Automatic date update in version.in
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2019 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44 #include "attributes.h"
45
46 namespace
47 {
48
49 using namespace gold;
50
51 template<int size, bool big_endian>
52 class Output_data_plt_powerpc;
53
54 template<int size, bool big_endian>
55 class Output_data_brlt_powerpc;
56
57 template<int size, bool big_endian>
58 class Output_data_got_powerpc;
59
60 template<int size, bool big_endian>
61 class Output_data_glink;
62
63 template<int size, bool big_endian>
64 class Stub_table;
65
66 template<int size, bool big_endian>
67 class Output_data_save_res;
68
69 template<int size, bool big_endian>
70 class Target_powerpc;
71
72 struct Stub_table_owner
73 {
74   Stub_table_owner()
75     : output_section(NULL), owner(NULL)
76   { }
77
78   Output_section* output_section;
79   const Output_section::Input_section* owner;
80 };
81
82 template<int size>
83 inline bool is_branch_reloc(unsigned int);
84
85 template<int size>
86 inline bool is_plt16_reloc(unsigned int);
87
88 // Counter incremented on every Powerpc_relobj constructed.
89 static uint32_t object_id = 0;
90
91 template<int size, bool big_endian>
92 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
93 {
94 public:
95   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
96   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
97   typedef Unordered_map<Address, Section_refs> Access_from;
98
99   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
100                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
101     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
102       uniq_(object_id++), special_(0), relatoc_(0), toc_(0),
103       has_small_toc_reloc_(false), opd_valid_(false),
104       e_flags_(ehdr.get_e_flags()), no_toc_opt_(), opd_ent_(),
105       access_from_map_(), has14_(), stub_table_index_(), st_other_(),
106       attributes_section_data_(NULL)
107   {
108     this->set_abiversion(0);
109   }
110
111   ~Powerpc_relobj()
112   { delete this->attributes_section_data_; }
113
114   // Read the symbols then set up st_other vector.
115   void
116   do_read_symbols(Read_symbols_data*);
117
118   // Arrange to always relocate .toc first.
119   virtual void
120   do_relocate_sections(
121       const Symbol_table* symtab, const Layout* layout,
122       const unsigned char* pshdrs, Output_file* of,
123       typename Sized_relobj_file<size, big_endian>::Views* pviews);
124
125   // The .toc section index.
126   unsigned int
127   toc_shndx() const
128   {
129     return this->toc_;
130   }
131
132   // Mark .toc entry at OFF as not optimizable.
133   void
134   set_no_toc_opt(Address off)
135   {
136     if (this->no_toc_opt_.empty())
137       this->no_toc_opt_.resize(this->section_size(this->toc_shndx())
138                                / (size / 8));
139     off /= size / 8;
140     if (off < this->no_toc_opt_.size())
141       this->no_toc_opt_[off] = true;
142   }
143
144   // Mark the entire .toc as not optimizable.
145   void
146   set_no_toc_opt()
147   {
148     this->no_toc_opt_.resize(1);
149     this->no_toc_opt_[0] = true;
150   }
151
152   // Return true if code using the .toc entry at OFF should not be edited.
153   bool
154   no_toc_opt(Address off) const
155   {
156     if (this->no_toc_opt_.empty())
157       return false;
158     off /= size / 8;
159     if (off >= this->no_toc_opt_.size())
160       return true;
161     return this->no_toc_opt_[off];
162   }
163
164   // The .got2 section shndx.
165   unsigned int
166   got2_shndx() const
167   {
168     if (size == 32)
169       return this->special_;
170     else
171       return 0;
172   }
173
174   // The .opd section shndx.
175   unsigned int
176   opd_shndx() const
177   {
178     if (size == 32)
179       return 0;
180     else
181       return this->special_;
182   }
183
184   // Init OPD entry arrays.
185   void
186   init_opd(size_t opd_size)
187   {
188     size_t count = this->opd_ent_ndx(opd_size);
189     this->opd_ent_.resize(count);
190   }
191
192   // Return section and offset of function entry for .opd + R_OFF.
193   unsigned int
194   get_opd_ent(Address r_off, Address* value = NULL) const
195   {
196     size_t ndx = this->opd_ent_ndx(r_off);
197     gold_assert(ndx < this->opd_ent_.size());
198     gold_assert(this->opd_ent_[ndx].shndx != 0);
199     if (value != NULL)
200       *value = this->opd_ent_[ndx].off;
201     return this->opd_ent_[ndx].shndx;
202   }
203
204   // Set section and offset of function entry for .opd + R_OFF.
205   void
206   set_opd_ent(Address r_off, unsigned int shndx, Address value)
207   {
208     size_t ndx = this->opd_ent_ndx(r_off);
209     gold_assert(ndx < this->opd_ent_.size());
210     this->opd_ent_[ndx].shndx = shndx;
211     this->opd_ent_[ndx].off = value;
212   }
213
214   // Return discard flag for .opd + R_OFF.
215   bool
216   get_opd_discard(Address r_off) const
217   {
218     size_t ndx = this->opd_ent_ndx(r_off);
219     gold_assert(ndx < this->opd_ent_.size());
220     return this->opd_ent_[ndx].discard;
221   }
222
223   // Set discard flag for .opd + R_OFF.
224   void
225   set_opd_discard(Address r_off)
226   {
227     size_t ndx = this->opd_ent_ndx(r_off);
228     gold_assert(ndx < this->opd_ent_.size());
229     this->opd_ent_[ndx].discard = true;
230   }
231
232   bool
233   opd_valid() const
234   { return this->opd_valid_; }
235
236   void
237   set_opd_valid()
238   { this->opd_valid_ = true; }
239
240   // Examine .rela.opd to build info about function entry points.
241   void
242   scan_opd_relocs(size_t reloc_count,
243                   const unsigned char* prelocs,
244                   const unsigned char* plocal_syms);
245
246   // Returns true if a code sequence loading a TOC entry can be
247   // converted into code calculating a TOC pointer relative offset.
248   bool
249   make_toc_relative(Target_powerpc<size, big_endian>* target,
250                     Address* value);
251
252   bool
253   make_got_relative(Target_powerpc<size, big_endian>* target,
254                     const Symbol_value<size>* psymval,
255                     Address addend,
256                     Address* value);
257
258   // Perform the Sized_relobj_file method, then set up opd info from
259   // .opd relocs.
260   void
261   do_read_relocs(Read_relocs_data*);
262
263   bool
264   do_find_special_sections(Read_symbols_data* sd);
265
266   // Adjust this local symbol value.  Return false if the symbol
267   // should be discarded from the output file.
268   bool
269   do_adjust_local_symbol(Symbol_value<size>* lv) const
270   {
271     if (size == 64 && this->opd_shndx() != 0)
272       {
273         bool is_ordinary;
274         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
275           return true;
276         if (this->get_opd_discard(lv->input_value()))
277           return false;
278       }
279     return true;
280   }
281
282   Access_from*
283   access_from_map()
284   { return &this->access_from_map_; }
285
286   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
287   // section at DST_OFF.
288   void
289   add_reference(Relobj* src_obj,
290                 unsigned int src_indx,
291                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
292   {
293     Section_id src_id(src_obj, src_indx);
294     this->access_from_map_[dst_off].insert(src_id);
295   }
296
297   // Add a reference to the code section specified by the .opd entry
298   // at DST_OFF
299   void
300   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
301   {
302     size_t ndx = this->opd_ent_ndx(dst_off);
303     if (ndx >= this->opd_ent_.size())
304       this->opd_ent_.resize(ndx + 1);
305     this->opd_ent_[ndx].gc_mark = true;
306   }
307
308   void
309   process_gc_mark(Symbol_table* symtab)
310   {
311     for (size_t i = 0; i < this->opd_ent_.size(); i++)
312       if (this->opd_ent_[i].gc_mark)
313         {
314           unsigned int shndx = this->opd_ent_[i].shndx;
315           symtab->gc()->worklist().push_back(Section_id(this, shndx));
316         }
317   }
318
319   // Return offset in output GOT section that this object will use
320   // as a TOC pointer.  Won't be just a constant with multi-toc support.
321   Address
322   toc_base_offset() const
323   { return 0x8000; }
324
325   void
326   set_has_small_toc_reloc()
327   { has_small_toc_reloc_ = true; }
328
329   bool
330   has_small_toc_reloc() const
331   { return has_small_toc_reloc_; }
332
333   void
334   set_has_14bit_branch(unsigned int shndx)
335   {
336     if (shndx >= this->has14_.size())
337       this->has14_.resize(shndx + 1);
338     this->has14_[shndx] = true;
339   }
340
341   bool
342   has_14bit_branch(unsigned int shndx) const
343   { return shndx < this->has14_.size() && this->has14_[shndx];  }
344
345   void
346   set_stub_table(unsigned int shndx, unsigned int stub_index)
347   {
348     if (shndx >= this->stub_table_index_.size())
349       this->stub_table_index_.resize(shndx + 1, -1);
350     this->stub_table_index_[shndx] = stub_index;
351   }
352
353   Stub_table<size, big_endian>*
354   stub_table(unsigned int shndx)
355   {
356     if (shndx < this->stub_table_index_.size())
357       {
358         Target_powerpc<size, big_endian>* target
359           = static_cast<Target_powerpc<size, big_endian>*>(
360               parameters->sized_target<size, big_endian>());
361         unsigned int indx = this->stub_table_index_[shndx];
362         if (indx < target->stub_tables().size())
363           return target->stub_tables()[indx];
364       }
365     return NULL;
366   }
367
368   void
369   clear_stub_table()
370   {
371     this->stub_table_index_.clear();
372   }
373
374   uint32_t
375   uniq() const
376   { return this->uniq_; }
377
378   int
379   abiversion() const
380   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
381
382   // Set ABI version for input and output
383   void
384   set_abiversion(int ver);
385
386   unsigned int
387   st_other (unsigned int symndx) const
388   {
389     return this->st_other_[symndx];
390   }
391
392   unsigned int
393   ppc64_local_entry_offset(const Symbol* sym) const
394   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
395
396   unsigned int
397   ppc64_local_entry_offset(unsigned int symndx) const
398   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
399
400   bool
401   ppc64_needs_toc(const Symbol* sym) const
402   { return sym->nonvis() > 1 << 3; }
403
404   bool
405   ppc64_needs_toc(unsigned int symndx) const
406   { return this->st_other_[symndx] > 1 << 5; }
407
408   // The contents of the .gnu.attributes section if there is one.
409   const Attributes_section_data*
410   attributes_section_data() const
411   { return this->attributes_section_data_; }
412
413 private:
414   struct Opd_ent
415   {
416     unsigned int shndx;
417     bool discard : 1;
418     bool gc_mark : 1;
419     Address off;
420   };
421
422   // Return index into opd_ent_ array for .opd entry at OFF.
423   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
424   // apart when the language doesn't use the last 8-byte word, the
425   // environment pointer.  Thus dividing the entry section offset by
426   // 16 will give an index into opd_ent_ that works for either layout
427   // of .opd.  (It leaves some elements of the vector unused when .opd
428   // entries are spaced 24 bytes apart, but we don't know the spacing
429   // until relocations are processed, and in any case it is possible
430   // for an object to have some entries spaced 16 bytes apart and
431   // others 24 bytes apart.)
432   size_t
433   opd_ent_ndx(size_t off) const
434   { return off >> 4;}
435
436   // Per object unique identifier
437   uint32_t uniq_;
438
439   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
440   unsigned int special_;
441
442   // For 64-bit the .rela.toc and .toc section shdnx.
443   unsigned int relatoc_;
444   unsigned int toc_;
445
446   // For 64-bit, whether this object uses small model relocs to access
447   // the toc.
448   bool has_small_toc_reloc_;
449
450   // Set at the start of gc_process_relocs, when we know opd_ent_
451   // vector is valid.  The flag could be made atomic and set in
452   // do_read_relocs with memory_order_release and then tested with
453   // memory_order_acquire, potentially resulting in fewer entries in
454   // access_from_map_.
455   bool opd_valid_;
456
457   // Header e_flags
458   elfcpp::Elf_Word e_flags_;
459
460   // For 64-bit, an array with one entry per 64-bit word in the .toc
461   // section, set if accesses using that word cannot be optimised.
462   std::vector<bool> no_toc_opt_;
463
464   // The first 8-byte word of an OPD entry gives the address of the
465   // entry point of the function.  Relocatable object files have a
466   // relocation on this word.  The following vector records the
467   // section and offset specified by these relocations.
468   std::vector<Opd_ent> opd_ent_;
469
470   // References made to this object's .opd section when running
471   // gc_process_relocs for another object, before the opd_ent_ vector
472   // is valid for this object.
473   Access_from access_from_map_;
474
475   // Whether input section has a 14-bit branch reloc.
476   std::vector<bool> has14_;
477
478   // The stub table to use for a given input section.
479   std::vector<unsigned int> stub_table_index_;
480
481   // ELF st_other field for local symbols.
482   std::vector<unsigned char> st_other_;
483
484   // Object attributes if there is a .gnu.attributes section.
485   Attributes_section_data* attributes_section_data_;
486 };
487
488 template<int size, bool big_endian>
489 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
490 {
491 public:
492   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
493
494   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
495                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
496     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
497       opd_shndx_(0), e_flags_(ehdr.get_e_flags()), opd_ent_(),
498       attributes_section_data_(NULL)
499   {
500     this->set_abiversion(0);
501   }
502
503   ~Powerpc_dynobj()
504   { delete this->attributes_section_data_; }
505
506   // Call Sized_dynobj::do_read_symbols to read the symbols then
507   // read .opd from a dynamic object, filling in opd_ent_ vector,
508   void
509   do_read_symbols(Read_symbols_data*);
510
511   // The .opd section shndx.
512   unsigned int
513   opd_shndx() const
514   {
515     return this->opd_shndx_;
516   }
517
518   // The .opd section address.
519   Address
520   opd_address() const
521   {
522     return this->opd_address_;
523   }
524
525   // Init OPD entry arrays.
526   void
527   init_opd(size_t opd_size)
528   {
529     size_t count = this->opd_ent_ndx(opd_size);
530     this->opd_ent_.resize(count);
531   }
532
533   // Return section and offset of function entry for .opd + R_OFF.
534   unsigned int
535   get_opd_ent(Address r_off, Address* value = NULL) const
536   {
537     size_t ndx = this->opd_ent_ndx(r_off);
538     gold_assert(ndx < this->opd_ent_.size());
539     gold_assert(this->opd_ent_[ndx].shndx != 0);
540     if (value != NULL)
541       *value = this->opd_ent_[ndx].off;
542     return this->opd_ent_[ndx].shndx;
543   }
544
545   // Set section and offset of function entry for .opd + R_OFF.
546   void
547   set_opd_ent(Address r_off, unsigned int shndx, Address value)
548   {
549     size_t ndx = this->opd_ent_ndx(r_off);
550     gold_assert(ndx < this->opd_ent_.size());
551     this->opd_ent_[ndx].shndx = shndx;
552     this->opd_ent_[ndx].off = value;
553   }
554
555   int
556   abiversion() const
557   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
558
559   // Set ABI version for input and output.
560   void
561   set_abiversion(int ver);
562
563   // The contents of the .gnu.attributes section if there is one.
564   const Attributes_section_data*
565   attributes_section_data() const
566   { return this->attributes_section_data_; }
567
568 private:
569   // Used to specify extent of executable sections.
570   struct Sec_info
571   {
572     Sec_info(Address start_, Address len_, unsigned int shndx_)
573       : start(start_), len(len_), shndx(shndx_)
574     { }
575
576     bool
577     operator<(const Sec_info& that) const
578     { return this->start < that.start; }
579
580     Address start;
581     Address len;
582     unsigned int shndx;
583   };
584
585   struct Opd_ent
586   {
587     unsigned int shndx;
588     Address off;
589   };
590
591   // Return index into opd_ent_ array for .opd entry at OFF.
592   size_t
593   opd_ent_ndx(size_t off) const
594   { return off >> 4;}
595
596   // For 64-bit the .opd section shndx and address.
597   unsigned int opd_shndx_;
598   Address opd_address_;
599
600   // Header e_flags
601   elfcpp::Elf_Word e_flags_;
602
603   // The first 8-byte word of an OPD entry gives the address of the
604   // entry point of the function.  Records the section and offset
605   // corresponding to the address.  Note that in dynamic objects,
606   // offset is *not* relative to the section.
607   std::vector<Opd_ent> opd_ent_;
608
609   // Object attributes if there is a .gnu.attributes section.
610   Attributes_section_data* attributes_section_data_;
611 };
612
613 // Powerpc_copy_relocs class.  Needed to peek at dynamic relocs the
614 // base class will emit.
615
616 template<int sh_type, int size, bool big_endian>
617 class Powerpc_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
618 {
619  public:
620   Powerpc_copy_relocs()
621     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_POWERPC_COPY)
622   { }
623
624   // Emit any saved relocations which turn out to be needed.  This is
625   // called after all the relocs have been scanned.
626   void
627   emit(Output_data_reloc<sh_type, true, size, big_endian>*);
628 };
629
630 template<int size, bool big_endian>
631 class Target_powerpc : public Sized_target<size, big_endian>
632 {
633  public:
634   typedef
635     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
636   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
637   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
638   typedef Unordered_set<Symbol_location, Symbol_location_hash> Tocsave_loc;
639   static const Address invalid_address = static_cast<Address>(0) - 1;
640   // Offset of tp and dtp pointers from start of TLS block.
641   static const Address tp_offset = 0x7000;
642   static const Address dtp_offset = 0x8000;
643
644   Target_powerpc()
645     : Sized_target<size, big_endian>(&powerpc_info),
646       got_(NULL), plt_(NULL), iplt_(NULL), lplt_(NULL), brlt_section_(NULL),
647       glink_(NULL), rela_dyn_(NULL), copy_relocs_(),
648       tlsld_got_offset_(-1U),
649       stub_tables_(), branch_lookup_table_(), branch_info_(), tocsave_loc_(),
650       powerxx_stubs_(false), plt_thread_safe_(false), plt_localentry0_(false),
651       plt_localentry0_init_(false), has_localentry0_(false),
652       has_tls_get_addr_opt_(false),
653       relax_failed_(false), relax_fail_count_(0),
654       stub_group_size_(0), savres_section_(0),
655       tls_get_addr_(NULL), tls_get_addr_opt_(NULL),
656       attributes_section_data_(NULL),
657       last_fp_(NULL), last_ld_(NULL), last_vec_(NULL), last_struct_(NULL)
658   {
659   }
660
661   // Process the relocations to determine unreferenced sections for
662   // garbage collection.
663   void
664   gc_process_relocs(Symbol_table* symtab,
665                     Layout* layout,
666                     Sized_relobj_file<size, big_endian>* object,
667                     unsigned int data_shndx,
668                     unsigned int sh_type,
669                     const unsigned char* prelocs,
670                     size_t reloc_count,
671                     Output_section* output_section,
672                     bool needs_special_offset_handling,
673                     size_t local_symbol_count,
674                     const unsigned char* plocal_symbols);
675
676   // Scan the relocations to look for symbol adjustments.
677   void
678   scan_relocs(Symbol_table* symtab,
679               Layout* layout,
680               Sized_relobj_file<size, big_endian>* object,
681               unsigned int data_shndx,
682               unsigned int sh_type,
683               const unsigned char* prelocs,
684               size_t reloc_count,
685               Output_section* output_section,
686               bool needs_special_offset_handling,
687               size_t local_symbol_count,
688               const unsigned char* plocal_symbols);
689
690   // Map input .toc section to output .got section.
691   const char*
692   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
693   {
694     if (size == 64 && strcmp(name, ".toc") == 0)
695       {
696         *plen = 4;
697         return ".got";
698       }
699     return NULL;
700   }
701
702   // Provide linker defined save/restore functions.
703   void
704   define_save_restore_funcs(Layout*, Symbol_table*);
705
706   // No stubs unless a final link.
707   bool
708   do_may_relax() const
709   { return !parameters->options().relocatable(); }
710
711   bool
712   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
713
714   void
715   do_plt_fde_location(const Output_data*, unsigned char*,
716                       uint64_t*, off_t*) const;
717
718   // Stash info about branches, for stub generation.
719   void
720   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
721               unsigned int data_shndx, Address r_offset,
722               unsigned int r_type, unsigned int r_sym, Address addend)
723   {
724     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
725     this->branch_info_.push_back(info);
726     if (r_type == elfcpp::R_POWERPC_REL14
727         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
728         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
729       ppc_object->set_has_14bit_branch(data_shndx);
730   }
731
732   // Return whether the last branch is a plt call, and if so, mark the
733   // branch as having an R_PPC64_TOCSAVE.
734   bool
735   mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
736                unsigned int data_shndx, Address r_offset, Symbol_table* symtab)
737   {
738     return (size == 64
739             && !this->branch_info_.empty()
740             && this->branch_info_.back().mark_pltcall(ppc_object, data_shndx,
741                                                       r_offset, this, symtab));
742   }
743
744   // Say the given location, that of a nop in a function prologue with
745   // an R_PPC64_TOCSAVE reloc, will be used to save r2.
746   // R_PPC64_TOCSAVE relocs on nops following calls point at this nop.
747   void
748   add_tocsave(Powerpc_relobj<size, big_endian>* ppc_object,
749               unsigned int shndx, Address offset)
750   {
751     Symbol_location loc;
752     loc.object = ppc_object;
753     loc.shndx = shndx;
754     loc.offset = offset;
755     this->tocsave_loc_.insert(loc);
756   }
757
758   // Accessor
759   const Tocsave_loc
760   tocsave_loc() const
761   {
762     return this->tocsave_loc_;
763   }
764
765   void
766   do_define_standard_symbols(Symbol_table*, Layout*);
767
768   // Finalize the sections.
769   void
770   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
771
772   // Return the value to use for a dynamic which requires special
773   // treatment.
774   uint64_t
775   do_dynsym_value(const Symbol*) const;
776
777   // Return the PLT address to use for a local symbol.
778   uint64_t
779   do_plt_address_for_local(const Relobj*, unsigned int) const;
780
781   // Return the PLT address to use for a global symbol.
782   uint64_t
783   do_plt_address_for_global(const Symbol*) const;
784
785   // Return the offset to use for the GOT_INDX'th got entry which is
786   // for a local tls symbol specified by OBJECT, SYMNDX.
787   int64_t
788   do_tls_offset_for_local(const Relobj* object,
789                           unsigned int symndx,
790                           unsigned int got_indx) const;
791
792   // Return the offset to use for the GOT_INDX'th got entry which is
793   // for global tls symbol GSYM.
794   int64_t
795   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
796
797   void
798   do_function_location(Symbol_location*) const;
799
800   bool
801   do_can_check_for_function_pointers() const
802   { return true; }
803
804   // Adjust -fsplit-stack code which calls non-split-stack code.
805   void
806   do_calls_non_split(Relobj* object, unsigned int shndx,
807                      section_offset_type fnoffset, section_size_type fnsize,
808                      const unsigned char* prelocs, size_t reloc_count,
809                      unsigned char* view, section_size_type view_size,
810                      std::string* from, std::string* to) const;
811
812   // Relocate a section.
813   void
814   relocate_section(const Relocate_info<size, big_endian>*,
815                    unsigned int sh_type,
816                    const unsigned char* prelocs,
817                    size_t reloc_count,
818                    Output_section* output_section,
819                    bool needs_special_offset_handling,
820                    unsigned char* view,
821                    Address view_address,
822                    section_size_type view_size,
823                    const Reloc_symbol_changes*);
824
825   // Scan the relocs during a relocatable link.
826   void
827   scan_relocatable_relocs(Symbol_table* symtab,
828                           Layout* layout,
829                           Sized_relobj_file<size, big_endian>* object,
830                           unsigned int data_shndx,
831                           unsigned int sh_type,
832                           const unsigned char* prelocs,
833                           size_t reloc_count,
834                           Output_section* output_section,
835                           bool needs_special_offset_handling,
836                           size_t local_symbol_count,
837                           const unsigned char* plocal_symbols,
838                           Relocatable_relocs*);
839
840   // Scan the relocs for --emit-relocs.
841   void
842   emit_relocs_scan(Symbol_table* symtab,
843                    Layout* layout,
844                    Sized_relobj_file<size, big_endian>* object,
845                    unsigned int data_shndx,
846                    unsigned int sh_type,
847                    const unsigned char* prelocs,
848                    size_t reloc_count,
849                    Output_section* output_section,
850                    bool needs_special_offset_handling,
851                    size_t local_symbol_count,
852                    const unsigned char* plocal_syms,
853                    Relocatable_relocs* rr);
854
855   // Emit relocations for a section.
856   void
857   relocate_relocs(const Relocate_info<size, big_endian>*,
858                   unsigned int sh_type,
859                   const unsigned char* prelocs,
860                   size_t reloc_count,
861                   Output_section* output_section,
862                   typename elfcpp::Elf_types<size>::Elf_Off
863                     offset_in_output_section,
864                   unsigned char*,
865                   Address view_address,
866                   section_size_type,
867                   unsigned char* reloc_view,
868                   section_size_type reloc_view_size);
869
870   // Return whether SYM is defined by the ABI.
871   bool
872   do_is_defined_by_abi(const Symbol* sym) const
873   {
874     return strcmp(sym->name(), "__tls_get_addr") == 0;
875   }
876
877   // Return the size of the GOT section.
878   section_size_type
879   got_size() const
880   {
881     gold_assert(this->got_ != NULL);
882     return this->got_->data_size();
883   }
884
885   // Get the PLT section.
886   const Output_data_plt_powerpc<size, big_endian>*
887   plt_section() const
888   {
889     gold_assert(this->plt_ != NULL);
890     return this->plt_;
891   }
892
893   // Get the IPLT section.
894   const Output_data_plt_powerpc<size, big_endian>*
895   iplt_section() const
896   {
897     gold_assert(this->iplt_ != NULL);
898     return this->iplt_;
899   }
900
901   // Get the LPLT section.
902   const Output_data_plt_powerpc<size, big_endian>*
903   lplt_section() const
904   {
905     return this->lplt_;
906   }
907
908   // Return the plt offset and section for the given global sym.
909   Address
910   plt_off(const Symbol* gsym,
911           const Output_data_plt_powerpc<size, big_endian>** sec) const
912   {
913     if (gsym->type() == elfcpp::STT_GNU_IFUNC
914         && gsym->can_use_relative_reloc(false))
915       *sec = this->iplt_section();
916     else
917       *sec = this->plt_section();
918     return gsym->plt_offset();
919   }
920
921   // Return the plt offset and section for the given local sym.
922   Address
923   plt_off(const Sized_relobj_file<size, big_endian>* relobj,
924           unsigned int local_sym_index,
925           const Output_data_plt_powerpc<size, big_endian>** sec) const
926   {
927     const Symbol_value<size>* lsym = relobj->local_symbol(local_sym_index);
928     if (lsym->is_ifunc_symbol())
929       *sec = this->iplt_section();
930     else
931       *sec = this->lplt_section();
932     return relobj->local_plt_offset(local_sym_index);
933   }
934
935   // Get the .glink section.
936   const Output_data_glink<size, big_endian>*
937   glink_section() const
938   {
939     gold_assert(this->glink_ != NULL);
940     return this->glink_;
941   }
942
943   Output_data_glink<size, big_endian>*
944   glink_section()
945   {
946     gold_assert(this->glink_ != NULL);
947     return this->glink_;
948   }
949
950   bool has_glink() const
951   { return this->glink_ != NULL; }
952
953   // Get the GOT section.
954   const Output_data_got_powerpc<size, big_endian>*
955   got_section() const
956   {
957     gold_assert(this->got_ != NULL);
958     return this->got_;
959   }
960
961   // Get the GOT section, creating it if necessary.
962   Output_data_got_powerpc<size, big_endian>*
963   got_section(Symbol_table*, Layout*);
964
965   Object*
966   do_make_elf_object(const std::string&, Input_file*, off_t,
967                      const elfcpp::Ehdr<size, big_endian>&);
968
969   // Return the number of entries in the GOT.
970   unsigned int
971   got_entry_count() const
972   {
973     if (this->got_ == NULL)
974       return 0;
975     return this->got_size() / (size / 8);
976   }
977
978   // Return the number of entries in the PLT.
979   unsigned int
980   plt_entry_count() const;
981
982   // Return the offset of the first non-reserved PLT entry.
983   unsigned int
984   first_plt_entry_offset() const
985   {
986     if (size == 32)
987       return 0;
988     if (this->abiversion() >= 2)
989       return 16;
990     return 24;
991   }
992
993   // Return the size of each PLT entry.
994   unsigned int
995   plt_entry_size() const
996   {
997     if (size == 32)
998       return 4;
999     if (this->abiversion() >= 2)
1000       return 8;
1001     return 24;
1002   }
1003
1004   Output_data_save_res<size, big_endian>*
1005   savres_section() const
1006   {
1007     return this->savres_section_;
1008   }
1009
1010   // Add any special sections for this symbol to the gc work list.
1011   // For powerpc64, this adds the code section of a function
1012   // descriptor.
1013   void
1014   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
1015
1016   // Handle target specific gc actions when adding a gc reference from
1017   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
1018   // and DST_OFF.  For powerpc64, this adds a referenc to the code
1019   // section of a function descriptor.
1020   void
1021   do_gc_add_reference(Symbol_table* symtab,
1022                       Relobj* src_obj,
1023                       unsigned int src_shndx,
1024                       Relobj* dst_obj,
1025                       unsigned int dst_shndx,
1026                       Address dst_off) const;
1027
1028   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
1029   const Stub_tables&
1030   stub_tables() const
1031   { return this->stub_tables_; }
1032
1033   const Output_data_brlt_powerpc<size, big_endian>*
1034   brlt_section() const
1035   { return this->brlt_section_; }
1036
1037   void
1038   add_branch_lookup_table(Address to)
1039   {
1040     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
1041     this->branch_lookup_table_.insert(std::make_pair(to, off));
1042   }
1043
1044   Address
1045   find_branch_lookup_table(Address to)
1046   {
1047     typename Branch_lookup_table::const_iterator p
1048       = this->branch_lookup_table_.find(to);
1049     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
1050   }
1051
1052   void
1053   write_branch_lookup_table(unsigned char *oview)
1054   {
1055     for (typename Branch_lookup_table::const_iterator p
1056            = this->branch_lookup_table_.begin();
1057          p != this->branch_lookup_table_.end();
1058          ++p)
1059       {
1060         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
1061       }
1062   }
1063
1064   // Wrapper used after relax to define a local symbol in output data,
1065   // from the end if value < 0.
1066   void
1067   define_local(Symbol_table* symtab, const char* name,
1068                Output_data* od, Address value, unsigned int symsize)
1069   {
1070     Symbol* sym
1071       = symtab->define_in_output_data(name, NULL, Symbol_table::PREDEFINED,
1072                                       od, value, symsize, elfcpp::STT_NOTYPE,
1073                                       elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0,
1074                                       static_cast<Signed_address>(value) < 0,
1075                                       false);
1076     // We are creating this symbol late, so need to fix up things
1077     // done early in Layout::finalize.
1078     sym->set_dynsym_index(-1U);
1079   }
1080
1081   bool
1082   powerxx_stubs() const
1083   { return this->powerxx_stubs_; }
1084
1085   void
1086   set_powerxx_stubs()
1087   {
1088     this->powerxx_stubs_ = true;
1089   }
1090
1091   bool
1092   plt_thread_safe() const
1093   { return this->plt_thread_safe_; }
1094
1095   bool
1096   plt_localentry0() const
1097   { return this->plt_localentry0_; }
1098
1099   void
1100   set_has_localentry0()
1101   {
1102     this->has_localentry0_ = true;
1103   }
1104
1105   bool
1106   is_elfv2_localentry0(const Symbol* gsym) const
1107   {
1108     return (size == 64
1109             && this->abiversion() >= 2
1110             && this->plt_localentry0()
1111             && gsym->type() == elfcpp::STT_FUNC
1112             && gsym->is_defined()
1113             && gsym->nonvis() >> 3 == 0
1114             && !gsym->non_zero_localentry());
1115   }
1116
1117   bool
1118   is_elfv2_localentry0(const Sized_relobj_file<size, big_endian>* object,
1119                        unsigned int r_sym) const
1120   {
1121     const Powerpc_relobj<size, big_endian>* ppc_object
1122       = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
1123
1124     if (size == 64
1125         && this->abiversion() >= 2
1126         && this->plt_localentry0()
1127         && ppc_object->st_other(r_sym) >> 5 == 0)
1128       {
1129         const Symbol_value<size>* psymval = object->local_symbol(r_sym);
1130         bool is_ordinary;
1131         if (!psymval->is_ifunc_symbol()
1132             && psymval->input_shndx(&is_ordinary) != elfcpp::SHN_UNDEF
1133             && is_ordinary)
1134           return true;
1135       }
1136     return false;
1137   }
1138
1139   // Remember any symbols seen with non-zero localentry, even those
1140   // not providing a definition
1141   bool
1142   resolve(Symbol* to, const elfcpp::Sym<size, big_endian>& sym, Object*,
1143           const char*)
1144   {
1145     if (size == 64)
1146       {
1147         unsigned char st_other = sym.get_st_other();
1148         if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1149           to->set_non_zero_localentry();
1150       }
1151     // We haven't resolved anything, continue normal processing.
1152     return false;
1153   }
1154
1155   int
1156   abiversion() const
1157   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
1158
1159   void
1160   set_abiversion(int ver)
1161   {
1162     elfcpp::Elf_Word flags = this->processor_specific_flags();
1163     flags &= ~elfcpp::EF_PPC64_ABI;
1164     flags |= ver & elfcpp::EF_PPC64_ABI;
1165     this->set_processor_specific_flags(flags);
1166   }
1167
1168   Symbol*
1169   tls_get_addr_opt() const
1170   { return this->tls_get_addr_opt_; }
1171
1172   Symbol*
1173   tls_get_addr() const
1174   { return this->tls_get_addr_; }
1175
1176   // If optimizing __tls_get_addr calls, whether this is the
1177   // "__tls_get_addr" symbol.
1178   bool
1179   is_tls_get_addr_opt(const Symbol* gsym) const
1180   {
1181     return this->tls_get_addr_opt_ && (gsym == this->tls_get_addr_
1182                                        || gsym == this->tls_get_addr_opt_);
1183   }
1184
1185   bool
1186   replace_tls_get_addr(const Symbol* gsym) const
1187   { return this->tls_get_addr_opt_ && gsym == this->tls_get_addr_; }
1188
1189   void
1190   set_has_tls_get_addr_opt()
1191   { this->has_tls_get_addr_opt_ = true; }
1192
1193   // Offset to toc save stack slot
1194   int
1195   stk_toc() const
1196   { return this->abiversion() < 2 ? 40 : 24; }
1197
1198   // Offset to linker save stack slot.  ELFv2 doesn't have a linker word,
1199   // so use the CR save slot.  Used only by __tls_get_addr call stub,
1200   // relying on __tls_get_addr not saving CR itself.
1201   int
1202   stk_linker() const
1203   { return this->abiversion() < 2 ? 32 : 8; }
1204
1205   // Merge object attributes from input object with those in the output.
1206   void
1207   merge_object_attributes(const char*, const Attributes_section_data*);
1208
1209  private:
1210
1211   class Track_tls
1212   {
1213   public:
1214     enum Tls_get_addr
1215     {
1216       NOT_EXPECTED = 0,
1217       EXPECTED = 1,
1218       SKIP = 2,
1219       NORMAL = 3
1220     };
1221
1222     Track_tls()
1223       : tls_get_addr_state_(NOT_EXPECTED),
1224         relinfo_(NULL), relnum_(0), r_offset_(0)
1225     { }
1226
1227     ~Track_tls()
1228     {
1229       if (this->tls_get_addr_state_ != NOT_EXPECTED)
1230         this->missing();
1231     }
1232
1233     void
1234     missing(void)
1235     {
1236       if (this->relinfo_ != NULL)
1237         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
1238                                _("missing expected __tls_get_addr call"));
1239     }
1240
1241     void
1242     expect_tls_get_addr_call(
1243         const Relocate_info<size, big_endian>* relinfo,
1244         size_t relnum,
1245         Address r_offset)
1246     {
1247       this->tls_get_addr_state_ = EXPECTED;
1248       this->relinfo_ = relinfo;
1249       this->relnum_ = relnum;
1250       this->r_offset_ = r_offset;
1251     }
1252
1253     void
1254     expect_tls_get_addr_call()
1255     { this->tls_get_addr_state_ = EXPECTED; }
1256
1257     void
1258     skip_next_tls_get_addr_call()
1259     {this->tls_get_addr_state_ = SKIP; }
1260
1261     Tls_get_addr
1262     maybe_skip_tls_get_addr_call(Target_powerpc<size, big_endian>* target,
1263                                  unsigned int r_type, const Symbol* gsym)
1264     {
1265       bool is_tls_call
1266         = ((r_type == elfcpp::R_POWERPC_REL24
1267             || (size == 64 && r_type == elfcpp::R_PPC64_REL24_NOTOC)
1268             || r_type == elfcpp::R_PPC_PLTREL24
1269             || is_plt16_reloc<size>(r_type)
1270             || r_type == elfcpp::R_PPC64_PLT_PCREL34
1271             || r_type == elfcpp::R_PPC64_PLT_PCREL34_NOTOC
1272             || r_type == elfcpp::R_POWERPC_PLTSEQ
1273             || r_type == elfcpp::R_POWERPC_PLTCALL
1274             || r_type == elfcpp::R_PPC64_PLTSEQ_NOTOC
1275             || r_type == elfcpp::R_PPC64_PLTCALL_NOTOC)
1276            && gsym != NULL
1277            && (gsym == target->tls_get_addr()
1278                || gsym == target->tls_get_addr_opt()));
1279       Tls_get_addr last_tls = this->tls_get_addr_state_;
1280       this->tls_get_addr_state_ = NOT_EXPECTED;
1281       if (is_tls_call && last_tls != EXPECTED)
1282         return last_tls;
1283       else if (!is_tls_call && last_tls != NOT_EXPECTED)
1284         {
1285           this->missing();
1286           return EXPECTED;
1287         }
1288       return NORMAL;
1289     }
1290
1291   private:
1292     // What we're up to regarding calls to __tls_get_addr.
1293     // On powerpc, the branch and link insn making a call to
1294     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
1295     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
1296     // usual R_POWERPC_REL24 or R_PPC_PLTREL24 relocation on a call.
1297     // The marker relocation always comes first, and has the same
1298     // symbol as the reloc on the insn setting up the __tls_get_addr
1299     // argument.  This ties the arg setup insn with the call insn,
1300     // allowing ld to safely optimize away the call.  We check that
1301     // every call to __tls_get_addr has a marker relocation, and that
1302     // every marker relocation is on a call to __tls_get_addr.
1303     Tls_get_addr tls_get_addr_state_;
1304     // Info about the last reloc for error message.
1305     const Relocate_info<size, big_endian>* relinfo_;
1306     size_t relnum_;
1307     Address r_offset_;
1308   };
1309
1310   // The class which scans relocations.
1311   class Scan : protected Track_tls
1312   {
1313   public:
1314     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1315
1316     Scan()
1317       : Track_tls(), issued_non_pic_error_(false)
1318     { }
1319
1320     static inline int
1321     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
1322
1323     inline void
1324     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1325           Sized_relobj_file<size, big_endian>* object,
1326           unsigned int data_shndx,
1327           Output_section* output_section,
1328           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1329           const elfcpp::Sym<size, big_endian>& lsym,
1330           bool is_discarded);
1331
1332     inline void
1333     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1334            Sized_relobj_file<size, big_endian>* object,
1335            unsigned int data_shndx,
1336            Output_section* output_section,
1337            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1338            Symbol* gsym);
1339
1340     inline bool
1341     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1342                                         Target_powerpc* ,
1343                                         Sized_relobj_file<size, big_endian>* relobj,
1344                                         unsigned int ,
1345                                         Output_section* ,
1346                                         const elfcpp::Rela<size, big_endian>& ,
1347                                         unsigned int r_type,
1348                                         const elfcpp::Sym<size, big_endian>&)
1349     {
1350       // PowerPC64 .opd is not folded, so any identical function text
1351       // may be folded and we'll still keep function addresses distinct.
1352       // That means no reloc is of concern here.
1353       if (size == 64)
1354         {
1355           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1356             <Powerpc_relobj<size, big_endian>*>(relobj);
1357           if (ppcobj->abiversion() == 1)
1358             return false;
1359         }
1360       // For 32-bit and ELFv2, conservatively assume anything but calls to
1361       // function code might be taking the address of the function.
1362       return !is_branch_reloc<size>(r_type);
1363     }
1364
1365     inline bool
1366     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1367                                          Target_powerpc* ,
1368                                          Sized_relobj_file<size, big_endian>* relobj,
1369                                          unsigned int ,
1370                                          Output_section* ,
1371                                          const elfcpp::Rela<size, big_endian>& ,
1372                                          unsigned int r_type,
1373                                          Symbol*)
1374     {
1375       // As above.
1376       if (size == 64)
1377         {
1378           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1379             <Powerpc_relobj<size, big_endian>*>(relobj);
1380           if (ppcobj->abiversion() == 1)
1381             return false;
1382         }
1383       return !is_branch_reloc<size>(r_type);
1384     }
1385
1386     static bool
1387     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1388                               Sized_relobj_file<size, big_endian>* object,
1389                               unsigned int r_type, bool report_err);
1390
1391   private:
1392     static void
1393     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1394                             unsigned int r_type);
1395
1396     static void
1397     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1398                              unsigned int r_type, Symbol*);
1399
1400     static void
1401     generate_tls_call(Symbol_table* symtab, Layout* layout,
1402                       Target_powerpc* target);
1403
1404     void
1405     check_non_pic(Relobj*, unsigned int r_type);
1406
1407     // Whether we have issued an error about a non-PIC compilation.
1408     bool issued_non_pic_error_;
1409   };
1410
1411   bool
1412   symval_for_branch(const Symbol_table* symtab,
1413                     const Sized_symbol<size>* gsym,
1414                     Powerpc_relobj<size, big_endian>* object,
1415                     Address *value, unsigned int *dest_shndx);
1416
1417   // The class which implements relocation.
1418   class Relocate : protected Track_tls
1419   {
1420    public:
1421     // Use 'at' branch hints when true, 'y' when false.
1422     // FIXME maybe: set this with an option.
1423     static const bool is_isa_v2 = true;
1424
1425     Relocate()
1426       : Track_tls()
1427     { }
1428
1429     // Do a relocation.  Return false if the caller should not issue
1430     // any warnings about this relocation.
1431     inline bool
1432     relocate(const Relocate_info<size, big_endian>*, unsigned int,
1433              Target_powerpc*, Output_section*, size_t, const unsigned char*,
1434              const Sized_symbol<size>*, const Symbol_value<size>*,
1435              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1436              section_size_type);
1437   };
1438
1439   class Relocate_comdat_behavior
1440   {
1441    public:
1442     // Decide what the linker should do for relocations that refer to
1443     // discarded comdat sections.
1444     inline Comdat_behavior
1445     get(const char* name)
1446     {
1447       gold::Default_comdat_behavior default_behavior;
1448       Comdat_behavior ret = default_behavior.get(name);
1449       if (ret == CB_ERROR)
1450         {
1451           if (size == 32
1452               && (strcmp(name, ".fixup") == 0
1453                   || strcmp(name, ".got2") == 0))
1454             ret = CB_IGNORE;
1455           if (size == 64
1456               && (strcmp(name, ".opd") == 0
1457                   || strcmp(name, ".toc") == 0
1458                   || strcmp(name, ".toc1") == 0))
1459             ret = CB_IGNORE;
1460         }
1461       return ret;
1462     }
1463   };
1464
1465   // Optimize the TLS relocation type based on what we know about the
1466   // symbol.  IS_FINAL is true if the final address of this symbol is
1467   // known at link time.
1468
1469   tls::Tls_optimization
1470   optimize_tls_gd(bool is_final)
1471   {
1472     // If we are generating a shared library, then we can't do anything
1473     // in the linker.
1474     if (parameters->options().shared()
1475         || !parameters->options().tls_optimize())
1476       return tls::TLSOPT_NONE;
1477
1478     if (!is_final)
1479       return tls::TLSOPT_TO_IE;
1480     return tls::TLSOPT_TO_LE;
1481   }
1482
1483   tls::Tls_optimization
1484   optimize_tls_ld()
1485   {
1486     if (parameters->options().shared()
1487         || !parameters->options().tls_optimize())
1488       return tls::TLSOPT_NONE;
1489
1490     return tls::TLSOPT_TO_LE;
1491   }
1492
1493   tls::Tls_optimization
1494   optimize_tls_ie(bool is_final)
1495   {
1496     if (!is_final
1497         || parameters->options().shared()
1498         || !parameters->options().tls_optimize())
1499       return tls::TLSOPT_NONE;
1500
1501     return tls::TLSOPT_TO_LE;
1502   }
1503
1504   // Create glink.
1505   void
1506   make_glink_section(Layout*);
1507
1508   // Create the PLT section.
1509   void
1510   make_plt_section(Symbol_table*, Layout*);
1511
1512   void
1513   make_iplt_section(Symbol_table*, Layout*);
1514
1515   void
1516   make_lplt_section(Layout*);
1517
1518   void
1519   make_brlt_section(Layout*);
1520
1521   // Create a PLT entry for a global symbol.
1522   void
1523   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1524
1525   // Create a PLT entry for a local IFUNC symbol.
1526   void
1527   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1528                              Sized_relobj_file<size, big_endian>*,
1529                              unsigned int);
1530
1531   // Create a PLT entry for a local non-IFUNC symbol.
1532   void
1533   make_local_plt_entry(Layout*,
1534                        Sized_relobj_file<size, big_endian>*,
1535                        unsigned int);
1536
1537
1538   // Create a GOT entry for local dynamic __tls_get_addr.
1539   unsigned int
1540   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1541                    Sized_relobj_file<size, big_endian>* object);
1542
1543   unsigned int
1544   tlsld_got_offset() const
1545   {
1546     return this->tlsld_got_offset_;
1547   }
1548
1549   // Get the dynamic reloc section, creating it if necessary.
1550   Reloc_section*
1551   rela_dyn_section(Layout*);
1552
1553   // Similarly, but for ifunc symbols get the one for ifunc.
1554   Reloc_section*
1555   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1556
1557   // Copy a relocation against a global symbol.
1558   void
1559   copy_reloc(Symbol_table* symtab, Layout* layout,
1560              Sized_relobj_file<size, big_endian>* object,
1561              unsigned int shndx, Output_section* output_section,
1562              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1563   {
1564     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1565     this->copy_relocs_.copy_reloc(symtab, layout,
1566                                   symtab->get_sized_symbol<size>(sym),
1567                                   object, shndx, output_section,
1568                                   r_type, reloc.get_r_offset(),
1569                                   reloc.get_r_addend(),
1570                                   this->rela_dyn_section(layout));
1571   }
1572
1573   // Look over all the input sections, deciding where to place stubs.
1574   void
1575   group_sections(Layout*, const Task*, bool);
1576
1577   // Sort output sections by address.
1578   struct Sort_sections
1579   {
1580     bool
1581     operator()(const Output_section* sec1, const Output_section* sec2)
1582     { return sec1->address() < sec2->address(); }
1583   };
1584
1585   class Branch_info
1586   {
1587    public:
1588     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1589                 unsigned int data_shndx,
1590                 Address r_offset,
1591                 unsigned int r_type,
1592                 unsigned int r_sym,
1593                 Address addend)
1594       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1595         r_type_(r_type), tocsave_ (0), r_sym_(r_sym), addend_(addend)
1596     { }
1597
1598     ~Branch_info()
1599     { }
1600
1601     // Return whether this branch is going via a plt call stub, and if
1602     // so, mark it as having an R_PPC64_TOCSAVE.
1603     bool
1604     mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
1605                  unsigned int shndx, Address offset,
1606                  Target_powerpc* target, Symbol_table* symtab);
1607
1608     // If this branch needs a plt call stub, or a long branch stub, make one.
1609     bool
1610     make_stub(Stub_table<size, big_endian>*,
1611               Stub_table<size, big_endian>*,
1612               Symbol_table*) const;
1613
1614    private:
1615     // The branch location..
1616     Powerpc_relobj<size, big_endian>* object_;
1617     unsigned int shndx_;
1618     Address offset_;
1619     // ..and the branch type and destination.
1620     unsigned int r_type_ : 31;
1621     unsigned int tocsave_ : 1;
1622     unsigned int r_sym_;
1623     Address addend_;
1624   };
1625
1626   // Information about this specific target which we pass to the
1627   // general Target structure.
1628   static Target::Target_info powerpc_info;
1629
1630   // The types of GOT entries needed for this platform.
1631   // These values are exposed to the ABI in an incremental link.
1632   // Do not renumber existing values without changing the version
1633   // number of the .gnu_incremental_inputs section.
1634   enum Got_type
1635   {
1636     GOT_TYPE_STANDARD,
1637     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1638     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1639     GOT_TYPE_TPREL      // entry for @got@tprel
1640   };
1641
1642   // The GOT section.
1643   Output_data_got_powerpc<size, big_endian>* got_;
1644   // The PLT section.  This is a container for a table of addresses,
1645   // and their relocations.  Each address in the PLT has a dynamic
1646   // relocation (R_*_JMP_SLOT) and each address will have a
1647   // corresponding entry in .glink for lazy resolution of the PLT.
1648   // ppc32 initialises the PLT to point at the .glink entry, while
1649   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1650   // linker adds a stub that loads the PLT entry into ctr then
1651   // branches to ctr.  There may be more than one stub for each PLT
1652   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1653   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1654   Output_data_plt_powerpc<size, big_endian>* plt_;
1655   // The IPLT section.  Like plt_, this is a container for a table of
1656   // addresses and their relocations, specifically for STT_GNU_IFUNC
1657   // functions that resolve locally (STT_GNU_IFUNC functions that
1658   // don't resolve locally go in PLT).  Unlike plt_, these have no
1659   // entry in .glink for lazy resolution, and the relocation section
1660   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1661   // the relocation section may contain relocations against
1662   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1663   // relocation section will appear at the end of other dynamic
1664   // relocations, so that ld.so applies these relocations after other
1665   // dynamic relocations.  In a static executable, the relocation
1666   // section is emitted and marked with __rela_iplt_start and
1667   // __rela_iplt_end symbols.
1668   Output_data_plt_powerpc<size, big_endian>* iplt_;
1669   // A PLT style section for local, non-ifunc symbols
1670   Output_data_plt_powerpc<size, big_endian>* lplt_;
1671   // Section holding long branch destinations.
1672   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1673   // The .glink section.
1674   Output_data_glink<size, big_endian>* glink_;
1675   // The dynamic reloc section.
1676   Reloc_section* rela_dyn_;
1677   // Relocs saved to avoid a COPY reloc.
1678   Powerpc_copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1679   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1680   unsigned int tlsld_got_offset_;
1681
1682   Stub_tables stub_tables_;
1683   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1684   Branch_lookup_table branch_lookup_table_;
1685
1686   typedef std::vector<Branch_info> Branches;
1687   Branches branch_info_;
1688   Tocsave_loc tocsave_loc_;
1689
1690   bool powerxx_stubs_;
1691   bool plt_thread_safe_;
1692   bool plt_localentry0_;
1693   bool plt_localentry0_init_;
1694   bool has_localentry0_;
1695   bool has_tls_get_addr_opt_;
1696
1697   bool relax_failed_;
1698   int relax_fail_count_;
1699   int32_t stub_group_size_;
1700
1701   Output_data_save_res<size, big_endian> *savres_section_;
1702
1703   // The "__tls_get_addr" symbol, if present
1704   Symbol* tls_get_addr_;
1705   // If optimizing __tls_get_addr calls, the "__tls_get_addr_opt" symbol.
