsigned int locsym_;
3506   };
3507
3508   class Plt_stub_ent_hash
3509   {
3510   public:
3511     size_t operator()(const Plt_stub_ent& ent) const
3512     {
3513       return (reinterpret_cast<uintptr_t>(ent.sym_)
3514               ^ reinterpret_cast<uintptr_t>(ent.object_)
3515               ^ ent.addend_
3516               ^ ent.locsym_);
3517     }
3518   };
3519
3520   // Long branch stub keys.
3521   class Branch_stub_ent
3522   {
3523   public:
3524     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3525       : dest_(to), toc_base_off_(0)
3526     {
3527       if (size == 64)
3528         toc_base_off_ = obj->toc_base_offset();
3529     }
3530
3531     bool operator==(const Branch_stub_ent& that) const
3532     {
3533       return (this->dest_ == that.dest_
3534               && (size == 32
3535                   || this->toc_base_off_ == that.toc_base_off_));
3536     }
3537
3538     Address dest_;
3539     unsigned int toc_base_off_;
3540   };
3541
3542   class Branch_stub_ent_hash
3543   {
3544   public:
3545     size_t operator()(const Branch_stub_ent& ent) const
3546     { return ent.dest_ ^ ent.toc_base_off_; }
3547   };
3548
3549   // In a sane world this would be a global.
3550   Target_powerpc<size, big_endian>* targ_;
3551   // Map sym/object/addend to stub offset.
3552   Plt_stub_entries plt_call_stubs_;
3553   // Map destination address to stub offset.
3554   typedef Unordered_map<Branch_stub_ent, unsigned int,
3555                         Branch_stub_ent_hash> Branch_stub_entries;
3556   Branch_stub_entries long_branch_stubs_;
3557   // size of input section
3558   section_size_type orig_data_size_;
3559   // size of stubs
3560   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3561   // Whether .eh_frame info has been created for this stub section.
3562   bool eh_frame_added_;
3563 };
3564
3565 // Make a new stub table, and record.
3566
3567 template<int size, bool big_endian>
3568 Stub_table<size, big_endian>*
3569 Target_powerpc<size, big_endian>::new_stub_table()
3570 {
3571   Stub_table<size, big_endian>* stub_table
3572     = new Stub_table<size, big_endian>(this);
3573   this->stub_tables_.push_back(stub_table);
3574   return stub_table;
3575 }
3576
3577 // Delayed stub table initialisation, because we create the stub table
3578 // before we know to which section it will be attached.
3579
3580 template<int size, bool big_endian>
3581 void
3582 Stub_table<size, big_endian>::init(
3583     const Output_section::Input_section* owner,
3584     Output_section* output_section)
3585 {
3586   this->set_relobj(owner->relobj());
3587   this->set_shndx(owner->shndx());
3588   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3589   this->set_output_section(output_section);
3590   this->orig_data_size_ = owner->current_data_size();
3591
3592   std::vector<Output_relaxed_input_section*> new_relaxed;
3593   new_relaxed.push_back(this);
3594   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3595 }
3596
3597 // Add a plt call stub, if we do not already have one for this
3598 // sym/object/addend combo.
3599
3600 template<int size, bool big_endian>
3601 void
3602 Stub_table<size, big_endian>::add_plt_call_entry(
3603     const Sized_relobj_file<size, big_endian>* object,
3604     const Symbol* gsym,
3605     unsigned int r_type,
3606     Address addend)
3607 {
3608   Plt_stub_ent ent(object, gsym, r_type, addend);
3609   Address off = this->plt_size_;
3610   std::pair<typename Plt_stub_entries::iterator, bool> p
3611     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3612   if (p.second)
3613     this->plt_size_ = off + this->plt_call_size(p.first);
3614 }
3615
3616 template<int size, bool big_endian>
3617 void
3618 Stub_table<size, big_endian>::add_plt_call_entry(
3619     const Sized_relobj_file<size, big_endian>* object,
3620     unsigned int locsym_index,
3621     unsigned int r_type,
3622     Address addend)
3623 {
3624   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3625   Address off = this->plt_size_;
3626   std::pair<typename Plt_stub_entries::iterator, bool> p
3627     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3628   if (p.second)
3629     this->plt_size_ = off + this->plt_call_size(p.first);
3630 }
3631
3632 // Find a plt call stub.
3633
3634 template<int size, bool big_endian>
3635 typename Stub_table<size, big_endian>::Address
3636 Stub_table<size, big_endian>::find_plt_call_entry(
3637     const Sized_relobj_file<size, big_endian>* object,
3638     const Symbol* gsym,
3639     unsigned int r_type,
3640     Address addend) const
3641 {
3642   Plt_stub_ent ent(object, gsym, r_type, addend);
3643   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3644   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3645 }
3646
3647 template<int size, bool big_endian>
3648 typename Stub_table<size, big_endian>::Address
3649 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3650 {
3651   Plt_stub_ent ent(gsym);
3652   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3653   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3654 }
3655
3656 template<int size, bool big_endian>
3657 typename Stub_table<size, big_endian>::Address
3658 Stub_table<size, big_endian>::find_plt_call_entry(
3659     const Sized_relobj_file<size, big_endian>* object,
3660     unsigned int locsym_index,
3661     unsigned int r_type,
3662     Address addend) const
3663 {
3664   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3665   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3666   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3667 }
3668
3669 template<int size, bool big_endian>
3670 typename Stub_table<size, big_endian>::Address
3671 Stub_table<size, big_endian>::find_plt_call_entry(
3672     const Sized_relobj_file<size, big_endian>* object,
3673     unsigned int locsym_index) const
3674 {
3675   Plt_stub_ent ent(object, locsym_index);
3676   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3677   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3678 }
3679
3680 // Add a long branch stub if we don't already have one to given
3681 // destination.
3682
3683 template<int size, bool big_endian>
3684 void
3685 Stub_table<size, big_endian>::add_long_branch_entry(
3686     const Powerpc_relobj<size, big_endian>* object,
3687     Address to)
3688 {
3689   Branch_stub_ent ent(object, to);
3690   Address off = this->branch_size_;
3691   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3692     {
3693       unsigned int stub_size = this->branch_stub_size(to);
3694       this->branch_size_ = off + stub_size;
3695       if (size == 64 && stub_size != 4)
3696         this->targ_->add_branch_lookup_table(to);
3697     }
3698 }
3699
3700 // Find long branch stub.
3701
3702 template<int size, bool big_endian>
3703 typename Stub_table<size, big_endian>::Address
3704 Stub_table<size, big_endian>::find_long_branch_entry(
3705     const Powerpc_relobj<size, big_endian>* object,
3706     Address to) const
3707 {
3708   Branch_stub_ent ent(object, to);
3709   typename Branch_stub_entries::const_iterator p
3710     = this->long_branch_stubs_.find(ent);
3711   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3712 }
3713
3714 // A class to handle .glink.
3715
3716 template<int size, bool big_endian>
3717 class Output_data_glink : public Output_section_data
3718 {
3719  public:
3720   static const int pltresolve_size = 16*4;
3721
3722   Output_data_glink(Target_powerpc<size, big_endian>* targ)
3723     : Output_section_data(16), targ_(targ)
3724   { }
3725
3726   void
3727   add_eh_frame(Layout* layout)
3728   {
3729     if (!parameters->options().ld_generated_unwind_info())
3730       return;
3731
3732     if (size == 64)
3733       layout->add_eh_frame_for_plt(this,
3734                                    Eh_cie<64>::eh_frame_cie,
3735                                    sizeof (Eh_cie<64>::eh_frame_cie),
3736                                    glink_eh_frame_fde_64,
3737                                    sizeof (glink_eh_frame_fde_64));
3738     else
3739       {
3740         // 32-bit .glink can use the default since the CIE return
3741         // address reg, LR, is valid.
3742         layout->add_eh_frame_for_plt(this,
3743                                      Eh_cie<32>::eh_frame_cie,
3744                                      sizeof (Eh_cie<32>::eh_frame_cie),
3745                                      default_fde,
3746                                      sizeof (default_fde));
3747         // Except where LR is used in a PIC __glink_PLTresolve.
3748         if (parameters->options().output_is_position_independent())
3749           layout->add_eh_frame_for_plt(this,
3750                                        Eh_cie<32>::eh_frame_cie,
3751                                        sizeof (Eh_cie<32>::eh_frame_cie),
3752                                        glink_eh_frame_fde_32,
3753                                        sizeof (glink_eh_frame_fde_32));
3754       }
3755   }
3756
3757  protected:
3758   // Write to a map file.
3759   void
3760   do_print_to_mapfile(Mapfile* mapfile) const
3761   { mapfile->print_output_data(this, _("** glink")); }
3762
3763  private:
3764   void
3765   set_final_data_size();
3766
3767   // Write out .glink
3768   void
3769   do_write(Output_file*);
3770
3771   // Allows access to .got and .plt for do_write.
3772   Target_powerpc<size, big_endian>* targ_;
3773 };
3774
3775 template<int size, bool big_endian>
3776 void
3777 Output_data_glink<size, big_endian>::set_final_data_size()
3778 {
3779   unsigned int count = this->targ_->plt_entry_count();
3780   section_size_type total = 0;
3781
3782   if (count != 0)
3783     {
3784       if (size == 32)
3785         {
3786           // space for branch table
3787           total += 4 * (count - 1);
3788
3789           total += -total & 15;
3790           total += this->pltresolve_size;
3791         }
3792       else
3793         {
3794           total += this->pltresolve_size;
3795
3796           // space for branch table
3797           total += 8 * count;
3798           if (count > 0x8000)
3799             total += 4 * (count - 0x8000);
3800         }
3801     }
3802
3803   this->set_data_size(total);
3804 }
3805
3806 // Write out plt and long branch stub code.
3807
3808 template<int size, bool big_endian>
3809 void
3810 Stub_table<size, big_endian>::do_write(Output_file* of)
3811 {
3812   if (this->plt_call_stubs_.empty()
3813       && this->long_branch_stubs_.empty())
3814     return;
3815
3816   const section_size_type start_off = this->offset();
3817   const section_size_type off = this->stub_offset();
3818   const section_size_type oview_size =
3819     convert_to_section_size_type(this->data_size() - (off - start_off));
3820   unsigned char* const oview = of->get_output_view(off, oview_size);
3821   unsigned char* p;
3822
3823   if (size == 64)
3824     {
3825       const Output_data_got_powerpc<size, big_endian>* got
3826         = this->targ_->got_section();
3827       Address got_os_addr = got->output_section()->address();
3828
3829       if (!this->plt_call_stubs_.empty())
3830         {
3831           // The base address of the .plt section.
3832           Address plt_base = this->targ_->plt_section()->address();
3833           Address iplt_base = invalid_address;
3834
3835           // Write out plt call stubs.
3836           typename Plt_stub_entries::const_iterator cs;
3837           for (cs = this->plt_call_stubs_.begin();
3838                cs != this->plt_call_stubs_.end();
3839                ++cs)
3840             {
3841               bool is_iplt;
3842               Address pltoff = this->plt_off(cs, &is_iplt);
3843               Address plt_addr = pltoff;
3844               if (is_iplt)
3845                 {
3846                   if (iplt_base == invalid_address)
3847                     iplt_base = this->targ_->iplt_section()->address();
3848                   plt_addr += iplt_base;
3849                 }
3850               else
3851                 plt_addr += plt_base;
3852               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3853                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
3854               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
3855               Address off = plt_addr - got_addr;
3856
3857               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
3858                 gold_error(_("%s: linkage table error against `%s'"),
3859                            cs->first.object_->name().c_str(),
3860                            cs->first.sym_->demangled_name().c_str());
3861
3862               bool static_chain = parameters->options().plt_static_chain();
3863               bool thread_safe = this->targ_->plt_thread_safe();
3864               bool use_fake_dep = false;
3865               Address cmp_branch_off = 0;
3866               if (thread_safe)
3867                 {
3868                   unsigned int pltindex
3869                     = ((pltoff - this->targ_->first_plt_entry_offset())
3870                        / this->targ_->plt_entry_size());
3871                   Address glinkoff
3872                     = (this->targ_->glink_section()->pltresolve_size
3873                        + pltindex * 8);
3874                   if (pltindex > 32768)
3875                     glinkoff += (pltindex - 32768) * 4;
3876                   Address to
3877                     = this->targ_->glink_section()->address() + glinkoff;
3878                   Address from
3879                     = (this->stub_address() + cs->second + 24
3880                        + 4 * (ha(off) != 0)
3881                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
3882                        + 4 * static_chain);
3883                   cmp_branch_off = to - from;
3884                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
3885                 }
3886
3887               p = oview + cs->second;
3888               if (ha(off) != 0)
3889                 {
3890                   write_insn<big_endian>(p, std_2_1 + 40),              p += 4;
3891                   write_insn<big_endian>(p, addis_12_2 + ha(off)),      p += 4;
3892                   write_insn<big_endian>(p, ld_11_12 + l(off)),         p += 4;
3893                   if (ha(off + 8 + 8 * static_chain) != ha(off))
3894                     {
3895                       write_insn<big_endian>(p, addi_12_12 + l(off)),   p += 4;
3896                       off = 0;
3897                     }
3898                   write_insn<big_endian>(p, mtctr_11),                  p += 4;
3899                   if (use_fake_dep)
3900                     {
3901                       write_insn<big_endian>(p, xor_11_11_11),          p += 4;
3902                       write_insn<big_endian>(p, add_12_12_11),          p += 4;
3903                     }
3904                   write_insn<big_endian>(p, ld_2_12 + l(off + 8)),      p += 4;
3905                   if (static_chain)
3906                     write_insn<big_endian>(p, ld_11_12 + l(off + 16)),  p += 4;
3907                 }
3908               else
3909                 {
3910                   write_insn<big_endian>(p, std_2_1 + 40),              p += 4;
3911                   write_insn<big_endian>(p, ld_11_2 + l(off)),          p += 4;
3912                   if (ha(off + 8 + 8 * static_chain) != ha(off))
3913                     {
3914                       write_insn<big_endian>(p, addi_2_2 + l(off)),     p += 4;
3915                       off = 0;
3916                     }
3917                   write_insn<big_endian>(p, mtctr_11),                  p += 4;
3918                   if (use_fake_dep)
3919                     {
3920                       write_insn<big_endian>(p, xor_11_11_11),          p += 4;
3921                       write_insn<big_endian>(p, add_2_2_11),            p += 4;
3922                     }
3923                   if (static_chain)
3924                     write_insn<big_endian>(p, ld_11_2 + l(off + 16)),   p += 4;
3925                   write_insn<big_endian>(p, ld_2_2 + l(off + 8)),       p += 4;
3926                 }
3927               if (thread_safe && !use_fake_dep)
3928                 {
3929                   write_insn<big_endian>(p, cmpldi_2_0),                p += 4;
3930                   write_insn<big_endian>(p, bnectr_p4),                 p += 4;
3931                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
3932                 }
3933               else
3934                 write_insn<big_endian>(p, bctr);
3935             }
3936         }
3937
3938       // Write out long branch stubs.
3939       typename Branch_stub_entries::const_iterator bs;
3940       for (bs = this->long_branch_stubs_.begin();
3941            bs != this->long_branch_stubs_.end();
3942            ++bs)
3943         {
3944           p = oview + this->plt_size_ + bs->second;
3945           Address loc = this->stub_address() + this->plt_size_ + bs->second;
3946           Address delta = bs->first.dest_ - loc;
3947           if (delta + (1 << 25) < 2 << 25)
3948             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
3949           else
3950             {
3951               Address brlt_addr
3952                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
3953               gold_assert(brlt_addr != invalid_address);
3954               brlt_addr += this->targ_->brlt_section()->address();
3955               Address got_addr = got_os_addr + bs->first.toc_base_off_;
3956               Address brltoff = brlt_addr - got_addr;
3957               if (ha(brltoff) == 0)
3958                 {
3959                   write_insn<big_endian>(p, ld_11_2 + l(brltoff)),      p += 4;
3960                 }
3961               else
3962                 {
3963                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
3964                   write_insn<big_endian>(p, ld_11_12 + l(brltoff)),     p += 4;
3965                 }
3966               write_insn<big_endian>(p, mtctr_11),                      p += 4;
3967               write_insn<big_endian>(p, bctr);
3968             }
3969         }
3970     }
3971   else
3972     {
3973       if (!this->plt_call_stubs_.empty())
3974         {
3975           // The base address of the .plt section.
3976           Address plt_base = this->targ_->plt_section()->address();
3977           Address iplt_base = invalid_address;
3978           // The address of _GLOBAL_OFFSET_TABLE_.
3979           Address g_o_t = invalid_address;
3980
3981           // Write out plt call stubs.
