1 // powerpc.cc -- powerpc target support for gold.
3 // Copyright (C) 2008-2015 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
7 // This file is part of gold.
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
30 #include "parameters.h"
37 #include "copy-relocs.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
59 template<int size, bool big_endian>
60 class Output_data_glink;
62 template<int size, bool big_endian>
65 template<int size, bool big_endian>
68 struct Stub_table_owner
70 Output_section* output_section;
71 const Output_section::Input_section* owner;
75 is_branch_reloc(unsigned int r_type);
77 template<int size, bool big_endian>
78 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
81 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
82 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
83 typedef Unordered_map<Address, Section_refs> Access_from;
85 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
86 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
87 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
88 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
89 opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
90 e_flags_(ehdr.get_e_flags()), st_other_()
92 this->set_abiversion(0);
98 // Read the symbols then set up st_other vector.
100 do_read_symbols(Read_symbols_data*);
102 // The .got2 section shndx.
107 return this->special_;
112 // The .opd section shndx.
119 return this->special_;
122 // Init OPD entry arrays.
124 init_opd(size_t opd_size)
126 size_t count = this->opd_ent_ndx(opd_size);
127 this->opd_ent_.resize(count);
130 // Return section and offset of function entry for .opd + R_OFF.
132 get_opd_ent(Address r_off, Address* value = NULL) const
134 size_t ndx = this->opd_ent_ndx(r_off);
135 gold_assert(ndx < this->opd_ent_.size());
136 gold_assert(this->opd_ent_[ndx].shndx != 0);
138 *value = this->opd_ent_[ndx].off;
139 return this->opd_ent_[ndx].shndx;
142 // Set section and offset of function entry for .opd + R_OFF.
144 set_opd_ent(Address r_off, unsigned int shndx, Address value)
146 size_t ndx = this->opd_ent_ndx(r_off);
147 gold_assert(ndx < this->opd_ent_.size());
148 this->opd_ent_[ndx].shndx = shndx;
149 this->opd_ent_[ndx].off = value;
152 // Return discard flag for .opd + R_OFF.
154 get_opd_discard(Address r_off) const
156 size_t ndx = this->opd_ent_ndx(r_off);
157 gold_assert(ndx < this->opd_ent_.size());
158 return this->opd_ent_[ndx].discard;
161 // Set discard flag for .opd + R_OFF.
163 set_opd_discard(Address r_off)
165 size_t ndx = this->opd_ent_ndx(r_off);
166 gold_assert(ndx < this->opd_ent_.size());
167 this->opd_ent_[ndx].discard = true;
172 { return this->opd_valid_; }
176 { this->opd_valid_ = true; }
178 // Examine .rela.opd to build info about function entry points.
180 scan_opd_relocs(size_t reloc_count,
181 const unsigned char* prelocs,
182 const unsigned char* plocal_syms);
184 // Perform the Sized_relobj_file method, then set up opd info from
187 do_read_relocs(Read_relocs_data*);
190 do_find_special_sections(Read_symbols_data* sd);
192 // Adjust this local symbol value. Return false if the symbol
193 // should be discarded from the output file.
195 do_adjust_local_symbol(Symbol_value<size>* lv) const
197 if (size == 64 && this->opd_shndx() != 0)
200 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
202 if (this->get_opd_discard(lv->input_value()))
210 { return &this->access_from_map_; }
212 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
213 // section at DST_OFF.
215 add_reference(Object* src_obj,
216 unsigned int src_indx,
217 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
219 Section_id src_id(src_obj, src_indx);
220 this->access_from_map_[dst_off].insert(src_id);
223 // Add a reference to the code section specified by the .opd entry
226 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
228 size_t ndx = this->opd_ent_ndx(dst_off);
229 if (ndx >= this->opd_ent_.size())
230 this->opd_ent_.resize(ndx + 1);
231 this->opd_ent_[ndx].gc_mark = true;
235 process_gc_mark(Symbol_table* symtab)
237 for (size_t i = 0; i < this->opd_ent_.size(); i++)
238 if (this->opd_ent_[i].gc_mark)
240 unsigned int shndx = this->opd_ent_[i].shndx;
241 symtab->gc()->worklist().push(Section_id(this, shndx));
245 // Return offset in output GOT section that this object will use
246 // as a TOC pointer. Won't be just a constant with multi-toc support.
248 toc_base_offset() const
252 set_has_small_toc_reloc()
253 { has_small_toc_reloc_ = true; }
256 has_small_toc_reloc() const
257 { return has_small_toc_reloc_; }
260 set_has_14bit_branch(unsigned int shndx)
262 if (shndx >= this->has14_.size())
263 this->has14_.resize(shndx + 1);
264 this->has14_[shndx] = true;
268 has_14bit_branch(unsigned int shndx) const
269 { return shndx < this->has14_.size() && this->has14_[shndx]; }
272 set_stub_table(unsigned int shndx, unsigned int stub_index)
274 if (shndx >= this->stub_table_index_.size())
275 this->stub_table_index_.resize(shndx + 1);
276 this->stub_table_index_[shndx] = stub_index;
279 Stub_table<size, big_endian>*
280 stub_table(unsigned int shndx)
282 if (shndx < this->stub_table_index_.size())
284 Target_powerpc<size, big_endian>* target
285 = static_cast<Target_powerpc<size, big_endian>*>(
286 parameters->sized_target<size, big_endian>());
287 unsigned int indx = this->stub_table_index_[shndx];
288 gold_assert(indx < target->stub_tables().size());
289 return target->stub_tables()[indx];
297 this->stub_table_index_.clear();
302 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
304 // Set ABI version for input and output
306 set_abiversion(int ver);
309 ppc64_local_entry_offset(const Symbol* sym) const
310 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
313 ppc64_local_entry_offset(unsigned int symndx) const
314 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
325 // Return index into opd_ent_ array for .opd entry at OFF.
326 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
327 // apart when the language doesn't use the last 8-byte word, the
328 // environment pointer. Thus dividing the entry section offset by
329 // 16 will give an index into opd_ent_ that works for either layout
330 // of .opd. (It leaves some elements of the vector unused when .opd
331 // entries are spaced 24 bytes apart, but we don't know the spacing
332 // until relocations are processed, and in any case it is possible
333 // for an object to have some entries spaced 16 bytes apart and
334 // others 24 bytes apart.)
336 opd_ent_ndx(size_t off) const
339 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
340 unsigned int special_;
342 // For 64-bit, whether this object uses small model relocs to access
344 bool has_small_toc_reloc_;
346 // Set at the start of gc_process_relocs, when we know opd_ent_
347 // vector is valid. The flag could be made atomic and set in
348 // do_read_relocs with memory_order_release and then tested with
349 // memory_order_acquire, potentially resulting in fewer entries in
353 // The first 8-byte word of an OPD entry gives the address of the
354 // entry point of the function. Relocatable object files have a
355 // relocation on this word. The following vector records the
356 // section and offset specified by these relocations.
357 std::vector<Opd_ent> opd_ent_;
359 // References made to this object's .opd section when running
360 // gc_process_relocs for another object, before the opd_ent_ vector
361 // is valid for this object.
362 Access_from access_from_map_;
364 // Whether input section has a 14-bit branch reloc.
365 std::vector<bool> has14_;
367 // The stub table to use for a given input section.
368 std::vector<unsigned int> stub_table_index_;
371 elfcpp::Elf_Word e_flags_;
373 // ELF st_other field for local symbols.
374 std::vector<unsigned char> st_other_;
377 template<int size, bool big_endian>
378 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
381 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
383 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
384 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
385 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
386 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
388 this->set_abiversion(0);
394 // Call Sized_dynobj::do_read_symbols to read the symbols then
395 // read .opd from a dynamic object, filling in opd_ent_ vector,
397 do_read_symbols(Read_symbols_data*);
399 // The .opd section shndx.
403 return this->opd_shndx_;
406 // The .opd section address.
410 return this->opd_address_;
413 // Init OPD entry arrays.
415 init_opd(size_t opd_size)
417 size_t count = this->opd_ent_ndx(opd_size);
418 this->opd_ent_.resize(count);
421 // Return section and offset of function entry for .opd + R_OFF.
423 get_opd_ent(Address r_off, Address* value = NULL) const
425 size_t ndx = this->opd_ent_ndx(r_off);
426 gold_assert(ndx < this->opd_ent_.size());
427 gold_assert(this->opd_ent_[ndx].shndx != 0);
429 *value = this->opd_ent_[ndx].off;
430 return this->opd_ent_[ndx].shndx;
433 // Set section and offset of function entry for .opd + R_OFF.
435 set_opd_ent(Address r_off, unsigned int shndx, Address value)
437 size_t ndx = this->opd_ent_ndx(r_off);
438 gold_assert(ndx < this->opd_ent_.size());
439 this->opd_ent_[ndx].shndx = shndx;
440 this->opd_ent_[ndx].off = value;
445 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
447 // Set ABI version for input and output.
449 set_abiversion(int ver);
452 // Used to specify extent of executable sections.
455 Sec_info(Address start_, Address len_, unsigned int shndx_)
456 : start(start_), len(len_), shndx(shndx_)
460 operator<(const Sec_info& that) const
461 { return this->start < that.start; }
474 // Return index into opd_ent_ array for .opd entry at OFF.
476 opd_ent_ndx(size_t off) const
479 // For 64-bit the .opd section shndx and address.
480 unsigned int opd_shndx_;
481 Address opd_address_;
483 // The first 8-byte word of an OPD entry gives the address of the
484 // entry point of the function. Records the section and offset
485 // corresponding to the address. Note that in dynamic objects,
486 // offset is *not* relative to the section.
487 std::vector<Opd_ent> opd_ent_;
490 elfcpp::Elf_Word e_flags_;
493 template<int size, bool big_endian>
494 class Target_powerpc : public Sized_target<size, big_endian>
498 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
499 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
500 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
501 static const Address invalid_address = static_cast<Address>(0) - 1;
502 // Offset of tp and dtp pointers from start of TLS block.
503 static const Address tp_offset = 0x7000;
504 static const Address dtp_offset = 0x8000;
507 : Sized_target<size, big_endian>(&powerpc_info),
508 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
509 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
510 tlsld_got_offset_(-1U),
511 stub_tables_(), branch_lookup_table_(), branch_info_(),
512 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
517 // Process the relocations to determine unreferenced sections for
518 // garbage collection.
520 gc_process_relocs(Symbol_table* symtab,
522 Sized_relobj_file<size, big_endian>* object,
523 unsigned int data_shndx,
524 unsigned int sh_type,
525 const unsigned char* prelocs,
527 Output_section* output_section,
528 bool needs_special_offset_handling,
529 size_t local_symbol_count,
530 const unsigned char* plocal_symbols);
532 // Scan the relocations to look for symbol adjustments.
534 scan_relocs(Symbol_table* symtab,
536 Sized_relobj_file<size, big_endian>* object,
537 unsigned int data_shndx,
538 unsigned int sh_type,
539 const unsigned char* prelocs,
541 Output_section* output_section,
542 bool needs_special_offset_handling,
543 size_t local_symbol_count,
544 const unsigned char* plocal_symbols);
546 // Map input .toc section to output .got section.
548 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
550 if (size == 64 && strcmp(name, ".toc") == 0)
558 // Provide linker defined save/restore functions.
560 define_save_restore_funcs(Layout*, Symbol_table*);
562 // No stubs unless a final link.
565 { return !parameters->options().relocatable(); }
568 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
571 do_plt_fde_location(const Output_data*, unsigned char*,
572 uint64_t*, off_t*) const;
574 // Stash info about branches, for stub generation.
576 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
577 unsigned int data_shndx, Address r_offset,
578 unsigned int r_type, unsigned int r_sym, Address addend)
580 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
581 this->branch_info_.push_back(info);
582 if (r_type == elfcpp::R_POWERPC_REL14
583 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
584 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
585 ppc_object->set_has_14bit_branch(data_shndx);
589 do_define_standard_symbols(Symbol_table*, Layout*);
591 // Finalize the sections.
593 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
595 // Return the value to use for a dynamic which requires special
598 do_dynsym_value(const Symbol*) const;
600 // Return the PLT address to use for a local symbol.
602 do_plt_address_for_local(const Relobj*, unsigned int) const;
604 // Return the PLT address to use for a global symbol.
606 do_plt_address_for_global(const Symbol*) const;
608 // Return the offset to use for the GOT_INDX'th got entry which is
609 // for a local tls symbol specified by OBJECT, SYMNDX.
611 do_tls_offset_for_local(const Relobj* object,
613 unsigned int got_indx) const;
615 // Return the offset to use for the GOT_INDX'th got entry which is
616 // for global tls symbol GSYM.
618 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
621 do_function_location(Symbol_location*) const;
624 do_can_check_for_function_pointers() const
627 // Relocate a section.
629 relocate_section(const Relocate_info<size, big_endian>*,
630 unsigned int sh_type,
631 const unsigned char* prelocs,
633 Output_section* output_section,
634 bool needs_special_offset_handling,
636 Address view_address,
637 section_size_type view_size,
638 const Reloc_symbol_changes*);
640 // Scan the relocs during a relocatable link.
642 scan_relocatable_relocs(Symbol_table* symtab,
644 Sized_relobj_file<size, big_endian>* object,
645 unsigned int data_shndx,
646 unsigned int sh_type,
647 const unsigned char* prelocs,
649 Output_section* output_section,
650 bool needs_special_offset_handling,
651 size_t local_symbol_count,
652 const unsigned char* plocal_symbols,
653 Relocatable_relocs*);
655 // Emit relocations for a section.
657 relocate_relocs(const Relocate_info<size, big_endian>*,
658 unsigned int sh_type,
659 const unsigned char* prelocs,
661 Output_section* output_section,
662 typename elfcpp::Elf_types<size>::Elf_Off
663 offset_in_output_section,
664 const Relocatable_relocs*,
666 Address view_address,
668 unsigned char* reloc_view,
669 section_size_type reloc_view_size);
671 // Return whether SYM is defined by the ABI.
673 do_is_defined_by_abi(const Symbol* sym) const
675 return strcmp(sym->name(), "__tls_get_addr") == 0;
678 // Return the size of the GOT section.
682 gold_assert(this->got_ != NULL);
683 return this->got_->data_size();
686 // Get the PLT section.
687 const Output_data_plt_powerpc<size, big_endian>*
690 gold_assert(this->plt_ != NULL);
694 // Get the IPLT section.
695 const Output_data_plt_powerpc<size, big_endian>*
698 gold_assert(this->iplt_ != NULL);
702 // Get the .glink section.
703 const Output_data_glink<size, big_endian>*
704 glink_section() const
706 gold_assert(this->glink_ != NULL);
710 Output_data_glink<size, big_endian>*
713 gold_assert(this->glink_ != NULL);
717 bool has_glink() const
718 { return this->glink_ != NULL; }
720 // Get the GOT section.
721 const Output_data_got_powerpc<size, big_endian>*
724 gold_assert(this->got_ != NULL);
728 // Get the GOT section, creating it if necessary.
729 Output_data_got_powerpc<size, big_endian>*
730 got_section(Symbol_table*, Layout*);
733 do_make_elf_object(const std::string&, Input_file*, off_t,
734 const elfcpp::Ehdr<size, big_endian>&);
736 // Return the number of entries in the GOT.
738 got_entry_count() const
740 if (this->got_ == NULL)
742 return this->got_size() / (size / 8);
745 // Return the number of entries in the PLT.
747 plt_entry_count() const;
749 // Return the offset of the first non-reserved PLT entry.
751 first_plt_entry_offset() const
755 if (this->abiversion() >= 2)
760 // Return the size of each PLT entry.
762 plt_entry_size() const
766 if (this->abiversion() >= 2)
771 // Add any special sections for this symbol to the gc work list.
772 // For powerpc64, this adds the code section of a function
775 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
777 // Handle target specific gc actions when adding a gc reference from
778 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
779 // and DST_OFF. For powerpc64, this adds a referenc to the code
780 // section of a function descriptor.
782 do_gc_add_reference(Symbol_table* symtab,
784 unsigned int src_shndx,
786 unsigned int dst_shndx,
787 Address dst_off) const;
789 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
792 { return this->stub_tables_; }
794 const Output_data_brlt_powerpc<size, big_endian>*
796 { return this->brlt_section_; }
799 add_branch_lookup_table(Address to)
801 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
802 this->branch_lookup_table_.insert(std::make_pair(to, off));
806 find_branch_lookup_table(Address to)
808 typename Branch_lookup_table::const_iterator p
809 = this->branch_lookup_table_.find(to);
810 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
814 write_branch_lookup_table(unsigned char *oview)
816 for (typename Branch_lookup_table::const_iterator p
817 = this->branch_lookup_table_.begin();
818 p != this->branch_lookup_table_.end();
821 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
826 plt_thread_safe() const
827 { return this->plt_thread_safe_; }
831 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
834 set_abiversion (int ver)
836 elfcpp::Elf_Word flags = this->processor_specific_flags();
837 flags &= ~elfcpp::EF_PPC64_ABI;
838 flags |= ver & elfcpp::EF_PPC64_ABI;
839 this->set_processor_specific_flags(flags);
842 // Offset to to save stack slot
845 { return this->abiversion() < 2 ? 40 : 24; }
861 : tls_get_addr_(NOT_EXPECTED),
862 relinfo_(NULL), relnum_(0), r_offset_(0)
867 if (this->tls_get_addr_ != NOT_EXPECTED)
874 if (this->relinfo_ != NULL)
875 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
876 _("missing expected __tls_get_addr call"));
880 expect_tls_get_addr_call(
881 const Relocate_info<size, big_endian>* relinfo,
885 this->tls_get_addr_ = EXPECTED;
886 this->relinfo_ = relinfo;
887 this->relnum_ = relnum;
888 this->r_offset_ = r_offset;
892 expect_tls_get_addr_call()
893 { this->tls_get_addr_ = EXPECTED; }
896 skip_next_tls_get_addr_call()
897 {this->tls_get_addr_ = SKIP; }
900 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
902 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
903 || r_type == elfcpp::R_PPC_PLTREL24)
905 && strcmp(gsym->name(), "__tls_get_addr") == 0);
906 Tls_get_addr last_tls = this->tls_get_addr_;
907 this->tls_get_addr_ = NOT_EXPECTED;
908 if (is_tls_call && last_tls != EXPECTED)
910 else if (!is_tls_call && last_tls != NOT_EXPECTED)
919 // What we're up to regarding calls to __tls_get_addr.
920 // On powerpc, the branch and link insn making a call to
921 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
922 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
923 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
924 // The marker relocation always comes first, and has the same
925 // symbol as the reloc on the insn setting up the __tls_get_addr
926 // argument. This ties the arg setup insn with the call insn,
927 // allowing ld to safely optimize away the call. We check that
928 // every call to __tls_get_addr has a marker relocation, and that
929 // every marker relocation is on a call to __tls_get_addr.
930 Tls_get_addr tls_get_addr_;
931 // Info about the last reloc for error message.
932 const Relocate_info<size, big_endian>* relinfo_;
937 // The class which scans relocations.
938 class Scan : protected Track_tls
941 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
944 : Track_tls(), issued_non_pic_error_(false)
948 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
951 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
952 Sized_relobj_file<size, big_endian>* object,
953 unsigned int data_shndx,
954 Output_section* output_section,
955 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
956 const elfcpp::Sym<size, big_endian>& lsym,
960 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
961 Sized_relobj_file<size, big_endian>* object,
962 unsigned int data_shndx,
963 Output_section* output_section,
964 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
968 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
970 Sized_relobj_file<size, big_endian>* relobj,
973 const elfcpp::Rela<size, big_endian>& ,
975 const elfcpp::Sym<size, big_endian>&)
977 // PowerPC64 .opd is not folded, so any identical function text
978 // may be folded and we'll still keep function addresses distinct.
979 // That means no reloc is of concern here.
982 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
983 <Powerpc_relobj<size, big_endian>*>(relobj);
984 if (ppcobj->abiversion() == 1)
987 // For 32-bit and ELFv2, conservatively assume anything but calls to
988 // function code might be taking the address of the function.
989 return !is_branch_reloc(r_type);
993 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
995 Sized_relobj_file<size, big_endian>* relobj,
998 const elfcpp::Rela<size, big_endian>& ,
1005 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1006 <Powerpc_relobj<size, big_endian>*>(relobj);
1007 if (ppcobj->abiversion() == 1)
1010 return !is_branch_reloc(r_type);
1014 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1015 Sized_relobj_file<size, big_endian>* object,
1016 unsigned int r_type, bool report_err);
1020 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1021 unsigned int r_type);
1024 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1025 unsigned int r_type, Symbol*);
1028 generate_tls_call(Symbol_table* symtab, Layout* layout,
1029 Target_powerpc* target);
1032 check_non_pic(Relobj*, unsigned int r_type);
1034 // Whether we have issued an error about a non-PIC compilation.
1035 bool issued_non_pic_error_;
1039 symval_for_branch(const Symbol_table* symtab,
1040 const Sized_symbol<size>* gsym,
1041 Powerpc_relobj<size, big_endian>* object,
1042 Address *value, unsigned int *dest_shndx);
1044 // The class which implements relocation.
1045 class Relocate : protected Track_tls
1048 // Use 'at' branch hints when true, 'y' when false.
1049 // FIXME maybe: set this with an option.
1050 static const bool is_isa_v2 = true;
1056 // Do a relocation. Return false if the caller should not issue
1057 // any warnings about this relocation.
1059 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1060 Output_section*, size_t relnum,
1061 const elfcpp::Rela<size, big_endian>&,
1062 unsigned int r_type, const Sized_symbol<size>*,
1063 const Symbol_value<size>*,
1065 typename elfcpp::Elf_types<size>::Elf_Addr,
1069 class Relocate_comdat_behavior
1072 // Decide what the linker should do for relocations that refer to
1073 // discarded comdat sections.
1074 inline Comdat_behavior
1075 get(const char* name)
1077 gold::Default_comdat_behavior default_behavior;
1078 Comdat_behavior ret = default_behavior.get(name);
1079 if (ret == CB_WARNING)
1082 && (strcmp(name, ".fixup") == 0
1083 || strcmp(name, ".got2") == 0))
1086 && (strcmp(name, ".opd") == 0
1087 || strcmp(name, ".toc") == 0
1088 || strcmp(name, ".toc1") == 0))
1095 // A class which returns the size required for a relocation type,
1096 // used while scanning relocs during a relocatable link.
1097 class Relocatable_size_for_reloc
1101 get_size_for_reloc(unsigned int, Relobj*)
1108 // Optimize the TLS relocation type based on what we know about the
1109 // symbol. IS_FINAL is true if the final address of this symbol is
1110 // known at link time.
1112 tls::Tls_optimization
1113 optimize_tls_gd(bool is_final)
1115 // If we are generating a shared library, then we can't do anything
1117 if (parameters->options().shared())
1118 return tls::TLSOPT_NONE;
1121 return tls::TLSOPT_TO_IE;
1122 return tls::TLSOPT_TO_LE;
1125 tls::Tls_optimization
1128 if (parameters->options().shared())
1129 return tls::TLSOPT_NONE;
1131 return tls::TLSOPT_TO_LE;
1134 tls::Tls_optimization
1135 optimize_tls_ie(bool is_final)
1137 if (!is_final || parameters->options().shared())
1138 return tls::TLSOPT_NONE;
1140 return tls::TLSOPT_TO_LE;
1145 make_glink_section(Layout*);
1147 // Create the PLT section.
1149 make_plt_section(Symbol_table*, Layout*);
1152 make_iplt_section(Symbol_table*, Layout*);
1155 make_brlt_section(Layout*);
1157 // Create a PLT entry for a global symbol.
1159 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1161 // Create a PLT entry for a local IFUNC symbol.
1163 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1164 Sized_relobj_file<size, big_endian>*,
1168 // Create a GOT entry for local dynamic __tls_get_addr.
1170 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1171 Sized_relobj_file<size, big_endian>* object);
1174 tlsld_got_offset() const
1176 return this->tlsld_got_offset_;
1179 // Get the dynamic reloc section, creating it if necessary.
1181 rela_dyn_section(Layout*);
1183 // Similarly, but for ifunc symbols get the one for ifunc.
1185 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1187 // Copy a relocation against a global symbol.
1189 copy_reloc(Symbol_table* symtab, Layout* layout,
1190 Sized_relobj_file<size, big_endian>* object,
1191 unsigned int shndx, Output_section* output_section,
1192 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1194 this->copy_relocs_.copy_reloc(symtab, layout,
1195 symtab->get_sized_symbol<size>(sym),
1196 object, shndx, output_section,
1197 reloc, this->rela_dyn_section(layout));
1200 // Look over all the input sections, deciding where to place stubs.
1202 group_sections(Layout*, const Task*, bool);
1204 // Sort output sections by address.
1205 struct Sort_sections
1208 operator()(const Output_section* sec1, const Output_section* sec2)
1209 { return sec1->address() < sec2->address(); }
1215 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1216 unsigned int data_shndx,
1218 unsigned int r_type,
1221 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1222 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1228 // If this branch needs a plt call stub, or a long branch stub, make one.
1230 make_stub(Stub_table<size, big_endian>*,
1231 Stub_table<size, big_endian>*,
1232 Symbol_table*) const;
1235 // The branch location..
1236 Powerpc_relobj<size, big_endian>* object_;
1237 unsigned int shndx_;
1239 // ..and the branch type and destination.
1240 unsigned int r_type_;
1241 unsigned int r_sym_;
1245 // Information about this specific target which we pass to the
1246 // general Target structure.
1247 static Target::Target_info powerpc_info;
1249 // The types of GOT entries needed for this platform.
1250 // These values are exposed to the ABI in an incremental link.
1251 // Do not renumber existing values without changing the version
1252 // number of the .gnu_incremental_inputs section.
1256 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1257 GOT_TYPE_DTPREL, // entry for @got@dtprel
1258 GOT_TYPE_TPREL // entry for @got@tprel
1262 Output_data_got_powerpc<size, big_endian>* got_;
1263 // The PLT section. This is a container for a table of addresses,
1264 // and their relocations. Each address in the PLT has a dynamic
1265 // relocation (R_*_JMP_SLOT) and each address will have a
1266 // corresponding entry in .glink for lazy resolution of the PLT.