1706   Symbol* tls_get_addr_opt_;
1707
1708   // Attributes in output.
1709   Attributes_section_data* attributes_section_data_;
1710
1711   // Last input file to change various attribute tags
1712   const char* last_fp_;
1713   const char* last_ld_;
1714   const char* last_vec_;
1715   const char* last_struct_;
1716 };
1717
1718 template<>
1719 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1720 {
1721   32,                   // size
1722   true,                 // is_big_endian
1723   elfcpp::EM_PPC,       // machine_code
1724   false,                // has_make_symbol
1725   false,                // has_resolve
1726   false,                // has_code_fill
1727   true,                 // is_default_stack_executable
1728   false,                // can_icf_inline_merge_sections
1729   '\0',                 // wrap_char
1730   "/usr/lib/ld.so.1",   // dynamic_linker
1731   0x10000000,           // default_text_segment_address
1732   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1733   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1734   false,                // isolate_execinstr
1735   0,                    // rosegment_gap
1736   elfcpp::SHN_UNDEF,    // small_common_shndx
1737   elfcpp::SHN_UNDEF,    // large_common_shndx
1738   0,                    // small_common_section_flags
1739   0,                    // large_common_section_flags
1740   NULL,                 // attributes_section
1741   NULL,                 // attributes_vendor
1742   "_start",             // entry_symbol_name
1743   32,                   // hash_entry_size
1744   elfcpp::SHT_PROGBITS, // unwind_section_type
1745 };
1746
1747 template<>
1748 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1749 {
1750   32,                   // size
1751   false,                // is_big_endian
1752   elfcpp::EM_PPC,       // machine_code
1753   false,                // has_make_symbol
1754   false,                // has_resolve
1755   false,                // has_code_fill
1756   true,                 // is_default_stack_executable
1757   false,                // can_icf_inline_merge_sections
1758   '\0',                 // wrap_char
1759   "/usr/lib/ld.so.1",   // dynamic_linker
1760   0x10000000,           // default_text_segment_address
1761   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1762   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1763   false,                // isolate_execinstr
1764   0,                    // rosegment_gap
1765   elfcpp::SHN_UNDEF,    // small_common_shndx
1766   elfcpp::SHN_UNDEF,    // large_common_shndx
1767   0,                    // small_common_section_flags
1768   0,                    // large_common_section_flags
1769   NULL,                 // attributes_section
1770   NULL,                 // attributes_vendor
1771   "_start",             // entry_symbol_name
1772   32,                   // hash_entry_size
1773   elfcpp::SHT_PROGBITS, // unwind_section_type
1774 };
1775
1776 template<>
1777 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1778 {
1779   64,                   // size
1780   true,                 // is_big_endian
1781   elfcpp::EM_PPC64,     // machine_code
1782   false,                // has_make_symbol
1783   true,                 // has_resolve
1784   false,                // has_code_fill
1785   false,                // is_default_stack_executable
1786   false,                // can_icf_inline_merge_sections
1787   '\0',                 // wrap_char
1788   "/usr/lib/ld.so.1",   // dynamic_linker
1789   0x10000000,           // default_text_segment_address
1790   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1791   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1792   false,                // isolate_execinstr
1793   0,                    // rosegment_gap
1794   elfcpp::SHN_UNDEF,    // small_common_shndx
1795   elfcpp::SHN_UNDEF,    // large_common_shndx
1796   0,                    // small_common_section_flags
1797   0,                    // large_common_section_flags
1798   NULL,                 // attributes_section
1799   NULL,                 // attributes_vendor
1800   "_start",             // entry_symbol_name
1801   32,                   // hash_entry_size
1802   elfcpp::SHT_PROGBITS, // unwind_section_type
1803 };
1804
1805 template<>
1806 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1807 {
1808   64,                   // size
1809   false,                // is_big_endian
1810   elfcpp::EM_PPC64,     // machine_code
1811   false,                // has_make_symbol
1812   true,                 // has_resolve
1813   false,                // has_code_fill
1814   false,                // is_default_stack_executable
1815   false,                // can_icf_inline_merge_sections
1816   '\0',                 // wrap_char
1817   "/usr/lib/ld.so.1",   // dynamic_linker
1818   0x10000000,           // default_text_segment_address
1819   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1820   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1821   false,                // isolate_execinstr
1822   0,                    // rosegment_gap
1823   elfcpp::SHN_UNDEF,    // small_common_shndx
1824   elfcpp::SHN_UNDEF,    // large_common_shndx
1825   0,                    // small_common_section_flags
1826   0,                    // large_common_section_flags
1827   NULL,                 // attributes_section
1828   NULL,                 // attributes_vendor
1829   "_start",             // entry_symbol_name
1830   32,                   // hash_entry_size
1831   elfcpp::SHT_PROGBITS, // unwind_section_type
1832 };
1833
1834 template<int size>
1835 inline bool
1836 is_branch_reloc(unsigned int r_type)
1837 {
1838   return (r_type == elfcpp::R_POWERPC_REL24
1839           || (size == 64 && r_type == elfcpp::R_PPC64_REL24_NOTOC)
1840           || r_type == elfcpp::R_PPC_PLTREL24
1841           || r_type == elfcpp::R_PPC_LOCAL24PC
1842           || r_type == elfcpp::R_POWERPC_REL14
1843           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1844           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1845           || r_type == elfcpp::R_POWERPC_ADDR24
1846           || r_type == elfcpp::R_POWERPC_ADDR14
1847           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1848           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1849 }
1850
1851 // Reloc resolves to plt entry.
1852 template<int size>
1853 inline bool
1854 is_plt16_reloc(unsigned int r_type)
1855 {
1856   return (r_type == elfcpp::R_POWERPC_PLT16_LO
1857           || r_type == elfcpp::R_POWERPC_PLT16_HI
1858           || r_type == elfcpp::R_POWERPC_PLT16_HA
1859           || (size == 64 && r_type == elfcpp::R_PPC64_PLT16_LO_DS));
1860 }
1861
1862 // If INSN is an opcode that may be used with an @tls operand, return
1863 // the transformed insn for TLS optimisation, otherwise return 0.  If
1864 // REG is non-zero only match an insn with RB or RA equal to REG.
1865 uint32_t
1866 at_tls_transform(uint32_t insn, unsigned int reg)
1867 {
1868   if ((insn & (0x3f << 26)) != 31 << 26)
1869     return 0;
1870
1871   unsigned int rtra;
1872   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1873     rtra = insn & ((1 << 26) - (1 << 16));
1874   else if (((insn >> 16) & 0x1f) == reg)
1875     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1876   else
1877     return 0;
1878
1879   if ((insn & (0x3ff << 1)) == 266 << 1)
1880     // add -> addi
1881     insn = 14 << 26;
1882   else if ((insn & (0x1f << 1)) == 23 << 1
1883            && ((insn & (0x1f << 6)) < 14 << 6
1884                || ((insn & (0x1f << 6)) >= 16 << 6
1885                    && (insn & (0x1f << 6)) < 24 << 6)))
1886     // load and store indexed -> dform
1887     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1888   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1889     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1890     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1891   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1892     // lwax -> lwa
1893     insn = (58 << 26) | 2;
1894   else
1895     return 0;
1896   insn |= rtra;
1897   return insn;
1898 }
1899
1900
1901 template<int size, bool big_endian>
1902 class Powerpc_relocate_functions
1903 {
1904 public:
1905   enum Overflow_check
1906   {
1907     CHECK_NONE,
1908     CHECK_SIGNED,
1909     CHECK_UNSIGNED,
1910     CHECK_BITFIELD,
1911     CHECK_LOW_INSN,
1912     CHECK_HIGH_INSN
1913   };
1914
1915   enum Status
1916   {
1917     STATUS_OK,
1918     STATUS_OVERFLOW
1919   };
1920
1921 private:
1922   typedef Powerpc_relocate_functions<size, big_endian> This;
1923   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1924   typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1925
1926   template<int valsize>
1927   static inline bool
1928   has_overflow_signed(Address value)
1929   {
1930     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1931     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1932     limit <<= ((valsize - 1) >> 1);
1933     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1934     return value + limit > (limit << 1) - 1;
1935   }
1936
1937   template<int valsize>
1938   static inline bool
1939   has_overflow_unsigned(Address value)
1940   {
1941     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1942     limit <<= ((valsize - 1) >> 1);
1943     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1944     return value > (limit << 1) - 1;
1945   }
1946
1947   template<int valsize>
1948   static inline bool
1949   has_overflow_bitfield(Address value)
1950   {
1951     return (has_overflow_unsigned<valsize>(value)
1952             && has_overflow_signed<valsize>(value));
1953   }
1954
1955   template<int valsize>
1956   static inline Status
1957   overflowed(Address value, Overflow_check overflow)
1958   {
1959     if (overflow == CHECK_SIGNED)
1960       {
1961         if (has_overflow_signed<valsize>(value))
1962           return STATUS_OVERFLOW;
1963       }
1964     else if (overflow == CHECK_UNSIGNED)
1965       {
1966         if (has_overflow_unsigned<valsize>(value))
1967           return STATUS_OVERFLOW;
1968       }
1969     else if (overflow == CHECK_BITFIELD)
1970       {
1971         if (has_overflow_bitfield<valsize>(value))
1972           return STATUS_OVERFLOW;
1973       }
1974     return STATUS_OK;
1975   }
1976
1977   // Do a simple RELA relocation
1978   template<int fieldsize, int valsize>
1979   static inline Status
1980   rela(unsigned char* view, Address value, Overflow_check overflow)
1981   {
1982     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1983     Valtype* wv = reinterpret_cast<Valtype*>(view);
1984     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1985     return overflowed<valsize>(value, overflow);
1986   }
1987
1988   template<int fieldsize, int valsize>
1989   static inline Status
1990   rela(unsigned char* view,
1991        unsigned int right_shift,
1992        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1993        Address value,
1994        Overflow_check overflow)
1995   {
1996     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1997     Valtype* wv = reinterpret_cast<Valtype*>(view);
1998     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1999     Valtype reloc = value >> right_shift;
2000     val &= ~dst_mask;
2001     reloc &= dst_mask;
2002     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
2003     return overflowed<valsize>(value >> right_shift, overflow);
2004   }
2005
2006   // Do a simple RELA relocation, unaligned.
2007   template<int fieldsize, int valsize>
2008   static inline Status
2009   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
2010   {
2011     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
2012     return overflowed<valsize>(value, overflow);
2013   }
2014
2015   template<int fieldsize, int valsize>
2016   static inline Status
2017   rela_ua(unsigned char* view,
2018           unsigned int right_shift,
2019           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
2020           Address value,
2021           Overflow_check overflow)
2022   {
2023     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
2024       Valtype;
2025     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
2026     Valtype reloc = value >> right_shift;
2027     val &= ~dst_mask;
2028     reloc &= dst_mask;
2029     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
2030     return overflowed<valsize>(value >> right_shift, overflow);
2031   }
2032
2033 public:
2034   // R_PPC64_ADDR64: (Symbol + Addend)
2035   static inline void
2036   addr64(unsigned char* view, Address value)
2037   { This::template rela<64,64>(view, value, CHECK_NONE); }
2038
2039   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
2040   static inline void
2041   addr64_u(unsigned char* view, Address value)
2042   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
2043
2044   // R_POWERPC_ADDR32: (Symbol + Addend)
2045   static inline Status
2046   addr32(unsigned char* view, Address value, Overflow_check overflow)
2047   { return This::template rela<32,32>(view, value, overflow); }
2048
2049   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
2050   static inline Status
2051   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
2052   { return This::template rela_ua<32,32>(view, value, overflow); }
2053
2054   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
2055   static inline Status
2056   addr24(unsigned char* view, Address value, Overflow_check overflow)
2057   {
2058     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
2059                                              value, overflow);
2060     if (overflow != CHECK_NONE && (value & 3) != 0)
2061       stat = STATUS_OVERFLOW;
2062     return stat;
2063   }
2064
2065   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
2066   static inline Status
2067   addr16(unsigned char* view, Address value, Overflow_check overflow)
2068   { return This::template rela<16,16>(view, value, overflow); }
2069
2070   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
2071   static inline Status
2072   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
2073   { return This::template rela_ua<16,16>(view, value, overflow); }
2074
2075   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
2076   static inline Status
2077   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
2078   {
2079     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
2080     if ((value & 3) != 0)
2081       stat = STATUS_OVERFLOW;
2082     return stat;
2083   }
2084
2085   // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
2086   static inline Status
2087   addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
2088   {
2089     Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
2090     if ((value & 15) != 0)
2091       stat = STATUS_OVERFLOW;
2092     return stat;
2093   }
2094
2095   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
2096   static inline void
2097   addr16_hi(unsigned char* view, Address value)
2098   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
2099
2100   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
2101   static inline void
2102   addr16_ha(unsigned char* view, Address value)
2103   { This::addr16_hi(view, value + 0x8000); }
2104
2105   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
2106   static inline void
2107   addr16_hi2(unsigned char* view, Address value)
2108   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
2109
2110   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
2111   static inline void
2112   addr16_ha2(unsigned char* view, Address value)
2113   { This::addr16_hi2(view, value + 0x8000); }
2114
2115   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
2116   static inline void
2117   addr16_hi3(unsigned char* view, Address value)
2118   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
2119
2120   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
2121   static inline void
2122   addr16_ha3(unsigned char* view, Address value)
2123   { This::addr16_hi3(view, value + 0x8000); }
2124
2125   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
2126   static inline Status
2127   addr14(unsigned char* view, Address value, Overflow_check overflow)
2128   {
2129     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
2130     if (overflow != CHECK_NONE && (value & 3) != 0)
2131       stat = STATUS_OVERFLOW;
2132     return stat;
2133   }
2134
2135   // R_POWERPC_REL16DX_HA
2136   static inline Status
2137   addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
2138   {
2139     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2140     Valtype* wv = reinterpret_cast<Valtype*>(view);
2141     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2142     value += 0x8000;
2143     value = static_cast<SignedAddress>(value) >> 16;
2144     val |= (value & 0xffc1) | ((value & 0x3e) << 15);
2145     elfcpp::Swap<32, big_endian>::writeval(wv, val);
2146     return overflowed<16>(value, overflow);
2147   }
2148
2149   // R_PPC64_D34
2150   static inline Status
2151   addr34(unsigned char *view, uint64_t value, Overflow_check overflow)
2152   {
2153     Status stat = This::template rela<32,18>(view, 16, 0x3ffff,
2154                                              value, overflow);
2155     This::rela<32,16>(view + 4, 0, 0xffff, value, CHECK_NONE);
2156     return stat;
2157   }
2158
2159   // R_PPC64_D34_HI30
2160   static inline void
2161   addr34_hi(unsigned char *view, uint64_t value)
2162   { This::addr34(view, value >> 34, CHECK_NONE);}
2163
2164   // R_PPC64_D34_HA30
2165   static inline void
2166   addr34_ha(unsigned char *view, uint64_t value)
2167   { This::addr34_hi(view, value + (1ULL << 33));}
2168
2169   // R_PPC64_D28
2170   static inline Status
2171   addr28(unsigned char *view, uint64_t value, Overflow_check overflow)
2172   {
2173     Status stat = This::template rela<32,12>(view, 16, 0xfff,
2174                                              value, overflow);
2175     This::rela<32,16>(view + 4, 0, 0xffff, value, CHECK_NONE);
2176     return stat;
2177   }
2178
2179   // R_PPC64_ADDR16_HIGHER34
2180   static inline void
2181   addr16_higher34(unsigned char* view, uint64_t value)
2182   { This::addr16(view, value >> 34, CHECK_NONE); }
2183
2184   // R_PPC64_ADDR16_HIGHERA34
2185   static inline void
2186   addr16_highera34(unsigned char* view, uint64_t value)
2187   { This::addr16_higher34(view, value + (1ULL << 33)); }
2188
2189   // R_PPC64_ADDR16_HIGHEST34
2190   static inline void
2191   addr16_highest34(unsigned char* view, uint64_t value)
2192   { This::addr16(view, value >> 50, CHECK_NONE); }
2193
2194   // R_PPC64_ADDR16_HIGHESTA34
2195   static inline void
2196   addr16_highesta34(unsigned char* view, uint64_t value)
2197   { This::addr16_highest34(view, value + (1ULL << 33)); }
2198 };
2199
2200 // Set ABI version for input and output.
2201
2202 template<int size, bool big_endian>
2203 void
2204 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
2205 {
2206   this->e_flags_ |= ver;
2207   if (this->abiversion() != 0)
2208     {
2209       Target_powerpc<size, big_endian>* target =
2210         static_cast<Target_powerpc<size, big_endian>*>(
2211            parameters->sized_target<size, big_endian>());
2212       if (target->abiversion() == 0)
2213         target->set_abiversion(this->abiversion());
2214       else if (target->abiversion() != this->abiversion())
2215         gold_error(_("%s: ABI version %d is not compatible "
2216                      "with ABI version %d output"),
2217                    this->name().c_str(),
2218                    this->abiversion(), target->abiversion());
2219
2220     }
2221 }
2222
2223 // Stash away the index of .got2, .opd, .rela.toc, and .toc in a
2224 // relocatable object, if such sections exists.
2225
2226 template<int size, bool big_endian>
2227 bool
2228 Powerpc_relobj<size, big_endian>::do_find_special_sections(
2229     Read_symbols_data* sd)
2230 {
2231   const unsigned char* const pshdrs = sd->section_headers->data();
2232   const unsigned char* namesu = sd->section_names->data();
2233   const char* names = reinterpret_cast<const char*>(namesu);
2234   section_size_type names_size = sd->section_names_size;
2235   const unsigned char* s;
2236
2237   s = this->template find_shdr<size, big_endian>(pshdrs,
2238                                                  size == 32 ? ".got2" : ".opd",
2239                                                  names, names_size, NULL);
2240   if (s != NULL)
2241     {
2242       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2243       this->special_ = ndx;
2244       if (size == 64)
2245         {
2246           if (this->abiversion() == 0)
2247             this->set_abiversion(1);
2248           else if (this->abiversion() > 1)
2249             gold_error(_("%s: .opd invalid in abiv%d"),
2250                        this->name().c_str(), this->abiversion());
2251         }
2252     }
2253   if (size == 64)
2254     {
2255       s = this->template find_shdr<size, big_endian>(pshdrs, ".rela.toc",
2256                                                      names, names_size, NULL);
2257       if (s != NULL)
2258         {
2259           unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2260           this->relatoc_ = ndx;
2261           typename elfcpp::Shdr<size, big_endian> shdr(s);
2262           this->toc_ = this->adjust_shndx(shdr.get_sh_info());
2263         }
2264     }
2265   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
2266 }
2267
2268 // Examine .rela.opd to build info about function entry points.
2269
2270 template<int size, bool big_endian>
2271 void
2272 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
2273     size_t reloc_count,
2274     const unsigned char* prelocs,
2275     const unsigned char* plocal_syms)
2276 {
2277   if (size == 64)
2278     {
2279       typedef typename elfcpp::Rela<size, big_endian> Reltype;
2280       const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2281       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2282       Address expected_off = 0;
2283       bool regular = true;
2284       unsigned int opd_ent_size = 0;
2285
2286       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
2287         {
2288           Reltype reloc(prelocs);
2289           typename elfcpp::Elf_types<size>::Elf_WXword r_info
2290             = reloc.get_r_info();
2291           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
2292           if (r_type == elfcpp::R_PPC64_ADDR64)
2293             {
2294               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
2295               typename elfcpp::Elf_types<size>::Elf_Addr value;
2296               bool is_ordinary;
2297               unsigned int shndx;
2298               if (r_sym < this->local_symbol_count())
2299                 {
2300                   typename elfcpp::Sym<size, big_endian>
2301                     lsym(plocal_syms + r_sym * sym_size);
2302                   shndx = lsym.get_st_shndx();
2303                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2304                   value = lsym.get_st_value();
2305                 }
2306               else
2307                 shndx = this->symbol_section_and_value(r_sym, &value,
2308                                                        &is_ordinary);
2309               this->set_opd_ent(reloc.get_r_offset(), shndx,
2310                                 value + reloc.get_r_addend());
2311               if (i == 2)
2312                 {
2313                   expected_off = reloc.get_r_offset();
2314                   opd_ent_size = expected_off;
2315                 }
2316               else if (expected_off != reloc.get_r_offset())
2317                 regular = false;
2318               expected_off += opd_ent_size;
2319             }
2320           else if (r_type == elfcpp::R_PPC64_TOC)
2321             {
2322               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
2323                 regular = false;
2324             }
2325           else
2326             {
2327               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
2328                            this->name().c_str(), r_type);
2329               regular = false;
2330             }
2331         }
2332       if (reloc_count <= 2)
2333         opd_ent_size = this->section_size(this->opd_shndx());
2334       if (opd_ent_size != 24 && opd_ent_size != 16)
2335         regular = false;
2336       if (!regular)
2337         {
2338           gold_warning(_("%s: .opd is not a regular array of opd entries"),
2339                        this->name().c_str());
2340           opd_ent_size = 0;
2341         }
2342     }
2343 }
2344
2345 // Returns true if a code sequence loading the TOC entry at VALUE
2346 // relative to the TOC pointer can be converted into code calculating
2347 // a TOC pointer relative offset.
2348 // If so, the TOC pointer relative offset is stored to VALUE.
2349
2350 template<int size, bool big_endian>
2351 bool
2352 Powerpc_relobj<size, big_endian>::make_toc_relative(
2353     Target_powerpc<size, big_endian>* target,
2354     Address* value)
2355 {
2356   if (size != 64)
2357     return false;
2358
2359   // With -mcmodel=medium code it is quite possible to have
2360   // toc-relative relocs referring to objects outside the TOC.
2361   // Don't try to look at a non-existent TOC.
2362   if (this->toc_shndx() == 0)
2363     return false;
2364
2365   // Convert VALUE back to an address by adding got_base (see below),
2366   // then to an offset in the TOC by subtracting the TOC output
2367   // section address and the TOC output offset.  Since this TOC output
2368   // section and the got output section are one and the same, we can
2369   // omit adding and subtracting the output section address.
2370   Address off = (*value + this->toc_base_offset()
2371                  - this->output_section_offset(this->toc_shndx()));
2372   // Is this offset in the TOC?  -mcmodel=medium code may be using
2373   // TOC relative access to variables outside the TOC.  Those of
2374   // course can't be optimized.  We also don't try to optimize code
2375   // that is using a different object's TOC.
2376   if (off >= this->section_size(this->toc_shndx()))
2377     return false;
2378
2379   if (this->no_toc_opt(off))
2380     return false;
2381
2382   section_size_type vlen;
2383   unsigned char* view = this->get_output_view(this->toc_shndx(), &vlen);
2384   Address addr = elfcpp::Swap<size, big_endian>::readval(view + off);
2385   // The TOC pointer
2386   Address got_base = (target->got_section()->output_section()->address()
2387                       + this->toc_base_offset());
2388   addr -= got_base;
2389   if (addr + (uint64_t) 0x80008000 >= (uint64_t) 1 << 32)
2390     return false;
2391
2392   *value = addr;
2393   return true;
2394 }
2395
2396 template<int size, bool big_endian>
2397 bool
2398 Powerpc_relobj<size, big_endian>::make_got_relative(
2399     Target_powerpc<size, big_endian>* target,
2400     const Symbol_value<size>* psymval,
2401     Address addend,
2402     Address* value)
2403 {
2404   Address addr = psymval->value(this, addend);
2405   Address got_base = (target->got_section()->output_section()->address()
2406                       + this->toc_base_offset());
2407   addr -= got_base;
2408   if (addr + 0x80008000 > 0xffffffff)
2409     return false;
2410
2411   *value = addr;
2412   return true;
2413 }
2414
2415 // Perform the Sized_relobj_file method, then set up opd info from
2416 // .opd relocs.
2417
2418 template<int size, bool big_endian>
2419 void
2420 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
2421 {
2422   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
2423   if (size == 64)
2424     {
2425       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
2426            p != rd->relocs.end();
2427            ++p)
2428         {
2429           if (p->data_shndx == this->opd_shndx())
2430             {
2431               uint64_t opd_size = this->section_size(this->opd_shndx());
2432               gold_assert(opd_size == static_cast<size_t>(opd_size));
2433               if (opd_size != 0)
2434                 {
2435                   this->init_opd(opd_size);
2436                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
2437                                         rd->local_symbols->data());
2438                 }
2439               break;
2440             }
2441         }
2442     }
2443 }
2444
2445 // Read the symbols then set up st_other vector.
2446
2447 template<int size, bool big_endian>
2448 void
2449 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2450 {
2451   this->base_read_symbols(sd);
2452   if (this->input_file()->format() != Input_file::FORMAT_ELF)
2453     return;
2454   if (size == 64)
2455     {
2456       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2457       const unsigned char* const pshdrs = sd->section_headers->data();
2458       const unsigned int loccount = this->do_local_symbol_count();
2459       if (loccount != 0)
2460         {
2461           this->st_other_.resize(loccount);
2462           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2463           off_t locsize = loccount * sym_size;
2464           const unsigned int symtab_shndx = this->symtab_shndx();
2465           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
2466           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
2467           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
2468                                                       locsize, true, false);
2469           psyms += sym_size;
2470           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2471             {
2472               elfcpp::Sym<size, big_endian> sym(psyms);
2473               unsigned char st_other = sym.get_st_other();
2474               this->st_other_[i] = st_other;
2475               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
2476                 {
2477                   if (this->abiversion() == 0)
2478                     this->set_abiversion(2);
2479                   else if (this->abiversion() < 2)
2480                     gold_error(_("%s: local symbol %d has invalid st_other"
2481                                  " for ABI version 1"),
2482                                this->name().c_str(), i);
2483                 }
2484             }
2485         }
2486     }
2487
2488   const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2489   const unsigned char* ps = sd->section_headers->data() + shdr_size;
2490   bool merge_attributes = false;
2491   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
2492     {
2493       elfcpp::Shdr<size, big_endian> shdr(ps);
2494       switch (shdr.get_sh_type())
2495         {
2496         case elfcpp::SHT_GNU_ATTRIBUTES:
2497           {
2498             gold_assert(this->attributes_section_data_ == NULL);
2499             section_offset_type section_offset = shdr.get_sh_offset();
2500             section_size_type section_size =
2501               convert_to_section_size_type(shdr.get_sh_size());
2502             const unsigned char* view =
2503               this->get_view(section_offset, section_size, true, false);
2504             this->attributes_section_data_ =
2505               new Attributes_section_data(view, section_size);
2506           }
2507           break;
2508
2509         case elfcpp::SHT_SYMTAB:
2510           {
2511             // Sometimes an object has no contents except the section
2512             // name string table and an empty symbol table with the
2513             // undefined symbol.  We don't want to merge
2514             // processor-specific flags from such an object.
2515             const typename elfcpp::Elf_types<size>::Elf_WXword sym_size =
2516               elfcpp::Elf_sizes<size>::sym_size;
2517             if (shdr.get_sh_size() > sym_size)
2518               merge_attributes = true;
2519           }
2520           break;
2521
2522         case elfcpp::SHT_STRTAB:
2523           break;
2524
2525         default:
2526           merge_attributes = true;
2527           break;
2528         }
2529     }
2530
2531   if (!merge_attributes)
2532     {
2533       // Should rarely happen.
2534       delete this->attributes_section_data_;
2535       this->attributes_section_data_ = NULL;
2536     }
2537 }
2538
2539 template<int size, bool big_endian>
2540 void
2541 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
2542 {
2543   this->e_flags_ |= ver;
2544   if (this->abiversion() != 0)
2545     {
2546       Target_powerpc<size, big_endian>* target =
2547         static_cast<Target_powerpc<size, big_endian>*>(
2548           parameters->sized_target<size, big_endian>());
2549       if (target->abiversion() == 0)
2550         target->set_abiversion(this->abiversion());
2551       else if (target->abiversion() != this->abiversion())
2552         gold_error(_("%s: ABI version %d is not compatible "
2553                      "with ABI version %d output"),
2554                    this->name().c_str(),
2555                    this->abiversion(), target->abiversion());
2556
2557     }
2558 }
2559
2560 // Call Sized_dynobj::base_read_symbols to read the symbols then
2561 // read .opd from a dynamic object, filling in opd_ent_ vector,
2562
2563 template<int size, bool big_endian>
2564 void
2565 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2566 {
2567   this->base_read_symbols(sd);
2568   const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2569   const unsigned char* ps =
2570     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
2571   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
2572     {
2573       elfcpp::Shdr<size, big_endian> shdr(ps);
2574       if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
2575         {
2576           section_offset_type section_offset = shdr.get_sh_offset();
2577           section_size_type section_size =
2578             convert_to_section_size_type(shdr.get_sh_size());
2579           const unsigned char* view =
2580             this->get_view(section_offset, section_size, true, false);
2581           this->attributes_section_data_ =
2582             new Attributes_section_data(view, section_size);
2583           break;
2584         }
2585     }
2586   if (size == 64)
2587     {
2588       const unsigned char* const pshdrs = sd->section_headers->data();
2589       const unsigned char* namesu = sd->section_names->data();
2590       const char* names = reinterpret_cast<const char*>(namesu);
2591       const unsigned char* s = NULL;
2592       const unsigned char* opd;
2593       section_size_type opd_size;
2594
2595       // Find and read .opd section.
2596       while (1)
2597         {
2598           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
2599                                                          sd->section_names_size,
2600                                                          s);
2601           if (s == NULL)
2602             return;
2603
2604           typename elfcpp::Shdr<size, big_endian> shdr(s);
2605           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2606               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2607             {
2608               if (this->abiversion() == 0)
2609                 this->set_abiversion(1);
2610               else if (this->abiversion() > 1)
2611                 gold_error(_("%s: .opd invalid in abiv%d"),
2612                            this->name().c_str(), this->abiversion());
2613
2614               this->opd_shndx_ = (s - pshdrs) / shdr_size;
2615               this->opd_address_ = shdr.get_sh_addr();
2616               opd_size = convert_to_section_size_type(shdr.get_sh_size());
2617               opd = this->get_view(shdr.get_sh_offset(), opd_size,
2618                                    true, false);
2619               break;
2620             }
2621         }
2622
2623       // Build set of executable sections.
2624       // Using a set is probably overkill.  There is likely to be only
2625       // a few executable sections, typically .init, .text and .fini,
2626       // and they are generally grouped together.
2627       typedef std::set<Sec_info> Exec_sections;
2628       Exec_sections exec_sections;
2629       s = pshdrs;
2630       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2631         {
2632           typename elfcpp::Shdr<size, big_endian> shdr(s);
2633           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2634               && ((shdr.get_sh_flags()
2635                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2636                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2637               && shdr.get_sh_size() != 0)
2638             {
2639               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2640                                             shdr.get_sh_size(), i));
2641             }
2642         }
2643       if (exec_sections.empty())
2644         return;
2645
2646       // Look over the OPD entries.  This is complicated by the fact
2647       // that some binaries will use two-word entries while others
2648       // will use the standard three-word entries.  In most cases
2649       // the third word (the environment pointer for languages like
2650       // Pascal) is unused and will be zero.  If the third word is
2651       // used it should not be pointing into executable sections,
2652       // I think.
2653       this->init_opd(opd_size);
2654       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2655         {
2656           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2657           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2658           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2659           if (val == 0)
2660             // Chances are that this is the third word of an OPD entry.
2661             continue;
2662           typename Exec_sections::const_iterator e
2663             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2664           if (e != exec_sections.begin())
2665             {
2666               --e;
2667               if (e->start <= val && val < e->start + e->len)
2668                 {
2669                   // We have an address in an executable section.
2670                   // VAL ought to be the function entry, set it up.
2671                   this->set_opd_ent(p - opd, e->shndx, val);
2672                   // Skip second word of OPD entry, the TOC pointer.
2673                   p += 8;
2674                 }
2675             }
2676           // If we didn't match any executable sections, we likely
2677           // have a non-zero third word in the OPD entry.
2678         }
2679     }
2680 }
2681
2682 // Relocate sections.
2683
2684 template<int size, bool big_endian>
2685 void
2686 Powerpc_relobj<size, big_endian>::do_relocate_sections(
2687     const Symbol_table* symtab, const Layout* layout,
2688     const unsigned char* pshdrs, Output_file* of,
2689     typename Sized_relobj_file<size, big_endian>::Views* pviews)
2690 {
2691   unsigned int start = 1;
2692   if (size == 64
2693       && this->relatoc_ != 0
2694       && !parameters->options().relocatable())
2695     {
2696       // Relocate .toc first.
2697       this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2698                                    this->relatoc_, this->relatoc_);
2699       this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2700                                    1, this->relatoc_ - 1);
2701       start = this->relatoc_ + 1;
2702     }
2703   this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2704                                start, this->shnum() - 1);
2705
2706   if (!parameters->options().output_is_position_independent())
2707     {
2708       Target_powerpc<size, big_endian>* target
2709         = static_cast<Target_powerpc<size, big_endian>*>(
2710             parameters->sized_target<size, big_endian>());
2711       if (target->lplt_section() && target->lplt_section()->data_size() != 0)
2712         {
2713           const section_size_type offset = target->lplt_section()->offset();
2714           const section_size_type oview_size
2715             = convert_to_section_size_type(target->lplt_section()->data_size());
2716           unsigned char* const oview = of->get_output_view(offset, oview_size);
2717
2718           bool modified = false;
2719           unsigned int nsyms = this->local_symbol_count();
2720           for (unsigned int i = 0; i < nsyms; i++)
2721             if (this->local_has_plt_offset(i))
2722               {
2723                 Address value = this->local_symbol_value(i, 0);
2724                 if (size == 64)
2725                   value += ppc64_local_entry_offset(i);
2726                 size_t off = this->local_plt_offset(i);
2727                 elfcpp::Swap<size, big_endian>::writeval(oview + off, value);
2728                 modified = true;
2729               }
2730           if (modified)
2731             of->write_output_view(offset, oview_size, oview);
2732         }
2733     }
2734 }
2735
2736 // Set up some symbols.
2737
2738 template<int size, bool big_endian>
2739 void
2740 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2741     Symbol_table* symtab,
2742     Layout* layout)
2743 {
2744   if (size == 32)
2745     {
2746       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2747       // undefined when scanning relocs (and thus requires
2748       // non-relative dynamic relocs).  The proper value will be
2749       // updated later.
2750       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2751       if (gotsym != NULL && gotsym->is_undefined())
2752         {
2753           Target_powerpc<size, big_endian>* target =
2754             static_cast<Target_powerpc<size, big_endian>*>(
2755                 parameters->sized_target<size, big_endian>());
2756           Output_data_got_powerpc<size, big_endian>* got
2757             = target->got_section(symtab, layout);
2758           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2759                                         Symbol_table::PREDEFINED,
2760                                         got, 0, 0,
2761                                         elfcpp::STT_OBJECT,
2762                                         elfcpp::STB_LOCAL,
2763                                         elfcpp::STV_HIDDEN, 0,
2764                                         false, false);
2765         }
2766
2767       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2768       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2769       if (sdasym != NULL && sdasym->is_undefined())
2770         {
2771           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2772           Output_section* os
2773             = layout->add_output_section_data(".sdata", 0,
2774                                               elfcpp::SHF_ALLOC
2775                                               | elfcpp::SHF_WRITE,
2776                                               sdata, ORDER_SMALL_DATA, false);
2777           symtab->define_in_output_data("_SDA_BASE_", NULL,
2778                                         Symbol_table::PREDEFINED,
2779                                         os, 32768, 0, elfcpp::STT_OBJECT,
2780                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2781                                         0, false, false);
2782         }
2783     }
2784   else
2785     {
2786       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2787       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2788       if (gotsym != NULL && gotsym->is_undefined())
2789         {
2790           Target_powerpc<size, big_endian>* target =
2791             static_cast<Target_powerpc<size, big_endian>*>(
2792                 parameters->sized_target<size, big_endian>());
2793           Output_data_got_powerpc<size, big_endian>* got
2794             = target->got_section(symtab, layout);
2795           symtab->define_in_output_data(".TOC.", NULL,
2796                                         Symbol_table::PREDEFINED,
2797                                         got, 0x8000, 0,
2798                                         elfcpp::STT_OBJECT,
2799                                         elfcpp::STB_LOCAL,
2800                                         elfcpp::STV_HIDDEN, 0,
2801                                         false, false);
2802         }
2803     }
2804
2805   this->tls_get_addr_ = symtab->lookup("__tls_get_addr");
2806   if (parameters->options().tls_get_addr_optimize()
2807       && this->tls_get_addr_ != NULL
2808       && this->tls_get_addr_->in_reg())
2809     this->tls_get_addr_opt_ = symtab->lookup("__tls_get_addr_opt");
2810   if (this->tls_get_addr_opt_ != NULL)
2811     {
2812       if (this->tls_get_addr_->is_undefined()
2813           || this->tls_get_addr_->is_from_dynobj())
2814         {
2815           // Make it seem as if references to __tls_get_addr are
2816           // really to __tls_get_addr_opt, so the latter symbol is
2817           // made dynamic, not the former.
2818           this->tls_get_addr_->clear_in_reg();
2819           this->tls_get_addr_opt_->set_in_reg();
2820         }
2821       // We have a non-dynamic definition for __tls_get_addr.
2822       // Make __tls_get_addr_opt the same, if it does not already have
2823       // a non-dynamic definition.
2824       else if (this->tls_get_addr_opt_->is_undefined()
2825                || this->tls_get_addr_opt_->is_from_dynobj())
2826         {
2827           Sized_symbol<size>* from
2828             = static_cast<Sized_symbol<size>*>(this->tls_get_addr_);
2829           Sized_symbol<size>* to
2830             = static_cast<Sized_symbol<size>*>(this->tls_get_addr_opt_);
2831           symtab->clone<size>(to, from);
2832         }
2833     }
2834 }
2835
2836 // Set up PowerPC target specific relobj.
2837
2838 template<int size, bool big_endian>
2839 Object*
2840 Target_powerpc<size, big_endian>::do_make_elf_object(
2841     const std::string& name,
2842     Input_file* input_file,
2843     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2844 {
2845   int et = ehdr.get_e_type();
2846   // ET_EXEC files are valid input for --just-symbols/-R,
2847   // and we treat them as relocatable objects.
2848   if (et == elfcpp::ET_REL
2849       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2850     {
2851       Powerpc_relobj<size, big_endian>* obj =
2852         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2853       obj->setup();
2854       return obj;
2855     }
2856   else if (et == elfcpp::ET_DYN)
2857     {
2858       Powerpc_dynobj<size, big_endian>* obj =
2859         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2860       obj->setup();
2861       return obj;
2862     }
2863   else
2864     {
2865       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2866       return NULL;
2867     }
2868 }
2869
2870 template<int size, bool big_endian>
2871 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2872 {
2873 public:
2874   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2875   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2876
2877   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2878     : Output_data_got<size, big_endian>(),
2879       symtab_(symtab), layout_(layout),
2880       header_ent_cnt_(size == 32 ? 3 : 1),
2881       header_index_(size == 32 ? 0x2000 : 0)
2882   {
2883     if (size == 64)
2884       this->set_addralign(256);
2885   }
2886
2887   // Override all the Output_data_got methods we use so as to first call
2888   // reserve_ent().
2889   bool
2890   add_global(Symbol* gsym, unsigned int got_type)
2891   {
2892     this->reserve_ent();
2893     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2894   }
2895
2896   bool
2897   add_global_plt(Symbol* gsym, unsigned int got_type)
2898   {
2899     this->reserve_ent();
2900     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2901   }
2902
2903   bool
2904   add_global_tls(Symbol* gsym, unsigned int got_type)
2905   { return this->add_global_plt(gsym, got_type); }
2906
2907   void
2908   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2909                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2910   {
2911     this->reserve_ent();
2912     Output_data_got<size, big_endian>::
2913       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2914   }
2915
2916   void
2917   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2918                            Output_data_reloc_generic* rel_dyn,
2919                            unsigned int r_type_1, unsigned int r_type_2)
2920   {
2921     if (gsym->has_got_offset(got_type))
2922       return;
2923
2924     this->reserve_ent(2);
2925     Output_data_got<size, big_endian>::
2926       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2927   }
2928
2929   bool
2930   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2931   {
2932     this->reserve_ent();
2933     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2934                                                         got_type);
2935   }
2936
2937   bool
2938   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2939   {
2940     this->reserve_ent();
2941     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2942                                                             got_type);
2943   }
2944
2945   bool
2946   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2947   { return this->add_local_plt(object, sym_index, got_type); }
2948
2949   void
2950   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2951                      unsigned int got_type,
2952                      Output_data_reloc_generic* rel_dyn,
2953                      unsigned int r_type)
2954   {
2955     if (object->local_has_got_offset(sym_index, got_type))
2956       return;
2957
2958     this->reserve_ent(2);
2959     Output_data_got<size, big_endian>::
2960       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2961   }
2962
2963   unsigned int
2964   add_constant(Valtype constant)
2965   {
2966     this->reserve_ent();
2967     return Output_data_got<size, big_endian>::add_constant(constant);
2968   }
2969
2970   unsigned int
2971   add_constant_pair(Valtype c1, Valtype c2)
2972   {
2973     this->reserve_ent(2);
2974     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2975   }
2976
2977   // Offset of _GLOBAL_OFFSET_TABLE_.
2978   unsigned int
2979   g_o_t() const
2980   {
2981     return this->got_offset(this->header_index_);
2982   }
2983
2984   // Offset of base used to access the GOT/TOC.
2985   // The got/toc pointer reg will be set to this value.
2986   Valtype
2987   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2988   {
2989     if (size == 32)
2990       return this->g_o_t();
2991     else
2992       return (this->output_section()->address()
2993               + object->toc_base_offset()
2994               - this->address());
2995   }
2996
2997   // Ensure our GOT has a header.
2998   void
2999   set_final_data_size()
3000   {
3001     if (this->header_ent_cnt_ != 0)
3002       this->make_header();
3003     Output_data_got<size, big_endian>::set_final_data_size();
3004   }
3005
3006   // First word of GOT header needs some values that are not
3007   // handled by Output_data_got so poke them in here.
3008   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
3009   void
3010   do_write(Output_file* of)
3011   {
3012     Valtype val = 0;
3013     if (size == 32 && this->layout_->dynamic_data() != NULL)
3014       val = this->layout_->dynamic_section()->address();
3015     if (size == 64)
3016       val = this->output_section()->address() + 0x8000;
3017     this->replace_constant(this->header_index_, val);
3018     Output_data_got<size, big_endian>::do_write(of);
3019   }
3020
3021 private:
3022   void
3023   reserve_ent(unsigned int cnt = 1)
3024   {
3025     if (this->header_ent_cnt_ == 0)
3026       return;
3027     if (this->num_entries() + cnt > this->header_index_)
3028       this->make_header();
3029   }
3030
3031   void
3032   make_header()
3033   {
3034     this->header_ent_cnt_ = 0;
3035     this->header_index_ = this->num_entries();
3036     if (size == 32)
3037       {
3038         Output_data_got<size, big_endian>::add_constant(0);
3039         Output_data_got<size, big_endian>::add_constant(0);
3040         Output_data_got<size, big_endian>::add_constant(0);
3041
3042         // Define _GLOBAL_OFFSET_TABLE_ at the header
3043         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
3044         if (gotsym != NULL)
3045           {
3046             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
3047             sym->set_value(this->g_o_t());
3048           }
3049         else
3050           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3051                                                Symbol_table::PREDEFINED,
3052                                                this, this->g_o_t(), 0,
3053                                                elfcpp::STT_OBJECT,
3054                                                elfcpp::STB_LOCAL,
3055                                                elfcpp::STV_HIDDEN, 0,
3056                                                false, false);
3057       }
3058     else
3059       Output_data_got<size, big_endian>::add_constant(0);
3060   }
3061
3062   // Stashed pointers.
3063   Symbol_table* symtab_;
3064   Layout* layout_;
3065
3066   // GOT header size.
3067   unsigned int header_ent_cnt_;
3068   // GOT header index.
3069   unsigned int header_index_;
3070 };
3071
3072 // Get the GOT section, creating it if necessary.
3073
3074 template<int size, bool big_endian>
3075 Output_data_got_powerpc<size, big_endian>*
3076 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
3077                                               Layout* layout)
3078 {
3079   if (this->got_ == NULL)
3080     {
3081       gold_assert(symtab != NULL && layout != NULL);
3082
3083       this->got_
3084         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
3085
3086       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3087                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3088                                       this->got_, ORDER_DATA, false);
3089     }
3090
3091   return this->got_;
3092 }
3093
3094 // Get the dynamic reloc section, creating it if necessary.
3095
3096 template<int size, bool big_endian>
3097 typename Target_powerpc<size, big_endian>::Reloc_section*
3098 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
3099 {
3100   if (this->rela_dyn_ == NULL)
3101     {
3102       gold_assert(layout != NULL);
3103       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3104       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3105                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
3106                                       ORDER_DYNAMIC_RELOCS, false);
3107     }
3108   return this->rela_dyn_;
3109 }
3110
3111 // Similarly, but for ifunc symbols get the one for ifunc.
3112
3113 template<int size, bool big_endian>
3114 typename Target_powerpc<size, big_endian>::Reloc_section*
3115 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
3116                                                    Layout* layout,
3117                                                    bool for_ifunc)
3118 {
3119   if (!for_ifunc)
3120     return this->rela_dyn_section(layout);
3121
3122   if (this->iplt_ == NULL)
3123     this->make_iplt_section(symtab, layout);
3124   return this->iplt_->rel_plt();
3125 }
3126
3127 class Stub_control
3128 {
3129  public:
3130   // Determine the stub group size.  The group size is the absolute
3131   // value of the parameter --stub-group-size.  If --stub-group-size
3132   // is passed a negative value, we restrict stubs to be always after
3133   // the stubbed branches.
3134   Stub_control(int32_t size, bool no_size_errors, bool multi_os)
3135     : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
3136       suppress_size_errors_(no_size_errors), multi_os_(multi_os),
3137       state_(NO_GROUP), group_size_(0), group_start_addr_(0),
3138       owner_(NULL), output_section_(NULL)
3139   {
3140   }
3141
3142   // Return true iff input section can be handled by current stub
3143   // group.
3144   bool
3145   can_add_to_stub_group(Output_section* o,
3146                         const Output_section::Input_section* i,
3147                         bool has14);
3148
3149   const Output_section::Input_section*
3150   owner()
3151   { return owner_; }
3152
3153   Output_section*
3154   output_section()
3155   { return output_section_; }
3156
3157   void
3158   set_output_and_owner(Output_section* o,
3159                        const Output_section::Input_section* i)
3160   {
3161     this->output_section_ = o;
3162     this->owner_ = i;
3163   }
3164
3165  private:
3166   typedef enum
3167   {
3168     // Initial state.
3169     NO_GROUP,
3170     // Adding group sections before the stubs.
3171     FINDING_STUB_SECTION,
3172     // Adding group sections after the stubs.
3173     HAS_STUB_SECTION
3174   } State;
3175
3176   uint32_t stub_group_size_;
3177   bool stubs_always_after_branch_;
3178   bool suppress_size_errors_;
3179   // True if a stub group can serve multiple output sections.
3180   bool multi_os_;
3181   State state_;
3182   // Current max size of group.  Starts at stub_group_size_ but is
3183   // reduced to stub_group_size_/1024 on seeing a section with
3184   // external conditional branches.
3185   uint32_t group_size_;
3186   uint64_t group_start_addr_;
3187   // owner_ and output_section_ specify the section to which stubs are
3188   // attached.  The stubs are placed at the end of this section.
3189   const Output_section::Input_section* owner_;
3190   Output_section* output_section_;
3191 };
3192
3193 // Return true iff input section can be handled by current stub
3194 // group.  Sections are presented to this function in order,
3195 // so the first section is the head of the group.
3196
3197 bool
3198 Stub_control::can_add_to_stub_group(Output_section* o,
3199                                     const Output_section::Input_section* i,
3200                                     bool has14)
3201 {
3202   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
3203   uint64_t this_size;
3204   uint64_t start_addr = o->address();
3205
3206   if (whole_sec)
3207     // .init and .fini sections are pasted together to form a single
3208     // function.  We can't be adding stubs in the middle of the function.
3209     this_size = o->data_size();
3210   else
3211     {
3212       start_addr += i->relobj()->output_section_offset(i->shndx());
3213       this_size = i->data_size();
3214     }
3215
3216   uint64_t end_addr = start_addr + this_size;
3217   uint32_t group_size = this->stub_group_size_;
3218   if (has14)
3219     this->group_size_ = group_size = group_size >> 10;
3220
3221   if (this_size > group_size && !this->suppress_size_errors_)
3222     gold_warning(_("%s:%s exceeds group size"),
3223                  i->relobj()->name().c_str(),
3224                  i->relobj()->section_name(i->shndx()).c_str());
3225
3226   gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
3227              has14 ? " 14bit" : "",
3228              i->relobj()->name().c_str(),
3229              i->relobj()->section_name(i->shndx()).c_str(),
3230              (long long) this_size,
3231              (this->state_ == NO_GROUP
3232               ? this_size
3233               : (long long) end_addr - this->group_start_addr_));
3234
3235   if (this->state_ == NO_GROUP)
3236     {
3237       // Only here on very first use of Stub_control
3238       this->owner_ = i;
3239       this->output_section_ = o;
3240       this->state_ = FINDING_STUB_SECTION;
3241       this->group_size_ = group_size;
3242       this->group_start_addr_ = start_addr;
3243       return true;
3244     }
3245   else if (!this->multi_os_ && this->output_section_ != o)
3246     ;
3247   else if (this->state_ == HAS_STUB_SECTION)
3248     {
3249       // Can we add this section, which is after the stubs, to the
3250       // group?
3251       if (end_addr - this->group_start_addr_ <= this->group_size_)
3252         return true;
3253     }
3254   else if (this->state_ == FINDING_STUB_SECTION)
3255     {
3256       if ((whole_sec && this->output_section_ == o)
3257           || end_addr - this->group_start_addr_ <= this->group_size_)
3258         {
3259           // Stubs are added at the end of "owner_".
3260           this->owner_ = i;
3261           this->output_section_ = o;
3262           return true;
3263         }
3264       // The group before the stubs has reached maximum size.
3265       // Now see about adding sections after the stubs to the
3266       // group.  If the current section has a 14-bit branch and
3267       // the group before the stubs exceeds group_size_ (because
3268       // they didn't have 14-bit branches), don't add sections
3269       // after the stubs:  The size of stubs for such a large
3270       // group may exceed the reach of a 14-bit branch.
3271       if (!this->stubs_always_after_branch_
3272           && this_size <= this->group_size_
3273           && start_addr - this->group_start_addr_ <= this->group_size_)
3274         {
3275           gold_debug(DEBUG_TARGET, "adding after stubs");
3276           this->state_ = HAS_STUB_SECTION;
3277           this->group_start_addr_ = start_addr;
3278           return true;
3279         }
3280     }
3281   else
3282     gold_unreachable();
3283
3284   gold_debug(DEBUG_TARGET,
3285              !this->multi_os_ && this->output_section_ != o
3286              ? "nope, new output section\n"
3287              : "nope, didn't fit\n");
3288
3289   // The section fails to fit in the current group.  Set up a few
3290   // things for the next group.  owner_ and output_section_ will be
3291   // set later after we've retrieved those values for the current
3292   // group.
3293   this->state_ = FINDING_STUB_SECTION;
3294   this->group_size_ = group_size;
3295   this->group_start_addr_ = start_addr;
3296   return false;
3297 }
3298
3299 // Look over all the input sections, deciding where to place stubs.