3982           typename Plt_stub_entries::const_iterator cs;
3983           for (cs = this->plt_call_stubs_.begin();
3984                cs != this->plt_call_stubs_.end();
3985                ++cs)
3986             {
3987               bool is_iplt;
3988               Address plt_addr = this->plt_off(cs, &is_iplt);
3989               if (is_iplt)
3990                 {
3991                   if (iplt_base == invalid_address)
3992                     iplt_base = this->targ_->iplt_section()->address();
3993                   plt_addr += iplt_base;
3994                 }
3995               else
3996                 plt_addr += plt_base;
3997
3998               p = oview + cs->second;
3999               if (parameters->options().output_is_position_independent())
4000                 {
4001                   Address got_addr;
4002                   const Powerpc_relobj<size, big_endian>* ppcobj
4003                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4004                        (cs->first.object_));
4005                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4006                     {
4007                       unsigned int got2 = ppcobj->got2_shndx();
4008                       got_addr = ppcobj->get_output_section_offset(got2);
4009                       gold_assert(got_addr != invalid_address);
4010                       got_addr += (ppcobj->output_section(got2)->address()
4011                                    + cs->first.addend_);
4012                     }
4013                   else
4014                     {
4015                       if (g_o_t == invalid_address)
4016                         {
4017                           const Output_data_got_powerpc<size, big_endian>* got
4018                             = this->targ_->got_section();
4019                           g_o_t = got->address() + got->g_o_t();
4020                         }
4021                       got_addr = g_o_t;
4022                     }
4023
4024                   Address off = plt_addr - got_addr;
4025                   if (ha(off) == 0)
4026                     {
4027                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4028                       write_insn<big_endian>(p +  4, mtctr_11);
4029                       write_insn<big_endian>(p +  8, bctr);
4030                     }
4031                   else
4032                     {
4033                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4034                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4035                       write_insn<big_endian>(p +  8, mtctr_11);
4036                       write_insn<big_endian>(p + 12, bctr);
4037                     }
4038                 }
4039               else
4040                 {
4041                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4042                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4043                   write_insn<big_endian>(p +  8, mtctr_11);
4044                   write_insn<big_endian>(p + 12, bctr);
4045                 }
4046             }
4047         }
4048
4049       // Write out long branch stubs.
4050       typename Branch_stub_entries::const_iterator bs;
4051       for (bs = this->long_branch_stubs_.begin();
4052            bs != this->long_branch_stubs_.end();
4053            ++bs)
4054         {
4055           p = oview + this->plt_size_ + bs->second;
4056           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4057           Address delta = bs->first.dest_ - loc;
4058           if (delta + (1 << 25) < 2 << 25)
4059             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4060           else if (!parameters->options().output_is_position_independent())
4061             {
4062               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4063               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4064               write_insn<big_endian>(p +  8, mtctr_12);
4065               write_insn<big_endian>(p + 12, bctr);
4066             }
4067           else
4068             {
4069               delta -= 8;
4070               write_insn<big_endian>(p +  0, mflr_0);
4071               write_insn<big_endian>(p +  4, bcl_20_31);
4072               write_insn<big_endian>(p +  8, mflr_12);
4073               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4074               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4075               write_insn<big_endian>(p + 20, mtlr_0);
4076               write_insn<big_endian>(p + 24, mtctr_12);
4077               write_insn<big_endian>(p + 28, bctr);
4078             }
4079         }
4080     }
4081 }
4082
4083 // Write out .glink.
4084
4085 template<int size, bool big_endian>
4086 void
4087 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4088 {
4089   const section_size_type off = this->offset();
4090   const section_size_type oview_size =
4091     convert_to_section_size_type(this->data_size());
4092   unsigned char* const oview = of->get_output_view(off, oview_size);
4093   unsigned char* p;
4094
4095   // The base address of the .plt section.
4096   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4097   Address plt_base = this->targ_->plt_section()->address();
4098
4099   if (size == 64)
4100     {
4101       // Write pltresolve stub.
4102       p = oview;
4103       Address after_bcl = this->address() + 16;
4104       Address pltoff = plt_base - after_bcl;
4105
4106       elfcpp::Swap<64, big_endian>::writeval(p, pltoff),        p += 8;
4107
4108       write_insn<big_endian>(p, mflr_12),                       p += 4;
4109       write_insn<big_endian>(p, bcl_20_31),                     p += 4;
4110       write_insn<big_endian>(p, mflr_11),                       p += 4;
4111       write_insn<big_endian>(p, ld_2_11 + l(-16)),              p += 4;
4112       write_insn<big_endian>(p, mtlr_12),                       p += 4;
4113       write_insn<big_endian>(p, add_12_2_11),                   p += 4;
4114       write_insn<big_endian>(p, ld_11_12 + 0),                  p += 4;
4115       write_insn<big_endian>(p, ld_2_12 + 8),                   p += 4;
4116       write_insn<big_endian>(p, mtctr_11),                      p += 4;
4117       write_insn<big_endian>(p, ld_11_12 + 16),                 p += 4;
4118       write_insn<big_endian>(p, bctr),                          p += 4;
4119       while (p < oview + this->pltresolve_size)
4120         write_insn<big_endian>(p, nop), p += 4;
4121
4122       // Write lazy link call stubs.
4123       uint32_t indx = 0;
4124       while (p < oview + oview_size)
4125         {
4126           if (indx < 0x8000)
4127             {
4128               write_insn<big_endian>(p, li_0_0 + indx),                 p += 4;
4129             }
4130           else
4131             {
4132               write_insn<big_endian>(p, lis_0_0 + hi(indx)),            p += 4;
4133               write_insn<big_endian>(p, ori_0_0_0 + l(indx)),           p += 4;
4134             }
4135           uint32_t branch_off = 8 - (p - oview);
4136           write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),      p += 4;
4137           indx++;
4138         }
4139     }
4140   else
4141     {
4142       const Output_data_got_powerpc<size, big_endian>* got
4143         = this->targ_->got_section();
4144       // The address of _GLOBAL_OFFSET_TABLE_.
4145       Address g_o_t = got->address() + got->g_o_t();
4146
4147       // Write out pltresolve branch table.
4148       p = oview;
4149       unsigned int the_end = oview_size - this->pltresolve_size;
4150       unsigned char* end_p = oview + the_end;
4151       while (p < end_p - 8 * 4)
4152         write_insn<big_endian>(p, b + end_p - p), p += 4;
4153       while (p < end_p)
4154         write_insn<big_endian>(p, nop), p += 4;
4155
4156       // Write out pltresolve call stub.
4157       if (parameters->options().output_is_position_independent())
4158         {
4159           Address res0_off = 0;
4160           Address after_bcl_off = the_end + 12;
4161           Address bcl_res0 = after_bcl_off - res0_off;
4162
4163           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4164           write_insn<big_endian>(p +  4, mflr_0);
4165           write_insn<big_endian>(p +  8, bcl_20_31);
4166           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4167           write_insn<big_endian>(p + 16, mflr_12);
4168           write_insn<big_endian>(p + 20, mtlr_0);
4169           write_insn<big_endian>(p + 24, sub_11_11_12);
4170
4171           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4172
4173           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4174           if (ha(got_bcl) == ha(got_bcl + 4))
4175             {
4176               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4177               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4178             }
4179           else
4180             {
4181               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4182               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4183             }
4184           write_insn<big_endian>(p + 40, mtctr_0);
4185           write_insn<big_endian>(p + 44, add_0_11_11);
4186           write_insn<big_endian>(p + 48, add_11_0_11);
4187           write_insn<big_endian>(p + 52, bctr);
4188           write_insn<big_endian>(p + 56, nop);
4189           write_insn<big_endian>(p + 60, nop);
4190         }
4191       else
4192         {
4193           Address res0 = this->address();
4194
4195           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4196           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4197           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4198             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4199           else
4200             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4201           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4202           write_insn<big_endian>(p + 16, mtctr_0);
4203           write_insn<big_endian>(p + 20, add_0_11_11);
4204           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4205             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4206           else
4207             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4208           write_insn<big_endian>(p + 28, add_11_0_11);
4209           write_insn<big_endian>(p + 32, bctr);
4210           write_insn<big_endian>(p + 36, nop);
4211           write_insn<big_endian>(p + 40, nop);
4212           write_insn<big_endian>(p + 44, nop);
4213           write_insn<big_endian>(p + 48, nop);
4214           write_insn<big_endian>(p + 52, nop);
4215           write_insn<big_endian>(p + 56, nop);
4216           write_insn<big_endian>(p + 60, nop);
4217         }
4218       p += 64;
4219     }
4220
4221   of->write_output_view(off, oview_size, oview);
4222 }
4223
4224
4225 // A class to handle linker generated save/restore functions.
4226
4227 template<int size, bool big_endian>
4228 class Output_data_save_res : public Output_section_data_build
4229 {
4230  public:
4231   Output_data_save_res(Symbol_table* symtab);
4232
4233  protected:
4234   // Write to a map file.
4235   void
4236   do_print_to_mapfile(Mapfile* mapfile) const
4237   { mapfile->print_output_data(this, _("** save/restore")); }
4238
4239   void
4240   do_write(Output_file*);
4241
4242  private:
4243   // The maximum size of save/restore contents.
4244   static const unsigned int savres_max = 218*4;
4245
4246   void
4247   savres_define(Symbol_table* symtab,
4248                 const char *name,
4249                 unsigned int lo, unsigned int hi,
4250                 unsigned char* write_ent(unsigned char*, int),
4251                 unsigned char* write_tail(unsigned char*, int));
4252
4253   unsigned char *contents_;
4254 };
4255
4256 template<bool big_endian>
4257 static unsigned char*
4258 savegpr0(unsigned char* p, int r)
4259 {
4260   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4261   write_insn<big_endian>(p, insn);
4262   return p + 4;
4263 }
4264
4265 template<bool big_endian>
4266 static unsigned char*
4267 savegpr0_tail(unsigned char* p, int r)
4268 {
4269   p = savegpr0<big_endian>(p, r);
4270   uint32_t insn = std_0_1 + 16;
4271   write_insn<big_endian>(p, insn);
4272   p = p + 4;
4273   write_insn<big_endian>(p, blr);
4274   return p + 4;
4275 }
4276
4277 template<bool big_endian>
4278 static unsigned char*
4279 restgpr0(unsigned char* p, int r)
4280 {
4281   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4282   write_insn<big_endian>(p, insn);
4283   return p + 4;
4284 }
4285
4286 template<bool big_endian>
4287 static unsigned char*
4288 restgpr0_tail(unsigned char* p, int r)
4289 {
4290   uint32_t insn = ld_0_1 + 16;
4291   write_insn<big_endian>(p, insn);
4292   p = p + 4;
4293   p = restgpr0<big_endian>(p, r);
4294   write_insn<big_endian>(p, mtlr_0);
4295   p = p + 4;
4296   if (r == 29)
4297     {
4298       p = restgpr0<big_endian>(p, 30);
4299       p = restgpr0<big_endian>(p, 31);
4300     }
4301   write_insn<big_endian>(p, blr);
4302   return p + 4;
4303 }
4304
4305 template<bool big_endian>
4306 static unsigned char*
4307 savegpr1(unsigned char* p, int r)
4308 {
4309   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4310   write_insn<big_endian>(p, insn);
4311   return p + 4;
4312 }
4313
4314 template<bool big_endian>
4315 static unsigned char*
4316 savegpr1_tail(unsigned char* p, int r)
4317 {
4318   p = savegpr1<big_endian>(p, r);
4319   write_insn<big_endian>(p, blr);
4320   return p + 4;
4321 }
4322
4323 template<bool big_endian>
4324 static unsigned char*
4325 restgpr1(unsigned char* p, int r)
4326 {
4327   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4328   write_insn<big_endian>(p, insn);
4329   return p + 4;
4330 }
4331
4332 template<bool big_endian>
4333 static unsigned char*
4334 restgpr1_tail(unsigned char* p, int r)
4335 {
4336   p = restgpr1<big_endian>(p, r);
4337   write_insn<big_endian>(p, blr);
4338   return p + 4;
4339 }
4340
4341 template<bool big_endian>
4342 static unsigned char*
4343 savefpr(unsigned char* p, int r)
4344 {
4345   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4346   write_insn<big_endian>(p, insn);
4347   return p + 4;
4348 }
4349
4350 template<bool big_endian>
4351 static unsigned char*
4352 savefpr0_tail(unsigned char* p, int r)
4353 {
4354   p = savefpr<big_endian>(p, r);
4355   write_insn<big_endian>(p, std_0_1 + 16);
4356   p = p + 4;
4357   write_insn<big_endian>(p, blr);
4358   return p + 4;
4359 }
4360
4361 template<bool big_endian>
4362 static unsigned char*
4363 restfpr(unsigned char* p, int r)
4364 {
4365   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4366   write_insn<big_endian>(p, insn);
4367   return p + 4;
4368 }
4369
4370 template<bool big_endian>
4371 static unsigned char*
4372 restfpr0_tail(unsigned char* p, int r)
4373 {
4374   write_insn<big_endian>(p, ld_0_1 + 16);
4375   p = p + 4;
4376   p = restfpr<big_endian>(p, r);
4377   write_insn<big_endian>(p, mtlr_0);
4378   p = p + 4;
4379   if (r == 29)
4380     {
4381       p = restfpr<big_endian>(p, 30);
4382       p = restfpr<big_endian>(p, 31);
4383     }
4384   write_insn<big_endian>(p, blr);
4385   return p + 4;
4386 }
4387
4388 template<bool big_endian>
4389 static unsigned char*
4390 savefpr1_tail(unsigned char* p, int r)
4391 {
4392   p = savefpr<big_endian>(p, r);
4393   write_insn<big_endian>(p, blr);
4394   return p + 4;
4395 }
4396
4397 template<bool big_endian>
4398 static unsigned char*
4399 restfpr1_tail(unsigned char* p, int r)
4400 {
4401   p = restfpr<big_endian>(p, r);
4402   write_insn<big_endian>(p, blr);
4403   return p + 4;
4404 }
4405
4406 template<bool big_endian>
4407 static unsigned char*
4408 savevr(unsigned char* p, int r)
4409 {
4410   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4411   write_insn<big_endian>(p, insn);
4412   p = p + 4;
4413   insn = stvx_0_12_0 + (r << 21);
4414   write_insn<big_endian>(p, insn);
4415   return p + 4;
4416 }
4417
4418 template<bool big_endian>
4419 static unsigned char*
4420 savevr_tail(unsigned char* p, int r)
4421 {
4422   p = savevr<big_endian>(p, r);
4423   write_insn<big_endian>(p, blr);
4424   return p + 4;
4425 }
4426
4427 template<bool big_endian>
4428 static unsigned char*
4429 restvr(unsigned char* p, int r)
4430 {
4431   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4432   write_insn<big_endian>(p, insn);
4433   p = p + 4;
4434   insn = lvx_0_12_0 + (r << 21);
4435   write_insn<big_endian>(p, insn);
4436   return p + 4;
4437 }
4438
4439 template<bool big_endian>
4440 static unsigned char*
4441 restvr_tail(unsigned char* p, int r)
4442 {
4443   p = restvr<big_endian>(p, r);
4444   write_insn<big_endian>(p, blr);
4445   return p + 4;
4446 }
4447
4448
4449 template<int size, bool big_endian>
4450 Output_data_save_res<size, big_endian>::Output_data_save_res(
4451     Symbol_table* symtab)
4452   : Output_section_data_build(4),
4453     contents_(NULL)
4454 {
4455   this->savres_define(symtab,
4456                       "_savegpr0_", 14, 31,
4457                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4458   this->savres_define(symtab,
4459                       "_restgpr0_", 14, 29,
4460                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4461   this->savres_define(symtab,
4462                       "_restgpr0_", 30, 31,
4463                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4464   this->savres_define(symtab,
4465                       "_savegpr1_", 14, 31,
4466                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4467   this->savres_define(symtab,
4468                       "_restgpr1_", 14, 31,
4469                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4470   this->savres_define(symtab,
4471                       "_savefpr_", 14, 31,
4472                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4473   this->savres_define(symtab,
4474                       "_restfpr_", 14, 29,
4475                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4476   this->savres_define(symtab,
4477                       "_restfpr_", 30, 31,
4478                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4479   this->savres_define(symtab,
4480                       "._savef", 14, 31,
4481                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4482   this->savres_define(symtab,
4483                       "._restf", 14, 31,
4484                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4485   this->savres_define(symtab,
4486                       "_savevr_", 20, 31,
4487                       savevr<big_endian>, savevr_tail<big_endian>);
4488   this->savres_define(symtab,
4489                       "_restvr_", 20, 31,
4490                       restvr<big_endian>, restvr_tail<big_endian>);
4491 }
4492
4493 template<int size, bool big_endian>
4494 void
4495 Output_data_save_res<size, big_endian>::savres_define(
4496     Symbol_table* symtab,
4497     const char *name,
4498     unsigned int lo, unsigned int hi,
4499     unsigned char* write_ent(unsigned char*, int),
4500     unsigned char* write_tail(unsigned char*, int))
4501 {
4502   size_t len = strlen(name);
4503   bool writing = false;
4504   char sym[16];
4505
4506   memcpy(sym, name, len);
4507   sym[len + 2] = 0;
4508
4509   for (unsigned int i = lo; i <= hi; i++)
4510     {
4511       sym[len + 0] = i / 10 + '0';
4512       sym[len + 1] = i % 10 + '0';
4513       Symbol* gsym = symtab->lookup(sym);
4514       bool refd = gsym != NULL && gsym->is_undefined();
4515       writing = writing || refd;
4516       if (writing)
4517         {
4518           if (this->contents_ == NULL)
4519             this->contents_ = new unsigned char[this->savres_max];
4520
4521           section_size_type value = this->current_data_size();
4522           unsigned char* p = this->contents_ + value;
4523           if (i != hi)
4524             p = write_ent(p, i);
4525           else
4526             p = write_tail(p, i);
4527           section_size_type cur_size = p - this->contents_;
4528           this->set_current_data_size(cur_size);
4529           if (refd)
4530             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4531                                           this, value, cur_size - value,
4532                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4533                                           elfcpp::STV_HIDDEN, 0, false, false);
4534         }
4535     }
4536 }
4537
4538 // Write out save/restore.
