Revert "PowerPC PLT speculative execution barriers"
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2018 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73   Stub_table_owner()
74     : output_section(NULL), owner(NULL)
75   { }
76
77   Output_section* output_section;
78   const Output_section::Input_section* owner;
79 };
80
81 inline bool
82 is_branch_reloc(unsigned int r_type);
83
84 // Counter incremented on every Powerpc_relobj constructed.
85 static uint32_t object_id = 0;
86
87 template<int size, bool big_endian>
88 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
89 {
90 public:
91   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
92   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
93   typedef Unordered_map<Address, Section_refs> Access_from;
94
95   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
96                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
97     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
98       uniq_(object_id++), special_(0), relatoc_(0), toc_(0),
99       has_small_toc_reloc_(false), opd_valid_(false),
100       e_flags_(ehdr.get_e_flags()), no_toc_opt_(), opd_ent_(),
101       access_from_map_(), has14_(), stub_table_index_(), st_other_()
102   {
103     this->set_abiversion(0);
104   }
105
106   ~Powerpc_relobj()
107   { }
108
109   // Read the symbols then set up st_other vector.
110   void
111   do_read_symbols(Read_symbols_data*);
112
113   // Arrange to always relocate .toc first.
114   virtual void
115   do_relocate_sections(
116       const Symbol_table* symtab, const Layout* layout,
117       const unsigned char* pshdrs, Output_file* of,
118       typename Sized_relobj_file<size, big_endian>::Views* pviews);
119
120   // The .toc section index.
121   unsigned int
122   toc_shndx() const
123   {
124     return this->toc_;
125   }
126
127   // Mark .toc entry at OFF as not optimizable.
128   void
129   set_no_toc_opt(Address off)
130   {
131     if (this->no_toc_opt_.empty())
132       this->no_toc_opt_.resize(this->section_size(this->toc_shndx())
133                                / (size / 8));
134     off /= size / 8;
135     if (off < this->no_toc_opt_.size())
136       this->no_toc_opt_[off] = true;
137   }
138
139   // Mark the entire .toc as not optimizable.
140   void
141   set_no_toc_opt()
142   {
143     this->no_toc_opt_.resize(1);
144     this->no_toc_opt_[0] = true;
145   }
146
147   // Return true if code using the .toc entry at OFF should not be edited.
148   bool
149   no_toc_opt(Address off) const
150   {
151     if (this->no_toc_opt_.empty())
152       return false;
153     off /= size / 8;
154     if (off >= this->no_toc_opt_.size())
155       return true;
156     return this->no_toc_opt_[off];
157   }
158
159   // The .got2 section shndx.
160   unsigned int
161   got2_shndx() const
162   {
163     if (size == 32)
164       return this->special_;
165     else
166       return 0;
167   }
168
169   // The .opd section shndx.
170   unsigned int
171   opd_shndx() const
172   {
173     if (size == 32)
174       return 0;
175     else
176       return this->special_;
177   }
178
179   // Init OPD entry arrays.
180   void
181   init_opd(size_t opd_size)
182   {
183     size_t count = this->opd_ent_ndx(opd_size);
184     this->opd_ent_.resize(count);
185   }
186
187   // Return section and offset of function entry for .opd + R_OFF.
188   unsigned int
189   get_opd_ent(Address r_off, Address* value = NULL) const
190   {
191     size_t ndx = this->opd_ent_ndx(r_off);
192     gold_assert(ndx < this->opd_ent_.size());
193     gold_assert(this->opd_ent_[ndx].shndx != 0);
194     if (value != NULL)
195       *value = this->opd_ent_[ndx].off;
196     return this->opd_ent_[ndx].shndx;
197   }
198
199   // Set section and offset of function entry for .opd + R_OFF.
200   void
201   set_opd_ent(Address r_off, unsigned int shndx, Address value)
202   {
203     size_t ndx = this->opd_ent_ndx(r_off);
204     gold_assert(ndx < this->opd_ent_.size());
205     this->opd_ent_[ndx].shndx = shndx;
206     this->opd_ent_[ndx].off = value;
207   }
208
209   // Return discard flag for .opd + R_OFF.
210   bool
211   get_opd_discard(Address r_off) const
212   {
213     size_t ndx = this->opd_ent_ndx(r_off);
214     gold_assert(ndx < this->opd_ent_.size());
215     return this->opd_ent_[ndx].discard;
216   }
217
218   // Set discard flag for .opd + R_OFF.
219   void
220   set_opd_discard(Address r_off)
221   {
222     size_t ndx = this->opd_ent_ndx(r_off);
223     gold_assert(ndx < this->opd_ent_.size());
224     this->opd_ent_[ndx].discard = true;
225   }
226
227   bool
228   opd_valid() const
229   { return this->opd_valid_; }
230
231   void
232   set_opd_valid()
233   { this->opd_valid_ = true; }
234
235   // Examine .rela.opd to build info about function entry points.
236   void
237   scan_opd_relocs(size_t reloc_count,
238                   const unsigned char* prelocs,
239                   const unsigned char* plocal_syms);
240
241   // Returns true if a code sequence loading a TOC entry can be
242   // converted into code calculating a TOC pointer relative offset.
243   bool
244   make_toc_relative(Target_powerpc<size, big_endian>* target,
245                     Address* value);
246
247   // Perform the Sized_relobj_file method, then set up opd info from
248   // .opd relocs.
249   void
250   do_read_relocs(Read_relocs_data*);
251
252   bool
253   do_find_special_sections(Read_symbols_data* sd);
254
255   // Adjust this local symbol value.  Return false if the symbol
256   // should be discarded from the output file.
257   bool
258   do_adjust_local_symbol(Symbol_value<size>* lv) const
259   {
260     if (size == 64 && this->opd_shndx() != 0)
261       {
262         bool is_ordinary;
263         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
264           return true;
265         if (this->get_opd_discard(lv->input_value()))
266           return false;
267       }
268     return true;
269   }
270
271   Access_from*
272   access_from_map()
273   { return &this->access_from_map_; }
274
275   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
276   // section at DST_OFF.
277   void
278   add_reference(Relobj* src_obj,
279                 unsigned int src_indx,
280                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
281   {
282     Section_id src_id(src_obj, src_indx);
283     this->access_from_map_[dst_off].insert(src_id);
284   }
285
286   // Add a reference to the code section specified by the .opd entry
287   // at DST_OFF
288   void
289   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
290   {
291     size_t ndx = this->opd_ent_ndx(dst_off);
292     if (ndx >= this->opd_ent_.size())
293       this->opd_ent_.resize(ndx + 1);
294     this->opd_ent_[ndx].gc_mark = true;
295   }
296
297   void
298   process_gc_mark(Symbol_table* symtab)
299   {
300     for (size_t i = 0; i < this->opd_ent_.size(); i++)
301       if (this->opd_ent_[i].gc_mark)
302         {
303           unsigned int shndx = this->opd_ent_[i].shndx;
304           symtab->gc()->worklist().push_back(Section_id(this, shndx));
305         }
306   }
307
308   // Return offset in output GOT section that this object will use
309   // as a TOC pointer.  Won't be just a constant with multi-toc support.
310   Address
311   toc_base_offset() const
312   { return 0x8000; }
313
314   void
315   set_has_small_toc_reloc()
316   { has_small_toc_reloc_ = true; }
317
318   bool
319   has_small_toc_reloc() const
320   { return has_small_toc_reloc_; }
321
322   void
323   set_has_14bit_branch(unsigned int shndx)
324   {
325     if (shndx >= this->has14_.size())
326       this->has14_.resize(shndx + 1);
327     this->has14_[shndx] = true;
328   }
329
330   bool
331   has_14bit_branch(unsigned int shndx) const
332   { return shndx < this->has14_.size() && this->has14_[shndx];  }
333
334   void
335   set_stub_table(unsigned int shndx, unsigned int stub_index)
336   {
337     if (shndx >= this->stub_table_index_.size())
338       this->stub_table_index_.resize(shndx + 1, -1);
339     this->stub_table_index_[shndx] = stub_index;
340   }
341
342   Stub_table<size, big_endian>*
343   stub_table(unsigned int shndx)
344   {
345     if (shndx < this->stub_table_index_.size())
346       {
347         Target_powerpc<size, big_endian>* target
348           = static_cast<Target_powerpc<size, big_endian>*>(
349               parameters->sized_target<size, big_endian>());
350         unsigned int indx = this->stub_table_index_[shndx];
351         if (indx < target->stub_tables().size())
352           return target->stub_tables()[indx];
353       }
354     return NULL;
355   }
356
357   void
358   clear_stub_table()
359   {
360     this->stub_table_index_.clear();
361   }
362
363   uint32_t
364   uniq() const
365   { return this->uniq_; }
366
367   int
368   abiversion() const
369   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
370
371   // Set ABI version for input and output
372   void
373   set_abiversion(int ver);
374
375   unsigned int
376   st_other (unsigned int symndx) const
377   {
378     return this->st_other_[symndx];
379   }
380
381   unsigned int
382   ppc64_local_entry_offset(const Symbol* sym) const
383   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
384
385   unsigned int
386   ppc64_local_entry_offset(unsigned int symndx) const
387   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
388
389 private:
390   struct Opd_ent
391   {
392     unsigned int shndx;
393     bool discard : 1;
394     bool gc_mark : 1;
395     Address off;
396   };
397
398   // Return index into opd_ent_ array for .opd entry at OFF.
399   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
400   // apart when the language doesn't use the last 8-byte word, the
401   // environment pointer.  Thus dividing the entry section offset by
402   // 16 will give an index into opd_ent_ that works for either layout
403   // of .opd.  (It leaves some elements of the vector unused when .opd
404   // entries are spaced 24 bytes apart, but we don't know the spacing
405   // until relocations are processed, and in any case it is possible
406   // for an object to have some entries spaced 16 bytes apart and
407   // others 24 bytes apart.)
408   size_t
409   opd_ent_ndx(size_t off) const
410   { return off >> 4;}
411
412   // Per object unique identifier
413   uint32_t uniq_;
414
415   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
416   unsigned int special_;
417
418   // For 64-bit the .rela.toc and .toc section shdnx.
419   unsigned int relatoc_;
420   unsigned int toc_;
421
422   // For 64-bit, whether this object uses small model relocs to access
423   // the toc.
424   bool has_small_toc_reloc_;
425
426   // Set at the start of gc_process_relocs, when we know opd_ent_
427   // vector is valid.  The flag could be made atomic and set in
428   // do_read_relocs with memory_order_release and then tested with
429   // memory_order_acquire, potentially resulting in fewer entries in
430   // access_from_map_.
431   bool opd_valid_;
432
433   // Header e_flags
434   elfcpp::Elf_Word e_flags_;
435
436   // For 64-bit, an array with one entry per 64-bit word in the .toc
437   // section, set if accesses using that word cannot be optimised.
438   std::vector<bool> no_toc_opt_;
439
440   // The first 8-byte word of an OPD entry gives the address of the
441   // entry point of the function.  Relocatable object files have a
442   // relocation on this word.  The following vector records the
443   // section and offset specified by these relocations.
444   std::vector<Opd_ent> opd_ent_;
445
446   // References made to this object's .opd section when running
447   // gc_process_relocs for another object, before the opd_ent_ vector
448   // is valid for this object.
449   Access_from access_from_map_;
450
451   // Whether input section has a 14-bit branch reloc.
452   std::vector<bool> has14_;
453
454   // The stub table to use for a given input section.
455   std::vector<unsigned int> stub_table_index_;
456
457   // ELF st_other field for local symbols.
458   std::vector<unsigned char> st_other_;
459 };
460
461 template<int size, bool big_endian>
462 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
463 {
464 public:
465   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
466
467   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
468                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
469     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
470       opd_shndx_(0), e_flags_(ehdr.get_e_flags()), opd_ent_()
471   {
472     this->set_abiversion(0);
473   }
474
475   ~Powerpc_dynobj()
476   { }
477
478   // Call Sized_dynobj::do_read_symbols to read the symbols then
479   // read .opd from a dynamic object, filling in opd_ent_ vector,
480   void
481   do_read_symbols(Read_symbols_data*);
482
483   // The .opd section shndx.
484   unsigned int
485   opd_shndx() const
486   {
487     return this->opd_shndx_;
488   }
489
490   // The .opd section address.
491   Address
492   opd_address() const
493   {
494     return this->opd_address_;
495   }
496
497   // Init OPD entry arrays.
498   void
499   init_opd(size_t opd_size)
500   {
501     size_t count = this->opd_ent_ndx(opd_size);
502     this->opd_ent_.resize(count);
503   }
504
505   // Return section and offset of function entry for .opd + R_OFF.
506   unsigned int
507   get_opd_ent(Address r_off, Address* value = NULL) const
508   {
509     size_t ndx = this->opd_ent_ndx(r_off);
510     gold_assert(ndx < this->opd_ent_.size());
511     gold_assert(this->opd_ent_[ndx].shndx != 0);
512     if (value != NULL)
513       *value = this->opd_ent_[ndx].off;
514     return this->opd_ent_[ndx].shndx;
515   }
516
517   // Set section and offset of function entry for .opd + R_OFF.
518   void
519   set_opd_ent(Address r_off, unsigned int shndx, Address value)
520   {
521     size_t ndx = this->opd_ent_ndx(r_off);
522     gold_assert(ndx < this->opd_ent_.size());
523     this->opd_ent_[ndx].shndx = shndx;
524     this->opd_ent_[ndx].off = value;
525   }
526
527   int
528   abiversion() const
529   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
530
531   // Set ABI version for input and output.
532   void
533   set_abiversion(int ver);
534
535 private:
536   // Used to specify extent of executable sections.
537   struct Sec_info
538   {
539     Sec_info(Address start_, Address len_, unsigned int shndx_)
540       : start(start_), len(len_), shndx(shndx_)
541     { }
542
543     bool
544     operator<(const Sec_info& that) const
545     { return this->start < that.start; }
546
547     Address start;
548     Address len;
549     unsigned int shndx;
550   };
551
552   struct Opd_ent
553   {
554     unsigned int shndx;
555     Address off;
556   };
557
558   // Return index into opd_ent_ array for .opd entry at OFF.
559   size_t
560   opd_ent_ndx(size_t off) const
561   { return off >> 4;}
562
563   // For 64-bit the .opd section shndx and address.
564   unsigned int opd_shndx_;
565   Address opd_address_;
566
567   // Header e_flags
568   elfcpp::Elf_Word e_flags_;
569
570   // The first 8-byte word of an OPD entry gives the address of the
571   // entry point of the function.  Records the section and offset
572   // corresponding to the address.  Note that in dynamic objects,
573   // offset is *not* relative to the section.
574   std::vector<Opd_ent> opd_ent_;
575 };
576
577 // Powerpc_copy_relocs class.  Needed to peek at dynamic relocs the
578 // base class will emit.
579
580 template<int sh_type, int size, bool big_endian>
581 class Powerpc_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
582 {
583  public:
584   Powerpc_copy_relocs()
585     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_POWERPC_COPY)
586   { }
587
588   // Emit any saved relocations which turn out to be needed.  This is
589   // called after all the relocs have been scanned.
590   void
591   emit(Output_data_reloc<sh_type, true, size, big_endian>*);
592 };
593
594 template<int size, bool big_endian>
595 class Target_powerpc : public Sized_target<size, big_endian>
596 {
597  public:
598   typedef
599     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
600   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
601   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
602   typedef Unordered_set<Symbol_location, Symbol_location_hash> Tocsave_loc;
603   static const Address invalid_address = static_cast<Address>(0) - 1;
604   // Offset of tp and dtp pointers from start of TLS block.
605   static const Address tp_offset = 0x7000;
606   static const Address dtp_offset = 0x8000;
607
608   Target_powerpc()
609     : Sized_target<size, big_endian>(&powerpc_info),
610       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
611       glink_(NULL), rela_dyn_(NULL), copy_relocs_(),
612       tlsld_got_offset_(-1U),
613       stub_tables_(), branch_lookup_table_(), branch_info_(), tocsave_loc_(),
614       plt_thread_safe_(false), plt_localentry0_(false),
615       plt_localentry0_init_(false), has_localentry0_(false),
616       has_tls_get_addr_opt_(false),
617       relax_failed_(false), relax_fail_count_(0),
618       stub_group_size_(0), savres_section_(0),
619       tls_get_addr_(NULL), tls_get_addr_opt_(NULL)
620   {
621   }
622
623   // Process the relocations to determine unreferenced sections for
624   // garbage collection.
625   void
626   gc_process_relocs(Symbol_table* symtab,
627                     Layout* layout,
628                     Sized_relobj_file<size, big_endian>* object,
629                     unsigned int data_shndx,
630                     unsigned int sh_type,
631                     const unsigned char* prelocs,
632                     size_t reloc_count,
633                     Output_section* output_section,
634                     bool needs_special_offset_handling,
635                     size_t local_symbol_count,
636                     const unsigned char* plocal_symbols);
637
638   // Scan the relocations to look for symbol adjustments.
639   void
640   scan_relocs(Symbol_table* symtab,
641               Layout* layout,
642               Sized_relobj_file<size, big_endian>* object,
643               unsigned int data_shndx,
644               unsigned int sh_type,
645               const unsigned char* prelocs,
646               size_t reloc_count,
647               Output_section* output_section,
648               bool needs_special_offset_handling,
649               size_t local_symbol_count,
650               const unsigned char* plocal_symbols);
651
652   // Map input .toc section to output .got section.
653   const char*
654   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
655   {
656     if (size == 64 && strcmp(name, ".toc") == 0)
657       {
658         *plen = 4;
659         return ".got";
660       }
661     return NULL;
662   }
663
664   // Provide linker defined save/restore functions.
665   void
666   define_save_restore_funcs(Layout*, Symbol_table*);
667
668   // No stubs unless a final link.
669   bool
670   do_may_relax() const
671   { return !parameters->options().relocatable(); }
672
673   bool
674   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
675
676   void
677   do_plt_fde_location(const Output_data*, unsigned char*,
678                       uint64_t*, off_t*) const;
679
680   // Stash info about branches, for stub generation.
681   void
682   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
683               unsigned int data_shndx, Address r_offset,
684               unsigned int r_type, unsigned int r_sym, Address addend)
685   {
686     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
687     this->branch_info_.push_back(info);
688     if (r_type == elfcpp::R_POWERPC_REL14
689         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
690         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
691       ppc_object->set_has_14bit_branch(data_shndx);
692   }
693
694   // Return whether the last branch is a plt call, and if so, mark the
695   // branch as having an R_PPC64_TOCSAVE.
696   bool
697   mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
698                unsigned int data_shndx, Address r_offset, Symbol_table* symtab)
699   {
700     return (size == 64
701             && !this->branch_info_.empty()
702             && this->branch_info_.back().mark_pltcall(ppc_object, data_shndx,
703                                                       r_offset, this, symtab));
704   }
705
706   // Say the given location, that of a nop in a function prologue with
707   // an R_PPC64_TOCSAVE reloc, will be used to save r2.
708   // R_PPC64_TOCSAVE relocs on nops following calls point at this nop.
709   void
710   add_tocsave(Powerpc_relobj<size, big_endian>* ppc_object,
711               unsigned int shndx, Address offset)
712   {
713     Symbol_location loc;
714     loc.object = ppc_object;
715     loc.shndx = shndx;
716     loc.offset = offset;
717     this->tocsave_loc_.insert(loc);
718   }
719
720   // Accessor
721   const Tocsave_loc
722   tocsave_loc() const
723   {
724     return this->tocsave_loc_;
725   }
726
727   void
728   do_define_standard_symbols(Symbol_table*, Layout*);
729
730   // Finalize the sections.
731   void
732   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
733
734   // Return the value to use for a dynamic which requires special
735   // treatment.
736   uint64_t
737   do_dynsym_value(const Symbol*) const;
738
739   // Return the PLT address to use for a local symbol.
740   uint64_t
741   do_plt_address_for_local(const Relobj*, unsigned int) const;
742
743   // Return the PLT address to use for a global symbol.
744   uint64_t
745   do_plt_address_for_global(const Symbol*) const;
746
747   // Return the offset to use for the GOT_INDX'th got entry which is
748   // for a local tls symbol specified by OBJECT, SYMNDX.
749   int64_t
750   do_tls_offset_for_local(const Relobj* object,
751                           unsigned int symndx,
752                           unsigned int got_indx) const;
753
754   // Return the offset to use for the GOT_INDX'th got entry which is
755   // for global tls symbol GSYM.
756   int64_t
757   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
758
759   void
760   do_function_location(Symbol_location*) const;
761
762   bool
763   do_can_check_for_function_pointers() const
764   { return true; }
765
766   // Adjust -fsplit-stack code which calls non-split-stack code.
767   void
768   do_calls_non_split(Relobj* object, unsigned int shndx,
769                      section_offset_type fnoffset, section_size_type fnsize,
770                      const unsigned char* prelocs, size_t reloc_count,
771                      unsigned char* view, section_size_type view_size,
772                      std::string* from, std::string* to) const;
773
774   // Relocate a section.
775   void
776   relocate_section(const Relocate_info<size, big_endian>*,
777                    unsigned int sh_type,
778                    const unsigned char* prelocs,
779                    size_t reloc_count,
780                    Output_section* output_section,
781                    bool needs_special_offset_handling,
782                    unsigned char* view,
783                    Address view_address,
784                    section_size_type view_size,
785                    const Reloc_symbol_changes*);
786
787   // Scan the relocs during a relocatable link.
788   void
789   scan_relocatable_relocs(Symbol_table* symtab,
790                           Layout* layout,
791                           Sized_relobj_file<size, big_endian>* object,
792                           unsigned int data_shndx,
793                           unsigned int sh_type,
794                           const unsigned char* prelocs,
795                           size_t reloc_count,
796                           Output_section* output_section,
797                           bool needs_special_offset_handling,
798                           size_t local_symbol_count,
799                           const unsigned char* plocal_symbols,
800                           Relocatable_relocs*);
801
802   // Scan the relocs for --emit-relocs.
803   void
804   emit_relocs_scan(Symbol_table* symtab,
805                    Layout* layout,
806                    Sized_relobj_file<size, big_endian>* object,
807                    unsigned int data_shndx,
808                    unsigned int sh_type,
809                    const unsigned char* prelocs,
810                    size_t reloc_count,
811                    Output_section* output_section,
812                    bool needs_special_offset_handling,
813                    size_t local_symbol_count,
814                    const unsigned char* plocal_syms,
815                    Relocatable_relocs* rr);
816
817   // Emit relocations for a section.
818   void
819   relocate_relocs(const Relocate_info<size, big_endian>*,
820                   unsigned int sh_type,
821                   const unsigned char* prelocs,
822                   size_t reloc_count,
823                   Output_section* output_section,
824                   typename elfcpp::Elf_types<size>::Elf_Off
825                     offset_in_output_section,
826                   unsigned char*,
827                   Address view_address,
828                   section_size_type,
829                   unsigned char* reloc_view,
830                   section_size_type reloc_view_size);
831
832   // Return whether SYM is defined by the ABI.
833   bool
834   do_is_defined_by_abi(const Symbol* sym) const
835   {
836     return strcmp(sym->name(), "__tls_get_addr") == 0;
837   }
838
839   // Return the size of the GOT section.
840   section_size_type
841   got_size() const
842   {
843     gold_assert(this->got_ != NULL);
844     return this->got_->data_size();
845   }
846
847   // Get the PLT section.
848   const Output_data_plt_powerpc<size, big_endian>*
849   plt_section() const
850   {
851     gold_assert(this->plt_ != NULL);
852     return this->plt_;
853   }
854
855   // Get the IPLT section.
856   const Output_data_plt_powerpc<size, big_endian>*
857   iplt_section() const
858   {
859     gold_assert(this->iplt_ != NULL);
860     return this->iplt_;
861   }
862
863   // Get the .glink section.
864   const Output_data_glink<size, big_endian>*
865   glink_section() const
866   {
867     gold_assert(this->glink_ != NULL);
868     return this->glink_;
869   }
870
871   Output_data_glink<size, big_endian>*
872   glink_section()
873   {
874     gold_assert(this->glink_ != NULL);
875     return this->glink_;
876   }
877
878   bool has_glink() const
879   { return this->glink_ != NULL; }
880
881   // Get the GOT section.
882   const Output_data_got_powerpc<size, big_endian>*
883   got_section() const
884   {
885     gold_assert(this->got_ != NULL);
886     return this->got_;
887   }
888
889   // Get the GOT section, creating it if necessary.
890   Output_data_got_powerpc<size, big_endian>*
891   got_section(Symbol_table*, Layout*);
892
893   Object*
894   do_make_elf_object(const std::string&, Input_file*, off_t,
895                      const elfcpp::Ehdr<size, big_endian>&);
896
897   // Return the number of entries in the GOT.
898   unsigned int
899   got_entry_count() const
900   {
901     if (this->got_ == NULL)
902       return 0;
903     return this->got_size() / (size / 8);
904   }
905
906   // Return the number of entries in the PLT.
907   unsigned int
908   plt_entry_count() const;
909
910   // Return the offset of the first non-reserved PLT entry.
911   unsigned int
912   first_plt_entry_offset() const
913   {
914     if (size == 32)
915       return 0;
916     if (this->abiversion() >= 2)
917       return 16;
918     return 24;
919   }
920
921   // Return the size of each PLT entry.
922   unsigned int
923   plt_entry_size() const
924   {
925     if (size == 32)
926       return 4;
927     if (this->abiversion() >= 2)
928       return 8;
929     return 24;
930   }
931
932   Output_data_save_res<size, big_endian>*
933   savres_section() const
934   {
935     return this->savres_section_;
936   }
937
938   // Add any special sections for this symbol to the gc work list.
939   // For powerpc64, this adds the code section of a function
940   // descriptor.
941   void
942   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
943
944   // Handle target specific gc actions when adding a gc reference from
945   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
946   // and DST_OFF.  For powerpc64, this adds a referenc to the code
947   // section of a function descriptor.
948   void
949   do_gc_add_reference(Symbol_table* symtab,
950                       Relobj* src_obj,
951                       unsigned int src_shndx,
952                       Relobj* dst_obj,
953                       unsigned int dst_shndx,
954                       Address dst_off) const;
955
956   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
957   const Stub_tables&
958   stub_tables() const
959   { return this->stub_tables_; }
960
961   const Output_data_brlt_powerpc<size, big_endian>*
962   brlt_section() const
963   { return this->brlt_section_; }
964
965   void
966   add_branch_lookup_table(Address to)
967   {
968     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
969     this->branch_lookup_table_.insert(std::make_pair(to, off));
970   }
971
972   Address
973   find_branch_lookup_table(Address to)
974   {
975     typename Branch_lookup_table::const_iterator p
976       = this->branch_lookup_table_.find(to);
977     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
978   }
979
980   void
981   write_branch_lookup_table(unsigned char *oview)
982   {
983     for (typename Branch_lookup_table::const_iterator p
984            = this->branch_lookup_table_.begin();
985          p != this->branch_lookup_table_.end();
986          ++p)
987       {
988         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
989       }
990   }
991
992   // Wrapper used after relax to define a local symbol in output data,
993   // from the end if value < 0.
994   void
995   define_local(Symbol_table* symtab, const char* name,
996                Output_data* od, Address value, unsigned int symsize)
997   {
998     Symbol* sym
999       = symtab->define_in_output_data(name, NULL, Symbol_table::PREDEFINED,
1000                                       od, value, symsize, elfcpp::STT_NOTYPE,
1001                                       elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0,
1002                                       static_cast<Signed_address>(value) < 0,
1003                                       false);
1004     // We are creating this symbol late, so need to fix up things
1005     // done early in Layout::finalize.
1006     sym->set_dynsym_index(-1U);
1007   }
1008
1009   bool
1010   plt_thread_safe() const
1011   { return this->plt_thread_safe_; }
1012
1013   bool
1014   plt_localentry0() const
1015   { return this->plt_localentry0_; }
1016
1017   void
1018   set_has_localentry0()
1019   {
1020     this->has_localentry0_ = true;
1021   }
1022
1023   bool
1024   is_elfv2_localentry0(const Symbol* gsym) const
1025   {
1026     return (size == 64
1027             && this->abiversion() >= 2
1028             && this->plt_localentry0()
1029             && gsym->type() == elfcpp::STT_FUNC
1030             && gsym->is_defined()
1031             && gsym->nonvis() >> 3 == 0
1032             && !gsym->non_zero_localentry());
1033   }
1034
1035   bool
1036   is_elfv2_localentry0(const Sized_relobj_file<size, big_endian>* object,
1037                        unsigned int r_sym) const
1038   {
1039     const Powerpc_relobj<size, big_endian>* ppc_object
1040       = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
1041
1042     if (size == 64
1043         && this->abiversion() >= 2
1044         && this->plt_localentry0()
1045         && ppc_object->st_other(r_sym) >> 5 == 0)
1046       {
1047         const Symbol_value<size>* psymval = object->local_symbol(r_sym);
1048         bool is_ordinary;
1049         if (!psymval->is_ifunc_symbol()
1050             && psymval->input_shndx(&is_ordinary) != elfcpp::SHN_UNDEF
1051             && is_ordinary)
1052           return true;
1053       }
1054     return false;
1055   }
1056
1057   // Remember any symbols seen with non-zero localentry, even those
1058   // not providing a definition
1059   bool
1060   resolve(Symbol* to, const elfcpp::Sym<size, big_endian>& sym, Object*,
1061           const char*)
1062   {
1063     if (size == 64)
1064       {
1065         unsigned char st_other = sym.get_st_other();
1066         if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1067           to->set_non_zero_localentry();
1068       }
1069     // We haven't resolved anything, continue normal processing.
1070     return false;
1071   }
1072
1073   int
1074   abiversion() const
1075   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
1076
1077   void
1078   set_abiversion(int ver)
1079   {
1080     elfcpp::Elf_Word flags = this->processor_specific_flags();
1081     flags &= ~elfcpp::EF_PPC64_ABI;
1082     flags |= ver & elfcpp::EF_PPC64_ABI;
1083     this->set_processor_specific_flags(flags);
1084   }
1085
1086   Symbol*
1087   tls_get_addr_opt() const
1088   { return this->tls_get_addr_opt_; }
1089
1090   Symbol*
1091   tls_get_addr() const
1092   { return this->tls_get_addr_; }
1093
1094   // If optimizing __tls_get_addr calls, whether this is the
1095   // "__tls_get_addr" symbol.
1096   bool
1097   is_tls_get_addr_opt(const Symbol* gsym) const
1098   {
1099     return this->tls_get_addr_opt_ && (gsym == this->tls_get_addr_
1100                                        || gsym == this->tls_get_addr_opt_);
1101   }
1102
1103   bool
1104   replace_tls_get_addr(const Symbol* gsym) const
1105   { return this->tls_get_addr_opt_ && gsym == this->tls_get_addr_; }
1106
1107   void
1108   set_has_tls_get_addr_opt()
1109   { this->has_tls_get_addr_opt_ = true; }
1110
1111   // Offset to toc save stack slot
1112   int
1113   stk_toc() const
1114   { return this->abiversion() < 2 ? 40 : 24; }
1115
1116   // Offset to linker save stack slot.  ELFv2 doesn't have a linker word,
1117   // so use the CR save slot.  Used only by __tls_get_addr call stub,
1118   // relying on __tls_get_addr not saving CR itself.
1119   int
1120   stk_linker() const
1121   { return this->abiversion() < 2 ? 32 : 8; }
1122
1123  private:
1124
1125   class Track_tls
1126   {
1127   public:
1128     enum Tls_get_addr
1129     {
1130       NOT_EXPECTED = 0,
1131       EXPECTED = 1,
1132       SKIP = 2,
1133       NORMAL = 3
1134     };
1135
1136     Track_tls()
1137       : tls_get_addr_state_(NOT_EXPECTED),
1138         relinfo_(NULL), relnum_(0), r_offset_(0)
1139     { }
1140
1141     ~Track_tls()
1142     {
1143       if (this->tls_get_addr_state_ != NOT_EXPECTED)
1144         this->missing();
1145     }
1146
1147     void
1148     missing(void)
1149     {
1150       if (this->relinfo_ != NULL)
1151         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
1152                                _("missing expected __tls_get_addr call"));
1153     }
1154
1155     void
1156     expect_tls_get_addr_call(
1157         const Relocate_info<size, big_endian>* relinfo,
1158         size_t relnum,
1159         Address r_offset)
1160     {
1161       this->tls_get_addr_state_ = EXPECTED;
1162       this->relinfo_ = relinfo;
1163       this->relnum_ = relnum;
1164       this->r_offset_ = r_offset;
1165     }
1166
1167     void
1168     expect_tls_get_addr_call()
1169     { this->tls_get_addr_state_ = EXPECTED; }
1170
1171     void
1172     skip_next_tls_get_addr_call()
1173     {this->tls_get_addr_state_ = SKIP; }
1174
1175     Tls_get_addr
1176     maybe_skip_tls_get_addr_call(Target_powerpc<size, big_endian>* target,
1177                                  unsigned int r_type, const Symbol* gsym)
1178     {
1179       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
1180                            || r_type == elfcpp::R_PPC_PLTREL24)
1181                           && gsym != NULL
1182                           && (gsym == target->tls_get_addr()
1183                               || gsym == target->tls_get_addr_opt()));
1184       Tls_get_addr last_tls = this->tls_get_addr_state_;
1185       this->tls_get_addr_state_ = NOT_EXPECTED;
1186       if (is_tls_call && last_tls != EXPECTED)
1187         return last_tls;
1188       else if (!is_tls_call && last_tls != NOT_EXPECTED)
1189         {
1190           this->missing();
1191           return EXPECTED;
1192         }
1193       return NORMAL;
1194     }
1195
1196   private:
1197     // What we're up to regarding calls to __tls_get_addr.
1198     // On powerpc, the branch and link insn making a call to
1199     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
1200     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
1201     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
1202     // The marker relocation always comes first, and has the same
1203     // symbol as the reloc on the insn setting up the __tls_get_addr
1204     // argument.  This ties the arg setup insn with the call insn,
1205     // allowing ld to safely optimize away the call.  We check that
1206     // every call to __tls_get_addr has a marker relocation, and that
1207     // every marker relocation is on a call to __tls_get_addr.
1208     Tls_get_addr tls_get_addr_state_;
1209     // Info about the last reloc for error message.
1210     const Relocate_info<size, big_endian>* relinfo_;
1211     size_t relnum_;
1212     Address r_offset_;
1213   };
1214
1215   // The class which scans relocations.
1216   class Scan : protected Track_tls
1217   {
1218   public:
1219     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1220
1221     Scan()
1222       : Track_tls(), issued_non_pic_error_(false)
1223     { }
1224
1225     static inline int
1226     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
1227
1228     inline void
1229     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1230           Sized_relobj_file<size, big_endian>* object,
1231           unsigned int data_shndx,
1232           Output_section* output_section,
1233           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1234           const elfcpp::Sym<size, big_endian>& lsym,
1235           bool is_discarded);
1236
1237     inline void
1238     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1239            Sized_relobj_file<size, big_endian>* object,
1240            unsigned int data_shndx,
1241            Output_section* output_section,
1242            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1243            Symbol* gsym);
1244
1245     inline bool
1246     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1247                                         Target_powerpc* ,
1248                                         Sized_relobj_file<size, big_endian>* relobj,
1249                                         unsigned int ,
1250                                         Output_section* ,
1251                                         const elfcpp::Rela<size, big_endian>& ,
1252                                         unsigned int r_type,
1253                                         const elfcpp::Sym<size, big_endian>&)
1254     {
1255       // PowerPC64 .opd is not folded, so any identical function text
1256       // may be folded and we'll still keep function addresses distinct.
1257       // That means no reloc is of concern here.
1258       if (size == 64)
1259         {
1260           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1261             <Powerpc_relobj<size, big_endian>*>(relobj);
1262           if (ppcobj->abiversion() == 1)
1263             return false;
1264         }
1265       // For 32-bit and ELFv2, conservatively assume anything but calls to
1266       // function code might be taking the address of the function.
1267       return !is_branch_reloc(r_type);
1268     }
1269
1270     inline bool
1271     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1272                                          Target_powerpc* ,
1273                                          Sized_relobj_file<size, big_endian>* relobj,
1274                                          unsigned int ,
1275                                          Output_section* ,
1276                                          const elfcpp::Rela<size, big_endian>& ,
1277                                          unsigned int r_type,
1278                                          Symbol*)
1279     {
1280       // As above.
1281       if (size == 64)
1282         {
1283           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1284             <Powerpc_relobj<size, big_endian>*>(relobj);
1285           if (ppcobj->abiversion() == 1)
1286             return false;
1287         }
1288       return !is_branch_reloc(r_type);
1289     }
1290
1291     static bool
1292     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1293                               Sized_relobj_file<size, big_endian>* object,
1294                               unsigned int r_type, bool report_err);
1295
1296   private:
1297     static void
1298     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1299                             unsigned int r_type);
1300
1301     static void
1302     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1303                              unsigned int r_type, Symbol*);
1304
1305     static void
1306     generate_tls_call(Symbol_table* symtab, Layout* layout,
1307                       Target_powerpc* target);
1308
1309     void
1310     check_non_pic(Relobj*, unsigned int r_type);
1311
1312     // Whether we have issued an error about a non-PIC compilation.
1313     bool issued_non_pic_error_;
1314   };
1315
1316   bool
1317   symval_for_branch(const Symbol_table* symtab,
1318                     const Sized_symbol<size>* gsym,
1319                     Powerpc_relobj<size, big_endian>* object,
1320                     Address *value, unsigned int *dest_shndx);
1321
1322   // The class which implements relocation.
1323   class Relocate : protected Track_tls
1324   {
1325    public:
1326     // Use 'at' branch hints when true, 'y' when false.
1327     // FIXME maybe: set this with an option.
1328     static const bool is_isa_v2 = true;
1329
1330     Relocate()
1331       : Track_tls()
1332     { }
1333
1334     // Do a relocation.  Return false if the caller should not issue
1335     // any warnings about this relocation.
1336     inline bool
1337     relocate(const Relocate_info<size, big_endian>*, unsigned int,
1338              Target_powerpc*, Output_section*, size_t, const unsigned char*,
1339              const Sized_symbol<size>*, const Symbol_value<size>*,
1340              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1341              section_size_type);
1342   };
1343
1344   class Relocate_comdat_behavior
1345   {
1346    public:
1347     // Decide what the linker should do for relocations that refer to
1348     // discarded comdat sections.
1349     inline Comdat_behavior
1350     get(const char* name)
1351     {
1352       gold::Default_comdat_behavior default_behavior;
1353       Comdat_behavior ret = default_behavior.get(name);
1354       if (ret == CB_WARNING)
1355         {
1356           if (size == 32
1357               && (strcmp(name, ".fixup") == 0
1358                   || strcmp(name, ".got2") == 0))
1359             ret = CB_IGNORE;
1360           if (size == 64
1361               && (strcmp(name, ".opd") == 0
1362                   || strcmp(name, ".toc") == 0
1363                   || strcmp(name, ".toc1") == 0))
1364             ret = CB_IGNORE;
1365         }
1366       return ret;
1367     }
1368   };
1369
1370   // Optimize the TLS relocation type based on what we know about the
1371   // symbol.  IS_FINAL is true if the final address of this symbol is
1372   // known at link time.
1373
1374   tls::Tls_optimization
1375   optimize_tls_gd(bool is_final)
1376   {
1377     // If we are generating a shared library, then we can't do anything
1378     // in the linker.
1379     if (parameters->options().shared()
1380         || !parameters->options().tls_optimize())
1381       return tls::TLSOPT_NONE;
1382
1383     if (!is_final)
1384       return tls::TLSOPT_TO_IE;
1385     return tls::TLSOPT_TO_LE;
1386   }
1387
1388   tls::Tls_optimization
1389   optimize_tls_ld()
1390   {
1391     if (parameters->options().shared()
1392         || !parameters->options().tls_optimize())
1393       return tls::TLSOPT_NONE;
1394
1395     return tls::TLSOPT_TO_LE;
1396   }
1397
1398   tls::Tls_optimization
1399   optimize_tls_ie(bool is_final)
1400   {
1401     if (!is_final
1402         || parameters->options().shared()
1403         || !parameters->options().tls_optimize())
1404       return tls::TLSOPT_NONE;
1405
1406     return tls::TLSOPT_TO_LE;
1407   }
1408
1409   // Create glink.
1410   void
1411   make_glink_section(Layout*);
1412
1413   // Create the PLT section.
1414   void
1415   make_plt_section(Symbol_table*, Layout*);
1416
1417   void
1418   make_iplt_section(Symbol_table*, Layout*);
1419
1420   void
1421   make_brlt_section(Layout*);
1422
1423   // Create a PLT entry for a global symbol.
1424   void
1425   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1426
1427   // Create a PLT entry for a local IFUNC symbol.
1428   void
1429   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1430                              Sized_relobj_file<size, big_endian>*,
1431                              unsigned int);
1432
1433
1434   // Create a GOT entry for local dynamic __tls_get_addr.
1435   unsigned int
1436   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1437                    Sized_relobj_file<size, big_endian>* object);
1438
1439   unsigned int
1440   tlsld_got_offset() const
1441   {
1442     return this->tlsld_got_offset_;
1443   }
1444
1445   // Get the dynamic reloc section, creating it if necessary.
1446   Reloc_section*
1447   rela_dyn_section(Layout*);
1448
1449   // Similarly, but for ifunc symbols get the one for ifunc.
1450   Reloc_section*
1451   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1452
1453   // Copy a relocation against a global symbol.
1454   void
1455   copy_reloc(Symbol_table* symtab, Layout* layout,
1456              Sized_relobj_file<size, big_endian>* object,
1457              unsigned int shndx, Output_section* output_section,
1458              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1459   {
1460     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1461     this->copy_relocs_.copy_reloc(symtab, layout,
1462                                   symtab->get_sized_symbol<size>(sym),
1463                                   object, shndx, output_section,
1464                                   r_type, reloc.get_r_offset(),
1465                                   reloc.get_r_addend(),
1466                                   this->rela_dyn_section(layout));
1467   }
1468
1469   // Look over all the input sections, deciding where to place stubs.
1470   void
1471   group_sections(Layout*, const Task*, bool);
1472
1473   // Sort output sections by address.