1267 // ppc32 initialises the PLT to point at the .glink entry, while
1268 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1269 // linker adds a stub that loads the PLT entry into ctr then
1270 // branches to ctr. There may be more than one stub for each PLT
1271 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1272 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1273 Output_data_plt_powerpc<size, big_endian>* plt_;
1274 // The IPLT section. Like plt_, this is a container for a table of
1275 // addresses and their relocations, specifically for STT_GNU_IFUNC
1276 // functions that resolve locally (STT_GNU_IFUNC functions that
1277 // don't resolve locally go in PLT). Unlike plt_, these have no
1278 // entry in .glink for lazy resolution, and the relocation section
1279 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1280 // the relocation section may contain relocations against
1281 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1282 // relocation section will appear at the end of other dynamic
1283 // relocations, so that ld.so applies these relocations after other
1284 // dynamic relocations. In a static executable, the relocation
1285 // section is emitted and marked with __rela_iplt_start and
1286 // __rela_iplt_end symbols.
1287 Output_data_plt_powerpc<size, big_endian>* iplt_;
1288 // Section holding long branch destinations.
1289 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1290 // The .glink section.
1291 Output_data_glink<size, big_endian>* glink_;
1292 // The dynamic reloc section.
1293 Reloc_section* rela_dyn_;
1294 // Relocs saved to avoid a COPY reloc.
1295 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1296 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1297 unsigned int tlsld_got_offset_;
1299 Stub_tables stub_tables_;
1300 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1301 Branch_lookup_table branch_lookup_table_;
1303 typedef std::vector<Branch_info> Branches;
1304 Branches branch_info_;
1306 bool plt_thread_safe_;
1309 int relax_fail_count_;
1310 int32_t stub_group_size_;
1314 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1317 true, // is_big_endian
1318 elfcpp::EM_PPC, // machine_code
1319 false, // has_make_symbol
1320 false, // has_resolve
1321 false, // has_code_fill
1322 true, // is_default_stack_executable
1323 false, // can_icf_inline_merge_sections
1325 "/usr/lib/ld.so.1", // dynamic_linker
1326 0x10000000, // default_text_segment_address
1327 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1328 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1329 false, // isolate_execinstr
1331 elfcpp::SHN_UNDEF, // small_common_shndx
1332 elfcpp::SHN_UNDEF, // large_common_shndx
1333 0, // small_common_section_flags
1334 0, // large_common_section_flags
1335 NULL, // attributes_section
1336 NULL, // attributes_vendor
1337 "_start" // entry_symbol_name
1341 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1344 false, // is_big_endian
1345 elfcpp::EM_PPC, // machine_code
1346 false, // has_make_symbol
1347 false, // has_resolve
1348 false, // has_code_fill
1349 true, // is_default_stack_executable
1350 false, // can_icf_inline_merge_sections
1352 "/usr/lib/ld.so.1", // dynamic_linker
1353 0x10000000, // default_text_segment_address
1354 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1355 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1356 false, // isolate_execinstr
1358 elfcpp::SHN_UNDEF, // small_common_shndx
1359 elfcpp::SHN_UNDEF, // large_common_shndx
1360 0, // small_common_section_flags
1361 0, // large_common_section_flags
1362 NULL, // attributes_section
1363 NULL, // attributes_vendor
1364 "_start" // entry_symbol_name
1368 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1371 true, // is_big_endian
1372 elfcpp::EM_PPC64, // machine_code
1373 false, // has_make_symbol
1374 false, // has_resolve
1375 false, // has_code_fill
1376 true, // is_default_stack_executable
1377 false, // can_icf_inline_merge_sections
1379 "/usr/lib/ld.so.1", // dynamic_linker
1380 0x10000000, // default_text_segment_address
1381 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1382 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1383 false, // isolate_execinstr
1385 elfcpp::SHN_UNDEF, // small_common_shndx
1386 elfcpp::SHN_UNDEF, // large_common_shndx
1387 0, // small_common_section_flags
1388 0, // large_common_section_flags
1389 NULL, // attributes_section
1390 NULL, // attributes_vendor
1391 "_start" // entry_symbol_name
1395 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1398 false, // is_big_endian
1399 elfcpp::EM_PPC64, // machine_code
1400 false, // has_make_symbol
1401 false, // has_resolve
1402 false, // has_code_fill
1403 true, // is_default_stack_executable
1404 false, // can_icf_inline_merge_sections
1406 "/usr/lib/ld.so.1", // dynamic_linker
1407 0x10000000, // default_text_segment_address
1408 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1409 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1410 false, // isolate_execinstr
1412 elfcpp::SHN_UNDEF, // small_common_shndx
1413 elfcpp::SHN_UNDEF, // large_common_shndx
1414 0, // small_common_section_flags
1415 0, // large_common_section_flags
1416 NULL, // attributes_section
1417 NULL, // attributes_vendor
1418 "_start" // entry_symbol_name
1422 is_branch_reloc(unsigned int r_type)
1424 return (r_type == elfcpp::R_POWERPC_REL24
1425 || r_type == elfcpp::R_PPC_PLTREL24
1426 || r_type == elfcpp::R_PPC_LOCAL24PC
1427 || r_type == elfcpp::R_POWERPC_REL14
1428 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1429 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1430 || r_type == elfcpp::R_POWERPC_ADDR24
1431 || r_type == elfcpp::R_POWERPC_ADDR14
1432 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1433 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1436 // If INSN is an opcode that may be used with an @tls operand, return
1437 // the transformed insn for TLS optimisation, otherwise return 0. If
1438 // REG is non-zero only match an insn with RB or RA equal to REG.
1440 at_tls_transform(uint32_t insn, unsigned int reg)
1442 if ((insn & (0x3f << 26)) != 31 << 26)
1446 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1447 rtra = insn & ((1 << 26) - (1 << 16));
1448 else if (((insn >> 16) & 0x1f) == reg)
1449 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1453 if ((insn & (0x3ff << 1)) == 266 << 1)
1456 else if ((insn & (0x1f << 1)) == 23 << 1
1457 && ((insn & (0x1f << 6)) < 14 << 6
1458 || ((insn & (0x1f << 6)) >= 16 << 6
1459 && (insn & (0x1f << 6)) < 24 << 6)))
1460 // load and store indexed -> dform
1461 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1462 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1463 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1464 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1465 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1467 insn = (58 << 26) | 2;
1475 template<int size, bool big_endian>
1476 class Powerpc_relocate_functions
1496 typedef Powerpc_relocate_functions<size, big_endian> This;
1497 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1499 template<int valsize>
1501 has_overflow_signed(Address value)
1503 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1504 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1505 limit <<= ((valsize - 1) >> 1);
1506 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1507 return value + limit > (limit << 1) - 1;
1510 template<int valsize>
1512 has_overflow_unsigned(Address value)
1514 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1515 limit <<= ((valsize - 1) >> 1);
1516 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1517 return value > (limit << 1) - 1;
1520 template<int valsize>
1522 has_overflow_bitfield(Address value)
1524 return (has_overflow_unsigned<valsize>(value)
1525 && has_overflow_signed<valsize>(value));
1528 template<int valsize>
1529 static inline Status
1530 overflowed(Address value, Overflow_check overflow)
1532 if (overflow == CHECK_SIGNED)
1534 if (has_overflow_signed<valsize>(value))
1535 return STATUS_OVERFLOW;
1537 else if (overflow == CHECK_UNSIGNED)
1539 if (has_overflow_unsigned<valsize>(value))
1540 return STATUS_OVERFLOW;
1542 else if (overflow == CHECK_BITFIELD)
1544 if (has_overflow_bitfield<valsize>(value))
1545 return STATUS_OVERFLOW;
1550 // Do a simple RELA relocation
1551 template<int fieldsize, int valsize>
1552 static inline Status
1553 rela(unsigned char* view, Address value, Overflow_check overflow)
1555 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1556 Valtype* wv = reinterpret_cast<Valtype*>(view);
1557 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1558 return overflowed<valsize>(value, overflow);
1561 template<int fieldsize, int valsize>
1562 static inline Status
1563 rela(unsigned char* view,
1564 unsigned int right_shift,
1565 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1567 Overflow_check overflow)
1569 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1570 Valtype* wv = reinterpret_cast<Valtype*>(view);
1571 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1572 Valtype reloc = value >> right_shift;
1575 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1576 return overflowed<valsize>(value >> right_shift, overflow);
1579 // Do a simple RELA relocation, unaligned.
1580 template<int fieldsize, int valsize>
1581 static inline Status
1582 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1584 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1585 return overflowed<valsize>(value, overflow);
1588 template<int fieldsize, int valsize>
1589 static inline Status
1590 rela_ua(unsigned char* view,
1591 unsigned int right_shift,
1592 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1594 Overflow_check overflow)
1596 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1598 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1599 Valtype reloc = value >> right_shift;
1602 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1603 return overflowed<valsize>(value >> right_shift, overflow);
1607 // R_PPC64_ADDR64: (Symbol + Addend)
1609 addr64(unsigned char* view, Address value)
1610 { This::template rela<64,64>(view, value, CHECK_NONE); }
1612 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1614 addr64_u(unsigned char* view, Address value)
1615 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1617 // R_POWERPC_ADDR32: (Symbol + Addend)
1618 static inline Status
1619 addr32(unsigned char* view, Address value, Overflow_check overflow)
1620 { return This::template rela<32,32>(view, value, overflow); }
1622 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1623 static inline Status
1624 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1625 { return This::template rela_ua<32,32>(view, value, overflow); }
1627 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1628 static inline Status
1629 addr24(unsigned char* view, Address value, Overflow_check overflow)
1631 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1633 if (overflow != CHECK_NONE && (value & 3) != 0)
1634 stat = STATUS_OVERFLOW;
1638 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1639 static inline Status
1640 addr16(unsigned char* view, Address value, Overflow_check overflow)
1641 { return This::template rela<16,16>(view, value, overflow); }
1643 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1644 static inline Status
1645 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1646 { return This::template rela_ua<16,16>(view, value, overflow); }
1648 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1649 static inline Status
1650 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1652 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1653 if (overflow != CHECK_NONE && (value & 3) != 0)
1654 stat = STATUS_OVERFLOW;
1658 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1660 addr16_hi(unsigned char* view, Address value)
1661 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1663 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1665 addr16_ha(unsigned char* view, Address value)
1666 { This::addr16_hi(view, value + 0x8000); }
1668 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1670 addr16_hi2(unsigned char* view, Address value)
1671 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1673 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1675 addr16_ha2(unsigned char* view, Address value)
1676 { This::addr16_hi2(view, value + 0x8000); }
1678 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1680 addr16_hi3(unsigned char* view, Address value)
1681 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1683 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1685 addr16_ha3(unsigned char* view, Address value)
1686 { This::addr16_hi3(view, value + 0x8000); }
1688 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1689 static inline Status
1690 addr14(unsigned char* view, Address value, Overflow_check overflow)
1692 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1693 if (overflow != CHECK_NONE && (value & 3) != 0)
1694 stat = STATUS_OVERFLOW;
1699 // Set ABI version for input and output.
1701 template<int size, bool big_endian>
1703 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1705 this->e_flags_ |= ver;
1706 if (this->abiversion() != 0)
1708 Target_powerpc<size, big_endian>* target =
1709 static_cast<Target_powerpc<size, big_endian>*>(
1710 parameters->sized_target<size, big_endian>());
1711 if (target->abiversion() == 0)
1712 target->set_abiversion(this->abiversion());
1713 else if (target->abiversion() != this->abiversion())
1714 gold_error(_("%s: ABI version %d is not compatible "
1715 "with ABI version %d output"),
1716 this->name().c_str(),
1717 this->abiversion(), target->abiversion());
1722 // Stash away the index of .got2 or .opd in a relocatable object, if
1723 // such a section exists.
1725 template<int size, bool big_endian>
1727 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1728 Read_symbols_data* sd)
1730 const unsigned char* const pshdrs = sd->section_headers->data();
1731 const unsigned char* namesu = sd->section_names->data();
1732 const char* names = reinterpret_cast<const char*>(namesu);
1733 section_size_type names_size = sd->section_names_size;
1734 const unsigned char* s;
1736 s = this->template find_shdr<size, big_endian>(pshdrs,
1737 size == 32 ? ".got2" : ".opd",
1738 names, names_size, NULL);
1741 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1742 this->special_ = ndx;
1745 if (this->abiversion() == 0)
1746 this->set_abiversion(1);
1747 else if (this->abiversion() > 1)
1748 gold_error(_("%s: .opd invalid in abiv%d"),
1749 this->name().c_str(), this->abiversion());
1752 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1755 // Examine .rela.opd to build info about function entry points.
1757 template<int size, bool big_endian>
1759 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1761 const unsigned char* prelocs,
1762 const unsigned char* plocal_syms)
1766 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1768 const int reloc_size
1769 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1770 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1771 Address expected_off = 0;
1772 bool regular = true;
1773 unsigned int opd_ent_size = 0;
1775 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1777 Reltype reloc(prelocs);
1778 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1779 = reloc.get_r_info();
1780 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1781 if (r_type == elfcpp::R_PPC64_ADDR64)
1783 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1784 typename elfcpp::Elf_types<size>::Elf_Addr value;
1787 if (r_sym < this->local_symbol_count())
1789 typename elfcpp::Sym<size, big_endian>
1790 lsym(plocal_syms + r_sym * sym_size);
1791 shndx = lsym.get_st_shndx();
1792 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1793 value = lsym.get_st_value();
1796 shndx = this->symbol_section_and_value(r_sym, &value,
1798 this->set_opd_ent(reloc.get_r_offset(), shndx,
1799 value + reloc.get_r_addend());
1802 expected_off = reloc.get_r_offset();
1803 opd_ent_size = expected_off;
1805 else if (expected_off != reloc.get_r_offset())
1807 expected_off += opd_ent_size;
1809 else if (r_type == elfcpp::R_PPC64_TOC)
1811 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1816 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1817 this->name().c_str(), r_type);
1821 if (reloc_count <= 2)
1822 opd_ent_size = this->section_size(this->opd_shndx());
1823 if (opd_ent_size != 24 && opd_ent_size != 16)
1827 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1828 this->name().c_str());
1834 template<int size, bool big_endian>
1836 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1838 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1841 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1842 p != rd->relocs.end();
1845 if (p->data_shndx == this->opd_shndx())
1847 uint64_t opd_size = this->section_size(this->opd_shndx());
1848 gold_assert(opd_size == static_cast<size_t>(opd_size));
1851 this->init_opd(opd_size);
1852 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1853 rd->local_symbols->data());
1861 // Read the symbols then set up st_other vector.
1863 template<int size, bool big_endian>
1865 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1867 this->base_read_symbols(sd);
1870 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1871 const unsigned char* const pshdrs = sd->section_headers->data();
1872 const unsigned int loccount = this->do_local_symbol_count();
1875 this->st_other_.resize(loccount);
1876 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1877 off_t locsize = loccount * sym_size;
1878 const unsigned int symtab_shndx = this->symtab_shndx();
1879 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1880 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1881 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1882 locsize, true, false);
1884 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1886 elfcpp::Sym<size, big_endian> sym(psyms);
1887 unsigned char st_other = sym.get_st_other();
1888 this->st_other_[i] = st_other;
1889 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1891 if (this->abiversion() == 0)
1892 this->set_abiversion(2);
1893 else if (this->abiversion() < 2)
1894 gold_error(_("%s: local symbol %d has invalid st_other"
1895 " for ABI version 1"),
1896 this->name().c_str(), i);
1903 template<int size, bool big_endian>
1905 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1907 this->e_flags_ |= ver;
1908 if (this->abiversion() != 0)
1910 Target_powerpc<size, big_endian>* target =
1911 static_cast<Target_powerpc<size, big_endian>*>(
1912 parameters->sized_target<size, big_endian>());
1913 if (target->abiversion() == 0)
1914 target->set_abiversion(this->abiversion());
1915 else if (target->abiversion() != this->abiversion())
1916 gold_error(_("%s: ABI version %d is not compatible "
1917 "with ABI version %d output"),
1918 this->name().c_str(),
1919 this->abiversion(), target->abiversion());
1924 // Call Sized_dynobj::base_read_symbols to read the symbols then
1925 // read .opd from a dynamic object, filling in opd_ent_ vector,
1927 template<int size, bool big_endian>
1929 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1931 this->base_read_symbols(sd);
1934 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1935 const unsigned char* const pshdrs = sd->section_headers->data();
1936 const unsigned char* namesu = sd->section_names->data();
1937 const char* names = reinterpret_cast<const char*>(namesu);
1938 const unsigned char* s = NULL;
1939 const unsigned char* opd;
1940 section_size_type opd_size;
1942 // Find and read .opd section.
1945 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1946 sd->section_names_size,
1951 typename elfcpp::Shdr<size, big_endian> shdr(s);
1952 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1953 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1955 if (this->abiversion() == 0)
1956 this->set_abiversion(1);
1957 else if (this->abiversion() > 1)
1958 gold_error(_("%s: .opd invalid in abiv%d"),
1959 this->name().c_str(), this->abiversion());
1961 this->opd_shndx_ = (s - pshdrs) / shdr_size;
1962 this->opd_address_ = shdr.get_sh_addr();
1963 opd_size = convert_to_section_size_type(shdr.get_sh_size());
1964 opd = this->get_view(shdr.get_sh_offset(), opd_size,
1970 // Build set of executable sections.
1971 // Using a set is probably overkill. There is likely to be only
1972 // a few executable sections, typically .init, .text and .fini,
1973 // and they are generally grouped together.
1974 typedef std::set<Sec_info> Exec_sections;
1975 Exec_sections exec_sections;
1977 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1979 typename elfcpp::Shdr<size, big_endian> shdr(s);
1980 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1981 && ((shdr.get_sh_flags()
1982 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1983 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1984 && shdr.get_sh_size() != 0)
1986 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1987 shdr.get_sh_size(), i));
1990 if (exec_sections.empty())
1993 // Look over the OPD entries. This is complicated by the fact
1994 // that some binaries will use two-word entries while others
1995 // will use the standard three-word entries. In most cases
1996 // the third word (the environment pointer for languages like
1997 // Pascal) is unused and will be zero. If the third word is
1998 // used it should not be pointing into executable sections,
2000 this->init_opd(opd_size);
2001 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2003 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2004 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2005 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2007 // Chances are that this is the third word of an OPD entry.
2009 typename Exec_sections::const_iterator e
2010 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2011 if (e != exec_sections.begin())
2014 if (e->start <= val && val < e->start + e->len)
2016 // We have an address in an executable section.
2017 // VAL ought to be the function entry, set it up.
2018 this->set_opd_ent(p - opd, e->shndx, val);
2019 // Skip second word of OPD entry, the TOC pointer.
2023 // If we didn't match any executable sections, we likely
2024 // have a non-zero third word in the OPD entry.
2029 // Set up some symbols.
2031 template<int size, bool big_endian>
2033 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2034 Symbol_table* symtab,
2039 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2040 // undefined when scanning relocs (and thus requires
2041 // non-relative dynamic relocs). The proper value will be
2043 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2044 if (gotsym != NULL && gotsym->is_undefined())
2046 Target_powerpc<size, big_endian>* target =
2047 static_cast<Target_powerpc<size, big_endian>*>(
2048 parameters->sized_target<size, big_endian>());
2049 Output_data_got_powerpc<size, big_endian>* got
2050 = target->got_section(symtab, layout);
2051 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2052 Symbol_table::PREDEFINED,
2056 elfcpp::STV_HIDDEN, 0,
2060 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2061 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2062 if (sdasym != NULL && sdasym->is_undefined())
2064 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2066 = layout->add_output_section_data(".sdata", 0,
2068 | elfcpp::SHF_WRITE,
2069 sdata, ORDER_SMALL_DATA, false);
2070 symtab->define_in_output_data("_SDA_BASE_", NULL,
2071 Symbol_table::PREDEFINED,
2072 os, 32768, 0, elfcpp::STT_OBJECT,
2073 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2079 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2080 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2081 if (gotsym != NULL && gotsym->is_undefined())
2083 Target_powerpc<size, big_endian>* target =
2084 static_cast<Target_powerpc<size, big_endian>*>(
2085 parameters->sized_target<size, big_endian>());
2086 Output_data_got_powerpc<size, big_endian>* got
2087 = target->got_section(symtab, layout);
2088 symtab->define_in_output_data(".TOC.", NULL,
2089 Symbol_table::PREDEFINED,
2093 elfcpp::STV_HIDDEN, 0,
2099 // Set up PowerPC target specific relobj.
2101 template<int size, bool big_endian>
2103 Target_powerpc<size, big_endian>::do_make_elf_object(
2104 const std::string& name,
2105 Input_file* input_file,
2106 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2108 int et = ehdr.get_e_type();
2109 // ET_EXEC files are valid input for --just-symbols/-R,
2110 // and we treat them as relocatable objects.
2111 if (et == elfcpp::ET_REL
2112 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2114 Powerpc_relobj<size, big_endian>* obj =
2115 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2119 else if (et == elfcpp::ET_DYN)
2121 Powerpc_dynobj<size, big_endian>* obj =
2122 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2128 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2133 template<int size, bool big_endian>
2134 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2137 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2138 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2140 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2141 : Output_data_got<size, big_endian>(),
2142 symtab_(symtab), layout_(layout),
2143 header_ent_cnt_(size == 32 ? 3 : 1),
2144 header_index_(size == 32 ? 0x2000 : 0)
2147 // Override all the Output_data_got methods we use so as to first call
2150 add_global(Symbol* gsym, unsigned int got_type)
2152 this->reserve_ent();
2153 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2157 add_global_plt(Symbol* gsym, unsigned int got_type)
2159 this->reserve_ent();
2160 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2164 add_global_tls(Symbol* gsym, unsigned int got_type)
2165 { return this->add_global_plt(gsym, got_type); }
2168 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2169 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2171 this->reserve_ent();
2172 Output_data_got<size, big_endian>::
2173 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2177 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2178 Output_data_reloc_generic* rel_dyn,
2179 unsigned int r_type_1, unsigned int r_type_2)
2181 this->reserve_ent(2);
2182 Output_data_got<size, big_endian>::
2183 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2187 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2189 this->reserve_ent();
2190 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2195 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2197 this->reserve_ent();
2198 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2203 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2204 { return this->add_local_plt(object, sym_index, got_type); }
2207 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2208 unsigned int got_type,
2209 Output_data_reloc_generic* rel_dyn,
2210 unsigned int r_type)
2212 this->reserve_ent(2);
2213 Output_data_got<size, big_endian>::
2214 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2218 add_constant(Valtype constant)
2220 this->reserve_ent();
2221 return Output_data_got<size, big_endian>::add_constant(constant);
2225 add_constant_pair(Valtype c1, Valtype c2)
2227 this->reserve_ent(2);
2228 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2231 // Offset of _GLOBAL_OFFSET_TABLE_.
2235 return this->got_offset(this->header_index_);
2238 // Offset of base used to access the GOT/TOC.
2239 // The got/toc pointer reg will be set to this value.
2241 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2244 return this->g_o_t();
2246 return (this->output_section()->address()
2247 + object->toc_base_offset()
2251 // Ensure our GOT has a header.
2253 set_final_data_size()
2255 if (this->header_ent_cnt_ != 0)
2256 this->make_header();
2257 Output_data_got<size, big_endian>::set_final_data_size();
2260 // First word of GOT header needs some values that are not
2261 // handled by Output_data_got so poke them in here.
2262 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2264 do_write(Output_file* of)
2267 if (size == 32 && this->layout_->dynamic_data() != NULL)
2268 val = this->layout_->dynamic_section()->address();
2270 val = this->output_section()->address() + 0x8000;
2271 this->replace_constant(this->header_index_, val);
2272 Output_data_got<size, big_endian>::do_write(of);
2277 reserve_ent(unsigned int cnt = 1)
2279 if (this->header_ent_cnt_ == 0)
2281 if (this->num_entries() + cnt > this->header_index_)
2282 this->make_header();
2288 this->header_ent_cnt_ = 0;
2289 this->header_index_ = this->num_entries();
2292 Output_data_got<size, big_endian>::add_constant(0);
2293 Output_data_got<size, big_endian>::add_constant(0);
2294 Output_data_got<size, big_endian>::add_constant(0);
2296 // Define _GLOBAL_OFFSET_TABLE_ at the header
2297 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2300 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2301 sym->set_value(this->g_o_t());
2304 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2305 Symbol_table::PREDEFINED,
2306 this, this->g_o_t(), 0,
2309 elfcpp::STV_HIDDEN, 0,
2313 Output_data_got<size, big_endian>::add_constant(0);
2316 // Stashed pointers.
2317 Symbol_table* symtab_;
2321 unsigned int header_ent_cnt_;
2322 // GOT header index.
2323 unsigned int header_index_;
2326 // Get the GOT section, creating it if necessary.
2328 template<int size, bool big_endian>
2329 Output_data_got_powerpc<size, big_endian>*
2330 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2333 if (this->got_ == NULL)
2335 gold_assert(symtab != NULL && layout != NULL);
2338 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2340 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2341 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2342 this->got_, ORDER_DATA, false);
2348 // Get the dynamic reloc section, creating it if necessary.
2350 template<int size, bool big_endian>
2351 typename Target_powerpc<size, big_endian>::Reloc_section*
2352 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2354 if (this->rela_dyn_ == NULL)
2356 gold_assert(layout != NULL);
2357 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2358 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2359 elfcpp::SHF_ALLOC, this->rela_dyn_,
2360 ORDER_DYNAMIC_RELOCS, false);
2362 return this->rela_dyn_;
2365 // Similarly, but for ifunc symbols get the one for ifunc.
