28bcd56ad55c9dae95d8df62b443ab4ef6e2236f
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2015 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73   Output_section* output_section;
74   const Output_section::Input_section* owner;
75 };
76
77 inline bool
78 is_branch_reloc(unsigned int r_type);
79
80 template<int size, bool big_endian>
81 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
82 {
83 public:
84   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
85   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
86   typedef Unordered_map<Address, Section_refs> Access_from;
87
88   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
89                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
90     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
91       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
92       opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
93       e_flags_(ehdr.get_e_flags()), st_other_()
94   {
95     this->set_abiversion(0);
96   }
97
98   ~Powerpc_relobj()
99   { }
100
101   // Read the symbols then set up st_other vector.
102   void
103   do_read_symbols(Read_symbols_data*);
104
105   // The .got2 section shndx.
106   unsigned int
107   got2_shndx() const
108   {
109     if (size == 32)
110       return this->special_;
111     else
112       return 0;
113   }
114
115   // The .opd section shndx.
116   unsigned int
117   opd_shndx() const
118   {
119     if (size == 32)
120       return 0;
121     else
122       return this->special_;
123   }
124
125   // Init OPD entry arrays.
126   void
127   init_opd(size_t opd_size)
128   {
129     size_t count = this->opd_ent_ndx(opd_size);
130     this->opd_ent_.resize(count);
131   }
132
133   // Return section and offset of function entry for .opd + R_OFF.
134   unsigned int
135   get_opd_ent(Address r_off, Address* value = NULL) const
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     gold_assert(this->opd_ent_[ndx].shndx != 0);
140     if (value != NULL)
141       *value = this->opd_ent_[ndx].off;
142     return this->opd_ent_[ndx].shndx;
143   }
144
145   // Set section and offset of function entry for .opd + R_OFF.
146   void
147   set_opd_ent(Address r_off, unsigned int shndx, Address value)
148   {
149     size_t ndx = this->opd_ent_ndx(r_off);
150     gold_assert(ndx < this->opd_ent_.size());
151     this->opd_ent_[ndx].shndx = shndx;
152     this->opd_ent_[ndx].off = value;
153   }
154
155   // Return discard flag for .opd + R_OFF.
156   bool
157   get_opd_discard(Address r_off) const
158   {
159     size_t ndx = this->opd_ent_ndx(r_off);
160     gold_assert(ndx < this->opd_ent_.size());
161     return this->opd_ent_[ndx].discard;
162   }
163
164   // Set discard flag for .opd + R_OFF.
165   void
166   set_opd_discard(Address r_off)
167   {
168     size_t ndx = this->opd_ent_ndx(r_off);
169     gold_assert(ndx < this->opd_ent_.size());
170     this->opd_ent_[ndx].discard = true;
171   }
172
173   bool
174   opd_valid() const
175   { return this->opd_valid_; }
176
177   void
178   set_opd_valid()
179   { this->opd_valid_ = true; }
180
181   // Examine .rela.opd to build info about function entry points.
182   void
183   scan_opd_relocs(size_t reloc_count,
184                   const unsigned char* prelocs,
185                   const unsigned char* plocal_syms);
186
187   // Perform the Sized_relobj_file method, then set up opd info from
188   // .opd relocs.
189   void
190   do_read_relocs(Read_relocs_data*);
191
192   bool
193   do_find_special_sections(Read_symbols_data* sd);
194
195   // Adjust this local symbol value.  Return false if the symbol
196   // should be discarded from the output file.
197   bool
198   do_adjust_local_symbol(Symbol_value<size>* lv) const
199   {
200     if (size == 64 && this->opd_shndx() != 0)
201       {
202         bool is_ordinary;
203         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
204           return true;
205         if (this->get_opd_discard(lv->input_value()))
206           return false;
207       }
208     return true;
209   }
210
211   Access_from*
212   access_from_map()
213   { return &this->access_from_map_; }
214
215   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
216   // section at DST_OFF.
217   void
218   add_reference(Relobj* src_obj,
219                 unsigned int src_indx,
220                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
221   {
222     Section_id src_id(src_obj, src_indx);
223     this->access_from_map_[dst_off].insert(src_id);
224   }
225
226   // Add a reference to the code section specified by the .opd entry
227   // at DST_OFF
228   void
229   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
230   {
231     size_t ndx = this->opd_ent_ndx(dst_off);
232     if (ndx >= this->opd_ent_.size())
233       this->opd_ent_.resize(ndx + 1);
234     this->opd_ent_[ndx].gc_mark = true;
235   }
236
237   void
238   process_gc_mark(Symbol_table* symtab)
239   {
240     for (size_t i = 0; i < this->opd_ent_.size(); i++)
241       if (this->opd_ent_[i].gc_mark)
242         {
243           unsigned int shndx = this->opd_ent_[i].shndx;
244           symtab->gc()->worklist().push_back(Section_id(this, shndx));
245         }
246   }
247
248   // Return offset in output GOT section that this object will use
249   // as a TOC pointer.  Won't be just a constant with multi-toc support.
250   Address
251   toc_base_offset() const
252   { return 0x8000; }
253
254   void
255   set_has_small_toc_reloc()
256   { has_small_toc_reloc_ = true; }
257
258   bool
259   has_small_toc_reloc() const
260   { return has_small_toc_reloc_; }
261
262   void
263   set_has_14bit_branch(unsigned int shndx)
264   {
265     if (shndx >= this->has14_.size())
266       this->has14_.resize(shndx + 1);
267     this->has14_[shndx] = true;
268   }
269
270   bool
271   has_14bit_branch(unsigned int shndx) const
272   { return shndx < this->has14_.size() && this->has14_[shndx];  }
273
274   void
275   set_stub_table(unsigned int shndx, unsigned int stub_index)
276   {
277     if (shndx >= this->stub_table_index_.size())
278       this->stub_table_index_.resize(shndx + 1);
279     this->stub_table_index_[shndx] = stub_index;
280   }
281
282   Stub_table<size, big_endian>*
283   stub_table(unsigned int shndx)
284   {
285     if (shndx < this->stub_table_index_.size())
286       {
287         Target_powerpc<size, big_endian>* target
288           = static_cast<Target_powerpc<size, big_endian>*>(
289               parameters->sized_target<size, big_endian>());
290         unsigned int indx = this->stub_table_index_[shndx];
291         gold_assert(indx < target->stub_tables().size());
292         return target->stub_tables()[indx];
293       }
294     return NULL;
295   }
296
297   void
298   clear_stub_table()
299   {
300     this->stub_table_index_.clear();
301   }
302
303   int
304   abiversion() const
305   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
306
307   // Set ABI version for input and output
308   void
309   set_abiversion(int ver);
310
311   unsigned int
312   ppc64_local_entry_offset(const Symbol* sym) const
313   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
314
315   unsigned int
316   ppc64_local_entry_offset(unsigned int symndx) const
317   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
318
319 private:
320   struct Opd_ent
321   {
322     unsigned int shndx;
323     bool discard : 1;
324     bool gc_mark : 1;
325     Address off;
326   };
327
328   // Return index into opd_ent_ array for .opd entry at OFF.
329   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
330   // apart when the language doesn't use the last 8-byte word, the
331   // environment pointer.  Thus dividing the entry section offset by
332   // 16 will give an index into opd_ent_ that works for either layout
333   // of .opd.  (It leaves some elements of the vector unused when .opd
334   // entries are spaced 24 bytes apart, but we don't know the spacing
335   // until relocations are processed, and in any case it is possible
336   // for an object to have some entries spaced 16 bytes apart and
337   // others 24 bytes apart.)
338   size_t
339   opd_ent_ndx(size_t off) const
340   { return off >> 4;}
341
342   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
343   unsigned int special_;
344
345   // For 64-bit, whether this object uses small model relocs to access
346   // the toc.
347   bool has_small_toc_reloc_;
348
349   // Set at the start of gc_process_relocs, when we know opd_ent_
350   // vector is valid.  The flag could be made atomic and set in
351   // do_read_relocs with memory_order_release and then tested with
352   // memory_order_acquire, potentially resulting in fewer entries in
353   // access_from_map_.
354   bool opd_valid_;
355
356   // The first 8-byte word of an OPD entry gives the address of the
357   // entry point of the function.  Relocatable object files have a
358   // relocation on this word.  The following vector records the
359   // section and offset specified by these relocations.
360   std::vector<Opd_ent> opd_ent_;
361
362   // References made to this object's .opd section when running
363   // gc_process_relocs for another object, before the opd_ent_ vector
364   // is valid for this object.
365   Access_from access_from_map_;
366
367   // Whether input section has a 14-bit branch reloc.
368   std::vector<bool> has14_;
369
370   // The stub table to use for a given input section.
371   std::vector<unsigned int> stub_table_index_;
372
373   // Header e_flags
374   elfcpp::Elf_Word e_flags_;
375
376   // ELF st_other field for local symbols.
377   std::vector<unsigned char> st_other_;
378 };
379
380 template<int size, bool big_endian>
381 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
382 {
383 public:
384   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
385
386   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
387                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
388     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
389       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
390   {
391     this->set_abiversion(0);
392   }
393
394   ~Powerpc_dynobj()
395   { }
396
397   // Call Sized_dynobj::do_read_symbols to read the symbols then
398   // read .opd from a dynamic object, filling in opd_ent_ vector,
399   void
400   do_read_symbols(Read_symbols_data*);
401
402   // The .opd section shndx.
403   unsigned int
404   opd_shndx() const
405   {
406     return this->opd_shndx_;
407   }
408
409   // The .opd section address.
410   Address
411   opd_address() const
412   {
413     return this->opd_address_;
414   }
415
416   // Init OPD entry arrays.
417   void
418   init_opd(size_t opd_size)
419   {
420     size_t count = this->opd_ent_ndx(opd_size);
421     this->opd_ent_.resize(count);
422   }
423
424   // Return section and offset of function entry for .opd + R_OFF.
425   unsigned int
426   get_opd_ent(Address r_off, Address* value = NULL) const
427   {
428     size_t ndx = this->opd_ent_ndx(r_off);
429     gold_assert(ndx < this->opd_ent_.size());
430     gold_assert(this->opd_ent_[ndx].shndx != 0);
431     if (value != NULL)
432       *value = this->opd_ent_[ndx].off;
433     return this->opd_ent_[ndx].shndx;
434   }
435
436   // Set section and offset of function entry for .opd + R_OFF.
437   void
438   set_opd_ent(Address r_off, unsigned int shndx, Address value)
439   {
440     size_t ndx = this->opd_ent_ndx(r_off);
441     gold_assert(ndx < this->opd_ent_.size());
442     this->opd_ent_[ndx].shndx = shndx;
443     this->opd_ent_[ndx].off = value;
444   }
445
446   int
447   abiversion() const
448   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
449
450   // Set ABI version for input and output.
451   void
452   set_abiversion(int ver);
453
454 private:
455   // Used to specify extent of executable sections.
456   struct Sec_info
457   {
458     Sec_info(Address start_, Address len_, unsigned int shndx_)
459       : start(start_), len(len_), shndx(shndx_)
460     { }
461
462     bool
463     operator<(const Sec_info& that) const
464     { return this->start < that.start; }
465
466     Address start;
467     Address len;
468     unsigned int shndx;
469   };
470
471   struct Opd_ent
472   {
473     unsigned int shndx;
474     Address off;
475   };
476
477   // Return index into opd_ent_ array for .opd entry at OFF.
478   size_t
479   opd_ent_ndx(size_t off) const
480   { return off >> 4;}
481
482   // For 64-bit the .opd section shndx and address.
483   unsigned int opd_shndx_;
484   Address opd_address_;
485
486   // The first 8-byte word of an OPD entry gives the address of the
487   // entry point of the function.  Records the section and offset
488   // corresponding to the address.  Note that in dynamic objects,
489   // offset is *not* relative to the section.
490   std::vector<Opd_ent> opd_ent_;
491
492   // Header e_flags
493   elfcpp::Elf_Word e_flags_;
494 };
495
496 template<int size, bool big_endian>
497 class Target_powerpc : public Sized_target<size, big_endian>
498 {
499  public:
500   typedef
501     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
502   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
503   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
504   static const Address invalid_address = static_cast<Address>(0) - 1;
505   // Offset of tp and dtp pointers from start of TLS block.