3300
3301 template<int size, bool big_endian>
3302 void
3303 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
3304                                                  const Task*,
3305                                                  bool no_size_errors)
3306 {
3307   Stub_control stub_control(this->stub_group_size_, no_size_errors,
3308                             parameters->options().stub_group_multi());
3309
3310   // Group input sections and insert stub table
3311   Stub_table_owner* table_owner = NULL;
3312   std::vector<Stub_table_owner*> tables;
3313   Layout::Section_list section_list;
3314   layout->get_executable_sections(&section_list);
3315   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
3316   for (Layout::Section_list::iterator o = section_list.begin();
3317        o != section_list.end();
3318        ++o)
3319     {
3320       typedef Output_section::Input_section_list Input_section_list;
3321       for (Input_section_list::const_iterator i
3322              = (*o)->input_sections().begin();
3323            i != (*o)->input_sections().end();
3324            ++i)
3325         {
3326           if (i->is_input_section()
3327               || i->is_relaxed_input_section())
3328             {
3329               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3330                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
3331               bool has14 = ppcobj->has_14bit_branch(i->shndx());
3332               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
3333                 {
3334                   table_owner->output_section = stub_control.output_section();
3335                   table_owner->owner = stub_control.owner();
3336                   stub_control.set_output_and_owner(*o, &*i);
3337                   table_owner = NULL;
3338                 }
3339               if (table_owner == NULL)
3340                 {
3341                   table_owner = new Stub_table_owner;
3342                   tables.push_back(table_owner);
3343                 }
3344               ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
3345             }
3346         }
3347     }
3348   if (table_owner != NULL)
3349     {
3350       table_owner->output_section = stub_control.output_section();
3351       table_owner->owner = stub_control.owner();;
3352     }
3353   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
3354        t != tables.end();
3355        ++t)
3356     {
3357       Stub_table<size, big_endian>* stub_table;
3358
3359       if ((*t)->owner->is_input_section())
3360         stub_table = new Stub_table<size, big_endian>(this,
3361                                                       (*t)->output_section,
3362                                                       (*t)->owner,
3363                                                       this->stub_tables_.size());
3364       else if ((*t)->owner->is_relaxed_input_section())
3365         stub_table = static_cast<Stub_table<size, big_endian>*>(
3366                         (*t)->owner->relaxed_input_section());
3367       else
3368         gold_unreachable();
3369       this->stub_tables_.push_back(stub_table);
3370       delete *t;
3371     }
3372 }
3373
3374 template<int size>
3375 static unsigned long
3376 max_branch_delta (unsigned int r_type)
3377 {
3378   if (r_type == elfcpp::R_POWERPC_REL14
3379       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
3380       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
3381     return 1L << 15;
3382   if (r_type == elfcpp::R_POWERPC_REL24
3383       || (size == 64 && r_type == elfcpp::R_PPC64_REL24_NOTOC)
3384       || r_type == elfcpp::R_PPC_PLTREL24
3385       || r_type == elfcpp::R_PPC_LOCAL24PC)
3386     return 1L << 25;
3387   return 0;
3388 }
3389
3390 // Return whether this branch is going via a plt call stub.
3391
3392 template<int size, bool big_endian>
3393 bool
3394 Target_powerpc<size, big_endian>::Branch_info::mark_pltcall(
3395     Powerpc_relobj<size, big_endian>* ppc_object,
3396     unsigned int shndx,
3397     Address offset,
3398     Target_powerpc* target,
3399     Symbol_table* symtab)
3400 {
3401   if (this->object_ != ppc_object
3402       || this->shndx_ != shndx
3403       || this->offset_ != offset)
3404     return false;
3405
3406   Symbol* sym = this->object_->global_symbol(this->r_sym_);
3407   if (sym != NULL && sym->is_forwarder())
3408     sym = symtab->resolve_forwards(sym);
3409   if (target->replace_tls_get_addr(sym))
3410     sym = target->tls_get_addr_opt();
3411   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3412   if (gsym != NULL
3413       ? (gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3414          && !target->is_elfv2_localentry0(gsym))
3415       : (this->object_->local_has_plt_offset(this->r_sym_)
3416          && !target->is_elfv2_localentry0(this->object_, this->r_sym_)))
3417     {
3418       this->tocsave_ = 1;
3419       return true;
3420     }
3421   return false;
3422 }
3423
3424 // If this branch needs a plt call stub, or a long branch stub, make one.
3425
3426 template<int size, bool big_endian>
3427 bool
3428 Target_powerpc<size, big_endian>::Branch_info::make_stub(
3429     Stub_table<size, big_endian>* stub_table,
3430     Stub_table<size, big_endian>* ifunc_stub_table,
3431     Symbol_table* symtab) const
3432 {
3433   Symbol* sym = this->object_->global_symbol(this->r_sym_);
3434   Target_powerpc<size, big_endian>* target =
3435     static_cast<Target_powerpc<size, big_endian>*>(
3436       parameters->sized_target<size, big_endian>());
3437   if (sym != NULL && sym->is_forwarder())
3438     sym = symtab->resolve_forwards(sym);
3439   if (target->replace_tls_get_addr(sym))
3440     sym = target->tls_get_addr_opt();
3441   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3442   bool ok = true;
3443
3444   if (gsym != NULL
3445       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3446       : this->object_->local_has_plt_offset(this->r_sym_))
3447     {
3448       if (size == 64
3449           && gsym != NULL
3450           && target->abiversion() >= 2
3451           && !parameters->options().output_is_position_independent()
3452           && !is_branch_reloc<size>(this->r_type_))
3453         target->glink_section()->add_global_entry(gsym);
3454       else
3455         {
3456           if (stub_table == NULL
3457               && !(size == 32
3458                    && gsym != NULL
3459                    && !parameters->options().output_is_position_independent()
3460                    && !is_branch_reloc<size>(this->r_type_)))
3461             stub_table = this->object_->stub_table(this->shndx_);
3462           if (stub_table == NULL)
3463             {
3464               // This is a ref from a data section to an ifunc symbol,
3465               // or a non-branch reloc for which we always want to use
3466               // one set of stubs for resolving function addresses.
3467               stub_table = ifunc_stub_table;
3468             }
3469           gold_assert(stub_table != NULL);
3470           Address from = this->object_->get_output_section_offset(this->shndx_);
3471           if (from != invalid_address)
3472             from += (this->object_->output_section(this->shndx_)->address()
3473                      + this->offset_);
3474           if (gsym != NULL)
3475             ok = stub_table->add_plt_call_entry(from,
3476                                                 this->object_, gsym,
3477                                                 this->r_type_, this->addend_,
3478                                                 this->tocsave_);
3479           else
3480             ok = stub_table->add_plt_call_entry(from,
3481                                                 this->object_, this->r_sym_,
3482                                                 this->r_type_, this->addend_,
3483                                                 this->tocsave_);
3484         }
3485     }
3486   else
3487     {
3488       Address max_branch_offset = max_branch_delta<size>(this->r_type_);
3489       if (max_branch_offset == 0)
3490         return true;
3491       Address from = this->object_->get_output_section_offset(this->shndx_);
3492       gold_assert(from != invalid_address);
3493       from += (this->object_->output_section(this->shndx_)->address()
3494                + this->offset_);
3495       Address to;
3496       if (gsym != NULL)
3497         {
3498           switch (gsym->source())
3499             {
3500             case Symbol::FROM_OBJECT:
3501               {
3502                 Object* symobj = gsym->object();
3503                 if (symobj->is_dynamic()
3504                     || symobj->pluginobj() != NULL)
3505                   return true;
3506                 bool is_ordinary;
3507                 unsigned int shndx = gsym->shndx(&is_ordinary);
3508                 if (shndx == elfcpp::SHN_UNDEF)
3509                   return true;
3510               }
3511               break;
3512
3513             case Symbol::IS_UNDEFINED:
3514               return true;
3515
3516             default:
3517               break;
3518             }
3519           Symbol_table::Compute_final_value_status status;
3520           to = symtab->compute_final_value<size>(gsym, &status);
3521           if (status != Symbol_table::CFVS_OK)
3522             return true;
3523           if (size == 64)
3524             to += this->object_->ppc64_local_entry_offset(gsym);
3525         }
3526       else
3527         {
3528           const Symbol_value<size>* psymval
3529             = this->object_->local_symbol(this->r_sym_);
3530           Symbol_value<size> symval;
3531           if (psymval->is_section_symbol())
3532             symval.set_is_section_symbol();
3533           typedef Sized_relobj_file<size, big_endian> ObjType;
3534           typename ObjType::Compute_final_local_value_status status
3535             = this->object_->compute_final_local_value(this->r_sym_, psymval,
3536                                                        &symval, symtab);
3537           if (status != ObjType::CFLV_OK
3538               || !symval.has_output_value())
3539             return true;
3540           to = symval.value(this->object_, 0);
3541           if (size == 64)
3542             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
3543         }
3544       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
3545         to += this->addend_;
3546       if (stub_table == NULL)
3547         stub_table = this->object_->stub_table(this->shndx_);
3548       if (size == 64 && target->abiversion() < 2)
3549         {
3550           unsigned int dest_shndx;
3551           if (!target->symval_for_branch(symtab, gsym, this->object_,
3552                                          &to, &dest_shndx))
3553             return true;
3554         }
3555       Address delta = to - from;
3556       if (delta + max_branch_offset >= 2 * max_branch_offset
3557           || (size == 64
3558               && this->r_type_ == elfcpp::R_PPC64_REL24_NOTOC
3559               && (gsym != NULL
3560                   ? this->object_->ppc64_needs_toc(gsym)
3561                   : this->object_->ppc64_needs_toc(this->r_sym_))))
3562         {
3563           if (stub_table == NULL)
3564             {
3565               gold_warning(_("%s:%s: branch in non-executable section,"
3566                              " no long branch stub for you"),
3567                            this->object_->name().c_str(),
3568                            this->object_->section_name(this->shndx_).c_str());
3569               return true;
3570             }
3571           bool save_res = (size == 64
3572                            && gsym != NULL
3573                            && gsym->source() == Symbol::IN_OUTPUT_DATA
3574                            && gsym->output_data() == target->savres_section());
3575           ok = stub_table->add_long_branch_entry(this->object_,
3576                                                  this->r_type_,
3577                                                  from, to, save_res);
3578         }
3579     }
3580   if (!ok)
3581     gold_debug(DEBUG_TARGET,
3582                "branch at %s:%s+%#lx\n"
3583                "can't reach stub attached to %s:%s",
3584                this->object_->name().c_str(),
3585                this->object_->section_name(this->shndx_).c_str(),
3586                (unsigned long) this->offset_,
3587                stub_table->relobj()->name().c_str(),
3588                stub_table->relobj()->section_name(stub_table->shndx()).c_str());
3589
3590   return ok;
3591 }
3592
3593 // Relaxation hook.  This is where we do stub generation.
3594
3595 template<int size, bool big_endian>
3596 bool
3597 Target_powerpc<size, big_endian>::do_relax(int pass,
3598                                            const Input_objects*,
3599                                            Symbol_table* symtab,
3600                                            Layout* layout,
3601                                            const Task* task)
3602 {
3603   unsigned int prev_brlt_size = 0;
3604   if (pass == 1)
3605     {
3606       bool thread_safe
3607         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
3608       if (size == 64
3609           && this->abiversion() < 2
3610           && !thread_safe
3611           && !parameters->options().user_set_plt_thread_safe())
3612         {
3613           static const char* const thread_starter[] =
3614             {
3615               "pthread_create",
3616               /* libstdc++ */
3617               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
3618               /* librt */
3619               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
3620               "mq_notify", "create_timer",
3621               /* libanl */
3622               "getaddrinfo_a",
3623               /* libgomp */
3624               "GOMP_parallel",
3625               "GOMP_parallel_start",
3626               "GOMP_parallel_loop_static",
3627               "GOMP_parallel_loop_static_start",
3628               "GOMP_parallel_loop_dynamic",
3629               "GOMP_parallel_loop_dynamic_start",
3630               "GOMP_parallel_loop_guided",
3631               "GOMP_parallel_loop_guided_start",
3632               "GOMP_parallel_loop_runtime",
3633               "GOMP_parallel_loop_runtime_start",
3634               "GOMP_parallel_sections",
3635               "GOMP_parallel_sections_start",
3636               /* libgo */
3637               "__go_go",
3638             };
3639
3640           if (parameters->options().shared())
3641             thread_safe = true;
3642           else
3643             {
3644               for (unsigned int i = 0;
3645                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
3646                    i++)
3647                 {
3648                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
3649                   thread_safe = (sym != NULL
3650                                  && sym->in_reg()
3651                                  && sym->in_real_elf());
3652                   if (thread_safe)
3653                     break;
3654                 }
3655             }
3656         }
3657       this->plt_thread_safe_ = thread_safe;
3658     }
3659
3660   if (pass == 1)
3661     {
3662       this->stub_group_size_ = parameters->options().stub_group_size();
3663       bool no_size_errors = true;
3664       if (this->stub_group_size_ == 1)
3665         this->stub_group_size_ = 0x1c00000;
3666       else if (this->stub_group_size_ == -1)
3667         this->stub_group_size_ = -0x1e00000;
3668       else
3669         no_size_errors = false;
3670       this->group_sections(layout, task, no_size_errors);
3671     }
3672   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
3673     {
3674       this->branch_lookup_table_.clear();
3675       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3676            p != this->stub_tables_.end();
3677            ++p)
3678         {
3679           (*p)->clear_stubs(true);
3680         }
3681       this->stub_tables_.clear();
3682       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
3683       gold_info(_("%s: stub group size is too large; retrying with %#x"),
3684                 program_name, this->stub_group_size_);
3685       this->group_sections(layout, task, true);
3686     }
3687
3688   // We need address of stub tables valid for make_stub.
3689   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3690        p != this->stub_tables_.end();
3691        ++p)
3692     {
3693       const Powerpc_relobj<size, big_endian>* object
3694         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
3695       Address off = object->get_output_section_offset((*p)->shndx());
3696       gold_assert(off != invalid_address);
3697       Output_section* os = (*p)->output_section();
3698       (*p)->set_address_and_size(os, off);
3699     }
3700
3701   if (pass != 1)
3702     {
3703       // Clear plt call stubs, long branch stubs and branch lookup table.
3704       prev_brlt_size = this->branch_lookup_table_.size();
3705       this->branch_lookup_table_.clear();
3706       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3707            p != this->stub_tables_.end();
3708            ++p)
3709         {
3710           (*p)->clear_stubs(false);
3711         }
3712     }
3713
3714   // Build all the stubs.
3715   this->relax_failed_ = false;
3716   Stub_table<size, big_endian>* ifunc_stub_table
3717     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
3718   Stub_table<size, big_endian>* one_stub_table
3719     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
3720   for (typename Branches::const_iterator b = this->branch_info_.begin();
3721        b != this->branch_info_.end();
3722        b++)
3723     {
3724       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3725           && !this->relax_failed_)
3726         {
3727           this->relax_failed_ = true;
3728           this->relax_fail_count_++;
3729           if (this->relax_fail_count_ < 3)
3730             return true;
3731         }
3732     }
3733   bool do_resize = false;
3734   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3735        p != this->stub_tables_.end();
3736        ++p)
3737     if ((*p)->need_resize())
3738       {
3739         do_resize = true;
3740         break;
3741       }
3742   if (do_resize)
3743     {
3744       this->branch_lookup_table_.clear();
3745       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3746            p != this->stub_tables_.end();
3747            ++p)
3748         (*p)->set_resizing(true);
3749       for (typename Branches::const_iterator b = this->branch_info_.begin();
3750            b != this->branch_info_.end();
3751            b++)
3752         {
3753           if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3754               && !this->relax_failed_)
3755             {
3756               this->relax_failed_ = true;
3757               this->relax_fail_count_++;
3758               if (this->relax_fail_count_ < 3)
3759                 return true;
3760             }
3761         }
3762       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3763            p != this->stub_tables_.end();
3764            ++p)
3765         (*p)->set_resizing(false);
3766     }
3767
3768   // Did anything change size?
3769   unsigned int num_huge_branches = this->branch_lookup_table_.size();
3770   bool again = num_huge_branches != prev_brlt_size;
3771   if (size == 64 && num_huge_branches != 0)
3772     this->make_brlt_section(layout);
3773   if (size == 64 && again)
3774     this->brlt_section_->set_current_size(num_huge_branches);
3775
3776   for (typename Stub_tables::reverse_iterator p = this->stub_tables_.rbegin();
3777        p != this->stub_tables_.rend();
3778        ++p)
3779     (*p)->remove_eh_frame(layout);
3780
3781   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3782        p != this->stub_tables_.end();
3783        ++p)
3784     (*p)->add_eh_frame(layout);
3785
3786   typedef Unordered_set<Output_section*> Output_sections;
3787   Output_sections os_need_update;
3788   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3789        p != this->stub_tables_.end();
3790        ++p)
3791     {
3792       if ((*p)->size_update())
3793         {
3794           again = true;
3795           os_need_update.insert((*p)->output_section());
3796         }
3797     }
3798
3799   // Set output section offsets for all input sections in an output
3800   // section that just changed size.  Anything past the stubs will
3801   // need updating.
3802   for (typename Output_sections::iterator p = os_need_update.begin();
3803        p != os_need_update.end();
3804        p++)
3805     {
3806       Output_section* os = *p;
3807       Address off = 0;
3808       typedef Output_section::Input_section_list Input_section_list;
3809       for (Input_section_list::const_iterator i = os->input_sections().begin();
3810            i != os->input_sections().end();
3811            ++i)
3812         {
3813           off = align_address(off, i->addralign());
3814           if (i->is_input_section() || i->is_relaxed_input_section())
3815             i->relobj()->set_section_offset(i->shndx(), off);
3816           if (i->is_relaxed_input_section())
3817             {
3818               Stub_table<size, big_endian>* stub_table
3819                 = static_cast<Stub_table<size, big_endian>*>(
3820                     i->relaxed_input_section());
3821               Address stub_table_size = stub_table->set_address_and_size(os, off);
3822               off += stub_table_size;
3823               // After a few iterations, set current stub table size
3824               // as min size threshold, so later stub tables can only
3825               // grow in size.
3826               if (pass >= 4)
3827                 stub_table->set_min_size_threshold(stub_table_size);
3828             }
3829           else
3830             off += i->data_size();
3831         }
3832       // If .branch_lt is part of this output section, then we have
3833       // just done the offset adjustment.
3834       os->clear_section_offsets_need_adjustment();
3835     }
3836
3837   if (size == 64
3838       && !again
3839       && num_huge_branches != 0
3840       && parameters->options().output_is_position_independent())
3841     {
3842       // Fill in the BRLT relocs.
3843       this->brlt_section_->reset_brlt_sizes();
3844       for (typename Branch_lookup_table::const_iterator p
3845              = this->branch_lookup_table_.begin();
3846            p != this->branch_lookup_table_.end();
3847            ++p)
3848         {
3849           this->brlt_section_->add_reloc(p->first, p->second);
3850         }
3851       this->brlt_section_->finalize_brlt_sizes();
3852     }
3853
3854   if (!again
3855       && (parameters->options().user_set_emit_stub_syms()
3856           ? parameters->options().emit_stub_syms()
3857           : (size == 64
3858              || parameters->options().output_is_position_independent()
3859              || parameters->options().emit_relocs())))
3860     {
3861       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3862            p != this->stub_tables_.end();
3863            ++p)
3864         (*p)->define_stub_syms(symtab);
3865
3866       if (this->glink_ != NULL)
3867         {
3868           int stub_size = this->glink_->pltresolve_size();
3869           Address value = -stub_size;
3870           if (size == 64)
3871             {
3872               value = 8;
3873               stub_size -= 8;
3874             }
3875           this->define_local(symtab, "__glink_PLTresolve",
3876                              this->glink_, value, stub_size);
3877
3878           if (size != 64)
3879             this->define_local(symtab, "__glink", this->glink_, 0, 0);
3880         }
3881     }
3882
3883   return again;
3884 }
3885
3886 template<int size, bool big_endian>
3887 void
3888 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3889                                                       unsigned char* oview,
3890                                                       uint64_t* paddress,
3891                                                       off_t* plen) const
3892 {
3893   uint64_t address = plt->address();
3894   off_t len = plt->data_size();
3895
3896   if (plt == this->glink_)
3897     {
3898       // See Output_data_glink::do_write() for glink contents.
3899       if (len == 0)
3900         {
3901           gold_assert(parameters->doing_static_link());
3902           // Static linking may need stubs, to support ifunc and long
3903           // branches.  We need to create an output section for
3904           // .eh_frame early in the link process, to have a place to
3905           // attach stub .eh_frame info.  We also need to have
3906           // registered a CIE that matches the stub CIE.  Both of
3907           // these requirements are satisfied by creating an FDE and
3908           // CIE for .glink, even though static linking will leave
3909           // .glink zero length.
3910           // ??? Hopefully generating an FDE with a zero address range
3911           // won't confuse anything that consumes .eh_frame info.
3912         }
3913       else if (size == 64)
3914         {
3915           // There is one word before __glink_PLTresolve
3916           address += 8;
3917           len -= 8;
3918         }
3919       else if (parameters->options().output_is_position_independent())
3920         {
3921           // There are two FDEs for a position independent glink.
3922           // The first covers the branch table, the second
3923           // __glink_PLTresolve at the end of glink.
3924           off_t resolve_size = this->glink_->pltresolve_size();
3925           if (oview[9] == elfcpp::DW_CFA_nop)
3926             len -= resolve_size;
3927           else
3928             {
3929               address += len - resolve_size;
3930               len = resolve_size;
3931             }
3932         }
3933     }
3934   else
3935     {
3936       // Must be a stub table.
3937       const Stub_table<size, big_endian>* stub_table
3938         = static_cast<const Stub_table<size, big_endian>*>(plt);
3939       uint64_t stub_address = stub_table->stub_address();
3940       len -= stub_address - address;
3941       address = stub_address;
3942     }
3943
3944   *paddress = address;
3945   *plen = len;
3946 }
3947
3948 // A class to handle the PLT data.
3949
3950 template<int size, bool big_endian>
3951 class Output_data_plt_powerpc : public Output_section_data_build
3952 {
3953  public:
3954   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3955                             size, big_endian> Reloc_section;
3956
3957   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3958                           Reloc_section* plt_rel,
3959                           const char* name)
3960     : Output_section_data_build(size == 32 ? 4 : 8),
3961       rel_(plt_rel),
3962       targ_(targ),
3963       name_(name)
3964   { }
3965
3966   // Add an entry to the PLT.
3967   void
3968   add_entry(Symbol*);
3969
3970   void
3971   add_ifunc_entry(Symbol*);
3972
3973   void
3974   add_local_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3975
3976   void
3977   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3978
3979   // Return the .rela.plt section data.
3980   Reloc_section*
3981   rel_plt() const
3982   {
3983     return this->rel_;
3984   }
3985
3986   // Return the number of PLT entries.
3987   unsigned int
3988   entry_count() const
3989   {
3990     if (this->current_data_size() == 0)
3991       return 0;
3992     return ((this->current_data_size() - this->first_plt_entry_offset())
3993             / this->plt_entry_size());
3994   }
3995
3996  protected:
3997   void
3998   do_adjust_output_section(Output_section* os)
3999   {
4000     os->set_entsize(0);
4001   }
4002
4003   // Write to a map file.
4004   void
4005   do_print_to_mapfile(Mapfile* mapfile) const
4006   { mapfile->print_output_data(this, this->name_); }
4007
4008  private:
4009   // Return the offset of the first non-reserved PLT entry.
4010   unsigned int
4011   first_plt_entry_offset() const
4012   {
4013     // IPLT and LPLT have no reserved entry.
4014     if (this->name_[3] == 'I' || this->name_[3] == 'L')
4015       return 0;
4016     return this->targ_->first_plt_entry_offset();
4017   }
4018
4019   // Return the size of each PLT entry.
4020   unsigned int
4021   plt_entry_size() const
4022   {
4023     return this->targ_->plt_entry_size();
4024   }
4025
4026   // Write out the PLT data.
4027   void
4028   do_write(Output_file*);
4029
4030   // The reloc section.
4031   Reloc_section* rel_;
4032   // Allows access to .glink for do_write.
4033   Target_powerpc<size, big_endian>* targ_;
4034   // What to report in map file.
4035   const char *name_;
4036 };
4037
4038 // Add an entry to the PLT.
4039
4040 template<int size, bool big_endian>
4041 void
4042 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
4043 {
4044   if (!gsym->has_plt_offset())
4045     {
4046       section_size_type off = this->current_data_size();
4047       if (off == 0)
4048         off += this->first_plt_entry_offset();
4049       gsym->set_plt_offset(off);
4050       gsym->set_needs_dynsym_entry();
4051       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
4052       this->rel_->add_global(gsym, dynrel, this, off, 0);
4053       off += this->plt_entry_size();
4054       this->set_current_data_size(off);
4055     }
4056 }
4057
4058 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
4059
4060 template<int size, bool big_endian>
4061 void
4062 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
4063 {
4064   if (!gsym->has_plt_offset())
4065     {
4066       section_size_type off = this->current_data_size();
4067       gsym->set_plt_offset(off);
4068       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
4069       if (size == 64 && this->targ_->abiversion() < 2)
4070         dynrel = elfcpp::R_PPC64_JMP_IREL;
4071       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
4072       off += this->plt_entry_size();
4073       this->set_current_data_size(off);
4074     }
4075 }
4076
4077 // Add an entry for a local symbol to the PLT.
4078
4079 template<int size, bool big_endian>
4080 void
4081 Output_data_plt_powerpc<size, big_endian>::add_local_entry(
4082     Sized_relobj_file<size, big_endian>* relobj,
4083     unsigned int local_sym_index)
4084 {
4085   if (!relobj->local_has_plt_offset(local_sym_index))
4086     {
4087       section_size_type off = this->current_data_size();
4088       relobj->set_local_plt_offset(local_sym_index, off);
4089       if (this->rel_)
4090         {
4091           unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
4092           if (size == 64 && this->targ_->abiversion() < 2)
4093             dynrel = elfcpp::R_POWERPC_JMP_SLOT;
4094           this->rel_->add_symbolless_local_addend(relobj, local_sym_index,
4095                                                   dynrel, this, off, 0);
4096         }
4097       off += this->plt_entry_size();
4098       this->set_current_data_size(off);
4099     }
4100 }
4101
4102 // Add an entry for a local ifunc symbol to the IPLT.
4103
4104 template<int size, bool big_endian>
4105 void
4106 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
4107     Sized_relobj_file<size, big_endian>* relobj,
4108     unsigned int local_sym_index)
4109 {
4110   if (!relobj->local_has_plt_offset(local_sym_index))
4111     {
4112       section_size_type off = this->current_data_size();
4113       relobj->set_local_plt_offset(local_sym_index, off);
4114       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
4115       if (size == 64 && this->targ_->abiversion() < 2)
4116         dynrel = elfcpp::R_PPC64_JMP_IREL;
4117       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
4118                                               this, off, 0);
4119       off += this->plt_entry_size();
4120       this->set_current_data_size(off);
4121     }
4122 }
4123
4124 static const uint32_t add_0_11_11       = 0x7c0b5a14;
4125 static const uint32_t add_2_2_11        = 0x7c425a14;
4126 static const uint32_t add_2_2_12        = 0x7c426214;
4127 static const uint32_t add_3_3_2         = 0x7c631214;
4128 static const uint32_t add_3_3_13        = 0x7c636a14;
4129 static const uint32_t add_3_12_2        = 0x7c6c1214;
4130 static const uint32_t add_3_12_13       = 0x7c6c6a14;
4131 static const uint32_t add_11_0_11       = 0x7d605a14;
4132 static const uint32_t add_11_2_11       = 0x7d625a14;
4133 static const uint32_t add_11_11_2       = 0x7d6b1214;
4134 static const uint32_t add_12_11_12      = 0x7d8b6214;
4135 static const uint32_t addi_0_12         = 0x380c0000;
4136 static const uint32_t addi_2_2          = 0x38420000;
4137 static const uint32_t addi_3_3          = 0x38630000;
4138 static const uint32_t addi_11_11        = 0x396b0000;
4139 static const uint32_t addi_12_1         = 0x39810000;
4140 static const uint32_t addi_12_11        = 0x398b0000;
4141 static const uint32_t addi_12_12        = 0x398c0000;
4142 static const uint32_t addis_0_2         = 0x3c020000;
4143 static const uint32_t addis_0_13        = 0x3c0d0000;
4144 static const uint32_t addis_2_12        = 0x3c4c0000;
4145 static const uint32_t addis_11_2        = 0x3d620000;
4146 static const uint32_t addis_11_11       = 0x3d6b0000;
4147 static const uint32_t addis_11_30       = 0x3d7e0000;
4148 static const uint32_t addis_12_1        = 0x3d810000;
4149 static const uint32_t addis_12_2        = 0x3d820000;
4150 static const uint32_t addis_12_11       = 0x3d8b0000;
4151 static const uint32_t addis_12_12       = 0x3d8c0000;
4152 static const uint32_t b                 = 0x48000000;
4153 static const uint32_t bcl_20_31         = 0x429f0005;
4154 static const uint32_t bctr              = 0x4e800420;
4155 static const uint32_t bctrl             = 0x4e800421;
4156 static const uint32_t beqlr             = 0x4d820020;
4157 static const uint32_t blr               = 0x4e800020;
4158 static const uint32_t bnectr_p4         = 0x4ce20420;
4159 static const uint32_t cmpld_7_12_0      = 0x7fac0040;
4160 static const uint32_t cmpldi_2_0        = 0x28220000;
4161 static const uint32_t cmpdi_11_0        = 0x2c2b0000;
4162 static const uint32_t cmpwi_11_0        = 0x2c0b0000;
4163 static const uint32_t cror_15_15_15     = 0x4def7b82;
4164 static const uint32_t cror_31_31_31     = 0x4ffffb82;
4165 static const uint32_t ld_0_1            = 0xe8010000;
4166 static const uint32_t ld_0_12           = 0xe80c0000;
4167 static const uint32_t ld_2_1            = 0xe8410000;
4168 static const uint32_t ld_2_2            = 0xe8420000;
4169 static const uint32_t ld_2_11           = 0xe84b0000;
4170 static const uint32_t ld_2_12           = 0xe84c0000;
4171 static const uint32_t ld_11_1           = 0xe9610000;
4172 static const uint32_t ld_11_2           = 0xe9620000;
4173 static const uint32_t ld_11_3           = 0xe9630000;
4174 static const uint32_t ld_11_11          = 0xe96b0000;
4175 static const uint32_t ld_12_2           = 0xe9820000;
4176 static const uint32_t ld_12_3           = 0xe9830000;
4177 static const uint32_t ld_12_11          = 0xe98b0000;
4178 static const uint32_t ld_12_12          = 0xe98c0000;
4179 static const uint32_t ldx_12_11_12      = 0x7d8b602a;
4180 static const uint32_t lfd_0_1           = 0xc8010000;
4181 static const uint32_t li_0_0            = 0x38000000;
4182 static const uint32_t li_11_0           = 0x39600000;
4183 static const uint32_t li_12_0           = 0x39800000;
4184 static const uint32_t lis_0             = 0x3c000000;
4185 static const uint32_t lis_2             = 0x3c400000;
4186 static const uint32_t lis_11            = 0x3d600000;
4187 static const uint32_t lis_12            = 0x3d800000;
4188 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
4189 static const uint32_t lwz_0_12          = 0x800c0000;
4190 static const uint32_t lwz_11_3          = 0x81630000;
4191 static const uint32_t lwz_11_11         = 0x816b0000;
4192 static const uint32_t lwz_11_30         = 0x817e0000;
4193 static const uint32_t lwz_12_3          = 0x81830000;
4194 static const uint32_t lwz_12_12         = 0x818c0000;
4195 static const uint32_t lwzu_0_12         = 0x840c0000;
4196 static const uint32_t mflr_0            = 0x7c0802a6;
4197 static const uint32_t mflr_11           = 0x7d6802a6;
4198 static const uint32_t mflr_12           = 0x7d8802a6;
4199 static const uint32_t mr_0_3            = 0x7c601b78;
4200 static const uint32_t mr_3_0            = 0x7c030378;
4201 static const uint32_t mtctr_0           = 0x7c0903a6;
4202 static const uint32_t mtctr_11          = 0x7d6903a6;
4203 static const uint32_t mtctr_12          = 0x7d8903a6;
4204 static const uint32_t mtlr_0            = 0x7c0803a6;
4205 static const uint32_t mtlr_11           = 0x7d6803a6;
4206 static const uint32_t mtlr_12           = 0x7d8803a6;
4207 static const uint32_t nop               = 0x60000000;
4208 static const uint32_t ori_0_0_0         = 0x60000000;
4209 static const uint32_t ori_11_11_0       = 0x616b0000;
4210 static const uint32_t ori_12_12_0       = 0x618c0000;
4211 static const uint32_t oris_12_12_0      = 0x658c0000;
4212 static const uint32_t sldi_11_11_34     = 0x796b1746;
4213 static const uint32_t sldi_12_12_32     = 0x799c07c6;
4214 static const uint32_t srdi_0_0_2        = 0x7800f082;
4215 static const uint32_t std_0_1           = 0xf8010000;
4216 static const uint32_t std_0_12          = 0xf80c0000;
4217 static const uint32_t std_2_1           = 0xf8410000;
4218 static const uint32_t std_11_1          = 0xf9610000;
4219 static const uint32_t stfd_0_1          = 0xd8010000;
4220 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
4221 static const uint32_t sub_11_11_12      = 0x7d6c5850;
4222 static const uint32_t sub_12_12_11      = 0x7d8b6050;
4223 static const uint32_t xor_2_12_12       = 0x7d826278;
4224 static const uint32_t xor_11_12_12      = 0x7d8b6278;
4225
4226 static const uint64_t paddi_12_pc       = 0x0610000039800000ULL;
4227 static const uint64_t pld_12_pc         = 0x04100000e5800000ULL;
4228 static const uint64_t pnop              = 0x0700000000000000ULL;
4229
4230 // Write out the PLT.
4231
4232 template<int size, bool big_endian>
4233 void
4234 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
4235 {
4236   if (size == 32 && (this->name_[3] != 'I' && this->name_[3] != 'L'))
4237     {
4238       const section_size_type offset = this->offset();
4239       const section_size_type oview_size
4240         = convert_to_section_size_type(this->data_size());
4241       unsigned char* const oview = of->get_output_view(offset, oview_size);
4242       unsigned char* pov = oview;
4243       unsigned char* endpov = oview + oview_size;
4244
4245       // The address of the .glink branch table
4246       const Output_data_glink<size, big_endian>* glink
4247         = this->targ_->glink_section();
4248       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
4249
4250       while (pov < endpov)
4251         {
4252           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
4253           pov += 4;
4254           branch_tab += 4;
4255         }
4256
4257       of->write_output_view(offset, oview_size, oview);
4258     }
4259 }
4260
4261 // Create the PLT section.
4262
4263 template<int size, bool big_endian>
4264 void
4265 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
4266                                                    Layout* layout)
4267 {
4268   if (this->plt_ == NULL)
4269     {
4270       if (this->got_ == NULL)
4271         this->got_section(symtab, layout);
4272
4273       if (this->glink_ == NULL)
4274         make_glink_section(layout);
4275
4276       // Ensure that .rela.dyn always appears before .rela.plt  This is
4277       // necessary due to how, on PowerPC and some other targets, .rela.dyn
4278       // needs to include .rela.plt in its range.
4279       this->rela_dyn_section(layout);
4280
4281       Reloc_section* plt_rel = new Reloc_section(false);
4282       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4283                                       elfcpp::SHF_ALLOC, plt_rel,
4284                                       ORDER_DYNAMIC_PLT_RELOCS, false);
4285       this->plt_
4286         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
4287                                                         "** PLT");
4288       layout->add_output_section_data(".plt",
4289                                       (size == 32
4290                                        ? elfcpp::SHT_PROGBITS
4291                                        : elfcpp::SHT_NOBITS),
4292                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4293                                       this->plt_,
4294                                       (size == 32
4295                                        ? ORDER_SMALL_DATA
4296                                        : ORDER_SMALL_BSS),
4297                                       false);
4298
4299       Output_section* rela_plt_os = plt_rel->output_section();
4300       rela_plt_os->set_info_section(this->plt_->output_section());
4301     }
4302 }
4303
4304 // Create the IPLT section.
4305
4306 template<int size, bool big_endian>
4307 void
4308 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
4309                                                     Layout* layout)
4310 {
4311   if (this->iplt_ == NULL)
4312     {
4313       this->make_plt_section(symtab, layout);
4314       this->make_lplt_section(layout);
4315
4316       Reloc_section* iplt_rel = new Reloc_section(false);
4317       if (this->rela_dyn_->output_section())
4318         this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
4319       this->iplt_
4320         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
4321                                                         "** IPLT");
4322       if (this->plt_->output_section())
4323         this->plt_->output_section()->add_output_section_data(this->iplt_);
4324     }
4325 }
4326
4327 // Create the LPLT section.
4328
4329 template<int size, bool big_endian>
4330 void
4331 Target_powerpc<size, big_endian>::make_lplt_section(Layout* layout)
4332 {
4333   if (this->lplt_ == NULL)
4334     {
4335       Reloc_section* lplt_rel = NULL;
4336       if (parameters->options().output_is_position_independent())
4337         {
4338           lplt_rel = new Reloc_section(false);
4339           this->rela_dyn_section(layout);
4340           if (this->rela_dyn_->output_section())
4341             this->rela_dyn_->output_section()
4342               ->add_output_section_data(lplt_rel);
4343         }
4344       this->lplt_
4345         = new Output_data_plt_powerpc<size, big_endian>(this, lplt_rel,
4346                                                         "** LPLT");
4347       this->make_brlt_section(layout);
4348       if (this->brlt_section_ && this->brlt_section_->output_section())
4349         this->brlt_section_->output_section()
4350           ->add_output_section_data(this->lplt_);
4351       else
4352         layout->add_output_section_data(".branch_lt",
4353                                         elfcpp::SHT_PROGBITS,
4354                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4355                                         this->lplt_,
4356                                         ORDER_RELRO,
4357                                         true);
4358     }
4359 }
4360
4361 // A section for huge long branch addresses, similar to plt section.
4362
4363 template<int size, bool big_endian>
4364 class Output_data_brlt_powerpc : public Output_section_data_build
4365 {
4366  public:
4367   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4368   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
4369                             size, big_endian> Reloc_section;
4370
4371   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
4372                            Reloc_section* brlt_rel)
4373     : Output_section_data_build(size == 32 ? 4 : 8),
4374       rel_(brlt_rel),
4375       targ_(targ)
4376   { }
4377
4378   void
4379   reset_brlt_sizes()
4380   {
4381     this->reset_data_size();
4382     this->rel_->reset_data_size();
4383   }
4384
4385   void
4386   finalize_brlt_sizes()
4387   {
4388     this->finalize_data_size();
4389     this->rel_->finalize_data_size();
4390   }
4391
4392   // Add a reloc for an entry in the BRLT.
4393   void
4394   add_reloc(Address to, unsigned int off)
4395   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
4396
4397   // Update section and reloc section size.
4398   void
4399   set_current_size(unsigned int num_branches)
4400   {
4401     this->reset_address_and_file_offset();
4402     this->set_current_data_size(num_branches * 16);
4403     this->finalize_data_size();
4404     Output_section* os = this->output_section();
4405     os->set_section_offsets_need_adjustment();
4406     if (this->rel_ != NULL)
4407       {
4408         const unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
4409         this->rel_->reset_address_and_file_offset();
4410         this->rel_->set_current_data_size(num_branches * reloc_size);
4411         this->rel_->finalize_data_size();
4412         Output_section* os = this->rel_->output_section();
4413         os->set_section_offsets_need_adjustment();
4414       }
4415   }
4416
4417  protected:
4418   void
4419   do_adjust_output_section(Output_section* os)
4420   {
4421     os->set_entsize(0);
4422   }
4423
4424   // Write to a map file.
4425   void
4426   do_print_to_mapfile(Mapfile* mapfile) const
4427   { mapfile->print_output_data(this, "** BRLT"); }
4428
4429  private:
4430   // Write out the BRLT data.
4431   void
4432   do_write(Output_file*);
4433
4434   // The reloc section.
4435   Reloc_section* rel_;
4436   Target_powerpc<size, big_endian>* targ_;
4437 };
4438
4439 // Make the branch lookup table section.
4440
4441 template<int size, bool big_endian>
4442 void
4443 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
4444 {
4445   if (size == 64 && this->brlt_section_ == NULL)
4446     {
4447       Reloc_section* brlt_rel = NULL;
4448       bool is_pic = parameters->options().output_is_position_independent();
4449       if (is_pic)
4450         {
4451           // When PIC we can't fill in .branch_lt but must initialise at
4452           // runtime via dynamic relocations.
4453           this->rela_dyn_section(layout);
4454           brlt_rel = new Reloc_section(false);
4455           if (this->rela_dyn_->output_section())
4456             this->rela_dyn_->output_section()
4457               ->add_output_section_data(brlt_rel);
4458         }
4459       this->brlt_section_
4460         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
4461       if (this->plt_ && is_pic && this->plt_->output_section())
4462         this->plt_->output_section()
4463           ->add_output_section_data(this->brlt_section_);
4464       else
4465         layout->add_output_section_data(".branch_lt",
4466                                         elfcpp::SHT_PROGBITS,
4467                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4468                                         this->brlt_section_,
4469                                         ORDER_RELRO,
4470                                         true);
4471     }
4472 }
4473
4474 // Write out .branch_lt when non-PIC.
4475
4476 template<int size, bool big_endian>
4477 void
4478 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
4479 {
4480   if (size == 64 && !parameters->options().output_is_position_independent())
4481     {
4482       const section_size_type offset = this->offset();
4483       const section_size_type oview_size
4484         = convert_to_section_size_type(this->data_size());
4485       unsigned char* const oview = of->get_output_view(offset, oview_size);
4486
4487       this->targ_->write_branch_lookup_table(oview);
4488       of->write_output_view(offset, oview_size, oview);
4489     }
4490 }
4491
4492 static inline uint32_t
4493 l(uint32_t a)
4494 {
4495   return a & 0xffff;
4496 }
4497
4498 static inline uint32_t
4499 hi(uint32_t a)
4500 {
4501   return l(a >> 16);
4502 }
4503
4504 static inline uint32_t
4505 ha(uint32_t a)
4506 {
4507   return hi(a + 0x8000);
4508 }
4509
4510 static inline uint64_t
4511 d34(uint64_t v)
4512 {
4513   return ((v & 0x3ffff0000ULL) << 16) | (v & 0xffff);
4514 }
4515
4516 static inline uint64_t
4517 ha34(uint64_t v)
4518 {
4519   return (v + (1ULL << 33)) >> 34;
4520 }
4521
4522 template<int size>
4523 struct Eh_cie
4524 {
4525   static const unsigned char eh_frame_cie[12];
4526 };
4527
4528 template<int size>
4529 const unsigned char Eh_cie<size>::eh_frame_cie[] =
4530 {
4531   1,                                    // CIE version.
4532   'z', 'R', 0,                          // Augmentation string.
4533   4,                                    // Code alignment.
4534   0x80 - size / 8 ,                     // Data alignment.
4535   65,                                   // RA reg.
4536   1,                                    // Augmentation size.
4537   (elfcpp::DW_EH_PE_pcrel
4538    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
4539   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
4540 };
4541
4542 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
4543 static const unsigned char glink_eh_frame_fde_64v1[] =
4544 {
4545   0, 0, 0, 0,                           // Replaced with offset to .glink.
4546   0, 0, 0, 0,                           // Replaced with size of .glink.
4547   0,                                    // Augmentation size.
4548   elfcpp::DW_CFA_advance_loc + 1,
4549   elfcpp::DW_CFA_register, 65, 12,
4550   elfcpp::DW_CFA_advance_loc + 5,
4551   elfcpp::DW_CFA_restore_extended, 65
4552 };
4553
4554 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
4555 static const unsigned char glink_eh_frame_fde_64v2[] =
4556 {
4557   0, 0, 0, 0,                           // Replaced with offset to .glink.
4558   0, 0, 0, 0,                           // Replaced with size of .glink.
4559   0,                                    // Augmentation size.
4560   elfcpp::DW_CFA_advance_loc + 1,
4561   elfcpp::DW_CFA_register, 65, 0,
4562   elfcpp::DW_CFA_advance_loc + 7,
4563   elfcpp::DW_CFA_restore_extended, 65
4564 };
4565
4566 // Describe __glink_PLTresolve use of LR, 32-bit version.
4567 static const unsigned char glink_eh_frame_fde_32[] =
4568 {
4569   0, 0, 0, 0,                           // Replaced with offset to .glink.
4570   0, 0, 0, 0,                           // Replaced with size of .glink.
4571   0,                                    // Augmentation size.
4572   elfcpp::DW_CFA_advance_loc + 2,
4573   elfcpp::DW_CFA_register, 65, 0,
4574   elfcpp::DW_CFA_advance_loc + 4,
4575   elfcpp::DW_CFA_restore_extended, 65
4576 };
4577
4578 static const unsigned char default_fde[] =
4579 {
4580   0, 0, 0, 0,                           // Replaced with offset to stubs.
4581   0, 0, 0, 0,                           // Replaced with size of stubs.
4582   0,                                    // Augmentation size.
4583   elfcpp::DW_CFA_nop,                   // Pad.
4584   elfcpp::DW_CFA_nop,
4585   elfcpp::DW_CFA_nop
4586 };
4587
4588 template<bool big_endian>
4589 static inline void
4590 write_insn(unsigned char* p, uint32_t v)
4591 {
4592   elfcpp::Swap<32, big_endian>::writeval(p, v);
4593 }
4594
4595 template<int size>
4596 static inline unsigned int
4597 param_plt_align()
4598 {
4599   if (!parameters->options().user_set_plt_align())
4600     return size == 64 ? 32 : 8;
4601   return 1 << parameters->options().plt_align();
4602 }
4603
4604 // Stub_table holds information about plt and long branch stubs.
4605 // Stubs are built in an area following some input section determined
4606 // by group_sections().  This input section is converted to a relaxed
4607 // input section allowing it to be resized to accommodate the stubs
4608
4609 template<int size, bool big_endian>
4610 class Stub_table : public Output_relaxed_input_section
4611 {
4612  public:
4613   struct Plt_stub_ent
4614   {
4615     Plt_stub_ent(unsigned int off, unsigned int indx)
4616       : off_(off), indx_(indx), iter_(0), notoc_(0), r2save_(0), localentry0_(0)
4617     { }
4618
4619     unsigned int off_;
4620     unsigned int indx_ : 28;
4621     unsigned int iter_ : 1;
4622     unsigned int notoc_ : 1;
4623     unsigned int r2save_ : 1;
4624     unsigned int localentry0_ : 1;
4625   };
4626   struct Branch_stub_ent
4627   {
4628     Branch_stub_ent(unsigned int off, bool notoc, bool save_res)
4629       : off_(off), iter_(false), notoc_(notoc), save_res_(save_res)
4630     { }
4631
4632     unsigned int off_;
4633     bool iter_;
4634     bool notoc_;
4635     bool save_res_;
4636   };
4637   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4638   static const Address invalid_address = static_cast<Address>(0) - 1;
4639
4640   Stub_table(Target_powerpc<size, big_endian>* targ,
4641              Output_section* output_section,
4642              const Output_section::Input_section* owner,
4643              uint32_t id)
4644     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
4645                                    owner->relobj()
4646                                    ->section_addralign(owner->shndx())),
4647       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
4648       orig_data_size_(owner->current_data_size()),
4649       plt_size_(0), last_plt_size_(0),
4650       branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
4651       need_save_res_(false), need_resize_(false), resizing_(false),
4652       uniq_(id)
4653   {
4654     this->set_output_section(output_section);
4655
4656     std::vector<Output_relaxed_input_section*> new_relaxed;
4657     new_relaxed.push_back(this);
4658     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
4659   }
4660
4661   // Add a plt call stub.
4662   bool
4663   add_plt_call_entry(Address,
4664                      const Sized_relobj_file<size, big_endian>*,
4665                      const Symbol*,
4666                      unsigned int,
4667                      Address,
4668                      bool);
4669
4670   bool
4671   add_plt_call_entry(Address,
4672                      const Sized_relobj_file<size, big_endian>*,
4673                      unsigned int,
4674                      unsigned int,
4675                      Address,
4676                      bool);
4677
4678   // Find a given plt call stub.
4679   const Plt_stub_ent*
4680   find_plt_call_entry(const Symbol*) const;
4681
4682   const Plt_stub_ent*
4683   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4684                       unsigned int) const;
4685
4686   const Plt_stub_ent*
4687   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4688                       const Symbol*,
4689                       unsigned int,
4690                       Address) const;
4691
4692   const Plt_stub_ent*
4693   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4694                       unsigned int,
4695                       unsigned int,
4696                       Address) const;
4697
4698   // Add a long branch stub.
4699   bool
4700   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4701                         unsigned int, Address, Address, bool);
4702
4703   const Branch_stub_ent*
4704   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4705                          Address) const;
4706
4707   bool
4708   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
4709   {
4710     Address max_branch_offset = max_branch_delta<size>(r_type);
4711     if (max_branch_offset == 0)
4712       return true;
4713     gold_assert(from != invalid_address);
4714     Address loc = off + this->stub_address();
4715     return loc - from + max_branch_offset < 2 * max_branch_offset;
4716   }
4717
4718   void
4719   clear_stubs(bool all)
4720   {
4721     this->plt_call_stubs_.clear();
4722     this->plt_size_ = 0;
4723     this->long_branch_stubs_.clear();
4724     this->branch_size_ = 0;
4725     this->need_save_res_ = false;
4726     if (all)
4727       {
4728         this->last_plt_size_ = 0;
4729         this->last_branch_size_ = 0;
4730       }
4731   }
4732
4733   bool
4734   need_resize() const
4735   { return need_resize_; }
4736
4737   void
4738   set_resizing(bool val)
4739   {
4740     this->resizing_ = val;
4741     if (val)
4742       {
4743         this->need_resize_ = false;
4744         this->plt_size_ = 0;
4745         this->branch_size_ = 0;
4746         this->need_save_res_ = false;
4747       }
4748   }
4749
4750   Address
4751   set_address_and_size(const Output_section* os, Address off)
4752   {
4753     Address start_off = off;
4754     off += this->orig_data_size_;
4755     Address my_size = this->plt_size_ + this->branch_size_;
4756     if (this->need_save_res_)
4757       my_size += this->targ_->savres_section()->data_size();
4758     if (my_size != 0)
4759       off = align_address(off, this->stub_align());
4760     // Include original section size and alignment padding in size
4761     my_size += off - start_off;
4762     // Ensure new size is always larger than min size
4763     // threshold. Alignment requirement is included in "my_size", so
4764     // increase "my_size" does not invalidate alignment.
4765     if (my_size < this->min_size_threshold_)
4766       my_size = this->min_size_threshold_;
4767     this->reset_address_and_file_offset();
4768     this->set_current_data_size(my_size);
4769     this->set_address_and_file_offset(os->address() + start_off,
4770                                       os->offset() + start_off);
4771     return my_size;
4772   }
4773
4774   Address
4775   stub_address() const
4776   {
4777     return align_address(this->address() + this->orig_data_size_,
4778                          this->stub_align());
4779   }
4780
4781   Address
4782   stub_offset() const
4783   {
4784     return align_address(this->offset() + this->orig_data_size_,
4785                          this->stub_align());
4786   }
4787
4788   section_size_type
4789   plt_size() const
4790   { return this->plt_size_; }
4791
4792   section_size_type
4793   branch_size() const
4794   { return this->branch_size_; }
4795
4796   void
4797   set_min_size_threshold(Address min_size)
4798   { this->min_size_threshold_ = min_size; }
4799
4800   void
4801   define_stub_syms(Symbol_table*);
4802
4803   bool
4804   size_update()
4805   {
4806     Output_section* os = this->output_section();
4807     if (os->addralign() < this->stub_align())
4808       {
4809         os->set_addralign(this->stub_align());
4810         // FIXME: get rid of the insane checkpointing.