2367 template<int size, bool big_endian>
2368 typename Target_powerpc<size, big_endian>::Reloc_section*
2369 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2374 return this->rela_dyn_section(layout);
2376 if (this->iplt_ == NULL)
2377 this->make_iplt_section(symtab, layout);
2378 return this->iplt_->rel_plt();
2384 // Determine the stub group size. The group size is the absolute
2385 // value of the parameter --stub-group-size. If --stub-group-size
2386 // is passed a negative value, we restrict stubs to be always before
2387 // the stubbed branches.
2388 Stub_control(int32_t size, bool no_size_errors)
2389 : state_(NO_GROUP), stub_group_size_(abs(size)),
2390 stub14_group_size_(abs(size) >> 10),
2391 stubs_always_before_branch_(size < 0),
2392 suppress_size_errors_(no_size_errors),
2393 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2397 // Return true iff input section can be handled by current stub
2400 can_add_to_stub_group(Output_section* o,
2401 const Output_section::Input_section* i,
2404 const Output_section::Input_section*
2410 { return output_section_; }
2413 set_output_and_owner(Output_section* o,
2414 const Output_section::Input_section* i)
2416 this->output_section_ = o;
2424 FINDING_STUB_SECTION,
2429 uint32_t stub_group_size_;
2430 uint32_t stub14_group_size_;
2431 bool stubs_always_before_branch_;
2432 bool suppress_size_errors_;
2433 uint64_t group_end_addr_;
2434 const Output_section::Input_section* owner_;
2435 Output_section* output_section_;
2438 // Return true iff input section can be handled by current stub
2442 Stub_control::can_add_to_stub_group(Output_section* o,
2443 const Output_section::Input_section* i,
2447 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2448 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2450 uint64_t start_addr = o->address();
2453 // .init and .fini sections are pasted together to form a single
2454 // function. We can't be adding stubs in the middle of the function.
2455 this_size = o->data_size();
2458 start_addr += i->relobj()->output_section_offset(i->shndx());
2459 this_size = i->data_size();
2461 uint64_t end_addr = start_addr + this_size;
2462 bool toobig = this_size > group_size;
2464 if (toobig && !this->suppress_size_errors_)
2465 gold_warning(_("%s:%s exceeds group size"),
2466 i->relobj()->name().c_str(),
2467 i->relobj()->section_name(i->shndx()).c_str());
2469 if (this->state_ != HAS_STUB_SECTION
2470 && (!whole_sec || this->output_section_ != o)
2471 && (this->state_ == NO_GROUP
2472 || this->group_end_addr_ - end_addr < group_size))
2475 this->output_section_ = o;
2478 if (this->state_ == NO_GROUP)
2480 this->state_ = FINDING_STUB_SECTION;
2481 this->group_end_addr_ = end_addr;
2483 else if (this->group_end_addr_ - start_addr < group_size)
2485 // Adding this section would make the group larger than GROUP_SIZE.
2486 else if (this->state_ == FINDING_STUB_SECTION
2487 && !this->stubs_always_before_branch_
2490 // But wait, there's more! Input sections up to GROUP_SIZE
2491 // bytes before the stub table can be handled by it too.
2492 this->state_ = HAS_STUB_SECTION;
2493 this->group_end_addr_ = end_addr;
2497 this->state_ = NO_GROUP;
2503 // Look over all the input sections, deciding where to place stubs.
2505 template<int size, bool big_endian>
2507 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2509 bool no_size_errors)
2511 Stub_control stub_control(this->stub_group_size_, no_size_errors);
2513 // Group input sections and insert stub table
2514 Stub_table_owner* table_owner = NULL;
2515 std::vector<Stub_table_owner*> tables;
2516 Layout::Section_list section_list;
2517 layout->get_executable_sections(§ion_list);
2518 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2519 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2520 o != section_list.rend();
2523 typedef Output_section::Input_section_list Input_section_list;
2524 for (Input_section_list::const_reverse_iterator i
2525 = (*o)->input_sections().rbegin();
2526 i != (*o)->input_sections().rend();
2529 if (i->is_input_section()
2530 || i->is_relaxed_input_section())
2532 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2533 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2534 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2535 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2537 table_owner->output_section = stub_control.output_section();
2538 table_owner->owner = stub_control.owner();
2539 stub_control.set_output_and_owner(*o, &*i);
2542 if (table_owner == NULL)
2544 table_owner = new Stub_table_owner;
2545 tables.push_back(table_owner);
2547 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2551 if (table_owner != NULL)
2553 const Output_section::Input_section* i = stub_control.owner();
2555 if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2557 // Corner case. A new stub group was made for the first
2558 // section (last one looked at here) for some reason, but
2559 // the first section is already being used as the owner for
2560 // a stub table for following sections. Force it into that
2564 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2565 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2566 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2570 table_owner->output_section = stub_control.output_section();
2571 table_owner->owner = i;
2574 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2578 Stub_table<size, big_endian>* stub_table;
2580 if ((*t)->owner->is_input_section())
2581 stub_table = new Stub_table<size, big_endian>(this,
2582 (*t)->output_section,
2584 else if ((*t)->owner->is_relaxed_input_section())
2585 stub_table = static_cast<Stub_table<size, big_endian>*>(
2586 (*t)->owner->relaxed_input_section());
2589 this->stub_tables_.push_back(stub_table);
2594 static unsigned long
2595 max_branch_delta (unsigned int r_type)
2597 if (r_type == elfcpp::R_POWERPC_REL14
2598 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2599 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2601 if (r_type == elfcpp::R_POWERPC_REL24
2602 || r_type == elfcpp::R_PPC_PLTREL24
2603 || r_type == elfcpp::R_PPC_LOCAL24PC)
2608 // If this branch needs a plt call stub, or a long branch stub, make one.
2610 template<int size, bool big_endian>
2612 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2613 Stub_table<size, big_endian>* stub_table,
2614 Stub_table<size, big_endian>* ifunc_stub_table,
2615 Symbol_table* symtab) const
2617 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2618 if (sym != NULL && sym->is_forwarder())
2619 sym = symtab->resolve_forwards(sym);
2620 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2621 Target_powerpc<size, big_endian>* target =
2622 static_cast<Target_powerpc<size, big_endian>*>(
2623 parameters->sized_target<size, big_endian>());
2625 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2626 : this->object_->local_has_plt_offset(this->r_sym_))
2630 && target->abiversion() >= 2
2631 && !parameters->options().output_is_position_independent()
2632 && !is_branch_reloc(this->r_type_))
2633 target->glink_section()->add_global_entry(gsym);
2636 if (stub_table == NULL)
2637 stub_table = this->object_->stub_table(this->shndx_);
2638 if (stub_table == NULL)
2640 // This is a ref from a data section to an ifunc symbol.
2641 stub_table = ifunc_stub_table;
2643 gold_assert(stub_table != NULL);
2644 Address from = this->object_->get_output_section_offset(this->shndx_);
2645 if (from != invalid_address)
2646 from += (this->object_->output_section(this->shndx_)->address()
2649 return stub_table->add_plt_call_entry(from,
2650 this->object_, gsym,
2651 this->r_type_, this->addend_);
2653 return stub_table->add_plt_call_entry(from,
2654 this->object_, this->r_sym_,
2655 this->r_type_, this->addend_);
2660 Address max_branch_offset = max_branch_delta(this->r_type_);
2661 if (max_branch_offset == 0)
2663 Address from = this->object_->get_output_section_offset(this->shndx_);
2664 gold_assert(from != invalid_address);
2665 from += (this->object_->output_section(this->shndx_)->address()
2670 switch (gsym->source())
2672 case Symbol::FROM_OBJECT:
2674 Object* symobj = gsym->object();
2675 if (symobj->is_dynamic()
2676 || symobj->pluginobj() != NULL)
2679 unsigned int shndx = gsym->shndx(&is_ordinary);
2680 if (shndx == elfcpp::SHN_UNDEF)
2685 case Symbol::IS_UNDEFINED:
2691 Symbol_table::Compute_final_value_status status;
2692 to = symtab->compute_final_value<size>(gsym, &status);
2693 if (status != Symbol_table::CFVS_OK)
2696 to += this->object_->ppc64_local_entry_offset(gsym);
2700 const Symbol_value<size>* psymval
2701 = this->object_->local_symbol(this->r_sym_);
2702 Symbol_value<size> symval;
2703 typedef Sized_relobj_file<size, big_endian> ObjType;
2704 typename ObjType::Compute_final_local_value_status status
2705 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2707 if (status != ObjType::CFLV_OK
2708 || !symval.has_output_value())
2710 to = symval.value(this->object_, 0);
2712 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2714 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2715 to += this->addend_;
2716 if (stub_table == NULL)
2717 stub_table = this->object_->stub_table(this->shndx_);
2718 if (size == 64 && target->abiversion() < 2)
2720 unsigned int dest_shndx;
2721 if (!target->symval_for_branch(symtab, gsym, this->object_,
2725 Address delta = to - from;
2726 if (delta + max_branch_offset >= 2 * max_branch_offset)
2728 if (stub_table == NULL)
2730 gold_warning(_("%s:%s: branch in non-executable section,"
2731 " no long branch stub for you"),
2732 this->object_->name().c_str(),
2733 this->object_->section_name(this->shndx_).c_str());
2736 return stub_table->add_long_branch_entry(this->object_,
2737 this->r_type_, from, to);
2743 // Relaxation hook. This is where we do stub generation.
2745 template<int size, bool big_endian>
2747 Target_powerpc<size, big_endian>::do_relax(int pass,
2748 const Input_objects*,
2749 Symbol_table* symtab,
2753 unsigned int prev_brlt_size = 0;
2757 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2759 && this->abiversion() < 2
2761 && !parameters->options().user_set_plt_thread_safe())
2763 static const char* const thread_starter[] =
2767 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2769 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2770 "mq_notify", "create_timer",
2775 "GOMP_parallel_start",
2776 "GOMP_parallel_loop_static",
2777 "GOMP_parallel_loop_static_start",
2778 "GOMP_parallel_loop_dynamic",
2779 "GOMP_parallel_loop_dynamic_start",
2780 "GOMP_parallel_loop_guided",
2781 "GOMP_parallel_loop_guided_start",
2782 "GOMP_parallel_loop_runtime",
2783 "GOMP_parallel_loop_runtime_start",
2784 "GOMP_parallel_sections",
2785 "GOMP_parallel_sections_start",
2790 if (parameters->options().shared())
2794 for (unsigned int i = 0;
2795 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2798 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2799 thread_safe = (sym != NULL
2801 && sym->in_real_elf());
2807 this->plt_thread_safe_ = thread_safe;
2812 this->stub_group_size_ = parameters->options().stub_group_size();
2813 bool no_size_errors = true;
2814 if (this->stub_group_size_ == 1)
2815 this->stub_group_size_ = 0x1c00000;
2816 else if (this->stub_group_size_ == -1)
2817 this->stub_group_size_ = -0x1e00000;
2819 no_size_errors = false;
2820 this->group_sections(layout, task, no_size_errors);
2822 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2824 this->branch_lookup_table_.clear();
2825 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2826 p != this->stub_tables_.end();
2829 (*p)->clear_stubs(true);
2831 this->stub_tables_.clear();
2832 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2833 gold_info(_("%s: stub group size is too large; retrying with %d"),
2834 program_name, this->stub_group_size_);
2835 this->group_sections(layout, task, true);
2838 // We need address of stub tables valid for make_stub.
2839 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2840 p != this->stub_tables_.end();
2843 const Powerpc_relobj<size, big_endian>* object
2844 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2845 Address off = object->get_output_section_offset((*p)->shndx());
2846 gold_assert(off != invalid_address);
2847 Output_section* os = (*p)->output_section();
2848 (*p)->set_address_and_size(os, off);
2853 // Clear plt call stubs, long branch stubs and branch lookup table.
2854 prev_brlt_size = this->branch_lookup_table_.size();
2855 this->branch_lookup_table_.clear();
2856 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2857 p != this->stub_tables_.end();
2860 (*p)->clear_stubs(false);
2864 // Build all the stubs.
2865 this->relax_failed_ = false;
2866 Stub_table<size, big_endian>* ifunc_stub_table
2867 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2868 Stub_table<size, big_endian>* one_stub_table
2869 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2870 for (typename Branches::const_iterator b = this->branch_info_.begin();
2871 b != this->branch_info_.end();
2874 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2875 && !this->relax_failed_)
2877 this->relax_failed_ = true;
2878 this->relax_fail_count_++;
2879 if (this->relax_fail_count_ < 3)
2884 // Did anything change size?
2885 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2886 bool again = num_huge_branches != prev_brlt_size;
2887 if (size == 64 && num_huge_branches != 0)
2888 this->make_brlt_section(layout);
2889 if (size == 64 && again)
2890 this->brlt_section_->set_current_size(num_huge_branches);
2892 typedef Unordered_set<Output_section*> Output_sections;
2893 Output_sections os_need_update;
2894 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2895 p != this->stub_tables_.end();
2898 if ((*p)->size_update())
2901 (*p)->add_eh_frame(layout);
2902 os_need_update.insert((*p)->output_section());
2906 // Set output section offsets for all input sections in an output
2907 // section that just changed size. Anything past the stubs will
2909 for (typename Output_sections::iterator p = os_need_update.begin();
2910 p != os_need_update.end();
2913 Output_section* os = *p;
2915 typedef Output_section::Input_section_list Input_section_list;
2916 for (Input_section_list::const_iterator i = os->input_sections().begin();
2917 i != os->input_sections().end();
2920 off = align_address(off, i->addralign());
2921 if (i->is_input_section() || i->is_relaxed_input_section())
2922 i->relobj()->set_section_offset(i->shndx(), off);
2923 if (i->is_relaxed_input_section())
2925 Stub_table<size, big_endian>* stub_table
2926 = static_cast<Stub_table<size, big_endian>*>(
2927 i->relaxed_input_section());
2928 off += stub_table->set_address_and_size(os, off);
2931 off += i->data_size();
2933 // If .branch_lt is part of this output section, then we have
2934 // just done the offset adjustment.
2935 os->clear_section_offsets_need_adjustment();
2940 && num_huge_branches != 0
2941 && parameters->options().output_is_position_independent())
2943 // Fill in the BRLT relocs.
2944 this->brlt_section_->reset_brlt_sizes();
2945 for (typename Branch_lookup_table::const_iterator p
2946 = this->branch_lookup_table_.begin();
2947 p != this->branch_lookup_table_.end();
2950 this->brlt_section_->add_reloc(p->first, p->second);
2952 this->brlt_section_->finalize_brlt_sizes();
2957 template<int size, bool big_endian>
2959 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2960 unsigned char* oview,
2964 uint64_t address = plt->address();
2965 off_t len = plt->data_size();
2967 if (plt == this->glink_)
2969 // See Output_data_glink::do_write() for glink contents.
2972 gold_assert(parameters->doing_static_link());
2973 // Static linking may need stubs, to support ifunc and long
2974 // branches. We need to create an output section for
2975 // .eh_frame early in the link process, to have a place to
2976 // attach stub .eh_frame info. We also need to have
2977 // registered a CIE that matches the stub CIE. Both of
2978 // these requirements are satisfied by creating an FDE and
2979 // CIE for .glink, even though static linking will leave
2980 // .glink zero length.
2981 // ??? Hopefully generating an FDE with a zero address range
2982 // won't confuse anything that consumes .eh_frame info.
2984 else if (size == 64)
2986 // There is one word before __glink_PLTresolve
2990 else if (parameters->options().output_is_position_independent())
2992 // There are two FDEs for a position independent glink.
2993 // The first covers the branch table, the second
2994 // __glink_PLTresolve at the end of glink.
2995 off_t resolve_size = this->glink_->pltresolve_size;
2996 if (oview[9] == elfcpp::DW_CFA_nop)
2997 len -= resolve_size;
3000 address += len - resolve_size;
3007 // Must be a stub table.
3008 const Stub_table<size, big_endian>* stub_table
3009 = static_cast<const Stub_table<size, big_endian>*>(plt);
3010 uint64_t stub_address = stub_table->stub_address();
3011 len -= stub_address - address;
3012 address = stub_address;
3015 *paddress = address;
3019 // A class to handle the PLT data.
3021 template<int size, bool big_endian>
3022 class Output_data_plt_powerpc : public Output_section_data_build
3025 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3026 size, big_endian> Reloc_section;
3028 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3029 Reloc_section* plt_rel,
3031 : Output_section_data_build(size == 32 ? 4 : 8),
3037 // Add an entry to the PLT.
3042 add_ifunc_entry(Symbol*);
3045 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3047 // Return the .rela.plt section data.
3054 // Return the number of PLT entries.
3058 if (this->current_data_size() == 0)
3060 return ((this->current_data_size() - this->first_plt_entry_offset())
3061 / this->plt_entry_size());
3066 do_adjust_output_section(Output_section* os)
3071 // Write to a map file.
3073 do_print_to_mapfile(Mapfile* mapfile) const
3074 { mapfile->print_output_data(this, this->name_); }
3077 // Return the offset of the first non-reserved PLT entry.
3079 first_plt_entry_offset() const
3081 // IPLT has no reserved entry.
3082 if (this->name_[3] == 'I')
3084 return this->targ_->first_plt_entry_offset();
3087 // Return the size of each PLT entry.
3089 plt_entry_size() const
3091 return this->targ_->plt_entry_size();
3094 // Write out the PLT data.
3096 do_write(Output_file*);
3098 // The reloc section.
3099 Reloc_section* rel_;
3100 // Allows access to .glink for do_write.
3101 Target_powerpc<size, big_endian>* targ_;
3102 // What to report in map file.
3106 // Add an entry to the PLT.
3108 template<int size, bool big_endian>
3110 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3112 if (!gsym->has_plt_offset())
3114 section_size_type off = this->current_data_size();
3116 off += this->first_plt_entry_offset();
3117 gsym->set_plt_offset(off);
3118 gsym->set_needs_dynsym_entry();
3119 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3120 this->rel_->add_global(gsym, dynrel, this, off, 0);
3121 off += this->plt_entry_size();
3122 this->set_current_data_size(off);
3126 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3128 template<int size, bool big_endian>
3130 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3132 if (!gsym->has_plt_offset())
3134 section_size_type off = this->current_data_size();
3135 gsym->set_plt_offset(off);
3136 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3137 if (size == 64 && this->targ_->abiversion() < 2)
3138 dynrel = elfcpp::R_PPC64_JMP_IREL;
3139 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3140 off += this->plt_entry_size();
3141 this->set_current_data_size(off);
3145 // Add an entry for a local ifunc symbol to the IPLT.
3147 template<int size, bool big_endian>
3149 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3150 Sized_relobj_file<size, big_endian>* relobj,
3151 unsigned int local_sym_index)
3153 if (!relobj->local_has_plt_offset(local_sym_index))
3155 section_size_type off = this->current_data_size();
3156 relobj->set_local_plt_offset(local_sym_index, off);
3157 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3158 if (size == 64 && this->targ_->abiversion() < 2)
3159 dynrel = elfcpp::R_PPC64_JMP_IREL;
3160 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3162 off += this->plt_entry_size();
3163 this->set_current_data_size(off);
3167 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3168 static const uint32_t add_2_2_11 = 0x7c425a14;
3169 static const uint32_t add_3_3_2 = 0x7c631214;
3170 static const uint32_t add_3_3_13 = 0x7c636a14;
3171 static const uint32_t add_11_0_11 = 0x7d605a14;
3172 static const uint32_t add_11_2_11 = 0x7d625a14;
3173 static const uint32_t add_11_11_2 = 0x7d6b1214;
3174 static const uint32_t addi_0_12 = 0x380c0000;
3175 static const uint32_t addi_2_2 = 0x38420000;
3176 static const uint32_t addi_3_3 = 0x38630000;
3177 static const uint32_t addi_11_11 = 0x396b0000;
3178 static const uint32_t addi_12_12 = 0x398c0000;
3179 static const uint32_t addis_0_2 = 0x3c020000;
3180 static const uint32_t addis_0_13 = 0x3c0d0000;
3181 static const uint32_t addis_11_2 = 0x3d620000;
3182 static const uint32_t addis_11_11 = 0x3d6b0000;
3183 static const uint32_t addis_11_30 = 0x3d7e0000;
3184 static const uint32_t addis_12_2 = 0x3d820000;
3185 static const uint32_t addis_12_12 = 0x3d8c0000;
3186 static const uint32_t b = 0x48000000;
3187 static const uint32_t bcl_20_31 = 0x429f0005;
3188 static const uint32_t bctr = 0x4e800420;
3189 static const uint32_t blr = 0x4e800020;
3190 static const uint32_t bnectr_p4 = 0x4ce20420;
3191 static const uint32_t cmpldi_2_0 = 0x28220000;
3192 static const uint32_t cror_15_15_15 = 0x4def7b82;
3193 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3194 static const uint32_t ld_0_1 = 0xe8010000;
3195 static const uint32_t ld_0_12 = 0xe80c0000;
3196 static const uint32_t ld_2_1 = 0xe8410000;
3197 static const uint32_t ld_2_2 = 0xe8420000;
3198 static const uint32_t ld_2_11 = 0xe84b0000;
3199 static const uint32_t ld_11_2 = 0xe9620000;
3200 static const uint32_t ld_11_11 = 0xe96b0000;
3201 static const uint32_t ld_12_2 = 0xe9820000;
3202 static const uint32_t ld_12_11 = 0xe98b0000;
3203 static const uint32_t ld_12_12 = 0xe98c0000;
3204 static const uint32_t lfd_0_1 = 0xc8010000;
3205 static const uint32_t li_0_0 = 0x38000000;
3206 static const uint32_t li_12_0 = 0x39800000;
3207 static const uint32_t lis_0_0 = 0x3c000000;
3208 static const uint32_t lis_11 = 0x3d600000;
3209 static const uint32_t lis_12 = 0x3d800000;
3210 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3211 static const uint32_t lwz_0_12 = 0x800c0000;
3212 static const uint32_t lwz_11_11 = 0x816b0000;
3213 static const uint32_t lwz_11_30 = 0x817e0000;
3214 static const uint32_t lwz_12_12 = 0x818c0000;
3215 static const uint32_t lwzu_0_12 = 0x840c0000;
3216 static const uint32_t mflr_0 = 0x7c0802a6;
3217 static const uint32_t mflr_11 = 0x7d6802a6;
3218 static const uint32_t mflr_12 = 0x7d8802a6;
3219 static const uint32_t mtctr_0 = 0x7c0903a6;
3220 static const uint32_t mtctr_11 = 0x7d6903a6;
3221 static const uint32_t mtctr_12 = 0x7d8903a6;
3222 static const uint32_t mtlr_0 = 0x7c0803a6;
3223 static const uint32_t mtlr_12 = 0x7d8803a6;
3224 static const uint32_t nop = 0x60000000;
3225 static const uint32_t ori_0_0_0 = 0x60000000;
3226 static const uint32_t srdi_0_0_2 = 0x7800f082;
3227 static const uint32_t std_0_1 = 0xf8010000;
3228 static const uint32_t std_0_12 = 0xf80c0000;
3229 static const uint32_t std_2_1 = 0xf8410000;
3230 static const uint32_t stfd_0_1 = 0xd8010000;
3231 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3232 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3233 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3234 static const uint32_t xor_2_12_12 = 0x7d826278;
3235 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3237 // Write out the PLT.
3239 template<int size, bool big_endian>
3241 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3243 if (size == 32 && this->name_[3] != 'I')
3245 const section_size_type offset = this->offset();
3246 const section_size_type oview_size
3247 = convert_to_section_size_type(this->data_size());
3248 unsigned char* const oview = of->get_output_view(offset, oview_size);
3249 unsigned char* pov = oview;
3250 unsigned char* endpov = oview + oview_size;
3252 // The address of the .glink branch table
3253 const Output_data_glink<size, big_endian>* glink
3254 = this->targ_->glink_section();
3255 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3257 while (pov < endpov)
3259 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3264 of->write_output_view(offset, oview_size, oview);
3268 // Create the PLT section.
3270 template<int size, bool big_endian>
3272 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3275 if (this->plt_ == NULL)
3277 if (this->got_ == NULL)
3278 this->got_section(symtab, layout);
3280 if (this->glink_ == NULL)
3281 make_glink_section(layout);
3283 // Ensure that .rela.dyn always appears before .rela.plt This is
3284 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3285 // needs to include .rela.plt in its range.
3286 this->rela_dyn_section(layout);
3288 Reloc_section* plt_rel = new Reloc_section(false);
3289 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3290 elfcpp::SHF_ALLOC, plt_rel,
3291 ORDER_DYNAMIC_PLT_RELOCS, false);
3293 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3295 layout->add_output_section_data(".plt",
3297 ? elfcpp::SHT_PROGBITS
3298 : elfcpp::SHT_NOBITS),
3299 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3308 // Create the IPLT section.
3310 template<int size, bool big_endian>
3312 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3315 if (this->iplt_ == NULL)
3317 this->make_plt_section(symtab, layout);
3319 Reloc_section* iplt_rel = new Reloc_section(false);
3320 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3322 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3324 this->plt_->output_section()->add_output_section_data(this->iplt_);
3328 // A section for huge long branch addresses, similar to plt section.
3330 template<int size, bool big_endian>
3331 class Output_data_brlt_powerpc : public Output_section_data_build
3334 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3335 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3336 size, big_endian> Reloc_section;
3338 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3339 Reloc_section* brlt_rel)
3340 : Output_section_data_build(size == 32 ? 4 : 8),
3348 this->reset_data_size();
3349 this->rel_->reset_data_size();
3353 finalize_brlt_sizes()
3355 this->finalize_data_size();
3356 this->rel_->finalize_data_size();
3359 // Add a reloc for an entry in the BRLT.
3361 add_reloc(Address to, unsigned int off)
3362 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3364 // Update section and reloc section size.
3366 set_current_size(unsigned int num_branches)
3368 this->reset_address_and_file_offset();
3369 this->set_current_data_size(num_branches * 16);
3370 this->finalize_data_size();
3371 Output_section* os = this->output_section();
3372 os->set_section_offsets_need_adjustment();
3373 if (this->rel_ != NULL)
3375 unsigned int reloc_size
3376 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3377 this->rel_->reset_address_and_file_offset();
3378 this->rel_->set_current_data_size(num_branches * reloc_size);
3379 this->rel_->finalize_data_size();
3380 Output_section* os = this->rel_->output_section();
3381 os->set_section_offsets_need_adjustment();
3387 do_adjust_output_section(Output_section* os)
3392 // Write to a map file.