4539
4540 template<int size, bool big_endian>
4541 void
4542 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4543 {
4544   const section_size_type off = this->offset();
4545   const section_size_type oview_size =
4546     convert_to_section_size_type(this->data_size());
4547   unsigned char* const oview = of->get_output_view(off, oview_size);
4548   memcpy(oview, this->contents_, oview_size);
4549   of->write_output_view(off, oview_size, oview);
4550 }
4551
4552
4553 // Create the glink section.
4554
4555 template<int size, bool big_endian>
4556 void
4557 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4558 {
4559   if (this->glink_ == NULL)
4560     {
4561       this->glink_ = new Output_data_glink<size, big_endian>(this);
4562       this->glink_->add_eh_frame(layout);
4563       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4564                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4565                                       this->glink_, ORDER_TEXT, false);
4566     }
4567 }
4568
4569 // Create a PLT entry for a global symbol.
4570
4571 template<int size, bool big_endian>
4572 void
4573 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4574                                                  Layout* layout,
4575                                                  Symbol* gsym)
4576 {
4577   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4578       && gsym->can_use_relative_reloc(false))
4579     {
4580       if (this->iplt_ == NULL)
4581         this->make_iplt_section(symtab, layout);
4582       this->iplt_->add_ifunc_entry(gsym);
4583     }
4584   else
4585     {
4586       if (this->plt_ == NULL)
4587         this->make_plt_section(symtab, layout);
4588       this->plt_->add_entry(gsym);
4589     }
4590 }
4591
4592 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
4593
4594 template<int size, bool big_endian>
4595 void
4596 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
4597     Symbol_table* symtab,
4598     Layout* layout,
4599     Sized_relobj_file<size, big_endian>* relobj,
4600     unsigned int r_sym)
4601 {
4602   if (this->iplt_ == NULL)
4603     this->make_iplt_section(symtab, layout);
4604   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
4605 }
4606
4607 // Return the number of entries in the PLT.
4608
4609 template<int size, bool big_endian>
4610 unsigned int
4611 Target_powerpc<size, big_endian>::plt_entry_count() const
4612 {
4613   if (this->plt_ == NULL)
4614     return 0;
4615   return this->plt_->entry_count();
4616 }
4617
4618 // Return the offset of the first non-reserved PLT entry.
4619
4620 template<int size, bool big_endian>
4621 unsigned int
4622 Target_powerpc<size, big_endian>::first_plt_entry_offset() const
4623 {
4624   return this->plt_->first_plt_entry_offset();
4625 }
4626
4627 // Return the size of each PLT entry.
4628
4629 template<int size, bool big_endian>
4630 unsigned int
4631 Target_powerpc<size, big_endian>::plt_entry_size() const
4632 {
4633   return Output_data_plt_powerpc<size, big_endian>::get_plt_entry_size();
4634 }
4635
4636 // Create a GOT entry for local dynamic __tls_get_addr calls.
4637
4638 template<int size, bool big_endian>
4639 unsigned int
4640 Target_powerpc<size, big_endian>::tlsld_got_offset(
4641     Symbol_table* symtab,
4642     Layout* layout,
4643     Sized_relobj_file<size, big_endian>* object)
4644 {
4645   if (this->tlsld_got_offset_ == -1U)
4646     {
4647       gold_assert(symtab != NULL && layout != NULL && object != NULL);
4648       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
4649       Output_data_got_powerpc<size, big_endian>* got
4650         = this->got_section(symtab, layout);
4651       unsigned int got_offset = got->add_constant_pair(0, 0);
4652       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
4653                           got_offset, 0);
4654       this->tlsld_got_offset_ = got_offset;
4655     }
4656   return this->tlsld_got_offset_;
4657 }
4658
4659 // Get the Reference_flags for a particular relocation.
4660
4661 template<int size, bool big_endian>
4662 int
4663 Target_powerpc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
4664 {
4665   switch (r_type)
4666     {
4667     case elfcpp::R_POWERPC_NONE:
4668     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4669     case elfcpp::R_POWERPC_GNU_VTENTRY:
4670     case elfcpp::R_PPC64_TOC:
4671       // No symbol reference.
4672       return 0;
4673
4674     case elfcpp::R_PPC64_ADDR64:
4675     case elfcpp::R_PPC64_UADDR64:
4676     case elfcpp::R_POWERPC_ADDR32:
4677     case elfcpp::R_POWERPC_UADDR32:
4678     case elfcpp::R_POWERPC_ADDR16:
4679     case elfcpp::R_POWERPC_UADDR16:
4680     case elfcpp::R_POWERPC_ADDR16_LO:
4681     case elfcpp::R_POWERPC_ADDR16_HI:
4682     case elfcpp::R_POWERPC_ADDR16_HA:
4683       return Symbol::ABSOLUTE_REF;
4684
4685     case elfcpp::R_POWERPC_ADDR24:
4686     case elfcpp::R_POWERPC_ADDR14:
4687     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4688     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4689       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
4690
4691     case elfcpp::R_PPC64_REL64:
4692     case elfcpp::R_POWERPC_REL32:
4693     case elfcpp::R_PPC_LOCAL24PC:
4694     case elfcpp::R_POWERPC_REL16:
4695     case elfcpp::R_POWERPC_REL16_LO:
4696     case elfcpp::R_POWERPC_REL16_HI:
4697     case elfcpp::R_POWERPC_REL16_HA:
4698       return Symbol::RELATIVE_REF;
4699
4700     case elfcpp::R_POWERPC_REL24:
4701     case elfcpp::R_PPC_PLTREL24:
4702     case elfcpp::R_POWERPC_REL14:
4703     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4704     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4705       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
4706
4707     case elfcpp::R_POWERPC_GOT16:
4708     case elfcpp::R_POWERPC_GOT16_LO:
4709     case elfcpp::R_POWERPC_GOT16_HI:
4710     case elfcpp::R_POWERPC_GOT16_HA:
4711     case elfcpp::R_PPC64_GOT16_DS:
4712     case elfcpp::R_PPC64_GOT16_LO_DS:
4713     case elfcpp::R_PPC64_TOC16:
4714     case elfcpp::R_PPC64_TOC16_LO:
4715     case elfcpp::R_PPC64_TOC16_HI:
4716     case elfcpp::R_PPC64_TOC16_HA:
4717     case elfcpp::R_PPC64_TOC16_DS:
4718     case elfcpp::R_PPC64_TOC16_LO_DS:
4719       // Absolute in GOT.
4720       return Symbol::ABSOLUTE_REF;
4721
4722     case elfcpp::R_POWERPC_GOT_TPREL16:
4723     case elfcpp::R_POWERPC_TLS:
4724       return Symbol::TLS_REF;
4725
4726     case elfcpp::R_POWERPC_COPY:
4727     case elfcpp::R_POWERPC_GLOB_DAT:
4728     case elfcpp::R_POWERPC_JMP_SLOT:
4729     case elfcpp::R_POWERPC_RELATIVE:
4730     case elfcpp::R_POWERPC_DTPMOD:
4731     default:
4732       // Not expected.  We will give an error later.
4733       return 0;
4734     }
4735 }
4736
4737 // Report an unsupported relocation against a local symbol.
4738
4739 template<int size, bool big_endian>
4740 void
4741 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
4742     Sized_relobj_file<size, big_endian>* object,
4743     unsigned int r_type)
4744 {
4745   gold_error(_("%s: unsupported reloc %u against local symbol"),
4746              object->name().c_str(), r_type);
4747 }
4748
4749 // We are about to emit a dynamic relocation of type R_TYPE.  If the
4750 // dynamic linker does not support it, issue an error.
4751
4752 template<int size, bool big_endian>
4753 void
4754 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
4755                                                       unsigned int r_type)
4756 {
4757   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
4758
4759   // These are the relocation types supported by glibc for both 32-bit
4760   // and 64-bit powerpc.
4761   switch (r_type)
4762     {
4763     case elfcpp::R_POWERPC_NONE:
4764     case elfcpp::R_POWERPC_RELATIVE:
4765     case elfcpp::R_POWERPC_GLOB_DAT:
4766     case elfcpp::R_POWERPC_DTPMOD:
4767     case elfcpp::R_POWERPC_DTPREL:
4768     case elfcpp::R_POWERPC_TPREL:
4769     case elfcpp::R_POWERPC_JMP_SLOT:
4770     case elfcpp::R_POWERPC_COPY:
4771     case elfcpp::R_POWERPC_IRELATIVE:
4772     case elfcpp::R_POWERPC_ADDR32:
4773     case elfcpp::R_POWERPC_UADDR32:
4774     case elfcpp::R_POWERPC_ADDR24:
4775     case elfcpp::R_POWERPC_ADDR16:
4776     case elfcpp::R_POWERPC_UADDR16:
4777     case elfcpp::R_POWERPC_ADDR16_LO:
4778     case elfcpp::R_POWERPC_ADDR16_HI:
4779     case elfcpp::R_POWERPC_ADDR16_HA:
4780     case elfcpp::R_POWERPC_ADDR14:
4781     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4782     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4783     case elfcpp::R_POWERPC_REL32:
4784     case elfcpp::R_POWERPC_REL24:
4785     case elfcpp::R_POWERPC_TPREL16:
4786     case elfcpp::R_POWERPC_TPREL16_LO:
4787     case elfcpp::R_POWERPC_TPREL16_HI:
4788     case elfcpp::R_POWERPC_TPREL16_HA:
4789       return;
4790
4791     default:
4792       break;
4793     }
4794
4795   if (size == 64)
4796     {
4797       switch (r_type)
4798         {
4799           // These are the relocation types supported only on 64-bit.
4800         case elfcpp::R_PPC64_ADDR64:
4801         case elfcpp::R_PPC64_UADDR64:
4802         case elfcpp::R_PPC64_JMP_IREL:
4803         case elfcpp::R_PPC64_ADDR16_DS:
4804         case elfcpp::R_PPC64_ADDR16_LO_DS:
4805         case elfcpp::R_PPC64_ADDR16_HIGHER:
4806         case elfcpp::R_PPC64_ADDR16_HIGHEST:
4807         case elfcpp::R_PPC64_ADDR16_HIGHERA:
4808         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
4809         case elfcpp::R_PPC64_REL64:
4810         case elfcpp::R_POWERPC_ADDR30:
4811         case elfcpp::R_PPC64_TPREL16_DS:
4812         case elfcpp::R_PPC64_TPREL16_LO_DS:
4813         case elfcpp::R_PPC64_TPREL16_HIGHER:
4814         case elfcpp::R_PPC64_TPREL16_HIGHEST:
4815         case elfcpp::R_PPC64_TPREL16_HIGHERA:
4816         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4817           return;
4818
4819         default:
4820           break;
4821         }
4822     }
4823   else
4824     {
4825       switch (r_type)
4826         {
4827           // These are the relocation types supported only on 32-bit.
4828           // ??? glibc ld.so doesn't need to support these.
4829         case elfcpp::R_POWERPC_DTPREL16:
4830         case elfcpp::R_POWERPC_DTPREL16_LO:
4831         case elfcpp::R_POWERPC_DTPREL16_HI:
4832         case elfcpp::R_POWERPC_DTPREL16_HA:
4833           return;
4834
4835         default:
4836           break;
4837         }
4838     }
4839
4840   // This prevents us from issuing more than one error per reloc
4841   // section.  But we can still wind up issuing more than one
4842   // error per object file.
4843   if (this->issued_non_pic_error_)
4844     return;
4845   gold_assert(parameters->options().output_is_position_independent());
4846   object->error(_("requires unsupported dynamic reloc; "
4847                   "recompile with -fPIC"));
4848   this->issued_non_pic_error_ = true;
4849   return;
4850 }
4851
4852 // Return whether we need to make a PLT entry for a relocation of the
4853 // given type against a STT_GNU_IFUNC symbol.
4854
4855 template<int size, bool big_endian>
4856 bool
4857 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
4858      Sized_relobj_file<size, big_endian>* object,
4859      unsigned int r_type,
4860      bool report_err)
4861 {
4862   // In non-pic code any reference will resolve to the plt call stub
4863   // for the ifunc symbol.
4864   if (size == 32 && !parameters->options().output_is_position_independent())
4865     return true;
4866
4867   switch (r_type)
4868     {
4869     // Word size refs from data sections are OK, but don't need a PLT entry.
4870     case elfcpp::R_POWERPC_ADDR32:
4871     case elfcpp::R_POWERPC_UADDR32:
4872       if (size == 32)
4873         return false;
4874       break;
4875
4876     case elfcpp::R_PPC64_ADDR64:
4877     case elfcpp::R_PPC64_UADDR64:
4878       if (size == 64)
4879         return false;
4880       break;
4881
4882     // GOT refs are good, but also don't need a PLT entry.
4883     case elfcpp::R_POWERPC_GOT16:
4884     case elfcpp::R_POWERPC_GOT16_LO:
4885     case elfcpp::R_POWERPC_GOT16_HI:
4886     case elfcpp::R_POWERPC_GOT16_HA:
4887     case elfcpp::R_PPC64_GOT16_DS:
4888     case elfcpp::R_PPC64_GOT16_LO_DS:
4889       return false;
4890
4891     // Function calls are good, and these do need a PLT entry.
4892     case elfcpp::R_POWERPC_ADDR24:
4893     case elfcpp::R_POWERPC_ADDR14:
4894     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4895     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4896     case elfcpp::R_POWERPC_REL24:
4897     case elfcpp::R_PPC_PLTREL24:
4898     case elfcpp::R_POWERPC_REL14:
4899     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4900     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4901       return true;
4902
4903     default:
4904       break;
4905     }
4906
4907   // Anything else is a problem.
4908   // If we are building a static executable, the libc startup function
4909   // responsible for applying indirect function relocations is going
4910   // to complain about the reloc type.
4911   // If we are building a dynamic executable, we will have a text
4912   // relocation.  The dynamic loader will set the text segment
4913   // writable and non-executable to apply text relocations.  So we'll
4914   // segfault when trying to run the indirection function to resolve
4915   // the reloc.
4916   if (report_err)
4917     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
4918                object->name().c_str(), r_type);
4919   return false;
4920 }
4921
4922 // Scan a relocation for a local symbol.
4923
4924 template<int size, bool big_endian>
4925 inline void
4926 Target_powerpc<size, big_endian>::Scan::local(
4927     Symbol_table* symtab,
4928     Layout* layout,
4929     Target_powerpc<size, big_endian>* target,
4930     Sized_relobj_file<size, big_endian>* object,
4931     unsigned int data_shndx,
4932     Output_section* output_section,
4933     const elfcpp::Rela<size, big_endian>& reloc,
4934     unsigned int r_type,
4935     const elfcpp::Sym<size, big_endian>& lsym,
4936     bool is_discarded)
4937 {
4938   this->maybe_skip_tls_get_addr_call(r_type, NULL);
4939
4940   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
4941       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
4942     {
4943       this->expect_tls_get_addr_call();
4944       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
4945       if (tls_type != tls::TLSOPT_NONE)
4946         this->skip_next_tls_get_addr_call();
4947     }
4948   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
4949            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
4950     {
4951       this->expect_tls_get_addr_call();
4952       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4953       if (tls_type != tls::TLSOPT_NONE)
4954         this->skip_next_tls_get_addr_call();
4955     }
4956
4957   Powerpc_relobj<size, big_endian>* ppc_object
4958     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
4959
4960   if (is_discarded)
4961     {
4962       if (size == 64
4963           && data_shndx == ppc_object->opd_shndx()
4964           && r_type == elfcpp::R_PPC64_ADDR64)
4965         ppc_object->set_opd_discard(reloc.get_r_offset());
4966       return;
4967     }
4968
4969   // A local STT_GNU_IFUNC symbol may require a PLT entry.
4970   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
4971   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type, true))
4972     {
4973       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4974       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4975                           r_type, r_sym, reloc.get_r_addend());
4976       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
4977     }
4978
4979   switch (r_type)
4980     {
4981     case elfcpp::R_POWERPC_NONE:
4982     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4983     case elfcpp::R_POWERPC_GNU_VTENTRY:
4984     case elfcpp::R_PPC64_TOCSAVE:
4985     case elfcpp::R_PPC_EMB_MRKREF:
4986     case elfcpp::R_POWERPC_TLS:
4987       break;
4988
4989     case elfcpp::R_PPC64_TOC:
4990       {
4991         Output_data_got_powerpc<size, big_endian>* got
4992           = target->got_section(symtab, layout);
4993         if (parameters->options().output_is_position_independent())
4994           {
4995             Address off = reloc.get_r_offset();
4996             if (size == 64
4997                 && data_shndx == ppc_object->opd_shndx()
4998                 && ppc_object->get_opd_discard(off - 8))
4999               break;
5000
5001             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5002             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5003             rela_dyn->add_output_section_relative(got->output_section(),
5004                                                   elfcpp::R_POWERPC_RELATIVE,
5005                                                   output_section,
5006                                                   object, data_shndx, off,
5007                                                   symobj->toc_base_offset());
5008           }
5009       }
5010       break;
5011
5012     case elfcpp::R_PPC64_ADDR64:
5013     case elfcpp::R_PPC64_UADDR64:
5014     case elfcpp::R_POWERPC_ADDR32:
5015     case elfcpp::R_POWERPC_UADDR32:
5016     case elfcpp::R_POWERPC_ADDR24:
5017     case elfcpp::R_POWERPC_ADDR16:
5018     case elfcpp::R_POWERPC_ADDR16_LO:
5019     case elfcpp::R_POWERPC_ADDR16_HI:
5020     case elfcpp::R_POWERPC_ADDR16_HA:
5021     case elfcpp::R_POWERPC_UADDR16:
5022     case elfcpp::R_PPC64_ADDR16_HIGHER:
5023     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5024     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5025     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5026     case elfcpp::R_PPC64_ADDR16_DS:
5027     case elfcpp::R_PPC64_ADDR16_LO_DS:
5028     case elfcpp::R_POWERPC_ADDR14:
5029     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5030     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5031       // If building a shared library (or a position-independent
5032       // executable), we need to create a dynamic relocation for
5033       // this location.