506   static const Address tp_offset = 0x7000;
507   static const Address dtp_offset = 0x8000;
508
509   Target_powerpc()
510     : Sized_target<size, big_endian>(&powerpc_info),
511       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
512       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
513       tlsld_got_offset_(-1U),
514       stub_tables_(), branch_lookup_table_(), branch_info_(),
515       plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
516       stub_group_size_(0), savres_section_(0)
517   {
518   }
519
520   // Process the relocations to determine unreferenced sections for
521   // garbage collection.
522   void
523   gc_process_relocs(Symbol_table* symtab,
524                     Layout* layout,
525                     Sized_relobj_file<size, big_endian>* object,
526                     unsigned int data_shndx,
527                     unsigned int sh_type,
528                     const unsigned char* prelocs,
529                     size_t reloc_count,
530                     Output_section* output_section,
531                     bool needs_special_offset_handling,
532                     size_t local_symbol_count,
533                     const unsigned char* plocal_symbols);
534
535   // Scan the relocations to look for symbol adjustments.
536   void
537   scan_relocs(Symbol_table* symtab,
538               Layout* layout,
539               Sized_relobj_file<size, big_endian>* object,
540               unsigned int data_shndx,
541               unsigned int sh_type,
542               const unsigned char* prelocs,
543               size_t reloc_count,
544               Output_section* output_section,
545               bool needs_special_offset_handling,
546               size_t local_symbol_count,
547               const unsigned char* plocal_symbols);
548
549   // Map input .toc section to output .got section.
550   const char*
551   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
552   {
553     if (size == 64 && strcmp(name, ".toc") == 0)
554       {
555         *plen = 4;
556         return ".got";
557       }
558     return NULL;
559   }
560
561   // Provide linker defined save/restore functions.
562   void
563   define_save_restore_funcs(Layout*, Symbol_table*);
564
565   // No stubs unless a final link.
566   bool
567   do_may_relax() const
568   { return !parameters->options().relocatable(); }
569
570   bool
571   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
572
573   void
574   do_plt_fde_location(const Output_data*, unsigned char*,
575                       uint64_t*, off_t*) const;
576
577   // Stash info about branches, for stub generation.
578   void
579   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
580               unsigned int data_shndx, Address r_offset,
581               unsigned int r_type, unsigned int r_sym, Address addend)
582   {
583     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
584     this->branch_info_.push_back(info);
585     if (r_type == elfcpp::R_POWERPC_REL14
586         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
587         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
588       ppc_object->set_has_14bit_branch(data_shndx);
589   }
590
591   void
592   do_define_standard_symbols(Symbol_table*, Layout*);
593
594   // Finalize the sections.
595   void
596   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
597
598   // Return the value to use for a dynamic which requires special
599   // treatment.
600   uint64_t
601   do_dynsym_value(const Symbol*) const;
602
603   // Return the PLT address to use for a local symbol.
604   uint64_t
605   do_plt_address_for_local(const Relobj*, unsigned int) const;
606
607   // Return the PLT address to use for a global symbol.
608   uint64_t
609   do_plt_address_for_global(const Symbol*) const;
610
611   // Return the offset to use for the GOT_INDX'th got entry which is
612   // for a local tls symbol specified by OBJECT, SYMNDX.
613   int64_t
614   do_tls_offset_for_local(const Relobj* object,
615                           unsigned int symndx,
616                           unsigned int got_indx) const;
617
618   // Return the offset to use for the GOT_INDX'th got entry which is
619   // for global tls symbol GSYM.
620   int64_t
621   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
622
623   void
624   do_function_location(Symbol_location*) const;
625
626   bool
627   do_can_check_for_function_pointers() const
628   { return true; }
629
630   // Adjust -fsplit-stack code which calls non-split-stack code.
631   void
632   do_calls_non_split(Relobj* object, unsigned int shndx,
633                      section_offset_type fnoffset, section_size_type fnsize,
634                      unsigned char* view, section_size_type view_size,
635                      std::string* from, std::string* to) const;
636
637   // Relocate a section.
638   void
639   relocate_section(const Relocate_info<size, big_endian>*,
640                    unsigned int sh_type,
641                    const unsigned char* prelocs,
642                    size_t reloc_count,
643                    Output_section* output_section,
644                    bool needs_special_offset_handling,
645                    unsigned char* view,
646                    Address view_address,
647                    section_size_type view_size,
648                    const Reloc_symbol_changes*);
649
650   // Scan the relocs during a relocatable link.
651   void
652   scan_relocatable_relocs(Symbol_table* symtab,
653                           Layout* layout,
654                           Sized_relobj_file<size, big_endian>* object,
655                           unsigned int data_shndx,
656                           unsigned int sh_type,
657                           const unsigned char* prelocs,
658                           size_t reloc_count,
659                           Output_section* output_section,
660                           bool needs_special_offset_handling,
661                           size_t local_symbol_count,
662                           const unsigned char* plocal_symbols,
663                           Relocatable_relocs*);
664
665   // Emit relocations for a section.
666   void
667   relocate_relocs(const Relocate_info<size, big_endian>*,
668                   unsigned int sh_type,
669                   const unsigned char* prelocs,
670                   size_t reloc_count,
671                   Output_section* output_section,
672                   typename elfcpp::Elf_types<size>::Elf_Off
673                     offset_in_output_section,
674                   const Relocatable_relocs*,
675                   unsigned char*,
676                   Address view_address,
677                   section_size_type,
678                   unsigned char* reloc_view,
679                   section_size_type reloc_view_size);
680
681   // Return whether SYM is defined by the ABI.
682   bool
683   do_is_defined_by_abi(const Symbol* sym) const
684   {
685     return strcmp(sym->name(), "__tls_get_addr") == 0;
686   }
687
688   // Return the size of the GOT section.
689   section_size_type
690   got_size() const
691   {
692     gold_assert(this->got_ != NULL);
693     return this->got_->data_size();
694   }
695
696   // Get the PLT section.
697   const Output_data_plt_powerpc<size, big_endian>*
698   plt_section() const
699   {
700     gold_assert(this->plt_ != NULL);
701     return this->plt_;
702   }
703
704   // Get the IPLT section.
705   const Output_data_plt_powerpc<size, big_endian>*
706   iplt_section() const
707   {
708     gold_assert(this->iplt_ != NULL);
709     return this->iplt_;
710   }
711
712   // Get the .glink section.
713   const Output_data_glink<size, big_endian>*
714   glink_section() const
715   {
716     gold_assert(this->glink_ != NULL);
717     return this->glink_;
718   }
719
720   Output_data_glink<size, big_endian>*
721   glink_section()
722   {
723     gold_assert(this->glink_ != NULL);
724     return this->glink_;
725   }
726
727   bool has_glink() const
728   { return this->glink_ != NULL; }
729
730   // Get the GOT section.
731   const Output_data_got_powerpc<size, big_endian>*
732   got_section() const
733   {
734     gold_assert(this->got_ != NULL);
735     return this->got_;
736   }
737
738   // Get the GOT section, creating it if necessary.
739   Output_data_got_powerpc<size, big_endian>*
740   got_section(Symbol_table*, Layout*);
741
742   Object*
743   do_make_elf_object(const std::string&, Input_file*, off_t,
744                      const elfcpp::Ehdr<size, big_endian>&);
745
746   // Return the number of entries in the GOT.
747   unsigned int
748   got_entry_count() const
749   {
750     if (this->got_ == NULL)
751       return 0;
752     return this->got_size() / (size / 8);
753   }
754
755   // Return the number of entries in the PLT.
756   unsigned int
757   plt_entry_count() const;
758
759   // Return the offset of the first non-reserved PLT entry.
760   unsigned int
761   first_plt_entry_offset() const
762   {
763     if (size == 32)
764       return 0;
765     if (this->abiversion() >= 2)
766       return 16;
767     return 24;
768   }
769
770   // Return the size of each PLT entry.
771   unsigned int
772   plt_entry_size() const
773   {
774     if (size == 32)
775       return 4;
776     if (this->abiversion() >= 2)
777       return 8;
778     return 24;
779   }
780
781   Output_data_save_res<size, big_endian>*
782   savres_section() const
783   {
784     return this->savres_section_;
785   }
786
787   // Add any special sections for this symbol to the gc work list.
788   // For powerpc64, this adds the code section of a function
789   // descriptor.
790   void
791   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
792
793   // Handle target specific gc actions when adding a gc reference from
794   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
795   // and DST_OFF.  For powerpc64, this adds a referenc to the code
796   // section of a function descriptor.
797   void
798   do_gc_add_reference(Symbol_table* symtab,
799                       Relobj* src_obj,
800                       unsigned int src_shndx,
801                       Relobj* dst_obj,
802                       unsigned int dst_shndx,
803                       Address dst_off) const;
804
805   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
806   const Stub_tables&
807   stub_tables() const
808   { return this->stub_tables_; }
809
810   const Output_data_brlt_powerpc<size, big_endian>*
811   brlt_section() const
812   { return this->brlt_section_; }
813
814   void
815   add_branch_lookup_table(Address to)
816   {
817     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
818     this->branch_lookup_table_.insert(std::make_pair(to, off));
819   }
820
821   Address
822   find_branch_lookup_table(Address to)
823   {
824     typename Branch_lookup_table::const_iterator p
825       = this->branch_lookup_table_.find(to);
826     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
827   }
828
829   void
830   write_branch_lookup_table(unsigned char *oview)
831   {
832     for (typename Branch_lookup_table::const_iterator p
833            = this->branch_lookup_table_.begin();
834          p != this->branch_lookup_table_.end();
835          ++p)
836       {
837         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
838       }
839   }
840
841   bool
842   plt_thread_safe() const
843   { return this->plt_thread_safe_; }
844
845   int
846   abiversion () const
847   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
848
849   void
850   set_abiversion (int ver)
851   {
852     elfcpp::Elf_Word flags = this->processor_specific_flags();
853     flags &= ~elfcpp::EF_PPC64_ABI;
854     flags |= ver & elfcpp::EF_PPC64_ABI;
855     this->set_processor_specific_flags(flags);
856   }
857
858   // Offset to to save stack slot
859   int
860   stk_toc () const
861   { return this->abiversion() < 2 ? 40 : 24; }
862
863  private:
864
865   class Track_tls
866   {
867   public:
868     enum Tls_get_addr
869     {
870       NOT_EXPECTED = 0,
871       EXPECTED = 1,
872       SKIP = 2,
873       NORMAL = 3
874     };
875
876     Track_tls()
877       : tls_get_addr_(NOT_EXPECTED),
878         relinfo_(NULL), relnum_(0), r_offset_(0)
879     { }
880
881     ~Track_tls()
882     {
883       if (this->tls_get_addr_ != NOT_EXPECTED)
884         this->missing();
885     }
886
887     void
888     missing(void)
889     {
890       if (this->relinfo_ != NULL)
891         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
892                                _("missing expected __tls_get_addr call"));
893     }
894
895     void
896     expect_tls_get_addr_call(
897         const Relocate_info<size, big_endian>* relinfo,
898         size_t relnum,
899         Address r_offset)
900     {
901       this->tls_get_addr_ = EXPECTED;
902       this->relinfo_ = relinfo;
903       this->relnum_ = relnum;
904       this->r_offset_ = r_offset;
905     }
906
907     void
908     expect_tls_get_addr_call()
909     { this->tls_get_addr_ = EXPECTED; }
910
911     void
912     skip_next_tls_get_addr_call()
913     {this->tls_get_addr_ = SKIP; }
914
915     Tls_get_addr
916     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
917     {
918       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
919                            || r_type == elfcpp::R_PPC_PLTREL24)
920                           && gsym != NULL
921                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
922       Tls_get_addr last_tls = this->tls_get_addr_;
923       this->tls_get_addr_ = NOT_EXPECTED;
924       if (is_tls_call && last_tls != EXPECTED)
925         return last_tls;
926       else if (!is_tls_call && last_tls != NOT_EXPECTED)
927         {
928           this->missing();
929           return EXPECTED;
930         }
931       return NORMAL;
932     }
933
934   private:
935     // What we're up to regarding calls to __tls_get_addr.
936     // On powerpc, the branch and link insn making a call to
937     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
938     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
939     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
940     // The marker relocation always comes first, and has the same
941     // symbol as the reloc on the insn setting up the __tls_get_addr
942     // argument.  This ties the arg setup insn with the call insn,
943     // allowing ld to safely optimize away the call.  We check that
944     // every call to __tls_get_addr has a marker relocation, and that
945     // every marker relocation is on a call to __tls_get_addr.