4811         // We can't increase alignment of the input section to which
4812         // stubs are attached;  The input section may be .init which
4813         // is pasted together with other .init sections to form a
4814         // function.  Aligning might insert zero padding resulting in
4815         // sigill.  However we do need to increase alignment of the
4816         // output section so that the align_address() on offset in
4817         // set_address_and_size() adds the same padding as the
4818         // align_address() on address in stub_address().
4819         // What's more, we need this alignment for the layout done in
4820         // relaxation_loop_body() so that the output section starts at
4821         // a suitably aligned address.
4822         os->checkpoint_set_addralign(this->stub_align());
4823       }
4824     if (this->last_plt_size_ != this->plt_size_
4825         || this->last_branch_size_ != this->branch_size_)
4826       {
4827         this->last_plt_size_ = this->plt_size_;
4828         this->last_branch_size_ = this->branch_size_;
4829         return true;
4830       }
4831     return false;
4832   }
4833
4834   // Add .eh_frame info for this stub section.
4835   void
4836   add_eh_frame(Layout* layout);
4837
4838   // Remove .eh_frame info for this stub section.
4839   void
4840   remove_eh_frame(Layout* layout);
4841
4842   Target_powerpc<size, big_endian>*
4843   targ() const
4844   { return targ_; }
4845
4846  private:
4847   class Plt_stub_key;
4848   class Plt_stub_key_hash;
4849   typedef Unordered_map<Plt_stub_key, Plt_stub_ent,
4850                         Plt_stub_key_hash> Plt_stub_entries;
4851   class Branch_stub_key;
4852   class Branch_stub_key_hash;
4853   typedef Unordered_map<Branch_stub_key, Branch_stub_ent,
4854                         Branch_stub_key_hash> Branch_stub_entries;
4855
4856   // Alignment of stub section.
4857   unsigned int
4858   stub_align() const
4859   {
4860     unsigned int min_align = size == 64 ? 32 : 16;
4861     unsigned int user_align = 1 << parameters->options().plt_align();
4862     return std::max(user_align, min_align);
4863   }
4864
4865   // Return the plt offset for the given call stub.
4866   Address
4867   plt_off(typename Plt_stub_entries::const_iterator p,
4868           const Output_data_plt_powerpc<size, big_endian>** sec) const
4869   {
4870     const Symbol* gsym = p->first.sym_;
4871     if (gsym != NULL)
4872       return this->targ_->plt_off(gsym, sec);
4873     else
4874       {
4875         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
4876         unsigned int local_sym_index = p->first.locsym_;
4877         return this->targ_->plt_off(relobj, local_sym_index, sec);
4878       }
4879   }
4880
4881   // Size of a given plt call stub.
4882   unsigned int
4883   plt_call_size(typename Plt_stub_entries::const_iterator p) const;
4884
4885   unsigned int
4886   plt_call_align(unsigned int bytes) const
4887   {
4888     unsigned int align = param_plt_align<size>();
4889     return (bytes + align - 1) & -align;
4890   }
4891
4892   // Return long branch stub size.
4893   unsigned int
4894   branch_stub_size(typename Branch_stub_entries::const_iterator p,
4895                    bool* need_lt);
4896
4897   bool
4898   build_tls_opt_head(unsigned char** pp,
4899                      typename Plt_stub_entries::const_iterator cs);
4900
4901   bool
4902   build_tls_opt_tail(unsigned char* p,
4903                      typename Plt_stub_entries::const_iterator cs);
4904
4905   void
4906   plt_error(const Plt_stub_key& p);
4907
4908   // Write out stubs.
4909   void
4910   do_write(Output_file*);
4911
4912   // Plt call stub keys.
4913   class Plt_stub_key
4914   {
4915   public:
4916     Plt_stub_key(const Symbol* sym)
4917       : sym_(sym), object_(0), addend_(0), locsym_(0)
4918     { }
4919
4920     Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4921                  unsigned int locsym_index)
4922       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4923     { }
4924
4925     Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4926                  const Symbol* sym,
4927                  unsigned int r_type,
4928                  Address addend)
4929       : sym_(sym), object_(0), addend_(0), locsym_(0)
4930     {
4931       if (size != 32)
4932         this->addend_ = addend;
4933       else if (parameters->options().output_is_position_independent()
4934                && (r_type == elfcpp::R_PPC_PLTREL24
4935                    || r_type == elfcpp::R_POWERPC_PLTCALL))
4936         {
4937           this->addend_ = addend;
4938           if (this->addend_ >= 32768)
4939             this->object_ = object;
4940         }
4941     }
4942
4943     Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4944                  unsigned int locsym_index,
4945                  unsigned int r_type,
4946                  Address addend)
4947       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4948     {
4949       if (size != 32)
4950         this->addend_ = addend;
4951       else if (parameters->options().output_is_position_independent()
4952                && (r_type == elfcpp::R_PPC_PLTREL24
4953                    || r_type == elfcpp::R_POWERPC_PLTCALL))
4954         this->addend_ = addend;
4955     }
4956
4957     bool operator==(const Plt_stub_key& that) const
4958     {
4959       return (this->sym_ == that.sym_
4960               && this->object_ == that.object_
4961               && this->addend_ == that.addend_
4962               && this->locsym_ == that.locsym_);
4963     }
4964
4965     const Symbol* sym_;
4966     const Sized_relobj_file<size, big_endian>* object_;
4967     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4968     unsigned int locsym_;
4969   };
4970
4971   class Plt_stub_key_hash
4972   {
4973   public:
4974     size_t operator()(const Plt_stub_key& ent) const
4975     {
4976       return (reinterpret_cast<uintptr_t>(ent.sym_)
4977               ^ reinterpret_cast<uintptr_t>(ent.object_)
4978               ^ ent.addend_
4979               ^ ent.locsym_);
4980     }
4981   };
4982
4983   // Long branch stub keys.
4984   class Branch_stub_key
4985   {
4986   public:
4987     Branch_stub_key(const Powerpc_relobj<size, big_endian>* obj, Address to)
4988       : dest_(to), toc_base_off_(0)
4989     {
4990       if (size == 64)
4991         toc_base_off_ = obj->toc_base_offset();
4992     }
4993
4994     bool operator==(const Branch_stub_key& that) const
4995     {
4996       return (this->dest_ == that.dest_
4997               && (size == 32
4998                   || this->toc_base_off_ == that.toc_base_off_));
4999     }
5000
5001     Address dest_;
5002     unsigned int toc_base_off_;
5003   };
5004
5005   class Branch_stub_key_hash
5006   {
5007   public:
5008     size_t operator()(const Branch_stub_key& key) const
5009     { return key.dest_ ^ key.toc_base_off_; }
5010   };
5011
5012   // In a sane world this would be a global.
5013   Target_powerpc<size, big_endian>* targ_;
5014   // Map sym/object/addend to stub offset.
5015   Plt_stub_entries plt_call_stubs_;
5016   // Map destination address to stub offset.
5017   Branch_stub_entries long_branch_stubs_;
5018   // size of input section
5019   section_size_type orig_data_size_;
5020   // size of stubs
5021   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
5022   // Some rare cases cause (PR/20529) fluctuation in stub table
5023   // size, which leads to an endless relax loop. This is to be fixed
5024   // by, after the first few iterations, allowing only increase of
5025   // stub table size. This variable sets the minimal possible size of
5026   // a stub table, it is zero for the first few iterations, then
5027   // increases monotonically.
5028   Address min_size_threshold_;
5029   // Set if this stub group needs a copy of out-of-line register
5030   // save/restore functions.
5031   bool need_save_res_;
5032   // Set when notoc_/r2save_ changes after sizing a stub
5033   bool need_resize_;
5034   // Set when resizing stubs
5035   bool resizing_;
5036   // Per stub table unique identifier.
5037   uint32_t uniq_;
5038 };
5039
5040 // Add a plt call stub, if we do not already have one for this
5041 // sym/object/addend combo.
5042
5043 template<int size, bool big_endian>
5044 bool
5045 Stub_table<size, big_endian>::add_plt_call_entry(
5046     Address from,
5047     const Sized_relobj_file<size, big_endian>* object,
5048     const Symbol* gsym,
5049     unsigned int r_type,
5050     Address addend,
5051     bool tocsave)
5052 {
5053   Plt_stub_key key(object, gsym, r_type, addend);
5054   Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
5055   std::pair<typename Plt_stub_entries::iterator, bool> p
5056     = this->plt_call_stubs_.insert(std::make_pair(key, ent));
5057   if (size == 64)
5058     {
5059       if (p.second
5060           && this->targ_->is_elfv2_localentry0(gsym))
5061         {
5062           p.first->second.localentry0_ = 1;
5063           this->targ_->set_has_localentry0();
5064         }
5065       if (r_type == elfcpp::R_PPC64_REL24_NOTOC)
5066         {
5067           if (!p.second && !p.first->second.notoc_
5068               && !this->targ_->powerxx_stubs())
5069             this->need_resize_ = true;
5070           p.first->second.notoc_ = 1;
5071         }
5072       else if (!tocsave && !p.first->second.localentry0_)
5073         {
5074           if (!p.second && !p.first->second.r2save_)
5075             this->need_resize_ = true;
5076           p.first->second.r2save_ = 1;
5077         }
5078     }
5079   if (p.second || (this->resizing_ && !p.first->second.iter_))
5080     {
5081       if (this->resizing_)
5082         {
5083           p.first->second.iter_ = 1;
5084           p.first->second.off_ = this->plt_size_;
5085         }
5086       this->plt_size_ += this->plt_call_size(p.first);
5087       if (this->targ_->is_tls_get_addr_opt(gsym))
5088         this->targ_->set_has_tls_get_addr_opt();
5089       this->plt_size_ = this->plt_call_align(this->plt_size_);
5090     }
5091   return this->can_reach_stub(from, p.first->second.off_, r_type);
5092 }
5093
5094 template<int size, bool big_endian>
5095 bool
5096 Stub_table<size, big_endian>::add_plt_call_entry(
5097     Address from,
5098     const Sized_relobj_file<size, big_endian>* object,
5099     unsigned int locsym_index,
5100     unsigned int r_type,
5101     Address addend,
5102     bool tocsave)
5103 {
5104   Plt_stub_key key(object, locsym_index, r_type, addend);
5105   Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
5106   std::pair<typename Plt_stub_entries::iterator, bool> p
5107     = this->plt_call_stubs_.insert(std::make_pair(key, ent));
5108   if (size == 64)
5109     {
5110       if (p.second
5111           && this->targ_->is_elfv2_localentry0(object, locsym_index))
5112         {
5113           p.first->second.localentry0_ = 1;
5114           this->targ_->set_has_localentry0();
5115         }
5116       if (r_type == elfcpp::R_PPC64_REL24_NOTOC)
5117         {
5118           if (!p.second && !p.first->second.notoc_
5119               && !this->targ_->powerxx_stubs())
5120             this->need_resize_ = true;
5121           p.first->second.notoc_ = 1;
5122         }
5123       else if (!tocsave && !p.first->second.localentry0_)
5124         {
5125           if (!p.second && !p.first->second.r2save_)
5126             this->need_resize_ = true;
5127           p.first->second.r2save_ = 1;
5128         }
5129     }
5130   if (p.second || (this->resizing_ && !p.first->second.iter_))
5131     {
5132       if (this->resizing_)
5133         {
5134           p.first->second.iter_ = 1;
5135           p.first->second.off_ = this->plt_size_;
5136         }
5137       this->plt_size_ += this->plt_call_size(p.first);
5138       this->plt_size_ = this->plt_call_align(this->plt_size_);
5139     }
5140   return this->can_reach_stub(from, p.first->second.off_, r_type);
5141 }
5142
5143 // Find a plt call stub.
5144
5145 template<int size, bool big_endian>
5146 const typename Stub_table<size, big_endian>::Plt_stub_ent*
5147 Stub_table<size, big_endian>::find_plt_call_entry(
5148     const Sized_relobj_file<size, big_endian>* object,
5149     const Symbol* gsym,
5150     unsigned int r_type,
5151     Address addend) const
5152 {
5153   Plt_stub_key key(object, gsym, r_type, addend);
5154   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
5155   if (p == this->plt_call_stubs_.end())
5156     return NULL;
5157   return &p->second;
5158 }
5159
5160 template<int size, bool big_endian>
5161 const typename Stub_table<size, big_endian>::Plt_stub_ent*
5162 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
5163 {
5164   Plt_stub_key key(gsym);
5165   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
5166   if (p == this->plt_call_stubs_.end())
5167     return NULL;
5168   return &p->second;
5169 }
5170
5171 template<int size, bool big_endian>
5172 const typename Stub_table<size, big_endian>::Plt_stub_ent*
5173 Stub_table<size, big_endian>::find_plt_call_entry(
5174     const Sized_relobj_file<size, big_endian>* object,
5175     unsigned int locsym_index,
5176     unsigned int r_type,
5177     Address addend) const
5178 {
5179   Plt_stub_key key(object, locsym_index, r_type, addend);
5180   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
5181   if (p == this->plt_call_stubs_.end())
5182     return NULL;
5183   return &p->second;
5184 }
5185
5186 template<int size, bool big_endian>
5187 const typename Stub_table<size, big_endian>::Plt_stub_ent*
5188 Stub_table<size, big_endian>::find_plt_call_entry(
5189     const Sized_relobj_file<size, big_endian>* object,
5190     unsigned int locsym_index) const
5191 {
5192   Plt_stub_key key(object, locsym_index);
5193   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
5194   if (p == this->plt_call_stubs_.end())
5195     return NULL;
5196   return &p->second;
5197 }
5198
5199 // Add a long branch stub if we don't already have one to given
5200 // destination.
5201
5202 template<int size, bool big_endian>
5203 bool
5204 Stub_table<size, big_endian>::add_long_branch_entry(
5205     const Powerpc_relobj<size, big_endian>* object,
5206     unsigned int r_type,
5207     Address from,
5208     Address to,
5209     bool save_res)
5210 {
5211   Branch_stub_key key(object, to);
5212   bool notoc = (size == 64 && r_type == elfcpp::R_PPC64_REL24_NOTOC);
5213   Branch_stub_ent ent(this->branch_size_, notoc, save_res);
5214   std::pair<typename Branch_stub_entries::iterator, bool> p
5215     = this->long_branch_stubs_.insert(std::make_pair(key, ent));
5216   if (notoc && !p.first->second.notoc_)
5217     {
5218       this->need_resize_ = true;
5219       p.first->second.notoc_ = true;
5220     }
5221   gold_assert(save_res == p.first->second.save_res_);
5222   if (p.second || (this->resizing_ && !p.first->second.iter_))
5223     {
5224       if (this->resizing_)
5225         {
5226           p.first->second.iter_ = 1;
5227           p.first->second.off_ = this->branch_size_;
5228         }
5229       if (save_res)
5230         this->need_save_res_ = true;
5231       else
5232         {
5233           bool need_lt = false;
5234           unsigned int stub_size = this->branch_stub_size(p.first, &need_lt);
5235           this->branch_size_ += stub_size;
5236           if (size == 64 && need_lt)
5237             this->targ_->add_branch_lookup_table(to);
5238         }
5239     }
5240   return this->can_reach_stub(from, p.first->second.off_, r_type);
5241 }
5242
5243 // Find long branch stub offset.
5244
5245 template<int size, bool big_endian>
5246 const typename Stub_table<size, big_endian>::Branch_stub_ent*
5247 Stub_table<size, big_endian>::find_long_branch_entry(
5248     const Powerpc_relobj<size, big_endian>* object,
5249     Address to) const
5250 {
5251   Branch_stub_key key(object, to);
5252   typename Branch_stub_entries::const_iterator p
5253     = this->long_branch_stubs_.find(key);
5254   if (p == this->long_branch_stubs_.end())
5255     return NULL;
5256   return &p->second;
5257 }
5258
5259 template<bool big_endian>
5260 static void
5261 eh_advance (std::vector<unsigned char>& fde, unsigned int delta)
5262 {
5263   delta /= 4;
5264   if (delta < 64)
5265     fde.push_back(elfcpp::DW_CFA_advance_loc + delta);
5266   else if (delta < 256)
5267     {
5268       fde.push_back(elfcpp::DW_CFA_advance_loc1);
5269       fde.push_back(delta);
5270     }
5271   else if (delta < 65536)
5272     {
5273       fde.resize(fde.size() + 3);
5274       unsigned char *p = &*fde.end() - 3;
5275       *p++ = elfcpp::DW_CFA_advance_loc2;
5276       elfcpp::Swap<16, big_endian>::writeval(p, delta);
5277     }
5278   else
5279     {
5280       fde.resize(fde.size() + 5);
5281       unsigned char *p = &*fde.end() - 5;
5282       *p++ = elfcpp::DW_CFA_advance_loc4;
5283       elfcpp::Swap<32, big_endian>::writeval(p, delta);
5284     }
5285 }
5286
5287 template<typename T>
5288 static bool
5289 stub_sort(T s1, T s2)
5290 {
5291   return s1->second.off_ < s2->second.off_;
5292 }
5293
5294 // Add .eh_frame info for this stub section.  Unlike other linker
5295 // generated .eh_frame this is added late in the link, because we
5296 // only want the .eh_frame info if this particular stub section is
5297 // non-empty.
5298
5299 template<int size, bool big_endian>
5300 void
5301 Stub_table<size, big_endian>::add_eh_frame(Layout* layout)
5302 {
5303   if (size != 64
5304       || !parameters->options().ld_generated_unwind_info())
5305     return;
5306
5307   // Since we add stub .eh_frame info late, it must be placed
5308   // after all other linker generated .eh_frame info so that
5309   // merge mapping need not be updated for input sections.
5310   // There is no provision to use a different CIE to that used
5311   // by .glink.
5312   if (!this->targ_->has_glink())
5313     return;
5314
5315   typedef typename Plt_stub_entries::const_iterator plt_iter;
5316   std::vector<plt_iter> calls;
5317   if (!this->plt_call_stubs_.empty())
5318     for (plt_iter cs = this->plt_call_stubs_.begin();
5319          cs != this->plt_call_stubs_.end();
5320          ++cs)
5321       if ((this->targ_->is_tls_get_addr_opt(cs->first.sym_)
5322            && cs->second.r2save_
5323            && !cs->second.localentry0_)
5324           || (cs->second.notoc_
5325               && !this->targ_->powerxx_stubs()))
5326         calls.push_back(cs);
5327   if (calls.size() > 1)
5328     std::stable_sort(calls.begin(), calls.end(),
5329                      stub_sort<plt_iter>);
5330
5331   typedef typename Branch_stub_entries::const_iterator branch_iter;
5332   std::vector<branch_iter> branches;
5333   if (!this->long_branch_stubs_.empty()
5334       && !this->targ_->powerxx_stubs())
5335     for (branch_iter bs = this->long_branch_stubs_.begin();
5336          bs != this->long_branch_stubs_.end();
5337          ++bs)
5338       if (bs->second.notoc_)
5339         branches.push_back(bs);
5340   if (branches.size() > 1)
5341     std::stable_sort(branches.begin(), branches.end(),
5342                      stub_sort<branch_iter>);
5343
5344   if (calls.empty() && branches.empty())
5345     return;
5346
5347   unsigned int last_eh_loc = 0;
5348   // offset pcrel sdata4, size udata4, and augmentation size byte.
5349   std::vector<unsigned char> fde(9, 0);
5350
5351   for (unsigned int i = 0; i < calls.size(); i++)
5352     {
5353       plt_iter cs = calls[i];
5354       unsigned int off = cs->second.off_;
5355       // The __tls_get_addr_opt call stub needs to describe where
5356       // it saves LR, to support exceptions that might be thrown
5357       // from __tls_get_addr, and to support asynchronous exceptions.
5358       if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
5359         {
5360           off += 7 * 4;
5361           if (cs->second.r2save_
5362               && !cs->second.localentry0_)
5363             {
5364               off += 2 * 4;
5365               eh_advance<big_endian>(fde, off - last_eh_loc);
5366               fde.resize(fde.size() + 6);
5367               unsigned char* p = &*fde.end() - 6;
5368               *p++ = elfcpp::DW_CFA_offset_extended_sf;
5369               *p++ = 65;
5370               *p++ = -(this->targ_->stk_linker() / 8) & 0x7f;
5371               unsigned int delta = this->plt_call_size(cs) - 4 - 9 * 4;
5372               *p++ = elfcpp::DW_CFA_advance_loc + delta / 4;
5373               *p++ = elfcpp::DW_CFA_restore_extended;
5374               *p++ = 65;
5375               last_eh_loc = off + delta;
5376               continue;
5377             }
5378         }
5379       // notoc stubs also should describe LR changes, to support
5380       // asynchronous exceptions.
5381       off += (cs->second.r2save_ ? 4 : 0) + 8;
5382       eh_advance<big_endian>(fde, off - last_eh_loc);
5383       fde.resize(fde.size() + 6);
5384       unsigned char* p = &*fde.end() - 6;
5385       *p++ = elfcpp::DW_CFA_register;
5386       *p++ = 65;
5387       *p++ = 12;
5388       *p++ = elfcpp::DW_CFA_advance_loc + 8 / 4;
5389       *p++ = elfcpp::DW_CFA_restore_extended;
5390       *p++ = 65;
5391       last_eh_loc = off + 8;
5392     }
5393
5394   for (unsigned int i = 0; i < branches.size(); i++)
5395     {
5396       branch_iter bs = branches[i];
5397       unsigned int off = bs->second.off_ + 8;
5398       eh_advance<big_endian>(fde, off - last_eh_loc);
5399       fde.resize(fde.size() + 6);
5400       unsigned char* p = &*fde.end() - 6;
5401       *p++ = elfcpp::DW_CFA_register;
5402       *p++ = 65;
5403       *p++ = 12;
5404       *p++ = elfcpp::DW_CFA_advance_loc + 8 / 4;
5405       *p++ = elfcpp::DW_CFA_restore_extended;
5406       *p++ = 65;
5407       last_eh_loc = off + 8;
5408     }
5409
5410   layout->add_eh_frame_for_plt(this,
5411                                Eh_cie<size>::eh_frame_cie,
5412                                sizeof (Eh_cie<size>::eh_frame_cie),
5413                                &*fde.begin(), fde.size());
5414 }
5415
5416 template<int size, bool big_endian>
5417 void
5418 Stub_table<size, big_endian>::remove_eh_frame(Layout* layout)
5419 {
5420   if (size == 64
5421       && parameters->options().ld_generated_unwind_info()
5422       && this->targ_->has_glink())
5423     layout->remove_eh_frame_for_plt(this,
5424                                     Eh_cie<size>::eh_frame_cie,
5425                                     sizeof (Eh_cie<size>::eh_frame_cie));
5426 }
5427
5428 // A class to handle .glink.
5429
5430 template<int size, bool big_endian>
5431 class Output_data_glink : public Output_section_data
5432 {
5433  public:
5434   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5435   static const Address invalid_address = static_cast<Address>(0) - 1;
5436
5437   Output_data_glink(Target_powerpc<size, big_endian>* targ)
5438     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
5439       end_branch_table_(), ge_size_(0)
5440   { }
5441
5442   void
5443   add_eh_frame(Layout* layout);
5444
5445   void
5446   add_global_entry(const Symbol*);
5447
5448   Address
5449   find_global_entry(const Symbol*) const;
5450
5451   unsigned int
5452   global_entry_align(unsigned int off) const
5453   {
5454     unsigned int align = param_plt_align<size>();
5455     return (off + align - 1) & -align;
5456   }
5457
5458   unsigned int
5459   global_entry_off() const
5460   {
5461     return this->global_entry_align(this->end_branch_table_);
5462   }
5463
5464   Address
5465   global_entry_address() const
5466   {
5467     gold_assert(this->is_data_size_valid());
5468     return this->address() + this->global_entry_off();
5469   }
5470
5471   int
5472   pltresolve_size() const
5473   {
5474     if (size == 64)
5475       return (8
5476               + (this->targ_->abiversion() < 2 ? 11 * 4 : 14 * 4));
5477     return 16 * 4;
5478   }
5479
5480  protected:
5481   // Write to a map file.
5482   void
5483   do_print_to_mapfile(Mapfile* mapfile) const
5484   { mapfile->print_output_data(this, _("** glink")); }
5485
5486  private:
5487   void
5488   set_final_data_size();
5489
5490   // Write out .glink
5491   void
5492   do_write(Output_file*);
5493
5494   // Allows access to .got and .plt for do_write.
5495   Target_powerpc<size, big_endian>* targ_;
5496
5497   // Map sym to stub offset.
5498   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
5499   Global_entry_stub_entries global_entry_stubs_;
5500
5501   unsigned int end_branch_table_, ge_size_;
5502 };
5503
5504 template<int size, bool big_endian>
5505 void
5506 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
5507 {
5508   if (!parameters->options().ld_generated_unwind_info())
5509     return;
5510
5511   if (size == 64)
5512     {
5513       if (this->targ_->abiversion() < 2)
5514         layout->add_eh_frame_for_plt(this,
5515                                      Eh_cie<64>::eh_frame_cie,
5516                                      sizeof (Eh_cie<64>::eh_frame_cie),
5517                                      glink_eh_frame_fde_64v1,
5518                                      sizeof (glink_eh_frame_fde_64v1));
5519       else
5520         layout->add_eh_frame_for_plt(this,
5521                                      Eh_cie<64>::eh_frame_cie,
5522                                      sizeof (Eh_cie<64>::eh_frame_cie),
5523                                      glink_eh_frame_fde_64v2,
5524                                      sizeof (glink_eh_frame_fde_64v2));
5525     }
5526   else
5527     {
5528       // 32-bit .glink can use the default since the CIE return
5529       // address reg, LR, is valid.
5530       layout->add_eh_frame_for_plt(this,
5531                                    Eh_cie<32>::eh_frame_cie,
5532                                    sizeof (Eh_cie<32>::eh_frame_cie),
5533                                    default_fde,
5534                                    sizeof (default_fde));
5535       // Except where LR is used in a PIC __glink_PLTresolve.
5536       if (parameters->options().output_is_position_independent())
5537         layout->add_eh_frame_for_plt(this,
5538                                      Eh_cie<32>::eh_frame_cie,
5539                                      sizeof (Eh_cie<32>::eh_frame_cie),
5540                                      glink_eh_frame_fde_32,
5541                                      sizeof (glink_eh_frame_fde_32));
5542     }
5543 }
5544
5545 template<int size, bool big_endian>
5546 void
5547 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
5548 {
5549   unsigned int off = this->global_entry_align(this->ge_size_);
5550   std::pair<typename Global_entry_stub_entries::iterator, bool> p
5551     = this->global_entry_stubs_.insert(std::make_pair(gsym, off));
5552   if (p.second)
5553     this->ge_size_ = off + 16;
5554 }
5555
5556 template<int size, bool big_endian>
5557 typename Output_data_glink<size, big_endian>::Address
5558 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
5559 {
5560   typename Global_entry_stub_entries::const_iterator p
5561     = this->global_entry_stubs_.find(gsym);
5562   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
5563 }
5564
5565 template<int size, bool big_endian>
5566 void
5567 Output_data_glink<size, big_endian>::set_final_data_size()
5568 {
5569   unsigned int count = this->targ_->plt_entry_count();
5570   section_size_type total = 0;
5571
5572   if (count != 0)
5573     {
5574       if (size == 32)
5575         {
5576           // space for branch table
5577           total += 4 * (count - 1);
5578
5579           total += -total & 15;
5580           total += this->pltresolve_size();
5581         }
5582       else
5583         {
5584           total += this->pltresolve_size();
5585
5586           // space for branch table
5587           total += 4 * count;
5588           if (this->targ_->abiversion() < 2)
5589             {
5590               total += 4 * count;
5591               if (count > 0x8000)
5592                 total += 4 * (count - 0x8000);
5593             }
5594         }
5595     }
5596   this->end_branch_table_ = total;
5597   total = this->global_entry_align(total);
5598   total += this->ge_size_;
5599
5600   this->set_data_size(total);
5601 }
5602
5603 // Define symbols on stubs, identifying the stub.
5604
5605 template<int size, bool big_endian>
5606 void
5607 Stub_table<size, big_endian>::define_stub_syms(Symbol_table* symtab)
5608 {
5609   if (!this->plt_call_stubs_.empty())
5610     {
5611       // The key for the plt call stub hash table includes addresses,
5612       // therefore traversal order depends on those addresses, which
5613       // can change between runs if gold is a PIE.  Unfortunately the
5614       // output .symtab ordering depends on the order in which symbols
5615       // are added to the linker symtab.  We want reproducible output
5616       // so must sort the call stub symbols.
5617       typedef typename Plt_stub_entries::const_iterator plt_iter;
5618       std::vector<plt_iter> sorted;
5619       sorted.resize(this->plt_call_stubs_.size());
5620
5621       for (plt_iter cs = this->plt_call_stubs_.begin();
5622            cs != this->plt_call_stubs_.end();
5623            ++cs)
5624         sorted[cs->second.indx_] = cs;
5625
5626       for (unsigned int i = 0; i < this->plt_call_stubs_.size(); ++i)
5627         {
5628           plt_iter cs = sorted[i];
5629           char add[10];
5630           add[0] = 0;
5631           if (cs->first.addend_ != 0)
5632             sprintf(add, "+%x", static_cast<uint32_t>(cs->first.addend_));
5633           char obj[10];
5634           obj[0] = 0;
5635           if (cs->first.object_)
5636             {
5637               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5638                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5639               sprintf(obj, "%x:", ppcobj->uniq());
5640             }
5641           char localname[9];
5642           const char *symname;
5643           if (cs->first.sym_ == NULL)
5644             {
5645               sprintf(localname, "%x", cs->first.locsym_);
5646               symname = localname;
5647             }
5648           else if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
5649             symname = this->targ_->tls_get_addr_opt()->name();
5650           else
5651             symname = cs->first.sym_->name();
5652           char* name = new char[8 + 10 + strlen(obj) + strlen(symname) + strlen(add) + 1];
5653           sprintf(name, "%08x.plt_call.%s%s%s", this->uniq_, obj, symname, add);
5654           Address value
5655             = this->stub_address() - this->address() + cs->second.off_;
5656           unsigned int stub_size = this->plt_call_align(this->plt_call_size(cs));
5657           this->targ_->define_local(symtab, name, this, value, stub_size);
5658         }
5659     }
5660
5661   typedef typename Branch_stub_entries::const_iterator branch_iter;
5662   for (branch_iter bs = this->long_branch_stubs_.begin();
5663        bs != this->long_branch_stubs_.end();
5664        ++bs)
5665     {
5666       if (bs->second.save_res_)
5667         continue;
5668
5669       char* name = new char[8 + 13 + 16 + 1];
5670       sprintf(name, "%08x.long_branch.%llx", this->uniq_,
5671               static_cast<unsigned long long>(bs->first.dest_));
5672       Address value = (this->stub_address() - this->address()
5673                        + this->plt_size_ + bs->second.off_);
5674       bool need_lt = false;
5675       unsigned int stub_size = this->branch_stub_size(bs, &need_lt);
5676       this->targ_->define_local(symtab, name, this, value, stub_size);
5677     }
5678 }
5679
5680 // Emit the start of a __tls_get_addr_opt plt call stub.
5681
5682 template<int size, bool big_endian>
5683 bool
5684 Stub_table<size, big_endian>::build_tls_opt_head(
5685      unsigned char** pp,
5686      typename Plt_stub_entries::const_iterator cs)
5687 {
5688   if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
5689     {
5690       unsigned char* p = *pp;
5691       if (size == 64)
5692         {
5693           write_insn<big_endian>(p, ld_11_3 + 0);
5694           p += 4;
5695           write_insn<big_endian>(p, ld_12_3 + 8);
5696           p += 4;
5697           write_insn<big_endian>(p, mr_0_3);
5698           p += 4;
5699           write_insn<big_endian>(p, cmpdi_11_0);
5700           p += 4;
5701           write_insn<big_endian>(p, add_3_12_13);
5702           p += 4;
5703           write_insn<big_endian>(p, beqlr);
5704           p += 4;
5705           write_insn<big_endian>(p, mr_3_0);
5706           p += 4;
5707           if (cs->second.r2save_ && !cs->second.localentry0_)
5708             {
5709               write_insn<big_endian>(p, mflr_11);
5710               p += 4;
5711               write_insn<big_endian>(p, (std_11_1 + this->targ_->stk_linker()));
5712               p += 4;
5713             }
5714         }
5715       else
5716         {
5717           write_insn<big_endian>(p, lwz_11_3 + 0);
5718           p += 4;
5719           write_insn<big_endian>(p, lwz_12_3 + 4);
5720           p += 4;
5721           write_insn<big_endian>(p, mr_0_3);
5722           p += 4;
5723           write_insn<big_endian>(p, cmpwi_11_0);
5724           p += 4;
5725           write_insn<big_endian>(p, add_3_12_2);
5726           p += 4;
5727           write_insn<big_endian>(p, beqlr);
5728           p += 4;
5729           write_insn<big_endian>(p, mr_3_0);
5730           p += 4;
5731           write_insn<big_endian>(p, nop);
5732           p += 4;
5733         }
5734       *pp = p;
5735       return true;
5736     }
5737   return false;
5738 }
5739
5740 // Emit the tail of a __tls_get_addr_opt plt call stub.
5741
5742 template<int size, bool big_endian>
5743 bool
5744 Stub_table<size, big_endian>::build_tls_opt_tail(
5745      unsigned char* p,
5746      typename Plt_stub_entries::const_iterator cs)
5747 {
5748   if (size == 64
5749       && cs->second.r2save_
5750       && !cs->second.localentry0_
5751       && this->targ_->is_tls_get_addr_opt(cs->first.sym_))
5752     {
5753       write_insn<big_endian>(p, bctrl);
5754       p += 4;
5755       write_insn<big_endian>(p, ld_2_1 + this->targ_->stk_toc());
5756       p += 4;
5757       write_insn<big_endian>(p, ld_11_1 + this->targ_->stk_linker());
5758       p += 4;
5759       write_insn<big_endian>(p, mtlr_11);
5760       p += 4;
5761       write_insn<big_endian>(p, blr);
5762       return true;
5763     }
5764   return false;
5765 }
5766
5767 // Emit pc-relative plt call stub code.
5768
5769 template<bool big_endian>
5770 static unsigned char*
5771 build_powerxx_offset(unsigned char* p, uint64_t off, uint64_t odd, bool load)
5772 {
5773   uint64_t insn;
5774   if (off - odd + (1ULL << 33) < 1ULL << 34)
5775     {
5776       off -= odd;
5777       if (odd)
5778         {
5779           write_insn<big_endian>(p, nop);
5780           p += 4;
5781         }
5782       if (load)
5783         insn = pld_12_pc;
5784       else
5785         insn = paddi_12_pc;
5786       insn |= d34(off);
5787       write_insn<big_endian>(p, insn >> 32);
5788       p += 4;
5789       write_insn<big_endian>(p, insn & 0xffffffff);
5790     }
5791   else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
5792     {
5793       off -= 8 - odd;
5794       write_insn<big_endian>(p, li_11_0 | (ha34(off) & 0xffff));
5795       p += 4;
5796       if (!odd)
5797         {
5798           write_insn<big_endian>(p, sldi_11_11_34);
5799           p += 4;
5800         }
5801       insn = paddi_12_pc | d34(off);
5802       write_insn<big_endian>(p, insn >> 32);
5803       p += 4;
5804       write_insn<big_endian>(p, insn & 0xffffffff);
5805       p += 4;
5806       if (odd)
5807         {
5808           write_insn<big_endian>(p, sldi_11_11_34);
5809           p += 4;
5810         }
5811       if (load)
5812         write_insn<big_endian>(p, ldx_12_11_12);
5813       else
5814         write_insn<big_endian>(p, add_12_11_12);
5815     }
5816   else
5817     {
5818       off -= odd + 8;
5819       write_insn<big_endian>(p, lis_11 | ((ha34(off) >> 16) & 0x3fff));
5820       p += 4;
5821       write_insn<big_endian>(p, ori_11_11_0 | (ha34(off) & 0xffff));
5822       p += 4;
5823       if (odd)
5824         {
5825           write_insn<big_endian>(p, sldi_11_11_34);
5826           p += 4;
5827         }
5828       insn = paddi_12_pc | d34(off);
5829       write_insn<big_endian>(p, insn >> 32);
5830       p += 4;
5831       write_insn<big_endian>(p, insn & 0xffffffff);
5832       p += 4;
5833       if (!odd)
5834         {
5835           write_insn<big_endian>(p, sldi_11_11_34);
5836           p += 4;
5837         }
5838       if (load)
5839         write_insn<big_endian>(p, ldx_12_11_12);
5840       else
5841         write_insn<big_endian>(p, add_12_11_12);
5842     }
5843   p += 4;
5844   return p;
5845 }
5846
5847 // Gets the address of a label (1:) in r11 and builds an offset in r12,
5848 // then adds it to r11 (LOAD false) or loads r12 from r11+r12 (LOAD true).
5849 //      mflr    %r12
5850 //      bcl     20,31,1f
5851 // 1:   mflr    %r11
5852 //      mtlr    %r12
5853 //      lis     %r12,xxx-1b@highest
5854 //      ori     %r12,%r12,xxx-1b@higher
5855 //      sldi    %r12,%r12,32
5856 //      oris    %r12,%r12,xxx-1b@high
5857 //      ori     %r12,%r12,xxx-1b@l
5858 //      add/ldx %r12,%r11,%r12
5859
5860 template<bool big_endian>
5861 static unsigned char*
5862 build_notoc_offset(unsigned char* p, uint64_t off, bool load)
5863 {
5864   write_insn<big_endian>(p, mflr_12);
5865   p += 4;
5866   write_insn<big_endian>(p, bcl_20_31);
5867   p += 4;
5868   write_insn<big_endian>(p, mflr_11);
5869   p += 4;
5870   write_insn<big_endian>(p, mtlr_12);
5871   p += 4;
5872   if (off + 0x8000 < 0x10000)
5873     {
5874       if (load)
5875         write_insn<big_endian>(p, ld_12_11 + l(off));
5876       else
5877         write_insn<big_endian>(p, addi_12_11 + l(off));
5878     }
5879   else if (off + 0x80008000ULL < 0x100000000ULL)
5880     {
5881       write_insn<big_endian>(p, addis_12_11 + ha(off));
5882       p += 4;
5883       if (load)
5884         write_insn<big_endian>(p, ld_12_12 + l(off));
5885       else
5886         write_insn<big_endian>(p, addi_12_12 + l(off));
5887     }
5888   else
5889     {
5890       if (off + 0x800000000000ULL < 0x1000000000000ULL)
5891         {
5892           write_insn<big_endian>(p, li_12_0 + ((off >> 32) & 0xffff));
5893           p += 4;
5894         }
5895       else
5896         {
5897           write_insn<big_endian>(p, lis_12 + ((off >> 48) & 0xffff));
5898           p += 4;
5899           if (((off >> 32) & 0xffff) != 0)
5900             {
5901               write_insn<big_endian>(p, ori_12_12_0 + ((off >> 32) & 0xffff));
5902               p += 4;
5903             }
5904         }
5905       if (((off >> 32) & 0xffffffffULL) != 0)
5906         {
5907           write_insn<big_endian>(p, sldi_12_12_32);
5908           p += 4;
5909         }
5910       if (hi(off) != 0)
5911         {
5912           write_insn<big_endian>(p, oris_12_12_0 + hi(off));
5913           p += 4;
5914         }
5915       if (l(off) != 0)
5916         {
5917           write_insn<big_endian>(p, ori_12_12_0 + l(off));
5918           p += 4;
5919         }
5920       if (load)
5921         write_insn<big_endian>(p, ldx_12_11_12);
5922       else
5923         write_insn<big_endian>(p, add_12_11_12);
5924     }
5925   p += 4;
5926   return p;
5927 }
5928
5929 // Size of a given plt call stub.
5930
5931 template<int size, bool big_endian>
5932 unsigned int
5933 Stub_table<size, big_endian>::plt_call_size(
5934     typename Plt_stub_entries::const_iterator p) const
5935 {
5936   if (size == 32)
5937     {
5938       const Symbol* gsym = p->first.sym_;
5939       return (4 * 4
5940               + (this->targ_->is_tls_get_addr_opt(gsym) ? 8 * 4 : 0));
5941     }
5942
5943   const Output_data_plt_powerpc<size, big_endian>* plt;
5944   uint64_t plt_addr = this->plt_off(p, &plt);
5945   plt_addr += plt->address();
5946   unsigned int bytes = 0;
5947   const Symbol* gsym = p->first.sym_;
5948   if (this->targ_->is_tls_get_addr_opt(gsym))
5949     {
5950       if (p->second.r2save_ && !p->second.localentry0_)
5951         bytes = 13 * 4;
5952       else
5953         bytes = 7 * 4;
5954     }
5955
5956   if (p->second.r2save_)
5957     bytes += 4;
5958
5959   if (this->targ_->powerxx_stubs())
5960     {
5961       uint64_t from = this->stub_address() + p->second.off_ + bytes;
5962       if (bytes > 8 * 4)
5963         from -= 4 * 4;
5964       uint64_t odd = from & 4;
5965       uint64_t off = plt_addr - from;
5966       if (off - odd + (1ULL << 33) < 1ULL << 34)
5967         bytes += odd + 4 * 4;
5968       else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
5969         bytes += 7 * 4;
5970       else
5971         bytes += 8 * 4;
5972       return bytes;
5973     }
5974
5975   if (p->second.notoc_)
5976     {
5977       uint64_t from = this->stub_address() + p->second.off_ + bytes + 2 * 4;
5978       if (bytes > 32)
5979         from -= 4 * 4;
5980       uint64_t off = plt_addr - from;
5981       if (off + 0x8000 < 0x10000)
5982         bytes += 7 * 4;
5983       else if (off + 0x80008000ULL < 0x100000000ULL)
5984         bytes += 8 * 4;
5985       else
5986         {
5987           bytes += 8 * 4;
5988           if (off + 0x800000000000ULL >= 0x1000000000000ULL
5989               && ((off >> 32) & 0xffff) != 0)
5990             bytes += 4;
5991           if (((off >> 32) & 0xffffffffULL) != 0)
5992             bytes += 4;
5993           if (hi(off) != 0)
5994             bytes += 4;
5995           if (l(off) != 0)
5996             bytes += 4;
5997         }
5998       return bytes;
5999     }
6000
6001   uint64_t got_addr = this->targ_->got_section()->output_section()->address();
6002   const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
6003     <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
6004   got_addr += ppcobj->toc_base_offset();
6005   uint64_t off = plt_addr - got_addr;
6006   bytes += 3 * 4 + 4 * (ha(off) != 0);
6007   if (this->targ_->abiversion() < 2)
6008     {
6009       bool static_chain = parameters->options().plt_static_chain();
6010       bool thread_safe = this->targ_->plt_thread_safe();
6011       bytes += (4
6012                 + 4 * static_chain
6013                 + 8 * thread_safe
6014                 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
6015     }
6016   return bytes;
6017 }
6018
6019 // Return long branch stub size.
6020
6021 template<int size, bool big_endian>
6022 unsigned int
6023 Stub_table<size, big_endian>::branch_stub_size(
6024      typename Branch_stub_entries::const_iterator p,
6025      bool* need_lt)
6026 {
6027   Address loc = this->stub_address() + this->last_plt_size_ + p->second.off_;
6028   if (size == 32)
6029     {
6030       if (p->first.dest_ - loc + (1 << 25) < 2 << 25)
6031         return 4;
6032       if (parameters->options().output_is_position_independent())
6033         return 32;
6034       return 16;
6035     }
6036
6037   uint64_t off = p->first.dest_ - loc;
6038   if (p->second.notoc_)
6039     {
6040       if (this->targ_->powerxx_stubs())
6041         {
6042           Address odd = loc & 4;
6043           if (off + (1 << 25) < 2 << 25)
6044             return odd + 12;
6045           if (off - odd + (1ULL << 33) < 1ULL << 34)
6046             return odd + 16;
6047           if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
6048             return 28;
6049           return 32;
6050         }
6051       off -= 8;
6052       if (off + 0x8000 < 0x10000)
6053         return 24;
6054       if (off + 0x80008000ULL < 0x100000000ULL)
6055         {
6056           if (off + 24 + (1 << 25) < 2 << 25)
6057             return 28;
6058           return 32;
6059         }
6060       unsigned int bytes = 32;
6061       if (off + 0x800000000000ULL >= 0x1000000000000ULL
6062           && ((off >> 32) & 0xffff) != 0)
6063         bytes += 4;
6064       if (((off >> 32) & 0xffffffffULL) != 0)
6065         bytes += 4;
6066       if (hi(off) != 0)
6067         bytes += 4;
6068       if (l(off) != 0)
6069         bytes += 4;
6070       return bytes;
6071     }
6072
6073   if (off + (1 << 25) < 2 << 25)
6074     return 4;
6075   if (!this->targ_->powerxx_stubs())
6076     *need_lt = true;
6077   return 16;
6078 }
6079
6080 template<int size, bool big_endian>
6081 void
6082 Stub_table<size, big_endian>::plt_error(const Plt_stub_key& p)
6083 {
6084   if (p.sym_)
6085     gold_error(_("linkage table error against `%s'"),
6086                p.sym_->demangled_name().c_str());
6087   else
6088     gold_error(_("linkage table error against `%s:[local %u]'"),
6089                p.object_->name().c_str(),
6090                p.locsym_);
6091 }
6092
6093 // Write out plt and long branch stub code.
6094
6095 template<int size, bool big_endian>
6096 void
6097 Stub_table<size, big_endian>::do_write(Output_file* of)
6098 {
6099   if (this->plt_call_stubs_.empty()
6100       && this->long_branch_stubs_.empty())
6101     return;
6102
6103   const section_size_type start_off = this->offset();
6104   const section_size_type off = this->stub_offset();
6105   const section_size_type oview_size =
6106     convert_to_section_size_type(this->data_size() - (off - start_off));
6107   unsigned char* const oview = of->get_output_view(off, oview_size);
6108   unsigned char* p;
6109
6110   if (size == 64
6111       && this->targ_->powerxx_stubs())
6112     {
6113       if (!this->plt_call_stubs_.empty())
6114         {
6115           // Write out plt call stubs.
6116           typename Plt_stub_entries::const_iterator cs;
6117           for (cs = this->plt_call_stubs_.begin();
6118                cs != this->plt_call_stubs_.end();
6119                ++cs)
6120             {
6121               p = oview + cs->second.off_;
6122               this->build_tls_opt_head(&p, cs);
6123               if (cs->second.r2save_)
6124                 {
6125                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
6126                   p += 4;
6127                 }
6128               const Output_data_plt_powerpc<size, big_endian>* plt;
6129               Address pltoff = this->plt_off(cs, &plt);
6130               Address plt_addr = pltoff + plt->address();
6131               Address from = this->stub_address() + (p - oview);
6132               Address delta = plt_addr - from;
6133               p = build_powerxx_offset<big_endian>(p, delta, from & 4, true);
6134               write_insn<big_endian>(p, mtctr_12);
6135               p += 4;
6136               if (!this->build_tls_opt_tail(p, cs))
6137                 write_insn<big_endian>(p, bctr);
6138             }
6139         }
6140
6141       // Write out long branch stubs.
6142       typename Branch_stub_entries::const_iterator bs;
6143       for (bs = this->long_branch_stubs_.begin();
6144            bs != this->long_branch_stubs_.end();
6145            ++bs)
6146         {
6147           if (bs->second.save_res_)
6148             continue;
6149           Address off = this->plt_size_ + bs->second.off_;
6150           p = oview + off;
6151           Address loc = this->stub_address() + off;
6152           Address delta = bs->first.dest_ - loc;
6153           if (bs->second.notoc_ || delta + (1 << 25) >= 2 << 25)
6154             {
6155               unsigned char* startp = p;
6156               p = build_powerxx_offset<big_endian>(p, delta, loc & 4, false);
6157               delta -= p - startp;
6158             }
6159           if (delta + (1 << 25) < 2 << 25)
6160             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
6161           else
6162             {
6163               write_insn<big_endian>(p, mtctr_12);
6164               p += 4;
6165               write_insn<big_endian>(p, bctr);
6166             }
6167         }
6168     }
6169   else if (size == 64)
6170     {
6171       const Output_data_got_powerpc<size, big_endian>* got
6172         = this->targ_->got_section();
6173       Address got_os_addr = got->output_section()->address();
6174
6175       if (!this->plt_call_stubs_.empty()
6176           && this->targ_->abiversion() >= 2)
6177         {
6178           // Write out plt call stubs for ELFv2.
6179           typename Plt_stub_entries::const_iterator cs;
6180           for (cs = this->plt_call_stubs_.begin();
6181                cs != this->plt_call_stubs_.end();
6182                ++cs)
6183             {
6184               const Output_data_plt_powerpc<size, big_endian>* plt;
6185               Address pltoff = this->plt_off(cs, &plt);
6186               Address plt_addr = pltoff + plt->address();
6187
6188               p = oview + cs->second.off_;
6189               this->build_tls_opt_head(&p, cs);
6190               if (cs->second.r2save_)
6191                 {
6192                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
6193                   p += 4;
6194                 }
6195               if (cs->second.notoc_)
6196                 {
6197                   Address from = this->stub_address() + (p - oview) + 8;
6198                   Address off = plt_addr - from;
6199                   p = build_notoc_offset<big_endian>(p, off, true);
6200                 }
6201               else
6202                 {
6203                   const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
6204                     <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
6205                   Address got_addr = got_os_addr + ppcobj->toc_base_offset();
6206                   Address off = plt_addr - got_addr;
6207
6208                   if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
6209                     this->plt_error(cs->first);
6210
6211                   if (ha(off) != 0)
6212                     {
6213                       write_insn<big_endian>(p, addis_12_2 + ha(off));
6214                       p += 4;
6215                       write_insn<big_endian>(p, ld_12_12 + l(off));
6216                       p += 4;
6217                     }
6218                   else
6219                     {
6220                       write_insn<big_endian>(p, ld_12_2 + l(off));
6221                       p += 4;
6222                     }
6223                 }
6224               write_insn<big_endian>(p, mtctr_12);
6225               p += 4;
6226               if (!this->build_tls_opt_tail(p, cs))
6227                 write_insn<big_endian>(p, bctr);
6228             }
6229         }
6230       else if (!this->plt_call_stubs_.empty())
6231         {
6232           // Write out plt call stubs for ELFv1.