3394 do_print_to_mapfile(Mapfile* mapfile) const
3395 { mapfile->print_output_data(this, "** BRLT"); }
3398 // Write out the BRLT data.
3400 do_write(Output_file*);
3402 // The reloc section.
3403 Reloc_section* rel_;
3404 Target_powerpc<size, big_endian>* targ_;
3407 // Make the branch lookup table section.
3409 template<int size, bool big_endian>
3411 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3413 if (size == 64 && this->brlt_section_ == NULL)
3415 Reloc_section* brlt_rel = NULL;
3416 bool is_pic = parameters->options().output_is_position_independent();
3419 // When PIC we can't fill in .branch_lt (like .plt it can be
3420 // a bss style section) but must initialise at runtime via
3421 // dynamic relocats.
3422 this->rela_dyn_section(layout);
3423 brlt_rel = new Reloc_section(false);
3424 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3427 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3428 if (this->plt_ && is_pic)
3429 this->plt_->output_section()
3430 ->add_output_section_data(this->brlt_section_);
3432 layout->add_output_section_data(".branch_lt",
3433 (is_pic ? elfcpp::SHT_NOBITS
3434 : elfcpp::SHT_PROGBITS),
3435 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3436 this->brlt_section_,
3437 (is_pic ? ORDER_SMALL_BSS
3438 : ORDER_SMALL_DATA),
3443 // Write out .branch_lt when non-PIC.
3445 template<int size, bool big_endian>
3447 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3449 if (size == 64 && !parameters->options().output_is_position_independent())
3451 const section_size_type offset = this->offset();
3452 const section_size_type oview_size
3453 = convert_to_section_size_type(this->data_size());
3454 unsigned char* const oview = of->get_output_view(offset, oview_size);
3456 this->targ_->write_branch_lookup_table(oview);
3457 of->write_output_view(offset, oview_size, oview);
3461 static inline uint32_t
3467 static inline uint32_t
3473 static inline uint32_t
3476 return hi(a + 0x8000);
3482 static const unsigned char eh_frame_cie[12];
3486 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3489 'z', 'R', 0, // Augmentation string.
3490 4, // Code alignment.
3491 0x80 - size / 8 , // Data alignment.
3493 1, // Augmentation size.
3494 (elfcpp::DW_EH_PE_pcrel
3495 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3496 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3499 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3500 static const unsigned char glink_eh_frame_fde_64v1[] =
3502 0, 0, 0, 0, // Replaced with offset to .glink.
3503 0, 0, 0, 0, // Replaced with size of .glink.
3504 0, // Augmentation size.
3505 elfcpp::DW_CFA_advance_loc + 1,
3506 elfcpp::DW_CFA_register, 65, 12,
3507 elfcpp::DW_CFA_advance_loc + 4,
3508 elfcpp::DW_CFA_restore_extended, 65
3511 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3512 static const unsigned char glink_eh_frame_fde_64v2[] =
3514 0, 0, 0, 0, // Replaced with offset to .glink.
3515 0, 0, 0, 0, // Replaced with size of .glink.
3516 0, // Augmentation size.
3517 elfcpp::DW_CFA_advance_loc + 1,
3518 elfcpp::DW_CFA_register, 65, 0,
3519 elfcpp::DW_CFA_advance_loc + 4,
3520 elfcpp::DW_CFA_restore_extended, 65
3523 // Describe __glink_PLTresolve use of LR, 32-bit version.
3524 static const unsigned char glink_eh_frame_fde_32[] =
3526 0, 0, 0, 0, // Replaced with offset to .glink.
3527 0, 0, 0, 0, // Replaced with size of .glink.
3528 0, // Augmentation size.
3529 elfcpp::DW_CFA_advance_loc + 2,
3530 elfcpp::DW_CFA_register, 65, 0,
3531 elfcpp::DW_CFA_advance_loc + 4,
3532 elfcpp::DW_CFA_restore_extended, 65
3535 static const unsigned char default_fde[] =
3537 0, 0, 0, 0, // Replaced with offset to stubs.
3538 0, 0, 0, 0, // Replaced with size of stubs.
3539 0, // Augmentation size.
3540 elfcpp::DW_CFA_nop, // Pad.
3545 template<bool big_endian>
3547 write_insn(unsigned char* p, uint32_t v)
3549 elfcpp::Swap<32, big_endian>::writeval(p, v);
3552 // Stub_table holds information about plt and long branch stubs.
3553 // Stubs are built in an area following some input section determined
3554 // by group_sections(). This input section is converted to a relaxed
3555 // input section allowing it to be resized to accommodate the stubs
3557 template<int size, bool big_endian>
3558 class Stub_table : public Output_relaxed_input_section
3561 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3562 static const Address invalid_address = static_cast<Address>(0) - 1;
3564 Stub_table(Target_powerpc<size, big_endian>* targ,
3565 Output_section* output_section,
3566 const Output_section::Input_section* owner)
3567 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3569 ->section_addralign(owner->shndx())),
3570 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3571 orig_data_size_(owner->current_data_size()),
3572 plt_size_(0), last_plt_size_(0),
3573 branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3575 this->set_output_section(output_section);
3577 std::vector<Output_relaxed_input_section*> new_relaxed;
3578 new_relaxed.push_back(this);
3579 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3582 // Add a plt call stub.
3584 add_plt_call_entry(Address,
3585 const Sized_relobj_file<size, big_endian>*,
3591 add_plt_call_entry(Address,
3592 const Sized_relobj_file<size, big_endian>*,
3597 // Find a given plt call stub.
3599 find_plt_call_entry(const Symbol*) const;
3602 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3603 unsigned int) const;
3606 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3612 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3617 // Add a long branch stub.
3619 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3620 unsigned int, Address, Address);
3623 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3627 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3629 Address max_branch_offset = max_branch_delta(r_type);
3630 if (max_branch_offset == 0)
3632 gold_assert(from != invalid_address);
3633 Address loc = off + this->stub_address();
3634 return loc - from + max_branch_offset < 2 * max_branch_offset;
3638 clear_stubs(bool all)
3640 this->plt_call_stubs_.clear();
3641 this->plt_size_ = 0;
3642 this->long_branch_stubs_.clear();
3643 this->branch_size_ = 0;
3646 this->last_plt_size_ = 0;
3647 this->last_branch_size_ = 0;
3652 set_address_and_size(const Output_section* os, Address off)
3654 Address start_off = off;
3655 off += this->orig_data_size_;
3656 Address my_size = this->plt_size_ + this->branch_size_;
3658 off = align_address(off, this->stub_align());
3659 // Include original section size and alignment padding in size
3660 my_size += off - start_off;
3661 this->reset_address_and_file_offset();
3662 this->set_current_data_size(my_size);
3663 this->set_address_and_file_offset(os->address() + start_off,
3664 os->offset() + start_off);
3669 stub_address() const
3671 return align_address(this->address() + this->orig_data_size_,
3672 this->stub_align());
3678 return align_address(this->offset() + this->orig_data_size_,
3679 this->stub_align());
3684 { return this->plt_size_; }
3689 Output_section* os = this->output_section();
3690 if (os->addralign() < this->stub_align())
3692 os->set_addralign(this->stub_align());
3693 // FIXME: get rid of the insane checkpointing.
3694 // We can't increase alignment of the input section to which
3695 // stubs are attached; The input section may be .init which
3696 // is pasted together with other .init sections to form a
3697 // function. Aligning might insert zero padding resulting in
3698 // sigill. However we do need to increase alignment of the
3699 // output section so that the align_address() on offset in
3700 // set_address_and_size() adds the same padding as the
3701 // align_address() on address in stub_address().
3702 // What's more, we need this alignment for the layout done in
3703 // relaxation_loop_body() so that the output section starts at
3704 // a suitably aligned address.
3705 os->checkpoint_set_addralign(this->stub_align());
3707 if (this->last_plt_size_ != this->plt_size_
3708 || this->last_branch_size_ != this->branch_size_)
3710 this->last_plt_size_ = this->plt_size_;
3711 this->last_branch_size_ = this->branch_size_;
3717 // Add .eh_frame info for this stub section. Unlike other linker
3718 // generated .eh_frame this is added late in the link, because we
3719 // only want the .eh_frame info if this particular stub section is
3722 add_eh_frame(Layout* layout)
3724 if (!this->eh_frame_added_)
3726 if (!parameters->options().ld_generated_unwind_info())
3729 // Since we add stub .eh_frame info late, it must be placed
3730 // after all other linker generated .eh_frame info so that
3731 // merge mapping need not be updated for input sections.
3732 // There is no provision to use a different CIE to that used
3734 if (!this->targ_->has_glink())
3737 layout->add_eh_frame_for_plt(this,
3738 Eh_cie<size>::eh_frame_cie,
3739 sizeof (Eh_cie<size>::eh_frame_cie),
3741 sizeof (default_fde));
3742 this->eh_frame_added_ = true;
3746 Target_powerpc<size, big_endian>*
3752 class Plt_stub_ent_hash;
3753 typedef Unordered_map<Plt_stub_ent, unsigned int,
3754 Plt_stub_ent_hash> Plt_stub_entries;
3756 // Alignment of stub section.
3762 unsigned int min_align = 32;
3763 unsigned int user_align = 1 << parameters->options().plt_align();
3764 return std::max(user_align, min_align);
3767 // Return the plt offset for the given call stub.
3769 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3771 const Symbol* gsym = p->first.sym_;
3774 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3775 && gsym->can_use_relative_reloc(false));
3776 return gsym->plt_offset();
3781 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3782 unsigned int local_sym_index = p->first.locsym_;
3783 return relobj->local_plt_offset(local_sym_index);
3787 // Size of a given plt call stub.
3789 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3795 Address plt_addr = this->plt_off(p, &is_iplt);
3797 plt_addr += this->targ_->iplt_section()->address();
3799 plt_addr += this->targ_->plt_section()->address();
3800 Address got_addr = this->targ_->got_section()->output_section()->address();
3801 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3802 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3803 got_addr += ppcobj->toc_base_offset();
3804 Address off = plt_addr - got_addr;
3805 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3806 if (this->targ_->abiversion() < 2)
3808 bool static_chain = parameters->options().plt_static_chain();
3809 bool thread_safe = this->targ_->plt_thread_safe();
3813 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3815 unsigned int align = 1 << parameters->options().plt_align();
3817 bytes = (bytes + align - 1) & -align;
3821 // Return long branch stub size.
3823 branch_stub_size(Address to)
3826 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3827 if (to - loc + (1 << 25) < 2 << 25)
3829 if (size == 64 || !parameters->options().output_is_position_independent())
3836 do_write(Output_file*);
3838 // Plt call stub keys.
3842 Plt_stub_ent(const Symbol* sym)
3843 : sym_(sym), object_(0), addend_(0), locsym_(0)
3846 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3847 unsigned int locsym_index)
3848 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3851 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3853 unsigned int r_type,
3855 : sym_(sym), object_(0), addend_(0), locsym_(0)
3858 this->addend_ = addend;
3859 else if (parameters->options().output_is_position_independent()
3860 && r_type == elfcpp::R_PPC_PLTREL24)
3862 this->addend_ = addend;
3863 if (this->addend_ >= 32768)
3864 this->object_ = object;
3868 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3869 unsigned int locsym_index,
3870 unsigned int r_type,
3872 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3875 this->addend_ = addend;
3876 else if (parameters->options().output_is_position_independent()
3877 && r_type == elfcpp::R_PPC_PLTREL24)
3878 this->addend_ = addend;
3881 bool operator==(const Plt_stub_ent& that) const
3883 return (this->sym_ == that.sym_
3884 && this->object_ == that.object_
3885 && this->addend_ == that.addend_
3886 && this->locsym_ == that.locsym_);
3890 const Sized_relobj_file<size, big_endian>* object_;
3891 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3892 unsigned int locsym_;
3895 class Plt_stub_ent_hash
3898 size_t operator()(const Plt_stub_ent& ent) const
3900 return (reinterpret_cast<uintptr_t>(ent.sym_)
3901 ^ reinterpret_cast<uintptr_t>(ent.object_)
3907 // Long branch stub keys.
3908 class Branch_stub_ent
3911 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3912 : dest_(to), toc_base_off_(0)
3915 toc_base_off_ = obj->toc_base_offset();
3918 bool operator==(const Branch_stub_ent& that) const
3920 return (this->dest_ == that.dest_
3922 || this->toc_base_off_ == that.toc_base_off_));
3926 unsigned int toc_base_off_;
3929 class Branch_stub_ent_hash
3932 size_t operator()(const Branch_stub_ent& ent) const
3933 { return ent.dest_ ^ ent.toc_base_off_; }
3936 // In a sane world this would be a global.
3937 Target_powerpc<size, big_endian>* targ_;
3938 // Map sym/object/addend to stub offset.
3939 Plt_stub_entries plt_call_stubs_;
3940 // Map destination address to stub offset.
3941 typedef Unordered_map<Branch_stub_ent, unsigned int,
3942 Branch_stub_ent_hash> Branch_stub_entries;
3943 Branch_stub_entries long_branch_stubs_;
3944 // size of input section
3945 section_size_type orig_data_size_;
3947 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3948 // Whether .eh_frame info has been created for this stub section.
3949 bool eh_frame_added_;
3952 // Add a plt call stub, if we do not already have one for this
3953 // sym/object/addend combo.
3955 template<int size, bool big_endian>
3957 Stub_table<size, big_endian>::add_plt_call_entry(
3959 const Sized_relobj_file<size, big_endian>* object,
3961 unsigned int r_type,
3964 Plt_stub_ent ent(object, gsym, r_type, addend);
3965 unsigned int off = this->plt_size_;
3966 std::pair<typename Plt_stub_entries::iterator, bool> p
3967 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3969 this->plt_size_ = off + this->plt_call_size(p.first);
3970 return this->can_reach_stub(from, off, r_type);
3973 template<int size, bool big_endian>
3975 Stub_table<size, big_endian>::add_plt_call_entry(
3977 const Sized_relobj_file<size, big_endian>* object,
3978 unsigned int locsym_index,
3979 unsigned int r_type,
3982 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3983 unsigned int off = this->plt_size_;
3984 std::pair<typename Plt_stub_entries::iterator, bool> p
3985 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3987 this->plt_size_ = off + this->plt_call_size(p.first);
3988 return this->can_reach_stub(from, off, r_type);
3991 // Find a plt call stub.
3993 template<int size, bool big_endian>
3994 typename Stub_table<size, big_endian>::Address
3995 Stub_table<size, big_endian>::find_plt_call_entry(
3996 const Sized_relobj_file<size, big_endian>* object,
3998 unsigned int r_type,
3999 Address addend) const
4001 Plt_stub_ent ent(object, gsym, r_type, addend);
4002 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4003 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4006 template<int size, bool big_endian>
4007 typename Stub_table<size, big_endian>::Address
4008 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4010 Plt_stub_ent ent(gsym);
4011 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4012 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4015 template<int size, bool big_endian>
4016 typename Stub_table<size, big_endian>::Address
4017 Stub_table<size, big_endian>::find_plt_call_entry(
4018 const Sized_relobj_file<size, big_endian>* object,
4019 unsigned int locsym_index,
4020 unsigned int r_type,
4021 Address addend) const
4023 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4024 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4025 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4028 template<int size, bool big_endian>
4029 typename Stub_table<size, big_endian>::Address
4030 Stub_table<size, big_endian>::find_plt_call_entry(
4031 const Sized_relobj_file<size, big_endian>* object,
4032 unsigned int locsym_index) const
4034 Plt_stub_ent ent(object, locsym_index);
4035 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4036 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4039 // Add a long branch stub if we don't already have one to given
4042 template<int size, bool big_endian>
4044 Stub_table<size, big_endian>::add_long_branch_entry(
4045 const Powerpc_relobj<size, big_endian>* object,
4046 unsigned int r_type,
4050 Branch_stub_ent ent(object, to);
4051 Address off = this->branch_size_;
4052 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4054 unsigned int stub_size = this->branch_stub_size(to);
4055 this->branch_size_ = off + stub_size;
4056 if (size == 64 && stub_size != 4)
4057 this->targ_->add_branch_lookup_table(to);
4059 return this->can_reach_stub(from, off, r_type);
4062 // Find long branch stub.
4064 template<int size, bool big_endian>
4065 typename Stub_table<size, big_endian>::Address
4066 Stub_table<size, big_endian>::find_long_branch_entry(
4067 const Powerpc_relobj<size, big_endian>* object,
4070 Branch_stub_ent ent(object, to);
4071 typename Branch_stub_entries::const_iterator p
4072 = this->long_branch_stubs_.find(ent);
4073 return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
4076 // A class to handle .glink.
4078 template<int size, bool big_endian>
4079 class Output_data_glink : public Output_section_data
4082 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4083 static const Address invalid_address = static_cast<Address>(0) - 1;
4084 static const int pltresolve_size = 16*4;
4086 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4087 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4088 end_branch_table_(), ge_size_(0)
4092 add_eh_frame(Layout* layout);
4095 add_global_entry(const Symbol*);
4098 find_global_entry(const Symbol*) const;
4101 global_entry_address() const
4103 gold_assert(this->is_data_size_valid());
4104 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4105 return this->address() + global_entry_off;
4109 // Write to a map file.
4111 do_print_to_mapfile(Mapfile* mapfile) const
4112 { mapfile->print_output_data(this, _("** glink")); }
4116 set_final_data_size();
4120 do_write(Output_file*);
4122 // Allows access to .got and .plt for do_write.
4123 Target_powerpc<size, big_endian>* targ_;
4125 // Map sym to stub offset.
4126 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4127 Global_entry_stub_entries global_entry_stubs_;
4129 unsigned int end_branch_table_, ge_size_;
4132 template<int size, bool big_endian>
4134 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4136 if (!parameters->options().ld_generated_unwind_info())
4141 if (this->targ_->abiversion() < 2)
4142 layout->add_eh_frame_for_plt(this,
4143 Eh_cie<64>::eh_frame_cie,
4144 sizeof (Eh_cie<64>::eh_frame_cie),
4145 glink_eh_frame_fde_64v1,
4146 sizeof (glink_eh_frame_fde_64v1));
4148 layout->add_eh_frame_for_plt(this,
4149 Eh_cie<64>::eh_frame_cie,
4150 sizeof (Eh_cie<64>::eh_frame_cie),
4151 glink_eh_frame_fde_64v2,
4152 sizeof (glink_eh_frame_fde_64v2));
4156 // 32-bit .glink can use the default since the CIE return
4157 // address reg, LR, is valid.
4158 layout->add_eh_frame_for_plt(this,
4159 Eh_cie<32>::eh_frame_cie,
4160 sizeof (Eh_cie<32>::eh_frame_cie),
4162 sizeof (default_fde));
4163 // Except where LR is used in a PIC __glink_PLTresolve.
4164 if (parameters->options().output_is_position_independent())
4165 layout->add_eh_frame_for_plt(this,
4166 Eh_cie<32>::eh_frame_cie,
4167 sizeof (Eh_cie<32>::eh_frame_cie),
4168 glink_eh_frame_fde_32,
4169 sizeof (glink_eh_frame_fde_32));
4173 template<int size, bool big_endian>
4175 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4177 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4178 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4180 this->ge_size_ += 16;
4183 template<int size, bool big_endian>
4184 typename Output_data_glink<size, big_endian>::Address
4185 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4187 typename Global_entry_stub_entries::const_iterator p
4188 = this->global_entry_stubs_.find(gsym);
4189 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4192 template<int size, bool big_endian>
4194 Output_data_glink<size, big_endian>::set_final_data_size()
4196 unsigned int count = this->targ_->plt_entry_count();
4197 section_size_type total = 0;
4203 // space for branch table
4204 total += 4 * (count - 1);
4206 total += -total & 15;
4207 total += this->pltresolve_size;
4211 total += this->pltresolve_size;
4213 // space for branch table
4215 if (this->targ_->abiversion() < 2)
4219 total += 4 * (count - 0x8000);
4223 this->end_branch_table_ = total;
4224 total = (total + 15) & -16;
4225 total += this->ge_size_;
4227 this->set_data_size(total);
4230 // Write out plt and long branch stub code.
4232 template<int size, bool big_endian>
4234 Stub_table<size, big_endian>::do_write(Output_file* of)
4236 if (this->plt_call_stubs_.empty()
4237 && this->long_branch_stubs_.empty())
4240 const section_size_type start_off = this->offset();
4241 const section_size_type off = this->stub_offset();
4242 const section_size_type oview_size =
4243 convert_to_section_size_type(this->data_size() - (off - start_off));
4244 unsigned char* const oview = of->get_output_view(off, oview_size);
4249 const Output_data_got_powerpc<size, big_endian>* got
4250 = this->targ_->got_section();
4251 Address got_os_addr = got->output_section()->address();
4253 if (!this->plt_call_stubs_.empty())
4255 // The base address of the .plt section.
4256 Address plt_base = this->targ_->plt_section()->address();
4257 Address iplt_base = invalid_address;
4259 // Write out plt call stubs.
4260 typename Plt_stub_entries::const_iterator cs;
4261 for (cs = this->plt_call_stubs_.begin();
4262 cs != this->plt_call_stubs_.end();
4266 Address pltoff = this->plt_off(cs, &is_iplt);
4267 Address plt_addr = pltoff;
4270 if (iplt_base == invalid_address)
4271 iplt_base = this->targ_->iplt_section()->address();
4272 plt_addr += iplt_base;
4275 plt_addr += plt_base;
4276 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4277 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4278 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4279 Address off = plt_addr - got_addr;
4281 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4282 gold_error(_("%s: linkage table error against `%s'"),
4283 cs->first.object_->name().c_str(),
4284 cs->first.sym_->demangled_name().c_str());
4286 bool plt_load_toc = this->targ_->abiversion() < 2;
4288 = plt_load_toc && parameters->options().plt_static_chain();
4290 = plt_load_toc && this->targ_->plt_thread_safe();
4291 bool use_fake_dep = false;
4292 Address cmp_branch_off = 0;
4295 unsigned int pltindex
4296 = ((pltoff - this->targ_->first_plt_entry_offset())
4297 / this->targ_->plt_entry_size());
4299 = (this->targ_->glink_section()->pltresolve_size
4301 if (pltindex > 32768)
4302 glinkoff += (pltindex - 32768) * 4;
4304 = this->targ_->glink_section()->address() + glinkoff;
4306 = (this->stub_address() + cs->second + 24
4307 + 4 * (ha(off) != 0)
4308 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4309 + 4 * static_chain);
4310 cmp_branch_off = to - from;
4311 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4314 p = oview + cs->second;
4317 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4321 write_insn<big_endian>(p, addis_11_2 + ha(off));
4323 write_insn<big_endian>(p, ld_12_11 + l(off));
4328 write_insn<big_endian>(p, addis_12_2 + ha(off));
4330 write_insn<big_endian>(p, ld_12_12 + l(off));
4334 && ha(off + 8 + 8 * static_chain) != ha(off))
4336 write_insn<big_endian>(p, addi_11_11 + l(off));
4340 write_insn<big_endian>(p, mtctr_12);
4346 write_insn<big_endian>(p, xor_2_12_12);
4348 write_insn<big_endian>(p, add_11_11_2);
4351 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4355 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4362 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4364 write_insn<big_endian>(p, ld_12_2 + l(off));
4367 && ha(off + 8 + 8 * static_chain) != ha(off))
4369 write_insn<big_endian>(p, addi_2_2 + l(off));
4373 write_insn<big_endian>(p, mtctr_12);
4379 write_insn<big_endian>(p, xor_11_12_12);
4381 write_insn<big_endian>(p, add_2_2_11);
4386 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4389 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4393 if (thread_safe && !use_fake_dep)
4395 write_insn<big_endian>(p, cmpldi_2_0);
4397 write_insn<big_endian>(p, bnectr_p4);
4399 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4402 write_insn<big_endian>(p, bctr);
4406 // Write out long branch stubs.
4407 typename Branch_stub_entries::const_iterator bs;
4408 for (bs = this->long_branch_stubs_.begin();
4409 bs != this->long_branch_stubs_.end();
4412 p = oview + this->plt_size_ + bs->second;
4413 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4414 Address delta = bs->first.dest_ - loc;
4415 if (delta + (1 << 25) < 2 << 25)
4416 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4420 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4421 gold_assert(brlt_addr != invalid_address);
4422 brlt_addr += this->targ_->brlt_section()->address();
4423 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4424 Address brltoff = brlt_addr - got_addr;
4425 if (ha(brltoff) == 0)
4427 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4431 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4432 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4434 write_insn<big_endian>(p, mtctr_12), p += 4;
4435 write_insn<big_endian>(p, bctr);
4441 if (!this->plt_call_stubs_.empty())
4443 // The base address of the .plt section.
4444 Address plt_base = this->targ_->plt_section()->address();
4445 Address iplt_base = invalid_address;
4446 // The address of _GLOBAL_OFFSET_TABLE_.
4447 Address g_o_t = invalid_address;
4449 // Write out plt call stubs.
