* powerpc.cc (Output_data_plt_powerpc::add_entry, add_ifunc_entry,
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include "elfcpp.h"
27 #include "parameters.h"
28 #include "reloc.h"
29 #include "powerpc.h"
30 #include "object.h"
31 #include "symtab.h"
32 #include "layout.h"
33 #include "output.h"
34 #include "copy-relocs.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
39 #include "errors.h"
40 #include "gc.h"
41
42 namespace
43 {
44
45 using namespace gold;
46
47 template<int size, bool big_endian>
48 class Output_data_plt_powerpc;
49
50 template<int size, bool big_endian>
51 class Output_data_got_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_glink;
55
56 template<int size, bool big_endian>
57 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
58 {
59 public:
60   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
61   typedef typename elfcpp::Elf_types<size>::Elf_Off Offset;
62   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
63   typedef Unordered_map<Address, Section_refs> Access_from;
64
65   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
66                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
67     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
68       special_(0), opd_valid_(false), opd_ent_(), access_from_map_()
69   { }
70
71   ~Powerpc_relobj()
72   { }
73
74   // The .got2 section shndx.
75   unsigned int
76   got2_shndx() const
77   {
78     if (size == 32)
79       return this->special_;
80     else
81       return 0;
82   }
83
84   // The .opd section shndx.
85   unsigned int
86   opd_shndx() const
87   {
88     if (size == 32)
89       return 0;
90     else
91       return this->special_;
92   }
93
94   // Init OPD entry arrays.
95   void
96   init_opd(size_t opd_size)
97   {
98     size_t count = this->opd_ent_ndx(opd_size);
99     this->opd_ent_.resize(count);
100   }
101
102   // Return section and offset of function entry for .opd + R_OFF.
103   unsigned int
104   get_opd_ent(Address r_off, Address* value = NULL) const
105   {
106     size_t ndx = this->opd_ent_ndx(r_off);
107     gold_assert(ndx < this->opd_ent_.size());
108     gold_assert(this->opd_ent_[ndx].shndx != 0);
109     if (value != NULL)
110       *value = this->opd_ent_[ndx].off;
111     return this->opd_ent_[ndx].shndx;
112   }
113
114   // Set section and offset of function entry for .opd + R_OFF.
115   void
116   set_opd_ent(Address r_off, unsigned int shndx, Address value)
117   {
118     size_t ndx = this->opd_ent_ndx(r_off);
119     gold_assert(ndx < this->opd_ent_.size());
120     this->opd_ent_[ndx].shndx = shndx;
121     this->opd_ent_[ndx].off = value;
122   }
123
124   // Return discard flag for .opd + R_OFF.
125   bool
126   get_opd_discard(Address r_off) const
127   {
128     size_t ndx = this->opd_ent_ndx(r_off);
129     gold_assert(ndx < this->opd_ent_.size());
130     return this->opd_ent_[ndx].discard;
131   }
132
133   // Set discard flag for .opd + R_OFF.
134   void
135   set_opd_discard(Address r_off)
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     this->opd_ent_[ndx].discard = true;
140   }
141
142   Access_from*
143   access_from_map()
144   { return &this->access_from_map_; }
145
146   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
147   // section at DST_OFF.
148   void
149   add_reference(Object* src_obj,
150                 unsigned int src_indx,
151                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
152   {
153     Section_id src_id(src_obj, src_indx);
154     this->access_from_map_[dst_off].insert(src_id);
155   }
156
157   bool
158   opd_valid() const
159   { return this->opd_valid_; }
160
161   void
162   set_opd_valid()
163   { this->opd_valid_ = true; }
164
165   // Examine .rela.opd to build info about function entry points.
166   void
167   scan_opd_relocs(size_t reloc_count,
168                   const unsigned char* prelocs,
169                   const unsigned char* plocal_syms);
170
171   void
172   do_read_relocs(Read_relocs_data*);
173
174   bool
175   do_find_special_sections(Read_symbols_data* sd);
176
177   // Adjust this local symbol value.  Return false if the symbol
178   // should be discarded from the output file.
179   bool
180   do_adjust_local_symbol(Symbol_value<size>* lv) const
181   {
182     if (size == 64 && this->opd_shndx() != 0)
183       {
184         bool is_ordinary;
185         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
186           return true;
187         if (this->get_opd_discard(lv->input_value()))
188           return false;
189       }
190     return true;
191   }
192
193   // Return offset in output GOT section that this object will use
194   // as a TOC pointer.  Won't be just a constant with multi-toc support.
195   Address
196   toc_base_offset() const
197   { return 0x8000; }
198
199 private:
200   struct Opd_ent
201   {
202     unsigned int shndx;
203     bool discard;
204     Offset off;
205   };
206
207   // Return index into opd_ent_ array for .opd entry at OFF.
208   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
209   // apart when the language doesn't use the last 8-byte word, the
210   // environment pointer.  Thus dividing the entry section offset by
211   // 16 will give an index into opd_ent_ that works for either layout
212   // of .opd.  (It leaves some elements of the vector unused when .opd
213   // entries are spaced 24 bytes apart, but we don't know the spacing
214   // until relocations are processed, and in any case it is possible
215   // for an object to have some entries spaced 16 bytes apart and
216   // others 24 bytes apart.)
217   size_t
218   opd_ent_ndx(size_t off) const
219   { return off >> 4;}
220
221   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
222   unsigned int special_;
223
224   // Set at the start of gc_process_relocs, when we know opd_ent_
225   // vector is valid.  The flag could be made atomic and set in
226   // do_read_relocs with memory_order_release and then tested with
227   // memory_order_acquire, potentially resulting in fewer entries in
228   // access_from_map_.
229   bool opd_valid_;
230
231   // The first 8-byte word of an OPD entry gives the address of the
232   // entry point of the function.  Relocatable object files have a
233   // relocation on this word.  The following vector records the
234   // section and offset specified by these relocations.
235   std::vector<Opd_ent> opd_ent_;
236
237   // References made to this object's .opd section when running
238   // gc_process_relocs for another object, before the opd_ent_ vector
239   // is valid for this object.
240   Access_from access_from_map_;
241 };
242
243 template<int size, bool big_endian>
244 class Target_powerpc : public Sized_target<size, big_endian>
245 {
246  public:
247   typedef
248     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
249   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
250   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
251   static const Address invalid_address = static_cast<Address>(0) - 1;
252   // Offset of tp and dtp pointers from start of TLS block.
253   static const Address tp_offset = 0x7000;
254   static const Address dtp_offset = 0x8000;
255
256   Target_powerpc()
257     : Sized_target<size, big_endian>(&powerpc_info),
258       got_(NULL), plt_(NULL), iplt_(NULL), glink_(NULL), rela_dyn_(NULL),
259       copy_relocs_(elfcpp::R_POWERPC_COPY),
260       dynbss_(NULL), tlsld_got_offset_(-1U)
261   {
262   }
263
264   // Process the relocations to determine unreferenced sections for
265   // garbage collection.
266   void
267   gc_process_relocs(Symbol_table* symtab,
268                     Layout* layout,
269                     Sized_relobj_file<size, big_endian>* object,
270                     unsigned int data_shndx,
271                     unsigned int sh_type,
272                     const unsigned char* prelocs,
273                     size_t reloc_count,
274                     Output_section* output_section,
275                     bool needs_special_offset_handling,
276                     size_t local_symbol_count,
277                     const unsigned char* plocal_symbols);
278
279   // Scan the relocations to look for symbol adjustments.
280   void
281   scan_relocs(Symbol_table* symtab,
282               Layout* layout,
283               Sized_relobj_file<size, big_endian>* object,
284               unsigned int data_shndx,
285               unsigned int sh_type,
286               const unsigned char* prelocs,
287               size_t reloc_count,
288               Output_section* output_section,
289               bool needs_special_offset_handling,
290               size_t local_symbol_count,
291               const unsigned char* plocal_symbols);
292
293   // Map input .toc section to output .got section.
294   const char*
295   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
296   {
297     if (size == 64 && strcmp(name, ".toc") == 0)
298       {
299         *plen = 4;
300         return ".got";
301       }
302     return NULL;
303   }
304
305   // Finalize the sections.
306   void
307   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
308
309   // Return the value to use for a dynamic which requires special
310   // treatment.
311   uint64_t
312   do_dynsym_value(const Symbol*) const;
313
314   // Return the PLT address to use for a local symbol.
315   uint64_t
316   do_plt_address_for_local(const Relobj*, unsigned int) const;
317
318   // Return the PLT address to use for a global symbol.
319   uint64_t
320   do_plt_address_for_global(const Symbol*) const;
321
322   // Return the offset to use for the GOT_INDX'th got entry which is
323   // for a local tls symbol specified by OBJECT, SYMNDX.
324   int64_t
325   do_tls_offset_for_local(const Relobj* object,
326                           unsigned int symndx,
327                           unsigned int got_indx) const;
328
329   // Return the offset to use for the GOT_INDX'th got entry which is
330   // for global tls symbol GSYM.
331   int64_t
332   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
333
334   // Relocate a section.
335   void
336   relocate_section(const Relocate_info<size, big_endian>*,
337                    unsigned int sh_type,
338                    const unsigned char* prelocs,
339                    size_t reloc_count,
340                    Output_section* output_section,
341                    bool needs_special_offset_handling,
342                    unsigned char* view,
343                    Address view_address,
344                    section_size_type view_size,
345                    const Reloc_symbol_changes*);
346
347   // Scan the relocs during a relocatable link.
348   void
349   scan_relocatable_relocs(Symbol_table* symtab,
350                           Layout* layout,
351                           Sized_relobj_file<size, big_endian>* object,
352                           unsigned int data_shndx,
353                           unsigned int sh_type,
354                           const unsigned char* prelocs,
355                           size_t reloc_count,
356                           Output_section* output_section,
357                           bool needs_special_offset_handling,
358                           size_t local_symbol_count,
359                           const unsigned char* plocal_symbols,
360                           Relocatable_relocs*);
361
362   // Emit relocations for a section.
363   void
364   relocate_relocs(const Relocate_info<size, big_endian>*,
365                   unsigned int sh_type,
366                   const unsigned char* prelocs,
367                   size_t reloc_count,
368                   Output_section* output_section,
369                   off_t offset_in_output_section,
370                   const Relocatable_relocs*,
371                   unsigned char*,
372                   Address view_address,
373                   section_size_type,
374                   unsigned char* reloc_view,
375                   section_size_type reloc_view_size);
376
377   // Return whether SYM is defined by the ABI.
378   bool
379   do_is_defined_by_abi(const Symbol* sym) const
380   {
381     return strcmp(sym->name(), "__tls_get_addr") == 0;
382   }
383
384   // Return the size of the GOT section.
385   section_size_type
386   got_size() const
387   {
388     gold_assert(this->got_ != NULL);
389     return this->got_->data_size();
390   }
391
392   // Get the PLT section.
393   const Output_data_plt_powerpc<size, big_endian>*
394   plt_section() const
395   {
396     gold_assert(this->plt_ != NULL);
397     return this->plt_;
398   }
399
400   // Get the IPLT section.
401   const Output_data_plt_powerpc<size, big_endian>*
402   iplt_section() const
403   {
404     gold_assert(this->iplt_ != NULL);
405     return this->iplt_;
406   }
407
408   // Get the .glink section.
409   const Output_data_glink<size, big_endian>*
410   glink_section() const
411   {
412     gold_assert(this->glink_ != NULL);
413     return this->glink_;
414   }
415
416   // Get the GOT section.
417   const Output_data_got_powerpc<size, big_endian>*
418   got_section() const
419   {
420     gold_assert(this->got_ != NULL);
421     return this->got_;
422   }
423
424   Object*
425   do_make_elf_object(const std::string&, Input_file*, off_t,
426                      const elfcpp::Ehdr<size, big_endian>&);
427
428   // Return the number of entries in the GOT.
429   unsigned int
430   got_entry_count() const
431   {
432     if (this->got_ == NULL)
433       return 0;
434     return this->got_size() / (size / 8);
435   }
436
437   // Return the number of entries in the PLT.
438   unsigned int
439   plt_entry_count() const;
440
441   // Return the offset of the first non-reserved PLT entry.
442   unsigned int
443   first_plt_entry_offset() const;
444
445   // Return the size of each PLT entry.
446   unsigned int
447   plt_entry_size() const;
448
449   // Add any special sections for this symbol to the gc work list.
450   // For powerpc64, this adds the code section of a function
451   // descriptor.
452   void
453   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
454
455   // Handle target specific gc actions when adding a gc reference from
456   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
457   // and DST_OFF.  For powerpc64, this adds a referenc to the code
458   // section of a function descriptor.
459   void
460   do_gc_add_reference(Symbol_table* symtab,
461                       Object* src_obj,
462                       unsigned int src_shndx,
463                       Object* dst_obj,
464                       unsigned int dst_shndx,
465                       Address dst_off) const;
466
467  private:
468
469   // The class which scans relocations.
470   class Scan
471   {
472   public:
473     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
474
475     Scan()
476       : issued_non_pic_error_(false)
477     { }
478
479     static inline int
480     get_reference_flags(unsigned int r_type);
481
482     inline void
483     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
484           Sized_relobj_file<size, big_endian>* object,
485           unsigned int data_shndx,
486           Output_section* output_section,
487           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
488           const elfcpp::Sym<size, big_endian>& lsym,
489           bool is_discarded);
490
491     inline void
492     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
493            Sized_relobj_file<size, big_endian>* object,
494            unsigned int data_shndx,
495            Output_section* output_section,
496            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
497            Symbol* gsym);
498
499     inline bool
500     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
501                                         Target_powerpc* ,
502                                         Sized_relobj_file<size, big_endian>* ,
503                                         unsigned int ,
504                                         Output_section* ,
505                                         const elfcpp::Rela<size, big_endian>& ,
506                                         unsigned int ,
507                                         const elfcpp::Sym<size, big_endian>&)
508     { return false; }
509
510     inline bool
511     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
512                                          Target_powerpc* ,
513                                          Sized_relobj_file<size, big_endian>* ,
514                                          unsigned int ,
515                                          Output_section* ,
516                                          const elfcpp::Rela<size,
517                                                             big_endian>& ,
518                                          unsigned int , Symbol*)
519     { return false; }
520
521   private:
522     static void
523     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
524                             unsigned int r_type);
525
526     static void
527     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
528                              unsigned int r_type, Symbol*);
529
530     static void
531     generate_tls_call(Symbol_table* symtab, Layout* layout,
532                       Target_powerpc* target);
533
534     void
535     check_non_pic(Relobj*, unsigned int r_type);
536
537     bool
538     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>* object,
539                               unsigned int r_type);
540
541     // Whether we have issued an error about a non-PIC compilation.
542     bool issued_non_pic_error_;
543   };
544
545   Address
546   symval_for_branch(Address value, const Sized_symbol<size>* gsym,
547                     Powerpc_relobj<size, big_endian>* object,
548                     unsigned int *dest_shndx);
549
550   // The class which implements relocation.
551   class Relocate
552   {
553    public:
554     // Use 'at' branch hints when true, 'y' when false.
555     // FIXME maybe: set this with an option.
556     static const bool is_isa_v2 = true;
557
558     enum skip_tls
559     {
560       CALL_NOT_EXPECTED = 0,
561       CALL_EXPECTED = 1,
562       CALL_SKIP = 2
563     };
564
565     Relocate()
566       : call_tls_get_addr_(CALL_NOT_EXPECTED)
567     { }
568
569     ~Relocate()
570     {
571       if (this->call_tls_get_addr_ != CALL_NOT_EXPECTED)
572         {
573           // FIXME: This needs to specify the location somehow.
574           gold_error(_("missing expected __tls_get_addr call"));
575         }
576     }
577
578     // Do a relocation.  Return false if the caller should not issue
579     // any warnings about this relocation.
580     inline bool
581     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
582              Output_section*, size_t relnum,
583              const elfcpp::Rela<size, big_endian>&,
584              unsigned int r_type, const Sized_symbol<size>*,
585              const Symbol_value<size>*,
586              unsigned char*,
587              typename elfcpp::Elf_types<size>::Elf_Addr,
588              section_size_type);
589
590     // This is set if we should skip the next reloc, which should be a
591     // call to __tls_get_addr.
592     enum skip_tls call_tls_get_addr_;
593   };
594
595   // A class which returns the size required for a relocation type,
596   // used while scanning relocs during a relocatable link.
597   class Relocatable_size_for_reloc
598   {
599    public:
600     unsigned int
601     get_size_for_reloc(unsigned int, Relobj*)
602     {
603       gold_unreachable();
604       return 0;
605     }
606   };
607
608   // Optimize the TLS relocation type based on what we know about the
609   // symbol.  IS_FINAL is true if the final address of this symbol is
610   // known at link time.
611
612   tls::Tls_optimization
613   optimize_tls_gd(bool is_final)
614   {
615     // If we are generating a shared library, then we can't do anything
616     // in the linker.
617     if (parameters->options().shared())
618       return tls::TLSOPT_NONE;
619
620     if (!is_final)
621       return tls::TLSOPT_TO_IE;
622     return tls::TLSOPT_TO_LE;
623   }
624
625   tls::Tls_optimization
626   optimize_tls_ld()
627   {
628     if (parameters->options().shared())
629       return tls::TLSOPT_NONE;
630
631     return tls::TLSOPT_TO_LE;
632   }
633
634   tls::Tls_optimization
635   optimize_tls_ie(bool is_final)
636   {
637     if (!is_final || parameters->options().shared())
638       return tls::TLSOPT_NONE;
639
640     return tls::TLSOPT_TO_LE;
641   }
642
643   // Get the GOT section, creating it if necessary.
644   Output_data_got_powerpc<size, big_endian>*
645   got_section(Symbol_table*, Layout*);
646
647   // Create glink.
648   void
649   make_glink_section(Layout*);
650
651   // Create the PLT section.
652   void
653   make_plt_section(Layout*);
654
655   void
656   make_iplt_section(Layout*);
657
658   // Create a PLT entry for a global symbol.
659   void
660   make_plt_entry(Layout*, Symbol*,
661                  const elfcpp::Rela<size, big_endian>&,
662                  const Sized_relobj_file<size, big_endian>* object);
663
664   // Create a PLT entry for a local IFUNC symbol.
665   void
666   make_local_ifunc_plt_entry(Layout*,
667                              const elfcpp::Rela<size, big_endian>&,
668                              Sized_relobj_file<size, big_endian>*);
669
670   // Create a GOT entry for local dynamic __tls_get_addr.
671   unsigned int
672   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
673                    Sized_relobj_file<size, big_endian>* object);
674
675   unsigned int
676   tlsld_got_offset() const
677   {
678     return this->tlsld_got_offset_;
679   }
680
681   // Get the dynamic reloc section, creating it if necessary.
682   Reloc_section*
683   rela_dyn_section(Layout*);
684
685   // Copy a relocation against a global symbol.
686   void
687   copy_reloc(Symbol_table* symtab, Layout* layout,
688              Sized_relobj_file<size, big_endian>* object,
689              unsigned int shndx, Output_section* output_section,
690              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
691   {
692     this->copy_relocs_.copy_reloc(symtab, layout,
693                                   symtab->get_sized_symbol<size>(sym),
694                                   object, shndx, output_section,
695                                   reloc, this->rela_dyn_section(layout));
696   }
697
698   // Information about this specific target which we pass to the
699   // general Target structure.
700   static Target::Target_info powerpc_info;
701
702   // The types of GOT entries needed for this platform.
703   // These values are exposed to the ABI in an incremental link.
704   // Do not renumber existing values without changing the version
705   // number of the .gnu_incremental_inputs section.
706   enum Got_type
707   {
708     GOT_TYPE_STANDARD,
709     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
710     GOT_TYPE_DTPREL,    // entry for @got@dtprel
711     GOT_TYPE_TPREL      // entry for @got@tprel
712   };
713
714   // The GOT output section.
715   Output_data_got_powerpc<size, big_endian>* got_;
716   // The PLT output section.
717   Output_data_plt_powerpc<size, big_endian>* plt_;
718   // The IPLT output section.
719   Output_data_plt_powerpc<size, big_endian>* iplt_;
720   // The .glink output section.
721   Output_data_glink<size, big_endian>* glink_;
722   // The dynamic reloc output section.
723   Reloc_section* rela_dyn_;
724   // Relocs saved to avoid a COPY reloc.
725   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
726   // Space for variables copied with a COPY reloc.