1474   struct Sort_sections
1475   {
1476     bool
1477     operator()(const Output_section* sec1, const Output_section* sec2)
1478     { return sec1->address() < sec2->address(); }
1479   };
1480
1481   class Branch_info
1482   {
1483    public:
1484     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1485                 unsigned int data_shndx,
1486                 Address r_offset,
1487                 unsigned int r_type,
1488                 unsigned int r_sym,
1489                 Address addend)
1490       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1491         r_type_(r_type), tocsave_ (0), r_sym_(r_sym), addend_(addend)
1492     { }
1493
1494     ~Branch_info()
1495     { }
1496
1497     // Return whether this branch is going via a plt call stub, and if
1498     // so, mark it as having an R_PPC64_TOCSAVE.
1499     bool
1500     mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
1501                  unsigned int shndx, Address offset,
1502                  Target_powerpc* target, Symbol_table* symtab);
1503
1504     // If this branch needs a plt call stub, or a long branch stub, make one.
1505     bool
1506     make_stub(Stub_table<size, big_endian>*,
1507               Stub_table<size, big_endian>*,
1508               Symbol_table*) const;
1509
1510    private:
1511     // The branch location..
1512     Powerpc_relobj<size, big_endian>* object_;
1513     unsigned int shndx_;
1514     Address offset_;
1515     // ..and the branch type and destination.
1516     unsigned int r_type_ : 31;
1517     unsigned int tocsave_ : 1;
1518     unsigned int r_sym_;
1519     Address addend_;
1520   };
1521
1522   // Information about this specific target which we pass to the
1523   // general Target structure.
1524   static Target::Target_info powerpc_info;
1525
1526   // The types of GOT entries needed for this platform.
1527   // These values are exposed to the ABI in an incremental link.
1528   // Do not renumber existing values without changing the version
1529   // number of the .gnu_incremental_inputs section.
1530   enum Got_type
1531   {
1532     GOT_TYPE_STANDARD,
1533     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1534     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1535     GOT_TYPE_TPREL      // entry for @got@tprel
1536   };
1537
1538   // The GOT section.
1539   Output_data_got_powerpc<size, big_endian>* got_;
1540   // The PLT section.  This is a container for a table of addresses,
1541   // and their relocations.  Each address in the PLT has a dynamic
1542   // relocation (R_*_JMP_SLOT) and each address will have a
1543   // corresponding entry in .glink for lazy resolution of the PLT.
1544   // ppc32 initialises the PLT to point at the .glink entry, while
1545   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1546   // linker adds a stub that loads the PLT entry into ctr then
1547   // branches to ctr.  There may be more than one stub for each PLT
1548   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1549   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1550   Output_data_plt_powerpc<size, big_endian>* plt_;
1551   // The IPLT section.  Like plt_, this is a container for a table of
1552   // addresses and their relocations, specifically for STT_GNU_IFUNC
1553   // functions that resolve locally (STT_GNU_IFUNC functions that
1554   // don't resolve locally go in PLT).  Unlike plt_, these have no
1555   // entry in .glink for lazy resolution, and the relocation section
1556   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1557   // the relocation section may contain relocations against
1558   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1559   // relocation section will appear at the end of other dynamic
1560   // relocations, so that ld.so applies these relocations after other
1561   // dynamic relocations.  In a static executable, the relocation
1562   // section is emitted and marked with __rela_iplt_start and
1563   // __rela_iplt_end symbols.
1564   Output_data_plt_powerpc<size, big_endian>* iplt_;
1565   // Section holding long branch destinations.
1566   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1567   // The .glink section.
1568   Output_data_glink<size, big_endian>* glink_;
1569   // The dynamic reloc section.
1570   Reloc_section* rela_dyn_;
1571   // Relocs saved to avoid a COPY reloc.
1572   Powerpc_copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1573   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1574   unsigned int tlsld_got_offset_;
1575
1576   Stub_tables stub_tables_;
1577   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1578   Branch_lookup_table branch_lookup_table_;
1579
1580   typedef std::vector<Branch_info> Branches;
1581   Branches branch_info_;
1582   Tocsave_loc tocsave_loc_;
1583
1584   bool plt_thread_safe_;
1585   bool plt_localentry0_;
1586   bool plt_localentry0_init_;
1587   bool has_localentry0_;
1588   bool has_tls_get_addr_opt_;
1589
1590   bool relax_failed_;
1591   int relax_fail_count_;
1592   int32_t stub_group_size_;
1593
1594   Output_data_save_res<size, big_endian> *savres_section_;
1595
1596   // The "__tls_get_addr" symbol, if present
1597   Symbol* tls_get_addr_;
1598   // If optimizing __tls_get_addr calls, the "__tls_get_addr_opt" symbol.
1599   Symbol* tls_get_addr_opt_;
1600 };
1601
1602 template<>
1603 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1604 {
1605   32,                   // size
1606   true,                 // is_big_endian
1607   elfcpp::EM_PPC,       // machine_code
1608   false,                // has_make_symbol
1609   false,                // has_resolve
1610   false,                // has_code_fill
1611   true,                 // is_default_stack_executable
1612   false,                // can_icf_inline_merge_sections
1613   '\0',                 // wrap_char
1614   "/usr/lib/ld.so.1",   // dynamic_linker
1615   0x10000000,           // default_text_segment_address
1616   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1617   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1618   false,                // isolate_execinstr
1619   0,                    // rosegment_gap
1620   elfcpp::SHN_UNDEF,    // small_common_shndx
1621   elfcpp::SHN_UNDEF,    // large_common_shndx
1622   0,                    // small_common_section_flags
1623   0,                    // large_common_section_flags
1624   NULL,                 // attributes_section
1625   NULL,                 // attributes_vendor
1626   "_start",             // entry_symbol_name
1627   32,                   // hash_entry_size
1628 };
1629
1630 template<>
1631 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1632 {
1633   32,                   // size
1634   false,                // is_big_endian
1635   elfcpp::EM_PPC,       // machine_code
1636   false,                // has_make_symbol
1637   false,                // has_resolve
1638   false,                // has_code_fill
1639   true,                 // is_default_stack_executable
1640   false,                // can_icf_inline_merge_sections
1641   '\0',                 // wrap_char
1642   "/usr/lib/ld.so.1",   // dynamic_linker
1643   0x10000000,           // default_text_segment_address
1644   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1645   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1646   false,                // isolate_execinstr
1647   0,                    // rosegment_gap
1648   elfcpp::SHN_UNDEF,    // small_common_shndx
1649   elfcpp::SHN_UNDEF,    // large_common_shndx
1650   0,                    // small_common_section_flags
1651   0,                    // large_common_section_flags
1652   NULL,                 // attributes_section
1653   NULL,                 // attributes_vendor
1654   "_start",             // entry_symbol_name
1655   32,                   // hash_entry_size
1656 };
1657
1658 template<>
1659 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1660 {
1661   64,                   // size
1662   true,                 // is_big_endian
1663   elfcpp::EM_PPC64,     // machine_code
1664   false,                // has_make_symbol
1665   true,                 // has_resolve
1666   false,                // has_code_fill
1667   false,                // is_default_stack_executable
1668   false,                // can_icf_inline_merge_sections
1669   '\0',                 // wrap_char
1670   "/usr/lib/ld.so.1",   // dynamic_linker
1671   0x10000000,           // default_text_segment_address
1672   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1673   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1674   false,                // isolate_execinstr
1675   0,                    // rosegment_gap
1676   elfcpp::SHN_UNDEF,    // small_common_shndx
1677   elfcpp::SHN_UNDEF,    // large_common_shndx
1678   0,                    // small_common_section_flags
1679   0,                    // large_common_section_flags
1680   NULL,                 // attributes_section
1681   NULL,                 // attributes_vendor
1682   "_start",             // entry_symbol_name
1683   32,                   // hash_entry_size
1684 };
1685
1686 template<>
1687 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1688 {
1689   64,                   // size
1690   false,                // is_big_endian
1691   elfcpp::EM_PPC64,     // machine_code
1692   false,                // has_make_symbol
1693   true,                 // has_resolve
1694   false,                // has_code_fill
1695   false,                // is_default_stack_executable
1696   false,                // can_icf_inline_merge_sections
1697   '\0',                 // wrap_char
1698   "/usr/lib/ld.so.1",   // dynamic_linker
1699   0x10000000,           // default_text_segment_address
1700   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1701   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1702   false,                // isolate_execinstr
1703   0,                    // rosegment_gap
1704   elfcpp::SHN_UNDEF,    // small_common_shndx
1705   elfcpp::SHN_UNDEF,    // large_common_shndx
1706   0,                    // small_common_section_flags
1707   0,                    // large_common_section_flags
1708   NULL,                 // attributes_section
1709   NULL,                 // attributes_vendor
1710   "_start",             // entry_symbol_name
1711   32,                   // hash_entry_size
1712 };
1713
1714 inline bool
1715 is_branch_reloc(unsigned int r_type)
1716 {
1717   return (r_type == elfcpp::R_POWERPC_REL24
1718           || r_type == elfcpp::R_PPC_PLTREL24
1719           || r_type == elfcpp::R_PPC_LOCAL24PC
1720           || r_type == elfcpp::R_POWERPC_REL14
1721           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1722           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1723           || r_type == elfcpp::R_POWERPC_ADDR24
1724           || r_type == elfcpp::R_POWERPC_ADDR14
1725           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1726           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1727 }
1728
1729 // If INSN is an opcode that may be used with an @tls operand, return
1730 // the transformed insn for TLS optimisation, otherwise return 0.  If
1731 // REG is non-zero only match an insn with RB or RA equal to REG.
1732 uint32_t
1733 at_tls_transform(uint32_t insn, unsigned int reg)
1734 {
1735   if ((insn & (0x3f << 26)) != 31 << 26)
1736     return 0;
1737
1738   unsigned int rtra;
1739   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1740     rtra = insn & ((1 << 26) - (1 << 16));
1741   else if (((insn >> 16) & 0x1f) == reg)
1742     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1743   else
1744     return 0;
1745
1746   if ((insn & (0x3ff << 1)) == 266 << 1)
1747     // add -> addi
1748     insn = 14 << 26;
1749   else if ((insn & (0x1f << 1)) == 23 << 1
1750            && ((insn & (0x1f << 6)) < 14 << 6
1751                || ((insn & (0x1f << 6)) >= 16 << 6
1752                    && (insn & (0x1f << 6)) < 24 << 6)))
1753     // load and store indexed -> dform
1754     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1755   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1756     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1757     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1758   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1759     // lwax -> lwa
1760     insn = (58 << 26) | 2;
1761   else
1762     return 0;
1763   insn |= rtra;
1764   return insn;
1765 }
1766
1767
1768 template<int size, bool big_endian>
1769 class Powerpc_relocate_functions
1770 {
1771 public:
1772   enum Overflow_check
1773   {
1774     CHECK_NONE,
1775     CHECK_SIGNED,
1776     CHECK_UNSIGNED,
1777     CHECK_BITFIELD,
1778     CHECK_LOW_INSN,
1779     CHECK_HIGH_INSN
1780   };
1781
1782   enum Status
1783   {
1784     STATUS_OK,
1785     STATUS_OVERFLOW
1786   };
1787
1788 private:
1789   typedef Powerpc_relocate_functions<size, big_endian> This;
1790   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1791   typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1792
1793   template<int valsize>
1794   static inline bool
1795   has_overflow_signed(Address value)
1796   {
1797     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1798     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1799     limit <<= ((valsize - 1) >> 1);
1800     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1801     return value + limit > (limit << 1) - 1;
1802   }
1803
1804   template<int valsize>
1805   static inline bool
1806   has_overflow_unsigned(Address value)
1807   {
1808     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1809     limit <<= ((valsize - 1) >> 1);
1810     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1811     return value > (limit << 1) - 1;
1812   }
1813
1814   template<int valsize>
1815   static inline bool
1816   has_overflow_bitfield(Address value)
1817   {
1818     return (has_overflow_unsigned<valsize>(value)
1819             && has_overflow_signed<valsize>(value));
1820   }
1821
1822   template<int valsize>
1823   static inline Status
1824   overflowed(Address value, Overflow_check overflow)
1825   {
1826     if (overflow == CHECK_SIGNED)
1827       {
1828         if (has_overflow_signed<valsize>(value))
1829           return STATUS_OVERFLOW;
1830       }
1831     else if (overflow == CHECK_UNSIGNED)
1832       {
1833         if (has_overflow_unsigned<valsize>(value))
1834           return STATUS_OVERFLOW;
1835       }
1836     else if (overflow == CHECK_BITFIELD)
1837       {
1838         if (has_overflow_bitfield<valsize>(value))
1839           return STATUS_OVERFLOW;
1840       }
1841     return STATUS_OK;
1842   }
1843
1844   // Do a simple RELA relocation
1845   template<int fieldsize, int valsize>
1846   static inline Status
1847   rela(unsigned char* view, Address value, Overflow_check overflow)
1848   {
1849     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1850     Valtype* wv = reinterpret_cast<Valtype*>(view);
1851     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1852     return overflowed<valsize>(value, overflow);
1853   }
1854
1855   template<int fieldsize, int valsize>
1856   static inline Status
1857   rela(unsigned char* view,
1858        unsigned int right_shift,
1859        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1860        Address value,
1861        Overflow_check overflow)
1862   {
1863     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1864     Valtype* wv = reinterpret_cast<Valtype*>(view);
1865     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1866     Valtype reloc = value >> right_shift;
1867     val &= ~dst_mask;
1868     reloc &= dst_mask;
1869     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1870     return overflowed<valsize>(value >> right_shift, overflow);
1871   }
1872
1873   // Do a simple RELA relocation, unaligned.
1874   template<int fieldsize, int valsize>
1875   static inline Status
1876   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1877   {
1878     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1879     return overflowed<valsize>(value, overflow);
1880   }
1881
1882   template<int fieldsize, int valsize>
1883   static inline Status
1884   rela_ua(unsigned char* view,
1885           unsigned int right_shift,
1886           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1887           Address value,
1888           Overflow_check overflow)
1889   {
1890     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1891       Valtype;
1892     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1893     Valtype reloc = value >> right_shift;
1894     val &= ~dst_mask;
1895     reloc &= dst_mask;
1896     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1897     return overflowed<valsize>(value >> right_shift, overflow);
1898   }
1899
1900 public:
1901   // R_PPC64_ADDR64: (Symbol + Addend)
1902   static inline void
1903   addr64(unsigned char* view, Address value)
1904   { This::template rela<64,64>(view, value, CHECK_NONE); }
1905
1906   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1907   static inline void
1908   addr64_u(unsigned char* view, Address value)
1909   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1910
1911   // R_POWERPC_ADDR32: (Symbol + Addend)
1912   static inline Status
1913   addr32(unsigned char* view, Address value, Overflow_check overflow)
1914   { return This::template rela<32,32>(view, value, overflow); }
1915
1916   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1917   static inline Status
1918   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1919   { return This::template rela_ua<32,32>(view, value, overflow); }
1920
1921   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1922   static inline Status
1923   addr24(unsigned char* view, Address value, Overflow_check overflow)
1924   {
1925     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1926                                              value, overflow);
1927     if (overflow != CHECK_NONE && (value & 3) != 0)
1928       stat = STATUS_OVERFLOW;
1929     return stat;
1930   }
1931
1932   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1933   static inline Status
1934   addr16(unsigned char* view, Address value, Overflow_check overflow)
1935   { return This::template rela<16,16>(view, value, overflow); }
1936
1937   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1938   static inline Status
1939   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1940   { return This::template rela_ua<16,16>(view, value, overflow); }
1941
1942   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1943   static inline Status
1944   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1945   {
1946     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1947     if ((value & 3) != 0)
1948       stat = STATUS_OVERFLOW;
1949     return stat;
1950   }
1951
1952   // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1953   static inline Status
1954   addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1955   {
1956     Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1957     if ((value & 15) != 0)
1958       stat = STATUS_OVERFLOW;
1959     return stat;
1960   }
1961
1962   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1963   static inline void
1964   addr16_hi(unsigned char* view, Address value)
1965   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1966
1967   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1968   static inline void
1969   addr16_ha(unsigned char* view, Address value)
1970   { This::addr16_hi(view, value + 0x8000); }
1971
1972   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1973   static inline void
1974   addr16_hi2(unsigned char* view, Address value)
1975   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1976
1977   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1978   static inline void
1979   addr16_ha2(unsigned char* view, Address value)
1980   { This::addr16_hi2(view, value + 0x8000); }
1981
1982   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1983   static inline void
1984   addr16_hi3(unsigned char* view, Address value)
1985   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1986
1987   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1988   static inline void
1989   addr16_ha3(unsigned char* view, Address value)
1990   { This::addr16_hi3(view, value + 0x8000); }
1991
1992   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1993   static inline Status
1994   addr14(unsigned char* view, Address value, Overflow_check overflow)
1995   {
1996     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1997     if (overflow != CHECK_NONE && (value & 3) != 0)
1998       stat = STATUS_OVERFLOW;
1999     return stat;
2000   }
2001
2002   // R_POWERPC_REL16DX_HA
2003   static inline Status
2004   addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
2005   {
2006     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2007     Valtype* wv = reinterpret_cast<Valtype*>(view);
2008     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2009     value += 0x8000;
2010     value = static_cast<SignedAddress>(value) >> 16;
2011     val |= (value & 0xffc1) | ((value & 0x3e) << 15);
2012     elfcpp::Swap<32, big_endian>::writeval(wv, val);
2013     return overflowed<16>(value, overflow);
2014   }
2015 };
2016
2017 // Set ABI version for input and output.
2018
2019 template<int size, bool big_endian>
2020 void
2021 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
2022 {
2023   this->e_flags_ |= ver;
2024   if (this->abiversion() != 0)
2025     {
2026       Target_powerpc<size, big_endian>* target =
2027         static_cast<Target_powerpc<size, big_endian>*>(
2028            parameters->sized_target<size, big_endian>());
2029       if (target->abiversion() == 0)
2030         target->set_abiversion(this->abiversion());
2031       else if (target->abiversion() != this->abiversion())
2032         gold_error(_("%s: ABI version %d is not compatible "
2033                      "with ABI version %d output"),
2034                    this->name().c_str(),
2035                    this->abiversion(), target->abiversion());
2036
2037     }
2038 }
2039
2040 // Stash away the index of .got2, .opd, .rela.toc, and .toc in a
2041 // relocatable object, if such sections exists.
2042
2043 template<int size, bool big_endian>
2044 bool
2045 Powerpc_relobj<size, big_endian>::do_find_special_sections(
2046     Read_symbols_data* sd)
2047 {
2048   const unsigned char* const pshdrs = sd->section_headers->data();
2049   const unsigned char* namesu = sd->section_names->data();
2050   const char* names = reinterpret_cast<const char*>(namesu);
2051   section_size_type names_size = sd->section_names_size;
2052   const unsigned char* s;
2053
2054   s = this->template find_shdr<size, big_endian>(pshdrs,
2055                                                  size == 32 ? ".got2" : ".opd",
2056                                                  names, names_size, NULL);
2057   if (s != NULL)
2058     {
2059       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2060       this->special_ = ndx;
2061       if (size == 64)
2062         {
2063           if (this->abiversion() == 0)
2064             this->set_abiversion(1);
2065           else if (this->abiversion() > 1)
2066             gold_error(_("%s: .opd invalid in abiv%d"),
2067                        this->name().c_str(), this->abiversion());
2068         }
2069     }
2070   if (size == 64)
2071     {
2072       s = this->template find_shdr<size, big_endian>(pshdrs, ".rela.toc",
2073                                                      names, names_size, NULL);
2074       if (s != NULL)
2075         {
2076           unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2077           this->relatoc_ = ndx;
2078           typename elfcpp::Shdr<size, big_endian> shdr(s);
2079           this->toc_ = this->adjust_shndx(shdr.get_sh_info());
2080         }
2081     }
2082   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
2083 }
2084
2085 // Examine .rela.opd to build info about function entry points.
2086
2087 template<int size, bool big_endian>
2088 void
2089 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
2090     size_t reloc_count,
2091     const unsigned char* prelocs,
2092     const unsigned char* plocal_syms)
2093 {
2094   if (size == 64)
2095     {
2096       typedef typename elfcpp::Rela<size, big_endian> Reltype;
2097       const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2098       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2099       Address expected_off = 0;
2100       bool regular = true;
2101       unsigned int opd_ent_size = 0;
2102
2103       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
2104         {
2105           Reltype reloc(prelocs);
2106           typename elfcpp::Elf_types<size>::Elf_WXword r_info
2107             = reloc.get_r_info();
2108           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
2109           if (r_type == elfcpp::R_PPC64_ADDR64)
2110             {
2111               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
2112               typename elfcpp::Elf_types<size>::Elf_Addr value;
2113               bool is_ordinary;
2114               unsigned int shndx;
2115               if (r_sym < this->local_symbol_count())
2116                 {
2117                   typename elfcpp::Sym<size, big_endian>
2118                     lsym(plocal_syms + r_sym * sym_size);
2119                   shndx = lsym.get_st_shndx();
2120                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2121                   value = lsym.get_st_value();
2122                 }
2123               else
2124                 shndx = this->symbol_section_and_value(r_sym, &value,
2125                                                        &is_ordinary);
2126               this->set_opd_ent(reloc.get_r_offset(), shndx,
2127                                 value + reloc.get_r_addend());
2128               if (i == 2)
2129                 {
2130                   expected_off = reloc.get_r_offset();
2131                   opd_ent_size = expected_off;
2132                 }
2133               else if (expected_off != reloc.get_r_offset())
2134                 regular = false;
2135               expected_off += opd_ent_size;
2136             }
2137           else if (r_type == elfcpp::R_PPC64_TOC)
2138             {
2139               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
2140                 regular = false;
2141             }
2142           else
2143             {
2144               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
2145                            this->name().c_str(), r_type);
2146               regular = false;
2147             }
2148         }
2149       if (reloc_count <= 2)
2150         opd_ent_size = this->section_size(this->opd_shndx());
2151       if (opd_ent_size != 24 && opd_ent_size != 16)
2152         regular = false;
2153       if (!regular)
2154         {
2155           gold_warning(_("%s: .opd is not a regular array of opd entries"),
2156                        this->name().c_str());
2157           opd_ent_size = 0;
2158         }
2159     }
2160 }
2161
2162 // Returns true if a code sequence loading the TOC entry at VALUE
2163 // relative to the TOC pointer can be converted into code calculating
2164 // a TOC pointer relative offset.
2165 // If so, the TOC pointer relative offset is stored to VALUE.
2166
2167 template<int size, bool big_endian>
2168 bool
2169 Powerpc_relobj<size, big_endian>::make_toc_relative(
2170     Target_powerpc<size, big_endian>* target,
2171     Address* value)
2172 {
2173   if (size != 64)
2174     return false;
2175
2176   // With -mcmodel=medium code it is quite possible to have
2177   // toc-relative relocs referring to objects outside the TOC.
2178   // Don't try to look at a non-existent TOC.
2179   if (this->toc_shndx() == 0)
2180     return false;
2181
2182   // Convert VALUE back to an address by adding got_base (see below),
2183   // then to an offset in the TOC by subtracting the TOC output
2184   // section address and the TOC output offset.  Since this TOC output
2185   // section and the got output section are one and the same, we can
2186   // omit adding and subtracting the output section address.
2187   Address off = (*value + this->toc_base_offset()
2188                  - this->output_section_offset(this->toc_shndx()));
2189   // Is this offset in the TOC?  -mcmodel=medium code may be using
2190   // TOC relative access to variables outside the TOC.  Those of
2191   // course can't be optimized.  We also don't try to optimize code
2192   // that is using a different object's TOC.
2193   if (off >= this->section_size(this->toc_shndx()))
2194     return false;
2195
2196   if (this->no_toc_opt(off))
2197     return false;
2198
2199   section_size_type vlen;
2200   unsigned char* view = this->get_output_view(this->toc_shndx(), &vlen);
2201   Address addr = elfcpp::Swap<size, big_endian>::readval(view + off);
2202   // The TOC pointer
2203   Address got_base = (target->got_section()->output_section()->address()
2204                       + this->toc_base_offset());
2205   addr -= got_base;
2206   if (addr + (uint64_t) 0x80008000 >= (uint64_t) 1 << 32)
2207     return false;
2208
2209   *value = addr;
2210   return true;
2211 }
2212
2213 // Perform the Sized_relobj_file method, then set up opd info from
2214 // .opd relocs.
2215
2216 template<int size, bool big_endian>
2217 void
2218 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
2219 {
2220   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
2221   if (size == 64)
2222     {
2223       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
2224            p != rd->relocs.end();
2225            ++p)
2226         {
2227           if (p->data_shndx == this->opd_shndx())
2228             {
2229               uint64_t opd_size = this->section_size(this->opd_shndx());
2230               gold_assert(opd_size == static_cast<size_t>(opd_size));
2231               if (opd_size != 0)
2232                 {
2233                   this->init_opd(opd_size);
2234                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
2235                                         rd->local_symbols->data());
2236                 }
2237               break;
2238             }
2239         }
2240     }
2241 }
2242
2243 // Read the symbols then set up st_other vector.
2244
2245 template<int size, bool big_endian>
2246 void
2247 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2248 {
2249   this->base_read_symbols(sd);
2250   if (size == 64)
2251     {
2252       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2253       const unsigned char* const pshdrs = sd->section_headers->data();
2254       const unsigned int loccount = this->do_local_symbol_count();
2255       if (loccount != 0)
2256         {
2257           this->st_other_.resize(loccount);
2258           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2259           off_t locsize = loccount * sym_size;
2260           const unsigned int symtab_shndx = this->symtab_shndx();
2261           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
2262           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
2263           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
2264                                                       locsize, true, false);
2265           psyms += sym_size;
2266           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2267             {
2268               elfcpp::Sym<size, big_endian> sym(psyms);
2269               unsigned char st_other = sym.get_st_other();
2270               this->st_other_[i] = st_other;
2271               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
2272                 {
2273                   if (this->abiversion() == 0)
2274                     this->set_abiversion(2);
2275                   else if (this->abiversion() < 2)
2276                     gold_error(_("%s: local symbol %d has invalid st_other"
2277                                  " for ABI version 1"),
2278                                this->name().c_str(), i);
2279                 }
2280             }
2281         }
2282     }
2283 }
2284
2285 template<int size, bool big_endian>
2286 void
2287 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
2288 {
2289   this->e_flags_ |= ver;
2290   if (this->abiversion() != 0)
2291     {
2292       Target_powerpc<size, big_endian>* target =
2293         static_cast<Target_powerpc<size, big_endian>*>(
2294           parameters->sized_target<size, big_endian>());
2295       if (target->abiversion() == 0)
2296         target->set_abiversion(this->abiversion());
2297       else if (target->abiversion() != this->abiversion())
2298         gold_error(_("%s: ABI version %d is not compatible "
2299                      "with ABI version %d output"),
2300                    this->name().c_str(),
2301                    this->abiversion(), target->abiversion());
2302
2303     }
2304 }
2305
2306 // Call Sized_dynobj::base_read_symbols to read the symbols then
2307 // read .opd from a dynamic object, filling in opd_ent_ vector,
2308
2309 template<int size, bool big_endian>
2310 void
2311 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2312 {
2313   this->base_read_symbols(sd);
2314   if (size == 64)
2315     {
2316       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2317       const unsigned char* const pshdrs = sd->section_headers->data();
2318       const unsigned char* namesu = sd->section_names->data();
2319       const char* names = reinterpret_cast<const char*>(namesu);
2320       const unsigned char* s = NULL;
2321       const unsigned char* opd;
2322       section_size_type opd_size;
2323
2324       // Find and read .opd section.
2325       while (1)
2326         {
2327           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
2328                                                          sd->section_names_size,
2329                                                          s);
2330           if (s == NULL)
2331             return;
2332
2333           typename elfcpp::Shdr<size, big_endian> shdr(s);
2334           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2335               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2336             {
2337               if (this->abiversion() == 0)
2338                 this->set_abiversion(1);
2339               else if (this->abiversion() > 1)
2340                 gold_error(_("%s: .opd invalid in abiv%d"),
2341                            this->name().c_str(), this->abiversion());
2342
2343               this->opd_shndx_ = (s - pshdrs) / shdr_size;
2344               this->opd_address_ = shdr.get_sh_addr();
2345               opd_size = convert_to_section_size_type(shdr.get_sh_size());
2346               opd = this->get_view(shdr.get_sh_offset(), opd_size,
2347                                    true, false);
2348               break;
2349             }
2350         }
2351
2352       // Build set of executable sections.
2353       // Using a set is probably overkill.  There is likely to be only
2354       // a few executable sections, typically .init, .text and .fini,
2355       // and they are generally grouped together.
2356       typedef std::set<Sec_info> Exec_sections;
2357       Exec_sections exec_sections;
2358       s = pshdrs;
2359       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2360         {
2361           typename elfcpp::Shdr<size, big_endian> shdr(s);
2362           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2363               && ((shdr.get_sh_flags()
2364                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2365                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2366               && shdr.get_sh_size() != 0)
2367             {
2368               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2369                                             shdr.get_sh_size(), i));
2370             }
2371         }
2372       if (exec_sections.empty())
2373         return;
2374
2375       // Look over the OPD entries.  This is complicated by the fact
2376       // that some binaries will use two-word entries while others
2377       // will use the standard three-word entries.  In most cases
2378       // the third word (the environment pointer for languages like
2379       // Pascal) is unused and will be zero.  If the third word is
2380       // used it should not be pointing into executable sections,
2381       // I think.
2382       this->init_opd(opd_size);
2383       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2384         {
2385           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2386           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2387           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2388           if (val == 0)
2389             // Chances are that this is the third word of an OPD entry.
2390             continue;
2391           typename Exec_sections::const_iterator e
2392             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2393           if (e != exec_sections.begin())
2394             {
2395               --e;
2396               if (e->start <= val && val < e->start + e->len)
2397                 {
2398                   // We have an address in an executable section.
2399                   // VAL ought to be the function entry, set it up.
2400                   this->set_opd_ent(p - opd, e->shndx, val);
2401                   // Skip second word of OPD entry, the TOC pointer.
2402                   p += 8;
2403                 }
2404             }
2405           // If we didn't match any executable sections, we likely
2406           // have a non-zero third word in the OPD entry.
2407         }
2408     }
2409 }
2410
2411 // Relocate sections.
2412
2413 template<int size, bool big_endian>
2414 void
2415 Powerpc_relobj<size, big_endian>::do_relocate_sections(
2416     const Symbol_table* symtab, const Layout* layout,
2417     const unsigned char* pshdrs, Output_file* of,
2418     typename Sized_relobj_file<size, big_endian>::Views* pviews)
2419 {
2420   unsigned int start = 1;
2421   if (size == 64
2422       && this->relatoc_ != 0
2423       && !parameters->options().relocatable())
2424     {
2425       // Relocate .toc first.
2426       this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2427                                    this->relatoc_, this->relatoc_);
2428       this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2429                                    1, this->relatoc_ - 1);
2430       start = this->relatoc_ + 1;
2431     }
2432   this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2433                                start, this->shnum() - 1);
2434 }
2435
2436 // Set up some symbols.
2437
2438 template<int size, bool big_endian>
2439 void
2440 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2441     Symbol_table* symtab,
2442     Layout* layout)
2443 {
2444   if (size == 32)
2445     {
2446       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2447       // undefined when scanning relocs (and thus requires
2448       // non-relative dynamic relocs).  The proper value will be
2449       // updated later.
2450       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2451       if (gotsym != NULL && gotsym->is_undefined())
2452         {
2453           Target_powerpc<size, big_endian>* target =
2454             static_cast<Target_powerpc<size, big_endian>*>(
2455                 parameters->sized_target<size, big_endian>());
2456           Output_data_got_powerpc<size, big_endian>* got
2457             = target->got_section(symtab, layout);
2458           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2459                                         Symbol_table::PREDEFINED,
2460                                         got, 0, 0,
2461                                         elfcpp::STT_OBJECT,
2462                                         elfcpp::STB_LOCAL,
2463                                         elfcpp::STV_HIDDEN, 0,
2464                                         false, false);
2465         }
2466
2467       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2468       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2469       if (sdasym != NULL && sdasym->is_undefined())
2470         {
2471           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2472           Output_section* os
2473             = layout->add_output_section_data(".sdata", 0,
2474                                               elfcpp::SHF_ALLOC
2475                                               | elfcpp::SHF_WRITE,
2476                                               sdata, ORDER_SMALL_DATA, false);
2477           symtab->define_in_output_data("_SDA_BASE_", NULL,
2478                                         Symbol_table::PREDEFINED,
2479                                         os, 32768, 0, elfcpp::STT_OBJECT,
2480                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2481                                         0, false, false);
2482         }
2483     }
2484   else
2485     {
2486       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2487       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2488       if (gotsym != NULL && gotsym->is_undefined())
2489         {
2490           Target_powerpc<size, big_endian>* target =
2491             static_cast<Target_powerpc<size, big_endian>*>(
2492                 parameters->sized_target<size, big_endian>());
2493           Output_data_got_powerpc<size, big_endian>* got
2494             = target->got_section(symtab, layout);
2495           symtab->define_in_output_data(".TOC.", NULL,
2496                                         Symbol_table::PREDEFINED,
2497                                         got, 0x8000, 0,
2498                                         elfcpp::STT_OBJECT,
2499                                         elfcpp::STB_LOCAL,
2500                                         elfcpp::STV_HIDDEN, 0,
2501                                         false, false);
2502         }
2503     }
2504
2505   this->tls_get_addr_ = symtab->lookup("__tls_get_addr");
2506   if (parameters->options().tls_get_addr_optimize()
2507       && this->tls_get_addr_ != NULL
2508       && this->tls_get_addr_->in_reg())
2509     this->tls_get_addr_opt_ = symtab->lookup("__tls_get_addr_opt");
2510   if (this->tls_get_addr_opt_ != NULL)
2511     {
2512       if (this->tls_get_addr_->is_undefined()
2513           || this->tls_get_addr_->is_from_dynobj())
2514         {
2515           // Make it seem as if references to __tls_get_addr are
2516           // really to __tls_get_addr_opt, so the latter symbol is
2517           // made dynamic, not the former.
2518           this->tls_get_addr_->clear_in_reg();
2519           this->tls_get_addr_opt_->set_in_reg();
2520         }
2521       // We have a non-dynamic definition for __tls_get_addr.
2522       // Make __tls_get_addr_opt the same, if it does not already have
2523       // a non-dynamic definition.
2524       else if (this->tls_get_addr_opt_->is_undefined()
2525                || this->tls_get_addr_opt_->is_from_dynobj())
2526         {
2527           Sized_symbol<size>* from
2528             = static_cast<Sized_symbol<size>*>(this->tls_get_addr_);
2529           Sized_symbol<size>* to
2530             = static_cast<Sized_symbol<size>*>(this->tls_get_addr_opt_);
2531           symtab->clone<size>(to, from);
2532         }
2533     }
2534 }
2535
2536 // Set up PowerPC target specific relobj.
2537
2538 template<int size, bool big_endian>
2539 Object*
2540 Target_powerpc<size, big_endian>::do_make_elf_object(
2541     const std::string& name,
2542     Input_file* input_file,
2543     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2544 {
2545   int et = ehdr.get_e_type();
2546   // ET_EXEC files are valid input for --just-symbols/-R,
2547   // and we treat them as relocatable objects.
2548   if (et == elfcpp::ET_REL
2549       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2550     {
2551       Powerpc_relobj<size, big_endian>* obj =
2552         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2553       obj->setup();
2554       return obj;
2555     }
2556   else if (et == elfcpp::ET_DYN)
2557     {
2558       Powerpc_dynobj<size, big_endian>* obj =
2559         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2560       obj->setup();
2561       return obj;
2562     }
2563   else
2564     {
2565       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2566       return NULL;
2567     }
2568 }
2569
2570 template<int size, bool big_endian>
2571 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2572 {
2573 public:
2574   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2575   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2576
2577   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2578     : Output_data_got<size, big_endian>(),
2579       symtab_(symtab), layout_(layout),
2580       header_ent_cnt_(size == 32 ? 3 : 1),
2581       header_index_(size == 32 ? 0x2000 : 0)
2582   {
2583     if (size == 64)
2584       this->set_addralign(256);
2585   }
2586
2587   // Override all the Output_data_got methods we use so as to first call
2588   // reserve_ent().
2589   bool
2590   add_global(Symbol* gsym, unsigned int got_type)
2591   {
2592     this->reserve_ent();
2593     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2594   }
2595
2596   bool
2597   add_global_plt(Symbol* gsym, unsigned int got_type)
2598   {
2599     this->reserve_ent();
2600     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2601   }
2602
2603   bool
2604   add_global_tls(Symbol* gsym, unsigned int got_type)
2605   { return this->add_global_plt(gsym, got_type); }
2606
2607   void
2608   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2609                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2610   {
2611     this->reserve_ent();
2612     Output_data_got<size, big_endian>::
2613       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2614   }
2615
2616   void
2617   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2618                            Output_data_reloc_generic* rel_dyn,
2619                            unsigned int r_type_1, unsigned int r_type_2)
2620   {
2621     if (gsym->has_got_offset(got_type))
2622       return;
2623
2624     this->reserve_ent(2);
2625     Output_data_got<size, big_endian>::
2626       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2627   }
2628
2629   bool
2630   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2631   {
2632     this->reserve_ent();
2633     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2634                                                         got_type);
2635   }
2636
2637   bool
2638   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2639   {
2640     this->reserve_ent();
2641     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2642                                                             got_type);
2643   }
2644
2645   bool
2646   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2647   { return this->add_local_plt(object, sym_index, got_type); }
2648
2649   void
2650   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2651                      unsigned int got_type,
2652                      Output_data_reloc_generic* rel_dyn,
2653                      unsigned int r_type)
2654   {
2655     if (object->local_has_got_offset(sym_index, got_type))
2656       return;
2657
2658     this->reserve_ent(2);
2659     Output_data_got<size, big_endian>::
2660       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2661   }
2662
2663   unsigned int
2664   add_constant(Valtype constant)
2665   {
2666     this->reserve_ent();
2667     return Output_data_got<size, big_endian>::add_constant(constant);
2668   }
2669
2670   unsigned int
2671   add_constant_pair(Valtype c1, Valtype c2)
2672   {
2673     this->reserve_ent(2);
2674     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2675   }
2676
2677   // Offset of _GLOBAL_OFFSET_TABLE_.
2678   unsigned int
2679   g_o_t() const
2680   {
2681     return this->got_offset(this->header_index_);
2682   }
2683
2684   // Offset of base used to access the GOT/TOC.
2685   // The got/toc pointer reg will be set to this value.
2686   Valtype
2687   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2688   {
2689     if (size == 32)
2690       return this->g_o_t();
2691     else
2692       return (this->output_section()->address()
2693               + object->toc_base_offset()
2694               - this->address());
2695   }
2696
2697   // Ensure our GOT has a header.
2698   void
2699   set_final_data_size()
2700   {
2701     if (this->header_ent_cnt_ != 0)
2702       this->make_header();
2703     Output_data_got<size, big_endian>::set_final_data_size();
2704   }
2705
2706   // First word of GOT header needs some values that are not
2707   // handled by Output_data_got so poke them in here.
2708   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2709   void
2710   do_write(Output_file* of)
2711   {
2712     Valtype val = 0;
2713     if (size == 32 && this->layout_->dynamic_data() != NULL)
2714       val = this->layout_->dynamic_section()->address();
2715     if (size == 64)
2716       val = this->output_section()->address() + 0x8000;
2717     this->replace_constant(this->header_index_, val);
2718     Output_data_got<size, big_endian>::do_write(of);
2719   }
2720
2721 private:
2722   void
2723   reserve_ent(unsigned int cnt = 1)
2724   {
2725     if (this->header_ent_cnt_ == 0)
2726       return;
2727     if (this->num_entries() + cnt > this->header_index_)
2728       this->make_header();
2729   }
2730
2731   void
2732   make_header()
2733   {
2734     this->header_ent_cnt_ = 0;
2735     this->header_index_ = this->num_entries();
2736     if (size == 32)
2737       {
2738         Output_data_got<size, big_endian>::add_constant(0);
2739         Output_data_got<size, big_endian>::add_constant(0);
2740         Output_data_got<size, big_endian>::add_constant(0);
2741
2742         // Define _GLOBAL_OFFSET_TABLE_ at the header
2743         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2744         if (gotsym != NULL)
2745           {
2746             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2747             sym->set_value(this->g_o_t());
2748           }
2749         else
2750           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2751                                                Symbol_table::PREDEFINED,
2752                                                this, this->g_o_t(), 0,
2753                                                elfcpp::STT_OBJECT,
2754                                                elfcpp::STB_LOCAL,
2755                                                elfcpp::STV_HIDDEN, 0,
2756                                                false, false);
2757       }
2758     else
2759       Output_data_got<size, big_endian>::add_constant(0);
2760   }
2761
2762   // Stashed pointers.
2763   Symbol_table* symtab_;
2764   Layout* layout_;
2765
2766   // GOT header size.
2767   unsigned int header_ent_cnt_;
2768   // GOT header index.
2769   unsigned int header_index_;
2770 };
2771
2772 // Get the GOT section, creating it if necessary.
2773
2774 template<int size, bool big_endian>
2775 Output_data_got_powerpc<size, big_endian>*
2776 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2777                                               Layout* layout)
2778 {
2779   if (this->got_ == NULL)
2780     {
2781       gold_assert(symtab != NULL && layout != NULL);
2782
2783       this->got_
2784         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2785
2786       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2787                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2788                                       this->got_, ORDER_DATA, false);
2789     }
2790
2791   return this->got_;
2792 }
2793
2794 // Get the dynamic reloc section, creating it if necessary.
2795
2796 template<int size, bool big_endian>
2797 typename Target_powerpc<size, big_endian>::Reloc_section*
2798 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2799 {
2800   if (this->rela_dyn_ == NULL)
2801     {
2802       gold_assert(layout != NULL);
2803       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2804       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2805                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2806                                       ORDER_DYNAMIC_RELOCS, false);
2807     }
2808   return this->rela_dyn_;
2809 }
2810
2811 // Similarly, but for ifunc symbols get the one for ifunc.
