[GOLD] PowerPC TOC16 and GOT16 relocs are relative
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2015 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73   Output_section* output_section;
74   const Output_section::Input_section* owner;
75 };
76
77 inline bool
78 is_branch_reloc(unsigned int r_type);
79
80 template<int size, bool big_endian>
81 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
82 {
83 public:
84   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
85   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
86   typedef Unordered_map<Address, Section_refs> Access_from;
87
88   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
89                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
90     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
91       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
92       opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
93       e_flags_(ehdr.get_e_flags()), st_other_()
94   {
95     this->set_abiversion(0);
96   }
97
98   ~Powerpc_relobj()
99   { }
100
101   // Read the symbols then set up st_other vector.
102   void
103   do_read_symbols(Read_symbols_data*);
104
105   // The .got2 section shndx.
106   unsigned int
107   got2_shndx() const
108   {
109     if (size == 32)
110       return this->special_;
111     else
112       return 0;
113   }
114
115   // The .opd section shndx.
116   unsigned int
117   opd_shndx() const
118   {
119     if (size == 32)
120       return 0;
121     else
122       return this->special_;
123   }
124
125   // Init OPD entry arrays.
126   void
127   init_opd(size_t opd_size)
128   {
129     size_t count = this->opd_ent_ndx(opd_size);
130     this->opd_ent_.resize(count);
131   }
132
133   // Return section and offset of function entry for .opd + R_OFF.
134   unsigned int
135   get_opd_ent(Address r_off, Address* value = NULL) const
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     gold_assert(this->opd_ent_[ndx].shndx != 0);
140     if (value != NULL)
141       *value = this->opd_ent_[ndx].off;
142     return this->opd_ent_[ndx].shndx;
143   }
144
145   // Set section and offset of function entry for .opd + R_OFF.
146   void
147   set_opd_ent(Address r_off, unsigned int shndx, Address value)
148   {
149     size_t ndx = this->opd_ent_ndx(r_off);
150     gold_assert(ndx < this->opd_ent_.size());
151     this->opd_ent_[ndx].shndx = shndx;
152     this->opd_ent_[ndx].off = value;
153   }
154
155   // Return discard flag for .opd + R_OFF.
156   bool
157   get_opd_discard(Address r_off) const
158   {
159     size_t ndx = this->opd_ent_ndx(r_off);
160     gold_assert(ndx < this->opd_ent_.size());
161     return this->opd_ent_[ndx].discard;
162   }
163
164   // Set discard flag for .opd + R_OFF.
165   void
166   set_opd_discard(Address r_off)
167   {
168     size_t ndx = this->opd_ent_ndx(r_off);
169     gold_assert(ndx < this->opd_ent_.size());
170     this->opd_ent_[ndx].discard = true;
171   }
172
173   bool
174   opd_valid() const
175   { return this->opd_valid_; }
176
177   void
178   set_opd_valid()
179   { this->opd_valid_ = true; }
180
181   // Examine .rela.opd to build info about function entry points.
182   void
183   scan_opd_relocs(size_t reloc_count,
184                   const unsigned char* prelocs,
185                   const unsigned char* plocal_syms);
186
187   // Perform the Sized_relobj_file method, then set up opd info from
188   // .opd relocs.
189   void
190   do_read_relocs(Read_relocs_data*);
191
192   bool
193   do_find_special_sections(Read_symbols_data* sd);
194
195   // Adjust this local symbol value.  Return false if the symbol
196   // should be discarded from the output file.
197   bool
198   do_adjust_local_symbol(Symbol_value<size>* lv) const
199   {
200     if (size == 64 && this->opd_shndx() != 0)
201       {
202         bool is_ordinary;
203         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
204           return true;
205         if (this->get_opd_discard(lv->input_value()))
206           return false;
207       }
208     return true;
209   }
210
211   Access_from*
212   access_from_map()
213   { return &this->access_from_map_; }
214
215   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
216   // section at DST_OFF.
217   void
218   add_reference(Relobj* src_obj,
219                 unsigned int src_indx,
220                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
221   {
222     Section_id src_id(src_obj, src_indx);
223     this->access_from_map_[dst_off].insert(src_id);
224   }
225
226   // Add a reference to the code section specified by the .opd entry
227   // at DST_OFF
228   void
229   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
230   {
231     size_t ndx = this->opd_ent_ndx(dst_off);
232     if (ndx >= this->opd_ent_.size())
233       this->opd_ent_.resize(ndx + 1);
234     this->opd_ent_[ndx].gc_mark = true;
235   }
236
237   void
238   process_gc_mark(Symbol_table* symtab)
239   {
240     for (size_t i = 0; i < this->opd_ent_.size(); i++)
241       if (this->opd_ent_[i].gc_mark)
242         {
243           unsigned int shndx = this->opd_ent_[i].shndx;
244           symtab->gc()->worklist().push_back(Section_id(this, shndx));
245         }
246   }
247
248   // Return offset in output GOT section that this object will use
249   // as a TOC pointer.  Won't be just a constant with multi-toc support.
250   Address
251   toc_base_offset() const
252   { return 0x8000; }
253
254   void
255   set_has_small_toc_reloc()
256   { has_small_toc_reloc_ = true; }
257
258   bool
259   has_small_toc_reloc() const
260   { return has_small_toc_reloc_; }
261
262   void
263   set_has_14bit_branch(unsigned int shndx)
264   {
265     if (shndx >= this->has14_.size())
266       this->has14_.resize(shndx + 1);
267     this->has14_[shndx] = true;
268   }
269
270   bool
271   has_14bit_branch(unsigned int shndx) const
272   { return shndx < this->has14_.size() && this->has14_[shndx];  }
273
274   void
275   set_stub_table(unsigned int shndx, unsigned int stub_index)
276   {
277     if (shndx >= this->stub_table_index_.size())
278       this->stub_table_index_.resize(shndx + 1);
279     this->stub_table_index_[shndx] = stub_index;
280   }
281
282   Stub_table<size, big_endian>*
283   stub_table(unsigned int shndx)
284   {
285     if (shndx < this->stub_table_index_.size())
286       {
287         Target_powerpc<size, big_endian>* target
288           = static_cast<Target_powerpc<size, big_endian>*>(
289               parameters->sized_target<size, big_endian>());
290         unsigned int indx = this->stub_table_index_[shndx];
291         gold_assert(indx < target->stub_tables().size());
292         return target->stub_tables()[indx];
293       }
294     return NULL;
295   }
296
297   void
298   clear_stub_table()
299   {
300     this->stub_table_index_.clear();
301   }
302
303   int
304   abiversion() const
305   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
306
307   // Set ABI version for input and output
308   void
309   set_abiversion(int ver);
310
311   unsigned int
312   ppc64_local_entry_offset(const Symbol* sym) const
313   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
314
315   unsigned int
316   ppc64_local_entry_offset(unsigned int symndx) const
317   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
318
319 private:
320   struct Opd_ent
321   {
322     unsigned int shndx;
323     bool discard : 1;
324     bool gc_mark : 1;
325     Address off;
326   };
327
328   // Return index into opd_ent_ array for .opd entry at OFF.
329   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
330   // apart when the language doesn't use the last 8-byte word, the
331   // environment pointer.  Thus dividing the entry section offset by
332   // 16 will give an index into opd_ent_ that works for either layout
333   // of .opd.  (It leaves some elements of the vector unused when .opd
334   // entries are spaced 24 bytes apart, but we don't know the spacing
335   // until relocations are processed, and in any case it is possible
336   // for an object to have some entries spaced 16 bytes apart and
337   // others 24 bytes apart.)
338   size_t
339   opd_ent_ndx(size_t off) const
340   { return off >> 4;}
341
342   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
343   unsigned int special_;
344
345   // For 64-bit, whether this object uses small model relocs to access
346   // the toc.
347   bool has_small_toc_reloc_;
348
349   // Set at the start of gc_process_relocs, when we know opd_ent_
350   // vector is valid.  The flag could be made atomic and set in
351   // do_read_relocs with memory_order_release and then tested with
352   // memory_order_acquire, potentially resulting in fewer entries in
353   // access_from_map_.
354   bool opd_valid_;
355
356   // The first 8-byte word of an OPD entry gives the address of the
357   // entry point of the function.  Relocatable object files have a
358   // relocation on this word.  The following vector records the
359   // section and offset specified by these relocations.
360   std::vector<Opd_ent> opd_ent_;
361
362   // References made to this object's .opd section when running
363   // gc_process_relocs for another object, before the opd_ent_ vector
364   // is valid for this object.
365   Access_from access_from_map_;
366
367   // Whether input section has a 14-bit branch reloc.
368   std::vector<bool> has14_;
369
370   // The stub table to use for a given input section.
371   std::vector<unsigned int> stub_table_index_;
372
373   // Header e_flags
374   elfcpp::Elf_Word e_flags_;
375
376   // ELF st_other field for local symbols.
377   std::vector<unsigned char> st_other_;
378 };
379
380 template<int size, bool big_endian>
381 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
382 {
383 public:
384   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
385
386   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
387                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
388     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
389       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
390   {
391     this->set_abiversion(0);
392   }
393
394   ~Powerpc_dynobj()
395   { }
396
397   // Call Sized_dynobj::do_read_symbols to read the symbols then
398   // read .opd from a dynamic object, filling in opd_ent_ vector,
399   void
400   do_read_symbols(Read_symbols_data*);
401
402   // The .opd section shndx.
403   unsigned int
404   opd_shndx() const
405   {
406     return this->opd_shndx_;
407   }
408
409   // The .opd section address.
410   Address
411   opd_address() const
412   {
413     return this->opd_address_;
414   }
415
416   // Init OPD entry arrays.
417   void
418   init_opd(size_t opd_size)
419   {
420     size_t count = this->opd_ent_ndx(opd_size);
421     this->opd_ent_.resize(count);
422   }
423
424   // Return section and offset of function entry for .opd + R_OFF.
425   unsigned int
426   get_opd_ent(Address r_off, Address* value = NULL) const
427   {
428     size_t ndx = this->opd_ent_ndx(r_off);
429     gold_assert(ndx < this->opd_ent_.size());
430     gold_assert(this->opd_ent_[ndx].shndx != 0);
431     if (value != NULL)
432       *value = this->opd_ent_[ndx].off;
433     return this->opd_ent_[ndx].shndx;
434   }
435
436   // Set section and offset of function entry for .opd + R_OFF.
437   void
438   set_opd_ent(Address r_off, unsigned int shndx, Address value)
439   {
440     size_t ndx = this->opd_ent_ndx(r_off);
441     gold_assert(ndx < this->opd_ent_.size());
442     this->opd_ent_[ndx].shndx = shndx;
443     this->opd_ent_[ndx].off = value;
444   }
445
446   int
447   abiversion() const
448   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
449
450   // Set ABI version for input and output.
451   void
452   set_abiversion(int ver);
453
454 private:
455   // Used to specify extent of executable sections.
456   struct Sec_info
457   {
458     Sec_info(Address start_, Address len_, unsigned int shndx_)
459       : start(start_), len(len_), shndx(shndx_)
460     { }
461
462     bool
463     operator<(const Sec_info& that) const
464     { return this->start < that.start; }
465
466     Address start;
467     Address len;
468     unsigned int shndx;
469   };
470
471   struct Opd_ent
472   {
473     unsigned int shndx;
474     Address off;
475   };
476
477   // Return index into opd_ent_ array for .opd entry at OFF.
478   size_t
479   opd_ent_ndx(size_t off) const
480   { return off >> 4;}
481
482   // For 64-bit the .opd section shndx and address.
483   unsigned int opd_shndx_;
484   Address opd_address_;
485
486   // The first 8-byte word of an OPD entry gives the address of the
487   // entry point of the function.  Records the section and offset
488   // corresponding to the address.  Note that in dynamic objects,
489   // offset is *not* relative to the section.
490   std::vector<Opd_ent> opd_ent_;
491
492   // Header e_flags
493   elfcpp::Elf_Word e_flags_;
494 };
495
496 template<int size, bool big_endian>
497 class Target_powerpc : public Sized_target<size, big_endian>
498 {
499  public:
500   typedef
501     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
502   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
503   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
504   static const Address invalid_address = static_cast<Address>(0) - 1;
505   // Offset of tp and dtp pointers from start of TLS block.
506   static const Address tp_offset = 0x7000;
507   static const Address dtp_offset = 0x8000;
508
509   Target_powerpc()
510     : Sized_target<size, big_endian>(&powerpc_info),
511       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
512       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
513       tlsld_got_offset_(-1U),
514       stub_tables_(), branch_lookup_table_(), branch_info_(),
515       plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
516       stub_group_size_(0), savres_section_(0)
517   {
518   }
519
520   // Process the relocations to determine unreferenced sections for
521   // garbage collection.
522   void
523   gc_process_relocs(Symbol_table* symtab,
524                     Layout* layout,
525                     Sized_relobj_file<size, big_endian>* object,
526                     unsigned int data_shndx,
527                     unsigned int sh_type,
528                     const unsigned char* prelocs,
529                     size_t reloc_count,
530                     Output_section* output_section,
531                     bool needs_special_offset_handling,
532                     size_t local_symbol_count,
533                     const unsigned char* plocal_symbols);
534
535   // Scan the relocations to look for symbol adjustments.
536   void
537   scan_relocs(Symbol_table* symtab,
538               Layout* layout,
539               Sized_relobj_file<size, big_endian>* object,
540               unsigned int data_shndx,
541               unsigned int sh_type,
542               const unsigned char* prelocs,
543               size_t reloc_count,
544               Output_section* output_section,
545               bool needs_special_offset_handling,
546               size_t local_symbol_count,
547               const unsigned char* plocal_symbols);
548
549   // Map input .toc section to output .got section.
550   const char*
551   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
552   {
553     if (size == 64 && strcmp(name, ".toc") == 0)
554       {
555         *plen = 4;
556         return ".got";
557       }
558     return NULL;
559   }
560
561   // Provide linker defined save/restore functions.
562   void
563   define_save_restore_funcs(Layout*, Symbol_table*);
564
565   // No stubs unless a final link.
566   bool
567   do_may_relax() const
568   { return !parameters->options().relocatable(); }
569
570   bool
571   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
572
573   void
574   do_plt_fde_location(const Output_data*, unsigned char*,
575                       uint64_t*, off_t*) const;
576
577   // Stash info about branches, for stub generation.
578   void
579   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
580               unsigned int data_shndx, Address r_offset,
581               unsigned int r_type, unsigned int r_sym, Address addend)
582   {
583     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
584     this->branch_info_.push_back(info);
585     if (r_type == elfcpp::R_POWERPC_REL14
586         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
587         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
588       ppc_object->set_has_14bit_branch(data_shndx);
589   }
590
591   void
592   do_define_standard_symbols(Symbol_table*, Layout*);
593
594   // Finalize the sections.
595   void
596   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
597
598   // Return the value to use for a dynamic which requires special
599   // treatment.
600   uint64_t
601   do_dynsym_value(const Symbol*) const;
602
603   // Return the PLT address to use for a local symbol.
604   uint64_t
605   do_plt_address_for_local(const Relobj*, unsigned int) const;
606
607   // Return the PLT address to use for a global symbol.
608   uint64_t
609   do_plt_address_for_global(const Symbol*) const;
610
611   // Return the offset to use for the GOT_INDX'th got entry which is
612   // for a local tls symbol specified by OBJECT, SYMNDX.
613   int64_t
614   do_tls_offset_for_local(const Relobj* object,
615                           unsigned int symndx,
616                           unsigned int got_indx) const;
617
618   // Return the offset to use for the GOT_INDX'th got entry which is
619   // for global tls symbol GSYM.
620   int64_t
621   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
622
623   void
624   do_function_location(Symbol_location*) const;
625
626   bool
627   do_can_check_for_function_pointers() const
628   { return true; }
629
630   // Adjust -fsplit-stack code which calls non-split-stack code.
631   void
632   do_calls_non_split(Relobj* object, unsigned int shndx,
633                      section_offset_type fnoffset, section_size_type fnsize,
634                      unsigned char* view, section_size_type view_size,
635                      std::string* from, std::string* to) const;
636
637   // Relocate a section.
638   void
639   relocate_section(const Relocate_info<size, big_endian>*,
640                    unsigned int sh_type,
641                    const unsigned char* prelocs,
642                    size_t reloc_count,
643                    Output_section* output_section,
644                    bool needs_special_offset_handling,
645                    unsigned char* view,
646                    Address view_address,
647                    section_size_type view_size,
648                    const Reloc_symbol_changes*);
649
650   // Scan the relocs during a relocatable link.
651   void
652   scan_relocatable_relocs(Symbol_table* symtab,
653                           Layout* layout,
654                           Sized_relobj_file<size, big_endian>* object,
655                           unsigned int data_shndx,
656                           unsigned int sh_type,
657                           const unsigned char* prelocs,
658                           size_t reloc_count,
659                           Output_section* output_section,
660                           bool needs_special_offset_handling,
661                           size_t local_symbol_count,
662                           const unsigned char* plocal_symbols,
663                           Relocatable_relocs*);
664
665   // Emit relocations for a section.
666   void
667   relocate_relocs(const Relocate_info<size, big_endian>*,
668                   unsigned int sh_type,
669                   const unsigned char* prelocs,
670                   size_t reloc_count,
671                   Output_section* output_section,
672                   typename elfcpp::Elf_types<size>::Elf_Off
673                     offset_in_output_section,
674                   const Relocatable_relocs*,
675                   unsigned char*,
676                   Address view_address,
677                   section_size_type,
678                   unsigned char* reloc_view,
679                   section_size_type reloc_view_size);
680
681   // Return whether SYM is defined by the ABI.
682   bool
683   do_is_defined_by_abi(const Symbol* sym) const
684   {
685     return strcmp(sym->name(), "__tls_get_addr") == 0;
686   }
687
688   // Return the size of the GOT section.
689   section_size_type
690   got_size() const
691   {
692     gold_assert(this->got_ != NULL);
693     return this->got_->data_size();
694   }
695
696   // Get the PLT section.
697   const Output_data_plt_powerpc<size, big_endian>*
698   plt_section() const
699   {
700     gold_assert(this->plt_ != NULL);
701     return this->plt_;
702   }
703
704   // Get the IPLT section.
705   const Output_data_plt_powerpc<size, big_endian>*
706   iplt_section() const
707   {
708     gold_assert(this->iplt_ != NULL);
709     return this->iplt_;
710   }
711
712   // Get the .glink section.
713   const Output_data_glink<size, big_endian>*
714   glink_section() const
715   {
716     gold_assert(this->glink_ != NULL);
717     return this->glink_;
718   }
719
720   Output_data_glink<size, big_endian>*
721   glink_section()
722   {
723     gold_assert(this->glink_ != NULL);
724     return this->glink_;
725   }
726
727   bool has_glink() const
728   { return this->glink_ != NULL; }
729
730   // Get the GOT section.
731   const Output_data_got_powerpc<size, big_endian>*
732   got_section() const
733   {
734     gold_assert(this->got_ != NULL);
735     return this->got_;
736   }
737
738   // Get the GOT section, creating it if necessary.
739   Output_data_got_powerpc<size, big_endian>*
740   got_section(Symbol_table*, Layout*);
741
742   Object*
743   do_make_elf_object(const std::string&, Input_file*, off_t,
744                      const elfcpp::Ehdr<size, big_endian>&);
745
746   // Return the number of entries in the GOT.
747   unsigned int
748   got_entry_count() const
749   {
750     if (this->got_ == NULL)
751       return 0;
752     return this->got_size() / (size / 8);
753   }
754
755   // Return the number of entries in the PLT.
756   unsigned int
757   plt_entry_count() const;
758
759   // Return the offset of the first non-reserved PLT entry.
760   unsigned int
761   first_plt_entry_offset() const
762   {
763     if (size == 32)
764       return 0;
765     if (this->abiversion() >= 2)
766       return 16;
767     return 24;
768   }
769
770   // Return the size of each PLT entry.
771   unsigned int
772   plt_entry_size() const
773   {
774     if (size == 32)
775       return 4;
776     if (this->abiversion() >= 2)
777       return 8;
778     return 24;
779   }
780
781   Output_data_save_res<size, big_endian>*
782   savres_section() const
783   {
784     return this->savres_section_;
785   }
786
787   // Add any special sections for this symbol to the gc work list.
788   // For powerpc64, this adds the code section of a function
789   // descriptor.
790   void
791   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
792
793   // Handle target specific gc actions when adding a gc reference from
794   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
795   // and DST_OFF.  For powerpc64, this adds a referenc to the code
796   // section of a function descriptor.
797   void
798   do_gc_add_reference(Symbol_table* symtab,
799                       Relobj* src_obj,
800                       unsigned int src_shndx,
801                       Relobj* dst_obj,
802                       unsigned int dst_shndx,
803                       Address dst_off) const;
804
805   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
806   const Stub_tables&
807   stub_tables() const
808   { return this->stub_tables_; }
809
810   const Output_data_brlt_powerpc<size, big_endian>*
811   brlt_section() const
812   { return this->brlt_section_; }
813
814   void
815   add_branch_lookup_table(Address to)
816   {
817     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
818     this->branch_lookup_table_.insert(std::make_pair(to, off));
819   }
820
821   Address
822   find_branch_lookup_table(Address to)
823   {
824     typename Branch_lookup_table::const_iterator p
825       = this->branch_lookup_table_.find(to);
826     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
827   }
828
829   void
830   write_branch_lookup_table(unsigned char *oview)
831   {
832     for (typename Branch_lookup_table::const_iterator p
833            = this->branch_lookup_table_.begin();
834          p != this->branch_lookup_table_.end();
835          ++p)
836       {
837         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
838       }
839   }
840
841   bool
842   plt_thread_safe() const
843   { return this->plt_thread_safe_; }
844
845   int
846   abiversion () const
847   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
848
849   void
850   set_abiversion (int ver)
851   {
852     elfcpp::Elf_Word flags = this->processor_specific_flags();
853     flags &= ~elfcpp::EF_PPC64_ABI;
854     flags |= ver & elfcpp::EF_PPC64_ABI;
855     this->set_processor_specific_flags(flags);
856   }
857
858   // Offset to to save stack slot
859   int
860   stk_toc () const
861   { return this->abiversion() < 2 ? 40 : 24; }
862
863  private:
864
865   class Track_tls
866   {
867   public:
868     enum Tls_get_addr
869     {
870       NOT_EXPECTED = 0,
871       EXPECTED = 1,
872       SKIP = 2,
873       NORMAL = 3
874     };
875
876     Track_tls()
877       : tls_get_addr_(NOT_EXPECTED),
878         relinfo_(NULL), relnum_(0), r_offset_(0)
879     { }
880
881     ~Track_tls()
882     {
883       if (this->tls_get_addr_ != NOT_EXPECTED)
884         this->missing();
885     }
886
887     void
888     missing(void)
889     {
890       if (this->relinfo_ != NULL)
891         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
892                                _("missing expected __tls_get_addr call"));
893     }
894
895     void
896     expect_tls_get_addr_call(
897         const Relocate_info<size, big_endian>* relinfo,
898         size_t relnum,
899         Address r_offset)
900     {
901       this->tls_get_addr_ = EXPECTED;
902       this->relinfo_ = relinfo;
903       this->relnum_ = relnum;
904       this->r_offset_ = r_offset;
905     }
906
907     void
908     expect_tls_get_addr_call()
909     { this->tls_get_addr_ = EXPECTED; }
910
911     void
912     skip_next_tls_get_addr_call()
913     {this->tls_get_addr_ = SKIP; }
914
915     Tls_get_addr
916     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
917     {
918       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
919                            || r_type == elfcpp::R_PPC_PLTREL24)
920                           && gsym != NULL
921                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
922       Tls_get_addr last_tls = this->tls_get_addr_;
923       this->tls_get_addr_ = NOT_EXPECTED;
924       if (is_tls_call && last_tls != EXPECTED)
925         return last_tls;
926       else if (!is_tls_call && last_tls != NOT_EXPECTED)
927         {
928           this->missing();
929           return EXPECTED;
930         }
931       return NORMAL;
932     }
933
934   private:
935     // What we're up to regarding calls to __tls_get_addr.
936     // On powerpc, the branch and link insn making a call to
937     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
938     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
939     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
940     // The marker relocation always comes first, and has the same
941     // symbol as the reloc on the insn setting up the __tls_get_addr
942     // argument.  This ties the arg setup insn with the call insn,
943     // allowing ld to safely optimize away the call.  We check that
944     // every call to __tls_get_addr has a marker relocation, and that
945     // every marker relocation is on a call to __tls_get_addr.
946     Tls_get_addr tls_get_addr_;
947     // Info about the last reloc for error message.
948     const Relocate_info<size, big_endian>* relinfo_;
949     size_t relnum_;
950     Address r_offset_;
951   };
952
953   // The class which scans relocations.
954   class Scan : protected Track_tls
955   {
956   public:
957     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
958
959     Scan()
960       : Track_tls(), issued_non_pic_error_(false)
961     { }
962
963     static inline int
964     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
965
966     inline void
967     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
968           Sized_relobj_file<size, big_endian>* object,
969           unsigned int data_shndx,
970           Output_section* output_section,
971           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
972           const elfcpp::Sym<size, big_endian>& lsym,
973           bool is_discarded);
974
975     inline void
976     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
977            Sized_relobj_file<size, big_endian>* object,
978            unsigned int data_shndx,
979            Output_section* output_section,
980            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
981            Symbol* gsym);
982
983     inline bool
984     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
985                                         Target_powerpc* ,
986                                         Sized_relobj_file<size, big_endian>* relobj,
987                                         unsigned int ,
988                                         Output_section* ,
989                                         const elfcpp::Rela<size, big_endian>& ,
990                                         unsigned int r_type,
991                                         const elfcpp::Sym<size, big_endian>&)
992     {
993       // PowerPC64 .opd is not folded, so any identical function text
994       // may be folded and we'll still keep function addresses distinct.
995       // That means no reloc is of concern here.
996       if (size == 64)
997         {
998           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
999             <Powerpc_relobj<size, big_endian>*>(relobj);
1000           if (ppcobj->abiversion() == 1)
1001             return false;
1002         }
1003       // For 32-bit and ELFv2, conservatively assume anything but calls to
1004       // function code might be taking the address of the function.
1005       return !is_branch_reloc(r_type);
1006     }
1007
1008     inline bool
1009     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1010                                          Target_powerpc* ,
1011                                          Sized_relobj_file<size, big_endian>* relobj,
1012                                          unsigned int ,
1013                                          Output_section* ,
1014                                          const elfcpp::Rela<size, big_endian>& ,
1015                                          unsigned int r_type,
1016                                          Symbol*)
1017     {
1018       // As above.
1019       if (size == 64)
1020         {
1021           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1022             <Powerpc_relobj<size, big_endian>*>(relobj);
1023           if (ppcobj->abiversion() == 1)
1024             return false;
1025         }
1026       return !is_branch_reloc(r_type);
1027     }
1028
1029     static bool
1030     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1031                               Sized_relobj_file<size, big_endian>* object,
1032                               unsigned int r_type, bool report_err);
1033
1034   private:
1035     static void
1036     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1037                             unsigned int r_type);
1038
1039     static void
1040     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1041                              unsigned int r_type, Symbol*);
1042
1043     static void
1044     generate_tls_call(Symbol_table* symtab, Layout* layout,
1045                       Target_powerpc* target);
1046
1047     void
1048     check_non_pic(Relobj*, unsigned int r_type);
1049
1050     // Whether we have issued an error about a non-PIC compilation.
1051     bool issued_non_pic_error_;
1052   };
1053
1054   bool
1055   symval_for_branch(const Symbol_table* symtab,
1056                     const Sized_symbol<size>* gsym,
1057                     Powerpc_relobj<size, big_endian>* object,
1058                     Address *value, unsigned int *dest_shndx);
1059
1060   // The class which implements relocation.
1061   class Relocate : protected Track_tls
1062   {
1063    public:
1064     // Use 'at' branch hints when true, 'y' when false.
1065     // FIXME maybe: set this with an option.
1066     static const bool is_isa_v2 = true;
1067
1068     Relocate()
1069       : Track_tls()
1070     { }
1071
1072     // Do a relocation.  Return false if the caller should not issue
1073     // any warnings about this relocation.
1074     inline bool
1075     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1076              Output_section*, size_t relnum,
1077              const elfcpp::Rela<size, big_endian>&,
1078              unsigned int r_type, const Sized_symbol<size>*,
1079              const Symbol_value<size>*,
1080              unsigned char*,
1081              typename elfcpp::Elf_types<size>::Elf_Addr,
1082              section_size_type);
1083   };
1084
1085   class Relocate_comdat_behavior
1086   {
1087    public:
1088     // Decide what the linker should do for relocations that refer to
1089     // discarded comdat sections.
1090     inline Comdat_behavior
1091     get(const char* name)
1092     {
1093       gold::Default_comdat_behavior default_behavior;
1094       Comdat_behavior ret = default_behavior.get(name);
1095       if (ret == CB_WARNING)
1096         {
1097           if (size == 32
1098               && (strcmp(name, ".fixup") == 0
1099                   || strcmp(name, ".got2") == 0))
1100             ret = CB_IGNORE;
1101           if (size == 64
1102               && (strcmp(name, ".opd") == 0
1103                   || strcmp(name, ".toc") == 0
1104                   || strcmp(name, ".toc1") == 0))
1105             ret = CB_IGNORE;
1106         }
1107       return ret;
1108     }
1109   };
1110
1111   // A class which returns the size required for a relocation type,
1112   // used while scanning relocs during a relocatable link.
1113   class Relocatable_size_for_reloc
1114   {
1115    public:
1116     unsigned int
1117     get_size_for_reloc(unsigned int, Relobj*)
1118     {
1119       gold_unreachable();
1120       return 0;
1121     }
1122   };
1123
1124   // Optimize the TLS relocation type based on what we know about the
1125   // symbol.  IS_FINAL is true if the final address of this symbol is
1126   // known at link time.
1127
1128   tls::Tls_optimization
1129   optimize_tls_gd(bool is_final)
1130   {
1131     // If we are generating a shared library, then we can't do anything
1132     // in the linker.
1133     if (parameters->options().shared())
1134       return tls::TLSOPT_NONE;
1135
1136     if (!is_final)
1137       return tls::TLSOPT_TO_IE;
1138     return tls::TLSOPT_TO_LE;
1139   }
1140
1141   tls::Tls_optimization
1142   optimize_tls_ld()
1143   {
1144     if (parameters->options().shared())
1145       return tls::TLSOPT_NONE;
1146
1147     return tls::TLSOPT_TO_LE;
1148   }
1149
1150   tls::Tls_optimization
1151   optimize_tls_ie(bool is_final)
1152   {
1153     if (!is_final || parameters->options().shared())
1154       return tls::TLSOPT_NONE;
1155
1156     return tls::TLSOPT_TO_LE;
1157   }
1158
1159   // Create glink.
1160   void
1161   make_glink_section(Layout*);
1162
1163   // Create the PLT section.
1164   void
1165   make_plt_section(Symbol_table*, Layout*);
1166
1167   void
1168   make_iplt_section(Symbol_table*, Layout*);
1169
1170   void
1171   make_brlt_section(Layout*);
1172
1173   // Create a PLT entry for a global symbol.
1174   void
1175   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1176
1177   // Create a PLT entry for a local IFUNC symbol.
1178   void
1179   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1180                              Sized_relobj_file<size, big_endian>*,
1181                              unsigned int);
1182
1183
1184   // Create a GOT entry for local dynamic __tls_get_addr.
1185   unsigned int
1186   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1187                    Sized_relobj_file<size, big_endian>* object);
1188
1189   unsigned int
1190   tlsld_got_offset() const
1191   {
1192     return this->tlsld_got_offset_;
1193   }
1194
1195   // Get the dynamic reloc section, creating it if necessary.
1196   Reloc_section*
1197   rela_dyn_section(Layout*);
1198
1199   // Similarly, but for ifunc symbols get the one for ifunc.
1200   Reloc_section*
1201   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1202
1203   // Copy a relocation against a global symbol.
1204   void
1205   copy_reloc(Symbol_table* symtab, Layout* layout,
1206              Sized_relobj_file<size, big_endian>* object,
1207              unsigned int shndx, Output_section* output_section,
1208              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1209   {
1210     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1211     this->copy_relocs_.copy_reloc(symtab, layout,
1212                                   symtab->get_sized_symbol<size>(sym),
1213                                   object, shndx, output_section,
1214                                   r_type, reloc.get_r_offset(),
1215                                   reloc.get_r_addend(),
1216                                   this->rela_dyn_section(layout));
1217   }
1218
1219   // Look over all the input sections, deciding where to place stubs.
1220   void
1221   group_sections(Layout*, const Task*, bool);
1222
1223   // Sort output sections by address.
1224   struct Sort_sections
1225   {
1226     bool
1227     operator()(const Output_section* sec1, const Output_section* sec2)
1228     { return sec1->address() < sec2->address(); }
1229   };
1230
1231   class Branch_info
1232   {
1233    public:
1234     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1235                 unsigned int data_shndx,
1236                 Address r_offset,
1237                 unsigned int r_type,
1238                 unsigned int r_sym,
1239                 Address addend)
1240       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1241         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1242     { }
1243
1244     ~Branch_info()
1245     { }
1246
1247     // If this branch needs a plt call stub, or a long branch stub, make one.
1248     bool
1249     make_stub(Stub_table<size, big_endian>*,
1250               Stub_table<size, big_endian>*,
1251               Symbol_table*) const;
1252
1253    private:
1254     // The branch location..
1255     Powerpc_relobj<size, big_endian>* object_;
1256     unsigned int shndx_;
1257     Address offset_;
1258     // ..and the branch type and destination.