727   Output_data_space* dynbss_;
728   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
729   unsigned int tlsld_got_offset_;
730 };
731
732 template<>
733 Target::Target_info Target_powerpc<32, true>::powerpc_info =
734 {
735   32,                   // size
736   true,                 // is_big_endian
737   elfcpp::EM_PPC,       // machine_code
738   false,                // has_make_symbol
739   false,                // has_resolve
740   false,                // has_code_fill
741   true,                 // is_default_stack_executable
742   false,                // can_icf_inline_merge_sections
743   '\0',                 // wrap_char
744   "/usr/lib/ld.so.1",   // dynamic_linker
745   0x10000000,           // default_text_segment_address
746   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
747   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
748   false,                // isolate_execinstr
749   0,                    // rosegment_gap
750   elfcpp::SHN_UNDEF,    // small_common_shndx
751   elfcpp::SHN_UNDEF,    // large_common_shndx
752   0,                    // small_common_section_flags
753   0,                    // large_common_section_flags
754   NULL,                 // attributes_section
755   NULL                  // attributes_vendor
756 };
757
758 template<>
759 Target::Target_info Target_powerpc<32, false>::powerpc_info =
760 {
761   32,                   // size
762   false,                // is_big_endian
763   elfcpp::EM_PPC,       // machine_code
764   false,                // has_make_symbol
765   false,                // has_resolve
766   false,                // has_code_fill
767   true,                 // is_default_stack_executable
768   false,                // can_icf_inline_merge_sections
769   '\0',                 // wrap_char
770   "/usr/lib/ld.so.1",   // dynamic_linker
771   0x10000000,           // default_text_segment_address
772   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
773   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
774   false,                // isolate_execinstr
775   0,                    // rosegment_gap
776   elfcpp::SHN_UNDEF,    // small_common_shndx
777   elfcpp::SHN_UNDEF,    // large_common_shndx
778   0,                    // small_common_section_flags
779   0,                    // large_common_section_flags
780   NULL,                 // attributes_section
781   NULL                  // attributes_vendor
782 };
783
784 template<>
785 Target::Target_info Target_powerpc<64, true>::powerpc_info =
786 {
787   64,                   // size
788   true,                 // is_big_endian
789   elfcpp::EM_PPC64,     // machine_code
790   false,                // has_make_symbol
791   false,                // has_resolve
792   false,                // has_code_fill
793   true,                 // is_default_stack_executable
794   false,                // can_icf_inline_merge_sections
795   '\0',                 // wrap_char
796   "/usr/lib/ld.so.1",   // dynamic_linker
797   0x10000000,           // default_text_segment_address
798   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
799   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
800   false,                // isolate_execinstr
801   0,                    // rosegment_gap
802   elfcpp::SHN_UNDEF,    // small_common_shndx
803   elfcpp::SHN_UNDEF,    // large_common_shndx
804   0,                    // small_common_section_flags
805   0,                    // large_common_section_flags
806   NULL,                 // attributes_section
807   NULL                  // attributes_vendor
808 };
809
810 template<>
811 Target::Target_info Target_powerpc<64, false>::powerpc_info =
812 {
813   64,                   // size
814   false,                // is_big_endian
815   elfcpp::EM_PPC64,     // machine_code
816   false,                // has_make_symbol
817   false,                // has_resolve
818   false,                // has_code_fill
819   true,                 // is_default_stack_executable
820   false,                // can_icf_inline_merge_sections
821   '\0',                 // wrap_char
822   "/usr/lib/ld.so.1",   // dynamic_linker
823   0x10000000,           // default_text_segment_address
824   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
825   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
826   false,                // isolate_execinstr
827   0,                    // rosegment_gap
828   elfcpp::SHN_UNDEF,    // small_common_shndx
829   elfcpp::SHN_UNDEF,    // large_common_shndx
830   0,                    // small_common_section_flags
831   0,                    // large_common_section_flags
832   NULL,                 // attributes_section
833   NULL                  // attributes_vendor
834 };
835
836 inline bool
837 is_branch_reloc(unsigned int r_type)
838 {
839   return (r_type == elfcpp::R_POWERPC_REL24
840           || r_type == elfcpp::R_PPC_PLTREL24
841           || r_type == elfcpp::R_PPC_LOCAL24PC
842           || r_type == elfcpp::R_POWERPC_REL14
843           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
844           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
845           || r_type == elfcpp::R_POWERPC_ADDR24
846           || r_type == elfcpp::R_POWERPC_ADDR14
847           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
848           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
849 }
850
851 // If INSN is an opcode that may be used with an @tls operand, return
852 // the transformed insn for TLS optimisation, otherwise return 0.  If
853 // REG is non-zero only match an insn with RB or RA equal to REG.
854 uint32_t
855 at_tls_transform(uint32_t insn, unsigned int reg)
856 {
857   if ((insn & (0x3f << 26)) != 31 << 26)
858     return 0;
859
860   unsigned int rtra;
861   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
862     rtra = insn & ((1 << 26) - (1 << 16));
863   else if (((insn >> 16) & 0x1f) == reg)
864     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
865   else
866     return 0;
867
868   if ((insn & (0x3ff << 1)) == 266 << 1)
869     // add -> addi
870     insn = 14 << 26;
871   else if ((insn & (0x1f << 1)) == 23 << 1
872            && ((insn & (0x1f << 6)) < 14 << 6
873                || ((insn & (0x1f << 6)) >= 16 << 6
874                    && (insn & (0x1f << 6)) < 24 << 6)))
875     // load and store indexed -> dform
876     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
877   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
878     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
879     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
880   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
881     // lwax -> lwa
882     insn = (58 << 26) | 2;
883   else
884     return 0;
885   insn |= rtra;
886   return insn;
887 }
888
889 // Modified version of symtab.h class Symbol member
890 // Given a direct absolute or pc-relative static relocation against
891 // the global symbol, this function returns whether a dynamic relocation
892 // is needed.
893
894 template<int size>
895 bool
896 needs_dynamic_reloc(const Symbol* gsym, int flags)
897 {
898   // No dynamic relocations in a static link!
899   if (parameters->doing_static_link())
900     return false;
901
902   // A reference to an undefined symbol from an executable should be
903   // statically resolved to 0, and does not need a dynamic relocation.
904   // This matches gnu ld behavior.
905   if (gsym->is_undefined() && !parameters->options().shared())
906     return false;
907
908   // A reference to an absolute symbol does not need a dynamic relocation.
909   if (gsym->is_absolute())
910     return false;
911
912   // An absolute reference within a position-independent output file
913   // will need a dynamic relocation.
914   if ((flags & Symbol::ABSOLUTE_REF)
915       && parameters->options().output_is_position_independent())
916     return true;
917
918   // A function call that can branch to a local PLT entry does not need
919   // a dynamic relocation.
920   if ((flags & Symbol::FUNCTION_CALL) && gsym->has_plt_offset())
921     return false;
922
923   // A reference to any PLT entry in a non-position-independent executable
924   // does not need a dynamic relocation.
925   // Except due to having function descriptors on powerpc64 we don't define
926   // functions to their plt code in an executable, so this doesn't apply.
927   if (size == 32
928       && !parameters->options().output_is_position_independent()
929       && gsym->has_plt_offset())
930     return false;
931
932   // A reference to a symbol defined in a dynamic object or to a
933   // symbol that is preemptible will need a dynamic relocation.
934   if (gsym->is_from_dynobj()
935       || gsym->is_undefined()
936       || gsym->is_preemptible())
937     return true;
938
939   // For all other cases, return FALSE.
940   return false;
941 }
942
943 // Modified version of symtab.h class Symbol member
944 // Whether we should use the PLT offset associated with a symbol for
945 // a relocation.  FLAGS is a set of Reference_flags.
946
947 template<int size>
948 bool
949 use_plt_offset(const Symbol* gsym, int flags)
950 {
951   // If the symbol doesn't have a PLT offset, then naturally we
952   // don't want to use it.
953   if (!gsym->has_plt_offset())
954     return false;
955
956   // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
957   if (gsym->type() == elfcpp::STT_GNU_IFUNC)
958     return true;
959
960   // If we are going to generate a dynamic relocation, then we will
961   // wind up using that, so no need to use the PLT entry.
962   if (needs_dynamic_reloc<size>(gsym, flags))
963     return false;
964
965   // If the symbol is from a dynamic object, we need to use the PLT
966   // entry.
967   if (gsym->is_from_dynobj())
968     return true;
969
970   // If we are generating a shared object, and gsym symbol is
971   // undefined or preemptible, we need to use the PLT entry.
972   if (parameters->options().shared()
973       && (gsym->is_undefined() || gsym->is_preemptible()))
974     return true;
975
976   // If gsym is a call to a weak undefined symbol, we need to use
977   // the PLT entry; the symbol may be defined by a library loaded
978   // at runtime.
979   if ((flags & Symbol::FUNCTION_CALL) && gsym->is_weak_undefined())
980     return true;
981
982   // Otherwise we can use the regular definition.
983   return false;
984 }
985
986 template<int size, bool big_endian>
987 class Powerpc_relocate_functions
988 {
989 public:
990   enum Overflow_check
991   {
992     CHECK_NONE,
993     CHECK_SIGNED,
994     CHECK_BITFIELD
995   };
996
997   enum Status
998   {
999     STATUS_OK,
1000     STATUS_OVERFLOW
1001   };
1002
1003 private:
1004   typedef Powerpc_relocate_functions<size, big_endian> This;
1005   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1006
1007   template<int valsize>
1008   static inline bool
1009   has_overflow_signed(Address value)
1010   {
1011     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1012     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1013     limit <<= ((valsize - 1) >> 1);
1014     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1015     return value + limit > (limit << 1) - 1;
1016   }
1017
1018   template<int valsize>
1019   static inline bool
1020   has_overflow_bitfield(Address value)
1021   {
1022     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1023     limit <<= ((valsize - 1) >> 1);
1024     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1025     return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
1026   }
1027
1028   template<int valsize>
1029   static inline Status
1030   overflowed(Address value, Overflow_check overflow)
1031   {
1032     if (overflow == CHECK_SIGNED)
1033       {
1034         if (has_overflow_signed<valsize>(value))
1035           return STATUS_OVERFLOW;
1036       }
1037     else if (overflow == CHECK_BITFIELD)
1038       {
1039         if (has_overflow_bitfield<valsize>(value))
1040           return STATUS_OVERFLOW;
1041       }
1042     return STATUS_OK;
1043   }
1044
1045   // Do a simple RELA relocation
1046   template<int valsize>
1047   static inline Status
1048   rela(unsigned char* view, Address value, Overflow_check overflow)
1049   {
1050     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1051     Valtype* wv = reinterpret_cast<Valtype*>(view);
1052     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1053     return overflowed<valsize>(value, overflow);
1054   }
1055
1056   template<int valsize>
1057   static inline Status
1058   rela(unsigned char* view,
1059        unsigned int right_shift,
1060        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1061        Address value,
1062        Overflow_check overflow)
1063   {
1064     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1065     Valtype* wv = reinterpret_cast<Valtype*>(view);
1066     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1067     Valtype reloc = value >> right_shift;
1068     val &= ~dst_mask;
1069     reloc &= dst_mask;
1070     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1071     return overflowed<valsize>(value >> right_shift, overflow);
1072   }
1073
1074   // Do a simple RELA relocation, unaligned.
1075   template<int valsize>
1076   static inline Status
1077   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1078   {
1079     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1080     return overflowed<valsize>(value, overflow);
1081   }
1082
1083   template<int valsize>
1084   static inline Status
1085   rela_ua(unsigned char* view,
1086           unsigned int right_shift,
1087           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1088           Address value,
1089           Overflow_check overflow)
1090   {
1091     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1092       Valtype;
1093     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1094     Valtype reloc = value >> right_shift;
1095     val &= ~dst_mask;
1096     reloc &= dst_mask;
1097     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1098     return overflowed<valsize>(value >> right_shift, overflow);
1099   }
1100
1101 public:
1102   // R_PPC64_ADDR64: (Symbol + Addend)
1103   static inline void
1104   addr64(unsigned char* view, Address value)
1105   { This::template rela<64>(view, value, CHECK_NONE); }
1106
1107   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1108   static inline void
1109   addr64_u(unsigned char* view, Address value)
1110   { This::template rela_ua<64>(view, value, CHECK_NONE); }
1111
1112   // R_POWERPC_ADDR32: (Symbol + Addend)
1113   static inline Status
1114   addr32(unsigned char* view, Address value, Overflow_check overflow)
1115   { return This::template rela<32>(view, value, overflow); }
1116
1117   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1118   static inline Status
1119   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1120   { return This::template rela_ua<32>(view, value, overflow); }
1121
1122   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1123   static inline Status
1124   addr24(unsigned char* view, Address value, Overflow_check overflow)
1125   {
1126     Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1127     if (overflow != CHECK_NONE && (value & 3) != 0)
1128       stat = STATUS_OVERFLOW;
1129     return stat;
1130   }
1131
1132   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1133   static inline Status
1134   addr16(unsigned char* view, Address value, Overflow_check overflow)
1135   { return This::template rela<16>(view, value, overflow); }
1136
1137   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1138   static inline Status
1139   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1140   { return This::template rela_ua<16>(view, value, overflow); }
1141
1142   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1143   static inline Status
1144   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1145   {
1146     Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1147     if (overflow != CHECK_NONE && (value & 3) != 0)
1148       stat = STATUS_OVERFLOW;
1149     return stat;
1150   }
1151
1152   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1153   static inline void
1154   addr16_hi(unsigned char* view, Address value)
1155   { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1156
1157   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1158   static inline void
1159   addr16_ha(unsigned char* view, Address value)
1160   { This::addr16_hi(view, value + 0x8000); }
1161
1162   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1163   static inline void
1164   addr16_hi2(unsigned char* view, Address value)
1165   { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1166
1167   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1168   static inline void
1169   addr16_ha2(unsigned char* view, Address value)
1170   { This::addr16_hi2(view, value + 0x8000); }
1171
1172   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1173   static inline void
1174   addr16_hi3(unsigned char* view, Address value)
1175   { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1176
1177   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1178   static inline void
1179   addr16_ha3(unsigned char* view, Address value)
1180   { This::addr16_hi3(view, value + 0x8000); }
1181
1182   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1183   static inline Status
1184   addr14(unsigned char* view, Address value, Overflow_check overflow)
1185   {
1186     Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1187     if (overflow != CHECK_NONE && (value & 3) != 0)
1188       stat = STATUS_OVERFLOW;
1189     return stat;
1190   }
1191 };
1192
1193 // Stash away the index of .got2 or .opd in a relocatable object, if
1194 // such a section exists.
1195
1196 template<int size, bool big_endian>
1197 bool
1198 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1199     Read_symbols_data* sd)
1200 {
1201   const unsigned char* const pshdrs = sd->section_headers->data();
1202   const unsigned char* namesu = sd->section_names->data();
1203   const char* names = reinterpret_cast<const char*>(namesu);
1204   section_size_type names_size = sd->section_names_size;
1205   const unsigned char* s;
1206
1207   s = this->find_shdr(pshdrs, size == 32 ? ".got2" : ".opd",
1208                       names, names_size, NULL);
1209   if (s != NULL)
1210     {
1211       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1212       this->special_ = ndx;
1213     }
1214   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1215 }
1216
1217 // Examine .rela.opd to build info about function entry points.
1218
1219 template<int size, bool big_endian>
1220 void
1221 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1222     size_t reloc_count,
1223     const unsigned char* prelocs,
1224     const unsigned char* plocal_syms)
1225 {
1226   if (size == 64)
1227     {
1228       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1229         Reltype;
1230       const int reloc_size
1231         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1232       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1233       Address expected_off = 0;
1234       bool regular = true;
1235       unsigned int opd_ent_size = 0;
1236
1237       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1238         {
1239           Reltype reloc(prelocs);
1240           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1241             = reloc.get_r_info();
1242           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1243           if (r_type == elfcpp::R_PPC64_ADDR64)
1244             {
1245               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1246               typename elfcpp::Elf_types<size>::Elf_Addr value;
1247               bool is_ordinary;
1248               unsigned int shndx;
1249               if (r_sym < this->local_symbol_count())
1250                 {
1251                   typename elfcpp::Sym<size, big_endian>
1252                     lsym(plocal_syms + r_sym * sym_size);
1253                   shndx = lsym.get_st_shndx();
1254                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1255                   value = lsym.get_st_value();
1256                 }
1257               else
1258                 shndx = this->symbol_section_and_value(r_sym, &value,
1259                                                        &is_ordinary);
1260               this->set_opd_ent(reloc.get_r_offset(), shndx,
1261                                 value + reloc.get_r_addend());
1262               if (i == 2)
1263                 {
1264                   expected_off = reloc.get_r_offset();
1265                   opd_ent_size = expected_off;
1266                 }
1267               else if (expected_off != reloc.get_r_offset())
1268                 regular = false;
1269               expected_off += opd_ent_size;
1270             }
1271           else if (r_type == elfcpp::R_PPC64_TOC)
1272             {
1273               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1274                 regular = false;
1275             }
1276           else
1277             {
1278               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1279                            this->name().c_str(), r_type);
1280               regular = false;
1281             }
1282         }
1283       if (reloc_count <= 2)
1284         opd_ent_size = this->section_size(this->opd_shndx());
1285       if (opd_ent_size != 24 && opd_ent_size != 16)
1286         regular = false;
1287       if (!regular)
1288         {
1289           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1290                        this->name().c_str());
1291           opd_ent_size = 0;
1292         }
1293     }
1294 }
1295
1296 template<int size, bool big_endian>
1297 void
1298 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1299 {
1300   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1301   if (size == 64)
1302     {
1303       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1304            p != rd->relocs.end();
1305            ++p)
1306         {
1307           if (p->data_shndx == this->opd_shndx())
1308             {
1309               uint64_t opd_size = this->section_size(this->opd_shndx());
1310               gold_assert(opd_size == static_cast<size_t>(opd_size));
1311               if (opd_size != 0)
1312                 {
1313                   this->init_opd(opd_size);
1314                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1315                                         rd->local_symbols->data());
1316                 }
1317               break;
1318             }
1319         }
1320     }
1321 }
1322
1323 // Set up PowerPC target specific relobj.
1324
1325 template<int size, bool big_endian>
1326 Object*
1327 Target_powerpc<size, big_endian>::do_make_elf_object(
1328     const std::string& name,
1329     Input_file* input_file,
1330     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1331 {
1332   int et = ehdr.get_e_type();
1333   // ET_EXEC files are valid input for --just-symbols/-R,
1334   // and we treat them as relocatable objects.
1335   if (et == elfcpp::ET_REL
1336       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
1337     {
1338       Powerpc_relobj<size, big_endian>* obj =
1339         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
1340       obj->setup();
1341       return obj;
1342     }
1343   else if (et == elfcpp::ET_DYN)
1344     {
1345       Sized_dynobj<size, big_endian>* obj =
1346         new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1347       obj->setup();
1348       return obj;
1349     }
1350   else
1351     {
1352       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
1353       return NULL;
1354     }
1355 }
1356
1357 template<int size, bool big_endian>
1358 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
1359 {
1360 public:
1361   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1362   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1363
1364   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
1365     : Output_data_got<size, big_endian>(),
1366       symtab_(symtab), layout_(layout),
1367       header_ent_cnt_(size == 32 ? 3 : 1),
1368       header_index_(size == 32 ? 0x2000 : 0)
1369   {}
1370
1371   class Got_entry;
1372
1373   // Create a new GOT entry and return its offset.
1374   unsigned int
1375   add_got_entry(Got_entry got_entry)
1376   {
1377     this->reserve_ent();
1378     return Output_data_got<size, big_endian>::add_got_entry(got_entry);
1379   }
1380
1381   // Create a pair of new GOT entries and return the offset of the first.
1382   unsigned int
1383   add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2)
1384   {
1385     this->reserve_ent(2);
1386     return Output_data_got<size, big_endian>::add_got_entry_pair(got_entry_1,
1387                                                                  got_entry_2);
1388   }
1389
1390   unsigned int
1391   add_constant_pair(Valtype c1, Valtype c2)
1392   {
1393     this->reserve_ent(2);
1394     unsigned int got_offset = this->add_constant(c1);
1395     this->add_constant(c2);
1396     return got_offset;
1397   }
1398
1399   // Offset of _GLOBAL_OFFSET_TABLE_.
1400   unsigned int
1401   g_o_t() const
1402   {
1403     return this->got_offset(this->header_index_);
1404   }
1405
1406   // Offset of base used to access the GOT/TOC.
1407   // The got/toc pointer reg will be set to this value.
1408   typename elfcpp::Elf_types<size>::Elf_Off
1409   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
1410   {
1411     if (size == 32)
1412       return this->g_o_t();
1413     else
1414       return (this->output_section()->address()
1415               + object->toc_base_offset()
1416               - this->address());
1417   }
1418
1419   // Ensure our GOT has a header.
1420   void
1421   set_final_data_size()
1422   {
1423     if (this->header_ent_cnt_ != 0)
1424       this->make_header();
1425     Output_data_got<size, big_endian>::set_final_data_size();
1426   }
1427
1428   // First word of GOT header needs some values that are not
1429   // handled by Output_data_got so poke them in here.
1430   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
1431   void
1432   do_write(Output_file* of)
1433   {
1434     Valtype val = 0;
1435     if (size == 32 && this->layout_->dynamic_data() != NULL)
1436       val = this->layout_->dynamic_section()->address();
1437     if (size == 64)
1438       val = this->output_section()->address() + 0x8000;
1439     this->replace_constant(this->header_index_, val);
1440     Output_data_got<size, big_endian>::do_write(of);
1441   }
1442
1443 private:
1444   void
1445   reserve_ent(unsigned int cnt = 1)
1446   {
1447     if (this->header_ent_cnt_ == 0)
1448       return;
1449     if (this->num_entries() + cnt > this->header_index_)
1450       this->make_header();
1451   }
1452
1453   void
1454   make_header()
1455   {
1456     this->header_ent_cnt_ = 0;
1457     this->header_index_ = this->num_entries();
1458     if (size == 32)
1459       {
1460         Output_data_got<size, big_endian>::add_constant(0);
1461         Output_data_got<size, big_endian>::add_constant(0);
1462         Output_data_got<size, big_endian>::add_constant(0);
1463
1464         // Define _GLOBAL_OFFSET_TABLE_ at the header
1465         this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1466                                              Symbol_table::PREDEFINED,
1467                                              this, this->g_o_t(), 0,
1468                                              elfcpp::STT_OBJECT,
1469                                              elfcpp::STB_LOCAL,
1470                                              elfcpp::STV_HIDDEN,
1471                                              0, false, false);
1472       }
1473     else
1474       Output_data_got<size, big_endian>::add_constant(0);
1475   }
1476
1477   // Stashed pointers.
1478   Symbol_table* symtab_;
1479   Layout* layout_;
1480
1481   // GOT header size.
1482   unsigned int header_ent_cnt_;
1483   // GOT header index.
1484   unsigned int header_index_;
1485 };
1486
1487 // Get the GOT section, creating it if necessary.
1488
1489 template<int size, bool big_endian>
1490 Output_data_got_powerpc<size, big_endian>*
1491 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
1492                                               Layout* layout)
1493 {
1494   if (this->got_ == NULL)
1495     {
1496       gold_assert(symtab != NULL && layout != NULL);
1497
1498       this->got_
1499         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
1500
1501       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1502                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1503                                       this->got_, ORDER_DATA, false);
1504     }
1505
1506   return this->got_;
1507 }
1508
1509 // Get the dynamic reloc section, creating it if necessary.