2812
2813 template<int size, bool big_endian>
2814 typename Target_powerpc<size, big_endian>::Reloc_section*
2815 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2816                                                    Layout* layout,
2817                                                    bool for_ifunc)
2818 {
2819   if (!for_ifunc)
2820     return this->rela_dyn_section(layout);
2821
2822   if (this->iplt_ == NULL)
2823     this->make_iplt_section(symtab, layout);
2824   return this->iplt_->rel_plt();
2825 }
2826
2827 class Stub_control
2828 {
2829  public:
2830   // Determine the stub group size.  The group size is the absolute
2831   // value of the parameter --stub-group-size.  If --stub-group-size
2832   // is passed a negative value, we restrict stubs to be always after
2833   // the stubbed branches.
2834   Stub_control(int32_t size, bool no_size_errors, bool multi_os)
2835     : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
2836       suppress_size_errors_(no_size_errors), multi_os_(multi_os),
2837       state_(NO_GROUP), group_size_(0), group_start_addr_(0),
2838       owner_(NULL), output_section_(NULL)
2839   {
2840   }
2841
2842   // Return true iff input section can be handled by current stub
2843   // group.
2844   bool
2845   can_add_to_stub_group(Output_section* o,
2846                         const Output_section::Input_section* i,
2847                         bool has14);
2848
2849   const Output_section::Input_section*
2850   owner()
2851   { return owner_; }
2852
2853   Output_section*
2854   output_section()
2855   { return output_section_; }
2856
2857   void
2858   set_output_and_owner(Output_section* o,
2859                        const Output_section::Input_section* i)
2860   {
2861     this->output_section_ = o;
2862     this->owner_ = i;
2863   }
2864
2865  private:
2866   typedef enum
2867   {
2868     // Initial state.
2869     NO_GROUP,
2870     // Adding group sections before the stubs.
2871     FINDING_STUB_SECTION,
2872     // Adding group sections after the stubs.
2873     HAS_STUB_SECTION
2874   } State;
2875
2876   uint32_t stub_group_size_;
2877   bool stubs_always_after_branch_;
2878   bool suppress_size_errors_;
2879   // True if a stub group can serve multiple output sections.
2880   bool multi_os_;
2881   State state_;
2882   // Current max size of group.  Starts at stub_group_size_ but is
2883   // reduced to stub_group_size_/1024 on seeing a section with
2884   // external conditional branches.
2885   uint32_t group_size_;
2886   uint64_t group_start_addr_;
2887   // owner_ and output_section_ specify the section to which stubs are
2888   // attached.  The stubs are placed at the end of this section.
2889   const Output_section::Input_section* owner_;
2890   Output_section* output_section_;
2891 };
2892
2893 // Return true iff input section can be handled by current stub
2894 // group.  Sections are presented to this function in order,
2895 // so the first section is the head of the group.
2896
2897 bool
2898 Stub_control::can_add_to_stub_group(Output_section* o,
2899                                     const Output_section::Input_section* i,
2900                                     bool has14)
2901 {
2902   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2903   uint64_t this_size;
2904   uint64_t start_addr = o->address();
2905
2906   if (whole_sec)
2907     // .init and .fini sections are pasted together to form a single
2908     // function.  We can't be adding stubs in the middle of the function.
2909     this_size = o->data_size();
2910   else
2911     {
2912       start_addr += i->relobj()->output_section_offset(i->shndx());
2913       this_size = i->data_size();
2914     }
2915
2916   uint64_t end_addr = start_addr + this_size;
2917   uint32_t group_size = this->stub_group_size_;
2918   if (has14)
2919     this->group_size_ = group_size = group_size >> 10;
2920
2921   if (this_size > group_size && !this->suppress_size_errors_)
2922     gold_warning(_("%s:%s exceeds group size"),
2923                  i->relobj()->name().c_str(),
2924                  i->relobj()->section_name(i->shndx()).c_str());
2925
2926   gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
2927              has14 ? " 14bit" : "",
2928              i->relobj()->name().c_str(),
2929              i->relobj()->section_name(i->shndx()).c_str(),
2930              (long long) this_size,
2931              (this->state_ == NO_GROUP
2932               ? this_size
2933               : (long long) end_addr - this->group_start_addr_));
2934
2935   if (this->state_ == NO_GROUP)
2936     {
2937       // Only here on very first use of Stub_control
2938       this->owner_ = i;
2939       this->output_section_ = o;
2940       this->state_ = FINDING_STUB_SECTION;
2941       this->group_size_ = group_size;
2942       this->group_start_addr_ = start_addr;
2943       return true;
2944     }
2945   else if (!this->multi_os_ && this->output_section_ != o)
2946     ;
2947   else if (this->state_ == HAS_STUB_SECTION)
2948     {
2949       // Can we add this section, which is after the stubs, to the
2950       // group?
2951       if (end_addr - this->group_start_addr_ <= this->group_size_)
2952         return true;
2953     }
2954   else if (this->state_ == FINDING_STUB_SECTION)
2955     {
2956       if ((whole_sec && this->output_section_ == o)
2957           || end_addr - this->group_start_addr_ <= this->group_size_)
2958         {
2959           // Stubs are added at the end of "owner_".
2960           this->owner_ = i;
2961           this->output_section_ = o;
2962           return true;
2963         }
2964       // The group before the stubs has reached maximum size.
2965       // Now see about adding sections after the stubs to the
2966       // group.  If the current section has a 14-bit branch and
2967       // the group before the stubs exceeds group_size_ (because
2968       // they didn't have 14-bit branches), don't add sections
2969       // after the stubs:  The size of stubs for such a large
2970       // group may exceed the reach of a 14-bit branch.
2971       if (!this->stubs_always_after_branch_
2972           && this_size <= this->group_size_
2973           && start_addr - this->group_start_addr_ <= this->group_size_)
2974         {
2975           gold_debug(DEBUG_TARGET, "adding after stubs");
2976           this->state_ = HAS_STUB_SECTION;
2977           this->group_start_addr_ = start_addr;
2978           return true;
2979         }
2980     }
2981   else
2982     gold_unreachable();
2983
2984   gold_debug(DEBUG_TARGET,
2985              !this->multi_os_ && this->output_section_ != o
2986              ? "nope, new output section\n"
2987              : "nope, didn't fit\n");
2988
2989   // The section fails to fit in the current group.  Set up a few
2990   // things for the next group.  owner_ and output_section_ will be
2991   // set later after we've retrieved those values for the current
2992   // group.
2993   this->state_ = FINDING_STUB_SECTION;
2994   this->group_size_ = group_size;
2995   this->group_start_addr_ = start_addr;
2996   return false;
2997 }
2998
2999 // Look over all the input sections, deciding where to place stubs.
3000
3001 template<int size, bool big_endian>
3002 void
3003 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
3004                                                  const Task*,
3005                                                  bool no_size_errors)
3006 {
3007   Stub_control stub_control(this->stub_group_size_, no_size_errors,
3008                             parameters->options().stub_group_multi());
3009
3010   // Group input sections and insert stub table
3011   Stub_table_owner* table_owner = NULL;
3012   std::vector<Stub_table_owner*> tables;
3013   Layout::Section_list section_list;
3014   layout->get_executable_sections(&section_list);
3015   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
3016   for (Layout::Section_list::iterator o = section_list.begin();
3017        o != section_list.end();
3018        ++o)
3019     {
3020       typedef Output_section::Input_section_list Input_section_list;
3021       for (Input_section_list::const_iterator i
3022              = (*o)->input_sections().begin();
3023            i != (*o)->input_sections().end();
3024            ++i)
3025         {
3026           if (i->is_input_section()
3027               || i->is_relaxed_input_section())
3028             {
3029               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3030                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
3031               bool has14 = ppcobj->has_14bit_branch(i->shndx());
3032               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
3033                 {
3034                   table_owner->output_section = stub_control.output_section();
3035                   table_owner->owner = stub_control.owner();
3036                   stub_control.set_output_and_owner(*o, &*i);
3037                   table_owner = NULL;
3038                 }
3039               if (table_owner == NULL)
3040                 {
3041                   table_owner = new Stub_table_owner;
3042                   tables.push_back(table_owner);
3043                 }
3044               ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
3045             }
3046         }
3047     }
3048   if (table_owner != NULL)
3049     {
3050       table_owner->output_section = stub_control.output_section();
3051       table_owner->owner = stub_control.owner();;
3052     }
3053   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
3054        t != tables.end();
3055        ++t)
3056     {
3057       Stub_table<size, big_endian>* stub_table;
3058
3059       if ((*t)->owner->is_input_section())
3060         stub_table = new Stub_table<size, big_endian>(this,
3061                                                       (*t)->output_section,
3062                                                       (*t)->owner,
3063                                                       this->stub_tables_.size());
3064       else if ((*t)->owner->is_relaxed_input_section())
3065         stub_table = static_cast<Stub_table<size, big_endian>*>(
3066                         (*t)->owner->relaxed_input_section());
3067       else
3068         gold_unreachable();
3069       this->stub_tables_.push_back(stub_table);
3070       delete *t;
3071     }
3072 }
3073
3074 static unsigned long
3075 max_branch_delta (unsigned int r_type)
3076 {
3077   if (r_type == elfcpp::R_POWERPC_REL14
3078       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
3079       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
3080     return 1L << 15;
3081   if (r_type == elfcpp::R_POWERPC_REL24
3082       || r_type == elfcpp::R_PPC_PLTREL24
3083       || r_type == elfcpp::R_PPC_LOCAL24PC)
3084     return 1L << 25;
3085   return 0;
3086 }
3087
3088 // Return whether this branch is going via a plt call stub.
3089
3090 template<int size, bool big_endian>
3091 bool
3092 Target_powerpc<size, big_endian>::Branch_info::mark_pltcall(
3093     Powerpc_relobj<size, big_endian>* ppc_object,
3094     unsigned int shndx,
3095     Address offset,
3096     Target_powerpc* target,
3097     Symbol_table* symtab)
3098 {
3099   if (this->object_ != ppc_object
3100       || this->shndx_ != shndx
3101       || this->offset_ != offset)
3102     return false;
3103
3104   Symbol* sym = this->object_->global_symbol(this->r_sym_);
3105   if (sym != NULL && sym->is_forwarder())
3106     sym = symtab->resolve_forwards(sym);
3107   if (target->replace_tls_get_addr(sym))
3108     sym = target->tls_get_addr_opt();
3109   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3110   if (gsym != NULL
3111       ? (gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3112          && !target->is_elfv2_localentry0(gsym))
3113       : (this->object_->local_has_plt_offset(this->r_sym_)
3114          && !target->is_elfv2_localentry0(this->object_, this->r_sym_)))
3115     {
3116       this->tocsave_ = 1;
3117       return true;
3118     }
3119   return false;
3120 }
3121
3122 // If this branch needs a plt call stub, or a long branch stub, make one.
3123
3124 template<int size, bool big_endian>
3125 bool
3126 Target_powerpc<size, big_endian>::Branch_info::make_stub(
3127     Stub_table<size, big_endian>* stub_table,
3128     Stub_table<size, big_endian>* ifunc_stub_table,
3129     Symbol_table* symtab) const
3130 {
3131   Symbol* sym = this->object_->global_symbol(this->r_sym_);
3132   Target_powerpc<size, big_endian>* target =
3133     static_cast<Target_powerpc<size, big_endian>*>(
3134       parameters->sized_target<size, big_endian>());
3135   if (sym != NULL && sym->is_forwarder())
3136     sym = symtab->resolve_forwards(sym);
3137   if (target->replace_tls_get_addr(sym))
3138     sym = target->tls_get_addr_opt();
3139   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3140   bool ok = true;
3141
3142   if (gsym != NULL
3143       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3144       : this->object_->local_has_plt_offset(this->r_sym_))
3145     {
3146       if (size == 64
3147           && gsym != NULL
3148           && target->abiversion() >= 2
3149           && !parameters->options().output_is_position_independent()
3150           && !is_branch_reloc(this->r_type_))
3151         target->glink_section()->add_global_entry(gsym);
3152       else
3153         {
3154           if (stub_table == NULL
3155               && !(size == 32
3156                    && gsym != NULL
3157                    && !parameters->options().output_is_position_independent()
3158                    && !is_branch_reloc(this->r_type_)))
3159             stub_table = this->object_->stub_table(this->shndx_);
3160           if (stub_table == NULL)
3161             {
3162               // This is a ref from a data section to an ifunc symbol,
3163               // or a non-branch reloc for which we always want to use
3164               // one set of stubs for resolving function addresses.
3165               stub_table = ifunc_stub_table;
3166             }
3167           gold_assert(stub_table != NULL);
3168           Address from = this->object_->get_output_section_offset(this->shndx_);
3169           if (from != invalid_address)
3170             from += (this->object_->output_section(this->shndx_)->address()
3171                      + this->offset_);
3172           if (gsym != NULL)
3173             ok = stub_table->add_plt_call_entry(from,
3174                                                 this->object_, gsym,
3175                                                 this->r_type_, this->addend_,
3176                                                 this->tocsave_);
3177           else
3178             ok = stub_table->add_plt_call_entry(from,
3179                                                 this->object_, this->r_sym_,
3180                                                 this->r_type_, this->addend_,
3181                                                 this->tocsave_);
3182         }
3183     }
3184   else
3185     {
3186       Address max_branch_offset = max_branch_delta(this->r_type_);
3187       if (max_branch_offset == 0)
3188         return true;
3189       Address from = this->object_->get_output_section_offset(this->shndx_);
3190       gold_assert(from != invalid_address);
3191       from += (this->object_->output_section(this->shndx_)->address()
3192                + this->offset_);
3193       Address to;
3194       if (gsym != NULL)
3195         {
3196           switch (gsym->source())
3197             {
3198             case Symbol::FROM_OBJECT:
3199               {
3200                 Object* symobj = gsym->object();
3201                 if (symobj->is_dynamic()
3202                     || symobj->pluginobj() != NULL)
3203                   return true;
3204                 bool is_ordinary;
3205                 unsigned int shndx = gsym->shndx(&is_ordinary);
3206                 if (shndx == elfcpp::SHN_UNDEF)
3207                   return true;
3208               }
3209               break;
3210
3211             case Symbol::IS_UNDEFINED:
3212               return true;
3213
3214             default:
3215               break;
3216             }
3217           Symbol_table::Compute_final_value_status status;
3218           to = symtab->compute_final_value<size>(gsym, &status);
3219           if (status != Symbol_table::CFVS_OK)
3220             return true;
3221           if (size == 64)
3222             to += this->object_->ppc64_local_entry_offset(gsym);
3223         }
3224       else
3225         {
3226           const Symbol_value<size>* psymval
3227             = this->object_->local_symbol(this->r_sym_);
3228           Symbol_value<size> symval;
3229           if (psymval->is_section_symbol())
3230             symval.set_is_section_symbol();
3231           typedef Sized_relobj_file<size, big_endian> ObjType;
3232           typename ObjType::Compute_final_local_value_status status
3233             = this->object_->compute_final_local_value(this->r_sym_, psymval,
3234                                                        &symval, symtab);
3235           if (status != ObjType::CFLV_OK
3236               || !symval.has_output_value())
3237             return true;
3238           to = symval.value(this->object_, 0);
3239           if (size == 64)
3240             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
3241         }
3242       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
3243         to += this->addend_;
3244       if (stub_table == NULL)
3245         stub_table = this->object_->stub_table(this->shndx_);
3246       if (size == 64 && target->abiversion() < 2)
3247         {
3248           unsigned int dest_shndx;
3249           if (!target->symval_for_branch(symtab, gsym, this->object_,
3250                                          &to, &dest_shndx))
3251             return true;
3252         }
3253       Address delta = to - from;
3254       if (delta + max_branch_offset >= 2 * max_branch_offset)
3255         {
3256           if (stub_table == NULL)
3257             {
3258               gold_warning(_("%s:%s: branch in non-executable section,"
3259                              " no long branch stub for you"),
3260                            this->object_->name().c_str(),
3261                            this->object_->section_name(this->shndx_).c_str());
3262               return true;
3263             }
3264           bool save_res = (size == 64
3265                            && gsym != NULL
3266                            && gsym->source() == Symbol::IN_OUTPUT_DATA
3267                            && gsym->output_data() == target->savres_section());
3268           ok = stub_table->add_long_branch_entry(this->object_,
3269                                                  this->r_type_,
3270                                                  from, to, save_res);
3271         }
3272     }
3273   if (!ok)
3274     gold_debug(DEBUG_TARGET,
3275                "branch at %s:%s+%#lx\n"
3276                "can't reach stub attached to %s:%s",
3277                this->object_->name().c_str(),
3278                this->object_->section_name(this->shndx_).c_str(),
3279                (unsigned long) this->offset_,
3280                stub_table->relobj()->name().c_str(),
3281                stub_table->relobj()->section_name(stub_table->shndx()).c_str());
3282
3283   return ok;
3284 }
3285
3286 // Relaxation hook.  This is where we do stub generation.
3287
3288 template<int size, bool big_endian>
3289 bool
3290 Target_powerpc<size, big_endian>::do_relax(int pass,
3291                                            const Input_objects*,
3292                                            Symbol_table* symtab,
3293                                            Layout* layout,
3294                                            const Task* task)
3295 {
3296   unsigned int prev_brlt_size = 0;
3297   if (pass == 1)
3298     {
3299       bool thread_safe
3300         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
3301       if (size == 64
3302           && this->abiversion() < 2
3303           && !thread_safe
3304           && !parameters->options().user_set_plt_thread_safe())
3305         {
3306           static const char* const thread_starter[] =
3307             {
3308               "pthread_create",
3309               /* libstdc++ */
3310               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
3311               /* librt */
3312               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
3313               "mq_notify", "create_timer",
3314               /* libanl */
3315               "getaddrinfo_a",
3316               /* libgomp */
3317               "GOMP_parallel",
3318               "GOMP_parallel_start",
3319               "GOMP_parallel_loop_static",
3320               "GOMP_parallel_loop_static_start",
3321               "GOMP_parallel_loop_dynamic",
3322               "GOMP_parallel_loop_dynamic_start",
3323               "GOMP_parallel_loop_guided",
3324               "GOMP_parallel_loop_guided_start",
3325               "GOMP_parallel_loop_runtime",
3326               "GOMP_parallel_loop_runtime_start",
3327               "GOMP_parallel_sections",
3328               "GOMP_parallel_sections_start",
3329               /* libgo */
3330               "__go_go",
3331             };
3332
3333           if (parameters->options().shared())
3334             thread_safe = true;
3335           else
3336             {
3337               for (unsigned int i = 0;
3338                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
3339                    i++)
3340                 {
3341                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
3342                   thread_safe = (sym != NULL
3343                                  && sym->in_reg()
3344                                  && sym->in_real_elf());
3345                   if (thread_safe)
3346                     break;
3347                 }
3348             }
3349         }
3350       this->plt_thread_safe_ = thread_safe;
3351     }
3352
3353   if (pass == 1)
3354     {
3355       this->stub_group_size_ = parameters->options().stub_group_size();
3356       bool no_size_errors = true;
3357       if (this->stub_group_size_ == 1)
3358         this->stub_group_size_ = 0x1c00000;
3359       else if (this->stub_group_size_ == -1)
3360         this->stub_group_size_ = -0x1e00000;
3361       else
3362         no_size_errors = false;
3363       this->group_sections(layout, task, no_size_errors);
3364     }
3365   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
3366     {
3367       this->branch_lookup_table_.clear();
3368       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3369            p != this->stub_tables_.end();
3370            ++p)
3371         {
3372           (*p)->clear_stubs(true);
3373         }
3374       this->stub_tables_.clear();
3375       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
3376       gold_info(_("%s: stub group size is too large; retrying with %#x"),
3377                 program_name, this->stub_group_size_);
3378       this->group_sections(layout, task, true);
3379     }
3380
3381   // We need address of stub tables valid for make_stub.
3382   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3383        p != this->stub_tables_.end();
3384        ++p)
3385     {
3386       const Powerpc_relobj<size, big_endian>* object
3387         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
3388       Address off = object->get_output_section_offset((*p)->shndx());
3389       gold_assert(off != invalid_address);
3390       Output_section* os = (*p)->output_section();
3391       (*p)->set_address_and_size(os, off);
3392     }
3393
3394   if (pass != 1)
3395     {
3396       // Clear plt call stubs, long branch stubs and branch lookup table.
3397       prev_brlt_size = this->branch_lookup_table_.size();
3398       this->branch_lookup_table_.clear();
3399       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3400            p != this->stub_tables_.end();
3401            ++p)
3402         {
3403           (*p)->clear_stubs(false);
3404         }
3405     }
3406
3407   // Build all the stubs.
3408   this->relax_failed_ = false;
3409   Stub_table<size, big_endian>* ifunc_stub_table
3410     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
3411   Stub_table<size, big_endian>* one_stub_table
3412     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
3413   for (typename Branches::const_iterator b = this->branch_info_.begin();
3414        b != this->branch_info_.end();
3415        b++)
3416     {
3417       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3418           && !this->relax_failed_)
3419         {
3420           this->relax_failed_ = true;
3421           this->relax_fail_count_++;
3422           if (this->relax_fail_count_ < 3)
3423             return true;
3424         }
3425     }
3426
3427   // Did anything change size?
3428   unsigned int num_huge_branches = this->branch_lookup_table_.size();
3429   bool again = num_huge_branches != prev_brlt_size;
3430   if (size == 64 && num_huge_branches != 0)
3431     this->make_brlt_section(layout);
3432   if (size == 64 && again)
3433     this->brlt_section_->set_current_size(num_huge_branches);
3434
3435   for (typename Stub_tables::reverse_iterator p = this->stub_tables_.rbegin();
3436        p != this->stub_tables_.rend();
3437        ++p)
3438     (*p)->remove_eh_frame(layout);
3439
3440   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3441        p != this->stub_tables_.end();
3442        ++p)
3443     (*p)->add_eh_frame(layout);
3444
3445   typedef Unordered_set<Output_section*> Output_sections;
3446   Output_sections os_need_update;
3447   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3448        p != this->stub_tables_.end();
3449        ++p)
3450     {
3451       if ((*p)->size_update())
3452         {
3453           again = true;
3454           os_need_update.insert((*p)->output_section());
3455         }
3456     }
3457
3458   // Set output section offsets for all input sections in an output
3459   // section that just changed size.  Anything past the stubs will
3460   // need updating.
3461   for (typename Output_sections::iterator p = os_need_update.begin();
3462        p != os_need_update.end();
3463        p++)
3464     {
3465       Output_section* os = *p;
3466       Address off = 0;
3467       typedef Output_section::Input_section_list Input_section_list;
3468       for (Input_section_list::const_iterator i = os->input_sections().begin();
3469            i != os->input_sections().end();
3470            ++i)
3471         {
3472           off = align_address(off, i->addralign());
3473           if (i->is_input_section() || i->is_relaxed_input_section())
3474             i->relobj()->set_section_offset(i->shndx(), off);
3475           if (i->is_relaxed_input_section())
3476             {
3477               Stub_table<size, big_endian>* stub_table
3478                 = static_cast<Stub_table<size, big_endian>*>(
3479                     i->relaxed_input_section());
3480               Address stub_table_size = stub_table->set_address_and_size(os, off);
3481               off += stub_table_size;
3482               // After a few iterations, set current stub table size
3483               // as min size threshold, so later stub tables can only
3484               // grow in size.
3485               if (pass >= 4)
3486                 stub_table->set_min_size_threshold(stub_table_size);
3487             }
3488           else
3489             off += i->data_size();
3490         }
3491       // If .branch_lt is part of this output section, then we have
3492       // just done the offset adjustment.
3493       os->clear_section_offsets_need_adjustment();
3494     }
3495
3496   if (size == 64
3497       && !again
3498       && num_huge_branches != 0
3499       && parameters->options().output_is_position_independent())
3500     {
3501       // Fill in the BRLT relocs.
3502       this->brlt_section_->reset_brlt_sizes();
3503       for (typename Branch_lookup_table::const_iterator p
3504              = this->branch_lookup_table_.begin();
3505            p != this->branch_lookup_table_.end();
3506            ++p)
3507         {
3508           this->brlt_section_->add_reloc(p->first, p->second);
3509         }
3510       this->brlt_section_->finalize_brlt_sizes();
3511     }
3512
3513   if (!again
3514       && (parameters->options().user_set_emit_stub_syms()
3515           ? parameters->options().emit_stub_syms()
3516           : (size == 64
3517              || parameters->options().output_is_position_independent()
3518              || parameters->options().emit_relocs())))
3519     {
3520       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3521            p != this->stub_tables_.end();
3522            ++p)
3523         (*p)->define_stub_syms(symtab);
3524
3525       if (this->glink_ != NULL)
3526         {
3527           int stub_size = this->glink_->pltresolve_size();
3528           Address value = -stub_size;
3529           if (size == 64)
3530             {
3531               value = 8;
3532               stub_size -= 8;
3533             }
3534           this->define_local(symtab, "__glink_PLTresolve",
3535                              this->glink_, value, stub_size);
3536
3537           if (size != 64)
3538             this->define_local(symtab, "__glink", this->glink_, 0, 0);
3539         }
3540     }
3541
3542   return again;
3543 }
3544
3545 template<int size, bool big_endian>
3546 void
3547 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3548                                                       unsigned char* oview,
3549                                                       uint64_t* paddress,
3550                                                       off_t* plen) const
3551 {
3552   uint64_t address = plt->address();
3553   off_t len = plt->data_size();
3554
3555   if (plt == this->glink_)
3556     {
3557       // See Output_data_glink::do_write() for glink contents.
3558       if (len == 0)
3559         {
3560           gold_assert(parameters->doing_static_link());
3561           // Static linking may need stubs, to support ifunc and long
3562           // branches.  We need to create an output section for
3563           // .eh_frame early in the link process, to have a place to
3564           // attach stub .eh_frame info.  We also need to have
3565           // registered a CIE that matches the stub CIE.  Both of
3566           // these requirements are satisfied by creating an FDE and
3567           // CIE for .glink, even though static linking will leave
3568           // .glink zero length.
3569           // ??? Hopefully generating an FDE with a zero address range
3570           // won't confuse anything that consumes .eh_frame info.
3571         }
3572       else if (size == 64)
3573         {
3574           // There is one word before __glink_PLTresolve
3575           address += 8;
3576           len -= 8;
3577         }
3578       else if (parameters->options().output_is_position_independent())
3579         {
3580           // There are two FDEs for a position independent glink.
3581           // The first covers the branch table, the second
3582           // __glink_PLTresolve at the end of glink.
3583           off_t resolve_size = this->glink_->pltresolve_size();
3584           if (oview[9] == elfcpp::DW_CFA_nop)
3585             len -= resolve_size;
3586           else
3587             {
3588               address += len - resolve_size;
3589               len = resolve_size;
3590             }
3591         }
3592     }
3593   else
3594     {
3595       // Must be a stub table.
3596       const Stub_table<size, big_endian>* stub_table
3597         = static_cast<const Stub_table<size, big_endian>*>(plt);
3598       uint64_t stub_address = stub_table->stub_address();
3599       len -= stub_address - address;
3600       address = stub_address;
3601     }
3602
3603   *paddress = address;
3604   *plen = len;
3605 }
3606
3607 // A class to handle the PLT data.
3608
3609 template<int size, bool big_endian>
3610 class Output_data_plt_powerpc : public Output_section_data_build
3611 {
3612  public:
3613   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3614                             size, big_endian> Reloc_section;
3615
3616   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3617                           Reloc_section* plt_rel,
3618                           const char* name)
3619     : Output_section_data_build(size == 32 ? 4 : 8),
3620       rel_(plt_rel),
3621       targ_(targ),
3622       name_(name)
3623   { }
3624
3625   // Add an entry to the PLT.
3626   void
3627   add_entry(Symbol*);
3628
3629   void
3630   add_ifunc_entry(Symbol*);
3631
3632   void
3633   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3634
3635   // Return the .rela.plt section data.
3636   Reloc_section*
3637   rel_plt() const
3638   {
3639     return this->rel_;
3640   }
3641
3642   // Return the number of PLT entries.
3643   unsigned int
3644   entry_count() const
3645   {
3646     if (this->current_data_size() == 0)
3647       return 0;
3648     return ((this->current_data_size() - this->first_plt_entry_offset())
3649             / this->plt_entry_size());
3650   }
3651
3652  protected:
3653   void
3654   do_adjust_output_section(Output_section* os)
3655   {
3656     os->set_entsize(0);
3657   }
3658
3659   // Write to a map file.
3660   void
3661   do_print_to_mapfile(Mapfile* mapfile) const
3662   { mapfile->print_output_data(this, this->name_); }
3663
3664  private:
3665   // Return the offset of the first non-reserved PLT entry.
3666   unsigned int
3667   first_plt_entry_offset() const
3668   {
3669     // IPLT has no reserved entry.
3670     if (this->name_[3] == 'I')
3671       return 0;
3672     return this->targ_->first_plt_entry_offset();
3673   }
3674
3675   // Return the size of each PLT entry.
3676   unsigned int
3677   plt_entry_size() const
3678   {
3679     return this->targ_->plt_entry_size();
3680   }
3681
3682   // Write out the PLT data.
3683   void
3684   do_write(Output_file*);
3685
3686   // The reloc section.
3687   Reloc_section* rel_;
3688   // Allows access to .glink for do_write.
3689   Target_powerpc<size, big_endian>* targ_;
3690   // What to report in map file.
3691   const char *name_;
3692 };
3693
3694 // Add an entry to the PLT.
3695
3696 template<int size, bool big_endian>
3697 void
3698 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3699 {
3700   if (!gsym->has_plt_offset())
3701     {
3702       section_size_type off = this->current_data_size();
3703       if (off == 0)
3704         off += this->first_plt_entry_offset();
3705       gsym->set_plt_offset(off);
3706       gsym->set_needs_dynsym_entry();
3707       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3708       this->rel_->add_global(gsym, dynrel, this, off, 0);
3709       off += this->plt_entry_size();
3710       this->set_current_data_size(off);
3711     }
3712 }
3713
3714 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3715
3716 template<int size, bool big_endian>
3717 void
3718 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3719 {
3720   if (!gsym->has_plt_offset())
3721     {
3722       section_size_type off = this->current_data_size();
3723       gsym->set_plt_offset(off);
3724       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3725       if (size == 64 && this->targ_->abiversion() < 2)
3726         dynrel = elfcpp::R_PPC64_JMP_IREL;
3727       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3728       off += this->plt_entry_size();
3729       this->set_current_data_size(off);
3730     }
3731 }
3732
3733 // Add an entry for a local ifunc symbol to the IPLT.
3734
3735 template<int size, bool big_endian>
3736 void
3737 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3738     Sized_relobj_file<size, big_endian>* relobj,
3739     unsigned int local_sym_index)
3740 {
3741   if (!relobj->local_has_plt_offset(local_sym_index))
3742     {
3743       section_size_type off = this->current_data_size();
3744       relobj->set_local_plt_offset(local_sym_index, off);
3745       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3746       if (size == 64 && this->targ_->abiversion() < 2)
3747         dynrel = elfcpp::R_PPC64_JMP_IREL;
3748       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3749                                               this, off, 0);
3750       off += this->plt_entry_size();
3751       this->set_current_data_size(off);
3752     }
3753 }
3754
3755 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3756 static const uint32_t add_2_2_11        = 0x7c425a14;
3757 static const uint32_t add_2_2_12        = 0x7c426214;
3758 static const uint32_t add_3_3_2         = 0x7c631214;
3759 static const uint32_t add_3_3_13        = 0x7c636a14;
3760 static const uint32_t add_3_12_2        = 0x7c6c1214;
3761 static const uint32_t add_3_12_13       = 0x7c6c6a14;
3762 static const uint32_t add_11_0_11       = 0x7d605a14;
3763 static const uint32_t add_11_2_11       = 0x7d625a14;
3764 static const uint32_t add_11_11_2       = 0x7d6b1214;
3765 static const uint32_t addi_0_12         = 0x380c0000;
3766 static const uint32_t addi_2_2          = 0x38420000;
3767 static const uint32_t addi_3_3          = 0x38630000;
3768 static const uint32_t addi_11_11        = 0x396b0000;
3769 static const uint32_t addi_12_1         = 0x39810000;
3770 static const uint32_t addi_12_12        = 0x398c0000;
3771 static const uint32_t addis_0_2         = 0x3c020000;
3772 static const uint32_t addis_0_13        = 0x3c0d0000;
3773 static const uint32_t addis_2_12        = 0x3c4c0000;
3774 static const uint32_t addis_11_2        = 0x3d620000;
3775 static const uint32_t addis_11_11       = 0x3d6b0000;
3776 static const uint32_t addis_11_30       = 0x3d7e0000;
3777 static const uint32_t addis_12_1        = 0x3d810000;
3778 static const uint32_t addis_12_2        = 0x3d820000;
3779 static const uint32_t addis_12_12       = 0x3d8c0000;
3780 static const uint32_t b                 = 0x48000000;
3781 static const uint32_t bcl_20_31         = 0x429f0005;
3782 static const uint32_t bctr              = 0x4e800420;
3783 static const uint32_t bctrl             = 0x4e800421;
3784 static const uint32_t beqlr             = 0x4d820020;
3785 static const uint32_t blr               = 0x4e800020;
3786 static const uint32_t bnectr_p4         = 0x4ce20420;
3787 static const uint32_t cmpld_7_12_0      = 0x7fac0040;
3788 static const uint32_t cmpldi_2_0        = 0x28220000;
3789 static const uint32_t cmpdi_11_0        = 0x2c2b0000;
3790 static const uint32_t cmpwi_11_0        = 0x2c0b0000;
3791 static const uint32_t cror_15_15_15     = 0x4def7b82;
3792 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3793 static const uint32_t ld_0_1            = 0xe8010000;
3794 static const uint32_t ld_0_12           = 0xe80c0000;
3795 static const uint32_t ld_2_1            = 0xe8410000;
3796 static const uint32_t ld_2_2            = 0xe8420000;
3797 static const uint32_t ld_2_11           = 0xe84b0000;
3798 static const uint32_t ld_2_12           = 0xe84c0000;
3799 static const uint32_t ld_11_1           = 0xe9610000;
3800 static const uint32_t ld_11_2           = 0xe9620000;
3801 static const uint32_t ld_11_3           = 0xe9630000;
3802 static const uint32_t ld_11_11          = 0xe96b0000;
3803 static const uint32_t ld_12_2           = 0xe9820000;
3804 static const uint32_t ld_12_3           = 0xe9830000;
3805 static const uint32_t ld_12_11          = 0xe98b0000;
3806 static const uint32_t ld_12_12          = 0xe98c0000;
3807 static const uint32_t lfd_0_1           = 0xc8010000;
3808 static const uint32_t li_0_0            = 0x38000000;
3809 static const uint32_t li_12_0           = 0x39800000;
3810 static const uint32_t lis_0             = 0x3c000000;
3811 static const uint32_t lis_2             = 0x3c400000;
3812 static const uint32_t lis_11            = 0x3d600000;
3813 static const uint32_t lis_12            = 0x3d800000;
3814 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3815 static const uint32_t lwz_0_12          = 0x800c0000;
3816 static const uint32_t lwz_11_3          = 0x81630000;
3817 static const uint32_t lwz_11_11         = 0x816b0000;
3818 static const uint32_t lwz_11_30         = 0x817e0000;
3819 static const uint32_t lwz_12_3          = 0x81830000;
3820 static const uint32_t lwz_12_12         = 0x818c0000;
3821 static const uint32_t lwzu_0_12         = 0x840c0000;
3822 static const uint32_t mflr_0            = 0x7c0802a6;
3823 static const uint32_t mflr_11           = 0x7d6802a6;
3824 static const uint32_t mflr_12           = 0x7d8802a6;
3825 static const uint32_t mr_0_3            = 0x7c601b78;
3826 static const uint32_t mr_3_0            = 0x7c030378;
3827 static const uint32_t mtctr_0           = 0x7c0903a6;
3828 static const uint32_t mtctr_11          = 0x7d6903a6;
3829 static const uint32_t mtctr_12          = 0x7d8903a6;
3830 static const uint32_t mtlr_0            = 0x7c0803a6;
3831 static const uint32_t mtlr_11           = 0x7d6803a6;
3832 static const uint32_t mtlr_12           = 0x7d8803a6;
3833 static const uint32_t nop               = 0x60000000;
3834 static const uint32_t ori_0_0_0         = 0x60000000;
3835 static const uint32_t srdi_0_0_2        = 0x7800f082;
3836 static const uint32_t std_0_1           = 0xf8010000;
3837 static const uint32_t std_0_12          = 0xf80c0000;
3838 static const uint32_t std_2_1           = 0xf8410000;
3839 static const uint32_t std_11_1          = 0xf9610000;
3840 static const uint32_t stfd_0_1          = 0xd8010000;
3841 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3842 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3843 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3844 static const uint32_t xor_2_12_12       = 0x7d826278;
3845 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3846
3847 // Write out the PLT.
3848
3849 template<int size, bool big_endian>
3850 void
3851 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3852 {
3853   if (size == 32 && this->name_[3] != 'I')
3854     {
3855       const section_size_type offset = this->offset();
3856       const section_size_type oview_size
3857         = convert_to_section_size_type(this->data_size());
3858       unsigned char* const oview = of->get_output_view(offset, oview_size);
3859       unsigned char* pov = oview;
3860       unsigned char* endpov = oview + oview_size;
3861
3862       // The address of the .glink branch table
3863       const Output_data_glink<size, big_endian>* glink
3864         = this->targ_->glink_section();
3865       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3866
3867       while (pov < endpov)
3868         {
3869           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3870           pov += 4;
3871           branch_tab += 4;
3872         }
3873
3874       of->write_output_view(offset, oview_size, oview);
3875     }
3876 }
3877
3878 // Create the PLT section.
3879
3880 template<int size, bool big_endian>
3881 void
3882 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3883                                                    Layout* layout)
3884 {
3885   if (this->plt_ == NULL)
3886     {
3887       if (this->got_ == NULL)
3888         this->got_section(symtab, layout);
3889
3890       if (this->glink_ == NULL)
3891         make_glink_section(layout);
3892
3893       // Ensure that .rela.dyn always appears before .rela.plt  This is
3894       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3895       // needs to include .rela.plt in its range.
3896       this->rela_dyn_section(layout);
3897
3898       Reloc_section* plt_rel = new Reloc_section(false);
3899       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3900                                       elfcpp::SHF_ALLOC, plt_rel,
3901                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3902       this->plt_
3903         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3904                                                         "** PLT");
3905       layout->add_output_section_data(".plt",
3906                                       (size == 32
3907                                        ? elfcpp::SHT_PROGBITS
3908                                        : elfcpp::SHT_NOBITS),
3909                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3910                                       this->plt_,
3911                                       (size == 32
3912                                        ? ORDER_SMALL_DATA
3913                                        : ORDER_SMALL_BSS),
3914                                       false);
3915
3916       Output_section* rela_plt_os = plt_rel->output_section();
3917       rela_plt_os->set_info_section(this->plt_->output_section());
3918     }
3919 }
3920
3921 // Create the IPLT section.
3922
3923 template<int size, bool big_endian>
3924 void
3925 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3926                                                     Layout* layout)
3927 {
3928   if (this->iplt_ == NULL)
3929     {
3930       this->make_plt_section(symtab, layout);
3931
3932       Reloc_section* iplt_rel = new Reloc_section(false);
3933       if (this->rela_dyn_->output_section())
3934         this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3935       this->iplt_
3936         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3937                                                         "** IPLT");
3938       if (this->plt_->output_section())
3939         this->plt_->output_section()->add_output_section_data(this->iplt_);
3940     }
3941 }
3942
3943 // A section for huge long branch addresses, similar to plt section.
3944
3945 template<int size, bool big_endian>
3946 class Output_data_brlt_powerpc : public Output_section_data_build
3947 {
3948  public:
3949   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3950   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3951                             size, big_endian> Reloc_section;
3952
3953   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3954                            Reloc_section* brlt_rel)
3955     : Output_section_data_build(size == 32 ? 4 : 8),
3956       rel_(brlt_rel),
3957       targ_(targ)
3958   { }
3959
3960   void
3961   reset_brlt_sizes()
3962   {
3963     this->reset_data_size();
3964     this->rel_->reset_data_size();
3965   }
3966
3967   void
3968   finalize_brlt_sizes()
3969   {
3970     this->finalize_data_size();
3971     this->rel_->finalize_data_size();
3972   }
3973
3974   // Add a reloc for an entry in the BRLT.
3975   void
3976   add_reloc(Address to, unsigned int off)
3977   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3978
3979   // Update section and reloc section size.
3980   void
3981   set_current_size(unsigned int num_branches)
3982   {
3983     this->reset_address_and_file_offset();
3984     this->set_current_data_size(num_branches * 16);
3985     this->finalize_data_size();
3986     Output_section* os = this->output_section();
3987     os->set_section_offsets_need_adjustment();
3988     if (this->rel_ != NULL)
3989       {
3990         const unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
3991         this->rel_->reset_address_and_file_offset();
3992         this->rel_->set_current_data_size(num_branches * reloc_size);
3993         this->rel_->finalize_data_size();
3994         Output_section* os = this->rel_->output_section();
3995         os->set_section_offsets_need_adjustment();
3996       }
3997   }
3998
3999  protected:
4000   void
4001   do_adjust_output_section(Output_section* os)
4002   {
4003     os->set_entsize(0);
4004   }
4005
4006   // Write to a map file.
4007   void
4008   do_print_to_mapfile(Mapfile* mapfile) const
4009   { mapfile->print_output_data(this, "** BRLT"); }
4010
4011  private:
4012   // Write out the BRLT data.
4013   void
4014   do_write(Output_file*);
4015
4016   // The reloc section.
4017   Reloc_section* rel_;
4018   Target_powerpc<size, big_endian>* targ_;
4019 };
4020
4021 // Make the branch lookup table section.
4022
4023 template<int size, bool big_endian>
4024 void
4025 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
4026 {
4027   if (size == 64 && this->brlt_section_ == NULL)
4028     {
4029       Reloc_section* brlt_rel = NULL;
4030       bool is_pic = parameters->options().output_is_position_independent();
4031       if (is_pic)
4032         {
4033           // When PIC we can't fill in .branch_lt (like .plt it can be
4034           // a bss style section) but must initialise at runtime via
4035           // dynamic relocations.