1259     unsigned int r_type_;
1260     unsigned int r_sym_;
1261     Address addend_;
1262   };
1263
1264   // Information about this specific target which we pass to the
1265   // general Target structure.
1266   static Target::Target_info powerpc_info;
1267
1268   // The types of GOT entries needed for this platform.
1269   // These values are exposed to the ABI in an incremental link.
1270   // Do not renumber existing values without changing the version
1271   // number of the .gnu_incremental_inputs section.
1272   enum Got_type
1273   {
1274     GOT_TYPE_STANDARD,
1275     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1276     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1277     GOT_TYPE_TPREL      // entry for @got@tprel
1278   };
1279
1280   // The GOT section.
1281   Output_data_got_powerpc<size, big_endian>* got_;
1282   // The PLT section.  This is a container for a table of addresses,
1283   // and their relocations.  Each address in the PLT has a dynamic
1284   // relocation (R_*_JMP_SLOT) and each address will have a
1285   // corresponding entry in .glink for lazy resolution of the PLT.
1286   // ppc32 initialises the PLT to point at the .glink entry, while
1287   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1288   // linker adds a stub that loads the PLT entry into ctr then
1289   // branches to ctr.  There may be more than one stub for each PLT
1290   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1291   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1292   Output_data_plt_powerpc<size, big_endian>* plt_;
1293   // The IPLT section.  Like plt_, this is a container for a table of
1294   // addresses and their relocations, specifically for STT_GNU_IFUNC
1295   // functions that resolve locally (STT_GNU_IFUNC functions that
1296   // don't resolve locally go in PLT).  Unlike plt_, these have no
1297   // entry in .glink for lazy resolution, and the relocation section
1298   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1299   // the relocation section may contain relocations against
1300   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1301   // relocation section will appear at the end of other dynamic
1302   // relocations, so that ld.so applies these relocations after other
1303   // dynamic relocations.  In a static executable, the relocation
1304   // section is emitted and marked with __rela_iplt_start and
1305   // __rela_iplt_end symbols.
1306   Output_data_plt_powerpc<size, big_endian>* iplt_;
1307   // Section holding long branch destinations.
1308   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1309   // The .glink section.
1310   Output_data_glink<size, big_endian>* glink_;
1311   // The dynamic reloc section.
1312   Reloc_section* rela_dyn_;
1313   // Relocs saved to avoid a COPY reloc.
1314   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1315   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1316   unsigned int tlsld_got_offset_;
1317
1318   Stub_tables stub_tables_;
1319   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1320   Branch_lookup_table branch_lookup_table_;
1321
1322   typedef std::vector<Branch_info> Branches;
1323   Branches branch_info_;
1324
1325   bool plt_thread_safe_;
1326
1327   bool relax_failed_;
1328   int relax_fail_count_;
1329   int32_t stub_group_size_;
1330
1331   Output_data_save_res<size, big_endian> *savres_section_;
1332 };
1333
1334 template<>
1335 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1336 {
1337   32,                   // size
1338   true,                 // is_big_endian
1339   elfcpp::EM_PPC,       // machine_code
1340   false,                // has_make_symbol
1341   false,                // has_resolve
1342   false,                // has_code_fill
1343   true,                 // is_default_stack_executable
1344   false,                // can_icf_inline_merge_sections
1345   '\0',                 // wrap_char
1346   "/usr/lib/ld.so.1",   // dynamic_linker
1347   0x10000000,           // default_text_segment_address
1348   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1349   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1350   false,                // isolate_execinstr
1351   0,                    // rosegment_gap
1352   elfcpp::SHN_UNDEF,    // small_common_shndx
1353   elfcpp::SHN_UNDEF,    // large_common_shndx
1354   0,                    // small_common_section_flags
1355   0,                    // large_common_section_flags
1356   NULL,                 // attributes_section
1357   NULL,                 // attributes_vendor
1358   "_start",             // entry_symbol_name
1359   32,                   // hash_entry_size
1360 };
1361
1362 template<>
1363 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1364 {
1365   32,                   // size
1366   false,                // is_big_endian
1367   elfcpp::EM_PPC,       // machine_code
1368   false,                // has_make_symbol
1369   false,                // has_resolve
1370   false,                // has_code_fill
1371   true,                 // is_default_stack_executable
1372   false,                // can_icf_inline_merge_sections
1373   '\0',                 // wrap_char
1374   "/usr/lib/ld.so.1",   // dynamic_linker
1375   0x10000000,           // default_text_segment_address
1376   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1377   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1378   false,                // isolate_execinstr
1379   0,                    // rosegment_gap
1380   elfcpp::SHN_UNDEF,    // small_common_shndx
1381   elfcpp::SHN_UNDEF,    // large_common_shndx
1382   0,                    // small_common_section_flags
1383   0,                    // large_common_section_flags
1384   NULL,                 // attributes_section
1385   NULL,                 // attributes_vendor
1386   "_start",             // entry_symbol_name
1387   32,                   // hash_entry_size
1388 };
1389
1390 template<>
1391 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1392 {
1393   64,                   // size
1394   true,                 // is_big_endian
1395   elfcpp::EM_PPC64,     // machine_code
1396   false,                // has_make_symbol
1397   false,                // has_resolve
1398   false,                // has_code_fill
1399   true,                 // is_default_stack_executable
1400   false,                // can_icf_inline_merge_sections
1401   '\0',                 // wrap_char
1402   "/usr/lib/ld.so.1",   // dynamic_linker
1403   0x10000000,           // default_text_segment_address
1404   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1405   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1406   false,                // isolate_execinstr
1407   0,                    // rosegment_gap
1408   elfcpp::SHN_UNDEF,    // small_common_shndx
1409   elfcpp::SHN_UNDEF,    // large_common_shndx
1410   0,                    // small_common_section_flags
1411   0,                    // large_common_section_flags
1412   NULL,                 // attributes_section
1413   NULL,                 // attributes_vendor
1414   "_start",             // entry_symbol_name
1415   32,                   // hash_entry_size
1416 };
1417
1418 template<>
1419 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1420 {
1421   64,                   // size
1422   false,                // is_big_endian
1423   elfcpp::EM_PPC64,     // machine_code
1424   false,                // has_make_symbol
1425   false,                // has_resolve
1426   false,                // has_code_fill
1427   true,                 // is_default_stack_executable
1428   false,                // can_icf_inline_merge_sections
1429   '\0',                 // wrap_char
1430   "/usr/lib/ld.so.1",   // dynamic_linker
1431   0x10000000,           // default_text_segment_address
1432   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1433   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1434   false,                // isolate_execinstr
1435   0,                    // rosegment_gap
1436   elfcpp::SHN_UNDEF,    // small_common_shndx
1437   elfcpp::SHN_UNDEF,    // large_common_shndx
1438   0,                    // small_common_section_flags
1439   0,                    // large_common_section_flags
1440   NULL,                 // attributes_section
1441   NULL,                 // attributes_vendor
1442   "_start",             // entry_symbol_name
1443   32,                   // hash_entry_size
1444 };
1445
1446 inline bool
1447 is_branch_reloc(unsigned int r_type)
1448 {
1449   return (r_type == elfcpp::R_POWERPC_REL24
1450           || r_type == elfcpp::R_PPC_PLTREL24
1451           || r_type == elfcpp::R_PPC_LOCAL24PC
1452           || r_type == elfcpp::R_POWERPC_REL14
1453           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1454           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1455           || r_type == elfcpp::R_POWERPC_ADDR24
1456           || r_type == elfcpp::R_POWERPC_ADDR14
1457           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1458           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1459 }
1460
1461 // If INSN is an opcode that may be used with an @tls operand, return
1462 // the transformed insn for TLS optimisation, otherwise return 0.  If
1463 // REG is non-zero only match an insn with RB or RA equal to REG.
1464 uint32_t
1465 at_tls_transform(uint32_t insn, unsigned int reg)
1466 {
1467   if ((insn & (0x3f << 26)) != 31 << 26)
1468     return 0;
1469
1470   unsigned int rtra;
1471   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1472     rtra = insn & ((1 << 26) - (1 << 16));
1473   else if (((insn >> 16) & 0x1f) == reg)
1474     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1475   else
1476     return 0;
1477
1478   if ((insn & (0x3ff << 1)) == 266 << 1)
1479     // add -> addi
1480     insn = 14 << 26;
1481   else if ((insn & (0x1f << 1)) == 23 << 1
1482            && ((insn & (0x1f << 6)) < 14 << 6
1483                || ((insn & (0x1f << 6)) >= 16 << 6
1484                    && (insn & (0x1f << 6)) < 24 << 6)))
1485     // load and store indexed -> dform
1486     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1487   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1488     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1489     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1490   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1491     // lwax -> lwa
1492     insn = (58 << 26) | 2;
1493   else
1494     return 0;
1495   insn |= rtra;
1496   return insn;
1497 }
1498
1499
1500 template<int size, bool big_endian>
1501 class Powerpc_relocate_functions
1502 {
1503 public:
1504   enum Overflow_check
1505   {
1506     CHECK_NONE,
1507     CHECK_SIGNED,
1508     CHECK_UNSIGNED,
1509     CHECK_BITFIELD,
1510     CHECK_LOW_INSN,
1511     CHECK_HIGH_INSN
1512   };
1513
1514   enum Status
1515   {
1516     STATUS_OK,
1517     STATUS_OVERFLOW
1518   };
1519
1520 private:
1521   typedef Powerpc_relocate_functions<size, big_endian> This;
1522   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1523   typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1524
1525   template<int valsize>
1526   static inline bool
1527   has_overflow_signed(Address value)
1528   {
1529     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1530     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1531     limit <<= ((valsize - 1) >> 1);
1532     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1533     return value + limit > (limit << 1) - 1;
1534   }
1535
1536   template<int valsize>
1537   static inline bool
1538   has_overflow_unsigned(Address value)
1539   {
1540     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1541     limit <<= ((valsize - 1) >> 1);
1542     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1543     return value > (limit << 1) - 1;
1544   }
1545
1546   template<int valsize>
1547   static inline bool
1548   has_overflow_bitfield(Address value)
1549   {
1550     return (has_overflow_unsigned<valsize>(value)
1551             && has_overflow_signed<valsize>(value));
1552   }
1553
1554   template<int valsize>
1555   static inline Status
1556   overflowed(Address value, Overflow_check overflow)
1557   {
1558     if (overflow == CHECK_SIGNED)
1559       {
1560         if (has_overflow_signed<valsize>(value))
1561           return STATUS_OVERFLOW;
1562       }
1563     else if (overflow == CHECK_UNSIGNED)
1564       {
1565         if (has_overflow_unsigned<valsize>(value))
1566           return STATUS_OVERFLOW;
1567       }
1568     else if (overflow == CHECK_BITFIELD)
1569       {
1570         if (has_overflow_bitfield<valsize>(value))
1571           return STATUS_OVERFLOW;
1572       }
1573     return STATUS_OK;
1574   }
1575
1576   // Do a simple RELA relocation
1577   template<int fieldsize, int valsize>
1578   static inline Status
1579   rela(unsigned char* view, Address value, Overflow_check overflow)
1580   {
1581     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1582     Valtype* wv = reinterpret_cast<Valtype*>(view);
1583     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1584     return overflowed<valsize>(value, overflow);
1585   }
1586
1587   template<int fieldsize, int valsize>
1588   static inline Status
1589   rela(unsigned char* view,
1590        unsigned int right_shift,
1591        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1592        Address value,
1593        Overflow_check overflow)
1594   {
1595     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1596     Valtype* wv = reinterpret_cast<Valtype*>(view);
1597     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1598     Valtype reloc = value >> right_shift;
1599     val &= ~dst_mask;
1600     reloc &= dst_mask;
1601     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1602     return overflowed<valsize>(value >> right_shift, overflow);
1603   }
1604
1605   // Do a simple RELA relocation, unaligned.
1606   template<int fieldsize, int valsize>
1607   static inline Status
1608   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1609   {
1610     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1611     return overflowed<valsize>(value, overflow);
1612   }
1613
1614   template<int fieldsize, int valsize>
1615   static inline Status
1616   rela_ua(unsigned char* view,
1617           unsigned int right_shift,
1618           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1619           Address value,
1620           Overflow_check overflow)
1621   {
1622     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1623       Valtype;
1624     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1625     Valtype reloc = value >> right_shift;
1626     val &= ~dst_mask;
1627     reloc &= dst_mask;
1628     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1629     return overflowed<valsize>(value >> right_shift, overflow);
1630   }
1631
1632 public:
1633   // R_PPC64_ADDR64: (Symbol + Addend)
1634   static inline void
1635   addr64(unsigned char* view, Address value)
1636   { This::template rela<64,64>(view, value, CHECK_NONE); }
1637
1638   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1639   static inline void
1640   addr64_u(unsigned char* view, Address value)
1641   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1642
1643   // R_POWERPC_ADDR32: (Symbol + Addend)
1644   static inline Status
1645   addr32(unsigned char* view, Address value, Overflow_check overflow)
1646   { return This::template rela<32,32>(view, value, overflow); }
1647
1648   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1649   static inline Status
1650   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1651   { return This::template rela_ua<32,32>(view, value, overflow); }
1652
1653   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1654   static inline Status
1655   addr24(unsigned char* view, Address value, Overflow_check overflow)
1656   {
1657     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1658                                              value, overflow);
1659     if (overflow != CHECK_NONE && (value & 3) != 0)
1660       stat = STATUS_OVERFLOW;
1661     return stat;
1662   }
1663
1664   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1665   static inline Status
1666   addr16(unsigned char* view, Address value, Overflow_check overflow)
1667   { return This::template rela<16,16>(view, value, overflow); }
1668
1669   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1670   static inline Status
1671   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1672   { return This::template rela_ua<16,16>(view, value, overflow); }
1673
1674   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1675   static inline Status
1676   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1677   {
1678     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1679     if ((value & 3) != 0)
1680       stat = STATUS_OVERFLOW;
1681     return stat;
1682   }
1683
1684   // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1685   static inline Status
1686   addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1687   {
1688     Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1689     if ((value & 15) != 0)
1690       stat = STATUS_OVERFLOW;
1691     return stat;
1692   }
1693
1694   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1695   static inline void
1696   addr16_hi(unsigned char* view, Address value)
1697   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1698
1699   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1700   static inline void
1701   addr16_ha(unsigned char* view, Address value)
1702   { This::addr16_hi(view, value + 0x8000); }
1703
1704   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1705   static inline void
1706   addr16_hi2(unsigned char* view, Address value)
1707   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1708
1709   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1710   static inline void
1711   addr16_ha2(unsigned char* view, Address value)
1712   { This::addr16_hi2(view, value + 0x8000); }
1713
1714   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1715   static inline void
1716   addr16_hi3(unsigned char* view, Address value)
1717   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1718
1719   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1720   static inline void
1721   addr16_ha3(unsigned char* view, Address value)
1722   { This::addr16_hi3(view, value + 0x8000); }
1723
1724   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1725   static inline Status
1726   addr14(unsigned char* view, Address value, Overflow_check overflow)
1727   {
1728     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1729     if (overflow != CHECK_NONE && (value & 3) != 0)
1730       stat = STATUS_OVERFLOW;
1731     return stat;
1732   }
1733
1734   // R_POWERPC_REL16DX_HA
1735   static inline Status
1736   addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1737   {
1738     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1739     Valtype* wv = reinterpret_cast<Valtype*>(view);
1740     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1741     value += 0x8000;
1742     value = static_cast<SignedAddress>(value) >> 16;
1743     val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1744     elfcpp::Swap<32, big_endian>::writeval(wv, val);
1745     return overflowed<16>(value, overflow);
1746   }
1747 };
1748
1749 // Set ABI version for input and output.
1750
1751 template<int size, bool big_endian>
1752 void
1753 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1754 {
1755   this->e_flags_ |= ver;
1756   if (this->abiversion() != 0)
1757     {
1758       Target_powerpc<size, big_endian>* target =
1759         static_cast<Target_powerpc<size, big_endian>*>(
1760            parameters->sized_target<size, big_endian>());
1761       if (target->abiversion() == 0)
1762         target->set_abiversion(this->abiversion());
1763       else if (target->abiversion() != this->abiversion())
1764         gold_error(_("%s: ABI version %d is not compatible "
1765                      "with ABI version %d output"),
1766                    this->name().c_str(),
1767                    this->abiversion(), target->abiversion());
1768
1769     }
1770 }
1771
1772 // Stash away the index of .got2 or .opd in a relocatable object, if
1773 // such a section exists.
1774
1775 template<int size, bool big_endian>
1776 bool
1777 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1778     Read_symbols_data* sd)
1779 {
1780   const unsigned char* const pshdrs = sd->section_headers->data();
1781   const unsigned char* namesu = sd->section_names->data();
1782   const char* names = reinterpret_cast<const char*>(namesu);
1783   section_size_type names_size = sd->section_names_size;
1784   const unsigned char* s;
1785
1786   s = this->template find_shdr<size, big_endian>(pshdrs,
1787                                                  size == 32 ? ".got2" : ".opd",
1788                                                  names, names_size, NULL);
1789   if (s != NULL)
1790     {
1791       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1792       this->special_ = ndx;
1793       if (size == 64)
1794         {
1795           if (this->abiversion() == 0)
1796             this->set_abiversion(1);
1797           else if (this->abiversion() > 1)
1798             gold_error(_("%s: .opd invalid in abiv%d"),
1799                        this->name().c_str(), this->abiversion());
1800         }
1801     }
1802   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1803 }
1804
1805 // Examine .rela.opd to build info about function entry points.
1806
1807 template<int size, bool big_endian>
1808 void
1809 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1810     size_t reloc_count,
1811     const unsigned char* prelocs,
1812     const unsigned char* plocal_syms)
1813 {
1814   if (size == 64)
1815     {
1816       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1817         Reltype;
1818       const int reloc_size
1819         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1820       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1821       Address expected_off = 0;
1822       bool regular = true;
1823       unsigned int opd_ent_size = 0;
1824
1825       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1826         {
1827           Reltype reloc(prelocs);
1828           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1829             = reloc.get_r_info();
1830           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1831           if (r_type == elfcpp::R_PPC64_ADDR64)
1832             {
1833               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1834               typename elfcpp::Elf_types<size>::Elf_Addr value;
1835               bool is_ordinary;
1836               unsigned int shndx;
1837               if (r_sym < this->local_symbol_count())
1838                 {
1839                   typename elfcpp::Sym<size, big_endian>
1840                     lsym(plocal_syms + r_sym * sym_size);
1841                   shndx = lsym.get_st_shndx();
1842                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1843                   value = lsym.get_st_value();
1844                 }
1845               else
1846                 shndx = this->symbol_section_and_value(r_sym, &value,
1847                                                        &is_ordinary);
1848               this->set_opd_ent(reloc.get_r_offset(), shndx,
1849                                 value + reloc.get_r_addend());
1850               if (i == 2)
1851                 {
1852                   expected_off = reloc.get_r_offset();
1853                   opd_ent_size = expected_off;
1854                 }
1855               else if (expected_off != reloc.get_r_offset())
1856                 regular = false;
1857               expected_off += opd_ent_size;
1858             }
1859           else if (r_type == elfcpp::R_PPC64_TOC)
1860             {
1861               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1862                 regular = false;
1863             }
1864           else
1865             {
1866               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1867                            this->name().c_str(), r_type);
1868               regular = false;
1869             }
1870         }
1871       if (reloc_count <= 2)
1872         opd_ent_size = this->section_size(this->opd_shndx());
1873       if (opd_ent_size != 24 && opd_ent_size != 16)
1874         regular = false;
1875       if (!regular)
1876         {
1877           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1878                        this->name().c_str());
1879           opd_ent_size = 0;
1880         }
1881     }
1882 }
1883
1884 template<int size, bool big_endian>
1885 void
1886 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1887 {
1888   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1889   if (size == 64)
1890     {
1891       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1892            p != rd->relocs.end();
1893            ++p)
1894         {
1895           if (p->data_shndx == this->opd_shndx())
1896             {
1897               uint64_t opd_size = this->section_size(this->opd_shndx());
1898               gold_assert(opd_size == static_cast<size_t>(opd_size));
1899               if (opd_size != 0)
1900                 {
1901                   this->init_opd(opd_size);
1902                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1903                                         rd->local_symbols->data());
1904                 }
1905               break;
1906             }
1907         }
1908     }
1909 }
1910
1911 // Read the symbols then set up st_other vector.
1912
1913 template<int size, bool big_endian>
1914 void
1915 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1916 {
1917   this->base_read_symbols(sd);
1918   if (size == 64)
1919     {
1920       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1921       const unsigned char* const pshdrs = sd->section_headers->data();
1922       const unsigned int loccount = this->do_local_symbol_count();
1923       if (loccount != 0)
1924         {
1925           this->st_other_.resize(loccount);
1926           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1927           off_t locsize = loccount * sym_size;
1928           const unsigned int symtab_shndx = this->symtab_shndx();
1929           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1930           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1931           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1932                                                       locsize, true, false);
1933           psyms += sym_size;
1934           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1935             {
1936               elfcpp::Sym<size, big_endian> sym(psyms);
1937               unsigned char st_other = sym.get_st_other();
1938               this->st_other_[i] = st_other;
1939               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1940                 {
1941                   if (this->abiversion() == 0)
1942                     this->set_abiversion(2);
1943                   else if (this->abiversion() < 2)
1944                     gold_error(_("%s: local symbol %d has invalid st_other"
1945                                  " for ABI version 1"),
1946                                this->name().c_str(), i);
1947                 }
1948             }
1949         }
1950     }
1951 }
1952
1953 template<int size, bool big_endian>
1954 void
1955 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1956 {
1957   this->e_flags_ |= ver;
1958   if (this->abiversion() != 0)
1959     {
1960       Target_powerpc<size, big_endian>* target =
1961         static_cast<Target_powerpc<size, big_endian>*>(
1962           parameters->sized_target<size, big_endian>());
1963       if (target->abiversion() == 0)
1964         target->set_abiversion(this->abiversion());
1965       else if (target->abiversion() != this->abiversion())
1966         gold_error(_("%s: ABI version %d is not compatible "
1967                      "with ABI version %d output"),
1968                    this->name().c_str(),
1969                    this->abiversion(), target->abiversion());
1970
1971     }
1972 }
1973
1974 // Call Sized_dynobj::base_read_symbols to read the symbols then
1975 // read .opd from a dynamic object, filling in opd_ent_ vector,
1976
1977 template<int size, bool big_endian>
1978 void
1979 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1980 {
1981   this->base_read_symbols(sd);
1982   if (size == 64)
1983     {
1984       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1985       const unsigned char* const pshdrs = sd->section_headers->data();
1986       const unsigned char* namesu = sd->section_names->data();
1987       const char* names = reinterpret_cast<const char*>(namesu);
1988       const unsigned char* s = NULL;
1989       const unsigned char* opd;
1990       section_size_type opd_size;
1991
1992       // Find and read .opd section.
1993       while (1)
1994         {
1995           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1996                                                          sd->section_names_size,
1997                                                          s);
1998           if (s == NULL)
1999             return;
2000
2001           typename elfcpp::Shdr<size, big_endian> shdr(s);
2002           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2003               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2004             {
2005               if (this->abiversion() == 0)
2006                 this->set_abiversion(1);
2007               else if (this->abiversion() > 1)
2008                 gold_error(_("%s: .opd invalid in abiv%d"),
2009                            this->name().c_str(), this->abiversion());
2010
2011               this->opd_shndx_ = (s - pshdrs) / shdr_size;
2012               this->opd_address_ = shdr.get_sh_addr();
2013               opd_size = convert_to_section_size_type(shdr.get_sh_size());
2014               opd = this->get_view(shdr.get_sh_offset(), opd_size,
2015                                    true, false);
2016               break;
2017             }
2018         }
2019
2020       // Build set of executable sections.
2021       // Using a set is probably overkill.  There is likely to be only
2022       // a few executable sections, typically .init, .text and .fini,
2023       // and they are generally grouped together.
2024       typedef std::set<Sec_info> Exec_sections;
2025       Exec_sections exec_sections;
2026       s = pshdrs;
2027       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2028         {
2029           typename elfcpp::Shdr<size, big_endian> shdr(s);
2030           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2031               && ((shdr.get_sh_flags()
2032                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2033                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2034               && shdr.get_sh_size() != 0)
2035             {
2036               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2037                                             shdr.get_sh_size(), i));
2038             }
2039         }
2040       if (exec_sections.empty())
2041         return;
2042
2043       // Look over the OPD entries.  This is complicated by the fact
2044       // that some binaries will use two-word entries while others
2045       // will use the standard three-word entries.  In most cases
2046       // the third word (the environment pointer for languages like
2047       // Pascal) is unused and will be zero.  If the third word is
2048       // used it should not be pointing into executable sections,
2049       // I think.
2050       this->init_opd(opd_size);
2051       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2052         {
2053           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2054           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2055           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2056           if (val == 0)
2057             // Chances are that this is the third word of an OPD entry.
2058             continue;
2059           typename Exec_sections::const_iterator e
2060             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2061           if (e != exec_sections.begin())
2062             {
2063               --e;
2064               if (e->start <= val && val < e->start + e->len)
2065                 {
2066                   // We have an address in an executable section.
2067                   // VAL ought to be the function entry, set it up.
2068                   this->set_opd_ent(p - opd, e->shndx, val);
2069                   // Skip second word of OPD entry, the TOC pointer.
2070                   p += 8;
2071                 }
2072             }
2073           // If we didn't match any executable sections, we likely
2074           // have a non-zero third word in the OPD entry.
2075         }
2076     }
2077 }
2078
2079 // Set up some symbols.
2080
2081 template<int size, bool big_endian>
2082 void
2083 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2084     Symbol_table* symtab,
2085     Layout* layout)
2086 {
2087   if (size == 32)
2088     {
2089       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2090       // undefined when scanning relocs (and thus requires
2091       // non-relative dynamic relocs).  The proper value will be
2092       // updated later.
2093       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2094       if (gotsym != NULL && gotsym->is_undefined())
2095         {
2096           Target_powerpc<size, big_endian>* target =
2097             static_cast<Target_powerpc<size, big_endian>*>(
2098                 parameters->sized_target<size, big_endian>());
2099           Output_data_got_powerpc<size, big_endian>* got
2100             = target->got_section(symtab, layout);
2101           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2102                                         Symbol_table::PREDEFINED,
2103                                         got, 0, 0,
2104                                         elfcpp::STT_OBJECT,
2105                                         elfcpp::STB_LOCAL,
2106                                         elfcpp::STV_HIDDEN, 0,
2107                                         false, false);
2108         }
2109
2110       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2111       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2112       if (sdasym != NULL && sdasym->is_undefined())
2113         {
2114           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2115           Output_section* os
2116             = layout->add_output_section_data(".sdata", 0,
2117                                               elfcpp::SHF_ALLOC
2118                                               | elfcpp::SHF_WRITE,
2119                                               sdata, ORDER_SMALL_DATA, false);
2120           symtab->define_in_output_data("_SDA_BASE_", NULL,
2121                                         Symbol_table::PREDEFINED,
2122                                         os, 32768, 0, elfcpp::STT_OBJECT,
2123                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2124                                         0, false, false);
2125         }
2126     }
2127   else
2128     {
2129       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2130       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2131       if (gotsym != NULL && gotsym->is_undefined())
2132         {
2133           Target_powerpc<size, big_endian>* target =
2134             static_cast<Target_powerpc<size, big_endian>*>(
2135                 parameters->sized_target<size, big_endian>());
2136           Output_data_got_powerpc<size, big_endian>* got
2137             = target->got_section(symtab, layout);
2138           symtab->define_in_output_data(".TOC.", NULL,
2139                                         Symbol_table::PREDEFINED,
2140                                         got, 0x8000, 0,
2141                                         elfcpp::STT_OBJECT,
2142                                         elfcpp::STB_LOCAL,
2143                                         elfcpp::STV_HIDDEN, 0,
2144                                         false, false);
2145         }
2146     }
2147 }
2148
2149 // Set up PowerPC target specific relobj.
2150
2151 template<int size, bool big_endian>
2152 Object*
2153 Target_powerpc<size, big_endian>::do_make_elf_object(
2154     const std::string& name,
2155     Input_file* input_file,
2156     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2157 {
2158   int et = ehdr.get_e_type();
2159   // ET_EXEC files are valid input for --just-symbols/-R,
2160   // and we treat them as relocatable objects.
2161   if (et == elfcpp::ET_REL
2162       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2163     {
2164       Powerpc_relobj<size, big_endian>* obj =
2165         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2166       obj->setup();
2167       return obj;
2168     }
2169   else if (et == elfcpp::ET_DYN)
2170     {
2171       Powerpc_dynobj<size, big_endian>* obj =
2172         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2173       obj->setup();
2174       return obj;
2175     }
2176   else
2177     {
2178       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2179       return NULL;
2180     }
2181 }
2182
2183 template<int size, bool big_endian>
2184 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2185 {
2186 public:
2187   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2188   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2189
2190   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2191     : Output_data_got<size, big_endian>(),
2192       symtab_(symtab), layout_(layout),
2193       header_ent_cnt_(size == 32 ? 3 : 1),
2194       header_index_(size == 32 ? 0x2000 : 0)
2195   { }
2196
2197   // Override all the Output_data_got methods we use so as to first call
2198   // reserve_ent().
2199   bool
2200   add_global(Symbol* gsym, unsigned int got_type)
2201   {
2202     this->reserve_ent();
2203     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2204   }
2205
2206   bool
2207   add_global_plt(Symbol* gsym, unsigned int got_type)
2208   {
2209     this->reserve_ent();
2210     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2211   }
2212
2213   bool
2214   add_global_tls(Symbol* gsym, unsigned int got_type)
2215   { return this->add_global_plt(gsym, got_type); }
2216
2217   void
2218   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2219                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2220   {
2221     this->reserve_ent();
2222     Output_data_got<size, big_endian>::
2223       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2224   }
2225
2226   void
2227   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2228                            Output_data_reloc_generic* rel_dyn,
2229                            unsigned int r_type_1, unsigned int r_type_2)
2230   {
2231     this->reserve_ent(2);
2232     Output_data_got<size, big_endian>::
2233       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2234   }
2235
2236   bool
2237   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2238   {
2239     this->reserve_ent();
2240     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2241                                                         got_type);
2242   }
2243
2244   bool
2245   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2246   {
2247     this->reserve_ent();
2248     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2249                                                             got_type);
2250   }
2251
2252   bool
2253   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2254   { return this->add_local_plt(object, sym_index, got_type); }
2255
2256   void
2257   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2258                      unsigned int got_type,
2259                      Output_data_reloc_generic* rel_dyn,
2260                      unsigned int r_type)
2261   {
2262     this->reserve_ent(2);
2263     Output_data_got<size, big_endian>::
2264       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2265   }
2266
2267   unsigned int
2268   add_constant(Valtype constant)
2269   {
2270     this->reserve_ent();
2271     return Output_data_got<size, big_endian>::add_constant(constant);
2272   }
2273
2274   unsigned int
2275   add_constant_pair(Valtype c1, Valtype c2)
2276   {
2277     this->reserve_ent(2);
2278     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2279   }
2280
2281   // Offset of _GLOBAL_OFFSET_TABLE_.
2282   unsigned int
2283   g_o_t() const
2284   {
2285     return this->got_offset(this->header_index_);
2286   }
2287
2288   // Offset of base used to access the GOT/TOC.
2289   // The got/toc pointer reg will be set to this value.
2290   Valtype
2291   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2292   {
2293     if (size == 32)
2294       return this->g_o_t();
2295     else
2296       return (this->output_section()->address()
2297               + object->toc_base_offset()
2298               - this->address());
2299   }
2300
2301   // Ensure our GOT has a header.
2302   void
2303   set_final_data_size()
2304   {
2305     if (this->header_ent_cnt_ != 0)
2306       this->make_header();
2307     Output_data_got<size, big_endian>::set_final_data_size();
2308   }
2309
2310   // First word of GOT header needs some values that are not
2311   // handled by Output_data_got so poke them in here.
2312   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2313   void
2314   do_write(Output_file* of)
2315   {
2316     Valtype val = 0;
2317     if (size == 32 && this->layout_->dynamic_data() != NULL)
2318       val = this->layout_->dynamic_section()->address();
2319     if (size == 64)
2320       val = this->output_section()->address() + 0x8000;
2321     this->replace_constant(this->header_index_, val);
2322     Output_data_got<size, big_endian>::do_write(of);
2323   }
2324
2325 private:
2326   void
2327   reserve_ent(unsigned int cnt = 1)
2328   {
2329     if (this->header_ent_cnt_ == 0)
2330       return;
2331     if (this->num_entries() + cnt > this->header_index_)
2332       this->make_header();
2333   }
2334
2335   void
2336   make_header()
2337   {
2338     this->header_ent_cnt_ = 0;
2339     this->header_index_ = this->num_entries();
2340     if (size == 32)
2341       {
2342         Output_data_got<size, big_endian>::add_constant(0);
2343         Output_data_got<size, big_endian>::add_constant(0);
2344         Output_data_got<size, big_endian>::add_constant(0);
2345
2346         // Define _GLOBAL_OFFSET_TABLE_ at the header
2347         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2348         if (gotsym != NULL)
2349           {
2350             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2351             sym->set_value(this->g_o_t());
2352           }
2353         else
2354           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2355                                                Symbol_table::PREDEFINED,
2356                                                this, this->g_o_t(), 0,
2357                                                elfcpp::STT_OBJECT,
2358                                                elfcpp::STB_LOCAL,
2359                                                elfcpp::STV_HIDDEN, 0,
2360                                                false, false);
2361       }
2362     else
2363       Output_data_got<size, big_endian>::add_constant(0);
2364   }
2365
2366   // Stashed pointers.