4450 typename Plt_stub_entries::const_iterator cs;
4451 for (cs = this->plt_call_stubs_.begin();
4452 cs != this->plt_call_stubs_.end();
4456 Address plt_addr = this->plt_off(cs, &is_iplt);
4459 if (iplt_base == invalid_address)
4460 iplt_base = this->targ_->iplt_section()->address();
4461 plt_addr += iplt_base;
4464 plt_addr += plt_base;
4466 p = oview + cs->second;
4467 if (parameters->options().output_is_position_independent())
4470 const Powerpc_relobj<size, big_endian>* ppcobj
4471 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4472 (cs->first.object_));
4473 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4475 unsigned int got2 = ppcobj->got2_shndx();
4476 got_addr = ppcobj->get_output_section_offset(got2);
4477 gold_assert(got_addr != invalid_address);
4478 got_addr += (ppcobj->output_section(got2)->address()
4479 + cs->first.addend_);
4483 if (g_o_t == invalid_address)
4485 const Output_data_got_powerpc<size, big_endian>* got
4486 = this->targ_->got_section();
4487 g_o_t = got->address() + got->g_o_t();
4492 Address off = plt_addr - got_addr;
4495 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4496 write_insn<big_endian>(p + 4, mtctr_11);
4497 write_insn<big_endian>(p + 8, bctr);
4501 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4502 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4503 write_insn<big_endian>(p + 8, mtctr_11);
4504 write_insn<big_endian>(p + 12, bctr);
4509 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4510 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4511 write_insn<big_endian>(p + 8, mtctr_11);
4512 write_insn<big_endian>(p + 12, bctr);
4517 // Write out long branch stubs.
4518 typename Branch_stub_entries::const_iterator bs;
4519 for (bs = this->long_branch_stubs_.begin();
4520 bs != this->long_branch_stubs_.end();
4523 p = oview + this->plt_size_ + bs->second;
4524 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4525 Address delta = bs->first.dest_ - loc;
4526 if (delta + (1 << 25) < 2 << 25)
4527 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4528 else if (!parameters->options().output_is_position_independent())
4530 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4531 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4532 write_insn<big_endian>(p + 8, mtctr_12);
4533 write_insn<big_endian>(p + 12, bctr);
4538 write_insn<big_endian>(p + 0, mflr_0);
4539 write_insn<big_endian>(p + 4, bcl_20_31);
4540 write_insn<big_endian>(p + 8, mflr_12);
4541 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4542 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4543 write_insn<big_endian>(p + 20, mtlr_0);
4544 write_insn<big_endian>(p + 24, mtctr_12);
4545 write_insn<big_endian>(p + 28, bctr);
4551 // Write out .glink.
4553 template<int size, bool big_endian>
4555 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4557 const section_size_type off = this->offset();
4558 const section_size_type oview_size =
4559 convert_to_section_size_type(this->data_size());
4560 unsigned char* const oview = of->get_output_view(off, oview_size);
4563 // The base address of the .plt section.
4564 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4565 Address plt_base = this->targ_->plt_section()->address();
4569 if (this->end_branch_table_ != 0)
4571 // Write pltresolve stub.
4573 Address after_bcl = this->address() + 16;
4574 Address pltoff = plt_base - after_bcl;
4576 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4578 if (this->targ_->abiversion() < 2)
4580 write_insn<big_endian>(p, mflr_12), p += 4;
4581 write_insn<big_endian>(p, bcl_20_31), p += 4;
4582 write_insn<big_endian>(p, mflr_11), p += 4;
4583 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4584 write_insn<big_endian>(p, mtlr_12), p += 4;
4585 write_insn<big_endian>(p, add_11_2_11), p += 4;
4586 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4587 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4588 write_insn<big_endian>(p, mtctr_12), p += 4;
4589 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4593 write_insn<big_endian>(p, mflr_0), p += 4;
4594 write_insn<big_endian>(p, bcl_20_31), p += 4;
4595 write_insn<big_endian>(p, mflr_11), p += 4;
4596 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4597 write_insn<big_endian>(p, mtlr_0), p += 4;
4598 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4599 write_insn<big_endian>(p, add_11_2_11), p += 4;
4600 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4601 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4602 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4603 write_insn<big_endian>(p, mtctr_12), p += 4;
4604 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4606 write_insn<big_endian>(p, bctr), p += 4;
4607 while (p < oview + this->pltresolve_size)
4608 write_insn<big_endian>(p, nop), p += 4;
4610 // Write lazy link call stubs.
4612 while (p < oview + this->end_branch_table_)
4614 if (this->targ_->abiversion() < 2)
4618 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4622 write_insn<big_endian>(p, lis_0_0 + hi(indx)), p += 4;
4623 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4626 uint32_t branch_off = 8 - (p - oview);
4627 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4632 Address plt_base = this->targ_->plt_section()->address();
4633 Address iplt_base = invalid_address;
4634 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4635 Address global_entry_base = this->address() + global_entry_off;
4636 typename Global_entry_stub_entries::const_iterator ge;
4637 for (ge = this->global_entry_stubs_.begin();
4638 ge != this->global_entry_stubs_.end();
4641 p = oview + global_entry_off + ge->second;
4642 Address plt_addr = ge->first->plt_offset();
4643 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4644 && ge->first->can_use_relative_reloc(false))
4646 if (iplt_base == invalid_address)
4647 iplt_base = this->targ_->iplt_section()->address();
4648 plt_addr += iplt_base;
4651 plt_addr += plt_base;
4652 Address my_addr = global_entry_base + ge->second;
4653 Address off = plt_addr - my_addr;
4655 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4656 gold_error(_("%s: linkage table error against `%s'"),
4657 ge->first->object()->name().c_str(),
4658 ge->first->demangled_name().c_str());
4660 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4661 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4662 write_insn<big_endian>(p, mtctr_12), p += 4;
4663 write_insn<big_endian>(p, bctr);
4668 const Output_data_got_powerpc<size, big_endian>* got
4669 = this->targ_->got_section();
4670 // The address of _GLOBAL_OFFSET_TABLE_.
4671 Address g_o_t = got->address() + got->g_o_t();
4673 // Write out pltresolve branch table.
4675 unsigned int the_end = oview_size - this->pltresolve_size;
4676 unsigned char* end_p = oview + the_end;
4677 while (p < end_p - 8 * 4)
4678 write_insn<big_endian>(p, b + end_p - p), p += 4;
4680 write_insn<big_endian>(p, nop), p += 4;
4682 // Write out pltresolve call stub.
4683 if (parameters->options().output_is_position_independent())
4685 Address res0_off = 0;
4686 Address after_bcl_off = the_end + 12;
4687 Address bcl_res0 = after_bcl_off - res0_off;
4689 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4690 write_insn<big_endian>(p + 4, mflr_0);
4691 write_insn<big_endian>(p + 8, bcl_20_31);
4692 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4693 write_insn<big_endian>(p + 16, mflr_12);
4694 write_insn<big_endian>(p + 20, mtlr_0);
4695 write_insn<big_endian>(p + 24, sub_11_11_12);
4697 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4699 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4700 if (ha(got_bcl) == ha(got_bcl + 4))
4702 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4703 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4707 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4708 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4710 write_insn<big_endian>(p + 40, mtctr_0);
4711 write_insn<big_endian>(p + 44, add_0_11_11);
4712 write_insn<big_endian>(p + 48, add_11_0_11);
4713 write_insn<big_endian>(p + 52, bctr);
4714 write_insn<big_endian>(p + 56, nop);
4715 write_insn<big_endian>(p + 60, nop);
4719 Address res0 = this->address();
4721 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4722 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4723 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4724 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4726 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4727 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4728 write_insn<big_endian>(p + 16, mtctr_0);
4729 write_insn<big_endian>(p + 20, add_0_11_11);
4730 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4731 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4733 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4734 write_insn<big_endian>(p + 28, add_11_0_11);
4735 write_insn<big_endian>(p + 32, bctr);
4736 write_insn<big_endian>(p + 36, nop);
4737 write_insn<big_endian>(p + 40, nop);
4738 write_insn<big_endian>(p + 44, nop);
4739 write_insn<big_endian>(p + 48, nop);
4740 write_insn<big_endian>(p + 52, nop);
4741 write_insn<big_endian>(p + 56, nop);
4742 write_insn<big_endian>(p + 60, nop);
4747 of->write_output_view(off, oview_size, oview);
4751 // A class to handle linker generated save/restore functions.
4753 template<int size, bool big_endian>
4754 class Output_data_save_res : public Output_section_data_build
4757 Output_data_save_res(Symbol_table* symtab);
4760 // Write to a map file.
4762 do_print_to_mapfile(Mapfile* mapfile) const
4763 { mapfile->print_output_data(this, _("** save/restore")); }
4766 do_write(Output_file*);
4769 // The maximum size of save/restore contents.
4770 static const unsigned int savres_max = 218*4;
4773 savres_define(Symbol_table* symtab,
4775 unsigned int lo, unsigned int hi,
4776 unsigned char* write_ent(unsigned char*, int),
4777 unsigned char* write_tail(unsigned char*, int));
4779 unsigned char *contents_;
4782 template<bool big_endian>
4783 static unsigned char*
4784 savegpr0(unsigned char* p, int r)
4786 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4787 write_insn<big_endian>(p, insn);
4791 template<bool big_endian>
4792 static unsigned char*
4793 savegpr0_tail(unsigned char* p, int r)
4795 p = savegpr0<big_endian>(p, r);
4796 uint32_t insn = std_0_1 + 16;
4797 write_insn<big_endian>(p, insn);
4799 write_insn<big_endian>(p, blr);
4803 template<bool big_endian>
4804 static unsigned char*
4805 restgpr0(unsigned char* p, int r)
4807 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4808 write_insn<big_endian>(p, insn);
4812 template<bool big_endian>
4813 static unsigned char*
4814 restgpr0_tail(unsigned char* p, int r)
4816 uint32_t insn = ld_0_1 + 16;
4817 write_insn<big_endian>(p, insn);
4819 p = restgpr0<big_endian>(p, r);
4820 write_insn<big_endian>(p, mtlr_0);
4824 p = restgpr0<big_endian>(p, 30);
4825 p = restgpr0<big_endian>(p, 31);
4827 write_insn<big_endian>(p, blr);
4831 template<bool big_endian>
4832 static unsigned char*
4833 savegpr1(unsigned char* p, int r)
4835 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4836 write_insn<big_endian>(p, insn);
4840 template<bool big_endian>
4841 static unsigned char*
4842 savegpr1_tail(unsigned char* p, int r)
4844 p = savegpr1<big_endian>(p, r);
4845 write_insn<big_endian>(p, blr);
4849 template<bool big_endian>
4850 static unsigned char*
4851 restgpr1(unsigned char* p, int r)
4853 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4854 write_insn<big_endian>(p, insn);
4858 template<bool big_endian>
4859 static unsigned char*
4860 restgpr1_tail(unsigned char* p, int r)
4862 p = restgpr1<big_endian>(p, r);
4863 write_insn<big_endian>(p, blr);
4867 template<bool big_endian>
4868 static unsigned char*
4869 savefpr(unsigned char* p, int r)
4871 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4872 write_insn<big_endian>(p, insn);
4876 template<bool big_endian>
4877 static unsigned char*
4878 savefpr0_tail(unsigned char* p, int r)
4880 p = savefpr<big_endian>(p, r);
4881 write_insn<big_endian>(p, std_0_1 + 16);
4883 write_insn<big_endian>(p, blr);
4887 template<bool big_endian>
4888 static unsigned char*
4889 restfpr(unsigned char* p, int r)
4891 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4892 write_insn<big_endian>(p, insn);
4896 template<bool big_endian>
4897 static unsigned char*
4898 restfpr0_tail(unsigned char* p, int r)
4900 write_insn<big_endian>(p, ld_0_1 + 16);
4902 p = restfpr<big_endian>(p, r);
4903 write_insn<big_endian>(p, mtlr_0);
4907 p = restfpr<big_endian>(p, 30);
4908 p = restfpr<big_endian>(p, 31);
4910 write_insn<big_endian>(p, blr);
4914 template<bool big_endian>
4915 static unsigned char*
4916 savefpr1_tail(unsigned char* p, int r)
4918 p = savefpr<big_endian>(p, r);
4919 write_insn<big_endian>(p, blr);
4923 template<bool big_endian>
4924 static unsigned char*
4925 restfpr1_tail(unsigned char* p, int r)
4927 p = restfpr<big_endian>(p, r);
4928 write_insn<big_endian>(p, blr);
4932 template<bool big_endian>
4933 static unsigned char*
4934 savevr(unsigned char* p, int r)
4936 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4937 write_insn<big_endian>(p, insn);
4939 insn = stvx_0_12_0 + (r << 21);
4940 write_insn<big_endian>(p, insn);
4944 template<bool big_endian>
4945 static unsigned char*
4946 savevr_tail(unsigned char* p, int r)
4948 p = savevr<big_endian>(p, r);
4949 write_insn<big_endian>(p, blr);
4953 template<bool big_endian>
4954 static unsigned char*
4955 restvr(unsigned char* p, int r)
4957 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4958 write_insn<big_endian>(p, insn);
4960 insn = lvx_0_12_0 + (r << 21);
4961 write_insn<big_endian>(p, insn);
4965 template<bool big_endian>
4966 static unsigned char*
4967 restvr_tail(unsigned char* p, int r)
4969 p = restvr<big_endian>(p, r);
4970 write_insn<big_endian>(p, blr);
4975 template<int size, bool big_endian>
4976 Output_data_save_res<size, big_endian>::Output_data_save_res(
4977 Symbol_table* symtab)
4978 : Output_section_data_build(4),
4981 this->savres_define(symtab,
4982 "_savegpr0_", 14, 31,
4983 savegpr0<big_endian>, savegpr0_tail<big_endian>);
4984 this->savres_define(symtab,
4985 "_restgpr0_", 14, 29,
4986 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4987 this->savres_define(symtab,
4988 "_restgpr0_", 30, 31,
4989 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4990 this->savres_define(symtab,
4991 "_savegpr1_", 14, 31,
4992 savegpr1<big_endian>, savegpr1_tail<big_endian>);
4993 this->savres_define(symtab,
4994 "_restgpr1_", 14, 31,
4995 restgpr1<big_endian>, restgpr1_tail<big_endian>);
4996 this->savres_define(symtab,
4997 "_savefpr_", 14, 31,
4998 savefpr<big_endian>, savefpr0_tail<big_endian>);
4999 this->savres_define(symtab,
5000 "_restfpr_", 14, 29,
5001 restfpr<big_endian>, restfpr0_tail<big_endian>);
5002 this->savres_define(symtab,
5003 "_restfpr_", 30, 31,
5004 restfpr<big_endian>, restfpr0_tail<big_endian>);
5005 this->savres_define(symtab,
5007 savefpr<big_endian>, savefpr1_tail<big_endian>);
5008 this->savres_define(symtab,
5010 restfpr<big_endian>, restfpr1_tail<big_endian>);
5011 this->savres_define(symtab,
5013 savevr<big_endian>, savevr_tail<big_endian>);
5014 this->savres_define(symtab,
5016 restvr<big_endian>, restvr_tail<big_endian>);
5019 template<int size, bool big_endian>
5021 Output_data_save_res<size, big_endian>::savres_define(
5022 Symbol_table* symtab,
5024 unsigned int lo, unsigned int hi,
5025 unsigned char* write_ent(unsigned char*, int),
5026 unsigned char* write_tail(unsigned char*, int))
5028 size_t len = strlen(name);
5029 bool writing = false;
5032 memcpy(sym, name, len);
5035 for (unsigned int i = lo; i <= hi; i++)
5037 sym[len + 0] = i / 10 + '0';
5038 sym[len + 1] = i % 10 + '0';
5039 Symbol* gsym = symtab->lookup(sym);
5040 bool refd = gsym != NULL && gsym->is_undefined();
5041 writing = writing || refd;
5044 if (this->contents_ == NULL)
5045 this->contents_ = new unsigned char[this->savres_max];
5047 section_size_type value = this->current_data_size();
5048 unsigned char* p = this->contents_ + value;
5050 p = write_ent(p, i);
5052 p = write_tail(p, i);
5053 section_size_type cur_size = p - this->contents_;
5054 this->set_current_data_size(cur_size);
5056 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5057 this, value, cur_size - value,
5058 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5059 elfcpp::STV_HIDDEN, 0, false, false);
5064 // Write out save/restore.
5066 template<int size, bool big_endian>
5068 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5070 const section_size_type off = this->offset();
5071 const section_size_type oview_size =
5072 convert_to_section_size_type(this->data_size());
5073 unsigned char* const oview = of->get_output_view(off, oview_size);
5074 memcpy(oview, this->contents_, oview_size);
5075 of->write_output_view(off, oview_size, oview);
5079 // Create the glink section.
5081 template<int size, bool big_endian>
5083 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5085 if (this->glink_ == NULL)
5087 this->glink_ = new Output_data_glink<size, big_endian>(this);
5088 this->glink_->add_eh_frame(layout);
5089 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5090 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5091 this->glink_, ORDER_TEXT, false);
5095 // Create a PLT entry for a global symbol.
5097 template<int size, bool big_endian>
5099 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5103 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5104 && gsym->can_use_relative_reloc(false))
5106 if (this->iplt_ == NULL)
5107 this->make_iplt_section(symtab, layout);
5108 this->iplt_->add_ifunc_entry(gsym);
5112 if (this->plt_ == NULL)
5113 this->make_plt_section(symtab, layout);
5114 this->plt_->add_entry(gsym);
5118 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5120 template<int size, bool big_endian>
5122 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5123 Symbol_table* symtab,
5125 Sized_relobj_file<size, big_endian>* relobj,
5128 if (this->iplt_ == NULL)
5129 this->make_iplt_section(symtab, layout);
5130 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5133 // Return the number of entries in the PLT.
5135 template<int size, bool big_endian>
5137 Target_powerpc<size, big_endian>::plt_entry_count() const
5139 if (this->plt_ == NULL)
5141 return this->plt_->entry_count();
5144 // Create a GOT entry for local dynamic __tls_get_addr calls.
5146 template<int size, bool big_endian>
5148 Target_powerpc<size, big_endian>::tlsld_got_offset(
5149 Symbol_table* symtab,
5151 Sized_relobj_file<size, big_endian>* object)
5153 if (this->tlsld_got_offset_ == -1U)
5155 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5156 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5157 Output_data_got_powerpc<size, big_endian>* got
5158 = this->got_section(symtab, layout);
5159 unsigned int got_offset = got->add_constant_pair(0, 0);
5160 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5162 this->tlsld_got_offset_ = got_offset;
5164 return this->tlsld_got_offset_;
5167 // Get the Reference_flags for a particular relocation.
5169 template<int size, bool big_endian>
5171 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5172 unsigned int r_type,
5173 const Target_powerpc* target)
5179 case elfcpp::R_POWERPC_NONE:
5180 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5181 case elfcpp::R_POWERPC_GNU_VTENTRY:
5182 case elfcpp::R_PPC64_TOC:
5183 // No symbol reference.
5186 case elfcpp::R_PPC64_ADDR64:
5187 case elfcpp::R_PPC64_UADDR64:
5188 case elfcpp::R_POWERPC_ADDR32:
5189 case elfcpp::R_POWERPC_UADDR32:
5190 case elfcpp::R_POWERPC_ADDR16:
5191 case elfcpp::R_POWERPC_UADDR16:
5192 case elfcpp::R_POWERPC_ADDR16_LO:
5193 case elfcpp::R_POWERPC_ADDR16_HI:
5194 case elfcpp::R_POWERPC_ADDR16_HA:
5195 ref = Symbol::ABSOLUTE_REF;
5198 case elfcpp::R_POWERPC_ADDR24:
5199 case elfcpp::R_POWERPC_ADDR14:
5200 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5201 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5202 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5205 case elfcpp::R_PPC64_REL64:
5206 case elfcpp::R_POWERPC_REL32:
5207 case elfcpp::R_PPC_LOCAL24PC:
5208 case elfcpp::R_POWERPC_REL16:
5209 case elfcpp::R_POWERPC_REL16_LO:
5210 case elfcpp::R_POWERPC_REL16_HI:
5211 case elfcpp::R_POWERPC_REL16_HA:
5212 ref = Symbol::RELATIVE_REF;
5215 case elfcpp::R_POWERPC_REL24:
5216 case elfcpp::R_PPC_PLTREL24:
5217 case elfcpp::R_POWERPC_REL14:
5218 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5219 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5220 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5223 case elfcpp::R_POWERPC_GOT16:
5224 case elfcpp::R_POWERPC_GOT16_LO:
5225 case elfcpp::R_POWERPC_GOT16_HI:
5226 case elfcpp::R_POWERPC_GOT16_HA:
5227 case elfcpp::R_PPC64_GOT16_DS:
5228 case elfcpp::R_PPC64_GOT16_LO_DS:
5229 case elfcpp::R_PPC64_TOC16:
5230 case elfcpp::R_PPC64_TOC16_LO:
5231 case elfcpp::R_PPC64_TOC16_HI:
5232 case elfcpp::R_PPC64_TOC16_HA:
5233 case elfcpp::R_PPC64_TOC16_DS:
5234 case elfcpp::R_PPC64_TOC16_LO_DS:
5236 ref = Symbol::ABSOLUTE_REF;
5239 case elfcpp::R_POWERPC_GOT_TPREL16:
5240 case elfcpp::R_POWERPC_TLS:
5241 ref = Symbol::TLS_REF;
5244 case elfcpp::R_POWERPC_COPY:
5245 case elfcpp::R_POWERPC_GLOB_DAT:
5246 case elfcpp::R_POWERPC_JMP_SLOT:
5247 case elfcpp::R_POWERPC_RELATIVE:
5248 case elfcpp::R_POWERPC_DTPMOD:
5250 // Not expected. We will give an error later.
5254 if (size == 64 && target->abiversion() < 2)
5255 ref |= Symbol::FUNC_DESC_ABI;
5259 // Report an unsupported relocation against a local symbol.
5261 template<int size, bool big_endian>
5263 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5264 Sized_relobj_file<size, big_endian>* object,
5265 unsigned int r_type)
5267 gold_error(_("%s: unsupported reloc %u against local symbol"),
5268 object->name().c_str(), r_type);
5271 // We are about to emit a dynamic relocation of type R_TYPE. If the
5272 // dynamic linker does not support it, issue an error.
5274 template<int size, bool big_endian>
5276 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5277 unsigned int r_type)
5279 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5281 // These are the relocation types supported by glibc for both 32-bit
5282 // and 64-bit powerpc.
5285 case elfcpp::R_POWERPC_NONE:
5286 case elfcpp::R_POWERPC_RELATIVE:
5287 case elfcpp::R_POWERPC_GLOB_DAT:
5288 case elfcpp::R_POWERPC_DTPMOD:
5289 case elfcpp::R_POWERPC_DTPREL:
5290 case elfcpp::R_POWERPC_TPREL:
5291 case elfcpp::R_POWERPC_JMP_SLOT:
5292 case elfcpp::R_POWERPC_COPY:
5293 case elfcpp::R_POWERPC_IRELATIVE:
5294 case elfcpp::R_POWERPC_ADDR32:
5295 case elfcpp::R_POWERPC_UADDR32:
5296 case elfcpp::R_POWERPC_ADDR24:
5297 case elfcpp::R_POWERPC_ADDR16:
5298 case elfcpp::R_POWERPC_UADDR16:
5299 case elfcpp::R_POWERPC_ADDR16_LO:
5300 case elfcpp::R_POWERPC_ADDR16_HI:
5301 case elfcpp::R_POWERPC_ADDR16_HA:
5302 case elfcpp::R_POWERPC_ADDR14:
5303 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5304 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5305 case elfcpp::R_POWERPC_REL32:
5306 case elfcpp::R_POWERPC_REL24:
5307 case elfcpp::R_POWERPC_TPREL16:
5308 case elfcpp::R_POWERPC_TPREL16_LO:
5309 case elfcpp::R_POWERPC_TPREL16_HI:
5310 case elfcpp::R_POWERPC_TPREL16_HA:
5321 // These are the relocation types supported only on 64-bit.
5322 case elfcpp::R_PPC64_ADDR64:
5323 case elfcpp::R_PPC64_UADDR64:
5324 case elfcpp::R_PPC64_JMP_IREL:
5325 case elfcpp::R_PPC64_ADDR16_DS:
5326 case elfcpp::R_PPC64_ADDR16_LO_DS:
5327 case elfcpp::R_PPC64_ADDR16_HIGH:
5328 case elfcpp::R_PPC64_ADDR16_HIGHA:
5329 case elfcpp::R_PPC64_ADDR16_HIGHER:
5330 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5331 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5332 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5333 case elfcpp::R_PPC64_REL64:
5334 case elfcpp::R_POWERPC_ADDR30:
5335 case elfcpp::R_PPC64_TPREL16_DS:
5336 case elfcpp::R_PPC64_TPREL16_LO_DS:
5337 case elfcpp::R_PPC64_TPREL16_HIGH:
5338 case elfcpp::R_PPC64_TPREL16_HIGHA:
5339 case elfcpp::R_PPC64_TPREL16_HIGHER:
5340 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5341 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5342 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5353 // These are the relocation types supported only on 32-bit.
5354 // ??? glibc ld.so doesn't need to support these.
5355 case elfcpp::R_POWERPC_DTPREL16:
5356 case elfcpp::R_POWERPC_DTPREL16_LO:
5357 case elfcpp::R_POWERPC_DTPREL16_HI:
5358 case elfcpp::R_POWERPC_DTPREL16_HA:
5366 // This prevents us from issuing more than one error per reloc
5367 // section. But we can still wind up issuing more than one
5368 // error per object file.
5369 if (this->issued_non_pic_error_)
5371 gold_assert(parameters->options().output_is_position_independent());
5372 object->error(_("requires unsupported dynamic reloc; "
5373 "recompile with -fPIC"));
5374 this->issued_non_pic_error_ = true;
5378 // Return whether we need to make a PLT entry for a relocation of the
5379 // given type against a STT_GNU_IFUNC symbol.
5381 template<int size, bool big_endian>
5383 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5384 Target_powerpc<size, big_endian>* target,
5385 Sized_relobj_file<size, big_endian>* object,
5386 unsigned int r_type,
5389 // In non-pic code any reference will resolve to the plt call stub
5390 // for the ifunc symbol.
5391 if ((size == 32 || target->abiversion() >= 2)
5392 && !parameters->options().output_is_position_independent())
5397 // Word size refs from data sections are OK, but don't need a PLT entry.
5398 case elfcpp::R_POWERPC_ADDR32:
5399 case elfcpp::R_POWERPC_UADDR32:
5404 case elfcpp::R_PPC64_ADDR64:
5405 case elfcpp::R_PPC64_UADDR64:
5410 // GOT refs are good, but also don't need a PLT entry.