4036           this->rela_dyn_section(layout);
4037           brlt_rel = new Reloc_section(false);
4038           if (this->rela_dyn_->output_section())
4039             this->rela_dyn_->output_section()
4040               ->add_output_section_data(brlt_rel);
4041         }
4042       this->brlt_section_
4043         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
4044       if (this->plt_ && is_pic && this->plt_->output_section())
4045         this->plt_->output_section()
4046           ->add_output_section_data(this->brlt_section_);
4047       else
4048         layout->add_output_section_data(".branch_lt",
4049                                         (is_pic ? elfcpp::SHT_NOBITS
4050                                          : elfcpp::SHT_PROGBITS),
4051                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4052                                         this->brlt_section_,
4053                                         (is_pic ? ORDER_SMALL_BSS
4054                                          : ORDER_SMALL_DATA),
4055                                         false);
4056     }
4057 }
4058
4059 // Write out .branch_lt when non-PIC.
4060
4061 template<int size, bool big_endian>
4062 void
4063 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
4064 {
4065   if (size == 64 && !parameters->options().output_is_position_independent())
4066     {
4067       const section_size_type offset = this->offset();
4068       const section_size_type oview_size
4069         = convert_to_section_size_type(this->data_size());
4070       unsigned char* const oview = of->get_output_view(offset, oview_size);
4071
4072       this->targ_->write_branch_lookup_table(oview);
4073       of->write_output_view(offset, oview_size, oview);
4074     }
4075 }
4076
4077 static inline uint32_t
4078 l(uint32_t a)
4079 {
4080   return a & 0xffff;
4081 }
4082
4083 static inline uint32_t
4084 hi(uint32_t a)
4085 {
4086   return l(a >> 16);
4087 }
4088
4089 static inline uint32_t
4090 ha(uint32_t a)
4091 {
4092   return hi(a + 0x8000);
4093 }
4094
4095 template<int size>
4096 struct Eh_cie
4097 {
4098   static const unsigned char eh_frame_cie[12];
4099 };
4100
4101 template<int size>
4102 const unsigned char Eh_cie<size>::eh_frame_cie[] =
4103 {
4104   1,                                    // CIE version.
4105   'z', 'R', 0,                          // Augmentation string.
4106   4,                                    // Code alignment.
4107   0x80 - size / 8 ,                     // Data alignment.
4108   65,                                   // RA reg.
4109   1,                                    // Augmentation size.
4110   (elfcpp::DW_EH_PE_pcrel
4111    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
4112   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
4113 };
4114
4115 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
4116 static const unsigned char glink_eh_frame_fde_64v1[] =
4117 {
4118   0, 0, 0, 0,                           // Replaced with offset to .glink.
4119   0, 0, 0, 0,                           // Replaced with size of .glink.
4120   0,                                    // Augmentation size.
4121   elfcpp::DW_CFA_advance_loc + 1,
4122   elfcpp::DW_CFA_register, 65, 12,
4123   elfcpp::DW_CFA_advance_loc + 5,
4124   elfcpp::DW_CFA_restore_extended, 65
4125 };
4126
4127 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
4128 static const unsigned char glink_eh_frame_fde_64v2[] =
4129 {
4130   0, 0, 0, 0,                           // Replaced with offset to .glink.
4131   0, 0, 0, 0,                           // Replaced with size of .glink.
4132   0,                                    // Augmentation size.
4133   elfcpp::DW_CFA_advance_loc + 1,
4134   elfcpp::DW_CFA_register, 65, 0,
4135   elfcpp::DW_CFA_advance_loc + 7,
4136   elfcpp::DW_CFA_restore_extended, 65
4137 };
4138
4139 // Describe __glink_PLTresolve use of LR, 32-bit version.
4140 static const unsigned char glink_eh_frame_fde_32[] =
4141 {
4142   0, 0, 0, 0,                           // Replaced with offset to .glink.
4143   0, 0, 0, 0,                           // Replaced with size of .glink.
4144   0,                                    // Augmentation size.
4145   elfcpp::DW_CFA_advance_loc + 2,
4146   elfcpp::DW_CFA_register, 65, 0,
4147   elfcpp::DW_CFA_advance_loc + 4,
4148   elfcpp::DW_CFA_restore_extended, 65
4149 };
4150
4151 static const unsigned char default_fde[] =
4152 {
4153   0, 0, 0, 0,                           // Replaced with offset to stubs.
4154   0, 0, 0, 0,                           // Replaced with size of stubs.
4155   0,                                    // Augmentation size.
4156   elfcpp::DW_CFA_nop,                   // Pad.
4157   elfcpp::DW_CFA_nop,
4158   elfcpp::DW_CFA_nop
4159 };
4160
4161 template<bool big_endian>
4162 static inline void
4163 write_insn(unsigned char* p, uint32_t v)
4164 {
4165   elfcpp::Swap<32, big_endian>::writeval(p, v);
4166 }
4167
4168 template<int size>
4169 static inline unsigned int
4170 param_plt_align()
4171 {
4172   if (!parameters->options().user_set_plt_align())
4173     return size == 64 ? 32 : 8;
4174   return 1 << parameters->options().plt_align();
4175 }
4176
4177 // Stub_table holds information about plt and long branch stubs.
4178 // Stubs are built in an area following some input section determined
4179 // by group_sections().  This input section is converted to a relaxed
4180 // input section allowing it to be resized to accommodate the stubs
4181
4182 template<int size, bool big_endian>
4183 class Stub_table : public Output_relaxed_input_section
4184 {
4185  public:
4186   struct Plt_stub_ent
4187   {
4188     Plt_stub_ent(unsigned int off, unsigned int indx)
4189       : off_(off), indx_(indx), r2save_(0), localentry0_(0)
4190     { }
4191
4192     unsigned int off_;
4193     unsigned int indx_ : 30;
4194     unsigned int r2save_ : 1;
4195     unsigned int localentry0_ : 1;
4196   };
4197   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4198   static const Address invalid_address = static_cast<Address>(0) - 1;
4199
4200   Stub_table(Target_powerpc<size, big_endian>* targ,
4201              Output_section* output_section,
4202              const Output_section::Input_section* owner,
4203              uint32_t id)
4204     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
4205                                    owner->relobj()
4206                                    ->section_addralign(owner->shndx())),
4207       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
4208       orig_data_size_(owner->current_data_size()),
4209       plt_size_(0), last_plt_size_(0),
4210       branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
4211       need_save_res_(false), uniq_(id), tls_get_addr_opt_bctrl_(-1u),
4212       plt_fde_len_(0)
4213   {
4214     this->set_output_section(output_section);
4215
4216     std::vector<Output_relaxed_input_section*> new_relaxed;
4217     new_relaxed.push_back(this);
4218     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
4219   }
4220
4221   // Add a plt call stub.
4222   bool
4223   add_plt_call_entry(Address,
4224                      const Sized_relobj_file<size, big_endian>*,
4225                      const Symbol*,
4226                      unsigned int,
4227                      Address,
4228                      bool);
4229
4230   bool
4231   add_plt_call_entry(Address,
4232                      const Sized_relobj_file<size, big_endian>*,
4233                      unsigned int,
4234                      unsigned int,
4235                      Address,
4236                      bool);
4237
4238   // Find a given plt call stub.
4239   const Plt_stub_ent*
4240   find_plt_call_entry(const Symbol*) const;
4241
4242   const Plt_stub_ent*
4243   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4244                       unsigned int) const;
4245
4246   const Plt_stub_ent*
4247   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4248                       const Symbol*,
4249                       unsigned int,
4250                       Address) const;
4251
4252   const Plt_stub_ent*
4253   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4254                       unsigned int,
4255                       unsigned int,
4256                       Address) const;
4257
4258   // Add a long branch stub.
4259   bool
4260   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4261                         unsigned int, Address, Address, bool);
4262
4263   Address
4264   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4265                          Address) const;
4266
4267   bool
4268   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
4269   {
4270     Address max_branch_offset = max_branch_delta(r_type);
4271     if (max_branch_offset == 0)
4272       return true;
4273     gold_assert(from != invalid_address);
4274     Address loc = off + this->stub_address();
4275     return loc - from + max_branch_offset < 2 * max_branch_offset;
4276   }
4277
4278   void
4279   clear_stubs(bool all)
4280   {
4281     this->plt_call_stubs_.clear();
4282     this->plt_size_ = 0;
4283     this->long_branch_stubs_.clear();
4284     this->branch_size_ = 0;
4285     this->need_save_res_ = false;
4286     if (all)
4287       {
4288         this->last_plt_size_ = 0;
4289         this->last_branch_size_ = 0;
4290       }
4291   }
4292
4293   Address
4294   set_address_and_size(const Output_section* os, Address off)
4295   {
4296     Address start_off = off;
4297     off += this->orig_data_size_;
4298     Address my_size = this->plt_size_ + this->branch_size_;
4299     if (this->need_save_res_)
4300       my_size += this->targ_->savres_section()->data_size();
4301     if (my_size != 0)
4302       off = align_address(off, this->stub_align());
4303     // Include original section size and alignment padding in size
4304     my_size += off - start_off;
4305     // Ensure new size is always larger than min size
4306     // threshold. Alignment requirement is included in "my_size", so
4307     // increase "my_size" does not invalidate alignment.
4308     if (my_size < this->min_size_threshold_)
4309       my_size = this->min_size_threshold_;
4310     this->reset_address_and_file_offset();
4311     this->set_current_data_size(my_size);
4312     this->set_address_and_file_offset(os->address() + start_off,
4313                                       os->offset() + start_off);
4314     return my_size;
4315   }
4316
4317   Address
4318   stub_address() const
4319   {
4320     return align_address(this->address() + this->orig_data_size_,
4321                          this->stub_align());
4322   }
4323
4324   Address
4325   stub_offset() const
4326   {
4327     return align_address(this->offset() + this->orig_data_size_,
4328                          this->stub_align());
4329   }
4330
4331   section_size_type
4332   plt_size() const
4333   { return this->plt_size_; }
4334
4335   void
4336   set_min_size_threshold(Address min_size)
4337   { this->min_size_threshold_ = min_size; }
4338
4339   void
4340   define_stub_syms(Symbol_table*);
4341
4342   bool
4343   size_update()
4344   {
4345     Output_section* os = this->output_section();
4346     if (os->addralign() < this->stub_align())
4347       {
4348         os->set_addralign(this->stub_align());
4349         // FIXME: get rid of the insane checkpointing.
4350         // We can't increase alignment of the input section to which
4351         // stubs are attached;  The input section may be .init which
4352         // is pasted together with other .init sections to form a
4353         // function.  Aligning might insert zero padding resulting in
4354         // sigill.  However we do need to increase alignment of the
4355         // output section so that the align_address() on offset in
4356         // set_address_and_size() adds the same padding as the
4357         // align_address() on address in stub_address().
4358         // What's more, we need this alignment for the layout done in
4359         // relaxation_loop_body() so that the output section starts at
4360         // a suitably aligned address.
4361         os->checkpoint_set_addralign(this->stub_align());
4362       }
4363     if (this->last_plt_size_ != this->plt_size_
4364         || this->last_branch_size_ != this->branch_size_)
4365       {
4366         this->last_plt_size_ = this->plt_size_;
4367         this->last_branch_size_ = this->branch_size_;
4368         return true;
4369       }
4370     return false;
4371   }
4372
4373   // Generate a suitable FDE to describe code in this stub group.
4374   void
4375   init_plt_fde();
4376
4377   // Add .eh_frame info for this stub section.
4378   void
4379   add_eh_frame(Layout* layout);
4380
4381   // Remove .eh_frame info for this stub section.
4382   void
4383   remove_eh_frame(Layout* layout);
4384
4385   Target_powerpc<size, big_endian>*
4386   targ() const
4387   { return targ_; }
4388
4389  private:
4390   class Plt_stub_key;
4391   class Plt_stub_key_hash;
4392   typedef Unordered_map<Plt_stub_key, Plt_stub_ent,
4393                         Plt_stub_key_hash> Plt_stub_entries;
4394   class Branch_stub_ent;
4395   class Branch_stub_ent_hash;
4396   typedef Unordered_map<Branch_stub_ent, unsigned int,
4397                         Branch_stub_ent_hash> Branch_stub_entries;
4398
4399   // Alignment of stub section.
4400   unsigned int
4401   stub_align() const
4402   {
4403     unsigned int min_align = size == 64 ? 32 : 16;
4404     unsigned int user_align = 1 << parameters->options().plt_align();
4405     return std::max(user_align, min_align);
4406   }
4407
4408   // Return the plt offset for the given call stub.
4409   Address
4410   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
4411   {
4412     const Symbol* gsym = p->first.sym_;
4413     if (gsym != NULL)
4414       {
4415         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
4416                     && gsym->can_use_relative_reloc(false));
4417         return gsym->plt_offset();
4418       }
4419     else
4420       {
4421         *is_iplt = true;
4422         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
4423         unsigned int local_sym_index = p->first.locsym_;
4424         return relobj->local_plt_offset(local_sym_index);
4425       }
4426   }
4427
4428   // Size of a given plt call stub.
4429   unsigned int
4430   plt_call_size(typename Plt_stub_entries::const_iterator p) const
4431   {
4432     if (size == 32)
4433       {
4434         const Symbol* gsym = p->first.sym_;
4435         return (4 * 4
4436                 + (this->targ_->is_tls_get_addr_opt(gsym) ? 8 * 4 : 0));
4437       }
4438
4439     bool is_iplt;
4440     Address plt_addr = this->plt_off(p, &is_iplt);
4441     if (is_iplt)
4442       plt_addr += this->targ_->iplt_section()->address();
4443     else
4444       plt_addr += this->targ_->plt_section()->address();
4445     Address got_addr = this->targ_->got_section()->output_section()->address();
4446     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4447       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
4448     got_addr += ppcobj->toc_base_offset();
4449     Address off = plt_addr - got_addr;
4450     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
4451     const Symbol* gsym = p->first.sym_;
4452     if (this->targ_->is_tls_get_addr_opt(gsym))
4453       bytes += 13 * 4;
4454     if (this->targ_->abiversion() < 2)
4455       {
4456         bool static_chain = parameters->options().plt_static_chain();
4457         bool thread_safe = this->targ_->plt_thread_safe();
4458         bytes += (4
4459                   + 4 * static_chain
4460                   + 8 * thread_safe
4461                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
4462       }
4463     return bytes;
4464   }
4465
4466   unsigned int
4467   plt_call_align(unsigned int bytes) const
4468   {
4469     unsigned int align = param_plt_align<size>();
4470     return (bytes + align - 1) & -align;
4471   }
4472
4473   // Return long branch stub size.
4474   unsigned int
4475   branch_stub_size(typename Branch_stub_entries::const_iterator p)
4476   {
4477     Address loc = this->stub_address() + this->last_plt_size_ + p->second;
4478     if (p->first.dest_ - loc + (1 << 25) < 2 << 25)
4479       return 4;
4480     unsigned int bytes = 16;
4481     if (size == 32 && parameters->options().output_is_position_independent())
4482       bytes += 16;
4483     return bytes;
4484   }
4485
4486   // Write out stubs.
4487   void
4488   do_write(Output_file*);
4489
4490   // Plt call stub keys.
4491   class Plt_stub_key
4492   {
4493   public:
4494     Plt_stub_key(const Symbol* sym)
4495       : sym_(sym), object_(0), addend_(0), locsym_(0)
4496     { }
4497
4498     Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4499                  unsigned int locsym_index)
4500       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4501     { }
4502
4503     Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4504                  const Symbol* sym,
4505                  unsigned int r_type,
4506                  Address addend)
4507       : sym_(sym), object_(0), addend_(0), locsym_(0)
4508     {
4509       if (size != 32)
4510         this->addend_ = addend;
4511       else if (parameters->options().output_is_position_independent()
4512                && r_type == elfcpp::R_PPC_PLTREL24)
4513         {
4514           this->addend_ = addend;
4515           if (this->addend_ >= 32768)
4516             this->object_ = object;
4517         }
4518     }
4519
4520     Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4521                  unsigned int locsym_index,
4522                  unsigned int r_type,
4523                  Address addend)
4524       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4525     {
4526       if (size != 32)
4527         this->addend_ = addend;
4528       else if (parameters->options().output_is_position_independent()
4529                && r_type == elfcpp::R_PPC_PLTREL24)
4530         this->addend_ = addend;
4531     }
4532
4533     bool operator==(const Plt_stub_key& that) const
4534     {
4535       return (this->sym_ == that.sym_
4536               && this->object_ == that.object_
4537               && this->addend_ == that.addend_
4538               && this->locsym_ == that.locsym_);
4539     }
4540
4541     const Symbol* sym_;
4542     const Sized_relobj_file<size, big_endian>* object_;
4543     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4544     unsigned int locsym_;
4545   };
4546
4547   class Plt_stub_key_hash
4548   {
4549   public:
4550     size_t operator()(const Plt_stub_key& ent) const
4551     {
4552       return (reinterpret_cast<uintptr_t>(ent.sym_)
4553               ^ reinterpret_cast<uintptr_t>(ent.object_)
4554               ^ ent.addend_
4555               ^ ent.locsym_);
4556     }
4557   };
4558
4559   // Long branch stub keys.
4560   class Branch_stub_ent
4561   {
4562   public:
4563     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4564                     Address to, bool save_res)
4565       : dest_(to), toc_base_off_(0), save_res_(save_res)
4566     {
4567       if (size == 64)
4568         toc_base_off_ = obj->toc_base_offset();
4569     }
4570
4571     bool operator==(const Branch_stub_ent& that) const
4572     {
4573       return (this->dest_ == that.dest_
4574               && (size == 32
4575                   || this->toc_base_off_ == that.toc_base_off_));
4576     }
4577
4578     Address dest_;
4579     unsigned int toc_base_off_;
4580     bool save_res_;
4581   };
4582
4583   class Branch_stub_ent_hash
4584   {
4585   public:
4586     size_t operator()(const Branch_stub_ent& ent) const
4587     { return ent.dest_ ^ ent.toc_base_off_; }
4588   };
4589
4590   // In a sane world this would be a global.
4591   Target_powerpc<size, big_endian>* targ_;
4592   // Map sym/object/addend to stub offset.
4593   Plt_stub_entries plt_call_stubs_;
4594   // Map destination address to stub offset.
4595   Branch_stub_entries long_branch_stubs_;
4596   // size of input section
4597   section_size_type orig_data_size_;
4598   // size of stubs
4599   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4600   // Some rare cases cause (PR/20529) fluctuation in stub table
4601   // size, which leads to an endless relax loop. This is to be fixed
4602   // by, after the first few iterations, allowing only increase of
4603   // stub table size. This variable sets the minimal possible size of
4604   // a stub table, it is zero for the first few iterations, then
4605   // increases monotonically.
4606   Address min_size_threshold_;
4607   // Set if this stub group needs a copy of out-of-line register
4608   // save/restore functions.
4609   bool need_save_res_;
4610   // Per stub table unique identifier.
4611   uint32_t uniq_;
4612   // The bctrl in the __tls_get_addr_opt stub, if present.
4613   unsigned int tls_get_addr_opt_bctrl_;
4614   // FDE unwind info for this stub group.
4615   unsigned int plt_fde_len_;
4616   unsigned char plt_fde_[20];
4617 };
4618
4619 // Add a plt call stub, if we do not already have one for this
4620 // sym/object/addend combo.
4621
4622 template<int size, bool big_endian>
4623 bool
4624 Stub_table<size, big_endian>::add_plt_call_entry(
4625     Address from,
4626     const Sized_relobj_file<size, big_endian>* object,
4627     const Symbol* gsym,
4628     unsigned int r_type,
4629     Address addend,
4630     bool tocsave)
4631 {
4632   Plt_stub_key key(object, gsym, r_type, addend);
4633   Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4634   std::pair<typename Plt_stub_entries::iterator, bool> p
4635     = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4636   if (p.second)
4637     {
4638       this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4639       if (size == 64
4640           && this->targ_->is_elfv2_localentry0(gsym))
4641         {
4642           p.first->second.localentry0_ = 1;
4643           this->targ_->set_has_localentry0();
4644         }
4645       if (this->targ_->is_tls_get_addr_opt(gsym))
4646         {
4647           this->targ_->set_has_tls_get_addr_opt();
4648           this->tls_get_addr_opt_bctrl_ = this->plt_size_ - 5 * 4;
4649         }
4650       this->plt_size_ = this->plt_call_align(this->plt_size_);
4651     }
4652   if (size == 64
4653       && !tocsave
4654       && !p.first->second.localentry0_)
4655     p.first->second.r2save_ = 1;
4656   return this->can_reach_stub(from, ent.off_, r_type);
4657 }
4658
4659 template<int size, bool big_endian>
4660 bool
4661 Stub_table<size, big_endian>::add_plt_call_entry(
4662     Address from,
4663     const Sized_relobj_file<size, big_endian>* object,
4664     unsigned int locsym_index,
4665     unsigned int r_type,
4666     Address addend,
4667     bool tocsave)
4668 {
4669   Plt_stub_key key(object, locsym_index, r_type, addend);
4670   Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4671   std::pair<typename Plt_stub_entries::iterator, bool> p
4672     = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4673   if (p.second)
4674     {
4675       this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4676       this->plt_size_ = this->plt_call_align(this->plt_size_);
4677       if (size == 64
4678           && this->targ_->is_elfv2_localentry0(object, locsym_index))
4679         {
4680           p.first->second.localentry0_ = 1;
4681           this->targ_->set_has_localentry0();
4682         }
4683     }
4684   if (size == 64
4685       && !tocsave
4686       && !p.first->second.localentry0_)
4687     p.first->second.r2save_ = 1;
4688   return this->can_reach_stub(from, ent.off_, r_type);
4689 }
4690
4691 // Find a plt call stub.
4692
4693 template<int size, bool big_endian>
4694 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4695 Stub_table<size, big_endian>::find_plt_call_entry(
4696     const Sized_relobj_file<size, big_endian>* object,
4697     const Symbol* gsym,
4698     unsigned int r_type,
4699     Address addend) const
4700 {
4701   Plt_stub_key key(object, gsym, r_type, addend);
4702   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4703   if (p == this->plt_call_stubs_.end())
4704     return NULL;
4705   return &p->second;
4706 }
4707
4708 template<int size, bool big_endian>
4709 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4710 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4711 {
4712   Plt_stub_key key(gsym);
4713   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4714   if (p == this->plt_call_stubs_.end())
4715     return NULL;
4716   return &p->second;
4717 }
4718
4719 template<int size, bool big_endian>
4720 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4721 Stub_table<size, big_endian>::find_plt_call_entry(
4722     const Sized_relobj_file<size, big_endian>* object,
4723     unsigned int locsym_index,
4724     unsigned int r_type,
4725     Address addend) const
4726 {
4727   Plt_stub_key key(object, locsym_index, r_type, addend);
4728   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4729   if (p == this->plt_call_stubs_.end())
4730     return NULL;
4731   return &p->second;
4732 }
4733
4734 template<int size, bool big_endian>
4735 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4736 Stub_table<size, big_endian>::find_plt_call_entry(
4737     const Sized_relobj_file<size, big_endian>* object,
4738     unsigned int locsym_index) const
4739 {
4740   Plt_stub_key key(object, locsym_index);
4741   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4742   if (p == this->plt_call_stubs_.end())
4743     return NULL;
4744   return &p->second;
4745 }
4746
4747 // Add a long branch stub if we don't already have one to given
4748 // destination.
4749
4750 template<int size, bool big_endian>
4751 bool
4752 Stub_table<size, big_endian>::add_long_branch_entry(
4753     const Powerpc_relobj<size, big_endian>* object,
4754     unsigned int r_type,
4755     Address from,
4756     Address to,
4757     bool save_res)
4758 {
4759   Branch_stub_ent ent(object, to, save_res);
4760   Address off = this->branch_size_;
4761   std::pair<typename Branch_stub_entries::iterator, bool> p
4762     = this->long_branch_stubs_.insert(std::make_pair(ent, off));
4763   if (p.second)
4764     {
4765       if (save_res)
4766         this->need_save_res_ = true;
4767       else
4768         {
4769           unsigned int stub_size = this->branch_stub_size(p.first);
4770           this->branch_size_ = off + stub_size;
4771           if (size == 64 && stub_size != 4)
4772             this->targ_->add_branch_lookup_table(to);
4773         }
4774     }
4775   return this->can_reach_stub(from, off, r_type);
4776 }
4777
4778 // Find long branch stub offset.
4779
4780 template<int size, bool big_endian>
4781 typename Stub_table<size, big_endian>::Address
4782 Stub_table<size, big_endian>::find_long_branch_entry(
4783     const Powerpc_relobj<size, big_endian>* object,
4784     Address to) const
4785 {
4786   Branch_stub_ent ent(object, to, false);
4787   typename Branch_stub_entries::const_iterator p
4788     = this->long_branch_stubs_.find(ent);
4789   if (p == this->long_branch_stubs_.end())
4790     return invalid_address;
4791   if (p->first.save_res_)
4792     return to - this->targ_->savres_section()->address() + this->branch_size_;
4793   return p->second;
4794 }
4795
4796 // Generate a suitable FDE to describe code in this stub group.
4797 // The __tls_get_addr_opt call stub needs to describe where it saves
4798 // LR, to support exceptions that might be thrown from __tls_get_addr.
4799
4800 template<int size, bool big_endian>
4801 void
4802 Stub_table<size, big_endian>::init_plt_fde()
4803 {
4804   unsigned char* p = this->plt_fde_;
4805   // offset pcrel sdata4, size udata4, and augmentation size byte.
4806   memset (p, 0, 9);
4807   p += 9;
4808   if (this->tls_get_addr_opt_bctrl_ != -1u)
4809     {
4810       unsigned int to_bctrl = this->tls_get_addr_opt_bctrl_ / 4;
4811       if (to_bctrl < 64)
4812         *p++ = elfcpp::DW_CFA_advance_loc + to_bctrl;
4813       else if (to_bctrl < 256)
4814         {
4815           *p++ = elfcpp::DW_CFA_advance_loc1;
4816           *p++ = to_bctrl;
4817         }
4818       else if (to_bctrl < 65536)
4819         {
4820           *p++ = elfcpp::DW_CFA_advance_loc2;
4821           elfcpp::Swap<16, big_endian>::writeval(p, to_bctrl);
4822           p += 2;
4823         }
4824       else
4825         {
4826           *p++ = elfcpp::DW_CFA_advance_loc4;
4827           elfcpp::Swap<32, big_endian>::writeval(p, to_bctrl);
4828           p += 4;
4829         }
4830       *p++ = elfcpp::DW_CFA_offset_extended_sf;
4831       *p++ = 65;
4832       *p++ = -(this->targ_->stk_linker() / 8) & 0x7f;
4833       *p++ = elfcpp::DW_CFA_advance_loc + 4;
4834       *p++ = elfcpp::DW_CFA_restore_extended;
4835       *p++ = 65;
4836     }
4837   this->plt_fde_len_ = p - this->plt_fde_;
4838 }
4839
4840 // Add .eh_frame info for this stub section.  Unlike other linker
4841 // generated .eh_frame this is added late in the link, because we
4842 // only want the .eh_frame info if this particular stub section is
4843 // non-empty.
4844
4845 template<int size, bool big_endian>
4846 void
4847 Stub_table<size, big_endian>::add_eh_frame(Layout* layout)
4848 {
4849   if (!parameters->options().ld_generated_unwind_info())
4850     return;
4851
4852   // Since we add stub .eh_frame info late, it must be placed
4853   // after all other linker generated .eh_frame info so that
4854   // merge mapping need not be updated for input sections.
4855   // There is no provision to use a different CIE to that used
4856   // by .glink.
4857   if (!this->targ_->has_glink())
4858     return;
4859
4860   if (this->plt_size_ + this->branch_size_ + this->need_save_res_ == 0)
4861     return;
4862
4863   this->init_plt_fde();
4864   layout->add_eh_frame_for_plt(this,
4865                                Eh_cie<size>::eh_frame_cie,
4866                                sizeof (Eh_cie<size>::eh_frame_cie),
4867                                this->plt_fde_, this->plt_fde_len_);
4868 }
4869
4870 template<int size, bool big_endian>
4871 void
4872 Stub_table<size, big_endian>::remove_eh_frame(Layout* layout)
4873 {
4874   if (this->plt_fde_len_ != 0)
4875     {
4876       layout->remove_eh_frame_for_plt(this,
4877                                       Eh_cie<size>::eh_frame_cie,
4878                                       sizeof (Eh_cie<size>::eh_frame_cie),
4879                                       this->plt_fde_, this->plt_fde_len_);
4880       this->plt_fde_len_ = 0;
4881     }
4882 }
4883
4884 // A class to handle .glink.
4885
4886 template<int size, bool big_endian>
4887 class Output_data_glink : public Output_section_data
4888 {
4889  public:
4890   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4891   static const Address invalid_address = static_cast<Address>(0) - 1;
4892
4893   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4894     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4895       end_branch_table_(), ge_size_(0)
4896   { }
4897
4898   void
4899   add_eh_frame(Layout* layout);
4900
4901   void
4902   add_global_entry(const Symbol*);
4903
4904   Address
4905   find_global_entry(const Symbol*) const;
4906
4907   unsigned int
4908   global_entry_align(unsigned int off) const
4909   {
4910     unsigned int align = param_plt_align<size>();
4911     return (off + align - 1) & -align;
4912   }
4913
4914   unsigned int
4915   global_entry_off() const
4916   {
4917     return this->global_entry_align(this->end_branch_table_);
4918   }
4919
4920   Address
4921   global_entry_address() const
4922   {
4923     gold_assert(this->is_data_size_valid());
4924     return this->address() + this->global_entry_off();
4925   }
4926
4927   int
4928   pltresolve_size() const
4929   {
4930     if (size == 64)
4931       return (8
4932               + (this->targ_->abiversion() < 2 ? 11 * 4 : 14 * 4));
4933     return 16 * 4;
4934   }
4935
4936  protected:
4937   // Write to a map file.
4938   void
4939   do_print_to_mapfile(Mapfile* mapfile) const
4940   { mapfile->print_output_data(this, _("** glink")); }
4941
4942  private:
4943   void
4944   set_final_data_size();
4945
4946   // Write out .glink
4947   void
4948   do_write(Output_file*);
4949
4950   // Allows access to .got and .plt for do_write.
4951   Target_powerpc<size, big_endian>* targ_;
4952
4953   // Map sym to stub offset.
4954   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4955   Global_entry_stub_entries global_entry_stubs_;
4956
4957   unsigned int end_branch_table_, ge_size_;
4958 };
4959
4960 template<int size, bool big_endian>
4961 void
4962 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4963 {
4964   if (!parameters->options().ld_generated_unwind_info())
4965     return;
4966
4967   if (size == 64)
4968     {
4969       if (this->targ_->abiversion() < 2)
4970         layout->add_eh_frame_for_plt(this,
4971                                      Eh_cie<64>::eh_frame_cie,
4972                                      sizeof (Eh_cie<64>::eh_frame_cie),
4973                                      glink_eh_frame_fde_64v1,
4974                                      sizeof (glink_eh_frame_fde_64v1));
4975       else
4976         layout->add_eh_frame_for_plt(this,
4977                                      Eh_cie<64>::eh_frame_cie,
4978                                      sizeof (Eh_cie<64>::eh_frame_cie),
4979                                      glink_eh_frame_fde_64v2,
4980                                      sizeof (glink_eh_frame_fde_64v2));
4981     }
4982   else
4983     {
4984       // 32-bit .glink can use the default since the CIE return
4985       // address reg, LR, is valid.
4986       layout->add_eh_frame_for_plt(this,
4987                                    Eh_cie<32>::eh_frame_cie,
4988                                    sizeof (Eh_cie<32>::eh_frame_cie),
4989                                    default_fde,
4990                                    sizeof (default_fde));
4991       // Except where LR is used in a PIC __glink_PLTresolve.
4992       if (parameters->options().output_is_position_independent())
4993         layout->add_eh_frame_for_plt(this,
4994                                      Eh_cie<32>::eh_frame_cie,
4995                                      sizeof (Eh_cie<32>::eh_frame_cie),
4996                                      glink_eh_frame_fde_32,
4997                                      sizeof (glink_eh_frame_fde_32));
4998     }
4999 }
5000
5001 template<int size, bool big_endian>
5002 void
5003 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
5004 {
5005   unsigned int off = this->global_entry_align(this->ge_size_);
5006   std::pair<typename Global_entry_stub_entries::iterator, bool> p
5007     = this->global_entry_stubs_.insert(std::make_pair(gsym, off));
5008   if (p.second)
5009     this->ge_size_ = off + 16;
5010 }
5011
5012 template<int size, bool big_endian>
5013 typename Output_data_glink<size, big_endian>::Address
5014 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
5015 {
5016   typename Global_entry_stub_entries::const_iterator p
5017     = this->global_entry_stubs_.find(gsym);
5018   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
5019 }
5020
5021 template<int size, bool big_endian>
5022 void
5023 Output_data_glink<size, big_endian>::set_final_data_size()
5024 {
5025   unsigned int count = this->targ_->plt_entry_count();
5026   section_size_type total = 0;
5027
5028   if (count != 0)
5029     {
5030       if (size == 32)
5031         {
5032           // space for branch table
5033           total += 4 * (count - 1);
5034
5035           total += -total & 15;
5036           total += this->pltresolve_size();
5037         }
5038       else
5039         {
5040           total += this->pltresolve_size();
5041
5042           // space for branch table
5043           total += 4 * count;
5044           if (this->targ_->abiversion() < 2)
5045             {
5046               total += 4 * count;
5047               if (count > 0x8000)
5048                 total += 4 * (count - 0x8000);
5049             }
5050         }
5051     }
5052   this->end_branch_table_ = total;
5053   total = this->global_entry_align(total);
5054   total += this->ge_size_;
5055
5056   this->set_data_size(total);
5057 }
5058
5059 // Define symbols on stubs, identifying the stub.
5060
5061 template<int size, bool big_endian>
5062 void
5063 Stub_table<size, big_endian>::define_stub_syms(Symbol_table* symtab)
5064 {
5065   if (!this->plt_call_stubs_.empty())
5066     {
5067       // The key for the plt call stub hash table includes addresses,
5068       // therefore traversal order depends on those addresses, which
5069       // can change between runs if gold is a PIE.  Unfortunately the
5070       // output .symtab ordering depends on the order in which symbols
5071       // are added to the linker symtab.  We want reproducible output
5072       // so must sort the call stub symbols.
5073       typedef typename Plt_stub_entries::const_iterator plt_iter;
5074       std::vector<plt_iter> sorted;
5075       sorted.resize(this->plt_call_stubs_.size());
5076
5077       for (plt_iter cs = this->plt_call_stubs_.begin();
5078            cs != this->plt_call_stubs_.end();
5079            ++cs)
5080         sorted[cs->second.indx_] = cs;
5081
5082       for (unsigned int i = 0; i < this->plt_call_stubs_.size(); ++i)
5083         {
5084           plt_iter cs = sorted[i];
5085           char add[10];
5086           add[0] = 0;
5087           if (cs->first.addend_ != 0)
5088             sprintf(add, "+%x", static_cast<uint32_t>(cs->first.addend_));
5089           char obj[10];
5090           obj[0] = 0;
5091           if (cs->first.object_)
5092             {
5093               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5094                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5095               sprintf(obj, "%x:", ppcobj->uniq());
5096             }
5097           char localname[9];
5098           const char *symname;
5099           if (cs->first.sym_ == NULL)
5100             {
5101               sprintf(localname, "%x", cs->first.locsym_);
5102               symname = localname;
5103             }
5104           else if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
5105             symname = this->targ_->tls_get_addr_opt()->name();
5106           else
5107             symname = cs->first.sym_->name();
5108           char* name = new char[8 + 10 + strlen(obj) + strlen(symname) + strlen(add) + 1];
5109           sprintf(name, "%08x.plt_call.%s%s%s", this->uniq_, obj, symname, add);
5110           Address value
5111             = this->stub_address() - this->address() + cs->second.off_;
5112           unsigned int stub_size = this->plt_call_align(this->plt_call_size(cs));
5113           this->targ_->define_local(symtab, name, this, value, stub_size);
5114         }
5115     }
5116
5117   typedef typename Branch_stub_entries::const_iterator branch_iter;
5118   for (branch_iter bs = this->long_branch_stubs_.begin();
5119        bs != this->long_branch_stubs_.end();
5120        ++bs)
5121     {
5122       if (bs->first.save_res_)
5123         continue;
5124
5125       char* name = new char[8 + 13 + 16 + 1];
5126       sprintf(name, "%08x.long_branch.%llx", this->uniq_,
5127               static_cast<unsigned long long>(bs->first.dest_));
5128       Address value = (this->stub_address() - this->address()
5129                        + this->plt_size_ + bs->second);
5130       unsigned int stub_size = this->branch_stub_size(bs);
5131       this->targ_->define_local(symtab, name, this, value, stub_size);
5132     }
5133 }
5134
5135 // Write out plt and long branch stub code.
5136
5137 template<int size, bool big_endian>
5138 void
5139 Stub_table<size, big_endian>::do_write(Output_file* of)
5140 {
5141   if (this->plt_call_stubs_.empty()
5142       && this->long_branch_stubs_.empty())
5143     return;
5144
5145   const section_size_type start_off = this->offset();
5146   const section_size_type off = this->stub_offset();
5147   const section_size_type oview_size =
5148     convert_to_section_size_type(this->data_size() - (off - start_off));
5149   unsigned char* const oview = of->get_output_view(off, oview_size);
5150   unsigned char* p;
5151
5152   if (size == 64)
5153     {
5154       const Output_data_got_powerpc<size, big_endian>* got
5155         = this->targ_->got_section();
5156       Address got_os_addr = got->output_section()->address();
5157
5158       if (!this->plt_call_stubs_.empty())
5159         {
5160           // The base address of the .plt section.
5161           Address plt_base = this->targ_->plt_section()->address();
5162           Address iplt_base = invalid_address;
5163
5164           // Write out plt call stubs.
5165           typename Plt_stub_entries::const_iterator cs;
5166           for (cs = this->plt_call_stubs_.begin();
5167                cs != this->plt_call_stubs_.end();
5168                ++cs)
5169             {
5170               bool is_iplt;
5171               Address pltoff = this->plt_off(cs, &is_iplt);
5172               Address plt_addr = pltoff;
5173               if (is_iplt)
5174                 {
5175                   if (iplt_base == invalid_address)
5176                     iplt_base = this->targ_->iplt_section()->address();
5177                   plt_addr += iplt_base;
5178                 }
5179               else
5180                 plt_addr += plt_base;
5181               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5182                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5183               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
5184               Address off = plt_addr - got_addr;
5185
5186               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
5187                 gold_error(_("%s: linkage table error against `%s'"),
5188                            cs->first.object_->name().c_str(),
5189                            cs->first.sym_->demangled_name().c_str());
5190
5191               bool plt_load_toc = this->targ_->abiversion() < 2;
5192               bool static_chain
5193                 = plt_load_toc && parameters->options().plt_static_chain();
5194               bool thread_safe
5195                 = plt_load_toc && this->targ_->plt_thread_safe();
5196               bool use_fake_dep = false;
5197               Address cmp_branch_off = 0;
5198               if (thread_safe)
5199                 {
5200                   unsigned int pltindex
5201                     = ((pltoff - this->targ_->first_plt_entry_offset())
5202                        / this->targ_->plt_entry_size());
5203                   Address glinkoff
5204                     = (this->targ_->glink_section()->pltresolve_size()
5205                        + pltindex * 8);
5206                   if (pltindex > 32768)
5207                     glinkoff += (pltindex - 32768) * 4;
5208                   Address to
5209                     = this->targ_->glink_section()->address() + glinkoff;
5210                   Address from
5211                     = (this->stub_address() + cs->second.off_ + 20
5212                        + 4 * cs->second.r2save_
5213                        + 4 * (ha(off) != 0)
5214                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
5215                        + 4 * static_chain);
5216                   cmp_branch_off = to - from;
5217                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
5218                 }
5219
5220               p = oview + cs->second.off_;
5221               const Symbol* gsym = cs->first.sym_;
5222               if (this->targ_->is_tls_get_addr_opt(gsym))
5223                 {
5224                   write_insn<big_endian>(p, ld_11_3 + 0);
5225                   p += 4;
5226                   write_insn<big_endian>(p, ld_12_3 + 8);
5227                   p += 4;
5228                   write_insn<big_endian>(p, mr_0_3);
5229                   p += 4;
5230                   write_insn<big_endian>(p, cmpdi_11_0);
5231                   p += 4;
5232                   write_insn<big_endian>(p, add_3_12_13);
5233                   p += 4;
5234                   write_insn<big_endian>(p, beqlr);
5235                   p += 4;
5236                   write_insn<big_endian>(p, mr_3_0);
5237                   p += 4;
5238                   if (!cs->second.localentry0_)
5239                     {
5240                       write_insn<big_endian>(p, mflr_11);
5241                       p += 4;
5242                       write_insn<big_endian>(p, (std_11_1
5243                                                  + this->targ_->stk_linker()));
5244                       p += 4;
5245                     }
5246                   use_fake_dep = thread_safe;
5247                 }
5248               if (ha(off) != 0)
5249                 {
5250                   if (cs->second.r2save_)
5251                     {
5252                       write_insn<big_endian>(p,
5253                                              std_2_1 + this->targ_->stk_toc());
5254                       p += 4;
5255                     }
5256                   if (plt_load_toc)
5257                     {
5258                       write_insn<big_endian>(p, addis_11_2 + ha(off));
5259                       p += 4;
5260                       write_insn<big_endian>(p, ld_12_11 + l(off));
5261                       p += 4;
5262                     }
5263                   else
5264                     {
5265                       write_insn<big_endian>(p, addis_12_2 + ha(off));
5266                       p += 4;
5267                       write_insn<big_endian>(p, ld_12_12 + l(off));
5268                       p += 4;
5269                     }
5270                   if (plt_load_toc
5271                       && ha(off + 8 + 8 * static_chain) != ha(off))
5272                     {
5273                       write_insn<big_endian>(p, addi_11_11 + l(off));
5274                       p += 4;
5275                       off = 0;
5276                     }
5277                   write_insn<big_endian>(p, mtctr_12);
5278                   p += 4;
5279                   if (plt_load_toc)
5280                     {
5281                       if (use_fake_dep)
5282                         {
5283                           write_insn<big_endian>(p, xor_2_12_12);
5284                           p += 4;
5285                           write_insn<big_endian>(p, add_11_11_2);
5286                           p += 4;
5287                         }
5288                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
5289                       p += 4;
5290                       if (static_chain)
5291                         {
5292                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
5293                           p += 4;
5294                         }
5295                     }
5296                 }
5297               else
5298                 {
5299                   if (cs->second.r2save_)
5300                     {
5301                       write_insn<big_endian>(p,
5302                                              std_2_1 + this->targ_->stk_toc());
5303                       p += 4;
5304                     }
5305                   write_insn<big_endian>(p, ld_12_2 + l(off));
5306                   p += 4;
5307                   if (plt_load_toc
5308                       && ha(off + 8 + 8 * static_chain) != ha(off))
5309                     {
5310                       write_insn<big_endian>(p, addi_2_2 + l(off));
5311                       p += 4;
5312                       off = 0;
5313                     }
5314                   write_insn<big_endian>(p, mtctr_12);
5315                   p += 4;
5316                   if (plt_load_toc)
5317                     {
5318                       if (use_fake_dep)
5319                         {
5320                           write_insn<big_endian>(p, xor_11_12_12);
5321                           p += 4;
5322                           write_insn<big_endian>(p, add_2_2_11);
5323                           p += 4;
5324                         }
5325                       if (static_chain)
5326                         {
5327                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
5328                           p += 4;
5329                         }
5330                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
5331                       p += 4;
5332                     }
5333                 }
5334               if (!cs->second.localentry0_
5335                   && this->targ_->is_tls_get_addr_opt(gsym))
5336                 {
5337                   write_insn<big_endian>(p, bctrl);
5338                   p += 4;
5339                   write_insn<big_endian>(p, ld_2_1 + this->targ_->stk_toc());
5340                   p += 4;
5341                   write_insn<big_endian>(p, ld_11_1 + this->targ_->stk_linker());
5342                   p += 4;
5343                   write_insn<big_endian>(p, mtlr_11);
5344                   p += 4;
5345                   write_insn<big_endian>(p, blr);
5346                 }
5347               else if (thread_safe && !use_fake_dep)
5348                 {
5349                   write_insn<big_endian>(p, cmpldi_2_0);
5350                   p += 4;
5351                   write_insn<big_endian>(p, bnectr_p4);
5352                   p += 4;
5353                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
5354                 }
5355               else
5356                 write_insn<big_endian>(p, bctr);
5357             }
5358         }
5359
5360       // Write out long branch stubs.