2367   Symbol_table* symtab_;
2368   Layout* layout_;
2369
2370   // GOT header size.
2371   unsigned int header_ent_cnt_;
2372   // GOT header index.
2373   unsigned int header_index_;
2374 };
2375
2376 // Get the GOT section, creating it if necessary.
2377
2378 template<int size, bool big_endian>
2379 Output_data_got_powerpc<size, big_endian>*
2380 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2381                                               Layout* layout)
2382 {
2383   if (this->got_ == NULL)
2384     {
2385       gold_assert(symtab != NULL && layout != NULL);
2386
2387       this->got_
2388         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2389
2390       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2391                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2392                                       this->got_, ORDER_DATA, false);
2393     }
2394
2395   return this->got_;
2396 }
2397
2398 // Get the dynamic reloc section, creating it if necessary.
2399
2400 template<int size, bool big_endian>
2401 typename Target_powerpc<size, big_endian>::Reloc_section*
2402 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2403 {
2404   if (this->rela_dyn_ == NULL)
2405     {
2406       gold_assert(layout != NULL);
2407       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2408       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2409                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2410                                       ORDER_DYNAMIC_RELOCS, false);
2411     }
2412   return this->rela_dyn_;
2413 }
2414
2415 // Similarly, but for ifunc symbols get the one for ifunc.
2416
2417 template<int size, bool big_endian>
2418 typename Target_powerpc<size, big_endian>::Reloc_section*
2419 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2420                                                    Layout* layout,
2421                                                    bool for_ifunc)
2422 {
2423   if (!for_ifunc)
2424     return this->rela_dyn_section(layout);
2425
2426   if (this->iplt_ == NULL)
2427     this->make_iplt_section(symtab, layout);
2428   return this->iplt_->rel_plt();
2429 }
2430
2431 class Stub_control
2432 {
2433  public:
2434   // Determine the stub group size.  The group size is the absolute
2435   // value of the parameter --stub-group-size.  If --stub-group-size
2436   // is passed a negative value, we restrict stubs to be always before
2437   // the stubbed branches.
2438   Stub_control(int32_t size, bool no_size_errors)
2439     : state_(NO_GROUP), stub_group_size_(abs(size)),
2440       stub14_group_size_(abs(size) >> 10),
2441       stubs_always_before_branch_(size < 0),
2442       suppress_size_errors_(no_size_errors),
2443       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2444   {
2445   }
2446
2447   // Return true iff input section can be handled by current stub
2448   // group.
2449   bool
2450   can_add_to_stub_group(Output_section* o,
2451                         const Output_section::Input_section* i,
2452                         bool has14);
2453
2454   const Output_section::Input_section*
2455   owner()
2456   { return owner_; }
2457
2458   Output_section*
2459   output_section()
2460   { return output_section_; }
2461
2462   void
2463   set_output_and_owner(Output_section* o,
2464                        const Output_section::Input_section* i)
2465   {
2466     this->output_section_ = o;
2467     this->owner_ = i;
2468   }
2469
2470  private:
2471   typedef enum
2472   {
2473     NO_GROUP,
2474     FINDING_STUB_SECTION,
2475     HAS_STUB_SECTION
2476   } State;
2477
2478   State state_;
2479   uint32_t stub_group_size_;
2480   uint32_t stub14_group_size_;
2481   bool stubs_always_before_branch_;
2482   bool suppress_size_errors_;
2483   uint64_t group_end_addr_;
2484   const Output_section::Input_section* owner_;
2485   Output_section* output_section_;
2486 };
2487
2488 // Return true iff input section can be handled by current stub
2489 // group.
2490
2491 bool
2492 Stub_control::can_add_to_stub_group(Output_section* o,
2493                                     const Output_section::Input_section* i,
2494                                     bool has14)
2495 {
2496   uint32_t group_size
2497     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2498   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2499   uint64_t this_size;
2500   uint64_t start_addr = o->address();
2501
2502   if (whole_sec)
2503     // .init and .fini sections are pasted together to form a single
2504     // function.  We can't be adding stubs in the middle of the function.
2505     this_size = o->data_size();
2506   else
2507     {
2508       start_addr += i->relobj()->output_section_offset(i->shndx());
2509       this_size = i->data_size();
2510     }
2511   uint64_t end_addr = start_addr + this_size;
2512   bool toobig = this_size > group_size;
2513
2514   if (toobig && !this->suppress_size_errors_)
2515     gold_warning(_("%s:%s exceeds group size"),
2516                  i->relobj()->name().c_str(),
2517                  i->relobj()->section_name(i->shndx()).c_str());
2518
2519   if (this->state_ != HAS_STUB_SECTION
2520       && (!whole_sec || this->output_section_ != o)
2521       && (this->state_ == NO_GROUP
2522           || this->group_end_addr_ - end_addr < group_size))
2523     {
2524       this->owner_ = i;
2525       this->output_section_ = o;
2526     }
2527
2528   if (this->state_ == NO_GROUP)
2529     {
2530       this->state_ = FINDING_STUB_SECTION;
2531       this->group_end_addr_ = end_addr;
2532     }
2533   else if (this->group_end_addr_ - start_addr < group_size)
2534     ;
2535   // Adding this section would make the group larger than GROUP_SIZE.
2536   else if (this->state_ == FINDING_STUB_SECTION
2537            && !this->stubs_always_before_branch_
2538            && !toobig)
2539     {
2540       // But wait, there's more!  Input sections up to GROUP_SIZE
2541       // bytes before the stub table can be handled by it too.
2542       this->state_ = HAS_STUB_SECTION;
2543       this->group_end_addr_ = end_addr;
2544     }
2545   else
2546     {
2547       this->state_ = NO_GROUP;
2548       return false;
2549     }
2550   return true;
2551 }
2552
2553 // Look over all the input sections, deciding where to place stubs.
2554
2555 template<int size, bool big_endian>
2556 void
2557 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2558                                                  const Task*,
2559                                                  bool no_size_errors)
2560 {
2561   Stub_control stub_control(this->stub_group_size_, no_size_errors);
2562
2563   // Group input sections and insert stub table
2564   Stub_table_owner* table_owner = NULL;
2565   std::vector<Stub_table_owner*> tables;
2566   Layout::Section_list section_list;
2567   layout->get_executable_sections(&section_list);
2568   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2569   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2570        o != section_list.rend();
2571        ++o)
2572     {
2573       typedef Output_section::Input_section_list Input_section_list;
2574       for (Input_section_list::const_reverse_iterator i
2575              = (*o)->input_sections().rbegin();
2576            i != (*o)->input_sections().rend();
2577            ++i)
2578         {
2579           if (i->is_input_section()
2580               || i->is_relaxed_input_section())
2581             {
2582               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2583                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2584               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2585               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2586                 {
2587                   table_owner->output_section = stub_control.output_section();
2588                   table_owner->owner = stub_control.owner();
2589                   stub_control.set_output_and_owner(*o, &*i);
2590                   table_owner = NULL;
2591                 }
2592               if (table_owner == NULL)
2593                 {
2594                   table_owner = new Stub_table_owner;
2595                   tables.push_back(table_owner);
2596                 }
2597               ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2598             }
2599         }
2600     }
2601   if (table_owner != NULL)
2602     {
2603       const Output_section::Input_section* i = stub_control.owner();
2604
2605       if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2606         {
2607           // Corner case.  A new stub group was made for the first
2608           // section (last one looked at here) for some reason, but
2609           // the first section is already being used as the owner for
2610           // a stub table for following sections.  Force it into that
2611           // stub group.
2612           tables.pop_back();
2613           delete table_owner;
2614           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2615             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2616           ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2617         }
2618       else
2619         {
2620           table_owner->output_section = stub_control.output_section();
2621           table_owner->owner = i;
2622         }
2623     }
2624   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2625        t != tables.end();
2626        ++t)
2627     {
2628       Stub_table<size, big_endian>* stub_table;
2629
2630       if ((*t)->owner->is_input_section())
2631         stub_table = new Stub_table<size, big_endian>(this,
2632                                                       (*t)->output_section,
2633                                                       (*t)->owner);
2634       else if ((*t)->owner->is_relaxed_input_section())
2635         stub_table = static_cast<Stub_table<size, big_endian>*>(
2636                         (*t)->owner->relaxed_input_section());
2637       else
2638         gold_unreachable();
2639       this->stub_tables_.push_back(stub_table);
2640       delete *t;
2641     }
2642 }
2643
2644 static unsigned long
2645 max_branch_delta (unsigned int r_type)
2646 {
2647   if (r_type == elfcpp::R_POWERPC_REL14
2648       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2649       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2650     return 1L << 15;
2651   if (r_type == elfcpp::R_POWERPC_REL24
2652       || r_type == elfcpp::R_PPC_PLTREL24
2653       || r_type == elfcpp::R_PPC_LOCAL24PC)
2654     return 1L << 25;
2655   return 0;
2656 }
2657
2658 // If this branch needs a plt call stub, or a long branch stub, make one.
2659
2660 template<int size, bool big_endian>
2661 bool
2662 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2663     Stub_table<size, big_endian>* stub_table,
2664     Stub_table<size, big_endian>* ifunc_stub_table,
2665     Symbol_table* symtab) const
2666 {
2667   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2668   if (sym != NULL && sym->is_forwarder())
2669     sym = symtab->resolve_forwards(sym);
2670   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2671   Target_powerpc<size, big_endian>* target =
2672     static_cast<Target_powerpc<size, big_endian>*>(
2673       parameters->sized_target<size, big_endian>());
2674   if (gsym != NULL
2675       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2676       : this->object_->local_has_plt_offset(this->r_sym_))
2677     {
2678       if (size == 64
2679           && gsym != NULL
2680           && target->abiversion() >= 2
2681           && !parameters->options().output_is_position_independent()
2682           && !is_branch_reloc(this->r_type_))
2683         target->glink_section()->add_global_entry(gsym);
2684       else
2685         {
2686           if (stub_table == NULL)
2687             stub_table = this->object_->stub_table(this->shndx_);
2688           if (stub_table == NULL)
2689             {
2690               // This is a ref from a data section to an ifunc symbol.
2691               stub_table = ifunc_stub_table;
2692             }
2693           gold_assert(stub_table != NULL);
2694           Address from = this->object_->get_output_section_offset(this->shndx_);
2695           if (from != invalid_address)
2696             from += (this->object_->output_section(this->shndx_)->address()
2697                      + this->offset_);
2698           if (gsym != NULL)
2699             return stub_table->add_plt_call_entry(from,
2700                                                   this->object_, gsym,
2701                                                   this->r_type_, this->addend_);
2702           else
2703             return stub_table->add_plt_call_entry(from,
2704                                                   this->object_, this->r_sym_,
2705                                                   this->r_type_, this->addend_);
2706         }
2707     }
2708   else
2709     {
2710       Address max_branch_offset = max_branch_delta(this->r_type_);
2711       if (max_branch_offset == 0)
2712         return true;
2713       Address from = this->object_->get_output_section_offset(this->shndx_);
2714       gold_assert(from != invalid_address);
2715       from += (this->object_->output_section(this->shndx_)->address()
2716                + this->offset_);
2717       Address to;
2718       if (gsym != NULL)
2719         {
2720           switch (gsym->source())
2721             {
2722             case Symbol::FROM_OBJECT:
2723               {
2724                 Object* symobj = gsym->object();
2725                 if (symobj->is_dynamic()
2726                     || symobj->pluginobj() != NULL)
2727                   return true;
2728                 bool is_ordinary;
2729                 unsigned int shndx = gsym->shndx(&is_ordinary);
2730                 if (shndx == elfcpp::SHN_UNDEF)
2731                   return true;
2732               }
2733               break;
2734
2735             case Symbol::IS_UNDEFINED:
2736               return true;
2737
2738             default:
2739               break;
2740             }
2741           Symbol_table::Compute_final_value_status status;
2742           to = symtab->compute_final_value<size>(gsym, &status);
2743           if (status != Symbol_table::CFVS_OK)
2744             return true;
2745           if (size == 64)
2746             to += this->object_->ppc64_local_entry_offset(gsym);
2747         }
2748       else
2749         {
2750           const Symbol_value<size>* psymval
2751             = this->object_->local_symbol(this->r_sym_);
2752           Symbol_value<size> symval;
2753           typedef Sized_relobj_file<size, big_endian> ObjType;
2754           typename ObjType::Compute_final_local_value_status status
2755             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2756                                                        &symval, symtab);
2757           if (status != ObjType::CFLV_OK
2758               || !symval.has_output_value())
2759             return true;
2760           to = symval.value(this->object_, 0);
2761           if (size == 64)
2762             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2763         }
2764       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2765         to += this->addend_;
2766       if (stub_table == NULL)
2767         stub_table = this->object_->stub_table(this->shndx_);
2768       if (size == 64 && target->abiversion() < 2)
2769         {
2770           unsigned int dest_shndx;
2771           if (!target->symval_for_branch(symtab, gsym, this->object_,
2772                                          &to, &dest_shndx))
2773             return true;
2774         }
2775       Address delta = to - from;
2776       if (delta + max_branch_offset >= 2 * max_branch_offset)
2777         {
2778           if (stub_table == NULL)
2779             {
2780               gold_warning(_("%s:%s: branch in non-executable section,"
2781                              " no long branch stub for you"),
2782                            this->object_->name().c_str(),
2783                            this->object_->section_name(this->shndx_).c_str());
2784               return true;
2785             }
2786           bool save_res = (size == 64
2787                            && gsym != NULL
2788                            && gsym->source() == Symbol::IN_OUTPUT_DATA
2789                            && gsym->output_data() == target->savres_section());
2790           return stub_table->add_long_branch_entry(this->object_,
2791                                                    this->r_type_,
2792                                                    from, to, save_res);
2793         }
2794     }
2795   return true;
2796 }
2797
2798 // Relaxation hook.  This is where we do stub generation.
2799
2800 template<int size, bool big_endian>
2801 bool
2802 Target_powerpc<size, big_endian>::do_relax(int pass,
2803                                            const Input_objects*,
2804                                            Symbol_table* symtab,
2805                                            Layout* layout,
2806                                            const Task* task)
2807 {
2808   unsigned int prev_brlt_size = 0;
2809   if (pass == 1)
2810     {
2811       bool thread_safe
2812         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2813       if (size == 64
2814           && this->abiversion() < 2
2815           && !thread_safe
2816           && !parameters->options().user_set_plt_thread_safe())
2817         {
2818           static const char* const thread_starter[] =
2819             {
2820               "pthread_create",
2821               /* libstdc++ */
2822               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2823               /* librt */
2824               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2825               "mq_notify", "create_timer",
2826               /* libanl */
2827               "getaddrinfo_a",
2828               /* libgomp */
2829               "GOMP_parallel",
2830               "GOMP_parallel_start",
2831               "GOMP_parallel_loop_static",
2832               "GOMP_parallel_loop_static_start",
2833               "GOMP_parallel_loop_dynamic",
2834               "GOMP_parallel_loop_dynamic_start",
2835               "GOMP_parallel_loop_guided",
2836               "GOMP_parallel_loop_guided_start",
2837               "GOMP_parallel_loop_runtime",
2838               "GOMP_parallel_loop_runtime_start",
2839               "GOMP_parallel_sections",
2840               "GOMP_parallel_sections_start",
2841               /* libgo */
2842               "__go_go",
2843             };
2844
2845           if (parameters->options().shared())
2846             thread_safe = true;
2847           else
2848             {
2849               for (unsigned int i = 0;
2850                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2851                    i++)
2852                 {
2853                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2854                   thread_safe = (sym != NULL
2855                                  && sym->in_reg()
2856                                  && sym->in_real_elf());
2857                   if (thread_safe)
2858                     break;
2859                 }
2860             }
2861         }
2862       this->plt_thread_safe_ = thread_safe;
2863     }
2864
2865   if (pass == 1)
2866     {
2867       this->stub_group_size_ = parameters->options().stub_group_size();
2868       bool no_size_errors = true;
2869       if (this->stub_group_size_ == 1)
2870         this->stub_group_size_ = 0x1c00000;
2871       else if (this->stub_group_size_ == -1)
2872         this->stub_group_size_ = -0x1e00000;
2873       else
2874         no_size_errors = false;
2875       this->group_sections(layout, task, no_size_errors);
2876     }
2877   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2878     {
2879       this->branch_lookup_table_.clear();
2880       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2881            p != this->stub_tables_.end();
2882            ++p)
2883         {
2884           (*p)->clear_stubs(true);
2885         }
2886       this->stub_tables_.clear();
2887       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2888       gold_info(_("%s: stub group size is too large; retrying with %d"),
2889                 program_name, this->stub_group_size_);
2890       this->group_sections(layout, task, true);
2891     }
2892
2893   // We need address of stub tables valid for make_stub.
2894   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2895        p != this->stub_tables_.end();
2896        ++p)
2897     {
2898       const Powerpc_relobj<size, big_endian>* object
2899         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2900       Address off = object->get_output_section_offset((*p)->shndx());
2901       gold_assert(off != invalid_address);
2902       Output_section* os = (*p)->output_section();
2903       (*p)->set_address_and_size(os, off);
2904     }
2905
2906   if (pass != 1)
2907     {
2908       // Clear plt call stubs, long branch stubs and branch lookup table.
2909       prev_brlt_size = this->branch_lookup_table_.size();
2910       this->branch_lookup_table_.clear();
2911       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2912            p != this->stub_tables_.end();
2913            ++p)
2914         {
2915           (*p)->clear_stubs(false);
2916         }
2917     }
2918
2919   // Build all the stubs.
2920   this->relax_failed_ = false;
2921   Stub_table<size, big_endian>* ifunc_stub_table
2922     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2923   Stub_table<size, big_endian>* one_stub_table
2924     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2925   for (typename Branches::const_iterator b = this->branch_info_.begin();
2926        b != this->branch_info_.end();
2927        b++)
2928     {
2929       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2930           && !this->relax_failed_)
2931         {
2932           this->relax_failed_ = true;
2933           this->relax_fail_count_++;
2934           if (this->relax_fail_count_ < 3)
2935             return true;
2936         }
2937     }
2938
2939   // Did anything change size?
2940   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2941   bool again = num_huge_branches != prev_brlt_size;
2942   if (size == 64 && num_huge_branches != 0)
2943     this->make_brlt_section(layout);
2944   if (size == 64 && again)
2945     this->brlt_section_->set_current_size(num_huge_branches);
2946
2947   typedef Unordered_set<Output_section*> Output_sections;
2948   Output_sections os_need_update;
2949   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2950        p != this->stub_tables_.end();
2951        ++p)
2952     {
2953       if ((*p)->size_update())
2954         {
2955           again = true;
2956           (*p)->add_eh_frame(layout);
2957           os_need_update.insert((*p)->output_section());
2958         }
2959     }
2960
2961   // Set output section offsets for all input sections in an output
2962   // section that just changed size.  Anything past the stubs will
2963   // need updating.
2964   for (typename Output_sections::iterator p = os_need_update.begin();
2965        p != os_need_update.end();
2966        p++)
2967     {
2968       Output_section* os = *p;
2969       Address off = 0;
2970       typedef Output_section::Input_section_list Input_section_list;
2971       for (Input_section_list::const_iterator i = os->input_sections().begin();
2972            i != os->input_sections().end();
2973            ++i)
2974         {
2975           off = align_address(off, i->addralign());
2976           if (i->is_input_section() || i->is_relaxed_input_section())
2977             i->relobj()->set_section_offset(i->shndx(), off);
2978           if (i->is_relaxed_input_section())
2979             {
2980               Stub_table<size, big_endian>* stub_table
2981                 = static_cast<Stub_table<size, big_endian>*>(
2982                     i->relaxed_input_section());
2983               off += stub_table->set_address_and_size(os, off);
2984             }
2985           else
2986             off += i->data_size();
2987         }
2988       // If .branch_lt is part of this output section, then we have
2989       // just done the offset adjustment.
2990       os->clear_section_offsets_need_adjustment();
2991     }
2992
2993   if (size == 64
2994       && !again
2995       && num_huge_branches != 0
2996       && parameters->options().output_is_position_independent())
2997     {
2998       // Fill in the BRLT relocs.
2999       this->brlt_section_->reset_brlt_sizes();
3000       for (typename Branch_lookup_table::const_iterator p
3001              = this->branch_lookup_table_.begin();
3002            p != this->branch_lookup_table_.end();
3003            ++p)
3004         {
3005           this->brlt_section_->add_reloc(p->first, p->second);
3006         }
3007       this->brlt_section_->finalize_brlt_sizes();
3008     }
3009   return again;
3010 }
3011
3012 template<int size, bool big_endian>
3013 void
3014 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3015                                                       unsigned char* oview,
3016                                                       uint64_t* paddress,
3017                                                       off_t* plen) const
3018 {
3019   uint64_t address = plt->address();
3020   off_t len = plt->data_size();
3021
3022   if (plt == this->glink_)
3023     {
3024       // See Output_data_glink::do_write() for glink contents.
3025       if (len == 0)
3026         {
3027           gold_assert(parameters->doing_static_link());
3028           // Static linking may need stubs, to support ifunc and long
3029           // branches.  We need to create an output section for
3030           // .eh_frame early in the link process, to have a place to
3031           // attach stub .eh_frame info.  We also need to have
3032           // registered a CIE that matches the stub CIE.  Both of
3033           // these requirements are satisfied by creating an FDE and
3034           // CIE for .glink, even though static linking will leave
3035           // .glink zero length.
3036           // ??? Hopefully generating an FDE with a zero address range
3037           // won't confuse anything that consumes .eh_frame info.
3038         }
3039       else if (size == 64)
3040         {
3041           // There is one word before __glink_PLTresolve
3042           address += 8;
3043           len -= 8;
3044         }
3045       else if (parameters->options().output_is_position_independent())
3046         {
3047           // There are two FDEs for a position independent glink.
3048           // The first covers the branch table, the second
3049           // __glink_PLTresolve at the end of glink.
3050           off_t resolve_size = this->glink_->pltresolve_size;
3051           if (oview[9] == elfcpp::DW_CFA_nop)
3052             len -= resolve_size;
3053           else
3054             {
3055               address += len - resolve_size;
3056               len = resolve_size;
3057             }
3058         }
3059     }
3060   else
3061     {
3062       // Must be a stub table.
3063       const Stub_table<size, big_endian>* stub_table
3064         = static_cast<const Stub_table<size, big_endian>*>(plt);
3065       uint64_t stub_address = stub_table->stub_address();
3066       len -= stub_address - address;
3067       address = stub_address;
3068     }
3069
3070   *paddress = address;
3071   *plen = len;
3072 }
3073
3074 // A class to handle the PLT data.
3075
3076 template<int size, bool big_endian>
3077 class Output_data_plt_powerpc : public Output_section_data_build
3078 {
3079  public:
3080   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3081                             size, big_endian> Reloc_section;
3082
3083   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3084                           Reloc_section* plt_rel,
3085                           const char* name)
3086     : Output_section_data_build(size == 32 ? 4 : 8),
3087       rel_(plt_rel),
3088       targ_(targ),
3089       name_(name)
3090   { }
3091
3092   // Add an entry to the PLT.
3093   void
3094   add_entry(Symbol*);
3095
3096   void
3097   add_ifunc_entry(Symbol*);
3098
3099   void
3100   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3101
3102   // Return the .rela.plt section data.
3103   Reloc_section*
3104   rel_plt() const
3105   {
3106     return this->rel_;
3107   }
3108
3109   // Return the number of PLT entries.
3110   unsigned int
3111   entry_count() const
3112   {
3113     if (this->current_data_size() == 0)
3114       return 0;
3115     return ((this->current_data_size() - this->first_plt_entry_offset())
3116             / this->plt_entry_size());
3117   }
3118
3119  protected:
3120   void
3121   do_adjust_output_section(Output_section* os)
3122   {
3123     os->set_entsize(0);
3124   }
3125
3126   // Write to a map file.
3127   void
3128   do_print_to_mapfile(Mapfile* mapfile) const
3129   { mapfile->print_output_data(this, this->name_); }
3130
3131  private:
3132   // Return the offset of the first non-reserved PLT entry.
3133   unsigned int
3134   first_plt_entry_offset() const
3135   {
3136     // IPLT has no reserved entry.
3137     if (this->name_[3] == 'I')
3138       return 0;
3139     return this->targ_->first_plt_entry_offset();
3140   }
3141
3142   // Return the size of each PLT entry.
3143   unsigned int
3144   plt_entry_size() const
3145   {
3146     return this->targ_->plt_entry_size();
3147   }
3148
3149   // Write out the PLT data.
3150   void
3151   do_write(Output_file*);
3152
3153   // The reloc section.
3154   Reloc_section* rel_;
3155   // Allows access to .glink for do_write.
3156   Target_powerpc<size, big_endian>* targ_;
3157   // What to report in map file.
3158   const char *name_;
3159 };
3160
3161 // Add an entry to the PLT.
3162
3163 template<int size, bool big_endian>
3164 void
3165 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3166 {
3167   if (!gsym->has_plt_offset())
3168     {
3169       section_size_type off = this->current_data_size();
3170       if (off == 0)
3171         off += this->first_plt_entry_offset();
3172       gsym->set_plt_offset(off);
3173       gsym->set_needs_dynsym_entry();
3174       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3175       this->rel_->add_global(gsym, dynrel, this, off, 0);
3176       off += this->plt_entry_size();
3177       this->set_current_data_size(off);
3178     }
3179 }
3180
3181 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3182
3183 template<int size, bool big_endian>
3184 void
3185 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3186 {
3187   if (!gsym->has_plt_offset())
3188     {
3189       section_size_type off = this->current_data_size();
3190       gsym->set_plt_offset(off);
3191       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3192       if (size == 64 && this->targ_->abiversion() < 2)
3193         dynrel = elfcpp::R_PPC64_JMP_IREL;
3194       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3195       off += this->plt_entry_size();
3196       this->set_current_data_size(off);
3197     }
3198 }
3199
3200 // Add an entry for a local ifunc symbol to the IPLT.
3201
3202 template<int size, bool big_endian>
3203 void
3204 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3205     Sized_relobj_file<size, big_endian>* relobj,
3206     unsigned int local_sym_index)
3207 {
3208   if (!relobj->local_has_plt_offset(local_sym_index))
3209     {
3210       section_size_type off = this->current_data_size();
3211       relobj->set_local_plt_offset(local_sym_index, off);
3212       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3213       if (size == 64 && this->targ_->abiversion() < 2)
3214         dynrel = elfcpp::R_PPC64_JMP_IREL;
3215       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3216                                               this, off, 0);
3217       off += this->plt_entry_size();
3218       this->set_current_data_size(off);
3219     }
3220 }
3221
3222 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3223 static const uint32_t add_2_2_11        = 0x7c425a14;
3224 static const uint32_t add_3_3_2         = 0x7c631214;
3225 static const uint32_t add_3_3_13        = 0x7c636a14;
3226 static const uint32_t add_11_0_11       = 0x7d605a14;
3227 static const uint32_t add_11_2_11       = 0x7d625a14;
3228 static const uint32_t add_11_11_2       = 0x7d6b1214;
3229 static const uint32_t addi_0_12         = 0x380c0000;
3230 static const uint32_t addi_2_2          = 0x38420000;
3231 static const uint32_t addi_3_3          = 0x38630000;
3232 static const uint32_t addi_11_11        = 0x396b0000;
3233 static const uint32_t addi_12_1         = 0x39810000;
3234 static const uint32_t addi_12_12        = 0x398c0000;
3235 static const uint32_t addis_0_2         = 0x3c020000;
3236 static const uint32_t addis_0_13        = 0x3c0d0000;
3237 static const uint32_t addis_2_12        = 0x3c4c0000;
3238 static const uint32_t addis_11_2        = 0x3d620000;
3239 static const uint32_t addis_11_11       = 0x3d6b0000;
3240 static const uint32_t addis_11_30       = 0x3d7e0000;
3241 static const uint32_t addis_12_1        = 0x3d810000;
3242 static const uint32_t addis_12_2        = 0x3d820000;
3243 static const uint32_t addis_12_12       = 0x3d8c0000;
3244 static const uint32_t b                 = 0x48000000;
3245 static const uint32_t bcl_20_31         = 0x429f0005;
3246 static const uint32_t bctr              = 0x4e800420;
3247 static const uint32_t blr               = 0x4e800020;
3248 static const uint32_t bnectr_p4         = 0x4ce20420;
3249 static const uint32_t cmpld_7_12_0      = 0x7fac0040;
3250 static const uint32_t cmpldi_2_0        = 0x28220000;
3251 static const uint32_t cror_15_15_15     = 0x4def7b82;
3252 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3253 static const uint32_t ld_0_1            = 0xe8010000;
3254 static const uint32_t ld_0_12           = 0xe80c0000;
3255 static const uint32_t ld_2_1            = 0xe8410000;
3256 static const uint32_t ld_2_2            = 0xe8420000;
3257 static const uint32_t ld_2_11           = 0xe84b0000;
3258 static const uint32_t ld_11_2           = 0xe9620000;
3259 static const uint32_t ld_11_11          = 0xe96b0000;
3260 static const uint32_t ld_12_2           = 0xe9820000;
3261 static const uint32_t ld_12_11          = 0xe98b0000;
3262 static const uint32_t ld_12_12          = 0xe98c0000;
3263 static const uint32_t lfd_0_1           = 0xc8010000;
3264 static const uint32_t li_0_0            = 0x38000000;
3265 static const uint32_t li_12_0           = 0x39800000;
3266 static const uint32_t lis_0             = 0x3c000000;
3267 static const uint32_t lis_11            = 0x3d600000;
3268 static const uint32_t lis_12            = 0x3d800000;
3269 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3270 static const uint32_t lwz_0_12          = 0x800c0000;
3271 static const uint32_t lwz_11_11         = 0x816b0000;
3272 static const uint32_t lwz_11_30         = 0x817e0000;
3273 static const uint32_t lwz_12_12         = 0x818c0000;
3274 static const uint32_t lwzu_0_12         = 0x840c0000;
3275 static const uint32_t mflr_0            = 0x7c0802a6;
3276 static const uint32_t mflr_11           = 0x7d6802a6;
3277 static const uint32_t mflr_12           = 0x7d8802a6;
3278 static const uint32_t mtctr_0           = 0x7c0903a6;
3279 static const uint32_t mtctr_11          = 0x7d6903a6;
3280 static const uint32_t mtctr_12          = 0x7d8903a6;
3281 static const uint32_t mtlr_0            = 0x7c0803a6;
3282 static const uint32_t mtlr_12           = 0x7d8803a6;
3283 static const uint32_t nop               = 0x60000000;
3284 static const uint32_t ori_0_0_0         = 0x60000000;
3285 static const uint32_t srdi_0_0_2        = 0x7800f082;
3286 static const uint32_t std_0_1           = 0xf8010000;
3287 static const uint32_t std_0_12          = 0xf80c0000;
3288 static const uint32_t std_2_1           = 0xf8410000;
3289 static const uint32_t stfd_0_1          = 0xd8010000;
3290 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3291 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3292 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3293 static const uint32_t xor_2_12_12       = 0x7d826278;
3294 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3295
3296 // Write out the PLT.
3297
3298 template<int size, bool big_endian>
3299 void
3300 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3301 {
3302   if (size == 32 && this->name_[3] != 'I')
3303     {
3304       const section_size_type offset = this->offset();
3305       const section_size_type oview_size
3306         = convert_to_section_size_type(this->data_size());
3307       unsigned char* const oview = of->get_output_view(offset, oview_size);
3308       unsigned char* pov = oview;
3309       unsigned char* endpov = oview + oview_size;
3310
3311       // The address of the .glink branch table
3312       const Output_data_glink<size, big_endian>* glink
3313         = this->targ_->glink_section();
3314       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3315
3316       while (pov < endpov)
3317         {
3318           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3319           pov += 4;
3320           branch_tab += 4;
3321         }
3322
3323       of->write_output_view(offset, oview_size, oview);
3324     }
3325 }
3326
3327 // Create the PLT section.
3328
3329 template<int size, bool big_endian>
3330 void
3331 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3332                                                    Layout* layout)
3333 {
3334   if (this->plt_ == NULL)
3335     {
3336       if (this->got_ == NULL)
3337         this->got_section(symtab, layout);
3338
3339       if (this->glink_ == NULL)
3340         make_glink_section(layout);
3341
3342       // Ensure that .rela.dyn always appears before .rela.plt  This is
3343       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3344       // needs to include .rela.plt in its range.
3345       this->rela_dyn_section(layout);
3346
3347       Reloc_section* plt_rel = new Reloc_section(false);
3348       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3349                                       elfcpp::SHF_ALLOC, plt_rel,
3350                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3351       this->plt_
3352         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3353                                                         "** PLT");
3354       layout->add_output_section_data(".plt",
3355                                       (size == 32
3356                                        ? elfcpp::SHT_PROGBITS
3357                                        : elfcpp::SHT_NOBITS),
3358                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3359                                       this->plt_,
3360                                       (size == 32
3361                                        ? ORDER_SMALL_DATA
3362                                        : ORDER_SMALL_BSS),
3363                                       false);
3364     }
3365 }
3366
3367 // Create the IPLT section.
3368
3369 template<int size, bool big_endian>
3370 void
3371 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3372                                                     Layout* layout)
3373 {
3374   if (this->iplt_ == NULL)
3375     {
3376       this->make_plt_section(symtab, layout);
3377
3378       Reloc_section* iplt_rel = new Reloc_section(false);
3379       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3380       this->iplt_
3381         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3382                                                         "** IPLT");
3383       this->plt_->output_section()->add_output_section_data(this->iplt_);
3384     }
3385 }
3386
3387 // A section for huge long branch addresses, similar to plt section.