5411 case elfcpp::R_POWERPC_GOT16:
5412 case elfcpp::R_POWERPC_GOT16_LO:
5413 case elfcpp::R_POWERPC_GOT16_HI:
5414 case elfcpp::R_POWERPC_GOT16_HA:
5415 case elfcpp::R_PPC64_GOT16_DS:
5416 case elfcpp::R_PPC64_GOT16_LO_DS:
5419 // Function calls are good, and these do need a PLT entry.
5420 case elfcpp::R_POWERPC_ADDR24:
5421 case elfcpp::R_POWERPC_ADDR14:
5422 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5423 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5424 case elfcpp::R_POWERPC_REL24:
5425 case elfcpp::R_PPC_PLTREL24:
5426 case elfcpp::R_POWERPC_REL14:
5427 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5428 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5435 // Anything else is a problem.
5436 // If we are building a static executable, the libc startup function
5437 // responsible for applying indirect function relocations is going
5438 // to complain about the reloc type.
5439 // If we are building a dynamic executable, we will have a text
5440 // relocation. The dynamic loader will set the text segment
5441 // writable and non-executable to apply text relocations. So we'll
5442 // segfault when trying to run the indirection function to resolve
5445 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5446 object->name().c_str(), r_type);
5450 // Scan a relocation for a local symbol.
5452 template<int size, bool big_endian>
5454 Target_powerpc<size, big_endian>::Scan::local(
5455 Symbol_table* symtab,
5457 Target_powerpc<size, big_endian>* target,
5458 Sized_relobj_file<size, big_endian>* object,
5459 unsigned int data_shndx,
5460 Output_section* output_section,
5461 const elfcpp::Rela<size, big_endian>& reloc,
5462 unsigned int r_type,
5463 const elfcpp::Sym<size, big_endian>& lsym,
5466 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5468 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5469 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5471 this->expect_tls_get_addr_call();
5472 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5473 if (tls_type != tls::TLSOPT_NONE)
5474 this->skip_next_tls_get_addr_call();
5476 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5477 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5479 this->expect_tls_get_addr_call();
5480 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5481 if (tls_type != tls::TLSOPT_NONE)
5482 this->skip_next_tls_get_addr_call();
5485 Powerpc_relobj<size, big_endian>* ppc_object
5486 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5491 && data_shndx == ppc_object->opd_shndx()
5492 && r_type == elfcpp::R_PPC64_ADDR64)
5493 ppc_object->set_opd_discard(reloc.get_r_offset());
5497 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5498 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5499 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5501 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5502 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5503 r_type, r_sym, reloc.get_r_addend());
5504 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5509 case elfcpp::R_POWERPC_NONE:
5510 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5511 case elfcpp::R_POWERPC_GNU_VTENTRY:
5512 case elfcpp::R_PPC64_TOCSAVE:
5513 case elfcpp::R_POWERPC_TLS:
5516 case elfcpp::R_PPC64_TOC:
5518 Output_data_got_powerpc<size, big_endian>* got
5519 = target->got_section(symtab, layout);
5520 if (parameters->options().output_is_position_independent())
5522 Address off = reloc.get_r_offset();
5524 && target->abiversion() < 2
5525 && data_shndx == ppc_object->opd_shndx()
5526 && ppc_object->get_opd_discard(off - 8))
5529 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5530 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5531 rela_dyn->add_output_section_relative(got->output_section(),
5532 elfcpp::R_POWERPC_RELATIVE,
5534 object, data_shndx, off,
5535 symobj->toc_base_offset());
5540 case elfcpp::R_PPC64_ADDR64:
5541 case elfcpp::R_PPC64_UADDR64:
5542 case elfcpp::R_POWERPC_ADDR32:
5543 case elfcpp::R_POWERPC_UADDR32:
5544 case elfcpp::R_POWERPC_ADDR24:
5545 case elfcpp::R_POWERPC_ADDR16:
5546 case elfcpp::R_POWERPC_ADDR16_LO:
5547 case elfcpp::R_POWERPC_ADDR16_HI:
5548 case elfcpp::R_POWERPC_ADDR16_HA:
5549 case elfcpp::R_POWERPC_UADDR16:
5550 case elfcpp::R_PPC64_ADDR16_HIGH:
5551 case elfcpp::R_PPC64_ADDR16_HIGHA:
5552 case elfcpp::R_PPC64_ADDR16_HIGHER:
5553 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5554 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5555 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5556 case elfcpp::R_PPC64_ADDR16_DS:
5557 case elfcpp::R_PPC64_ADDR16_LO_DS:
5558 case elfcpp::R_POWERPC_ADDR14:
5559 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5560 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5561 // If building a shared library (or a position-independent
5562 // executable), we need to create a dynamic relocation for
5564 if (parameters->options().output_is_position_independent()
5565 || (size == 64 && is_ifunc && target->abiversion() < 2))
5567 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5569 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5570 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5571 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5573 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5574 : elfcpp::R_POWERPC_RELATIVE);
5575 rela_dyn->add_local_relative(object, r_sym, dynrel,
5576 output_section, data_shndx,
5577 reloc.get_r_offset(),
5578 reloc.get_r_addend(), false);
5580 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5582 check_non_pic(object, r_type);
5583 rela_dyn->add_local(object, r_sym, r_type, output_section,
5584 data_shndx, reloc.get_r_offset(),
5585 reloc.get_r_addend());
5589 gold_assert(lsym.get_st_value() == 0);
5590 unsigned int shndx = lsym.get_st_shndx();
5592 shndx = object->adjust_sym_shndx(r_sym, shndx,
5595 object->error(_("section symbol %u has bad shndx %u"),
5598 rela_dyn->add_local_section(object, shndx, r_type,
5599 output_section, data_shndx,
5600 reloc.get_r_offset());
5605 case elfcpp::R_POWERPC_REL24:
5606 case elfcpp::R_PPC_PLTREL24:
5607 case elfcpp::R_PPC_LOCAL24PC:
5608 case elfcpp::R_POWERPC_REL14:
5609 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5610 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5612 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5613 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5614 reloc.get_r_addend());
5617 case elfcpp::R_PPC64_REL64:
5618 case elfcpp::R_POWERPC_REL32:
5619 case elfcpp::R_POWERPC_REL16:
5620 case elfcpp::R_POWERPC_REL16_LO:
5621 case elfcpp::R_POWERPC_REL16_HI:
5622 case elfcpp::R_POWERPC_REL16_HA:
5623 case elfcpp::R_POWERPC_SECTOFF:
5624 case elfcpp::R_POWERPC_SECTOFF_LO:
5625 case elfcpp::R_POWERPC_SECTOFF_HI:
5626 case elfcpp::R_POWERPC_SECTOFF_HA:
5627 case elfcpp::R_PPC64_SECTOFF_DS:
5628 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5629 case elfcpp::R_POWERPC_TPREL16:
5630 case elfcpp::R_POWERPC_TPREL16_LO:
5631 case elfcpp::R_POWERPC_TPREL16_HI:
5632 case elfcpp::R_POWERPC_TPREL16_HA:
5633 case elfcpp::R_PPC64_TPREL16_DS:
5634 case elfcpp::R_PPC64_TPREL16_LO_DS:
5635 case elfcpp::R_PPC64_TPREL16_HIGH:
5636 case elfcpp::R_PPC64_TPREL16_HIGHA:
5637 case elfcpp::R_PPC64_TPREL16_HIGHER:
5638 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5639 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5640 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5641 case elfcpp::R_POWERPC_DTPREL16:
5642 case elfcpp::R_POWERPC_DTPREL16_LO:
5643 case elfcpp::R_POWERPC_DTPREL16_HI:
5644 case elfcpp::R_POWERPC_DTPREL16_HA:
5645 case elfcpp::R_PPC64_DTPREL16_DS:
5646 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5647 case elfcpp::R_PPC64_DTPREL16_HIGH:
5648 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5649 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5650 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5651 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5652 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5653 case elfcpp::R_PPC64_TLSGD:
5654 case elfcpp::R_PPC64_TLSLD:
5655 case elfcpp::R_PPC64_ADDR64_LOCAL:
5658 case elfcpp::R_POWERPC_GOT16:
5659 case elfcpp::R_POWERPC_GOT16_LO:
5660 case elfcpp::R_POWERPC_GOT16_HI:
5661 case elfcpp::R_POWERPC_GOT16_HA:
5662 case elfcpp::R_PPC64_GOT16_DS:
5663 case elfcpp::R_PPC64_GOT16_LO_DS:
5665 // The symbol requires a GOT entry.
5666 Output_data_got_powerpc<size, big_endian>* got
5667 = target->got_section(symtab, layout);
5668 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5670 if (!parameters->options().output_is_position_independent())
5673 && (size == 32 || target->abiversion() >= 2))
5674 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5676 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5678 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5680 // If we are generating a shared object or a pie, this
5681 // symbol's GOT entry will be set by a dynamic relocation.
5683 off = got->add_constant(0);
5684 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5686 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5688 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5689 : elfcpp::R_POWERPC_RELATIVE);
5690 rela_dyn->add_local_relative(object, r_sym, dynrel,
5691 got, off, 0, false);
5696 case elfcpp::R_PPC64_TOC16:
5697 case elfcpp::R_PPC64_TOC16_LO:
5698 case elfcpp::R_PPC64_TOC16_HI:
5699 case elfcpp::R_PPC64_TOC16_HA:
5700 case elfcpp::R_PPC64_TOC16_DS:
5701 case elfcpp::R_PPC64_TOC16_LO_DS:
5702 // We need a GOT section.
5703 target->got_section(symtab, layout);
5706 case elfcpp::R_POWERPC_GOT_TLSGD16:
5707 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5708 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5709 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5711 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5712 if (tls_type == tls::TLSOPT_NONE)
5714 Output_data_got_powerpc<size, big_endian>* got
5715 = target->got_section(symtab, layout);
5716 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5717 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5718 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5719 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5721 else if (tls_type == tls::TLSOPT_TO_LE)
5723 // no GOT relocs needed for Local Exec.
5730 case elfcpp::R_POWERPC_GOT_TLSLD16:
5731 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5732 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5733 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5735 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5736 if (tls_type == tls::TLSOPT_NONE)
5737 target->tlsld_got_offset(symtab, layout, object);
5738 else if (tls_type == tls::TLSOPT_TO_LE)
5740 // no GOT relocs needed for Local Exec.
5741 if (parameters->options().emit_relocs())
5743 Output_section* os = layout->tls_segment()->first_section();
5744 gold_assert(os != NULL);
5745 os->set_needs_symtab_index();
5753 case elfcpp::R_POWERPC_GOT_DTPREL16:
5754 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5755 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5756 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5758 Output_data_got_powerpc<size, big_endian>* got
5759 = target->got_section(symtab, layout);
5760 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5761 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5765 case elfcpp::R_POWERPC_GOT_TPREL16:
5766 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5767 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5768 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5770 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5771 if (tls_type == tls::TLSOPT_NONE)
5773 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5774 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5776 Output_data_got_powerpc<size, big_endian>* got
5777 = target->got_section(symtab, layout);
5778 unsigned int off = got->add_constant(0);
5779 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5781 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5782 rela_dyn->add_symbolless_local_addend(object, r_sym,
5783 elfcpp::R_POWERPC_TPREL,
5787 else if (tls_type == tls::TLSOPT_TO_LE)
5789 // no GOT relocs needed for Local Exec.
5797 unsupported_reloc_local(object, r_type);
5803 case elfcpp::R_POWERPC_GOT_TLSLD16:
5804 case elfcpp::R_POWERPC_GOT_TLSGD16:
5805 case elfcpp::R_POWERPC_GOT_TPREL16:
5806 case elfcpp::R_POWERPC_GOT_DTPREL16:
5807 case elfcpp::R_POWERPC_GOT16:
5808 case elfcpp::R_PPC64_GOT16_DS:
5809 case elfcpp::R_PPC64_TOC16:
5810 case elfcpp::R_PPC64_TOC16_DS:
5811 ppc_object->set_has_small_toc_reloc();
5817 // Report an unsupported relocation against a global symbol.
5819 template<int size, bool big_endian>
5821 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5822 Sized_relobj_file<size, big_endian>* object,
5823 unsigned int r_type,
5826 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5827 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5830 // Scan a relocation for a global symbol.
5832 template<int size, bool big_endian>
5834 Target_powerpc<size, big_endian>::Scan::global(
5835 Symbol_table* symtab,
5837 Target_powerpc<size, big_endian>* target,
5838 Sized_relobj_file<size, big_endian>* object,
5839 unsigned int data_shndx,
5840 Output_section* output_section,
5841 const elfcpp::Rela<size, big_endian>& reloc,
5842 unsigned int r_type,
5845 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5848 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5849 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5851 this->expect_tls_get_addr_call();
5852 const bool final = gsym->final_value_is_known();
5853 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5854 if (tls_type != tls::TLSOPT_NONE)
5855 this->skip_next_tls_get_addr_call();
5857 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5858 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5860 this->expect_tls_get_addr_call();
5861 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5862 if (tls_type != tls::TLSOPT_NONE)
5863 this->skip_next_tls_get_addr_call();
5866 Powerpc_relobj<size, big_endian>* ppc_object
5867 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5869 // A STT_GNU_IFUNC symbol may require a PLT entry.
5870 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5871 bool pushed_ifunc = false;
5872 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5874 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5875 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5876 reloc.get_r_addend());
5877 target->make_plt_entry(symtab, layout, gsym);
5878 pushed_ifunc = true;
5883 case elfcpp::R_POWERPC_NONE:
5884 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5885 case elfcpp::R_POWERPC_GNU_VTENTRY:
5886 case elfcpp::R_PPC_LOCAL24PC:
5887 case elfcpp::R_POWERPC_TLS:
5890 case elfcpp::R_PPC64_TOC:
5892 Output_data_got_powerpc<size, big_endian>* got
5893 = target->got_section(symtab, layout);
5894 if (parameters->options().output_is_position_independent())
5896 Address off = reloc.get_r_offset();
5898 && data_shndx == ppc_object->opd_shndx()
5899 && ppc_object->get_opd_discard(off - 8))
5902 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5903 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5904 if (data_shndx != ppc_object->opd_shndx())
5905 symobj = static_cast
5906 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5907 rela_dyn->add_output_section_relative(got->output_section(),
5908 elfcpp::R_POWERPC_RELATIVE,
5910 object, data_shndx, off,
5911 symobj->toc_base_offset());
5916 case elfcpp::R_PPC64_ADDR64:
5918 && target->abiversion() < 2
5919 && data_shndx == ppc_object->opd_shndx()
5920 && (gsym->is_defined_in_discarded_section()
5921 || gsym->object() != object))
5923 ppc_object->set_opd_discard(reloc.get_r_offset());
5927 case elfcpp::R_PPC64_UADDR64:
5928 case elfcpp::R_POWERPC_ADDR32:
5929 case elfcpp::R_POWERPC_UADDR32:
5930 case elfcpp::R_POWERPC_ADDR24:
5931 case elfcpp::R_POWERPC_ADDR16:
5932 case elfcpp::R_POWERPC_ADDR16_LO:
5933 case elfcpp::R_POWERPC_ADDR16_HI:
5934 case elfcpp::R_POWERPC_ADDR16_HA:
5935 case elfcpp::R_POWERPC_UADDR16:
5936 case elfcpp::R_PPC64_ADDR16_HIGH:
5937 case elfcpp::R_PPC64_ADDR16_HIGHA:
5938 case elfcpp::R_PPC64_ADDR16_HIGHER:
5939 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5940 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5941 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5942 case elfcpp::R_PPC64_ADDR16_DS:
5943 case elfcpp::R_PPC64_ADDR16_LO_DS:
5944 case elfcpp::R_POWERPC_ADDR14:
5945 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5946 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5948 // Make a PLT entry if necessary.
5949 if (gsym->needs_plt_entry())
5951 // Since this is not a PC-relative relocation, we may be
5952 // taking the address of a function. In that case we need to
5953 // set the entry in the dynamic symbol table to the address of
5954 // the PLT call stub.
5955 bool need_ifunc_plt = false;
5956 if ((size == 32 || target->abiversion() >= 2)
5957 && gsym->is_from_dynobj()
5958 && !parameters->options().output_is_position_independent())
5960 gsym->set_needs_dynsym_value();
5961 need_ifunc_plt = true;
5963 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5965 target->push_branch(ppc_object, data_shndx,
5966 reloc.get_r_offset(), r_type,
5967 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5968 reloc.get_r_addend());
5969 target->make_plt_entry(symtab, layout, gsym);
5972 // Make a dynamic relocation if necessary.
5973 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5974 || (size == 64 && is_ifunc && target->abiversion() < 2))
5976 if (!parameters->options().output_is_position_independent()
5977 && gsym->may_need_copy_reloc())
5979 target->copy_reloc(symtab, layout, object,
5980 data_shndx, output_section, gsym, reloc);
5982 else if ((((size == 32
5983 && r_type == elfcpp::R_POWERPC_ADDR32)
5985 && r_type == elfcpp::R_PPC64_ADDR64
5986 && target->abiversion() >= 2))
5987 && gsym->can_use_relative_reloc(false)
5988 && !(gsym->visibility() == elfcpp::STV_PROTECTED
5989 && parameters->options().shared()))
5991 && r_type == elfcpp::R_PPC64_ADDR64
5992 && target->abiversion() < 2
5993 && (gsym->can_use_relative_reloc(false)
5994 || data_shndx == ppc_object->opd_shndx())))
5996 Reloc_section* rela_dyn
5997 = target->rela_dyn_section(symtab, layout, is_ifunc);
5998 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5999 : elfcpp::R_POWERPC_RELATIVE);
6000 rela_dyn->add_symbolless_global_addend(
6001 gsym, dynrel, output_section, object, data_shndx,
6002 reloc.get_r_offset(), reloc.get_r_addend());
6006 Reloc_section* rela_dyn
6007 = target->rela_dyn_section(symtab, layout, is_ifunc);
6008 check_non_pic(object, r_type);
6009 rela_dyn->add_global(gsym, r_type, output_section,
6011 reloc.get_r_offset(),
6012 reloc.get_r_addend());
6018 case elfcpp::R_PPC_PLTREL24:
6019 case elfcpp::R_POWERPC_REL24:
6022 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6024 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6025 reloc.get_r_addend());
6026 if (gsym->needs_plt_entry()
6027 || (!gsym->final_value_is_known()
6028 && (gsym->is_undefined()
6029 || gsym->is_from_dynobj()
6030 || gsym->is_preemptible())))
6031 target->make_plt_entry(symtab, layout, gsym);
6035 case elfcpp::R_PPC64_REL64:
6036 case elfcpp::R_POWERPC_REL32:
6037 // Make a dynamic relocation if necessary.
6038 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6040 if (!parameters->options().output_is_position_independent()
6041 && gsym->may_need_copy_reloc())
6043 target->copy_reloc(symtab, layout, object,
6044 data_shndx, output_section, gsym,
6049 Reloc_section* rela_dyn
6050 = target->rela_dyn_section(symtab, layout, is_ifunc);
6051 check_non_pic(object, r_type);
6052 rela_dyn->add_global(gsym, r_type, output_section, object,
6053 data_shndx, reloc.get_r_offset(),
6054 reloc.get_r_addend());
6059 case elfcpp::R_POWERPC_REL14:
6060 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6061 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6063 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6064 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6065 reloc.get_r_addend());
6068 case elfcpp::R_POWERPC_REL16:
6069 case elfcpp::R_POWERPC_REL16_LO:
6070 case elfcpp::R_POWERPC_REL16_HI:
6071 case elfcpp::R_POWERPC_REL16_HA:
6072 case elfcpp::R_POWERPC_SECTOFF:
6073 case elfcpp::R_POWERPC_SECTOFF_LO:
6074 case elfcpp::R_POWERPC_SECTOFF_HI:
6075 case elfcpp::R_POWERPC_SECTOFF_HA:
6076 case elfcpp::R_PPC64_SECTOFF_DS:
6077 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6078 case elfcpp::R_POWERPC_TPREL16:
6079 case elfcpp::R_POWERPC_TPREL16_LO:
6080 case elfcpp::R_POWERPC_TPREL16_HI:
6081 case elfcpp::R_POWERPC_TPREL16_HA:
6082 case elfcpp::R_PPC64_TPREL16_DS:
6083 case elfcpp::R_PPC64_TPREL16_LO_DS:
6084 case elfcpp::R_PPC64_TPREL16_HIGH:
6085 case elfcpp::R_PPC64_TPREL16_HIGHA:
6086 case elfcpp::R_PPC64_TPREL16_HIGHER:
6087 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6088 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6089 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6090 case elfcpp::R_POWERPC_DTPREL16:
6091 case elfcpp::R_POWERPC_DTPREL16_LO:
6092 case elfcpp::R_POWERPC_DTPREL16_HI:
6093 case elfcpp::R_POWERPC_DTPREL16_HA:
6094 case elfcpp::R_PPC64_DTPREL16_DS:
6095 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6096 case elfcpp::R_PPC64_DTPREL16_HIGH:
6097 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6098 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6099 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6100 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6101 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6102 case elfcpp::R_PPC64_TLSGD:
6103 case elfcpp::R_PPC64_TLSLD:
6104 case elfcpp::R_PPC64_ADDR64_LOCAL:
6107 case elfcpp::R_POWERPC_GOT16:
6108 case elfcpp::R_POWERPC_GOT16_LO:
6109 case elfcpp::R_POWERPC_GOT16_HI:
6110 case elfcpp::R_POWERPC_GOT16_HA:
6111 case elfcpp::R_PPC64_GOT16_DS:
6112 case elfcpp::R_PPC64_GOT16_LO_DS:
6114 // The symbol requires a GOT entry.
6115 Output_data_got_powerpc<size, big_endian>* got;
6117 got = target->got_section(symtab, layout);
6118 if (gsym->final_value_is_known())
6121 && (size == 32 || target->abiversion() >= 2))
6122 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6124 got->add_global(gsym, GOT_TYPE_STANDARD);
6126 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6128 // If we are generating a shared object or a pie, this
6129 // symbol's GOT entry will be set by a dynamic relocation.
6130 unsigned int off = got->add_constant(0);
6131 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6133 Reloc_section* rela_dyn
6134 = target->rela_dyn_section(symtab, layout, is_ifunc);
6136 if (gsym->can_use_relative_reloc(false)
6138 || target->abiversion() >= 2)
6139 && gsym->visibility() == elfcpp::STV_PROTECTED
6140 && parameters->options().shared()))
6142 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6143 : elfcpp::R_POWERPC_RELATIVE);
6144 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6148 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6149 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6155 case elfcpp::R_PPC64_TOC16:
6156 case elfcpp::R_PPC64_TOC16_LO:
6157 case elfcpp::R_PPC64_TOC16_HI:
6158 case elfcpp::R_PPC64_TOC16_HA:
6159 case elfcpp::R_PPC64_TOC16_DS:
6160 case elfcpp::R_PPC64_TOC16_LO_DS:
6161 // We need a GOT section.
6162 target->got_section(symtab, layout);
6165 case elfcpp::R_POWERPC_GOT_TLSGD16:
6166 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6167 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6168 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6170 const bool final = gsym->final_value_is_known();
6171 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6172 if (tls_type == tls::TLSOPT_NONE)
6174 Output_data_got_powerpc<size, big_endian>* got
6175 = target->got_section(symtab, layout);
6176 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6177 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6178 elfcpp::R_POWERPC_DTPMOD,
6179 elfcpp::R_POWERPC_DTPREL);
6181 else if (tls_type == tls::TLSOPT_TO_IE)
6183 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6185 Output_data_got_powerpc<size, big_endian>* got
6186 = target->got_section(symtab, layout);
6187 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6188 if (gsym->is_undefined()
6189 || gsym->is_from_dynobj())
6191 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6192 elfcpp::R_POWERPC_TPREL);
6196 unsigned int off = got->add_constant(0);
6197 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6198 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6199 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6204 else if (tls_type == tls::TLSOPT_TO_LE)
6206 // no GOT relocs needed for Local Exec.
6213 case elfcpp::R_POWERPC_GOT_TLSLD16:
6214 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6215 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6216 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6218 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6219 if (tls_type == tls::TLSOPT_NONE)
6220 target->tlsld_got_offset(symtab, layout, object);
6221 else if (tls_type == tls::TLSOPT_TO_LE)
6223 // no GOT relocs needed for Local Exec.
6224 if (parameters->options().emit_relocs())
6226 Output_section* os = layout->tls_segment()->first_section();
6227 gold_assert(os != NULL);
6228 os->set_needs_symtab_index();
6236 case elfcpp::R_POWERPC_GOT_DTPREL16:
6237 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6238 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6239 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6241 Output_data_got_powerpc<size, big_endian>* got
6242 = target->got_section(symtab, layout);
6243 if (!gsym->final_value_is_known()
6244 && (gsym->is_from_dynobj()
6245 || gsym->is_undefined()
6246 || gsym->is_preemptible()))
6247 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6248 target->rela_dyn_section(layout),
6249 elfcpp::R_POWERPC_DTPREL);
6251 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6255 case elfcpp::R_POWERPC_GOT_TPREL16:
6256 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6257 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6258 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6260 const bool final = gsym->final_value_is_known();
6261 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6262 if (tls_type == tls::TLSOPT_NONE)
6264 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6266 Output_data_got_powerpc<size, big_endian>* got
6267 = target->got_section(symtab, layout);
6268 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6269 if (gsym->is_undefined()
6270 || gsym->is_from_dynobj())
6272 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6273 elfcpp::R_POWERPC_TPREL);
6277 unsigned int off = got->add_constant(0);
6278 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6279 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6280 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6285 else if (tls_type == tls::TLSOPT_TO_LE)
6287 // no GOT relocs needed for Local Exec.