1510
1511 template<int size, bool big_endian>
1512 typename Target_powerpc<size, big_endian>::Reloc_section*
1513 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
1514 {
1515   if (this->rela_dyn_ == NULL)
1516     {
1517       gold_assert(layout != NULL);
1518       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1519       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1520                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1521                                       ORDER_DYNAMIC_RELOCS, false);
1522     }
1523   return this->rela_dyn_;
1524 }
1525
1526 // A class to handle the PLT data.
1527
1528 template<int size, bool big_endian>
1529 class Output_data_plt_powerpc : public Output_section_data_build
1530 {
1531  public:
1532   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
1533                             size, big_endian> Reloc_section;
1534
1535   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
1536                           Reloc_section* plt_rel,
1537                           unsigned int reserved_size,
1538                           const char* name)
1539     : Output_section_data_build(size == 32 ? 4 : 8),
1540       rel_(plt_rel),
1541       targ_(targ),
1542       initial_plt_entry_size_(reserved_size),
1543       name_(name)
1544   { }
1545
1546   // Add an entry to the PLT.
1547   void
1548   add_entry(Symbol*);
1549
1550   void
1551   add_ifunc_entry(Symbol*);
1552
1553   void
1554   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
1555
1556   // Return the .rela.plt section data.
1557   Reloc_section*
1558   rel_plt() const
1559   {
1560     return this->rel_;
1561   }
1562
1563   // Return the number of PLT entries.
1564   unsigned int
1565   entry_count() const
1566   {
1567     return ((this->current_data_size() - this->initial_plt_entry_size_)
1568             / plt_entry_size);
1569   }
1570
1571   // Return the offset of the first non-reserved PLT entry.
1572   unsigned int
1573   first_plt_entry_offset()
1574   { return this->initial_plt_entry_size_; }
1575
1576   // Return the size of a PLT entry.
1577   static unsigned int
1578   get_plt_entry_size()
1579   { return plt_entry_size; }
1580
1581  protected:
1582   void
1583   do_adjust_output_section(Output_section* os)
1584   {
1585     os->set_entsize(0);
1586   }
1587
1588   // Write to a map file.
1589   void
1590   do_print_to_mapfile(Mapfile* mapfile) const
1591   { mapfile->print_output_data(this, this->name_); }
1592
1593  private:
1594   // The size of an entry in the PLT.
1595   static const int plt_entry_size = size == 32 ? 4 : 24;
1596
1597   // Write out the PLT data.
1598   void
1599   do_write(Output_file*);
1600
1601   // The reloc section.
1602   Reloc_section* rel_;
1603   // Allows access to .glink for do_write.
1604   Target_powerpc<size, big_endian>* targ_;
1605   // The size of the first reserved entry.
1606   int initial_plt_entry_size_;
1607   // What to report in map file.
1608   const char *name_;
1609 };
1610
1611 // Add an entry to the PLT.
1612
1613 template<int size, bool big_endian>
1614 void
1615 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
1616 {
1617   if (!gsym->has_plt_offset())
1618     {
1619       off_t off = this->current_data_size();
1620       if (off == 0)
1621         off += this->first_plt_entry_offset();
1622       gsym->set_plt_offset(off);
1623       gsym->set_needs_dynsym_entry();
1624       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
1625       this->rel_->add_global(gsym, dynrel, this, off, 0);
1626       off += plt_entry_size;
1627       this->set_current_data_size(off);
1628     }
1629 }
1630
1631 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
1632
1633 template<int size, bool big_endian>
1634 void
1635 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
1636 {
1637   if (!gsym->has_plt_offset())
1638     {
1639       off_t off = this->current_data_size();
1640       gsym->set_plt_offset(off);
1641       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
1642       if (size == 64)
1643         dynrel = elfcpp::R_PPC64_JMP_IREL;
1644       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
1645       off += plt_entry_size;
1646       this->set_current_data_size(off);
1647     }
1648 }
1649
1650 // Add an entry for a local ifunc symbol to the IPLT.
1651
1652 template<int size, bool big_endian>
1653 void
1654 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
1655     Sized_relobj_file<size, big_endian>* relobj,
1656     unsigned int local_sym_index)
1657 {
1658   if (!relobj->local_has_plt_offset(local_sym_index))
1659     {
1660       off_t off = this->current_data_size();
1661       relobj->set_local_plt_offset(local_sym_index, off);
1662       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
1663       if (size == 64)
1664         dynrel = elfcpp::R_PPC64_JMP_IREL;
1665       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
1666                                               this, off, 0);
1667       off += plt_entry_size;
1668       this->set_current_data_size(off);
1669     }
1670 }
1671
1672 static const uint32_t add_0_11_11       = 0x7c0b5a14;
1673 static const uint32_t add_3_3_2         = 0x7c631214;
1674 static const uint32_t add_3_3_13        = 0x7c636a14;
1675 static const uint32_t add_11_0_11       = 0x7d605a14;
1676 static const uint32_t add_12_2_11       = 0x7d825a14;
1677 static const uint32_t addi_11_11        = 0x396b0000;
1678 static const uint32_t addi_12_12        = 0x398c0000;
1679 static const uint32_t addi_2_2          = 0x38420000;
1680 static const uint32_t addi_3_2          = 0x38620000;
1681 static const uint32_t addi_3_3          = 0x38630000;
1682 static const uint32_t addis_0_2         = 0x3c020000;
1683 static const uint32_t addis_0_13        = 0x3c0d0000;
1684 static const uint32_t addis_11_11       = 0x3d6b0000;
1685 static const uint32_t addis_11_30       = 0x3d7e0000;
1686 static const uint32_t addis_12_12       = 0x3d8c0000;
1687 static const uint32_t addis_12_2        = 0x3d820000;
1688 static const uint32_t addis_3_2         = 0x3c620000;
1689 static const uint32_t addis_3_13        = 0x3c6d0000;
1690 static const uint32_t b                 = 0x48000000;
1691 static const uint32_t bcl_20_31         = 0x429f0005;
1692 static const uint32_t bctr              = 0x4e800420;
1693 static const uint32_t blrl              = 0x4e800021;
1694 static const uint32_t cror_15_15_15     = 0x4def7b82;
1695 static const uint32_t cror_31_31_31     = 0x4ffffb82;
1696 static const uint32_t ld_11_12          = 0xe96c0000;
1697 static const uint32_t ld_11_2           = 0xe9620000;
1698 static const uint32_t ld_2_1            = 0xe8410000;
1699 static const uint32_t ld_2_11           = 0xe84b0000;
1700 static const uint32_t ld_2_12           = 0xe84c0000;
1701 static const uint32_t ld_2_2            = 0xe8420000;
1702 static const uint32_t li_0_0            = 0x38000000;
1703 static const uint32_t lis_0_0           = 0x3c000000;
1704 static const uint32_t lis_11            = 0x3d600000;
1705 static const uint32_t lis_12            = 0x3d800000;
1706 static const uint32_t lwz_0_12          = 0x800c0000;
1707 static const uint32_t lwz_11_11         = 0x816b0000;
1708 static const uint32_t lwz_11_30         = 0x817e0000;
1709 static const uint32_t lwz_12_12         = 0x818c0000;
1710 static const uint32_t lwzu_0_12         = 0x840c0000;
1711 static const uint32_t mflr_0            = 0x7c0802a6;
1712 static const uint32_t mflr_11           = 0x7d6802a6;
1713 static const uint32_t mflr_12           = 0x7d8802a6;
1714 static const uint32_t mtctr_0           = 0x7c0903a6;
1715 static const uint32_t mtctr_11          = 0x7d6903a6;
1716 static const uint32_t mtlr_0            = 0x7c0803a6;
1717 static const uint32_t mtlr_12           = 0x7d8803a6;
1718 static const uint32_t nop               = 0x60000000;
1719 static const uint32_t ori_0_0_0         = 0x60000000;
1720 static const uint32_t std_2_1           = 0xf8410000;
1721 static const uint32_t sub_11_11_12      = 0x7d6c5850;
1722
1723 // Write out the PLT.
1724
1725 template<int size, bool big_endian>
1726 void
1727 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
1728 {
1729   if (size == 32)
1730     {
1731       const off_t offset = this->offset();
1732       const section_size_type oview_size
1733         = convert_to_section_size_type(this->data_size());
1734       unsigned char* const oview = of->get_output_view(offset, oview_size);
1735       unsigned char* pov = oview;
1736       unsigned char* endpov = oview + oview_size;
1737
1738       // The address of the .glink branch table
1739       const Output_data_glink<size, big_endian>* glink
1740         = this->targ_->glink_section();
1741       elfcpp::Elf_types<32>::Elf_Addr branch_tab
1742         = glink->address() + glink->pltresolve();
1743
1744       while (pov < endpov)
1745         {
1746           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
1747           pov += 4;
1748           branch_tab += 4;
1749         }
1750
1751       of->write_output_view(offset, oview_size, oview);
1752     }
1753 }
1754
1755 // Create the PLT section.
1756
1757 template<int size, bool big_endian>
1758 void
1759 Target_powerpc<size, big_endian>::make_plt_section(Layout* layout)
1760 {
1761   if (this->plt_ == NULL)
1762     {
1763       if (this->glink_ == NULL)
1764         make_glink_section(layout);
1765
1766       // Ensure that .rela.dyn always appears before .rela.plt  This is
1767       // necessary due to how, on PowerPC and some other targets, .rela.dyn
1768       // needs to include .rela.plt in it's range.
1769       this->rela_dyn_section(layout);
1770
1771       Reloc_section* plt_rel = new Reloc_section(false);
1772       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1773                                       elfcpp::SHF_ALLOC, plt_rel,
1774                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1775       this->plt_
1776         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
1777                                                         size == 32 ? 0 : 24,
1778                                                         "** PLT");
1779       layout->add_output_section_data(".plt",
1780                                       (size == 32
1781                                        ? elfcpp::SHT_PROGBITS
1782                                        : elfcpp::SHT_NOBITS),
1783                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1784                                       this->plt_,
1785                                       (size == 32
1786                                        ? ORDER_SMALL_DATA
1787                                        : ORDER_SMALL_BSS),
1788                                       false);
1789     }
1790 }
1791
1792 // Create the IPLT section.
1793
1794 template<int size, bool big_endian>
1795 void
1796 Target_powerpc<size, big_endian>::make_iplt_section(Layout* layout)
1797 {
1798   if (this->iplt_ == NULL)
1799     {
1800       this->make_plt_section(layout);
1801
1802       Reloc_section* iplt_rel = new Reloc_section(false);
1803       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
1804       this->iplt_
1805         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
1806                                                         0, "** IPLT");
1807       this->plt_->output_section()->add_output_section_data(this->iplt_);
1808     }
1809 }
1810
1811 // A class to handle .glink.
1812
1813 template<int size, bool big_endian>
1814 class Output_data_glink : public Output_section_data
1815 {
1816  public:
1817   static const int pltresolve_size = 16*4;
1818
1819   Output_data_glink(Target_powerpc<size, big_endian>*);
1820
1821   // Add an entry
1822   void
1823   add_entry(const Sized_relobj_file<size, big_endian>*,
1824             const Symbol*,
1825             const elfcpp::Rela<size, big_endian>&);
1826
1827   void
1828   add_entry(const Sized_relobj_file<size, big_endian>*,
1829             unsigned int,
1830             const elfcpp::Rela<size, big_endian>&);
1831
1832   unsigned int
1833   find_entry(const Symbol*) const;
1834
1835   unsigned int
1836   find_entry(const Sized_relobj_file<size, big_endian>*, unsigned int) const;
1837
1838   unsigned int
1839   find_entry(const Sized_relobj_file<size, big_endian>*,
1840              const Symbol*,
1841              const elfcpp::Rela<size, big_endian>&) const;
1842
1843   unsigned int
1844   find_entry(const Sized_relobj_file<size, big_endian>*,
1845              unsigned int,
1846              const elfcpp::Rela<size, big_endian>&) const;
1847
1848   unsigned int
1849   glink_entry_size() const
1850   {
1851     if (size == 32)
1852       return 4 * 4;
1853     else
1854       // FIXME: We should be using multiple glink sections for
1855       // stubs to support > 33M applications.
1856       return 8 * 4;
1857   }
1858
1859   off_t
1860   pltresolve() const
1861   {
1862     return this->pltresolve_;
1863   }
1864
1865  protected:
1866   // Write to a map file.
1867   void
1868   do_print_to_mapfile(Mapfile* mapfile) const
1869   { mapfile->print_output_data(this, _("** glink")); }
1870
1871  private:
1872   void
1873   set_final_data_size();
1874
1875   // Write out .glink
1876   void
1877   do_write(Output_file*);
1878
1879   class Glink_sym_ent
1880   {
1881   public:
1882     Glink_sym_ent(const Symbol* sym)
1883       : sym_(sym), object_(0), addend_(0), locsym_(0)
1884     { }
1885
1886     Glink_sym_ent(const Sized_relobj_file<size, big_endian>* object,
1887                   unsigned int locsym_index)
1888       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
1889     { }
1890
1891     Glink_sym_ent(const Sized_relobj_file<size, big_endian>* object,
1892                   const Symbol* sym,
1893                   const elfcpp::Rela<size, big_endian>& reloc)
1894       : sym_(sym), object_(0), addend_(0), locsym_(0)
1895     {
1896       if (size != 32)
1897         this->addend_ = reloc.get_r_addend();
1898       else if (parameters->options().output_is_position_independent()
1899                && (elfcpp::elf_r_type<size>(reloc.get_r_info())
1900                    == elfcpp::R_PPC_PLTREL24))
1901         {
1902           this->addend_ = reloc.get_r_addend();
1903           if (this->addend_ >= 32768)
1904             this->object_ = object;
1905         }
1906     }
1907
1908     Glink_sym_ent(const Sized_relobj_file<size, big_endian>* object,
1909                   unsigned int locsym_index,
1910                   const elfcpp::Rela<size, big_endian>& reloc)
1911       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
1912     {
1913       if (size != 32)
1914         this->addend_ = reloc.get_r_addend();
1915       else if (parameters->options().output_is_position_independent()
1916                && (elfcpp::elf_r_type<size>(reloc.get_r_info())
1917                    == elfcpp::R_PPC_PLTREL24))
1918         this->addend_ = reloc.get_r_addend();
1919     }
1920
1921     bool operator==(const Glink_sym_ent& that) const
1922     {
1923       return (this->sym_ == that.sym_
1924               && this->object_ == that.object_
1925               && this->addend_ == that.addend_
1926               && this->locsym_ == that.locsym_);
1927     }
1928
1929     const Symbol* sym_;
1930     const Sized_relobj_file<size, big_endian>* object_;
1931     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
1932     unsigned int locsym_;
1933   };
1934
1935   class Glink_sym_ent_hash
1936   {
1937   public:
1938     size_t operator()(const Glink_sym_ent& ent) const
1939     {
1940       return (reinterpret_cast<uintptr_t>(ent.sym_)
1941               ^ reinterpret_cast<uintptr_t>(ent.object_)
1942               ^ ent.addend_
1943               ^ ent.locsym_);
1944     }
1945   };
1946
1947   // Map sym/object/addend to index.
1948   typedef Unordered_map<Glink_sym_ent, unsigned int,
1949                         Glink_sym_ent_hash> Glink_entries;
1950   Glink_entries glink_entries_;
1951
1952   // Offset of pltresolve stub (actually, branch table for 32-bit)
1953   off_t pltresolve_;
1954
1955   // Allows access to .got and .plt for do_write.
1956   Target_powerpc<size, big_endian>* targ_;
1957 };
1958
1959 // Create the glink section.
1960
1961 template<int size, bool big_endian>
1962 Output_data_glink<size, big_endian>::Output_data_glink(
1963     Target_powerpc<size, big_endian>* targ)
1964   : Output_section_data(16),
1965     pltresolve_(0), targ_(targ)
1966 {
1967 }
1968
1969 // Add an entry to glink, if we do not already have one for this
1970 // sym/object/addend combo.
1971
1972 template<int size, bool big_endian>
1973 void
1974 Output_data_glink<size, big_endian>::add_entry(
1975     const Sized_relobj_file<size, big_endian>* object,
1976     const Symbol* gsym,
1977     const elfcpp::Rela<size, big_endian>& reloc)
1978 {
1979   Glink_sym_ent ent(object, gsym, reloc);
1980   unsigned int indx = this->glink_entries_.size();
1981   this->glink_entries_.insert(std::make_pair(ent, indx));
1982 }
1983
1984 template<int size, bool big_endian>
1985 void
1986 Output_data_glink<size, big_endian>::add_entry(
1987     const Sized_relobj_file<size, big_endian>* object,
1988     unsigned int locsym_index,
1989     const elfcpp::Rela<size, big_endian>& reloc)
1990 {
1991   Glink_sym_ent ent(object, locsym_index, reloc);
1992   unsigned int indx = this->glink_entries_.size();
1993   this->glink_entries_.insert(std::make_pair(ent, indx));
1994 }
1995
1996 template<int size, bool big_endian>
1997 unsigned int
1998 Output_data_glink<size, big_endian>::find_entry(
1999     const Sized_relobj_file<size, big_endian>* object,
2000     const Symbol* gsym,
2001     const elfcpp::Rela<size, big_endian>& reloc) const
2002 {
2003   Glink_sym_ent ent(object, gsym, reloc);
2004   typename Glink_entries::const_iterator p = this->glink_entries_.find(ent);
2005   gold_assert(p != this->glink_entries_.end());
2006   return p->second;
2007 }
2008
2009 template<int size, bool big_endian>
2010 unsigned int
2011 Output_data_glink<size, big_endian>::find_entry(const Symbol* gsym) const
2012 {
2013   Glink_sym_ent ent(gsym);
2014   typename Glink_entries::const_iterator p = this->glink_entries_.find(ent);
2015   gold_assert(p != this->glink_entries_.end());
2016   return p->second;
2017 }
2018
2019 template<int size, bool big_endian>
2020 unsigned int
2021 Output_data_glink<size, big_endian>::find_entry(
2022     const Sized_relobj_file<size, big_endian>* object,
2023     unsigned int locsym_index,
2024     const elfcpp::Rela<size, big_endian>& reloc) const
2025 {
2026   Glink_sym_ent ent(object, locsym_index, reloc);
2027   typename Glink_entries::const_iterator p = this->glink_entries_.find(ent);
2028   gold_assert(p != this->glink_entries_.end());
2029   return p->second;
2030 }
2031
2032 template<int size, bool big_endian>
2033 unsigned int
2034 Output_data_glink<size, big_endian>::find_entry(
2035     const Sized_relobj_file<size, big_endian>* object,
2036     unsigned int locsym_index) const
2037 {
2038   Glink_sym_ent ent(object, locsym_index);
2039   typename Glink_entries::const_iterator p = this->glink_entries_.find(ent);
2040   gold_assert(p != this->glink_entries_.end());
2041   return p->second;
2042 }
2043
2044 template<int size, bool big_endian>
2045 void
2046 Output_data_glink<size, big_endian>::set_final_data_size()
2047 {
2048   unsigned int count = this->glink_entries_.size();
2049   off_t total = count;
2050
2051   if (count != 0)
2052     {
2053       if (size == 32)
2054         {
2055           total *= 16;
2056           this->pltresolve_ = total;
2057
2058           // space for branch table
2059           total += 4 * (count - 1);
2060
2061           total += -total & 15;
2062           total += this->pltresolve_size;
2063         }
2064       else
2065         {
2066           total *= 32;
2067           this->pltresolve_ = total;
2068           total += this->pltresolve_size;
2069
2070           // space for branch table
2071           total += 8 * count;
2072           if (count > 0x8000)
2073             total += 4 * (count - 0x8000);
2074         }
2075     }
2076
2077   this->set_data_size(total);
2078 }
2079
2080 static inline uint32_t
2081 l(uint32_t a)
2082 {
2083   return a & 0xffff;
2084 }
2085
2086 static inline uint32_t
2087 hi(uint32_t a)
2088 {
2089   return l(a >> 16);
2090 }
2091
2092 static inline uint32_t
2093 ha(uint32_t a)
2094 {
2095   return hi(a + 0x8000);
2096 }
2097
2098 template<bool big_endian>
2099 static inline void
2100 write_insn(unsigned char* p, uint32_t v)
2101 {
2102   elfcpp::Swap<32, big_endian>::writeval(p, v);
2103 }
2104
2105 // Write out .glink.
2106
2107 template<int size, bool big_endian>
2108 void
2109 Output_data_glink<size, big_endian>::do_write(Output_file* of)
2110 {
2111   const off_t off = this->offset();
2112   const section_size_type oview_size =
2113     convert_to_section_size_type(this->data_size());
2114   unsigned char* const oview = of->get_output_view(off, oview_size);
2115   unsigned char* p;
2116
2117   // The base address of the .plt section.
2118   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2119   static const Address invalid_address = static_cast<Address>(0) - 1;
2120   Address plt_base = this->targ_->plt_section()->address();
2121   Address iplt_base = invalid_address;
2122
2123   const Output_data_got_powerpc<size, big_endian>* got
2124     = this->targ_->got_section();
2125
2126   if (size == 64)
2127     {
2128       Address got_os_addr = got->output_section()->address();
2129
2130       // Write out call stubs.