3388
3389 template<int size, bool big_endian>
3390 class Output_data_brlt_powerpc : public Output_section_data_build
3391 {
3392  public:
3393   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3394   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3395                             size, big_endian> Reloc_section;
3396
3397   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3398                            Reloc_section* brlt_rel)
3399     : Output_section_data_build(size == 32 ? 4 : 8),
3400       rel_(brlt_rel),
3401       targ_(targ)
3402   { }
3403
3404   void
3405   reset_brlt_sizes()
3406   {
3407     this->reset_data_size();
3408     this->rel_->reset_data_size();
3409   }
3410
3411   void
3412   finalize_brlt_sizes()
3413   {
3414     this->finalize_data_size();
3415     this->rel_->finalize_data_size();
3416   }
3417
3418   // Add a reloc for an entry in the BRLT.
3419   void
3420   add_reloc(Address to, unsigned int off)
3421   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3422
3423   // Update section and reloc section size.
3424   void
3425   set_current_size(unsigned int num_branches)
3426   {
3427     this->reset_address_and_file_offset();
3428     this->set_current_data_size(num_branches * 16);
3429     this->finalize_data_size();
3430     Output_section* os = this->output_section();
3431     os->set_section_offsets_need_adjustment();
3432     if (this->rel_ != NULL)
3433       {
3434         unsigned int reloc_size
3435           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3436         this->rel_->reset_address_and_file_offset();
3437         this->rel_->set_current_data_size(num_branches * reloc_size);
3438         this->rel_->finalize_data_size();
3439         Output_section* os = this->rel_->output_section();
3440         os->set_section_offsets_need_adjustment();
3441       }
3442   }
3443
3444  protected:
3445   void
3446   do_adjust_output_section(Output_section* os)
3447   {
3448     os->set_entsize(0);
3449   }
3450
3451   // Write to a map file.
3452   void
3453   do_print_to_mapfile(Mapfile* mapfile) const
3454   { mapfile->print_output_data(this, "** BRLT"); }
3455
3456  private:
3457   // Write out the BRLT data.
3458   void
3459   do_write(Output_file*);
3460
3461   // The reloc section.
3462   Reloc_section* rel_;
3463   Target_powerpc<size, big_endian>* targ_;
3464 };
3465
3466 // Make the branch lookup table section.
3467
3468 template<int size, bool big_endian>
3469 void
3470 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3471 {
3472   if (size == 64 && this->brlt_section_ == NULL)
3473     {
3474       Reloc_section* brlt_rel = NULL;
3475       bool is_pic = parameters->options().output_is_position_independent();
3476       if (is_pic)
3477         {
3478           // When PIC we can't fill in .branch_lt (like .plt it can be
3479           // a bss style section) but must initialise at runtime via
3480           // dynamic relocats.
3481           this->rela_dyn_section(layout);
3482           brlt_rel = new Reloc_section(false);
3483           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3484         }
3485       this->brlt_section_
3486         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3487       if (this->plt_ && is_pic)
3488         this->plt_->output_section()
3489           ->add_output_section_data(this->brlt_section_);
3490       else
3491         layout->add_output_section_data(".branch_lt",
3492                                         (is_pic ? elfcpp::SHT_NOBITS
3493                                          : elfcpp::SHT_PROGBITS),
3494                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3495                                         this->brlt_section_,
3496                                         (is_pic ? ORDER_SMALL_BSS
3497                                          : ORDER_SMALL_DATA),
3498                                         false);
3499     }
3500 }
3501
3502 // Write out .branch_lt when non-PIC.
3503
3504 template<int size, bool big_endian>
3505 void
3506 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3507 {
3508   if (size == 64 && !parameters->options().output_is_position_independent())
3509     {
3510       const section_size_type offset = this->offset();
3511       const section_size_type oview_size
3512         = convert_to_section_size_type(this->data_size());
3513       unsigned char* const oview = of->get_output_view(offset, oview_size);
3514
3515       this->targ_->write_branch_lookup_table(oview);
3516       of->write_output_view(offset, oview_size, oview);
3517     }
3518 }
3519
3520 static inline uint32_t
3521 l(uint32_t a)
3522 {
3523   return a & 0xffff;
3524 }
3525
3526 static inline uint32_t
3527 hi(uint32_t a)
3528 {
3529   return l(a >> 16);
3530 }
3531
3532 static inline uint32_t
3533 ha(uint32_t a)
3534 {
3535   return hi(a + 0x8000);
3536 }
3537
3538 template<int size>
3539 struct Eh_cie
3540 {
3541   static const unsigned char eh_frame_cie[12];
3542 };
3543
3544 template<int size>
3545 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3546 {
3547   1,                                    // CIE version.
3548   'z', 'R', 0,                          // Augmentation string.
3549   4,                                    // Code alignment.
3550   0x80 - size / 8 ,                     // Data alignment.
3551   65,                                   // RA reg.
3552   1,                                    // Augmentation size.
3553   (elfcpp::DW_EH_PE_pcrel
3554    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3555   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3556 };
3557
3558 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3559 static const unsigned char glink_eh_frame_fde_64v1[] =
3560 {
3561   0, 0, 0, 0,                           // Replaced with offset to .glink.
3562   0, 0, 0, 0,                           // Replaced with size of .glink.
3563   0,                                    // Augmentation size.
3564   elfcpp::DW_CFA_advance_loc + 1,
3565   elfcpp::DW_CFA_register, 65, 12,
3566   elfcpp::DW_CFA_advance_loc + 4,
3567   elfcpp::DW_CFA_restore_extended, 65
3568 };
3569
3570 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3571 static const unsigned char glink_eh_frame_fde_64v2[] =
3572 {
3573   0, 0, 0, 0,                           // Replaced with offset to .glink.
3574   0, 0, 0, 0,                           // Replaced with size of .glink.
3575   0,                                    // Augmentation size.
3576   elfcpp::DW_CFA_advance_loc + 1,
3577   elfcpp::DW_CFA_register, 65, 0,
3578   elfcpp::DW_CFA_advance_loc + 4,
3579   elfcpp::DW_CFA_restore_extended, 65
3580 };
3581
3582 // Describe __glink_PLTresolve use of LR, 32-bit version.
3583 static const unsigned char glink_eh_frame_fde_32[] =
3584 {
3585   0, 0, 0, 0,                           // Replaced with offset to .glink.
3586   0, 0, 0, 0,                           // Replaced with size of .glink.
3587   0,                                    // Augmentation size.
3588   elfcpp::DW_CFA_advance_loc + 2,
3589   elfcpp::DW_CFA_register, 65, 0,
3590   elfcpp::DW_CFA_advance_loc + 4,
3591   elfcpp::DW_CFA_restore_extended, 65
3592 };
3593
3594 static const unsigned char default_fde[] =
3595 {
3596   0, 0, 0, 0,                           // Replaced with offset to stubs.
3597   0, 0, 0, 0,                           // Replaced with size of stubs.
3598   0,                                    // Augmentation size.
3599   elfcpp::DW_CFA_nop,                   // Pad.
3600   elfcpp::DW_CFA_nop,
3601   elfcpp::DW_CFA_nop
3602 };
3603
3604 template<bool big_endian>
3605 static inline void
3606 write_insn(unsigned char* p, uint32_t v)
3607 {
3608   elfcpp::Swap<32, big_endian>::writeval(p, v);
3609 }
3610
3611 // Stub_table holds information about plt and long branch stubs.
3612 // Stubs are built in an area following some input section determined
3613 // by group_sections().  This input section is converted to a relaxed
3614 // input section allowing it to be resized to accommodate the stubs
3615
3616 template<int size, bool big_endian>
3617 class Stub_table : public Output_relaxed_input_section
3618 {
3619  public:
3620   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3621   static const Address invalid_address = static_cast<Address>(0) - 1;
3622
3623   Stub_table(Target_powerpc<size, big_endian>* targ,
3624              Output_section* output_section,
3625              const Output_section::Input_section* owner)
3626     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3627                                    owner->relobj()
3628                                    ->section_addralign(owner->shndx())),
3629       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3630       orig_data_size_(owner->current_data_size()),
3631       plt_size_(0), last_plt_size_(0),
3632       branch_size_(0), last_branch_size_(0), eh_frame_added_(false),
3633       need_save_res_(false)
3634   {
3635     this->set_output_section(output_section);
3636
3637     std::vector<Output_relaxed_input_section*> new_relaxed;
3638     new_relaxed.push_back(this);
3639     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3640   }
3641
3642   // Add a plt call stub.
3643   bool
3644   add_plt_call_entry(Address,
3645                      const Sized_relobj_file<size, big_endian>*,
3646                      const Symbol*,
3647                      unsigned int,
3648                      Address);
3649
3650   bool
3651   add_plt_call_entry(Address,
3652                      const Sized_relobj_file<size, big_endian>*,
3653                      unsigned int,
3654                      unsigned int,
3655                      Address);
3656
3657   // Find a given plt call stub.
3658   Address
3659   find_plt_call_entry(const Symbol*) const;
3660
3661   Address
3662   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3663                       unsigned int) const;
3664
3665   Address
3666   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3667                       const Symbol*,
3668                       unsigned int,
3669                       Address) const;
3670
3671   Address
3672   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3673                       unsigned int,
3674                       unsigned int,
3675                       Address) const;
3676
3677   // Add a long branch stub.
3678   bool
3679   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3680                         unsigned int, Address, Address, bool);
3681
3682   Address
3683   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3684                          Address) const;
3685
3686   bool
3687   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3688   {
3689     Address max_branch_offset = max_branch_delta(r_type);
3690     if (max_branch_offset == 0)
3691       return true;
3692     gold_assert(from != invalid_address);
3693     Address loc = off + this->stub_address();
3694     return loc - from + max_branch_offset < 2 * max_branch_offset;
3695   }
3696
3697   void
3698   clear_stubs(bool all)
3699   {
3700     this->plt_call_stubs_.clear();
3701     this->plt_size_ = 0;
3702     this->long_branch_stubs_.clear();
3703     this->branch_size_ = 0;
3704     this->need_save_res_ = false;
3705     if (all)
3706       {
3707         this->last_plt_size_ = 0;
3708         this->last_branch_size_ = 0;
3709       }
3710   }
3711
3712   Address
3713   set_address_and_size(const Output_section* os, Address off)
3714   {
3715     Address start_off = off;
3716     off += this->orig_data_size_;
3717     Address my_size = this->plt_size_ + this->branch_size_;
3718     if (this->need_save_res_)
3719       my_size += this->targ_->savres_section()->data_size();
3720     if (my_size != 0)
3721       off = align_address(off, this->stub_align());
3722     // Include original section size and alignment padding in size
3723     my_size += off - start_off;
3724     this->reset_address_and_file_offset();
3725     this->set_current_data_size(my_size);
3726     this->set_address_and_file_offset(os->address() + start_off,
3727                                       os->offset() + start_off);
3728     return my_size;
3729   }
3730
3731   Address
3732   stub_address() const
3733   {
3734     return align_address(this->address() + this->orig_data_size_,
3735                          this->stub_align());
3736   }
3737
3738   Address
3739   stub_offset() const
3740   {
3741     return align_address(this->offset() + this->orig_data_size_,
3742                          this->stub_align());
3743   }
3744
3745   section_size_type
3746   plt_size() const
3747   { return this->plt_size_; }
3748
3749   bool
3750   size_update()
3751   {
3752     Output_section* os = this->output_section();
3753     if (os->addralign() < this->stub_align())
3754       {
3755         os->set_addralign(this->stub_align());
3756         // FIXME: get rid of the insane checkpointing.
3757         // We can't increase alignment of the input section to which
3758         // stubs are attached;  The input section may be .init which
3759         // is pasted together with other .init sections to form a
3760         // function.  Aligning might insert zero padding resulting in
3761         // sigill.  However we do need to increase alignment of the
3762         // output section so that the align_address() on offset in
3763         // set_address_and_size() adds the same padding as the
3764         // align_address() on address in stub_address().
3765         // What's more, we need this alignment for the layout done in
3766         // relaxation_loop_body() so that the output section starts at
3767         // a suitably aligned address.
3768         os->checkpoint_set_addralign(this->stub_align());
3769       }
3770     if (this->last_plt_size_ != this->plt_size_
3771         || this->last_branch_size_ != this->branch_size_)
3772       {
3773         this->last_plt_size_ = this->plt_size_;
3774         this->last_branch_size_ = this->branch_size_;
3775         return true;
3776       }
3777     return false;
3778   }
3779
3780   // Add .eh_frame info for this stub section.  Unlike other linker
3781   // generated .eh_frame this is added late in the link, because we
3782   // only want the .eh_frame info if this particular stub section is
3783   // non-empty.
3784   void
3785   add_eh_frame(Layout* layout)
3786   {
3787     if (!this->eh_frame_added_)
3788       {
3789         if (!parameters->options().ld_generated_unwind_info())
3790           return;
3791
3792         // Since we add stub .eh_frame info late, it must be placed
3793         // after all other linker generated .eh_frame info so that
3794         // merge mapping need not be updated for input sections.
3795         // There is no provision to use a different CIE to that used
3796         // by .glink.
3797         if (!this->targ_->has_glink())
3798           return;
3799
3800         layout->add_eh_frame_for_plt(this,
3801                                      Eh_cie<size>::eh_frame_cie,
3802                                      sizeof (Eh_cie<size>::eh_frame_cie),
3803                                      default_fde,
3804                                      sizeof (default_fde));
3805         this->eh_frame_added_ = true;
3806       }
3807   }
3808
3809   Target_powerpc<size, big_endian>*
3810   targ() const
3811   { return targ_; }
3812
3813  private:
3814   class Plt_stub_ent;
3815   class Plt_stub_ent_hash;
3816   typedef Unordered_map<Plt_stub_ent, unsigned int,
3817                         Plt_stub_ent_hash> Plt_stub_entries;
3818
3819   // Alignment of stub section.
3820   unsigned int
3821   stub_align() const
3822   {
3823     if (size == 32)
3824       return 16;
3825     unsigned int min_align = 32;
3826     unsigned int user_align = 1 << parameters->options().plt_align();
3827     return std::max(user_align, min_align);
3828   }
3829
3830   // Return the plt offset for the given call stub.
3831   Address
3832   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3833   {
3834     const Symbol* gsym = p->first.sym_;
3835     if (gsym != NULL)
3836       {
3837         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3838                     && gsym->can_use_relative_reloc(false));
3839         return gsym->plt_offset();
3840       }
3841     else
3842       {
3843         *is_iplt = true;
3844         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3845         unsigned int local_sym_index = p->first.locsym_;
3846         return relobj->local_plt_offset(local_sym_index);
3847       }
3848   }
3849
3850   // Size of a given plt call stub.
3851   unsigned int
3852   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3853   {
3854     if (size == 32)
3855       return 16;
3856
3857     bool is_iplt;
3858     Address plt_addr = this->plt_off(p, &is_iplt);
3859     if (is_iplt)
3860       plt_addr += this->targ_->iplt_section()->address();
3861     else
3862       plt_addr += this->targ_->plt_section()->address();
3863     Address got_addr = this->targ_->got_section()->output_section()->address();
3864     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3865       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3866     got_addr += ppcobj->toc_base_offset();
3867     Address off = plt_addr - got_addr;
3868     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3869     if (this->targ_->abiversion() < 2)
3870       {
3871         bool static_chain = parameters->options().plt_static_chain();
3872         bool thread_safe = this->targ_->plt_thread_safe();
3873         bytes += (4
3874                   + 4 * static_chain
3875                   + 8 * thread_safe
3876                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3877       }
3878     unsigned int align = 1 << parameters->options().plt_align();
3879     if (align > 1)
3880       bytes = (bytes + align - 1) & -align;
3881     return bytes;
3882   }
3883
3884   // Return long branch stub size.
3885   unsigned int
3886   branch_stub_size(Address to)
3887   {
3888     Address loc
3889       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3890     if (to - loc + (1 << 25) < 2 << 25)
3891       return 4;
3892     if (size == 64 || !parameters->options().output_is_position_independent())
3893       return 16;
3894     return 32;
3895   }
3896
3897   // Write out stubs.
3898   void
3899   do_write(Output_file*);
3900
3901   // Plt call stub keys.
3902   class Plt_stub_ent
3903   {
3904   public:
3905     Plt_stub_ent(const Symbol* sym)
3906       : sym_(sym), object_(0), addend_(0), locsym_(0)
3907     { }
3908
3909     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3910                  unsigned int locsym_index)
3911       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3912     { }
3913
3914     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3915                  const Symbol* sym,
3916                  unsigned int r_type,
3917                  Address addend)
3918       : sym_(sym), object_(0), addend_(0), locsym_(0)
3919     {
3920       if (size != 32)
3921         this->addend_ = addend;
3922       else if (parameters->options().output_is_position_independent()
3923                && r_type == elfcpp::R_PPC_PLTREL24)
3924         {
3925           this->addend_ = addend;
3926           if (this->addend_ >= 32768)
3927             this->object_ = object;
3928         }
3929     }
3930
3931     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3932                  unsigned int locsym_index,
3933                  unsigned int r_type,
3934                  Address addend)
3935       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3936     {
3937       if (size != 32)
3938         this->addend_ = addend;
3939       else if (parameters->options().output_is_position_independent()
3940                && r_type == elfcpp::R_PPC_PLTREL24)
3941         this->addend_ = addend;
3942     }
3943
3944     bool operator==(const Plt_stub_ent& that) const
3945     {
3946       return (this->sym_ == that.sym_
3947               && this->object_ == that.object_
3948               && this->addend_ == that.addend_
3949               && this->locsym_ == that.locsym_);
3950     }
3951
3952     const Symbol* sym_;
3953     const Sized_relobj_file<size, big_endian>* object_;
3954     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3955     unsigned int locsym_;
3956   };
3957
3958   class Plt_stub_ent_hash
3959   {
3960   public:
3961     size_t operator()(const Plt_stub_ent& ent) const
3962     {
3963       return (reinterpret_cast<uintptr_t>(ent.sym_)
3964               ^ reinterpret_cast<uintptr_t>(ent.object_)
3965               ^ ent.addend_
3966               ^ ent.locsym_);
3967     }
3968   };
3969
3970   // Long branch stub keys.
3971   class Branch_stub_ent
3972   {
3973   public:
3974     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
3975                     Address to, bool save_res)
3976       : dest_(to), toc_base_off_(0), save_res_(save_res)
3977     {
3978       if (size == 64)
3979         toc_base_off_ = obj->toc_base_offset();
3980     }
3981
3982     bool operator==(const Branch_stub_ent& that) const
3983     {
3984       return (this->dest_ == that.dest_
3985               && (size == 32
3986                   || this->toc_base_off_ == that.toc_base_off_));
3987     }
3988
3989     Address dest_;
3990     unsigned int toc_base_off_;
3991     bool save_res_;
3992   };
3993
3994   class Branch_stub_ent_hash
3995   {
3996   public:
3997     size_t operator()(const Branch_stub_ent& ent) const
3998     { return ent.dest_ ^ ent.toc_base_off_; }
3999   };
4000
4001   // In a sane world this would be a global.
4002   Target_powerpc<size, big_endian>* targ_;
4003   // Map sym/object/addend to stub offset.
4004   Plt_stub_entries plt_call_stubs_;
4005   // Map destination address to stub offset.
4006   typedef Unordered_map<Branch_stub_ent, unsigned int,
4007                         Branch_stub_ent_hash> Branch_stub_entries;
4008   Branch_stub_entries long_branch_stubs_;
4009   // size of input section
4010   section_size_type orig_data_size_;
4011   // size of stubs
4012   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4013   // Whether .eh_frame info has been created for this stub section.
4014   bool eh_frame_added_;
4015   // Set if this stub group needs a copy of out-of-line register
4016   // save/restore functions.
4017   bool need_save_res_;
4018 };
4019
4020 // Add a plt call stub, if we do not already have one for this
4021 // sym/object/addend combo.
4022
4023 template<int size, bool big_endian>
4024 bool
4025 Stub_table<size, big_endian>::add_plt_call_entry(
4026     Address from,
4027     const Sized_relobj_file<size, big_endian>* object,
4028     const Symbol* gsym,
4029     unsigned int r_type,
4030     Address addend)
4031 {
4032   Plt_stub_ent ent(object, gsym, r_type, addend);
4033   unsigned int off = this->plt_size_;
4034   std::pair<typename Plt_stub_entries::iterator, bool> p
4035     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4036   if (p.second)
4037     this->plt_size_ = off + this->plt_call_size(p.first);
4038   return this->can_reach_stub(from, off, r_type);
4039 }
4040
4041 template<int size, bool big_endian>
4042 bool
4043 Stub_table<size, big_endian>::add_plt_call_entry(
4044     Address from,
4045     const Sized_relobj_file<size, big_endian>* object,
4046     unsigned int locsym_index,
4047     unsigned int r_type,
4048     Address addend)
4049 {
4050   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4051   unsigned int off = this->plt_size_;
4052   std::pair<typename Plt_stub_entries::iterator, bool> p
4053     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4054   if (p.second)
4055     this->plt_size_ = off + this->plt_call_size(p.first);
4056   return this->can_reach_stub(from, off, r_type);
4057 }
4058
4059 // Find a plt call stub.
4060
4061 template<int size, bool big_endian>
4062 typename Stub_table<size, big_endian>::Address
4063 Stub_table<size, big_endian>::find_plt_call_entry(
4064     const Sized_relobj_file<size, big_endian>* object,
4065     const Symbol* gsym,
4066     unsigned int r_type,
4067     Address addend) const
4068 {
4069   Plt_stub_ent ent(object, gsym, r_type, addend);
4070   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4071   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4072 }
4073
4074 template<int size, bool big_endian>
4075 typename Stub_table<size, big_endian>::Address
4076 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4077 {
4078   Plt_stub_ent ent(gsym);
4079   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4080   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4081 }
4082
4083 template<int size, bool big_endian>
4084 typename Stub_table<size, big_endian>::Address
4085 Stub_table<size, big_endian>::find_plt_call_entry(
4086     const Sized_relobj_file<size, big_endian>* object,
4087     unsigned int locsym_index,
4088     unsigned int r_type,
4089     Address addend) const
4090 {
4091   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4092   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4093   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4094 }
4095
4096 template<int size, bool big_endian>
4097 typename Stub_table<size, big_endian>::Address
4098 Stub_table<size, big_endian>::find_plt_call_entry(
4099     const Sized_relobj_file<size, big_endian>* object,
4100     unsigned int locsym_index) const
4101 {
4102   Plt_stub_ent ent(object, locsym_index);
4103   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4104   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4105 }
4106
4107 // Add a long branch stub if we don't already have one to given
4108 // destination.
4109
4110 template<int size, bool big_endian>
4111 bool
4112 Stub_table<size, big_endian>::add_long_branch_entry(
4113     const Powerpc_relobj<size, big_endian>* object,
4114     unsigned int r_type,
4115     Address from,
4116     Address to,
4117     bool save_res)
4118 {
4119   Branch_stub_ent ent(object, to, save_res);
4120   Address off = this->branch_size_;
4121   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4122     {
4123       if (save_res)
4124         this->need_save_res_ = true;
4125       else
4126         {
4127           unsigned int stub_size = this->branch_stub_size(to);
4128           this->branch_size_ = off + stub_size;
4129           if (size == 64 && stub_size != 4)
4130             this->targ_->add_branch_lookup_table(to);
4131         }
4132     }
4133   return this->can_reach_stub(from, off, r_type);
4134 }
4135
4136 // Find long branch stub offset.
4137
4138 template<int size, bool big_endian>
4139 typename Stub_table<size, big_endian>::Address
4140 Stub_table<size, big_endian>::find_long_branch_entry(
4141     const Powerpc_relobj<size, big_endian>* object,
4142     Address to) const
4143 {
4144   Branch_stub_ent ent(object, to, false);
4145   typename Branch_stub_entries::const_iterator p
4146     = this->long_branch_stubs_.find(ent);
4147   if (p == this->long_branch_stubs_.end())
4148     return invalid_address;
4149   if (p->first.save_res_)
4150     return to - this->targ_->savres_section()->address() + this->branch_size_;
4151   return p->second;
4152 }
4153
4154 // A class to handle .glink.
4155
4156 template<int size, bool big_endian>
4157 class Output_data_glink : public Output_section_data
4158 {
4159  public:
4160   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4161   static const Address invalid_address = static_cast<Address>(0) - 1;
4162   static const int pltresolve_size = 16*4;
4163
4164   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4165     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4166       end_branch_table_(), ge_size_(0)
4167   { }
4168
4169   void
4170   add_eh_frame(Layout* layout);
4171
4172   void
4173   add_global_entry(const Symbol*);
4174
4175   Address
4176   find_global_entry(const Symbol*) const;
4177
4178   Address
4179   global_entry_address() const
4180   {
4181     gold_assert(this->is_data_size_valid());
4182     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4183     return this->address() + global_entry_off;
4184   }
4185
4186  protected:
4187   // Write to a map file.
4188   void
4189   do_print_to_mapfile(Mapfile* mapfile) const
4190   { mapfile->print_output_data(this, _("** glink")); }
4191
4192  private:
4193   void
4194   set_final_data_size();
4195
4196   // Write out .glink
4197   void
4198   do_write(Output_file*);
4199
4200   // Allows access to .got and .plt for do_write.
4201   Target_powerpc<size, big_endian>* targ_;
4202
4203   // Map sym to stub offset.
4204   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4205   Global_entry_stub_entries global_entry_stubs_;
4206
4207   unsigned int end_branch_table_, ge_size_;
4208 };
4209
4210 template<int size, bool big_endian>
4211 void
4212 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4213 {
4214   if (!parameters->options().ld_generated_unwind_info())
4215     return;
4216
4217   if (size == 64)
4218     {
4219       if (this->targ_->abiversion() < 2)
4220         layout->add_eh_frame_for_plt(this,
4221                                      Eh_cie<64>::eh_frame_cie,
4222                                      sizeof (Eh_cie<64>::eh_frame_cie),
4223                                      glink_eh_frame_fde_64v1,
4224                                      sizeof (glink_eh_frame_fde_64v1));
4225       else
4226         layout->add_eh_frame_for_plt(this,
4227                                      Eh_cie<64>::eh_frame_cie,
4228                                      sizeof (Eh_cie<64>::eh_frame_cie),
4229                                      glink_eh_frame_fde_64v2,
4230                                      sizeof (glink_eh_frame_fde_64v2));
4231     }
4232   else
4233     {
4234       // 32-bit .glink can use the default since the CIE return
4235       // address reg, LR, is valid.
4236       layout->add_eh_frame_for_plt(this,
4237                                    Eh_cie<32>::eh_frame_cie,
4238                                    sizeof (Eh_cie<32>::eh_frame_cie),
4239                                    default_fde,
4240                                    sizeof (default_fde));
4241       // Except where LR is used in a PIC __glink_PLTresolve.
4242       if (parameters->options().output_is_position_independent())
4243         layout->add_eh_frame_for_plt(this,
4244                                      Eh_cie<32>::eh_frame_cie,
4245                                      sizeof (Eh_cie<32>::eh_frame_cie),
4246                                      glink_eh_frame_fde_32,
4247                                      sizeof (glink_eh_frame_fde_32));
4248     }
4249 }
4250
4251 template<int size, bool big_endian>
4252 void
4253 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4254 {
4255   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4256     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4257   if (p.second)
4258     this->ge_size_ += 16;
4259 }
4260
4261 template<int size, bool big_endian>
4262 typename Output_data_glink<size, big_endian>::Address
4263 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4264 {
4265   typename Global_entry_stub_entries::const_iterator p
4266     = this->global_entry_stubs_.find(gsym);
4267   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4268 }
4269
4270 template<int size, bool big_endian>
4271 void
4272 Output_data_glink<size, big_endian>::set_final_data_size()
4273 {
4274   unsigned int count = this->targ_->plt_entry_count();
4275   section_size_type total = 0;
4276
4277   if (count != 0)
4278     {
4279       if (size == 32)
4280         {
4281           // space for branch table
4282           total += 4 * (count - 1);
4283
4284           total += -total & 15;
4285           total += this->pltresolve_size;
4286         }
4287       else
4288         {
4289           total += this->pltresolve_size;
4290
4291           // space for branch table
4292           total += 4 * count;
4293           if (this->targ_->abiversion() < 2)
4294             {
4295               total += 4 * count;
4296               if (count > 0x8000)
4297                 total += 4 * (count - 0x8000);
4298             }
4299         }
4300     }
4301   this->end_branch_table_ = total;
4302   total = (total + 15) & -16;
4303   total += this->ge_size_;
4304
4305   this->set_data_size(total);
4306 }
4307
4308 // Write out plt and long branch stub code.
4309
4310 template<int size, bool big_endian>
4311 void
4312 Stub_table<size, big_endian>::do_write(Output_file* of)
4313 {
4314   if (this->plt_call_stubs_.empty()
4315       && this->long_branch_stubs_.empty())
4316     return;
4317
4318   const section_size_type start_off = this->offset();
4319   const section_size_type off = this->stub_offset();
4320   const section_size_type oview_size =
4321     convert_to_section_size_type(this->data_size() - (off - start_off));
4322   unsigned char* const oview = of->get_output_view(off, oview_size);
4323   unsigned char* p;
4324
4325   if (size == 64)
4326     {
4327       const Output_data_got_powerpc<size, big_endian>* got
4328         = this->targ_->got_section();
4329       Address got_os_addr = got->output_section()->address();
4330
4331       if (!this->plt_call_stubs_.empty())
4332         {
4333           // The base address of the .plt section.
4334           Address plt_base = this->targ_->plt_section()->address();
4335           Address iplt_base = invalid_address;
4336
4337           // Write out plt call stubs.
4338           typename Plt_stub_entries::const_iterator cs;
4339           for (cs = this->plt_call_stubs_.begin();
4340                cs != this->plt_call_stubs_.end();
4341                ++cs)
4342             {
4343               bool is_iplt;
4344               Address pltoff = this->plt_off(cs, &is_iplt);
4345               Address plt_addr = pltoff;
4346               if (is_iplt)
4347                 {
4348                   if (iplt_base == invalid_address)
4349                     iplt_base = this->targ_->iplt_section()->address();
4350                   plt_addr += iplt_base;
4351                 }
4352               else
4353                 plt_addr += plt_base;
4354               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4355                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4356               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4357               Address off = plt_addr - got_addr;
4358
4359               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4360                 gold_error(_("%s: linkage table error against `%s'"),
4361                            cs->first.object_->name().c_str(),
4362                            cs->first.sym_->demangled_name().c_str());
4363
4364               bool plt_load_toc = this->targ_->abiversion() < 2;
4365               bool static_chain
4366                 = plt_load_toc && parameters->options().plt_static_chain();
4367               bool thread_safe
4368                 = plt_load_toc && this->targ_->plt_thread_safe();
4369               bool use_fake_dep = false;
4370               Address cmp_branch_off = 0;
4371               if (thread_safe)
4372                 {
4373                   unsigned int pltindex
4374                     = ((pltoff - this->targ_->first_plt_entry_offset())
4375                        / this->targ_->plt_entry_size());
4376                   Address glinkoff
4377                     = (this->targ_->glink_section()->pltresolve_size
4378                        + pltindex * 8);
4379                   if (pltindex > 32768)
4380                     glinkoff += (pltindex - 32768) * 4;
4381                   Address to
4382                     = this->targ_->glink_section()->address() + glinkoff;
4383                   Address from
4384                     = (this->stub_address() + cs->second + 24
4385                        + 4 * (ha(off) != 0)
4386                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4387                        + 4 * static_chain);
4388                   cmp_branch_off = to - from;
4389                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4390                 }
4391
4392               p = oview + cs->second;
4393               if (ha(off) != 0)
4394                 {
4395                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4396                   p += 4;
4397                   if (plt_load_toc)
4398                     {
4399                       write_insn<big_endian>(p, addis_11_2 + ha(off));
4400                       p += 4;
4401                       write_insn<big_endian>(p, ld_12_11 + l(off));
4402                       p += 4;
4403                     }
4404                   else
4405                     {
4406                       write_insn<big_endian>(p, addis_12_2 + ha(off));
4407                       p += 4;
4408                       write_insn<big_endian>(p, ld_12_12 + l(off));
4409                       p += 4;
4410                     }
4411                   if (plt_load_toc
4412                       && ha(off + 8 + 8 * static_chain) != ha(off))
4413                     {
4414                       write_insn<big_endian>(p, addi_11_11 + l(off));
4415                       p += 4;
4416                       off = 0;
4417                     }
4418                   write_insn<big_endian>(p, mtctr_12);
4419                   p += 4;
4420                   if (plt_load_toc)
4421                     {
4422                       if (use_fake_dep)
4423                         {
4424                           write_insn<big_endian>(p, xor_2_12_12);
4425                           p += 4;
4426                           write_insn<big_endian>(p, add_11_11_2);
4427                           p += 4;
4428                         }
4429                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4430                       p += 4;
4431                       if (static_chain)
4432                         {
4433                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4434                           p += 4;
4435                         }
4436                     }
4437                 }
4438               else
4439                 {
4440                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4441                   p += 4;
4442                   write_insn<big_endian>(p, ld_12_2 + l(off));
4443                   p += 4;
4444                   if (plt_load_toc
4445                       && ha(off + 8 + 8 * static_chain) != ha(off))
4446                     {
4447                       write_insn<big_endian>(p, addi_2_2 + l(off));
4448                       p += 4;
4449                       off = 0;
4450                     }
4451                   write_insn<big_endian>(p, mtctr_12);
4452                   p += 4;
4453                   if (plt_load_toc)
4454                     {
4455                       if (use_fake_dep)
4456                         {
4457                           write_insn<big_endian>(p, xor_11_12_12);
4458                           p += 4;
4459                           write_insn<big_endian>(p, add_2_2_11);
4460                           p += 4;
4461                         }
4462                       if (static_chain)
4463                         {
4464                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4465                           p += 4;
4466                         }
4467                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4468                       p += 4;
4469                     }
4470                 }
4471               if (thread_safe && !use_fake_dep)
4472                 {
4473                   write_insn<big_endian>(p, cmpldi_2_0);
4474                   p += 4;
4475                   write_insn<big_endian>(p, bnectr_p4);
4476                   p += 4;
4477                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4478                 }
4479               else
4480                 write_insn<big_endian>(p, bctr);
4481             }
4482         }
4483
4484       // Write out long branch stubs.