5034       if (parameters->options().output_is_position_independent()
5035           || (size == 64 && is_ifunc))
5036         {
5037           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5038                                                              is_ifunc);
5039           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5040               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5041             {
5042               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5043               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5044                                      : elfcpp::R_POWERPC_RELATIVE);
5045               rela_dyn->add_local_relative(object, r_sym, dynrel,
5046                                            output_section, data_shndx,
5047                                            reloc.get_r_offset(),
5048                                            reloc.get_r_addend(), false);
5049             }
5050           else
5051             {
5052               check_non_pic(object, r_type);
5053               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5054               rela_dyn->add_local(object, r_sym, r_type, output_section,
5055                                   data_shndx, reloc.get_r_offset(),
5056                                   reloc.get_r_addend());
5057             }
5058         }
5059       break;
5060
5061     case elfcpp::R_POWERPC_REL24:
5062     case elfcpp::R_PPC_PLTREL24:
5063     case elfcpp::R_PPC_LOCAL24PC:
5064     case elfcpp::R_POWERPC_REL14:
5065     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5066     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5067       if (!is_ifunc)
5068         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5069                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5070                             reloc.get_r_addend());
5071       break;
5072
5073     case elfcpp::R_PPC64_REL64:
5074     case elfcpp::R_POWERPC_REL32:
5075     case elfcpp::R_POWERPC_REL16:
5076     case elfcpp::R_POWERPC_REL16_LO:
5077     case elfcpp::R_POWERPC_REL16_HI:
5078     case elfcpp::R_POWERPC_REL16_HA:
5079     case elfcpp::R_POWERPC_SECTOFF:
5080     case elfcpp::R_POWERPC_TPREL16:
5081     case elfcpp::R_POWERPC_DTPREL16:
5082     case elfcpp::R_POWERPC_SECTOFF_LO:
5083     case elfcpp::R_POWERPC_TPREL16_LO:
5084     case elfcpp::R_POWERPC_DTPREL16_LO:
5085     case elfcpp::R_POWERPC_SECTOFF_HI:
5086     case elfcpp::R_POWERPC_TPREL16_HI:
5087     case elfcpp::R_POWERPC_DTPREL16_HI:
5088     case elfcpp::R_POWERPC_SECTOFF_HA:
5089     case elfcpp::R_POWERPC_TPREL16_HA:
5090     case elfcpp::R_POWERPC_DTPREL16_HA:
5091     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5092     case elfcpp::R_PPC64_TPREL16_HIGHER:
5093     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5094     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5095     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5096     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5097     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5098     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5099     case elfcpp::R_PPC64_TPREL16_DS:
5100     case elfcpp::R_PPC64_TPREL16_LO_DS:
5101     case elfcpp::R_PPC64_DTPREL16_DS:
5102     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5103     case elfcpp::R_PPC64_SECTOFF_DS:
5104     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5105     case elfcpp::R_PPC64_TLSGD:
5106     case elfcpp::R_PPC64_TLSLD:
5107       break;
5108
5109     case elfcpp::R_POWERPC_GOT16:
5110     case elfcpp::R_POWERPC_GOT16_LO:
5111     case elfcpp::R_POWERPC_GOT16_HI:
5112     case elfcpp::R_POWERPC_GOT16_HA:
5113     case elfcpp::R_PPC64_GOT16_DS:
5114     case elfcpp::R_PPC64_GOT16_LO_DS:
5115       {
5116         // The symbol requires a GOT entry.
5117         Output_data_got_powerpc<size, big_endian>* got
5118           = target->got_section(symtab, layout);
5119         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5120
5121         if (!parameters->options().output_is_position_independent())
5122           {
5123             if (size == 32 && is_ifunc)
5124               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5125             else
5126               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5127           }
5128         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5129           {
5130             // If we are generating a shared object or a pie, this
5131             // symbol's GOT entry will be set by a dynamic relocation.
5132             unsigned int off;
5133             off = got->add_constant(0);
5134             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5135
5136             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5137                                                                is_ifunc);
5138             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5139                                    : elfcpp::R_POWERPC_RELATIVE);
5140             rela_dyn->add_local_relative(object, r_sym, dynrel,
5141                                          got, off, 0, false);
5142           }
5143       }
5144       break;
5145
5146     case elfcpp::R_PPC64_TOC16:
5147     case elfcpp::R_PPC64_TOC16_LO:
5148     case elfcpp::R_PPC64_TOC16_HI:
5149     case elfcpp::R_PPC64_TOC16_HA:
5150     case elfcpp::R_PPC64_TOC16_DS:
5151     case elfcpp::R_PPC64_TOC16_LO_DS:
5152       // We need a GOT section.
5153       target->got_section(symtab, layout);
5154       break;
5155
5156     case elfcpp::R_POWERPC_GOT_TLSGD16:
5157     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5158     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5159     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5160       {
5161         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5162         if (tls_type == tls::TLSOPT_NONE)
5163           {
5164             Output_data_got_powerpc<size, big_endian>* got
5165               = target->got_section(symtab, layout);
5166             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5167             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5168             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5169                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5170           }
5171         else if (tls_type == tls::TLSOPT_TO_LE)
5172           {
5173             // no GOT relocs needed for Local Exec.
5174           }
5175         else
5176           gold_unreachable();
5177       }
5178       break;
5179
5180     case elfcpp::R_POWERPC_GOT_TLSLD16:
5181     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5182     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5183     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5184       {
5185         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5186         if (tls_type == tls::TLSOPT_NONE)
5187           target->tlsld_got_offset(symtab, layout, object);
5188         else if (tls_type == tls::TLSOPT_TO_LE)
5189           {
5190             // no GOT relocs needed for Local Exec.
5191             if (parameters->options().emit_relocs())
5192               {
5193                 Output_section* os = layout->tls_segment()->first_section();
5194                 gold_assert(os != NULL);
5195                 os->set_needs_symtab_index();
5196               }
5197           }
5198         else
5199           gold_unreachable();
5200       }
5201       break;
5202
5203     case elfcpp::R_POWERPC_GOT_DTPREL16:
5204     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5205     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5206     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5207       {
5208         Output_data_got_powerpc<size, big_endian>* got
5209           = target->got_section(symtab, layout);
5210         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5211         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5212       }
5213       break;
5214
5215     case elfcpp::R_POWERPC_GOT_TPREL16:
5216     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5217     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5218     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5219       {
5220         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5221         if (tls_type == tls::TLSOPT_NONE)
5222           {
5223             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5224             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5225               {
5226                 Output_data_got_powerpc<size, big_endian>* got
5227                   = target->got_section(symtab, layout);
5228                 unsigned int off = got->add_constant(0);
5229                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5230
5231                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5232                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5233                                                       elfcpp::R_POWERPC_TPREL,
5234                                                       got, off, 0);
5235               }
5236           }
5237         else if (tls_type == tls::TLSOPT_TO_LE)
5238           {
5239             // no GOT relocs needed for Local Exec.
5240           }
5241         else
5242           gold_unreachable();
5243       }
5244       break;
5245
5246     default:
5247       unsupported_reloc_local(object, r_type);
5248       break;
5249     }
5250
5251   switch (r_type)
5252     {
5253     case elfcpp::R_POWERPC_GOT_TLSLD16:
5254     case elfcpp::R_POWERPC_GOT_TLSGD16:
5255     case elfcpp::R_POWERPC_GOT_TPREL16:
5256     case elfcpp::R_POWERPC_GOT_DTPREL16:
5257     case elfcpp::R_POWERPC_GOT16:
5258     case elfcpp::R_PPC64_GOT16_DS:
5259     case elfcpp::R_PPC64_TOC16:
5260     case elfcpp::R_PPC64_TOC16_DS:
5261       ppc_object->set_has_small_toc_reloc();
5262     default:
5263       break;
5264     }
5265 }
5266
5267 // Report an unsupported relocation against a global symbol.
5268
5269 template<int size, bool big_endian>
5270 void
5271 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5272     Sized_relobj_file<size, big_endian>* object,
5273     unsigned int r_type,
5274     Symbol* gsym)
5275 {
5276   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5277              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5278 }
5279
5280 // Scan a relocation for a global symbol.
5281
5282 template<int size, bool big_endian>
5283 inline void
5284 Target_powerpc<size, big_endian>::Scan::global(
5285     Symbol_table* symtab,
5286     Layout* layout,
5287     Target_powerpc<size, big_endian>* target,
5288     Sized_relobj_file<size, big_endian>* object,
5289     unsigned int data_shndx,
5290     Output_section* output_section,
5291     const elfcpp::Rela<size, big_endian>& reloc,
5292     unsigned int r_type,
5293     Symbol* gsym)
5294 {
5295   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5296     return;
5297
5298   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5299       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5300     {
5301       this->expect_tls_get_addr_call();
5302       const bool final = gsym->final_value_is_known();
5303       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5304       if (tls_type != tls::TLSOPT_NONE)
5305         this->skip_next_tls_get_addr_call();
5306     }
5307   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5308            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5309     {
5310       this->expect_tls_get_addr_call();
5311       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5312       if (tls_type != tls::TLSOPT_NONE)
5313         this->skip_next_tls_get_addr_call();
5314     }
5315
5316   Powerpc_relobj<size, big_endian>* ppc_object
5317     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5318
5319   // A STT_GNU_IFUNC symbol may require a PLT entry.
5320   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5321   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type, true))
5322     {
5323       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5324                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5325                           reloc.get_r_addend());
5326       target->make_plt_entry(symtab, layout, gsym);
5327     }
5328
5329   switch (r_type)
5330     {
5331     case elfcpp::R_POWERPC_NONE:
5332     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5333     case elfcpp::R_POWERPC_GNU_VTENTRY:
5334     case elfcpp::R_PPC_LOCAL24PC:
5335     case elfcpp::R_PPC_EMB_MRKREF:
5336     case elfcpp::R_POWERPC_TLS:
5337       break;
5338
5339     case elfcpp::R_PPC64_TOC:
5340       {
5341         Output_data_got_powerpc<size, big_endian>* got
5342           = target->got_section(symtab, layout);
5343         if (parameters->options().output_is_position_independent())
5344           {
5345             Address off = reloc.get_r_offset();
5346             if (size == 64
5347                 && data_shndx == ppc_object->opd_shndx()
5348                 && ppc_object->get_opd_discard(off - 8))
5349               break;
5350
5351             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5352             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5353             if (data_shndx != ppc_object->opd_shndx())
5354               symobj = static_cast
5355                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5356             rela_dyn->add_output_section_relative(got->output_section(),
5357                                                   elfcpp::R_POWERPC_RELATIVE,
5358                                                   output_section,
5359                                                   object, data_shndx, off,
5360                                                   symobj->toc_base_offset());
5361           }
5362       }
5363       break;
5364
5365     case elfcpp::R_PPC64_ADDR64:
5366       if (size == 64
5367           && data_shndx == ppc_object->opd_shndx()
5368           && (gsym->is_defined_in_discarded_section()
5369               || gsym->object() != object))
5370         {
5371           ppc_object->set_opd_discard(reloc.get_r_offset());
5372           break;
5373         }
5374       // Fall thru
5375     case elfcpp::R_PPC64_UADDR64:
5376     case elfcpp::R_POWERPC_ADDR32:
5377     case elfcpp::R_POWERPC_UADDR32:
5378     case elfcpp::R_POWERPC_ADDR24:
5379     case elfcpp::R_POWERPC_ADDR16:
5380     case elfcpp::R_POWERPC_ADDR16_LO:
5381     case elfcpp::R_POWERPC_ADDR16_HI:
5382     case elfcpp::R_POWERPC_ADDR16_HA:
5383     case elfcpp::R_POWERPC_UADDR16:
5384     case elfcpp::R_PPC64_ADDR16_HIGHER:
5385     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5386     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5387     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5388     case elfcpp::R_PPC64_ADDR16_DS:
5389     case elfcpp::R_PPC64_ADDR16_LO_DS:
5390     case elfcpp::R_POWERPC_ADDR14:
5391     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5392     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5393       {
5394         // Make a PLT entry if necessary.
5395         if (gsym->needs_plt_entry())
5396           {
5397             if (!is_ifunc)
5398               {
5399                 target->push_branch(ppc_object, data_shndx,
5400                                     reloc.get_r_offset(), r_type,
5401                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5402                                     reloc.get_r_addend());
5403                 target->make_plt_entry(symtab, layout, gsym);
5404               }
5405             // Since this is not a PC-relative relocation, we may be
5406             // taking the address of a function. In that case we need to
5407             // set the entry in the dynamic symbol table to the address of
5408             // the PLT call stub.
5409             if (size == 32
5410                 && gsym->is_from_dynobj()
5411                 && !parameters->options().output_is_position_independent())
5412               gsym->set_needs_dynsym_value();
5413           }
5414         // Make a dynamic relocation if necessary.
5415         if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type))
5416             || (size == 64 && is_ifunc))
5417           {
5418             if (gsym->may_need_copy_reloc())
5419               {
5420                 target->copy_reloc(symtab, layout, object,
5421                                    data_shndx, output_section, gsym, reloc);
5422               }
5423             else if ((size == 32
5424                       && r_type == elfcpp::R_POWERPC_ADDR32
5425                       && gsym->can_use_relative_reloc(false)
5426                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5427                            && parameters->options().shared()))
5428                      || (size == 64
5429                          && r_type == elfcpp::R_PPC64_ADDR64
5430                          && (gsym->can_use_relative_reloc(false)
5431                              || data_shndx == ppc_object->opd_shndx())))
5432               {
5433                 Reloc_section* rela_dyn
5434                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5435                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5436                                        : elfcpp::R_POWERPC_RELATIVE);
5437                 rela_dyn->add_symbolless_global_addend(
5438                     gsym, dynrel, output_section, object, data_shndx,
5439                     reloc.get_r_offset(), reloc.get_r_addend());
5440               }
5441             else
5442               {
5443                 Reloc_section* rela_dyn
5444                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5445                 check_non_pic(object, r_type);
5446                 rela_dyn->add_global(gsym, r_type, output_section,
5447                                      object, data_shndx,
5448                                      reloc.get_r_offset(),
5449                                      reloc.get_r_addend());
5450               }
5451           }
5452       }
5453       break;
5454
5455     case elfcpp::R_PPC_PLTREL24:
5456     case elfcpp::R_POWERPC_REL24:
5457       if (!is_ifunc)
5458         {
5459           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5460                               r_type,
5461                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5462                               reloc.get_r_addend());
5463           if (gsym->needs_plt_entry()
5464               || (!gsym->final_value_is_known()
5465                   && (gsym->is_undefined()
5466                       || gsym->is_from_dynobj()
5467                       || gsym->is_preemptible())))
5468             target->make_plt_entry(symtab, layout, gsym);
5469         }
5470       // Fall thru
5471
5472     case elfcpp::R_PPC64_REL64:
5473     case elfcpp::R_POWERPC_REL32:
5474       // Make a dynamic relocation if necessary.