946     Tls_get_addr tls_get_addr_;
947     // Info about the last reloc for error message.
948     const Relocate_info<size, big_endian>* relinfo_;
949     size_t relnum_;
950     Address r_offset_;
951   };
952
953   // The class which scans relocations.
954   class Scan : protected Track_tls
955   {
956   public:
957     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
958
959     Scan()
960       : Track_tls(), issued_non_pic_error_(false)
961     { }
962
963     static inline int
964     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
965
966     inline void
967     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
968           Sized_relobj_file<size, big_endian>* object,
969           unsigned int data_shndx,
970           Output_section* output_section,
971           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
972           const elfcpp::Sym<size, big_endian>& lsym,
973           bool is_discarded);
974
975     inline void
976     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
977            Sized_relobj_file<size, big_endian>* object,
978            unsigned int data_shndx,
979            Output_section* output_section,
980            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
981            Symbol* gsym);
982
983     inline bool
984     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
985                                         Target_powerpc* ,
986                                         Sized_relobj_file<size, big_endian>* relobj,
987                                         unsigned int ,
988                                         Output_section* ,
989                                         const elfcpp::Rela<size, big_endian>& ,
990                                         unsigned int r_type,
991                                         const elfcpp::Sym<size, big_endian>&)
992     {
993       // PowerPC64 .opd is not folded, so any identical function text
994       // may be folded and we'll still keep function addresses distinct.
995       // That means no reloc is of concern here.
996       if (size == 64)
997         {
998           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
999             <Powerpc_relobj<size, big_endian>*>(relobj);
1000           if (ppcobj->abiversion() == 1)
1001             return false;
1002         }
1003       // For 32-bit and ELFv2, conservatively assume anything but calls to
1004       // function code might be taking the address of the function.
1005       return !is_branch_reloc(r_type);
1006     }
1007
1008     inline bool
1009     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1010                                          Target_powerpc* ,
1011                                          Sized_relobj_file<size, big_endian>* relobj,
1012                                          unsigned int ,
1013                                          Output_section* ,
1014                                          const elfcpp::Rela<size, big_endian>& ,
1015                                          unsigned int r_type,
1016                                          Symbol*)
1017     {
1018       // As above.
1019       if (size == 64)
1020         {
1021           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1022             <Powerpc_relobj<size, big_endian>*>(relobj);
1023           if (ppcobj->abiversion() == 1)
1024             return false;
1025         }
1026       return !is_branch_reloc(r_type);
1027     }
1028
1029     static bool
1030     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1031                               Sized_relobj_file<size, big_endian>* object,
1032                               unsigned int r_type, bool report_err);
1033
1034   private:
1035     static void
1036     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1037                             unsigned int r_type);
1038
1039     static void
1040     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1041                              unsigned int r_type, Symbol*);
1042
1043     static void
1044     generate_tls_call(Symbol_table* symtab, Layout* layout,
1045                       Target_powerpc* target);
1046
1047     void
1048     check_non_pic(Relobj*, unsigned int r_type);
1049
1050     // Whether we have issued an error about a non-PIC compilation.
1051     bool issued_non_pic_error_;
1052   };
1053
1054   bool
1055   symval_for_branch(const Symbol_table* symtab,
1056                     const Sized_symbol<size>* gsym,
1057                     Powerpc_relobj<size, big_endian>* object,
1058                     Address *value, unsigned int *dest_shndx);
1059
1060   // The class which implements relocation.
1061   class Relocate : protected Track_tls
1062   {
1063    public:
1064     // Use 'at' branch hints when true, 'y' when false.
1065     // FIXME maybe: set this with an option.
1066     static const bool is_isa_v2 = true;
1067
1068     Relocate()
1069       : Track_tls()
1070     { }
1071
1072     // Do a relocation.  Return false if the caller should not issue
1073     // any warnings about this relocation.
1074     inline bool
1075     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1076              Output_section*, size_t relnum,
1077              const elfcpp::Rela<size, big_endian>&,
1078              unsigned int r_type, const Sized_symbol<size>*,
1079              const Symbol_value<size>*,
1080              unsigned char*,
1081              typename elfcpp::Elf_types<size>::Elf_Addr,
1082              section_size_type);
1083   };
1084
1085   class Relocate_comdat_behavior
1086   {
1087    public:
1088     // Decide what the linker should do for relocations that refer to
1089     // discarded comdat sections.
1090     inline Comdat_behavior
1091     get(const char* name)
1092     {
1093       gold::Default_comdat_behavior default_behavior;
1094       Comdat_behavior ret = default_behavior.get(name);
1095       if (ret == CB_WARNING)
1096         {
1097           if (size == 32
1098               && (strcmp(name, ".fixup") == 0
1099                   || strcmp(name, ".got2") == 0))
1100             ret = CB_IGNORE;
1101           if (size == 64
1102               && (strcmp(name, ".opd") == 0
1103                   || strcmp(name, ".toc") == 0
1104                   || strcmp(name, ".toc1") == 0))
1105             ret = CB_IGNORE;
1106         }
1107       return ret;
1108     }
1109   };
1110
1111   // A class which returns the size required for a relocation type,
1112   // used while scanning relocs during a relocatable link.
1113   class Relocatable_size_for_reloc
1114   {
1115    public:
1116     unsigned int
1117     get_size_for_reloc(unsigned int, Relobj*)
1118     {
1119       gold_unreachable();
1120       return 0;
1121     }
1122   };
1123
1124   // Optimize the TLS relocation type based on what we know about the
1125   // symbol.  IS_FINAL is true if the final address of this symbol is
1126   // known at link time.
1127
1128   tls::Tls_optimization
1129   optimize_tls_gd(bool is_final)
1130   {
1131     // If we are generating a shared library, then we can't do anything
1132     // in the linker.
1133     if (parameters->options().shared())
1134       return tls::TLSOPT_NONE;
1135
1136     if (!is_final)
1137       return tls::TLSOPT_TO_IE;
1138     return tls::TLSOPT_TO_LE;
1139   }
1140
1141   tls::Tls_optimization
1142   optimize_tls_ld()
1143   {
1144     if (parameters->options().shared())
1145       return tls::TLSOPT_NONE;
1146
1147     return tls::TLSOPT_TO_LE;
1148   }
1149
1150   tls::Tls_optimization
1151   optimize_tls_ie(bool is_final)
1152   {
1153     if (!is_final || parameters->options().shared())
1154       return tls::TLSOPT_NONE;
1155
1156     return tls::TLSOPT_TO_LE;
1157   }
1158
1159   // Create glink.
1160   void
1161   make_glink_section(Layout*);
1162
1163   // Create the PLT section.
1164   void
1165   make_plt_section(Symbol_table*, Layout*);
1166
1167   void
1168   make_iplt_section(Symbol_table*, Layout*);
1169
1170   void
1171   make_brlt_section(Layout*);
1172
1173   // Create a PLT entry for a global symbol.
1174   void
1175   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1176
1177   // Create a PLT entry for a local IFUNC symbol.
1178   void
1179   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1180                              Sized_relobj_file<size, big_endian>*,
1181                              unsigned int);
1182
1183
1184   // Create a GOT entry for local dynamic __tls_get_addr.
1185   unsigned int
1186   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1187                    Sized_relobj_file<size, big_endian>* object);
1188
1189   unsigned int
1190   tlsld_got_offset() const
1191   {
1192     return this->tlsld_got_offset_;
1193   }
1194
1195   // Get the dynamic reloc section, creating it if necessary.
1196   Reloc_section*
1197   rela_dyn_section(Layout*);
1198
1199   // Similarly, but for ifunc symbols get the one for ifunc.
1200   Reloc_section*
1201   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1202
1203   // Copy a relocation against a global symbol.
1204   void
1205   copy_reloc(Symbol_table* symtab, Layout* layout,
1206              Sized_relobj_file<size, big_endian>* object,
1207              unsigned int shndx, Output_section* output_section,
1208              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1209   {
1210     this->copy_relocs_.copy_reloc(symtab, layout,
1211                                   symtab->get_sized_symbol<size>(sym),
1212                                   object, shndx, output_section,
1213                                   reloc, this->rela_dyn_section(layout));
1214   }
1215
1216   // Look over all the input sections, deciding where to place stubs.
1217   void
1218   group_sections(Layout*, const Task*, bool);
1219
1220   // Sort output sections by address.
1221   struct Sort_sections
1222   {
1223     bool
1224     operator()(const Output_section* sec1, const Output_section* sec2)
1225     { return sec1->address() < sec2->address(); }
1226   };
1227
1228   class Branch_info
1229   {
1230    public:
1231     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1232                 unsigned int data_shndx,
1233                 Address r_offset,
1234                 unsigned int r_type,
1235                 unsigned int r_sym,
1236                 Address addend)
1237       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1238         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1239     { }
1240
1241     ~Branch_info()
1242     { }
1243
1244     // If this branch needs a plt call stub, or a long branch stub, make one.
1245     bool
1246     make_stub(Stub_table<size, big_endian>*,
1247               Stub_table<size, big_endian>*,
1248               Symbol_table*) const;
1249
1250    private:
1251     // The branch location..
1252     Powerpc_relobj<size, big_endian>* object_;
1253     unsigned int shndx_;
1254     Address offset_;
1255     // ..and the branch type and destination.
1256     unsigned int r_type_;
1257     unsigned int r_sym_;
1258     Address addend_;
1259   };
1260
1261   // Information about this specific target which we pass to the
1262   // general Target structure.
1263   static Target::Target_info powerpc_info;
1264
1265   // The types of GOT entries needed for this platform.
1266   // These values are exposed to the ABI in an incremental link.
1267   // Do not renumber existing values without changing the version
1268   // number of the .gnu_incremental_inputs section.
1269   enum Got_type
1270   {
1271     GOT_TYPE_STANDARD,
1272     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1273     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1274     GOT_TYPE_TPREL      // entry for @got@tprel
1275   };
1276
1277   // The GOT section.
1278   Output_data_got_powerpc<size, big_endian>* got_;
1279   // The PLT section.  This is a container for a table of addresses,
1280   // and their relocations.  Each address in the PLT has a dynamic
1281   // relocation (R_*_JMP_SLOT) and each address will have a
1282   // corresponding entry in .glink for lazy resolution of the PLT.
1283   // ppc32 initialises the PLT to point at the .glink entry, while
1284   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1285   // linker adds a stub that loads the PLT entry into ctr then
1286   // branches to ctr.  There may be more than one stub for each PLT
1287   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1288   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1289   Output_data_plt_powerpc<size, big_endian>* plt_;
1290   // The IPLT section.  Like plt_, this is a container for a table of
1291   // addresses and their relocations, specifically for STT_GNU_IFUNC
1292   // functions that resolve locally (STT_GNU_IFUNC functions that
1293   // don't resolve locally go in PLT).  Unlike plt_, these have no
1294   // entry in .glink for lazy resolution, and the relocation section
1295   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1296   // the relocation section may contain relocations against
1297   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1298   // relocation section will appear at the end of other dynamic
1299   // relocations, so that ld.so applies these relocations after other
1300   // dynamic relocations.  In a static executable, the relocation
1301   // section is emitted and marked with __rela_iplt_start and
1302   // __rela_iplt_end symbols.
1303   Output_data_plt_powerpc<size, big_endian>* iplt_;
1304   // Section holding long branch destinations.
1305   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1306   // The .glink section.
1307   Output_data_glink<size, big_endian>* glink_;
1308   // The dynamic reloc section.
1309   Reloc_section* rela_dyn_;
1310   // Relocs saved to avoid a COPY reloc.