4485       typename Branch_stub_entries::const_iterator bs;
4486       for (bs = this->long_branch_stubs_.begin();
4487            bs != this->long_branch_stubs_.end();
4488            ++bs)
4489         {
4490           if (bs->first.save_res_)
4491             continue;
4492           p = oview + this->plt_size_ + bs->second;
4493           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4494           Address delta = bs->first.dest_ - loc;
4495           if (delta + (1 << 25) < 2 << 25)
4496             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4497           else
4498             {
4499               Address brlt_addr
4500                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4501               gold_assert(brlt_addr != invalid_address);
4502               brlt_addr += this->targ_->brlt_section()->address();
4503               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4504               Address brltoff = brlt_addr - got_addr;
4505               if (ha(brltoff) == 0)
4506                 {
4507                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4508                 }
4509               else
4510                 {
4511                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
4512                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
4513                 }
4514               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4515               write_insn<big_endian>(p, bctr);
4516             }
4517         }
4518     }
4519   else
4520     {
4521       if (!this->plt_call_stubs_.empty())
4522         {
4523           // The base address of the .plt section.
4524           Address plt_base = this->targ_->plt_section()->address();
4525           Address iplt_base = invalid_address;
4526           // The address of _GLOBAL_OFFSET_TABLE_.
4527           Address g_o_t = invalid_address;
4528
4529           // Write out plt call stubs.
4530           typename Plt_stub_entries::const_iterator cs;
4531           for (cs = this->plt_call_stubs_.begin();
4532                cs != this->plt_call_stubs_.end();
4533                ++cs)
4534             {
4535               bool is_iplt;
4536               Address plt_addr = this->plt_off(cs, &is_iplt);
4537               if (is_iplt)
4538                 {
4539                   if (iplt_base == invalid_address)
4540                     iplt_base = this->targ_->iplt_section()->address();
4541                   plt_addr += iplt_base;
4542                 }
4543               else
4544                 plt_addr += plt_base;
4545
4546               p = oview + cs->second;
4547               if (parameters->options().output_is_position_independent())
4548                 {
4549                   Address got_addr;
4550                   const Powerpc_relobj<size, big_endian>* ppcobj
4551                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4552                        (cs->first.object_));
4553                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4554                     {
4555                       unsigned int got2 = ppcobj->got2_shndx();
4556                       got_addr = ppcobj->get_output_section_offset(got2);
4557                       gold_assert(got_addr != invalid_address);
4558                       got_addr += (ppcobj->output_section(got2)->address()
4559                                    + cs->first.addend_);
4560                     }
4561                   else
4562                     {
4563                       if (g_o_t == invalid_address)
4564                         {
4565                           const Output_data_got_powerpc<size, big_endian>* got
4566                             = this->targ_->got_section();
4567                           g_o_t = got->address() + got->g_o_t();
4568                         }
4569                       got_addr = g_o_t;
4570                     }
4571
4572                   Address off = plt_addr - got_addr;
4573                   if (ha(off) == 0)
4574                     {
4575                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4576                       write_insn<big_endian>(p +  4, mtctr_11);
4577                       write_insn<big_endian>(p +  8, bctr);
4578                     }
4579                   else
4580                     {
4581                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4582                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4583                       write_insn<big_endian>(p +  8, mtctr_11);
4584                       write_insn<big_endian>(p + 12, bctr);
4585                     }
4586                 }
4587               else
4588                 {
4589                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4590                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4591                   write_insn<big_endian>(p +  8, mtctr_11);
4592                   write_insn<big_endian>(p + 12, bctr);
4593                 }
4594             }
4595         }
4596
4597       // Write out long branch stubs.
4598       typename Branch_stub_entries::const_iterator bs;
4599       for (bs = this->long_branch_stubs_.begin();
4600            bs != this->long_branch_stubs_.end();
4601            ++bs)
4602         {
4603           if (bs->first.save_res_)
4604             continue;
4605           p = oview + this->plt_size_ + bs->second;
4606           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4607           Address delta = bs->first.dest_ - loc;
4608           if (delta + (1 << 25) < 2 << 25)
4609             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4610           else if (!parameters->options().output_is_position_independent())
4611             {
4612               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4613               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4614               write_insn<big_endian>(p +  8, mtctr_12);
4615               write_insn<big_endian>(p + 12, bctr);
4616             }
4617           else
4618             {
4619               delta -= 8;
4620               write_insn<big_endian>(p +  0, mflr_0);
4621               write_insn<big_endian>(p +  4, bcl_20_31);
4622               write_insn<big_endian>(p +  8, mflr_12);
4623               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4624               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4625               write_insn<big_endian>(p + 20, mtlr_0);
4626               write_insn<big_endian>(p + 24, mtctr_12);
4627               write_insn<big_endian>(p + 28, bctr);
4628             }
4629         }
4630     }
4631   if (this->need_save_res_)
4632     {
4633       p = oview + this->plt_size_ + this->branch_size_;
4634       memcpy (p, this->targ_->savres_section()->contents(),
4635               this->targ_->savres_section()->data_size());
4636     }
4637 }
4638
4639 // Write out .glink.
4640
4641 template<int size, bool big_endian>
4642 void
4643 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4644 {
4645   const section_size_type off = this->offset();
4646   const section_size_type oview_size =
4647     convert_to_section_size_type(this->data_size());
4648   unsigned char* const oview = of->get_output_view(off, oview_size);
4649   unsigned char* p;
4650
4651   // The base address of the .plt section.
4652   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4653   Address plt_base = this->targ_->plt_section()->address();
4654
4655   if (size == 64)
4656     {
4657       if (this->end_branch_table_ != 0)
4658         {
4659           // Write pltresolve stub.
4660           p = oview;
4661           Address after_bcl = this->address() + 16;
4662           Address pltoff = plt_base - after_bcl;
4663
4664           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4665
4666           if (this->targ_->abiversion() < 2)
4667             {
4668               write_insn<big_endian>(p, mflr_12),               p += 4;
4669               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4670               write_insn<big_endian>(p, mflr_11),               p += 4;
4671               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4672               write_insn<big_endian>(p, mtlr_12),               p += 4;
4673               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4674               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4675               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4676               write_insn<big_endian>(p, mtctr_12),              p += 4;
4677               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4678             }
4679           else
4680             {
4681               write_insn<big_endian>(p, mflr_0),                p += 4;
4682               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4683               write_insn<big_endian>(p, mflr_11),               p += 4;
4684               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4685               write_insn<big_endian>(p, mtlr_0),                p += 4;
4686               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4687               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4688               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4689               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4690               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4691               write_insn<big_endian>(p, mtctr_12),              p += 4;
4692               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4693             }
4694           write_insn<big_endian>(p, bctr),                      p += 4;
4695           while (p < oview + this->pltresolve_size)
4696             write_insn<big_endian>(p, nop), p += 4;
4697
4698           // Write lazy link call stubs.
4699           uint32_t indx = 0;
4700           while (p < oview + this->end_branch_table_)
4701             {
4702               if (this->targ_->abiversion() < 2)
4703                 {
4704                   if (indx < 0x8000)
4705                     {
4706                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4707                     }
4708                   else
4709                     {
4710                       write_insn<big_endian>(p, lis_0 + hi(indx)),      p += 4;
4711                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4712                     }
4713                 }
4714               uint32_t branch_off = 8 - (p - oview);
4715               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4716               indx++;
4717             }
4718         }
4719
4720       Address plt_base = this->targ_->plt_section()->address();
4721       Address iplt_base = invalid_address;
4722       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4723       Address global_entry_base = this->address() + global_entry_off;
4724       typename Global_entry_stub_entries::const_iterator ge;
4725       for (ge = this->global_entry_stubs_.begin();
4726            ge != this->global_entry_stubs_.end();
4727            ++ge)
4728         {
4729           p = oview + global_entry_off + ge->second;
4730           Address plt_addr = ge->first->plt_offset();
4731           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4732               && ge->first->can_use_relative_reloc(false))
4733             {
4734               if (iplt_base == invalid_address)
4735                 iplt_base = this->targ_->iplt_section()->address();
4736               plt_addr += iplt_base;
4737             }
4738           else
4739             plt_addr += plt_base;
4740           Address my_addr = global_entry_base + ge->second;
4741           Address off = plt_addr - my_addr;
4742
4743           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4744             gold_error(_("%s: linkage table error against `%s'"),
4745                        ge->first->object()->name().c_str(),
4746                        ge->first->demangled_name().c_str());
4747
4748           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4749           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4750           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4751           write_insn<big_endian>(p, bctr);
4752         }
4753     }
4754   else
4755     {
4756       const Output_data_got_powerpc<size, big_endian>* got
4757         = this->targ_->got_section();
4758       // The address of _GLOBAL_OFFSET_TABLE_.
4759       Address g_o_t = got->address() + got->g_o_t();
4760
4761       // Write out pltresolve branch table.
4762       p = oview;
4763       unsigned int the_end = oview_size - this->pltresolve_size;
4764       unsigned char* end_p = oview + the_end;
4765       while (p < end_p - 8 * 4)
4766         write_insn<big_endian>(p, b + end_p - p), p += 4;
4767       while (p < end_p)
4768         write_insn<big_endian>(p, nop), p += 4;
4769
4770       // Write out pltresolve call stub.
4771       if (parameters->options().output_is_position_independent())
4772         {
4773           Address res0_off = 0;
4774           Address after_bcl_off = the_end + 12;
4775           Address bcl_res0 = after_bcl_off - res0_off;
4776
4777           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4778           write_insn<big_endian>(p +  4, mflr_0);
4779           write_insn<big_endian>(p +  8, bcl_20_31);
4780           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4781           write_insn<big_endian>(p + 16, mflr_12);
4782           write_insn<big_endian>(p + 20, mtlr_0);
4783           write_insn<big_endian>(p + 24, sub_11_11_12);
4784
4785           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4786
4787           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4788           if (ha(got_bcl) == ha(got_bcl + 4))
4789             {
4790               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4791               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4792             }
4793           else
4794             {
4795               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4796               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4797             }
4798           write_insn<big_endian>(p + 40, mtctr_0);
4799           write_insn<big_endian>(p + 44, add_0_11_11);
4800           write_insn<big_endian>(p + 48, add_11_0_11);
4801           write_insn<big_endian>(p + 52, bctr);
4802           write_insn<big_endian>(p + 56, nop);
4803           write_insn<big_endian>(p + 60, nop);
4804         }
4805       else
4806         {
4807           Address res0 = this->address();
4808
4809           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4810           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4811           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4812             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4813           else
4814             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4815           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4816           write_insn<big_endian>(p + 16, mtctr_0);
4817           write_insn<big_endian>(p + 20, add_0_11_11);
4818           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4819             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4820           else
4821             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4822           write_insn<big_endian>(p + 28, add_11_0_11);
4823           write_insn<big_endian>(p + 32, bctr);
4824           write_insn<big_endian>(p + 36, nop);
4825           write_insn<big_endian>(p + 40, nop);
4826           write_insn<big_endian>(p + 44, nop);
4827           write_insn<big_endian>(p + 48, nop);
4828           write_insn<big_endian>(p + 52, nop);
4829           write_insn<big_endian>(p + 56, nop);
4830           write_insn<big_endian>(p + 60, nop);
4831         }
4832       p += 64;
4833     }
4834
4835   of->write_output_view(off, oview_size, oview);
4836 }
4837
4838
4839 // A class to handle linker generated save/restore functions.
4840
4841 template<int size, bool big_endian>
4842 class Output_data_save_res : public Output_section_data_build
4843 {
4844  public:
4845   Output_data_save_res(Symbol_table* symtab);
4846
4847   const unsigned char*
4848   contents() const
4849   {
4850     return contents_;
4851   }
4852
4853  protected:
4854   // Write to a map file.
4855   void
4856   do_print_to_mapfile(Mapfile* mapfile) const
4857   { mapfile->print_output_data(this, _("** save/restore")); }
4858
4859   void
4860   do_write(Output_file*);
4861
4862  private:
4863   // The maximum size of save/restore contents.
4864   static const unsigned int savres_max = 218*4;
4865
4866   void
4867   savres_define(Symbol_table* symtab,
4868                 const char *name,
4869                 unsigned int lo, unsigned int hi,
4870                 unsigned char* write_ent(unsigned char*, int),
4871                 unsigned char* write_tail(unsigned char*, int));
4872
4873   unsigned char *contents_;
4874 };
4875
4876 template<bool big_endian>
4877 static unsigned char*
4878 savegpr0(unsigned char* p, int r)
4879 {
4880   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4881   write_insn<big_endian>(p, insn);
4882   return p + 4;
4883 }
4884
4885 template<bool big_endian>
4886 static unsigned char*
4887 savegpr0_tail(unsigned char* p, int r)
4888 {
4889   p = savegpr0<big_endian>(p, r);
4890   uint32_t insn = std_0_1 + 16;
4891   write_insn<big_endian>(p, insn);
4892   p = p + 4;
4893   write_insn<big_endian>(p, blr);
4894   return p + 4;
4895 }
4896
4897 template<bool big_endian>
4898 static unsigned char*
4899 restgpr0(unsigned char* p, int r)
4900 {
4901   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4902   write_insn<big_endian>(p, insn);
4903   return p + 4;
4904 }
4905
4906 template<bool big_endian>
4907 static unsigned char*
4908 restgpr0_tail(unsigned char* p, int r)
4909 {
4910   uint32_t insn = ld_0_1 + 16;
4911   write_insn<big_endian>(p, insn);
4912   p = p + 4;
4913   p = restgpr0<big_endian>(p, r);
4914   write_insn<big_endian>(p, mtlr_0);
4915   p = p + 4;
4916   if (r == 29)
4917     {
4918       p = restgpr0<big_endian>(p, 30);
4919       p = restgpr0<big_endian>(p, 31);
4920     }
4921   write_insn<big_endian>(p, blr);
4922   return p + 4;
4923 }
4924
4925 template<bool big_endian>
4926 static unsigned char*
4927 savegpr1(unsigned char* p, int r)
4928 {
4929   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4930   write_insn<big_endian>(p, insn);
4931   return p + 4;
4932 }
4933
4934 template<bool big_endian>
4935 static unsigned char*
4936 savegpr1_tail(unsigned char* p, int r)
4937 {
4938   p = savegpr1<big_endian>(p, r);
4939   write_insn<big_endian>(p, blr);
4940   return p + 4;
4941 }
4942
4943 template<bool big_endian>
4944 static unsigned char*
4945 restgpr1(unsigned char* p, int r)
4946 {
4947   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4948   write_insn<big_endian>(p, insn);
4949   return p + 4;
4950 }
4951
4952 template<bool big_endian>
4953 static unsigned char*
4954 restgpr1_tail(unsigned char* p, int r)
4955 {
4956   p = restgpr1<big_endian>(p, r);
4957   write_insn<big_endian>(p, blr);
4958   return p + 4;
4959 }
4960
4961 template<bool big_endian>
4962 static unsigned char*
4963 savefpr(unsigned char* p, int r)
4964 {
4965   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4966   write_insn<big_endian>(p, insn);
4967   return p + 4;
4968 }
4969
4970 template<bool big_endian>
4971 static unsigned char*
4972 savefpr0_tail(unsigned char* p, int r)
4973 {
4974   p = savefpr<big_endian>(p, r);
4975   write_insn<big_endian>(p, std_0_1 + 16);
4976   p = p + 4;
4977   write_insn<big_endian>(p, blr);
4978   return p + 4;
4979 }
4980
4981 template<bool big_endian>
4982 static unsigned char*
4983 restfpr(unsigned char* p, int r)
4984 {
4985   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4986   write_insn<big_endian>(p, insn);
4987   return p + 4;
4988 }
4989
4990 template<bool big_endian>
4991 static unsigned char*
4992 restfpr0_tail(unsigned char* p, int r)
4993 {
4994   write_insn<big_endian>(p, ld_0_1 + 16);
4995   p = p + 4;
4996   p = restfpr<big_endian>(p, r);
4997   write_insn<big_endian>(p, mtlr_0);
4998   p = p + 4;
4999   if (r == 29)
5000     {
5001       p = restfpr<big_endian>(p, 30);
5002       p = restfpr<big_endian>(p, 31);
5003     }
5004   write_insn<big_endian>(p, blr);
5005   return p + 4;
5006 }
5007
5008 template<bool big_endian>
5009 static unsigned char*
5010 savefpr1_tail(unsigned char* p, int r)
5011 {
5012   p = savefpr<big_endian>(p, r);
5013   write_insn<big_endian>(p, blr);
5014   return p + 4;
5015 }
5016
5017 template<bool big_endian>
5018 static unsigned char*
5019 restfpr1_tail(unsigned char* p, int r)
5020 {
5021   p = restfpr<big_endian>(p, r);
5022   write_insn<big_endian>(p, blr);
5023   return p + 4;
5024 }
5025
5026 template<bool big_endian>
5027 static unsigned char*
5028 savevr(unsigned char* p, int r)
5029 {
5030   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5031   write_insn<big_endian>(p, insn);
5032   p = p + 4;
5033   insn = stvx_0_12_0 + (r << 21);
5034   write_insn<big_endian>(p, insn);
5035   return p + 4;
5036 }
5037
5038 template<bool big_endian>
5039 static unsigned char*
5040 savevr_tail(unsigned char* p, int r)
5041 {
5042   p = savevr<big_endian>(p, r);
5043   write_insn<big_endian>(p, blr);
5044   return p + 4;
5045 }
5046
5047 template<bool big_endian>
5048 static unsigned char*
5049 restvr(unsigned char* p, int r)
5050 {
5051   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5052   write_insn<big_endian>(p, insn);
5053   p = p + 4;
5054   insn = lvx_0_12_0 + (r << 21);
5055   write_insn<big_endian>(p, insn);
5056   return p + 4;
5057 }
5058
5059 template<bool big_endian>
5060 static unsigned char*
5061 restvr_tail(unsigned char* p, int r)
5062 {
5063   p = restvr<big_endian>(p, r);
5064   write_insn<big_endian>(p, blr);
5065   return p + 4;
5066 }
5067
5068
5069 template<int size, bool big_endian>
5070 Output_data_save_res<size, big_endian>::Output_data_save_res(
5071     Symbol_table* symtab)
5072   : Output_section_data_build(4),
5073     contents_(NULL)
5074 {
5075   this->savres_define(symtab,
5076                       "_savegpr0_", 14, 31,
5077                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
5078   this->savres_define(symtab,
5079                       "_restgpr0_", 14, 29,
5080                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5081   this->savres_define(symtab,
5082                       "_restgpr0_", 30, 31,
5083                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5084   this->savres_define(symtab,
5085                       "_savegpr1_", 14, 31,
5086                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
5087   this->savres_define(symtab,
5088                       "_restgpr1_", 14, 31,
5089                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
5090   this->savres_define(symtab,
5091                       "_savefpr_", 14, 31,
5092                       savefpr<big_endian>, savefpr0_tail<big_endian>);
5093   this->savres_define(symtab,
5094                       "_restfpr_", 14, 29,
5095                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5096   this->savres_define(symtab,
5097                       "_restfpr_", 30, 31,
5098                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5099   this->savres_define(symtab,
5100                       "._savef", 14, 31,
5101                       savefpr<big_endian>, savefpr1_tail<big_endian>);
5102   this->savres_define(symtab,
5103                       "._restf", 14, 31,
5104                       restfpr<big_endian>, restfpr1_tail<big_endian>);
5105   this->savres_define(symtab,
5106                       "_savevr_", 20, 31,
5107                       savevr<big_endian>, savevr_tail<big_endian>);
5108   this->savres_define(symtab,
5109                       "_restvr_", 20, 31,
5110                       restvr<big_endian>, restvr_tail<big_endian>);
5111 }
5112
5113 template<int size, bool big_endian>
5114 void
5115 Output_data_save_res<size, big_endian>::savres_define(
5116     Symbol_table* symtab,
5117     const char *name,
5118     unsigned int lo, unsigned int hi,
5119     unsigned char* write_ent(unsigned char*, int),
5120     unsigned char* write_tail(unsigned char*, int))
5121 {
5122   size_t len = strlen(name);
5123   bool writing = false;
5124   char sym[16];
5125
5126   memcpy(sym, name, len);
5127   sym[len + 2] = 0;
5128
5129   for (unsigned int i = lo; i <= hi; i++)
5130     {
5131       sym[len + 0] = i / 10 + '0';
5132       sym[len + 1] = i % 10 + '0';
5133       Symbol* gsym = symtab->lookup(sym);
5134       bool refd = gsym != NULL && gsym->is_undefined();
5135       writing = writing || refd;
5136       if (writing)
5137         {
5138           if (this->contents_ == NULL)
5139             this->contents_ = new unsigned char[this->savres_max];
5140
5141           section_size_type value = this->current_data_size();
5142           unsigned char* p = this->contents_ + value;
5143           if (i != hi)
5144             p = write_ent(p, i);
5145           else
5146             p = write_tail(p, i);
5147           section_size_type cur_size = p - this->contents_;
5148           this->set_current_data_size(cur_size);
5149           if (refd)
5150             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5151                                           this, value, cur_size - value,
5152                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5153                                           elfcpp::STV_HIDDEN, 0, false, false);
5154         }
5155     }
5156 }
5157
5158 // Write out save/restore.
5159
5160 template<int size, bool big_endian>
5161 void
5162 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5163 {
5164   const section_size_type off = this->offset();
5165   const section_size_type oview_size =
5166     convert_to_section_size_type(this->data_size());
5167   unsigned char* const oview = of->get_output_view(off, oview_size);
5168   memcpy(oview, this->contents_, oview_size);
5169   of->write_output_view(off, oview_size, oview);
5170 }
5171
5172
5173 // Create the glink section.
5174
5175 template<int size, bool big_endian>
5176 void
5177 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5178 {
5179   if (this->glink_ == NULL)
5180     {
5181       this->glink_ = new Output_data_glink<size, big_endian>(this);
5182       this->glink_->add_eh_frame(layout);
5183       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5184                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5185                                       this->glink_, ORDER_TEXT, false);
5186     }
5187 }
5188
5189 // Create a PLT entry for a global symbol.
5190
5191 template<int size, bool big_endian>
5192 void
5193 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5194                                                  Layout* layout,
5195                                                  Symbol* gsym)
5196 {
5197   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5198       && gsym->can_use_relative_reloc(false))
5199     {
5200       if (this->iplt_ == NULL)
5201         this->make_iplt_section(symtab, layout);
5202       this->iplt_->add_ifunc_entry(gsym);
5203     }
5204   else
5205     {
5206       if (this->plt_ == NULL)
5207         this->make_plt_section(symtab, layout);
5208       this->plt_->add_entry(gsym);
5209     }
5210 }
5211
5212 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5213
5214 template<int size, bool big_endian>
5215 void
5216 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5217     Symbol_table* symtab,
5218     Layout* layout,
5219     Sized_relobj_file<size, big_endian>* relobj,
5220     unsigned int r_sym)
5221 {
5222   if (this->iplt_ == NULL)
5223     this->make_iplt_section(symtab, layout);
5224   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5225 }
5226
5227 // Return the number of entries in the PLT.
5228
5229 template<int size, bool big_endian>
5230 unsigned int
5231 Target_powerpc<size, big_endian>::plt_entry_count() const
5232 {
5233   if (this->plt_ == NULL)
5234     return 0;
5235   return this->plt_->entry_count();
5236 }
5237
5238 // Create a GOT entry for local dynamic __tls_get_addr calls.
5239
5240 template<int size, bool big_endian>
5241 unsigned int
5242 Target_powerpc<size, big_endian>::tlsld_got_offset(
5243     Symbol_table* symtab,
5244     Layout* layout,
5245     Sized_relobj_file<size, big_endian>* object)
5246 {
5247   if (this->tlsld_got_offset_ == -1U)
5248     {
5249       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5250       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5251       Output_data_got_powerpc<size, big_endian>* got
5252         = this->got_section(symtab, layout);
5253       unsigned int got_offset = got->add_constant_pair(0, 0);
5254       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5255                           got_offset, 0);
5256       this->tlsld_got_offset_ = got_offset;
5257     }
5258   return this->tlsld_got_offset_;
5259 }
5260
5261 // Get the Reference_flags for a particular relocation.
5262
5263 template<int size, bool big_endian>
5264 int
5265 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5266     unsigned int r_type,
5267     const Target_powerpc* target)
5268 {
5269   int ref = 0;
5270
5271   switch (r_type)
5272     {
5273     case elfcpp::R_POWERPC_NONE:
5274     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5275     case elfcpp::R_POWERPC_GNU_VTENTRY:
5276     case elfcpp::R_PPC64_TOC:
5277       // No symbol reference.
5278       break;
5279
5280     case elfcpp::R_PPC64_ADDR64:
5281     case elfcpp::R_PPC64_UADDR64:
5282     case elfcpp::R_POWERPC_ADDR32:
5283     case elfcpp::R_POWERPC_UADDR32:
5284     case elfcpp::R_POWERPC_ADDR16:
5285     case elfcpp::R_POWERPC_UADDR16:
5286     case elfcpp::R_POWERPC_ADDR16_LO:
5287     case elfcpp::R_POWERPC_ADDR16_HI:
5288     case elfcpp::R_POWERPC_ADDR16_HA:
5289       ref = Symbol::ABSOLUTE_REF;
5290       break;
5291
5292     case elfcpp::R_POWERPC_ADDR24:
5293     case elfcpp::R_POWERPC_ADDR14:
5294     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5295     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5296       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5297       break;
5298
5299     case elfcpp::R_PPC64_REL64:
5300     case elfcpp::R_POWERPC_REL32:
5301     case elfcpp::R_PPC_LOCAL24PC:
5302     case elfcpp::R_POWERPC_REL16:
5303     case elfcpp::R_POWERPC_REL16_LO:
5304     case elfcpp::R_POWERPC_REL16_HI:
5305     case elfcpp::R_POWERPC_REL16_HA:
5306       ref = Symbol::RELATIVE_REF;
5307       break;
5308
5309     case elfcpp::R_POWERPC_REL24:
5310     case elfcpp::R_PPC_PLTREL24:
5311     case elfcpp::R_POWERPC_REL14:
5312     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5313     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5314       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5315       break;
5316
5317     case elfcpp::R_POWERPC_GOT16:
5318     case elfcpp::R_POWERPC_GOT16_LO:
5319     case elfcpp::R_POWERPC_GOT16_HI:
5320     case elfcpp::R_POWERPC_GOT16_HA:
5321     case elfcpp::R_PPC64_GOT16_DS:
5322     case elfcpp::R_PPC64_GOT16_LO_DS:
5323     case elfcpp::R_PPC64_TOC16:
5324     case elfcpp::R_PPC64_TOC16_LO:
5325     case elfcpp::R_PPC64_TOC16_HI:
5326     case elfcpp::R_PPC64_TOC16_HA:
5327     case elfcpp::R_PPC64_TOC16_DS:
5328     case elfcpp::R_PPC64_TOC16_LO_DS:
5329       ref = Symbol::RELATIVE_REF;
5330       break;
5331
5332     case elfcpp::R_POWERPC_GOT_TPREL16:
5333     case elfcpp::R_POWERPC_TLS:
5334       ref = Symbol::TLS_REF;
5335       break;
5336
5337     case elfcpp::R_POWERPC_COPY:
5338     case elfcpp::R_POWERPC_GLOB_DAT:
5339     case elfcpp::R_POWERPC_JMP_SLOT:
5340     case elfcpp::R_POWERPC_RELATIVE:
5341     case elfcpp::R_POWERPC_DTPMOD:
5342     default:
5343       // Not expected.  We will give an error later.
5344       break;
5345     }
5346
5347   if (size == 64 && target->abiversion() < 2)
5348     ref |= Symbol::FUNC_DESC_ABI;
5349   return ref;
5350 }
5351
5352 // Report an unsupported relocation against a local symbol.
5353
5354 template<int size, bool big_endian>
5355 void
5356 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5357     Sized_relobj_file<size, big_endian>* object,
5358     unsigned int r_type)
5359 {
5360   gold_error(_("%s: unsupported reloc %u against local symbol"),
5361              object->name().c_str(), r_type);
5362 }
5363
5364 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5365 // dynamic linker does not support it, issue an error.
5366
5367 template<int size, bool big_endian>
5368 void
5369 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5370                                                       unsigned int r_type)
5371 {
5372   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5373
5374   // These are the relocation types supported by glibc for both 32-bit
5375   // and 64-bit powerpc.
5376   switch (r_type)
5377     {
5378     case elfcpp::R_POWERPC_NONE:
5379     case elfcpp::R_POWERPC_RELATIVE:
5380     case elfcpp::R_POWERPC_GLOB_DAT:
5381     case elfcpp::R_POWERPC_DTPMOD:
5382     case elfcpp::R_POWERPC_DTPREL:
5383     case elfcpp::R_POWERPC_TPREL:
5384     case elfcpp::R_POWERPC_JMP_SLOT:
5385     case elfcpp::R_POWERPC_COPY:
5386     case elfcpp::R_POWERPC_IRELATIVE:
5387     case elfcpp::R_POWERPC_ADDR32:
5388     case elfcpp::R_POWERPC_UADDR32:
5389     case elfcpp::R_POWERPC_ADDR24:
5390     case elfcpp::R_POWERPC_ADDR16:
5391     case elfcpp::R_POWERPC_UADDR16:
5392     case elfcpp::R_POWERPC_ADDR16_LO:
5393     case elfcpp::R_POWERPC_ADDR16_HI:
5394     case elfcpp::R_POWERPC_ADDR16_HA:
5395     case elfcpp::R_POWERPC_ADDR14:
5396     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5397     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5398     case elfcpp::R_POWERPC_REL32:
5399     case elfcpp::R_POWERPC_REL24:
5400     case elfcpp::R_POWERPC_TPREL16:
5401     case elfcpp::R_POWERPC_TPREL16_LO:
5402     case elfcpp::R_POWERPC_TPREL16_HI:
5403     case elfcpp::R_POWERPC_TPREL16_HA:
5404       return;
5405
5406     default:
5407       break;
5408     }
5409
5410   if (size == 64)
5411     {
5412       switch (r_type)
5413         {
5414           // These are the relocation types supported only on 64-bit.
5415         case elfcpp::R_PPC64_ADDR64:
5416         case elfcpp::R_PPC64_UADDR64:
5417         case elfcpp::R_PPC64_JMP_IREL:
5418         case elfcpp::R_PPC64_ADDR16_DS:
5419         case elfcpp::R_PPC64_ADDR16_LO_DS:
5420         case elfcpp::R_PPC64_ADDR16_HIGH:
5421         case elfcpp::R_PPC64_ADDR16_HIGHA:
5422         case elfcpp::R_PPC64_ADDR16_HIGHER:
5423         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5424         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5425         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5426         case elfcpp::R_PPC64_REL64:
5427         case elfcpp::R_POWERPC_ADDR30:
5428         case elfcpp::R_PPC64_TPREL16_DS:
5429         case elfcpp::R_PPC64_TPREL16_LO_DS:
5430         case elfcpp::R_PPC64_TPREL16_HIGH:
5431         case elfcpp::R_PPC64_TPREL16_HIGHA:
5432         case elfcpp::R_PPC64_TPREL16_HIGHER:
5433         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5434         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5435         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5436           return;
5437
5438         default:
5439           break;
5440         }
5441     }
5442   else
5443     {
5444       switch (r_type)
5445         {
5446           // These are the relocation types supported only on 32-bit.
5447           // ??? glibc ld.so doesn't need to support these.
5448         case elfcpp::R_POWERPC_DTPREL16:
5449         case elfcpp::R_POWERPC_DTPREL16_LO:
5450         case elfcpp::R_POWERPC_DTPREL16_HI:
5451         case elfcpp::R_POWERPC_DTPREL16_HA:
5452           return;
5453
5454         default:
5455           break;
5456         }
5457     }
5458
5459   // This prevents us from issuing more than one error per reloc
5460   // section.  But we can still wind up issuing more than one
5461   // error per object file.
5462   if (this->issued_non_pic_error_)
5463     return;
5464   gold_assert(parameters->options().output_is_position_independent());
5465   object->error(_("requires unsupported dynamic reloc; "
5466                   "recompile with -fPIC"));
5467   this->issued_non_pic_error_ = true;
5468   return;
5469 }
5470
5471 // Return whether we need to make a PLT entry for a relocation of the
5472 // given type against a STT_GNU_IFUNC symbol.
5473
5474 template<int size, bool big_endian>
5475 bool
5476 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5477      Target_powerpc<size, big_endian>* target,
5478      Sized_relobj_file<size, big_endian>* object,
5479      unsigned int r_type,
5480      bool report_err)
5481 {
5482   // In non-pic code any reference will resolve to the plt call stub
5483   // for the ifunc symbol.
5484   if ((size == 32 || target->abiversion() >= 2)
5485       && !parameters->options().output_is_position_independent())
5486     return true;
5487
5488   switch (r_type)
5489     {
5490     // Word size refs from data sections are OK, but don't need a PLT entry.