2131       typename Glink_entries::const_iterator g;
2132       for (g = this->glink_entries_.begin();
2133            g != this->glink_entries_.end();
2134            ++g)
2135         {
2136           Address plt_addr;
2137           bool is_ifunc;
2138           const Symbol* gsym = g->first.sym_;
2139           if (gsym != NULL)
2140             {
2141               is_ifunc = (gsym->type() == elfcpp::STT_GNU_IFUNC
2142                           && gsym->can_use_relative_reloc(false));
2143               plt_addr = gsym->plt_offset();
2144             }
2145           else
2146             {
2147               is_ifunc = true;
2148               const Sized_relobj_file<size, big_endian>* relobj
2149                 = g->first.object_;
2150               unsigned int local_sym_index = g->first.locsym_;
2151               plt_addr = relobj->local_plt_offset(local_sym_index);
2152             }
2153           if (is_ifunc)
2154             {
2155               if (iplt_base == invalid_address)
2156                 iplt_base = this->targ_->iplt_section()->address();
2157               plt_addr += iplt_base;
2158             }
2159           else
2160             plt_addr += plt_base;
2161           const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2162             <const Powerpc_relobj<size, big_endian>*>(g->first.object_);
2163           Address got_addr = got_os_addr + ppcobj->toc_base_offset();
2164           Address pltoff = plt_addr - got_addr;
2165
2166           if (pltoff + 0x80008000 > 0xffffffff || (pltoff & 7) != 0)
2167             gold_error(_("%s: linkage table error against `%s'"),
2168                        g->first.object_->name().c_str(),
2169                        g->first.sym_->demangled_name().c_str());
2170
2171           p = oview + g->second * this->glink_entry_size();
2172           if (ha(pltoff) != 0)
2173             {
2174               write_insn<big_endian>(p, addis_12_2 + ha(pltoff)),       p += 4;
2175               write_insn<big_endian>(p, std_2_1 + 40),                  p += 4;
2176               write_insn<big_endian>(p, ld_11_12 + l(pltoff)),          p += 4;
2177               if (ha(pltoff + 16) != ha(pltoff))
2178                 {
2179                   write_insn<big_endian>(p, addi_12_12 + l(pltoff)),    p += 4;
2180                   pltoff = 0;
2181                 }
2182               write_insn<big_endian>(p, mtctr_11),                      p += 4;
2183               write_insn<big_endian>(p, ld_2_12 + l(pltoff + 8)),       p += 4;
2184               write_insn<big_endian>(p, ld_11_12 + l(pltoff + 16)),     p += 4;
2185               write_insn<big_endian>(p, bctr),                          p += 4;
2186             }
2187           else
2188             {
2189               write_insn<big_endian>(p, std_2_1 + 40),                  p += 4;
2190               write_insn<big_endian>(p, ld_11_2 + l(pltoff)),           p += 4;
2191               if (ha(pltoff + 16) != ha(pltoff))
2192                 {
2193                   write_insn<big_endian>(p, addi_2_2 + l(pltoff)),      p += 4;
2194                   pltoff = 0;
2195                 }
2196               write_insn<big_endian>(p, mtctr_11),                      p += 4;
2197               write_insn<big_endian>(p, ld_11_2 + l(pltoff + 16)),      p += 4;
2198               write_insn<big_endian>(p, ld_2_2 + l(pltoff + 8)),        p += 4;
2199               write_insn<big_endian>(p, bctr),                          p += 4;
2200             }
2201         }
2202
2203       // Write pltresolve stub.
2204       p = oview + this->pltresolve_;
2205       Address after_bcl = this->address() + this->pltresolve_ + 16;
2206       Address pltoff = plt_base - after_bcl;
2207
2208       elfcpp::Swap<64, big_endian>::writeval(p, pltoff),        p += 8;
2209
2210       write_insn<big_endian>(p, mflr_12),                       p += 4;
2211       write_insn<big_endian>(p, bcl_20_31),                     p += 4;
2212       write_insn<big_endian>(p, mflr_11),                       p += 4;
2213       write_insn<big_endian>(p, ld_2_11 + l(-16)),              p += 4;
2214       write_insn<big_endian>(p, mtlr_12),                       p += 4;
2215       write_insn<big_endian>(p, add_12_2_11),                   p += 4;
2216       write_insn<big_endian>(p, ld_11_12 + 0),                  p += 4;
2217       write_insn<big_endian>(p, ld_2_12 + 8),                   p += 4;
2218       write_insn<big_endian>(p, mtctr_11),                      p += 4;
2219       write_insn<big_endian>(p, ld_11_12 + 16),                 p += 4;
2220       write_insn<big_endian>(p, bctr),                          p += 4;
2221       while (p < oview + this->pltresolve_ + this->pltresolve_size)
2222         write_insn<big_endian>(p, nop), p += 4;
2223
2224       // Write lazy link call stubs.
2225       uint32_t indx = 0;
2226       while (p < oview + oview_size)
2227         {
2228           if (indx < 0x8000)
2229             {
2230               write_insn<big_endian>(p, li_0_0 + indx),                 p += 4;
2231             }
2232           else
2233             {
2234               write_insn<big_endian>(p, lis_0_0 + hi(indx)),            p += 4;
2235               write_insn<big_endian>(p, ori_0_0_0 + l(indx)),           p += 4;
2236             }
2237           uint32_t branch_off = this->pltresolve_ + 8 - (p - oview);
2238           write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),      p += 4;
2239           indx++;
2240         }
2241     }
2242   else
2243     {
2244       // The address of _GLOBAL_OFFSET_TABLE_.
2245       Address g_o_t = got->address() + got->g_o_t();
2246
2247       // Write out call stubs.
2248       typename Glink_entries::const_iterator g;
2249       for (g = this->glink_entries_.begin();
2250            g != this->glink_entries_.end();
2251            ++g)
2252         {
2253           Address plt_addr;
2254           bool is_ifunc;
2255           const Symbol* gsym = g->first.sym_;
2256           if (gsym != NULL)
2257             {
2258               is_ifunc = (gsym->type() == elfcpp::STT_GNU_IFUNC
2259                           && gsym->can_use_relative_reloc(false));
2260               plt_addr = gsym->plt_offset();
2261             }
2262           else
2263             {
2264               is_ifunc = true;
2265               const Sized_relobj_file<size, big_endian>* relobj
2266                 = g->first.object_;
2267               unsigned int local_sym_index = g->first.locsym_;
2268               plt_addr = relobj->local_plt_offset(local_sym_index);
2269             }
2270           if (is_ifunc)
2271             {
2272               if (iplt_base == invalid_address)
2273                 iplt_base = this->targ_->iplt_section()->address();
2274               plt_addr += iplt_base;
2275             }
2276           else
2277             plt_addr += plt_base;
2278
2279           p = oview + g->second * this->glink_entry_size();
2280           if (parameters->options().output_is_position_independent())
2281             {
2282               Address got_addr;
2283               const Powerpc_relobj<size, big_endian>* object = static_cast
2284                 <const Powerpc_relobj<size, big_endian>*>(g->first.object_);
2285               if (object != NULL && g->first.addend_ >= 32768)
2286                 {
2287                   unsigned int got2 = object->got2_shndx();
2288                   got_addr = g->first.object_->get_output_section_offset(got2);
2289                   gold_assert(got_addr != invalid_address);
2290                   got_addr += (g->first.object_->output_section(got2)->address()
2291                                + g->first.addend_);
2292                 }
2293               else
2294                 got_addr = g_o_t;
2295
2296               Address pltoff = plt_addr - got_addr;
2297               if (ha(pltoff) == 0)
2298                 {
2299                   write_insn<big_endian>(p +  0, lwz_11_30 + l(pltoff));
2300                   write_insn<big_endian>(p +  4, mtctr_11);
2301                   write_insn<big_endian>(p +  8, bctr);
2302                 }
2303               else
2304                 {
2305                   write_insn<big_endian>(p +  0, addis_11_30 + ha(pltoff));
2306                   write_insn<big_endian>(p +  4, lwz_11_11 + l(pltoff));
2307                   write_insn<big_endian>(p +  8, mtctr_11);
2308                   write_insn<big_endian>(p + 12, bctr);
2309                 }
2310             }
2311           else
2312             {
2313               write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
2314               write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
2315               write_insn<big_endian>(p +  8, mtctr_11);
2316               write_insn<big_endian>(p + 12, bctr);
2317             }
2318         }
2319
2320       // Write out pltresolve branch table.
2321       p = oview + this->pltresolve_;
2322       unsigned int the_end = oview_size - this->pltresolve_size;
2323       unsigned char* end_p = oview + the_end;
2324       while (p < end_p - 8 * 4)
2325         write_insn<big_endian>(p, b + end_p - p), p += 4;
2326       while (p < end_p)
2327         write_insn<big_endian>(p, nop), p += 4;
2328
2329       // Write out pltresolve call stub.
2330       if (parameters->options().output_is_position_independent())
2331         {
2332           Address res0_off = this->pltresolve_;
2333           Address after_bcl_off = the_end + 12;
2334           Address bcl_res0 = after_bcl_off - res0_off;
2335
2336           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
2337           write_insn<big_endian>(p +  4, mflr_0);
2338           write_insn<big_endian>(p +  8, bcl_20_31);
2339           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
2340           write_insn<big_endian>(p + 16, mflr_12);
2341           write_insn<big_endian>(p + 20, mtlr_0);
2342           write_insn<big_endian>(p + 24, sub_11_11_12);
2343
2344           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
2345
2346           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
2347           if (ha(got_bcl) == ha(got_bcl + 4))
2348             {
2349               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
2350               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
2351             }
2352           else
2353             {
2354               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
2355               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
2356             }
2357           write_insn<big_endian>(p + 40, mtctr_0);
2358           write_insn<big_endian>(p + 44, add_0_11_11);
2359           write_insn<big_endian>(p + 48, add_11_0_11);
2360           write_insn<big_endian>(p + 52, bctr);
2361           write_insn<big_endian>(p + 56, nop);
2362           write_insn<big_endian>(p + 60, nop);
2363         }
2364       else
2365         {
2366           Address res0 = this->pltresolve_ + this->address();
2367
2368           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
2369           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
2370           if (ha(g_o_t + 4) == ha(g_o_t + 8))
2371             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
2372           else
2373             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
2374           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
2375           write_insn<big_endian>(p + 16, mtctr_0);
2376           write_insn<big_endian>(p + 20, add_0_11_11);
2377           if (ha(g_o_t + 4) == ha(g_o_t + 8))
2378             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
2379           else
2380             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
2381           write_insn<big_endian>(p + 28, add_11_0_11);
2382           write_insn<big_endian>(p + 32, bctr);
2383           write_insn<big_endian>(p + 36, nop);
2384           write_insn<big_endian>(p + 40, nop);
2385           write_insn<big_endian>(p + 44, nop);
2386           write_insn<big_endian>(p + 48, nop);
2387           write_insn<big_endian>(p + 52, nop);
2388           write_insn<big_endian>(p + 56, nop);
2389           write_insn<big_endian>(p + 60, nop);
2390         }
2391       p += 64;
2392     }
2393
2394   of->write_output_view(off, oview_size, oview);
2395 }
2396
2397 // Create the glink section.
2398
2399 template<int size, bool big_endian>
2400 void
2401 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
2402 {
2403   if (this->glink_ == NULL)
2404     {
2405       this->glink_ = new Output_data_glink<size, big_endian>(this);
2406       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
2407                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
2408                                       this->glink_, ORDER_TEXT, false);
2409     }
2410 }
2411
2412 // Create a PLT entry for a global symbol.
2413
2414 template<int size, bool big_endian>
2415 void
2416 Target_powerpc<size, big_endian>::make_plt_entry(
2417     Layout* layout,
2418     Symbol* gsym,
2419     const elfcpp::Rela<size, big_endian>& reloc,
2420     const Sized_relobj_file<size, big_endian>* object)
2421 {
2422   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2423       && gsym->can_use_relative_reloc(false))
2424     {
2425       if (this->iplt_ == NULL)
2426         this->make_iplt_section(layout);
2427       this->iplt_->add_ifunc_entry(gsym);
2428     }
2429   else
2430     {
2431       if (this->plt_ == NULL)
2432         this->make_plt_section(layout);
2433       this->plt_->add_entry(gsym);
2434     }
2435   this->glink_->add_entry(object, gsym, reloc);
2436 }
2437
2438 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
2439
2440 template<int size, bool big_endian>
2441 void
2442 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
2443     Layout* layout,
2444     const elfcpp::Rela<size, big_endian>& reloc,
2445     Sized_relobj_file<size, big_endian>* relobj)
2446 {
2447   if (this->iplt_ == NULL)
2448     this->make_iplt_section(layout);
2449   unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2450   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
2451   this->glink_->add_entry(relobj, r_sym, reloc);
2452 }
2453
2454 // Return the number of entries in the PLT.
2455
2456 template<int size, bool big_endian>
2457 unsigned int
2458 Target_powerpc<size, big_endian>::plt_entry_count() const
2459 {
2460   if (this->plt_ == NULL)
2461     return 0;
2462   unsigned int count = this->plt_->entry_count();
2463   if (this->iplt_ != NULL)
2464     count += this->iplt_->entry_count();
2465   return count;
2466 }
2467
2468 // Return the offset of the first non-reserved PLT entry.
2469
2470 template<int size, bool big_endian>
2471 unsigned int
2472 Target_powerpc<size, big_endian>::first_plt_entry_offset() const
2473 {
2474   return this->plt_->first_plt_entry_offset();
2475 }
2476
2477 // Return the size of each PLT entry.
2478
2479 template<int size, bool big_endian>
2480 unsigned int
2481 Target_powerpc<size, big_endian>::plt_entry_size() const
2482 {
2483   return Output_data_plt_powerpc<size, big_endian>::get_plt_entry_size();
2484 }
2485
2486 // Create a GOT entry for local dynamic __tls_get_addr calls.
2487
2488 template<int size, bool big_endian>
2489 unsigned int
2490 Target_powerpc<size, big_endian>::tlsld_got_offset(
2491     Symbol_table* symtab,
2492     Layout* layout,
2493     Sized_relobj_file<size, big_endian>* object)
2494 {
2495   if (this->tlsld_got_offset_ == -1U)
2496     {
2497       gold_assert(symtab != NULL && layout != NULL && object != NULL);
2498       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2499       Output_data_got_powerpc<size, big_endian>* got
2500         = this->got_section(symtab, layout);
2501       unsigned int got_offset = got->add_constant_pair(0, 0);
2502       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
2503                           got_offset, 0);
2504       this->tlsld_got_offset_ = got_offset;
2505     }
2506   return this->tlsld_got_offset_;
2507 }
2508
2509 // Get the Reference_flags for a particular relocation.
2510
2511 template<int size, bool big_endian>
2512 int
2513 Target_powerpc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
2514 {
2515   switch (r_type)
2516     {
2517     case elfcpp::R_POWERPC_NONE:
2518     case elfcpp::R_POWERPC_GNU_VTINHERIT:
2519     case elfcpp::R_POWERPC_GNU_VTENTRY:
2520     case elfcpp::R_PPC64_TOC:
2521       // No symbol reference.
2522       return 0;
2523
2524     case elfcpp::R_PPC64_ADDR64:
2525     case elfcpp::R_PPC64_UADDR64:
2526     case elfcpp::R_POWERPC_ADDR32:
2527     case elfcpp::R_POWERPC_UADDR32:
2528     case elfcpp::R_POWERPC_ADDR16:
2529     case elfcpp::R_POWERPC_UADDR16:
2530     case elfcpp::R_POWERPC_ADDR16_LO:
2531     case elfcpp::R_POWERPC_ADDR16_HI:
2532     case elfcpp::R_POWERPC_ADDR16_HA:
2533       return Symbol::ABSOLUTE_REF;
2534
2535     case elfcpp::R_POWERPC_ADDR24:
2536     case elfcpp::R_POWERPC_ADDR14:
2537     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
2538     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
2539       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
2540
2541     case elfcpp::R_PPC64_REL64:
2542     case elfcpp::R_POWERPC_REL32:
2543     case elfcpp::R_PPC_LOCAL24PC:
2544     case elfcpp::R_POWERPC_REL16:
2545     case elfcpp::R_POWERPC_REL16_LO:
2546     case elfcpp::R_POWERPC_REL16_HI:
2547     case elfcpp::R_POWERPC_REL16_HA:
2548       return Symbol::RELATIVE_REF;
2549
2550     case elfcpp::R_POWERPC_REL24:
2551     case elfcpp::R_PPC_PLTREL24:
2552     case elfcpp::R_POWERPC_REL14:
2553     case elfcpp::R_POWERPC_REL14_BRTAKEN:
2554     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
2555       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2556
2557     case elfcpp::R_POWERPC_GOT16:
2558     case elfcpp::R_POWERPC_GOT16_LO:
2559     case elfcpp::R_POWERPC_GOT16_HI:
2560     case elfcpp::R_POWERPC_GOT16_HA:
2561     case elfcpp::R_PPC64_GOT16_DS:
2562     case elfcpp::R_PPC64_GOT16_LO_DS:
2563     case elfcpp::R_PPC64_TOC16:
2564     case elfcpp::R_PPC64_TOC16_LO:
2565     case elfcpp::R_PPC64_TOC16_HI:
2566     case elfcpp::R_PPC64_TOC16_HA:
2567     case elfcpp::R_PPC64_TOC16_DS:
2568     case elfcpp::R_PPC64_TOC16_LO_DS:
2569       // Absolute in GOT.
2570       return Symbol::ABSOLUTE_REF;
2571
2572     case elfcpp::R_POWERPC_GOT_TPREL16:
2573     case elfcpp::R_POWERPC_TLS:
2574       return Symbol::TLS_REF;
2575
2576     case elfcpp::R_POWERPC_COPY:
2577     case elfcpp::R_POWERPC_GLOB_DAT:
2578     case elfcpp::R_POWERPC_JMP_SLOT:
2579     case elfcpp::R_POWERPC_RELATIVE:
2580     case elfcpp::R_POWERPC_DTPMOD:
2581     default:
2582       // Not expected.  We will give an error later.
2583       return 0;
2584     }
2585 }
2586
2587 // Report an unsupported relocation against a local symbol.
2588
2589 template<int size, bool big_endian>
2590 void
2591 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
2592     Sized_relobj_file<size, big_endian>* object,
2593     unsigned int r_type)
2594 {
2595   gold_error(_("%s: unsupported reloc %u against local symbol"),
2596              object->name().c_str(), r_type);
2597 }
2598
2599 // We are about to emit a dynamic relocation of type R_TYPE.  If the
2600 // dynamic linker does not support it, issue an error.
2601
2602 template<int size, bool big_endian>
2603 void
2604 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
2605                                                       unsigned int r_type)
2606 {
2607   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
2608
2609   // These are the relocation types supported by glibc for both 32-bit
2610   // and 64-bit powerpc.
2611   switch (r_type)
2612     {
2613     case elfcpp::R_POWERPC_NONE:
2614     case elfcpp::R_POWERPC_RELATIVE:
2615     case elfcpp::R_POWERPC_GLOB_DAT:
2616     case elfcpp::R_POWERPC_DTPMOD:
2617     case elfcpp::R_POWERPC_DTPREL:
2618     case elfcpp::R_POWERPC_TPREL:
2619     case elfcpp::R_POWERPC_JMP_SLOT:
2620     case elfcpp::R_POWERPC_COPY:
2621     case elfcpp::R_POWERPC_IRELATIVE:
2622     case elfcpp::R_POWERPC_ADDR32:
2623     case elfcpp::R_POWERPC_UADDR32:
2624     case elfcpp::R_POWERPC_ADDR24:
2625     case elfcpp::R_POWERPC_ADDR16:
2626     case elfcpp::R_POWERPC_UADDR16:
2627     case elfcpp::R_POWERPC_ADDR16_LO:
2628     case elfcpp::R_POWERPC_ADDR16_HI:
2629     case elfcpp::R_POWERPC_ADDR16_HA:
2630     case elfcpp::R_POWERPC_ADDR14:
2631     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
2632     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
2633     case elfcpp::R_POWERPC_REL32:
2634     case elfcpp::R_POWERPC_REL24:
2635     case elfcpp::R_POWERPC_TPREL16:
2636     case elfcpp::R_POWERPC_TPREL16_LO:
2637     case elfcpp::R_POWERPC_TPREL16_HI:
2638     case elfcpp::R_POWERPC_TPREL16_HA:
2639       return;
2640
2641     default:
2642       break;
2643     }
2644
2645   if (size == 64)
2646     {
2647       switch (r_type)
2648         {
2649           // These are the relocation types supported only on 64-bit.
2650         case elfcpp::R_PPC64_ADDR64:
2651         case elfcpp::R_PPC64_UADDR64:
2652         case elfcpp::R_PPC64_JMP_IREL:
2653         case elfcpp::R_PPC64_ADDR16_DS:
2654         case elfcpp::R_PPC64_ADDR16_LO_DS:
2655         case elfcpp::R_PPC64_ADDR16_HIGHER:
2656         case elfcpp::R_PPC64_ADDR16_HIGHEST:
2657         case elfcpp::R_PPC64_ADDR16_HIGHERA:
2658         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
2659         case elfcpp::R_PPC64_REL64:
2660         case elfcpp::R_POWERPC_ADDR30:
2661         case elfcpp::R_PPC64_TPREL16_DS:
2662         case elfcpp::R_PPC64_TPREL16_LO_DS:
2663         case elfcpp::R_PPC64_TPREL16_HIGHER:
2664         case elfcpp::R_PPC64_TPREL16_HIGHEST:
2665         case elfcpp::R_PPC64_TPREL16_HIGHERA:
2666         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
2667           return;
2668
2669         default:
2670           break;
2671         }
2672     }
2673   else
2674     {
2675       switch (r_type)
2676         {
2677           // These are the relocation types supported only on 32-bit.
2678           // ??? glibc ld.so doesn't need to support these.
2679         case elfcpp::R_POWERPC_DTPREL16:
2680         case elfcpp::R_POWERPC_DTPREL16_LO:
2681         case elfcpp::R_POWERPC_DTPREL16_HI:
2682         case elfcpp::R_POWERPC_DTPREL16_HA:
2683           return;
2684
2685         default:
2686           break;
2687         }
2688     }
2689
2690   // This prevents us from issuing more than one error per reloc
2691   // section.  But we can still wind up issuing more than one
2692   // error per object file.