1311   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1312   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1313   unsigned int tlsld_got_offset_;
1314
1315   Stub_tables stub_tables_;
1316   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1317   Branch_lookup_table branch_lookup_table_;
1318
1319   typedef std::vector<Branch_info> Branches;
1320   Branches branch_info_;
1321
1322   bool plt_thread_safe_;
1323
1324   bool relax_failed_;
1325   int relax_fail_count_;
1326   int32_t stub_group_size_;
1327
1328   Output_data_save_res<size, big_endian> *savres_section_;
1329 };
1330
1331 template<>
1332 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1333 {
1334   32,                   // size
1335   true,                 // is_big_endian
1336   elfcpp::EM_PPC,       // machine_code
1337   false,                // has_make_symbol
1338   false,                // has_resolve
1339   false,                // has_code_fill
1340   true,                 // is_default_stack_executable
1341   false,                // can_icf_inline_merge_sections
1342   '\0',                 // wrap_char
1343   "/usr/lib/ld.so.1",   // dynamic_linker
1344   0x10000000,           // default_text_segment_address
1345   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1346   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1347   false,                // isolate_execinstr
1348   0,                    // rosegment_gap
1349   elfcpp::SHN_UNDEF,    // small_common_shndx
1350   elfcpp::SHN_UNDEF,    // large_common_shndx
1351   0,                    // small_common_section_flags
1352   0,                    // large_common_section_flags
1353   NULL,                 // attributes_section
1354   NULL,                 // attributes_vendor
1355   "_start",             // entry_symbol_name
1356   32,                   // hash_entry_size
1357 };
1358
1359 template<>
1360 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1361 {
1362   32,                   // size
1363   false,                // is_big_endian
1364   elfcpp::EM_PPC,       // machine_code
1365   false,                // has_make_symbol
1366   false,                // has_resolve
1367   false,                // has_code_fill
1368   true,                 // is_default_stack_executable
1369   false,                // can_icf_inline_merge_sections
1370   '\0',                 // wrap_char
1371   "/usr/lib/ld.so.1",   // dynamic_linker
1372   0x10000000,           // default_text_segment_address
1373   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1374   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1375   false,                // isolate_execinstr
1376   0,                    // rosegment_gap
1377   elfcpp::SHN_UNDEF,    // small_common_shndx
1378   elfcpp::SHN_UNDEF,    // large_common_shndx
1379   0,                    // small_common_section_flags
1380   0,                    // large_common_section_flags
1381   NULL,                 // attributes_section
1382   NULL,                 // attributes_vendor
1383   "_start",             // entry_symbol_name
1384   32,                   // hash_entry_size
1385 };
1386
1387 template<>
1388 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1389 {
1390   64,                   // size
1391   true,                 // is_big_endian
1392   elfcpp::EM_PPC64,     // machine_code
1393   false,                // has_make_symbol
1394   false,                // has_resolve
1395   false,                // has_code_fill
1396   true,                 // is_default_stack_executable
1397   false,                // can_icf_inline_merge_sections
1398   '\0',                 // wrap_char
1399   "/usr/lib/ld.so.1",   // dynamic_linker
1400   0x10000000,           // default_text_segment_address
1401   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1402   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1403   false,                // isolate_execinstr
1404   0,                    // rosegment_gap
1405   elfcpp::SHN_UNDEF,    // small_common_shndx
1406   elfcpp::SHN_UNDEF,    // large_common_shndx
1407   0,                    // small_common_section_flags
1408   0,                    // large_common_section_flags
1409   NULL,                 // attributes_section
1410   NULL,                 // attributes_vendor
1411   "_start",             // entry_symbol_name
1412   32,                   // hash_entry_size
1413 };
1414
1415 template<>
1416 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1417 {
1418   64,                   // size
1419   false,                // is_big_endian
1420   elfcpp::EM_PPC64,     // machine_code
1421   false,                // has_make_symbol
1422   false,                // has_resolve
1423   false,                // has_code_fill
1424   true,                 // is_default_stack_executable
1425   false,                // can_icf_inline_merge_sections
1426   '\0',                 // wrap_char
1427   "/usr/lib/ld.so.1",   // dynamic_linker
1428   0x10000000,           // default_text_segment_address
1429   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1430   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1431   false,                // isolate_execinstr
1432   0,                    // rosegment_gap
1433   elfcpp::SHN_UNDEF,    // small_common_shndx
1434   elfcpp::SHN_UNDEF,    // large_common_shndx
1435   0,                    // small_common_section_flags
1436   0,                    // large_common_section_flags
1437   NULL,                 // attributes_section
1438   NULL,                 // attributes_vendor
1439   "_start",             // entry_symbol_name
1440   32,                   // hash_entry_size
1441 };
1442
1443 inline bool
1444 is_branch_reloc(unsigned int r_type)
1445 {
1446   return (r_type == elfcpp::R_POWERPC_REL24
1447           || r_type == elfcpp::R_PPC_PLTREL24
1448           || r_type == elfcpp::R_PPC_LOCAL24PC
1449           || r_type == elfcpp::R_POWERPC_REL14
1450           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1451           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1452           || r_type == elfcpp::R_POWERPC_ADDR24
1453           || r_type == elfcpp::R_POWERPC_ADDR14
1454           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1455           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1456 }
1457
1458 // If INSN is an opcode that may be used with an @tls operand, return
1459 // the transformed insn for TLS optimisation, otherwise return 0.  If
1460 // REG is non-zero only match an insn with RB or RA equal to REG.
1461 uint32_t
1462 at_tls_transform(uint32_t insn, unsigned int reg)
1463 {
1464   if ((insn & (0x3f << 26)) != 31 << 26)
1465     return 0;
1466
1467   unsigned int rtra;
1468   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1469     rtra = insn & ((1 << 26) - (1 << 16));
1470   else if (((insn >> 16) & 0x1f) == reg)
1471     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1472   else
1473     return 0;
1474
1475   if ((insn & (0x3ff << 1)) == 266 << 1)
1476     // add -> addi
1477     insn = 14 << 26;
1478   else if ((insn & (0x1f << 1)) == 23 << 1
1479            && ((insn & (0x1f << 6)) < 14 << 6
1480                || ((insn & (0x1f << 6)) >= 16 << 6
1481                    && (insn & (0x1f << 6)) < 24 << 6)))
1482     // load and store indexed -> dform
1483     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1484   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1485     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1486     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1487   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1488     // lwax -> lwa
1489     insn = (58 << 26) | 2;
1490   else
1491     return 0;
1492   insn |= rtra;
1493   return insn;
1494 }
1495
1496
1497 template<int size, bool big_endian>
1498 class Powerpc_relocate_functions
1499 {
1500 public:
1501   enum Overflow_check
1502   {
1503     CHECK_NONE,
1504     CHECK_SIGNED,
1505     CHECK_UNSIGNED,
1506     CHECK_BITFIELD,
1507     CHECK_LOW_INSN,
1508     CHECK_HIGH_INSN
1509   };
1510
1511   enum Status
1512   {
1513     STATUS_OK,
1514     STATUS_OVERFLOW
1515   };
1516
1517 private:
1518   typedef Powerpc_relocate_functions<size, big_endian> This;
1519   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1520
1521   template<int valsize>
1522   static inline bool
1523   has_overflow_signed(Address value)
1524   {
1525     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1526     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1527     limit <<= ((valsize - 1) >> 1);
1528     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1529     return value + limit > (limit << 1) - 1;
1530   }
1531
1532   template<int valsize>
1533   static inline bool
1534   has_overflow_unsigned(Address value)
1535   {
1536     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1537     limit <<= ((valsize - 1) >> 1);
1538     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1539     return value > (limit << 1) - 1;
1540   }
1541
1542   template<int valsize>
1543   static inline bool
1544   has_overflow_bitfield(Address value)
1545   {
1546     return (has_overflow_unsigned<valsize>(value)
1547             && has_overflow_signed<valsize>(value));
1548   }
1549
1550   template<int valsize>
1551   static inline Status
1552   overflowed(Address value, Overflow_check overflow)
1553   {
1554     if (overflow == CHECK_SIGNED)
1555       {
1556         if (has_overflow_signed<valsize>(value))
1557           return STATUS_OVERFLOW;
1558       }
1559     else if (overflow == CHECK_UNSIGNED)
1560       {
1561         if (has_overflow_unsigned<valsize>(value))
1562           return STATUS_OVERFLOW;
1563       }
1564     else if (overflow == CHECK_BITFIELD)
1565       {
1566         if (has_overflow_bitfield<valsize>(value))
1567           return STATUS_OVERFLOW;
1568       }
1569     return STATUS_OK;
1570   }
1571
1572   // Do a simple RELA relocation
1573   template<int fieldsize, int valsize>
1574   static inline Status
1575   rela(unsigned char* view, Address value, Overflow_check overflow)
1576   {
1577     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1578     Valtype* wv = reinterpret_cast<Valtype*>(view);
1579     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1580     return overflowed<valsize>(value, overflow);
1581   }
1582
1583   template<int fieldsize, int valsize>
1584   static inline Status
1585   rela(unsigned char* view,
1586        unsigned int right_shift,
1587        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1588        Address value,
1589        Overflow_check overflow)
1590   {
1591     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1592     Valtype* wv = reinterpret_cast<Valtype*>(view);
1593     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1594     Valtype reloc = value >> right_shift;
1595     val &= ~dst_mask;
1596     reloc &= dst_mask;
1597     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1598     return overflowed<valsize>(value >> right_shift, overflow);
1599   }
1600
1601   // Do a simple RELA relocation, unaligned.
1602   template<int fieldsize, int valsize>
1603   static inline Status
1604   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1605   {
1606     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1607     return overflowed<valsize>(value, overflow);
1608   }
1609
1610   template<int fieldsize, int valsize>
1611   static inline Status
1612   rela_ua(unsigned char* view,
1613           unsigned int right_shift,
1614           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1615           Address value,
1616           Overflow_check overflow)
1617   {
1618     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1619       Valtype;
1620     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1621     Valtype reloc = value >> right_shift;
1622     val &= ~dst_mask;
1623     reloc &= dst_mask;
1624     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1625     return overflowed<valsize>(value >> right_shift, overflow);
1626   }
1627
1628 public:
1629   // R_PPC64_ADDR64: (Symbol + Addend)
1630   static inline void
1631   addr64(unsigned char* view, Address value)
1632   { This::template rela<64,64>(view, value, CHECK_NONE); }
1633
1634   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1635   static inline void
1636   addr64_u(unsigned char* view, Address value)
1637   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1638
1639   // R_POWERPC_ADDR32: (Symbol + Addend)
1640   static inline Status
1641   addr32(unsigned char* view, Address value, Overflow_check overflow)
1642   { return This::template rela<32,32>(view, value, overflow); }
1643
1644   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1645   static inline Status
1646   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1647   { return This::template rela_ua<32,32>(view, value, overflow); }
1648
1649   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1650   static inline Status
1651   addr24(unsigned char* view, Address value, Overflow_check overflow)
1652   {
1653     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1654                                              value, overflow);
1655     if (overflow != CHECK_NONE && (value & 3) != 0)
1656       stat = STATUS_OVERFLOW;
1657     return stat;
1658   }
1659
1660   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1661   static inline Status
1662   addr16(unsigned char* view, Address value, Overflow_check overflow)
1663   { return This::template rela<16,16>(view, value, overflow); }
1664
1665   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1666   static inline Status
1667   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1668   { return This::template rela_ua<16,16>(view, value, overflow); }
1669
1670   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1671   static inline Status
1672   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1673   {
1674     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1675     if ((value & 3) != 0)
1676       stat = STATUS_OVERFLOW;
1677     return stat;
1678   }
1679
1680   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1681   static inline void
1682   addr16_hi(unsigned char* view, Address value)
1683   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1684
1685   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1686   static inline void
1687   addr16_ha(unsigned char* view, Address value)
1688   { This::addr16_hi(view, value + 0x8000); }
1689
1690   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1691   static inline void
1692   addr16_hi2(unsigned char* view, Address value)
1693   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1694
1695   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1696   static inline void
1697   addr16_ha2(unsigned char* view, Address value)
1698   { This::addr16_hi2(view, value + 0x8000); }
1699
1700   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1701   static inline void
1702   addr16_hi3(unsigned char* view, Address value)
1703   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1704
1705   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1706   static inline void
1707   addr16_ha3(unsigned char* view, Address value)
1708   { This::addr16_hi3(view, value + 0x8000); }
1709
1710   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1711   static inline Status
1712   addr14(unsigned char* view, Address value, Overflow_check overflow)
1713   {
1714     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1715     if (overflow != CHECK_NONE && (value & 3) != 0)
1716       stat = STATUS_OVERFLOW;
1717     return stat;
1718   }
1719 };
1720
1721 // Set ABI version for input and output.
1722
1723 template<int size, bool big_endian>
1724 void
1725 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1726 {
1727   this->e_flags_ |= ver;
1728   if (this->abiversion() != 0)
1729     {
1730       Target_powerpc<size, big_endian>* target =
1731         static_cast<Target_powerpc<size, big_endian>*>(
1732            parameters->sized_target<size, big_endian>());
1733       if (target->abiversion() == 0)
1734         target->set_abiversion(this->abiversion());
1735       else if (target->abiversion() != this->abiversion())
1736         gold_error(_("%s: ABI version %d is not compatible "
1737                      "with ABI version %d output"),
1738                    this->name().c_str(),
1739                    this->abiversion(), target->abiversion());
1740
1741     }
1742 }
1743
1744 // Stash away the index of .got2 or .opd in a relocatable object, if
1745 // such a section exists.