5361       typename Branch_stub_entries::const_iterator bs;
5362       for (bs = this->long_branch_stubs_.begin();
5363            bs != this->long_branch_stubs_.end();
5364            ++bs)
5365         {
5366           if (bs->first.save_res_)
5367             continue;
5368           p = oview + this->plt_size_ + bs->second;
5369           Address loc = this->stub_address() + this->plt_size_ + bs->second;
5370           Address delta = bs->first.dest_ - loc;
5371           if (delta + (1 << 25) < 2 << 25)
5372             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5373           else
5374             {
5375               Address brlt_addr
5376                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
5377               gold_assert(brlt_addr != invalid_address);
5378               brlt_addr += this->targ_->brlt_section()->address();
5379               Address got_addr = got_os_addr + bs->first.toc_base_off_;
5380               Address brltoff = brlt_addr - got_addr;
5381               if (ha(brltoff) == 0)
5382                 {
5383                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
5384                 }
5385               else
5386                 {
5387                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
5388                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
5389                 }
5390               write_insn<big_endian>(p, mtctr_12),                      p += 4;
5391               write_insn<big_endian>(p, bctr);
5392             }
5393         }
5394     }
5395   else
5396     {
5397       if (!this->plt_call_stubs_.empty())
5398         {
5399           // The base address of the .plt section.
5400           Address plt_base = this->targ_->plt_section()->address();
5401           Address iplt_base = invalid_address;
5402           // The address of _GLOBAL_OFFSET_TABLE_.
5403           Address g_o_t = invalid_address;
5404
5405           // Write out plt call stubs.
5406           typename Plt_stub_entries::const_iterator cs;
5407           for (cs = this->plt_call_stubs_.begin();
5408                cs != this->plt_call_stubs_.end();
5409                ++cs)
5410             {
5411               bool is_iplt;
5412               Address plt_addr = this->plt_off(cs, &is_iplt);
5413               if (is_iplt)
5414                 {
5415                   if (iplt_base == invalid_address)
5416                     iplt_base = this->targ_->iplt_section()->address();
5417                   plt_addr += iplt_base;
5418                 }
5419               else
5420                 plt_addr += plt_base;
5421
5422               p = oview + cs->second.off_;
5423               const Symbol* gsym = cs->first.sym_;
5424               if (this->targ_->is_tls_get_addr_opt(gsym))
5425                 {
5426                   write_insn<big_endian>(p, lwz_11_3 + 0);
5427                   p += 4;
5428                   write_insn<big_endian>(p, lwz_12_3 + 4);
5429                   p += 4;
5430                   write_insn<big_endian>(p, mr_0_3);
5431                   p += 4;
5432                   write_insn<big_endian>(p, cmpwi_11_0);
5433                   p += 4;
5434                   write_insn<big_endian>(p, add_3_12_2);
5435                   p += 4;
5436                   write_insn<big_endian>(p, beqlr);
5437                   p += 4;
5438                   write_insn<big_endian>(p, mr_3_0);
5439                   p += 4;
5440                   write_insn<big_endian>(p, nop);
5441                   p += 4;
5442                 }
5443               if (parameters->options().output_is_position_independent())
5444                 {
5445                   Address got_addr;
5446                   const Powerpc_relobj<size, big_endian>* ppcobj
5447                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
5448                        (cs->first.object_));
5449                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
5450                     {
5451                       unsigned int got2 = ppcobj->got2_shndx();
5452                       got_addr = ppcobj->get_output_section_offset(got2);
5453                       gold_assert(got_addr != invalid_address);
5454                       got_addr += (ppcobj->output_section(got2)->address()
5455                                    + cs->first.addend_);
5456                     }
5457                   else
5458                     {
5459                       if (g_o_t == invalid_address)
5460                         {
5461                           const Output_data_got_powerpc<size, big_endian>* got
5462                             = this->targ_->got_section();
5463                           g_o_t = got->address() + got->g_o_t();
5464                         }
5465                       got_addr = g_o_t;
5466                     }
5467
5468                   Address off = plt_addr - got_addr;
5469                   if (ha(off) == 0)
5470                     write_insn<big_endian>(p, lwz_11_30 + l(off));
5471                   else
5472                     {
5473                       write_insn<big_endian>(p, addis_11_30 + ha(off));
5474                       p += 4;
5475                       write_insn<big_endian>(p, lwz_11_11 + l(off));
5476                     }
5477                 }
5478               else
5479                 {
5480                   write_insn<big_endian>(p, lis_11 + ha(plt_addr));
5481                   p += 4;
5482                   write_insn<big_endian>(p, lwz_11_11 + l(plt_addr));
5483                 }
5484               p += 4;
5485               write_insn<big_endian>(p, mtctr_11);
5486               p += 4;
5487               write_insn<big_endian>(p, bctr);
5488             }
5489         }
5490
5491       // Write out long branch stubs.
5492       typename Branch_stub_entries::const_iterator bs;
5493       for (bs = this->long_branch_stubs_.begin();
5494            bs != this->long_branch_stubs_.end();
5495            ++bs)
5496         {
5497           if (bs->first.save_res_)
5498             continue;
5499           p = oview + this->plt_size_ + bs->second;
5500           Address loc = this->stub_address() + this->plt_size_ + bs->second;
5501           Address delta = bs->first.dest_ - loc;
5502           if (delta + (1 << 25) < 2 << 25)
5503             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5504           else if (!parameters->options().output_is_position_independent())
5505             {
5506               write_insn<big_endian>(p, lis_12 + ha(bs->first.dest_));
5507               p += 4;
5508               write_insn<big_endian>(p, addi_12_12 + l(bs->first.dest_));
5509             }
5510           else
5511             {
5512               delta -= 8;
5513               write_insn<big_endian>(p, mflr_0);
5514               p += 4;
5515               write_insn<big_endian>(p, bcl_20_31);
5516               p += 4;
5517               write_insn<big_endian>(p, mflr_12);
5518               p += 4;
5519               write_insn<big_endian>(p, addis_12_12 + ha(delta));
5520               p += 4;
5521               write_insn<big_endian>(p, addi_12_12 + l(delta));
5522               p += 4;
5523               write_insn<big_endian>(p, mtlr_0);
5524             }
5525           p += 4;
5526           write_insn<big_endian>(p, mtctr_12);
5527           p += 4;
5528           write_insn<big_endian>(p, bctr);
5529         }
5530     }
5531   if (this->need_save_res_)
5532     {
5533       p = oview + this->plt_size_ + this->branch_size_;
5534       memcpy (p, this->targ_->savres_section()->contents(),
5535               this->targ_->savres_section()->data_size());
5536     }
5537 }
5538
5539 // Write out .glink.
5540
5541 template<int size, bool big_endian>
5542 void
5543 Output_data_glink<size, big_endian>::do_write(Output_file* of)
5544 {
5545   const section_size_type off = this->offset();
5546   const section_size_type oview_size =
5547     convert_to_section_size_type(this->data_size());
5548   unsigned char* const oview = of->get_output_view(off, oview_size);
5549   unsigned char* p;
5550
5551   // The base address of the .plt section.
5552   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5553   Address plt_base = this->targ_->plt_section()->address();
5554
5555   if (size == 64)
5556     {
5557       if (this->end_branch_table_ != 0)
5558         {
5559           // Write pltresolve stub.
5560           p = oview;
5561           Address after_bcl = this->address() + 16;
5562           Address pltoff = plt_base - after_bcl;
5563
5564           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
5565
5566           if (this->targ_->abiversion() < 2)
5567             {
5568               write_insn<big_endian>(p, mflr_12),               p += 4;
5569               write_insn<big_endian>(p, bcl_20_31),             p += 4;
5570               write_insn<big_endian>(p, mflr_11),               p += 4;
5571               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
5572               write_insn<big_endian>(p, mtlr_12),               p += 4;
5573               write_insn<big_endian>(p, add_11_2_11),           p += 4;
5574               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
5575               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
5576               write_insn<big_endian>(p, mtctr_12),              p += 4;
5577               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
5578             }
5579           else
5580             {
5581               write_insn<big_endian>(p, mflr_0),                p += 4;
5582               write_insn<big_endian>(p, bcl_20_31),             p += 4;
5583               write_insn<big_endian>(p, mflr_11),               p += 4;
5584               write_insn<big_endian>(p, std_2_1 + 24),          p += 4;
5585               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
5586               write_insn<big_endian>(p, mtlr_0),                p += 4;
5587               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
5588               write_insn<big_endian>(p, add_11_2_11),           p += 4;
5589               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
5590               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
5591               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
5592               write_insn<big_endian>(p, mtctr_12),              p += 4;
5593               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
5594             }
5595           write_insn<big_endian>(p, bctr),                      p += 4;
5596           gold_assert(p == oview + this->pltresolve_size());
5597
5598           // Write lazy link call stubs.
5599           uint32_t indx = 0;
5600           while (p < oview + this->end_branch_table_)
5601             {
5602               if (this->targ_->abiversion() < 2)
5603                 {
5604                   if (indx < 0x8000)
5605                     {
5606                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
5607                     }
5608                   else
5609                     {
5610                       write_insn<big_endian>(p, lis_0 + hi(indx)),      p += 4;
5611                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
5612                     }
5613                 }
5614               uint32_t branch_off = 8 - (p - oview);
5615               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
5616               indx++;
5617             }
5618         }
5619
5620       Address plt_base = this->targ_->plt_section()->address();
5621       Address iplt_base = invalid_address;
5622       unsigned int global_entry_off = this->global_entry_off();
5623       Address global_entry_base = this->address() + global_entry_off;
5624       typename Global_entry_stub_entries::const_iterator ge;
5625       for (ge = this->global_entry_stubs_.begin();
5626            ge != this->global_entry_stubs_.end();
5627            ++ge)
5628         {
5629           p = oview + global_entry_off + ge->second;
5630           Address plt_addr = ge->first->plt_offset();
5631           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
5632               && ge->first->can_use_relative_reloc(false))
5633             {
5634               if (iplt_base == invalid_address)
5635                 iplt_base = this->targ_->iplt_section()->address();
5636               plt_addr += iplt_base;
5637             }
5638           else
5639             plt_addr += plt_base;
5640           Address my_addr = global_entry_base + ge->second;
5641           Address off = plt_addr - my_addr;
5642
5643           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
5644             gold_error(_("%s: linkage table error against `%s'"),
5645                        ge->first->object()->name().c_str(),
5646                        ge->first->demangled_name().c_str());
5647
5648           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
5649           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
5650           write_insn<big_endian>(p, mtctr_12),                  p += 4;
5651           write_insn<big_endian>(p, bctr);
5652         }
5653     }
5654   else
5655     {
5656       const Output_data_got_powerpc<size, big_endian>* got
5657         = this->targ_->got_section();
5658       // The address of _GLOBAL_OFFSET_TABLE_.
5659       Address g_o_t = got->address() + got->g_o_t();
5660
5661       // Write out pltresolve branch table.
5662       p = oview;
5663       unsigned int the_end = oview_size - this->pltresolve_size();
5664       unsigned char* end_p = oview + the_end;
5665       while (p < end_p - 8 * 4)
5666         write_insn<big_endian>(p, b + end_p - p), p += 4;
5667       while (p < end_p)
5668         write_insn<big_endian>(p, nop), p += 4;
5669
5670       // Write out pltresolve call stub.
5671       end_p = oview + oview_size;
5672       if (parameters->options().output_is_position_independent())
5673         {
5674           Address res0_off = 0;
5675           Address after_bcl_off = the_end + 12;
5676           Address bcl_res0 = after_bcl_off - res0_off;
5677
5678           write_insn<big_endian>(p, addis_11_11 + ha(bcl_res0));
5679           p += 4;
5680           write_insn<big_endian>(p, mflr_0);
5681           p += 4;
5682           write_insn<big_endian>(p, bcl_20_31);
5683           p += 4;
5684           write_insn<big_endian>(p, addi_11_11 + l(bcl_res0));
5685           p += 4;
5686           write_insn<big_endian>(p, mflr_12);
5687           p += 4;
5688           write_insn<big_endian>(p, mtlr_0);
5689           p += 4;
5690           write_insn<big_endian>(p, sub_11_11_12);
5691           p += 4;
5692
5693           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
5694
5695           write_insn<big_endian>(p, addis_12_12 + ha(got_bcl));
5696           p += 4;
5697           if (ha(got_bcl) == ha(got_bcl + 4))
5698             {
5699               write_insn<big_endian>(p, lwz_0_12 + l(got_bcl));
5700               p += 4;
5701               write_insn<big_endian>(p, lwz_12_12 + l(got_bcl + 4));
5702             }
5703           else
5704             {
5705               write_insn<big_endian>(p, lwzu_0_12 + l(got_bcl));
5706               p += 4;
5707               write_insn<big_endian>(p, lwz_12_12 + 4);
5708             }
5709           p += 4;
5710           write_insn<big_endian>(p, mtctr_0);
5711           p += 4;
5712           write_insn<big_endian>(p, add_0_11_11);
5713           p += 4;
5714           write_insn<big_endian>(p, add_11_0_11);
5715         }
5716       else
5717         {
5718           Address res0 = this->address();
5719
5720           write_insn<big_endian>(p, lis_12 + ha(g_o_t + 4));
5721           p += 4;
5722           write_insn<big_endian>(p, addis_11_11 + ha(-res0));
5723           p += 4;
5724           if (ha(g_o_t + 4) == ha(g_o_t + 8))
5725             write_insn<big_endian>(p, lwz_0_12 + l(g_o_t + 4));
5726           else
5727             write_insn<big_endian>(p, lwzu_0_12 + l(g_o_t + 4));
5728           p += 4;
5729           write_insn<big_endian>(p, addi_11_11 + l(-res0));
5730           p += 4;
5731           write_insn<big_endian>(p, mtctr_0);
5732           p += 4;
5733           write_insn<big_endian>(p, add_0_11_11);
5734           p += 4;
5735           if (ha(g_o_t + 4) == ha(g_o_t + 8))
5736             write_insn<big_endian>(p, lwz_12_12 + l(g_o_t + 8));
5737           else
5738             write_insn<big_endian>(p, lwz_12_12 + 4);
5739           p += 4;
5740           write_insn<big_endian>(p, add_11_0_11);
5741         }
5742       p += 4;
5743       write_insn<big_endian>(p, bctr);
5744       p += 4;
5745       while (p < end_p)
5746         {
5747           write_insn<big_endian>(p, nop);
5748           p += 4;
5749         }
5750     }
5751
5752   of->write_output_view(off, oview_size, oview);
5753 }
5754
5755
5756 // A class to handle linker generated save/restore functions.
5757
5758 template<int size, bool big_endian>
5759 class Output_data_save_res : public Output_section_data_build
5760 {
5761  public:
5762   Output_data_save_res(Symbol_table* symtab);
5763
5764   const unsigned char*
5765   contents() const
5766   {
5767     return contents_;
5768   }
5769
5770  protected:
5771   // Write to a map file.
5772   void
5773   do_print_to_mapfile(Mapfile* mapfile) const
5774   { mapfile->print_output_data(this, _("** save/restore")); }
5775
5776   void
5777   do_write(Output_file*);
5778
5779  private:
5780   // The maximum size of save/restore contents.
5781   static const unsigned int savres_max = 218*4;
5782
5783   void
5784   savres_define(Symbol_table* symtab,
5785                 const char *name,
5786                 unsigned int lo, unsigned int hi,
5787                 unsigned char* write_ent(unsigned char*, int),
5788                 unsigned char* write_tail(unsigned char*, int));
5789
5790   unsigned char *contents_;
5791 };
5792
5793 template<bool big_endian>
5794 static unsigned char*
5795 savegpr0(unsigned char* p, int r)
5796 {
5797   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5798   write_insn<big_endian>(p, insn);
5799   return p + 4;
5800 }
5801
5802 template<bool big_endian>
5803 static unsigned char*
5804 savegpr0_tail(unsigned char* p, int r)
5805 {
5806   p = savegpr0<big_endian>(p, r);
5807   uint32_t insn = std_0_1 + 16;
5808   write_insn<big_endian>(p, insn);
5809   p = p + 4;
5810   write_insn<big_endian>(p, blr);
5811   return p + 4;
5812 }
5813
5814 template<bool big_endian>
5815 static unsigned char*
5816 restgpr0(unsigned char* p, int r)
5817 {
5818   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5819   write_insn<big_endian>(p, insn);
5820   return p + 4;
5821 }
5822
5823 template<bool big_endian>
5824 static unsigned char*
5825 restgpr0_tail(unsigned char* p, int r)
5826 {
5827   uint32_t insn = ld_0_1 + 16;
5828   write_insn<big_endian>(p, insn);
5829   p = p + 4;
5830   p = restgpr0<big_endian>(p, r);
5831   write_insn<big_endian>(p, mtlr_0);
5832   p = p + 4;
5833   if (r == 29)
5834     {
5835       p = restgpr0<big_endian>(p, 30);
5836       p = restgpr0<big_endian>(p, 31);
5837     }
5838   write_insn<big_endian>(p, blr);
5839   return p + 4;
5840 }
5841
5842 template<bool big_endian>
5843 static unsigned char*
5844 savegpr1(unsigned char* p, int r)
5845 {
5846   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5847   write_insn<big_endian>(p, insn);
5848   return p + 4;
5849 }
5850
5851 template<bool big_endian>
5852 static unsigned char*
5853 savegpr1_tail(unsigned char* p, int r)
5854 {
5855   p = savegpr1<big_endian>(p, r);
5856   write_insn<big_endian>(p, blr);
5857   return p + 4;
5858 }
5859
5860 template<bool big_endian>
5861 static unsigned char*
5862 restgpr1(unsigned char* p, int r)
5863 {
5864   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5865   write_insn<big_endian>(p, insn);
5866   return p + 4;
5867 }
5868
5869 template<bool big_endian>
5870 static unsigned char*
5871 restgpr1_tail(unsigned char* p, int r)
5872 {
5873   p = restgpr1<big_endian>(p, r);
5874   write_insn<big_endian>(p, blr);
5875   return p + 4;
5876 }
5877
5878 template<bool big_endian>
5879 static unsigned char*
5880 savefpr(unsigned char* p, int r)
5881 {
5882   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5883   write_insn<big_endian>(p, insn);
5884   return p + 4;
5885 }
5886
5887 template<bool big_endian>
5888 static unsigned char*
5889 savefpr0_tail(unsigned char* p, int r)
5890 {
5891   p = savefpr<big_endian>(p, r);
5892   write_insn<big_endian>(p, std_0_1 + 16);
5893   p = p + 4;
5894   write_insn<big_endian>(p, blr);
5895   return p + 4;
5896 }
5897
5898 template<bool big_endian>
5899 static unsigned char*
5900 restfpr(unsigned char* p, int r)
5901 {
5902   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5903   write_insn<big_endian>(p, insn);
5904   return p + 4;
5905 }
5906
5907 template<bool big_endian>
5908 static unsigned char*
5909 restfpr0_tail(unsigned char* p, int r)
5910 {
5911   write_insn<big_endian>(p, ld_0_1 + 16);
5912   p = p + 4;
5913   p = restfpr<big_endian>(p, r);
5914   write_insn<big_endian>(p, mtlr_0);
5915   p = p + 4;
5916   if (r == 29)
5917     {
5918       p = restfpr<big_endian>(p, 30);
5919       p = restfpr<big_endian>(p, 31);
5920     }
5921   write_insn<big_endian>(p, blr);
5922   return p + 4;
5923 }
5924
5925 template<bool big_endian>
5926 static unsigned char*
5927 savefpr1_tail(unsigned char* p, int r)
5928 {
5929   p = savefpr<big_endian>(p, r);
5930   write_insn<big_endian>(p, blr);
5931   return p + 4;
5932 }
5933
5934 template<bool big_endian>
5935 static unsigned char*
5936 restfpr1_tail(unsigned char* p, int r)
5937 {
5938   p = restfpr<big_endian>(p, r);
5939   write_insn<big_endian>(p, blr);
5940   return p + 4;
5941 }
5942
5943 template<bool big_endian>
5944 static unsigned char*
5945 savevr(unsigned char* p, int r)
5946 {
5947   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5948   write_insn<big_endian>(p, insn);
5949   p = p + 4;
5950   insn = stvx_0_12_0 + (r << 21);
5951   write_insn<big_endian>(p, insn);
5952   return p + 4;
5953 }
5954
5955 template<bool big_endian>
5956 static unsigned char*
5957 savevr_tail(unsigned char* p, int r)
5958 {
5959   p = savevr<big_endian>(p, r);
5960   write_insn<big_endian>(p, blr);
5961   return p + 4;
5962 }
5963
5964 template<bool big_endian>
5965 static unsigned char*
5966 restvr(unsigned char* p, int r)
5967 {
5968   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5969   write_insn<big_endian>(p, insn);
5970   p = p + 4;
5971   insn = lvx_0_12_0 + (r << 21);
5972   write_insn<big_endian>(p, insn);
5973   return p + 4;
5974 }
5975
5976 template<bool big_endian>
5977 static unsigned char*
5978 restvr_tail(unsigned char* p, int r)
5979 {
5980   p = restvr<big_endian>(p, r);
5981   write_insn<big_endian>(p, blr);
5982   return p + 4;
5983 }
5984
5985
5986 template<int size, bool big_endian>
5987 Output_data_save_res<size, big_endian>::Output_data_save_res(
5988     Symbol_table* symtab)
5989   : Output_section_data_build(4),
5990     contents_(NULL)
5991 {
5992   this->savres_define(symtab,
5993                       "_savegpr0_", 14, 31,
5994                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
5995   this->savres_define(symtab,
5996                       "_restgpr0_", 14, 29,
5997                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5998   this->savres_define(symtab,
5999                       "_restgpr0_", 30, 31,
6000                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
6001   this->savres_define(symtab,
6002                       "_savegpr1_", 14, 31,
6003                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
6004   this->savres_define(symtab,
6005                       "_restgpr1_", 14, 31,
6006                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
6007   this->savres_define(symtab,
6008                       "_savefpr_", 14, 31,
6009                       savefpr<big_endian>, savefpr0_tail<big_endian>);
6010   this->savres_define(symtab,
6011                       "_restfpr_", 14, 29,
6012                       restfpr<big_endian>, restfpr0_tail<big_endian>);
6013   this->savres_define(symtab,
6014                       "_restfpr_", 30, 31,
6015                       restfpr<big_endian>, restfpr0_tail<big_endian>);
6016   this->savres_define(symtab,
6017                       "._savef", 14, 31,
6018                       savefpr<big_endian>, savefpr1_tail<big_endian>);
6019   this->savres_define(symtab,
6020                       "._restf", 14, 31,
6021                       restfpr<big_endian>, restfpr1_tail<big_endian>);
6022   this->savres_define(symtab,
6023                       "_savevr_", 20, 31,
6024                       savevr<big_endian>, savevr_tail<big_endian>);
6025   this->savres_define(symtab,
6026                       "_restvr_", 20, 31,
6027                       restvr<big_endian>, restvr_tail<big_endian>);
6028 }
6029
6030 template<int size, bool big_endian>
6031 void
6032 Output_data_save_res<size, big_endian>::savres_define(
6033     Symbol_table* symtab,
6034     const char *name,
6035     unsigned int lo, unsigned int hi,
6036     unsigned char* write_ent(unsigned char*, int),
6037     unsigned char* write_tail(unsigned char*, int))
6038 {
6039   size_t len = strlen(name);
6040   bool writing = false;
6041   char sym[16];
6042
6043   memcpy(sym, name, len);
6044   sym[len + 2] = 0;
6045
6046   for (unsigned int i = lo; i <= hi; i++)
6047     {
6048       sym[len + 0] = i / 10 + '0';
6049       sym[len + 1] = i % 10 + '0';
6050       Symbol* gsym = symtab->lookup(sym);
6051       bool refd = gsym != NULL && gsym->is_undefined();
6052       writing = writing || refd;
6053       if (writing)
6054         {
6055           if (this->contents_ == NULL)
6056             this->contents_ = new unsigned char[this->savres_max];
6057
6058           section_size_type value = this->current_data_size();
6059           unsigned char* p = this->contents_ + value;
6060           if (i != hi)
6061             p = write_ent(p, i);
6062           else
6063             p = write_tail(p, i);
6064           section_size_type cur_size = p - this->contents_;
6065           this->set_current_data_size(cur_size);
6066           if (refd)
6067             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
6068                                           this, value, cur_size - value,
6069                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
6070                                           elfcpp::STV_HIDDEN, 0, false, false);
6071         }
6072     }
6073 }
6074
6075 // Write out save/restore.
6076
6077 template<int size, bool big_endian>
6078 void
6079 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
6080 {
6081   const section_size_type off = this->offset();
6082   const section_size_type oview_size =
6083     convert_to_section_size_type(this->data_size());
6084   unsigned char* const oview = of->get_output_view(off, oview_size);
6085   memcpy(oview, this->contents_, oview_size);
6086   of->write_output_view(off, oview_size, oview);
6087 }
6088
6089
6090 // Create the glink section.
6091
6092 template<int size, bool big_endian>
6093 void
6094 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
6095 {
6096   if (this->glink_ == NULL)
6097     {
6098       this->glink_ = new Output_data_glink<size, big_endian>(this);
6099       this->glink_->add_eh_frame(layout);
6100       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6101                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6102                                       this->glink_, ORDER_TEXT, false);
6103     }
6104 }
6105
6106 // Create a PLT entry for a global symbol.
6107
6108 template<int size, bool big_endian>
6109 void
6110 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
6111                                                  Layout* layout,
6112                                                  Symbol* gsym)
6113 {
6114   if (gsym->type() == elfcpp::STT_GNU_IFUNC
6115       && gsym->can_use_relative_reloc(false))
6116     {
6117       if (this->iplt_ == NULL)
6118         this->make_iplt_section(symtab, layout);
6119       this->iplt_->add_ifunc_entry(gsym);
6120     }
6121   else
6122     {
6123       if (this->plt_ == NULL)
6124         this->make_plt_section(symtab, layout);
6125       this->plt_->add_entry(gsym);
6126     }
6127 }
6128
6129 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6130
6131 template<int size, bool big_endian>
6132 void
6133 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
6134     Symbol_table* symtab,
6135     Layout* layout,
6136     Sized_relobj_file<size, big_endian>* relobj,
6137     unsigned int r_sym)
6138 {
6139   if (this->iplt_ == NULL)
6140     this->make_iplt_section(symtab, layout);
6141   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
6142 }
6143
6144 // Return the number of entries in the PLT.
6145
6146 template<int size, bool big_endian>
6147 unsigned int
6148 Target_powerpc<size, big_endian>::plt_entry_count() const
6149 {
6150   if (this->plt_ == NULL)
6151     return 0;
6152   return this->plt_->entry_count();
6153 }
6154
6155 // Create a GOT entry for local dynamic __tls_get_addr calls.
6156
6157 template<int size, bool big_endian>
6158 unsigned int
6159 Target_powerpc<size, big_endian>::tlsld_got_offset(
6160     Symbol_table* symtab,
6161     Layout* layout,
6162     Sized_relobj_file<size, big_endian>* object)
6163 {
6164   if (this->tlsld_got_offset_ == -1U)
6165     {
6166       gold_assert(symtab != NULL && layout != NULL && object != NULL);
6167       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
6168       Output_data_got_powerpc<size, big_endian>* got
6169         = this->got_section(symtab, layout);
6170       unsigned int got_offset = got->add_constant_pair(0, 0);
6171       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
6172                           got_offset, 0);
6173       this->tlsld_got_offset_ = got_offset;
6174     }
6175   return this->tlsld_got_offset_;
6176 }
6177
6178 // Get the Reference_flags for a particular relocation.
6179
6180 template<int size, bool big_endian>
6181 int
6182 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
6183     unsigned int r_type,
6184     const Target_powerpc* target)
6185 {
6186   int ref = 0;
6187
6188   switch (r_type)
6189     {
6190     case elfcpp::R_POWERPC_NONE:
6191     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6192     case elfcpp::R_POWERPC_GNU_VTENTRY:
6193     case elfcpp::R_PPC64_TOC:
6194       // No symbol reference.
6195       break;
6196
6197     case elfcpp::R_PPC64_ADDR64:
6198     case elfcpp::R_PPC64_UADDR64:
6199     case elfcpp::R_POWERPC_ADDR32:
6200     case elfcpp::R_POWERPC_UADDR32:
6201     case elfcpp::R_POWERPC_ADDR16:
6202     case elfcpp::R_POWERPC_UADDR16:
6203     case elfcpp::R_POWERPC_ADDR16_LO:
6204     case elfcpp::R_POWERPC_ADDR16_HI:
6205     case elfcpp::R_POWERPC_ADDR16_HA:
6206       ref = Symbol::ABSOLUTE_REF;
6207       break;
6208
6209     case elfcpp::R_POWERPC_ADDR24:
6210     case elfcpp::R_POWERPC_ADDR14:
6211     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6212     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6213       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
6214       break;
6215
6216     case elfcpp::R_PPC64_REL64:
6217     case elfcpp::R_POWERPC_REL32:
6218     case elfcpp::R_PPC_LOCAL24PC:
6219     case elfcpp::R_POWERPC_REL16:
6220     case elfcpp::R_POWERPC_REL16_LO:
6221     case elfcpp::R_POWERPC_REL16_HI:
6222     case elfcpp::R_POWERPC_REL16_HA:
6223       ref = Symbol::RELATIVE_REF;
6224       break;
6225
6226     case elfcpp::R_POWERPC_REL24:
6227     case elfcpp::R_PPC_PLTREL24:
6228     case elfcpp::R_POWERPC_REL14:
6229     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6230     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6231       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
6232       break;
6233
6234     case elfcpp::R_POWERPC_GOT16:
6235     case elfcpp::R_POWERPC_GOT16_LO:
6236     case elfcpp::R_POWERPC_GOT16_HI:
6237     case elfcpp::R_POWERPC_GOT16_HA:
6238     case elfcpp::R_PPC64_GOT16_DS:
6239     case elfcpp::R_PPC64_GOT16_LO_DS:
6240     case elfcpp::R_PPC64_TOC16:
6241     case elfcpp::R_PPC64_TOC16_LO:
6242     case elfcpp::R_PPC64_TOC16_HI:
6243     case elfcpp::R_PPC64_TOC16_HA:
6244     case elfcpp::R_PPC64_TOC16_DS:
6245     case elfcpp::R_PPC64_TOC16_LO_DS:
6246       ref = Symbol::RELATIVE_REF;
6247       break;
6248
6249     case elfcpp::R_POWERPC_GOT_TPREL16:
6250     case elfcpp::R_POWERPC_TLS:
6251       ref = Symbol::TLS_REF;
6252       break;
6253
6254     case elfcpp::R_POWERPC_COPY:
6255     case elfcpp::R_POWERPC_GLOB_DAT:
6256     case elfcpp::R_POWERPC_JMP_SLOT:
6257     case elfcpp::R_POWERPC_RELATIVE:
6258     case elfcpp::R_POWERPC_DTPMOD:
6259     default:
6260       // Not expected.  We will give an error later.
6261       break;
6262     }
6263
6264   if (size == 64 && target->abiversion() < 2)
6265     ref |= Symbol::FUNC_DESC_ABI;
6266   return ref;
6267 }
6268
6269 // Report an unsupported relocation against a local symbol.
6270
6271 template<int size, bool big_endian>
6272 void
6273 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
6274     Sized_relobj_file<size, big_endian>* object,
6275     unsigned int r_type)
6276 {
6277   gold_error(_("%s: unsupported reloc %u against local symbol"),
6278              object->name().c_str(), r_type);
6279 }
6280
6281 // We are about to emit a dynamic relocation of type R_TYPE.  If the
6282 // dynamic linker does not support it, issue an error.
6283
6284 template<int size, bool big_endian>
6285 void
6286 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
6287                                                       unsigned int r_type)
6288 {
6289   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
6290
6291   // These are the relocation types supported by glibc for both 32-bit
6292   // and 64-bit powerpc.
6293   switch (r_type)
6294     {
6295     case elfcpp::R_POWERPC_NONE:
6296     case elfcpp::R_POWERPC_RELATIVE:
6297     case elfcpp::R_POWERPC_GLOB_DAT:
6298     case elfcpp::R_POWERPC_DTPMOD:
6299     case elfcpp::R_POWERPC_DTPREL:
6300     case elfcpp::R_POWERPC_TPREL:
6301     case elfcpp::R_POWERPC_JMP_SLOT:
6302     case elfcpp::R_POWERPC_COPY:
6303     case elfcpp::R_POWERPC_IRELATIVE:
6304     case elfcpp::R_POWERPC_ADDR32:
6305     case elfcpp::R_POWERPC_UADDR32:
6306     case elfcpp::R_POWERPC_ADDR24:
6307     case elfcpp::R_POWERPC_ADDR16:
6308     case elfcpp::R_POWERPC_UADDR16:
6309     case elfcpp::R_POWERPC_ADDR16_LO:
6310     case elfcpp::R_POWERPC_ADDR16_HI:
6311     case elfcpp::R_POWERPC_ADDR16_HA:
6312     case elfcpp::R_POWERPC_ADDR14:
6313     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6314     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6315     case elfcpp::R_POWERPC_REL32:
6316     case elfcpp::R_POWERPC_REL24:
6317     case elfcpp::R_POWERPC_TPREL16:
6318     case elfcpp::R_POWERPC_TPREL16_LO:
6319     case elfcpp::R_POWERPC_TPREL16_HI:
6320     case elfcpp::R_POWERPC_TPREL16_HA:
6321       return;
6322
6323     default:
6324       break;
6325     }
6326
6327   if (size == 64)
6328     {
6329       switch (r_type)
6330         {
6331           // These are the relocation types supported only on 64-bit.
6332         case elfcpp::R_PPC64_ADDR64:
6333         case elfcpp::R_PPC64_UADDR64:
6334         case elfcpp::R_PPC64_JMP_IREL:
6335         case elfcpp::R_PPC64_ADDR16_DS:
6336         case elfcpp::R_PPC64_ADDR16_LO_DS:
6337         case elfcpp::R_PPC64_ADDR16_HIGH:
6338         case elfcpp::R_PPC64_ADDR16_HIGHA:
6339         case elfcpp::R_PPC64_ADDR16_HIGHER:
6340         case elfcpp::R_PPC64_ADDR16_HIGHEST:
6341         case elfcpp::R_PPC64_ADDR16_HIGHERA:
6342         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6343         case elfcpp::R_PPC64_REL64:
6344         case elfcpp::R_POWERPC_ADDR30:
6345         case elfcpp::R_PPC64_TPREL16_DS:
6346         case elfcpp::R_PPC64_TPREL16_LO_DS:
6347         case elfcpp::R_PPC64_TPREL16_HIGH:
6348         case elfcpp::R_PPC64_TPREL16_HIGHA:
6349         case elfcpp::R_PPC64_TPREL16_HIGHER:
6350         case elfcpp::R_PPC64_TPREL16_HIGHEST:
6351         case elfcpp::R_PPC64_TPREL16_HIGHERA:
6352         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6353           return;
6354
6355         default:
6356           break;
6357         }
6358     }
6359   else
6360     {
6361       switch (r_type)
6362         {
6363           // These are the relocation types supported only on 32-bit.
6364           // ??? glibc ld.so doesn't need to support these.
6365         case elfcpp::R_POWERPC_DTPREL16:
6366         case elfcpp::R_POWERPC_DTPREL16_LO:
6367         case elfcpp::R_POWERPC_DTPREL16_HI:
6368         case elfcpp::R_POWERPC_DTPREL16_HA:
6369           return;
6370
6371         default:
6372           break;
6373         }
6374     }
6375
6376   // This prevents us from issuing more than one error per reloc
6377   // section.  But we can still wind up issuing more than one
6378   // error per object file.
6379   if (this->issued_non_pic_error_)
6380     return;
6381   gold_assert(parameters->options().output_is_position_independent());
6382   object->error(_("requires unsupported dynamic reloc; "
6383                   "recompile with -fPIC"));
6384   this->issued_non_pic_error_ = true;
6385   return;
6386 }
6387
6388 // Return whether we need to make a PLT entry for a relocation of the
6389 // given type against a STT_GNU_IFUNC symbol.
6390
6391 template<int size, bool big_endian>
6392 bool
6393 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
6394      Target_powerpc<size, big_endian>* target,
6395      Sized_relobj_file<size, big_endian>* object,
6396      unsigned int r_type,
6397      bool report_err)
6398 {
6399   // In non-pic code any reference will resolve to the plt call stub
6400   // for the ifunc symbol.
6401   if ((size == 32 || target->abiversion() >= 2)
6402       && !parameters->options().output_is_position_independent())
6403     return true;
6404
6405   switch (r_type)
6406     {
6407     // Word size refs from data sections are OK, but don't need a PLT entry.
6408     case elfcpp::R_POWERPC_ADDR32:
6409     case elfcpp::R_POWERPC_UADDR32:
6410       if (size == 32)
6411         return false;
6412       break;
6413
6414     case elfcpp::R_PPC64_ADDR64:
6415     case elfcpp::R_PPC64_UADDR64:
6416       if (size == 64)
6417         return false;
6418       break;
6419
6420     // GOT refs are good, but also don't need a PLT entry.
6421     case elfcpp::R_POWERPC_GOT16:
6422     case elfcpp::R_POWERPC_GOT16_LO:
6423     case elfcpp::R_POWERPC_GOT16_HI:
6424     case elfcpp::R_POWERPC_GOT16_HA:
6425     case elfcpp::R_PPC64_GOT16_DS:
6426     case elfcpp::R_PPC64_GOT16_LO_DS:
6427       return false;
6428
6429     // Function calls are good, and these do need a PLT entry.
6430     case elfcpp::R_POWERPC_ADDR24:
6431     case elfcpp::R_POWERPC_ADDR14:
6432     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6433     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6434     case elfcpp::R_POWERPC_REL24:
6435     case elfcpp::R_PPC_PLTREL24:
6436     case elfcpp::R_POWERPC_REL14:
6437     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6438     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6439       return true;
6440
6441     default:
6442       break;
6443     }
6444
6445   // Anything else is a problem.
6446   // If we are building a static executable, the libc startup function
6447   // responsible for applying indirect function relocations is going
6448   // to complain about the reloc type.
6449   // If we are building a dynamic executable, we will have a text
6450   // relocation.  The dynamic loader will set the text segment
6451   // writable and non-executable to apply text relocations.  So we'll
6452   // segfault when trying to run the indirection function to resolve
6453   // the reloc.
6454   if (report_err)
6455     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
6456                object->name().c_str(), r_type);
6457   return false;
6458 }
6459
6460 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6461 // reloc.
6462
6463 static bool
6464 ok_lo_toc_insn(uint32_t insn, unsigned int r_type)
6465 {
6466   return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
6467           || (insn & (0x3f << 26)) == 14u << 26 /* addi */
6468           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6469           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6470           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6471           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6472           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6473           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6474           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6475           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6476           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6477           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6478           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6479           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6480           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6481           || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
6482           || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
6483               /* Exclude lfqu by testing reloc.  If relocs are ever
6484                  defined for the reduced D field in psq_lu then those
6485                  will need testing too.  */
6486               && r_type != elfcpp::R_PPC64_TOC16_LO
6487               && r_type != elfcpp::R_POWERPC_GOT16_LO)
6488           || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
6489               && (insn & 1) == 0)
6490           || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
6491           || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
6492               /* Exclude stfqu.  psq_stu as above for psq_lu.  */
6493               && r_type != elfcpp::R_PPC64_TOC16_LO
6494               && r_type != elfcpp::R_POWERPC_GOT16_LO)
6495           || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
6496               && (insn & 1) == 0));
6497 }
6498
6499 // Scan a relocation for a local symbol.