6233           typename Plt_stub_entries::const_iterator cs;
6234           for (cs = this->plt_call_stubs_.begin();
6235                cs != this->plt_call_stubs_.end();
6236                ++cs)
6237             {
6238               const Output_data_plt_powerpc<size, big_endian>* plt;
6239               Address pltoff = this->plt_off(cs, &plt);
6240               Address plt_addr = pltoff + plt->address();
6241               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
6242                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
6243               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
6244               Address off = plt_addr - got_addr;
6245
6246               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0
6247                   || cs->second.notoc_)
6248                 this->plt_error(cs->first);
6249
6250               bool static_chain = parameters->options().plt_static_chain();
6251               bool thread_safe = this->targ_->plt_thread_safe();
6252               bool use_fake_dep = false;
6253               Address cmp_branch_off = 0;
6254               if (thread_safe)
6255                 {
6256                   unsigned int pltindex
6257                     = ((pltoff - this->targ_->first_plt_entry_offset())
6258                        / this->targ_->plt_entry_size());
6259                   Address glinkoff
6260                     = (this->targ_->glink_section()->pltresolve_size()
6261                        + pltindex * 8);
6262                   if (pltindex > 32768)
6263                     glinkoff += (pltindex - 32768) * 4;
6264                   Address to
6265                     = this->targ_->glink_section()->address() + glinkoff;
6266                   Address from
6267                     = (this->stub_address() + cs->second.off_ + 20
6268                        + 4 * cs->second.r2save_
6269                        + 4 * (ha(off) != 0)
6270                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
6271                        + 4 * static_chain);
6272                   cmp_branch_off = to - from;
6273                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
6274                 }
6275
6276               p = oview + cs->second.off_;
6277               if (this->build_tls_opt_head(&p, cs))
6278                 use_fake_dep = thread_safe;
6279               if (cs->second.r2save_)
6280                 {
6281                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
6282                   p += 4;
6283                 }
6284               if (ha(off) != 0)
6285                 {
6286                   write_insn<big_endian>(p, addis_11_2 + ha(off));
6287                   p += 4;
6288                   write_insn<big_endian>(p, ld_12_11 + l(off));
6289                   p += 4;
6290                   if (ha(off + 8 + 8 * static_chain) != ha(off))
6291                     {
6292                       write_insn<big_endian>(p, addi_11_11 + l(off));
6293                       p += 4;
6294                       off = 0;
6295                     }
6296                   write_insn<big_endian>(p, mtctr_12);
6297                   p += 4;
6298                   if (use_fake_dep)
6299                     {
6300                       write_insn<big_endian>(p, xor_2_12_12);
6301                       p += 4;
6302                       write_insn<big_endian>(p, add_11_11_2);
6303                       p += 4;
6304                     }
6305                   write_insn<big_endian>(p, ld_2_11 + l(off + 8));
6306                   p += 4;
6307                   if (static_chain)
6308                     {
6309                       write_insn<big_endian>(p, ld_11_11 + l(off + 16));
6310                       p += 4;
6311                     }
6312                 }
6313               else
6314                 {
6315                   write_insn<big_endian>(p, ld_12_2 + l(off));
6316                   p += 4;
6317                   if (ha(off + 8 + 8 * static_chain) != ha(off))
6318                     {
6319                       write_insn<big_endian>(p, addi_2_2 + l(off));
6320                       p += 4;
6321                       off = 0;
6322                     }
6323                   write_insn<big_endian>(p, mtctr_12);
6324                   p += 4;
6325                   if (use_fake_dep)
6326                     {
6327                       write_insn<big_endian>(p, xor_11_12_12);
6328                       p += 4;
6329                       write_insn<big_endian>(p, add_2_2_11);
6330                       p += 4;
6331                     }
6332                   if (static_chain)
6333                     {
6334                       write_insn<big_endian>(p, ld_11_2 + l(off + 16));
6335                       p += 4;
6336                     }
6337                   write_insn<big_endian>(p, ld_2_2 + l(off + 8));
6338                   p += 4;
6339                 }
6340               if (this->build_tls_opt_tail(p, cs))
6341                 ;
6342               else if (thread_safe && !use_fake_dep)
6343                 {
6344                   write_insn<big_endian>(p, cmpldi_2_0);
6345                   p += 4;
6346                   write_insn<big_endian>(p, bnectr_p4);
6347                   p += 4;
6348                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
6349                 }
6350               else
6351                 write_insn<big_endian>(p, bctr);
6352             }
6353         }
6354
6355       // Write out long branch stubs.
6356       typename Branch_stub_entries::const_iterator bs;
6357       for (bs = this->long_branch_stubs_.begin();
6358            bs != this->long_branch_stubs_.end();
6359            ++bs)
6360         {
6361           if (bs->second.save_res_)
6362             continue;
6363           Address off = this->plt_size_ + bs->second.off_;
6364           p = oview + off;
6365           Address loc = this->stub_address() + off;
6366           Address delta = bs->first.dest_ - loc;
6367           if (bs->second.notoc_)
6368             {
6369               unsigned char* startp = p;
6370               p = build_notoc_offset<big_endian>(p, off, false);
6371               delta -= p - startp;
6372             }
6373           else if (delta + (1 << 25) >= 2 << 25)
6374             {
6375               Address brlt_addr
6376                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
6377               gold_assert(brlt_addr != invalid_address);
6378               brlt_addr += this->targ_->brlt_section()->address();
6379               Address got_addr = got_os_addr + bs->first.toc_base_off_;
6380               Address brltoff = brlt_addr - got_addr;
6381               if (ha(brltoff) == 0)
6382                 {
6383                   write_insn<big_endian>(p, ld_12_2 + l(brltoff));
6384                   p += 4;
6385                 }
6386               else
6387                 {
6388                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff));
6389                   p += 4;
6390                   write_insn<big_endian>(p, ld_12_12 + l(brltoff));
6391                   p += 4;
6392                 }
6393             }
6394           if (delta + (1 << 25) < 2 << 25)
6395             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
6396           else
6397             {
6398               write_insn<big_endian>(p, mtctr_12);
6399               p += 4;
6400               write_insn<big_endian>(p, bctr);
6401             }
6402         }
6403     }
6404   else // size == 32
6405     {
6406       if (!this->plt_call_stubs_.empty())
6407         {
6408           // The address of _GLOBAL_OFFSET_TABLE_.
6409           Address g_o_t = invalid_address;
6410
6411           // Write out plt call stubs.
6412           typename Plt_stub_entries::const_iterator cs;
6413           for (cs = this->plt_call_stubs_.begin();
6414                cs != this->plt_call_stubs_.end();
6415                ++cs)
6416             {
6417               const Output_data_plt_powerpc<size, big_endian>* plt;
6418               Address plt_addr = this->plt_off(cs, &plt);
6419               plt_addr += plt->address();
6420
6421               p = oview + cs->second.off_;
6422               this->build_tls_opt_head(&p, cs);
6423               if (parameters->options().output_is_position_independent())
6424                 {
6425                   Address got_addr;
6426                   const Powerpc_relobj<size, big_endian>* ppcobj
6427                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
6428                        (cs->first.object_));
6429                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
6430                     {
6431                       unsigned int got2 = ppcobj->got2_shndx();
6432                       got_addr = ppcobj->get_output_section_offset(got2);
6433                       gold_assert(got_addr != invalid_address);
6434                       got_addr += (ppcobj->output_section(got2)->address()
6435                                    + cs->first.addend_);
6436                     }
6437                   else
6438                     {
6439                       if (g_o_t == invalid_address)
6440                         {
6441                           const Output_data_got_powerpc<size, big_endian>* got
6442                             = this->targ_->got_section();
6443                           g_o_t = got->address() + got->g_o_t();
6444                         }
6445                       got_addr = g_o_t;
6446                     }
6447
6448                   Address off = plt_addr - got_addr;
6449                   if (ha(off) == 0)
6450                     write_insn<big_endian>(p, lwz_11_30 + l(off));
6451                   else
6452                     {
6453                       write_insn<big_endian>(p, addis_11_30 + ha(off));
6454                       p += 4;
6455                       write_insn<big_endian>(p, lwz_11_11 + l(off));
6456                     }
6457                 }
6458               else
6459                 {
6460                   write_insn<big_endian>(p, lis_11 + ha(plt_addr));
6461                   p += 4;
6462                   write_insn<big_endian>(p, lwz_11_11 + l(plt_addr));
6463                 }
6464               p += 4;
6465               write_insn<big_endian>(p, mtctr_11);
6466               p += 4;
6467               write_insn<big_endian>(p, bctr);
6468             }
6469         }
6470
6471       // Write out long branch stubs.
6472       typename Branch_stub_entries::const_iterator bs;
6473       for (bs = this->long_branch_stubs_.begin();
6474            bs != this->long_branch_stubs_.end();
6475            ++bs)
6476         {
6477           if (bs->second.save_res_)
6478             continue;
6479           Address off = this->plt_size_ + bs->second.off_;
6480           p = oview + off;
6481           Address loc = this->stub_address() + off;
6482           Address delta = bs->first.dest_ - loc;
6483           if (delta + (1 << 25) < 2 << 25)
6484             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
6485           else if (!parameters->options().output_is_position_independent())
6486             {
6487               write_insn<big_endian>(p, lis_12 + ha(bs->first.dest_));
6488               p += 4;
6489               write_insn<big_endian>(p, addi_12_12 + l(bs->first.dest_));
6490             }
6491           else
6492             {
6493               delta -= 8;
6494               write_insn<big_endian>(p, mflr_0);
6495               p += 4;
6496               write_insn<big_endian>(p, bcl_20_31);
6497               p += 4;
6498               write_insn<big_endian>(p, mflr_12);
6499               p += 4;
6500               write_insn<big_endian>(p, addis_12_12 + ha(delta));
6501               p += 4;
6502               write_insn<big_endian>(p, addi_12_12 + l(delta));
6503               p += 4;
6504               write_insn<big_endian>(p, mtlr_0);
6505             }
6506           p += 4;
6507           write_insn<big_endian>(p, mtctr_12);
6508           p += 4;
6509           write_insn<big_endian>(p, bctr);
6510         }
6511     }
6512   if (this->need_save_res_)
6513     {
6514       p = oview + this->plt_size_ + this->branch_size_;
6515       memcpy (p, this->targ_->savres_section()->contents(),
6516               this->targ_->savres_section()->data_size());
6517     }
6518 }
6519
6520 // Write out .glink.
6521
6522 template<int size, bool big_endian>
6523 void
6524 Output_data_glink<size, big_endian>::do_write(Output_file* of)
6525 {
6526   const section_size_type off = this->offset();
6527   const section_size_type oview_size =
6528     convert_to_section_size_type(this->data_size());
6529   unsigned char* const oview = of->get_output_view(off, oview_size);
6530   unsigned char* p;
6531
6532   // The base address of the .plt section.
6533   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
6534   Address plt_base = this->targ_->plt_section()->address();
6535
6536   if (size == 64)
6537     {
6538       if (this->end_branch_table_ != 0)
6539         {
6540           // Write pltresolve stub.
6541           p = oview;
6542           Address after_bcl = this->address() + 16;
6543           Address pltoff = plt_base - after_bcl;
6544
6545           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
6546
6547           if (this->targ_->abiversion() < 2)
6548             {
6549               write_insn<big_endian>(p, mflr_12),               p += 4;
6550               write_insn<big_endian>(p, bcl_20_31),             p += 4;
6551               write_insn<big_endian>(p, mflr_11),               p += 4;
6552               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
6553               write_insn<big_endian>(p, mtlr_12),               p += 4;
6554               write_insn<big_endian>(p, add_11_2_11),           p += 4;
6555               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
6556               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
6557               write_insn<big_endian>(p, mtctr_12),              p += 4;
6558               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
6559             }
6560           else
6561             {
6562               write_insn<big_endian>(p, mflr_0),                p += 4;
6563               write_insn<big_endian>(p, bcl_20_31),             p += 4;
6564               write_insn<big_endian>(p, mflr_11),               p += 4;
6565               write_insn<big_endian>(p, std_2_1 + 24),          p += 4;
6566               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
6567               write_insn<big_endian>(p, mtlr_0),                p += 4;
6568               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
6569               write_insn<big_endian>(p, add_11_2_11),           p += 4;
6570               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
6571               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
6572               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
6573               write_insn<big_endian>(p, mtctr_12),              p += 4;
6574               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
6575             }
6576           write_insn<big_endian>(p, bctr),                      p += 4;
6577           gold_assert(p == oview + this->pltresolve_size());
6578
6579           // Write lazy link call stubs.
6580           uint32_t indx = 0;
6581           while (p < oview + this->end_branch_table_)
6582             {
6583               if (this->targ_->abiversion() < 2)
6584                 {
6585                   if (indx < 0x8000)
6586                     {
6587                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
6588                     }
6589                   else
6590                     {
6591                       write_insn<big_endian>(p, lis_0 + hi(indx)),      p += 4;
6592                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
6593                     }
6594                 }
6595               uint32_t branch_off = 8 - (p - oview);
6596               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
6597               indx++;
6598             }
6599         }
6600
6601       Address plt_base = this->targ_->plt_section()->address();
6602       Address iplt_base = invalid_address;
6603       unsigned int global_entry_off = this->global_entry_off();
6604       Address global_entry_base = this->address() + global_entry_off;
6605       typename Global_entry_stub_entries::const_iterator ge;
6606       for (ge = this->global_entry_stubs_.begin();
6607            ge != this->global_entry_stubs_.end();
6608            ++ge)
6609         {
6610           p = oview + global_entry_off + ge->second;
6611           Address plt_addr = ge->first->plt_offset();
6612           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
6613               && ge->first->can_use_relative_reloc(false))
6614             {
6615               if (iplt_base == invalid_address)
6616                 iplt_base = this->targ_->iplt_section()->address();
6617               plt_addr += iplt_base;
6618             }
6619           else
6620             plt_addr += plt_base;
6621           Address my_addr = global_entry_base + ge->second;
6622           Address off = plt_addr - my_addr;
6623
6624           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
6625             gold_error(_("linkage table error against `%s'"),
6626                        ge->first->demangled_name().c_str());
6627
6628           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
6629           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
6630           write_insn<big_endian>(p, mtctr_12),                  p += 4;
6631           write_insn<big_endian>(p, bctr);
6632         }
6633     }
6634   else
6635     {
6636       const Output_data_got_powerpc<size, big_endian>* got
6637         = this->targ_->got_section();
6638       // The address of _GLOBAL_OFFSET_TABLE_.
6639       Address g_o_t = got->address() + got->g_o_t();
6640
6641       // Write out pltresolve branch table.
6642       p = oview;
6643       unsigned int the_end = oview_size - this->pltresolve_size();
6644       unsigned char* end_p = oview + the_end;
6645       while (p < end_p - 8 * 4)
6646         write_insn<big_endian>(p, b + end_p - p), p += 4;
6647       while (p < end_p)
6648         write_insn<big_endian>(p, nop), p += 4;
6649
6650       // Write out pltresolve call stub.
6651       end_p = oview + oview_size;
6652       if (parameters->options().output_is_position_independent())
6653         {
6654           Address res0_off = 0;
6655           Address after_bcl_off = the_end + 12;
6656           Address bcl_res0 = after_bcl_off - res0_off;
6657
6658           write_insn<big_endian>(p, addis_11_11 + ha(bcl_res0));
6659           p += 4;
6660           write_insn<big_endian>(p, mflr_0);
6661           p += 4;
6662           write_insn<big_endian>(p, bcl_20_31);
6663           p += 4;
6664           write_insn<big_endian>(p, addi_11_11 + l(bcl_res0));
6665           p += 4;
6666           write_insn<big_endian>(p, mflr_12);
6667           p += 4;
6668           write_insn<big_endian>(p, mtlr_0);
6669           p += 4;
6670           write_insn<big_endian>(p, sub_11_11_12);
6671           p += 4;
6672
6673           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
6674
6675           write_insn<big_endian>(p, addis_12_12 + ha(got_bcl));
6676           p += 4;
6677           if (ha(got_bcl) == ha(got_bcl + 4))
6678             {
6679               write_insn<big_endian>(p, lwz_0_12 + l(got_bcl));
6680               p += 4;
6681               write_insn<big_endian>(p, lwz_12_12 + l(got_bcl + 4));
6682             }
6683           else
6684             {
6685               write_insn<big_endian>(p, lwzu_0_12 + l(got_bcl));
6686               p += 4;
6687               write_insn<big_endian>(p, lwz_12_12 + 4);
6688             }
6689           p += 4;
6690           write_insn<big_endian>(p, mtctr_0);
6691           p += 4;
6692           write_insn<big_endian>(p, add_0_11_11);
6693           p += 4;
6694           write_insn<big_endian>(p, add_11_0_11);
6695         }
6696       else
6697         {
6698           Address res0 = this->address();
6699
6700           write_insn<big_endian>(p, lis_12 + ha(g_o_t + 4));
6701           p += 4;
6702           write_insn<big_endian>(p, addis_11_11 + ha(-res0));
6703           p += 4;
6704           if (ha(g_o_t + 4) == ha(g_o_t + 8))
6705             write_insn<big_endian>(p, lwz_0_12 + l(g_o_t + 4));
6706           else
6707             write_insn<big_endian>(p, lwzu_0_12 + l(g_o_t + 4));
6708           p += 4;
6709           write_insn<big_endian>(p, addi_11_11 + l(-res0));
6710           p += 4;
6711           write_insn<big_endian>(p, mtctr_0);
6712           p += 4;
6713           write_insn<big_endian>(p, add_0_11_11);
6714           p += 4;
6715           if (ha(g_o_t + 4) == ha(g_o_t + 8))
6716             write_insn<big_endian>(p, lwz_12_12 + l(g_o_t + 8));
6717           else
6718             write_insn<big_endian>(p, lwz_12_12 + 4);
6719           p += 4;
6720           write_insn<big_endian>(p, add_11_0_11);
6721         }
6722       p += 4;
6723       write_insn<big_endian>(p, bctr);
6724       p += 4;
6725       while (p < end_p)
6726         {
6727           write_insn<big_endian>(p, nop);
6728           p += 4;
6729         }
6730     }
6731
6732   of->write_output_view(off, oview_size, oview);
6733 }
6734
6735
6736 // A class to handle linker generated save/restore functions.
6737
6738 template<int size, bool big_endian>
6739 class Output_data_save_res : public Output_section_data_build
6740 {
6741  public:
6742   Output_data_save_res(Symbol_table* symtab);
6743
6744   const unsigned char*
6745   contents() const
6746   {
6747     return contents_;
6748   }
6749
6750  protected:
6751   // Write to a map file.
6752   void
6753   do_print_to_mapfile(Mapfile* mapfile) const
6754   { mapfile->print_output_data(this, _("** save/restore")); }
6755
6756   void
6757   do_write(Output_file*);
6758
6759  private:
6760   // The maximum size of save/restore contents.
6761   static const unsigned int savres_max = 218*4;
6762
6763   void
6764   savres_define(Symbol_table* symtab,
6765                 const char *name,
6766                 unsigned int lo, unsigned int hi,
6767                 unsigned char* write_ent(unsigned char*, int),
6768                 unsigned char* write_tail(unsigned char*, int));
6769
6770   unsigned char *contents_;
6771 };
6772
6773 template<bool big_endian>
6774 static unsigned char*
6775 savegpr0(unsigned char* p, int r)
6776 {
6777   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
6778   write_insn<big_endian>(p, insn);
6779   return p + 4;
6780 }
6781
6782 template<bool big_endian>
6783 static unsigned char*
6784 savegpr0_tail(unsigned char* p, int r)
6785 {
6786   p = savegpr0<big_endian>(p, r);
6787   uint32_t insn = std_0_1 + 16;
6788   write_insn<big_endian>(p, insn);
6789   p = p + 4;
6790   write_insn<big_endian>(p, blr);
6791   return p + 4;
6792 }
6793
6794 template<bool big_endian>
6795 static unsigned char*
6796 restgpr0(unsigned char* p, int r)
6797 {
6798   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
6799   write_insn<big_endian>(p, insn);
6800   return p + 4;
6801 }
6802
6803 template<bool big_endian>
6804 static unsigned char*
6805 restgpr0_tail(unsigned char* p, int r)
6806 {
6807   uint32_t insn = ld_0_1 + 16;
6808   write_insn<big_endian>(p, insn);
6809   p = p + 4;
6810   p = restgpr0<big_endian>(p, r);
6811   write_insn<big_endian>(p, mtlr_0);
6812   p = p + 4;
6813   if (r == 29)
6814     {
6815       p = restgpr0<big_endian>(p, 30);
6816       p = restgpr0<big_endian>(p, 31);
6817     }
6818   write_insn<big_endian>(p, blr);
6819   return p + 4;
6820 }
6821
6822 template<bool big_endian>
6823 static unsigned char*
6824 savegpr1(unsigned char* p, int r)
6825 {
6826   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
6827   write_insn<big_endian>(p, insn);
6828   return p + 4;
6829 }
6830
6831 template<bool big_endian>
6832 static unsigned char*
6833 savegpr1_tail(unsigned char* p, int r)
6834 {
6835   p = savegpr1<big_endian>(p, r);
6836   write_insn<big_endian>(p, blr);
6837   return p + 4;
6838 }
6839
6840 template<bool big_endian>
6841 static unsigned char*
6842 restgpr1(unsigned char* p, int r)
6843 {
6844   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
6845   write_insn<big_endian>(p, insn);
6846   return p + 4;
6847 }
6848
6849 template<bool big_endian>
6850 static unsigned char*
6851 restgpr1_tail(unsigned char* p, int r)
6852 {
6853   p = restgpr1<big_endian>(p, r);
6854   write_insn<big_endian>(p, blr);
6855   return p + 4;
6856 }
6857
6858 template<bool big_endian>
6859 static unsigned char*
6860 savefpr(unsigned char* p, int r)
6861 {
6862   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
6863   write_insn<big_endian>(p, insn);
6864   return p + 4;
6865 }
6866
6867 template<bool big_endian>
6868 static unsigned char*
6869 savefpr0_tail(unsigned char* p, int r)
6870 {
6871   p = savefpr<big_endian>(p, r);
6872   write_insn<big_endian>(p, std_0_1 + 16);
6873   p = p + 4;
6874   write_insn<big_endian>(p, blr);
6875   return p + 4;
6876 }
6877
6878 template<bool big_endian>
6879 static unsigned char*
6880 restfpr(unsigned char* p, int r)
6881 {
6882   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
6883   write_insn<big_endian>(p, insn);
6884   return p + 4;
6885 }
6886
6887 template<bool big_endian>
6888 static unsigned char*
6889 restfpr0_tail(unsigned char* p, int r)
6890 {
6891   write_insn<big_endian>(p, ld_0_1 + 16);
6892   p = p + 4;
6893   p = restfpr<big_endian>(p, r);
6894   write_insn<big_endian>(p, mtlr_0);
6895   p = p + 4;
6896   if (r == 29)
6897     {
6898       p = restfpr<big_endian>(p, 30);
6899       p = restfpr<big_endian>(p, 31);
6900     }
6901   write_insn<big_endian>(p, blr);
6902   return p + 4;
6903 }
6904
6905 template<bool big_endian>
6906 static unsigned char*
6907 savefpr1_tail(unsigned char* p, int r)
6908 {
6909   p = savefpr<big_endian>(p, r);
6910   write_insn<big_endian>(p, blr);
6911   return p + 4;
6912 }
6913
6914 template<bool big_endian>
6915 static unsigned char*
6916 restfpr1_tail(unsigned char* p, int r)
6917 {
6918   p = restfpr<big_endian>(p, r);
6919   write_insn<big_endian>(p, blr);
6920   return p + 4;
6921 }
6922
6923 template<bool big_endian>
6924 static unsigned char*
6925 savevr(unsigned char* p, int r)
6926 {
6927   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
6928   write_insn<big_endian>(p, insn);
6929   p = p + 4;
6930   insn = stvx_0_12_0 + (r << 21);
6931   write_insn<big_endian>(p, insn);
6932   return p + 4;
6933 }
6934
6935 template<bool big_endian>
6936 static unsigned char*
6937 savevr_tail(unsigned char* p, int r)
6938 {
6939   p = savevr<big_endian>(p, r);
6940   write_insn<big_endian>(p, blr);
6941   return p + 4;
6942 }
6943
6944 template<bool big_endian>
6945 static unsigned char*
6946 restvr(unsigned char* p, int r)
6947 {
6948   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
6949   write_insn<big_endian>(p, insn);
6950   p = p + 4;
6951   insn = lvx_0_12_0 + (r << 21);
6952   write_insn<big_endian>(p, insn);
6953   return p + 4;
6954 }
6955
6956 template<bool big_endian>
6957 static unsigned char*
6958 restvr_tail(unsigned char* p, int r)
6959 {
6960   p = restvr<big_endian>(p, r);
6961   write_insn<big_endian>(p, blr);
6962   return p + 4;
6963 }
6964
6965
6966 template<int size, bool big_endian>
6967 Output_data_save_res<size, big_endian>::Output_data_save_res(
6968     Symbol_table* symtab)
6969   : Output_section_data_build(4),
6970     contents_(NULL)
6971 {
6972   this->savres_define(symtab,
6973                       "_savegpr0_", 14, 31,
6974                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
6975   this->savres_define(symtab,
6976                       "_restgpr0_", 14, 29,
6977                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
6978   this->savres_define(symtab,
6979                       "_restgpr0_", 30, 31,
6980                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
6981   this->savres_define(symtab,
6982                       "_savegpr1_", 14, 31,
6983                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
6984   this->savres_define(symtab,
6985                       "_restgpr1_", 14, 31,
6986                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
6987   this->savres_define(symtab,
6988                       "_savefpr_", 14, 31,
6989                       savefpr<big_endian>, savefpr0_tail<big_endian>);
6990   this->savres_define(symtab,
6991                       "_restfpr_", 14, 29,
6992                       restfpr<big_endian>, restfpr0_tail<big_endian>);
6993   this->savres_define(symtab,
6994                       "_restfpr_", 30, 31,
6995                       restfpr<big_endian>, restfpr0_tail<big_endian>);
6996   this->savres_define(symtab,
6997                       "._savef", 14, 31,
6998                       savefpr<big_endian>, savefpr1_tail<big_endian>);
6999   this->savres_define(symtab,
7000                       "._restf", 14, 31,
7001                       restfpr<big_endian>, restfpr1_tail<big_endian>);
7002   this->savres_define(symtab,
7003                       "_savevr_", 20, 31,
7004                       savevr<big_endian>, savevr_tail<big_endian>);
7005   this->savres_define(symtab,
7006                       "_restvr_", 20, 31,
7007                       restvr<big_endian>, restvr_tail<big_endian>);
7008 }
7009
7010 template<int size, bool big_endian>
7011 void
7012 Output_data_save_res<size, big_endian>::savres_define(
7013     Symbol_table* symtab,
7014     const char *name,
7015     unsigned int lo, unsigned int hi,
7016     unsigned char* write_ent(unsigned char*, int),
7017     unsigned char* write_tail(unsigned char*, int))
7018 {
7019   size_t len = strlen(name);
7020   bool writing = false;
7021   char sym[16];
7022
7023   memcpy(sym, name, len);
7024   sym[len + 2] = 0;
7025
7026   for (unsigned int i = lo; i <= hi; i++)
7027     {
7028       sym[len + 0] = i / 10 + '0';
7029       sym[len + 1] = i % 10 + '0';
7030       Symbol* gsym = symtab->lookup(sym);
7031       bool refd = gsym != NULL && gsym->is_undefined();
7032       writing = writing || refd;
7033       if (writing)
7034         {
7035           if (this->contents_ == NULL)
7036             this->contents_ = new unsigned char[this->savres_max];
7037
7038           section_size_type value = this->current_data_size();
7039           unsigned char* p = this->contents_ + value;
7040           if (i != hi)
7041             p = write_ent(p, i);
7042           else
7043             p = write_tail(p, i);
7044           section_size_type cur_size = p - this->contents_;
7045           this->set_current_data_size(cur_size);
7046           if (refd)
7047             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
7048                                           this, value, cur_size - value,
7049                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
7050                                           elfcpp::STV_HIDDEN, 0, false, false);
7051         }
7052     }
7053 }
7054
7055 // Write out save/restore.
7056
7057 template<int size, bool big_endian>
7058 void
7059 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
7060 {
7061   const section_size_type off = this->offset();
7062   const section_size_type oview_size =
7063     convert_to_section_size_type(this->data_size());
7064   unsigned char* const oview = of->get_output_view(off, oview_size);
7065   memcpy(oview, this->contents_, oview_size);
7066   of->write_output_view(off, oview_size, oview);
7067 }
7068
7069
7070 // Create the glink section.
7071
7072 template<int size, bool big_endian>
7073 void
7074 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
7075 {
7076   if (this->glink_ == NULL)
7077     {
7078       this->glink_ = new Output_data_glink<size, big_endian>(this);
7079       this->glink_->add_eh_frame(layout);
7080       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
7081                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
7082                                       this->glink_, ORDER_TEXT, false);
7083     }
7084 }
7085
7086 // Create a PLT entry for a global symbol.
7087
7088 template<int size, bool big_endian>
7089 void
7090 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
7091                                                  Layout* layout,
7092                                                  Symbol* gsym)
7093 {
7094   if (gsym->type() == elfcpp::STT_GNU_IFUNC
7095       && gsym->can_use_relative_reloc(false))
7096     {
7097       if (this->iplt_ == NULL)
7098         this->make_iplt_section(symtab, layout);
7099       this->iplt_->add_ifunc_entry(gsym);
7100     }
7101   else
7102     {
7103       if (this->plt_ == NULL)
7104         this->make_plt_section(symtab, layout);
7105       this->plt_->add_entry(gsym);
7106     }
7107 }
7108
7109 // Make a PLT entry for a local symbol.
7110
7111 template<int size, bool big_endian>
7112 void
7113 Target_powerpc<size, big_endian>::make_local_plt_entry(
7114     Layout* layout,
7115     Sized_relobj_file<size, big_endian>* relobj,
7116     unsigned int r_sym)
7117 {
7118   if (this->lplt_ == NULL)
7119     this->make_lplt_section(layout);
7120   this->lplt_->add_local_entry(relobj, r_sym);
7121 }
7122
7123 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
7124
7125 template<int size, bool big_endian>
7126 void
7127 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
7128     Symbol_table* symtab,
7129     Layout* layout,
7130     Sized_relobj_file<size, big_endian>* relobj,
7131     unsigned int r_sym)
7132 {
7133   if (this->iplt_ == NULL)
7134     this->make_iplt_section(symtab, layout);
7135   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
7136 }
7137
7138 // Return the number of entries in the PLT.
7139
7140 template<int size, bool big_endian>
7141 unsigned int
7142 Target_powerpc<size, big_endian>::plt_entry_count() const
7143 {
7144   if (this->plt_ == NULL)
7145     return 0;
7146   return this->plt_->entry_count();
7147 }
7148
7149 // Create a GOT entry for local dynamic __tls_get_addr calls.
7150
7151 template<int size, bool big_endian>
7152 unsigned int
7153 Target_powerpc<size, big_endian>::tlsld_got_offset(
7154     Symbol_table* symtab,
7155     Layout* layout,
7156     Sized_relobj_file<size, big_endian>* object)
7157 {
7158   if (this->tlsld_got_offset_ == -1U)
7159     {
7160       gold_assert(symtab != NULL && layout != NULL && object != NULL);
7161       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
7162       Output_data_got_powerpc<size, big_endian>* got
7163         = this->got_section(symtab, layout);
7164       unsigned int got_offset = got->add_constant_pair(0, 0);
7165       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
7166                           got_offset, 0);
7167       this->tlsld_got_offset_ = got_offset;
7168     }
7169   return this->tlsld_got_offset_;
7170 }
7171
7172 // Get the Reference_flags for a particular relocation.
7173
7174 template<int size, bool big_endian>
7175 int
7176 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
7177     unsigned int r_type,
7178     const Target_powerpc* target)
7179 {
7180   int ref = 0;
7181
7182   switch (r_type)
7183     {
7184     case elfcpp::R_POWERPC_NONE:
7185     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7186     case elfcpp::R_POWERPC_GNU_VTENTRY:
7187     case elfcpp::R_PPC64_TOC:
7188       // No symbol reference.
7189       break;
7190
7191     case elfcpp::R_PPC64_ADDR64:
7192     case elfcpp::R_PPC64_UADDR64:
7193     case elfcpp::R_POWERPC_ADDR32:
7194     case elfcpp::R_POWERPC_UADDR32:
7195     case elfcpp::R_POWERPC_ADDR16:
7196     case elfcpp::R_POWERPC_UADDR16:
7197     case elfcpp::R_POWERPC_ADDR16_LO:
7198     case elfcpp::R_POWERPC_ADDR16_HI:
7199     case elfcpp::R_POWERPC_ADDR16_HA:
7200       ref = Symbol::ABSOLUTE_REF;
7201       break;
7202
7203     case elfcpp::R_POWERPC_ADDR24:
7204     case elfcpp::R_POWERPC_ADDR14:
7205     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7206     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7207       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
7208       break;
7209
7210     case elfcpp::R_PPC64_REL64:
7211     case elfcpp::R_POWERPC_REL32:
7212     case elfcpp::R_PPC_LOCAL24PC:
7213     case elfcpp::R_POWERPC_REL16:
7214     case elfcpp::R_POWERPC_REL16_LO:
7215     case elfcpp::R_POWERPC_REL16_HI:
7216     case elfcpp::R_POWERPC_REL16_HA:
7217     case elfcpp::R_PPC64_REL16_HIGH:
7218     case elfcpp::R_PPC64_REL16_HIGHA:
7219     case elfcpp::R_PPC64_REL16_HIGHER:
7220     case elfcpp::R_PPC64_REL16_HIGHERA:
7221     case elfcpp::R_PPC64_REL16_HIGHEST:
7222     case elfcpp::R_PPC64_REL16_HIGHESTA:
7223     case elfcpp::R_PPC64_PCREL34:
7224     case elfcpp::R_PPC64_REL16_HIGHER34:
7225     case elfcpp::R_PPC64_REL16_HIGHERA34:
7226     case elfcpp::R_PPC64_REL16_HIGHEST34:
7227     case elfcpp::R_PPC64_REL16_HIGHESTA34:
7228     case elfcpp::R_PPC64_PCREL28:
7229       ref = Symbol::RELATIVE_REF;
7230       break;
7231
7232     case elfcpp::R_PPC64_REL24_NOTOC:
7233       if (size == 32)
7234         break;
7235       // Fall through.
7236     case elfcpp::R_POWERPC_REL24:
7237     case elfcpp::R_PPC_PLTREL24:
7238     case elfcpp::R_POWERPC_REL14:
7239     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7240     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7241       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7242       break;
7243
7244     case elfcpp::R_POWERPC_GOT16:
7245     case elfcpp::R_POWERPC_GOT16_LO:
7246     case elfcpp::R_POWERPC_GOT16_HI:
7247     case elfcpp::R_POWERPC_GOT16_HA:
7248     case elfcpp::R_PPC64_GOT16_DS:
7249     case elfcpp::R_PPC64_GOT16_LO_DS:
7250     case elfcpp::R_PPC64_GOT_PCREL34:
7251     case elfcpp::R_PPC64_TOC16:
7252     case elfcpp::R_PPC64_TOC16_LO:
7253     case elfcpp::R_PPC64_TOC16_HI:
7254     case elfcpp::R_PPC64_TOC16_HA:
7255     case elfcpp::R_PPC64_TOC16_DS:
7256     case elfcpp::R_PPC64_TOC16_LO_DS:
7257     case elfcpp::R_POWERPC_PLT16_LO:
7258     case elfcpp::R_POWERPC_PLT16_HI:
7259     case elfcpp::R_POWERPC_PLT16_HA:
7260     case elfcpp::R_PPC64_PLT16_LO_DS:
7261     case elfcpp::R_PPC64_PLT_PCREL34:
7262     case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
7263       ref = Symbol::RELATIVE_REF;
7264       break;
7265
7266     case elfcpp::R_POWERPC_GOT_TPREL16:
7267     case elfcpp::R_POWERPC_TLS:
7268       ref = Symbol::TLS_REF;
7269       break;
7270
7271     case elfcpp::R_POWERPC_COPY:
7272     case elfcpp::R_POWERPC_GLOB_DAT:
7273     case elfcpp::R_POWERPC_JMP_SLOT:
7274     case elfcpp::R_POWERPC_RELATIVE:
7275     case elfcpp::R_POWERPC_DTPMOD:
7276     default:
7277       // Not expected.  We will give an error later.
7278       break;
7279     }
7280
7281   if (size == 64 && target->abiversion() < 2)
7282     ref |= Symbol::FUNC_DESC_ABI;
7283   return ref;
7284 }
7285
7286 // Report an unsupported relocation against a local symbol.
7287
7288 template<int size, bool big_endian>
7289 void
7290 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
7291     Sized_relobj_file<size, big_endian>* object,
7292     unsigned int r_type)
7293 {
7294   gold_error(_("%s: unsupported reloc %u against local symbol"),
7295              object->name().c_str(), r_type);
7296 }
7297
7298 // We are about to emit a dynamic relocation of type R_TYPE.  If the
7299 // dynamic linker does not support it, issue an error.
7300
7301 template<int size, bool big_endian>
7302 void
7303 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
7304                                                       unsigned int r_type)
7305 {
7306   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
7307
7308   // These are the relocation types supported by glibc for both 32-bit
7309   // and 64-bit powerpc.
7310   switch (r_type)
7311     {
7312     case elfcpp::R_POWERPC_NONE:
7313     case elfcpp::R_POWERPC_RELATIVE:
7314     case elfcpp::R_POWERPC_GLOB_DAT:
7315     case elfcpp::R_POWERPC_DTPMOD:
7316     case elfcpp::R_POWERPC_DTPREL:
7317     case elfcpp::R_POWERPC_TPREL:
7318     case elfcpp::R_POWERPC_JMP_SLOT:
7319     case elfcpp::R_POWERPC_COPY:
7320     case elfcpp::R_POWERPC_IRELATIVE:
7321     case elfcpp::R_POWERPC_ADDR32:
7322     case elfcpp::R_POWERPC_UADDR32:
7323     case elfcpp::R_POWERPC_ADDR24:
7324     case elfcpp::R_POWERPC_ADDR16:
7325     case elfcpp::R_POWERPC_UADDR16:
7326     case elfcpp::R_POWERPC_ADDR16_LO:
7327     case elfcpp::R_POWERPC_ADDR16_HI:
7328     case elfcpp::R_POWERPC_ADDR16_HA:
7329     case elfcpp::R_POWERPC_ADDR14:
7330     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7331     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7332     case elfcpp::R_POWERPC_REL32:
7333     case elfcpp::R_POWERPC_REL24:
7334     case elfcpp::R_POWERPC_TPREL16:
7335     case elfcpp::R_POWERPC_TPREL16_LO:
7336     case elfcpp::R_POWERPC_TPREL16_HI:
7337     case elfcpp::R_POWERPC_TPREL16_HA:
7338       return;
7339
7340     default:
7341       break;
7342     }
7343
7344   if (size == 64)
7345     {
7346       switch (r_type)
7347         {
7348           // These are the relocation types supported only on 64-bit.
7349         case elfcpp::R_PPC64_ADDR64:
7350         case elfcpp::R_PPC64_UADDR64:
7351         case elfcpp::R_PPC64_JMP_IREL:
7352         case elfcpp::R_PPC64_ADDR16_DS:
7353         case elfcpp::R_PPC64_ADDR16_LO_DS:
7354         case elfcpp::R_PPC64_ADDR16_HIGH:
7355         case elfcpp::R_PPC64_ADDR16_HIGHA:
7356         case elfcpp::R_PPC64_ADDR16_HIGHER:
7357         case elfcpp::R_PPC64_ADDR16_HIGHEST:
7358         case elfcpp::R_PPC64_ADDR16_HIGHERA:
7359         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7360         case elfcpp::R_PPC64_REL64:
7361         case elfcpp::R_POWERPC_ADDR30:
7362         case elfcpp::R_PPC64_TPREL16_DS:
7363         case elfcpp::R_PPC64_TPREL16_LO_DS:
7364         case elfcpp::R_PPC64_TPREL16_HIGH:
7365         case elfcpp::R_PPC64_TPREL16_HIGHA:
7366         case elfcpp::R_PPC64_TPREL16_HIGHER:
7367         case elfcpp::R_PPC64_TPREL16_HIGHEST:
7368         case elfcpp::R_PPC64_TPREL16_HIGHERA:
7369         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7370           return;
7371
7372         default:
7373           break;
7374         }
7375     }
7376   else
7377     {
7378       switch (r_type)
7379         {
7380           // These are the relocation types supported only on 32-bit.
7381           // ??? glibc ld.so doesn't need to support these.
7382         case elfcpp::R_POWERPC_DTPREL16:
7383         case elfcpp::R_POWERPC_DTPREL16_LO:
7384         case elfcpp::R_POWERPC_DTPREL16_HI:
7385         case elfcpp::R_POWERPC_DTPREL16_HA:
7386           return;
7387
7388         default:
7389           break;
7390         }
7391     }
7392
7393   // This prevents us from issuing more than one error per reloc
7394   // section.  But we can still wind up issuing more than one
7395   // error per object file.
7396   if (this->issued_non_pic_error_)
7397     return;
7398   gold_assert(parameters->options().output_is_position_independent());
7399   object->error(_("requires unsupported dynamic reloc; "
7400                   "recompile with -fPIC"));
7401   this->issued_non_pic_error_ = true;
7402   return;
7403 }
7404
7405 // Return whether we need to make a PLT entry for a relocation of the
7406 // given type against a STT_GNU_IFUNC symbol.
7407
7408 template<int size, bool big_endian>
7409 bool
7410 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
7411      Target_powerpc<size, big_endian>* target,
7412      Sized_relobj_file<size, big_endian>* object,
7413      unsigned int r_type,
7414      bool report_err)
7415 {
7416   // In non-pic code any reference will resolve to the plt call stub
7417   // for the ifunc symbol.
7418   if ((size == 32 || target->abiversion() >= 2)
7419       && !parameters->options().output_is_position_independent())
7420     return true;
7421
7422   switch (r_type)
7423     {
7424     // Word size refs from data sections are OK, but don't need a PLT entry.
7425     case elfcpp::R_POWERPC_ADDR32:
7426     case elfcpp::R_POWERPC_UADDR32:
7427       if (size == 32)
7428         return false;
7429       break;
7430
7431     case elfcpp::R_PPC64_ADDR64:
7432     case elfcpp::R_PPC64_UADDR64:
7433       if (size == 64)
7434         return false;
7435       break;
7436
7437     // GOT refs are good, but also don't need a PLT entry.
7438     case elfcpp::R_POWERPC_GOT16:
7439     case elfcpp::R_POWERPC_GOT16_LO:
7440     case elfcpp::R_POWERPC_GOT16_HI:
7441     case elfcpp::R_POWERPC_GOT16_HA:
7442     case elfcpp::R_PPC64_GOT16_DS:
7443     case elfcpp::R_PPC64_GOT16_LO_DS:
7444     case elfcpp::R_PPC64_GOT_PCREL34:
7445       return false;
7446
7447     // PLT relocs are OK and need a PLT entry.
7448     case elfcpp::R_POWERPC_PLT16_LO:
7449     case elfcpp::R_POWERPC_PLT16_HI:
7450     case elfcpp::R_POWERPC_PLT16_HA:
7451     case elfcpp::R_PPC64_PLT16_LO_DS:
7452     case elfcpp::R_POWERPC_PLTSEQ:
7453     case elfcpp::R_POWERPC_PLTCALL:
7454     case elfcpp::R_PPC64_PLTSEQ_NOTOC:
7455     case elfcpp::R_PPC64_PLTCALL_NOTOC:
7456     case elfcpp::R_PPC64_PLT_PCREL34:
7457     case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
7458       return true;
7459       break;
7460
7461     // Function calls are good, and these do need a PLT entry.
7462     case elfcpp::R_PPC64_REL24_NOTOC:
7463       if (size == 32)
7464         break;
7465       // Fall through.
7466     case elfcpp::R_POWERPC_ADDR24:
7467     case elfcpp::R_POWERPC_ADDR14:
7468     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7469     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7470     case elfcpp::R_POWERPC_REL24:
7471     case elfcpp::R_PPC_PLTREL24:
7472     case elfcpp::R_POWERPC_REL14:
7473     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7474     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7475       return true;
7476
7477     default:
7478       break;
7479     }
7480
7481   // Anything else is a problem.
7482   // If we are building a static executable, the libc startup function
7483   // responsible for applying indirect function relocations is going
7484   // to complain about the reloc type.
7485   // If we are building a dynamic executable, we will have a text
7486   // relocation.  The dynamic loader will set the text segment
7487   // writable and non-executable to apply text relocations.  So we'll
7488   // segfault when trying to run the indirection function to resolve
7489   // the reloc.
7490   if (report_err)
7491     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
7492                object->name().c_str(), r_type);
7493   return false;
7494 }
7495
7496 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
7497 // reloc.
7498
7499 static bool
7500 ok_lo_toc_insn(uint32_t insn, unsigned int r_type)
7501 {
7502   return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
7503           || (insn & (0x3f << 26)) == 14u << 26 /* addi */
7504           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
7505           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
7506           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
7507           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
7508           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
7509           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
7510           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
7511           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
7512           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
7513           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
7514           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
7515           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
7516           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
7517           || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
7518           || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
7519               /* Exclude lfqu by testing reloc.  If relocs are ever
7520                  defined for the reduced D field in psq_lu then those
7521                  will need testing too.  */
7522               && r_type != elfcpp::R_PPC64_TOC16_LO
7523               && r_type != elfcpp::R_POWERPC_GOT16_LO)
7524           || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
7525               && (insn & 1) == 0)
7526           || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
7527           || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
7528               /* Exclude stfqu.  psq_stu as above for psq_lu.  */
7529               && r_type != elfcpp::R_PPC64_TOC16_LO
7530               && r_type != elfcpp::R_POWERPC_GOT16_LO)
7531           || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
7532               && (insn & 1) == 0));
7533 }
7534
7535 // Scan a relocation for a local symbol.
7536
7537 template<int size, bool big_endian>
7538 inline void
7539 Target_powerpc<size, big_endian>::Scan::local(
7540     Symbol_table* symtab,
7541     Layout* layout,
7542     Target_powerpc<size, big_endian>* target,
7543     Sized_relobj_file<size, big_endian>* object,
7544     unsigned int data_shndx,
7545     Output_section* output_section,
7546     const elfcpp::Rela<size, big_endian>& reloc,
7547     unsigned int r_type,
7548     const elfcpp::Sym<size, big_endian>& lsym,
7549     bool is_discarded)
7550 {
7551   this->maybe_skip_tls_get_addr_call(target, r_type, NULL);
7552
7553   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7554       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7555     {
7556       this->expect_tls_get_addr_call();
7557       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
7558       if (tls_type != tls::TLSOPT_NONE)
7559         this->skip_next_tls_get_addr_call();
7560     }
7561   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7562            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7563     {
7564       this->expect_tls_get_addr_call();
7565       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7566       if (tls_type != tls::TLSOPT_NONE)
7567         this->skip_next_tls_get_addr_call();
7568     }
7569
7570   Powerpc_relobj<size, big_endian>* ppc_object
7571     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7572
7573   if (is_discarded)
7574     {
7575       if (size == 64
7576           && data_shndx == ppc_object->opd_shndx()
7577           && r_type == elfcpp::R_PPC64_ADDR64)
7578         ppc_object->set_opd_discard(reloc.get_r_offset());
7579       return;
7580     }
7581
7582   // A local STT_GNU_IFUNC symbol may require a PLT entry.
7583   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
7584   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
7585     {
7586       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7587       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7588                           r_type, r_sym, reloc.get_r_addend());
7589       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
7590     }
7591
7592   switch (r_type)
7593     {
7594     case elfcpp::R_POWERPC_NONE:
7595     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7596     case elfcpp::R_POWERPC_GNU_VTENTRY:
7597     case elfcpp::R_POWERPC_TLS:
7598     case elfcpp::R_PPC64_ENTRY:
7599     case elfcpp::R_POWERPC_PLTSEQ:
7600     case elfcpp::R_POWERPC_PLTCALL:
7601     case elfcpp::R_PPC64_PLTSEQ_NOTOC:
7602     case elfcpp::R_PPC64_PLTCALL_NOTOC:
7603     case elfcpp::R_PPC64_PCREL_OPT:
7604     case elfcpp::R_PPC64_ADDR16_HIGHER34:
7605     case elfcpp::R_PPC64_ADDR16_HIGHERA34:
7606     case elfcpp::R_PPC64_ADDR16_HIGHEST34:
7607     case elfcpp::R_PPC64_ADDR16_HIGHESTA34:
7608     case elfcpp::R_PPC64_REL16_HIGHER34:
7609     case elfcpp::R_PPC64_REL16_HIGHERA34:
7610     case elfcpp::R_PPC64_REL16_HIGHEST34:
7611     case elfcpp::R_PPC64_REL16_HIGHESTA34:
7612       break;
7613
7614     case elfcpp::R_PPC64_D34:
7615     case elfcpp::R_PPC64_D34_LO:
7616     case elfcpp::R_PPC64_D34_HI30:
7617     case elfcpp::R_PPC64_D34_HA30:
7618     case elfcpp::R_PPC64_D28:
7619     case elfcpp::R_PPC64_PCREL34:
7620     case elfcpp::R_PPC64_PCREL28:
7621       target->set_powerxx_stubs();
7622       break;
7623
7624     case elfcpp::R_PPC64_TOC:
7625       {
7626         Output_data_got_powerpc<size, big_endian>* got
7627           = target->got_section(symtab, layout);
7628         if (parameters->options().output_is_position_independent())
7629           {
7630             Address off = reloc.get_r_offset();
7631             if (size == 64
7632                 && target->abiversion() < 2
7633                 && data_shndx == ppc_object->opd_shndx()
7634                 && ppc_object->get_opd_discard(off - 8))
7635               break;
7636
7637             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7638             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
7639             rela_dyn->add_output_section_relative(got->output_section(),
7640                                                   elfcpp::R_POWERPC_RELATIVE,
7641                                                   output_section,
7642                                                   object, data_shndx, off,
7643                                                   symobj->toc_base_offset());
7644           }
7645       }
7646       break;
7647
7648     case elfcpp::R_PPC64_ADDR64:
7649     case elfcpp::R_PPC64_UADDR64:
7650     case elfcpp::R_POWERPC_ADDR32:
7651     case elfcpp::R_POWERPC_UADDR32:
7652     case elfcpp::R_POWERPC_ADDR24:
7653     case elfcpp::R_POWERPC_ADDR16:
7654     case elfcpp::R_POWERPC_ADDR16_LO:
7655     case elfcpp::R_POWERPC_ADDR16_HI:
7656     case elfcpp::R_POWERPC_ADDR16_HA:
7657     case elfcpp::R_POWERPC_UADDR16:
7658     case elfcpp::R_PPC64_ADDR16_HIGH:
7659     case elfcpp::R_PPC64_ADDR16_HIGHA:
7660     case elfcpp::R_PPC64_ADDR16_HIGHER:
7661     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7662     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7663     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7664     case elfcpp::R_PPC64_ADDR16_DS:
7665     case elfcpp::R_PPC64_ADDR16_LO_DS:
7666     case elfcpp::R_POWERPC_ADDR14:
7667     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7668     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7669       // If building a shared library (or a position-independent
7670       // executable), we need to create a dynamic relocation for
7671       // this location.
7672       if (parameters->options().output_is_position_independent()
7673           || (size == 64 && is_ifunc && target->abiversion() < 2))
7674         {
7675           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
7676                                                              is_ifunc);
7677           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7678           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
7679               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
7680             {
7681               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7682                                      : elfcpp::R_POWERPC_RELATIVE);
7683               rela_dyn->add_local_relative(object, r_sym, dynrel,
7684                                            output_section, data_shndx,
7685                                            reloc.get_r_offset(),
7686                                            reloc.get_r_addend(), false);
7687             }
7688           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
7689             {
7690               check_non_pic(object, r_type);
7691               rela_dyn->add_local(object, r_sym, r_type, output_section,
7692                                   data_shndx, reloc.get_r_offset(),
7693                                   reloc.get_r_addend());
7694             }
7695           else
7696             {
7697               gold_assert(lsym.get_st_value() == 0);
7698               unsigned int shndx = lsym.get_st_shndx();
7699               bool is_ordinary;
7700               shndx = object->adjust_sym_shndx(r_sym, shndx,
7701                                                &is_ordinary);
7702               if (!is_ordinary)
7703                 object->error(_("section symbol %u has bad shndx %u"),
7704                               r_sym, shndx);
7705               else
7706                 rela_dyn->add_local_section(object, shndx, r_type,
7707                                             output_section, data_shndx,
7708                                             reloc.get_r_offset());
7709             }
7710         }
7711       break;
7712
7713     case elfcpp::R_PPC64_PLT_PCREL34:
7714     case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
7715       target->set_powerxx_stubs();
7716       // Fall through.