1746
1747 template<int size, bool big_endian>
1748 bool
1749 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1750     Read_symbols_data* sd)
1751 {
1752   const unsigned char* const pshdrs = sd->section_headers->data();
1753   const unsigned char* namesu = sd->section_names->data();
1754   const char* names = reinterpret_cast<const char*>(namesu);
1755   section_size_type names_size = sd->section_names_size;
1756   const unsigned char* s;
1757
1758   s = this->template find_shdr<size, big_endian>(pshdrs,
1759                                                  size == 32 ? ".got2" : ".opd",
1760                                                  names, names_size, NULL);
1761   if (s != NULL)
1762     {
1763       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1764       this->special_ = ndx;
1765       if (size == 64)
1766         {
1767           if (this->abiversion() == 0)
1768             this->set_abiversion(1);
1769           else if (this->abiversion() > 1)
1770             gold_error(_("%s: .opd invalid in abiv%d"),
1771                        this->name().c_str(), this->abiversion());
1772         }
1773     }
1774   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1775 }
1776
1777 // Examine .rela.opd to build info about function entry points.
1778
1779 template<int size, bool big_endian>
1780 void
1781 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1782     size_t reloc_count,
1783     const unsigned char* prelocs,
1784     const unsigned char* plocal_syms)
1785 {
1786   if (size == 64)
1787     {
1788       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1789         Reltype;
1790       const int reloc_size
1791         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1792       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1793       Address expected_off = 0;
1794       bool regular = true;
1795       unsigned int opd_ent_size = 0;
1796
1797       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1798         {
1799           Reltype reloc(prelocs);
1800           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1801             = reloc.get_r_info();
1802           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1803           if (r_type == elfcpp::R_PPC64_ADDR64)
1804             {
1805               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1806               typename elfcpp::Elf_types<size>::Elf_Addr value;
1807               bool is_ordinary;
1808               unsigned int shndx;
1809               if (r_sym < this->local_symbol_count())
1810                 {
1811                   typename elfcpp::Sym<size, big_endian>
1812                     lsym(plocal_syms + r_sym * sym_size);
1813                   shndx = lsym.get_st_shndx();
1814                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1815                   value = lsym.get_st_value();
1816                 }
1817               else
1818                 shndx = this->symbol_section_and_value(r_sym, &value,
1819                                                        &is_ordinary);
1820               this->set_opd_ent(reloc.get_r_offset(), shndx,
1821                                 value + reloc.get_r_addend());
1822               if (i == 2)
1823                 {
1824                   expected_off = reloc.get_r_offset();
1825                   opd_ent_size = expected_off;
1826                 }
1827               else if (expected_off != reloc.get_r_offset())
1828                 regular = false;
1829               expected_off += opd_ent_size;
1830             }
1831           else if (r_type == elfcpp::R_PPC64_TOC)
1832             {
1833               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1834                 regular = false;
1835             }
1836           else
1837             {
1838               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1839                            this->name().c_str(), r_type);
1840               regular = false;
1841             }
1842         }
1843       if (reloc_count <= 2)
1844         opd_ent_size = this->section_size(this->opd_shndx());
1845       if (opd_ent_size != 24 && opd_ent_size != 16)
1846         regular = false;
1847       if (!regular)
1848         {
1849           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1850                        this->name().c_str());
1851           opd_ent_size = 0;
1852         }
1853     }
1854 }
1855
1856 template<int size, bool big_endian>
1857 void
1858 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1859 {
1860   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1861   if (size == 64)
1862     {
1863       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1864            p != rd->relocs.end();
1865            ++p)
1866         {
1867           if (p->data_shndx == this->opd_shndx())
1868             {
1869               uint64_t opd_size = this->section_size(this->opd_shndx());
1870               gold_assert(opd_size == static_cast<size_t>(opd_size));
1871               if (opd_size != 0)
1872                 {
1873                   this->init_opd(opd_size);
1874                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1875                                         rd->local_symbols->data());
1876                 }
1877               break;
1878             }
1879         }
1880     }
1881 }
1882
1883 // Read the symbols then set up st_other vector.
1884
1885 template<int size, bool big_endian>
1886 void
1887 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1888 {
1889   this->base_read_symbols(sd);
1890   if (size == 64)
1891     {
1892       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1893       const unsigned char* const pshdrs = sd->section_headers->data();
1894       const unsigned int loccount = this->do_local_symbol_count();
1895       if (loccount != 0)
1896         {
1897           this->st_other_.resize(loccount);
1898           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1899           off_t locsize = loccount * sym_size;
1900           const unsigned int symtab_shndx = this->symtab_shndx();
1901           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1902           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1903           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1904                                                       locsize, true, false);
1905           psyms += sym_size;
1906           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1907             {
1908               elfcpp::Sym<size, big_endian> sym(psyms);
1909               unsigned char st_other = sym.get_st_other();
1910               this->st_other_[i] = st_other;
1911               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1912                 {
1913                   if (this->abiversion() == 0)
1914                     this->set_abiversion(2);
1915                   else if (this->abiversion() < 2)
1916                     gold_error(_("%s: local symbol %d has invalid st_other"
1917                                  " for ABI version 1"),
1918                                this->name().c_str(), i);
1919                 }
1920             }
1921         }
1922     }
1923 }
1924
1925 template<int size, bool big_endian>
1926 void
1927 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1928 {
1929   this->e_flags_ |= ver;
1930   if (this->abiversion() != 0)
1931     {
1932       Target_powerpc<size, big_endian>* target =
1933         static_cast<Target_powerpc<size, big_endian>*>(
1934           parameters->sized_target<size, big_endian>());
1935       if (target->abiversion() == 0)
1936         target->set_abiversion(this->abiversion());
1937       else if (target->abiversion() != this->abiversion())
1938         gold_error(_("%s: ABI version %d is not compatible "
1939                      "with ABI version %d output"),
1940                    this->name().c_str(),
1941                    this->abiversion(), target->abiversion());
1942
1943     }
1944 }
1945
1946 // Call Sized_dynobj::base_read_symbols to read the symbols then
1947 // read .opd from a dynamic object, filling in opd_ent_ vector,
1948
1949 template<int size, bool big_endian>
1950 void
1951 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1952 {
1953   this->base_read_symbols(sd);
1954   if (size == 64)
1955     {
1956       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1957       const unsigned char* const pshdrs = sd->section_headers->data();
1958       const unsigned char* namesu = sd->section_names->data();
1959       const char* names = reinterpret_cast<const char*>(namesu);
1960       const unsigned char* s = NULL;
1961       const unsigned char* opd;
1962       section_size_type opd_size;
1963
1964       // Find and read .opd section.
1965       while (1)
1966         {
1967           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1968                                                          sd->section_names_size,
1969                                                          s);
1970           if (s == NULL)
1971             return;
1972
1973           typename elfcpp::Shdr<size, big_endian> shdr(s);
1974           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1975               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1976             {
1977               if (this->abiversion() == 0)
1978                 this->set_abiversion(1);
1979               else if (this->abiversion() > 1)
1980                 gold_error(_("%s: .opd invalid in abiv%d"),
1981                            this->name().c_str(), this->abiversion());
1982
1983               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1984               this->opd_address_ = shdr.get_sh_addr();
1985               opd_size = convert_to_section_size_type(shdr.get_sh_size());
1986               opd = this->get_view(shdr.get_sh_offset(), opd_size,
1987                                    true, false);
1988               break;
1989             }
1990         }
1991
1992       // Build set of executable sections.
1993       // Using a set is probably overkill.  There is likely to be only
1994       // a few executable sections, typically .init, .text and .fini,
1995       // and they are generally grouped together.
1996       typedef std::set<Sec_info> Exec_sections;
1997       Exec_sections exec_sections;
1998       s = pshdrs;
1999       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2000         {
2001           typename elfcpp::Shdr<size, big_endian> shdr(s);
2002           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2003               && ((shdr.get_sh_flags()
2004                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2005                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2006               && shdr.get_sh_size() != 0)
2007             {
2008               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2009                                             shdr.get_sh_size(), i));
2010             }
2011         }
2012       if (exec_sections.empty())
2013         return;
2014
2015       // Look over the OPD entries.  This is complicated by the fact
2016       // that some binaries will use two-word entries while others
2017       // will use the standard three-word entries.  In most cases
2018       // the third word (the environment pointer for languages like
2019       // Pascal) is unused and will be zero.  If the third word is
2020       // used it should not be pointing into executable sections,
2021       // I think.
2022       this->init_opd(opd_size);
2023       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2024         {
2025           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2026           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2027           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2028           if (val == 0)
2029             // Chances are that this is the third word of an OPD entry.
2030             continue;
2031           typename Exec_sections::const_iterator e
2032             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2033           if (e != exec_sections.begin())
2034             {
2035               --e;
2036               if (e->start <= val && val < e->start + e->len)
2037                 {
2038                   // We have an address in an executable section.
2039                   // VAL ought to be the function entry, set it up.
2040                   this->set_opd_ent(p - opd, e->shndx, val);
2041                   // Skip second word of OPD entry, the TOC pointer.
2042                   p += 8;
2043                 }
2044             }
2045           // If we didn't match any executable sections, we likely
2046           // have a non-zero third word in the OPD entry.
2047         }
2048     }
2049 }
2050
2051 // Set up some symbols.
2052
2053 template<int size, bool big_endian>
2054 void
2055 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2056     Symbol_table* symtab,
2057     Layout* layout)
2058 {
2059   if (size == 32)
2060     {
2061       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2062       // undefined when scanning relocs (and thus requires
2063       // non-relative dynamic relocs).  The proper value will be
2064       // updated later.
2065       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2066       if (gotsym != NULL && gotsym->is_undefined())
2067         {
2068           Target_powerpc<size, big_endian>* target =
2069             static_cast<Target_powerpc<size, big_endian>*>(
2070                 parameters->sized_target<size, big_endian>());
2071           Output_data_got_powerpc<size, big_endian>* got
2072             = target->got_section(symtab, layout);
2073           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2074                                         Symbol_table::PREDEFINED,
2075                                         got, 0, 0,
2076                                         elfcpp::STT_OBJECT,
2077                                         elfcpp::STB_LOCAL,
2078                                         elfcpp::STV_HIDDEN, 0,
2079                                         false, false);
2080         }
2081
2082       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2083       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2084       if (sdasym != NULL && sdasym->is_undefined())
2085         {
2086           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2087           Output_section* os
2088             = layout->add_output_section_data(".sdata", 0,
2089                                               elfcpp::SHF_ALLOC
2090                                               | elfcpp::SHF_WRITE,
2091                                               sdata, ORDER_SMALL_DATA, false);
2092           symtab->define_in_output_data("_SDA_BASE_", NULL,
2093                                         Symbol_table::PREDEFINED,
2094                                         os, 32768, 0, elfcpp::STT_OBJECT,
2095                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2096                                         0, false, false);
2097         }
2098     }
2099   else
2100     {
2101       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2102       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2103       if (gotsym != NULL && gotsym->is_undefined())
2104         {
2105           Target_powerpc<size, big_endian>* target =
2106             static_cast<Target_powerpc<size, big_endian>*>(
2107                 parameters->sized_target<size, big_endian>());
2108           Output_data_got_powerpc<size, big_endian>* got
2109             = target->got_section(symtab, layout);
2110           symtab->define_in_output_data(".TOC.", NULL,
2111                                         Symbol_table::PREDEFINED,
2112                                         got, 0x8000, 0,
2113                                         elfcpp::STT_OBJECT,
2114                                         elfcpp::STB_LOCAL,
2115                                         elfcpp::STV_HIDDEN, 0,
2116                                         false, false);
2117         }
2118     }
2119 }
2120
2121 // Set up PowerPC target specific relobj.
2122
2123 template<int size, bool big_endian>
2124 Object*
2125 Target_powerpc<size, big_endian>::do_make_elf_object(
2126     const std::string& name,
2127     Input_file* input_file,
2128     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2129 {
2130   int et = ehdr.get_e_type();
2131   // ET_EXEC files are valid input for --just-symbols/-R,
2132   // and we treat them as relocatable objects.