6295 unsupported_reloc_global(object, r_type, gsym);
6301 case elfcpp::R_POWERPC_GOT_TLSLD16:
6302 case elfcpp::R_POWERPC_GOT_TLSGD16:
6303 case elfcpp::R_POWERPC_GOT_TPREL16:
6304 case elfcpp::R_POWERPC_GOT_DTPREL16:
6305 case elfcpp::R_POWERPC_GOT16:
6306 case elfcpp::R_PPC64_GOT16_DS:
6307 case elfcpp::R_PPC64_TOC16:
6308 case elfcpp::R_PPC64_TOC16_DS:
6309 ppc_object->set_has_small_toc_reloc();
6315 // Process relocations for gc.
6317 template<int size, bool big_endian>
6319 Target_powerpc<size, big_endian>::gc_process_relocs(
6320 Symbol_table* symtab,
6322 Sized_relobj_file<size, big_endian>* object,
6323 unsigned int data_shndx,
6325 const unsigned char* prelocs,
6327 Output_section* output_section,
6328 bool needs_special_offset_handling,
6329 size_t local_symbol_count,
6330 const unsigned char* plocal_symbols)
6332 typedef Target_powerpc<size, big_endian> Powerpc;
6333 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6334 Powerpc_relobj<size, big_endian>* ppc_object
6335 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6337 ppc_object->set_opd_valid();
6338 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6340 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6341 for (p = ppc_object->access_from_map()->begin();
6342 p != ppc_object->access_from_map()->end();
6345 Address dst_off = p->first;
6346 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6347 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6348 for (s = p->second.begin(); s != p->second.end(); ++s)
6350 Object* src_obj = s->first;
6351 unsigned int src_indx = s->second;
6352 symtab->gc()->add_reference(src_obj, src_indx,
6353 ppc_object, dst_indx);
6357 ppc_object->access_from_map()->clear();
6358 ppc_object->process_gc_mark(symtab);
6359 // Don't look at .opd relocs as .opd will reference everything.
6363 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6364 typename Target_powerpc::Relocatable_size_for_reloc>(
6373 needs_special_offset_handling,
6378 // Handle target specific gc actions when adding a gc reference from
6379 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6380 // and DST_OFF. For powerpc64, this adds a referenc to the code
6381 // section of a function descriptor.
6383 template<int size, bool big_endian>
6385 Target_powerpc<size, big_endian>::do_gc_add_reference(
6386 Symbol_table* symtab,
6388 unsigned int src_shndx,
6390 unsigned int dst_shndx,
6391 Address dst_off) const
6393 if (size != 64 || dst_obj->is_dynamic())
6396 Powerpc_relobj<size, big_endian>* ppc_object
6397 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6398 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6400 if (ppc_object->opd_valid())
6402 dst_shndx = ppc_object->get_opd_ent(dst_off);
6403 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6407 // If we haven't run scan_opd_relocs, we must delay
6408 // processing this function descriptor reference.
6409 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6414 // Add any special sections for this symbol to the gc work list.
6415 // For powerpc64, this adds the code section of a function
6418 template<int size, bool big_endian>
6420 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6421 Symbol_table* symtab,
6426 Powerpc_relobj<size, big_endian>* ppc_object
6427 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6429 unsigned int shndx = sym->shndx(&is_ordinary);
6430 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6432 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6433 Address dst_off = gsym->value();
6434 if (ppc_object->opd_valid())
6436 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6437 symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6440 ppc_object->add_gc_mark(dst_off);
6445 // For a symbol location in .opd, set LOC to the location of the
6448 template<int size, bool big_endian>
6450 Target_powerpc<size, big_endian>::do_function_location(
6451 Symbol_location* loc) const
6453 if (size == 64 && loc->shndx != 0)
6455 if (loc->object->is_dynamic())
6457 Powerpc_dynobj<size, big_endian>* ppc_object
6458 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6459 if (loc->shndx == ppc_object->opd_shndx())
6462 Address off = loc->offset - ppc_object->opd_address();
6463 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6464 loc->offset = dest_off;
6469 const Powerpc_relobj<size, big_endian>* ppc_object
6470 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6471 if (loc->shndx == ppc_object->opd_shndx())
6474 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6475 loc->offset = dest_off;
6481 // Scan relocations for a section.
6483 template<int size, bool big_endian>
6485 Target_powerpc<size, big_endian>::scan_relocs(
6486 Symbol_table* symtab,
6488 Sized_relobj_file<size, big_endian>* object,
6489 unsigned int data_shndx,
6490 unsigned int sh_type,
6491 const unsigned char* prelocs,
6493 Output_section* output_section,
6494 bool needs_special_offset_handling,
6495 size_t local_symbol_count,
6496 const unsigned char* plocal_symbols)
6498 typedef Target_powerpc<size, big_endian> Powerpc;
6499 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6501 if (sh_type == elfcpp::SHT_REL)
6503 gold_error(_("%s: unsupported REL reloc section"),
6504 object->name().c_str());
6508 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6517 needs_special_offset_handling,
6522 // Functor class for processing the global symbol table.
6523 // Removes symbols defined on discarded opd entries.
6525 template<bool big_endian>
6526 class Global_symbol_visitor_opd
6529 Global_symbol_visitor_opd()
6533 operator()(Sized_symbol<64>* sym)
6535 if (sym->has_symtab_index()
6536 || sym->source() != Symbol::FROM_OBJECT
6537 || !sym->in_real_elf())
6540 if (sym->object()->is_dynamic())
6543 Powerpc_relobj<64, big_endian>* symobj
6544 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6545 if (symobj->opd_shndx() == 0)
6549 unsigned int shndx = sym->shndx(&is_ordinary);
6550 if (shndx == symobj->opd_shndx()
6551 && symobj->get_opd_discard(sym->value()))
6553 sym->set_undefined();
6554 sym->set_is_defined_in_discarded_section();
6555 sym->set_symtab_index(-1U);
6560 template<int size, bool big_endian>
6562 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6564 Symbol_table* symtab)
6568 Output_data_save_res<64, big_endian>* savres
6569 = new Output_data_save_res<64, big_endian>(symtab);
6570 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6571 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6572 savres, ORDER_TEXT, false);
6576 // Sort linker created .got section first (for the header), then input
6577 // sections belonging to files using small model code.
6579 template<bool big_endian>
6580 class Sort_toc_sections
6584 operator()(const Output_section::Input_section& is1,
6585 const Output_section::Input_section& is2) const
6587 if (!is1.is_input_section() && is2.is_input_section())
6590 = (is1.is_input_section()
6591 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6592 ->has_small_toc_reloc()));
6594 = (is2.is_input_section()
6595 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6596 ->has_small_toc_reloc()));
6597 return small1 && !small2;
6601 // Finalize the sections.
6603 template<int size, bool big_endian>
6605 Target_powerpc<size, big_endian>::do_finalize_sections(
6607 const Input_objects*,
6608 Symbol_table* symtab)
6610 if (parameters->doing_static_link())
6612 // At least some versions of glibc elf-init.o have a strong
6613 // reference to __rela_iplt marker syms. A weak ref would be
6615 if (this->iplt_ != NULL)
6617 Reloc_section* rel = this->iplt_->rel_plt();
6618 symtab->define_in_output_data("__rela_iplt_start", NULL,
6619 Symbol_table::PREDEFINED, rel, 0, 0,
6620 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6621 elfcpp::STV_HIDDEN, 0, false, true);
6622 symtab->define_in_output_data("__rela_iplt_end", NULL,
6623 Symbol_table::PREDEFINED, rel, 0, 0,
6624 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6625 elfcpp::STV_HIDDEN, 0, true, true);
6629 symtab->define_as_constant("__rela_iplt_start", NULL,
6630 Symbol_table::PREDEFINED, 0, 0,
6631 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6632 elfcpp::STV_HIDDEN, 0, true, false);
6633 symtab->define_as_constant("__rela_iplt_end", NULL,
6634 Symbol_table::PREDEFINED, 0, 0,
6635 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6636 elfcpp::STV_HIDDEN, 0, true, false);
6642 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6643 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6645 if (!parameters->options().relocatable())
6647 this->define_save_restore_funcs(layout, symtab);
6649 // Annoyingly, we need to make these sections now whether or
6650 // not we need them. If we delay until do_relax then we
6651 // need to mess with the relaxation machinery checkpointing.
6652 this->got_section(symtab, layout);
6653 this->make_brlt_section(layout);
6655 if (parameters->options().toc_sort())
6657 Output_section* os = this->got_->output_section();
6658 if (os != NULL && os->input_sections().size() > 1)
6659 std::stable_sort(os->input_sections().begin(),
6660 os->input_sections().end(),
6661 Sort_toc_sections<big_endian>());
6666 // Fill in some more dynamic tags.
6667 Output_data_dynamic* odyn = layout->dynamic_data();
6670 const Reloc_section* rel_plt = (this->plt_ == NULL
6672 : this->plt_->rel_plt());
6673 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6674 this->rela_dyn_, true, size == 32);
6678 if (this->got_ != NULL)
6680 this->got_->finalize_data_size();
6681 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6682 this->got_, this->got_->g_o_t());
6687 if (this->glink_ != NULL)
6689 this->glink_->finalize_data_size();
6690 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6692 (this->glink_->pltresolve_size
6698 // Emit any relocs we saved in an attempt to avoid generating COPY
6700 if (this->copy_relocs_.any_saved_relocs())
6701 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6704 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6708 ok_lo_toc_insn(uint32_t insn)
6710 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6711 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6712 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6713 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6714 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6715 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6716 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6717 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6718 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6719 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6720 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6721 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6722 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6723 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6724 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6726 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6727 && ((insn & 3) == 0 || (insn & 3) == 3))
6728 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6731 // Return the value to use for a branch relocation.
6733 template<int size, bool big_endian>
6735 Target_powerpc<size, big_endian>::symval_for_branch(
6736 const Symbol_table* symtab,
6737 const Sized_symbol<size>* gsym,
6738 Powerpc_relobj<size, big_endian>* object,
6740 unsigned int *dest_shndx)
6742 if (size == 32 || this->abiversion() >= 2)
6746 // If the symbol is defined in an opd section, ie. is a function
6747 // descriptor, use the function descriptor code entry address
6748 Powerpc_relobj<size, big_endian>* symobj = object;
6750 && gsym->source() != Symbol::FROM_OBJECT)
6753 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6754 unsigned int shndx = symobj->opd_shndx();
6757 Address opd_addr = symobj->get_output_section_offset(shndx);
6758 if (opd_addr == invalid_address)
6760 opd_addr += symobj->output_section_address(shndx);
6761 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6764 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6765 if (symtab->is_section_folded(symobj, *dest_shndx))
6768 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6769 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6770 *dest_shndx = folded.second;
6772 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6773 if (sec_addr == invalid_address)
6776 sec_addr += symobj->output_section(*dest_shndx)->address();
6777 *value = sec_addr + sec_off;
6782 // Perform a relocation.
6784 template<int size, bool big_endian>
6786 Target_powerpc<size, big_endian>::Relocate::relocate(
6787 const Relocate_info<size, big_endian>* relinfo,
6788 Target_powerpc* target,
6791 const elfcpp::Rela<size, big_endian>& rela,
6792 unsigned int r_type,
6793 const Sized_symbol<size>* gsym,
6794 const Symbol_value<size>* psymval,
6795 unsigned char* view,
6797 section_size_type view_size)
6802 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6804 case Track_tls::NOT_EXPECTED:
6805 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6806 _("__tls_get_addr call lacks marker reloc"));
6808 case Track_tls::EXPECTED:
6809 // We have already complained.
6811 case Track_tls::SKIP:
6813 case Track_tls::NORMAL:
6817 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6818 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6819 Powerpc_relobj<size, big_endian>* const object
6820 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6822 bool has_stub_value = false;
6823 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6825 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6826 : object->local_has_plt_offset(r_sym))
6827 && (!psymval->is_ifunc_symbol()
6828 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6832 && target->abiversion() >= 2
6833 && !parameters->options().output_is_position_independent()
6834 && !is_branch_reloc(r_type))
6836 unsigned int off = target->glink_section()->find_global_entry(gsym);
6837 gold_assert(off != (unsigned int)-1);
6838 value = target->glink_section()->global_entry_address() + off;
6842 Stub_table<size, big_endian>* stub_table
6843 = object->stub_table(relinfo->data_shndx);
6844 if (stub_table == NULL)
6846 // This is a ref from a data section to an ifunc symbol.
6847 if (target->stub_tables().size() != 0)
6848 stub_table = target->stub_tables()[0];
6850 gold_assert(stub_table != NULL);
6853 off = stub_table->find_plt_call_entry(object, gsym, r_type,
6854 rela.get_r_addend());
6856 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6857 rela.get_r_addend());
6858 gold_assert(off != invalid_address);
6859 value = stub_table->stub_address() + off;
6861 has_stub_value = true;
6864 if (r_type == elfcpp::R_POWERPC_GOT16
6865 || r_type == elfcpp::R_POWERPC_GOT16_LO
6866 || r_type == elfcpp::R_POWERPC_GOT16_HI
6867 || r_type == elfcpp::R_POWERPC_GOT16_HA
6868 || r_type == elfcpp::R_PPC64_GOT16_DS
6869 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6873 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6874 value = gsym->got_offset(GOT_TYPE_STANDARD);
6878 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6879 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6880 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6882 value -= target->got_section()->got_base_offset(object);
6884 else if (r_type == elfcpp::R_PPC64_TOC)
6886 value = (target->got_section()->output_section()->address()
6887 + object->toc_base_offset());
6889 else if (gsym != NULL
6890 && (r_type == elfcpp::R_POWERPC_REL24
6891 || r_type == elfcpp::R_PPC_PLTREL24)
6896 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6897 Valtype* wv = reinterpret_cast<Valtype*>(view);
6898 bool can_plt_call = false;
6899 if (rela.get_r_offset() + 8 <= view_size)
6901 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6902 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6905 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6907 elfcpp::Swap<32, big_endian>::
6908 writeval(wv + 1, ld_2_1 + target->stk_toc());
6909 can_plt_call = true;
6914 // If we don't have a branch and link followed by a nop,
6915 // we can't go via the plt because there is no place to
6916 // put a toc restoring instruction.
6917 // Unless we know we won't be returning.
6918 if (strcmp(gsym->name(), "__libc_start_main") == 0)
6919 can_plt_call = true;
6923 // g++ as of 20130507 emits self-calls without a
6924 // following nop. This is arguably wrong since we have
6925 // conflicting information. On the one hand a global
6926 // symbol and on the other a local call sequence, but
6927 // don't error for this special case.
6928 // It isn't possible to cheaply verify we have exactly
6929 // such a call. Allow all calls to the same section.
6931 Address code = value;
6932 if (gsym->source() == Symbol::FROM_OBJECT
6933 && gsym->object() == object)
6935 unsigned int dest_shndx = 0;
6936 if (target->abiversion() < 2)
6938 Address addend = rela.get_r_addend();
6939 code = psymval->value(object, addend);
6940 target->symval_for_branch(relinfo->symtab, gsym, object,
6941 &code, &dest_shndx);
6944 if (dest_shndx == 0)
6945 dest_shndx = gsym->shndx(&is_ordinary);
6946 ok = dest_shndx == relinfo->data_shndx;
6950 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6951 _("call lacks nop, can't restore toc; "
6952 "recompile with -fPIC"));
6958 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6959 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6960 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6961 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6963 // First instruction of a global dynamic sequence, arg setup insn.
6964 const bool final = gsym == NULL || gsym->final_value_is_known();
6965 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6966 enum Got_type got_type = GOT_TYPE_STANDARD;
6967 if (tls_type == tls::TLSOPT_NONE)
6968 got_type = GOT_TYPE_TLSGD;
6969 else if (tls_type == tls::TLSOPT_TO_IE)
6970 got_type = GOT_TYPE_TPREL;
6971 if (got_type != GOT_TYPE_STANDARD)
6975 gold_assert(gsym->has_got_offset(got_type));
6976 value = gsym->got_offset(got_type);
6980 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6981 gold_assert(object->local_has_got_offset(r_sym, got_type));
6982 value = object->local_got_offset(r_sym, got_type);
6984 value -= target->got_section()->got_base_offset(object);
6986 if (tls_type == tls::TLSOPT_TO_IE)
6988 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6989 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6991 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6992 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6993 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6995 insn |= 32 << 26; // lwz
6997 insn |= 58 << 26; // ld
6998 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7000 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7001 - elfcpp::R_POWERPC_GOT_TLSGD16);
7003 else if (tls_type == tls::TLSOPT_TO_LE)
7005 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7006 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7008 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7009 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7010 insn &= (1 << 26) - (1 << 21); // extract rt
7015 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7016 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7017 value = psymval->value(object, rela.get_r_addend());
7021 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7023 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7024 r_type = elfcpp::R_POWERPC_NONE;
7028 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7029 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7030 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7031 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7033 // First instruction of a local dynamic sequence, arg setup insn.
7034 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7035 if (tls_type == tls::TLSOPT_NONE)
7037 value = target->tlsld_got_offset();
7038 value -= target->got_section()->got_base_offset(object);
7042 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7043 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7044 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7046 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7047 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7048 insn &= (1 << 26) - (1 << 21); // extract rt
7053 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7054 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7059 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7061 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7062 r_type = elfcpp::R_POWERPC_NONE;
7066 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7067 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7068 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7069 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7071 // Accesses relative to a local dynamic sequence address,
7072 // no optimisation here.
7075 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7076 value = gsym->got_offset(GOT_TYPE_DTPREL);
7080 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7081 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7082 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7084 value -= target->got_section()->got_base_offset(object);
7086 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7087 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7088 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7089 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7091 // First instruction of initial exec sequence.
7092 const bool final = gsym == NULL || gsym->final_value_is_known();
7093 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7094 if (tls_type == tls::TLSOPT_NONE)
7098 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7099 value = gsym->got_offset(GOT_TYPE_TPREL);
7103 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7104 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7105 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7107 value -= target->got_section()->got_base_offset(object);
7111 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7112 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7113 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7115 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7116 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7117 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7122 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7123 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7124 value = psymval->value(object, rela.get_r_addend());
7128 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7130 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7131 r_type = elfcpp::R_POWERPC_NONE;
7135 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7136 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7138 // Second instruction of a global dynamic sequence,
7139 // the __tls_get_addr call
7140 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7141 const bool final = gsym == NULL || gsym->final_value_is_known();
7142 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7143 if (tls_type != tls::TLSOPT_NONE)
7145 if (tls_type == tls::TLSOPT_TO_IE)
7147 Insn* iview = reinterpret_cast<Insn*>(view);
7148 Insn insn = add_3_3_13;
7151 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7152 r_type = elfcpp::R_POWERPC_NONE;
7156 Insn* iview = reinterpret_cast<Insn*>(view);
7157 Insn insn = addi_3_3;
7158 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7159 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7160 view += 2 * big_endian;
7161 value = psymval->value(object, rela.get_r_addend());
7163 this->skip_next_tls_get_addr_call();
7166 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7167 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7169 // Second instruction of a local dynamic sequence,
7170 // the __tls_get_addr call
7171 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7172 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7173 if (tls_type == tls::TLSOPT_TO_LE)
7175 Insn* iview = reinterpret_cast<Insn*>(view);
7176 Insn insn = addi_3_3;
7177 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7178 this->skip_next_tls_get_addr_call();
7179 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7180 view += 2 * big_endian;
7184 else if (r_type == elfcpp::R_POWERPC_TLS)
7186 // Second instruction of an initial exec sequence
7187 const bool final = gsym == NULL || gsym->final_value_is_known();
7188 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7189 if (tls_type == tls::TLSOPT_TO_LE)
7191 Insn* iview = reinterpret_cast<Insn*>(view);
7192 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7193 unsigned int reg = size == 32 ? 2 : 13;
7194 insn = at_tls_transform(insn, reg);
7195 gold_assert(insn != 0);
7196 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7197 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7198 view += 2 * big_endian;
7199 value = psymval->value(object, rela.get_r_addend());
7202 else if (!has_stub_value)
7205 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7206 addend = rela.get_r_addend();
7207 value = psymval->value(object, addend);
7208 if (size == 64 && is_branch_reloc(r_type))
7210 if (target->abiversion() >= 2)
7213 value += object->ppc64_local_entry_offset(gsym);
7215 value += object->ppc64_local_entry_offset(r_sym);
7219 unsigned int dest_shndx;
7220 target->symval_for_branch(relinfo->symtab, gsym, object,
7221 &value, &dest_shndx);
7224 Address max_branch_offset = max_branch_delta(r_type);
7225 if (max_branch_offset != 0
7226 && value - address + max_branch_offset >= 2 * max_branch_offset)
7228 Stub_table<size, big_endian>* stub_table
7229 = object->stub_table(relinfo->data_shndx);
7230 if (stub_table != NULL)
7232 Address off = stub_table->find_long_branch_entry(object, value);
7233 if (off != invalid_address)
7235 value = (stub_table->stub_address() + stub_table->plt_size()
7237 has_stub_value = true;
7245 case elfcpp::R_PPC64_REL64:
7246 case elfcpp::R_POWERPC_REL32:
7247 case elfcpp::R_POWERPC_REL24:
7248 case elfcpp::R_PPC_PLTREL24:
7249 case elfcpp::R_PPC_LOCAL24PC:
7250 case elfcpp::R_POWERPC_REL16:
7251 case elfcpp::R_POWERPC_REL16_LO:
7252 case elfcpp::R_POWERPC_REL16_HI:
7253 case elfcpp::R_POWERPC_REL16_HA:
7254 case elfcpp::R_POWERPC_REL14:
7255 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7256 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7260 case elfcpp::R_PPC64_TOC16:
7261 case elfcpp::R_PPC64_TOC16_LO:
7262 case elfcpp::R_PPC64_TOC16_HI:
7263 case elfcpp::R_PPC64_TOC16_HA:
7264 case elfcpp::R_PPC64_TOC16_DS:
7265 case elfcpp::R_PPC64_TOC16_LO_DS:
7266 // Subtract the TOC base address.
7267 value -= (target->got_section()->output_section()->address()
7268 + object->toc_base_offset());
7271 case elfcpp::R_POWERPC_SECTOFF:
7272 case elfcpp::R_POWERPC_SECTOFF_LO:
7273 case elfcpp::R_POWERPC_SECTOFF_HI:
7274 case elfcpp::R_POWERPC_SECTOFF_HA:
7275 case elfcpp::R_PPC64_SECTOFF_DS:
7276 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7278 value -= os->address();
7281 case elfcpp::R_PPC64_TPREL16_DS:
7282 case elfcpp::R_PPC64_TPREL16_LO_DS:
7283 case elfcpp::R_PPC64_TPREL16_HIGH:
7284 case elfcpp::R_PPC64_TPREL16_HIGHA:
7286 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7288 case elfcpp::R_POWERPC_TPREL16:
7289 case elfcpp::R_POWERPC_TPREL16_LO:
7290 case elfcpp::R_POWERPC_TPREL16_HI:
7291 case elfcpp::R_POWERPC_TPREL16_HA:
7292 case elfcpp::R_POWERPC_TPREL:
7293 case elfcpp::R_PPC64_TPREL16_HIGHER:
7294 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7295 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7296 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7297 // tls symbol values are relative to tls_segment()->vaddr()
7301 case elfcpp::R_PPC64_DTPREL16_DS:
7302 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7303 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7304 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7305 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7306 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7308 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7309 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7311 case elfcpp::R_POWERPC_DTPREL16:
7312 case elfcpp::R_POWERPC_DTPREL16_LO:
7313 case elfcpp::R_POWERPC_DTPREL16_HI:
7314 case elfcpp::R_POWERPC_DTPREL16_HA:
7315 case elfcpp::R_POWERPC_DTPREL:
7316 case elfcpp::R_PPC64_DTPREL16_HIGH:
7317 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7318 // tls symbol values are relative to tls_segment()->vaddr()
7319 value -= dtp_offset;
7322 case elfcpp::R_PPC64_ADDR64_LOCAL:
7324 value += object->ppc64_local_entry_offset(gsym);
7326 value += object->ppc64_local_entry_offset(r_sym);
7333 Insn branch_bit = 0;
7336 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7337 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7338 branch_bit = 1 << 21;
7339 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7340 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7342 Insn* iview = reinterpret_cast<Insn*>(view);
7343 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7346 if (this->is_isa_v2)
7348 // Set 'a' bit. This is 0b00010 in BO field for branch
7349 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7350 // for branch on CTR insns (BO == 1a00t or 1a01t).
7351 if ((insn & (0x14 << 21)) == (0x04 << 21))
7353 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7360 // Invert 'y' bit if not the default.
7361 if (static_cast<Signed_address>(value) < 0)
7364 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7374 // Multi-instruction sequences that access the TOC can be
7375 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7376 // to nop; addi rb,r2,x;
7382 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7383 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7384 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7385 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7386 case elfcpp::R_POWERPC_GOT16_HA:
7387 case elfcpp::R_PPC64_TOC16_HA:
7388 if (parameters->options().toc_optimize())
7390 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7391 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7392 if ((insn & ((0x3f << 26) | 0x1f << 16))
7393 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7394 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7395 _("toc optimization is not supported "
7396 "for %#08x instruction"), insn);
7397 else if (value + 0x8000 < 0x10000)
7399 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7405 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7406 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7407 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7408 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7409 case elfcpp::R_POWERPC_GOT16_LO:
7410 case elfcpp::R_PPC64_GOT16_LO_DS:
7411 case elfcpp::R_PPC64_TOC16_LO:
7412 case elfcpp::R_PPC64_TOC16_LO_DS:
7413 if (parameters->options().toc_optimize())
7415 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7416 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7417 if (!ok_lo_toc_insn(insn))
7418 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7419 _("toc optimization is not supported "
7420 "for %#08x instruction"), insn);
7421 else if (value + 0x8000 < 0x10000)
7423 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7425 // Transform addic to addi when we change reg.