7717     case elfcpp::R_POWERPC_PLT16_LO:
7718     case elfcpp::R_POWERPC_PLT16_HI:
7719     case elfcpp::R_POWERPC_PLT16_HA:
7720     case elfcpp::R_PPC64_PLT16_LO_DS:
7721       if (!is_ifunc)
7722         {
7723           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7724           target->make_local_plt_entry(layout, object, r_sym);
7725         }
7726       break;
7727
7728     case elfcpp::R_PPC64_REL24_NOTOC:
7729       if (size == 32)
7730         break;
7731       // Fall through.
7732     case elfcpp::R_POWERPC_REL24:
7733     case elfcpp::R_PPC_PLTREL24:
7734     case elfcpp::R_PPC_LOCAL24PC:
7735     case elfcpp::R_POWERPC_REL14:
7736     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7737     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7738       if (!is_ifunc)
7739         {
7740           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7741           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7742                               r_type, r_sym, reloc.get_r_addend());
7743         }
7744       break;
7745
7746     case elfcpp::R_PPC64_TOCSAVE:
7747       // R_PPC64_TOCSAVE follows a call instruction to indicate the
7748       // caller has already saved r2 and thus a plt call stub need not
7749       // save r2.
7750       if (size == 64
7751           && target->mark_pltcall(ppc_object, data_shndx,
7752                                   reloc.get_r_offset() - 4, symtab))
7753         {
7754           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7755           unsigned int shndx = lsym.get_st_shndx();
7756           bool is_ordinary;
7757           shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7758           if (!is_ordinary)
7759             object->error(_("tocsave symbol %u has bad shndx %u"),
7760                           r_sym, shndx);
7761           else
7762             target->add_tocsave(ppc_object, shndx,
7763                                 lsym.get_st_value() + reloc.get_r_addend());
7764         }
7765       break;
7766
7767     case elfcpp::R_PPC64_REL64:
7768     case elfcpp::R_POWERPC_REL32:
7769     case elfcpp::R_POWERPC_REL16:
7770     case elfcpp::R_POWERPC_REL16_LO:
7771     case elfcpp::R_POWERPC_REL16_HI:
7772     case elfcpp::R_POWERPC_REL16_HA:
7773     case elfcpp::R_POWERPC_REL16DX_HA:
7774     case elfcpp::R_PPC64_REL16_HIGH:
7775     case elfcpp::R_PPC64_REL16_HIGHA:
7776     case elfcpp::R_PPC64_REL16_HIGHER:
7777     case elfcpp::R_PPC64_REL16_HIGHERA:
7778     case elfcpp::R_PPC64_REL16_HIGHEST:
7779     case elfcpp::R_PPC64_REL16_HIGHESTA:
7780     case elfcpp::R_POWERPC_SECTOFF:
7781     case elfcpp::R_POWERPC_SECTOFF_LO:
7782     case elfcpp::R_POWERPC_SECTOFF_HI:
7783     case elfcpp::R_POWERPC_SECTOFF_HA:
7784     case elfcpp::R_PPC64_SECTOFF_DS:
7785     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7786     case elfcpp::R_POWERPC_TPREL16:
7787     case elfcpp::R_POWERPC_TPREL16_LO:
7788     case elfcpp::R_POWERPC_TPREL16_HI:
7789     case elfcpp::R_POWERPC_TPREL16_HA:
7790     case elfcpp::R_PPC64_TPREL16_DS:
7791     case elfcpp::R_PPC64_TPREL16_LO_DS:
7792     case elfcpp::R_PPC64_TPREL16_HIGH:
7793     case elfcpp::R_PPC64_TPREL16_HIGHA:
7794     case elfcpp::R_PPC64_TPREL16_HIGHER:
7795     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7796     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7797     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7798     case elfcpp::R_POWERPC_DTPREL16:
7799     case elfcpp::R_POWERPC_DTPREL16_LO:
7800     case elfcpp::R_POWERPC_DTPREL16_HI:
7801     case elfcpp::R_POWERPC_DTPREL16_HA:
7802     case elfcpp::R_PPC64_DTPREL16_DS:
7803     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7804     case elfcpp::R_PPC64_DTPREL16_HIGH:
7805     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7806     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7807     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7808     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7809     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7810     case elfcpp::R_PPC64_TLSGD:
7811     case elfcpp::R_PPC64_TLSLD:
7812     case elfcpp::R_PPC64_ADDR64_LOCAL:
7813       break;
7814
7815     case elfcpp::R_PPC64_GOT_PCREL34:
7816       target->set_powerxx_stubs();
7817       // Fall through.
7818     case elfcpp::R_POWERPC_GOT16:
7819     case elfcpp::R_POWERPC_GOT16_LO:
7820     case elfcpp::R_POWERPC_GOT16_HI:
7821     case elfcpp::R_POWERPC_GOT16_HA:
7822     case elfcpp::R_PPC64_GOT16_DS:
7823     case elfcpp::R_PPC64_GOT16_LO_DS:
7824       {
7825         // The symbol requires a GOT entry.
7826         Output_data_got_powerpc<size, big_endian>* got
7827           = target->got_section(symtab, layout);
7828         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7829
7830         if (!parameters->options().output_is_position_independent())
7831           {
7832             if (is_ifunc
7833                 && (size == 32 || target->abiversion() >= 2))
7834               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
7835             else
7836               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
7837           }
7838         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
7839           {
7840             // If we are generating a shared object or a pie, this
7841             // symbol's GOT entry will be set by a dynamic relocation.
7842             unsigned int off;
7843             off = got->add_constant(0);
7844             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
7845
7846             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
7847                                                                is_ifunc);
7848             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7849                                    : elfcpp::R_POWERPC_RELATIVE);
7850             rela_dyn->add_local_relative(object, r_sym, dynrel,
7851                                          got, off, 0, false);
7852           }
7853       }
7854       break;
7855
7856     case elfcpp::R_PPC64_TOC16:
7857     case elfcpp::R_PPC64_TOC16_LO:
7858     case elfcpp::R_PPC64_TOC16_HI:
7859     case elfcpp::R_PPC64_TOC16_HA:
7860     case elfcpp::R_PPC64_TOC16_DS:
7861     case elfcpp::R_PPC64_TOC16_LO_DS:
7862       // We need a GOT section.
7863       target->got_section(symtab, layout);
7864       break;
7865
7866     case elfcpp::R_POWERPC_GOT_TLSGD16:
7867     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7868     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7869     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7870       {
7871         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
7872         if (tls_type == tls::TLSOPT_NONE)
7873           {
7874             Output_data_got_powerpc<size, big_endian>* got
7875               = target->got_section(symtab, layout);
7876             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7877             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7878             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
7879                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
7880           }
7881         else if (tls_type == tls::TLSOPT_TO_LE)
7882           {
7883             // no GOT relocs needed for Local Exec.
7884           }
7885         else
7886           gold_unreachable();
7887       }
7888       break;
7889
7890     case elfcpp::R_POWERPC_GOT_TLSLD16:
7891     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7892     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7893     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7894       {
7895         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7896         if (tls_type == tls::TLSOPT_NONE)
7897           target->tlsld_got_offset(symtab, layout, object);
7898         else if (tls_type == tls::TLSOPT_TO_LE)
7899           {
7900             // no GOT relocs needed for Local Exec.
7901             if (parameters->options().emit_relocs())
7902               {
7903                 Output_section* os = layout->tls_segment()->first_section();
7904                 gold_assert(os != NULL);
7905                 os->set_needs_symtab_index();
7906               }
7907           }
7908         else
7909           gold_unreachable();
7910       }
7911       break;
7912
7913     case elfcpp::R_POWERPC_GOT_DTPREL16:
7914     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7915     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7916     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7917       {
7918         Output_data_got_powerpc<size, big_endian>* got
7919           = target->got_section(symtab, layout);
7920         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7921         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
7922       }
7923       break;
7924
7925     case elfcpp::R_POWERPC_GOT_TPREL16:
7926     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7927     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7928     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7929       {
7930         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
7931         if (tls_type == tls::TLSOPT_NONE)
7932           {
7933             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7934             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
7935               {
7936                 Output_data_got_powerpc<size, big_endian>* got
7937                   = target->got_section(symtab, layout);
7938                 unsigned int off = got->add_constant(0);
7939                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
7940
7941                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7942                 rela_dyn->add_symbolless_local_addend(object, r_sym,
7943                                                       elfcpp::R_POWERPC_TPREL,
7944                                                       got, off, 0);
7945               }
7946           }
7947         else if (tls_type == tls::TLSOPT_TO_LE)
7948           {
7949             // no GOT relocs needed for Local Exec.
7950           }
7951         else
7952           gold_unreachable();
7953       }
7954       break;
7955
7956     default:
7957       unsupported_reloc_local(object, r_type);
7958       break;
7959     }
7960
7961   if (size == 64
7962       && parameters->options().toc_optimize())
7963     {
7964       if (data_shndx == ppc_object->toc_shndx())
7965         {
7966           bool ok = true;
7967           if (r_type != elfcpp::R_PPC64_ADDR64
7968               || (is_ifunc && target->abiversion() < 2))
7969             ok = false;
7970           else if (parameters->options().output_is_position_independent())
7971             {
7972               if (is_ifunc)
7973                 ok = false;
7974               else
7975                 {
7976                   unsigned int shndx = lsym.get_st_shndx();
7977                   if (shndx >= elfcpp::SHN_LORESERVE
7978                       && shndx != elfcpp::SHN_XINDEX)
7979                     ok = false;
7980                 }
7981             }
7982           if (!ok)
7983             ppc_object->set_no_toc_opt(reloc.get_r_offset());
7984         }
7985
7986       enum {no_check, check_lo, check_ha} insn_check;
7987       switch (r_type)
7988         {
7989         default:
7990           insn_check = no_check;
7991           break;
7992
7993         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7994         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7995         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7996         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7997         case elfcpp::R_POWERPC_GOT16_HA:
7998         case elfcpp::R_PPC64_TOC16_HA:
7999           insn_check = check_ha;
8000           break;
8001
8002         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8003         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8004         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8005         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8006         case elfcpp::R_POWERPC_GOT16_LO:
8007         case elfcpp::R_PPC64_GOT16_LO_DS:
8008         case elfcpp::R_PPC64_TOC16_LO:
8009         case elfcpp::R_PPC64_TOC16_LO_DS:
8010           insn_check = check_lo;
8011           break;
8012         }
8013
8014       section_size_type slen;
8015       const unsigned char* view = NULL;
8016       if (insn_check != no_check)
8017         {
8018           view = ppc_object->section_contents(data_shndx, &slen, false);
8019           section_size_type off =
8020             convert_to_section_size_type(reloc.get_r_offset()) & -4;
8021           if (off < slen)
8022             {
8023               uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
8024               if (insn_check == check_lo
8025                   ? !ok_lo_toc_insn(insn, r_type)
8026                   : ((insn & ((0x3f << 26) | 0x1f << 16))
8027                      != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8028                 {
8029                   ppc_object->set_no_toc_opt();
8030                   gold_warning(_("%s: toc optimization is not supported "
8031                                  "for %#08x instruction"),
8032                                ppc_object->name().c_str(), insn);
8033                 }
8034             }
8035         }
8036
8037       switch (r_type)
8038         {
8039         default:
8040           break;
8041         case elfcpp::R_PPC64_TOC16:
8042         case elfcpp::R_PPC64_TOC16_LO:
8043         case elfcpp::R_PPC64_TOC16_HI:
8044         case elfcpp::R_PPC64_TOC16_HA:
8045         case elfcpp::R_PPC64_TOC16_DS:
8046         case elfcpp::R_PPC64_TOC16_LO_DS:
8047           unsigned int shndx = lsym.get_st_shndx();
8048           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8049           bool is_ordinary;
8050           shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8051           if (is_ordinary && shndx == ppc_object->toc_shndx())
8052             {
8053               Address dst_off = lsym.get_st_value() + reloc.get_r_addend();
8054               if (dst_off < ppc_object->section_size(shndx))
8055                 {
8056                   bool ok = false;
8057                   if (r_type == elfcpp::R_PPC64_TOC16_HA)
8058                     ok = true;
8059                   else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
8060                     {
8061                       // Need to check that the insn is a ld
8062                       if (!view)
8063                         view = ppc_object->section_contents(data_shndx,
8064                                                             &slen,
8065                                                             false);
8066                       section_size_type off =
8067                         (convert_to_section_size_type(reloc.get_r_offset())
8068                          + (big_endian ? -2 : 3));
8069                       if (off < slen
8070                           && (view[off] & (0x3f << 2)) == 58u << 2)
8071                         ok = true;
8072                     }
8073                   if (!ok)
8074                     ppc_object->set_no_toc_opt(dst_off);
8075                 }
8076             }
8077           break;
8078         }
8079     }
8080
8081   if (size == 32)
8082     {
8083       switch (r_type)
8084         {
8085         case elfcpp::R_POWERPC_REL32:
8086           if (ppc_object->got2_shndx() != 0
8087               && parameters->options().output_is_position_independent())
8088             {
8089               unsigned int shndx = lsym.get_st_shndx();
8090               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8091               bool is_ordinary;
8092               shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8093               if (is_ordinary && shndx == ppc_object->got2_shndx()
8094                   && (ppc_object->section_flags(data_shndx)
8095                       & elfcpp::SHF_EXECINSTR) != 0)
8096                 gold_error(_("%s: unsupported -mbss-plt code"),
8097                            ppc_object->name().c_str());
8098             }
8099           break;
8100         default:
8101           break;
8102         }
8103     }
8104
8105   switch (r_type)
8106     {
8107     case elfcpp::R_POWERPC_GOT_TLSLD16:
8108     case elfcpp::R_POWERPC_GOT_TLSGD16:
8109     case elfcpp::R_POWERPC_GOT_TPREL16:
8110     case elfcpp::R_POWERPC_GOT_DTPREL16:
8111     case elfcpp::R_POWERPC_GOT16:
8112     case elfcpp::R_PPC64_GOT16_DS:
8113     case elfcpp::R_PPC64_TOC16:
8114     case elfcpp::R_PPC64_TOC16_DS:
8115       ppc_object->set_has_small_toc_reloc();
8116     default:
8117       break;
8118     }
8119 }
8120
8121 // Report an unsupported relocation against a global symbol.
8122
8123 template<int size, bool big_endian>
8124 void
8125 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
8126     Sized_relobj_file<size, big_endian>* object,
8127     unsigned int r_type,
8128     Symbol* gsym)
8129 {
8130   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8131              object->name().c_str(), r_type, gsym->demangled_name().c_str());
8132 }
8133
8134 // Scan a relocation for a global symbol.
8135
8136 template<int size, bool big_endian>
8137 inline void
8138 Target_powerpc<size, big_endian>::Scan::global(
8139     Symbol_table* symtab,
8140     Layout* layout,
8141     Target_powerpc<size, big_endian>* target,
8142     Sized_relobj_file<size, big_endian>* object,
8143     unsigned int data_shndx,
8144     Output_section* output_section,
8145     const elfcpp::Rela<size, big_endian>& reloc,
8146     unsigned int r_type,
8147     Symbol* gsym)
8148 {
8149   if (this->maybe_skip_tls_get_addr_call(target, r_type, gsym)
8150       == Track_tls::SKIP)
8151     return;
8152
8153   if (target->replace_tls_get_addr(gsym))
8154     // Change a __tls_get_addr reference to __tls_get_addr_opt
8155     // so dynamic relocs are emitted against the latter symbol.
8156     gsym = target->tls_get_addr_opt();
8157
8158   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8159       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8160     {
8161       this->expect_tls_get_addr_call();
8162       const bool final = gsym->final_value_is_known();
8163       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8164       if (tls_type != tls::TLSOPT_NONE)
8165         this->skip_next_tls_get_addr_call();
8166     }
8167   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8168            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8169     {
8170       this->expect_tls_get_addr_call();
8171       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8172       if (tls_type != tls::TLSOPT_NONE)
8173         this->skip_next_tls_get_addr_call();
8174     }
8175
8176   Powerpc_relobj<size, big_endian>* ppc_object
8177     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
8178
8179   // A STT_GNU_IFUNC symbol may require a PLT entry.
8180   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
8181   bool pushed_ifunc = false;
8182   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
8183     {
8184       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8185       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
8186                           r_type, r_sym, reloc.get_r_addend());
8187       target->make_plt_entry(symtab, layout, gsym);
8188       pushed_ifunc = true;
8189     }
8190
8191   switch (r_type)
8192     {
8193     case elfcpp::R_POWERPC_NONE:
8194     case elfcpp::R_POWERPC_GNU_VTINHERIT:
8195     case elfcpp::R_POWERPC_GNU_VTENTRY:
8196     case elfcpp::R_PPC_LOCAL24PC:
8197     case elfcpp::R_POWERPC_TLS:
8198     case elfcpp::R_PPC64_ENTRY:
8199     case elfcpp::R_POWERPC_PLTSEQ:
8200     case elfcpp::R_POWERPC_PLTCALL:
8201     case elfcpp::R_PPC64_PLTSEQ_NOTOC:
8202     case elfcpp::R_PPC64_PLTCALL_NOTOC:
8203     case elfcpp::R_PPC64_PCREL_OPT:
8204     case elfcpp::R_PPC64_ADDR16_HIGHER34:
8205     case elfcpp::R_PPC64_ADDR16_HIGHERA34:
8206     case elfcpp::R_PPC64_ADDR16_HIGHEST34:
8207     case elfcpp::R_PPC64_ADDR16_HIGHESTA34:
8208     case elfcpp::R_PPC64_REL16_HIGHER34:
8209     case elfcpp::R_PPC64_REL16_HIGHERA34:
8210     case elfcpp::R_PPC64_REL16_HIGHEST34:
8211     case elfcpp::R_PPC64_REL16_HIGHESTA34:
8212       break;
8213
8214     case elfcpp::R_PPC64_D34:
8215     case elfcpp::R_PPC64_D34_LO:
8216     case elfcpp::R_PPC64_D34_HI30:
8217     case elfcpp::R_PPC64_D34_HA30:
8218     case elfcpp::R_PPC64_D28:
8219     case elfcpp::R_PPC64_PCREL34:
8220     case elfcpp::R_PPC64_PCREL28:
8221       target->set_powerxx_stubs();
8222       break;
8223
8224     case elfcpp::R_PPC64_TOC:
8225       {
8226         Output_data_got_powerpc<size, big_endian>* got
8227           = target->got_section(symtab, layout);
8228         if (parameters->options().output_is_position_independent())
8229           {
8230             Address off = reloc.get_r_offset();
8231             if (size == 64
8232                 && data_shndx == ppc_object->opd_shndx()
8233                 && ppc_object->get_opd_discard(off - 8))
8234               break;
8235
8236             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
8237             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
8238             if (data_shndx != ppc_object->opd_shndx())
8239               symobj = static_cast
8240                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
8241             rela_dyn->add_output_section_relative(got->output_section(),
8242                                                   elfcpp::R_POWERPC_RELATIVE,
8243                                                   output_section,
8244                                                   object, data_shndx, off,
8245                                                   symobj->toc_base_offset());
8246           }
8247       }
8248       break;
8249
8250     case elfcpp::R_PPC64_ADDR64:
8251       if (size == 64
8252           && target->abiversion() < 2
8253           && data_shndx == ppc_object->opd_shndx()
8254           && (gsym->is_defined_in_discarded_section()
8255               || gsym->object() != object))
8256         {
8257           ppc_object->set_opd_discard(reloc.get_r_offset());
8258           break;
8259         }
8260       // Fall through.
8261     case elfcpp::R_PPC64_UADDR64:
8262     case elfcpp::R_POWERPC_ADDR32:
8263     case elfcpp::R_POWERPC_UADDR32:
8264     case elfcpp::R_POWERPC_ADDR24:
8265     case elfcpp::R_POWERPC_ADDR16:
8266     case elfcpp::R_POWERPC_ADDR16_LO:
8267     case elfcpp::R_POWERPC_ADDR16_HI:
8268     case elfcpp::R_POWERPC_ADDR16_HA:
8269     case elfcpp::R_POWERPC_UADDR16:
8270     case elfcpp::R_PPC64_ADDR16_HIGH:
8271     case elfcpp::R_PPC64_ADDR16_HIGHA:
8272     case elfcpp::R_PPC64_ADDR16_HIGHER:
8273     case elfcpp::R_PPC64_ADDR16_HIGHERA:
8274     case elfcpp::R_PPC64_ADDR16_HIGHEST:
8275     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8276     case elfcpp::R_PPC64_ADDR16_DS:
8277     case elfcpp::R_PPC64_ADDR16_LO_DS:
8278     case elfcpp::R_POWERPC_ADDR14:
8279     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8280     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8281       {
8282         // Make a PLT entry if necessary.
8283         if (gsym->needs_plt_entry())
8284           {
8285             // Since this is not a PC-relative relocation, we may be
8286             // taking the address of a function. In that case we need to
8287             // set the entry in the dynamic symbol table to the address of
8288             // the PLT call stub.
8289             bool need_ifunc_plt = false;
8290             if ((size == 32 || target->abiversion() >= 2)
8291                 && gsym->is_from_dynobj()
8292                 && !parameters->options().output_is_position_independent())
8293               {
8294                 gsym->set_needs_dynsym_value();
8295                 need_ifunc_plt = true;
8296               }
8297             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
8298               {
8299                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8300                 target->push_branch(ppc_object, data_shndx,
8301                                     reloc.get_r_offset(), r_type, r_sym,
8302                                     reloc.get_r_addend());
8303                 target->make_plt_entry(symtab, layout, gsym);
8304               }
8305           }
8306         // Make a dynamic relocation if necessary.
8307         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
8308             || (size == 64 && is_ifunc && target->abiversion() < 2))
8309           {
8310             if (!parameters->options().output_is_position_independent()
8311                 && gsym->may_need_copy_reloc())
8312               {
8313                 target->copy_reloc(symtab, layout, object,
8314                                    data_shndx, output_section, gsym, reloc);
8315               }
8316             else if ((((size == 32
8317                         && r_type == elfcpp::R_POWERPC_ADDR32)
8318                        || (size == 64
8319                            && r_type == elfcpp::R_PPC64_ADDR64
8320                            && target->abiversion() >= 2))
8321                       && gsym->can_use_relative_reloc(false)
8322                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
8323                            && parameters->options().shared()))
8324                      || (size == 64
8325                          && r_type == elfcpp::R_PPC64_ADDR64
8326                          && target->abiversion() < 2
8327                          && (gsym->can_use_relative_reloc(false)
8328                              || data_shndx == ppc_object->opd_shndx())))
8329               {
8330                 Reloc_section* rela_dyn
8331                   = target->rela_dyn_section(symtab, layout, is_ifunc);
8332                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
8333                                        : elfcpp::R_POWERPC_RELATIVE);
8334                 rela_dyn->add_symbolless_global_addend(
8335                     gsym, dynrel, output_section, object, data_shndx,
8336                     reloc.get_r_offset(), reloc.get_r_addend());
8337               }
8338             else
8339               {
8340                 Reloc_section* rela_dyn
8341                   = target->rela_dyn_section(symtab, layout, is_ifunc);
8342                 check_non_pic(object, r_type);
8343                 rela_dyn->add_global(gsym, r_type, output_section,
8344                                      object, data_shndx,
8345                                      reloc.get_r_offset(),
8346                                      reloc.get_r_addend());
8347
8348                 if (size == 64
8349                     && parameters->options().toc_optimize()
8350                     && data_shndx == ppc_object->toc_shndx())
8351                   ppc_object->set_no_toc_opt(reloc.get_r_offset());
8352               }
8353           }
8354       }
8355       break;
8356
8357     case elfcpp::R_PPC64_PLT_PCREL34:
8358     case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
8359       target->set_powerxx_stubs();
8360       // Fall through.
8361     case elfcpp::R_POWERPC_PLT16_LO:
8362     case elfcpp::R_POWERPC_PLT16_HI:
8363     case elfcpp::R_POWERPC_PLT16_HA:
8364     case elfcpp::R_PPC64_PLT16_LO_DS:
8365       if (!pushed_ifunc)
8366         target->make_plt_entry(symtab, layout, gsym);
8367       break;
8368
8369     case elfcpp::R_PPC64_REL24_NOTOC:
8370       if (size == 32)
8371         break;
8372       // Fall through.
8373     case elfcpp::R_PPC_PLTREL24:
8374     case elfcpp::R_POWERPC_REL24:
8375       if (!is_ifunc)
8376         {
8377           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8378           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
8379                               r_type, r_sym, reloc.get_r_addend());
8380           if (gsym->needs_plt_entry()
8381               || (!gsym->final_value_is_known()
8382                   && (gsym->is_undefined()
8383                       || gsym->is_from_dynobj()
8384                       || gsym->is_preemptible())))
8385             target->make_plt_entry(symtab, layout, gsym);
8386         }
8387       // Fall through.
8388
8389     case elfcpp::R_PPC64_REL64:
8390     case elfcpp::R_POWERPC_REL32:
8391       // Make a dynamic relocation if necessary.
8392       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
8393         {
8394           if (!parameters->options().output_is_position_independent()
8395               && gsym->may_need_copy_reloc())
8396             {
8397               target->copy_reloc(symtab, layout, object,
8398                                  data_shndx, output_section, gsym,
8399                                  reloc);
8400             }
8401           else
8402             {
8403               Reloc_section* rela_dyn
8404                 = target->rela_dyn_section(symtab, layout, is_ifunc);
8405               check_non_pic(object, r_type);
8406               rela_dyn->add_global(gsym, r_type, output_section, object,
8407                                    data_shndx, reloc.get_r_offset(),
8408                                    reloc.get_r_addend());
8409             }
8410         }
8411       break;
8412
8413     case elfcpp::R_POWERPC_REL14:
8414     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8415     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8416       if (!is_ifunc)
8417         {
8418           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8419           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
8420                               r_type, r_sym, reloc.get_r_addend());
8421         }
8422       break;
8423
8424     case elfcpp::R_PPC64_TOCSAVE:
8425       // R_PPC64_TOCSAVE follows a call instruction to indicate the
8426       // caller has already saved r2 and thus a plt call stub need not
8427       // save r2.
8428       if (size == 64
8429           && target->mark_pltcall(ppc_object, data_shndx,
8430                                   reloc.get_r_offset() - 4, symtab))
8431         {
8432           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
8433           bool is_ordinary;
8434           unsigned int shndx = gsym->shndx(&is_ordinary);
8435           if (!is_ordinary)
8436             object->error(_("tocsave symbol %u has bad shndx %u"),
8437                           r_sym, shndx);
8438           else
8439             {
8440               Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
8441               target->add_tocsave(ppc_object, shndx,
8442                                   sym->value() + reloc.get_r_addend());
8443             }
8444         }
8445       break;
8446
8447     case elfcpp::R_POWERPC_REL16:
8448     case elfcpp::R_POWERPC_REL16_LO:
8449     case elfcpp::R_POWERPC_REL16_HI:
8450     case elfcpp::R_POWERPC_REL16_HA:
8451     case elfcpp::R_POWERPC_REL16DX_HA:
8452     case elfcpp::R_PPC64_REL16_HIGH:
8453     case elfcpp::R_PPC64_REL16_HIGHA:
8454     case elfcpp::R_PPC64_REL16_HIGHER:
8455     case elfcpp::R_PPC64_REL16_HIGHERA:
8456     case elfcpp::R_PPC64_REL16_HIGHEST:
8457     case elfcpp::R_PPC64_REL16_HIGHESTA:
8458     case elfcpp::R_POWERPC_SECTOFF:
8459     case elfcpp::R_POWERPC_SECTOFF_LO:
8460     case elfcpp::R_POWERPC_SECTOFF_HI:
8461     case elfcpp::R_POWERPC_SECTOFF_HA:
8462     case elfcpp::R_PPC64_SECTOFF_DS:
8463     case elfcpp::R_PPC64_SECTOFF_LO_DS:
8464     case elfcpp::R_POWERPC_TPREL16:
8465     case elfcpp::R_POWERPC_TPREL16_LO:
8466     case elfcpp::R_POWERPC_TPREL16_HI:
8467     case elfcpp::R_POWERPC_TPREL16_HA:
8468     case elfcpp::R_PPC64_TPREL16_DS:
8469     case elfcpp::R_PPC64_TPREL16_LO_DS:
8470     case elfcpp::R_PPC64_TPREL16_HIGH:
8471     case elfcpp::R_PPC64_TPREL16_HIGHA:
8472     case elfcpp::R_PPC64_TPREL16_HIGHER:
8473     case elfcpp::R_PPC64_TPREL16_HIGHERA:
8474     case elfcpp::R_PPC64_TPREL16_HIGHEST:
8475     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8476     case elfcpp::R_POWERPC_DTPREL16:
8477     case elfcpp::R_POWERPC_DTPREL16_LO:
8478     case elfcpp::R_POWERPC_DTPREL16_HI:
8479     case elfcpp::R_POWERPC_DTPREL16_HA:
8480     case elfcpp::R_PPC64_DTPREL16_DS:
8481     case elfcpp::R_PPC64_DTPREL16_LO_DS:
8482     case elfcpp::R_PPC64_DTPREL16_HIGH:
8483     case elfcpp::R_PPC64_DTPREL16_HIGHA:
8484     case elfcpp::R_PPC64_DTPREL16_HIGHER:
8485     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8486     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8487     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8488     case elfcpp::R_PPC64_TLSGD:
8489     case elfcpp::R_PPC64_TLSLD:
8490     case elfcpp::R_PPC64_ADDR64_LOCAL:
8491       break;
8492
8493     case elfcpp::R_PPC64_GOT_PCREL34:
8494       target->set_powerxx_stubs();
8495       // Fall through.
8496     case elfcpp::R_POWERPC_GOT16:
8497     case elfcpp::R_POWERPC_GOT16_LO:
8498     case elfcpp::R_POWERPC_GOT16_HI:
8499     case elfcpp::R_POWERPC_GOT16_HA:
8500     case elfcpp::R_PPC64_GOT16_DS:
8501     case elfcpp::R_PPC64_GOT16_LO_DS:
8502       {
8503         // The symbol requires a GOT entry.
8504         Output_data_got_powerpc<size, big_endian>* got;
8505
8506         got = target->got_section(symtab, layout);
8507         if (gsym->final_value_is_known())
8508           {
8509             if (is_ifunc
8510                 && (size == 32 || target->abiversion() >= 2))
8511               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8512             else
8513               got->add_global(gsym, GOT_TYPE_STANDARD);
8514           }
8515         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
8516           {
8517             // If we are generating a shared object or a pie, this
8518             // symbol's GOT entry will be set by a dynamic relocation.
8519             unsigned int off = got->add_constant(0);
8520             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
8521
8522             Reloc_section* rela_dyn
8523               = target->rela_dyn_section(symtab, layout, is_ifunc);
8524
8525             if (gsym->can_use_relative_reloc(false)
8526                 && !((size == 32
8527                       || target->abiversion() >= 2)
8528                      && gsym->visibility() == elfcpp::STV_PROTECTED
8529                      && parameters->options().shared()))
8530               {
8531                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
8532                                        : elfcpp::R_POWERPC_RELATIVE);
8533                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
8534               }
8535             else
8536               {
8537                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
8538                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
8539               }
8540           }
8541       }
8542       break;
8543
8544     case elfcpp::R_PPC64_TOC16:
8545     case elfcpp::R_PPC64_TOC16_LO:
8546     case elfcpp::R_PPC64_TOC16_HI:
8547     case elfcpp::R_PPC64_TOC16_HA:
8548     case elfcpp::R_PPC64_TOC16_DS:
8549     case elfcpp::R_PPC64_TOC16_LO_DS:
8550       // We need a GOT section.
8551       target->got_section(symtab, layout);
8552       break;
8553
8554     case elfcpp::R_POWERPC_GOT_TLSGD16:
8555     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8556     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8557     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8558       {
8559         const bool final = gsym->final_value_is_known();
8560         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8561         if (tls_type == tls::TLSOPT_NONE)
8562           {
8563             Output_data_got_powerpc<size, big_endian>* got
8564               = target->got_section(symtab, layout);
8565             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
8566             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
8567                                           elfcpp::R_POWERPC_DTPMOD,
8568                                           elfcpp::R_POWERPC_DTPREL);
8569           }
8570         else if (tls_type == tls::TLSOPT_TO_IE)
8571           {
8572             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
8573               {
8574                 Output_data_got_powerpc<size, big_endian>* got
8575                   = target->got_section(symtab, layout);
8576                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
8577                 if (gsym->is_undefined()
8578                     || gsym->is_from_dynobj())
8579                   {
8580                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
8581                                              elfcpp::R_POWERPC_TPREL);
8582                   }
8583                 else
8584                   {
8585                     unsigned int off = got->add_constant(0);
8586                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
8587                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
8588                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
8589                                                            got, off, 0);
8590                   }
8591               }
8592           }
8593         else if (tls_type == tls::TLSOPT_TO_LE)
8594           {
8595             // no GOT relocs needed for Local Exec.
8596           }
8597         else
8598           gold_unreachable();
8599       }
8600       break;
8601
8602     case elfcpp::R_POWERPC_GOT_TLSLD16:
8603     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8604     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8605     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8606       {
8607         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8608         if (tls_type == tls::TLSOPT_NONE)
8609           target->tlsld_got_offset(symtab, layout, object);
8610         else if (tls_type == tls::TLSOPT_TO_LE)
8611           {
8612             // no GOT relocs needed for Local Exec.
8613             if (parameters->options().emit_relocs())
8614               {
8615                 Output_section* os = layout->tls_segment()->first_section();
8616                 gold_assert(os != NULL);
8617                 os->set_needs_symtab_index();
8618               }
8619           }
8620         else
8621           gold_unreachable();
8622       }
8623       break;
8624
8625     case elfcpp::R_POWERPC_GOT_DTPREL16:
8626     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8627     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8628     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8629       {
8630         Output_data_got_powerpc<size, big_endian>* got
8631           = target->got_section(symtab, layout);
8632         if (!gsym->final_value_is_known()
8633             && (gsym->is_from_dynobj()
8634                 || gsym->is_undefined()
8635                 || gsym->is_preemptible()))
8636           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
8637                                    target->rela_dyn_section(layout),
8638                                    elfcpp::R_POWERPC_DTPREL);
8639         else
8640           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
8641       }
8642       break;
8643
8644     case elfcpp::R_POWERPC_GOT_TPREL16:
8645     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8646     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8647     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8648       {
8649         const bool final = gsym->final_value_is_known();
8650         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8651         if (tls_type == tls::TLSOPT_NONE)
8652           {
8653             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
8654               {
8655                 Output_data_got_powerpc<size, big_endian>* got
8656                   = target->got_section(symtab, layout);
8657                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
8658                 if (gsym->is_undefined()
8659                     || gsym->is_from_dynobj())
8660                   {
8661                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
8662                                              elfcpp::R_POWERPC_TPREL);
8663                   }
8664                 else
8665                   {
8666                     unsigned int off = got->add_constant(0);
8667                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
8668                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
8669                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
8670                                                            got, off, 0);
8671                   }
8672               }
8673           }
8674         else if (tls_type == tls::TLSOPT_TO_LE)
8675           {
8676             // no GOT relocs needed for Local Exec.
8677           }
8678         else
8679           gold_unreachable();
8680       }
8681       break;
8682
8683     default:
8684       unsupported_reloc_global(object, r_type, gsym);
8685       break;
8686     }
8687
8688   if (size == 64
8689       && parameters->options().toc_optimize())
8690     {
8691       if (data_shndx == ppc_object->toc_shndx())
8692         {
8693           bool ok = true;
8694           if (r_type != elfcpp::R_PPC64_ADDR64
8695               || (is_ifunc && target->abiversion() < 2))
8696             ok = false;
8697           else if (parameters->options().output_is_position_independent()
8698                    && (is_ifunc || gsym->is_absolute() || gsym->is_undefined()))
8699             ok = false;
8700           if (!ok)
8701             ppc_object->set_no_toc_opt(reloc.get_r_offset());
8702         }
8703
8704       enum {no_check, check_lo, check_ha} insn_check;
8705       switch (r_type)
8706         {
8707         default:
8708           insn_check = no_check;
8709           break;
8710
8711         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8712         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8713         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8714         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8715         case elfcpp::R_POWERPC_GOT16_HA:
8716         case elfcpp::R_PPC64_TOC16_HA:
8717           insn_check = check_ha;
8718           break;
8719
8720         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8721         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8722         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8723         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8724         case elfcpp::R_POWERPC_GOT16_LO:
8725         case elfcpp::R_PPC64_GOT16_LO_DS:
8726         case elfcpp::R_PPC64_TOC16_LO:
8727         case elfcpp::R_PPC64_TOC16_LO_DS:
8728           insn_check = check_lo;
8729           break;
8730         }
8731
8732       section_size_type slen;
8733       const unsigned char* view = NULL;
8734       if (insn_check != no_check)
8735         {
8736           view = ppc_object->section_contents(data_shndx, &slen, false);
8737           section_size_type off =
8738             convert_to_section_size_type(reloc.get_r_offset()) & -4;
8739           if (off < slen)
8740             {
8741               uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
8742               if (insn_check == check_lo
8743                   ? !ok_lo_toc_insn(insn, r_type)
8744                   : ((insn & ((0x3f << 26) | 0x1f << 16))
8745                      != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8746                 {
8747                   ppc_object->set_no_toc_opt();
8748                   gold_warning(_("%s: toc optimization is not supported "
8749                                  "for %#08x instruction"),
8750                                ppc_object->name().c_str(), insn);
8751                 }
8752             }
8753         }
8754
8755       switch (r_type)
8756         {
8757         default:
8758           break;
8759         case elfcpp::R_PPC64_TOC16:
8760         case elfcpp::R_PPC64_TOC16_LO:
8761         case elfcpp::R_PPC64_TOC16_HI:
8762         case elfcpp::R_PPC64_TOC16_HA:
8763         case elfcpp::R_PPC64_TOC16_DS:
8764         case elfcpp::R_PPC64_TOC16_LO_DS:
8765           if (gsym->source() == Symbol::FROM_OBJECT
8766               && !gsym->object()->is_dynamic())
8767             {
8768               Powerpc_relobj<size, big_endian>* sym_object
8769                 = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
8770               bool is_ordinary;
8771               unsigned int shndx = gsym->shndx(&is_ordinary);
8772               if (shndx == sym_object->toc_shndx())
8773                 {
8774                   Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
8775                   Address dst_off = sym->value() + reloc.get_r_addend();
8776                   if (dst_off < sym_object->section_size(shndx))
8777                     {
8778                       bool ok = false;
8779                       if (r_type == elfcpp::R_PPC64_TOC16_HA)
8780                         ok = true;
8781                       else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
8782                         {
8783                           // Need to check that the insn is a ld
8784                           if (!view)
8785                             view = ppc_object->section_contents(data_shndx,
8786                                                                 &slen,
8787                                                                 false);
8788                           section_size_type off =
8789                             (convert_to_section_size_type(reloc.get_r_offset())
8790                              + (big_endian ? -2 : 3));
8791                           if (off < slen
8792                               && (view[off] & (0x3f << 2)) == (58u << 2))
8793                             ok = true;
8794                         }
8795                       if (!ok)
8796                         sym_object->set_no_toc_opt(dst_off);
8797                     }
8798                 }
8799             }
8800           break;
8801         }
8802     }
8803
8804   if (size == 32)
8805     {
8806       switch (r_type)
8807         {
8808         case elfcpp::R_PPC_LOCAL24PC:
8809           if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8810             gold_error(_("%s: unsupported -mbss-plt code"),
8811                        ppc_object->name().c_str());
8812           break;
8813         default:
8814           break;
8815         }
8816     }
8817
8818   switch (r_type)
8819     {
8820     case elfcpp::R_POWERPC_GOT_TLSLD16:
8821     case elfcpp::R_POWERPC_GOT_TLSGD16:
8822     case elfcpp::R_POWERPC_GOT_TPREL16:
8823     case elfcpp::R_POWERPC_GOT_DTPREL16:
8824     case elfcpp::R_POWERPC_GOT16:
8825     case elfcpp::R_PPC64_GOT16_DS:
8826     case elfcpp::R_PPC64_TOC16:
8827     case elfcpp::R_PPC64_TOC16_DS:
8828       ppc_object->set_has_small_toc_reloc();
8829     default:
8830       break;
8831     }
8832 }
8833
8834 // Process relocations for gc.
8835
8836 template<int size, bool big_endian>
8837 void
8838 Target_powerpc<size, big_endian>::gc_process_relocs(
8839     Symbol_table* symtab,
8840     Layout* layout,
8841     Sized_relobj_file<size, big_endian>* object,
8842     unsigned int data_shndx,
8843     unsigned int,
8844     const unsigned char* prelocs,
8845     size_t reloc_count,
8846     Output_section* output_section,
8847     bool needs_special_offset_handling,
8848     size_t local_symbol_count,
8849     const unsigned char* plocal_symbols)
8850 {
8851   typedef Target_powerpc<size, big_endian> Powerpc;
8852   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8853       Classify_reloc;
8854
8855   Powerpc_relobj<size, big_endian>* ppc_object
8856     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
8857   if (size == 64)
8858     ppc_object->set_opd_valid();
8859   if (size == 64 && data_shndx == ppc_object->opd_shndx())
8860     {
8861       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
8862       for (p = ppc_object->access_from_map()->begin();
8863            p != ppc_object->access_from_map()->end();
8864            ++p)
8865         {
8866           Address dst_off = p->first;
8867           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
8868           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
8869           for (s = p->second.begin(); s != p->second.end(); ++s)
8870             {
8871               Relobj* src_obj = s->first;
8872               unsigned int src_indx = s->second;
8873               symtab->gc()->add_reference(src_obj, src_indx,
8874                                           ppc_object, dst_indx);
8875             }
8876           p->second.clear();
8877         }
8878       ppc_object->access_from_map()->clear();
8879       ppc_object->process_gc_mark(symtab);
8880       // Don't look at .opd relocs as .opd will reference everything.
8881       return;
8882     }
8883
8884   gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
8885     symtab,
8886     layout,
8887     this,
8888     object,
8889     data_shndx,
8890     prelocs,
8891     reloc_count,
8892     output_section,
8893     needs_special_offset_handling,
8894     local_symbol_count,
8895     plocal_symbols);
8896 }
8897
8898 // Handle target specific gc actions when adding a gc reference from
8899 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
8900 // and DST_OFF.  For powerpc64, this adds a referenc to the code
8901 // section of a function descriptor.
8902
8903 template<int size, bool big_endian>
8904 void
8905 Target_powerpc<size, big_endian>::do_gc_add_reference(
8906     Symbol_table* symtab,
8907     Relobj* src_obj,
8908     unsigned int src_shndx,
8909     Relobj* dst_obj,
8910     unsigned int dst_shndx,
8911     Address dst_off) const
8912 {
8913   if (size != 64 || dst_obj->is_dynamic())
8914     return;
8915
8916   Powerpc_relobj<size, big_endian>* ppc_object
8917     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
8918   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
8919     {
8920       if (ppc_object->opd_valid())
8921         {
8922           dst_shndx = ppc_object->get_opd_ent(dst_off);
8923           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
8924         }
8925       else
8926         {
8927           // If we haven't run scan_opd_relocs, we must delay
8928           // processing this function descriptor reference.
8929           ppc_object->add_reference(src_obj, src_shndx, dst_off);
8930         }
8931     }
8932 }
8933
8934 // Add any special sections for this symbol to the gc work list.
8935 // For powerpc64, this adds the code section of a function
8936 // descriptor.
8937
8938 template<int size, bool big_endian>
8939 void
8940 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
8941     Symbol_table* symtab,
8942     Symbol* sym) const
8943 {
8944   if (size == 64)
8945     {
8946       Powerpc_relobj<size, big_endian>* ppc_object
8947         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
8948       bool is_ordinary;
8949       unsigned int shndx = sym->shndx(&is_ordinary);
8950       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
8951         {
8952           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
8953           Address dst_off = gsym->value();
8954           if (ppc_object->opd_valid())
8955             {
8956               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
8957               symtab->gc()->worklist().push_back(Section_id(ppc_object,
8958                                                             dst_indx));
8959             }
8960           else
8961             ppc_object->add_gc_mark(dst_off);
8962         }
8963     }
8964 }
8965
8966 // For a symbol location in .opd, set LOC to the location of the
8967 // function entry.
8968
8969 template<int size, bool big_endian>
8970 void
8971 Target_powerpc<size, big_endian>::do_function_location(
8972     Symbol_location* loc) const
8973 {
8974   if (size == 64 && loc->shndx != 0)
8975     {
8976       if (loc->object->is_dynamic())
8977         {
8978           Powerpc_dynobj<size, big_endian>* ppc_object
8979             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
8980           if (loc->shndx == ppc_object->opd_shndx())
8981             {
8982               Address dest_off;
8983               Address off = loc->offset - ppc_object->opd_address();
8984               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
8985               loc->offset = dest_off;
8986             }
8987         }
8988       else
8989         {
8990           const Powerpc_relobj<size, big_endian>* ppc_object
8991             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
8992           if (loc->shndx == ppc_object->opd_shndx())
8993             {
8994               Address dest_off;
8995               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
8996               loc->offset = dest_off;
8997             }
8998         }
8999     }
9000 }
9001
9002 // FNOFFSET in section SHNDX in OBJECT is the start of a function
9003 // compiled with -fsplit-stack.  The function calls non-split-stack
9004 // code.  Change the function to ensure it has enough stack space to
9005 // call some random function.
9006
9007 template<int size, bool big_endian>
9008 void
9009 Target_powerpc<size, big_endian>::do_calls_non_split(
9010     Relobj* object,
9011     unsigned int shndx,
9012     section_offset_type fnoffset,
9013     section_size_type fnsize,
9014     const unsigned char* prelocs,
9015     size_t reloc_count,
9016     unsigned char* view,
9017     section_size_type view_size,
9018     std::string* from,
9019     std::string* to) const
9020 {
9021   // 32-bit not supported.
9022   if (size == 32)
9023     {
9024       // warn
9025       Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
9026                                  prelocs, reloc_count, view, view_size,
9027                                  from, to);
9028       return;
9029     }
9030
9031   // The function always starts with
9032   //    ld %r0,-0x7000-64(%r13)  # tcbhead_t.__private_ss
9033   //    addis %r12,%r1,-allocate@ha
9034   //    addi %r12,%r12,-allocate@l
9035   //    cmpld %r12,%r0
9036   // but note that the addis or addi may be replaced with a nop
9037
9038   unsigned char *entry = view + fnoffset;
9039   uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
9040
9041   if ((insn & 0xffff0000) == addis_2_12)
9042     {
9043       /* Skip ELFv2 global entry code.  */
9044       entry += 8;
9045       insn = elfcpp::Swap<32, big_endian>::readval(entry);
9046     }
9047
9048   unsigned char *pinsn = entry;
9049   bool ok = false;
9050   const uint32_t ld_private_ss = 0xe80d8fc0;
9051   if (insn == ld_private_ss)
9052     {
9053       int32_t allocate = 0;
9054       while (1)
9055         {
9056           pinsn += 4;
9057           insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
9058           if ((insn & 0xffff0000) == addis_12_1)
9059             allocate += (insn & 0xffff) << 16;
9060           else if ((insn & 0xffff0000) == addi_12_1
9061                    || (insn & 0xffff0000) == addi_12_12)
9062             allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
9063           else if (insn != nop)
9064             break;
9065         }
9066       if (insn == cmpld_7_12_0 && pinsn == entry + 12)
9067         {
9068           int extra = parameters->options().split_stack_adjust_size();
9069           allocate -= extra;
9070           if (allocate >= 0 || extra < 0)
9071             {
9072               object->error(_("split-stack stack size overflow at "
9073                               "section %u offset %0zx"),
9074                             shndx, static_cast<size_t>(fnoffset));
9075               return;
9076             }
9077           pinsn = entry + 4;
9078           insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
9079           if (insn != addis_12_1)
9080             {
9081               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
9082               pinsn += 4;
9083               insn = addi_12_12 | (allocate & 0xffff);
9084               if (insn != addi_12_12)
9085                 {
9086                   elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
9087                   pinsn += 4;
9088                 }
9089             }
9090           else
9091             {
9092               insn = addi_12_1 | (allocate & 0xffff);
9093               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
9094               pinsn += 4;
9095             }
9096           if (pinsn != entry + 12)
9097             elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
9098
9099           ok = true;
9100         }
9101     }
9102
9103   if (!ok)
9104     {
9105       if (!object->has_no_split_stack())
9106         object->error(_("failed to match split-stack sequence at "
9107                         "section %u offset %0zx"),
9108                       shndx, static_cast<size_t>(fnoffset));
9109     }
9110 }
9111
9112 // Scan relocations for a section.
9113
9114 template<int size, bool big_endian>
9115 void
9116 Target_powerpc<size, big_endian>::scan_relocs(
9117     Symbol_table* symtab,
9118     Layout* layout,
9119     Sized_relobj_file<size, big_endian>* object,
9120     unsigned int data_shndx,
9121     unsigned int sh_type,
9122     const unsigned char* prelocs,
9123     size_t reloc_count,
9124     Output_section* output_section,
9125     bool needs_special_offset_handling,
9126     size_t local_symbol_count,
9127     const unsigned char* plocal_symbols)
9128 {
9129   typedef Target_powerpc<size, big_endian> Powerpc;
9130   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9131       Classify_reloc;
9132
9133   if (!this->plt_localentry0_init_)
9134     {
9135       bool plt_localentry0 = false;
9136       if (size == 64
9137           && this->abiversion() >= 2)
9138         {
9139           if (parameters->options().user_set_plt_localentry())
9140             plt_localentry0 = parameters->options().plt_localentry();
9141           if (plt_localentry0
9142               && symtab->lookup("GLIBC_2.26", NULL) == NULL)
9143             gold_warning(_("--plt-localentry is especially dangerous without "
9144                            "ld.so support to detect ABI violations"));
9145         }
9146       this->plt_localentry0_ = plt_localentry0;
9147       this->plt_localentry0_init_ = true;
9148     }
9149
9150   if (sh_type == elfcpp::SHT_REL)
9151     {
9152       gold_error(_("%s: unsupported REL reloc section"),
9153                  object->name().c_str());
9154       return;
9155     }
9156
9157   gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
9158     symtab,
9159     layout,
9160     this,
9161     object,
9162     data_shndx,
9163     prelocs,
9164     reloc_count,
9165     output_section,
9166     needs_special_offset_handling,
9167     local_symbol_count,
9168     plocal_symbols);
9169 }
9170
9171 // Functor class for processing the global symbol table.
9172 // Removes symbols defined on discarded opd entries.