2693   if (this->issued_non_pic_error_)
2694     return;
2695   gold_assert(parameters->options().output_is_position_independent());
2696   object->error(_("requires unsupported dynamic reloc; "
2697                   "recompile with -fPIC"));
2698   this->issued_non_pic_error_ = true;
2699   return;
2700 }
2701
2702 // Return whether we need to make a PLT entry for a relocation of the
2703 // given type against a STT_GNU_IFUNC symbol.
2704
2705 template<int size, bool big_endian>
2706 bool
2707 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
2708      Sized_relobj_file<size, big_endian>* object,
2709      unsigned int r_type)
2710 {
2711   // In non-pic code any reference will resolve to the plt call stub
2712   // for the ifunc symbol.
2713   if (size == 32 && !parameters->options().output_is_position_independent())
2714     return true;
2715
2716   switch (r_type)
2717     {
2718     // Word size refs from data sections are OK.
2719     case elfcpp::R_POWERPC_ADDR32:
2720     case elfcpp::R_POWERPC_UADDR32:
2721       if (size == 32)
2722         return true;
2723       break;
2724
2725     case elfcpp::R_PPC64_ADDR64:
2726     case elfcpp::R_PPC64_UADDR64:
2727       if (size == 64)
2728         return true;
2729       break;
2730
2731     // GOT refs are good.
2732     case elfcpp::R_POWERPC_GOT16:
2733     case elfcpp::R_POWERPC_GOT16_LO:
2734     case elfcpp::R_POWERPC_GOT16_HI:
2735     case elfcpp::R_POWERPC_GOT16_HA:
2736     case elfcpp::R_PPC64_GOT16_DS:
2737     case elfcpp::R_PPC64_GOT16_LO_DS:
2738       return true;
2739
2740     // So are function calls.
2741     case elfcpp::R_POWERPC_ADDR24:
2742     case elfcpp::R_POWERPC_ADDR14:
2743     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
2744     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
2745     case elfcpp::R_POWERPC_REL24:
2746     case elfcpp::R_PPC_PLTREL24:
2747     case elfcpp::R_POWERPC_REL14:
2748     case elfcpp::R_POWERPC_REL14_BRTAKEN:
2749     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
2750       return true;
2751
2752     default:
2753       break;
2754     }
2755
2756   // Anything else is a problem.
2757   // If we are building a static executable, the libc startup function
2758   // responsible for applying indirect function relocations is going
2759   // to complain about the reloc type.
2760   // If we are building a dynamic executable, we will have a text
2761   // relocation.  The dynamic loader will set the text segment
2762   // writable and non-executable to apply text relocations.  So we'll
2763   // segfault when trying to run the indirection function to resolve
2764   // the reloc.
2765   gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
2766                object->name().c_str(), r_type);
2767   return false;
2768 }
2769
2770 // Scan a relocation for a local symbol.
2771
2772 template<int size, bool big_endian>
2773 inline void
2774 Target_powerpc<size, big_endian>::Scan::local(
2775     Symbol_table* symtab,
2776     Layout* layout,
2777     Target_powerpc<size, big_endian>* target,
2778     Sized_relobj_file<size, big_endian>* object,
2779     unsigned int data_shndx,
2780     Output_section* output_section,
2781     const elfcpp::Rela<size, big_endian>& reloc,
2782     unsigned int r_type,
2783     const elfcpp::Sym<size, big_endian>& lsym,
2784     bool is_discarded)
2785 {
2786   Powerpc_relobj<size, big_endian>* ppc_object
2787     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
2788
2789   if (is_discarded)
2790     {
2791       if (size == 64
2792           && data_shndx == ppc_object->opd_shndx()
2793           && r_type == elfcpp::R_PPC64_ADDR64)
2794         ppc_object->set_opd_discard(reloc.get_r_offset());
2795       return;
2796     }
2797
2798   // A local STT_GNU_IFUNC symbol may require a PLT entry.
2799   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2800   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2801     target->make_local_ifunc_plt_entry(layout, reloc, object);
2802
2803   switch (r_type)
2804     {
2805     case elfcpp::R_POWERPC_NONE:
2806     case elfcpp::R_POWERPC_GNU_VTINHERIT:
2807     case elfcpp::R_POWERPC_GNU_VTENTRY:
2808     case elfcpp::R_PPC64_TOCSAVE:
2809     case elfcpp::R_PPC_EMB_MRKREF:
2810     case elfcpp::R_POWERPC_TLS:
2811       break;
2812
2813     case elfcpp::R_PPC64_TOC:
2814       {
2815         Output_data_got_powerpc<size, big_endian>* got
2816           = target->got_section(symtab, layout);
2817         if (parameters->options().output_is_position_independent())
2818           {
2819             Address off = reloc.get_r_offset();
2820             if (size == 64
2821                 && data_shndx == ppc_object->opd_shndx()
2822                 && ppc_object->get_opd_discard(off - 8))
2823               break;
2824
2825             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2826             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
2827             rela_dyn->add_output_section_relative(got->output_section(),
2828                                                   elfcpp::R_POWERPC_RELATIVE,
2829                                                   output_section,
2830                                                   object, data_shndx, off,
2831                                                   symobj->toc_base_offset());
2832           }
2833       }
2834       break;
2835
2836     case elfcpp::R_PPC64_ADDR64:
2837     case elfcpp::R_PPC64_UADDR64:
2838     case elfcpp::R_POWERPC_ADDR32:
2839     case elfcpp::R_POWERPC_UADDR32:
2840     case elfcpp::R_POWERPC_ADDR24:
2841     case elfcpp::R_POWERPC_ADDR16:
2842     case elfcpp::R_POWERPC_ADDR16_LO:
2843     case elfcpp::R_POWERPC_ADDR16_HI:
2844     case elfcpp::R_POWERPC_ADDR16_HA:
2845     case elfcpp::R_POWERPC_UADDR16:
2846     case elfcpp::R_PPC64_ADDR16_HIGHER:
2847     case elfcpp::R_PPC64_ADDR16_HIGHERA:
2848     case elfcpp::R_PPC64_ADDR16_HIGHEST:
2849     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
2850     case elfcpp::R_PPC64_ADDR16_DS:
2851     case elfcpp::R_PPC64_ADDR16_LO_DS:
2852     case elfcpp::R_POWERPC_ADDR14:
2853     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
2854     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
2855       // If building a shared library (or a position-independent
2856       // executable), we need to create a dynamic relocation for
2857       // this location.
2858       if (parameters->options().output_is_position_independent()
2859           || (size == 64 && is_ifunc))
2860         {
2861           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2862
2863           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
2864               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
2865             {
2866               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2867               unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
2868               if (is_ifunc)
2869                 {
2870                   rela_dyn = target->iplt_section()->rel_plt();
2871                   dynrel = elfcpp::R_POWERPC_IRELATIVE;
2872                 }
2873               rela_dyn->add_local_relative(object, r_sym, dynrel,
2874                                            output_section, data_shndx,
2875                                            reloc.get_r_offset(),
2876                                            reloc.get_r_addend(), false);
2877             }
2878           else
2879             {
2880               check_non_pic(object, r_type);
2881               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2882               rela_dyn->add_local(object, r_sym, r_type, output_section,
2883                                   data_shndx, reloc.get_r_offset(),
2884                                   reloc.get_r_addend());
2885             }
2886         }
2887       break;
2888
2889     case elfcpp::R_PPC64_REL64:
2890     case elfcpp::R_POWERPC_REL32:
2891     case elfcpp::R_POWERPC_REL24:
2892     case elfcpp::R_PPC_PLTREL24:
2893     case elfcpp::R_PPC_LOCAL24PC:
2894     case elfcpp::R_POWERPC_REL16:
2895     case elfcpp::R_POWERPC_REL16_LO:
2896     case elfcpp::R_POWERPC_REL16_HI:
2897     case elfcpp::R_POWERPC_REL16_HA:
2898     case elfcpp::R_POWERPC_REL14:
2899     case elfcpp::R_POWERPC_REL14_BRTAKEN:
2900     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
2901     case elfcpp::R_POWERPC_SECTOFF:
2902     case elfcpp::R_POWERPC_TPREL16:
2903     case elfcpp::R_POWERPC_DTPREL16:
2904     case elfcpp::R_POWERPC_SECTOFF_LO:
2905     case elfcpp::R_POWERPC_TPREL16_LO:
2906     case elfcpp::R_POWERPC_DTPREL16_LO:
2907     case elfcpp::R_POWERPC_SECTOFF_HI:
2908     case elfcpp::R_POWERPC_TPREL16_HI:
2909     case elfcpp::R_POWERPC_DTPREL16_HI:
2910     case elfcpp::R_POWERPC_SECTOFF_HA:
2911     case elfcpp::R_POWERPC_TPREL16_HA:
2912     case elfcpp::R_POWERPC_DTPREL16_HA:
2913     case elfcpp::R_PPC64_DTPREL16_HIGHER:
2914     case elfcpp::R_PPC64_TPREL16_HIGHER:
2915     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
2916     case elfcpp::R_PPC64_TPREL16_HIGHERA:
2917     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
2918     case elfcpp::R_PPC64_TPREL16_HIGHEST:
2919     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
2920     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
2921     case elfcpp::R_PPC64_TPREL16_DS:
2922     case elfcpp::R_PPC64_TPREL16_LO_DS:
2923     case elfcpp::R_PPC64_DTPREL16_DS:
2924     case elfcpp::R_PPC64_DTPREL16_LO_DS:
2925     case elfcpp::R_PPC64_SECTOFF_DS:
2926     case elfcpp::R_PPC64_SECTOFF_LO_DS:
2927     case elfcpp::R_PPC64_TLSGD:
2928     case elfcpp::R_PPC64_TLSLD:
2929       break;
2930
2931     case elfcpp::R_POWERPC_GOT16:
2932     case elfcpp::R_POWERPC_GOT16_LO:
2933     case elfcpp::R_POWERPC_GOT16_HI:
2934     case elfcpp::R_POWERPC_GOT16_HA:
2935     case elfcpp::R_PPC64_GOT16_DS:
2936     case elfcpp::R_PPC64_GOT16_LO_DS:
2937       {
2938         // The symbol requires a GOT entry.
2939         Output_data_got_powerpc<size, big_endian>* got
2940           = target->got_section(symtab, layout);
2941         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2942
2943         if (!parameters->options().output_is_position_independent())
2944           {
2945             if (size == 32 && is_ifunc)
2946               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2947             else
2948               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2949           }
2950         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
2951           {
2952             // If we are generating a shared object or a pie, this
2953             // symbol's GOT entry will be set by a dynamic relocation.
2954             unsigned int off;
2955             off = got->add_constant(0);
2956             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
2957
2958             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2959             unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
2960             if (is_ifunc)
2961               {
2962                 rela_dyn = target->iplt_section()->rel_plt();
2963                 dynrel = elfcpp::R_POWERPC_IRELATIVE;
2964               }
2965             rela_dyn->add_local_relative(object, r_sym, dynrel,
2966                                          got, off, 0, false);
2967           }
2968       }
2969       break;
2970
2971     case elfcpp::R_PPC64_TOC16:
2972     case elfcpp::R_PPC64_TOC16_LO:
2973     case elfcpp::R_PPC64_TOC16_HI:
2974     case elfcpp::R_PPC64_TOC16_HA:
2975     case elfcpp::R_PPC64_TOC16_DS:
2976     case elfcpp::R_PPC64_TOC16_LO_DS:
2977       // We need a GOT section.
2978       target->got_section(symtab, layout);
2979       break;
2980
2981     case elfcpp::R_POWERPC_GOT_TLSGD16:
2982     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
2983     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
2984     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
2985       {
2986         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
2987         if (tls_type == tls::TLSOPT_NONE)
2988           {
2989             Output_data_got_powerpc<size, big_endian>* got
2990               = target->got_section(symtab, layout);
2991             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2992             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2993             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
2994                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
2995           }
2996         else if (tls_type == tls::TLSOPT_TO_LE)
2997           {
2998             // no GOT relocs needed for Local Exec.
2999           }
3000         else
3001           gold_unreachable();
3002       }
3003       break;
3004
3005     case elfcpp::R_POWERPC_GOT_TLSLD16:
3006     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
3007     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
3008     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
3009       {
3010         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
3011         if (tls_type == tls::TLSOPT_NONE)
3012           target->tlsld_got_offset(symtab, layout, object);
3013         else if (tls_type == tls::TLSOPT_TO_LE)
3014           {
3015             // no GOT relocs needed for Local Exec.
3016             if (parameters->options().emit_relocs())
3017               {
3018                 Output_section* os = layout->tls_segment()->first_section();
3019                 gold_assert(os != NULL);
3020                 os->set_needs_symtab_index();
3021               }
3022           }
3023         else
3024           gold_unreachable();
3025       }
3026       break;
3027
3028     case elfcpp::R_POWERPC_GOT_DTPREL16:
3029     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
3030     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
3031     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
3032       {
3033         Output_data_got_powerpc<size, big_endian>* got
3034           = target->got_section(symtab, layout);
3035         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3036         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
3037       }
3038       break;
3039
3040     case elfcpp::R_POWERPC_GOT_TPREL16:
3041     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
3042     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
3043     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
3044       {
3045         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
3046         if (tls_type == tls::TLSOPT_NONE)
3047           {
3048             Output_data_got_powerpc<size, big_endian>* got
3049               = target->got_section(symtab, layout);
3050             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3051             got->add_local_tls(object, r_sym, GOT_TYPE_TPREL);
3052           }
3053         else if (tls_type == tls::TLSOPT_TO_LE)
3054           {
3055             // no GOT relocs needed for Local Exec.
3056           }
3057         else
3058           gold_unreachable();
3059       }
3060       break;
3061
3062     default:
3063       unsupported_reloc_local(object, r_type);
3064       break;
3065     }
3066 }
3067
3068 // Report an unsupported relocation against a global symbol.
3069
3070 template<int size, bool big_endian>
3071 void
3072 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
3073     Sized_relobj_file<size, big_endian>* object,
3074     unsigned int r_type,
3075     Symbol* gsym)
3076 {
3077   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3078              object->name().c_str(), r_type, gsym->demangled_name().c_str());
3079 }
3080
3081 // Scan a relocation for a global symbol.
3082
3083 template<int size, bool big_endian>
3084 inline void
3085 Target_powerpc<size, big_endian>::Scan::global(
3086     Symbol_table* symtab,
3087     Layout* layout,
3088     Target_powerpc<size, big_endian>* target,
3089     Sized_relobj_file<size, big_endian>* object,
3090     unsigned int data_shndx,
3091     Output_section* output_section,
3092     const elfcpp::Rela<size, big_endian>& reloc,
3093     unsigned int r_type,
3094     Symbol* gsym)
3095 {
3096   Powerpc_relobj<size, big_endian>* ppc_object
3097     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
3098
3099   // A STT_GNU_IFUNC symbol may require a PLT entry.
3100   if (gsym->type() == elfcpp::STT_GNU_IFUNC
3101       && this->reloc_needs_plt_for_ifunc(object, r_type))
3102     target->make_plt_entry(layout, gsym, reloc, object);
3103
3104   switch (r_type)
3105     {
3106     case elfcpp::R_POWERPC_NONE:
3107     case elfcpp::R_POWERPC_GNU_VTINHERIT:
3108     case elfcpp::R_POWERPC_GNU_VTENTRY:
3109     case elfcpp::R_PPC_LOCAL24PC:
3110     case elfcpp::R_PPC_EMB_MRKREF:
3111     case elfcpp::R_POWERPC_TLS:
3112       break;
3113
3114     case elfcpp::R_PPC64_TOC:
3115       {
3116         Output_data_got_powerpc<size, big_endian>* got
3117           = target->got_section(symtab, layout);
3118         if (parameters->options().output_is_position_independent())
3119           {
3120             Address off = reloc.get_r_offset();
3121             if (size == 64
3122                 && data_shndx == ppc_object->opd_shndx()
3123                 && ppc_object->get_opd_discard(off - 8))
3124               break;
3125
3126             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3127             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
3128             if (data_shndx != ppc_object->opd_shndx())
3129               symobj = static_cast
3130                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
3131             rela_dyn->add_output_section_relative(got->output_section(),
3132                                                   elfcpp::R_POWERPC_RELATIVE,
3133                                                   output_section,
3134                                                   object, data_shndx, off,
3135                                                   symobj->toc_base_offset());
3136           }
3137       }
3138       break;
3139
3140     case elfcpp::R_PPC64_ADDR64:
3141       if (size == 64
3142           && data_shndx == ppc_object->opd_shndx()
3143           && (gsym->is_defined_in_discarded_section()
3144               || gsym->object() != object))
3145         {
3146           ppc_object->set_opd_discard(reloc.get_r_offset());
3147           break;
3148         }
3149       // Fall thru
3150     case elfcpp::R_PPC64_UADDR64:
3151     case elfcpp::R_POWERPC_ADDR32:
3152     case elfcpp::R_POWERPC_UADDR32:
3153     case elfcpp::R_POWERPC_ADDR24:
3154     case elfcpp::R_POWERPC_ADDR16:
3155     case elfcpp::R_POWERPC_ADDR16_LO:
3156     case elfcpp::R_POWERPC_ADDR16_HI:
3157     case elfcpp::R_POWERPC_ADDR16_HA:
3158     case elfcpp::R_POWERPC_UADDR16:
3159     case elfcpp::R_PPC64_ADDR16_HIGHER:
3160     case elfcpp::R_PPC64_ADDR16_HIGHERA:
3161     case elfcpp::R_PPC64_ADDR16_HIGHEST:
3162     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
3163     case elfcpp::R_PPC64_ADDR16_DS:
3164     case elfcpp::R_PPC64_ADDR16_LO_DS:
3165     case elfcpp::R_POWERPC_ADDR14:
3166     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
3167     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
3168       {
3169         // Make a PLT entry if necessary.
3170         if (gsym->needs_plt_entry())
3171           {
3172             target->make_plt_entry(layout, gsym, reloc, 0);
3173             // Since this is not a PC-relative relocation, we may be
3174             // taking the address of a function. In that case we need to
3175             // set the entry in the dynamic symbol table to the address of
3176             // the PLT call stub.
3177             if (size == 32
3178                 && gsym->is_from_dynobj()
3179                 && !parameters->options().output_is_position_independent())
3180               gsym->set_needs_dynsym_value();
3181           }
3182         // Make a dynamic relocation if necessary.
3183         if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type))
3184             || (size == 64 && gsym->type() == elfcpp::STT_GNU_IFUNC))
3185           {
3186             if (gsym->may_need_copy_reloc())
3187               {
3188                 target->copy_reloc(symtab, layout, object,
3189                                    data_shndx, output_section, gsym, reloc);
3190               }
3191             else if (((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
3192                       || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
3193                      && (gsym->can_use_relative_reloc(false)
3194                          || (size == 64
3195                              && data_shndx == ppc_object->opd_shndx())))
3196               {
3197                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3198                 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
3199                 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3200                   {
3201                     rela_dyn = target->iplt_section()->rel_plt();
3202                     dynrel = elfcpp::R_POWERPC_IRELATIVE;
3203                   }
3204                 rela_dyn->add_symbolless_global_addend(
3205                     gsym, dynrel, output_section, object, data_shndx,
3206                     reloc.get_r_offset(), reloc.get_r_addend());
3207               }
3208             else
3209               {
3210                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3211                 check_non_pic(object, r_type);
3212                 rela_dyn->add_global(gsym, r_type, output_section,
3213                                      object, data_shndx,
3214                                      reloc.get_r_offset(),
3215                                      reloc.get_r_addend());
3216               }
3217           }
3218       }
3219       break;
3220
3221     case elfcpp::R_PPC_PLTREL24:
3222     case elfcpp::R_POWERPC_REL24:
3223       if (gsym->needs_plt_entry()
3224           || (!gsym->final_value_is_known()
3225               && (gsym->is_undefined()
3226                   || gsym->is_from_dynobj()
3227                   || gsym->is_preemptible())))
3228         target->make_plt_entry(layout, gsym, reloc, object);
3229       // Fall thru
3230
3231     case elfcpp::R_PPC64_REL64:
3232     case elfcpp::R_POWERPC_REL32:
3233       // Make a dynamic relocation if necessary.
3234       if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type)))
3235         {
3236           if (gsym->may_need_copy_reloc())
3237             {
3238               target->copy_reloc(symtab, layout, object,
3239                                  data_shndx, output_section, gsym,
3240                                  reloc);
3241             }
3242           else
3243             {
3244               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3245               check_non_pic(object, r_type);
3246               rela_dyn->add_global(gsym, r_type, output_section, object,
3247                                    data_shndx, reloc.get_r_offset(),
3248                                    reloc.get_r_addend());
3249             }
3250         }
3251       break;
3252
3253     case elfcpp::R_POWERPC_REL16:
3254     case elfcpp::R_POWERPC_REL16_LO:
3255     case elfcpp::R_POWERPC_REL16_HI:
3256     case elfcpp::R_POWERPC_REL16_HA:
3257     case elfcpp::R_POWERPC_REL14:
3258     case elfcpp::R_POWERPC_REL14_BRTAKEN:
3259     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
3260     case elfcpp::R_POWERPC_SECTOFF:
3261     case elfcpp::R_POWERPC_TPREL16:
3262     case elfcpp::R_POWERPC_DTPREL16:
3263     case elfcpp::R_POWERPC_SECTOFF_LO:
3264     case elfcpp::R_POWERPC_TPREL16_LO:
3265     case elfcpp::R_POWERPC_DTPREL16_LO:
3266     case elfcpp::R_POWERPC_SECTOFF_HI:
3267     case elfcpp::R_POWERPC_TPREL16_HI:
3268     case elfcpp::R_POWERPC_DTPREL16_HI:
3269     case elfcpp::R_POWERPC_SECTOFF_HA:
3270     case elfcpp::R_POWERPC_TPREL16_HA:
3271     case elfcpp::R_POWERPC_DTPREL16_HA:
3272     case elfcpp::R_PPC64_DTPREL16_HIGHER:
3273     case elfcpp::R_PPC64_TPREL16_HIGHER:
3274     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
3275     case elfcpp::R_PPC64_TPREL16_HIGHERA:
3276     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
3277     case elfcpp::R_PPC64_TPREL16_HIGHEST:
3278     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
3279     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
3280     case elfcpp::R_PPC64_TPREL16_DS:
3281     case elfcpp::R_PPC64_TPREL16_LO_DS:
3282     case elfcpp::R_PPC64_DTPREL16_DS:
3283     case elfcpp::R_PPC64_DTPREL16_LO_DS:
3284     case elfcpp::R_PPC64_SECTOFF_DS:
3285     case elfcpp::R_PPC64_SECTOFF_LO_DS:
3286     case elfcpp::R_PPC64_TLSGD:
3287     case elfcpp::R_PPC64_TLSLD:
3288       break;
3289
3290     case elfcpp::R_POWERPC_GOT16:
3291     case elfcpp::R_POWERPC_GOT16_LO:
3292     case elfcpp::R_POWERPC_GOT16_HI:
3293     case elfcpp::R_POWERPC_GOT16_HA:
3294     case elfcpp::R_PPC64_GOT16_DS:
3295     case elfcpp::R_PPC64_GOT16_LO_DS:
3296       {
3297         // The symbol requires a GOT entry.