6500
6501 template<int size, bool big_endian>
6502 inline void
6503 Target_powerpc<size, big_endian>::Scan::local(
6504     Symbol_table* symtab,
6505     Layout* layout,
6506     Target_powerpc<size, big_endian>* target,
6507     Sized_relobj_file<size, big_endian>* object,
6508     unsigned int data_shndx,
6509     Output_section* output_section,
6510     const elfcpp::Rela<size, big_endian>& reloc,
6511     unsigned int r_type,
6512     const elfcpp::Sym<size, big_endian>& lsym,
6513     bool is_discarded)
6514 {
6515   this->maybe_skip_tls_get_addr_call(target, r_type, NULL);
6516
6517   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6518       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6519     {
6520       this->expect_tls_get_addr_call();
6521       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6522       if (tls_type != tls::TLSOPT_NONE)
6523         this->skip_next_tls_get_addr_call();
6524     }
6525   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6526            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6527     {
6528       this->expect_tls_get_addr_call();
6529       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6530       if (tls_type != tls::TLSOPT_NONE)
6531         this->skip_next_tls_get_addr_call();
6532     }
6533
6534   Powerpc_relobj<size, big_endian>* ppc_object
6535     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6536
6537   if (is_discarded)
6538     {
6539       if (size == 64
6540           && data_shndx == ppc_object->opd_shndx()
6541           && r_type == elfcpp::R_PPC64_ADDR64)
6542         ppc_object->set_opd_discard(reloc.get_r_offset());
6543       return;
6544     }
6545
6546   // A local STT_GNU_IFUNC symbol may require a PLT entry.
6547   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6548   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6549     {
6550       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6551       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6552                           r_type, r_sym, reloc.get_r_addend());
6553       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6554     }
6555
6556   switch (r_type)
6557     {
6558     case elfcpp::R_POWERPC_NONE:
6559     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6560     case elfcpp::R_POWERPC_GNU_VTENTRY:
6561     case elfcpp::R_POWERPC_TLS:
6562     case elfcpp::R_PPC64_ENTRY:
6563       break;
6564
6565     case elfcpp::R_PPC64_TOC:
6566       {
6567         Output_data_got_powerpc<size, big_endian>* got
6568           = target->got_section(symtab, layout);
6569         if (parameters->options().output_is_position_independent())
6570           {
6571             Address off = reloc.get_r_offset();
6572             if (size == 64
6573                 && target->abiversion() < 2
6574                 && data_shndx == ppc_object->opd_shndx()
6575                 && ppc_object->get_opd_discard(off - 8))
6576               break;
6577
6578             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6579             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6580             rela_dyn->add_output_section_relative(got->output_section(),
6581                                                   elfcpp::R_POWERPC_RELATIVE,
6582                                                   output_section,
6583                                                   object, data_shndx, off,
6584                                                   symobj->toc_base_offset());
6585           }
6586       }
6587       break;
6588
6589     case elfcpp::R_PPC64_ADDR64:
6590     case elfcpp::R_PPC64_UADDR64:
6591     case elfcpp::R_POWERPC_ADDR32:
6592     case elfcpp::R_POWERPC_UADDR32:
6593     case elfcpp::R_POWERPC_ADDR24:
6594     case elfcpp::R_POWERPC_ADDR16:
6595     case elfcpp::R_POWERPC_ADDR16_LO:
6596     case elfcpp::R_POWERPC_ADDR16_HI:
6597     case elfcpp::R_POWERPC_ADDR16_HA:
6598     case elfcpp::R_POWERPC_UADDR16:
6599     case elfcpp::R_PPC64_ADDR16_HIGH:
6600     case elfcpp::R_PPC64_ADDR16_HIGHA:
6601     case elfcpp::R_PPC64_ADDR16_HIGHER:
6602     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6603     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6604     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6605     case elfcpp::R_PPC64_ADDR16_DS:
6606     case elfcpp::R_PPC64_ADDR16_LO_DS:
6607     case elfcpp::R_POWERPC_ADDR14:
6608     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6609     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6610       // If building a shared library (or a position-independent
6611       // executable), we need to create a dynamic relocation for
6612       // this location.
6613       if (parameters->options().output_is_position_independent()
6614           || (size == 64 && is_ifunc && target->abiversion() < 2))
6615         {
6616           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6617                                                              is_ifunc);
6618           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6619           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
6620               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
6621             {
6622               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6623                                      : elfcpp::R_POWERPC_RELATIVE);
6624               rela_dyn->add_local_relative(object, r_sym, dynrel,
6625                                            output_section, data_shndx,
6626                                            reloc.get_r_offset(),
6627                                            reloc.get_r_addend(), false);
6628             }
6629           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
6630             {
6631               check_non_pic(object, r_type);
6632               rela_dyn->add_local(object, r_sym, r_type, output_section,
6633                                   data_shndx, reloc.get_r_offset(),
6634                                   reloc.get_r_addend());
6635             }
6636           else
6637             {
6638               gold_assert(lsym.get_st_value() == 0);
6639               unsigned int shndx = lsym.get_st_shndx();
6640               bool is_ordinary;
6641               shndx = object->adjust_sym_shndx(r_sym, shndx,
6642                                                &is_ordinary);
6643               if (!is_ordinary)
6644                 object->error(_("section symbol %u has bad shndx %u"),
6645                               r_sym, shndx);
6646               else
6647                 rela_dyn->add_local_section(object, shndx, r_type,
6648                                             output_section, data_shndx,
6649                                             reloc.get_r_offset());
6650             }
6651         }
6652       break;
6653
6654     case elfcpp::R_POWERPC_REL24:
6655     case elfcpp::R_PPC_PLTREL24:
6656     case elfcpp::R_PPC_LOCAL24PC:
6657     case elfcpp::R_POWERPC_REL14:
6658     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6659     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6660       if (!is_ifunc)
6661         {
6662           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6663           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6664                               r_type, r_sym, reloc.get_r_addend());
6665         }
6666       break;
6667
6668     case elfcpp::R_PPC64_TOCSAVE:
6669       // R_PPC64_TOCSAVE follows a call instruction to indicate the
6670       // caller has already saved r2 and thus a plt call stub need not
6671       // save r2.
6672       if (size == 64
6673           && target->mark_pltcall(ppc_object, data_shndx,
6674                                   reloc.get_r_offset() - 4, symtab))
6675         {
6676           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6677           unsigned int shndx = lsym.get_st_shndx();
6678           bool is_ordinary;
6679           shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6680           if (!is_ordinary)
6681             object->error(_("tocsave symbol %u has bad shndx %u"),
6682                           r_sym, shndx);
6683           else
6684             target->add_tocsave(ppc_object, shndx,
6685                                 lsym.get_st_value() + reloc.get_r_addend());
6686         }
6687       break;
6688
6689     case elfcpp::R_PPC64_REL64:
6690     case elfcpp::R_POWERPC_REL32:
6691     case elfcpp::R_POWERPC_REL16:
6692     case elfcpp::R_POWERPC_REL16_LO:
6693     case elfcpp::R_POWERPC_REL16_HI:
6694     case elfcpp::R_POWERPC_REL16_HA:
6695     case elfcpp::R_POWERPC_REL16DX_HA:
6696     case elfcpp::R_POWERPC_SECTOFF:
6697     case elfcpp::R_POWERPC_SECTOFF_LO:
6698     case elfcpp::R_POWERPC_SECTOFF_HI:
6699     case elfcpp::R_POWERPC_SECTOFF_HA:
6700     case elfcpp::R_PPC64_SECTOFF_DS:
6701     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6702     case elfcpp::R_POWERPC_TPREL16:
6703     case elfcpp::R_POWERPC_TPREL16_LO:
6704     case elfcpp::R_POWERPC_TPREL16_HI:
6705     case elfcpp::R_POWERPC_TPREL16_HA:
6706     case elfcpp::R_PPC64_TPREL16_DS:
6707     case elfcpp::R_PPC64_TPREL16_LO_DS:
6708     case elfcpp::R_PPC64_TPREL16_HIGH:
6709     case elfcpp::R_PPC64_TPREL16_HIGHA:
6710     case elfcpp::R_PPC64_TPREL16_HIGHER:
6711     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6712     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6713     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6714     case elfcpp::R_POWERPC_DTPREL16:
6715     case elfcpp::R_POWERPC_DTPREL16_LO:
6716     case elfcpp::R_POWERPC_DTPREL16_HI:
6717     case elfcpp::R_POWERPC_DTPREL16_HA:
6718     case elfcpp::R_PPC64_DTPREL16_DS:
6719     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6720     case elfcpp::R_PPC64_DTPREL16_HIGH:
6721     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6722     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6723     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6724     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6725     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6726     case elfcpp::R_PPC64_TLSGD:
6727     case elfcpp::R_PPC64_TLSLD:
6728     case elfcpp::R_PPC64_ADDR64_LOCAL:
6729       break;
6730
6731     case elfcpp::R_POWERPC_GOT16:
6732     case elfcpp::R_POWERPC_GOT16_LO:
6733     case elfcpp::R_POWERPC_GOT16_HI:
6734     case elfcpp::R_POWERPC_GOT16_HA:
6735     case elfcpp::R_PPC64_GOT16_DS:
6736     case elfcpp::R_PPC64_GOT16_LO_DS:
6737       {
6738         // The symbol requires a GOT entry.
6739         Output_data_got_powerpc<size, big_endian>* got
6740           = target->got_section(symtab, layout);
6741         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6742
6743         if (!parameters->options().output_is_position_independent())
6744           {
6745             if (is_ifunc
6746                 && (size == 32 || target->abiversion() >= 2))
6747               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6748             else
6749               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6750           }
6751         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
6752           {
6753             // If we are generating a shared object or a pie, this
6754             // symbol's GOT entry will be set by a dynamic relocation.
6755             unsigned int off;
6756             off = got->add_constant(0);
6757             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
6758
6759             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6760                                                                is_ifunc);
6761             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6762                                    : elfcpp::R_POWERPC_RELATIVE);
6763             rela_dyn->add_local_relative(object, r_sym, dynrel,
6764                                          got, off, 0, false);
6765           }
6766       }
6767       break;
6768
6769     case elfcpp::R_PPC64_TOC16:
6770     case elfcpp::R_PPC64_TOC16_LO:
6771     case elfcpp::R_PPC64_TOC16_HI:
6772     case elfcpp::R_PPC64_TOC16_HA:
6773     case elfcpp::R_PPC64_TOC16_DS:
6774     case elfcpp::R_PPC64_TOC16_LO_DS:
6775       // We need a GOT section.
6776       target->got_section(symtab, layout);
6777       break;
6778
6779     case elfcpp::R_POWERPC_GOT_TLSGD16:
6780     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6781     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6782     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6783       {
6784         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6785         if (tls_type == tls::TLSOPT_NONE)
6786           {
6787             Output_data_got_powerpc<size, big_endian>* got
6788               = target->got_section(symtab, layout);
6789             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6790             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6791             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
6792                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
6793           }
6794         else if (tls_type == tls::TLSOPT_TO_LE)
6795           {
6796             // no GOT relocs needed for Local Exec.
6797           }
6798         else
6799           gold_unreachable();
6800       }
6801       break;
6802
6803     case elfcpp::R_POWERPC_GOT_TLSLD16:
6804     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6805     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6806     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6807       {
6808         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6809         if (tls_type == tls::TLSOPT_NONE)
6810           target->tlsld_got_offset(symtab, layout, object);
6811         else if (tls_type == tls::TLSOPT_TO_LE)
6812           {
6813             // no GOT relocs needed for Local Exec.
6814             if (parameters->options().emit_relocs())
6815               {
6816                 Output_section* os = layout->tls_segment()->first_section();
6817                 gold_assert(os != NULL);
6818                 os->set_needs_symtab_index();
6819               }
6820           }
6821         else
6822           gold_unreachable();
6823       }
6824       break;
6825
6826     case elfcpp::R_POWERPC_GOT_DTPREL16:
6827     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6828     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6829     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6830       {
6831         Output_data_got_powerpc<size, big_endian>* got
6832           = target->got_section(symtab, layout);
6833         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6834         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
6835       }
6836       break;
6837
6838     case elfcpp::R_POWERPC_GOT_TPREL16:
6839     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6840     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6841     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6842       {
6843         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
6844         if (tls_type == tls::TLSOPT_NONE)
6845           {
6846             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6847             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
6848               {
6849                 Output_data_got_powerpc<size, big_endian>* got
6850                   = target->got_section(symtab, layout);
6851                 unsigned int off = got->add_constant(0);
6852                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
6853
6854                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6855                 rela_dyn->add_symbolless_local_addend(object, r_sym,
6856                                                       elfcpp::R_POWERPC_TPREL,
6857                                                       got, off, 0);
6858               }
6859           }
6860         else if (tls_type == tls::TLSOPT_TO_LE)
6861           {
6862             // no GOT relocs needed for Local Exec.
6863           }
6864         else
6865           gold_unreachable();
6866       }
6867       break;
6868
6869     default:
6870       unsupported_reloc_local(object, r_type);
6871       break;
6872     }
6873
6874   if (size == 64
6875       && parameters->options().toc_optimize())
6876     {
6877       if (data_shndx == ppc_object->toc_shndx())
6878         {
6879           bool ok = true;
6880           if (r_type != elfcpp::R_PPC64_ADDR64
6881               || (is_ifunc && target->abiversion() < 2))
6882             ok = false;
6883           else if (parameters->options().output_is_position_independent())
6884             {
6885               if (is_ifunc)
6886                 ok = false;
6887               else
6888                 {
6889                   unsigned int shndx = lsym.get_st_shndx();
6890                   if (shndx >= elfcpp::SHN_LORESERVE
6891                       && shndx != elfcpp::SHN_XINDEX)
6892                     ok = false;
6893                 }
6894             }
6895           if (!ok)
6896             ppc_object->set_no_toc_opt(reloc.get_r_offset());
6897         }
6898
6899       enum {no_check, check_lo, check_ha} insn_check;
6900       switch (r_type)
6901         {
6902         default:
6903           insn_check = no_check;
6904           break;
6905
6906         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6907         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6908         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6909         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6910         case elfcpp::R_POWERPC_GOT16_HA:
6911         case elfcpp::R_PPC64_TOC16_HA:
6912           insn_check = check_ha;
6913           break;
6914
6915         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6916         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6917         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6918         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6919         case elfcpp::R_POWERPC_GOT16_LO:
6920         case elfcpp::R_PPC64_GOT16_LO_DS:
6921         case elfcpp::R_PPC64_TOC16_LO:
6922         case elfcpp::R_PPC64_TOC16_LO_DS:
6923           insn_check = check_lo;
6924           break;
6925         }
6926
6927       section_size_type slen;
6928       const unsigned char* view = NULL;
6929       if (insn_check != no_check)
6930         {
6931           view = ppc_object->section_contents(data_shndx, &slen, false);
6932           section_size_type off =
6933             convert_to_section_size_type(reloc.get_r_offset()) & -4;
6934           if (off < slen)
6935             {
6936               uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
6937               if (insn_check == check_lo
6938                   ? !ok_lo_toc_insn(insn, r_type)
6939                   : ((insn & ((0x3f << 26) | 0x1f << 16))
6940                      != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
6941                 {
6942                   ppc_object->set_no_toc_opt();
6943                   gold_warning(_("%s: toc optimization is not supported "
6944                                  "for %#08x instruction"),
6945                                ppc_object->name().c_str(), insn);
6946                 }
6947             }
6948         }
6949
6950       switch (r_type)
6951         {
6952         default:
6953           break;
6954         case elfcpp::R_PPC64_TOC16:
6955         case elfcpp::R_PPC64_TOC16_LO:
6956         case elfcpp::R_PPC64_TOC16_HI:
6957         case elfcpp::R_PPC64_TOC16_HA:
6958         case elfcpp::R_PPC64_TOC16_DS:
6959         case elfcpp::R_PPC64_TOC16_LO_DS:
6960           unsigned int shndx = lsym.get_st_shndx();
6961           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6962           bool is_ordinary;
6963           shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6964           if (is_ordinary && shndx == ppc_object->toc_shndx())
6965             {
6966               Address dst_off = lsym.get_st_value() + reloc.get_r_addend();
6967               if (dst_off < ppc_object->section_size(shndx))
6968                 {
6969                   bool ok = false;
6970                   if (r_type == elfcpp::R_PPC64_TOC16_HA)
6971                     ok = true;
6972                   else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
6973                     {
6974                       // Need to check that the insn is a ld
6975                       if (!view)
6976                         view = ppc_object->section_contents(data_shndx,
6977                                                             &slen,
6978                                                             false);
6979                       section_size_type off =
6980                         (convert_to_section_size_type(reloc.get_r_offset())
6981                          + (big_endian ? -2 : 3));
6982                       if (off < slen
6983                           && (view[off] & (0x3f << 2)) == 58u << 2)
6984                         ok = true;
6985                     }
6986                   if (!ok)
6987                     ppc_object->set_no_toc_opt(dst_off);
6988                 }
6989             }
6990           break;
6991         }
6992     }
6993
6994   if (size == 32)
6995     {
6996       switch (r_type)
6997         {
6998         case elfcpp::R_POWERPC_REL32:
6999           if (ppc_object->got2_shndx() != 0
7000               && parameters->options().output_is_position_independent())
7001             {
7002               unsigned int shndx = lsym.get_st_shndx();
7003               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7004               bool is_ordinary;
7005               shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7006               if (is_ordinary && shndx == ppc_object->got2_shndx()
7007                   && (ppc_object->section_flags(data_shndx)
7008                       & elfcpp::SHF_EXECINSTR) != 0)
7009                 gold_error(_("%s: unsupported -mbss-plt code"),
7010                            ppc_object->name().c_str());
7011             }
7012           break;
7013         default:
7014           break;
7015         }
7016     }
7017
7018   switch (r_type)
7019     {
7020     case elfcpp::R_POWERPC_GOT_TLSLD16:
7021     case elfcpp::R_POWERPC_GOT_TLSGD16:
7022     case elfcpp::R_POWERPC_GOT_TPREL16:
7023     case elfcpp::R_POWERPC_GOT_DTPREL16:
7024     case elfcpp::R_POWERPC_GOT16:
7025     case elfcpp::R_PPC64_GOT16_DS:
7026     case elfcpp::R_PPC64_TOC16:
7027     case elfcpp::R_PPC64_TOC16_DS:
7028       ppc_object->set_has_small_toc_reloc();
7029     default:
7030       break;
7031     }
7032 }
7033
7034 // Report an unsupported relocation against a global symbol.
7035
7036 template<int size, bool big_endian>
7037 void
7038 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
7039     Sized_relobj_file<size, big_endian>* object,
7040     unsigned int r_type,
7041     Symbol* gsym)
7042 {
7043   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7044              object->name().c_str(), r_type, gsym->demangled_name().c_str());
7045 }
7046
7047 // Scan a relocation for a global symbol.
7048
7049 template<int size, bool big_endian>
7050 inline void
7051 Target_powerpc<size, big_endian>::Scan::global(
7052     Symbol_table* symtab,
7053     Layout* layout,
7054     Target_powerpc<size, big_endian>* target,
7055     Sized_relobj_file<size, big_endian>* object,
7056     unsigned int data_shndx,
7057     Output_section* output_section,
7058     const elfcpp::Rela<size, big_endian>& reloc,
7059     unsigned int r_type,
7060     Symbol* gsym)
7061 {
7062   if (this->maybe_skip_tls_get_addr_call(target, r_type, gsym)
7063       == Track_tls::SKIP)
7064     return;
7065
7066   if (target->replace_tls_get_addr(gsym))
7067     // Change a __tls_get_addr reference to __tls_get_addr_opt
7068     // so dynamic relocs are emitted against the latter symbol.
7069     gsym = target->tls_get_addr_opt();
7070
7071   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7072       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7073     {
7074       this->expect_tls_get_addr_call();
7075       const bool final = gsym->final_value_is_known();
7076       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7077       if (tls_type != tls::TLSOPT_NONE)
7078         this->skip_next_tls_get_addr_call();
7079     }
7080   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7081            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7082     {
7083       this->expect_tls_get_addr_call();
7084       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7085       if (tls_type != tls::TLSOPT_NONE)
7086         this->skip_next_tls_get_addr_call();
7087     }
7088
7089   Powerpc_relobj<size, big_endian>* ppc_object
7090     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7091
7092   // A STT_GNU_IFUNC symbol may require a PLT entry.
7093   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
7094   bool pushed_ifunc = false;
7095   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
7096     {
7097       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7098       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7099                           r_type, r_sym, reloc.get_r_addend());
7100       target->make_plt_entry(symtab, layout, gsym);
7101       pushed_ifunc = true;
7102     }
7103
7104   switch (r_type)
7105     {
7106     case elfcpp::R_POWERPC_NONE:
7107     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7108     case elfcpp::R_POWERPC_GNU_VTENTRY:
7109     case elfcpp::R_PPC_LOCAL24PC:
7110     case elfcpp::R_POWERPC_TLS:
7111     case elfcpp::R_PPC64_ENTRY:
7112       break;
7113
7114     case elfcpp::R_PPC64_TOC:
7115       {
7116         Output_data_got_powerpc<size, big_endian>* got
7117           = target->got_section(symtab, layout);
7118         if (parameters->options().output_is_position_independent())
7119           {
7120             Address off = reloc.get_r_offset();
7121             if (size == 64
7122                 && data_shndx == ppc_object->opd_shndx()
7123                 && ppc_object->get_opd_discard(off - 8))
7124               break;
7125
7126             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7127             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
7128             if (data_shndx != ppc_object->opd_shndx())
7129               symobj = static_cast
7130                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
7131             rela_dyn->add_output_section_relative(got->output_section(),
7132                                                   elfcpp::R_POWERPC_RELATIVE,
7133                                                   output_section,
7134                                                   object, data_shndx, off,
7135                                                   symobj->toc_base_offset());
7136           }
7137       }
7138       break;
7139
7140     case elfcpp::R_PPC64_ADDR64:
7141       if (size == 64
7142           && target->abiversion() < 2
7143           && data_shndx == ppc_object->opd_shndx()
7144           && (gsym->is_defined_in_discarded_section()
7145               || gsym->object() != object))
7146         {
7147           ppc_object->set_opd_discard(reloc.get_r_offset());
7148           break;
7149         }
7150       // Fall through.
7151     case elfcpp::R_PPC64_UADDR64:
7152     case elfcpp::R_POWERPC_ADDR32:
7153     case elfcpp::R_POWERPC_UADDR32:
7154     case elfcpp::R_POWERPC_ADDR24:
7155     case elfcpp::R_POWERPC_ADDR16:
7156     case elfcpp::R_POWERPC_ADDR16_LO:
7157     case elfcpp::R_POWERPC_ADDR16_HI:
7158     case elfcpp::R_POWERPC_ADDR16_HA:
7159     case elfcpp::R_POWERPC_UADDR16:
7160     case elfcpp::R_PPC64_ADDR16_HIGH:
7161     case elfcpp::R_PPC64_ADDR16_HIGHA:
7162     case elfcpp::R_PPC64_ADDR16_HIGHER:
7163     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7164     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7165     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7166     case elfcpp::R_PPC64_ADDR16_DS:
7167     case elfcpp::R_PPC64_ADDR16_LO_DS:
7168     case elfcpp::R_POWERPC_ADDR14:
7169     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7170     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7171       {
7172         // Make a PLT entry if necessary.
7173         if (gsym->needs_plt_entry())
7174           {
7175             // Since this is not a PC-relative relocation, we may be
7176             // taking the address of a function. In that case we need to
7177             // set the entry in the dynamic symbol table to the address of
7178             // the PLT call stub.
7179             bool need_ifunc_plt = false;
7180             if ((size == 32 || target->abiversion() >= 2)
7181                 && gsym->is_from_dynobj()
7182                 && !parameters->options().output_is_position_independent())
7183               {
7184                 gsym->set_needs_dynsym_value();
7185                 need_ifunc_plt = true;
7186               }
7187             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
7188               {
7189                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7190                 target->push_branch(ppc_object, data_shndx,
7191                                     reloc.get_r_offset(), r_type, r_sym,
7192                                     reloc.get_r_addend());
7193                 target->make_plt_entry(symtab, layout, gsym);
7194               }
7195           }
7196         // Make a dynamic relocation if necessary.
7197         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
7198             || (size == 64 && is_ifunc && target->abiversion() < 2))
7199           {
7200             if (!parameters->options().output_is_position_independent()
7201                 && gsym->may_need_copy_reloc())
7202               {
7203                 target->copy_reloc(symtab, layout, object,
7204                                    data_shndx, output_section, gsym, reloc);
7205               }
7206             else if ((((size == 32
7207                         && r_type == elfcpp::R_POWERPC_ADDR32)
7208                        || (size == 64
7209                            && r_type == elfcpp::R_PPC64_ADDR64
7210                            && target->abiversion() >= 2))
7211                       && gsym->can_use_relative_reloc(false)
7212                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
7213                            && parameters->options().shared()))
7214                      || (size == 64
7215                          && r_type == elfcpp::R_PPC64_ADDR64
7216                          && target->abiversion() < 2
7217                          && (gsym->can_use_relative_reloc(false)
7218                              || data_shndx == ppc_object->opd_shndx())))
7219               {
7220                 Reloc_section* rela_dyn
7221                   = target->rela_dyn_section(symtab, layout, is_ifunc);
7222                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7223                                        : elfcpp::R_POWERPC_RELATIVE);
7224                 rela_dyn->add_symbolless_global_addend(
7225                     gsym, dynrel, output_section, object, data_shndx,
7226                     reloc.get_r_offset(), reloc.get_r_addend());
7227               }
7228             else
7229               {
7230                 Reloc_section* rela_dyn
7231                   = target->rela_dyn_section(symtab, layout, is_ifunc);
7232                 check_non_pic(object, r_type);
7233                 rela_dyn->add_global(gsym, r_type, output_section,
7234                                      object, data_shndx,
7235                                      reloc.get_r_offset(),
7236                                      reloc.get_r_addend());
7237
7238                 if (size == 64
7239                     && parameters->options().toc_optimize()
7240                     && data_shndx == ppc_object->toc_shndx())
7241                   ppc_object->set_no_toc_opt(reloc.get_r_offset());
7242               }
7243           }
7244       }
7245       break;
7246
7247     case elfcpp::R_PPC_PLTREL24:
7248     case elfcpp::R_POWERPC_REL24:
7249       if (!is_ifunc)
7250         {
7251           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7252           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7253                               r_type, r_sym, reloc.get_r_addend());
7254           if (gsym->needs_plt_entry()
7255               || (!gsym->final_value_is_known()
7256                   && (gsym->is_undefined()
7257                       || gsym->is_from_dynobj()
7258                       || gsym->is_preemptible())))
7259             target->make_plt_entry(symtab, layout, gsym);
7260         }
7261       // Fall through.
7262
7263     case elfcpp::R_PPC64_REL64:
7264     case elfcpp::R_POWERPC_REL32:
7265       // Make a dynamic relocation if necessary.
7266       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
7267         {
7268           if (!parameters->options().output_is_position_independent()
7269               && gsym->may_need_copy_reloc())
7270             {
7271               target->copy_reloc(symtab, layout, object,
7272                                  data_shndx, output_section, gsym,
7273                                  reloc);
7274             }
7275           else
7276             {
7277               Reloc_section* rela_dyn
7278                 = target->rela_dyn_section(symtab, layout, is_ifunc);
7279               check_non_pic(object, r_type);
7280               rela_dyn->add_global(gsym, r_type, output_section, object,
7281                                    data_shndx, reloc.get_r_offset(),
7282                                    reloc.get_r_addend());
7283             }
7284         }
7285       break;
7286
7287     case elfcpp::R_POWERPC_REL14:
7288     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7289     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7290       if (!is_ifunc)
7291         {
7292           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7293           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7294                               r_type, r_sym, reloc.get_r_addend());
7295         }
7296       break;
7297
7298     case elfcpp::R_PPC64_TOCSAVE:
7299       // R_PPC64_TOCSAVE follows a call instruction to indicate the
7300       // caller has already saved r2 and thus a plt call stub need not
7301       // save r2.
7302       if (size == 64
7303           && target->mark_pltcall(ppc_object, data_shndx,
7304                                   reloc.get_r_offset() - 4, symtab))
7305         {
7306           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7307           bool is_ordinary;
7308           unsigned int shndx = gsym->shndx(&is_ordinary);
7309           if (!is_ordinary)
7310             object->error(_("tocsave symbol %u has bad shndx %u"),
7311                           r_sym, shndx);
7312           else
7313             {
7314               Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7315               target->add_tocsave(ppc_object, shndx,
7316                                   sym->value() + reloc.get_r_addend());
7317             }
7318         }
7319       break;
7320
7321     case elfcpp::R_POWERPC_REL16:
7322     case elfcpp::R_POWERPC_REL16_LO:
7323     case elfcpp::R_POWERPC_REL16_HI:
7324     case elfcpp::R_POWERPC_REL16_HA:
7325     case elfcpp::R_POWERPC_REL16DX_HA:
7326     case elfcpp::R_POWERPC_SECTOFF:
7327     case elfcpp::R_POWERPC_SECTOFF_LO:
7328     case elfcpp::R_POWERPC_SECTOFF_HI:
7329     case elfcpp::R_POWERPC_SECTOFF_HA:
7330     case elfcpp::R_PPC64_SECTOFF_DS:
7331     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7332     case elfcpp::R_POWERPC_TPREL16:
7333     case elfcpp::R_POWERPC_TPREL16_LO:
7334     case elfcpp::R_POWERPC_TPREL16_HI:
7335     case elfcpp::R_POWERPC_TPREL16_HA:
7336     case elfcpp::R_PPC64_TPREL16_DS:
7337     case elfcpp::R_PPC64_TPREL16_LO_DS:
7338     case elfcpp::R_PPC64_TPREL16_HIGH:
7339     case elfcpp::R_PPC64_TPREL16_HIGHA:
7340     case elfcpp::R_PPC64_TPREL16_HIGHER:
7341     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7342     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7343     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7344     case elfcpp::R_POWERPC_DTPREL16:
7345     case elfcpp::R_POWERPC_DTPREL16_LO:
7346     case elfcpp::R_POWERPC_DTPREL16_HI:
7347     case elfcpp::R_POWERPC_DTPREL16_HA:
7348     case elfcpp::R_PPC64_DTPREL16_DS:
7349     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7350     case elfcpp::R_PPC64_DTPREL16_HIGH:
7351     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7352     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7353     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7354     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7355     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7356     case elfcpp::R_PPC64_TLSGD:
7357     case elfcpp::R_PPC64_TLSLD:
7358     case elfcpp::R_PPC64_ADDR64_LOCAL:
7359       break;
7360
7361     case elfcpp::R_POWERPC_GOT16:
7362     case elfcpp::R_POWERPC_GOT16_LO:
7363     case elfcpp::R_POWERPC_GOT16_HI:
7364     case elfcpp::R_POWERPC_GOT16_HA:
7365     case elfcpp::R_PPC64_GOT16_DS:
7366     case elfcpp::R_PPC64_GOT16_LO_DS:
7367       {
7368         // The symbol requires a GOT entry.
7369         Output_data_got_powerpc<size, big_endian>* got;
7370
7371         got = target->got_section(symtab, layout);
7372         if (gsym->final_value_is_known())
7373           {
7374             if (is_ifunc
7375                 && (size == 32 || target->abiversion() >= 2))
7376               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
7377             else
7378               got->add_global(gsym, GOT_TYPE_STANDARD);
7379           }
7380         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
7381           {
7382             // If we are generating a shared object or a pie, this
7383             // symbol's GOT entry will be set by a dynamic relocation.
7384             unsigned int off = got->add_constant(0);
7385             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
7386
7387             Reloc_section* rela_dyn
7388               = target->rela_dyn_section(symtab, layout, is_ifunc);
7389
7390             if (gsym->can_use_relative_reloc(false)
7391                 && !((size == 32
7392                       || target->abiversion() >= 2)
7393                      && gsym->visibility() == elfcpp::STV_PROTECTED
7394                      && parameters->options().shared()))
7395               {
7396                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7397                                        : elfcpp::R_POWERPC_RELATIVE);
7398                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
7399               }
7400             else
7401               {
7402                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
7403                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
7404               }
7405           }
7406       }
7407       break;
7408
7409     case elfcpp::R_PPC64_TOC16:
7410     case elfcpp::R_PPC64_TOC16_LO:
7411     case elfcpp::R_PPC64_TOC16_HI:
7412     case elfcpp::R_PPC64_TOC16_HA:
7413     case elfcpp::R_PPC64_TOC16_DS:
7414     case elfcpp::R_PPC64_TOC16_LO_DS:
7415       // We need a GOT section.
7416       target->got_section(symtab, layout);
7417       break;
7418
7419     case elfcpp::R_POWERPC_GOT_TLSGD16:
7420     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7421     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7422     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7423       {
7424         const bool final = gsym->final_value_is_known();
7425         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7426         if (tls_type == tls::TLSOPT_NONE)
7427           {
7428             Output_data_got_powerpc<size, big_endian>* got
7429               = target->got_section(symtab, layout);
7430             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7431             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
7432                                           elfcpp::R_POWERPC_DTPMOD,
7433                                           elfcpp::R_POWERPC_DTPREL);
7434           }
7435         else if (tls_type == tls::TLSOPT_TO_IE)
7436           {
7437             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7438               {
7439                 Output_data_got_powerpc<size, big_endian>* got
7440                   = target->got_section(symtab, layout);
7441                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7442                 if (gsym->is_undefined()
7443                     || gsym->is_from_dynobj())
7444                   {
7445                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7446                                              elfcpp::R_POWERPC_TPREL);
7447                   }
7448                 else
7449                   {
7450                     unsigned int off = got->add_constant(0);
7451                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
7452                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7453                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7454                                                            got, off, 0);
7455                   }
7456               }
7457           }
7458         else if (tls_type == tls::TLSOPT_TO_LE)
7459           {
7460             // no GOT relocs needed for Local Exec.
7461           }
7462         else
7463           gold_unreachable();
7464       }
7465       break;
7466
7467     case elfcpp::R_POWERPC_GOT_TLSLD16:
7468     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7469     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7470     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7471       {
7472         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7473         if (tls_type == tls::TLSOPT_NONE)
7474           target->tlsld_got_offset(symtab, layout, object);
7475         else if (tls_type == tls::TLSOPT_TO_LE)
7476           {
7477             // no GOT relocs needed for Local Exec.
7478             if (parameters->options().emit_relocs())
7479               {
7480                 Output_section* os = layout->tls_segment()->first_section();
7481                 gold_assert(os != NULL);
7482                 os->set_needs_symtab_index();
7483               }
7484           }
7485         else
7486           gold_unreachable();
7487       }
7488       break;
7489
7490     case elfcpp::R_POWERPC_GOT_DTPREL16:
7491     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7492     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7493     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7494       {
7495         Output_data_got_powerpc<size, big_endian>* got
7496           = target->got_section(symtab, layout);
7497         if (!gsym->final_value_is_known()
7498             && (gsym->is_from_dynobj()
7499                 || gsym->is_undefined()
7500                 || gsym->is_preemptible()))
7501           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
7502                                    target->rela_dyn_section(layout),
7503                                    elfcpp::R_POWERPC_DTPREL);
7504         else
7505           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
7506       }
7507       break;
7508
7509     case elfcpp::R_POWERPC_GOT_TPREL16:
7510     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7511     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7512     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7513       {
7514         const bool final = gsym->final_value_is_known();
7515         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7516         if (tls_type == tls::TLSOPT_NONE)
7517           {
7518             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7519               {
7520                 Output_data_got_powerpc<size, big_endian>* got
7521                   = target->got_section(symtab, layout);
7522                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7523                 if (gsym->is_undefined()
7524                     || gsym->is_from_dynobj())
7525                   {
7526                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7527                                              elfcpp::R_POWERPC_TPREL);
7528                   }
7529                 else
7530                   {
7531                     unsigned int off = got->add_constant(0);
7532                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
7533                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7534                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7535                                                            got, off, 0);
7536                   }
7537               }
7538           }
7539         else if (tls_type == tls::TLSOPT_TO_LE)
7540           {
7541             // no GOT relocs needed for Local Exec.
7542           }
7543         else
7544           gold_unreachable();
7545       }
7546       break;
7547
7548     default:
7549       unsupported_reloc_global(object, r_type, gsym);
7550       break;
7551     }
7552
7553   if (size == 64
7554       && parameters->options().toc_optimize())
7555     {
7556       if (data_shndx == ppc_object->toc_shndx())
7557         {
7558           bool ok = true;
7559           if (r_type != elfcpp::R_PPC64_ADDR64
7560               || (is_ifunc && target->abiversion() < 2))
7561             ok = false;
7562           else if (parameters->options().output_is_position_independent()
7563                    && (is_ifunc || gsym->is_absolute() || gsym->is_undefined()))
7564             ok = false;
7565           if (!ok)
7566             ppc_object->set_no_toc_opt(reloc.get_r_offset());
7567         }
7568
7569       enum {no_check, check_lo, check_ha} insn_check;
7570       switch (r_type)
7571         {
7572         default:
7573           insn_check = no_check;
7574           break;
7575
7576         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7577         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7578         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7579         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7580         case elfcpp::R_POWERPC_GOT16_HA:
7581         case elfcpp::R_PPC64_TOC16_HA:
7582           insn_check = check_ha;
7583           break;
7584
7585         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7586         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7587         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7588         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7589         case elfcpp::R_POWERPC_GOT16_LO:
7590         case elfcpp::R_PPC64_GOT16_LO_DS:
7591         case elfcpp::R_PPC64_TOC16_LO:
7592         case elfcpp::R_PPC64_TOC16_LO_DS:
7593           insn_check = check_lo;
7594           break;
7595         }
7596
7597       section_size_type slen;
7598       const unsigned char* view = NULL;
7599       if (insn_check != no_check)
7600         {
7601           view = ppc_object->section_contents(data_shndx, &slen, false);
7602           section_size_type off =
7603             convert_to_section_size_type(reloc.get_r_offset()) & -4;
7604           if (off < slen)
7605             {
7606               uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
7607               if (insn_check == check_lo
7608                   ? !ok_lo_toc_insn(insn, r_type)
7609                   : ((insn & ((0x3f << 26) | 0x1f << 16))
7610                      != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
7611                 {
7612                   ppc_object->set_no_toc_opt();
7613                   gold_warning(_("%s: toc optimization is not supported "
7614                                  "for %#08x instruction"),
7615                                ppc_object->name().c_str(), insn);
7616                 }
7617             }
7618         }
7619
7620       switch (r_type)
7621         {
7622         default:
7623           break;
7624         case elfcpp::R_PPC64_TOC16:
7625         case elfcpp::R_PPC64_TOC16_LO:
7626         case elfcpp::R_PPC64_TOC16_HI:
7627         case elfcpp::R_PPC64_TOC16_HA:
7628         case elfcpp::R_PPC64_TOC16_DS:
7629         case elfcpp::R_PPC64_TOC16_LO_DS:
7630           if (gsym->source() == Symbol::FROM_OBJECT
7631               && !gsym->object()->is_dynamic())
7632             {
7633               Powerpc_relobj<size, big_endian>* sym_object
7634                 = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7635               bool is_ordinary;
7636               unsigned int shndx = gsym->shndx(&is_ordinary);
7637               if (shndx == sym_object->toc_shndx())
7638                 {
7639                   Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7640                   Address dst_off = sym->value() + reloc.get_r_addend();
7641                   if (dst_off < sym_object->section_size(shndx))
7642                     {
7643                       bool ok = false;
7644                       if (r_type == elfcpp::R_PPC64_TOC16_HA)
7645                         ok = true;
7646                       else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
7647                         {
7648                           // Need to check that the insn is a ld
7649                           if (!view)
7650                             view = ppc_object->section_contents(data_shndx,
7651                                                                 &slen,
7652                                                                 false);
7653                           section_size_type off =
7654                             (convert_to_section_size_type(reloc.get_r_offset())
7655                              + (big_endian ? -2 : 3));
7656                           if (off < slen
7657                               && (view[off] & (0x3f << 2)) == (58u << 2))
7658                             ok = true;
7659                         }
7660                       if (!ok)
7661                         sym_object->set_no_toc_opt(dst_off);
7662                     }
7663                 }
7664             }
7665           break;
7666         }
7667     }
7668
7669   if (size == 32)
7670     {
7671       switch (r_type)
7672         {
7673         case elfcpp::R_PPC_LOCAL24PC:
7674           if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7675             gold_error(_("%s: unsupported -mbss-plt code"),
7676                        ppc_object->name().c_str());
7677           break;
7678         default:
7679           break;
7680         }
7681     }
7682
7683   switch (r_type)
7684     {
7685     case elfcpp::R_POWERPC_GOT_TLSLD16:
7686     case elfcpp::R_POWERPC_GOT_TLSGD16:
7687     case elfcpp::R_POWERPC_GOT_TPREL16:
7688     case elfcpp::R_POWERPC_GOT_DTPREL16:
7689     case elfcpp::R_POWERPC_GOT16:
7690     case elfcpp::R_PPC64_GOT16_DS:
7691     case elfcpp::R_PPC64_TOC16:
7692     case elfcpp::R_PPC64_TOC16_DS:
7693       ppc_object->set_has_small_toc_reloc();
7694     default:
7695       break;
7696     }
7697 }
7698
7699 // Process relocations for gc.