9173
9174 template<bool big_endian>
9175 class Global_symbol_visitor_opd
9176 {
9177  public:
9178   Global_symbol_visitor_opd()
9179   { }
9180
9181   void
9182   operator()(Sized_symbol<64>* sym)
9183   {
9184     if (sym->has_symtab_index()
9185         || sym->source() != Symbol::FROM_OBJECT
9186         || !sym->in_real_elf())
9187       return;
9188
9189     if (sym->object()->is_dynamic())
9190       return;
9191
9192     Powerpc_relobj<64, big_endian>* symobj
9193       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
9194     if (symobj->opd_shndx() == 0)
9195       return;
9196
9197     bool is_ordinary;
9198     unsigned int shndx = sym->shndx(&is_ordinary);
9199     if (shndx == symobj->opd_shndx()
9200         && symobj->get_opd_discard(sym->value()))
9201       {
9202         sym->set_undefined();
9203         sym->set_visibility(elfcpp::STV_DEFAULT);
9204         sym->set_is_defined_in_discarded_section();
9205         sym->set_symtab_index(-1U);
9206       }
9207   }
9208 };
9209
9210 template<int size, bool big_endian>
9211 void
9212 Target_powerpc<size, big_endian>::define_save_restore_funcs(
9213     Layout* layout,
9214     Symbol_table* symtab)
9215 {
9216   if (size == 64)
9217     {
9218       Output_data_save_res<size, big_endian>* savres
9219         = new Output_data_save_res<size, big_endian>(symtab);
9220       this->savres_section_ = savres;
9221       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
9222                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
9223                                       savres, ORDER_TEXT, false);
9224     }
9225 }
9226
9227 // Sort linker created .got section first (for the header), then input
9228 // sections belonging to files using small model code.
9229
9230 template<bool big_endian>
9231 class Sort_toc_sections
9232 {
9233  public:
9234   bool
9235   operator()(const Output_section::Input_section& is1,
9236              const Output_section::Input_section& is2) const
9237   {
9238     if (!is1.is_input_section() && is2.is_input_section())
9239       return true;
9240     bool small1
9241       = (is1.is_input_section()
9242          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
9243              ->has_small_toc_reloc()));
9244     bool small2
9245       = (is2.is_input_section()
9246          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
9247              ->has_small_toc_reloc()));
9248     return small1 && !small2;
9249   }
9250 };
9251
9252 // Finalize the sections.
9253
9254 template<int size, bool big_endian>
9255 void
9256 Target_powerpc<size, big_endian>::do_finalize_sections(
9257     Layout* layout,
9258     const Input_objects* input_objects,
9259     Symbol_table* symtab)
9260 {
9261   if (parameters->doing_static_link())
9262     {
9263       // At least some versions of glibc elf-init.o have a strong
9264       // reference to __rela_iplt marker syms.  A weak ref would be
9265       // better..
9266       if (this->iplt_ != NULL)
9267         {
9268           Reloc_section* rel = this->iplt_->rel_plt();
9269           symtab->define_in_output_data("__rela_iplt_start", NULL,
9270                                         Symbol_table::PREDEFINED, rel, 0, 0,
9271                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
9272                                         elfcpp::STV_HIDDEN, 0, false, true);
9273           symtab->define_in_output_data("__rela_iplt_end", NULL,
9274                                         Symbol_table::PREDEFINED, rel, 0, 0,
9275                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
9276                                         elfcpp::STV_HIDDEN, 0, true, true);
9277         }
9278       else
9279         {
9280           symtab->define_as_constant("__rela_iplt_start", NULL,
9281                                      Symbol_table::PREDEFINED, 0, 0,
9282                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
9283                                      elfcpp::STV_HIDDEN, 0, true, false);
9284           symtab->define_as_constant("__rela_iplt_end", NULL,
9285                                      Symbol_table::PREDEFINED, 0, 0,
9286                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
9287                                      elfcpp::STV_HIDDEN, 0, true, false);
9288         }
9289     }
9290
9291   if (size == 64)
9292     {
9293       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
9294       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
9295
9296       if (!parameters->options().relocatable())
9297         {
9298           this->define_save_restore_funcs(layout, symtab);
9299
9300           // Annoyingly, we need to make these sections now whether or
9301           // not we need them.  If we delay until do_relax then we
9302           // need to mess with the relaxation machinery checkpointing.
9303           this->got_section(symtab, layout);
9304           this->make_brlt_section(layout);
9305
9306           if (parameters->options().toc_sort())
9307             {
9308               Output_section* os = this->got_->output_section();
9309               if (os != NULL && os->input_sections().size() > 1)
9310                 std::stable_sort(os->input_sections().begin(),
9311                                  os->input_sections().end(),
9312                                  Sort_toc_sections<big_endian>());
9313             }
9314         }
9315     }
9316
9317   // Fill in some more dynamic tags.
9318   Output_data_dynamic* odyn = layout->dynamic_data();
9319   if (odyn != NULL)
9320     {
9321       const Reloc_section* rel_plt = (this->plt_ == NULL
9322                                       ? NULL
9323                                       : this->plt_->rel_plt());
9324       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
9325                                       this->rela_dyn_, true, size == 32);
9326
9327       if (size == 32)
9328         {
9329           if (this->got_ != NULL)
9330             {
9331               this->got_->finalize_data_size();
9332               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
9333                                             this->got_, this->got_->g_o_t());
9334             }
9335           if (this->has_tls_get_addr_opt_)
9336             odyn->add_constant(elfcpp::DT_PPC_OPT, elfcpp::PPC_OPT_TLS);
9337         }
9338       else
9339         {
9340           if (this->glink_ != NULL)
9341             {
9342               this->glink_->finalize_data_size();
9343               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
9344                                             this->glink_,
9345                                             (this->glink_->pltresolve_size()
9346                                              - 32));
9347             }
9348           if (this->has_localentry0_ || this->has_tls_get_addr_opt_)
9349             odyn->add_constant(elfcpp::DT_PPC64_OPT,
9350                                ((this->has_localentry0_
9351                                  ? elfcpp::PPC64_OPT_LOCALENTRY : 0)
9352                                 | (this->has_tls_get_addr_opt_
9353                                    ? elfcpp::PPC64_OPT_TLS : 0)));
9354         }
9355     }
9356
9357   // Emit any relocs we saved in an attempt to avoid generating COPY
9358   // relocs.
9359   if (this->copy_relocs_.any_saved_relocs())
9360     this->copy_relocs_.emit(this->rela_dyn_section(layout));
9361
9362   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9363        p != input_objects->relobj_end();
9364        ++p)
9365     {
9366       Powerpc_relobj<size, big_endian>* ppc_relobj
9367         = static_cast<Powerpc_relobj<size, big_endian>*>(*p);
9368       if (ppc_relobj->attributes_section_data())
9369         this->merge_object_attributes(ppc_relobj->name().c_str(),
9370                                       ppc_relobj->attributes_section_data());
9371     }
9372   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9373        p != input_objects->dynobj_end();
9374        ++p)
9375     {
9376       Powerpc_dynobj<size, big_endian>* ppc_dynobj
9377         = static_cast<Powerpc_dynobj<size, big_endian>*>(*p);
9378       if (ppc_dynobj->attributes_section_data())
9379         this->merge_object_attributes(ppc_dynobj->name().c_str(),
9380                                       ppc_dynobj->attributes_section_data());
9381     }
9382
9383   // Create a .gnu.attributes section if we have merged any attributes
9384   // from inputs.
9385   if (this->attributes_section_data_ != NULL
9386       && this->attributes_section_data_->size() != 0)
9387     {
9388       Output_attributes_section_data* attributes_section
9389         = new Output_attributes_section_data(*this->attributes_section_data_);
9390       layout->add_output_section_data(".gnu.attributes",
9391                                       elfcpp::SHT_GNU_ATTRIBUTES, 0,
9392                                       attributes_section, ORDER_INVALID, false);
9393     }
9394 }
9395
9396 // Merge object attributes from input file called NAME with those of the
9397 // output.  The input object attributes are in the object pointed by PASD.
9398
9399 template<int size, bool big_endian>
9400 void
9401 Target_powerpc<size, big_endian>::merge_object_attributes(
9402     const char* name,
9403     const Attributes_section_data* pasd)
9404 {
9405   // Return if there is no attributes section data.
9406   if (pasd == NULL)
9407     return;
9408
9409   // Create output object attributes.
9410   if (this->attributes_section_data_ == NULL)
9411     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9412
9413   const int vendor = Object_attribute::OBJ_ATTR_GNU;
9414   const Object_attribute* in_attr = pasd->known_attributes(vendor);
9415   Object_attribute* out_attr
9416     = this->attributes_section_data_->known_attributes(vendor);
9417
9418   const char* err;
9419   const char* first;
9420   const char* second;
9421   int tag = elfcpp::Tag_GNU_Power_ABI_FP;
9422   int in_fp = in_attr[tag].int_value() & 0xf;
9423   int out_fp = out_attr[tag].int_value() & 0xf;
9424   if (in_fp != out_fp)
9425     {
9426       err = NULL;
9427       if ((in_fp & 3) == 0)
9428         ;
9429       else if ((out_fp & 3) == 0)
9430         {
9431           out_fp |= in_fp & 3;
9432           out_attr[tag].set_int_value(out_fp);
9433           out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
9434           this->last_fp_ = name;
9435         }
9436       else if ((out_fp & 3) != 2 && (in_fp & 3) == 2)
9437         {
9438           err = N_("%s uses hard float, %s uses soft float");
9439           first = this->last_fp_;
9440           second = name;
9441         }
9442       else if ((out_fp & 3) == 2 && (in_fp & 3) != 2)
9443         {
9444           err = N_("%s uses hard float, %s uses soft float");
9445           first = name;
9446           second = this->last_fp_;
9447         }
9448       else if ((out_fp & 3) == 1 && (in_fp & 3) == 3)
9449         {
9450           err = N_("%s uses double-precision hard float, "
9451                    "%s uses single-precision hard float");
9452           first = this->last_fp_;
9453           second = name;
9454         }
9455       else if ((out_fp & 3) == 3 && (in_fp & 3) == 1)
9456         {
9457           err = N_("%s uses double-precision hard float, "
9458                    "%s uses single-precision hard float");
9459           first = name;
9460           second = this->last_fp_;
9461         }
9462
9463       if (err || (in_fp & 0xc) == 0)
9464         ;
9465       else if ((out_fp & 0xc) == 0)
9466         {
9467           out_fp |= in_fp & 0xc;
9468           out_attr[tag].set_int_value(out_fp);
9469           out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
9470           this->last_ld_ = name;
9471         }
9472       else if ((out_fp & 0xc) != 2 * 4 && (in_fp & 0xc) == 2 * 4)
9473         {
9474           err = N_("%s uses 64-bit long double, %s uses 128-bit long double");
9475           first = name;
9476           second = this->last_ld_;
9477         }
9478       else if ((in_fp & 0xc) != 2 * 4 && (out_fp & 0xc) == 2 * 4)
9479         {
9480           err = N_("%s uses 64-bit long double, %s uses 128-bit long double");
9481           first = this->last_ld_;
9482           second = name;
9483         }
9484       else if ((out_fp & 0xc) == 1 * 4 && (in_fp & 0xc) == 3 * 4)
9485         {
9486           err = N_("%s uses IBM long double, %s uses IEEE long double");
9487           first = this->last_ld_;
9488           second = name;
9489         }
9490       else if ((out_fp & 0xc) == 3 * 4 && (in_fp & 0xc) == 1 * 4)
9491         {
9492           err = N_("%s uses IBM long double, %s uses IEEE long double");
9493           first = name;
9494           second = this->last_ld_;
9495         }
9496
9497       if (err)
9498         {
9499           if (parameters->options().warn_mismatch())
9500             gold_error(_(err), first, second);
9501           // Arrange for this attribute to be deleted.  It's better to
9502           // say "don't know" about a file than to wrongly claim compliance.
9503           out_attr[tag].set_type(0);
9504         }
9505     }
9506
9507   if (size == 32)
9508     {
9509       tag = elfcpp::Tag_GNU_Power_ABI_Vector;
9510       int in_vec = in_attr[tag].int_value() & 3;
9511       int out_vec = out_attr[tag].int_value() & 3;
9512       if (in_vec != out_vec)
9513         {
9514           err = NULL;
9515           if (in_vec == 0)
9516             ;
9517           else if (out_vec == 0)
9518             {
9519               out_vec = in_vec;
9520               out_attr[tag].set_int_value(out_vec);
9521               out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
9522               this->last_vec_ = name;
9523             }
9524           // For now, allow generic to transition to AltiVec or SPE
9525           // without a warning.  If GCC marked files with their stack
9526           // alignment and used don't-care markings for files which are
9527           // not affected by the vector ABI, we could warn about this
9528           // case too.  */
9529           else if (in_vec == 1)
9530             ;
9531           else if (out_vec == 1)
9532             {
9533               out_vec = in_vec;
9534               out_attr[tag].set_int_value(out_vec);
9535               out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
9536               this->last_vec_ = name;
9537             }
9538           else if (out_vec < in_vec)
9539             {
9540               err = N_("%s uses AltiVec vector ABI, %s uses SPE vector ABI");
9541               first = this->last_vec_;
9542               second = name;
9543             }
9544           else if (out_vec > in_vec)
9545             {
9546               err = N_("%s uses AltiVec vector ABI, %s uses SPE vector ABI");
9547               first = name;
9548               second = this->last_vec_;
9549             }
9550           if (err)
9551             {
9552               if (parameters->options().warn_mismatch())
9553                 gold_error(_(err), first, second);
9554               out_attr[tag].set_type(0);
9555             }
9556         }
9557
9558       tag = elfcpp::Tag_GNU_Power_ABI_Struct_Return;
9559       int in_struct = in_attr[tag].int_value() & 3;
9560       int out_struct = out_attr[tag].int_value() & 3;
9561       if (in_struct != out_struct)
9562         {
9563           err = NULL;
9564           if (in_struct == 0 || in_struct == 3)
9565             ;
9566           else if (out_struct == 0)
9567             {
9568               out_struct = in_struct;
9569               out_attr[tag].set_int_value(out_struct);
9570               out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
9571               this->last_struct_ = name;
9572             }
9573           else if (out_struct < in_struct)
9574             {
9575               err = N_("%s uses r3/r4 for small structure returns, "
9576                        "%s uses memory");
9577               first = this->last_struct_;
9578               second = name;
9579             }
9580           else if (out_struct > in_struct)
9581             {
9582               err = N_("%s uses r3/r4 for small structure returns, "
9583                        "%s uses memory");
9584               first = name;
9585               second = this->last_struct_;
9586             }
9587           if (err)
9588             {
9589               if (parameters->options().warn_mismatch())
9590                 gold_error(_(err), first, second);
9591               out_attr[tag].set_type(0);
9592             }
9593         }
9594     }
9595
9596   // Merge Tag_compatibility attributes and any common GNU ones.
9597   this->attributes_section_data_->merge(name, pasd);
9598 }
9599
9600 // Emit any saved relocs, and mark toc entries using any of these
9601 // relocs as not optimizable.
9602
9603 template<int sh_type, int size, bool big_endian>
9604 void
9605 Powerpc_copy_relocs<sh_type, size, big_endian>::emit(
9606     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section)
9607 {
9608   if (size == 64
9609       && parameters->options().toc_optimize())
9610     {
9611       for (typename Copy_relocs<sh_type, size, big_endian>::
9612              Copy_reloc_entries::iterator p = this->entries_.begin();
9613            p != this->entries_.end();
9614            ++p)
9615         {
9616           typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry&
9617             entry = *p;
9618
9619           // If the symbol is no longer defined in a dynamic object,
9620           // then we emitted a COPY relocation.  If it is still
9621           // dynamic then we'll need dynamic relocations and thus
9622           // can't optimize toc entries.
9623           if (entry.sym_->is_from_dynobj())
9624             {
9625               Powerpc_relobj<size, big_endian>* ppc_object
9626                 = static_cast<Powerpc_relobj<size, big_endian>*>(entry.relobj_);
9627               if (entry.shndx_ == ppc_object->toc_shndx())
9628                 ppc_object->set_no_toc_opt(entry.address_);
9629             }
9630         }
9631     }
9632
9633   Copy_relocs<sh_type, size, big_endian>::emit(reloc_section);
9634 }
9635
9636 // Return the value to use for a branch relocation.
9637
9638 template<int size, bool big_endian>
9639 bool
9640 Target_powerpc<size, big_endian>::symval_for_branch(
9641     const Symbol_table* symtab,
9642     const Sized_symbol<size>* gsym,
9643     Powerpc_relobj<size, big_endian>* object,
9644     Address *value,
9645     unsigned int *dest_shndx)
9646 {
9647   if (size == 32 || this->abiversion() >= 2)
9648     gold_unreachable();
9649   *dest_shndx = 0;
9650
9651   // If the symbol is defined in an opd section, ie. is a function
9652   // descriptor, use the function descriptor code entry address
9653   Powerpc_relobj<size, big_endian>* symobj = object;
9654   if (gsym != NULL
9655       && (gsym->source() != Symbol::FROM_OBJECT
9656           || gsym->object()->is_dynamic()))
9657     return true;
9658   if (gsym != NULL)
9659     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
9660   unsigned int shndx = symobj->opd_shndx();
9661   if (shndx == 0)
9662     return true;
9663   Address opd_addr = symobj->get_output_section_offset(shndx);
9664   if (opd_addr == invalid_address)
9665     return true;
9666   opd_addr += symobj->output_section_address(shndx);
9667   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
9668     {
9669       Address sec_off;
9670       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
9671       if (symtab->is_section_folded(symobj, *dest_shndx))
9672         {
9673           Section_id folded
9674             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
9675           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
9676           *dest_shndx = folded.second;
9677         }
9678       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
9679       if (sec_addr == invalid_address)
9680         return false;
9681
9682       sec_addr += symobj->output_section(*dest_shndx)->address();
9683       *value = sec_addr + sec_off;
9684     }
9685   return true;
9686 }
9687
9688 template<int size>
9689 static bool
9690 relative_value_is_known(const Sized_symbol<size>* gsym)
9691 {
9692   if (gsym->type() == elfcpp::STT_GNU_IFUNC)
9693     return false;
9694
9695   if (gsym->is_from_dynobj()
9696       || gsym->is_undefined()
9697       || gsym->is_preemptible())
9698     return false;
9699
9700   if (gsym->is_absolute())
9701     return !parameters->options().output_is_position_independent();
9702
9703   return true;
9704 }
9705
9706 template<int size>
9707 static bool
9708 relative_value_is_known(const Symbol_value<size>* psymval)
9709 {
9710   if (psymval->is_ifunc_symbol())
9711     return false;
9712
9713   bool is_ordinary;
9714   unsigned int shndx = psymval->input_shndx(&is_ordinary);
9715
9716   return is_ordinary && shndx != elfcpp::SHN_UNDEF;
9717 }
9718
9719 // PCREL_OPT in one instance flags to the linker that a pair of insns:
9720 //   pld ra,symbol@got@pcrel
9721 //   load/store rt,0(ra)
9722 // or
9723 //   pla ra,symbol@pcrel
9724 //   load/store rt,0(ra)
9725 // may be translated to
9726 //   pload/pstore rt,symbol@pcrel
9727 //   nop.
9728 // This function returns true if the optimization is possible, placing
9729 // the prefix insn in *PINSN1 and a NOP in *PINSN2.
9730 //
9731 // On entry to this function, the linker has already determined that
9732 // the pld can be replaced with pla: *PINSN1 is that pla insn,
9733 // while *PINSN2 is the second instruction.
9734
9735 inline bool
9736 xlate_pcrel_opt(uint64_t *pinsn1, uint64_t *pinsn2)
9737 {
9738   uint32_t insn2 = *pinsn2 >> 32;
9739   uint64_t i1new;
9740
9741   // Check that regs match.
9742   if (((insn2 >> 16) & 31) != ((*pinsn1 >> 21) & 31))
9743     return false;
9744
9745   switch ((insn2 >> 26) & 63)
9746     {
9747     default:
9748       return false;
9749
9750     case 32: // lwz
9751     case 34: // lbz
9752     case 36: // stw
9753     case 38: // stb
9754     case 40: // lhz
9755     case 42: // lha
9756     case 44: // sth
9757     case 48: // lfs
9758     case 50: // lfd
9759     case 52: // stfs
9760     case 54: // stfd
9761       // These are the PMLS cases, where we just need to tack a prefix
9762       // on the insn.  Check that the D field is zero.
9763       if ((insn2 & 0xffff) != 0)
9764         return false;
9765       i1new = ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
9766                | (insn2 & ((63ULL << 26) | (31ULL << 21))));
9767       break;
9768
9769     case 58: // lwa, ld
9770       if ((insn2 & 0xfffd) != 0)
9771         return false;
9772       i1new = ((1ULL << 58) | (1ULL << 52)
9773                | (insn2 & 2 ? 41ULL << 26 : 57ULL << 26)
9774                | (insn2 & (31ULL << 21)));
9775       break;
9776
9777     case 57: // lxsd, lxssp
9778       if ((insn2 & 0xfffc) != 0 || (insn2 & 3) < 2)
9779         return false;
9780       i1new = ((1ULL << 58) | (1ULL << 52)
9781                | ((40ULL | (insn2 & 3)) << 26)
9782                | (insn2 & (31ULL << 21)));
9783       break;
9784
9785     case 61: // stxsd, stxssp, lxv, stxv
9786       if ((insn2 & 3) == 0)
9787         return false;
9788       else if ((insn2 & 3) >= 2)
9789         {
9790           if ((insn2 & 0xfffc) != 0)
9791             return false;
9792           i1new = ((1ULL << 58) | (1ULL << 52)
9793                    | ((44ULL | (insn2 & 3)) << 26)
9794                    | (insn2 & (31ULL << 21)));
9795         }
9796       else
9797         {
9798           if ((insn2 & 0xfff0) != 0)
9799             return false;
9800           i1new = ((1ULL << 58) | (1ULL << 52)
9801                    | ((50ULL | (insn2 & 4) | ((insn2 & 8) >> 3)) << 26)
9802                    | (insn2 & (31ULL << 21)));
9803         }
9804       break;
9805
9806     case 56: // lq
9807       if ((insn2 & 0xffff) != 0)
9808         return false;
9809       i1new = ((1ULL << 58) | (1ULL << 52)
9810                | (insn2 & ((63ULL << 26) | (31ULL << 21))));
9811       break;
9812
9813     case 62: // std, stq
9814       if ((insn2 & 0xfffd) != 0)
9815         return false;
9816       i1new = ((1ULL << 58) | (1ULL << 52)
9817                | ((insn2 & 2) == 0 ? 61ULL << 26 : 60ULL << 26)
9818                | (insn2 & (31ULL << 21)));
9819       break;
9820     }
9821
9822   *pinsn1 = i1new;
9823   *pinsn2 = (uint64_t) nop << 32;
9824   return true;
9825 }
9826
9827 // Perform a relocation.
9828
9829 template<int size, bool big_endian>
9830 inline bool
9831 Target_powerpc<size, big_endian>::Relocate::relocate(
9832     const Relocate_info<size, big_endian>* relinfo,
9833     unsigned int,
9834     Target_powerpc* target,
9835     Output_section* os,
9836     size_t relnum,
9837     const unsigned char* preloc,
9838     const Sized_symbol<size>* gsym,
9839     const Symbol_value<size>* psymval,
9840     unsigned char* view,
9841     Address address,
9842     section_size_type view_size)
9843 {
9844   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
9845   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
9846   typedef typename elfcpp::Rela<size, big_endian> Reltype;
9847
9848   if (view == NULL)
9849     return true;
9850
9851   if (target->replace_tls_get_addr(gsym))
9852     gsym = static_cast<const Sized_symbol<size>*>(target->tls_get_addr_opt());
9853
9854   const elfcpp::Rela<size, big_endian> rela(preloc);
9855   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
9856   switch (this->maybe_skip_tls_get_addr_call(target, r_type, gsym))
9857     {
9858     case Track_tls::NOT_EXPECTED:
9859       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9860                              _("__tls_get_addr call lacks marker reloc"));
9861       break;
9862     case Track_tls::EXPECTED:
9863       // We have already complained.
9864       break;
9865     case Track_tls::SKIP:
9866       if (is_plt16_reloc<size>(r_type)
9867           || r_type == elfcpp::R_POWERPC_PLTSEQ
9868           || r_type == elfcpp::R_PPC64_PLTSEQ_NOTOC)
9869         {
9870           Insn* iview = reinterpret_cast<Insn*>(view);
9871           elfcpp::Swap<32, big_endian>::writeval(iview, nop);
9872         }
9873       else if (size == 64 && r_type == elfcpp::R_POWERPC_PLTCALL)
9874         {
9875           Insn* iview = reinterpret_cast<Insn*>(view);
9876           elfcpp::Swap<32, big_endian>::writeval(iview + 1, nop);
9877         }
9878       else if (size == 64 && (r_type == elfcpp::R_PPC64_PLT_PCREL34
9879                               || r_type == elfcpp::R_PPC64_PLT_PCREL34_NOTOC))
9880         {
9881           Insn* iview = reinterpret_cast<Insn*>(view);
9882           elfcpp::Swap<32, big_endian>::writeval(iview, pnop >> 32);
9883           elfcpp::Swap<32, big_endian>::writeval(iview + 1, pnop & 0xffffffff);
9884         }
9885       return true;
9886     case Track_tls::NORMAL:
9887       break;
9888     }
9889
9890   // Offset from start of insn to d-field reloc.
9891   const int d_offset = big_endian ? 2 : 0;
9892
9893   Powerpc_relobj<size, big_endian>* const object
9894     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
9895   Address value = 0;
9896   bool has_stub_value = false;
9897   bool localentry0 = false;
9898   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
9899   bool has_plt_offset
9900     = (gsym != NULL
9901        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
9902        : object->local_has_plt_offset(r_sym));
9903   if (has_plt_offset
9904       && !is_plt16_reloc<size>(r_type)
9905       && r_type != elfcpp::R_PPC64_PLT_PCREL34
9906       && r_type != elfcpp::R_PPC64_PLT_PCREL34_NOTOC
9907       && r_type != elfcpp::R_POWERPC_PLTSEQ
9908       && r_type != elfcpp::R_POWERPC_PLTCALL
9909       && r_type != elfcpp::R_PPC64_PLTSEQ_NOTOC
9910       && r_type != elfcpp::R_PPC64_PLTCALL_NOTOC
9911       && (!psymval->is_ifunc_symbol()
9912           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
9913     {
9914       if (size == 64
9915           && gsym != NULL
9916           && target->abiversion() >= 2
9917           && !parameters->options().output_is_position_independent()
9918           && !is_branch_reloc<size>(r_type))
9919         {
9920           Address off = target->glink_section()->find_global_entry(gsym);
9921           if (off != invalid_address)
9922             {
9923               value = target->glink_section()->global_entry_address() + off;
9924               has_stub_value = true;
9925             }
9926         }
9927       else
9928         {
9929           Stub_table<size, big_endian>* stub_table = NULL;
9930           if (target->stub_tables().size() == 1)
9931             stub_table = target->stub_tables()[0];
9932           if (stub_table == NULL
9933               && !(size == 32
9934                    && gsym != NULL
9935                    && !parameters->options().output_is_position_independent()
9936                    && !is_branch_reloc<size>(r_type)))
9937             stub_table = object->stub_table(relinfo->data_shndx);
9938           if (stub_table == NULL)
9939             {
9940               // This is a ref from a data section to an ifunc symbol,
9941               // or a non-branch reloc for which we always want to use
9942               // one set of stubs for resolving function addresses.
9943               if (target->stub_tables().size() != 0)
9944                 stub_table = target->stub_tables()[0];
9945             }
9946           if (stub_table != NULL)
9947             {
9948               const typename Stub_table<size, big_endian>::Plt_stub_ent* ent;
9949               if (gsym != NULL)
9950                 ent = stub_table->find_plt_call_entry(object, gsym, r_type,
9951                                                       rela.get_r_addend());
9952               else
9953                 ent = stub_table->find_plt_call_entry(object, r_sym, r_type,
9954                                                       rela.get_r_addend());
9955               if (ent != NULL)
9956                 {
9957                   value = stub_table->stub_address() + ent->off_;
9958                   const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9959                   elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
9960                   size_t reloc_count = shdr.get_sh_size() / reloc_size;
9961                   if (size == 64
9962                       && ent->r2save_
9963                       && r_type == elfcpp::R_PPC64_REL24_NOTOC)
9964                     value += 4;
9965                   else if (size == 64
9966                            && ent->r2save_
9967                            && relnum < reloc_count - 1)
9968                     {
9969                       Reltype next_rela(preloc + reloc_size);
9970                       if (elfcpp::elf_r_type<size>(next_rela.get_r_info())
9971                           == elfcpp::R_PPC64_TOCSAVE
9972                           && next_rela.get_r_offset() == rela.get_r_offset() + 4)
9973                         value += 4;
9974                     }
9975                   localentry0 = ent->localentry0_;
9976                   has_stub_value = true;
9977                 }
9978             }
9979         }
9980       // We don't care too much about bogus debug references to
9981       // non-local functions, but otherwise there had better be a plt
9982       // call stub or global entry stub as appropriate.
9983       gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
9984     }
9985
9986   if (has_plt_offset && (is_plt16_reloc<size>(r_type)
9987                          || r_type == elfcpp::R_PPC64_PLT_PCREL34
9988                          || r_type == elfcpp::R_PPC64_PLT_PCREL34_NOTOC))
9989     {
9990       const Output_data_plt_powerpc<size, big_endian>* plt;
9991       if (gsym)
9992         value = target->plt_off(gsym, &plt);
9993       else
9994         value = target->plt_off(object, r_sym, &plt);
9995       value += plt->address();
9996
9997       if (size == 64)
9998         {
9999           if (r_type != elfcpp::R_PPC64_PLT_PCREL34
10000               && r_type != elfcpp::R_PPC64_PLT_PCREL34_NOTOC)
10001             value -= (target->got_section()->output_section()->address()
10002                       + object->toc_base_offset());
10003         }
10004       else if (parameters->options().output_is_position_independent())
10005         {
10006           if (rela.get_r_addend() >= 32768)
10007             {
10008               unsigned int got2 = object->got2_shndx();
10009               value -= (object->get_output_section_offset(got2)
10010                         + object->output_section(got2)->address()
10011                         + rela.get_r_addend());
10012             }
10013           else
10014             value -= (target->got_section()->address()
10015                       + target->got_section()->g_o_t());
10016         }
10017     }
10018   else if (!has_plt_offset
10019            && (is_plt16_reloc<size>(r_type)
10020                || r_type == elfcpp::R_POWERPC_PLTSEQ
10021                || r_type == elfcpp::R_PPC64_PLTSEQ_NOTOC))
10022     {
10023       Insn* iview = reinterpret_cast<Insn*>(view);
10024       elfcpp::Swap<32, big_endian>::writeval(iview, nop);
10025       r_type = elfcpp::R_POWERPC_NONE;
10026     }
10027   else if (!has_plt_offset
10028            && (r_type == elfcpp::R_PPC64_PLT_PCREL34
10029                || r_type == elfcpp::R_PPC64_PLT_PCREL34_NOTOC))
10030     {
10031       Insn* iview = reinterpret_cast<Insn*>(view);
10032       elfcpp::Swap<32, big_endian>::writeval(iview, pnop >> 32);
10033       elfcpp::Swap<32, big_endian>::writeval(iview + 1, pnop & 0xffffffff);
10034       r_type = elfcpp::R_POWERPC_NONE;
10035     }
10036   else if (r_type == elfcpp::R_POWERPC_GOT16
10037            || r_type == elfcpp::R_POWERPC_GOT16_LO
10038            || r_type == elfcpp::R_POWERPC_GOT16_HI
10039            || r_type == elfcpp::R_POWERPC_GOT16_HA
10040            || r_type == elfcpp::R_PPC64_GOT16_DS
10041            || r_type == elfcpp::R_PPC64_GOT16_LO_DS
10042            || r_type == elfcpp::R_PPC64_GOT_PCREL34)
10043     {
10044       if (gsym != NULL)
10045         {
10046           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
10047           value = gsym->got_offset(GOT_TYPE_STANDARD);
10048         }
10049       else
10050         {
10051           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
10052           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
10053         }
10054       if (r_type == elfcpp::R_PPC64_GOT_PCREL34)
10055         value += target->got_section()->address();
10056       else
10057         value -= target->got_section()->got_base_offset(object);
10058     }
10059   else if (r_type == elfcpp::R_PPC64_TOC)
10060     {
10061       value = (target->got_section()->output_section()->address()
10062                + object->toc_base_offset());
10063     }
10064   else if (gsym != NULL
10065            && (r_type == elfcpp::R_POWERPC_REL24
10066                || r_type == elfcpp::R_PPC_PLTREL24)
10067            && has_stub_value)
10068     {
10069       if (size == 64)
10070         {
10071           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10072           Valtype* wv = reinterpret_cast<Valtype*>(view);
10073           bool can_plt_call = localentry0 || target->is_tls_get_addr_opt(gsym);
10074           if (!can_plt_call && rela.get_r_offset() + 8 <= view_size)
10075             {
10076               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
10077               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
10078               if ((insn & 1) != 0
10079                   && (insn2 == nop
10080                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
10081                 {
10082                   elfcpp::Swap<32, big_endian>::
10083                     writeval(wv + 1, ld_2_1 + target->stk_toc());
10084                   can_plt_call = true;
10085                 }
10086             }
10087           if (!can_plt_call)
10088             {
10089               // If we don't have a branch and link followed by a nop,
10090               // we can't go via the plt because there is no place to
10091               // put a toc restoring instruction.
10092               // Unless we know we won't be returning.
10093               if (strcmp(gsym->name(), "__libc_start_main") == 0)
10094                 can_plt_call = true;
10095             }
10096           if (!can_plt_call)
10097             {
10098               // g++ as of 20130507 emits self-calls without a
10099               // following nop.  This is arguably wrong since we have
10100               // conflicting information.  On the one hand a global
10101               // symbol and on the other a local call sequence, but
10102               // don't error for this special case.
10103               // It isn't possible to cheaply verify we have exactly
10104               // such a call.  Allow all calls to the same section.
10105               bool ok = false;
10106               Address code = value;
10107               if (gsym->source() == Symbol::FROM_OBJECT
10108                   && gsym->object() == object)
10109                 {
10110                   unsigned int dest_shndx = 0;
10111                   if (target->abiversion() < 2)
10112                     {
10113                       Address addend = rela.get_r_addend();
10114                       code = psymval->value(object, addend);
10115                       target->symval_for_branch(relinfo->symtab, gsym, object,
10116                                                 &code, &dest_shndx);
10117                     }
10118                   bool is_ordinary;
10119                   if (dest_shndx == 0)
10120                     dest_shndx = gsym->shndx(&is_ordinary);
10121                   ok = dest_shndx == relinfo->data_shndx;
10122                 }
10123               if (!ok)
10124                 {
10125                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
10126                                          _("call lacks nop, can't restore toc; "
10127                                            "recompile with -fPIC"));
10128                   value = code;
10129                 }
10130             }
10131         }
10132     }
10133   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
10134            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
10135            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
10136            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
10137     {
10138       // First instruction of a global dynamic sequence, arg setup insn.
10139       const bool final = gsym == NULL || gsym->final_value_is_known();
10140       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
10141       enum Got_type got_type = GOT_TYPE_STANDARD;
10142       if (tls_type == tls::TLSOPT_NONE)
10143         got_type = GOT_TYPE_TLSGD;
10144       else if (tls_type == tls::TLSOPT_TO_IE)
10145         got_type = GOT_TYPE_TPREL;
10146       if (got_type != GOT_TYPE_STANDARD)
10147         {
10148           if (gsym != NULL)
10149             {
10150               gold_assert(gsym->has_got_offset(got_type));
10151               value = gsym->got_offset(got_type);
10152             }
10153           else
10154             {
10155               gold_assert(object->local_has_got_offset(r_sym, got_type));
10156               value = object->local_got_offset(r_sym, got_type);
10157             }
10158           value -= target->got_section()->got_base_offset(object);
10159         }
10160       if (tls_type == tls::TLSOPT_TO_IE)
10161         {
10162           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
10163               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
10164             {
10165               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
10166               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
10167               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
10168               if (size == 32)
10169                 insn |= 32 << 26; // lwz
10170               else
10171                 insn |= 58 << 26; // ld
10172               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10173             }
10174           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
10175                      - elfcpp::R_POWERPC_GOT_TLSGD16);
10176         }
10177       else if (tls_type == tls::TLSOPT_TO_LE)
10178         {
10179           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
10180               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
10181             {
10182               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
10183               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
10184               insn &= (1 << 26) - (1 << 21); // extract rt
10185               if (size == 32)
10186                 insn |= addis_0_2;
10187               else
10188                 insn |= addis_0_13;
10189               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10190               r_type = elfcpp::R_POWERPC_TPREL16_HA;
10191               value = psymval->value(object, rela.get_r_addend());
10192             }
10193           else
10194             {
10195               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
10196               Insn insn = nop;
10197               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10198               r_type = elfcpp::R_POWERPC_NONE;
10199             }
10200         }
10201     }
10202   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
10203            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
10204            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
10205            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
10206     {
10207       // First instruction of a local dynamic sequence, arg setup insn.
10208       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
10209       if (tls_type == tls::TLSOPT_NONE)
10210         {
10211           value = target->tlsld_got_offset();
10212           value -= target->got_section()->got_base_offset(object);
10213         }
10214       else
10215         {
10216           gold_assert(tls_type == tls::TLSOPT_TO_LE);
10217           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
10218               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
10219             {
10220               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
10221               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
10222               insn &= (1 << 26) - (1 << 21); // extract rt
10223               if (size == 32)
10224                 insn |= addis_0_2;
10225               else
10226                 insn |= addis_0_13;
10227               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10228               r_type = elfcpp::R_POWERPC_TPREL16_HA;
10229               value = dtp_offset;
10230             }
10231           else
10232             {
10233               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
10234               Insn insn = nop;
10235               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10236               r_type = elfcpp::R_POWERPC_NONE;
10237             }
10238         }
10239     }
10240   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
10241            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
10242            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
10243            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
10244     {
10245       // Accesses relative to a local dynamic sequence address,
10246       // no optimisation here.
10247       if (gsym != NULL)
10248         {
10249           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
10250           value = gsym->got_offset(GOT_TYPE_DTPREL);
10251         }
10252       else
10253         {
10254           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
10255           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
10256         }
10257       value -= target->got_section()->got_base_offset(object);
10258     }
10259   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
10260            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
10261            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
10262            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
10263     {
10264       // First instruction of initial exec sequence.
10265       const bool final = gsym == NULL || gsym->final_value_is_known();
10266       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
10267       if (tls_type == tls::TLSOPT_NONE)
10268         {
10269           if (gsym != NULL)
10270             {
10271               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
10272               value = gsym->got_offset(GOT_TYPE_TPREL);
10273             }
10274           else
10275             {
10276               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
10277               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
10278             }
10279           value -= target->got_section()->got_base_offset(object);
10280         }
10281       else
10282         {
10283           gold_assert(tls_type == tls::TLSOPT_TO_LE);
10284           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
10285               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
10286             {
10287               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
10288               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
10289               insn &= (1 << 26) - (1 << 21); // extract rt from ld
10290               if (size == 32)
10291                 insn |= addis_0_2;
10292               else
10293                 insn |= addis_0_13;
10294               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10295               r_type = elfcpp::R_POWERPC_TPREL16_HA;
10296               value = psymval->value(object, rela.get_r_addend());
10297             }
10298           else
10299             {
10300               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
10301               Insn insn = nop;
10302               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10303               r_type = elfcpp::R_POWERPC_NONE;
10304             }
10305         }
10306     }
10307   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
10308            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
10309     {
10310       // Second instruction of a global dynamic sequence,
10311       // the __tls_get_addr call
10312       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
10313       const bool final = gsym == NULL || gsym->final_value_is_known();
10314       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
10315       if (tls_type != tls::TLSOPT_NONE)
10316         {
10317           if (tls_type == tls::TLSOPT_TO_IE)
10318             {
10319               Insn* iview = reinterpret_cast<Insn*>(view);
10320               Insn insn = add_3_3_13;
10321               if (size == 32)
10322                 insn = add_3_3_2;
10323               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10324               r_type = elfcpp::R_POWERPC_NONE;
10325             }
10326           else
10327             {
10328               Insn* iview = reinterpret_cast<Insn*>(view);
10329               Insn insn = addi_3_3;
10330               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10331               r_type = elfcpp::R_POWERPC_TPREL16_LO;
10332               view += d_offset;
10333               value = psymval->value(object, rela.get_r_addend());
10334             }
10335           this->skip_next_tls_get_addr_call();
10336         }
10337     }
10338   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
10339            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
10340     {
10341       // Second instruction of a local dynamic sequence,
10342       // the __tls_get_addr call
10343       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
10344       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
10345       if (tls_type == tls::TLSOPT_TO_LE)
10346         {
10347           Insn* iview = reinterpret_cast<Insn*>(view);
10348           Insn insn = addi_3_3;
10349           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10350           this->skip_next_tls_get_addr_call();
10351           r_type = elfcpp::R_POWERPC_TPREL16_LO;
10352           view += d_offset;
10353           value = dtp_offset;
10354         }
10355     }
10356   else if (r_type == elfcpp::R_POWERPC_TLS)
10357     {
10358       // Second instruction of an initial exec sequence
10359       const bool final = gsym == NULL || gsym->final_value_is_known();
10360       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
10361       if (tls_type == tls::TLSOPT_TO_LE)
10362         {
10363           Insn* iview = reinterpret_cast<Insn*>(view);
10364           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
10365           unsigned int reg = size == 32 ? 2 : 13;
10366           insn = at_tls_transform(insn, reg);
10367           gold_assert(insn != 0);
10368           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10369           r_type = elfcpp::R_POWERPC_TPREL16_LO;
10370           view += d_offset;
10371           value = psymval->value(object, rela.get_r_addend());
10372         }
10373     }
10374   else if (!has_stub_value)
10375     {
10376       if (!has_plt_offset && (r_type == elfcpp::R_POWERPC_PLTCALL
10377                               || r_type == elfcpp::R_PPC64_PLTCALL_NOTOC))
10378         {
10379           // PLTCALL without plt entry => convert to direct call
10380           Insn* iview = reinterpret_cast<Insn*>(view);
10381           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
10382           insn = (insn & 1) | b;
10383           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10384           if (size == 32)
10385             r_type = elfcpp::R_PPC_PLTREL24;
10386           else if (r_type == elfcpp::R_PPC64_PLTCALL_NOTOC)
10387             r_type = elfcpp::R_PPC64_REL24_NOTOC;
10388           else
10389             r_type = elfcpp::R_POWERPC_REL24;
10390         }
10391       Address addend = 0;
10392       if (!(size == 32
10393             && (r_type == elfcpp::R_PPC_PLTREL24
10394                 || r_type == elfcpp::R_POWERPC_PLT16_LO
10395                 || r_type == elfcpp::R_POWERPC_PLT16_HI
10396                 || r_type == elfcpp::R_POWERPC_PLT16_HA)))
10397         addend = rela.get_r_addend();
10398       value = psymval->value(object, addend);
10399       if (size == 64 && is_branch_reloc<size>(r_type))
10400         {
10401           if (target->abiversion() >= 2)
10402             {
10403               if (gsym != NULL)
10404                 value += object->ppc64_local_entry_offset(gsym);
10405               else
10406                 value += object->ppc64_local_entry_offset(r_sym);
10407             }
10408           else
10409             {
10410               unsigned int dest_shndx;
10411               target->symval_for_branch(relinfo->symtab, gsym, object,
10412                                         &value, &dest_shndx);
10413             }
10414         }
10415       Address max_branch_offset = max_branch_delta<size>(r_type);
10416       if (max_branch_offset != 0
10417           && (value - address + max_branch_offset >= 2 * max_branch_offset
10418               || (size == 64
10419                   && r_type == elfcpp::R_PPC64_REL24_NOTOC
10420                   && (gsym != NULL
10421                       ? object->ppc64_needs_toc(gsym)
10422                       : object->ppc64_needs_toc(r_sym)))))
10423         {
10424           Stub_table<size, big_endian>* stub_table
10425             = object->stub_table(relinfo->data_shndx);
10426           if (stub_table != NULL)
10427             {
10428               const typename Stub_table<size, big_endian>::Branch_stub_ent* ent
10429                 = stub_table->find_long_branch_entry(object, value);
10430               if (ent != NULL)
10431                 {
10432                   if (ent->save_res_)
10433                     value = (value - target->savres_section()->address()
10434                              + stub_table->branch_size());
10435                   else
10436                     value = (stub_table->stub_address() + stub_table->plt_size()
10437                              + ent->off_);
10438                   has_stub_value = true;
10439                 }
10440             }
10441         }
10442     }
10443
10444   switch (r_type)
10445     {
10446     case elfcpp::R_PPC64_REL24_NOTOC:
10447       if (size == 32)
10448         break;
10449       // Fall through.
10450     case elfcpp::R_PPC64_REL64:
10451     case elfcpp::R_POWERPC_REL32:
10452     case elfcpp::R_POWERPC_REL24:
10453     case elfcpp::R_PPC_PLTREL24:
10454     case elfcpp::R_PPC_LOCAL24PC:
10455     case elfcpp::R_POWERPC_REL16:
10456     case elfcpp::R_POWERPC_REL16_LO:
10457     case elfcpp::R_POWERPC_REL16_HI:
10458     case elfcpp::R_POWERPC_REL16_HA:
10459     case elfcpp::R_POWERPC_REL16DX_HA:
10460     case elfcpp::R_PPC64_REL16_HIGH:
10461     case elfcpp::R_PPC64_REL16_HIGHA:
10462     case elfcpp::R_PPC64_REL16_HIGHER:
10463     case elfcpp::R_PPC64_REL16_HIGHERA:
10464     case elfcpp::R_PPC64_REL16_HIGHEST:
10465     case elfcpp::R_PPC64_REL16_HIGHESTA:
10466     case elfcpp::R_POWERPC_REL14:
10467     case elfcpp::R_POWERPC_REL14_BRTAKEN:
10468     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
10469     case elfcpp::R_PPC64_PCREL34:
10470     case elfcpp::R_PPC64_GOT_PCREL34:
10471     case elfcpp::R_PPC64_PLT_PCREL34:
10472     case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
10473     case elfcpp::R_PPC64_PCREL28:
10474     case elfcpp::R_PPC64_REL16_HIGHER34:
10475     case elfcpp::R_PPC64_REL16_HIGHERA34:
10476     case elfcpp::R_PPC64_REL16_HIGHEST34:
10477     case elfcpp::R_PPC64_REL16_HIGHESTA34:
10478       value -= address;
10479       break;
10480
10481     case elfcpp::R_PPC64_TOC16:
10482     case elfcpp::R_PPC64_TOC16_LO:
10483     case elfcpp::R_PPC64_TOC16_HI:
10484     case elfcpp::R_PPC64_TOC16_HA:
10485     case elfcpp::R_PPC64_TOC16_DS:
10486     case elfcpp::R_PPC64_TOC16_LO_DS:
10487       // Subtract the TOC base address.
10488       value -= (target->got_section()->output_section()->address()
10489                 + object->toc_base_offset());
10490       break;
10491
10492     case elfcpp::R_POWERPC_SECTOFF:
10493     case elfcpp::R_POWERPC_SECTOFF_LO:
10494     case elfcpp::R_POWERPC_SECTOFF_HI:
10495     case elfcpp::R_POWERPC_SECTOFF_HA:
10496     case elfcpp::R_PPC64_SECTOFF_DS:
10497     case elfcpp::R_PPC64_SECTOFF_LO_DS:
10498       if (os != NULL)
10499         value -= os->address();
10500       break;
10501
10502     case elfcpp::R_PPC64_TPREL16_DS:
10503     case elfcpp::R_PPC64_TPREL16_LO_DS:
10504     case elfcpp::R_PPC64_TPREL16_HIGH:
10505     case elfcpp::R_PPC64_TPREL16_HIGHA:
10506       if (size != 64)
10507         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
10508         break;
10509       // Fall through.
10510     case elfcpp::R_POWERPC_TPREL16:
10511     case elfcpp::R_POWERPC_TPREL16_LO:
10512     case elfcpp::R_POWERPC_TPREL16_HI:
10513     case elfcpp::R_POWERPC_TPREL16_HA:
10514     case elfcpp::R_POWERPC_TPREL:
10515     case elfcpp::R_PPC64_TPREL16_HIGHER:
10516     case elfcpp::R_PPC64_TPREL16_HIGHERA:
10517     case elfcpp::R_PPC64_TPREL16_HIGHEST:
10518     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
10519       // tls symbol values are relative to tls_segment()->vaddr()
10520       value -= tp_offset;
10521       break;
10522
10523     case elfcpp::R_PPC64_DTPREL16_DS:
10524     case elfcpp::R_PPC64_DTPREL16_LO_DS:
10525     case elfcpp::R_PPC64_DTPREL16_HIGHER:
10526     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
10527     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
10528     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
10529       if (size != 64)
10530         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
10531         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
10532         break;
10533       // Fall through.
10534     case elfcpp::R_POWERPC_DTPREL16:
10535     case elfcpp::R_POWERPC_DTPREL16_LO:
10536     case elfcpp::R_POWERPC_DTPREL16_HI:
10537     case elfcpp::R_POWERPC_DTPREL16_HA:
10538     case elfcpp::R_POWERPC_DTPREL:
10539     case elfcpp::R_PPC64_DTPREL16_HIGH:
10540     case elfcpp::R_PPC64_DTPREL16_HIGHA:
10541       // tls symbol values are relative to tls_segment()->vaddr()
10542       value -= dtp_offset;
10543       break;
10544
10545     case elfcpp::R_PPC64_ADDR64_LOCAL:
10546       if (gsym != NULL)
10547         value += object->ppc64_local_entry_offset(gsym);
10548       else
10549         value += object->ppc64_local_entry_offset(r_sym);
10550       break;
10551
10552     default:
10553       break;
10554     }
10555
10556   Insn branch_bit = 0;
10557   switch (r_type)
10558     {
10559     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
10560     case elfcpp::R_POWERPC_REL14_BRTAKEN:
10561       branch_bit = 1 << 21;
10562       // Fall through.
10563     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
10564     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
10565       {
10566         Insn* iview = reinterpret_cast<Insn*>(view);
10567         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
10568         insn &= ~(1 << 21);
10569         insn |= branch_bit;
10570         if (this->is_isa_v2)
10571           {
10572             // Set 'a' bit.  This is 0b00010 in BO field for branch
10573             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
10574             // for branch on CTR insns (BO == 1a00t or 1a01t).
10575             if ((insn & (0x14 << 21)) == (0x04 << 21))
10576               insn |= 0x02 << 21;
10577             else if ((insn & (0x14 << 21)) == (0x10 << 21))
10578               insn |= 0x08 << 21;
10579             else
10580               break;
10581           }
10582         else
10583           {
10584             // Invert 'y' bit if not the default.
10585             if (static_cast<Signed_address>(value) < 0)
10586               insn ^= 1 << 21;
10587           }
10588         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10589       }
10590       break;
10591
10592     case elfcpp::R_POWERPC_PLT16_HA:
10593       if (size == 32
10594           && !parameters->options().output_is_position_independent())
10595         {
10596           Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
10597           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
10598
10599           // Convert addis to lis.
10600           if ((insn & (0x3f << 26)) == 15u << 26
10601               && (insn & (0x1f << 16)) != 0)
10602             {
10603               insn &= ~(0x1f << 16);
10604               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10605             }
10606         }
10607       break;
10608
10609     default:
10610       break;
10611     }
10612
10613   if (size == 64
10614       && (gsym
10615           ? relative_value_is_known(gsym)
10616           : relative_value_is_known(psymval)))
10617     {
10618       Insn* iview;
10619       Insn* iview2;
10620       Insn insn;
10621       uint64_t pinsn, pinsn2;
10622
10623       switch (r_type)
10624         {
10625         default:
10626           break;
10627
10628           // Multi-instruction sequences that access the GOT/TOC can
10629           // be optimized, eg.