3298         Output_data_got_powerpc<size, big_endian>* got;
3299
3300         got = target->got_section(symtab, layout);
3301         if (gsym->final_value_is_known())
3302           {
3303             if (size == 32 && gsym->type() == elfcpp::STT_GNU_IFUNC)
3304               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3305             else
3306               got->add_global(gsym, GOT_TYPE_STANDARD);
3307           }
3308         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
3309           {
3310             // If we are generating a shared object or a pie, this
3311             // symbol's GOT entry will be set by a dynamic relocation.
3312             unsigned int off = got->add_constant(0);
3313             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
3314
3315             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3316             if (gsym->can_use_relative_reloc(false)
3317                 && !(size == 32
3318                      && gsym->visibility() == elfcpp::STV_PROTECTED
3319                      && parameters->options().shared()))
3320               {
3321                 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
3322                 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3323                   {
3324                     rela_dyn = target->iplt_section()->rel_plt();
3325                     dynrel = elfcpp::R_POWERPC_IRELATIVE;
3326                   }
3327                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
3328               }
3329             else
3330               {
3331                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
3332                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
3333               }
3334           }
3335       }
3336       break;
3337
3338     case elfcpp::R_PPC64_TOC16:
3339     case elfcpp::R_PPC64_TOC16_LO:
3340     case elfcpp::R_PPC64_TOC16_HI:
3341     case elfcpp::R_PPC64_TOC16_HA:
3342     case elfcpp::R_PPC64_TOC16_DS:
3343     case elfcpp::R_PPC64_TOC16_LO_DS:
3344       // We need a GOT section.
3345       target->got_section(symtab, layout);
3346       break;
3347
3348     case elfcpp::R_POWERPC_GOT_TLSGD16:
3349     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
3350     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
3351     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
3352       {
3353         const bool final = gsym->final_value_is_known();
3354         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
3355         if (tls_type == tls::TLSOPT_NONE)
3356           {
3357             Output_data_got_powerpc<size, big_endian>* got
3358               = target->got_section(symtab, layout);
3359             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD,
3360                                           target->rela_dyn_section(layout),
3361                                           elfcpp::R_POWERPC_DTPMOD,
3362                                           elfcpp::R_POWERPC_DTPREL);
3363           }
3364         else if (tls_type == tls::TLSOPT_TO_IE)
3365           {
3366             Output_data_got_powerpc<size, big_endian>* got
3367               = target->got_section(symtab, layout);
3368             got->add_global_with_rel(gsym, GOT_TYPE_TPREL,
3369                                      target->rela_dyn_section(layout),
3370                                      elfcpp::R_POWERPC_TPREL);
3371           }
3372         else if (tls_type == tls::TLSOPT_TO_LE)
3373           {
3374             // no GOT relocs needed for Local Exec.
3375           }
3376         else
3377           gold_unreachable();
3378       }
3379       break;
3380
3381     case elfcpp::R_POWERPC_GOT_TLSLD16:
3382     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
3383     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
3384     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
3385       {
3386         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
3387         if (tls_type == tls::TLSOPT_NONE)
3388           target->tlsld_got_offset(symtab, layout, object);
3389         else if (tls_type == tls::TLSOPT_TO_LE)
3390           {
3391             // no GOT relocs needed for Local Exec.
3392             if (parameters->options().emit_relocs())
3393               {
3394                 Output_section* os = layout->tls_segment()->first_section();
3395                 gold_assert(os != NULL);
3396                 os->set_needs_symtab_index();
3397               }
3398           }
3399         else
3400           gold_unreachable();
3401       }
3402       break;
3403
3404     case elfcpp::R_POWERPC_GOT_DTPREL16:
3405     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
3406     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
3407     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
3408       {
3409         Output_data_got_powerpc<size, big_endian>* got
3410           = target->got_section(symtab, layout);
3411         if (!gsym->final_value_is_known()
3412             && (gsym->is_from_dynobj()
3413                 || gsym->is_undefined()
3414                 || gsym->is_preemptible()))
3415           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
3416                                    target->rela_dyn_section(layout),
3417                                    elfcpp::R_POWERPC_DTPREL);
3418         else
3419           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
3420       }
3421       break;
3422
3423     case elfcpp::R_POWERPC_GOT_TPREL16:
3424     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
3425     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
3426     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
3427       {
3428         const bool final = gsym->final_value_is_known();
3429         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
3430         if (tls_type == tls::TLSOPT_NONE)
3431           {
3432             Output_data_got_powerpc<size, big_endian>* got
3433               = target->got_section(symtab, layout);
3434             if (!gsym->final_value_is_known()
3435                 && (gsym->is_from_dynobj()
3436                     || gsym->is_undefined()
3437                     || gsym->is_preemptible()))
3438               got->add_global_with_rel(gsym, GOT_TYPE_TPREL,
3439                                        target->rela_dyn_section(layout),
3440                                        elfcpp::R_POWERPC_TPREL);
3441             else
3442               got->add_global_tls(gsym, GOT_TYPE_TPREL);
3443           }
3444         else if (tls_type == tls::TLSOPT_TO_LE)
3445           {
3446             // no GOT relocs needed for Local Exec.
3447           }
3448         else
3449           gold_unreachable();
3450       }
3451       break;
3452
3453     default:
3454       unsupported_reloc_global(object, r_type, gsym);
3455       break;
3456     }
3457 }
3458
3459 // Process relocations for gc.
3460
3461 template<int size, bool big_endian>
3462 void
3463 Target_powerpc<size, big_endian>::gc_process_relocs(
3464     Symbol_table* symtab,
3465     Layout* layout,
3466     Sized_relobj_file<size, big_endian>* object,
3467     unsigned int data_shndx,
3468     unsigned int,
3469     const unsigned char* prelocs,
3470     size_t reloc_count,
3471     Output_section* output_section,
3472     bool needs_special_offset_handling,
3473     size_t local_symbol_count,
3474     const unsigned char* plocal_symbols)
3475 {
3476   typedef Target_powerpc<size, big_endian> Powerpc;
3477   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
3478   Powerpc_relobj<size, big_endian>* ppc_object
3479     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
3480   if (size == 64)
3481     ppc_object->set_opd_valid();
3482   if (size == 64 && data_shndx == ppc_object->opd_shndx())
3483     {
3484       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
3485       for (p = ppc_object->access_from_map()->begin();
3486            p != ppc_object->access_from_map()->end();
3487            ++p)
3488         {
3489           Address dst_off = p->first;
3490           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
3491           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
3492           for (s = p->second.begin(); s != p->second.end(); ++s)
3493             {
3494               Object* src_obj = s->first;
3495               unsigned int src_indx = s->second;
3496               symtab->gc()->add_reference(src_obj, src_indx,
3497                                           ppc_object, dst_indx);
3498             }
3499           p->second.clear();
3500         }
3501       ppc_object->access_from_map()->clear();
3502       // Don't look at .opd relocs as .opd will reference everything.
3503       return;
3504     }
3505
3506   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
3507                           typename Target_powerpc::Relocatable_size_for_reloc>(
3508     symtab,
3509     layout,
3510     this,
3511     object,
3512     data_shndx,
3513     prelocs,
3514     reloc_count,
3515     output_section,
3516     needs_special_offset_handling,
3517     local_symbol_count,
3518     plocal_symbols);
3519 }
3520
3521 // Handle target specific gc actions when adding a gc reference from
3522 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
3523 // and DST_OFF.  For powerpc64, this adds a referenc to the code
3524 // section of a function descriptor.
3525
3526 template<int size, bool big_endian>
3527 void
3528 Target_powerpc<size, big_endian>::do_gc_add_reference(
3529     Symbol_table* symtab,
3530     Object* src_obj,
3531     unsigned int src_shndx,
3532     Object* dst_obj,
3533     unsigned int dst_shndx,
3534     Address dst_off) const
3535 {
3536   Powerpc_relobj<size, big_endian>* ppc_object
3537     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
3538   if (size == 64 && dst_shndx == ppc_object->opd_shndx())
3539     {
3540       if (ppc_object->opd_valid())
3541         {
3542           dst_shndx = ppc_object->get_opd_ent(dst_off);
3543           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
3544         }
3545       else
3546         {
3547           // If we haven't run scan_opd_relocs, we must delay
3548           // processing this function descriptor reference.
3549           ppc_object->add_reference(src_obj, src_shndx, dst_off);
3550         }
3551     }
3552 }
3553
3554 // Add any special sections for this symbol to the gc work list.
3555 // For powerpc64, this adds the code section of a function
3556 // descriptor.
3557
3558 template<int size, bool big_endian>
3559 void
3560 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
3561     Symbol_table* symtab,
3562     Symbol* sym) const
3563 {
3564   if (size == 64)
3565     {
3566       Powerpc_relobj<size, big_endian>* ppc_object
3567         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
3568       bool is_ordinary;
3569       unsigned int shndx = sym->shndx(&is_ordinary);
3570       if (is_ordinary && shndx == ppc_object->opd_shndx())
3571         {
3572           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
3573           Address dst_off = gsym->value();
3574           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
3575           symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
3576         }
3577     }
3578 }
3579
3580 // Scan relocations for a section.
3581
3582 template<int size, bool big_endian>
3583 void
3584 Target_powerpc<size, big_endian>::scan_relocs(
3585     Symbol_table* symtab,
3586     Layout* layout,
3587     Sized_relobj_file<size, big_endian>* object,
3588     unsigned int data_shndx,
3589     unsigned int sh_type,
3590     const unsigned char* prelocs,
3591     size_t reloc_count,
3592     Output_section* output_section,
3593     bool needs_special_offset_handling,
3594     size_t local_symbol_count,
3595     const unsigned char* plocal_symbols)
3596 {
3597   typedef Target_powerpc<size, big_endian> Powerpc;
3598   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
3599
3600   if (sh_type == elfcpp::SHT_REL)
3601     {
3602       gold_error(_("%s: unsupported REL reloc section"),
3603                  object->name().c_str());
3604       return;
3605     }
3606
3607   if (size == 32)
3608     {
3609       static Output_data_space* sdata;
3610
3611       // Define _SDA_BASE_ at the start of the .sdata section.
3612       if (sdata == NULL)
3613         {
3614           // layout->find_output_section(".sdata") == NULL
3615           sdata = new Output_data_space(4, "** sdata");
3616           Output_section* os
3617             = layout->add_output_section_data(".sdata", 0,
3618                                               elfcpp::SHF_ALLOC
3619                                               | elfcpp::SHF_WRITE,
3620                                               sdata, ORDER_SMALL_DATA, false);
3621           symtab->define_in_output_data("_SDA_BASE_", NULL,
3622                                         Symbol_table::PREDEFINED,
3623                                         os, 32768, 0, elfcpp::STT_OBJECT,
3624                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
3625                                         0, false, false);
3626         }
3627     }
3628
3629   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
3630     symtab,
3631     layout,
3632     this,
3633     object,
3634     data_shndx,
3635     prelocs,
3636     reloc_count,
3637     output_section,
3638     needs_special_offset_handling,
3639     local_symbol_count,
3640     plocal_symbols);
3641 }
3642
3643 // Functor class for processing the global symbol table.
3644 // Removes symbols defined on discarded opd entries.
3645
3646 template<bool big_endian>
3647 class Global_symbol_visitor_opd
3648 {
3649  public:
3650   Global_symbol_visitor_opd()
3651   { }
3652
3653   void
3654   operator()(Sized_symbol<64>* sym)
3655   {
3656     if (sym->has_symtab_index()
3657         || sym->source() != Symbol::FROM_OBJECT
3658         || !sym->in_real_elf())
3659       return;
3660
3661     Powerpc_relobj<64, big_endian>* symobj
3662       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
3663     if (symobj->is_dynamic()
3664         || symobj->opd_shndx() == 0)
3665       return;
3666
3667     bool is_ordinary;
3668     unsigned int shndx = sym->shndx(&is_ordinary);
3669     if (shndx == symobj->opd_shndx()
3670         && symobj->get_opd_discard(sym->value()))
3671       sym->set_symtab_index(-1U);
3672   }
3673 };
3674
3675 // Finalize the sections.
3676
3677 template<int size, bool big_endian>
3678 void
3679 Target_powerpc<size, big_endian>::do_finalize_sections(
3680     Layout* layout,
3681     const Input_objects*,
3682     Symbol_table* symtab)
3683 {
3684   if (parameters->doing_static_link())
3685     {
3686       // At least some versions of glibc elf-init.o have a strong
3687       // reference to __rela_iplt marker syms.  A weak ref would be
3688       // better..
3689       if (this->iplt_ != NULL)
3690         {
3691           Reloc_section* rel = this->iplt_->rel_plt();
3692           symtab->define_in_output_data("__rela_iplt_start", NULL,
3693                                         Symbol_table::PREDEFINED, rel, 0, 0,
3694                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
3695                                         elfcpp::STV_HIDDEN, 0, false, true);
3696           symtab->define_in_output_data("__rela_iplt_end", NULL,
3697                                         Symbol_table::PREDEFINED, rel, 0, 0,
3698                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
3699                                         elfcpp::STV_HIDDEN, 0, true, true);
3700         }
3701       else
3702         {
3703           symtab->define_as_constant("__rela_iplt_start", NULL,
3704                                      Symbol_table::PREDEFINED, 0, 0,
3705                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
3706                                      elfcpp::STV_HIDDEN, 0, true, false);
3707           symtab->define_as_constant("__rela_iplt_end", NULL,
3708                                      Symbol_table::PREDEFINED, 0, 0,
3709                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
3710                                      elfcpp::STV_HIDDEN, 0, true, false);
3711         }
3712     }
3713
3714   if (size == 64)
3715     {
3716       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
3717       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
3718     }
3719
3720   // Fill in some more dynamic tags.
3721   Output_data_dynamic* odyn = layout->dynamic_data();
3722   if (odyn != NULL)
3723     {
3724       const Reloc_section* rel_plt = (this->plt_ == NULL
3725                                       ? NULL
3726                                       : this->plt_->rel_plt());
3727       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
3728                                       this->rela_dyn_, true, size == 32);
3729
3730       if (size == 32)
3731         {
3732           if (this->got_ != NULL)
3733             {
3734               this->got_->finalize_data_size();
3735               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
3736                                             this->got_, this->got_->g_o_t());
3737             }
3738         }
3739       else
3740         {
3741           if (this->glink_ != NULL)
3742             {
3743               this->glink_->finalize_data_size();
3744               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
3745                                             this->glink_,
3746                                             (this->glink_->pltresolve()
3747                                              + this->glink_->pltresolve_size
3748                                              - 32));
3749             }
3750         }
3751     }
3752
3753   // Emit any relocs we saved in an attempt to avoid generating COPY
3754   // relocs.
3755   if (this->copy_relocs_.any_saved_relocs())
3756     this->copy_relocs_.emit(this->rela_dyn_section(layout));
3757 }
3758
3759 // Return the value to use for a branch relocation.
3760
3761 template<int size, bool big_endian>
3762 typename elfcpp::Elf_types<size>::Elf_Addr
3763 Target_powerpc<size, big_endian>::symval_for_branch(
3764     Address value,
3765     const Sized_symbol<size>* gsym,
3766     Powerpc_relobj<size, big_endian>* object,
3767     unsigned int *dest_shndx)
3768 {
3769   *dest_shndx = 0;
3770   if (size == 32)
3771     return value;
3772
3773   // If the symbol is defined in an opd section, ie. is a function
3774   // descriptor, use the function descriptor code entry address
3775   Powerpc_relobj<size, big_endian>* symobj = object;
3776   if (gsym != NULL)
3777     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
3778   unsigned int shndx = symobj->opd_shndx();
3779   if (shndx == 0)
3780     return value;
3781   Address opd_addr = symobj->get_output_section_offset(shndx);
3782   gold_assert(opd_addr != invalid_address);
3783   opd_addr += symobj->output_section(shndx)->address();
3784   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
3785     {
3786       Address sec_off;
3787       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
3788       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
3789       gold_assert(sec_addr != invalid_address);
3790       sec_addr += symobj->output_section(*dest_shndx)->address();
3791       value = sec_addr + sec_off;
3792     }
3793   return value;
3794 }
3795
3796 // Perform a relocation.
3797
3798 template<int size, bool big_endian>
3799 inline bool
3800 Target_powerpc<size, big_endian>::Relocate::relocate(
3801     const Relocate_info<size, big_endian>* relinfo,
3802     Target_powerpc* target,
3803     Output_section* os,
3804     size_t relnum,
3805     const elfcpp::Rela<size, big_endian>& rela,
3806     unsigned int r_type,
3807     const Sized_symbol<size>* gsym,
3808     const Symbol_value<size>* psymval,
3809     unsigned char* view,
3810     Address address,
3811     section_size_type view_size)
3812 {
3813
3814   bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
3815                        || r_type == elfcpp::R_PPC_PLTREL24)
3816                       && gsym != NULL
3817                       && strcmp(gsym->name(), "__tls_get_addr") == 0);
3818   enum skip_tls last_tls = this->call_tls_get_addr_;
3819   this->call_tls_get_addr_ = CALL_NOT_EXPECTED;
3820   if (is_tls_call)
3821     {
3822       if (last_tls == CALL_NOT_EXPECTED)
3823         gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3824                                _("__tls_get_addr call lacks marker reloc"));
3825       else if (last_tls == CALL_SKIP)
3826         return false;
3827     }
3828   else if (last_tls != CALL_NOT_EXPECTED)
3829     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3830                            _("missing expected __tls_get_addr call"));
3831
3832   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
3833   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
3834   Powerpc_relobj<size, big_endian>* const object
3835     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
3836   Address value = 0;
3837   bool has_plt_value = false;
3838   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3839   if (gsym != NULL
3840       ? use_plt_offset<size>(gsym, Scan::get_reference_flags(r_type))
3841       : object->local_has_plt_offset(r_sym))
3842     {
3843       const Output_data_glink<size, big_endian>* glink
3844         = target->glink_section();
3845       unsigned int glink_index;
3846       if (gsym != NULL)
3847         glink_index = glink->find_entry(object, gsym, rela);
3848       else
3849         glink_index = glink->find_entry(object, r_sym, rela);
3850       value = glink->address() + glink_index * glink->glink_entry_size();
3851       has_plt_value = true;
3852     }
3853
3854   if (r_type == elfcpp::R_POWERPC_GOT16
3855       || r_type == elfcpp::R_POWERPC_GOT16_LO
3856       || r_type == elfcpp::R_POWERPC_GOT16_HI
3857       || r_type == elfcpp::R_POWERPC_GOT16_HA
3858       || r_type == elfcpp::R_PPC64_GOT16_DS
3859       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
3860     {
3861       if (gsym != NULL)
3862         {
3863           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3864           value = gsym->got_offset(GOT_TYPE_STANDARD);
3865         }
3866       else
3867         {
3868           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3869           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3870           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3871         }
3872       value -= target->got_section()->got_base_offset(object);
3873     }
3874   else if (r_type == elfcpp::R_PPC64_TOC)
3875     {
3876       value = (target->got_section()->output_section()->address()
3877                + object->toc_base_offset());
3878     }
3879   else if (gsym != NULL
3880            && (r_type == elfcpp::R_POWERPC_REL24
3881                || r_type == elfcpp::R_PPC_PLTREL24)
3882            && has_plt_value)
3883     {
3884       if (size == 64)
3885         {
3886           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3887           Valtype* wv = reinterpret_cast<Valtype*>(view);
3888           bool can_plt_call = false;
3889           if (rela.get_r_offset() + 8 <= view_size)
3890             {
3891               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3892               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
3893               if ((insn & 1) != 0
3894                   && (insn2 == nop
3895                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
3896                 {
3897                   elfcpp::Swap<32, big_endian>::writeval(wv + 1, ld_2_1 + 40);
3898                   can_plt_call = true;
3899                 }
3900             }
3901           if (!can_plt_call)
3902             {
3903               // If we don't have a branch and link followed by a nop,
3904               // we can't go via the plt because there is no place to
3905               // put a toc restoring instruction.
3906               // Unless we know we won't be returning.
3907               if (strcmp(gsym->name(), "__libc_start_main") == 0)
3908                 can_plt_call = true;
3909             }
3910           if (!can_plt_call)
3911             {
3912               // This is not an error in one special case: A self
3913               // call.  It isn't possible to cheaply verify we have
3914               // such a call so just check for a call to the same
3915               // section.