5475       if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type)))
5476         {
5477           if (gsym->may_need_copy_reloc())
5478             {
5479               target->copy_reloc(symtab, layout, object,
5480                                  data_shndx, output_section, gsym,
5481                                  reloc);
5482             }
5483           else
5484             {
5485               Reloc_section* rela_dyn
5486                 = target->rela_dyn_section(symtab, layout, is_ifunc);
5487               check_non_pic(object, r_type);
5488               rela_dyn->add_global(gsym, r_type, output_section, object,
5489                                    data_shndx, reloc.get_r_offset(),
5490                                    reloc.get_r_addend());
5491             }
5492         }
5493       break;
5494
5495     case elfcpp::R_POWERPC_REL14:
5496     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5497     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5498       if (!is_ifunc)
5499         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5500                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5501                             reloc.get_r_addend());
5502       break;
5503
5504     case elfcpp::R_POWERPC_REL16:
5505     case elfcpp::R_POWERPC_REL16_LO:
5506     case elfcpp::R_POWERPC_REL16_HI:
5507     case elfcpp::R_POWERPC_REL16_HA:
5508     case elfcpp::R_POWERPC_SECTOFF:
5509     case elfcpp::R_POWERPC_TPREL16:
5510     case elfcpp::R_POWERPC_DTPREL16:
5511     case elfcpp::R_POWERPC_SECTOFF_LO:
5512     case elfcpp::R_POWERPC_TPREL16_LO:
5513     case elfcpp::R_POWERPC_DTPREL16_LO:
5514     case elfcpp::R_POWERPC_SECTOFF_HI:
5515     case elfcpp::R_POWERPC_TPREL16_HI:
5516     case elfcpp::R_POWERPC_DTPREL16_HI:
5517     case elfcpp::R_POWERPC_SECTOFF_HA:
5518     case elfcpp::R_POWERPC_TPREL16_HA:
5519     case elfcpp::R_POWERPC_DTPREL16_HA:
5520     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5521     case elfcpp::R_PPC64_TPREL16_HIGHER:
5522     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5523     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5524     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5525     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5526     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5527     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5528     case elfcpp::R_PPC64_TPREL16_DS:
5529     case elfcpp::R_PPC64_TPREL16_LO_DS:
5530     case elfcpp::R_PPC64_DTPREL16_DS:
5531     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5532     case elfcpp::R_PPC64_SECTOFF_DS:
5533     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5534     case elfcpp::R_PPC64_TLSGD:
5535     case elfcpp::R_PPC64_TLSLD:
5536       break;
5537
5538     case elfcpp::R_POWERPC_GOT16:
5539     case elfcpp::R_POWERPC_GOT16_LO:
5540     case elfcpp::R_POWERPC_GOT16_HI:
5541     case elfcpp::R_POWERPC_GOT16_HA:
5542     case elfcpp::R_PPC64_GOT16_DS:
5543     case elfcpp::R_PPC64_GOT16_LO_DS:
5544       {
5545         // The symbol requires a GOT entry.
5546         Output_data_got_powerpc<size, big_endian>* got;
5547
5548         got = target->got_section(symtab, layout);
5549         if (gsym->final_value_is_known())
5550           {
5551             if (size == 32 && is_ifunc)
5552               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5553             else
5554               got->add_global(gsym, GOT_TYPE_STANDARD);
5555           }
5556         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5557           {
5558             // If we are generating a shared object or a pie, this
5559             // symbol's GOT entry will be set by a dynamic relocation.
5560             unsigned int off = got->add_constant(0);
5561             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
5562
5563             Reloc_section* rela_dyn
5564               = target->rela_dyn_section(symtab, layout, is_ifunc);
5565
5566             if (gsym->can_use_relative_reloc(false)
5567                 && !(size == 32
5568                      && gsym->visibility() == elfcpp::STV_PROTECTED
5569                      && parameters->options().shared()))
5570               {
5571                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5572                                        : elfcpp::R_POWERPC_RELATIVE);
5573                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
5574               }
5575             else
5576               {
5577                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
5578                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
5579               }
5580           }
5581       }
5582       break;
5583
5584     case elfcpp::R_PPC64_TOC16:
5585     case elfcpp::R_PPC64_TOC16_LO:
5586     case elfcpp::R_PPC64_TOC16_HI:
5587     case elfcpp::R_PPC64_TOC16_HA:
5588     case elfcpp::R_PPC64_TOC16_DS:
5589     case elfcpp::R_PPC64_TOC16_LO_DS:
5590       // We need a GOT section.
5591       target->got_section(symtab, layout);
5592       break;
5593
5594     case elfcpp::R_POWERPC_GOT_TLSGD16:
5595     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5596     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5597     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5598       {
5599         const bool final = gsym->final_value_is_known();
5600         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5601         if (tls_type == tls::TLSOPT_NONE)
5602           {
5603             Output_data_got_powerpc<size, big_endian>* got
5604               = target->got_section(symtab, layout);
5605             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5606             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
5607                                           elfcpp::R_POWERPC_DTPMOD,
5608                                           elfcpp::R_POWERPC_DTPREL);
5609           }
5610         else if (tls_type == tls::TLSOPT_TO_IE)
5611           {
5612             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5613               {
5614                 Output_data_got_powerpc<size, big_endian>* got
5615                   = target->got_section(symtab, layout);
5616                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5617                 if (gsym->is_undefined()
5618                     || gsym->is_from_dynobj())
5619                   {
5620                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5621                                              elfcpp::R_POWERPC_TPREL);
5622                   }
5623                 else
5624                   {
5625                     unsigned int off = got->add_constant(0);
5626                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5627                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5628                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5629                                                            got, off, 0);
5630                   }
5631               }
5632           }
5633         else if (tls_type == tls::TLSOPT_TO_LE)
5634           {
5635             // no GOT relocs needed for Local Exec.
5636           }
5637         else
5638           gold_unreachable();
5639       }
5640       break;
5641
5642     case elfcpp::R_POWERPC_GOT_TLSLD16:
5643     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5644     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5645     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5646       {
5647         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5648         if (tls_type == tls::TLSOPT_NONE)
5649           target->tlsld_got_offset(symtab, layout, object);
5650         else if (tls_type == tls::TLSOPT_TO_LE)
5651           {
5652             // no GOT relocs needed for Local Exec.
5653             if (parameters->options().emit_relocs())
5654               {
5655                 Output_section* os = layout->tls_segment()->first_section();
5656                 gold_assert(os != NULL);
5657                 os->set_needs_symtab_index();
5658               }
5659           }
5660         else
5661           gold_unreachable();
5662       }
5663       break;
5664
5665     case elfcpp::R_POWERPC_GOT_DTPREL16:
5666     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5667     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5668     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5669       {
5670         Output_data_got_powerpc<size, big_endian>* got
5671           = target->got_section(symtab, layout);
5672         if (!gsym->final_value_is_known()
5673             && (gsym->is_from_dynobj()
5674                 || gsym->is_undefined()
5675                 || gsym->is_preemptible()))
5676           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
5677                                    target->rela_dyn_section(layout),
5678                                    elfcpp::R_POWERPC_DTPREL);
5679         else
5680           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
5681       }
5682       break;
5683
5684     case elfcpp::R_POWERPC_GOT_TPREL16:
5685     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5686     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5687     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5688       {
5689         const bool final = gsym->final_value_is_known();
5690         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
5691         if (tls_type == tls::TLSOPT_NONE)
5692           {
5693             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5694               {
5695                 Output_data_got_powerpc<size, big_endian>* got
5696                   = target->got_section(symtab, layout);
5697                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5698                 if (gsym->is_undefined()
5699                     || gsym->is_from_dynobj())
5700                   {
5701                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5702                                              elfcpp::R_POWERPC_TPREL);
5703                   }
5704                 else
5705                   {
5706                     unsigned int off = got->add_constant(0);
5707                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5708                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5709                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5710                                                            got, off, 0);
5711                   }
5712               }
5713           }
5714         else if (tls_type == tls::TLSOPT_TO_LE)
5715           {
5716             // no GOT relocs needed for Local Exec.
5717           }
5718         else
5719           gold_unreachable();
5720       }
5721       break;
5722
5723     default:
5724       unsupported_reloc_global(object, r_type, gsym);
5725       break;
5726     }
5727
5728   switch (r_type)
5729     {
5730     case elfcpp::R_POWERPC_GOT_TLSLD16:
5731     case elfcpp::R_POWERPC_GOT_TLSGD16:
5732     case elfcpp::R_POWERPC_GOT_TPREL16:
5733     case elfcpp::R_POWERPC_GOT_DTPREL16:
5734     case elfcpp::R_POWERPC_GOT16:
5735     case elfcpp::R_PPC64_GOT16_DS:
5736     case elfcpp::R_PPC64_TOC16:
5737     case elfcpp::R_PPC64_TOC16_DS:
5738       ppc_object->set_has_small_toc_reloc();
5739     default:
5740       break;
5741     }
5742 }
5743
5744 // Process relocations for gc.
5745
5746 template<int size, bool big_endian>
5747 void
5748 Target_powerpc<size, big_endian>::gc_process_relocs(
5749     Symbol_table* symtab,
5750     Layout* layout,
5751     Sized_relobj_file<size, big_endian>* object,
5752     unsigned int data_shndx,
5753     unsigned int,
5754     const unsigned char* prelocs,
5755     size_t reloc_count,
5756     Output_section* output_section,
5757     bool needs_special_offset_handling,
5758     size_t local_symbol_count,
5759     const unsigned char* plocal_symbols)
5760 {
5761   typedef Target_powerpc<size, big_endian> Powerpc;
5762   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
5763   Powerpc_relobj<size, big_endian>* ppc_object
5764     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5765   if (size == 64)
5766     ppc_object->set_opd_valid();
5767   if (size == 64 && data_shndx == ppc_object->opd_shndx())
5768     {
5769       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
5770       for (p = ppc_object->access_from_map()->begin();
5771            p != ppc_object->access_from_map()->end();
5772            ++p)
5773         {
5774           Address dst_off = p->first;
5775           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
5776           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
5777           for (s = p->second.begin(); s != p->second.end(); ++s)
5778             {
5779               Object* src_obj = s->first;
5780               unsigned int src_indx = s->second;
5781               symtab->gc()->add_reference(src_obj, src_indx,
5782                                           ppc_object, dst_indx);
5783             }
5784           p->second.clear();
5785         }
5786       ppc_object->access_from_map()->clear();
5787       ppc_object->process_gc_mark(symtab);
5788       // Don't look at .opd relocs as .opd will reference everything.
5789       return;
5790     }
5791
5792   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
5793                           typename Target_powerpc::Relocatable_size_for_reloc>(
5794     symtab,
5795     layout,
5796     this,
5797     object,
5798     data_shndx,
5799     prelocs,
5800     reloc_count,
5801     output_section,
5802     needs_special_offset_handling,
5803     local_symbol_count,
5804     plocal_symbols);
5805 }
5806
5807 // Handle target specific gc actions when adding a gc reference from
5808 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
5809 // and DST_OFF.  For powerpc64, this adds a referenc to the code
5810 // section of a function descriptor.
5811
5812 template<int size, bool big_endian>
5813 void
5814 Target_powerpc<size, big_endian>::do_gc_add_reference(
5815     Symbol_table* symtab,
5816     Object* src_obj,
5817     unsigned int src_shndx,
5818     Object* dst_obj,
5819     unsigned int dst_shndx,
5820     Address dst_off) const
5821 {
5822   if (size != 64 || dst_obj->is_dynamic())
5823     return;
5824
5825   Powerpc_relobj<size, big_endian>* ppc_object
5826     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
5827   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
5828     {
5829       if (ppc_object->opd_valid())
5830         {
5831           dst_shndx = ppc_object->get_opd_ent(dst_off);
5832           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
5833         }
5834       else
5835         {
5836           // If we haven't run scan_opd_relocs, we must delay
5837           // processing this function descriptor reference.
5838           ppc_object->add_reference(src_obj, src_shndx, dst_off);
5839         }
5840     }
5841 }
5842
5843 // Add any special sections for this symbol to the gc work list.
5844 // For powerpc64, this adds the code section of a function
5845 // descriptor.
5846
5847 template<int size, bool big_endian>
5848 void
5849 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
5850     Symbol_table* symtab,
5851     Symbol* sym) const
5852 {
5853   if (size == 64)
5854     {
5855       Powerpc_relobj<size, big_endian>* ppc_object
5856         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
5857       bool is_ordinary;
5858       unsigned int shndx = sym->shndx(&is_ordinary);
5859       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
5860         {
5861           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
5862           Address dst_off = gsym->value();
5863           if (ppc_object->opd_valid())
5864             {
5865               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
5866               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
5867             }
5868           else
5869             ppc_object->add_gc_mark(dst_off);
5870         }
5871     }
5872 }
5873
5874 // For a symbol location in .opd, set LOC to the location of the
5875 // function entry.
5876
5877 template<int size, bool big_endian>
5878 void
5879 Target_powerpc<size, big_endian>::do_function_location(
5880     Symbol_location* loc) const
5881 {
5882   if (size == 64 && loc->shndx != 0)
5883     {
5884       if (loc->object->is_dynamic())
5885         {
5886           Powerpc_dynobj<size, big_endian>* ppc_object
5887             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
5888           if (loc->shndx == ppc_object->opd_shndx())
5889             {
5890               Address dest_off;
5891               Address off = loc->offset - ppc_object->opd_address();
5892               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
5893               loc->offset = dest_off;
5894             }
5895         }
5896       else
5897         {
5898           const Powerpc_relobj<size, big_endian>* ppc_object
5899             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
5900           if (loc->shndx == ppc_object->opd_shndx())
5901             {
5902               Address dest_off;
5903               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
5904               loc->offset = dest_off;
5905             }
5906         }
5907     }
5908 }
5909
5910 // Scan relocations for a section.
5911
5912 template<int size, bool big_endian>
5913 void
5914 Target_powerpc<size, big_endian>::scan_relocs(
5915     Symbol_table* symtab,
5916     Layout* layout,
5917     Sized_relobj_file<size, big_endian>* object,
5918     unsigned int data_shndx,
5919     unsigned int sh_type,
5920     const unsigned char* prelocs,
5921     size_t reloc_count,
5922     Output_section* output_section,
5923     bool needs_special_offset_handling,
5924     size_t local_symbol_count,
5925     const unsigned char* plocal_symbols)
5926 {
5927   typedef Target_powerpc<size, big_endian> Powerpc;
5928   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
5929
5930   if (sh_type == elfcpp::SHT_REL)
5931     {
5932       gold_error(_("%s: unsupported REL reloc section"),
5933                  object->name().c_str());
5934       return;
5935     }
5936
5937   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
5938     symtab,
5939     layout,
5940     this,
5941     object,
5942     data_shndx,
5943     prelocs,
5944     reloc_count,
5945     output_section,
5946     needs_special_offset_handling,
5947     local_symbol_count,
5948     plocal_symbols);
5949 }
5950
5951 // Functor class for processing the global symbol table.
5952 // Removes symbols defined on discarded opd entries.
5953
5954 template<bool big_endian>
5955 class Global_symbol_visitor_opd
5956 {
5957  public:
5958   Global_symbol_visitor_opd()
5959   { }
5960
5961   void
5962   operator()(Sized_symbol<64>* sym)
5963   {
5964     if (sym->has_symtab_index()
5965         || sym->source() != Symbol::FROM_OBJECT
5966         || !sym->in_real_elf())
5967       return;
5968
5969     if (sym->object()->is_dynamic())
5970       return;
5971
5972     Powerpc_relobj<64, big_endian>* symobj
5973       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
5974     if (symobj->opd_shndx() == 0)
5975       return;
5976
5977     bool is_ordinary;
5978     unsigned int shndx = sym->shndx(&is_ordinary);
5979     if (shndx == symobj->opd_shndx()
5980         && symobj->get_opd_discard(sym->value()))
5981       sym->set_symtab_index(-1U);
5982   }
5983 };
5984
5985 template<int size, bool big_endian>
5986 void
5987 Target_powerpc<size, big_endian>::define_save_restore_funcs(
5988     Layout* layout,
5989     Symbol_table* symtab)
5990 {
5991   if (size == 64)
5992     {
5993       Output_data_save_res<64, big_endian>* savres
5994         = new Output_data_save_res<64, big_endian>(symtab);
5995       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5996                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5997                                       savres, ORDER_TEXT, false);
5998     }
5999 }
6000
6001 // Sort linker created .got section first (for the header), then input
6002 // sections belonging to files using small model code.
6003
6004 template<bool big_endian>
6005 class Sort_toc_sections
6006 {
6007  public:
6008   bool
6009   operator()(const Output_section::Input_section& is1,
6010              const Output_section::Input_section& is2) const
6011   {
6012     if (!is1.is_input_section() && is2.is_input_section())
6013       return true;
6014     bool small1
6015       = (is1.is_input_section()
6016          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6017              ->has_small_toc_reloc()));
6018     bool small2
6019       = (is2.is_input_section()
6020          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6021              ->has_small_toc_reloc()));
6022     return small1 && !small2;
6023   }
6024 };
6025
6026 // Finalize the sections.
6027
6028 template<int size, bool big_endian>
6029 void
6030 Target_powerpc<size, big_endian>::do_finalize_sections(
6031     Layout* layout,
6032     const Input_objects*,
6033     Symbol_table* symtab)
6034 {
6035   if (parameters->doing_static_link())
6036     {
6037       // At least some versions of glibc elf-init.o have a strong
6038       // reference to __rela_iplt marker syms.  A weak ref would be
6039       // better..
6040       if (this->iplt_ != NULL)
6041         {
6042           Reloc_section* rel = this->iplt_->rel_plt();
6043           symtab->define_in_output_data("__rela_iplt_start", NULL,
6044                                         Symbol_table::PREDEFINED, rel, 0, 0,
6045                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6046                                         elfcpp::STV_HIDDEN, 0, false, true);
6047           symtab->define_in_output_data("__rela_iplt_end", NULL,
6048                                         Symbol_table::PREDEFINED, rel, 0, 0,
6049                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6050                                         elfcpp::STV_HIDDEN, 0, true, true);
6051         }
6052       else
6053         {
6054           symtab->define_as_constant("__rela_iplt_start", NULL,
6055                                      Symbol_table::PREDEFINED, 0, 0,
6056                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6057                                      elfcpp::STV_HIDDEN, 0, true, false);
6058           symtab->define_as_constant("__rela_iplt_end", NULL,
6059                                      Symbol_table::PREDEFINED, 0, 0,
6060                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6061                                      elfcpp::STV_HIDDEN, 0, true, false);
6062         }
6063     }
6064
6065   if (size == 64)
6066     {
6067       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6068       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6069
6070       if (!parameters->options().relocatable())
6071         {
6072           this->define_save_restore_funcs(layout, symtab);
6073
6074           // Annoyingly, we need to make these sections now whether or
6075           // not we need them.  If we delay until do_relax then we
6076           // need to mess with the relaxation machinery checkpointing.