10630           //     addis ra,r2,x@got@ha; ld rb,x@got@l(ra);
10631           // to  addis ra,r2,x@toc@ha; addi rb,ra,x@toc@l;
10632           // and
10633           //     addis ra,r2,0; addi rb,ra,x@toc@l;
10634           // to  nop;           addi rb,r2,x@toc;
10635         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
10636         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
10637         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
10638         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
10639         case elfcpp::R_POWERPC_GOT16_HA:
10640         case elfcpp::R_PPC64_TOC16_HA:
10641           if (parameters->options().toc_optimize())
10642             {
10643               iview = reinterpret_cast<Insn*>(view - d_offset);
10644               insn = elfcpp::Swap<32, big_endian>::readval(iview);
10645               if ((r_type == elfcpp::R_PPC64_TOC16_HA
10646                    && object->make_toc_relative(target, &value))
10647                   || (r_type == elfcpp::R_POWERPC_GOT16_HA
10648                       && object->make_got_relative(target, psymval,
10649                                                    rela.get_r_addend(),
10650                                                    &value)))
10651                 {
10652                   gold_assert((insn & ((0x3f << 26) | 0x1f << 16))
10653                               == ((15u << 26) | (2 << 16)));
10654                 }
10655               if (((insn & ((0x3f << 26) | 0x1f << 16))
10656                    == ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
10657                   && value + 0x8000 < 0x10000)
10658                 {
10659                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
10660                   return true;
10661                 }
10662             }
10663           break;
10664
10665         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
10666         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
10667         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
10668         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
10669         case elfcpp::R_POWERPC_GOT16_LO:
10670         case elfcpp::R_PPC64_GOT16_LO_DS:
10671         case elfcpp::R_PPC64_TOC16_LO:
10672         case elfcpp::R_PPC64_TOC16_LO_DS:
10673           if (parameters->options().toc_optimize())
10674             {
10675               iview = reinterpret_cast<Insn*>(view - d_offset);
10676               insn = elfcpp::Swap<32, big_endian>::readval(iview);
10677               bool changed = false;
10678               if ((r_type == elfcpp::R_PPC64_TOC16_LO_DS
10679                    && object->make_toc_relative(target, &value))
10680                   || (r_type == elfcpp::R_PPC64_GOT16_LO_DS
10681                       && object->make_got_relative(target, psymval,
10682                                                    rela.get_r_addend(),
10683                                                    &value)))
10684                 {
10685                   gold_assert ((insn & (0x3f << 26)) == 58u << 26 /* ld */);
10686                   insn ^= (14u << 26) ^ (58u << 26);
10687                   r_type = elfcpp::R_PPC64_TOC16_LO;
10688                   changed = true;
10689                 }
10690               if (ok_lo_toc_insn(insn, r_type)
10691                   && value + 0x8000 < 0x10000)
10692                 {
10693                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
10694                     {
10695                       // Transform addic to addi when we change reg.
10696                       insn &= ~((0x3f << 26) | (0x1f << 16));
10697                       insn |= (14u << 26) | (2 << 16);
10698                     }
10699                   else
10700                     {
10701                       insn &= ~(0x1f << 16);
10702                       insn |= 2 << 16;
10703                     }
10704                   changed = true;
10705                 }
10706               if (changed)
10707                 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10708             }
10709           break;
10710
10711         case elfcpp::R_PPC64_GOT_PCREL34:
10712           if (parameters->options().toc_optimize())
10713             {
10714               iview = reinterpret_cast<Insn*>(view);
10715               pinsn = elfcpp::Swap<32, big_endian>::readval(iview);
10716               pinsn <<= 32;
10717               pinsn |= elfcpp::Swap<32, big_endian>::readval(iview + 1);
10718               if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
10719                    != ((1ULL << 58) | (1ULL << 52) | (57ULL << 26) /* pld */))
10720                 break;
10721
10722               Address relval = psymval->value(object, rela.get_r_addend());
10723               relval -= address;
10724               if (relval + (1ULL << 33) < 1ULL << 34)
10725                 {
10726                   value = relval;
10727                   // Replace with paddi
10728                   pinsn += (2ULL << 56) + (14ULL << 26) - (57ULL << 26);
10729                   elfcpp::Swap<32, big_endian>::writeval(iview, pinsn >> 32);
10730                   elfcpp::Swap<32, big_endian>::writeval(iview + 1,
10731                                                          pinsn & 0xffffffff);
10732                   goto pcrelopt;
10733                 }
10734             }
10735           break;
10736
10737         case elfcpp::R_PPC64_PCREL34:
10738           {
10739             iview = reinterpret_cast<Insn*>(view);
10740             pinsn = elfcpp::Swap<32, big_endian>::readval(iview);
10741             pinsn <<= 32;
10742             pinsn |= elfcpp::Swap<32, big_endian>::readval(iview + 1);
10743             if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
10744                 != ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
10745                     | (14ULL << 26) /* paddi */))
10746               break;
10747
10748           pcrelopt:
10749             const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
10750             elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
10751             size_t reloc_count = shdr.get_sh_size() / reloc_size;
10752             if (relnum >= reloc_count - 1)
10753               break;
10754
10755             Reltype next_rela(preloc + reloc_size);
10756             if ((elfcpp::elf_r_type<size>(next_rela.get_r_info())
10757                  != elfcpp::R_PPC64_PCREL_OPT)
10758                 || next_rela.get_r_offset() != rela.get_r_offset())
10759               break;
10760
10761             Address off = next_rela.get_r_addend();
10762             if (off == 0)
10763               off = 8; // zero means next insn.
10764             if (off + rela.get_r_offset() + 4 > view_size)
10765               break;
10766
10767             iview2 = reinterpret_cast<Insn*>(view + off);
10768             pinsn2 = elfcpp::Swap<32, big_endian>::readval(iview2);
10769             pinsn2 <<= 32;
10770             if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
10771               break;
10772             if (xlate_pcrel_opt(&pinsn, &pinsn2))
10773               {
10774                 elfcpp::Swap<32, big_endian>::writeval(iview, pinsn >> 32);
10775                 elfcpp::Swap<32, big_endian>::writeval(iview + 1,
10776                                                        pinsn & 0xffffffff);
10777                 elfcpp::Swap<32, big_endian>::writeval(iview2, pinsn2 >> 32);
10778               }
10779           }
10780           break;
10781
10782         case elfcpp::R_POWERPC_TPREL16_HA:
10783           if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
10784             {
10785               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
10786               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
10787               if ((insn & ((0x3f << 26) | 0x1f << 16))
10788                   != ((15u << 26) | ((size == 32 ? 2 : 13) << 16)))
10789                 ;
10790               else
10791                 {
10792                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
10793                   return true;
10794                 }
10795             }
10796           break;
10797
10798         case elfcpp::R_PPC64_TPREL16_LO_DS:
10799           if (size == 32)
10800             // R_PPC_TLSGD, R_PPC_TLSLD
10801             break;
10802           // Fall through.
10803         case elfcpp::R_POWERPC_TPREL16_LO:
10804           if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
10805             {
10806               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
10807               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
10808               insn &= ~(0x1f << 16);
10809               insn |= (size == 32 ? 2 : 13) << 16;
10810               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
10811             }
10812           break;
10813
10814         case elfcpp::R_PPC64_ENTRY:
10815           value = (target->got_section()->output_section()->address()
10816                    + object->toc_base_offset());
10817           if (value + 0x80008000 <= 0xffffffff
10818               && !parameters->options().output_is_position_independent())
10819             {
10820               Insn* iview = reinterpret_cast<Insn*>(view);
10821               Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
10822               Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
10823
10824               if ((insn1 & ~0xfffc) == ld_2_12
10825                   && insn2 == add_2_2_12)
10826                 {
10827                   insn1 = lis_2 + ha(value);
10828                   elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
10829                   insn2 = addi_2_2 + l(value);
10830                   elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
10831                   return true;
10832                 }
10833             }
10834           else
10835             {
10836               value -= address;
10837               if (value + 0x80008000 <= 0xffffffff)
10838                 {
10839                   Insn* iview = reinterpret_cast<Insn*>(view);
10840                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
10841                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
10842
10843                   if ((insn1 & ~0xfffc) == ld_2_12
10844                       && insn2 == add_2_2_12)
10845                     {
10846                       insn1 = addis_2_12 + ha(value);
10847                       elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
10848                       insn2 = addi_2_2 + l(value);
10849                       elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
10850                       return true;
10851                     }
10852                 }
10853             }
10854           break;
10855
10856         case elfcpp::R_POWERPC_REL16_LO:
10857           // If we are generating a non-PIC executable, edit
10858           //    0:      addis 2,12,.TOC.-0b@ha
10859           //            addi 2,2,.TOC.-0b@l
10860           // used by ELFv2 global entry points to set up r2, to
10861           //            lis 2,.TOC.@ha
10862           //            addi 2,2,.TOC.@l
10863           // if .TOC. is in range.  */
10864           if (value + address - 4 + 0x80008000 <= 0xffffffff
10865               && relnum + 1 > 1
10866               && preloc != NULL
10867               && target->abiversion() >= 2
10868               && !parameters->options().output_is_position_independent()
10869               && rela.get_r_addend() == d_offset + 4
10870               && gsym != NULL
10871               && strcmp(gsym->name(), ".TOC.") == 0)
10872             {
10873               const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
10874               Reltype prev_rela(preloc - reloc_size);
10875               if ((prev_rela.get_r_info()
10876                    == elfcpp::elf_r_info<size>(r_sym,
10877                                                elfcpp::R_POWERPC_REL16_HA))
10878                   && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
10879                   && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
10880                 {
10881                   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
10882                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
10883                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
10884
10885                   if ((insn1 & 0xffff0000) == addis_2_12
10886                       && (insn2 & 0xffff0000) == addi_2_2)
10887                     {
10888                       insn1 = lis_2 + ha(value + address - 4);
10889                       elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
10890                       insn2 = addi_2_2 + l(value + address - 4);
10891                       elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
10892                       if (relinfo->rr)
10893                         {
10894                           relinfo->rr->set_strategy(relnum - 1,
10895                                                     Relocatable_relocs::RELOC_SPECIAL);
10896                           relinfo->rr->set_strategy(relnum,
10897                                                     Relocatable_relocs::RELOC_SPECIAL);
10898                         }
10899                       return true;
10900                     }
10901                 }
10902             }
10903           break;
10904         }
10905     }
10906
10907   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
10908   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
10909   switch (r_type)
10910     {
10911     case elfcpp::R_POWERPC_ADDR32:
10912     case elfcpp::R_POWERPC_UADDR32:
10913       if (size == 64)
10914         overflow = Reloc::CHECK_BITFIELD;
10915       break;
10916
10917     case elfcpp::R_POWERPC_REL32:
10918     case elfcpp::R_POWERPC_REL16DX_HA:
10919       if (size == 64)
10920         overflow = Reloc::CHECK_SIGNED;
10921       break;
10922
10923     case elfcpp::R_POWERPC_UADDR16:
10924       overflow = Reloc::CHECK_BITFIELD;
10925       break;
10926
10927     case elfcpp::R_POWERPC_ADDR16:
10928       // We really should have three separate relocations,
10929       // one for 16-bit data, one for insns with 16-bit signed fields,
10930       // and one for insns with 16-bit unsigned fields.
10931       overflow = Reloc::CHECK_BITFIELD;
10932       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
10933         overflow = Reloc::CHECK_LOW_INSN;
10934       break;
10935
10936     case elfcpp::R_POWERPC_ADDR16_HI:
10937     case elfcpp::R_POWERPC_ADDR16_HA:
10938     case elfcpp::R_POWERPC_GOT16_HI:
10939     case elfcpp::R_POWERPC_GOT16_HA:
10940     case elfcpp::R_POWERPC_PLT16_HI:
10941     case elfcpp::R_POWERPC_PLT16_HA:
10942     case elfcpp::R_POWERPC_SECTOFF_HI:
10943     case elfcpp::R_POWERPC_SECTOFF_HA:
10944     case elfcpp::R_PPC64_TOC16_HI:
10945     case elfcpp::R_PPC64_TOC16_HA:
10946     case elfcpp::R_PPC64_PLTGOT16_HI:
10947     case elfcpp::R_PPC64_PLTGOT16_HA:
10948     case elfcpp::R_POWERPC_TPREL16_HI:
10949     case elfcpp::R_POWERPC_TPREL16_HA:
10950     case elfcpp::R_POWERPC_DTPREL16_HI:
10951     case elfcpp::R_POWERPC_DTPREL16_HA:
10952     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
10953     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
10954     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
10955     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
10956     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
10957     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
10958     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
10959     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
10960     case elfcpp::R_POWERPC_REL16_HI:
10961     case elfcpp::R_POWERPC_REL16_HA:
10962       if (size != 32)
10963         overflow = Reloc::CHECK_HIGH_INSN;
10964       break;
10965
10966     case elfcpp::R_POWERPC_REL16:
10967     case elfcpp::R_PPC64_TOC16:
10968     case elfcpp::R_POWERPC_GOT16:
10969     case elfcpp::R_POWERPC_SECTOFF:
10970     case elfcpp::R_POWERPC_TPREL16:
10971     case elfcpp::R_POWERPC_DTPREL16:
10972     case elfcpp::R_POWERPC_GOT_TLSGD16:
10973     case elfcpp::R_POWERPC_GOT_TLSLD16:
10974     case elfcpp::R_POWERPC_GOT_TPREL16:
10975     case elfcpp::R_POWERPC_GOT_DTPREL16:
10976       overflow = Reloc::CHECK_LOW_INSN;
10977       break;
10978
10979     case elfcpp::R_PPC64_REL24_NOTOC:
10980       if (size == 32)
10981         break;
10982       // Fall through.
10983     case elfcpp::R_POWERPC_ADDR24:
10984     case elfcpp::R_POWERPC_ADDR14:
10985     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
10986     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
10987     case elfcpp::R_PPC64_ADDR16_DS:
10988     case elfcpp::R_POWERPC_REL24:
10989     case elfcpp::R_PPC_PLTREL24:
10990     case elfcpp::R_PPC_LOCAL24PC:
10991     case elfcpp::R_PPC64_TPREL16_DS:
10992     case elfcpp::R_PPC64_DTPREL16_DS:
10993     case elfcpp::R_PPC64_TOC16_DS:
10994     case elfcpp::R_PPC64_GOT16_DS:
10995     case elfcpp::R_PPC64_SECTOFF_DS:
10996     case elfcpp::R_POWERPC_REL14:
10997     case elfcpp::R_POWERPC_REL14_BRTAKEN:
10998     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
10999     case elfcpp::R_PPC64_D34:
11000     case elfcpp::R_PPC64_PCREL34:
11001     case elfcpp::R_PPC64_GOT_PCREL34:
11002     case elfcpp::R_PPC64_PLT_PCREL34:
11003     case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
11004     case elfcpp::R_PPC64_D28:
11005     case elfcpp::R_PPC64_PCREL28:
11006       overflow = Reloc::CHECK_SIGNED;
11007       break;
11008     }
11009
11010   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
11011   Insn insn = 0;
11012
11013   if (overflow == Reloc::CHECK_LOW_INSN
11014       || overflow == Reloc::CHECK_HIGH_INSN)
11015     {
11016       insn = elfcpp::Swap<32, big_endian>::readval(iview);
11017
11018       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
11019         overflow = Reloc::CHECK_BITFIELD;
11020       else if (overflow == Reloc::CHECK_LOW_INSN
11021                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
11022                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
11023                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
11024                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
11025                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
11026                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
11027         overflow = Reloc::CHECK_UNSIGNED;
11028       else
11029         overflow = Reloc::CHECK_SIGNED;
11030     }
11031
11032   bool maybe_dq_reloc = false;
11033   typename Powerpc_relocate_functions<size, big_endian>::Status status
11034     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
11035   switch (r_type)
11036     {
11037     case elfcpp::R_POWERPC_NONE:
11038     case elfcpp::R_POWERPC_TLS:
11039     case elfcpp::R_POWERPC_GNU_VTINHERIT:
11040     case elfcpp::R_POWERPC_GNU_VTENTRY:
11041     case elfcpp::R_POWERPC_PLTSEQ:
11042     case elfcpp::R_POWERPC_PLTCALL:
11043     case elfcpp::R_PPC64_PLTSEQ_NOTOC:
11044     case elfcpp::R_PPC64_PLTCALL_NOTOC:
11045     case elfcpp::R_PPC64_PCREL_OPT:
11046       break;
11047
11048     case elfcpp::R_PPC64_ADDR64:
11049     case elfcpp::R_PPC64_REL64:
11050     case elfcpp::R_PPC64_TOC:
11051     case elfcpp::R_PPC64_ADDR64_LOCAL:
11052       Reloc::addr64(view, value);
11053       break;
11054
11055     case elfcpp::R_POWERPC_TPREL:
11056     case elfcpp::R_POWERPC_DTPREL:
11057       if (size == 64)
11058         Reloc::addr64(view, value);
11059       else
11060         status = Reloc::addr32(view, value, overflow);
11061       break;
11062
11063     case elfcpp::R_PPC64_UADDR64:
11064       Reloc::addr64_u(view, value);
11065       break;
11066
11067     case elfcpp::R_POWERPC_ADDR32:
11068       status = Reloc::addr32(view, value, overflow);
11069       break;
11070
11071     case elfcpp::R_POWERPC_REL32:
11072     case elfcpp::R_POWERPC_UADDR32:
11073       status = Reloc::addr32_u(view, value, overflow);
11074       break;
11075
11076     case elfcpp::R_PPC64_REL24_NOTOC:
11077       if (size == 32)
11078         goto unsupp; // R_PPC_EMB_RELSDA
11079       // Fall through.
11080     case elfcpp::R_POWERPC_ADDR24:
11081     case elfcpp::R_POWERPC_REL24:
11082     case elfcpp::R_PPC_PLTREL24:
11083     case elfcpp::R_PPC_LOCAL24PC:
11084       status = Reloc::addr24(view, value, overflow);
11085       break;
11086
11087     case elfcpp::R_POWERPC_GOT_DTPREL16:
11088     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
11089     case elfcpp::R_POWERPC_GOT_TPREL16:
11090     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
11091       if (size == 64)
11092         {
11093           // On ppc64 these are all ds form
11094           maybe_dq_reloc = true;
11095           break;
11096         }
11097       // Fall through.
11098     case elfcpp::R_POWERPC_ADDR16:
11099     case elfcpp::R_POWERPC_REL16:
11100     case elfcpp::R_PPC64_TOC16:
11101     case elfcpp::R_POWERPC_GOT16:
11102     case elfcpp::R_POWERPC_SECTOFF:
11103     case elfcpp::R_POWERPC_TPREL16:
11104     case elfcpp::R_POWERPC_DTPREL16:
11105     case elfcpp::R_POWERPC_GOT_TLSGD16:
11106     case elfcpp::R_POWERPC_GOT_TLSLD16:
11107     case elfcpp::R_POWERPC_ADDR16_LO:
11108     case elfcpp::R_POWERPC_REL16_LO:
11109     case elfcpp::R_PPC64_TOC16_LO:
11110     case elfcpp::R_POWERPC_GOT16_LO:
11111     case elfcpp::R_POWERPC_PLT16_LO:
11112     case elfcpp::R_POWERPC_SECTOFF_LO:
11113     case elfcpp::R_POWERPC_TPREL16_LO:
11114     case elfcpp::R_POWERPC_DTPREL16_LO:
11115     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
11116     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
11117       if (size == 64)
11118         status = Reloc::addr16(view, value, overflow);
11119       else
11120         maybe_dq_reloc = true;
11121       break;
11122
11123     case elfcpp::R_POWERPC_UADDR16:
11124       status = Reloc::addr16_u(view, value, overflow);
11125       break;
11126
11127     case elfcpp::R_PPC64_ADDR16_HIGH:
11128     case elfcpp::R_PPC64_TPREL16_HIGH:
11129     case elfcpp::R_PPC64_DTPREL16_HIGH:
11130       if (size == 32)
11131         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
11132         goto unsupp;
11133       // Fall through.
11134     case elfcpp::R_POWERPC_ADDR16_HI:
11135     case elfcpp::R_POWERPC_REL16_HI:
11136     case elfcpp::R_PPC64_REL16_HIGH:
11137     case elfcpp::R_PPC64_TOC16_HI:
11138     case elfcpp::R_POWERPC_GOT16_HI:
11139     case elfcpp::R_POWERPC_PLT16_HI:
11140     case elfcpp::R_POWERPC_SECTOFF_HI:
11141     case elfcpp::R_POWERPC_TPREL16_HI:
11142     case elfcpp::R_POWERPC_DTPREL16_HI:
11143     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
11144     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
11145     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
11146     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
11147       Reloc::addr16_hi(view, value);
11148       break;
11149
11150     case elfcpp::R_PPC64_ADDR16_HIGHA:
11151     case elfcpp::R_PPC64_TPREL16_HIGHA:
11152     case elfcpp::R_PPC64_DTPREL16_HIGHA:
11153       if (size == 32)
11154         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
11155         goto unsupp;
11156       // Fall through.
11157     case elfcpp::R_POWERPC_ADDR16_HA:
11158     case elfcpp::R_POWERPC_REL16_HA:
11159     case elfcpp::R_PPC64_REL16_HIGHA:
11160     case elfcpp::R_PPC64_TOC16_HA:
11161     case elfcpp::R_POWERPC_GOT16_HA:
11162     case elfcpp::R_POWERPC_PLT16_HA:
11163     case elfcpp::R_POWERPC_SECTOFF_HA:
11164     case elfcpp::R_POWERPC_TPREL16_HA:
11165     case elfcpp::R_POWERPC_DTPREL16_HA:
11166     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
11167     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
11168     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
11169     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
11170       Reloc::addr16_ha(view, value);
11171       break;
11172
11173     case elfcpp::R_POWERPC_REL16DX_HA:
11174       status = Reloc::addr16dx_ha(view, value, overflow);
11175       break;
11176
11177     case elfcpp::R_PPC64_DTPREL16_HIGHER:
11178       if (size == 32)
11179         // R_PPC_EMB_NADDR16_LO
11180         goto unsupp;
11181       // Fall through.
11182     case elfcpp::R_PPC64_ADDR16_HIGHER:
11183     case elfcpp::R_PPC64_REL16_HIGHER:
11184     case elfcpp::R_PPC64_TPREL16_HIGHER:
11185       Reloc::addr16_hi2(view, value);
11186       break;
11187
11188     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
11189       if (size == 32)
11190         // R_PPC_EMB_NADDR16_HI
11191         goto unsupp;
11192       // Fall through.
11193     case elfcpp::R_PPC64_ADDR16_HIGHERA:
11194     case elfcpp::R_PPC64_REL16_HIGHERA:
11195     case elfcpp::R_PPC64_TPREL16_HIGHERA:
11196       Reloc::addr16_ha2(view, value);
11197       break;
11198
11199     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
11200       if (size == 32)
11201         // R_PPC_EMB_NADDR16_HA
11202         goto unsupp;
11203       // Fall through.
11204     case elfcpp::R_PPC64_ADDR16_HIGHEST:
11205     case elfcpp::R_PPC64_REL16_HIGHEST:
11206     case elfcpp::R_PPC64_TPREL16_HIGHEST:
11207       Reloc::addr16_hi3(view, value);
11208       break;
11209
11210     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
11211       if (size == 32)
11212         // R_PPC_EMB_SDAI16
11213         goto unsupp;
11214       // Fall through.
11215     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
11216     case elfcpp::R_PPC64_REL16_HIGHESTA:
11217     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
11218       Reloc::addr16_ha3(view, value);
11219       break;
11220
11221     case elfcpp::R_PPC64_DTPREL16_DS:
11222     case elfcpp::R_PPC64_DTPREL16_LO_DS:
11223       if (size == 32)
11224         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
11225         goto unsupp;
11226       // Fall through.
11227     case elfcpp::R_PPC64_TPREL16_DS:
11228     case elfcpp::R_PPC64_TPREL16_LO_DS:
11229       if (size == 32)
11230         // R_PPC_TLSGD, R_PPC_TLSLD
11231         break;
11232       // Fall through.
11233     case elfcpp::R_PPC64_ADDR16_DS:
11234     case elfcpp::R_PPC64_ADDR16_LO_DS:
11235     case elfcpp::R_PPC64_TOC16_DS:
11236     case elfcpp::R_PPC64_TOC16_LO_DS:
11237     case elfcpp::R_PPC64_GOT16_DS:
11238     case elfcpp::R_PPC64_GOT16_LO_DS:
11239     case elfcpp::R_PPC64_PLT16_LO_DS:
11240     case elfcpp::R_PPC64_SECTOFF_DS:
11241     case elfcpp::R_PPC64_SECTOFF_LO_DS:
11242       maybe_dq_reloc = true;
11243       break;
11244
11245     case elfcpp::R_POWERPC_ADDR14:
11246     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
11247     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
11248     case elfcpp::R_POWERPC_REL14:
11249     case elfcpp::R_POWERPC_REL14_BRTAKEN:
11250     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
11251       status = Reloc::addr14(view, value, overflow);
11252       break;
11253
11254     case elfcpp::R_POWERPC_COPY:
11255     case elfcpp::R_POWERPC_GLOB_DAT:
11256     case elfcpp::R_POWERPC_JMP_SLOT:
11257     case elfcpp::R_POWERPC_RELATIVE:
11258     case elfcpp::R_POWERPC_DTPMOD:
11259     case elfcpp::R_PPC64_JMP_IREL:
11260     case elfcpp::R_POWERPC_IRELATIVE:
11261       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
11262                              _("unexpected reloc %u in object file"),
11263                              r_type);
11264       break;
11265
11266     case elfcpp::R_PPC64_TOCSAVE:
11267       if (size == 32)
11268         // R_PPC_EMB_SDA21
11269         goto unsupp;
11270       else
11271         {
11272           Symbol_location loc;
11273           loc.object = relinfo->object;
11274           loc.shndx = relinfo->data_shndx;
11275           loc.offset = rela.get_r_offset();
11276           Tocsave_loc::const_iterator p = target->tocsave_loc().find(loc);
11277           if (p != target->tocsave_loc().end())
11278             {
11279               // If we've generated plt calls using this tocsave, then
11280               // the nop needs to be changed to save r2.
11281               Insn* iview = reinterpret_cast<Insn*>(view);
11282               if (elfcpp::Swap<32, big_endian>::readval(iview) == nop)
11283                 elfcpp::Swap<32, big_endian>::
11284                   writeval(iview, std_2_1 + target->stk_toc());
11285             }
11286         }
11287       break;
11288
11289     case elfcpp::R_PPC_EMB_SDA2I16:
11290     case elfcpp::R_PPC_EMB_SDA2REL:
11291       if (size == 32)
11292         goto unsupp;
11293       // R_PPC64_TLSGD, R_PPC64_TLSLD
11294       break;
11295
11296     case elfcpp::R_PPC64_D34:
11297     case elfcpp::R_PPC64_D34_LO:
11298     case elfcpp::R_PPC64_PCREL34:
11299     case elfcpp::R_PPC64_GOT_PCREL34:
11300     case elfcpp::R_PPC64_PLT_PCREL34:
11301     case elfcpp::R_PPC64_PLT_PCREL34_NOTOC:
11302       if (size == 32)
11303         goto unsupp;
11304       status = Reloc::addr34(view, value, overflow);
11305       break;
11306
11307     case elfcpp::R_PPC64_D34_HI30:
11308       if (size == 32)
11309         goto unsupp;
11310       Reloc::addr34_hi(view, value);
11311       break;
11312
11313     case elfcpp::R_PPC64_D34_HA30:
11314       if (size == 32)
11315         goto unsupp;
11316       Reloc::addr34_ha(view, value);
11317       break;
11318
11319     case elfcpp::R_PPC64_D28:
11320     case elfcpp::R_PPC64_PCREL28:
11321       if (size == 32)
11322         goto unsupp;
11323       status = Reloc::addr28(view, value, overflow);
11324       break;
11325
11326     case elfcpp::R_PPC64_ADDR16_HIGHER34:
11327     case elfcpp::R_PPC64_REL16_HIGHER34:
11328       if (size == 32)
11329         goto unsupp;
11330       Reloc::addr16_higher34(view, value);
11331       break;
11332
11333     case elfcpp::R_PPC64_ADDR16_HIGHERA34:
11334     case elfcpp::R_PPC64_REL16_HIGHERA34:
11335       if (size == 32)
11336         goto unsupp;
11337       Reloc::addr16_highera34(view, value);
11338       break;
11339
11340     case elfcpp::R_PPC64_ADDR16_HIGHEST34:
11341     case elfcpp::R_PPC64_REL16_HIGHEST34:
11342       if (size == 32)
11343         goto unsupp;
11344       Reloc::addr16_highest34(view, value);
11345       break;
11346
11347     case elfcpp::R_PPC64_ADDR16_HIGHESTA34:
11348     case elfcpp::R_PPC64_REL16_HIGHESTA34:
11349       if (size == 32)
11350         goto unsupp;
11351       Reloc::addr16_highesta34(view, value);
11352       break;
11353
11354     case elfcpp::R_POWERPC_PLT32:
11355     case elfcpp::R_POWERPC_PLTREL32:
11356     case elfcpp::R_PPC_SDAREL16:
11357     case elfcpp::R_POWERPC_ADDR30:
11358     case elfcpp::R_PPC64_PLT64:
11359     case elfcpp::R_PPC64_PLTREL64:
11360     case elfcpp::R_PPC64_PLTGOT16:
11361     case elfcpp::R_PPC64_PLTGOT16_LO:
11362     case elfcpp::R_PPC64_PLTGOT16_HI:
11363     case elfcpp::R_PPC64_PLTGOT16_HA:
11364     case elfcpp::R_PPC64_PLTGOT16_DS:
11365     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
11366     case elfcpp::R_PPC_TOC16:
11367     default:
11368     unsupp:
11369       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
11370                              _("unsupported reloc %u"),
11371                              r_type);
11372       break;
11373     }
11374
11375   if (maybe_dq_reloc)
11376     {
11377       if (insn == 0)
11378         insn = elfcpp::Swap<32, big_endian>::readval(iview);
11379
11380       if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
11381           || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
11382               && (insn & 3) == 1))
11383         status = Reloc::addr16_dq(view, value, overflow);
11384       else if (size == 64
11385                || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
11386                || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
11387                || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
11388                || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
11389         status = Reloc::addr16_ds(view, value, overflow);
11390       else
11391         status = Reloc::addr16(view, value, overflow);
11392     }
11393
11394   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
11395       && (has_stub_value
11396           || !(gsym != NULL
11397                && gsym->is_undefined()
11398                && is_branch_reloc<size>(r_type))))
11399     {
11400       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
11401                              _("relocation overflow"));
11402       if (has_stub_value)
11403         gold_info(_("try relinking with a smaller --stub-group-size"));
11404     }
11405
11406   return true;
11407 }
11408
11409 // Relocate section data.
11410
11411 template<int size, bool big_endian>
11412 void
11413 Target_powerpc<size, big_endian>::relocate_section(
11414     const Relocate_info<size, big_endian>* relinfo,
11415     unsigned int sh_type,
11416     const unsigned char* prelocs,
11417     size_t reloc_count,
11418     Output_section* output_section,
11419     bool needs_special_offset_handling,
11420     unsigned char* view,
11421     Address address,
11422     section_size_type view_size,
11423     const Reloc_symbol_changes* reloc_symbol_changes)
11424 {
11425   typedef Target_powerpc<size, big_endian> Powerpc;
11426   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
11427   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
11428     Powerpc_comdat_behavior;
11429   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
11430       Classify_reloc;
11431
11432   gold_assert(sh_type == elfcpp::SHT_RELA);
11433
11434   gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
11435                          Powerpc_comdat_behavior, Classify_reloc>(
11436     relinfo,
11437     this,
11438     prelocs,
11439     reloc_count,
11440     output_section,
11441     needs_special_offset_handling,
11442     view,
11443     address,
11444     view_size,
11445     reloc_symbol_changes);
11446 }
11447
11448 template<int size, bool big_endian>
11449 class Powerpc_scan_relocatable_reloc
11450 {
11451 public:
11452   typedef typename elfcpp::Rela<size, big_endian> Reltype;
11453   static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
11454   static const int sh_type = elfcpp::SHT_RELA;
11455
11456   // Return the symbol referred to by the relocation.
11457   static inline unsigned int
11458   get_r_sym(const Reltype* reloc)
11459   { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
11460
11461   // Return the type of the relocation.
11462   static inline unsigned int
11463   get_r_type(const Reltype* reloc)
11464   { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
11465
11466   // Return the strategy to use for a local symbol which is not a
11467   // section symbol, given the relocation type.
11468   inline Relocatable_relocs::Reloc_strategy
11469   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
11470   {
11471     if (r_type == 0 && r_sym == 0)
11472       return Relocatable_relocs::RELOC_DISCARD;
11473     return Relocatable_relocs::RELOC_COPY;
11474   }
11475
11476   // Return the strategy to use for a local symbol which is a section
11477   // symbol, given the relocation type.
11478   inline Relocatable_relocs::Reloc_strategy
11479   local_section_strategy(unsigned int, Relobj*)
11480   {
11481     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
11482   }
11483
11484   // Return the strategy to use for a global symbol, given the
11485   // relocation type, the object, and the symbol index.
11486   inline Relocatable_relocs::Reloc_strategy
11487   global_strategy(unsigned int r_type, Relobj*, unsigned int)
11488   {
11489     if (size == 32
11490         && (r_type == elfcpp::R_PPC_PLTREL24
11491             || r_type == elfcpp::R_POWERPC_PLT16_LO
11492             || r_type == elfcpp::R_POWERPC_PLT16_HI
11493             || r_type == elfcpp::R_POWERPC_PLT16_HA))
11494       return Relocatable_relocs::RELOC_SPECIAL;
11495     return Relocatable_relocs::RELOC_COPY;
11496   }
11497 };
11498
11499 // Scan the relocs during a relocatable link.
11500
11501 template<int size, bool big_endian>
11502 void
11503 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
11504     Symbol_table* symtab,
11505     Layout* layout,
11506     Sized_relobj_file<size, big_endian>* object,
11507     unsigned int data_shndx,
11508     unsigned int sh_type,
11509     const unsigned char* prelocs,
11510     size_t reloc_count,
11511     Output_section* output_section,
11512     bool needs_special_offset_handling,
11513     size_t local_symbol_count,
11514     const unsigned char* plocal_symbols,
11515     Relocatable_relocs* rr)
11516 {
11517   typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
11518
11519   gold_assert(sh_type == elfcpp::SHT_RELA);
11520
11521   gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
11522     symtab,
11523     layout,
11524     object,
11525     data_shndx,
11526     prelocs,
11527     reloc_count,
11528     output_section,
11529     needs_special_offset_handling,
11530     local_symbol_count,
11531     plocal_symbols,
11532     rr);
11533 }
11534
11535 // Scan the relocs for --emit-relocs.
11536
11537 template<int size, bool big_endian>
11538 void
11539 Target_powerpc<size, big_endian>::emit_relocs_scan(
11540     Symbol_table* symtab,
11541     Layout* layout,
11542     Sized_relobj_file<size, big_endian>* object,
11543     unsigned int data_shndx,
11544     unsigned int sh_type,
11545     const unsigned char* prelocs,
11546     size_t reloc_count,
11547     Output_section* output_section,
11548     bool needs_special_offset_handling,
11549     size_t local_symbol_count,
11550     const unsigned char* plocal_syms,
11551     Relocatable_relocs* rr)
11552 {
11553   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
11554       Classify_reloc;
11555   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
11556       Emit_relocs_strategy;
11557
11558   gold_assert(sh_type == elfcpp::SHT_RELA);
11559
11560   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
11561     symtab,
11562     layout,
11563     object,
11564     data_shndx,
11565     prelocs,
11566     reloc_count,
11567     output_section,
11568     needs_special_offset_handling,
11569     local_symbol_count,
11570     plocal_syms,
11571     rr);
11572 }
11573
11574 // Emit relocations for a section.
11575 // This is a modified version of the function by the same name in
11576 // target-reloc.h.  Using relocate_special_relocatable for
11577 // R_PPC_PLTREL24 would require duplication of the entire body of the
11578 // loop, so we may as well duplicate the whole thing.
11579
11580 template<int size, bool big_endian>
11581 void
11582 Target_powerpc<size, big_endian>::relocate_relocs(
11583     const Relocate_info<size, big_endian>* relinfo,
11584     unsigned int sh_type,
11585     const unsigned char* prelocs,
11586     size_t reloc_count,
11587     Output_section* output_section,
11588     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
11589     unsigned char*,
11590     Address view_address,
11591     section_size_type,
11592     unsigned char* reloc_view,
11593     section_size_type reloc_view_size)
11594 {
11595   gold_assert(sh_type == elfcpp::SHT_RELA);
11596
11597   typedef typename elfcpp::Rela<size, big_endian> Reltype;
11598   typedef typename elfcpp::Rela_write<size, big_endian> Reltype_write;
11599   const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
11600   // Offset from start of insn to d-field reloc.
11601   const int d_offset = big_endian ? 2 : 0;
11602
11603   Powerpc_relobj<size, big_endian>* const object
11604     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
11605   const unsigned int local_count = object->local_symbol_count();
11606   unsigned int got2_shndx = object->got2_shndx();
11607   Address got2_addend = 0;
11608   if (got2_shndx != 0)
11609     {
11610       got2_addend = object->get_output_section_offset(got2_shndx);
11611       gold_assert(got2_addend != invalid_address);
11612     }
11613
11614   const bool relocatable = parameters->options().relocatable();
11615
11616   unsigned char* pwrite = reloc_view;
11617   bool zap_next = false;
11618   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11619     {
11620       Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
11621       if (strategy == Relocatable_relocs::RELOC_DISCARD)
11622         continue;
11623
11624       Reltype reloc(prelocs);
11625       Reltype_write reloc_write(pwrite);
11626
11627       Address offset = reloc.get_r_offset();
11628       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
11629       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
11630       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
11631       const unsigned int orig_r_sym = r_sym;
11632       typename elfcpp::Elf_types<size>::Elf_Swxword addend
11633         = reloc.get_r_addend();
11634       const Symbol* gsym = NULL;
11635
11636       if (zap_next)
11637         {
11638           // We could arrange to discard these and other relocs for
11639           // tls optimised sequences in the strategy methods, but for
11640           // now do as BFD ld does.
11641           r_type = elfcpp::R_POWERPC_NONE;
11642           zap_next = false;
11643         }
11644
11645       // Get the new symbol index.
11646       Output_section* os = NULL;
11647       if (r_sym < local_count)
11648         {
11649           switch (strategy)
11650             {
11651             case Relocatable_relocs::RELOC_COPY:
11652             case Relocatable_relocs::RELOC_SPECIAL:
11653               if (r_sym != 0)
11654                 {
11655                   r_sym = object->symtab_index(r_sym);
11656                   gold_assert(r_sym != -1U);
11657                 }
11658               break;
11659
11660             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
11661               {
11662                 // We are adjusting a section symbol.  We need to find
11663                 // the symbol table index of the section symbol for
11664                 // the output section corresponding to input section
11665                 // in which this symbol is defined.
11666                 gold_assert(r_sym < local_count);
11667                 bool is_ordinary;
11668                 unsigned int shndx =
11669                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
11670                 gold_assert(is_ordinary);
11671                 os = object->output_section(shndx);
11672                 gold_assert(os != NULL);
11673                 gold_assert(os->needs_symtab_index());
11674                 r_sym = os->symtab_index();
11675               }
11676               break;
11677
11678             default:
11679               gold_unreachable();
11680             }
11681         }
11682       else
11683         {
11684           gsym = object->global_symbol(r_sym);
11685           gold_assert(gsym != NULL);
11686           if (gsym->is_forwarder())
11687             gsym = relinfo->symtab->resolve_forwards(gsym);
11688
11689           gold_assert(gsym->has_symtab_index());
11690           r_sym = gsym->symtab_index();
11691         }
11692
11693       // Get the new offset--the location in the output section where
11694       // this relocation should be applied.
11695       if (static_cast<Address>(offset_in_output_section) != invalid_address)
11696         offset += offset_in_output_section;
11697       else
11698         {
11699           section_offset_type sot_offset =
11700             convert_types<section_offset_type, Address>(offset);
11701           section_offset_type new_sot_offset =
11702             output_section->output_offset(object, relinfo->data_shndx,
11703                                           sot_offset);
11704           gold_assert(new_sot_offset != -1);
11705           offset = new_sot_offset;
11706         }
11707
11708       // In an object file, r_offset is an offset within the section.
11709       // In an executable or dynamic object, generated by
11710       // --emit-relocs, r_offset is an absolute address.
11711       if (!relocatable)
11712         {
11713           offset += view_address;
11714           if (static_cast<Address>(offset_in_output_section) != invalid_address)
11715             offset -= offset_in_output_section;
11716         }
11717
11718       // Handle the reloc addend based on the strategy.
11719       if (strategy == Relocatable_relocs::RELOC_COPY)
11720         ;
11721       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
11722         {
11723           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
11724           addend = psymval->value(object, addend);
11725           // In a relocatable link, the symbol value is relative to
11726           // the start of the output section. For a non-relocatable
11727           // link, we need to adjust the addend.
11728           if (!relocatable)
11729             {
11730               gold_assert(os != NULL);
11731               addend -= os->address();
11732             }
11733         }
11734       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
11735         {
11736           if (size == 32)
11737             {
11738               if (addend >= 32768)
11739                 addend += got2_addend;
11740             }
11741           else if (r_type == elfcpp::R_POWERPC_REL16_HA)
11742             {
11743               r_type = elfcpp::R_POWERPC_ADDR16_HA;
11744               addend -= d_offset;
11745             }
11746           else if (r_type == elfcpp::R_POWERPC_REL16_LO)
11747             {
11748               r_type = elfcpp::R_POWERPC_ADDR16_LO;
11749               addend -= d_offset + 4;
11750             }
11751         }
11752       else
11753         gold_unreachable();
11754
11755       if (!relocatable)
11756         {
11757           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
11758               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
11759               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
11760               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
11761             {
11762               // First instruction of a global dynamic sequence,
11763               // arg setup insn.
11764               const bool final = gsym == NULL || gsym->final_value_is_known();
11765               switch (this->optimize_tls_gd(final))
11766                 {
11767                 case tls::TLSOPT_TO_IE:
11768                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
11769                              - elfcpp::R_POWERPC_GOT_TLSGD16);
11770                   break;
11771                 case tls::TLSOPT_TO_LE:
11772                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
11773                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
11774                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
11775                   else
11776                     {
11777                       r_type = elfcpp::R_POWERPC_NONE;
11778                       offset -= d_offset;
11779                     }
11780                   break;
11781                 default:
11782                   break;
11783                 }
11784             }
11785           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
11786                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
11787                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
11788                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
11789             {
11790               // First instruction of a local dynamic sequence,
11791               // arg setup insn.
11792               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
11793                 {
11794                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
11795                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
11796                     {
11797                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
11798                       const Output_section* os = relinfo->layout->tls_segment()
11799                         ->first_section();
11800                       gold_assert(os != NULL);
11801                       gold_assert(os->needs_symtab_index());
11802                       r_sym = os->symtab_index();
11803                       addend = dtp_offset;
11804                     }
11805                   else
11806                     {
11807                       r_type = elfcpp::R_POWERPC_NONE;
11808                       offset -= d_offset;
11809                     }
11810                 }
11811             }
11812           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
11813                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
11814                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
11815                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
11816             {
11817               // First instruction of initial exec sequence.
11818               const bool final = gsym == NULL || gsym->final_value_is_known();
11819               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
11820                 {
11821                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
11822                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
11823                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
11824                   else
11825                     {
11826                       r_type = elfcpp::R_POWERPC_NONE;
11827                       offset -= d_offset;
11828                     }
11829                 }
11830             }
11831           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
11832                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
11833             {
11834               // Second instruction of a global dynamic sequence,
11835               // the __tls_get_addr call
11836               const bool final = gsym == NULL || gsym->final_value_is_known();
11837               switch (this->optimize_tls_gd(final))
11838                 {
11839                 case tls::TLSOPT_TO_IE:
11840                   r_type = elfcpp::R_POWERPC_NONE;
11841                   zap_next = true;
11842                   break;
11843                 case tls::TLSOPT_TO_LE:
11844                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
11845                   offset += d_offset;
11846                   zap_next = true;
11847                   break;
11848                 default:
11849                   break;
11850                 }
11851             }
11852           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
11853                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
11854             {
11855               // Second instruction of a local dynamic sequence,
11856               // the __tls_get_addr call
11857               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
11858                 {
11859                   const Output_section* os = relinfo->layout->tls_segment()
11860                     ->first_section();
11861                   gold_assert(os != NULL);
11862                   gold_assert(os->needs_symtab_index());
11863                   r_sym = os->symtab_index();
11864                   addend = dtp_offset;
11865                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
11866                   offset += d_offset;
11867                   zap_next = true;
11868                 }
11869             }
11870           else if (r_type == elfcpp::R_POWERPC_TLS)
11871             {
11872               // Second instruction of an initial exec sequence
11873               const bool final = gsym == NULL || gsym->final_value_is_known();
11874               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
11875                 {
11876                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
11877                   offset += d_offset;
11878                 }
11879             }
11880         }
11881
11882       reloc_write.put_r_offset(offset);
11883       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
11884       reloc_write.put_r_addend(addend);
11885
11886       pwrite += reloc_size;
11887     }
11888
11889   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
11890               == reloc_view_size);
11891 }
11892
11893 // Return the value to use for a dynamic symbol which requires special
11894 // treatment.  This is how we support equality comparisons of function
11895 // pointers across shared library boundaries, as described in the
11896 // processor specific ABI supplement.
11897
11898 template<int size, bool big_endian>
11899 uint64_t
11900 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
11901 {
11902   if (size == 32)
11903     {
11904       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
11905       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
11906            p != this->stub_tables_.end();
11907            ++p)
11908         {
11909           const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
11910             = (*p)->find_plt_call_entry(gsym);
11911           if (ent != NULL)
11912             return (*p)->stub_address() + ent->off_;
11913         }
11914     }
11915   else if (this->abiversion() >= 2)
11916     {
11917       Address off = this->glink_section()->find_global_entry(gsym);
11918       if (off != invalid_address)
11919         return this->glink_section()->global_entry_address() + off;
11920     }
11921   gold_unreachable();
11922 }
11923
11924 // Return the PLT address to use for a local symbol.
11925 template<int size, bool big_endian>
11926 uint64_t
11927 Target_powerpc<size, big_endian>::do_plt_address_for_local(
11928     const Relobj* object,
11929     unsigned int symndx) const
11930 {
11931   if (size == 32)
11932     {
11933       const Sized_relobj<size, big_endian>* relobj
11934         = static_cast<const Sized_relobj<size, big_endian>*>(object);
11935       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
11936            p != this->stub_tables_.end();
11937            ++p)
11938         {
11939           const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
11940             = (*p)->find_plt_call_entry(relobj->sized_relobj(), symndx);
11941           if (ent != NULL)
11942             return (*p)->stub_address() + ent->off_;
11943         }
11944     }
11945   gold_unreachable();
11946 }
11947
11948 // Return the PLT address to use for a global symbol.
11949 template<int size, bool big_endian>
11950 uint64_t
11951 Target_powerpc<size, big_endian>::do_plt_address_for_global(
11952     const Symbol* gsym) const
11953 {
11954   if (size == 32)
11955     {
11956       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
11957            p != this->stub_tables_.end();
11958            ++p)
11959         {
11960           const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
11961             = (*p)->find_plt_call_entry(gsym);
11962           if (ent != NULL)
11963             return (*p)->stub_address() + ent->off_;
11964         }
11965     }
11966   else if (this->abiversion() >= 2)
11967     {
11968       Address off = this->glink_section()->find_global_entry(gsym);
11969       if (off != invalid_address)
11970         return this->glink_section()->global_entry_address() + off;
11971     }
11972   gold_unreachable();
11973 }
11974
11975 // Return the offset to use for the GOT_INDX'th got entry which is
11976 // for a local tls symbol specified by OBJECT, SYMNDX.
11977 template<int size, bool big_endian>
11978 int64_t
11979 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
11980     const Relobj* object,
11981     unsigned int symndx,
11982     unsigned int got_indx) const
11983 {
11984   const Powerpc_relobj<size, big_endian>* ppc_object
11985     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
11986   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
11987     {
11988       for (Got_type got_type = GOT_TYPE_TLSGD;
11989            got_type <= GOT_TYPE_TPREL;
11990            got_type = Got_type(got_type + 1))
11991         if (ppc_object->local_has_got_offset(symndx, got_type))
11992           {
11993             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
11994             if (got_type == GOT_TYPE_TLSGD)
11995               off += size / 8;
11996             if (off == got_indx * (size / 8))
11997               {
11998                 if (got_type == GOT_TYPE_TPREL)
11999                   return -tp_offset;
12000                 else
12001                   return -dtp_offset;
12002               }
12003           }
12004     }
12005   gold_unreachable();
12006 }
12007
12008 // Return the offset to use for the GOT_INDX'th got entry which is
12009 // for global tls symbol GSYM.
12010 template<int size, bool big_endian>
12011 int64_t
12012 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
12013     Symbol* gsym,
12014     unsigned int got_indx) const
12015 {
12016   if (gsym->type() == elfcpp::STT_TLS)
12017     {
12018       for (Got_type got_type = GOT_TYPE_TLSGD;
12019            got_type <= GOT_TYPE_TPREL;
12020            got_type = Got_type(got_type + 1))
12021         if (gsym->has_got_offset(got_type))
12022           {
12023             unsigned int off = gsym->got_offset(got_type);
12024             if (got_type == GOT_TYPE_TLSGD)
12025               off += size / 8;
12026             if (off == got_indx * (size / 8))
12027               {
12028                 if (got_type == GOT_TYPE_TPREL)
12029                   return -tp_offset;
12030                 else
12031                   return -dtp_offset;
12032               }
12033           }
12034     }
12035   gold_unreachable();
12036 }
12037
12038 // The selector for powerpc object files.
12039
12040 template<int size, bool big_endian>
12041 class Target_selector_powerpc : public Target_selector
12042 {
12043 public:
12044   Target_selector_powerpc()
12045     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
12046                       size, big_endian,
12047                       (size == 64
12048                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
12049                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
12050                       (size == 64
12051                        ? (big_endian ? "elf64ppc" : "elf64lppc")
12052                        : (big_endian ? "elf32ppc" : "elf32lppc")))
12053   { }
12054
12055   virtual Target*
12056   do_instantiate_target()
12057   { return new Target_powerpc<size, big_endian>(); }
12058 };
12059
12060 Target_selector_powerpc<32, true> target_selector_ppc32;
12061 Target_selector_powerpc<32, false> target_selector_ppc32le;
12062 Target_selector_powerpc<64, true> target_selector_ppc64;
12063 Target_selector_powerpc<64, false> target_selector_ppc64le;
12064
12065 // Instantiate these constants for -O0
12066 template<int size, bool big_endian>
12067 const typename Output_data_glink<size, big_endian>::Address
12068   Output_data_glink<size, big_endian>::invalid_address;
12069 template<int size, bool big_endian>
12070 const typename Stub_table<size, big_endian>::Address
12071   Stub_table<size, big_endian>::invalid_address;
12072 template<int size, bool big_endian>
12073 const typename Target_powerpc<size, big_endian>::Address
12074   Target_powerpc<size, big_endian>::invalid_address;
12075
12076 } // End anonymous namespace.