5491     case elfcpp::R_POWERPC_ADDR32:
5492     case elfcpp::R_POWERPC_UADDR32:
5493       if (size == 32)
5494         return false;
5495       break;
5496
5497     case elfcpp::R_PPC64_ADDR64:
5498     case elfcpp::R_PPC64_UADDR64:
5499       if (size == 64)
5500         return false;
5501       break;
5502
5503     // GOT refs are good, but also don't need a PLT entry.
5504     case elfcpp::R_POWERPC_GOT16:
5505     case elfcpp::R_POWERPC_GOT16_LO:
5506     case elfcpp::R_POWERPC_GOT16_HI:
5507     case elfcpp::R_POWERPC_GOT16_HA:
5508     case elfcpp::R_PPC64_GOT16_DS:
5509     case elfcpp::R_PPC64_GOT16_LO_DS:
5510       return false;
5511
5512     // Function calls are good, and these do need a PLT entry.
5513     case elfcpp::R_POWERPC_ADDR24:
5514     case elfcpp::R_POWERPC_ADDR14:
5515     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5516     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5517     case elfcpp::R_POWERPC_REL24:
5518     case elfcpp::R_PPC_PLTREL24:
5519     case elfcpp::R_POWERPC_REL14:
5520     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5521     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5522       return true;
5523
5524     default:
5525       break;
5526     }
5527
5528   // Anything else is a problem.
5529   // If we are building a static executable, the libc startup function
5530   // responsible for applying indirect function relocations is going
5531   // to complain about the reloc type.
5532   // If we are building a dynamic executable, we will have a text
5533   // relocation.  The dynamic loader will set the text segment
5534   // writable and non-executable to apply text relocations.  So we'll
5535   // segfault when trying to run the indirection function to resolve
5536   // the reloc.
5537   if (report_err)
5538     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5539                object->name().c_str(), r_type);
5540   return false;
5541 }
5542
5543 // Scan a relocation for a local symbol.
5544
5545 template<int size, bool big_endian>
5546 inline void
5547 Target_powerpc<size, big_endian>::Scan::local(
5548     Symbol_table* symtab,
5549     Layout* layout,
5550     Target_powerpc<size, big_endian>* target,
5551     Sized_relobj_file<size, big_endian>* object,
5552     unsigned int data_shndx,
5553     Output_section* output_section,
5554     const elfcpp::Rela<size, big_endian>& reloc,
5555     unsigned int r_type,
5556     const elfcpp::Sym<size, big_endian>& lsym,
5557     bool is_discarded)
5558 {
5559   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5560
5561   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5562       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5563     {
5564       this->expect_tls_get_addr_call();
5565       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5566       if (tls_type != tls::TLSOPT_NONE)
5567         this->skip_next_tls_get_addr_call();
5568     }
5569   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5570            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5571     {
5572       this->expect_tls_get_addr_call();
5573       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5574       if (tls_type != tls::TLSOPT_NONE)
5575         this->skip_next_tls_get_addr_call();
5576     }
5577
5578   Powerpc_relobj<size, big_endian>* ppc_object
5579     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5580
5581   if (is_discarded)
5582     {
5583       if (size == 64
5584           && data_shndx == ppc_object->opd_shndx()
5585           && r_type == elfcpp::R_PPC64_ADDR64)
5586         ppc_object->set_opd_discard(reloc.get_r_offset());
5587       return;
5588     }
5589
5590   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5591   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5592   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5593     {
5594       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5595       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5596                           r_type, r_sym, reloc.get_r_addend());
5597       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5598     }
5599
5600   switch (r_type)
5601     {
5602     case elfcpp::R_POWERPC_NONE:
5603     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5604     case elfcpp::R_POWERPC_GNU_VTENTRY:
5605     case elfcpp::R_PPC64_TOCSAVE:
5606     case elfcpp::R_POWERPC_TLS:
5607       break;
5608
5609     case elfcpp::R_PPC64_TOC:
5610       {
5611         Output_data_got_powerpc<size, big_endian>* got
5612           = target->got_section(symtab, layout);
5613         if (parameters->options().output_is_position_independent())
5614           {
5615             Address off = reloc.get_r_offset();
5616             if (size == 64
5617                 && target->abiversion() < 2
5618                 && data_shndx == ppc_object->opd_shndx()
5619                 && ppc_object->get_opd_discard(off - 8))
5620               break;
5621
5622             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5623             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5624             rela_dyn->add_output_section_relative(got->output_section(),
5625                                                   elfcpp::R_POWERPC_RELATIVE,
5626                                                   output_section,
5627                                                   object, data_shndx, off,
5628                                                   symobj->toc_base_offset());
5629           }
5630       }
5631       break;
5632
5633     case elfcpp::R_PPC64_ADDR64:
5634     case elfcpp::R_PPC64_UADDR64:
5635     case elfcpp::R_POWERPC_ADDR32:
5636     case elfcpp::R_POWERPC_UADDR32:
5637     case elfcpp::R_POWERPC_ADDR24:
5638     case elfcpp::R_POWERPC_ADDR16:
5639     case elfcpp::R_POWERPC_ADDR16_LO:
5640     case elfcpp::R_POWERPC_ADDR16_HI:
5641     case elfcpp::R_POWERPC_ADDR16_HA:
5642     case elfcpp::R_POWERPC_UADDR16:
5643     case elfcpp::R_PPC64_ADDR16_HIGH:
5644     case elfcpp::R_PPC64_ADDR16_HIGHA:
5645     case elfcpp::R_PPC64_ADDR16_HIGHER:
5646     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5647     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5648     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5649     case elfcpp::R_PPC64_ADDR16_DS:
5650     case elfcpp::R_PPC64_ADDR16_LO_DS:
5651     case elfcpp::R_POWERPC_ADDR14:
5652     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5653     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5654       // If building a shared library (or a position-independent
5655       // executable), we need to create a dynamic relocation for
5656       // this location.
5657       if (parameters->options().output_is_position_independent()
5658           || (size == 64 && is_ifunc && target->abiversion() < 2))
5659         {
5660           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5661                                                              is_ifunc);
5662           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5663           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5664               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5665             {
5666               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5667                                      : elfcpp::R_POWERPC_RELATIVE);
5668               rela_dyn->add_local_relative(object, r_sym, dynrel,
5669                                            output_section, data_shndx,
5670                                            reloc.get_r_offset(),
5671                                            reloc.get_r_addend(), false);
5672             }
5673           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5674             {
5675               check_non_pic(object, r_type);
5676               rela_dyn->add_local(object, r_sym, r_type, output_section,
5677                                   data_shndx, reloc.get_r_offset(),
5678                                   reloc.get_r_addend());
5679             }
5680           else
5681             {
5682               gold_assert(lsym.get_st_value() == 0);
5683               unsigned int shndx = lsym.get_st_shndx();
5684               bool is_ordinary;
5685               shndx = object->adjust_sym_shndx(r_sym, shndx,
5686                                                &is_ordinary);
5687               if (!is_ordinary)
5688                 object->error(_("section symbol %u has bad shndx %u"),
5689                               r_sym, shndx);
5690               else
5691                 rela_dyn->add_local_section(object, shndx, r_type,
5692                                             output_section, data_shndx,
5693                                             reloc.get_r_offset());
5694             }
5695         }
5696       break;
5697
5698     case elfcpp::R_POWERPC_REL24:
5699     case elfcpp::R_PPC_PLTREL24:
5700     case elfcpp::R_PPC_LOCAL24PC:
5701     case elfcpp::R_POWERPC_REL14:
5702     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5703     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5704       if (!is_ifunc)
5705         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5706                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5707                             reloc.get_r_addend());
5708       break;
5709
5710     case elfcpp::R_PPC64_REL64:
5711     case elfcpp::R_POWERPC_REL32:
5712     case elfcpp::R_POWERPC_REL16:
5713     case elfcpp::R_POWERPC_REL16_LO:
5714     case elfcpp::R_POWERPC_REL16_HI:
5715     case elfcpp::R_POWERPC_REL16_HA:
5716     case elfcpp::R_POWERPC_REL16DX_HA:
5717     case elfcpp::R_POWERPC_SECTOFF:
5718     case elfcpp::R_POWERPC_SECTOFF_LO:
5719     case elfcpp::R_POWERPC_SECTOFF_HI:
5720     case elfcpp::R_POWERPC_SECTOFF_HA:
5721     case elfcpp::R_PPC64_SECTOFF_DS:
5722     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5723     case elfcpp::R_POWERPC_TPREL16:
5724     case elfcpp::R_POWERPC_TPREL16_LO:
5725     case elfcpp::R_POWERPC_TPREL16_HI:
5726     case elfcpp::R_POWERPC_TPREL16_HA:
5727     case elfcpp::R_PPC64_TPREL16_DS:
5728     case elfcpp::R_PPC64_TPREL16_LO_DS:
5729     case elfcpp::R_PPC64_TPREL16_HIGH:
5730     case elfcpp::R_PPC64_TPREL16_HIGHA:
5731     case elfcpp::R_PPC64_TPREL16_HIGHER:
5732     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5733     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5734     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5735     case elfcpp::R_POWERPC_DTPREL16:
5736     case elfcpp::R_POWERPC_DTPREL16_LO:
5737     case elfcpp::R_POWERPC_DTPREL16_HI:
5738     case elfcpp::R_POWERPC_DTPREL16_HA:
5739     case elfcpp::R_PPC64_DTPREL16_DS:
5740     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5741     case elfcpp::R_PPC64_DTPREL16_HIGH:
5742     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5743     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5744     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5745     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5746     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5747     case elfcpp::R_PPC64_TLSGD:
5748     case elfcpp::R_PPC64_TLSLD:
5749     case elfcpp::R_PPC64_ADDR64_LOCAL:
5750       break;
5751
5752     case elfcpp::R_POWERPC_GOT16:
5753     case elfcpp::R_POWERPC_GOT16_LO:
5754     case elfcpp::R_POWERPC_GOT16_HI:
5755     case elfcpp::R_POWERPC_GOT16_HA:
5756     case elfcpp::R_PPC64_GOT16_DS:
5757     case elfcpp::R_PPC64_GOT16_LO_DS:
5758       {
5759         // The symbol requires a GOT entry.
5760         Output_data_got_powerpc<size, big_endian>* got
5761           = target->got_section(symtab, layout);
5762         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5763
5764         if (!parameters->options().output_is_position_independent())
5765           {
5766             if (is_ifunc
5767                 && (size == 32 || target->abiversion() >= 2))
5768               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5769             else
5770               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5771           }
5772         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5773           {
5774             // If we are generating a shared object or a pie, this
5775             // symbol's GOT entry will be set by a dynamic relocation.
5776             unsigned int off;
5777             off = got->add_constant(0);
5778             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5779
5780             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5781                                                                is_ifunc);
5782             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5783                                    : elfcpp::R_POWERPC_RELATIVE);
5784             rela_dyn->add_local_relative(object, r_sym, dynrel,
5785                                          got, off, 0, false);
5786           }
5787       }
5788       break;
5789
5790     case elfcpp::R_PPC64_TOC16:
5791     case elfcpp::R_PPC64_TOC16_LO:
5792     case elfcpp::R_PPC64_TOC16_HI:
5793     case elfcpp::R_PPC64_TOC16_HA:
5794     case elfcpp::R_PPC64_TOC16_DS:
5795     case elfcpp::R_PPC64_TOC16_LO_DS:
5796       // We need a GOT section.
5797       target->got_section(symtab, layout);
5798       break;
5799
5800     case elfcpp::R_POWERPC_GOT_TLSGD16:
5801     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5802     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5803     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5804       {
5805         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5806         if (tls_type == tls::TLSOPT_NONE)
5807           {
5808             Output_data_got_powerpc<size, big_endian>* got
5809               = target->got_section(symtab, layout);
5810             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5811             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5812             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5813                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5814           }
5815         else if (tls_type == tls::TLSOPT_TO_LE)
5816           {
5817             // no GOT relocs needed for Local Exec.
5818           }
5819         else
5820           gold_unreachable();
5821       }
5822       break;
5823
5824     case elfcpp::R_POWERPC_GOT_TLSLD16:
5825     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5826     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5827     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5828       {
5829         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5830         if (tls_type == tls::TLSOPT_NONE)
5831           target->tlsld_got_offset(symtab, layout, object);
5832         else if (tls_type == tls::TLSOPT_TO_LE)
5833           {
5834             // no GOT relocs needed for Local Exec.
5835             if (parameters->options().emit_relocs())
5836               {
5837                 Output_section* os = layout->tls_segment()->first_section();
5838                 gold_assert(os != NULL);
5839                 os->set_needs_symtab_index();
5840               }
5841           }
5842         else
5843           gold_unreachable();
5844       }
5845       break;
5846
5847     case elfcpp::R_POWERPC_GOT_DTPREL16:
5848     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5849     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5850     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5851       {
5852         Output_data_got_powerpc<size, big_endian>* got
5853           = target->got_section(symtab, layout);
5854         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5855         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5856       }
5857       break;
5858
5859     case elfcpp::R_POWERPC_GOT_TPREL16:
5860     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5861     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5862     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5863       {
5864         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5865         if (tls_type == tls::TLSOPT_NONE)
5866           {
5867             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5868             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5869               {
5870                 Output_data_got_powerpc<size, big_endian>* got
5871                   = target->got_section(symtab, layout);
5872                 unsigned int off = got->add_constant(0);
5873                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5874
5875                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5876                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5877                                                       elfcpp::R_POWERPC_TPREL,
5878                                                       got, off, 0);
5879               }
5880           }
5881         else if (tls_type == tls::TLSOPT_TO_LE)
5882           {
5883             // no GOT relocs needed for Local Exec.
5884           }
5885         else
5886           gold_unreachable();
5887       }
5888       break;
5889
5890     default:
5891       unsupported_reloc_local(object, r_type);
5892       break;
5893     }
5894
5895   switch (r_type)
5896     {
5897     case elfcpp::R_POWERPC_GOT_TLSLD16:
5898     case elfcpp::R_POWERPC_GOT_TLSGD16:
5899     case elfcpp::R_POWERPC_GOT_TPREL16:
5900     case elfcpp::R_POWERPC_GOT_DTPREL16:
5901     case elfcpp::R_POWERPC_GOT16:
5902     case elfcpp::R_PPC64_GOT16_DS:
5903     case elfcpp::R_PPC64_TOC16:
5904     case elfcpp::R_PPC64_TOC16_DS:
5905       ppc_object->set_has_small_toc_reloc();
5906     default:
5907       break;
5908     }
5909 }
5910
5911 // Report an unsupported relocation against a global symbol.
5912
5913 template<int size, bool big_endian>
5914 void
5915 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5916     Sized_relobj_file<size, big_endian>* object,
5917     unsigned int r_type,
5918     Symbol* gsym)
5919 {
5920   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5921              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5922 }
5923
5924 // Scan a relocation for a global symbol.
5925
5926 template<int size, bool big_endian>
5927 inline void
5928 Target_powerpc<size, big_endian>::Scan::global(
5929     Symbol_table* symtab,
5930     Layout* layout,
5931     Target_powerpc<size, big_endian>* target,
5932     Sized_relobj_file<size, big_endian>* object,
5933     unsigned int data_shndx,
5934     Output_section* output_section,
5935     const elfcpp::Rela<size, big_endian>& reloc,
5936     unsigned int r_type,
5937     Symbol* gsym)
5938 {
5939   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5940     return;
5941
5942   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5943       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5944     {
5945       this->expect_tls_get_addr_call();
5946       const bool final = gsym->final_value_is_known();
5947       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5948       if (tls_type != tls::TLSOPT_NONE)
5949         this->skip_next_tls_get_addr_call();
5950     }
5951   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5952            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5953     {
5954       this->expect_tls_get_addr_call();
5955       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5956       if (tls_type != tls::TLSOPT_NONE)
5957         this->skip_next_tls_get_addr_call();
5958     }
5959
5960   Powerpc_relobj<size, big_endian>* ppc_object
5961     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5962
5963   // A STT_GNU_IFUNC symbol may require a PLT entry.
5964   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5965   bool pushed_ifunc = false;
5966   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5967     {
5968       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5969                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5970                           reloc.get_r_addend());
5971       target->make_plt_entry(symtab, layout, gsym);
5972       pushed_ifunc = true;
5973     }
5974
5975   switch (r_type)
5976     {
5977     case elfcpp::R_POWERPC_NONE:
5978     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5979     case elfcpp::R_POWERPC_GNU_VTENTRY:
5980     case elfcpp::R_PPC_LOCAL24PC:
5981     case elfcpp::R_POWERPC_TLS:
5982       break;
5983
5984     case elfcpp::R_PPC64_TOC:
5985       {
5986         Output_data_got_powerpc<size, big_endian>* got
5987           = target->got_section(symtab, layout);
5988         if (parameters->options().output_is_position_independent())
5989           {
5990             Address off = reloc.get_r_offset();
5991             if (size == 64
5992                 && data_shndx == ppc_object->opd_shndx()
5993                 && ppc_object->get_opd_discard(off - 8))
5994               break;
5995
5996             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5997             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5998             if (data_shndx != ppc_object->opd_shndx())
5999               symobj = static_cast
6000                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6001             rela_dyn->add_output_section_relative(got->output_section(),
6002                                                   elfcpp::R_POWERPC_RELATIVE,
6003                                                   output_section,
6004                                                   object, data_shndx, off,
6005                                                   symobj->toc_base_offset());
6006           }
6007       }
6008       break;
6009
6010     case elfcpp::R_PPC64_ADDR64:
6011       if (size == 64
6012           && target->abiversion() < 2
6013           && data_shndx == ppc_object->opd_shndx()
6014           && (gsym->is_defined_in_discarded_section()
6015               || gsym->object() != object))
6016         {
6017           ppc_object->set_opd_discard(reloc.get_r_offset());
6018           break;
6019         }
6020       // Fall thru
6021     case elfcpp::R_PPC64_UADDR64:
6022     case elfcpp::R_POWERPC_ADDR32:
6023     case elfcpp::R_POWERPC_UADDR32:
6024     case elfcpp::R_POWERPC_ADDR24:
6025     case elfcpp::R_POWERPC_ADDR16:
6026     case elfcpp::R_POWERPC_ADDR16_LO:
6027     case elfcpp::R_POWERPC_ADDR16_HI:
6028     case elfcpp::R_POWERPC_ADDR16_HA:
6029     case elfcpp::R_POWERPC_UADDR16:
6030     case elfcpp::R_PPC64_ADDR16_HIGH:
6031     case elfcpp::R_PPC64_ADDR16_HIGHA:
6032     case elfcpp::R_PPC64_ADDR16_HIGHER:
6033     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6034     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6035     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6036     case elfcpp::R_PPC64_ADDR16_DS:
6037     case elfcpp::R_PPC64_ADDR16_LO_DS:
6038     case elfcpp::R_POWERPC_ADDR14:
6039     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6040     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6041       {
6042         // Make a PLT entry if necessary.
6043         if (gsym->needs_plt_entry())
6044           {
6045             // Since this is not a PC-relative relocation, we may be
6046             // taking the address of a function. In that case we need to
6047             // set the entry in the dynamic symbol table to the address of
6048             // the PLT call stub.
6049             bool need_ifunc_plt = false;
6050             if ((size == 32 || target->abiversion() >= 2)
6051                 && gsym->is_from_dynobj()
6052                 && !parameters->options().output_is_position_independent())
6053               {
6054                 gsym->set_needs_dynsym_value();
6055                 need_ifunc_plt = true;
6056               }
6057             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6058               {
6059                 target->push_branch(ppc_object, data_shndx,
6060                                     reloc.get_r_offset(), r_type,
6061                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6062                                     reloc.get_r_addend());
6063                 target->make_plt_entry(symtab, layout, gsym);
6064               }
6065           }
6066         // Make a dynamic relocation if necessary.
6067         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6068             || (size == 64 && is_ifunc && target->abiversion() < 2))
6069           {
6070             if (!parameters->options().output_is_position_independent()
6071                 && gsym->may_need_copy_reloc())
6072               {
6073                 target->copy_reloc(symtab, layout, object,
6074                                    data_shndx, output_section, gsym, reloc);
6075               }
6076             else if ((((size == 32
6077                         && r_type == elfcpp::R_POWERPC_ADDR32)
6078                        || (size == 64
6079                            && r_type == elfcpp::R_PPC64_ADDR64
6080                            && target->abiversion() >= 2))
6081                       && gsym->can_use_relative_reloc(false)
6082                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
6083                            && parameters->options().shared()))
6084                      || (size == 64
6085                          && r_type == elfcpp::R_PPC64_ADDR64
6086                          && target->abiversion() < 2
6087                          && (gsym->can_use_relative_reloc(false)
6088                              || data_shndx == ppc_object->opd_shndx())))
6089               {
6090                 Reloc_section* rela_dyn
6091                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6092                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6093                                        : elfcpp::R_POWERPC_RELATIVE);
6094                 rela_dyn->add_symbolless_global_addend(
6095                     gsym, dynrel, output_section, object, data_shndx,
6096                     reloc.get_r_offset(), reloc.get_r_addend());
6097               }
6098             else
6099               {
6100                 Reloc_section* rela_dyn
6101                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6102                 check_non_pic(object, r_type);
6103                 rela_dyn->add_global(gsym, r_type, output_section,
6104                                      object, data_shndx,
6105                                      reloc.get_r_offset(),
6106                                      reloc.get_r_addend());
6107               }
6108           }
6109       }
6110       break;
6111
6112     case elfcpp::R_PPC_PLTREL24:
6113     case elfcpp::R_POWERPC_REL24:
6114       if (!is_ifunc)
6115         {
6116           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6117                               r_type,
6118                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6119                               reloc.get_r_addend());
6120           if (gsym->needs_plt_entry()
6121               || (!gsym->final_value_is_known()
6122                   && (gsym->is_undefined()
6123                       || gsym->is_from_dynobj()
6124                       || gsym->is_preemptible())))
6125             target->make_plt_entry(symtab, layout, gsym);
6126         }
6127       // Fall thru
6128
6129     case elfcpp::R_PPC64_REL64:
6130     case elfcpp::R_POWERPC_REL32:
6131       // Make a dynamic relocation if necessary.
6132       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6133         {
6134           if (!parameters->options().output_is_position_independent()
6135               && gsym->may_need_copy_reloc())
6136             {
6137               target->copy_reloc(symtab, layout, object,
6138                                  data_shndx, output_section, gsym,
6139                                  reloc);
6140             }
6141           else
6142             {
6143               Reloc_section* rela_dyn
6144                 = target->rela_dyn_section(symtab, layout, is_ifunc);
6145               check_non_pic(object, r_type);
6146               rela_dyn->add_global(gsym, r_type, output_section, object,
6147                                    data_shndx, reloc.get_r_offset(),
6148                                    reloc.get_r_addend());
6149             }
6150         }
6151       break;
6152
6153     case elfcpp::R_POWERPC_REL14:
6154     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6155     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6156       if (!is_ifunc)
6157         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6158                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6159                             reloc.get_r_addend());
6160       break;
6161
6162     case elfcpp::R_POWERPC_REL16:
6163     case elfcpp::R_POWERPC_REL16_LO:
6164     case elfcpp::R_POWERPC_REL16_HI:
6165     case elfcpp::R_POWERPC_REL16_HA:
6166     case elfcpp::R_POWERPC_REL16DX_HA:
6167     case elfcpp::R_POWERPC_SECTOFF:
6168     case elfcpp::R_POWERPC_SECTOFF_LO:
6169     case elfcpp::R_POWERPC_SECTOFF_HI:
6170     case elfcpp::R_POWERPC_SECTOFF_HA:
6171     case elfcpp::R_PPC64_SECTOFF_DS:
6172     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6173     case elfcpp::R_POWERPC_TPREL16:
6174     case elfcpp::R_POWERPC_TPREL16_LO:
6175     case elfcpp::R_POWERPC_TPREL16_HI:
6176     case elfcpp::R_POWERPC_TPREL16_HA:
6177     case elfcpp::R_PPC64_TPREL16_DS:
6178     case elfcpp::R_PPC64_TPREL16_LO_DS:
6179     case elfcpp::R_PPC64_TPREL16_HIGH:
6180     case elfcpp::R_PPC64_TPREL16_HIGHA:
6181     case elfcpp::R_PPC64_TPREL16_HIGHER:
6182     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6183     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6184     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6185     case elfcpp::R_POWERPC_DTPREL16:
6186     case elfcpp::R_POWERPC_DTPREL16_LO:
6187     case elfcpp::R_POWERPC_DTPREL16_HI:
6188     case elfcpp::R_POWERPC_DTPREL16_HA:
6189     case elfcpp::R_PPC64_DTPREL16_DS:
6190     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6191     case elfcpp::R_PPC64_DTPREL16_HIGH:
6192     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6193     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6194     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6195     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6196     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6197     case elfcpp::R_PPC64_TLSGD:
6198     case elfcpp::R_PPC64_TLSLD:
6199     case elfcpp::R_PPC64_ADDR64_LOCAL:
6200       break;
6201
6202     case elfcpp::R_POWERPC_GOT16:
6203     case elfcpp::R_POWERPC_GOT16_LO:
6204     case elfcpp::R_POWERPC_GOT16_HI:
6205     case elfcpp::R_POWERPC_GOT16_HA:
6206     case elfcpp::R_PPC64_GOT16_DS:
6207     case elfcpp::R_PPC64_GOT16_LO_DS:
6208       {
6209         // The symbol requires a GOT entry.
6210         Output_data_got_powerpc<size, big_endian>* got;
6211
6212         got = target->got_section(symtab, layout);
6213         if (gsym->final_value_is_known())
6214           {
6215             if (is_ifunc
6216                 && (size == 32 || target->abiversion() >= 2))
6217               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6218             else
6219               got->add_global(gsym, GOT_TYPE_STANDARD);
6220           }
6221         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6222           {
6223             // If we are generating a shared object or a pie, this
6224             // symbol's GOT entry will be set by a dynamic relocation.
6225             unsigned int off = got->add_constant(0);
6226             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6227
6228             Reloc_section* rela_dyn
6229               = target->rela_dyn_section(symtab, layout, is_ifunc);
6230
6231             if (gsym->can_use_relative_reloc(false)
6232                 && !((size == 32
6233                       || target->abiversion() >= 2)
6234                      && gsym->visibility() == elfcpp::STV_PROTECTED
6235                      && parameters->options().shared()))
6236               {
6237                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6238                                        : elfcpp::R_POWERPC_RELATIVE);
6239                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6240               }
6241             else
6242               {
6243                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6244                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6245               }
6246           }
6247       }
6248       break;
6249
6250     case elfcpp::R_PPC64_TOC16:
6251     case elfcpp::R_PPC64_TOC16_LO:
6252     case elfcpp::R_PPC64_TOC16_HI:
6253     case elfcpp::R_PPC64_TOC16_HA:
6254     case elfcpp::R_PPC64_TOC16_DS:
6255     case elfcpp::R_PPC64_TOC16_LO_DS:
6256       // We need a GOT section.
6257       target->got_section(symtab, layout);
6258       break;
6259
6260     case elfcpp::R_POWERPC_GOT_TLSGD16:
6261     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6262     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6263     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6264       {
6265         const bool final = gsym->final_value_is_known();
6266         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6267         if (tls_type == tls::TLSOPT_NONE)
6268           {
6269             Output_data_got_powerpc<size, big_endian>* got
6270               = target->got_section(symtab, layout);
6271             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6272             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6273                                           elfcpp::R_POWERPC_DTPMOD,
6274                                           elfcpp::R_POWERPC_DTPREL);
6275           }
6276         else if (tls_type == tls::TLSOPT_TO_IE)
6277           {
6278             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6279               {
6280                 Output_data_got_powerpc<size, big_endian>* got
6281                   = target->got_section(symtab, layout);
6282                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6283                 if (gsym->is_undefined()
6284                     || gsym->is_from_dynobj())
6285                   {
6286                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6287                                              elfcpp::R_POWERPC_TPREL);
6288                   }
6289                 else
6290                   {
6291                     unsigned int off = got->add_constant(0);
6292                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6293                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6294                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6295                                                            got, off, 0);
6296                   }
6297               }
6298           }
6299         else if (tls_type == tls::TLSOPT_TO_LE)
6300           {
6301             // no GOT relocs needed for Local Exec.
6302           }
6303         else
6304           gold_unreachable();
6305       }
6306       break;
6307
6308     case elfcpp::R_POWERPC_GOT_TLSLD16:
6309     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6310     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6311     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6312       {
6313         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6314         if (tls_type == tls::TLSOPT_NONE)
6315           target->tlsld_got_offset(symtab, layout, object);
6316         else if (tls_type == tls::TLSOPT_TO_LE)
6317           {
6318             // no GOT relocs needed for Local Exec.
6319             if (parameters->options().emit_relocs())
6320               {
6321                 Output_section* os = layout->tls_segment()->first_section();
6322                 gold_assert(os != NULL);
6323                 os->set_needs_symtab_index();
6324               }
6325           }
6326         else
6327           gold_unreachable();
6328       }
6329       break;
6330
6331     case elfcpp::R_POWERPC_GOT_DTPREL16:
6332     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6333     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6334     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6335       {
6336         Output_data_got_powerpc<size, big_endian>* got
6337           = target->got_section(symtab, layout);
6338         if (!gsym->final_value_is_known()
6339             && (gsym->is_from_dynobj()
6340                 || gsym->is_undefined()
6341                 || gsym->is_preemptible()))
6342           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6343                                    target->rela_dyn_section(layout),
6344                                    elfcpp::R_POWERPC_DTPREL);
6345         else
6346           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6347       }
6348       break;
6349
6350     case elfcpp::R_POWERPC_GOT_TPREL16:
6351     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6352     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6353     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6354       {
6355         const bool final = gsym->final_value_is_known();
6356         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6357         if (tls_type == tls::TLSOPT_NONE)
6358           {
6359             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6360               {
6361                 Output_data_got_powerpc<size, big_endian>* got
6362                   = target->got_section(symtab, layout);
6363                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6364                 if (gsym->is_undefined()
6365                     || gsym->is_from_dynobj())
6366                   {
6367                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6368                                              elfcpp::R_POWERPC_TPREL);
6369                   }
6370                 else
6371                   {
6372                     unsigned int off = got->add_constant(0);
6373                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6374                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6375                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6376                                                            got, off, 0);
6377                   }
6378               }
6379           }
6380         else if (tls_type == tls::TLSOPT_TO_LE)
6381           {
6382             // no GOT relocs needed for Local Exec.
6383           }
6384         else
6385           gold_unreachable();
6386       }
6387       break;
6388
6389     default:
6390       unsupported_reloc_global(object, r_type, gsym);
6391       break;
6392     }
6393
6394   switch (r_type)
6395     {
6396     case elfcpp::R_POWERPC_GOT_TLSLD16:
6397     case elfcpp::R_POWERPC_GOT_TLSGD16:
6398     case elfcpp::R_POWERPC_GOT_TPREL16:
6399     case elfcpp::R_POWERPC_GOT_DTPREL16:
6400     case elfcpp::R_POWERPC_GOT16:
6401     case elfcpp::R_PPC64_GOT16_DS:
6402     case elfcpp::R_PPC64_TOC16:
6403     case elfcpp::R_PPC64_TOC16_DS:
6404       ppc_object->set_has_small_toc_reloc();
6405     default:
6406       break;
6407     }
6408 }
6409
6410 // Process relocations for gc.
6411
6412 template<int size, bool big_endian>
6413 void
6414 Target_powerpc<size, big_endian>::gc_process_relocs(
6415     Symbol_table* symtab,
6416     Layout* layout,
6417     Sized_relobj_file<size, big_endian>* object,
6418     unsigned int data_shndx,
6419     unsigned int,
6420     const unsigned char* prelocs,
6421     size_t reloc_count,
6422     Output_section* output_section,
6423     bool needs_special_offset_handling,
6424     size_t local_symbol_count,
6425     const unsigned char* plocal_symbols)
6426 {
6427   typedef Target_powerpc<size, big_endian> Powerpc;
6428   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6429   Powerpc_relobj<size, big_endian>* ppc_object
6430     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6431   if (size == 64)
6432     ppc_object->set_opd_valid();
6433   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6434     {
6435       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6436       for (p = ppc_object->access_from_map()->begin();
6437            p != ppc_object->access_from_map()->end();
6438            ++p)
6439         {
6440           Address dst_off = p->first;
6441           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6442           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6443           for (s = p->second.begin(); s != p->second.end(); ++s)
6444             {
6445               Relobj* src_obj = s->first;
6446               unsigned int src_indx = s->second;
6447               symtab->gc()->add_reference(src_obj, src_indx,
6448                                           ppc_object, dst_indx);
6449             }
6450           p->second.clear();
6451         }
6452       ppc_object->access_from_map()->clear();
6453       ppc_object->process_gc_mark(symtab);
6454       // Don't look at .opd relocs as .opd will reference everything.
6455       return;
6456     }
6457
6458   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6459                           typename Target_powerpc::Relocatable_size_for_reloc>(
6460     symtab,
6461     layout,
6462     this,
6463     object,
6464     data_shndx,
6465     prelocs,
6466     reloc_count,
6467     output_section,
6468     needs_special_offset_handling,
6469     local_symbol_count,
6470     plocal_symbols);
6471 }
6472
6473 // Handle target specific gc actions when adding a gc reference from
6474 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6475 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6476 // section of a function descriptor.