3916               bool ok = false;
3917               Address code = value;
3918               if (gsym->source() == Symbol::FROM_OBJECT
3919                   && gsym->object() == object)
3920                 {
3921                   Address addend = rela.get_r_addend();
3922                   unsigned int dest_shndx;
3923                   Address opdent = psymval->value(object, addend);
3924                   code = target->symval_for_branch(opdent, gsym, object,
3925                                                    &dest_shndx);
3926                   bool is_ordinary;
3927                   if (dest_shndx == 0)
3928                     dest_shndx = gsym->shndx(&is_ordinary);
3929                   ok = dest_shndx == relinfo->data_shndx;
3930                 }
3931               if (!ok)
3932                 {
3933                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3934                                          _("call lacks nop, can't restore toc; "
3935                                            "recompile with -fPIC"));
3936                   value = code;
3937                 }
3938             }
3939         }
3940     }
3941   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
3942            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
3943            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
3944            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
3945     {
3946       // First instruction of a global dynamic sequence, arg setup insn.
3947       const bool final = gsym == NULL || gsym->final_value_is_known();
3948       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
3949       enum Got_type got_type = GOT_TYPE_STANDARD;
3950       if (tls_type == tls::TLSOPT_NONE)
3951         got_type = GOT_TYPE_TLSGD;
3952       else if (tls_type == tls::TLSOPT_TO_IE)
3953         got_type = GOT_TYPE_TPREL;
3954       if (got_type != GOT_TYPE_STANDARD)
3955         {
3956           if (gsym != NULL)
3957             {
3958               gold_assert(gsym->has_got_offset(got_type));
3959               value = gsym->got_offset(got_type);
3960             }
3961           else
3962             {
3963               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3964               gold_assert(object->local_has_got_offset(r_sym, got_type));
3965               value = object->local_got_offset(r_sym, got_type);
3966             }
3967           value -= target->got_section()->got_base_offset(object);
3968         }
3969       if (tls_type == tls::TLSOPT_TO_IE)
3970         {
3971           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
3972               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
3973             {
3974               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
3975               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
3976               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
3977               if (size == 32)
3978                 insn |= 32 << 26; // lwz
3979               else
3980                 insn |= 58 << 26; // ld
3981               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
3982             }
3983           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
3984                      - elfcpp::R_POWERPC_GOT_TLSGD16);
3985         }
3986       else if (tls_type == tls::TLSOPT_TO_LE)
3987         {
3988           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
3989               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
3990             {
3991               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
3992               Insn insn = addis_3_13;
3993               if (size == 32)
3994                 insn = addis_3_2;
3995               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
3996               r_type = elfcpp::R_POWERPC_TPREL16_HA;
3997               value = psymval->value(object, rela.get_r_addend());
3998             }
3999           else
4000             {
4001               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4002               Insn insn = nop;
4003               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4004               r_type = elfcpp::R_POWERPC_NONE;
4005             }
4006         }
4007     }
4008   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
4009            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
4010            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
4011            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
4012     {
4013       // First instruction of a local dynamic sequence, arg setup insn.
4014       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4015       if (tls_type == tls::TLSOPT_NONE)
4016         {
4017           value = target->tlsld_got_offset();
4018           value -= target->got_section()->got_base_offset(object);
4019         }
4020       else
4021         {
4022           gold_assert(tls_type == tls::TLSOPT_TO_LE);
4023           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
4024               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
4025             {
4026               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4027               Insn insn = addis_3_13;
4028               if (size == 32)
4029                 insn = addis_3_2;
4030               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4031               r_type = elfcpp::R_POWERPC_TPREL16_HA;
4032               value = dtp_offset;
4033             }
4034           else
4035             {
4036               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4037               Insn insn = nop;
4038               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4039               r_type = elfcpp::R_POWERPC_NONE;
4040             }
4041         }
4042     }
4043   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
4044            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
4045            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
4046            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
4047     {
4048       // Accesses relative to a local dynamic sequence address,
4049       // no optimisation here.
4050       if (gsym != NULL)
4051         {
4052           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
4053           value = gsym->got_offset(GOT_TYPE_DTPREL);
4054         }
4055       else
4056         {
4057           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4058           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
4059           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
4060         }
4061       value -= target->got_section()->got_base_offset(object);
4062     }
4063   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
4064            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
4065            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
4066            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
4067     {
4068       // First instruction of initial exec sequence.
4069       const bool final = gsym == NULL || gsym->final_value_is_known();
4070       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
4071       if (tls_type == tls::TLSOPT_NONE)
4072         {
4073           if (gsym != NULL)
4074             {
4075               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
4076               value = gsym->got_offset(GOT_TYPE_TPREL);
4077             }
4078           else
4079             {
4080               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4081               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
4082               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
4083             }
4084           value -= target->got_section()->got_base_offset(object);
4085         }
4086       else
4087         {
4088           gold_assert(tls_type == tls::TLSOPT_TO_LE);
4089           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
4090               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
4091             {
4092               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4093               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
4094               insn &= (1 << 26) - (1 << 21); // extract rt from ld
4095               if (size == 32)
4096                 insn |= addis_0_2;
4097               else
4098                 insn |= addis_0_13;
4099               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4100               r_type = elfcpp::R_POWERPC_TPREL16_HA;
4101               value = psymval->value(object, rela.get_r_addend());
4102             }
4103           else
4104             {
4105               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4106               Insn insn = nop;
4107               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4108               r_type = elfcpp::R_POWERPC_NONE;
4109             }
4110         }
4111     }
4112   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
4113            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
4114     {
4115       // Second instruction of a global dynamic sequence,
4116       // the __tls_get_addr call
4117       this->call_tls_get_addr_ = CALL_EXPECTED;
4118       const bool final = gsym == NULL || gsym->final_value_is_known();
4119       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
4120       if (tls_type != tls::TLSOPT_NONE)
4121         {
4122           if (tls_type == tls::TLSOPT_TO_IE)
4123             {
4124               Insn* iview = reinterpret_cast<Insn*>(view);
4125               Insn insn = add_3_3_13;
4126               if (size == 32)
4127                 insn = add_3_3_2;
4128               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4129               r_type = elfcpp::R_POWERPC_NONE;
4130             }
4131           else
4132             {
4133               Insn* iview = reinterpret_cast<Insn*>(view);
4134               Insn insn = addi_3_3;
4135               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4136               r_type = elfcpp::R_POWERPC_TPREL16_LO;
4137               view += 2 * big_endian;
4138               value = psymval->value(object, rela.get_r_addend());
4139             }
4140           this->call_tls_get_addr_ = CALL_SKIP;
4141         }
4142     }
4143   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
4144            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
4145     {
4146       // Second instruction of a local dynamic sequence,
4147       // the __tls_get_addr call
4148       this->call_tls_get_addr_ = CALL_EXPECTED;
4149       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4150       if (tls_type == tls::TLSOPT_TO_LE)
4151         {
4152           Insn* iview = reinterpret_cast<Insn*>(view);
4153           Insn insn = addi_3_3;
4154           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4155           this->call_tls_get_addr_ = CALL_SKIP;
4156           r_type = elfcpp::R_POWERPC_TPREL16_LO;
4157           view += 2 * big_endian;
4158           value = dtp_offset;
4159         }
4160     }
4161   else if (r_type == elfcpp::R_POWERPC_TLS)
4162     {
4163       // Second instruction of an initial exec sequence
4164       const bool final = gsym == NULL || gsym->final_value_is_known();
4165       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
4166       if (tls_type == tls::TLSOPT_TO_LE)
4167         {
4168           Insn* iview = reinterpret_cast<Insn*>(view);
4169           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
4170           unsigned int reg = size == 32 ? 2 : 13;
4171           insn = at_tls_transform(insn, reg);
4172           gold_assert(insn != 0);
4173           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4174           r_type = elfcpp::R_POWERPC_TPREL16_LO;
4175           view += 2 * big_endian;
4176           value = psymval->value(object, rela.get_r_addend());
4177         }
4178     }
4179   else if (!has_plt_value)
4180     {
4181       Address addend = 0;
4182       unsigned int dest_shndx;
4183       if (r_type != elfcpp::R_PPC_PLTREL24)
4184         addend = rela.get_r_addend();
4185       value = psymval->value(object, addend);
4186       if (size == 64 && is_branch_reloc(r_type))
4187         value = target->symval_for_branch(value, gsym, object, &dest_shndx);
4188     }
4189
4190   switch (r_type)
4191     {
4192     case elfcpp::R_PPC64_REL64:
4193     case elfcpp::R_POWERPC_REL32:
4194     case elfcpp::R_POWERPC_REL24:
4195     case elfcpp::R_PPC_PLTREL24:
4196     case elfcpp::R_PPC_LOCAL24PC:
4197     case elfcpp::R_POWERPC_REL16:
4198     case elfcpp::R_POWERPC_REL16_LO:
4199     case elfcpp::R_POWERPC_REL16_HI:
4200     case elfcpp::R_POWERPC_REL16_HA:
4201     case elfcpp::R_POWERPC_REL14:
4202     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4203     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4204       value -= address;
4205       break;
4206
4207     case elfcpp::R_PPC64_TOC16:
4208     case elfcpp::R_PPC64_TOC16_LO:
4209     case elfcpp::R_PPC64_TOC16_HI:
4210     case elfcpp::R_PPC64_TOC16_HA:
4211     case elfcpp::R_PPC64_TOC16_DS:
4212     case elfcpp::R_PPC64_TOC16_LO_DS:
4213       // Subtract the TOC base address.
4214       value -= (target->got_section()->output_section()->address()
4215                 + object->toc_base_offset());
4216       break;
4217
4218     case elfcpp::R_POWERPC_SECTOFF:
4219     case elfcpp::R_POWERPC_SECTOFF_LO:
4220     case elfcpp::R_POWERPC_SECTOFF_HI:
4221     case elfcpp::R_POWERPC_SECTOFF_HA:
4222     case elfcpp::R_PPC64_SECTOFF_DS:
4223     case elfcpp::R_PPC64_SECTOFF_LO_DS:
4224       if (os != NULL)
4225         value -= os->address();
4226       break;
4227
4228     case elfcpp::R_PPC64_TPREL16_DS:
4229     case elfcpp::R_PPC64_TPREL16_LO_DS:
4230       if (size != 64)
4231         // R_PPC_TLSGD and R_PPC_TLSLD
4232         break;
4233     case elfcpp::R_POWERPC_TPREL16:
4234     case elfcpp::R_POWERPC_TPREL16_LO:
4235     case elfcpp::R_POWERPC_TPREL16_HI:
4236     case elfcpp::R_POWERPC_TPREL16_HA:
4237     case elfcpp::R_POWERPC_TPREL:
4238     case elfcpp::R_PPC64_TPREL16_HIGHER:
4239     case elfcpp::R_PPC64_TPREL16_HIGHERA:
4240     case elfcpp::R_PPC64_TPREL16_HIGHEST:
4241     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4242       // tls symbol values are relative to tls_segment()->vaddr()
4243       value -= tp_offset;
4244       break;
4245
4246     case elfcpp::R_PPC64_DTPREL16_DS:
4247     case elfcpp::R_PPC64_DTPREL16_LO_DS:
4248     case elfcpp::R_PPC64_DTPREL16_HIGHER:
4249     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
4250     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
4251     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
4252       if (size != 64)
4253         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
4254         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
4255         break;
4256     case elfcpp::R_POWERPC_DTPREL16:
4257     case elfcpp::R_POWERPC_DTPREL16_LO:
4258     case elfcpp::R_POWERPC_DTPREL16_HI:
4259     case elfcpp::R_POWERPC_DTPREL16_HA:
4260     case elfcpp::R_POWERPC_DTPREL:
4261       // tls symbol values are relative to tls_segment()->vaddr()
4262       value -= dtp_offset;
4263       break;
4264
4265     default:
4266       break;
4267     }
4268
4269   Insn branch_bit = 0;
4270   switch (r_type)
4271     {
4272     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4273     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4274       branch_bit = 1 << 21;
4275     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4276     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4277       {
4278         Insn* iview = reinterpret_cast<Insn*>(view);
4279         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
4280         insn &= ~(1 << 21);
4281         insn |= branch_bit;
4282         if (this->is_isa_v2)
4283           {
4284             // Set 'a' bit.  This is 0b00010 in BO field for branch
4285             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
4286             // for branch on CTR insns (BO == 1a00t or 1a01t).
4287             if ((insn & (0x14 << 21)) == (0x04 << 21))
4288               insn |= 0x02 << 21;
4289             else if ((insn & (0x14 << 21)) == (0x10 << 21))
4290               insn |= 0x08 << 21;
4291             else
4292               break;
4293           }
4294         else
4295           {
4296             // Invert 'y' bit if not the default.
4297             if (static_cast<Signed_address>(value) < 0)
4298               insn ^= 1 << 21;
4299           }
4300         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4301       }
4302       break;
4303
4304     default:
4305       break;
4306     }
4307
4308   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
4309   switch (r_type)
4310     {
4311     case elfcpp::R_POWERPC_ADDR32:
4312     case elfcpp::R_POWERPC_UADDR32:
4313       if (size == 64)
4314         overflow = Reloc::CHECK_BITFIELD;
4315       break;
4316
4317     case elfcpp::R_POWERPC_REL32:
4318       if (size == 64)
4319         overflow = Reloc::CHECK_SIGNED;
4320       break;
4321
4322     case elfcpp::R_POWERPC_ADDR24:
4323     case elfcpp::R_POWERPC_ADDR16:
4324     case elfcpp::R_POWERPC_UADDR16:
4325     case elfcpp::R_PPC64_ADDR16_DS:
4326     case elfcpp::R_POWERPC_ADDR14:
4327     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4328     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4329       overflow = Reloc::CHECK_BITFIELD;
4330       break;
4331
4332     case elfcpp::R_POWERPC_REL24:
4333     case elfcpp::R_PPC_PLTREL24:
4334     case elfcpp::R_PPC_LOCAL24PC:
4335     case elfcpp::R_POWERPC_REL16:
4336     case elfcpp::R_PPC64_TOC16:
4337     case elfcpp::R_POWERPC_GOT16:
4338     case elfcpp::R_POWERPC_SECTOFF:
4339     case elfcpp::R_POWERPC_TPREL16:
4340     case elfcpp::R_POWERPC_DTPREL16:
4341     case elfcpp::R_PPC64_TPREL16_DS:
4342     case elfcpp::R_PPC64_DTPREL16_DS:
4343     case elfcpp::R_PPC64_TOC16_DS:
4344     case elfcpp::R_PPC64_GOT16_DS:
4345     case elfcpp::R_PPC64_SECTOFF_DS:
4346     case elfcpp::R_POWERPC_REL14:
4347     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4348     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4349     case elfcpp::R_POWERPC_GOT_TLSGD16:
4350     case elfcpp::R_POWERPC_GOT_TLSLD16:
4351     case elfcpp::R_POWERPC_GOT_TPREL16:
4352     case elfcpp::R_POWERPC_GOT_DTPREL16:
4353       overflow = Reloc::CHECK_SIGNED;
4354       break;
4355     }
4356
4357   typename Powerpc_relocate_functions<size, big_endian>::Status status
4358     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
4359   switch (r_type)
4360     {
4361     case elfcpp::R_POWERPC_NONE:
4362     case elfcpp::R_POWERPC_TLS:
4363     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4364     case elfcpp::R_POWERPC_GNU_VTENTRY:
4365     case elfcpp::R_PPC_EMB_MRKREF:
4366       break;
4367
4368     case elfcpp::R_PPC64_ADDR64:
4369     case elfcpp::R_PPC64_REL64:
4370     case elfcpp::R_PPC64_TOC:
4371       Reloc::addr64(view, value);
4372       break;
4373
4374     case elfcpp::R_POWERPC_TPREL:
4375     case elfcpp::R_POWERPC_DTPREL:
4376       if (size == 64)
4377         Reloc::addr64(view, value);
4378       else
4379         status = Reloc::addr32(view, value, overflow);
4380       break;
4381
4382     case elfcpp::R_PPC64_UADDR64:
4383       Reloc::addr64_u(view, value);
4384       break;
4385
4386     case elfcpp::R_POWERPC_ADDR32:
4387     case elfcpp::R_POWERPC_REL32:
4388       status = Reloc::addr32(view, value, overflow);
4389       break;
4390
4391     case elfcpp::R_POWERPC_UADDR32:
4392       status = Reloc::addr32_u(view, value, overflow);
4393       break;
4394
4395     case elfcpp::R_POWERPC_ADDR24:
4396     case elfcpp::R_POWERPC_REL24:
4397     case elfcpp::R_PPC_PLTREL24:
4398     case elfcpp::R_PPC_LOCAL24PC:
4399       status = Reloc::addr24(view, value, overflow);
4400       break;
4401
4402     case elfcpp::R_POWERPC_GOT_DTPREL16:
4403     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
4404       if (size == 64)
4405         {
4406           status = Reloc::addr16_ds(view, value, overflow);
4407           break;
4408         }
4409     case elfcpp::R_POWERPC_ADDR16:
4410     case elfcpp::R_POWERPC_REL16:
4411     case elfcpp::R_PPC64_TOC16:
4412     case elfcpp::R_POWERPC_GOT16:
4413     case elfcpp::R_POWERPC_SECTOFF:
4414     case elfcpp::R_POWERPC_TPREL16:
4415     case elfcpp::R_POWERPC_DTPREL16:
4416     case elfcpp::R_POWERPC_GOT_TLSGD16:
4417     case elfcpp::R_POWERPC_GOT_TLSLD16:
4418     case elfcpp::R_POWERPC_GOT_TPREL16:
4419     case elfcpp::R_POWERPC_ADDR16_LO:
4420     case elfcpp::R_POWERPC_REL16_LO:
4421     case elfcpp::R_PPC64_TOC16_LO:
4422     case elfcpp::R_POWERPC_GOT16_LO:
4423     case elfcpp::R_POWERPC_SECTOFF_LO:
4424     case elfcpp::R_POWERPC_TPREL16_LO:
4425     case elfcpp::R_POWERPC_DTPREL16_LO:
4426     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
4427     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
4428     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
4429       status = Reloc::addr16(view, value, overflow);
4430       break;
4431
4432     case elfcpp::R_POWERPC_UADDR16:
4433       status = Reloc::addr16_u(view, value, overflow);
4434       break;
4435
4436     case elfcpp::R_POWERPC_ADDR16_HI:
4437     case elfcpp::R_POWERPC_REL16_HI:
4438     case elfcpp::R_PPC64_TOC16_HI:
4439     case elfcpp::R_POWERPC_GOT16_HI:
4440     case elfcpp::R_POWERPC_SECTOFF_HI:
4441     case elfcpp::R_POWERPC_TPREL16_HI:
4442     case elfcpp::R_POWERPC_DTPREL16_HI:
4443     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
4444     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
4445     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
4446     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
4447       Reloc::addr16_hi(view, value);
4448       break;
4449
4450     case elfcpp::R_POWERPC_ADDR16_HA:
4451     case elfcpp::R_POWERPC_REL16_HA:
4452     case elfcpp::R_PPC64_TOC16_HA:
4453     case elfcpp::R_POWERPC_GOT16_HA:
4454     case elfcpp::R_POWERPC_SECTOFF_HA:
4455     case elfcpp::R_POWERPC_TPREL16_HA:
4456     case elfcpp::R_POWERPC_DTPREL16_HA:
4457     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
4458     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
4459     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
4460     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
4461       Reloc::addr16_ha(view, value);
4462       break;
4463
4464     case elfcpp::R_PPC64_DTPREL16_HIGHER:
4465       if (size == 32)
4466         // R_PPC_EMB_NADDR16_LO
4467         goto unsupp;
4468     case elfcpp::R_PPC64_ADDR16_HIGHER:
4469     case elfcpp::R_PPC64_TPREL16_HIGHER:
4470       Reloc::addr16_hi2(view, value);
4471       break;
4472
4473     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
4474       if (size == 32)
4475         // R_PPC_EMB_NADDR16_HI
4476         goto unsupp;
4477     case elfcpp::R_PPC64_ADDR16_HIGHERA:
4478     case elfcpp::R_PPC64_TPREL16_HIGHERA:
4479       Reloc::addr16_ha2(view, value);
4480       break;
4481
4482     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
4483       if (size == 32)
4484         // R_PPC_EMB_NADDR16_HA
4485         goto unsupp;
4486     case elfcpp::R_PPC64_ADDR16_HIGHEST:
4487     case elfcpp::R_PPC64_TPREL16_HIGHEST:
4488       Reloc::addr16_hi3(view, value);
4489       break;
4490
4491     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
4492       if (size == 32)
4493         // R_PPC_EMB_SDAI16
4494         goto unsupp;
4495     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
4496     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4497       Reloc::addr16_ha3(view, value);
4498       break;
4499
4500     case elfcpp::R_PPC64_DTPREL16_DS:
4501     case elfcpp::R_PPC64_DTPREL16_LO_DS:
4502       if (size == 32)
4503         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
4504         goto unsupp;
4505     case elfcpp::R_PPC64_TPREL16_DS:
4506     case elfcpp::R_PPC64_TPREL16_LO_DS:
4507       if (size == 32)
4508         // R_PPC_TLSGD, R_PPC_TLSLD
4509         break;
4510     case elfcpp::R_PPC64_ADDR16_DS:
4511     case elfcpp::R_PPC64_ADDR16_LO_DS:
4512     case elfcpp::R_PPC64_TOC16_DS:
4513     case elfcpp::R_PPC64_TOC16_LO_DS:
4514     case elfcpp::R_PPC64_GOT16_DS:
4515     case elfcpp::R_PPC64_GOT16_LO_DS:
4516     case elfcpp::R_PPC64_SECTOFF_DS:
4517     case elfcpp::R_PPC64_SECTOFF_LO_DS:
4518       status = Reloc::addr16_ds(view, value, overflow);
4519       break;
4520
4521     case elfcpp::R_POWERPC_ADDR14:
4522     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4523     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4524     case elfcpp::R_POWERPC_REL14:
4525     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4526     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4527       status = Reloc::addr14(view, value, overflow);
4528       break;
4529
4530     case elfcpp::R_POWERPC_COPY:
4531     case elfcpp::R_POWERPC_GLOB_DAT:
4532     case elfcpp::R_POWERPC_JMP_SLOT:
4533     case elfcpp::R_POWERPC_RELATIVE:
4534     case elfcpp::R_POWERPC_DTPMOD:
4535     case elfcpp::R_PPC64_JMP_IREL:
4536     case elfcpp::R_POWERPC_IRELATIVE:
4537       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4538                              _("unexpected reloc %u in object file"),
4539                              r_type);
4540       break;
4541
4542     case elfcpp::R_PPC_EMB_SDA21:
4543       if (size == 32)
4544         goto unsupp;
4545       else
4546         {
4547           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
4548         }
4549       break;
4550
4551     case elfcpp::R_PPC_EMB_SDA2I16:
4552     case elfcpp::R_PPC_EMB_SDA2REL:
4553       if (size == 32)
4554         goto unsupp;
4555       // R_PPC64_TLSGD, R_PPC64_TLSLD
4556       break;
4557
4558     case elfcpp::R_POWERPC_PLT32:
4559     case elfcpp::R_POWERPC_PLTREL32:
4560     case elfcpp::R_POWERPC_PLT16_LO:
4561     case elfcpp::R_POWERPC_PLT16_HI:
4562     case elfcpp::R_POWERPC_PLT16_HA:
4563     case elfcpp::R_PPC_SDAREL16:
4564     case elfcpp::R_POWERPC_ADDR30:
4565     case elfcpp::R_PPC64_PLT64:
4566     case elfcpp::R_PPC64_PLTREL64:
4567     case elfcpp::R_PPC64_PLTGOT16:
4568     case elfcpp::R_PPC64_PLTGOT16_LO:
4569     case elfcpp::R_PPC64_PLTGOT16_HI:
4570     case elfcpp::R_PPC64_PLTGOT16_HA:
4571     case elfcpp::R_PPC64_PLT16_LO_DS:
4572     case elfcpp::R_PPC64_PLTGOT16_DS:
4573     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
4574     case elfcpp::R_PPC_EMB_RELSEC16:
4575     case elfcpp::R_PPC_EMB_RELST_LO:
4576     case elfcpp::R_PPC_EMB_RELST_HI:
4577     case elfcpp::R_PPC_EMB_RELST_HA:
4578     case elfcpp::R_PPC_EMB_BIT_FLD:
4579     case elfcpp::R_PPC_EMB_RELSDA:
4580     case elfcpp::R_PPC_TOC16:
4581     default:
4582     unsupp:
4583       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4584                              _("unsupported reloc %u"),
4585                              r_type);
4586       break;
4587     }
4588   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
4589     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4590                            _("relocation overflow"));
4591
4592   return true;
4593 }
4594
4595 // Relocate section data.