2133   if (et == elfcpp::ET_REL
2134       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2135     {
2136       Powerpc_relobj<size, big_endian>* obj =
2137         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2138       obj->setup();
2139       return obj;
2140     }
2141   else if (et == elfcpp::ET_DYN)
2142     {
2143       Powerpc_dynobj<size, big_endian>* obj =
2144         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2145       obj->setup();
2146       return obj;
2147     }
2148   else
2149     {
2150       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2151       return NULL;
2152     }
2153 }
2154
2155 template<int size, bool big_endian>
2156 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2157 {
2158 public:
2159   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2160   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2161
2162   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2163     : Output_data_got<size, big_endian>(),
2164       symtab_(symtab), layout_(layout),
2165       header_ent_cnt_(size == 32 ? 3 : 1),
2166       header_index_(size == 32 ? 0x2000 : 0)
2167   { }
2168
2169   // Override all the Output_data_got methods we use so as to first call
2170   // reserve_ent().
2171   bool
2172   add_global(Symbol* gsym, unsigned int got_type)
2173   {
2174     this->reserve_ent();
2175     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2176   }
2177
2178   bool
2179   add_global_plt(Symbol* gsym, unsigned int got_type)
2180   {
2181     this->reserve_ent();
2182     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2183   }
2184
2185   bool
2186   add_global_tls(Symbol* gsym, unsigned int got_type)
2187   { return this->add_global_plt(gsym, got_type); }
2188
2189   void
2190   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2191                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2192   {
2193     this->reserve_ent();
2194     Output_data_got<size, big_endian>::
2195       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2196   }
2197
2198   void
2199   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2200                            Output_data_reloc_generic* rel_dyn,
2201                            unsigned int r_type_1, unsigned int r_type_2)
2202   {
2203     this->reserve_ent(2);
2204     Output_data_got<size, big_endian>::
2205       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2206   }
2207
2208   bool
2209   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2210   {
2211     this->reserve_ent();
2212     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2213                                                         got_type);
2214   }
2215
2216   bool
2217   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2218   {
2219     this->reserve_ent();
2220     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2221                                                             got_type);
2222   }
2223
2224   bool
2225   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2226   { return this->add_local_plt(object, sym_index, got_type); }
2227
2228   void
2229   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2230                      unsigned int got_type,
2231                      Output_data_reloc_generic* rel_dyn,
2232                      unsigned int r_type)
2233   {
2234     this->reserve_ent(2);
2235     Output_data_got<size, big_endian>::
2236       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2237   }
2238
2239   unsigned int
2240   add_constant(Valtype constant)
2241   {
2242     this->reserve_ent();
2243     return Output_data_got<size, big_endian>::add_constant(constant);
2244   }
2245
2246   unsigned int
2247   add_constant_pair(Valtype c1, Valtype c2)
2248   {
2249     this->reserve_ent(2);
2250     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2251   }
2252
2253   // Offset of _GLOBAL_OFFSET_TABLE_.
2254   unsigned int
2255   g_o_t() const
2256   {
2257     return this->got_offset(this->header_index_);
2258   }
2259
2260   // Offset of base used to access the GOT/TOC.
2261   // The got/toc pointer reg will be set to this value.
2262   Valtype
2263   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2264   {
2265     if (size == 32)
2266       return this->g_o_t();
2267     else
2268       return (this->output_section()->address()
2269               + object->toc_base_offset()
2270               - this->address());
2271   }
2272
2273   // Ensure our GOT has a header.
2274   void
2275   set_final_data_size()
2276   {
2277     if (this->header_ent_cnt_ != 0)
2278       this->make_header();
2279     Output_data_got<size, big_endian>::set_final_data_size();
2280   }
2281
2282   // First word of GOT header needs some values that are not
2283   // handled by Output_data_got so poke them in here.
2284   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2285   void
2286   do_write(Output_file* of)
2287   {
2288     Valtype val = 0;
2289     if (size == 32 && this->layout_->dynamic_data() != NULL)
2290       val = this->layout_->dynamic_section()->address();
2291     if (size == 64)
2292       val = this->output_section()->address() + 0x8000;
2293     this->replace_constant(this->header_index_, val);
2294     Output_data_got<size, big_endian>::do_write(of);
2295   }
2296
2297 private:
2298   void
2299   reserve_ent(unsigned int cnt = 1)
2300   {
2301     if (this->header_ent_cnt_ == 0)
2302       return;
2303     if (this->num_entries() + cnt > this->header_index_)
2304       this->make_header();
2305   }
2306
2307   void
2308   make_header()
2309   {
2310     this->header_ent_cnt_ = 0;
2311     this->header_index_ = this->num_entries();
2312     if (size == 32)
2313       {
2314         Output_data_got<size, big_endian>::add_constant(0);
2315         Output_data_got<size, big_endian>::add_constant(0);
2316         Output_data_got<size, big_endian>::add_constant(0);
2317
2318         // Define _GLOBAL_OFFSET_TABLE_ at the header
2319         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2320         if (gotsym != NULL)
2321           {
2322             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2323             sym->set_value(this->g_o_t());
2324           }
2325         else
2326           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2327                                                Symbol_table::PREDEFINED,
2328                                                this, this->g_o_t(), 0,
2329                                                elfcpp::STT_OBJECT,
2330                                                elfcpp::STB_LOCAL,
2331                                                elfcpp::STV_HIDDEN, 0,
2332                                                false, false);
2333       }
2334     else
2335       Output_data_got<size, big_endian>::add_constant(0);
2336   }
2337
2338   // Stashed pointers.
2339   Symbol_table* symtab_;
2340   Layout* layout_;
2341
2342   // GOT header size.
2343   unsigned int header_ent_cnt_;
2344   // GOT header index.
2345   unsigned int header_index_;
2346 };
2347
2348 // Get the GOT section, creating it if necessary.
2349
2350 template<int size, bool big_endian>
2351 Output_data_got_powerpc<size, big_endian>*
2352 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2353                                               Layout* layout)
2354 {
2355   if (this->got_ == NULL)
2356     {
2357       gold_assert(symtab != NULL && layout != NULL);
2358
2359       this->got_
2360         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2361
2362       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2363                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2364                                       this->got_, ORDER_DATA, false);
2365     }
2366
2367   return this->got_;
2368 }
2369
2370 // Get the dynamic reloc section, creating it if necessary.
2371
2372 template<int size, bool big_endian>
2373 typename Target_powerpc<size, big_endian>::Reloc_section*
2374 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2375 {
2376   if (this->rela_dyn_ == NULL)
2377     {
2378       gold_assert(layout != NULL);
2379       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2380       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2381                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2382                                       ORDER_DYNAMIC_RELOCS, false);
2383     }
2384   return this->rela_dyn_;
2385 }
2386
2387 // Similarly, but for ifunc symbols get the one for ifunc.
2388
2389 template<int size, bool big_endian>
2390 typename Target_powerpc<size, big_endian>::Reloc_section*
2391 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2392                                                    Layout* layout,
2393                                                    bool for_ifunc)
2394 {
2395   if (!for_ifunc)
2396     return this->rela_dyn_section(layout);
2397
2398   if (this->iplt_ == NULL)
2399     this->make_iplt_section(symtab, layout);
2400   return this->iplt_->rel_plt();
2401 }
2402
2403 class Stub_control
2404 {
2405  public:
2406   // Determine the stub group size.  The group size is the absolute
2407   // value of the parameter --stub-group-size.  If --stub-group-size
2408   // is passed a negative value, we restrict stubs to be always before
2409   // the stubbed branches.
2410   Stub_control(int32_t size, bool no_size_errors)
2411     : state_(NO_GROUP), stub_group_size_(abs(size)),
2412       stub14_group_size_(abs(size) >> 10),
2413       stubs_always_before_branch_(size < 0),
2414       suppress_size_errors_(no_size_errors),
2415       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2416   {
2417   }
2418
2419   // Return true iff input section can be handled by current stub
2420   // group.
2421   bool
2422   can_add_to_stub_group(Output_section* o,
2423                         const Output_section::Input_section* i,
2424                         bool has14);
2425
2426   const Output_section::Input_section*
2427   owner()
2428   { return owner_; }
2429
2430   Output_section*
2431   output_section()
2432   { return output_section_; }
2433
2434   void
2435   set_output_and_owner(Output_section* o,
2436                        const Output_section::Input_section* i)
2437   {
2438     this->output_section_ = o;
2439     this->owner_ = i;
2440   }
2441
2442  private:
2443   typedef enum
2444   {
2445     NO_GROUP,
2446     FINDING_STUB_SECTION,
2447     HAS_STUB_SECTION
2448   } State;
2449
2450   State state_;
2451   uint32_t stub_group_size_;
2452   uint32_t stub14_group_size_;
2453   bool stubs_always_before_branch_;
2454   bool suppress_size_errors_;
2455   uint64_t group_end_addr_;
2456   const Output_section::Input_section* owner_;
2457   Output_section* output_section_;
2458 };
2459
2460 // Return true iff input section can be handled by current stub
2461 // group.
2462
2463 bool
2464 Stub_control::can_add_to_stub_group(Output_section* o,
2465                                     const Output_section::Input_section* i,
2466                                     bool has14)
2467 {
2468   uint32_t group_size
2469     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2470   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2471   uint64_t this_size;
2472   uint64_t start_addr = o->address();
2473
2474   if (whole_sec)
2475     // .init and .fini sections are pasted together to form a single
2476     // function.  We can't be adding stubs in the middle of the function.
2477     this_size = o->data_size();
2478   else
2479     {
2480       start_addr += i->relobj()->output_section_offset(i->shndx());
2481       this_size = i->data_size();
2482     }
2483   uint64_t end_addr = start_addr + this_size;
2484   bool toobig = this_size > group_size;
2485
2486   if (toobig && !this->suppress_size_errors_)
2487     gold_warning(_("%s:%s exceeds group size"),
2488                  i->relobj()->name().c_str(),
2489                  i->relobj()->section_name(i->shndx()).c_str());
2490
2491   if (this->state_ != HAS_STUB_SECTION
2492       && (!whole_sec || this->output_section_ != o)
2493       && (this->state_ == NO_GROUP
2494           || this->group_end_addr_ - end_addr < group_size))
2495     {
2496       this->owner_ = i;
2497       this->output_section_ = o;
2498     }
2499
2500   if (this->state_ == NO_GROUP)
2501     {
2502       this->state_ = FINDING_STUB_SECTION;
2503       this->group_end_addr_ = end_addr;
2504     }
2505   else if (this->group_end_addr_ - start_addr < group_size)
2506     ;
2507   // Adding this section would make the group larger than GROUP_SIZE.
2508   else if (this->state_ == FINDING_STUB_SECTION
2509            && !this->stubs_always_before_branch_
2510            && !toobig)
2511     {
2512       // But wait, there's more!  Input sections up to GROUP_SIZE
2513       // bytes before the stub table can be handled by it too.
2514       this->state_ = HAS_STUB_SECTION;
2515       this->group_end_addr_ = end_addr;
2516     }
2517   else
2518     {
2519       this->state_ = NO_GROUP;
2520       return false;
2521     }
2522   return true;
2523 }
2524
2525 // Look over all the input sections, deciding where to place stubs.
2526
2527 template<int size, bool big_endian>
2528 void
2529 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2530                                                  const Task*,
2531                                                  bool no_size_errors)
2532 {
2533   Stub_control stub_control(this->stub_group_size_, no_size_errors);
2534
2535   // Group input sections and insert stub table
2536   Stub_table_owner* table_owner = NULL;
2537   std::vector<Stub_table_owner*> tables;
2538   Layout::Section_list section_list;
2539   layout->get_executable_sections(&section_list);
2540   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2541   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2542        o != section_list.rend();
2543        ++o)
2544     {
2545       typedef Output_section::Input_section_list Input_section_list;
2546       for (Input_section_list::const_reverse_iterator i
2547              = (*o)->input_sections().rbegin();
2548            i != (*o)->input_sections().rend();
2549            ++i)
2550         {
2551           if (i->is_input_section()
2552               || i->is_relaxed_input_section())
2553             {
2554               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2555                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2556               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2557               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2558                 {
2559                   table_owner->output_section = stub_control.output_section();
2560                   table_owner->owner = stub_control.owner();
2561                   stub_control.set_output_and_owner(*o, &*i);
2562                   table_owner = NULL;
2563                 }
2564               if (table_owner == NULL)
2565                 {
2566                   table_owner = new Stub_table_owner;
2567                   tables.push_back(table_owner);
2568                 }
2569               ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2570             }
2571         }
2572     }
2573   if (table_owner != NULL)
2574     {
2575       const Output_section::Input_section* i = stub_control.owner();
2576
2577       if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2578         {
2579           // Corner case.  A new stub group was made for the first
2580           // section (last one looked at here) for some reason, but
2581           // the first section is already being used as the owner for
2582           // a stub table for following sections.  Force it into that
2583           // stub group.