6477
6478 template<int size, bool big_endian>
6479 void
6480 Target_powerpc<size, big_endian>::do_gc_add_reference(
6481     Symbol_table* symtab,
6482     Relobj* src_obj,
6483     unsigned int src_shndx,
6484     Relobj* dst_obj,
6485     unsigned int dst_shndx,
6486     Address dst_off) const
6487 {
6488   if (size != 64 || dst_obj->is_dynamic())
6489     return;
6490
6491   Powerpc_relobj<size, big_endian>* ppc_object
6492     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6493   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6494     {
6495       if (ppc_object->opd_valid())
6496         {
6497           dst_shndx = ppc_object->get_opd_ent(dst_off);
6498           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6499         }
6500       else
6501         {
6502           // If we haven't run scan_opd_relocs, we must delay
6503           // processing this function descriptor reference.
6504           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6505         }
6506     }
6507 }
6508
6509 // Add any special sections for this symbol to the gc work list.
6510 // For powerpc64, this adds the code section of a function
6511 // descriptor.
6512
6513 template<int size, bool big_endian>
6514 void
6515 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6516     Symbol_table* symtab,
6517     Symbol* sym) const
6518 {
6519   if (size == 64)
6520     {
6521       Powerpc_relobj<size, big_endian>* ppc_object
6522         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6523       bool is_ordinary;
6524       unsigned int shndx = sym->shndx(&is_ordinary);
6525       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6526         {
6527           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6528           Address dst_off = gsym->value();
6529           if (ppc_object->opd_valid())
6530             {
6531               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6532               symtab->gc()->worklist().push_back(Section_id(ppc_object,
6533                                                             dst_indx));
6534             }
6535           else
6536             ppc_object->add_gc_mark(dst_off);
6537         }
6538     }
6539 }
6540
6541 // For a symbol location in .opd, set LOC to the location of the
6542 // function entry.
6543
6544 template<int size, bool big_endian>
6545 void
6546 Target_powerpc<size, big_endian>::do_function_location(
6547     Symbol_location* loc) const
6548 {
6549   if (size == 64 && loc->shndx != 0)
6550     {
6551       if (loc->object->is_dynamic())
6552         {
6553           Powerpc_dynobj<size, big_endian>* ppc_object
6554             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6555           if (loc->shndx == ppc_object->opd_shndx())
6556             {
6557               Address dest_off;
6558               Address off = loc->offset - ppc_object->opd_address();
6559               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6560               loc->offset = dest_off;
6561             }
6562         }
6563       else
6564         {
6565           const Powerpc_relobj<size, big_endian>* ppc_object
6566             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6567           if (loc->shndx == ppc_object->opd_shndx())
6568             {
6569               Address dest_off;
6570               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6571               loc->offset = dest_off;
6572             }
6573         }
6574     }
6575 }
6576
6577 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6578 // compiled with -fsplit-stack.  The function calls non-split-stack
6579 // code.  Change the function to ensure it has enough stack space to
6580 // call some random function.
6581
6582 template<int size, bool big_endian>
6583 void
6584 Target_powerpc<size, big_endian>::do_calls_non_split(
6585     Relobj* object,
6586     unsigned int shndx,
6587     section_offset_type fnoffset,
6588     section_size_type fnsize,
6589     unsigned char* view,
6590     section_size_type view_size,
6591     std::string* from,
6592     std::string* to) const
6593 {
6594   // 32-bit not supported.
6595   if (size == 32)
6596     {
6597       // warn
6598       Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6599                                  view, view_size, from, to);
6600       return;
6601     }
6602
6603   // The function always starts with
6604   //    ld %r0,-0x7000-64(%r13)  # tcbhead_t.__private_ss
6605   //    addis %r12,%r1,-allocate@ha
6606   //    addi %r12,%r12,-allocate@l
6607   //    cmpld %r12,%r0
6608   // but note that the addis or addi may be replaced with a nop
6609
6610   unsigned char *entry = view + fnoffset;
6611   uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6612
6613   if ((insn & 0xffff0000) == addis_2_12)
6614     {
6615       /* Skip ELFv2 global entry code.  */
6616       entry += 8;
6617       insn = elfcpp::Swap<32, big_endian>::readval(entry);
6618     }
6619
6620   unsigned char *pinsn = entry;
6621   bool ok = false;
6622   const uint32_t ld_private_ss = 0xe80d8fc0;
6623   if (insn == ld_private_ss)
6624     {
6625       int32_t allocate = 0;
6626       while (1)
6627         {
6628           pinsn += 4;
6629           insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6630           if ((insn & 0xffff0000) == addis_12_1)
6631             allocate += (insn & 0xffff) << 16;
6632           else if ((insn & 0xffff0000) == addi_12_1
6633                    || (insn & 0xffff0000) == addi_12_12)
6634             allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6635           else if (insn != nop)
6636             break;
6637         }
6638       if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6639         {
6640           int extra = parameters->options().split_stack_adjust_size();
6641           allocate -= extra;
6642           if (allocate >= 0 || extra < 0)
6643             {
6644               object->error(_("split-stack stack size overflow at "
6645                               "section %u offset %0zx"),
6646                             shndx, static_cast<size_t>(fnoffset));
6647               return;
6648             }
6649           pinsn = entry + 4;
6650           insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6651           if (insn != addis_12_1)
6652             {
6653               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6654               pinsn += 4;
6655               insn = addi_12_12 | (allocate & 0xffff);
6656               if (insn != addi_12_12)
6657                 {
6658                   elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6659                   pinsn += 4;
6660                 }
6661             }
6662           else
6663             {
6664               insn = addi_12_1 | (allocate & 0xffff);
6665               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6666               pinsn += 4;
6667             }
6668           if (pinsn != entry + 12)
6669             elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6670
6671           ok = true;
6672         }
6673     }
6674
6675   if (!ok)
6676     {
6677       if (!object->has_no_split_stack())
6678         object->error(_("failed to match split-stack sequence at "
6679                         "section %u offset %0zx"),
6680                       shndx, static_cast<size_t>(fnoffset));
6681     }
6682 }
6683
6684 // Scan relocations for a section.
6685
6686 template<int size, bool big_endian>
6687 void
6688 Target_powerpc<size, big_endian>::scan_relocs(
6689     Symbol_table* symtab,
6690     Layout* layout,
6691     Sized_relobj_file<size, big_endian>* object,
6692     unsigned int data_shndx,
6693     unsigned int sh_type,
6694     const unsigned char* prelocs,
6695     size_t reloc_count,
6696     Output_section* output_section,
6697     bool needs_special_offset_handling,
6698     size_t local_symbol_count,
6699     const unsigned char* plocal_symbols)
6700 {
6701   typedef Target_powerpc<size, big_endian> Powerpc;
6702   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6703
6704   if (sh_type == elfcpp::SHT_REL)
6705     {
6706       gold_error(_("%s: unsupported REL reloc section"),
6707                  object->name().c_str());
6708       return;
6709     }
6710
6711   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6712     symtab,
6713     layout,
6714     this,
6715     object,
6716     data_shndx,
6717     prelocs,
6718     reloc_count,
6719     output_section,
6720     needs_special_offset_handling,
6721     local_symbol_count,
6722     plocal_symbols);
6723 }
6724
6725 // Functor class for processing the global symbol table.
6726 // Removes symbols defined on discarded opd entries.
6727
6728 template<bool big_endian>
6729 class Global_symbol_visitor_opd
6730 {
6731  public:
6732   Global_symbol_visitor_opd()
6733   { }
6734
6735   void
6736   operator()(Sized_symbol<64>* sym)
6737   {
6738     if (sym->has_symtab_index()
6739         || sym->source() != Symbol::FROM_OBJECT
6740         || !sym->in_real_elf())
6741       return;
6742
6743     if (sym->object()->is_dynamic())
6744       return;
6745
6746     Powerpc_relobj<64, big_endian>* symobj
6747       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6748     if (symobj->opd_shndx() == 0)
6749       return;
6750
6751     bool is_ordinary;
6752     unsigned int shndx = sym->shndx(&is_ordinary);
6753     if (shndx == symobj->opd_shndx()
6754         && symobj->get_opd_discard(sym->value()))
6755       {
6756         sym->set_undefined();
6757         sym->set_visibility(elfcpp::STV_DEFAULT);
6758         sym->set_is_defined_in_discarded_section();
6759         sym->set_symtab_index(-1U);
6760       }
6761   }
6762 };
6763
6764 template<int size, bool big_endian>
6765 void
6766 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6767     Layout* layout,
6768     Symbol_table* symtab)
6769 {
6770   if (size == 64)
6771     {
6772       Output_data_save_res<size, big_endian>* savres
6773         = new Output_data_save_res<size, big_endian>(symtab);
6774       this->savres_section_ = savres;
6775       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6776                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6777                                       savres, ORDER_TEXT, false);
6778     }
6779 }
6780
6781 // Sort linker created .got section first (for the header), then input
6782 // sections belonging to files using small model code.
6783
6784 template<bool big_endian>
6785 class Sort_toc_sections
6786 {
6787  public:
6788   bool
6789   operator()(const Output_section::Input_section& is1,
6790              const Output_section::Input_section& is2) const
6791   {
6792     if (!is1.is_input_section() && is2.is_input_section())
6793       return true;
6794     bool small1
6795       = (is1.is_input_section()
6796          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6797              ->has_small_toc_reloc()));
6798     bool small2
6799       = (is2.is_input_section()
6800          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6801              ->has_small_toc_reloc()));
6802     return small1 && !small2;
6803   }
6804 };
6805
6806 // Finalize the sections.
6807
6808 template<int size, bool big_endian>
6809 void
6810 Target_powerpc<size, big_endian>::do_finalize_sections(
6811     Layout* layout,
6812     const Input_objects*,
6813     Symbol_table* symtab)
6814 {
6815   if (parameters->doing_static_link())
6816     {
6817       // At least some versions of glibc elf-init.o have a strong
6818       // reference to __rela_iplt marker syms.  A weak ref would be
6819       // better..
6820       if (this->iplt_ != NULL)
6821         {
6822           Reloc_section* rel = this->iplt_->rel_plt();
6823           symtab->define_in_output_data("__rela_iplt_start", NULL,
6824                                         Symbol_table::PREDEFINED, rel, 0, 0,
6825                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6826                                         elfcpp::STV_HIDDEN, 0, false, true);
6827           symtab->define_in_output_data("__rela_iplt_end", NULL,
6828                                         Symbol_table::PREDEFINED, rel, 0, 0,
6829                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6830                                         elfcpp::STV_HIDDEN, 0, true, true);
6831         }
6832       else
6833         {
6834           symtab->define_as_constant("__rela_iplt_start", NULL,
6835                                      Symbol_table::PREDEFINED, 0, 0,
6836                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6837                                      elfcpp::STV_HIDDEN, 0, true, false);
6838           symtab->define_as_constant("__rela_iplt_end", NULL,
6839                                      Symbol_table::PREDEFINED, 0, 0,
6840                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6841                                      elfcpp::STV_HIDDEN, 0, true, false);
6842         }
6843     }
6844
6845   if (size == 64)
6846     {
6847       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6848       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6849
6850       if (!parameters->options().relocatable())
6851         {
6852           this->define_save_restore_funcs(layout, symtab);
6853
6854           // Annoyingly, we need to make these sections now whether or
6855           // not we need them.  If we delay until do_relax then we
6856           // need to mess with the relaxation machinery checkpointing.
6857           this->got_section(symtab, layout);
6858           this->make_brlt_section(layout);
6859
6860           if (parameters->options().toc_sort())
6861             {
6862               Output_section* os = this->got_->output_section();
6863               if (os != NULL && os->input_sections().size() > 1)
6864                 std::stable_sort(os->input_sections().begin(),
6865                                  os->input_sections().end(),
6866                                  Sort_toc_sections<big_endian>());
6867             }
6868         }
6869     }
6870
6871   // Fill in some more dynamic tags.
6872   Output_data_dynamic* odyn = layout->dynamic_data();
6873   if (odyn != NULL)
6874     {
6875       const Reloc_section* rel_plt = (this->plt_ == NULL
6876                                       ? NULL
6877                                       : this->plt_->rel_plt());
6878       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6879                                       this->rela_dyn_, true, size == 32);
6880
6881       if (size == 32)
6882         {
6883           if (this->got_ != NULL)
6884             {
6885               this->got_->finalize_data_size();
6886               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6887                                             this->got_, this->got_->g_o_t());
6888             }
6889         }
6890       else
6891         {
6892           if (this->glink_ != NULL)
6893             {
6894               this->glink_->finalize_data_size();
6895               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6896                                             this->glink_,
6897                                             (this->glink_->pltresolve_size
6898                                              - 32));
6899             }
6900         }
6901     }
6902
6903   // Emit any relocs we saved in an attempt to avoid generating COPY
6904   // relocs.
6905   if (this->copy_relocs_.any_saved_relocs())
6906     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6907 }
6908
6909 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6910 // reloc.
6911
6912 static bool
6913 ok_lo_toc_insn(uint32_t insn)
6914 {
6915   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6916           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6917           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6918           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6919           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6920           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6921           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6922           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6923           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6924           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6925           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6926           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6927           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6928           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6929           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6930               && (insn & 3) != 1)
6931           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6932               && ((insn & 3) == 0 || (insn & 3) == 3))
6933           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6934 }
6935
6936 // Return the value to use for a branch relocation.
6937
6938 template<int size, bool big_endian>
6939 bool
6940 Target_powerpc<size, big_endian>::symval_for_branch(
6941     const Symbol_table* symtab,
6942     const Sized_symbol<size>* gsym,
6943     Powerpc_relobj<size, big_endian>* object,
6944     Address *value,
6945     unsigned int *dest_shndx)
6946 {
6947   if (size == 32 || this->abiversion() >= 2)
6948     gold_unreachable();
6949   *dest_shndx = 0;
6950
6951   // If the symbol is defined in an opd section, ie. is a function
6952   // descriptor, use the function descriptor code entry address
6953   Powerpc_relobj<size, big_endian>* symobj = object;
6954   if (gsym != NULL
6955       && gsym->source() != Symbol::FROM_OBJECT)
6956     return true;
6957   if (gsym != NULL)
6958     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6959   unsigned int shndx = symobj->opd_shndx();
6960   if (shndx == 0)
6961     return true;
6962   Address opd_addr = symobj->get_output_section_offset(shndx);
6963   if (opd_addr == invalid_address)
6964     return true;
6965   opd_addr += symobj->output_section_address(shndx);
6966   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6967     {
6968       Address sec_off;
6969       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6970       if (symtab->is_section_folded(symobj, *dest_shndx))
6971         {
6972           Section_id folded
6973             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6974           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6975           *dest_shndx = folded.second;
6976         }
6977       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6978       if (sec_addr == invalid_address)
6979         return false;
6980
6981       sec_addr += symobj->output_section(*dest_shndx)->address();
6982       *value = sec_addr + sec_off;
6983     }
6984   return true;
6985 }
6986
6987 // Perform a relocation.
6988
6989 template<int size, bool big_endian>
6990 inline bool
6991 Target_powerpc<size, big_endian>::Relocate::relocate(
6992     const Relocate_info<size, big_endian>* relinfo,
6993     Target_powerpc* target,
6994     Output_section* os,
6995     size_t relnum,
6996     const elfcpp::Rela<size, big_endian>& rela,
6997     unsigned int r_type,
6998     const Sized_symbol<size>* gsym,
6999     const Symbol_value<size>* psymval,
7000     unsigned char* view,
7001     Address address,
7002     section_size_type view_size)
7003 {
7004   if (view == NULL)
7005     return true;
7006
7007   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7008     {
7009     case Track_tls::NOT_EXPECTED:
7010       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7011                              _("__tls_get_addr call lacks marker reloc"));
7012       break;
7013     case Track_tls::EXPECTED:
7014       // We have already complained.
7015       break;
7016     case Track_tls::SKIP:
7017       return true;
7018     case Track_tls::NORMAL:
7019       break;
7020     }
7021
7022   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7023   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7024   Powerpc_relobj<size, big_endian>* const object
7025     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7026   Address value = 0;
7027   bool has_stub_value = false;
7028   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7029   if ((gsym != NULL
7030        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7031        : object->local_has_plt_offset(r_sym))
7032       && (!psymval->is_ifunc_symbol()
7033           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7034     {
7035       if (size == 64
7036           && gsym != NULL
7037           && target->abiversion() >= 2
7038           && !parameters->options().output_is_position_independent()
7039           && !is_branch_reloc(r_type))
7040         {
7041           Address off = target->glink_section()->find_global_entry(gsym);
7042           if (off != invalid_address)
7043             {
7044               value = target->glink_section()->global_entry_address() + off;
7045               has_stub_value = true;
7046             }
7047         }
7048       else
7049         {
7050           Stub_table<size, big_endian>* stub_table
7051             = object->stub_table(relinfo->data_shndx);
7052           if (stub_table == NULL)
7053             {
7054               // This is a ref from a data section to an ifunc symbol.
7055               if (target->stub_tables().size() != 0)
7056                 stub_table = target->stub_tables()[0];
7057             }
7058           if (stub_table != NULL)
7059             {
7060               Address off;
7061               if (gsym != NULL)
7062                 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7063                                                       rela.get_r_addend());
7064               else
7065                 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7066                                                       rela.get_r_addend());
7067               if (off != invalid_address)
7068                 {
7069                   value = stub_table->stub_address() + off;
7070                   has_stub_value = true;
7071                 }
7072             }
7073         }
7074       // We don't care too much about bogus debug references to
7075       // non-local functions, but otherwise there had better be a plt
7076       // call stub or global entry stub as appropriate.
7077       gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7078     }
7079
7080   if (r_type == elfcpp::R_POWERPC_GOT16
7081       || r_type == elfcpp::R_POWERPC_GOT16_LO
7082       || r_type == elfcpp::R_POWERPC_GOT16_HI
7083       || r_type == elfcpp::R_POWERPC_GOT16_HA
7084       || r_type == elfcpp::R_PPC64_GOT16_DS
7085       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7086     {
7087       if (gsym != NULL)
7088         {
7089           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7090           value = gsym->got_offset(GOT_TYPE_STANDARD);
7091         }
7092       else
7093         {
7094           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7095           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7096           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7097         }
7098       value -= target->got_section()->got_base_offset(object);
7099     }
7100   else if (r_type == elfcpp::R_PPC64_TOC)
7101     {
7102       value = (target->got_section()->output_section()->address()
7103                + object->toc_base_offset());
7104     }
7105   else if (gsym != NULL
7106            && (r_type == elfcpp::R_POWERPC_REL24
7107                || r_type == elfcpp::R_PPC_PLTREL24)
7108            && has_stub_value)
7109     {
7110       if (size == 64)
7111         {
7112           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7113           Valtype* wv = reinterpret_cast<Valtype*>(view);
7114           bool can_plt_call = false;
7115           if (rela.get_r_offset() + 8 <= view_size)
7116             {
7117               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7118               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7119               if ((insn & 1) != 0
7120                   && (insn2 == nop
7121                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7122                 {
7123                   elfcpp::Swap<32, big_endian>::
7124                     writeval(wv + 1, ld_2_1 + target->stk_toc());
7125                   can_plt_call = true;
7126                 }
7127             }
7128           if (!can_plt_call)
7129             {
7130               // If we don't have a branch and link followed by a nop,
7131               // we can't go via the plt because there is no place to
7132               // put a toc restoring instruction.
7133               // Unless we know we won't be returning.
7134               if (strcmp(gsym->name(), "__libc_start_main") == 0)
7135                 can_plt_call = true;
7136             }
7137           if (!can_plt_call)
7138             {
7139               // g++ as of 20130507 emits self-calls without a
7140               // following nop.  This is arguably wrong since we have
7141               // conflicting information.  On the one hand a global
7142               // symbol and on the other a local call sequence, but
7143               // don't error for this special case.
7144               // It isn't possible to cheaply verify we have exactly
7145               // such a call.  Allow all calls to the same section.
7146               bool ok = false;
7147               Address code = value;
7148               if (gsym->source() == Symbol::FROM_OBJECT
7149                   && gsym->object() == object)
7150                 {
7151                   unsigned int dest_shndx = 0;
7152                   if (target->abiversion() < 2)
7153                     {
7154                       Address addend = rela.get_r_addend();
7155                       code = psymval->value(object, addend);
7156                       target->symval_for_branch(relinfo->symtab, gsym, object,
7157                                                 &code, &dest_shndx);
7158                     }
7159                   bool is_ordinary;
7160                   if (dest_shndx == 0)
7161                     dest_shndx = gsym->shndx(&is_ordinary);
7162                   ok = dest_shndx == relinfo->data_shndx;
7163                 }
7164               if (!ok)
7165                 {
7166                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7167                                          _("call lacks nop, can't restore toc; "
7168                                            "recompile with -fPIC"));
7169                   value = code;
7170                 }
7171             }
7172         }
7173     }
7174   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7175            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7176            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7177            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7178     {
7179       // First instruction of a global dynamic sequence, arg setup insn.
7180       const bool final = gsym == NULL || gsym->final_value_is_known();
7181       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7182       enum Got_type got_type = GOT_TYPE_STANDARD;
7183       if (tls_type == tls::TLSOPT_NONE)
7184         got_type = GOT_TYPE_TLSGD;
7185       else if (tls_type == tls::TLSOPT_TO_IE)
7186         got_type = GOT_TYPE_TPREL;
7187       if (got_type != GOT_TYPE_STANDARD)
7188         {
7189           if (gsym != NULL)
7190             {
7191               gold_assert(gsym->has_got_offset(got_type));
7192               value = gsym->got_offset(got_type);
7193             }
7194           else
7195             {
7196               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7197               gold_assert(object->local_has_got_offset(r_sym, got_type));
7198               value = object->local_got_offset(r_sym, got_type);
7199             }
7200           value -= target->got_section()->got_base_offset(object);
7201         }
7202       if (tls_type == tls::TLSOPT_TO_IE)
7203         {
7204           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7205               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7206             {
7207               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7208               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7209               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7210               if (size == 32)
7211                 insn |= 32 << 26; // lwz
7212               else
7213                 insn |= 58 << 26; // ld
7214               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7215             }
7216           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7217                      - elfcpp::R_POWERPC_GOT_TLSGD16);
7218         }
7219       else if (tls_type == tls::TLSOPT_TO_LE)
7220         {
7221           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7222               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7223             {
7224               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7225               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7226               insn &= (1 << 26) - (1 << 21); // extract rt
7227               if (size == 32)
7228                 insn |= addis_0_2;
7229               else
7230                 insn |= addis_0_13;
7231               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7232               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7233               value = psymval->value(object, rela.get_r_addend());
7234             }
7235           else
7236             {
7237               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7238               Insn insn = nop;
7239               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7240               r_type = elfcpp::R_POWERPC_NONE;
7241             }
7242         }
7243     }
7244   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7245            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7246            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7247            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7248     {
7249       // First instruction of a local dynamic sequence, arg setup insn.
7250       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7251       if (tls_type == tls::TLSOPT_NONE)
7252         {
7253           value = target->tlsld_got_offset();
7254           value -= target->got_section()->got_base_offset(object);
7255         }
7256       else
7257         {
7258           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7259           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7260               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7261             {
7262               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7263               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7264               insn &= (1 << 26) - (1 << 21); // extract rt
7265               if (size == 32)
7266                 insn |= addis_0_2;
7267               else
7268                 insn |= addis_0_13;
7269               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7270               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7271               value = dtp_offset;
7272             }
7273           else
7274             {
7275               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7276               Insn insn = nop;
7277               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7278               r_type = elfcpp::R_POWERPC_NONE;
7279             }
7280         }
7281     }
7282   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7283            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7284            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7285            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7286     {
7287       // Accesses relative to a local dynamic sequence address,
7288       // no optimisation here.
7289       if (gsym != NULL)
7290         {
7291           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7292           value = gsym->got_offset(GOT_TYPE_DTPREL);
7293         }
7294       else
7295         {
7296           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7297           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7298           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7299         }
7300       value -= target->got_section()->got_base_offset(object);
7301     }
7302   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7303            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7304            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7305            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7306     {
7307       // First instruction of initial exec sequence.
7308       const bool final = gsym == NULL || gsym->final_value_is_known();
7309       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7310       if (tls_type == tls::TLSOPT_NONE)
7311         {
7312           if (gsym != NULL)
7313             {
7314               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7315               value = gsym->got_offset(GOT_TYPE_TPREL);
7316             }
7317           else
7318             {
7319               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7320               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7321               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7322             }
7323           value -= target->got_section()->got_base_offset(object);
7324         }
7325       else
7326         {
7327           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7328           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7329               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7330             {
7331               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7332               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7333               insn &= (1 << 26) - (1 << 21); // extract rt from ld
7334               if (size == 32)
7335                 insn |= addis_0_2;
7336               else
7337                 insn |= addis_0_13;
7338               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7339               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7340               value = psymval->value(object, rela.get_r_addend());
7341             }
7342           else
7343             {
7344               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7345               Insn insn = nop;
7346               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7347               r_type = elfcpp::R_POWERPC_NONE;
7348             }
7349         }
7350     }
7351   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7352            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7353     {
7354       // Second instruction of a global dynamic sequence,
7355       // the __tls_get_addr call
7356       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7357       const bool final = gsym == NULL || gsym->final_value_is_known();
7358       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7359       if (tls_type != tls::TLSOPT_NONE)
7360         {
7361           if (tls_type == tls::TLSOPT_TO_IE)
7362             {
7363               Insn* iview = reinterpret_cast<Insn*>(view);
7364               Insn insn = add_3_3_13;
7365               if (size == 32)
7366                 insn = add_3_3_2;
7367               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7368               r_type = elfcpp::R_POWERPC_NONE;
7369             }
7370           else
7371             {
7372               Insn* iview = reinterpret_cast<Insn*>(view);
7373               Insn insn = addi_3_3;
7374               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7375               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7376               view += 2 * big_endian;
7377               value = psymval->value(object, rela.get_r_addend());
7378             }
7379           this->skip_next_tls_get_addr_call();
7380         }
7381     }
7382   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7383            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7384     {
7385       // Second instruction of a local dynamic sequence,
7386       // the __tls_get_addr call
7387       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7388       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7389       if (tls_type == tls::TLSOPT_TO_LE)
7390         {
7391           Insn* iview = reinterpret_cast<Insn*>(view);
7392           Insn insn = addi_3_3;
7393           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7394           this->skip_next_tls_get_addr_call();
7395           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7396           view += 2 * big_endian;
7397           value = dtp_offset;
7398         }
7399     }
7400   else if (r_type == elfcpp::R_POWERPC_TLS)
7401     {
7402       // Second instruction of an initial exec sequence
7403       const bool final = gsym == NULL || gsym->final_value_is_known();
7404       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7405       if (tls_type == tls::TLSOPT_TO_LE)
7406         {
7407           Insn* iview = reinterpret_cast<Insn*>(view);
7408           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7409           unsigned int reg = size == 32 ? 2 : 13;
7410           insn = at_tls_transform(insn, reg);
7411           gold_assert(insn != 0);
7412           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7413           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7414           view += 2 * big_endian;
7415           value = psymval->value(object, rela.get_r_addend());
7416         }
7417     }
7418   else if (!has_stub_value)
7419     {
7420       Address addend = 0;
7421       if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7422         addend = rela.get_r_addend();
7423       value = psymval->value(object, addend);
7424       if (size == 64 && is_branch_reloc(r_type))
7425         {
7426           if (target->abiversion() >= 2)
7427             {
7428               if (gsym != NULL)
7429                 value += object->ppc64_local_entry_offset(gsym);
7430               else
7431                 value += object->ppc64_local_entry_offset(r_sym);
7432             }
7433           else
7434             {
7435               unsigned int dest_shndx;
7436               target->symval_for_branch(relinfo->symtab, gsym, object,
7437                                         &value, &dest_shndx);
7438             }
7439         }
7440       Address max_branch_offset = max_branch_delta(r_type);
7441       if (max_branch_offset != 0
7442           && value - address + max_branch_offset >= 2 * max_branch_offset)
7443         {
7444           Stub_table<size, big_endian>* stub_table
7445             = object->stub_table(relinfo->data_shndx);
7446           if (stub_table != NULL)
7447             {
7448               Address off = stub_table->find_long_branch_entry(object, value);
7449               if (off != invalid_address)
7450                 {
7451                   value = (stub_table->stub_address() + stub_table->plt_size()
7452                            + off);
7453                   has_stub_value = true;
7454                 }
7455             }
7456         }
7457     }
7458
7459   switch (r_type)
7460     {
7461     case elfcpp::R_PPC64_REL64:
7462     case elfcpp::R_POWERPC_REL32:
7463     case elfcpp::R_POWERPC_REL24:
7464     case elfcpp::R_PPC_PLTREL24:
7465     case elfcpp::R_PPC_LOCAL24PC:
7466     case elfcpp::R_POWERPC_REL16:
7467     case elfcpp::R_POWERPC_REL16_LO:
7468     case elfcpp::R_POWERPC_REL16_HI:
7469     case elfcpp::R_POWERPC_REL16_HA:
7470     case elfcpp::R_POWERPC_REL16DX_HA:
7471     case elfcpp::R_POWERPC_REL14:
7472     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7473     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7474       value -= address;
7475       break;
7476
7477     case elfcpp::R_PPC64_TOC16:
7478     case elfcpp::R_PPC64_TOC16_LO:
7479     case elfcpp::R_PPC64_TOC16_HI:
7480     case elfcpp::R_PPC64_TOC16_HA:
7481     case elfcpp::R_PPC64_TOC16_DS:
7482     case elfcpp::R_PPC64_TOC16_LO_DS:
7483       // Subtract the TOC base address.
7484       value -= (target->got_section()->output_section()->address()
7485                 + object->toc_base_offset());
7486       break;
7487
7488     case elfcpp::R_POWERPC_SECTOFF:
7489     case elfcpp::R_POWERPC_SECTOFF_LO:
7490     case elfcpp::R_POWERPC_SECTOFF_HI:
7491     case elfcpp::R_POWERPC_SECTOFF_HA:
7492     case elfcpp::R_PPC64_SECTOFF_DS:
7493     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7494       if (os != NULL)
7495         value -= os->address();
7496       break;
7497
7498     case elfcpp::R_PPC64_TPREL16_DS:
7499     case elfcpp::R_PPC64_TPREL16_LO_DS:
7500     case elfcpp::R_PPC64_TPREL16_HIGH:
7501     case elfcpp::R_PPC64_TPREL16_HIGHA:
7502       if (size != 64)
7503         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7504         break;
7505     case elfcpp::R_POWERPC_TPREL16:
7506     case elfcpp::R_POWERPC_TPREL16_LO:
7507     case elfcpp::R_POWERPC_TPREL16_HI:
7508     case elfcpp::R_POWERPC_TPREL16_HA:
7509     case elfcpp::R_POWERPC_TPREL:
7510     case elfcpp::R_PPC64_TPREL16_HIGHER:
7511     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7512     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7513     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7514       // tls symbol values are relative to tls_segment()->vaddr()
7515       value -= tp_offset;
7516       break;
7517
7518     case elfcpp::R_PPC64_DTPREL16_DS:
7519     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7520     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7521     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7522     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7523     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7524       if (size != 64)
7525         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7526         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7527         break;
7528     case elfcpp::R_POWERPC_DTPREL16:
7529     case elfcpp::R_POWERPC_DTPREL16_LO:
7530     case elfcpp::R_POWERPC_DTPREL16_HI:
7531     case elfcpp::R_POWERPC_DTPREL16_HA:
7532     case elfcpp::R_POWERPC_DTPREL:
7533     case elfcpp::R_PPC64_DTPREL16_HIGH:
7534     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7535       // tls symbol values are relative to tls_segment()->vaddr()
7536       value -= dtp_offset;
7537       break;
7538
7539     case elfcpp::R_PPC64_ADDR64_LOCAL:
7540       if (gsym != NULL)
7541         value += object->ppc64_local_entry_offset(gsym);
7542       else
7543         value += object->ppc64_local_entry_offset(r_sym);
7544       break;
7545
7546     default:
7547       break;
7548     }
7549
7550   Insn branch_bit = 0;
7551   switch (r_type)
7552     {
7553     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7554     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7555       branch_bit = 1 << 21;
7556     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7557     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7558       {
7559         Insn* iview = reinterpret_cast<Insn*>(view);
7560         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7561         insn &= ~(1 << 21);
7562         insn |= branch_bit;
7563         if (this->is_isa_v2)
7564           {
7565             // Set 'a' bit.  This is 0b00010 in BO field for branch
7566             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7567             // for branch on CTR insns (BO == 1a00t or 1a01t).
7568             if ((insn & (0x14 << 21)) == (0x04 << 21))
7569               insn |= 0x02 << 21;
7570             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7571               insn |= 0x08 << 21;
7572             else
7573               break;
7574           }
7575         else
7576           {
7577             // Invert 'y' bit if not the default.
7578             if (static_cast<Signed_address>(value) < 0)
7579               insn ^= 1 << 21;
7580           }
7581         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7582       }
7583       break;
7584
7585     default:
7586       break;
7587     }
7588
7589   if (size == 64)
7590     {
7591       // Multi-instruction sequences that access the TOC can be
7592       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7593       // to             nop;           addi rb,r2,x;
7594       switch (r_type)
7595         {
7596         default:
7597           break;
7598
7599         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7600         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7601         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7602         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7603         case elfcpp::R_POWERPC_GOT16_HA:
7604         case elfcpp::R_PPC64_TOC16_HA:
7605           if (parameters->options().toc_optimize())
7606             {
7607               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7608               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7609               if ((insn & ((0x3f << 26) | 0x1f << 16))
7610                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7611                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7612                                        _("toc optimization is not supported "
7613                                          "for %#08x instruction"), insn);
7614               else if (value + 0x8000 < 0x10000)
7615                 {
7616                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7617                   return true;
7618                 }
7619             }
7620           break;
7621
7622         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7623         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7624         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7625         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7626         case elfcpp::R_POWERPC_GOT16_LO:
7627         case elfcpp::R_PPC64_GOT16_LO_DS:
7628         case elfcpp::R_PPC64_TOC16_LO:
7629         case elfcpp::R_PPC64_TOC16_LO_DS:
7630           if (parameters->options().toc_optimize())
7631             {
7632               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7633               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7634               if (!ok_lo_toc_insn(insn))
7635                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7636                                        _("toc optimization is not supported "
7637                                          "for %#08x instruction"), insn);
7638               else if (value + 0x8000 < 0x10000)
7639                 {
7640                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7641                     {
7642                       // Transform addic to addi when we change reg.