7426 insn &= ~((0x3f << 26) | (0x1f << 16));
7427 insn |= (14u << 26) | (2 << 16);
7431 insn &= ~(0x1f << 16);
7434 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7441 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7442 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7445 case elfcpp::R_POWERPC_ADDR32:
7446 case elfcpp::R_POWERPC_UADDR32:
7448 overflow = Reloc::CHECK_BITFIELD;
7451 case elfcpp::R_POWERPC_REL32:
7453 overflow = Reloc::CHECK_SIGNED;
7456 case elfcpp::R_POWERPC_UADDR16:
7457 overflow = Reloc::CHECK_BITFIELD;
7460 case elfcpp::R_POWERPC_ADDR16:
7461 // We really should have three separate relocations,
7462 // one for 16-bit data, one for insns with 16-bit signed fields,
7463 // and one for insns with 16-bit unsigned fields.
7464 overflow = Reloc::CHECK_BITFIELD;
7465 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7466 overflow = Reloc::CHECK_LOW_INSN;
7469 case elfcpp::R_POWERPC_ADDR16_HI:
7470 case elfcpp::R_POWERPC_ADDR16_HA:
7471 case elfcpp::R_POWERPC_GOT16_HI:
7472 case elfcpp::R_POWERPC_GOT16_HA:
7473 case elfcpp::R_POWERPC_PLT16_HI:
7474 case elfcpp::R_POWERPC_PLT16_HA:
7475 case elfcpp::R_POWERPC_SECTOFF_HI:
7476 case elfcpp::R_POWERPC_SECTOFF_HA:
7477 case elfcpp::R_PPC64_TOC16_HI:
7478 case elfcpp::R_PPC64_TOC16_HA:
7479 case elfcpp::R_PPC64_PLTGOT16_HI:
7480 case elfcpp::R_PPC64_PLTGOT16_HA:
7481 case elfcpp::R_POWERPC_TPREL16_HI:
7482 case elfcpp::R_POWERPC_TPREL16_HA:
7483 case elfcpp::R_POWERPC_DTPREL16_HI:
7484 case elfcpp::R_POWERPC_DTPREL16_HA:
7485 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7486 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7487 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7488 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7489 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7490 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7491 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7492 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7493 case elfcpp::R_POWERPC_REL16_HI:
7494 case elfcpp::R_POWERPC_REL16_HA:
7496 overflow = Reloc::CHECK_HIGH_INSN;
7499 case elfcpp::R_POWERPC_REL16:
7500 case elfcpp::R_PPC64_TOC16:
7501 case elfcpp::R_POWERPC_GOT16:
7502 case elfcpp::R_POWERPC_SECTOFF:
7503 case elfcpp::R_POWERPC_TPREL16:
7504 case elfcpp::R_POWERPC_DTPREL16:
7505 case elfcpp::R_POWERPC_GOT_TLSGD16:
7506 case elfcpp::R_POWERPC_GOT_TLSLD16:
7507 case elfcpp::R_POWERPC_GOT_TPREL16:
7508 case elfcpp::R_POWERPC_GOT_DTPREL16:
7509 overflow = Reloc::CHECK_LOW_INSN;
7512 case elfcpp::R_POWERPC_ADDR24:
7513 case elfcpp::R_POWERPC_ADDR14:
7514 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7515 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7516 case elfcpp::R_PPC64_ADDR16_DS:
7517 case elfcpp::R_POWERPC_REL24:
7518 case elfcpp::R_PPC_PLTREL24:
7519 case elfcpp::R_PPC_LOCAL24PC:
7520 case elfcpp::R_PPC64_TPREL16_DS:
7521 case elfcpp::R_PPC64_DTPREL16_DS:
7522 case elfcpp::R_PPC64_TOC16_DS:
7523 case elfcpp::R_PPC64_GOT16_DS:
7524 case elfcpp::R_PPC64_SECTOFF_DS:
7525 case elfcpp::R_POWERPC_REL14:
7526 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7527 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7528 overflow = Reloc::CHECK_SIGNED;
7532 if (overflow == Reloc::CHECK_LOW_INSN
7533 || overflow == Reloc::CHECK_HIGH_INSN)
7535 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7536 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7538 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7539 overflow = Reloc::CHECK_BITFIELD;
7540 else if (overflow == Reloc::CHECK_LOW_INSN
7541 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7542 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7543 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7544 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7545 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7546 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7547 overflow = Reloc::CHECK_UNSIGNED;
7549 overflow = Reloc::CHECK_SIGNED;
7552 typename Powerpc_relocate_functions<size, big_endian>::Status status
7553 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7556 case elfcpp::R_POWERPC_NONE:
7557 case elfcpp::R_POWERPC_TLS:
7558 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7559 case elfcpp::R_POWERPC_GNU_VTENTRY:
7562 case elfcpp::R_PPC64_ADDR64:
7563 case elfcpp::R_PPC64_REL64:
7564 case elfcpp::R_PPC64_TOC:
7565 case elfcpp::R_PPC64_ADDR64_LOCAL:
7566 Reloc::addr64(view, value);
7569 case elfcpp::R_POWERPC_TPREL:
7570 case elfcpp::R_POWERPC_DTPREL:
7572 Reloc::addr64(view, value);
7574 status = Reloc::addr32(view, value, overflow);
7577 case elfcpp::R_PPC64_UADDR64:
7578 Reloc::addr64_u(view, value);
7581 case elfcpp::R_POWERPC_ADDR32:
7582 status = Reloc::addr32(view, value, overflow);
7585 case elfcpp::R_POWERPC_REL32:
7586 case elfcpp::R_POWERPC_UADDR32:
7587 status = Reloc::addr32_u(view, value, overflow);
7590 case elfcpp::R_POWERPC_ADDR24:
7591 case elfcpp::R_POWERPC_REL24:
7592 case elfcpp::R_PPC_PLTREL24:
7593 case elfcpp::R_PPC_LOCAL24PC:
7594 status = Reloc::addr24(view, value, overflow);
7597 case elfcpp::R_POWERPC_GOT_DTPREL16:
7598 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7601 status = Reloc::addr16_ds(view, value, overflow);
7604 case elfcpp::R_POWERPC_ADDR16:
7605 case elfcpp::R_POWERPC_REL16:
7606 case elfcpp::R_PPC64_TOC16:
7607 case elfcpp::R_POWERPC_GOT16:
7608 case elfcpp::R_POWERPC_SECTOFF:
7609 case elfcpp::R_POWERPC_TPREL16:
7610 case elfcpp::R_POWERPC_DTPREL16:
7611 case elfcpp::R_POWERPC_GOT_TLSGD16:
7612 case elfcpp::R_POWERPC_GOT_TLSLD16:
7613 case elfcpp::R_POWERPC_GOT_TPREL16:
7614 case elfcpp::R_POWERPC_ADDR16_LO:
7615 case elfcpp::R_POWERPC_REL16_LO:
7616 case elfcpp::R_PPC64_TOC16_LO:
7617 case elfcpp::R_POWERPC_GOT16_LO:
7618 case elfcpp::R_POWERPC_SECTOFF_LO:
7619 case elfcpp::R_POWERPC_TPREL16_LO:
7620 case elfcpp::R_POWERPC_DTPREL16_LO:
7621 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7622 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7623 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7624 status = Reloc::addr16(view, value, overflow);
7627 case elfcpp::R_POWERPC_UADDR16:
7628 status = Reloc::addr16_u(view, value, overflow);
7631 case elfcpp::R_PPC64_ADDR16_HIGH:
7632 case elfcpp::R_PPC64_TPREL16_HIGH:
7633 case elfcpp::R_PPC64_DTPREL16_HIGH:
7635 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7637 case elfcpp::R_POWERPC_ADDR16_HI:
7638 case elfcpp::R_POWERPC_REL16_HI:
7639 case elfcpp::R_PPC64_TOC16_HI:
7640 case elfcpp::R_POWERPC_GOT16_HI:
7641 case elfcpp::R_POWERPC_SECTOFF_HI:
7642 case elfcpp::R_POWERPC_TPREL16_HI:
7643 case elfcpp::R_POWERPC_DTPREL16_HI:
7644 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7645 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7646 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7647 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7648 Reloc::addr16_hi(view, value);
7651 case elfcpp::R_PPC64_ADDR16_HIGHA:
7652 case elfcpp::R_PPC64_TPREL16_HIGHA:
7653 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7655 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7657 case elfcpp::R_POWERPC_ADDR16_HA:
7658 case elfcpp::R_POWERPC_REL16_HA:
7659 case elfcpp::R_PPC64_TOC16_HA:
7660 case elfcpp::R_POWERPC_GOT16_HA:
7661 case elfcpp::R_POWERPC_SECTOFF_HA:
7662 case elfcpp::R_POWERPC_TPREL16_HA:
7663 case elfcpp::R_POWERPC_DTPREL16_HA:
7664 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7665 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7666 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7667 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7668 Reloc::addr16_ha(view, value);
7671 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7673 // R_PPC_EMB_NADDR16_LO
7675 case elfcpp::R_PPC64_ADDR16_HIGHER:
7676 case elfcpp::R_PPC64_TPREL16_HIGHER:
7677 Reloc::addr16_hi2(view, value);
7680 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7682 // R_PPC_EMB_NADDR16_HI
7684 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7685 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7686 Reloc::addr16_ha2(view, value);
7689 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7691 // R_PPC_EMB_NADDR16_HA
7693 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7694 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7695 Reloc::addr16_hi3(view, value);
7698 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7702 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7703 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7704 Reloc::addr16_ha3(view, value);
7707 case elfcpp::R_PPC64_DTPREL16_DS:
7708 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7710 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7712 case elfcpp::R_PPC64_TPREL16_DS:
7713 case elfcpp::R_PPC64_TPREL16_LO_DS:
7715 // R_PPC_TLSGD, R_PPC_TLSLD
7717 case elfcpp::R_PPC64_ADDR16_DS:
7718 case elfcpp::R_PPC64_ADDR16_LO_DS:
7719 case elfcpp::R_PPC64_TOC16_DS:
7720 case elfcpp::R_PPC64_TOC16_LO_DS:
7721 case elfcpp::R_PPC64_GOT16_DS:
7722 case elfcpp::R_PPC64_GOT16_LO_DS:
7723 case elfcpp::R_PPC64_SECTOFF_DS:
7724 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7725 status = Reloc::addr16_ds(view, value, overflow);
7728 case elfcpp::R_POWERPC_ADDR14:
7729 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7730 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7731 case elfcpp::R_POWERPC_REL14:
7732 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7733 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7734 status = Reloc::addr14(view, value, overflow);
7737 case elfcpp::R_POWERPC_COPY:
7738 case elfcpp::R_POWERPC_GLOB_DAT:
7739 case elfcpp::R_POWERPC_JMP_SLOT:
7740 case elfcpp::R_POWERPC_RELATIVE:
7741 case elfcpp::R_POWERPC_DTPMOD:
7742 case elfcpp::R_PPC64_JMP_IREL:
7743 case elfcpp::R_POWERPC_IRELATIVE:
7744 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7745 _("unexpected reloc %u in object file"),
7749 case elfcpp::R_PPC_EMB_SDA21:
7754 // R_PPC64_TOCSAVE. For the time being this can be ignored.
7758 case elfcpp::R_PPC_EMB_SDA2I16:
7759 case elfcpp::R_PPC_EMB_SDA2REL:
7762 // R_PPC64_TLSGD, R_PPC64_TLSLD
7765 case elfcpp::R_POWERPC_PLT32:
7766 case elfcpp::R_POWERPC_PLTREL32:
7767 case elfcpp::R_POWERPC_PLT16_LO:
7768 case elfcpp::R_POWERPC_PLT16_HI:
7769 case elfcpp::R_POWERPC_PLT16_HA:
7770 case elfcpp::R_PPC_SDAREL16:
7771 case elfcpp::R_POWERPC_ADDR30:
7772 case elfcpp::R_PPC64_PLT64:
7773 case elfcpp::R_PPC64_PLTREL64:
7774 case elfcpp::R_PPC64_PLTGOT16:
7775 case elfcpp::R_PPC64_PLTGOT16_LO:
7776 case elfcpp::R_PPC64_PLTGOT16_HI:
7777 case elfcpp::R_PPC64_PLTGOT16_HA:
7778 case elfcpp::R_PPC64_PLT16_LO_DS:
7779 case elfcpp::R_PPC64_PLTGOT16_DS:
7780 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7781 case elfcpp::R_PPC_EMB_RELSDA:
7782 case elfcpp::R_PPC_TOC16:
7785 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7786 _("unsupported reloc %u"),
7790 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
7793 && gsym->is_weak_undefined()
7794 && is_branch_reloc(r_type))))
7796 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7797 _("relocation overflow"));
7799 gold_info(_("try relinking with a smaller --stub-group-size"));
7805 // Relocate section data.
7807 template<int size, bool big_endian>
7809 Target_powerpc<size, big_endian>::relocate_section(
7810 const Relocate_info<size, big_endian>* relinfo,
7811 unsigned int sh_type,
7812 const unsigned char* prelocs,
7814 Output_section* output_section,
7815 bool needs_special_offset_handling,
7816 unsigned char* view,
7818 section_size_type view_size,
7819 const Reloc_symbol_changes* reloc_symbol_changes)
7821 typedef Target_powerpc<size, big_endian> Powerpc;
7822 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7823 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7824 Powerpc_comdat_behavior;
7826 gold_assert(sh_type == elfcpp::SHT_RELA);
7828 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7829 Powerpc_relocate, Powerpc_comdat_behavior>(
7835 needs_special_offset_handling,
7839 reloc_symbol_changes);
7842 class Powerpc_scan_relocatable_reloc
7845 // Return the strategy to use for a local symbol which is not a
7846 // section symbol, given the relocation type.
7847 inline Relocatable_relocs::Reloc_strategy
7848 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7850 if (r_type == 0 && r_sym == 0)
7851 return Relocatable_relocs::RELOC_DISCARD;
7852 return Relocatable_relocs::RELOC_COPY;
7855 // Return the strategy to use for a local symbol which is a section
7856 // symbol, given the relocation type.
7857 inline Relocatable_relocs::Reloc_strategy
7858 local_section_strategy(unsigned int, Relobj*)
7860 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7863 // Return the strategy to use for a global symbol, given the
7864 // relocation type, the object, and the symbol index.
7865 inline Relocatable_relocs::Reloc_strategy
7866 global_strategy(unsigned int r_type, Relobj*, unsigned int)
7868 if (r_type == elfcpp::R_PPC_PLTREL24)
7869 return Relocatable_relocs::RELOC_SPECIAL;
7870 return Relocatable_relocs::RELOC_COPY;
7874 // Scan the relocs during a relocatable link.
7876 template<int size, bool big_endian>
7878 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7879 Symbol_table* symtab,
7881 Sized_relobj_file<size, big_endian>* object,
7882 unsigned int data_shndx,
7883 unsigned int sh_type,
7884 const unsigned char* prelocs,
7886 Output_section* output_section,
7887 bool needs_special_offset_handling,
7888 size_t local_symbol_count,
7889 const unsigned char* plocal_symbols,
7890 Relocatable_relocs* rr)
7892 gold_assert(sh_type == elfcpp::SHT_RELA);
7894 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7895 Powerpc_scan_relocatable_reloc>(
7903 needs_special_offset_handling,
7909 // Emit relocations for a section.
7910 // This is a modified version of the function by the same name in
7911 // target-reloc.h. Using relocate_special_relocatable for
7912 // R_PPC_PLTREL24 would require duplication of the entire body of the
7913 // loop, so we may as well duplicate the whole thing.
7915 template<int size, bool big_endian>
7917 Target_powerpc<size, big_endian>::relocate_relocs(
7918 const Relocate_info<size, big_endian>* relinfo,
7919 unsigned int sh_type,
7920 const unsigned char* prelocs,
7922 Output_section* output_section,
7923 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7924 const Relocatable_relocs* rr,
7926 Address view_address,
7928 unsigned char* reloc_view,
7929 section_size_type reloc_view_size)
7931 gold_assert(sh_type == elfcpp::SHT_RELA);
7933 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7935 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7937 const int reloc_size
7938 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7940 Powerpc_relobj<size, big_endian>* const object
7941 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7942 const unsigned int local_count = object->local_symbol_count();
7943 unsigned int got2_shndx = object->got2_shndx();
7944 Address got2_addend = 0;
7945 if (got2_shndx != 0)
7947 got2_addend = object->get_output_section_offset(got2_shndx);
7948 gold_assert(got2_addend != invalid_address);
7951 unsigned char* pwrite = reloc_view;
7952 bool zap_next = false;
7953 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7955 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7956 if (strategy == Relocatable_relocs::RELOC_DISCARD)
7959 Reltype reloc(prelocs);
7960 Reltype_write reloc_write(pwrite);
7962 Address offset = reloc.get_r_offset();
7963 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7964 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7965 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7966 const unsigned int orig_r_sym = r_sym;
7967 typename elfcpp::Elf_types<size>::Elf_Swxword addend
7968 = reloc.get_r_addend();
7969 const Symbol* gsym = NULL;
7973 // We could arrange to discard these and other relocs for
7974 // tls optimised sequences in the strategy methods, but for
7975 // now do as BFD ld does.
7976 r_type = elfcpp::R_POWERPC_NONE;
7980 // Get the new symbol index.
7981 if (r_sym < local_count)
7985 case Relocatable_relocs::RELOC_COPY:
7986 case Relocatable_relocs::RELOC_SPECIAL:
7989 r_sym = object->symtab_index(r_sym);
7990 gold_assert(r_sym != -1U);
7994 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7996 // We are adjusting a section symbol. We need to find
7997 // the symbol table index of the section symbol for
7998 // the output section corresponding to input section
7999 // in which this symbol is defined.
8000 gold_assert(r_sym < local_count);
8002 unsigned int shndx =
8003 object->local_symbol_input_shndx(r_sym, &is_ordinary);
8004 gold_assert(is_ordinary);
8005 Output_section* os = object->output_section(shndx);
8006 gold_assert(os != NULL);
8007 gold_assert(os->needs_symtab_index());
8008 r_sym = os->symtab_index();
8018 gsym = object->global_symbol(r_sym);
8019 gold_assert(gsym != NULL);
8020 if (gsym->is_forwarder())
8021 gsym = relinfo->symtab->resolve_forwards(gsym);
8023 gold_assert(gsym->has_symtab_index());
8024 r_sym = gsym->symtab_index();
8027 // Get the new offset--the location in the output section where
8028 // this relocation should be applied.
8029 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8030 offset += offset_in_output_section;
8033 section_offset_type sot_offset =
8034 convert_types<section_offset_type, Address>(offset);
8035 section_offset_type new_sot_offset =
8036 output_section->output_offset(object, relinfo->data_shndx,
8038 gold_assert(new_sot_offset != -1);
8039 offset = new_sot_offset;
8042 // In an object file, r_offset is an offset within the section.
8043 // In an executable or dynamic object, generated by
8044 // --emit-relocs, r_offset is an absolute address.
8045 if (!parameters->options().relocatable())
8047 offset += view_address;
8048 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8049 offset -= offset_in_output_section;
8052 // Handle the reloc addend based on the strategy.
8053 if (strategy == Relocatable_relocs::RELOC_COPY)
8055 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8057 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8058 addend = psymval->value(object, addend);
8060 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8062 if (addend >= 32768)
8063 addend += got2_addend;
8068 if (!parameters->options().relocatable())
8070 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8071 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8072 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8073 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8075 // First instruction of a global dynamic sequence,
8077 const bool final = gsym == NULL || gsym->final_value_is_known();
8078 switch (this->optimize_tls_gd(final))
8080 case tls::TLSOPT_TO_IE:
8081 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8082 - elfcpp::R_POWERPC_GOT_TLSGD16);
8084 case tls::TLSOPT_TO_LE:
8085 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8086 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8087 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8090 r_type = elfcpp::R_POWERPC_NONE;
8091 offset -= 2 * big_endian;
8098 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8099 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8100 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8101 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8103 // First instruction of a local dynamic sequence,
8105 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8107 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8108 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8110 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8111 const Output_section* os = relinfo->layout->tls_segment()
8113 gold_assert(os != NULL);
8114 gold_assert(os->needs_symtab_index());
8115 r_sym = os->symtab_index();
8116 addend = dtp_offset;
8120 r_type = elfcpp::R_POWERPC_NONE;
8121 offset -= 2 * big_endian;
8125 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8126 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8127 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8128 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8130 // First instruction of initial exec sequence.
8131 const bool final = gsym == NULL || gsym->final_value_is_known();
8132 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8134 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8135 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8136 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8139 r_type = elfcpp::R_POWERPC_NONE;
8140 offset -= 2 * big_endian;
8144 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8145 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8147 // Second instruction of a global dynamic sequence,
8148 // the __tls_get_addr call
8149 const bool final = gsym == NULL || gsym->final_value_is_known();
8150 switch (this->optimize_tls_gd(final))
8152 case tls::TLSOPT_TO_IE:
8153 r_type = elfcpp::R_POWERPC_NONE;
8156 case tls::TLSOPT_TO_LE:
8157 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8158 offset += 2 * big_endian;
8165 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8166 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8168 // Second instruction of a local dynamic sequence,
8169 // the __tls_get_addr call
8170 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8172 const Output_section* os = relinfo->layout->tls_segment()
8174 gold_assert(os != NULL);
8175 gold_assert(os->needs_symtab_index());
8176 r_sym = os->symtab_index();
8177 addend = dtp_offset;
8178 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8179 offset += 2 * big_endian;
8183 else if (r_type == elfcpp::R_POWERPC_TLS)
8185 // Second instruction of an initial exec sequence
8186 const bool final = gsym == NULL || gsym->final_value_is_known();
8187 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8189 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8190 offset += 2 * big_endian;
8195 reloc_write.put_r_offset(offset);
8196 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8197 reloc_write.put_r_addend(addend);
8199 pwrite += reloc_size;
8202 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8203 == reloc_view_size);
8206 // Return the value to use for a dynamic symbol which requires special
8207 // treatment. This is how we support equality comparisons of function
8208 // pointers across shared library boundaries, as described in the
8209 // processor specific ABI supplement.
8211 template<int size, bool big_endian>
8213 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8217 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8218 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8219 p != this->stub_tables_.end();
8222 Address off = (*p)->find_plt_call_entry(gsym);
8223 if (off != invalid_address)
8224 return (*p)->stub_address() + off;
8227 else if (this->abiversion() >= 2)
8229 unsigned int off = this->glink_section()->find_global_entry(gsym);
8230 if (off != (unsigned int)-1)
8231 return this->glink_section()->global_entry_address() + off;
8236 // Return the PLT address to use for a local symbol.
8237 template<int size, bool big_endian>
8239 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8240 const Relobj* object,
8241 unsigned int symndx) const
8245 const Sized_relobj<size, big_endian>* relobj
8246 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8247 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8248 p != this->stub_tables_.end();
8251 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8253 if (off != invalid_address)
8254 return (*p)->stub_address() + off;
8260 // Return the PLT address to use for a global symbol.
8261 template<int size, bool big_endian>
8263 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8264 const Symbol* gsym) const
8268 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8269 p != this->stub_tables_.end();
8272 Address off = (*p)->find_plt_call_entry(gsym);
8273 if (off != invalid_address)
8274 return (*p)->stub_address() + off;
8277 else if (this->abiversion() >= 2)
8279 unsigned int off = this->glink_section()->find_global_entry(gsym);
8280 if (off != (unsigned int)-1)
8281 return this->glink_section()->global_entry_address() + off;
8286 // Return the offset to use for the GOT_INDX'th got entry which is
8287 // for a local tls symbol specified by OBJECT, SYMNDX.
8288 template<int size, bool big_endian>
8290 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8291 const Relobj* object,
8292 unsigned int symndx,
8293 unsigned int got_indx) const
8295 const Powerpc_relobj<size, big_endian>* ppc_object
8296 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8297 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8299 for (Got_type got_type = GOT_TYPE_TLSGD;
8300 got_type <= GOT_TYPE_TPREL;
8301 got_type = Got_type(got_type + 1))
8302 if (ppc_object->local_has_got_offset(symndx, got_type))
8304 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8305 if (got_type == GOT_TYPE_TLSGD)
8307 if (off == got_indx * (size / 8))
8309 if (got_type == GOT_TYPE_TPREL)
8319 // Return the offset to use for the GOT_INDX'th got entry which is
8320 // for global tls symbol GSYM.
8321 template<int size, bool big_endian>
8323 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8325 unsigned int got_indx) const
8327 if (gsym->type() == elfcpp::STT_TLS)
8329 for (Got_type got_type = GOT_TYPE_TLSGD;
8330 got_type <= GOT_TYPE_TPREL;
8331 got_type = Got_type(got_type + 1))
8332 if (gsym->has_got_offset(got_type))
8334 unsigned int off = gsym->got_offset(got_type);
8335 if (got_type == GOT_TYPE_TLSGD)
8337 if (off == got_indx * (size / 8))
8339 if (got_type == GOT_TYPE_TPREL)
8349 // The selector for powerpc object files.
8351 template<int size, bool big_endian>
8352 class Target_selector_powerpc : public Target_selector
8355 Target_selector_powerpc()
8356 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8359 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8360 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8362 ? (big_endian ? "elf64ppc" : "elf64lppc")
8363 : (big_endian ? "elf32ppc" : "elf32lppc")))
8367 do_instantiate_target()
8368 { return new Target_powerpc<size, big_endian>(); }
8371 Target_selector_powerpc<32, true> target_selector_ppc32;
8372 Target_selector_powerpc<32, false> target_selector_ppc32le;
8373 Target_selector_powerpc<64, true> target_selector_ppc64;
8374 Target_selector_powerpc<64, false> target_selector_ppc64le;
8376 // Instantiate these constants for -O0
8377 template<int size, bool big_endian>
8378 const int Output_data_glink<size, big_endian>::pltresolve_size;
8379 template<int size, bool big_endian>
8380 const typename Output_data_glink<size, big_endian>::Address
8381 Output_data_glink<size, big_endian>::invalid_address;
8382 template<int size, bool big_endian>
8383 const typename Stub_table<size, big_endian>::Address
8384 Stub_table<size, big_endian>::invalid_address;
8385 template<int size, bool big_endian>
8386 const typename Target_powerpc<size, big_endian>::Address
8387 Target_powerpc<size, big_endian>::invalid_address;
8389 } // End anonymous namespace.