2584           tables.pop_back();
2585           delete table_owner;
2586           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2587             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2588           ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2589         }
2590       else
2591         {
2592           table_owner->output_section = stub_control.output_section();
2593           table_owner->owner = i;
2594         }
2595     }
2596   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2597        t != tables.end();
2598        ++t)
2599     {
2600       Stub_table<size, big_endian>* stub_table;
2601
2602       if ((*t)->owner->is_input_section())
2603         stub_table = new Stub_table<size, big_endian>(this,
2604                                                       (*t)->output_section,
2605                                                       (*t)->owner);
2606       else if ((*t)->owner->is_relaxed_input_section())
2607         stub_table = static_cast<Stub_table<size, big_endian>*>(
2608                         (*t)->owner->relaxed_input_section());
2609       else
2610         gold_unreachable();
2611       this->stub_tables_.push_back(stub_table);
2612       delete *t;
2613     }
2614 }
2615
2616 static unsigned long
2617 max_branch_delta (unsigned int r_type)
2618 {
2619   if (r_type == elfcpp::R_POWERPC_REL14
2620       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2621       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2622     return 1L << 15;
2623   if (r_type == elfcpp::R_POWERPC_REL24
2624       || r_type == elfcpp::R_PPC_PLTREL24
2625       || r_type == elfcpp::R_PPC_LOCAL24PC)
2626     return 1L << 25;
2627   return 0;
2628 }
2629
2630 // If this branch needs a plt call stub, or a long branch stub, make one.
2631
2632 template<int size, bool big_endian>
2633 bool
2634 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2635     Stub_table<size, big_endian>* stub_table,
2636     Stub_table<size, big_endian>* ifunc_stub_table,
2637     Symbol_table* symtab) const
2638 {
2639   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2640   if (sym != NULL && sym->is_forwarder())
2641     sym = symtab->resolve_forwards(sym);
2642   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2643   Target_powerpc<size, big_endian>* target =
2644     static_cast<Target_powerpc<size, big_endian>*>(
2645       parameters->sized_target<size, big_endian>());
2646   if (gsym != NULL
2647       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2648       : this->object_->local_has_plt_offset(this->r_sym_))
2649     {
2650       if (size == 64
2651           && gsym != NULL
2652           && target->abiversion() >= 2
2653           && !parameters->options().output_is_position_independent()
2654           && !is_branch_reloc(this->r_type_))
2655         target->glink_section()->add_global_entry(gsym);
2656       else
2657         {
2658           if (stub_table == NULL)
2659             stub_table = this->object_->stub_table(this->shndx_);
2660           if (stub_table == NULL)
2661             {
2662               // This is a ref from a data section to an ifunc symbol.
2663               stub_table = ifunc_stub_table;
2664             }
2665           gold_assert(stub_table != NULL);
2666           Address from = this->object_->get_output_section_offset(this->shndx_);
2667           if (from != invalid_address)
2668             from += (this->object_->output_section(this->shndx_)->address()
2669                      + this->offset_);
2670           if (gsym != NULL)
2671             return stub_table->add_plt_call_entry(from,
2672                                                   this->object_, gsym,
2673                                                   this->r_type_, this->addend_);
2674           else
2675             return stub_table->add_plt_call_entry(from,
2676                                                   this->object_, this->r_sym_,
2677                                                   this->r_type_, this->addend_);
2678         }
2679     }
2680   else
2681     {
2682       Address max_branch_offset = max_branch_delta(this->r_type_);
2683       if (max_branch_offset == 0)
2684         return true;
2685       Address from = this->object_->get_output_section_offset(this->shndx_);
2686       gold_assert(from != invalid_address);
2687       from += (this->object_->output_section(this->shndx_)->address()
2688                + this->offset_);
2689       Address to;
2690       if (gsym != NULL)
2691         {
2692           switch (gsym->source())
2693             {
2694             case Symbol::FROM_OBJECT:
2695               {
2696                 Object* symobj = gsym->object();
2697                 if (symobj->is_dynamic()
2698                     || symobj->pluginobj() != NULL)
2699                   return true;
2700                 bool is_ordinary;
2701                 unsigned int shndx = gsym->shndx(&is_ordinary);
2702                 if (shndx == elfcpp::SHN_UNDEF)
2703                   return true;
2704               }
2705               break;
2706
2707             case Symbol::IS_UNDEFINED:
2708               return true;
2709
2710             default:
2711               break;
2712             }
2713           Symbol_table::Compute_final_value_status status;
2714           to = symtab->compute_final_value<size>(gsym, &status);
2715           if (status != Symbol_table::CFVS_OK)
2716             return true;
2717           if (size == 64)
2718             to += this->object_->ppc64_local_entry_offset(gsym);
2719         }
2720       else
2721         {
2722           const Symbol_value<size>* psymval
2723             = this->object_->local_symbol(this->r_sym_);
2724           Symbol_value<size> symval;
2725           typedef Sized_relobj_file<size, big_endian> ObjType;
2726           typename ObjType::Compute_final_local_value_status status
2727             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2728                                                        &symval, symtab);
2729           if (status != ObjType::CFLV_OK
2730               || !symval.has_output_value())
2731             return true;
2732           to = symval.value(this->object_, 0);
2733           if (size == 64)
2734             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2735         }
2736       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2737         to += this->addend_;
2738       if (stub_table == NULL)
2739         stub_table = this->object_->stub_table(this->shndx_);
2740       if (size == 64 && target->abiversion() < 2)
2741         {
2742           unsigned int dest_shndx;
2743           if (!target->symval_for_branch(symtab, gsym, this->object_,
2744                                          &to, &dest_shndx))
2745             return true;
2746         }
2747       Address delta = to - from;
2748       if (delta + max_branch_offset >= 2 * max_branch_offset)
2749         {
2750           if (stub_table == NULL)
2751             {
2752               gold_warning(_("%s:%s: branch in non-executable section,"
2753                              " no long branch stub for you"),
2754                            this->object_->name().c_str(),
2755                            this->object_->section_name(this->shndx_).c_str());
2756               return true;
2757             }
2758           bool save_res = (size == 64
2759                            && gsym != NULL
2760                            && gsym->source() == Symbol::IN_OUTPUT_DATA
2761                            && gsym->output_data() == target->savres_section());
2762           return stub_table->add_long_branch_entry(this->object_,
2763                                                    this->r_type_,
2764                                                    from, to, save_res);
2765         }
2766     }
2767   return true;
2768 }
2769
2770 // Relaxation hook.  This is where we do stub generation.
2771
2772 template<int size, bool big_endian>
2773 bool
2774 Target_powerpc<size, big_endian>::do_relax(int pass,
2775                                            const Input_objects*,
2776                                            Symbol_table* symtab,
2777                                            Layout* layout,
2778                                            const Task* task)
2779 {
2780   unsigned int prev_brlt_size = 0;
2781   if (pass == 1)
2782     {
2783       bool thread_safe
2784         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2785       if (size == 64
2786           && this->abiversion() < 2
2787           && !thread_safe
2788           && !parameters->options().user_set_plt_thread_safe())
2789         {
2790           static const char* const thread_starter[] =
2791             {
2792               "pthread_create",
2793               /* libstdc++ */
2794               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2795               /* librt */
2796               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2797               "mq_notify", "create_timer",
2798               /* libanl */
2799               "getaddrinfo_a",
2800               /* libgomp */
2801               "GOMP_parallel",
2802               "GOMP_parallel_start",
2803               "GOMP_parallel_loop_static",
2804               "GOMP_parallel_loop_static_start",
2805               "GOMP_parallel_loop_dynamic",
2806               "GOMP_parallel_loop_dynamic_start",
2807               "GOMP_parallel_loop_guided",
2808               "GOMP_parallel_loop_guided_start",
2809               "GOMP_parallel_loop_runtime",
2810               "GOMP_parallel_loop_runtime_start",
2811               "GOMP_parallel_sections",
2812               "GOMP_parallel_sections_start",
2813               /* libgo */
2814               "__go_go",
2815             };
2816
2817           if (parameters->options().shared())
2818             thread_safe = true;
2819           else
2820             {
2821               for (unsigned int i = 0;
2822                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2823                    i++)
2824                 {
2825                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2826                   thread_safe = (sym != NULL
2827                                  && sym->in_reg()
2828                                  && sym->in_real_elf());
2829                   if (thread_safe)
2830                     break;
2831                 }
2832             }
2833         }
2834       this->plt_thread_safe_ = thread_safe;
2835     }
2836
2837   if (pass == 1)
2838     {
2839       this->stub_group_size_ = parameters->options().stub_group_size();
2840       bool no_size_errors = true;
2841       if (this->stub_group_size_ == 1)
2842         this->stub_group_size_ = 0x1c00000;
2843       else if (this->stub_group_size_ == -1)
2844         this->stub_group_size_ = -0x1e00000;
2845       else
2846         no_size_errors = false;
2847       this->group_sections(layout, task, no_size_errors);
2848     }
2849   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2850     {
2851       this->branch_lookup_table_.clear();
2852       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2853            p != this->stub_tables_.end();
2854            ++p)
2855         {
2856           (*p)->clear_stubs(true);
2857         }
2858       this->stub_tables_.clear();
2859       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2860       gold_info(_("%s: stub group size is too large; retrying with %d"),
2861                 program_name, this->stub_group_size_);
2862       this->group_sections(layout, task, true);
2863     }
2864
2865   // We need address of stub tables valid for make_stub.
2866   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2867        p != this->stub_tables_.end();
2868        ++p)
2869     {
2870       const Powerpc_relobj<size, big_endian>* object
2871         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2872       Address off = object->get_output_section_offset((*p)->shndx());
2873       gold_assert(off != invalid_address);
2874       Output_section* os = (*p)->output_section();
2875       (*p)->set_address_and_size(os, off);
2876     }
2877
2878   if (pass != 1)
2879     {
2880       // Clear plt call stubs, long branch stubs and branch lookup table.
2881       prev_brlt_size = this->branch_lookup_table_.size();
2882       this->branch_lookup_table_.clear();
2883       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2884            p != this->stub_tables_.end();
2885            ++p)
2886         {
2887           (*p)->clear_stubs(false);
2888         }
2889     }
2890
2891   // Build all the stubs.
2892   this->relax_failed_ = false;
2893   Stub_table<size, big_endian>* ifunc_stub_table
2894     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2895   Stub_table<size, big_endian>* one_stub_table
2896     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2897   for (typename Branches::const_iterator b = this->branch_info_.begin();
2898        b != this->branch_info_.end();
2899        b++)
2900     {
2901       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2902           && !this->relax_failed_)
2903         {
2904           this->relax_failed_ = true;
2905           this->relax_fail_count_++;
2906           if (this->relax_fail_count_ < 3)
2907             return true;
2908         }
2909     }
2910
2911   // Did anything change size?
2912   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2913   bool again = num_huge_branches != prev_brlt_size;
2914   if (size == 64 && num_huge_branches != 0)
2915     this->make_brlt_section(layout);
2916   if (size == 64 && again)
2917     this->brlt_section_->set_current_size(num_huge_branches);
2918
2919   typedef Unordered_set<Output_section*> Output_sections;
2920   Output_sections os_need_update;
2921   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2922        p != this->stub_tables_.end();
2923        ++p)
2924     {
2925       if ((*p)->size_update())
2926         {
2927           again = true;
2928           (*p)->add_eh_frame(layout);
2929           os_need_update.insert((*p)->output_section());
2930         }
2931     }
2932
2933   // Set output section offsets for all input sections in an output
2934   // section that just changed size.  Anything past the stubs will
2935   // need updating.