7643                       insn &= ~((0x3f << 26) | (0x1f << 16));
7644                       insn |= (14u << 26) | (2 << 16);
7645                     }
7646                   else
7647                     {
7648                       insn &= ~(0x1f << 16);
7649                       insn |= 2 << 16;
7650                     }
7651                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7652                 }
7653             }
7654           break;
7655         }
7656     }
7657
7658   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7659   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7660   switch (r_type)
7661     {
7662     case elfcpp::R_POWERPC_ADDR32:
7663     case elfcpp::R_POWERPC_UADDR32:
7664       if (size == 64)
7665         overflow = Reloc::CHECK_BITFIELD;
7666       break;
7667
7668     case elfcpp::R_POWERPC_REL32:
7669     case elfcpp::R_POWERPC_REL16DX_HA:
7670       if (size == 64)
7671         overflow = Reloc::CHECK_SIGNED;
7672       break;
7673
7674     case elfcpp::R_POWERPC_UADDR16:
7675       overflow = Reloc::CHECK_BITFIELD;
7676       break;
7677
7678     case elfcpp::R_POWERPC_ADDR16:
7679       // We really should have three separate relocations,
7680       // one for 16-bit data, one for insns with 16-bit signed fields,
7681       // and one for insns with 16-bit unsigned fields.
7682       overflow = Reloc::CHECK_BITFIELD;
7683       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7684         overflow = Reloc::CHECK_LOW_INSN;
7685       break;
7686
7687     case elfcpp::R_POWERPC_ADDR16_HI:
7688     case elfcpp::R_POWERPC_ADDR16_HA:
7689     case elfcpp::R_POWERPC_GOT16_HI:
7690     case elfcpp::R_POWERPC_GOT16_HA:
7691     case elfcpp::R_POWERPC_PLT16_HI:
7692     case elfcpp::R_POWERPC_PLT16_HA:
7693     case elfcpp::R_POWERPC_SECTOFF_HI:
7694     case elfcpp::R_POWERPC_SECTOFF_HA:
7695     case elfcpp::R_PPC64_TOC16_HI:
7696     case elfcpp::R_PPC64_TOC16_HA:
7697     case elfcpp::R_PPC64_PLTGOT16_HI:
7698     case elfcpp::R_PPC64_PLTGOT16_HA:
7699     case elfcpp::R_POWERPC_TPREL16_HI:
7700     case elfcpp::R_POWERPC_TPREL16_HA:
7701     case elfcpp::R_POWERPC_DTPREL16_HI:
7702     case elfcpp::R_POWERPC_DTPREL16_HA:
7703     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7704     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7705     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7706     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7707     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7708     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7709     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7710     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7711     case elfcpp::R_POWERPC_REL16_HI:
7712     case elfcpp::R_POWERPC_REL16_HA:
7713       if (size != 32)
7714         overflow = Reloc::CHECK_HIGH_INSN;
7715       break;
7716
7717     case elfcpp::R_POWERPC_REL16:
7718     case elfcpp::R_PPC64_TOC16:
7719     case elfcpp::R_POWERPC_GOT16:
7720     case elfcpp::R_POWERPC_SECTOFF:
7721     case elfcpp::R_POWERPC_TPREL16:
7722     case elfcpp::R_POWERPC_DTPREL16:
7723     case elfcpp::R_POWERPC_GOT_TLSGD16:
7724     case elfcpp::R_POWERPC_GOT_TLSLD16:
7725     case elfcpp::R_POWERPC_GOT_TPREL16:
7726     case elfcpp::R_POWERPC_GOT_DTPREL16:
7727       overflow = Reloc::CHECK_LOW_INSN;
7728       break;
7729
7730     case elfcpp::R_POWERPC_ADDR24:
7731     case elfcpp::R_POWERPC_ADDR14:
7732     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7733     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7734     case elfcpp::R_PPC64_ADDR16_DS:
7735     case elfcpp::R_POWERPC_REL24:
7736     case elfcpp::R_PPC_PLTREL24:
7737     case elfcpp::R_PPC_LOCAL24PC:
7738     case elfcpp::R_PPC64_TPREL16_DS:
7739     case elfcpp::R_PPC64_DTPREL16_DS:
7740     case elfcpp::R_PPC64_TOC16_DS:
7741     case elfcpp::R_PPC64_GOT16_DS:
7742     case elfcpp::R_PPC64_SECTOFF_DS:
7743     case elfcpp::R_POWERPC_REL14:
7744     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7745     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7746       overflow = Reloc::CHECK_SIGNED;
7747       break;
7748     }
7749
7750   Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7751   Insn insn = 0;
7752
7753   if (overflow == Reloc::CHECK_LOW_INSN
7754       || overflow == Reloc::CHECK_HIGH_INSN)
7755     {
7756       insn = elfcpp::Swap<32, big_endian>::readval(iview);
7757
7758       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7759         overflow = Reloc::CHECK_BITFIELD;
7760       else if (overflow == Reloc::CHECK_LOW_INSN
7761                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7762                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7763                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7764                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7765                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7766                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7767         overflow = Reloc::CHECK_UNSIGNED;
7768       else
7769         overflow = Reloc::CHECK_SIGNED;
7770     }
7771
7772   bool maybe_dq_reloc = false;
7773   typename Powerpc_relocate_functions<size, big_endian>::Status status
7774     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7775   switch (r_type)
7776     {
7777     case elfcpp::R_POWERPC_NONE:
7778     case elfcpp::R_POWERPC_TLS:
7779     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7780     case elfcpp::R_POWERPC_GNU_VTENTRY:
7781       break;
7782
7783     case elfcpp::R_PPC64_ADDR64:
7784     case elfcpp::R_PPC64_REL64:
7785     case elfcpp::R_PPC64_TOC:
7786     case elfcpp::R_PPC64_ADDR64_LOCAL:
7787       Reloc::addr64(view, value);
7788       break;
7789
7790     case elfcpp::R_POWERPC_TPREL:
7791     case elfcpp::R_POWERPC_DTPREL:
7792       if (size == 64)
7793         Reloc::addr64(view, value);
7794       else
7795         status = Reloc::addr32(view, value, overflow);
7796       break;
7797
7798     case elfcpp::R_PPC64_UADDR64:
7799       Reloc::addr64_u(view, value);
7800       break;
7801
7802     case elfcpp::R_POWERPC_ADDR32:
7803       status = Reloc::addr32(view, value, overflow);
7804       break;
7805
7806     case elfcpp::R_POWERPC_REL32:
7807     case elfcpp::R_POWERPC_UADDR32:
7808       status = Reloc::addr32_u(view, value, overflow);
7809       break;
7810
7811     case elfcpp::R_POWERPC_ADDR24:
7812     case elfcpp::R_POWERPC_REL24:
7813     case elfcpp::R_PPC_PLTREL24:
7814     case elfcpp::R_PPC_LOCAL24PC:
7815       status = Reloc::addr24(view, value, overflow);
7816       break;
7817
7818     case elfcpp::R_POWERPC_GOT_DTPREL16:
7819     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7820     case elfcpp::R_POWERPC_GOT_TPREL16:
7821     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7822       if (size == 64)
7823         {
7824           // On ppc64 these are all ds form
7825           maybe_dq_reloc = true;
7826           break;
7827         }
7828     case elfcpp::R_POWERPC_ADDR16:
7829     case elfcpp::R_POWERPC_REL16:
7830     case elfcpp::R_PPC64_TOC16:
7831     case elfcpp::R_POWERPC_GOT16:
7832     case elfcpp::R_POWERPC_SECTOFF:
7833     case elfcpp::R_POWERPC_TPREL16:
7834     case elfcpp::R_POWERPC_DTPREL16:
7835     case elfcpp::R_POWERPC_GOT_TLSGD16:
7836     case elfcpp::R_POWERPC_GOT_TLSLD16:
7837     case elfcpp::R_POWERPC_ADDR16_LO:
7838     case elfcpp::R_POWERPC_REL16_LO:
7839     case elfcpp::R_PPC64_TOC16_LO:
7840     case elfcpp::R_POWERPC_GOT16_LO:
7841     case elfcpp::R_POWERPC_SECTOFF_LO:
7842     case elfcpp::R_POWERPC_TPREL16_LO:
7843     case elfcpp::R_POWERPC_DTPREL16_LO:
7844     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7845     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7846       if (size == 64)
7847         status = Reloc::addr16(view, value, overflow);
7848       else
7849         maybe_dq_reloc = true;
7850       break;
7851
7852     case elfcpp::R_POWERPC_UADDR16:
7853       status = Reloc::addr16_u(view, value, overflow);
7854       break;
7855
7856     case elfcpp::R_PPC64_ADDR16_HIGH:
7857     case elfcpp::R_PPC64_TPREL16_HIGH:
7858     case elfcpp::R_PPC64_DTPREL16_HIGH:
7859       if (size == 32)
7860         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7861         goto unsupp;
7862     case elfcpp::R_POWERPC_ADDR16_HI:
7863     case elfcpp::R_POWERPC_REL16_HI:
7864     case elfcpp::R_PPC64_TOC16_HI:
7865     case elfcpp::R_POWERPC_GOT16_HI:
7866     case elfcpp::R_POWERPC_SECTOFF_HI:
7867     case elfcpp::R_POWERPC_TPREL16_HI:
7868     case elfcpp::R_POWERPC_DTPREL16_HI:
7869     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7870     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7871     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7872     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7873       Reloc::addr16_hi(view, value);
7874       break;
7875
7876     case elfcpp::R_PPC64_ADDR16_HIGHA:
7877     case elfcpp::R_PPC64_TPREL16_HIGHA:
7878     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7879       if (size == 32)
7880         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7881         goto unsupp;
7882     case elfcpp::R_POWERPC_ADDR16_HA:
7883     case elfcpp::R_POWERPC_REL16_HA:
7884     case elfcpp::R_PPC64_TOC16_HA:
7885     case elfcpp::R_POWERPC_GOT16_HA:
7886     case elfcpp::R_POWERPC_SECTOFF_HA:
7887     case elfcpp::R_POWERPC_TPREL16_HA:
7888     case elfcpp::R_POWERPC_DTPREL16_HA:
7889     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7890     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7891     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7892     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7893       Reloc::addr16_ha(view, value);
7894       break;
7895
7896     case elfcpp::R_POWERPC_REL16DX_HA:
7897       status = Reloc::addr16dx_ha(view, value, overflow);
7898       break;
7899
7900     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7901       if (size == 32)
7902         // R_PPC_EMB_NADDR16_LO
7903         goto unsupp;
7904     case elfcpp::R_PPC64_ADDR16_HIGHER:
7905     case elfcpp::R_PPC64_TPREL16_HIGHER:
7906       Reloc::addr16_hi2(view, value);
7907       break;
7908
7909     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7910       if (size == 32)
7911         // R_PPC_EMB_NADDR16_HI
7912         goto unsupp;
7913     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7914     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7915       Reloc::addr16_ha2(view, value);
7916       break;
7917
7918     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7919       if (size == 32)
7920         // R_PPC_EMB_NADDR16_HA
7921         goto unsupp;
7922     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7923     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7924       Reloc::addr16_hi3(view, value);
7925       break;
7926
7927     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7928       if (size == 32)
7929         // R_PPC_EMB_SDAI16
7930         goto unsupp;
7931     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7932     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7933       Reloc::addr16_ha3(view, value);
7934       break;
7935
7936     case elfcpp::R_PPC64_DTPREL16_DS:
7937     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7938       if (size == 32)
7939         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7940         goto unsupp;
7941     case elfcpp::R_PPC64_TPREL16_DS:
7942     case elfcpp::R_PPC64_TPREL16_LO_DS:
7943       if (size == 32)
7944         // R_PPC_TLSGD, R_PPC_TLSLD
7945         break;
7946     case elfcpp::R_PPC64_ADDR16_DS:
7947     case elfcpp::R_PPC64_ADDR16_LO_DS:
7948     case elfcpp::R_PPC64_TOC16_DS:
7949     case elfcpp::R_PPC64_TOC16_LO_DS:
7950     case elfcpp::R_PPC64_GOT16_DS:
7951     case elfcpp::R_PPC64_GOT16_LO_DS:
7952     case elfcpp::R_PPC64_SECTOFF_DS:
7953     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7954       maybe_dq_reloc = true;
7955       break;
7956
7957     case elfcpp::R_POWERPC_ADDR14:
7958     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7959     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7960     case elfcpp::R_POWERPC_REL14:
7961     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7962     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7963       status = Reloc::addr14(view, value, overflow);
7964       break;
7965
7966     case elfcpp::R_POWERPC_COPY:
7967     case elfcpp::R_POWERPC_GLOB_DAT:
7968     case elfcpp::R_POWERPC_JMP_SLOT:
7969     case elfcpp::R_POWERPC_RELATIVE:
7970     case elfcpp::R_POWERPC_DTPMOD:
7971     case elfcpp::R_PPC64_JMP_IREL:
7972     case elfcpp::R_POWERPC_IRELATIVE:
7973       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7974                              _("unexpected reloc %u in object file"),
7975                              r_type);
7976       break;
7977
7978     case elfcpp::R_PPC_EMB_SDA21:
7979       if (size == 32)
7980         goto unsupp;
7981       else
7982         {
7983           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7984         }
7985       break;
7986
7987     case elfcpp::R_PPC_EMB_SDA2I16:
7988     case elfcpp::R_PPC_EMB_SDA2REL:
7989       if (size == 32)
7990         goto unsupp;
7991       // R_PPC64_TLSGD, R_PPC64_TLSLD
7992       break;
7993
7994     case elfcpp::R_POWERPC_PLT32:
7995     case elfcpp::R_POWERPC_PLTREL32:
7996     case elfcpp::R_POWERPC_PLT16_LO:
7997     case elfcpp::R_POWERPC_PLT16_HI:
7998     case elfcpp::R_POWERPC_PLT16_HA:
7999     case elfcpp::R_PPC_SDAREL16:
8000     case elfcpp::R_POWERPC_ADDR30:
8001     case elfcpp::R_PPC64_PLT64:
8002     case elfcpp::R_PPC64_PLTREL64:
8003     case elfcpp::R_PPC64_PLTGOT16:
8004     case elfcpp::R_PPC64_PLTGOT16_LO:
8005     case elfcpp::R_PPC64_PLTGOT16_HI:
8006     case elfcpp::R_PPC64_PLTGOT16_HA:
8007     case elfcpp::R_PPC64_PLT16_LO_DS:
8008     case elfcpp::R_PPC64_PLTGOT16_DS:
8009     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8010     case elfcpp::R_PPC_EMB_RELSDA:
8011     case elfcpp::R_PPC_TOC16:
8012     default:
8013     unsupp:
8014       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8015                              _("unsupported reloc %u"),
8016                              r_type);
8017       break;
8018     }
8019
8020   if (maybe_dq_reloc)
8021     {
8022       if (insn == 0)
8023         insn = elfcpp::Swap<32, big_endian>::readval(iview);
8024
8025       if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8026           || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8027               && (insn & 3) == 1))
8028         status = Reloc::addr16_dq(view, value, overflow);
8029       else if (size == 64
8030                || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8031                || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8032                || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8033                || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8034         status = Reloc::addr16_ds(view, value, overflow);
8035       else
8036         status = Reloc::addr16(view, value, overflow);
8037     }
8038
8039   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8040       && (has_stub_value
8041           || !(gsym != NULL
8042                && gsym->is_undefined()
8043                && is_branch_reloc(r_type))))
8044     {
8045       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8046                              _("relocation overflow"));
8047       if (has_stub_value)
8048         gold_info(_("try relinking with a smaller --stub-group-size"));
8049     }
8050
8051   return true;
8052 }
8053
8054 // Relocate section data.
8055
8056 template<int size, bool big_endian>
8057 void
8058 Target_powerpc<size, big_endian>::relocate_section(
8059     const Relocate_info<size, big_endian>* relinfo,
8060     unsigned int sh_type,
8061     const unsigned char* prelocs,
8062     size_t reloc_count,
8063     Output_section* output_section,
8064     bool needs_special_offset_handling,
8065     unsigned char* view,
8066     Address address,
8067     section_size_type view_size,
8068     const Reloc_symbol_changes* reloc_symbol_changes)
8069 {
8070   typedef Target_powerpc<size, big_endian> Powerpc;
8071   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8072   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8073     Powerpc_comdat_behavior;
8074
8075   gold_assert(sh_type == elfcpp::SHT_RELA);
8076
8077   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
8078                          Powerpc_relocate, Powerpc_comdat_behavior>(
8079     relinfo,
8080     this,
8081     prelocs,
8082     reloc_count,
8083     output_section,
8084     needs_special_offset_handling,
8085     view,
8086     address,
8087     view_size,
8088     reloc_symbol_changes);
8089 }
8090
8091 class Powerpc_scan_relocatable_reloc
8092 {
8093 public:
8094   // Return the strategy to use for a local symbol which is not a
8095   // section symbol, given the relocation type.
8096   inline Relocatable_relocs::Reloc_strategy
8097   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8098   {
8099     if (r_type == 0 && r_sym == 0)
8100       return Relocatable_relocs::RELOC_DISCARD;
8101     return Relocatable_relocs::RELOC_COPY;
8102   }
8103
8104   // Return the strategy to use for a local symbol which is a section
8105   // symbol, given the relocation type.
8106   inline Relocatable_relocs::Reloc_strategy
8107   local_section_strategy(unsigned int, Relobj*)
8108   {
8109     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8110   }
8111
8112   // Return the strategy to use for a global symbol, given the
8113   // relocation type, the object, and the symbol index.
8114   inline Relocatable_relocs::Reloc_strategy
8115   global_strategy(unsigned int r_type, Relobj*, unsigned int)
8116   {
8117     if (r_type == elfcpp::R_PPC_PLTREL24)
8118       return Relocatable_relocs::RELOC_SPECIAL;
8119     return Relocatable_relocs::RELOC_COPY;
8120   }
8121 };
8122
8123 // Scan the relocs during a relocatable link.
8124
8125 template<int size, bool big_endian>
8126 void
8127 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8128     Symbol_table* symtab,
8129     Layout* layout,
8130     Sized_relobj_file<size, big_endian>* object,
8131     unsigned int data_shndx,
8132     unsigned int sh_type,
8133     const unsigned char* prelocs,
8134     size_t reloc_count,
8135     Output_section* output_section,
8136     bool needs_special_offset_handling,
8137     size_t local_symbol_count,
8138     const unsigned char* plocal_symbols,
8139     Relocatable_relocs* rr)
8140 {
8141   gold_assert(sh_type == elfcpp::SHT_RELA);
8142
8143   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
8144                                 Powerpc_scan_relocatable_reloc>(
8145     symtab,
8146     layout,
8147     object,
8148     data_shndx,
8149     prelocs,
8150     reloc_count,
8151     output_section,
8152     needs_special_offset_handling,
8153     local_symbol_count,
8154     plocal_symbols,
8155     rr);
8156 }
8157
8158 // Emit relocations for a section.
8159 // This is a modified version of the function by the same name in
8160 // target-reloc.h.  Using relocate_special_relocatable for
8161 // R_PPC_PLTREL24 would require duplication of the entire body of the
8162 // loop, so we may as well duplicate the whole thing.
8163
8164 template<int size, bool big_endian>
8165 void
8166 Target_powerpc<size, big_endian>::relocate_relocs(
8167     const Relocate_info<size, big_endian>* relinfo,
8168     unsigned int sh_type,
8169     const unsigned char* prelocs,
8170     size_t reloc_count,
8171     Output_section* output_section,
8172     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8173     const Relocatable_relocs* rr,
8174     unsigned char*,
8175     Address view_address,
8176     section_size_type,
8177     unsigned char* reloc_view,
8178     section_size_type reloc_view_size)
8179 {
8180   gold_assert(sh_type == elfcpp::SHT_RELA);
8181
8182   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8183     Reltype;
8184   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8185     Reltype_write;
8186   const int reloc_size
8187     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8188
8189   Powerpc_relobj<size, big_endian>* const object
8190     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8191   const unsigned int local_count = object->local_symbol_count();
8192   unsigned int got2_shndx = object->got2_shndx();
8193   Address got2_addend = 0;
8194   if (got2_shndx != 0)
8195     {
8196       got2_addend = object->get_output_section_offset(got2_shndx);
8197       gold_assert(got2_addend != invalid_address);
8198     }
8199
8200   unsigned char* pwrite = reloc_view;
8201   bool zap_next = false;
8202   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8203     {
8204       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
8205       if (strategy == Relocatable_relocs::RELOC_DISCARD)
8206         continue;
8207
8208       Reltype reloc(prelocs);
8209       Reltype_write reloc_write(pwrite);
8210
8211       Address offset = reloc.get_r_offset();
8212       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8213       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8214       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8215       const unsigned int orig_r_sym = r_sym;
8216       typename elfcpp::Elf_types<size>::Elf_Swxword addend
8217         = reloc.get_r_addend();
8218       const Symbol* gsym = NULL;
8219
8220       if (zap_next)
8221         {
8222           // We could arrange to discard these and other relocs for
8223           // tls optimised sequences in the strategy methods, but for
8224           // now do as BFD ld does.
8225           r_type = elfcpp::R_POWERPC_NONE;
8226           zap_next = false;
8227         }
8228
8229       // Get the new symbol index.
8230       Output_section* os = NULL;
8231       if (r_sym < local_count)
8232         {
8233           switch (strategy)
8234             {
8235             case Relocatable_relocs::RELOC_COPY:
8236             case Relocatable_relocs::RELOC_SPECIAL:
8237               if (r_sym != 0)
8238                 {
8239                   r_sym = object->symtab_index(r_sym);
8240                   gold_assert(r_sym != -1U);
8241                 }
8242               break;
8243
8244             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8245               {
8246                 // We are adjusting a section symbol.  We need to find
8247                 // the symbol table index of the section symbol for
8248                 // the output section corresponding to input section
8249                 // in which this symbol is defined.
8250                 gold_assert(r_sym < local_count);
8251                 bool is_ordinary;
8252                 unsigned int shndx =
8253                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
8254                 gold_assert(is_ordinary);
8255                 os = object->output_section(shndx);
8256                 gold_assert(os != NULL);
8257                 gold_assert(os->needs_symtab_index());
8258                 r_sym = os->symtab_index();
8259               }
8260               break;
8261
8262             default:
8263               gold_unreachable();
8264             }
8265         }
8266       else
8267         {
8268           gsym = object->global_symbol(r_sym);
8269           gold_assert(gsym != NULL);
8270           if (gsym->is_forwarder())
8271             gsym = relinfo->symtab->resolve_forwards(gsym);
8272
8273           gold_assert(gsym->has_symtab_index());
8274           r_sym = gsym->symtab_index();
8275         }
8276
8277       // Get the new offset--the location in the output section where
8278       // this relocation should be applied.
8279       if (static_cast<Address>(offset_in_output_section) != invalid_address)
8280         offset += offset_in_output_section;
8281       else
8282         {
8283           section_offset_type sot_offset =
8284             convert_types<section_offset_type, Address>(offset);
8285           section_offset_type new_sot_offset =
8286             output_section->output_offset(object, relinfo->data_shndx,
8287                                           sot_offset);
8288           gold_assert(new_sot_offset != -1);
8289           offset = new_sot_offset;
8290         }
8291
8292       // In an object file, r_offset is an offset within the section.
8293       // In an executable or dynamic object, generated by
8294       // --emit-relocs, r_offset is an absolute address.
8295       if (!parameters->options().relocatable())
8296         {
8297           offset += view_address;
8298           if (static_cast<Address>(offset_in_output_section) != invalid_address)
8299             offset -= offset_in_output_section;
8300         }
8301
8302       // Handle the reloc addend based on the strategy.
8303       if (strategy == Relocatable_relocs::RELOC_COPY)
8304         ;
8305       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8306         {
8307           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8308           gold_assert(os != NULL);
8309           addend = psymval->value(object, addend) - os->address();
8310         }
8311       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8312         {
8313           if (addend >= 32768)
8314             addend += got2_addend;
8315         }
8316       else
8317         gold_unreachable();
8318
8319       if (!parameters->options().relocatable())
8320         {
8321           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8322               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8323               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8324               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8325             {
8326               // First instruction of a global dynamic sequence,
8327               // arg setup insn.
8328               const bool final = gsym == NULL || gsym->final_value_is_known();
8329               switch (this->optimize_tls_gd(final))
8330                 {
8331                 case tls::TLSOPT_TO_IE:
8332                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8333                              - elfcpp::R_POWERPC_GOT_TLSGD16);
8334                   break;
8335                 case tls::TLSOPT_TO_LE:
8336                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8337                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8338                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8339                   else
8340                     {
8341                       r_type = elfcpp::R_POWERPC_NONE;
8342                       offset -= 2 * big_endian;
8343                     }
8344                   break;
8345                 default:
8346                   break;
8347                 }
8348             }
8349           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8350                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8351                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8352                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8353             {
8354               // First instruction of a local dynamic sequence,
8355               // arg setup insn.
8356               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8357                 {
8358                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8359                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8360                     {
8361                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
8362                       const Output_section* os = relinfo->layout->tls_segment()
8363                         ->first_section();
8364                       gold_assert(os != NULL);
8365                       gold_assert(os->needs_symtab_index());
8366                       r_sym = os->symtab_index();
8367                       addend = dtp_offset;
8368                     }
8369                   else
8370                     {
8371                       r_type = elfcpp::R_POWERPC_NONE;
8372                       offset -= 2 * big_endian;
8373                     }
8374                 }
8375             }
8376           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8377                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8378                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8379                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8380             {
8381               // First instruction of initial exec sequence.
8382               const bool final = gsym == NULL || gsym->final_value_is_known();
8383               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8384                 {
8385                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8386                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8387                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8388                   else
8389                     {
8390                       r_type = elfcpp::R_POWERPC_NONE;
8391                       offset -= 2 * big_endian;
8392                     }
8393                 }
8394             }
8395           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8396                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8397             {
8398               // Second instruction of a global dynamic sequence,
8399               // the __tls_get_addr call
8400               const bool final = gsym == NULL || gsym->final_value_is_known();
8401               switch (this->optimize_tls_gd(final))
8402                 {
8403                 case tls::TLSOPT_TO_IE:
8404                   r_type = elfcpp::R_POWERPC_NONE;
8405                   zap_next = true;
8406                   break;
8407                 case tls::TLSOPT_TO_LE:
8408                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8409                   offset += 2 * big_endian;
8410                   zap_next = true;
8411                   break;
8412                 default:
8413                   break;
8414                 }
8415             }
8416           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8417                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8418             {
8419               // Second instruction of a local dynamic sequence,
8420               // the __tls_get_addr call
8421               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8422                 {
8423                   const Output_section* os = relinfo->layout->tls_segment()
8424                     ->first_section();
8425                   gold_assert(os != NULL);
8426                   gold_assert(os->needs_symtab_index());
8427                   r_sym = os->symtab_index();
8428                   addend = dtp_offset;
8429                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8430                   offset += 2 * big_endian;
8431                   zap_next = true;
8432                 }
8433             }
8434           else if (r_type == elfcpp::R_POWERPC_TLS)
8435             {
8436               // Second instruction of an initial exec sequence
8437               const bool final = gsym == NULL || gsym->final_value_is_known();
8438               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8439                 {
8440                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8441                   offset += 2 * big_endian;
8442                 }
8443             }
8444         }
8445
8446       reloc_write.put_r_offset(offset);
8447       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8448       reloc_write.put_r_addend(addend);
8449
8450       pwrite += reloc_size;
8451     }
8452
8453   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8454               == reloc_view_size);
8455 }
8456
8457 // Return the value to use for a dynamic symbol which requires special
8458 // treatment.  This is how we support equality comparisons of function
8459 // pointers across shared library boundaries, as described in the
8460 // processor specific ABI supplement.
8461
8462 template<int size, bool big_endian>
8463 uint64_t
8464 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8465 {
8466   if (size == 32)
8467     {
8468       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8469       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8470            p != this->stub_tables_.end();
8471            ++p)
8472         {
8473           Address off = (*p)->find_plt_call_entry(gsym);
8474           if (off != invalid_address)
8475             return (*p)->stub_address() + off;
8476         }
8477     }
8478   else if (this->abiversion() >= 2)
8479     {
8480       Address off = this->glink_section()->find_global_entry(gsym);
8481       if (off != invalid_address)
8482         return this->glink_section()->global_entry_address() + off;
8483     }
8484   gold_unreachable();
8485 }
8486
8487 // Return the PLT address to use for a local symbol.
8488 template<int size, bool big_endian>
8489 uint64_t
8490 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8491     const Relobj* object,
8492     unsigned int symndx) const
8493 {
8494   if (size == 32)
8495     {
8496       const Sized_relobj<size, big_endian>* relobj
8497         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8498       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8499            p != this->stub_tables_.end();
8500            ++p)
8501         {
8502           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8503                                                   symndx);
8504           if (off != invalid_address)
8505             return (*p)->stub_address() + off;
8506         }
8507     }
8508   gold_unreachable();
8509 }
8510
8511 // Return the PLT address to use for a global symbol.
8512 template<int size, bool big_endian>
8513 uint64_t
8514 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8515     const Symbol* gsym) const
8516 {
8517   if (size == 32)
8518     {
8519       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8520            p != this->stub_tables_.end();
8521            ++p)
8522         {
8523           Address off = (*p)->find_plt_call_entry(gsym);
8524           if (off != invalid_address)
8525             return (*p)->stub_address() + off;
8526         }
8527     }
8528   else if (this->abiversion() >= 2)
8529     {
8530       Address off = this->glink_section()->find_global_entry(gsym);
8531       if (off != invalid_address)
8532         return this->glink_section()->global_entry_address() + off;
8533     }
8534   gold_unreachable();
8535 }
8536
8537 // Return the offset to use for the GOT_INDX'th got entry which is
8538 // for a local tls symbol specified by OBJECT, SYMNDX.
8539 template<int size, bool big_endian>
8540 int64_t
8541 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8542     const Relobj* object,
8543     unsigned int symndx,
8544     unsigned int got_indx) const
8545 {
8546   const Powerpc_relobj<size, big_endian>* ppc_object
8547     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8548   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8549     {
8550       for (Got_type got_type = GOT_TYPE_TLSGD;
8551            got_type <= GOT_TYPE_TPREL;
8552            got_type = Got_type(got_type + 1))
8553         if (ppc_object->local_has_got_offset(symndx, got_type))
8554           {
8555             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8556             if (got_type == GOT_TYPE_TLSGD)
8557               off += size / 8;
8558             if (off == got_indx * (size / 8))
8559               {
8560                 if (got_type == GOT_TYPE_TPREL)
8561                   return -tp_offset;
8562                 else
8563                   return -dtp_offset;
8564               }
8565           }
8566     }
8567   gold_unreachable();
8568 }
8569
8570 // Return the offset to use for the GOT_INDX'th got entry which is
8571 // for global tls symbol GSYM.
8572 template<int size, bool big_endian>
8573 int64_t
8574 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8575     Symbol* gsym,
8576     unsigned int got_indx) const
8577 {
8578   if (gsym->type() == elfcpp::STT_TLS)
8579     {
8580       for (Got_type got_type = GOT_TYPE_TLSGD;
8581            got_type <= GOT_TYPE_TPREL;
8582            got_type = Got_type(got_type + 1))
8583         if (gsym->has_got_offset(got_type))
8584           {
8585             unsigned int off = gsym->got_offset(got_type);
8586             if (got_type == GOT_TYPE_TLSGD)
8587               off += size / 8;
8588             if (off == got_indx * (size / 8))
8589               {
8590                 if (got_type == GOT_TYPE_TPREL)
8591                   return -tp_offset;
8592                 else
8593                   return -dtp_offset;
8594               }
8595           }
8596     }
8597   gold_unreachable();
8598 }
8599
8600 // The selector for powerpc object files.
8601
8602 template<int size, bool big_endian>
8603 class Target_selector_powerpc : public Target_selector
8604 {
8605 public:
8606   Target_selector_powerpc()
8607     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8608                       size, big_endian,
8609                       (size == 64
8610                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8611                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8612                       (size == 64
8613                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8614                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8615   { }
8616
8617   virtual Target*
8618   do_instantiate_target()
8619   { return new Target_powerpc<size, big_endian>(); }
8620 };
8621
8622 Target_selector_powerpc<32, true> target_selector_ppc32;
8623 Target_selector_powerpc<32, false> target_selector_ppc32le;
8624 Target_selector_powerpc<64, true> target_selector_ppc64;
8625 Target_selector_powerpc<64, false> target_selector_ppc64le;
8626
8627 // Instantiate these constants for -O0
8628 template<int size, bool big_endian>
8629 const int Output_data_glink<size, big_endian>::pltresolve_size;
8630 template<int size, bool big_endian>
8631 const typename Output_data_glink<size, big_endian>::Address
8632   Output_data_glink<size, big_endian>::invalid_address;
8633 template<int size, bool big_endian>
8634 const typename Stub_table<size, big_endian>::Address
8635   Stub_table<size, big_endian>::invalid_address;
8636 template<int size, bool big_endian>
8637 const typename Target_powerpc<size, big_endian>::Address
8638   Target_powerpc<size, big_endian>::invalid_address;
8639
8640 } // End anonymous namespace.