7700
7701 template<int size, bool big_endian>
7702 void
7703 Target_powerpc<size, big_endian>::gc_process_relocs(
7704     Symbol_table* symtab,
7705     Layout* layout,
7706     Sized_relobj_file<size, big_endian>* object,
7707     unsigned int data_shndx,
7708     unsigned int,
7709     const unsigned char* prelocs,
7710     size_t reloc_count,
7711     Output_section* output_section,
7712     bool needs_special_offset_handling,
7713     size_t local_symbol_count,
7714     const unsigned char* plocal_symbols)
7715 {
7716   typedef Target_powerpc<size, big_endian> Powerpc;
7717   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7718       Classify_reloc;
7719
7720   Powerpc_relobj<size, big_endian>* ppc_object
7721     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7722   if (size == 64)
7723     ppc_object->set_opd_valid();
7724   if (size == 64 && data_shndx == ppc_object->opd_shndx())
7725     {
7726       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
7727       for (p = ppc_object->access_from_map()->begin();
7728            p != ppc_object->access_from_map()->end();
7729            ++p)
7730         {
7731           Address dst_off = p->first;
7732           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7733           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
7734           for (s = p->second.begin(); s != p->second.end(); ++s)
7735             {
7736               Relobj* src_obj = s->first;
7737               unsigned int src_indx = s->second;
7738               symtab->gc()->add_reference(src_obj, src_indx,
7739                                           ppc_object, dst_indx);
7740             }
7741           p->second.clear();
7742         }
7743       ppc_object->access_from_map()->clear();
7744       ppc_object->process_gc_mark(symtab);
7745       // Don't look at .opd relocs as .opd will reference everything.
7746       return;
7747     }
7748
7749   gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
7750     symtab,
7751     layout,
7752     this,
7753     object,
7754     data_shndx,
7755     prelocs,
7756     reloc_count,
7757     output_section,
7758     needs_special_offset_handling,
7759     local_symbol_count,
7760     plocal_symbols);
7761 }
7762
7763 // Handle target specific gc actions when adding a gc reference from
7764 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
7765 // and DST_OFF.  For powerpc64, this adds a referenc to the code
7766 // section of a function descriptor.
7767
7768 template<int size, bool big_endian>
7769 void
7770 Target_powerpc<size, big_endian>::do_gc_add_reference(
7771     Symbol_table* symtab,
7772     Relobj* src_obj,
7773     unsigned int src_shndx,
7774     Relobj* dst_obj,
7775     unsigned int dst_shndx,
7776     Address dst_off) const
7777 {
7778   if (size != 64 || dst_obj->is_dynamic())
7779     return;
7780
7781   Powerpc_relobj<size, big_endian>* ppc_object
7782     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
7783   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
7784     {
7785       if (ppc_object->opd_valid())
7786         {
7787           dst_shndx = ppc_object->get_opd_ent(dst_off);
7788           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
7789         }
7790       else
7791         {
7792           // If we haven't run scan_opd_relocs, we must delay
7793           // processing this function descriptor reference.
7794           ppc_object->add_reference(src_obj, src_shndx, dst_off);
7795         }
7796     }
7797 }
7798
7799 // Add any special sections for this symbol to the gc work list.
7800 // For powerpc64, this adds the code section of a function
7801 // descriptor.
7802
7803 template<int size, bool big_endian>
7804 void
7805 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
7806     Symbol_table* symtab,
7807     Symbol* sym) const
7808 {
7809   if (size == 64)
7810     {
7811       Powerpc_relobj<size, big_endian>* ppc_object
7812         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
7813       bool is_ordinary;
7814       unsigned int shndx = sym->shndx(&is_ordinary);
7815       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
7816         {
7817           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
7818           Address dst_off = gsym->value();
7819           if (ppc_object->opd_valid())
7820             {
7821               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7822               symtab->gc()->worklist().push_back(Section_id(ppc_object,
7823                                                             dst_indx));
7824             }
7825           else
7826             ppc_object->add_gc_mark(dst_off);
7827         }
7828     }
7829 }
7830
7831 // For a symbol location in .opd, set LOC to the location of the
7832 // function entry.
7833
7834 template<int size, bool big_endian>
7835 void
7836 Target_powerpc<size, big_endian>::do_function_location(
7837     Symbol_location* loc) const
7838 {
7839   if (size == 64 && loc->shndx != 0)
7840     {
7841       if (loc->object->is_dynamic())
7842         {
7843           Powerpc_dynobj<size, big_endian>* ppc_object
7844             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
7845           if (loc->shndx == ppc_object->opd_shndx())
7846             {
7847               Address dest_off;
7848               Address off = loc->offset - ppc_object->opd_address();
7849               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
7850               loc->offset = dest_off;
7851             }
7852         }
7853       else
7854         {
7855           const Powerpc_relobj<size, big_endian>* ppc_object
7856             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
7857           if (loc->shndx == ppc_object->opd_shndx())
7858             {
7859               Address dest_off;
7860               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
7861               loc->offset = dest_off;
7862             }
7863         }
7864     }
7865 }
7866
7867 // FNOFFSET in section SHNDX in OBJECT is the start of a function
7868 // compiled with -fsplit-stack.  The function calls non-split-stack
7869 // code.  Change the function to ensure it has enough stack space to
7870 // call some random function.
7871
7872 template<int size, bool big_endian>
7873 void
7874 Target_powerpc<size, big_endian>::do_calls_non_split(
7875     Relobj* object,
7876     unsigned int shndx,
7877     section_offset_type fnoffset,
7878     section_size_type fnsize,
7879     const unsigned char* prelocs,
7880     size_t reloc_count,
7881     unsigned char* view,
7882     section_size_type view_size,
7883     std::string* from,
7884     std::string* to) const
7885 {
7886   // 32-bit not supported.
7887   if (size == 32)
7888     {
7889       // warn
7890       Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
7891                                  prelocs, reloc_count, view, view_size,
7892                                  from, to);
7893       return;
7894     }
7895
7896   // The function always starts with
7897   //    ld %r0,-0x7000-64(%r13)  # tcbhead_t.__private_ss
7898   //    addis %r12,%r1,-allocate@ha
7899   //    addi %r12,%r12,-allocate@l
7900   //    cmpld %r12,%r0
7901   // but note that the addis or addi may be replaced with a nop
7902
7903   unsigned char *entry = view + fnoffset;
7904   uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
7905
7906   if ((insn & 0xffff0000) == addis_2_12)
7907     {
7908       /* Skip ELFv2 global entry code.  */
7909       entry += 8;
7910       insn = elfcpp::Swap<32, big_endian>::readval(entry);
7911     }
7912
7913   unsigned char *pinsn = entry;
7914   bool ok = false;
7915   const uint32_t ld_private_ss = 0xe80d8fc0;
7916   if (insn == ld_private_ss)
7917     {
7918       int32_t allocate = 0;
7919       while (1)
7920         {
7921           pinsn += 4;
7922           insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
7923           if ((insn & 0xffff0000) == addis_12_1)
7924             allocate += (insn & 0xffff) << 16;
7925           else if ((insn & 0xffff0000) == addi_12_1
7926                    || (insn & 0xffff0000) == addi_12_12)
7927             allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
7928           else if (insn != nop)
7929             break;
7930         }
7931       if (insn == cmpld_7_12_0 && pinsn == entry + 12)
7932         {
7933           int extra = parameters->options().split_stack_adjust_size();
7934           allocate -= extra;
7935           if (allocate >= 0 || extra < 0)
7936             {
7937               object->error(_("split-stack stack size overflow at "
7938                               "section %u offset %0zx"),
7939                             shndx, static_cast<size_t>(fnoffset));
7940               return;
7941             }
7942           pinsn = entry + 4;
7943           insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
7944           if (insn != addis_12_1)
7945             {
7946               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7947               pinsn += 4;
7948               insn = addi_12_12 | (allocate & 0xffff);
7949               if (insn != addi_12_12)
7950                 {
7951                   elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7952                   pinsn += 4;
7953                 }
7954             }
7955           else
7956             {
7957               insn = addi_12_1 | (allocate & 0xffff);
7958               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7959               pinsn += 4;
7960             }
7961           if (pinsn != entry + 12)
7962             elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
7963
7964           ok = true;
7965         }
7966     }
7967
7968   if (!ok)
7969     {
7970       if (!object->has_no_split_stack())
7971         object->error(_("failed to match split-stack sequence at "
7972                         "section %u offset %0zx"),
7973                       shndx, static_cast<size_t>(fnoffset));
7974     }
7975 }
7976
7977 // Scan relocations for a section.
7978
7979 template<int size, bool big_endian>
7980 void
7981 Target_powerpc<size, big_endian>::scan_relocs(
7982     Symbol_table* symtab,
7983     Layout* layout,
7984     Sized_relobj_file<size, big_endian>* object,
7985     unsigned int data_shndx,
7986     unsigned int sh_type,
7987     const unsigned char* prelocs,
7988     size_t reloc_count,
7989     Output_section* output_section,
7990     bool needs_special_offset_handling,
7991     size_t local_symbol_count,
7992     const unsigned char* plocal_symbols)
7993 {
7994   typedef Target_powerpc<size, big_endian> Powerpc;
7995   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7996       Classify_reloc;
7997
7998   if (!this->plt_localentry0_init_)
7999     {
8000       bool plt_localentry0 = false;
8001       if (size == 64
8002           && this->abiversion() >= 2)
8003         {
8004           if (parameters->options().user_set_plt_localentry())
8005             plt_localentry0 = parameters->options().plt_localentry();
8006           if (plt_localentry0
8007               && symtab->lookup("GLIBC_2.26", NULL) == NULL)
8008             gold_warning(_("--plt-localentry is especially dangerous without "
8009                            "ld.so support to detect ABI violations"));
8010         }
8011       this->plt_localentry0_ = plt_localentry0;
8012       this->plt_localentry0_init_ = true;
8013     }
8014
8015   if (sh_type == elfcpp::SHT_REL)
8016     {
8017       gold_error(_("%s: unsupported REL reloc section"),
8018                  object->name().c_str());
8019       return;
8020     }
8021
8022   gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
8023     symtab,
8024     layout,
8025     this,
8026     object,
8027     data_shndx,
8028     prelocs,
8029     reloc_count,
8030     output_section,
8031     needs_special_offset_handling,
8032     local_symbol_count,
8033     plocal_symbols);
8034 }
8035
8036 // Functor class for processing the global symbol table.
8037 // Removes symbols defined on discarded opd entries.
8038
8039 template<bool big_endian>
8040 class Global_symbol_visitor_opd
8041 {
8042  public:
8043   Global_symbol_visitor_opd()
8044   { }
8045
8046   void
8047   operator()(Sized_symbol<64>* sym)
8048   {
8049     if (sym->has_symtab_index()
8050         || sym->source() != Symbol::FROM_OBJECT
8051         || !sym->in_real_elf())
8052       return;
8053
8054     if (sym->object()->is_dynamic())
8055       return;
8056
8057     Powerpc_relobj<64, big_endian>* symobj
8058       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
8059     if (symobj->opd_shndx() == 0)
8060       return;
8061
8062     bool is_ordinary;
8063     unsigned int shndx = sym->shndx(&is_ordinary);
8064     if (shndx == symobj->opd_shndx()
8065         && symobj->get_opd_discard(sym->value()))
8066       {
8067         sym->set_undefined();
8068         sym->set_visibility(elfcpp::STV_DEFAULT);
8069         sym->set_is_defined_in_discarded_section();
8070         sym->set_symtab_index(-1U);
8071       }
8072   }
8073 };
8074
8075 template<int size, bool big_endian>
8076 void
8077 Target_powerpc<size, big_endian>::define_save_restore_funcs(
8078     Layout* layout,
8079     Symbol_table* symtab)
8080 {
8081   if (size == 64)
8082     {
8083       Output_data_save_res<size, big_endian>* savres
8084         = new Output_data_save_res<size, big_endian>(symtab);
8085       this->savres_section_ = savres;
8086       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8087                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
8088                                       savres, ORDER_TEXT, false);
8089     }
8090 }
8091
8092 // Sort linker created .got section first (for the header), then input
8093 // sections belonging to files using small model code.
8094
8095 template<bool big_endian>
8096 class Sort_toc_sections
8097 {
8098  public:
8099   bool
8100   operator()(const Output_section::Input_section& is1,
8101              const Output_section::Input_section& is2) const
8102   {
8103     if (!is1.is_input_section() && is2.is_input_section())
8104       return true;
8105     bool small1
8106       = (is1.is_input_section()
8107          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
8108              ->has_small_toc_reloc()));
8109     bool small2
8110       = (is2.is_input_section()
8111          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
8112              ->has_small_toc_reloc()));
8113     return small1 && !small2;
8114   }
8115 };
8116
8117 // Finalize the sections.
8118
8119 template<int size, bool big_endian>
8120 void
8121 Target_powerpc<size, big_endian>::do_finalize_sections(
8122     Layout* layout,
8123     const Input_objects*,
8124     Symbol_table* symtab)
8125 {
8126   if (parameters->doing_static_link())
8127     {
8128       // At least some versions of glibc elf-init.o have a strong
8129       // reference to __rela_iplt marker syms.  A weak ref would be
8130       // better..
8131       if (this->iplt_ != NULL)
8132         {
8133           Reloc_section* rel = this->iplt_->rel_plt();
8134           symtab->define_in_output_data("__rela_iplt_start", NULL,
8135                                         Symbol_table::PREDEFINED, rel, 0, 0,
8136                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8137                                         elfcpp::STV_HIDDEN, 0, false, true);
8138           symtab->define_in_output_data("__rela_iplt_end", NULL,
8139                                         Symbol_table::PREDEFINED, rel, 0, 0,
8140                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8141                                         elfcpp::STV_HIDDEN, 0, true, true);
8142         }
8143       else
8144         {
8145           symtab->define_as_constant("__rela_iplt_start", NULL,
8146                                      Symbol_table::PREDEFINED, 0, 0,
8147                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8148                                      elfcpp::STV_HIDDEN, 0, true, false);
8149           symtab->define_as_constant("__rela_iplt_end", NULL,
8150                                      Symbol_table::PREDEFINED, 0, 0,
8151                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8152                                      elfcpp::STV_HIDDEN, 0, true, false);
8153         }
8154     }
8155
8156   if (size == 64)
8157     {
8158       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
8159       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
8160
8161       if (!parameters->options().relocatable())
8162         {
8163           this->define_save_restore_funcs(layout, symtab);
8164
8165           // Annoyingly, we need to make these sections now whether or
8166           // not we need them.  If we delay until do_relax then we
8167           // need to mess with the relaxation machinery checkpointing.
8168           this->got_section(symtab, layout);
8169           this->make_brlt_section(layout);
8170
8171           if (parameters->options().toc_sort())
8172             {
8173               Output_section* os = this->got_->output_section();
8174               if (os != NULL && os->input_sections().size() > 1)
8175                 std::stable_sort(os->input_sections().begin(),
8176                                  os->input_sections().end(),
8177                                  Sort_toc_sections<big_endian>());
8178             }
8179         }
8180     }
8181
8182   // Fill in some more dynamic tags.
8183   Output_data_dynamic* odyn = layout->dynamic_data();
8184   if (odyn != NULL)
8185     {
8186       const Reloc_section* rel_plt = (this->plt_ == NULL
8187                                       ? NULL
8188                                       : this->plt_->rel_plt());
8189       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
8190                                       this->rela_dyn_, true, size == 32);
8191
8192       if (size == 32)
8193         {
8194           if (this->got_ != NULL)
8195             {
8196               this->got_->finalize_data_size();
8197               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
8198                                             this->got_, this->got_->g_o_t());
8199             }
8200           if (this->has_tls_get_addr_opt_)
8201             odyn->add_constant(elfcpp::DT_PPC_OPT, elfcpp::PPC_OPT_TLS);
8202         }
8203       else
8204         {
8205           if (this->glink_ != NULL)
8206             {
8207               this->glink_->finalize_data_size();
8208               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
8209                                             this->glink_,
8210                                             (this->glink_->pltresolve_size()
8211                                              - 32));
8212             }
8213           if (this->has_localentry0_ || this->has_tls_get_addr_opt_)
8214             odyn->add_constant(elfcpp::DT_PPC64_OPT,
8215                                ((this->has_localentry0_
8216                                  ? elfcpp::PPC64_OPT_LOCALENTRY : 0)
8217                                 | (this->has_tls_get_addr_opt_
8218                                    ? elfcpp::PPC64_OPT_TLS : 0)));
8219         }
8220     }
8221
8222   // Emit any relocs we saved in an attempt to avoid generating COPY
8223   // relocs.
8224   if (this->copy_relocs_.any_saved_relocs())
8225     this->copy_relocs_.emit(this->rela_dyn_section(layout));
8226 }
8227
8228 // Emit any saved relocs, and mark toc entries using any of these
8229 // relocs as not optimizable.
8230
8231 template<int sh_type, int size, bool big_endian>
8232 void
8233 Powerpc_copy_relocs<sh_type, size, big_endian>::emit(
8234     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section)
8235 {
8236   if (size == 64
8237       && parameters->options().toc_optimize())
8238     {
8239       for (typename Copy_relocs<sh_type, size, big_endian>::
8240              Copy_reloc_entries::iterator p = this->entries_.begin();
8241            p != this->entries_.end();
8242            ++p)
8243         {
8244           typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry&
8245             entry = *p;
8246
8247           // If the symbol is no longer defined in a dynamic object,
8248           // then we emitted a COPY relocation.  If it is still
8249           // dynamic then we'll need dynamic relocations and thus
8250           // can't optimize toc entries.
8251           if (entry.sym_->is_from_dynobj())
8252             {
8253               Powerpc_relobj<size, big_endian>* ppc_object
8254                 = static_cast<Powerpc_relobj<size, big_endian>*>(entry.relobj_);
8255               if (entry.shndx_ == ppc_object->toc_shndx())
8256                 ppc_object->set_no_toc_opt(entry.address_);
8257             }
8258         }
8259     }
8260
8261   Copy_relocs<sh_type, size, big_endian>::emit(reloc_section);
8262 }
8263
8264 // Return the value to use for a branch relocation.
8265
8266 template<int size, bool big_endian>
8267 bool
8268 Target_powerpc<size, big_endian>::symval_for_branch(
8269     const Symbol_table* symtab,
8270     const Sized_symbol<size>* gsym,
8271     Powerpc_relobj<size, big_endian>* object,
8272     Address *value,
8273     unsigned int *dest_shndx)
8274 {
8275   if (size == 32 || this->abiversion() >= 2)
8276     gold_unreachable();
8277   *dest_shndx = 0;
8278
8279   // If the symbol is defined in an opd section, ie. is a function
8280   // descriptor, use the function descriptor code entry address
8281   Powerpc_relobj<size, big_endian>* symobj = object;
8282   if (gsym != NULL
8283       && (gsym->source() != Symbol::FROM_OBJECT
8284           || gsym->object()->is_dynamic()))
8285     return true;
8286   if (gsym != NULL)
8287     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
8288   unsigned int shndx = symobj->opd_shndx();
8289   if (shndx == 0)
8290     return true;
8291   Address opd_addr = symobj->get_output_section_offset(shndx);
8292   if (opd_addr == invalid_address)
8293     return true;
8294   opd_addr += symobj->output_section_address(shndx);
8295   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
8296     {
8297       Address sec_off;
8298       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
8299       if (symtab->is_section_folded(symobj, *dest_shndx))
8300         {
8301           Section_id folded
8302             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
8303           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
8304           *dest_shndx = folded.second;
8305         }
8306       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
8307       if (sec_addr == invalid_address)
8308         return false;
8309
8310       sec_addr += symobj->output_section(*dest_shndx)->address();
8311       *value = sec_addr + sec_off;
8312     }
8313   return true;
8314 }
8315
8316 // Perform a relocation.
8317
8318 template<int size, bool big_endian>
8319 inline bool
8320 Target_powerpc<size, big_endian>::Relocate::relocate(
8321     const Relocate_info<size, big_endian>* relinfo,
8322     unsigned int,
8323     Target_powerpc* target,
8324     Output_section* os,
8325     size_t relnum,
8326     const unsigned char* preloc,
8327     const Sized_symbol<size>* gsym,
8328     const Symbol_value<size>* psymval,
8329     unsigned char* view,
8330     Address address,
8331     section_size_type view_size)
8332 {
8333   if (view == NULL)
8334     return true;
8335
8336   if (target->replace_tls_get_addr(gsym))
8337     gsym = static_cast<const Sized_symbol<size>*>(target->tls_get_addr_opt());
8338
8339   const elfcpp::Rela<size, big_endian> rela(preloc);
8340   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
8341   switch (this->maybe_skip_tls_get_addr_call(target, r_type, gsym))
8342     {
8343     case Track_tls::NOT_EXPECTED:
8344       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8345                              _("__tls_get_addr call lacks marker reloc"));
8346       break;
8347     case Track_tls::EXPECTED:
8348       // We have already complained.
8349       break;
8350     case Track_tls::SKIP:
8351       return true;
8352     case Track_tls::NORMAL:
8353       break;
8354     }
8355
8356   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
8357   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
8358   typedef typename elfcpp::Rela<size, big_endian> Reltype;
8359   // Offset from start of insn to d-field reloc.
8360   const int d_offset = big_endian ? 2 : 0;
8361
8362   Powerpc_relobj<size, big_endian>* const object
8363     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8364   Address value = 0;
8365   bool has_stub_value = false;
8366   bool localentry0 = false;
8367   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
8368   if ((gsym != NULL
8369        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
8370        : object->local_has_plt_offset(r_sym))
8371       && (!psymval->is_ifunc_symbol()
8372           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
8373     {
8374       if (size == 64
8375           && gsym != NULL
8376           && target->abiversion() >= 2
8377           && !parameters->options().output_is_position_independent()
8378           && !is_branch_reloc(r_type))
8379         {
8380           Address off = target->glink_section()->find_global_entry(gsym);
8381           if (off != invalid_address)
8382             {
8383               value = target->glink_section()->global_entry_address() + off;
8384               has_stub_value = true;
8385             }
8386         }
8387       else
8388         {
8389           Stub_table<size, big_endian>* stub_table = NULL;
8390           if (target->stub_tables().size() == 1)
8391             stub_table = target->stub_tables()[0];
8392           if (stub_table == NULL
8393               && !(size == 32
8394                    && gsym != NULL
8395                    && !parameters->options().output_is_position_independent()
8396                    && !is_branch_reloc(r_type)))
8397             stub_table = object->stub_table(relinfo->data_shndx);
8398           if (stub_table == NULL)
8399             {
8400               // This is a ref from a data section to an ifunc symbol,
8401               // or a non-branch reloc for which we always want to use
8402               // one set of stubs for resolving function addresses.
8403               if (target->stub_tables().size() != 0)
8404                 stub_table = target->stub_tables()[0];
8405             }
8406           if (stub_table != NULL)
8407             {
8408               const typename Stub_table<size, big_endian>::Plt_stub_ent* ent;
8409               if (gsym != NULL)
8410                 ent = stub_table->find_plt_call_entry(object, gsym, r_type,
8411                                                       rela.get_r_addend());
8412               else
8413                 ent = stub_table->find_plt_call_entry(object, r_sym, r_type,
8414                                                       rela.get_r_addend());
8415               if (ent != NULL)
8416                 {
8417                   value = stub_table->stub_address() + ent->off_;
8418                   const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8419                   elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
8420                   size_t reloc_count = shdr.get_sh_size() / reloc_size;
8421                   if (size == 64
8422                       && ent->r2save_
8423                       && relnum + 1 < reloc_count)
8424                     {
8425                       Reltype next_rela(preloc + reloc_size);
8426                       if (elfcpp::elf_r_type<size>(next_rela.get_r_info())
8427                           == elfcpp::R_PPC64_TOCSAVE
8428                           && next_rela.get_r_offset() == rela.get_r_offset() + 4)
8429                         value += 4;
8430                     }
8431                   localentry0 = ent->localentry0_;
8432                   has_stub_value = true;
8433                 }
8434             }
8435         }
8436       // We don't care too much about bogus debug references to
8437       // non-local functions, but otherwise there had better be a plt
8438       // call stub or global entry stub as appropriate.
8439       gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
8440     }
8441
8442   if (r_type == elfcpp::R_POWERPC_GOT16
8443       || r_type == elfcpp::R_POWERPC_GOT16_LO
8444       || r_type == elfcpp::R_POWERPC_GOT16_HI
8445       || r_type == elfcpp::R_POWERPC_GOT16_HA
8446       || r_type == elfcpp::R_PPC64_GOT16_DS
8447       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
8448     {
8449       if (gsym != NULL)
8450         {
8451           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8452           value = gsym->got_offset(GOT_TYPE_STANDARD);
8453         }
8454       else
8455         {
8456           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8457           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
8458         }
8459       value -= target->got_section()->got_base_offset(object);
8460     }
8461   else if (r_type == elfcpp::R_PPC64_TOC)
8462     {
8463       value = (target->got_section()->output_section()->address()
8464                + object->toc_base_offset());
8465     }
8466   else if (gsym != NULL
8467            && (r_type == elfcpp::R_POWERPC_REL24
8468                || r_type == elfcpp::R_PPC_PLTREL24)
8469            && has_stub_value)
8470     {
8471       if (size == 64)
8472         {
8473           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
8474           Valtype* wv = reinterpret_cast<Valtype*>(view);
8475           bool can_plt_call = localentry0 || target->is_tls_get_addr_opt(gsym);
8476           if (!can_plt_call && rela.get_r_offset() + 8 <= view_size)
8477             {
8478               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
8479               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
8480               if ((insn & 1) != 0
8481                   && (insn2 == nop
8482                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
8483                 {
8484                   elfcpp::Swap<32, big_endian>::
8485                     writeval(wv + 1, ld_2_1 + target->stk_toc());
8486                   can_plt_call = true;
8487                 }
8488             }
8489           if (!can_plt_call)
8490             {
8491               // If we don't have a branch and link followed by a nop,
8492               // we can't go via the plt because there is no place to
8493               // put a toc restoring instruction.
8494               // Unless we know we won't be returning.
8495               if (strcmp(gsym->name(), "__libc_start_main") == 0)
8496                 can_plt_call = true;
8497             }
8498           if (!can_plt_call)
8499             {
8500               // g++ as of 20130507 emits self-calls without a
8501               // following nop.  This is arguably wrong since we have
8502               // conflicting information.  On the one hand a global
8503               // symbol and on the other a local call sequence, but
8504               // don't error for this special case.
8505               // It isn't possible to cheaply verify we have exactly
8506               // such a call.  Allow all calls to the same section.
8507               bool ok = false;
8508               Address code = value;
8509               if (gsym->source() == Symbol::FROM_OBJECT
8510                   && gsym->object() == object)
8511                 {
8512                   unsigned int dest_shndx = 0;
8513                   if (target->abiversion() < 2)
8514                     {
8515                       Address addend = rela.get_r_addend();
8516                       code = psymval->value(object, addend);
8517                       target->symval_for_branch(relinfo->symtab, gsym, object,
8518                                                 &code, &dest_shndx);
8519                     }
8520                   bool is_ordinary;
8521                   if (dest_shndx == 0)
8522                     dest_shndx = gsym->shndx(&is_ordinary);
8523                   ok = dest_shndx == relinfo->data_shndx;
8524                 }
8525               if (!ok)
8526                 {
8527                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8528                                          _("call lacks nop, can't restore toc; "
8529                                            "recompile with -fPIC"));
8530                   value = code;
8531                 }
8532             }
8533         }
8534     }
8535   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8536            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8537            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8538            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8539     {
8540       // First instruction of a global dynamic sequence, arg setup insn.
8541       const bool final = gsym == NULL || gsym->final_value_is_known();
8542       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8543       enum Got_type got_type = GOT_TYPE_STANDARD;
8544       if (tls_type == tls::TLSOPT_NONE)
8545         got_type = GOT_TYPE_TLSGD;
8546       else if (tls_type == tls::TLSOPT_TO_IE)
8547         got_type = GOT_TYPE_TPREL;
8548       if (got_type != GOT_TYPE_STANDARD)
8549         {
8550           if (gsym != NULL)
8551             {
8552               gold_assert(gsym->has_got_offset(got_type));
8553               value = gsym->got_offset(got_type);
8554             }
8555           else
8556             {
8557               gold_assert(object->local_has_got_offset(r_sym, got_type));
8558               value = object->local_got_offset(r_sym, got_type);
8559             }
8560           value -= target->got_section()->got_base_offset(object);
8561         }
8562       if (tls_type == tls::TLSOPT_TO_IE)
8563         {
8564           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8565               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8566             {
8567               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8568               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8569               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
8570               if (size == 32)
8571                 insn |= 32 << 26; // lwz
8572               else
8573                 insn |= 58 << 26; // ld
8574               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8575             }
8576           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8577                      - elfcpp::R_POWERPC_GOT_TLSGD16);
8578         }
8579       else if (tls_type == tls::TLSOPT_TO_LE)
8580         {
8581           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8582               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8583             {
8584               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8585               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8586               insn &= (1 << 26) - (1 << 21); // extract rt
8587               if (size == 32)
8588                 insn |= addis_0_2;
8589               else
8590                 insn |= addis_0_13;
8591               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8592               r_type = elfcpp::R_POWERPC_TPREL16_HA;
8593               value = psymval->value(object, rela.get_r_addend());
8594             }
8595           else
8596             {
8597               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8598               Insn insn = nop;
8599               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8600               r_type = elfcpp::R_POWERPC_NONE;
8601             }
8602         }
8603     }
8604   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8605            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8606            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8607            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8608     {
8609       // First instruction of a local dynamic sequence, arg setup insn.
8610       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8611       if (tls_type == tls::TLSOPT_NONE)
8612         {
8613           value = target->tlsld_got_offset();
8614           value -= target->got_section()->got_base_offset(object);
8615         }
8616       else
8617         {
8618           gold_assert(tls_type == tls::TLSOPT_TO_LE);
8619           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8620               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8621             {
8622               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8623               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8624               insn &= (1 << 26) - (1 << 21); // extract rt
8625               if (size == 32)
8626                 insn |= addis_0_2;
8627               else
8628                 insn |= addis_0_13;
8629               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8630               r_type = elfcpp::R_POWERPC_TPREL16_HA;
8631               value = dtp_offset;
8632             }
8633           else
8634             {
8635               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8636               Insn insn = nop;
8637               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8638               r_type = elfcpp::R_POWERPC_NONE;
8639             }
8640         }
8641     }
8642   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
8643            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
8644            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
8645            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
8646     {
8647       // Accesses relative to a local dynamic sequence address,
8648       // no optimisation here.
8649       if (gsym != NULL)
8650         {
8651           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
8652           value = gsym->got_offset(GOT_TYPE_DTPREL);
8653         }
8654       else
8655         {
8656           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
8657           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
8658         }
8659       value -= target->got_section()->got_base_offset(object);
8660     }
8661   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8662            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8663            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8664            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8665     {
8666       // First instruction of initial exec sequence.
8667       const bool final = gsym == NULL || gsym->final_value_is_known();
8668       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8669       if (tls_type == tls::TLSOPT_NONE)
8670         {
8671           if (gsym != NULL)
8672             {
8673               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
8674               value = gsym->got_offset(GOT_TYPE_TPREL);
8675             }
8676           else
8677             {
8678               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
8679               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
8680             }
8681           value -= target->got_section()->got_base_offset(object);
8682         }
8683       else
8684         {
8685           gold_assert(tls_type == tls::TLSOPT_TO_LE);
8686           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8687               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8688             {
8689               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8690               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8691               insn &= (1 << 26) - (1 << 21); // extract rt from ld
8692               if (size == 32)
8693                 insn |= addis_0_2;
8694               else
8695                 insn |= addis_0_13;
8696               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8697               r_type = elfcpp::R_POWERPC_TPREL16_HA;
8698               value = psymval->value(object, rela.get_r_addend());
8699             }
8700           else
8701             {
8702               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8703               Insn insn = nop;
8704               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8705               r_type = elfcpp::R_POWERPC_NONE;
8706             }
8707         }
8708     }
8709   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8710            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8711     {
8712       // Second instruction of a global dynamic sequence,
8713       // the __tls_get_addr call
8714       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
8715       const bool final = gsym == NULL || gsym->final_value_is_known();
8716       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8717       if (tls_type != tls::TLSOPT_NONE)
8718         {
8719           if (tls_type == tls::TLSOPT_TO_IE)
8720             {
8721               Insn* iview = reinterpret_cast<Insn*>(view);
8722               Insn insn = add_3_3_13;
8723               if (size == 32)
8724                 insn = add_3_3_2;
8725               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8726               r_type = elfcpp::R_POWERPC_NONE;
8727             }
8728           else
8729             {
8730               Insn* iview = reinterpret_cast<Insn*>(view);
8731               Insn insn = addi_3_3;
8732               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8733               r_type = elfcpp::R_POWERPC_TPREL16_LO;
8734               view += d_offset;
8735               value = psymval->value(object, rela.get_r_addend());
8736             }
8737           this->skip_next_tls_get_addr_call();
8738         }
8739     }
8740   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8741            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8742     {
8743       // Second instruction of a local dynamic sequence,
8744       // the __tls_get_addr call
8745       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
8746       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8747       if (tls_type == tls::TLSOPT_TO_LE)
8748         {
8749           Insn* iview = reinterpret_cast<Insn*>(view);
8750           Insn insn = addi_3_3;
8751           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8752           this->skip_next_tls_get_addr_call();
8753           r_type = elfcpp::R_POWERPC_TPREL16_LO;
8754           view += d_offset;
8755           value = dtp_offset;
8756         }
8757     }
8758   else if (r_type == elfcpp::R_POWERPC_TLS)
8759     {
8760       // Second instruction of an initial exec sequence
8761       const bool final = gsym == NULL || gsym->final_value_is_known();
8762       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8763       if (tls_type == tls::TLSOPT_TO_LE)
8764         {
8765           Insn* iview = reinterpret_cast<Insn*>(view);
8766           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8767           unsigned int reg = size == 32 ? 2 : 13;
8768           insn = at_tls_transform(insn, reg);
8769           gold_assert(insn != 0);
8770           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8771           r_type = elfcpp::R_POWERPC_TPREL16_LO;
8772           view += d_offset;
8773           value = psymval->value(object, rela.get_r_addend());
8774         }
8775     }
8776   else if (!has_stub_value)
8777     {
8778       Address addend = 0;
8779       if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
8780         addend = rela.get_r_addend();
8781       value = psymval->value(object, addend);
8782       if (size == 64 && is_branch_reloc(r_type))
8783         {
8784           if (target->abiversion() >= 2)
8785             {
8786               if (gsym != NULL)
8787                 value += object->ppc64_local_entry_offset(gsym);
8788               else
8789                 value += object->ppc64_local_entry_offset(r_sym);
8790             }
8791           else
8792             {
8793               unsigned int dest_shndx;
8794               target->symval_for_branch(relinfo->symtab, gsym, object,
8795                                         &value, &dest_shndx);
8796             }
8797         }
8798       Address max_branch_offset = max_branch_delta(r_type);
8799       if (max_branch_offset != 0
8800           && value - address + max_branch_offset >= 2 * max_branch_offset)
8801         {
8802           Stub_table<size, big_endian>* stub_table
8803             = object->stub_table(relinfo->data_shndx);
8804           if (stub_table != NULL)
8805             {
8806               Address off = stub_table->find_long_branch_entry(object, value);
8807               if (off != invalid_address)
8808                 {
8809                   value = (stub_table->stub_address() + stub_table->plt_size()
8810                            + off);
8811                   has_stub_value = true;
8812                 }
8813             }
8814         }
8815     }
8816
8817   switch (r_type)
8818     {
8819     case elfcpp::R_PPC64_REL64:
8820     case elfcpp::R_POWERPC_REL32:
8821     case elfcpp::R_POWERPC_REL24:
8822     case elfcpp::R_PPC_PLTREL24:
8823     case elfcpp::R_PPC_LOCAL24PC:
8824     case elfcpp::R_POWERPC_REL16:
8825     case elfcpp::R_POWERPC_REL16_LO:
8826     case elfcpp::R_POWERPC_REL16_HI:
8827     case elfcpp::R_POWERPC_REL16_HA:
8828     case elfcpp::R_POWERPC_REL16DX_HA:
8829     case elfcpp::R_POWERPC_REL14:
8830     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8831     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8832       value -= address;
8833       break;
8834
8835     case elfcpp::R_PPC64_TOC16:
8836     case elfcpp::R_PPC64_TOC16_LO:
8837     case elfcpp::R_PPC64_TOC16_HI:
8838     case elfcpp::R_PPC64_TOC16_HA:
8839     case elfcpp::R_PPC64_TOC16_DS:
8840     case elfcpp::R_PPC64_TOC16_LO_DS:
8841       // Subtract the TOC base address.
8842       value -= (target->got_section()->output_section()->address()
8843                 + object->toc_base_offset());
8844       break;
8845
8846     case elfcpp::R_POWERPC_SECTOFF:
8847     case elfcpp::R_POWERPC_SECTOFF_LO:
8848     case elfcpp::R_POWERPC_SECTOFF_HI:
8849     case elfcpp::R_POWERPC_SECTOFF_HA:
8850     case elfcpp::R_PPC64_SECTOFF_DS:
8851     case elfcpp::R_PPC64_SECTOFF_LO_DS:
8852       if (os != NULL)
8853         value -= os->address();
8854       break;
8855
8856     case elfcpp::R_PPC64_TPREL16_DS:
8857     case elfcpp::R_PPC64_TPREL16_LO_DS:
8858     case elfcpp::R_PPC64_TPREL16_HIGH:
8859     case elfcpp::R_PPC64_TPREL16_HIGHA:
8860       if (size != 64)
8861         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
8862         break;
8863       // Fall through.
8864     case elfcpp::R_POWERPC_TPREL16:
8865     case elfcpp::R_POWERPC_TPREL16_LO:
8866     case elfcpp::R_POWERPC_TPREL16_HI:
8867     case elfcpp::R_POWERPC_TPREL16_HA:
8868     case elfcpp::R_POWERPC_TPREL:
8869     case elfcpp::R_PPC64_TPREL16_HIGHER:
8870     case elfcpp::R_PPC64_TPREL16_HIGHERA:
8871     case elfcpp::R_PPC64_TPREL16_HIGHEST:
8872     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8873       // tls symbol values are relative to tls_segment()->vaddr()
8874       value -= tp_offset;
8875       break;
8876
8877     case elfcpp::R_PPC64_DTPREL16_DS:
8878     case elfcpp::R_PPC64_DTPREL16_LO_DS:
8879     case elfcpp::R_PPC64_DTPREL16_HIGHER:
8880     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8881     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8882     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8883       if (size != 64)
8884         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
8885         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
8886         break;
8887       // Fall through.
8888     case elfcpp::R_POWERPC_DTPREL16:
8889     case elfcpp::R_POWERPC_DTPREL16_LO:
8890     case elfcpp::R_POWERPC_DTPREL16_HI:
8891     case elfcpp::R_POWERPC_DTPREL16_HA:
8892     case elfcpp::R_POWERPC_DTPREL:
8893     case elfcpp::R_PPC64_DTPREL16_HIGH:
8894     case elfcpp::R_PPC64_DTPREL16_HIGHA:
8895       // tls symbol values are relative to tls_segment()->vaddr()
8896       value -= dtp_offset;
8897       break;
8898
8899     case elfcpp::R_PPC64_ADDR64_LOCAL:
8900       if (gsym != NULL)
8901         value += object->ppc64_local_entry_offset(gsym);
8902       else
8903         value += object->ppc64_local_entry_offset(r_sym);
8904       break;
8905
8906     default:
8907       break;
8908     }
8909
8910   Insn branch_bit = 0;
8911   switch (r_type)
8912     {
8913     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8914     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8915       branch_bit = 1 << 21;
8916       // Fall through.
8917     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8918     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8919       {
8920         Insn* iview = reinterpret_cast<Insn*>(view);
8921         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8922         insn &= ~(1 << 21);
8923         insn |= branch_bit;
8924         if (this->is_isa_v2)
8925           {
8926             // Set 'a' bit.  This is 0b00010 in BO field for branch
8927             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
8928             // for branch on CTR insns (BO == 1a00t or 1a01t).
8929             if ((insn & (0x14 << 21)) == (0x04 << 21))
8930               insn |= 0x02 << 21;
8931             else if ((insn & (0x14 << 21)) == (0x10 << 21))
8932               insn |= 0x08 << 21;
8933             else
8934               break;
8935           }
8936         else
8937           {
8938             // Invert 'y' bit if not the default.
8939             if (static_cast<Signed_address>(value) < 0)
8940               insn ^= 1 << 21;
8941           }
8942         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8943       }
8944       break;
8945
8946     default:
8947       break;
8948     }
8949
8950   if (size == 64)
8951     {
8952       switch (r_type)
8953         {
8954         default:
8955           break;
8956
8957           // Multi-instruction sequences that access the GOT/TOC can
8958           // be optimized, eg.
8959           //     addis ra,r2,x@got@ha; ld rb,x@got@l(ra);
8960           // to  addis ra,r2,x@toc@ha; addi rb,ra,x@toc@l;
8961           // and
8962           //     addis ra,r2,0; addi rb,ra,x@toc@l;
8963           // to  nop;           addi rb,r2,x@toc;
8964           // FIXME: the @got sequence shown above is not yet
8965           // optimized.  Note that gcc as of 2017-01-07 doesn't use
8966           // the ELF @got relocs except for TLS, instead using the
8967           // PowerOpen variant of a compiler managed GOT (called TOC).
8968           // The PowerOpen TOC sequence equivalent to the first
8969           // example is optimized.
8970         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8971         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8972         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8973         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8974         case elfcpp::R_POWERPC_GOT16_HA:
8975         case elfcpp::R_PPC64_TOC16_HA:
8976           if (parameters->options().toc_optimize())
8977             {
8978               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8979               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8980               if (r_type == elfcpp::R_PPC64_TOC16_HA
8981                   && object->make_toc_relative(target, &value))
8982                 {
8983                   gold_assert((insn & ((0x3f << 26) | 0x1f << 16))
8984                               == ((15u << 26) | (2 << 16)));
8985                 }
8986               if (((insn & ((0x3f << 26) | 0x1f << 16))
8987                    == ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
8988                   && value + 0x8000 < 0x10000)
8989                 {
8990                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
8991                   return true;
8992                 }
8993             }
8994           break;
8995
8996         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8997         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8998         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8999         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9000         case elfcpp::R_POWERPC_GOT16_LO:
9001         case elfcpp::R_PPC64_GOT16_LO_DS:
9002         case elfcpp::R_PPC64_TOC16_LO:
9003         case elfcpp::R_PPC64_TOC16_LO_DS:
9004           if (parameters->options().toc_optimize())
9005             {
9006               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9007               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9008               bool changed = false;
9009               if (r_type == elfcpp::R_PPC64_TOC16_LO_DS
9010                   && object->make_toc_relative(target, &value))
9011                 {
9012                   gold_assert ((insn & (0x3f << 26)) == 58u << 26 /* ld */);
9013                   insn ^= (14u << 26) ^ (58u << 26);
9014                   r_type = elfcpp::R_PPC64_TOC16_LO;
9015                   changed = true;
9016                 }
9017               if (ok_lo_toc_insn(insn, r_type)
9018                   && value + 0x8000 < 0x10000)
9019                 {
9020                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
9021                     {
9022                       // Transform addic to addi when we change reg.