4596
4597 template<int size, bool big_endian>
4598 void
4599 Target_powerpc<size, big_endian>::relocate_section(
4600     const Relocate_info<size, big_endian>* relinfo,
4601     unsigned int sh_type,
4602     const unsigned char* prelocs,
4603     size_t reloc_count,
4604     Output_section* output_section,
4605     bool needs_special_offset_handling,
4606     unsigned char* view,
4607     Address address,
4608     section_size_type view_size,
4609     const Reloc_symbol_changes* reloc_symbol_changes)
4610 {
4611   typedef Target_powerpc<size, big_endian> Powerpc;
4612   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
4613
4614   gold_assert(sh_type == elfcpp::SHT_RELA);
4615
4616   unsigned char *opd_rel = NULL;
4617   Powerpc_relobj<size, big_endian>* const object
4618     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
4619   if (size == 64
4620       && relinfo->data_shndx == object->opd_shndx())
4621     {
4622       // Rewrite opd relocs, omitting those for discarded sections
4623       // to silence gold::relocate_section errors.
4624       const int reloc_size
4625         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
4626       opd_rel = new unsigned char[reloc_count * reloc_size];
4627       const unsigned char* rrel = prelocs;
4628       unsigned char* wrel = opd_rel;
4629
4630       for (size_t i = 0;
4631            i < reloc_count;
4632            ++i, rrel += reloc_size, wrel += reloc_size)
4633         {
4634           typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
4635             reloc(rrel);
4636           typename elfcpp::Elf_types<size>::Elf_WXword r_info
4637             = reloc.get_r_info();
4638           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
4639           Address r_off = reloc.get_r_offset();
4640           if (r_type == elfcpp::R_PPC64_TOC)
4641             r_off -= 8;
4642           bool is_discarded = object->get_opd_discard(r_off);
4643
4644           // Reloc number is reported in some errors, so keep all relocs.
4645           if (is_discarded)
4646             memset(wrel, 0, reloc_size);
4647           else
4648             memcpy(wrel, rrel, reloc_size);
4649         }
4650       prelocs = opd_rel;
4651     }
4652
4653   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
4654                          Powerpc_relocate>(
4655     relinfo,
4656     this,
4657     prelocs,
4658     reloc_count,
4659     output_section,
4660     needs_special_offset_handling,
4661     view,
4662     address,
4663     view_size,
4664     reloc_symbol_changes);
4665
4666   if (opd_rel != NULL)
4667     delete[] opd_rel;
4668 }
4669
4670 class Powerpc_scan_relocatable_reloc
4671 {
4672 public:
4673   // Return the strategy to use for a local symbol which is not a
4674   // section symbol, given the relocation type.
4675   inline Relocatable_relocs::Reloc_strategy
4676   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
4677   {
4678     if (r_type == 0 && r_sym == 0)
4679       return Relocatable_relocs::RELOC_DISCARD;
4680     return Relocatable_relocs::RELOC_COPY;
4681   }
4682
4683   // Return the strategy to use for a local symbol which is a section
4684   // symbol, given the relocation type.
4685   inline Relocatable_relocs::Reloc_strategy
4686   local_section_strategy(unsigned int, Relobj*)
4687   {
4688     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
4689   }
4690
4691   // Return the strategy to use for a global symbol, given the
4692   // relocation type, the object, and the symbol index.
4693   inline Relocatable_relocs::Reloc_strategy
4694   global_strategy(unsigned int r_type, Relobj*, unsigned int)
4695   {
4696     if (r_type == elfcpp::R_PPC_PLTREL24)
4697       return Relocatable_relocs::RELOC_SPECIAL;
4698     return Relocatable_relocs::RELOC_COPY;
4699   }
4700 };
4701
4702 // Scan the relocs during a relocatable link.
4703
4704 template<int size, bool big_endian>
4705 void
4706 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
4707     Symbol_table* symtab,
4708     Layout* layout,
4709     Sized_relobj_file<size, big_endian>* object,
4710     unsigned int data_shndx,
4711     unsigned int sh_type,
4712     const unsigned char* prelocs,
4713     size_t reloc_count,
4714     Output_section* output_section,
4715     bool needs_special_offset_handling,
4716     size_t local_symbol_count,
4717     const unsigned char* plocal_symbols,
4718     Relocatable_relocs* rr)
4719 {
4720   gold_assert(sh_type == elfcpp::SHT_RELA);
4721
4722   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
4723                                 Powerpc_scan_relocatable_reloc>(
4724     symtab,
4725     layout,
4726     object,
4727     data_shndx,
4728     prelocs,
4729     reloc_count,
4730     output_section,
4731     needs_special_offset_handling,
4732     local_symbol_count,
4733     plocal_symbols,
4734     rr);
4735 }
4736
4737 // Emit relocations for a section.
4738 // This is a modified version of the function by the same name in
4739 // target-reloc.h.  Using relocate_special_relocatable for
4740 // R_PPC_PLTREL24 would require duplication of the entire body of the
4741 // loop, so we may as well duplicate the whole thing.
4742
4743 template<int size, bool big_endian>
4744 void
4745 Target_powerpc<size, big_endian>::relocate_relocs(
4746     const Relocate_info<size, big_endian>* relinfo,
4747     unsigned int sh_type,
4748     const unsigned char* prelocs,
4749     size_t reloc_count,
4750     Output_section* output_section,
4751     off_t offset_in_output_section,
4752     const Relocatable_relocs* rr,
4753     unsigned char*,
4754     Address view_address,
4755     section_size_type,
4756     unsigned char* reloc_view,
4757     section_size_type reloc_view_size)
4758 {
4759   gold_assert(sh_type == elfcpp::SHT_RELA);
4760
4761   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
4762     Reltype;
4763   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
4764     Reltype_write;
4765   const int reloc_size
4766     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
4767
4768   Powerpc_relobj<size, big_endian>* const object
4769     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
4770   const unsigned int local_count = object->local_symbol_count();
4771   unsigned int got2_shndx = object->got2_shndx();
4772   Address got2_addend = 0;
4773   if (got2_shndx != 0)
4774     {
4775       got2_addend = object->get_output_section_offset(got2_shndx);
4776       gold_assert(got2_addend != invalid_address);
4777     }
4778
4779   unsigned char* pwrite = reloc_view;
4780   bool zap_next = false;
4781   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
4782     {
4783       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
4784       if (strategy == Relocatable_relocs::RELOC_DISCARD)
4785         continue;
4786
4787       Reltype reloc(prelocs);
4788       Reltype_write reloc_write(pwrite);
4789
4790       Address offset = reloc.get_r_offset();
4791       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
4792       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
4793       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
4794       const unsigned int orig_r_sym = r_sym;
4795       typename elfcpp::Elf_types<size>::Elf_Swxword addend
4796         = reloc.get_r_addend();
4797       const Symbol* gsym = NULL;
4798
4799       if (zap_next)
4800         {
4801           // We could arrange to discard these and other relocs for
4802           // tls optimised sequences in the strategy methods, but for
4803           // now do as BFD ld does.
4804           r_type = elfcpp::R_POWERPC_NONE;
4805           zap_next = false;
4806         }
4807
4808       // Get the new symbol index.
4809       if (r_sym < local_count)
4810         {
4811           switch (strategy)
4812             {
4813             case Relocatable_relocs::RELOC_COPY:
4814             case Relocatable_relocs::RELOC_SPECIAL:
4815               if (r_sym != 0)
4816                 {
4817                   r_sym = object->symtab_index(r_sym);
4818                   gold_assert(r_sym != -1U);
4819                 }
4820               break;
4821
4822             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
4823               {
4824                 // We are adjusting a section symbol.  We need to find
4825                 // the symbol table index of the section symbol for
4826                 // the output section corresponding to input section
4827                 // in which this symbol is defined.
4828                 gold_assert(r_sym < local_count);
4829                 bool is_ordinary;
4830                 unsigned int shndx =
4831                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
4832                 gold_assert(is_ordinary);
4833                 Output_section* os = object->output_section(shndx);
4834                 gold_assert(os != NULL);
4835                 gold_assert(os->needs_symtab_index());
4836                 r_sym = os->symtab_index();
4837               }
4838               break;
4839
4840             default:
4841               gold_unreachable();
4842             }
4843         }
4844       else
4845         {
4846           gsym = object->global_symbol(r_sym);
4847           gold_assert(gsym != NULL);
4848           if (gsym->is_forwarder())
4849             gsym = relinfo->symtab->resolve_forwards(gsym);
4850
4851           gold_assert(gsym->has_symtab_index());
4852           r_sym = gsym->symtab_index();
4853         }
4854
4855       // Get the new offset--the location in the output section where
4856       // this relocation should be applied.
4857       if (static_cast<Address>(offset_in_output_section) != invalid_address)
4858         offset += offset_in_output_section;
4859       else
4860         {
4861           section_offset_type sot_offset =
4862             convert_types<section_offset_type, Address>(offset);
4863           section_offset_type new_sot_offset =
4864             output_section->output_offset(object, relinfo->data_shndx,
4865                                           sot_offset);
4866           gold_assert(new_sot_offset != -1);
4867           offset = new_sot_offset;
4868         }
4869
4870       // In an object file, r_offset is an offset within the section.
4871       // In an executable or dynamic object, generated by
4872       // --emit-relocs, r_offset is an absolute address.
4873       if (!parameters->options().relocatable())
4874         {
4875           offset += view_address;
4876           if (static_cast<Address>(offset_in_output_section) != invalid_address)
4877             offset -= offset_in_output_section;
4878         }
4879
4880       // Handle the reloc addend based on the strategy.
4881       if (strategy == Relocatable_relocs::RELOC_COPY)
4882         ;
4883       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
4884         {
4885           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
4886           addend = psymval->value(object, addend);
4887         }
4888       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
4889         {
4890           if (addend >= 32768)
4891             addend += got2_addend;
4892         }
4893       else
4894         gold_unreachable();
4895
4896       if (!parameters->options().relocatable())
4897         {
4898           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
4899               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
4900               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
4901               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
4902             {
4903               // First instruction of a global dynamic sequence,
4904               // arg setup insn.
4905               const bool final = gsym == NULL || gsym->final_value_is_known();
4906               switch (this->optimize_tls_gd(final))
4907                 {
4908                 case tls::TLSOPT_TO_IE:
4909                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
4910                              - elfcpp::R_POWERPC_GOT_TLSGD16);
4911                   break;
4912                 case tls::TLSOPT_TO_LE:
4913                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
4914                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
4915                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
4916                   else
4917                     {
4918                       r_type = elfcpp::R_POWERPC_NONE;
4919                       offset -= 2 * big_endian;
4920                     }
4921                   break;
4922                 default:
4923                   break;
4924                 }
4925             }
4926           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
4927                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
4928                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
4929                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
4930             {
4931               // First instruction of a local dynamic sequence,
4932               // arg setup insn.
4933               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
4934                 {
4935                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
4936                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
4937                     {
4938                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
4939                       const Output_section* os = relinfo->layout->tls_segment()
4940                         ->first_section();
4941                       gold_assert(os != NULL);
4942                       gold_assert(os->needs_symtab_index());
4943                       r_sym = os->symtab_index();
4944                       addend = dtp_offset;
4945                     }
4946                   else
4947                     {
4948                       r_type = elfcpp::R_POWERPC_NONE;
4949                       offset -= 2 * big_endian;
4950                     }
4951                 }
4952             }
4953           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
4954                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
4955                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
4956                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
4957             {
4958               // First instruction of initial exec sequence.
4959               const bool final = gsym == NULL || gsym->final_value_is_known();
4960               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
4961                 {
4962                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
4963                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
4964                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
4965                   else
4966                     {
4967                       r_type = elfcpp::R_POWERPC_NONE;
4968                       offset -= 2 * big_endian;
4969                     }
4970                 }
4971             }
4972           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
4973                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
4974             {
4975               // Second instruction of a global dynamic sequence,
4976               // the __tls_get_addr call
4977               const bool final = gsym == NULL || gsym->final_value_is_known();
4978               switch (this->optimize_tls_gd(final))
4979                 {
4980                 case tls::TLSOPT_TO_IE:
4981                   r_type = elfcpp::R_POWERPC_NONE;
4982                   zap_next = true;
4983                   break;
4984                 case tls::TLSOPT_TO_LE:
4985                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
4986                   offset += 2 * big_endian;
4987                   zap_next = true;
4988                   break;
4989                 default:
4990                   break;
4991                 }
4992             }
4993           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
4994                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
4995             {
4996               // Second instruction of a local dynamic sequence,
4997               // the __tls_get_addr call
4998               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
4999                 {
5000                   const Output_section* os = relinfo->layout->tls_segment()
5001                     ->first_section();
5002                   gold_assert(os != NULL);
5003                   gold_assert(os->needs_symtab_index());
5004                   r_sym = os->symtab_index();
5005                   addend = dtp_offset;
5006                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
5007                   offset += 2 * big_endian;
5008                   zap_next = true;
5009                 }
5010             }
5011           else if (r_type == elfcpp::R_POWERPC_TLS)
5012             {
5013               // Second instruction of an initial exec sequence
5014               const bool final = gsym == NULL || gsym->final_value_is_known();
5015               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
5016                 {
5017                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
5018                   offset += 2 * big_endian;
5019                 }
5020             }
5021         }
5022
5023       reloc_write.put_r_offset(offset);
5024       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
5025       reloc_write.put_r_addend(addend);
5026
5027       pwrite += reloc_size;
5028     }
5029
5030   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
5031               == reloc_view_size);
5032 }
5033
5034 // Return the value to use for a dynamic which requires special
5035 // treatment.  This is how we support equality comparisons of function
5036 // pointers across shared library boundaries, as described in the
5037 // processor specific ABI supplement.
5038
5039 template<int size, bool big_endian>
5040 uint64_t
5041 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
5042 {
5043   if (size == 32)
5044     {
5045       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
5046       const Output_data_glink<size, big_endian>* glink = this->glink_section();
5047       unsigned int glink_index = glink->find_entry(gsym);
5048       return glink->address() + glink_index * glink->glink_entry_size();
5049     }
5050   else
5051     gold_unreachable();
5052 }
5053
5054 // Return the PLT address to use for a local symbol.
5055 template<int size, bool big_endian>
5056 uint64_t
5057 Target_powerpc<size, big_endian>::do_plt_address_for_local(
5058     const Relobj* object,
5059     unsigned int symndx) const
5060 {
5061   if (size == 32)
5062     {
5063       const Sized_relobj<size, big_endian>* relobj
5064         = static_cast<const Sized_relobj<size, big_endian>*>(object);
5065       const Output_data_glink<size, big_endian>* glink = this->glink_section();
5066       unsigned int glink_index = glink->find_entry(relobj->sized_relobj(),
5067                                                    symndx);
5068       return glink->address() + glink_index * glink->glink_entry_size();
5069     }
5070   else
5071     gold_unreachable();
5072 }
5073
5074 // Return the PLT address to use for a global symbol.
5075 template<int size, bool big_endian>
5076 uint64_t
5077 Target_powerpc<size, big_endian>::do_plt_address_for_global(
5078     const Symbol* gsym) const
5079 {
5080   if (size == 32)
5081     {
5082       const Output_data_glink<size, big_endian>* glink = this->glink_section();
5083       unsigned int glink_index = glink->find_entry(gsym);
5084       return glink->address() + glink_index * glink->glink_entry_size();
5085     }
5086   else
5087     gold_unreachable();
5088 }
5089
5090 // Return the offset to use for the GOT_INDX'th got entry which is
5091 // for a local tls symbol specified by OBJECT, SYMNDX.
5092 template<int size, bool big_endian>
5093 int64_t
5094 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
5095     const Relobj* object,
5096     unsigned int symndx,
5097     unsigned int got_indx) const
5098 {
5099   const Powerpc_relobj<size, big_endian>* ppc_object
5100     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
5101   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
5102     {
5103       for (Got_type got_type = GOT_TYPE_TLSGD;
5104            got_type <= GOT_TYPE_TPREL;
5105            got_type = Got_type(got_type + 1))
5106         if (ppc_object->local_has_got_offset(symndx, got_type))
5107           {
5108             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
5109             if (got_type == GOT_TYPE_TLSGD)
5110               off += size / 8;
5111             if (off == got_indx * (size / 8))
5112               {
5113                 if (got_type == GOT_TYPE_TPREL)
5114                   return -tp_offset;
5115                 else
5116                   return -dtp_offset;
5117               }
5118           }
5119     }
5120   gold_unreachable();
5121 }
5122
5123 // Return the offset to use for the GOT_INDX'th got entry which is
5124 // for global tls symbol GSYM.
5125 template<int size, bool big_endian>
5126 int64_t
5127 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
5128     Symbol* gsym,
5129     unsigned int got_indx) const
5130 {
5131   if (gsym->type() == elfcpp::STT_TLS)
5132     {
5133       for (Got_type got_type = GOT_TYPE_TLSGD;
5134            got_type <= GOT_TYPE_TPREL;
5135            got_type = Got_type(got_type + 1))
5136         if (gsym->has_got_offset(got_type))
5137           {
5138             unsigned int off = gsym->got_offset(got_type);
5139             if (got_type == GOT_TYPE_TLSGD)
5140               off += size / 8;
5141             if (off == got_indx * (size / 8))
5142               {
5143                 if (got_type == GOT_TYPE_TPREL)
5144                   return -tp_offset;
5145                 else
5146                   return -dtp_offset;
5147               }
5148           }
5149     }
5150   gold_unreachable();
5151 }
5152
5153 // The selector for powerpc object files.
5154
5155 template<int size, bool big_endian>
5156 class Target_selector_powerpc : public Target_selector
5157 {
5158 public:
5159   Target_selector_powerpc()
5160     : Target_selector(elfcpp::EM_NONE, size, big_endian,
5161                       (size == 64
5162                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
5163                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
5164                       (size == 64
5165                        ? (big_endian ? "elf64ppc" : "elf64lppc")
5166                        : (big_endian ? "elf32ppc" : "elf32lppc")))
5167   { }
5168
5169   virtual Target*
5170   do_recognize(Input_file*, off_t, int machine, int, int)
5171   {
5172     switch (size)
5173       {
5174       case 64:
5175         if (machine != elfcpp::EM_PPC64)
5176           return NULL;
5177         break;
5178
5179       case 32:
5180         if (machine != elfcpp::EM_PPC)
5181           return NULL;
5182         break;
5183
5184       default:
5185         return NULL;
5186       }
5187
5188     return this->instantiate_target();
5189   }
5190
5191   virtual Target*
5192   do_instantiate_target()
5193   { return new Target_powerpc<size, big_endian>(); }
5194 };
5195
5196 Target_selector_powerpc<32, true> target_selector_ppc32;
5197 Target_selector_powerpc<32, false> target_selector_ppc32le;
5198 Target_selector_powerpc<64, true> target_selector_ppc64;
5199 Target_selector_powerpc<64, false> target_selector_ppc64le;
5200
5201 } // End anonymous namespace.