6077           this->got_section(symtab, layout);
6078           this->make_brlt_section(layout);
6079
6080           if (parameters->options().toc_sort())
6081             {
6082               Output_section* os = this->got_->output_section();
6083               if (os != NULL && os->input_sections().size() > 1)
6084                 std::stable_sort(os->input_sections().begin(),
6085                                  os->input_sections().end(),
6086                                  Sort_toc_sections<big_endian>());
6087             }
6088         }
6089     }
6090
6091   // Fill in some more dynamic tags.
6092   Output_data_dynamic* odyn = layout->dynamic_data();
6093   if (odyn != NULL)
6094     {
6095       const Reloc_section* rel_plt = (this->plt_ == NULL
6096                                       ? NULL
6097                                       : this->plt_->rel_plt());
6098       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6099                                       this->rela_dyn_, true, size == 32);
6100
6101       if (size == 32)
6102         {
6103           if (this->got_ != NULL)
6104             {
6105               this->got_->finalize_data_size();
6106               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6107                                             this->got_, this->got_->g_o_t());
6108             }
6109         }
6110       else
6111         {
6112           if (this->glink_ != NULL)
6113             {
6114               this->glink_->finalize_data_size();
6115               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6116                                             this->glink_,
6117                                             (this->glink_->pltresolve_size
6118                                              - 32));
6119             }
6120         }
6121     }
6122
6123   // Emit any relocs we saved in an attempt to avoid generating COPY
6124   // relocs.
6125   if (this->copy_relocs_.any_saved_relocs())
6126     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6127 }
6128
6129 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6130 // reloc.
6131
6132 static bool
6133 ok_lo_toc_insn(uint32_t insn)
6134 {
6135   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6136           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6137           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6138           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6139           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6140           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6141           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6142           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6143           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6144           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6145           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6146           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6147           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6148           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6149           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6150               && (insn & 3) != 1)
6151           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6152               && ((insn & 3) == 0 || (insn & 3) == 3))
6153           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6154 }
6155
6156 // Return the value to use for a branch relocation.
6157
6158 template<int size, bool big_endian>
6159 typename Target_powerpc<size, big_endian>::Address
6160 Target_powerpc<size, big_endian>::symval_for_branch(
6161     const Symbol_table* symtab,
6162     Address value,
6163     const Sized_symbol<size>* gsym,
6164     Powerpc_relobj<size, big_endian>* object,
6165     unsigned int *dest_shndx)
6166 {
6167   *dest_shndx = 0;
6168   if (size == 32)
6169     return value;
6170
6171   // If the symbol is defined in an opd section, ie. is a function
6172   // descriptor, use the function descriptor code entry address
6173   Powerpc_relobj<size, big_endian>* symobj = object;
6174   if (gsym != NULL
6175       && gsym->source() != Symbol::FROM_OBJECT)
6176     return value;
6177   if (gsym != NULL)
6178     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6179   unsigned int shndx = symobj->opd_shndx();
6180   if (shndx == 0)
6181     return value;
6182   Address opd_addr = symobj->get_output_section_offset(shndx);
6183   if (opd_addr == invalid_address)
6184     return value;
6185   opd_addr += symobj->output_section_address(shndx);
6186   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6187     {
6188       Address sec_off;
6189       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6190       if (symtab->is_section_folded(symobj, *dest_shndx))
6191         {
6192           Section_id folded
6193             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6194           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6195           *dest_shndx = folded.second;
6196         }
6197       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6198       gold_assert(sec_addr != invalid_address);
6199       sec_addr += symobj->output_section(*dest_shndx)->address();
6200       value = sec_addr + sec_off;
6201     }
6202   return value;
6203 }
6204
6205 // Perform a relocation.
6206
6207 template<int size, bool big_endian>
6208 inline bool
6209 Target_powerpc<size, big_endian>::Relocate::relocate(
6210     const Relocate_info<size, big_endian>* relinfo,
6211     Target_powerpc* target,
6212     Output_section* os,
6213     size_t relnum,
6214     const elfcpp::Rela<size, big_endian>& rela,
6215     unsigned int r_type,
6216     const Sized_symbol<size>* gsym,
6217     const Symbol_value<size>* psymval,
6218     unsigned char* view,
6219     Address address,
6220     section_size_type view_size)
6221 {
6222   if (view == NULL)
6223     return true;
6224
6225   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6226     {
6227     case Track_tls::NOT_EXPECTED:
6228       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6229                              _("__tls_get_addr call lacks marker reloc"));
6230       break;
6231     case Track_tls::EXPECTED:
6232       // We have already complained.
6233       break;
6234     case Track_tls::SKIP:
6235       return true;
6236     case Track_tls::NORMAL:
6237       break;
6238     }
6239
6240   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6241   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6242   Powerpc_relobj<size, big_endian>* const object
6243     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6244   Address value = 0;
6245   bool has_plt_value = false;
6246   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6247   if ((gsym != NULL
6248        ? use_plt_offset<size>(gsym, Scan::get_reference_flags(r_type))
6249        : object->local_has_plt_offset(r_sym))
6250       && (!psymval->is_ifunc_symbol()
6251           || Scan::reloc_needs_plt_for_ifunc(object, r_type, false)))
6252     {
6253       Stub_table<size, big_endian>* stub_table
6254         = object->stub_table(relinfo->data_shndx);
6255       if (stub_table == NULL)
6256         {
6257           // This is a ref from a data section to an ifunc symbol.
6258           if (target->stub_tables().size() != 0)
6259             stub_table = target->stub_tables()[0];
6260         }
6261       gold_assert(stub_table != NULL);
6262       Address off;
6263       if (gsym != NULL)
6264         off = stub_table->find_plt_call_entry(object, gsym, r_type,
6265                                               rela.get_r_addend());
6266       else
6267         off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6268                                               rela.get_r_addend());
6269       gold_assert(off != invalid_address);
6270       value = stub_table->stub_address() + off;
6271       has_plt_value = true;
6272     }
6273
6274   if (r_type == elfcpp::R_POWERPC_GOT16
6275       || r_type == elfcpp::R_POWERPC_GOT16_LO
6276       || r_type == elfcpp::R_POWERPC_GOT16_HI
6277       || r_type == elfcpp::R_POWERPC_GOT16_HA
6278       || r_type == elfcpp::R_PPC64_GOT16_DS
6279       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6280     {
6281       if (gsym != NULL)
6282         {
6283           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6284           value = gsym->got_offset(GOT_TYPE_STANDARD);
6285         }
6286       else
6287         {
6288           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6289           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6290           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6291         }
6292       value -= target->got_section()->got_base_offset(object);
6293     }
6294   else if (r_type == elfcpp::R_PPC64_TOC)
6295     {
6296       value = (target->got_section()->output_section()->address()
6297                + object->toc_base_offset());
6298     }
6299   else if (gsym != NULL
6300            && (r_type == elfcpp::R_POWERPC_REL24
6301                || r_type == elfcpp::R_PPC_PLTREL24)
6302            && has_plt_value)
6303     {
6304       if (size == 64)
6305         {
6306           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6307           Valtype* wv = reinterpret_cast<Valtype*>(view);
6308           bool can_plt_call = false;
6309           if (rela.get_r_offset() + 8 <= view_size)
6310             {
6311               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6312               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6313               if ((insn & 1) != 0
6314                   && (insn2 == nop
6315                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6316                 {
6317                   elfcpp::Swap<32, big_endian>::writeval(wv + 1, ld_2_1 + 40);
6318                   can_plt_call = true;
6319                 }
6320             }
6321           if (!can_plt_call)
6322             {
6323               // If we don't have a branch and link followed by a nop,
6324               // we can't go via the plt because there is no place to
6325               // put a toc restoring instruction.
6326               // Unless we know we won't be returning.
6327               if (strcmp(gsym->name(), "__libc_start_main") == 0)
6328                 can_plt_call = true;
6329             }
6330           if (!can_plt_call)
6331             {
6332               // g++ as of 20130507 emits self-calls without a
6333               // following nop.  This is arguably wrong since we have
6334               // conflicting information.  On the one hand a global
6335               // symbol and on the other a local call sequence, but
6336               // don't error for this special case.
6337               // It isn't possible to cheaply verify we have exactly
6338               // such a call.  Allow all calls to the same section.
6339               bool ok = false;
6340               Address code = value;
6341               if (gsym->source() == Symbol::FROM_OBJECT
6342                   && gsym->object() == object)
6343                 {
6344                   Address addend = rela.get_r_addend();
6345                   unsigned int dest_shndx;
6346                   Address opdent = psymval->value(object, addend);
6347                   code = target->symval_for_branch(relinfo->symtab, opdent,
6348                                                    gsym, object, &dest_shndx);
6349                   bool is_ordinary;
6350                   if (dest_shndx == 0)
6351                     dest_shndx = gsym->shndx(&is_ordinary);
6352                   ok = dest_shndx == relinfo->data_shndx;
6353                 }
6354               if (!ok)
6355                 {
6356                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6357                                          _("call lacks nop, can't restore toc; "
6358                                            "recompile with -fPIC"));
6359                   value = code;
6360                 }
6361             }
6362         }
6363     }
6364   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6365            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6366            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6367            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6368     {
6369       // First instruction of a global dynamic sequence, arg setup insn.
6370       const bool final = gsym == NULL || gsym->final_value_is_known();
6371       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6372       enum Got_type got_type = GOT_TYPE_STANDARD;
6373       if (tls_type == tls::TLSOPT_NONE)
6374         got_type = GOT_TYPE_TLSGD;
6375       else if (tls_type == tls::TLSOPT_TO_IE)
6376         got_type = GOT_TYPE_TPREL;
6377       if (got_type != GOT_TYPE_STANDARD)
6378         {
6379           if (gsym != NULL)
6380             {
6381               gold_assert(gsym->has_got_offset(got_type));
6382               value = gsym->got_offset(got_type);
6383             }
6384           else
6385             {
6386               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6387               gold_assert(object->local_has_got_offset(r_sym, got_type));
6388               value = object->local_got_offset(r_sym, got_type);
6389             }
6390           value -= target->got_section()->got_base_offset(object);
6391         }
6392       if (tls_type == tls::TLSOPT_TO_IE)
6393         {
6394           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6395               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6396             {
6397               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6398               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6399               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6400               if (size == 32)
6401                 insn |= 32 << 26; // lwz
6402               else
6403                 insn |= 58 << 26; // ld
6404               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6405             }
6406           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6407                      - elfcpp::R_POWERPC_GOT_TLSGD16);
6408         }
6409       else if (tls_type == tls::TLSOPT_TO_LE)
6410         {
6411           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6412               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6413             {
6414               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6415               Insn insn = addis_3_13;
6416               if (size == 32)
6417                 insn = addis_3_2;
6418               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6419               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6420               value = psymval->value(object, rela.get_r_addend());
6421             }
6422           else
6423             {
6424               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6425               Insn insn = nop;
6426               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6427               r_type = elfcpp::R_POWERPC_NONE;
6428             }
6429         }
6430     }
6431   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6432            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6433            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6434            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6435     {
6436       // First instruction of a local dynamic sequence, arg setup insn.
6437       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6438       if (tls_type == tls::TLSOPT_NONE)
6439         {
6440           value = target->tlsld_got_offset();
6441           value -= target->got_section()->got_base_offset(object);
6442         }
6443       else
6444         {
6445           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6446           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6447               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6448             {
6449               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6450               Insn insn = addis_3_13;
6451               if (size == 32)
6452                 insn = addis_3_2;
6453               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6454               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6455               value = dtp_offset;
6456             }
6457           else
6458             {
6459               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6460               Insn insn = nop;
6461               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6462               r_type = elfcpp::R_POWERPC_NONE;
6463             }
6464         }
6465     }
6466   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6467            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6468            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6469            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6470     {
6471       // Accesses relative to a local dynamic sequence address,
6472       // no optimisation here.
6473       if (gsym != NULL)
6474         {
6475           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6476           value = gsym->got_offset(GOT_TYPE_DTPREL);
6477         }
6478       else
6479         {
6480           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6481           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6482           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6483         }
6484       value -= target->got_section()->got_base_offset(object);
6485     }
6486   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6487            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6488            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6489            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6490     {
6491       // First instruction of initial exec sequence.
6492       const bool final = gsym == NULL || gsym->final_value_is_known();
6493       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6494       if (tls_type == tls::TLSOPT_NONE)
6495         {
6496           if (gsym != NULL)
6497             {
6498               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6499               value = gsym->got_offset(GOT_TYPE_TPREL);
6500             }
6501           else
6502             {
6503               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6504               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6505               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6506             }
6507           value -= target->got_section()->got_base_offset(object);
6508         }
6509       else
6510         {
6511           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6512           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6513               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6514             {
6515               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6516               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6517               insn &= (1 << 26) - (1 << 21); // extract rt from ld
6518               if (size == 32)
6519                 insn |= addis_0_2;
6520               else
6521                 insn |= addis_0_13;
6522               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6523               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6524               value = psymval->value(object, rela.get_r_addend());
6525             }
6526           else
6527             {
6528               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6529               Insn insn = nop;
6530               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6531               r_type = elfcpp::R_POWERPC_NONE;
6532             }
6533         }
6534     }
6535   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6536            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6537     {
6538       // Second instruction of a global dynamic sequence,
6539       // the __tls_get_addr call
6540       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6541       const bool final = gsym == NULL || gsym->final_value_is_known();
6542       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6543       if (tls_type != tls::TLSOPT_NONE)
6544         {
6545           if (tls_type == tls::TLSOPT_TO_IE)
6546             {
6547               Insn* iview = reinterpret_cast<Insn*>(view);
6548               Insn insn = add_3_3_13;
6549               if (size == 32)
6550                 insn = add_3_3_2;
6551               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6552               r_type = elfcpp::R_POWERPC_NONE;
6553             }
6554           else
6555             {
6556               Insn* iview = reinterpret_cast<Insn*>(view);
6557               Insn insn = addi_3_3;
6558               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6559               r_type = elfcpp::R_POWERPC_TPREL16_LO;
6560               view += 2 * big_endian;
6561               value = psymval->value(object, rela.get_r_addend());
6562             }
6563           this->skip_next_tls_get_addr_call();
6564         }
6565     }
6566   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6567            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6568     {
6569       // Second instruction of a local dynamic sequence,
6570       // the __tls_get_addr call
6571       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6572       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6573       if (tls_type == tls::TLSOPT_TO_LE)
6574         {
6575           Insn* iview = reinterpret_cast<Insn*>(view);
6576           Insn insn = addi_3_3;
6577           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6578           this->skip_next_tls_get_addr_call();
6579           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6580           view += 2 * big_endian;
6581           value = dtp_offset;
6582         }
6583     }
6584   else if (r_type == elfcpp::R_POWERPC_TLS)
6585     {
6586       // Second instruction of an initial exec sequence
6587       const bool final = gsym == NULL || gsym->final_value_is_known();
6588       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6589       if (tls_type == tls::TLSOPT_TO_LE)
6590         {
6591           Insn* iview = reinterpret_cast<Insn*>(view);
6592           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6593           unsigned int reg = size == 32 ? 2 : 13;
6594           insn = at_tls_transform(insn, reg);
6595           gold_assert(insn != 0);
6596           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6597           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6598           view += 2 * big_endian;
6599           value = psymval->value(object, rela.get_r_addend());
6600         }
6601     }
6602   else if (!has_plt_value)
6603     {
6604       Address addend = 0;
6605       unsigned int dest_shndx;
6606       if (r_type != elfcpp::R_PPC_PLTREL24)
6607         addend = rela.get_r_addend();
6608       value = psymval->value(object, addend);
6609       if (size == 64 && is_branch_reloc(r_type))
6610         value = target->symval_for_branch(relinfo->symtab, value,
6611                                           gsym, object, &dest_shndx);
6612       unsigned int max_branch_offset = 0;
6613       if (r_type == elfcpp::R_POWERPC_REL24
6614           || r_type == elfcpp::R_PPC_PLTREL24
6615           || r_type == elfcpp::R_PPC_LOCAL24PC)
6616         max_branch_offset = 1 << 25;
6617       else if (r_type == elfcpp::R_POWERPC_REL14
6618                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
6619                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
6620         max_branch_offset = 1 << 15;
6621       if (max_branch_offset != 0
6622           && value - address + max_branch_offset >= 2 * max_branch_offset)
6623         {
6624           Stub_table<size, big_endian>* stub_table
6625             = object->stub_table(relinfo->data_shndx);
6626           if (stub_table != NULL)
6627             {
6628               Address off = stub_table->find_long_branch_entry(object, value);
6629               if (off != invalid_address)
6630                 value = (stub_table->stub_address() + stub_table->plt_size()
6631                          + off);
6632             }
6633         }
6634     }
6635
6636   switch (r_type)
6637     {
6638     case elfcpp::R_PPC64_REL64:
6639     case elfcpp::R_POWERPC_REL32:
6640     case elfcpp::R_POWERPC_REL24:
6641     case elfcpp::R_PPC_PLTREL24:
6642     case elfcpp::R_PPC_LOCAL24PC:
6643     case elfcpp::R_POWERPC_REL16:
6644     case elfcpp::R_POWERPC_REL16_LO:
6645     case elfcpp::R_POWERPC_REL16_HI:
6646     case elfcpp::R_POWERPC_REL16_HA:
6647     case elfcpp::R_POWERPC_REL14:
6648     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6649     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6650       value -= address;
6651       break;
6652
6653     case elfcpp::R_PPC64_TOC16:
6654     case elfcpp::R_PPC64_TOC16_LO:
6655     case elfcpp::R_PPC64_TOC16_HI:
6656     case elfcpp::R_PPC64_TOC16_HA:
6657     case elfcpp::R_PPC64_TOC16_DS:
6658     case elfcpp::R_PPC64_TOC16_LO_DS:
6659       // Subtract the TOC base address.