9023                       insn &= ~((0x3f << 26) | (0x1f << 16));
9024                       insn |= (14u << 26) | (2 << 16);
9025                     }
9026                   else
9027                     {
9028                       insn &= ~(0x1f << 16);
9029                       insn |= 2 << 16;
9030                     }
9031                   changed = true;
9032                 }
9033               if (changed)
9034                 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9035             }
9036           break;
9037
9038         case elfcpp::R_POWERPC_TPREL16_HA:
9039           if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
9040             {
9041               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9042               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9043               if ((insn & ((0x3f << 26) | 0x1f << 16))
9044                   != ((15u << 26) | ((size == 32 ? 2 : 13) << 16)))
9045                 ;
9046               else
9047                 {
9048                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
9049                   return true;
9050                 }
9051             }
9052           break;
9053
9054         case elfcpp::R_PPC64_TPREL16_LO_DS:
9055           if (size == 32)
9056             // R_PPC_TLSGD, R_PPC_TLSLD
9057             break;
9058           // Fall through.
9059         case elfcpp::R_POWERPC_TPREL16_LO:
9060           if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
9061             {
9062               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9063               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9064               insn &= ~(0x1f << 16);
9065               insn |= (size == 32 ? 2 : 13) << 16;
9066               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9067             }
9068           break;
9069
9070         case elfcpp::R_PPC64_ENTRY:
9071           value = (target->got_section()->output_section()->address()
9072                    + object->toc_base_offset());
9073           if (value + 0x80008000 <= 0xffffffff
9074               && !parameters->options().output_is_position_independent())
9075             {
9076               Insn* iview = reinterpret_cast<Insn*>(view);
9077               Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
9078               Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
9079
9080               if ((insn1 & ~0xfffc) == ld_2_12
9081                   && insn2 == add_2_2_12)
9082                 {
9083                   insn1 = lis_2 + ha(value);
9084                   elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
9085                   insn2 = addi_2_2 + l(value);
9086                   elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
9087                   return true;
9088                 }
9089             }
9090           else
9091             {
9092               value -= address;
9093               if (value + 0x80008000 <= 0xffffffff)
9094                 {
9095                   Insn* iview = reinterpret_cast<Insn*>(view);
9096                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
9097                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
9098
9099                   if ((insn1 & ~0xfffc) == ld_2_12
9100                       && insn2 == add_2_2_12)
9101                     {
9102                       insn1 = addis_2_12 + ha(value);
9103                       elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
9104                       insn2 = addi_2_2 + l(value);
9105                       elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
9106                       return true;
9107                     }
9108                 }
9109             }
9110           break;
9111
9112         case elfcpp::R_POWERPC_REL16_LO:
9113           // If we are generating a non-PIC executable, edit
9114           //    0:      addis 2,12,.TOC.-0b@ha
9115           //            addi 2,2,.TOC.-0b@l
9116           // used by ELFv2 global entry points to set up r2, to
9117           //            lis 2,.TOC.@ha
9118           //            addi 2,2,.TOC.@l
9119           // if .TOC. is in range.  */
9120           if (value + address - 4 + 0x80008000 <= 0xffffffff
9121               && relnum != 0
9122               && preloc != NULL
9123               && target->abiversion() >= 2
9124               && !parameters->options().output_is_position_independent()
9125               && rela.get_r_addend() == d_offset + 4
9126               && gsym != NULL
9127               && strcmp(gsym->name(), ".TOC.") == 0)
9128             {
9129               const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9130               Reltype prev_rela(preloc - reloc_size);
9131               if ((prev_rela.get_r_info()
9132                    == elfcpp::elf_r_info<size>(r_sym,
9133                                                elfcpp::R_POWERPC_REL16_HA))
9134                   && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
9135                   && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
9136                 {
9137                   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9138                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
9139                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
9140
9141                   if ((insn1 & 0xffff0000) == addis_2_12
9142                       && (insn2 & 0xffff0000) == addi_2_2)
9143                     {
9144                       insn1 = lis_2 + ha(value + address - 4);
9145                       elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
9146                       insn2 = addi_2_2 + l(value + address - 4);
9147                       elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
9148                       if (relinfo->rr)
9149                         {
9150                           relinfo->rr->set_strategy(relnum - 1,
9151                                                     Relocatable_relocs::RELOC_SPECIAL);
9152                           relinfo->rr->set_strategy(relnum,
9153                                                     Relocatable_relocs::RELOC_SPECIAL);
9154                         }
9155                       return true;
9156                     }
9157                 }
9158             }
9159           break;
9160         }
9161     }
9162
9163   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
9164   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
9165   switch (r_type)
9166     {
9167     case elfcpp::R_POWERPC_ADDR32:
9168     case elfcpp::R_POWERPC_UADDR32:
9169       if (size == 64)
9170         overflow = Reloc::CHECK_BITFIELD;
9171       break;
9172
9173     case elfcpp::R_POWERPC_REL32:
9174     case elfcpp::R_POWERPC_REL16DX_HA:
9175       if (size == 64)
9176         overflow = Reloc::CHECK_SIGNED;
9177       break;
9178
9179     case elfcpp::R_POWERPC_UADDR16:
9180       overflow = Reloc::CHECK_BITFIELD;
9181       break;
9182
9183     case elfcpp::R_POWERPC_ADDR16:
9184       // We really should have three separate relocations,
9185       // one for 16-bit data, one for insns with 16-bit signed fields,
9186       // and one for insns with 16-bit unsigned fields.
9187       overflow = Reloc::CHECK_BITFIELD;
9188       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
9189         overflow = Reloc::CHECK_LOW_INSN;
9190       break;
9191
9192     case elfcpp::R_POWERPC_ADDR16_HI:
9193     case elfcpp::R_POWERPC_ADDR16_HA:
9194     case elfcpp::R_POWERPC_GOT16_HI:
9195     case elfcpp::R_POWERPC_GOT16_HA:
9196     case elfcpp::R_POWERPC_PLT16_HI:
9197     case elfcpp::R_POWERPC_PLT16_HA:
9198     case elfcpp::R_POWERPC_SECTOFF_HI:
9199     case elfcpp::R_POWERPC_SECTOFF_HA:
9200     case elfcpp::R_PPC64_TOC16_HI:
9201     case elfcpp::R_PPC64_TOC16_HA:
9202     case elfcpp::R_PPC64_PLTGOT16_HI:
9203     case elfcpp::R_PPC64_PLTGOT16_HA:
9204     case elfcpp::R_POWERPC_TPREL16_HI:
9205     case elfcpp::R_POWERPC_TPREL16_HA:
9206     case elfcpp::R_POWERPC_DTPREL16_HI:
9207     case elfcpp::R_POWERPC_DTPREL16_HA:
9208     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
9209     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9210     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
9211     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9212     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
9213     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9214     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
9215     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9216     case elfcpp::R_POWERPC_REL16_HI:
9217     case elfcpp::R_POWERPC_REL16_HA:
9218       if (size != 32)
9219         overflow = Reloc::CHECK_HIGH_INSN;
9220       break;
9221
9222     case elfcpp::R_POWERPC_REL16:
9223     case elfcpp::R_PPC64_TOC16:
9224     case elfcpp::R_POWERPC_GOT16:
9225     case elfcpp::R_POWERPC_SECTOFF:
9226     case elfcpp::R_POWERPC_TPREL16:
9227     case elfcpp::R_POWERPC_DTPREL16:
9228     case elfcpp::R_POWERPC_GOT_TLSGD16:
9229     case elfcpp::R_POWERPC_GOT_TLSLD16:
9230     case elfcpp::R_POWERPC_GOT_TPREL16:
9231     case elfcpp::R_POWERPC_GOT_DTPREL16:
9232       overflow = Reloc::CHECK_LOW_INSN;
9233       break;
9234
9235     case elfcpp::R_POWERPC_ADDR24:
9236     case elfcpp::R_POWERPC_ADDR14:
9237     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9238     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9239     case elfcpp::R_PPC64_ADDR16_DS:
9240     case elfcpp::R_POWERPC_REL24:
9241     case elfcpp::R_PPC_PLTREL24:
9242     case elfcpp::R_PPC_LOCAL24PC:
9243     case elfcpp::R_PPC64_TPREL16_DS:
9244     case elfcpp::R_PPC64_DTPREL16_DS:
9245     case elfcpp::R_PPC64_TOC16_DS:
9246     case elfcpp::R_PPC64_GOT16_DS:
9247     case elfcpp::R_PPC64_SECTOFF_DS:
9248     case elfcpp::R_POWERPC_REL14:
9249     case elfcpp::R_POWERPC_REL14_BRTAKEN:
9250     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9251       overflow = Reloc::CHECK_SIGNED;
9252       break;
9253     }
9254
9255   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9256   Insn insn = 0;
9257
9258   if (overflow == Reloc::CHECK_LOW_INSN
9259       || overflow == Reloc::CHECK_HIGH_INSN)
9260     {
9261       insn = elfcpp::Swap<32, big_endian>::readval(iview);
9262
9263       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
9264         overflow = Reloc::CHECK_BITFIELD;
9265       else if (overflow == Reloc::CHECK_LOW_INSN
9266                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
9267                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
9268                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
9269                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
9270                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
9271                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
9272         overflow = Reloc::CHECK_UNSIGNED;
9273       else
9274         overflow = Reloc::CHECK_SIGNED;
9275     }
9276
9277   bool maybe_dq_reloc = false;
9278   typename Powerpc_relocate_functions<size, big_endian>::Status status
9279     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
9280   switch (r_type)
9281     {
9282     case elfcpp::R_POWERPC_NONE:
9283     case elfcpp::R_POWERPC_TLS:
9284     case elfcpp::R_POWERPC_GNU_VTINHERIT:
9285     case elfcpp::R_POWERPC_GNU_VTENTRY:
9286       break;
9287
9288     case elfcpp::R_PPC64_ADDR64:
9289     case elfcpp::R_PPC64_REL64:
9290     case elfcpp::R_PPC64_TOC:
9291     case elfcpp::R_PPC64_ADDR64_LOCAL:
9292       Reloc::addr64(view, value);
9293       break;
9294
9295     case elfcpp::R_POWERPC_TPREL:
9296     case elfcpp::R_POWERPC_DTPREL:
9297       if (size == 64)
9298         Reloc::addr64(view, value);
9299       else
9300         status = Reloc::addr32(view, value, overflow);
9301       break;
9302
9303     case elfcpp::R_PPC64_UADDR64:
9304       Reloc::addr64_u(view, value);
9305       break;
9306
9307     case elfcpp::R_POWERPC_ADDR32:
9308       status = Reloc::addr32(view, value, overflow);
9309       break;
9310
9311     case elfcpp::R_POWERPC_REL32:
9312     case elfcpp::R_POWERPC_UADDR32:
9313       status = Reloc::addr32_u(view, value, overflow);
9314       break;
9315
9316     case elfcpp::R_POWERPC_ADDR24:
9317     case elfcpp::R_POWERPC_REL24:
9318     case elfcpp::R_PPC_PLTREL24:
9319     case elfcpp::R_PPC_LOCAL24PC:
9320       status = Reloc::addr24(view, value, overflow);
9321       break;
9322
9323     case elfcpp::R_POWERPC_GOT_DTPREL16:
9324     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9325     case elfcpp::R_POWERPC_GOT_TPREL16:
9326     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
9327       if (size == 64)
9328         {
9329           // On ppc64 these are all ds form
9330           maybe_dq_reloc = true;
9331           break;
9332         }
9333       // Fall through.
9334     case elfcpp::R_POWERPC_ADDR16:
9335     case elfcpp::R_POWERPC_REL16:
9336     case elfcpp::R_PPC64_TOC16:
9337     case elfcpp::R_POWERPC_GOT16:
9338     case elfcpp::R_POWERPC_SECTOFF:
9339     case elfcpp::R_POWERPC_TPREL16:
9340     case elfcpp::R_POWERPC_DTPREL16:
9341     case elfcpp::R_POWERPC_GOT_TLSGD16:
9342     case elfcpp::R_POWERPC_GOT_TLSLD16:
9343     case elfcpp::R_POWERPC_ADDR16_LO:
9344     case elfcpp::R_POWERPC_REL16_LO:
9345     case elfcpp::R_PPC64_TOC16_LO:
9346     case elfcpp::R_POWERPC_GOT16_LO:
9347     case elfcpp::R_POWERPC_SECTOFF_LO:
9348     case elfcpp::R_POWERPC_TPREL16_LO:
9349     case elfcpp::R_POWERPC_DTPREL16_LO:
9350     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
9351     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
9352       if (size == 64)
9353         status = Reloc::addr16(view, value, overflow);
9354       else
9355         maybe_dq_reloc = true;
9356       break;
9357
9358     case elfcpp::R_POWERPC_UADDR16:
9359       status = Reloc::addr16_u(view, value, overflow);
9360       break;
9361
9362     case elfcpp::R_PPC64_ADDR16_HIGH:
9363     case elfcpp::R_PPC64_TPREL16_HIGH:
9364     case elfcpp::R_PPC64_DTPREL16_HIGH:
9365       if (size == 32)
9366         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
9367         goto unsupp;
9368       // Fall through.
9369     case elfcpp::R_POWERPC_ADDR16_HI:
9370     case elfcpp::R_POWERPC_REL16_HI:
9371     case elfcpp::R_PPC64_TOC16_HI:
9372     case elfcpp::R_POWERPC_GOT16_HI:
9373     case elfcpp::R_POWERPC_SECTOFF_HI:
9374     case elfcpp::R_POWERPC_TPREL16_HI:
9375     case elfcpp::R_POWERPC_DTPREL16_HI:
9376     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
9377     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
9378     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
9379     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
9380       Reloc::addr16_hi(view, value);
9381       break;
9382
9383     case elfcpp::R_PPC64_ADDR16_HIGHA:
9384     case elfcpp::R_PPC64_TPREL16_HIGHA:
9385     case elfcpp::R_PPC64_DTPREL16_HIGHA:
9386       if (size == 32)
9387         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
9388         goto unsupp;
9389       // Fall through.
9390     case elfcpp::R_POWERPC_ADDR16_HA:
9391     case elfcpp::R_POWERPC_REL16_HA:
9392     case elfcpp::R_PPC64_TOC16_HA:
9393     case elfcpp::R_POWERPC_GOT16_HA:
9394     case elfcpp::R_POWERPC_SECTOFF_HA:
9395     case elfcpp::R_POWERPC_TPREL16_HA:
9396     case elfcpp::R_POWERPC_DTPREL16_HA:
9397     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9398     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9399     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9400     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9401       Reloc::addr16_ha(view, value);
9402       break;
9403
9404     case elfcpp::R_POWERPC_REL16DX_HA:
9405       status = Reloc::addr16dx_ha(view, value, overflow);
9406       break;
9407
9408     case elfcpp::R_PPC64_DTPREL16_HIGHER:
9409       if (size == 32)
9410         // R_PPC_EMB_NADDR16_LO
9411         goto unsupp;
9412       // Fall through.
9413     case elfcpp::R_PPC64_ADDR16_HIGHER:
9414     case elfcpp::R_PPC64_TPREL16_HIGHER:
9415       Reloc::addr16_hi2(view, value);
9416       break;
9417
9418     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
9419       if (size == 32)
9420         // R_PPC_EMB_NADDR16_HI
9421         goto unsupp;
9422       // Fall through.
9423     case elfcpp::R_PPC64_ADDR16_HIGHERA:
9424     case elfcpp::R_PPC64_TPREL16_HIGHERA:
9425       Reloc::addr16_ha2(view, value);
9426       break;
9427
9428     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
9429       if (size == 32)
9430         // R_PPC_EMB_NADDR16_HA
9431         goto unsupp;
9432       // Fall through.
9433     case elfcpp::R_PPC64_ADDR16_HIGHEST:
9434     case elfcpp::R_PPC64_TPREL16_HIGHEST:
9435       Reloc::addr16_hi3(view, value);
9436       break;
9437
9438     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
9439       if (size == 32)
9440         // R_PPC_EMB_SDAI16
9441         goto unsupp;
9442       // Fall through.
9443     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
9444     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
9445       Reloc::addr16_ha3(view, value);
9446       break;
9447
9448     case elfcpp::R_PPC64_DTPREL16_DS:
9449     case elfcpp::R_PPC64_DTPREL16_LO_DS:
9450       if (size == 32)
9451         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
9452         goto unsupp;
9453       // Fall through.
9454     case elfcpp::R_PPC64_TPREL16_DS:
9455     case elfcpp::R_PPC64_TPREL16_LO_DS:
9456       if (size == 32)
9457         // R_PPC_TLSGD, R_PPC_TLSLD
9458         break;
9459       // Fall through.
9460     case elfcpp::R_PPC64_ADDR16_DS:
9461     case elfcpp::R_PPC64_ADDR16_LO_DS:
9462     case elfcpp::R_PPC64_TOC16_DS:
9463     case elfcpp::R_PPC64_TOC16_LO_DS:
9464     case elfcpp::R_PPC64_GOT16_DS:
9465     case elfcpp::R_PPC64_GOT16_LO_DS:
9466     case elfcpp::R_PPC64_SECTOFF_DS:
9467     case elfcpp::R_PPC64_SECTOFF_LO_DS:
9468       maybe_dq_reloc = true;
9469       break;
9470
9471     case elfcpp::R_POWERPC_ADDR14:
9472     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9473     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9474     case elfcpp::R_POWERPC_REL14:
9475     case elfcpp::R_POWERPC_REL14_BRTAKEN:
9476     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9477       status = Reloc::addr14(view, value, overflow);
9478       break;
9479
9480     case elfcpp::R_POWERPC_COPY:
9481     case elfcpp::R_POWERPC_GLOB_DAT:
9482     case elfcpp::R_POWERPC_JMP_SLOT:
9483     case elfcpp::R_POWERPC_RELATIVE:
9484     case elfcpp::R_POWERPC_DTPMOD:
9485     case elfcpp::R_PPC64_JMP_IREL:
9486     case elfcpp::R_POWERPC_IRELATIVE:
9487       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9488                              _("unexpected reloc %u in object file"),
9489                              r_type);
9490       break;
9491
9492     case elfcpp::R_PPC64_TOCSAVE:
9493       if (size == 32)
9494         // R_PPC_EMB_SDA21
9495         goto unsupp;
9496       else
9497         {
9498           Symbol_location loc;
9499           loc.object = relinfo->object;
9500           loc.shndx = relinfo->data_shndx;
9501           loc.offset = rela.get_r_offset();
9502           Tocsave_loc::const_iterator p = target->tocsave_loc().find(loc);
9503           if (p != target->tocsave_loc().end())
9504             {
9505               // If we've generated plt calls using this tocsave, then
9506               // the nop needs to be changed to save r2.
9507               Insn* iview = reinterpret_cast<Insn*>(view);
9508               if (elfcpp::Swap<32, big_endian>::readval(iview) == nop)
9509                 elfcpp::Swap<32, big_endian>::
9510                   writeval(iview, std_2_1 + target->stk_toc());
9511             }
9512         }
9513       break;
9514
9515     case elfcpp::R_PPC_EMB_SDA2I16:
9516     case elfcpp::R_PPC_EMB_SDA2REL:
9517       if (size == 32)
9518         goto unsupp;
9519       // R_PPC64_TLSGD, R_PPC64_TLSLD
9520       break;
9521
9522     case elfcpp::R_POWERPC_PLT32:
9523     case elfcpp::R_POWERPC_PLTREL32:
9524     case elfcpp::R_POWERPC_PLT16_LO:
9525     case elfcpp::R_POWERPC_PLT16_HI:
9526     case elfcpp::R_POWERPC_PLT16_HA:
9527     case elfcpp::R_PPC_SDAREL16:
9528     case elfcpp::R_POWERPC_ADDR30:
9529     case elfcpp::R_PPC64_PLT64:
9530     case elfcpp::R_PPC64_PLTREL64:
9531     case elfcpp::R_PPC64_PLTGOT16:
9532     case elfcpp::R_PPC64_PLTGOT16_LO:
9533     case elfcpp::R_PPC64_PLTGOT16_HI:
9534     case elfcpp::R_PPC64_PLTGOT16_HA:
9535     case elfcpp::R_PPC64_PLT16_LO_DS:
9536     case elfcpp::R_PPC64_PLTGOT16_DS:
9537     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
9538     case elfcpp::R_PPC_EMB_RELSDA:
9539     case elfcpp::R_PPC_TOC16:
9540     default:
9541     unsupp:
9542       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9543                              _("unsupported reloc %u"),
9544                              r_type);
9545       break;
9546     }
9547
9548   if (maybe_dq_reloc)
9549     {
9550       if (insn == 0)
9551         insn = elfcpp::Swap<32, big_endian>::readval(iview);
9552
9553       if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
9554           || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
9555               && (insn & 3) == 1))
9556         status = Reloc::addr16_dq(view, value, overflow);
9557       else if (size == 64
9558                || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
9559                || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
9560                || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
9561                || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
9562         status = Reloc::addr16_ds(view, value, overflow);
9563       else
9564         status = Reloc::addr16(view, value, overflow);
9565     }
9566
9567   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
9568       && (has_stub_value
9569           || !(gsym != NULL
9570                && gsym->is_undefined()
9571                && is_branch_reloc(r_type))))
9572     {
9573       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9574                              _("relocation overflow"));
9575       if (has_stub_value)
9576         gold_info(_("try relinking with a smaller --stub-group-size"));
9577     }
9578
9579   return true;
9580 }
9581
9582 // Relocate section data.
9583
9584 template<int size, bool big_endian>
9585 void
9586 Target_powerpc<size, big_endian>::relocate_section(
9587     const Relocate_info<size, big_endian>* relinfo,
9588     unsigned int sh_type,
9589     const unsigned char* prelocs,
9590     size_t reloc_count,
9591     Output_section* output_section,
9592     bool needs_special_offset_handling,
9593     unsigned char* view,
9594     Address address,
9595     section_size_type view_size,
9596     const Reloc_symbol_changes* reloc_symbol_changes)
9597 {
9598   typedef Target_powerpc<size, big_endian> Powerpc;
9599   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
9600   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
9601     Powerpc_comdat_behavior;
9602   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9603       Classify_reloc;
9604
9605   gold_assert(sh_type == elfcpp::SHT_RELA);
9606
9607   gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
9608                          Powerpc_comdat_behavior, Classify_reloc>(
9609     relinfo,
9610     this,
9611     prelocs,
9612     reloc_count,
9613     output_section,
9614     needs_special_offset_handling,
9615     view,
9616     address,
9617     view_size,
9618     reloc_symbol_changes);
9619 }
9620
9621 template<int size, bool big_endian>
9622 class Powerpc_scan_relocatable_reloc
9623 {
9624 public:
9625   typedef typename elfcpp::Rela<size, big_endian> Reltype;
9626   static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9627   static const int sh_type = elfcpp::SHT_RELA;
9628
9629   // Return the symbol referred to by the relocation.
9630   static inline unsigned int
9631   get_r_sym(const Reltype* reloc)
9632   { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
9633
9634   // Return the type of the relocation.
9635   static inline unsigned int
9636   get_r_type(const Reltype* reloc)
9637   { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
9638
9639   // Return the strategy to use for a local symbol which is not a
9640   // section symbol, given the relocation type.
9641   inline Relocatable_relocs::Reloc_strategy
9642   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
9643   {
9644     if (r_type == 0 && r_sym == 0)
9645       return Relocatable_relocs::RELOC_DISCARD;
9646     return Relocatable_relocs::RELOC_COPY;
9647   }
9648
9649   // Return the strategy to use for a local symbol which is a section
9650   // symbol, given the relocation type.
9651   inline Relocatable_relocs::Reloc_strategy
9652   local_section_strategy(unsigned int, Relobj*)
9653   {
9654     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
9655   }
9656
9657   // Return the strategy to use for a global symbol, given the
9658   // relocation type, the object, and the symbol index.
9659   inline Relocatable_relocs::Reloc_strategy
9660   global_strategy(unsigned int r_type, Relobj*, unsigned int)
9661   {
9662     if (r_type == elfcpp::R_PPC_PLTREL24)
9663       return Relocatable_relocs::RELOC_SPECIAL;
9664     return Relocatable_relocs::RELOC_COPY;
9665   }
9666 };
9667
9668 // Scan the relocs during a relocatable link.
9669
9670 template<int size, bool big_endian>
9671 void
9672 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
9673     Symbol_table* symtab,
9674     Layout* layout,
9675     Sized_relobj_file<size, big_endian>* object,
9676     unsigned int data_shndx,
9677     unsigned int sh_type,
9678     const unsigned char* prelocs,
9679     size_t reloc_count,
9680     Output_section* output_section,
9681     bool needs_special_offset_handling,
9682     size_t local_symbol_count,
9683     const unsigned char* plocal_symbols,
9684     Relocatable_relocs* rr)
9685 {
9686   typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
9687
9688   gold_assert(sh_type == elfcpp::SHT_RELA);
9689
9690   gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
9691     symtab,
9692     layout,
9693     object,
9694     data_shndx,
9695     prelocs,
9696     reloc_count,
9697     output_section,
9698     needs_special_offset_handling,
9699     local_symbol_count,
9700     plocal_symbols,
9701     rr);
9702 }
9703
9704 // Scan the relocs for --emit-relocs.
9705
9706 template<int size, bool big_endian>
9707 void
9708 Target_powerpc<size, big_endian>::emit_relocs_scan(
9709     Symbol_table* symtab,
9710     Layout* layout,
9711     Sized_relobj_file<size, big_endian>* object,
9712     unsigned int data_shndx,
9713     unsigned int sh_type,
9714     const unsigned char* prelocs,
9715     size_t reloc_count,
9716     Output_section* output_section,
9717     bool needs_special_offset_handling,
9718     size_t local_symbol_count,
9719     const unsigned char* plocal_syms,
9720     Relocatable_relocs* rr)
9721 {
9722   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9723       Classify_reloc;
9724   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
9725       Emit_relocs_strategy;
9726
9727   gold_assert(sh_type == elfcpp::SHT_RELA);
9728
9729   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
9730     symtab,
9731     layout,
9732     object,
9733     data_shndx,
9734     prelocs,
9735     reloc_count,
9736     output_section,
9737     needs_special_offset_handling,
9738     local_symbol_count,
9739     plocal_syms,
9740     rr);
9741 }
9742
9743 // Emit relocations for a section.
9744 // This is a modified version of the function by the same name in
9745 // target-reloc.h.  Using relocate_special_relocatable for
9746 // R_PPC_PLTREL24 would require duplication of the entire body of the
9747 // loop, so we may as well duplicate the whole thing.
9748
9749 template<int size, bool big_endian>
9750 void
9751 Target_powerpc<size, big_endian>::relocate_relocs(
9752     const Relocate_info<size, big_endian>* relinfo,
9753     unsigned int sh_type,
9754     const unsigned char* prelocs,
9755     size_t reloc_count,
9756     Output_section* output_section,
9757     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
9758     unsigned char*,
9759     Address view_address,
9760     section_size_type,
9761     unsigned char* reloc_view,
9762     section_size_type reloc_view_size)
9763 {
9764   gold_assert(sh_type == elfcpp::SHT_RELA);
9765
9766   typedef typename elfcpp::Rela<size, big_endian> Reltype;
9767   typedef typename elfcpp::Rela_write<size, big_endian> Reltype_write;
9768   const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9769   // Offset from start of insn to d-field reloc.
9770   const int d_offset = big_endian ? 2 : 0;
9771
9772   Powerpc_relobj<size, big_endian>* const object
9773     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
9774   const unsigned int local_count = object->local_symbol_count();
9775   unsigned int got2_shndx = object->got2_shndx();
9776   Address got2_addend = 0;
9777   if (got2_shndx != 0)
9778     {
9779       got2_addend = object->get_output_section_offset(got2_shndx);
9780       gold_assert(got2_addend != invalid_address);
9781     }
9782
9783   const bool relocatable = parameters->options().relocatable();
9784
9785   unsigned char* pwrite = reloc_view;
9786   bool zap_next = false;
9787   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
9788     {
9789       Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
9790       if (strategy == Relocatable_relocs::RELOC_DISCARD)
9791         continue;
9792
9793       Reltype reloc(prelocs);
9794       Reltype_write reloc_write(pwrite);
9795
9796       Address offset = reloc.get_r_offset();
9797       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
9798       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9799       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
9800       const unsigned int orig_r_sym = r_sym;
9801       typename elfcpp::Elf_types<size>::Elf_Swxword addend
9802         = reloc.get_r_addend();
9803       const Symbol* gsym = NULL;
9804
9805       if (zap_next)
9806         {
9807           // We could arrange to discard these and other relocs for
9808           // tls optimised sequences in the strategy methods, but for
9809           // now do as BFD ld does.
9810           r_type = elfcpp::R_POWERPC_NONE;
9811           zap_next = false;
9812         }
9813
9814       // Get the new symbol index.
9815       Output_section* os = NULL;
9816       if (r_sym < local_count)
9817         {
9818           switch (strategy)
9819             {
9820             case Relocatable_relocs::RELOC_COPY:
9821             case Relocatable_relocs::RELOC_SPECIAL:
9822               if (r_sym != 0)
9823                 {
9824                   r_sym = object->symtab_index(r_sym);
9825                   gold_assert(r_sym != -1U);
9826                 }
9827               break;
9828
9829             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
9830               {
9831                 // We are adjusting a section symbol.  We need to find
9832                 // the symbol table index of the section symbol for
9833                 // the output section corresponding to input section
9834                 // in which this symbol is defined.
9835                 gold_assert(r_sym < local_count);
9836                 bool is_ordinary;
9837                 unsigned int shndx =
9838                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
9839                 gold_assert(is_ordinary);
9840                 os = object->output_section(shndx);
9841                 gold_assert(os != NULL);
9842                 gold_assert(os->needs_symtab_index());
9843                 r_sym = os->symtab_index();
9844               }
9845               break;
9846
9847             default:
9848               gold_unreachable();
9849             }
9850         }
9851       else
9852         {
9853           gsym = object->global_symbol(r_sym);
9854           gold_assert(gsym != NULL);
9855           if (gsym->is_forwarder())
9856             gsym = relinfo->symtab->resolve_forwards(gsym);
9857
9858           gold_assert(gsym->has_symtab_index());
9859           r_sym = gsym->symtab_index();
9860         }
9861
9862       // Get the new offset--the location in the output section where
9863       // this relocation should be applied.
9864       if (static_cast<Address>(offset_in_output_section) != invalid_address)
9865         offset += offset_in_output_section;
9866       else
9867         {
9868           section_offset_type sot_offset =
9869             convert_types<section_offset_type, Address>(offset);
9870           section_offset_type new_sot_offset =
9871             output_section->output_offset(object, relinfo->data_shndx,
9872                                           sot_offset);
9873           gold_assert(new_sot_offset != -1);
9874           offset = new_sot_offset;
9875         }
9876
9877       // In an object file, r_offset is an offset within the section.
9878       // In an executable or dynamic object, generated by
9879       // --emit-relocs, r_offset is an absolute address.
9880       if (!relocatable)
9881         {
9882           offset += view_address;
9883           if (static_cast<Address>(offset_in_output_section) != invalid_address)
9884             offset -= offset_in_output_section;
9885         }
9886
9887       // Handle the reloc addend based on the strategy.
9888       if (strategy == Relocatable_relocs::RELOC_COPY)
9889         ;
9890       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
9891         {
9892           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
9893           addend = psymval->value(object, addend);
9894           // In a relocatable link, the symbol value is relative to
9895           // the start of the output section. For a non-relocatable
9896           // link, we need to adjust the addend.
9897           if (!relocatable)
9898             {
9899               gold_assert(os != NULL);
9900               addend -= os->address();
9901             }
9902         }
9903       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
9904         {
9905           if (size == 32)
9906             {
9907               if (addend >= 32768)
9908                 addend += got2_addend;
9909             }
9910           else if (r_type == elfcpp::R_POWERPC_REL16_HA)
9911             {
9912               r_type = elfcpp::R_POWERPC_ADDR16_HA;
9913               addend -= d_offset;
9914             }
9915           else if (r_type == elfcpp::R_POWERPC_REL16_LO)
9916             {
9917               r_type = elfcpp::R_POWERPC_ADDR16_LO;
9918               addend -= d_offset + 4;
9919             }
9920         }
9921       else
9922         gold_unreachable();
9923
9924       if (!relocatable)
9925         {
9926           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9927               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
9928               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
9929               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
9930             {
9931               // First instruction of a global dynamic sequence,
9932               // arg setup insn.
9933               const bool final = gsym == NULL || gsym->final_value_is_known();
9934               switch (this->optimize_tls_gd(final))
9935                 {
9936                 case tls::TLSOPT_TO_IE:
9937                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
9938                              - elfcpp::R_POWERPC_GOT_TLSGD16);
9939                   break;
9940                 case tls::TLSOPT_TO_LE:
9941                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9942                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
9943                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
9944                   else
9945                     {
9946                       r_type = elfcpp::R_POWERPC_NONE;
9947                       offset -= d_offset;
9948                     }
9949                   break;
9950                 default:
9951                   break;
9952                 }
9953             }
9954           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9955                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
9956                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
9957                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
9958             {
9959               // First instruction of a local dynamic sequence,
9960               // arg setup insn.
9961               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
9962                 {
9963                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9964                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
9965                     {
9966                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
9967                       const Output_section* os = relinfo->layout->tls_segment()
9968                         ->first_section();
9969                       gold_assert(os != NULL);
9970                       gold_assert(os->needs_symtab_index());
9971                       r_sym = os->symtab_index();
9972                       addend = dtp_offset;
9973                     }
9974                   else
9975                     {
9976                       r_type = elfcpp::R_POWERPC_NONE;
9977                       offset -= d_offset;
9978                     }
9979                 }
9980             }
9981           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9982                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
9983                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
9984                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
9985             {
9986               // First instruction of initial exec sequence.
9987               const bool final = gsym == NULL || gsym->final_value_is_known();
9988               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
9989                 {
9990                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9991                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
9992                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
9993                   else
9994                     {
9995                       r_type = elfcpp::R_POWERPC_NONE;
9996                       offset -= d_offset;
9997                     }
9998                 }
9999             }
10000           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
10001                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
10002             {
10003               // Second instruction of a global dynamic sequence,
10004               // the __tls_get_addr call
10005               const bool final = gsym == NULL || gsym->final_value_is_known();
10006               switch (this->optimize_tls_gd(final))
10007                 {
10008                 case tls::TLSOPT_TO_IE:
10009                   r_type = elfcpp::R_POWERPC_NONE;
10010                   zap_next = true;
10011                   break;
10012                 case tls::TLSOPT_TO_LE:
10013                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
10014                   offset += d_offset;
10015                   zap_next = true;
10016                   break;
10017                 default:
10018                   break;
10019                 }
10020             }
10021           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
10022                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
10023             {
10024               // Second instruction of a local dynamic sequence,
10025               // the __tls_get_addr call
10026               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
10027                 {
10028                   const Output_section* os = relinfo->layout->tls_segment()
10029                     ->first_section();
10030                   gold_assert(os != NULL);
10031                   gold_assert(os->needs_symtab_index());
10032                   r_sym = os->symtab_index();
10033                   addend = dtp_offset;
10034                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
10035                   offset += d_offset;
10036                   zap_next = true;
10037                 }
10038             }
10039           else if (r_type == elfcpp::R_POWERPC_TLS)
10040             {
10041               // Second instruction of an initial exec sequence
10042               const bool final = gsym == NULL || gsym->final_value_is_known();
10043               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
10044                 {
10045                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
10046                   offset += d_offset;
10047                 }
10048             }
10049         }
10050
10051       reloc_write.put_r_offset(offset);
10052       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
10053       reloc_write.put_r_addend(addend);
10054
10055       pwrite += reloc_size;
10056     }
10057
10058   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
10059               == reloc_view_size);
10060 }
10061
10062 // Return the value to use for a dynamic symbol which requires special
10063 // treatment.  This is how we support equality comparisons of function
10064 // pointers across shared library boundaries, as described in the
10065 // processor specific ABI supplement.
10066
10067 template<int size, bool big_endian>
10068 uint64_t
10069 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
10070 {
10071   if (size == 32)
10072     {
10073       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10074       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10075            p != this->stub_tables_.end();
10076            ++p)
10077         {
10078           const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10079             = (*p)->find_plt_call_entry(gsym);
10080           if (ent != NULL)
10081             return (*p)->stub_address() + ent->off_;
10082         }
10083     }
10084   else if (this->abiversion() >= 2)
10085     {
10086       Address off = this->glink_section()->find_global_entry(gsym);
10087       if (off != invalid_address)
10088         return this->glink_section()->global_entry_address() + off;
10089     }
10090   gold_unreachable();
10091 }
10092
10093 // Return the PLT address to use for a local symbol.
10094 template<int size, bool big_endian>
10095 uint64_t
10096 Target_powerpc<size, big_endian>::do_plt_address_for_local(
10097     const Relobj* object,
10098     unsigned int symndx) const
10099 {
10100   if (size == 32)
10101     {
10102       const Sized_relobj<size, big_endian>* relobj
10103         = static_cast<const Sized_relobj<size, big_endian>*>(object);
10104       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10105            p != this->stub_tables_.end();
10106            ++p)
10107         {
10108           const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10109             = (*p)->find_plt_call_entry(relobj->sized_relobj(), symndx);
10110           if (ent != NULL)
10111             return (*p)->stub_address() + ent->off_;
10112         }
10113     }
10114   gold_unreachable();
10115 }
10116
10117 // Return the PLT address to use for a global symbol.
10118 template<int size, bool big_endian>
10119 uint64_t
10120 Target_powerpc<size, big_endian>::do_plt_address_for_global(
10121     const Symbol* gsym) const
10122 {
10123   if (size == 32)
10124     {
10125       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10126            p != this->stub_tables_.end();
10127            ++p)
10128         {
10129           const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10130             = (*p)->find_plt_call_entry(gsym);
10131           if (ent != NULL)
10132             return (*p)->stub_address() + ent->off_;
10133         }
10134     }
10135   else if (this->abiversion() >= 2)
10136     {
10137       Address off = this->glink_section()->find_global_entry(gsym);
10138       if (off != invalid_address)
10139         return this->glink_section()->global_entry_address() + off;
10140     }
10141   gold_unreachable();
10142 }
10143
10144 // Return the offset to use for the GOT_INDX'th got entry which is
10145 // for a local tls symbol specified by OBJECT, SYMNDX.
10146 template<int size, bool big_endian>
10147 int64_t
10148 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
10149     const Relobj* object,
10150     unsigned int symndx,
10151     unsigned int got_indx) const
10152 {
10153   const Powerpc_relobj<size, big_endian>* ppc_object
10154     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
10155   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
10156     {
10157       for (Got_type got_type = GOT_TYPE_TLSGD;
10158            got_type <= GOT_TYPE_TPREL;
10159            got_type = Got_type(got_type + 1))
10160         if (ppc_object->local_has_got_offset(symndx, got_type))
10161           {
10162             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
10163             if (got_type == GOT_TYPE_TLSGD)
10164               off += size / 8;
10165             if (off == got_indx * (size / 8))
10166               {
10167                 if (got_type == GOT_TYPE_TPREL)
10168                   return -tp_offset;
10169                 else
10170                   return -dtp_offset;
10171               }
10172           }
10173     }
10174   gold_unreachable();
10175 }
10176
10177 // Return the offset to use for the GOT_INDX'th got entry which is
10178 // for global tls symbol GSYM.
10179 template<int size, bool big_endian>
10180 int64_t
10181 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
10182     Symbol* gsym,
10183     unsigned int got_indx) const
10184 {
10185   if (gsym->type() == elfcpp::STT_TLS)
10186     {
10187       for (Got_type got_type = GOT_TYPE_TLSGD;
10188            got_type <= GOT_TYPE_TPREL;
10189            got_type = Got_type(got_type + 1))
10190         if (gsym->has_got_offset(got_type))
10191           {
10192             unsigned int off = gsym->got_offset(got_type);
10193             if (got_type == GOT_TYPE_TLSGD)
10194               off += size / 8;
10195             if (off == got_indx * (size / 8))
10196               {
10197                 if (got_type == GOT_TYPE_TPREL)
10198                   return -tp_offset;
10199                 else
10200                   return -dtp_offset;
10201               }
10202           }
10203     }
10204   gold_unreachable();
10205 }
10206
10207 // The selector for powerpc object files.
10208
10209 template<int size, bool big_endian>
10210 class Target_selector_powerpc : public Target_selector
10211 {
10212 public:
10213   Target_selector_powerpc()
10214     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
10215                       size, big_endian,
10216                       (size == 64
10217                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
10218                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
10219                       (size == 64
10220                        ? (big_endian ? "elf64ppc" : "elf64lppc")
10221                        : (big_endian ? "elf32ppc" : "elf32lppc")))
10222   { }
10223
10224   virtual Target*
10225   do_instantiate_target()
10226   { return new Target_powerpc<size, big_endian>(); }
10227 };
10228
10229 Target_selector_powerpc<32, true> target_selector_ppc32;
10230 Target_selector_powerpc<32, false> target_selector_ppc32le;
10231 Target_selector_powerpc<64, true> target_selector_ppc64;
10232 Target_selector_powerpc<64, false> target_selector_ppc64le;
10233
10234 // Instantiate these constants for -O0
10235 template<int size, bool big_endian>
10236 const typename Output_data_glink<size, big_endian>::Address
10237   Output_data_glink<size, big_endian>::invalid_address;
10238 template<int size, bool big_endian>
10239 const typename Stub_table<size, big_endian>::Address
10240   Stub_table<size, big_endian>::invalid_address;
10241 template<int size, bool big_endian>
10242 const typename Target_powerpc<size, big_endian>::Address
10243   Target_powerpc<size, big_endian>::invalid_address;
10244
10245 } // End anonymous namespace.