6660       value -= (target->got_section()->output_section()->address()
6661                 + object->toc_base_offset());
6662       break;
6663
6664     case elfcpp::R_POWERPC_SECTOFF:
6665     case elfcpp::R_POWERPC_SECTOFF_LO:
6666     case elfcpp::R_POWERPC_SECTOFF_HI:
6667     case elfcpp::R_POWERPC_SECTOFF_HA:
6668     case elfcpp::R_PPC64_SECTOFF_DS:
6669     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6670       if (os != NULL)
6671         value -= os->address();
6672       break;
6673
6674     case elfcpp::R_PPC64_TPREL16_DS:
6675     case elfcpp::R_PPC64_TPREL16_LO_DS:
6676       if (size != 64)
6677         // R_PPC_TLSGD and R_PPC_TLSLD
6678         break;
6679     case elfcpp::R_POWERPC_TPREL16:
6680     case elfcpp::R_POWERPC_TPREL16_LO:
6681     case elfcpp::R_POWERPC_TPREL16_HI:
6682     case elfcpp::R_POWERPC_TPREL16_HA:
6683     case elfcpp::R_POWERPC_TPREL:
6684     case elfcpp::R_PPC64_TPREL16_HIGHER:
6685     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6686     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6687     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6688       // tls symbol values are relative to tls_segment()->vaddr()
6689       value -= tp_offset;
6690       break;
6691
6692     case elfcpp::R_PPC64_DTPREL16_DS:
6693     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6694     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6695     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6696     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6697     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6698       if (size != 64)
6699         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
6700         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
6701         break;
6702     case elfcpp::R_POWERPC_DTPREL16:
6703     case elfcpp::R_POWERPC_DTPREL16_LO:
6704     case elfcpp::R_POWERPC_DTPREL16_HI:
6705     case elfcpp::R_POWERPC_DTPREL16_HA:
6706     case elfcpp::R_POWERPC_DTPREL:
6707       // tls symbol values are relative to tls_segment()->vaddr()
6708       value -= dtp_offset;
6709       break;
6710
6711     default:
6712       break;
6713     }
6714
6715   Insn branch_bit = 0;
6716   switch (r_type)
6717     {
6718     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6719     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6720       branch_bit = 1 << 21;
6721     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6722     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6723       {
6724         Insn* iview = reinterpret_cast<Insn*>(view);
6725         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6726         insn &= ~(1 << 21);
6727         insn |= branch_bit;
6728         if (this->is_isa_v2)
6729           {
6730             // Set 'a' bit.  This is 0b00010 in BO field for branch
6731             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
6732             // for branch on CTR insns (BO == 1a00t or 1a01t).
6733             if ((insn & (0x14 << 21)) == (0x04 << 21))
6734               insn |= 0x02 << 21;
6735             else if ((insn & (0x14 << 21)) == (0x10 << 21))
6736               insn |= 0x08 << 21;
6737             else
6738               break;
6739           }
6740         else
6741           {
6742             // Invert 'y' bit if not the default.
6743             if (static_cast<Signed_address>(value) < 0)
6744               insn ^= 1 << 21;
6745           }
6746         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6747       }
6748       break;
6749
6750     default:
6751       break;
6752     }
6753
6754   if (size == 64)
6755     {
6756       // Multi-instruction sequences that access the TOC can be
6757       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
6758       // to             nop;           addi rb,r2,x;
6759       switch (r_type)
6760         {
6761         default:
6762           break;
6763
6764         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6765         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6766         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6767         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6768         case elfcpp::R_POWERPC_GOT16_HA:
6769         case elfcpp::R_PPC64_TOC16_HA:
6770           if (parameters->options().toc_optimize())
6771             {
6772               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6773               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6774               if ((insn & ((0x3f << 26) | 0x1f << 16))
6775                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
6776                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6777                                        _("toc optimization is not supported "
6778                                          "for %#08x instruction"), insn);
6779               else if (value + 0x8000 < 0x10000)
6780                 {
6781                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
6782                   return true;
6783                 }
6784             }
6785           break;
6786
6787         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6788         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6789         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6790         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6791         case elfcpp::R_POWERPC_GOT16_LO:
6792         case elfcpp::R_PPC64_GOT16_LO_DS:
6793         case elfcpp::R_PPC64_TOC16_LO:
6794         case elfcpp::R_PPC64_TOC16_LO_DS:
6795           if (parameters->options().toc_optimize())
6796             {
6797               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6798               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6799               if (!ok_lo_toc_insn(insn))
6800                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6801                                        _("toc optimization is not supported "
6802                                          "for %#08x instruction"), insn);
6803               else if (value + 0x8000 < 0x10000)
6804                 {
6805                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
6806                     {
6807                       // Transform addic to addi when we change reg.
6808                       insn &= ~((0x3f << 26) | (0x1f << 16));
6809                       insn |= (14u << 26) | (2 << 16);
6810                     }
6811                   else
6812                     {
6813                       insn &= ~(0x1f << 16);
6814                       insn |= 2 << 16;
6815                     }
6816                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6817                 }
6818             }
6819           break;
6820         }
6821     }
6822
6823   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
6824   switch (r_type)
6825     {
6826     case elfcpp::R_POWERPC_ADDR32:
6827     case elfcpp::R_POWERPC_UADDR32:
6828       if (size == 64)
6829         overflow = Reloc::CHECK_BITFIELD;
6830       break;
6831
6832     case elfcpp::R_POWERPC_REL32:
6833       if (size == 64)
6834         overflow = Reloc::CHECK_SIGNED;
6835       break;
6836
6837     case elfcpp::R_POWERPC_ADDR24:
6838     case elfcpp::R_POWERPC_ADDR16:
6839     case elfcpp::R_POWERPC_UADDR16:
6840     case elfcpp::R_PPC64_ADDR16_DS:
6841     case elfcpp::R_POWERPC_ADDR14:
6842     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6843     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6844       overflow = Reloc::CHECK_BITFIELD;
6845       break;
6846
6847     case elfcpp::R_POWERPC_REL24:
6848     case elfcpp::R_PPC_PLTREL24:
6849     case elfcpp::R_PPC_LOCAL24PC:
6850     case elfcpp::R_POWERPC_REL16:
6851     case elfcpp::R_PPC64_TOC16:
6852     case elfcpp::R_POWERPC_GOT16:
6853     case elfcpp::R_POWERPC_SECTOFF:
6854     case elfcpp::R_POWERPC_TPREL16:
6855     case elfcpp::R_POWERPC_DTPREL16:
6856     case elfcpp::R_PPC64_TPREL16_DS:
6857     case elfcpp::R_PPC64_DTPREL16_DS:
6858     case elfcpp::R_PPC64_TOC16_DS:
6859     case elfcpp::R_PPC64_GOT16_DS:
6860     case elfcpp::R_PPC64_SECTOFF_DS:
6861     case elfcpp::R_POWERPC_REL14:
6862     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6863     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6864     case elfcpp::R_POWERPC_GOT_TLSGD16:
6865     case elfcpp::R_POWERPC_GOT_TLSLD16:
6866     case elfcpp::R_POWERPC_GOT_TPREL16:
6867     case elfcpp::R_POWERPC_GOT_DTPREL16:
6868       overflow = Reloc::CHECK_SIGNED;
6869       break;
6870     }
6871
6872   typename Powerpc_relocate_functions<size, big_endian>::Status status
6873     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
6874   switch (r_type)
6875     {
6876     case elfcpp::R_POWERPC_NONE:
6877     case elfcpp::R_POWERPC_TLS:
6878     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6879     case elfcpp::R_POWERPC_GNU_VTENTRY:
6880     case elfcpp::R_PPC_EMB_MRKREF:
6881       break;
6882
6883     case elfcpp::R_PPC64_ADDR64:
6884     case elfcpp::R_PPC64_REL64:
6885     case elfcpp::R_PPC64_TOC:
6886       Reloc::addr64(view, value);
6887       break;
6888
6889     case elfcpp::R_POWERPC_TPREL:
6890     case elfcpp::R_POWERPC_DTPREL:
6891       if (size == 64)
6892         Reloc::addr64(view, value);
6893       else
6894         status = Reloc::addr32(view, value, overflow);
6895       break;
6896
6897     case elfcpp::R_PPC64_UADDR64:
6898       Reloc::addr64_u(view, value);
6899       break;
6900
6901     case elfcpp::R_POWERPC_ADDR32:
6902       status = Reloc::addr32(view, value, overflow);
6903       break;
6904
6905     case elfcpp::R_POWERPC_REL32:
6906     case elfcpp::R_POWERPC_UADDR32:
6907       status = Reloc::addr32_u(view, value, overflow);
6908       break;
6909
6910     case elfcpp::R_POWERPC_ADDR24:
6911     case elfcpp::R_POWERPC_REL24:
6912     case elfcpp::R_PPC_PLTREL24:
6913     case elfcpp::R_PPC_LOCAL24PC:
6914       status = Reloc::addr24(view, value, overflow);
6915       break;
6916
6917     case elfcpp::R_POWERPC_GOT_DTPREL16:
6918     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6919       if (size == 64)
6920         {
6921           status = Reloc::addr16_ds(view, value, overflow);
6922           break;
6923         }
6924     case elfcpp::R_POWERPC_ADDR16:
6925     case elfcpp::R_POWERPC_REL16:
6926     case elfcpp::R_PPC64_TOC16:
6927     case elfcpp::R_POWERPC_GOT16:
6928     case elfcpp::R_POWERPC_SECTOFF:
6929     case elfcpp::R_POWERPC_TPREL16:
6930     case elfcpp::R_POWERPC_DTPREL16:
6931     case elfcpp::R_POWERPC_GOT_TLSGD16:
6932     case elfcpp::R_POWERPC_GOT_TLSLD16:
6933     case elfcpp::R_POWERPC_GOT_TPREL16:
6934     case elfcpp::R_POWERPC_ADDR16_LO:
6935     case elfcpp::R_POWERPC_REL16_LO:
6936     case elfcpp::R_PPC64_TOC16_LO:
6937     case elfcpp::R_POWERPC_GOT16_LO:
6938     case elfcpp::R_POWERPC_SECTOFF_LO:
6939     case elfcpp::R_POWERPC_TPREL16_LO:
6940     case elfcpp::R_POWERPC_DTPREL16_LO:
6941     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6942     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6943     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6944       status = Reloc::addr16(view, value, overflow);
6945       break;
6946
6947     case elfcpp::R_POWERPC_UADDR16:
6948       status = Reloc::addr16_u(view, value, overflow);
6949       break;
6950
6951     case elfcpp::R_POWERPC_ADDR16_HI:
6952     case elfcpp::R_POWERPC_REL16_HI:
6953     case elfcpp::R_PPC64_TOC16_HI:
6954     case elfcpp::R_POWERPC_GOT16_HI:
6955     case elfcpp::R_POWERPC_SECTOFF_HI:
6956     case elfcpp::R_POWERPC_TPREL16_HI:
6957     case elfcpp::R_POWERPC_DTPREL16_HI:
6958     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6959     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6960     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6961     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6962       Reloc::addr16_hi(view, value);
6963       break;
6964
6965     case elfcpp::R_POWERPC_ADDR16_HA:
6966     case elfcpp::R_POWERPC_REL16_HA:
6967     case elfcpp::R_PPC64_TOC16_HA:
6968     case elfcpp::R_POWERPC_GOT16_HA:
6969     case elfcpp::R_POWERPC_SECTOFF_HA:
6970     case elfcpp::R_POWERPC_TPREL16_HA:
6971     case elfcpp::R_POWERPC_DTPREL16_HA:
6972     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6973     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6974     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6975     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6976       Reloc::addr16_ha(view, value);
6977       break;
6978
6979     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6980       if (size == 32)
6981         // R_PPC_EMB_NADDR16_LO
6982         goto unsupp;
6983     case elfcpp::R_PPC64_ADDR16_HIGHER:
6984     case elfcpp::R_PPC64_TPREL16_HIGHER:
6985       Reloc::addr16_hi2(view, value);
6986       break;
6987
6988     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6989       if (size == 32)
6990         // R_PPC_EMB_NADDR16_HI
6991         goto unsupp;
6992     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6993     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6994       Reloc::addr16_ha2(view, value);
6995       break;
6996
6997     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6998       if (size == 32)
6999         // R_PPC_EMB_NADDR16_HA
7000         goto unsupp;
7001     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7002     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7003       Reloc::addr16_hi3(view, value);
7004       break;
7005
7006     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7007       if (size == 32)
7008         // R_PPC_EMB_SDAI16
7009         goto unsupp;
7010     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7011     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7012       Reloc::addr16_ha3(view, value);
7013       break;
7014
7015     case elfcpp::R_PPC64_DTPREL16_DS:
7016     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7017       if (size == 32)
7018         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7019         goto unsupp;
7020     case elfcpp::R_PPC64_TPREL16_DS:
7021     case elfcpp::R_PPC64_TPREL16_LO_DS:
7022       if (size == 32)
7023         // R_PPC_TLSGD, R_PPC_TLSLD
7024         break;
7025     case elfcpp::R_PPC64_ADDR16_DS:
7026     case elfcpp::R_PPC64_ADDR16_LO_DS:
7027     case elfcpp::R_PPC64_TOC16_DS:
7028     case elfcpp::R_PPC64_TOC16_LO_DS:
7029     case elfcpp::R_PPC64_GOT16_DS:
7030     case elfcpp::R_PPC64_GOT16_LO_DS:
7031     case elfcpp::R_PPC64_SECTOFF_DS:
7032     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7033       status = Reloc::addr16_ds(view, value, overflow);
7034       break;
7035
7036     case elfcpp::R_POWERPC_ADDR14:
7037     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7038     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7039     case elfcpp::R_POWERPC_REL14:
7040     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7041     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7042       status = Reloc::addr14(view, value, overflow);
7043       break;
7044
7045     case elfcpp::R_POWERPC_COPY:
7046     case elfcpp::R_POWERPC_GLOB_DAT:
7047     case elfcpp::R_POWERPC_JMP_SLOT:
7048     case elfcpp::R_POWERPC_RELATIVE:
7049     case elfcpp::R_POWERPC_DTPMOD:
7050     case elfcpp::R_PPC64_JMP_IREL:
7051     case elfcpp::R_POWERPC_IRELATIVE:
7052       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7053                              _("unexpected reloc %u in object file"),
7054                              r_type);
7055       break;
7056
7057     case elfcpp::R_PPC_EMB_SDA21:
7058       if (size == 32)
7059         goto unsupp;
7060       else
7061         {
7062           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7063         }
7064       break;
7065
7066     case elfcpp::R_PPC_EMB_SDA2I16:
7067     case elfcpp::R_PPC_EMB_SDA2REL:
7068       if (size == 32)
7069         goto unsupp;
7070       // R_PPC64_TLSGD, R_PPC64_TLSLD
7071       break;
7072
7073     case elfcpp::R_POWERPC_PLT32:
7074     case elfcpp::R_POWERPC_PLTREL32:
7075     case elfcpp::R_POWERPC_PLT16_LO:
7076     case elfcpp::R_POWERPC_PLT16_HI:
7077     case elfcpp::R_POWERPC_PLT16_HA:
7078     case elfcpp::R_PPC_SDAREL16:
7079     case elfcpp::R_POWERPC_ADDR30:
7080     case elfcpp::R_PPC64_PLT64:
7081     case elfcpp::R_PPC64_PLTREL64:
7082     case elfcpp::R_PPC64_PLTGOT16:
7083     case elfcpp::R_PPC64_PLTGOT16_LO:
7084     case elfcpp::R_PPC64_PLTGOT16_HI:
7085     case elfcpp::R_PPC64_PLTGOT16_HA:
7086     case elfcpp::R_PPC64_PLT16_LO_DS:
7087     case elfcpp::R_PPC64_PLTGOT16_DS:
7088     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7089     case elfcpp::R_PPC_EMB_RELSEC16:
7090     case elfcpp::R_PPC_EMB_RELST_LO:
7091     case elfcpp::R_PPC_EMB_RELST_HI:
7092     case elfcpp::R_PPC_EMB_RELST_HA:
7093     case elfcpp::R_PPC_EMB_BIT_FLD:
7094     case elfcpp::R_PPC_EMB_RELSDA:
7095     case elfcpp::R_PPC_TOC16:
7096     default:
7097     unsupp:
7098       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7099                              _("unsupported reloc %u"),
7100                              r_type);
7101       break;
7102     }
7103   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7104     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7105                            _("relocation overflow"));
7106
7107   return true;
7108 }
7109
7110 // Relocate section data.
7111
7112 template<int size, bool big_endian>
7113 void
7114 Target_powerpc<size, big_endian>::relocate_section(
7115     const Relocate_info<size, big_endian>* relinfo,
7116     unsigned int sh_type,
7117     const unsigned char* prelocs,
7118     size_t reloc_count,
7119     Output_section* output_section,
7120     bool needs_special_offset_handling,
7121     unsigned char* view,
7122     Address address,
7123     section_size_type view_size,
7124     const Reloc_symbol_changes* reloc_symbol_changes)
7125 {
7126   typedef Target_powerpc<size, big_endian> Powerpc;
7127   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7128   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7129     Powerpc_comdat_behavior;
7130
7131   gold_assert(sh_type == elfcpp::SHT_RELA);
7132
7133   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7134                          Powerpc_relocate, Powerpc_comdat_behavior>(
7135     relinfo,
7136     this,
7137     prelocs,
7138     reloc_count,
7139     output_section,
7140     needs_special_offset_handling,
7141     view,
7142     address,
7143     view_size,
7144     reloc_symbol_changes);
7145 }
7146
7147 class Powerpc_scan_relocatable_reloc
7148 {
7149 public:
7150   // Return the strategy to use for a local symbol which is not a
7151   // section symbol, given the relocation type.
7152   inline Relocatable_relocs::Reloc_strategy
7153   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7154   {
7155     if (r_type == 0 && r_sym == 0)
7156       return Relocatable_relocs::RELOC_DISCARD;
7157     return Relocatable_relocs::RELOC_COPY;
7158   }
7159
7160   // Return the strategy to use for a local symbol which is a section
7161   // symbol, given the relocation type.
7162   inline Relocatable_relocs::Reloc_strategy
7163   local_section_strategy(unsigned int, Relobj*)
7164   {
7165     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7166   }
7167
7168   // Return the strategy to use for a global symbol, given the
7169   // relocation type, the object, and the symbol index.
7170   inline Relocatable_relocs::Reloc_strategy
7171   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7172   {
7173     if (r_type == elfcpp::R_PPC_PLTREL24)
7174       return Relocatable_relocs::RELOC_SPECIAL;
7175     return Relocatable_relocs::RELOC_COPY;
7176   }
7177 };
7178
7179 // Scan the relocs during a relocatable link.
7180
7181 template<int size, bool big_endian>
7182 void
7183 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7184     Symbol_table* symtab,
7185     Layout* layout,
7186     Sized_relobj_file<size, big_endian>* object,
7187     unsigned int data_shndx,
7188     unsigned int sh_type,
7189     const unsigned char* prelocs,
7190     size_t reloc_count,
7191     Output_section* output_section,
7192     bool needs_special_offset_handling,
7193     size_t local_symbol_count,
7194     const unsigned char* plocal_symbols,
7195     Relocatable_relocs* rr)
7196 {
7197   gold_assert(sh_type == elfcpp::SHT_RELA);
7198
7199   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7200                                 Powerpc_scan_relocatable_reloc>(
7201     symtab,
7202     layout,
7203     object,
7204     data_shndx,
7205     prelocs,
7206     reloc_count,
7207     output_section,
7208     needs_special_offset_handling,
7209     local_symbol_count,
7210     plocal_symbols,
7211     rr);
7212 }
7213
7214 // Emit relocations for a section.
7215 // This is a modified version of the function by the same name in
7216 // target-reloc.h.  Using relocate_special_relocatable for
7217 // R_PPC_PLTREL24 would require duplication of the entire body of the
7218 // loop, so we may as well duplicate the whole thing.
7219
7220 template<int size, bool big_endian>
7221 void
7222 Target_powerpc<size, big_endian>::relocate_relocs(
7223     const Relocate_info<size, big_endian>* relinfo,
7224     unsigned int sh_type,
7225     const unsigned char* prelocs,
7226     size_t reloc_count,
7227     Output_section* output_section,
7228     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7229     const Relocatable_relocs* rr,
7230     unsigned char*,
7231     Address view_address,
7232     section_size_type,
7233     unsigned char* reloc_view,
7234     section_size_type reloc_view_size)
7235 {
7236   gold_assert(sh_type == elfcpp::SHT_RELA);
7237
7238   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7239     Reltype;
7240   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7241     Reltype_write;
7242   const int reloc_size
7243     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7244
7245   Powerpc_relobj<size, big_endian>* const object
7246     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7247   const unsigned int local_count = object->local_symbol_count();
7248   unsigned int got2_shndx = object->got2_shndx();
7249   Address got2_addend = 0;
7250   if (got2_shndx != 0)
7251     {
7252       got2_addend = object->get_output_section_offset(got2_shndx);
7253       gold_assert(got2_addend != invalid_address);
7254     }
7255
7256   unsigned char* pwrite = reloc_view;
7257   bool zap_next = false;
7258   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7259     {
7260       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7261       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7262         continue;
7263
7264       Reltype reloc(prelocs);
7265       Reltype_write reloc_write(pwrite);
7266
7267       Address offset = reloc.get_r_offset();
7268       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7269       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7270       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7271       const unsigned int orig_r_sym = r_sym;
7272       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7273         = reloc.get_r_addend();
7274       const Symbol* gsym = NULL;
7275
7276       if (zap_next)
7277         {
7278           // We could arrange to discard these and other relocs for
7279           // tls optimised sequences in the strategy methods, but for
7280           // now do as BFD ld does.
7281           r_type = elfcpp::R_POWERPC_NONE;
7282           zap_next = false;
7283         }
7284
7285       // Get the new symbol index.
7286       if (r_sym < local_count)
7287         {
7288           switch (strategy)
7289             {
7290             case Relocatable_relocs::RELOC_COPY:
7291             case Relocatable_relocs::RELOC_SPECIAL:
7292               if (r_sym != 0)
7293                 {
7294                   r_sym = object->symtab_index(r_sym);
7295                   gold_assert(r_sym != -1U);
7296                 }
7297               break;
7298
7299             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7300               {
7301                 // We are adjusting a section symbol.  We need to find
7302                 // the symbol table index of the section symbol for
7303                 // the output section corresponding to input section
7304                 // in which this symbol is defined.
7305                 gold_assert(r_sym < local_count);
7306                 bool is_ordinary;
7307                 unsigned int shndx =
7308                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
7309                 gold_assert(is_ordinary);
7310                 Output_section* os = object->output_section(shndx);
7311                 gold_assert(os != NULL);
7312                 gold_assert(os->needs_symtab_index());
7313                 r_sym = os->symtab_index();
7314               }
7315               break;
7316
7317             default:
7318               gold_unreachable();
7319             }
7320         }
7321       else
7322         {
7323           gsym = object->global_symbol(r_sym);
7324           gold_assert(gsym != NULL);
7325           if (gsym->is_forwarder())
7326             gsym = relinfo->symtab->resolve_forwards(gsym);
7327
7328           gold_assert(gsym->has_symtab_index());
7329           r_sym = gsym->symtab_index();
7330         }
7331
7332       // Get the new offset--the location in the output section where
7333       // this relocation should be applied.
7334       if (static_cast<Address>(offset_in_output_section) != invalid_address)
7335         offset += offset_in_output_section;
7336       else
7337         {
7338           section_offset_type sot_offset =
7339             convert_types<section_offset_type, Address>(offset);
7340           section_offset_type new_sot_offset =
7341             output_section->output_offset(object, relinfo->data_shndx,
7342                                           sot_offset);
7343           gold_assert(new_sot_offset != -1);
7344           offset = new_sot_offset;
7345         }
7346
7347       // In an object file, r_offset is an offset within the section.
7348       // In an executable or dynamic object, generated by
7349       // --emit-relocs, r_offset is an absolute address.
7350       if (!parameters->options().relocatable())
7351         {
7352           offset += view_address;
7353           if (static_cast<Address>(offset_in_output_section) != invalid_address)
7354             offset -= offset_in_output_section;
7355         }
7356
7357       // Handle the reloc addend based on the strategy.
7358       if (strategy == Relocatable_relocs::RELOC_COPY)
7359         ;
7360       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7361         {
7362           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7363           addend = psymval->value(object, addend);
7364         }
7365       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7366         {
7367           if (addend >= 32768)
7368             addend += got2_addend;
7369         }
7370       else
7371         gold_unreachable();
7372
7373       if (!parameters->options().relocatable())
7374         {
7375           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7376               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7377               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7378               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7379             {
7380               // First instruction of a global dynamic sequence,
7381               // arg setup insn.
7382               const bool final = gsym == NULL || gsym->final_value_is_known();
7383               switch (this->optimize_tls_gd(final))
7384                 {
7385                 case tls::TLSOPT_TO_IE:
7386                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7387                              - elfcpp::R_POWERPC_GOT_TLSGD16);
7388                   break;
7389                 case tls::TLSOPT_TO_LE:
7390                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7391                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7392                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7393                   else
7394                     {
7395                       r_type = elfcpp::R_POWERPC_NONE;
7396                       offset -= 2 * big_endian;
7397                     }
7398                   break;
7399                 default:
7400                   break;
7401                 }
7402             }
7403           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7404                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7405                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7406                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7407             {
7408               // First instruction of a local dynamic sequence,
7409               // arg setup insn.
7410               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7411                 {
7412                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7413                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7414                     {
7415                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
7416                       const Output_section* os = relinfo->layout->tls_segment()
7417                         ->first_section();
7418                       gold_assert(os != NULL);
7419                       gold_assert(os->needs_symtab_index());
7420                       r_sym = os->symtab_index();
7421                       addend = dtp_offset;
7422                     }
7423                   else
7424                     {
7425                       r_type = elfcpp::R_POWERPC_NONE;
7426                       offset -= 2 * big_endian;
7427                     }
7428                 }
7429             }
7430           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7431                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7432                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7433                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7434             {
7435               // First instruction of initial exec sequence.
7436               const bool final = gsym == NULL || gsym->final_value_is_known();
7437               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7438                 {
7439                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7440                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7441                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7442                   else
7443                     {
7444                       r_type = elfcpp::R_POWERPC_NONE;
7445                       offset -= 2 * big_endian;
7446                     }
7447                 }
7448             }
7449           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7450                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7451             {
7452               // Second instruction of a global dynamic sequence,
7453               // the __tls_get_addr call
7454               const bool final = gsym == NULL || gsym->final_value_is_known();
7455               switch (this->optimize_tls_gd(final))
7456                 {
7457                 case tls::TLSOPT_TO_IE:
7458                   r_type = elfcpp::R_POWERPC_NONE;
7459                   zap_next = true;
7460                   break;
7461                 case tls::TLSOPT_TO_LE:
7462                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7463                   offset += 2 * big_endian;
7464                   zap_next = true;
7465                   break;
7466                 default:
7467                   break;
7468                 }
7469             }
7470           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7471                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7472             {
7473               // Second instruction of a local dynamic sequence,
7474               // the __tls_get_addr call
7475               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7476                 {
7477                   const Output_section* os = relinfo->layout->tls_segment()
7478                     ->first_section();
7479                   gold_assert(os != NULL);
7480                   gold_assert(os->needs_symtab_index());
7481                   r_sym = os->symtab_index();
7482                   addend = dtp_offset;
7483                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7484                   offset += 2 * big_endian;
7485                   zap_next = true;
7486                 }
7487             }
7488           else if (r_type == elfcpp::R_POWERPC_TLS)
7489             {
7490               // Second instruction of an initial exec sequence
7491               const bool final = gsym == NULL || gsym->final_value_is_known();
7492               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7493                 {
7494                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7495                   offset += 2 * big_endian;
7496                 }
7497             }
7498         }
7499
7500       reloc_write.put_r_offset(offset);
7501       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
7502       reloc_write.put_r_addend(addend);
7503
7504       pwrite += reloc_size;
7505     }
7506
7507   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
7508               == reloc_view_size);
7509 }
7510
7511 // Return the value to use for a dynamic symbol which requires special
7512 // treatment.  This is how we support equality comparisons of function
7513 // pointers across shared library boundaries, as described in the
7514 // processor specific ABI supplement.
7515
7516 template<int size, bool big_endian>
7517 uint64_t
7518 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7519 {
7520   if (size == 32)
7521     {
7522       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
7523       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7524            p != this->stub_tables_.end();
7525            ++p)
7526         {
7527           Address off = (*p)->find_plt_call_entry(gsym);
7528           if (off != invalid_address)
7529             return (*p)->stub_address() + off;
7530         }
7531     }
7532   gold_unreachable();
7533 }
7534
7535 // Return the PLT address to use for a local symbol.
7536 template<int size, bool big_endian>
7537 uint64_t
7538 Target_powerpc<size, big_endian>::do_plt_address_for_local(
7539     const Relobj* object,
7540     unsigned int symndx) const
7541 {
7542   if (size == 32)
7543     {
7544       const Sized_relobj<size, big_endian>* relobj
7545         = static_cast<const Sized_relobj<size, big_endian>*>(object);
7546       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7547            p != this->stub_tables_.end();
7548            ++p)
7549         {
7550           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
7551                                                   symndx);
7552           if (off != invalid_address)
7553             return (*p)->stub_address() + off;
7554         }
7555     }
7556   gold_unreachable();
7557 }
7558
7559 // Return the PLT address to use for a global symbol.
7560 template<int size, bool big_endian>
7561 uint64_t
7562 Target_powerpc<size, big_endian>::do_plt_address_for_global(
7563     const Symbol* gsym) const
7564 {
7565   if (size == 32)
7566     {
7567       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7568            p != this->stub_tables_.end();
7569            ++p)
7570         {
7571           Address off = (*p)->find_plt_call_entry(gsym);
7572           if (off != invalid_address)
7573             return (*p)->stub_address() + off;
7574         }
7575     }
7576   gold_unreachable();
7577 }
7578
7579 // Return the offset to use for the GOT_INDX'th got entry which is
7580 // for a local tls symbol specified by OBJECT, SYMNDX.
7581 template<int size, bool big_endian>
7582 int64_t
7583 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
7584     const Relobj* object,
7585     unsigned int symndx,
7586     unsigned int got_indx) const
7587 {
7588   const Powerpc_relobj<size, big_endian>* ppc_object
7589     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
7590   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
7591     {
7592       for (Got_type got_type = GOT_TYPE_TLSGD;
7593            got_type <= GOT_TYPE_TPREL;
7594            got_type = Got_type(got_type + 1))
7595         if (ppc_object->local_has_got_offset(symndx, got_type))
7596           {
7597             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
7598             if (got_type == GOT_TYPE_TLSGD)
7599               off += size / 8;
7600             if (off == got_indx * (size / 8))
7601               {
7602                 if (got_type == GOT_TYPE_TPREL)
7603                   return -tp_offset;
7604                 else
7605                   return -dtp_offset;
7606               }
7607           }
7608     }
7609   gold_unreachable();
7610 }
7611
7612 // Return the offset to use for the GOT_INDX'th got entry which is
7613 // for global tls symbol GSYM.
7614 template<int size, bool big_endian>
7615 int64_t
7616 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
7617     Symbol* gsym,
7618     unsigned int got_indx) const
7619 {
7620   if (gsym->type() == elfcpp::STT_TLS)
7621     {
7622       for (Got_type got_type = GOT_TYPE_TLSGD;
7623            got_type <= GOT_TYPE_TPREL;
7624            got_type = Got_type(got_type + 1))
7625         if (gsym->has_got_offset(got_type))
7626           {
7627             unsigned int off = gsym->got_offset(got_type);
7628             if (got_type == GOT_TYPE_TLSGD)
7629               off += size / 8;
7630             if (off == got_indx * (size / 8))
7631               {
7632                 if (got_type == GOT_TYPE_TPREL)
7633                   return -tp_offset;
7634                 else
7635                   return -dtp_offset;
7636               }
7637           }
7638     }
7639   gold_unreachable();
7640 }
7641
7642 // The selector for powerpc object files.
7643
7644 template<int size, bool big_endian>
7645 class Target_selector_powerpc : public Target_selector
7646 {
7647 public:
7648   Target_selector_powerpc()
7649     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
7650                       size, big_endian,
7651                       (size == 64
7652                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
7653                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
7654                       (size == 64
7655                        ? (big_endian ? "elf64ppc" : "elf64lppc")
7656                        : (big_endian ? "elf32ppc" : "elf32lppc")))
7657   { }
7658
7659   virtual Target*
7660   do_instantiate_target()
7661   { return new Target_powerpc<size, big_endian>(); }
7662 };
7663
7664 Target_selector_powerpc<32, true> target_selector_ppc32;
7665 Target_selector_powerpc<32, false> target_selector_ppc32le;
7666 Target_selector_powerpc<64, true> target_selector_ppc64;
7667 Target_selector_powerpc<64, false> target_selector_ppc64le;
7668
7669 // Instantiate these constants for -O0
7670 template<int size, bool big_endian>
7671 const int Output_data_glink<size, big_endian>::pltresolve_size;
7672 template<int size, bool big_endian>
7673 const typename Stub_table<size, big_endian>::Address
7674   Stub_table<size, big_endian>::invalid_address;
7675 template<int size, bool big_endian>
7676 const typename Target_powerpc<size, big_endian>::Address
7677   Target_powerpc<size, big_endian>::invalid_address;
7678
7679 } // End anonymous namespace.