2936   for (typename Output_sections::iterator p = os_need_update.begin();
2937        p != os_need_update.end();
2938        p++)
2939     {
2940       Output_section* os = *p;
2941       Address off = 0;
2942       typedef Output_section::Input_section_list Input_section_list;
2943       for (Input_section_list::const_iterator i = os->input_sections().begin();
2944            i != os->input_sections().end();
2945            ++i)
2946         {
2947           off = align_address(off, i->addralign());
2948           if (i->is_input_section() || i->is_relaxed_input_section())
2949             i->relobj()->set_section_offset(i->shndx(), off);
2950           if (i->is_relaxed_input_section())
2951             {
2952               Stub_table<size, big_endian>* stub_table
2953                 = static_cast<Stub_table<size, big_endian>*>(
2954                     i->relaxed_input_section());
2955               off += stub_table->set_address_and_size(os, off);
2956             }
2957           else
2958             off += i->data_size();
2959         }
2960       // If .branch_lt is part of this output section, then we have
2961       // just done the offset adjustment.
2962       os->clear_section_offsets_need_adjustment();
2963     }
2964
2965   if (size == 64
2966       && !again
2967       && num_huge_branches != 0
2968       && parameters->options().output_is_position_independent())
2969     {
2970       // Fill in the BRLT relocs.
2971       this->brlt_section_->reset_brlt_sizes();
2972       for (typename Branch_lookup_table::const_iterator p
2973              = this->branch_lookup_table_.begin();
2974            p != this->branch_lookup_table_.end();
2975            ++p)
2976         {
2977           this->brlt_section_->add_reloc(p->first, p->second);
2978         }
2979       this->brlt_section_->finalize_brlt_sizes();
2980     }
2981   return again;
2982 }
2983
2984 template<int size, bool big_endian>
2985 void
2986 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2987                                                       unsigned char* oview,
2988                                                       uint64_t* paddress,
2989                                                       off_t* plen) const
2990 {
2991   uint64_t address = plt->address();
2992   off_t len = plt->data_size();
2993
2994   if (plt == this->glink_)
2995     {
2996       // See Output_data_glink::do_write() for glink contents.
2997       if (len == 0)
2998         {
2999           gold_assert(parameters->doing_static_link());
3000           // Static linking may need stubs, to support ifunc and long
3001           // branches.  We need to create an output section for
3002           // .eh_frame early in the link process, to have a place to
3003           // attach stub .eh_frame info.  We also need to have
3004           // registered a CIE that matches the stub CIE.  Both of
3005           // these requirements are satisfied by creating an FDE and
3006           // CIE for .glink, even though static linking will leave
3007           // .glink zero length.
3008           // ??? Hopefully generating an FDE with a zero address range
3009           // won't confuse anything that consumes .eh_frame info.
3010         }
3011       else if (size == 64)
3012         {
3013           // There is one word before __glink_PLTresolve
3014           address += 8;
3015           len -= 8;
3016         }
3017       else if (parameters->options().output_is_position_independent())
3018         {
3019           // There are two FDEs for a position independent glink.
3020           // The first covers the branch table, the second
3021           // __glink_PLTresolve at the end of glink.
3022           off_t resolve_size = this->glink_->pltresolve_size;
3023           if (oview[9] == elfcpp::DW_CFA_nop)
3024             len -= resolve_size;
3025           else
3026             {
3027               address += len - resolve_size;
3028               len = resolve_size;
3029             }
3030         }
3031     }
3032   else
3033     {
3034       // Must be a stub table.
3035       const Stub_table<size, big_endian>* stub_table
3036         = static_cast<const Stub_table<size, big_endian>*>(plt);
3037       uint64_t stub_address = stub_table->stub_address();
3038       len -= stub_address - address;
3039       address = stub_address;
3040     }
3041
3042   *paddress = address;
3043   *plen = len;
3044 }
3045
3046 // A class to handle the PLT data.
3047
3048 template<int size, bool big_endian>
3049 class Output_data_plt_powerpc : public Output_section_data_build
3050 {
3051  public:
3052   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3053                             size, big_endian> Reloc_section;
3054
3055   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3056                           Reloc_section* plt_rel,
3057                           const char* name)
3058     : Output_section_data_build(size == 32 ? 4 : 8),
3059       rel_(plt_rel),
3060       targ_(targ),
3061       name_(name)
3062   { }
3063
3064   // Add an entry to the PLT.
3065   void
3066   add_entry(Symbol*);
3067
3068   void
3069   add_ifunc_entry(Symbol*);
3070
3071   void
3072   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3073
3074   // Return the .rela.plt section data.
3075   Reloc_section*
3076   rel_plt() const
3077   {
3078     return this->rel_;
3079   }
3080
3081   // Return the number of PLT entries.
3082   unsigned int
3083   entry_count() const
3084   {
3085     if (this->current_data_size() == 0)
3086       return 0;
3087     return ((this->current_data_size() - this->first_plt_entry_offset())
3088             / this->plt_entry_size());
3089   }
3090
3091  protected:
3092   void
3093   do_adjust_output_section(Output_section* os)
3094   {
3095     os->set_entsize(0);
3096   }
3097
3098   // Write to a map file.
3099   void
3100   do_print_to_mapfile(Mapfile* mapfile) const
3101   { mapfile->print_output_data(this, this->name_); }
3102
3103  private:
3104   // Return the offset of the first non-reserved PLT entry.
3105   unsigned int
3106   first_plt_entry_offset() const
3107   {
3108     // IPLT has no reserved entry.
3109     if (this->name_[3] == 'I')
3110       return 0;
3111     return this->targ_->first_plt_entry_offset();
3112   }
3113
3114   // Return the size of each PLT entry.
3115   unsigned int
3116   plt_entry_size() const
3117   {
3118     return this->targ_->plt_entry_size();
3119   }
3120
3121   // Write out the PLT data.
3122   void
3123   do_write(Output_file*);
3124
3125   // The reloc section.
3126   Reloc_section* rel_;
3127   // Allows access to .glink for do_write.
3128   Target_powerpc<size, big_endian>* targ_;
3129   // What to report in map file.
3130   const char *name_;
3131 };
3132
3133 // Add an entry to the PLT.
3134
3135 template<int size, bool big_endian>
3136 void
3137 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3138 {
3139   if (!gsym->has_plt_offset())
3140     {
3141       section_size_type off = this->current_data_size();
3142       if (off == 0)
3143         off += this->first_plt_entry_offset();
3144       gsym->set_plt_offset(off);
3145       gsym->set_needs_dynsym_entry();
3146       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3147       this->rel_->add_global(gsym, dynrel, this, off, 0);
3148       off += this->plt_entry_size();
3149       this->set_current_data_size(off);
3150     }
3151 }
3152
3153 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3154
3155 template<int size, bool big_endian>
3156 void
3157 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3158 {
3159   if (!gsym->has_plt_offset())
3160     {
3161       section_size_type off = this->current_data_size();
3162       gsym->set_plt_offset(off);
3163       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3164       if (size == 64 && this->targ_->abiversion() < 2)
3165         dynrel = elfcpp::R_PPC64_JMP_IREL;
3166       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3167       off += this->plt_entry_size();
3168       this->set_current_data_size(off);
3169     }
3170 }
3171
3172 // Add an entry for a local ifunc symbol to the IPLT.
3173
3174 template<int size, bool big_endian>
3175 void
3176 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3177     Sized_relobj_file<size, big_endian>* relobj,
3178     unsigned int local_sym_index)
3179 {
3180   if (!relobj->local_has_plt_offset(local_sym_index))
3181     {
3182       section_size_type off = this->current_data_size();
3183       relobj->set_local_plt_offset(local_sym_index, off);
3184       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3185       if (size == 64 && this->targ_->abiversion() < 2)
3186         dynrel = elfcpp::R_PPC64_JMP_IREL;
3187       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3188                                               this, off, 0);
3189       off += this->plt_entry_size();
3190       this->set_current_data_size(off);
3191     }
3192 }
3193
3194 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3195 static const uint32_t add_2_2_11        = 0x7c425a14;
3196 static const uint32_t add_3_3_2         = 0x7c631214;
3197 static const uint32_t add_3_3_13        = 0x7c636a14;
3198 static const uint32_t add_11_0_11       = 0x7d605a14;
3199 static const uint32_t add_11_2_11       = 0x7d625a14;
3200 static const uint32_t add_11_11_2       = 0x7d6b1214;
3201 static const uint32_t addi_0_12         = 0x380c0000;
3202 static const uint32_t addi_2_2          = 0x38420000;
3203 static const uint32_t addi_3_3          = 0x38630000;
3204 static const uint32_t addi_11_11        = 0x396b0000;
3205 static const uint32_t addi_12_1         = 0x39810000;
3206 static const uint32_t addi_12_12        = 0x398c0000;
3207 static const uint32_t addis_0_2         = 0x3c020000;
3208 static const uint32_t addis_0_13        = 0x3c0d0000;
3209 static const uint32_t addis_2_12        = 0x3c4c0000;
3210 static const uint32_t addis_11_2        = 0x3d620000;
3211 static const uint32_t addis_11_11       = 0x3d6b0000;
3212 static const uint32_t addis_11_30       = 0x3d7e0000;
3213 static const uint32_t addis_12_1        = 0x3d810000;
3214 static const uint32_t addis_12_2        = 0x3d820000;
3215 static const uint32_t addis_12_12       = 0x3d8c0000;
3216 static const uint32_t b                 = 0x48000000;
3217 static const uint32_t bcl_20_31         = 0x429f0005;
3218 static const uint32_t bctr              = 0x4e800420;
3219 static const uint32_t blr               = 0x4e800020;
3220 static const uint32_t bnectr_p4         = 0x4ce20420;
3221 static const uint32_t cmpld_7_12_0      = 0x7fac0040;
3222 static const uint32_t cmpldi_2_0        = 0x28220000;
3223 static const uint32_t cror_15_15_15     = 0x4def7b82;
3224 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3225 static const uint32_t ld_0_1            = 0xe8010000;
3226 static const uint32_t ld_0_12           = 0xe80c0000;
3227 static const uint32_t ld_2_1            = 0xe8410000;
3228 static const uint32_t ld_2_2            = 0xe8420000;
3229 static const uint32_t ld_2_11           = 0xe84b0000;
3230 static const uint32_t ld_11_2           = 0xe9620000;
3231 static const uint32_t ld_11_11          = 0xe96b0000;
3232 static const uint32_t ld_12_2           = 0xe9820000;
3233 static const uint32_t ld_12_11          = 0xe98b0000;
3234 static const uint32_t ld_12_12          = 0xe98c0000;
3235 static const uint32_t lfd_0_1           = 0xc8010000;
3236 static const uint32_t li_0_0            = 0x38000000;
3237 static const uint32_t li_12_0           = 0x39800000;
3238 static const uint32_t lis_0             = 0x3c000000;
3239 static const uint32_t lis_11            = 0x3d600000;
3240 static const uint32_t lis_12            = 0x3d800000;
3241 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3242 static const uint32_t lwz_0_12          = 0x800c0000;
3243 static const uint32_t lwz_11_11         = 0x816b0000;
3244 static const uint32_t lwz_11_30         = 0x817e0000;
3245 static const uint32_t lwz_12_12         = 0x818c0000;
3246 static const uint32_t lwzu_0_12         = 0x840c0000;
3247 static const uint32_t mflr_0            = 0x7c0802a6;
3248 static const uint32_t mflr_11           = 0x7d6802a6;
3249 static const uint32_t mflr_12           = 0x7d8802a6;
3250 static const uint32_t mtctr_0           = 0x7c0903a6;
3251 static const uint32_t mtctr_11          = 0x7d6903a6;
3252 static const uint32_t mtctr_12          = 0x7d8903a6;
3253 static const uint32_t mtlr_0            = 0x7c0803a6;
3254 static const uint32_t mtlr_12           = 0x7d8803a6;
3255 static const uint32_t nop               = 0x60000000;
3256 static const uint32_t ori_0_0_0         = 0x60000000;
3257 static const uint32_t srdi_0_0_2        = 0x7800f082;
3258 static const uint32_t std_0_1           = 0xf8010000;
3259 static const uint32_t std_0_12          = 0xf80c0000;
3260 static const uint32_t std_2_1           = 0xf8410000;
3261 static const uint32_t stfd_0_1          = 0xd8010000;
3262 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3263 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3264 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3265 static const uint32_t xor_2_12_12       = 0x7d826278;
3266 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3267
3268 // Write out the PLT.
3269
3270 template<int size, bool big_endian>
3271 void
3272 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3273 {
3274   if (size == 32 && this->name_[3] != 'I')
3275     {
3276       const section_size_type offset = this->offset();
3277       const section_size_type oview_size
3278         = convert_to_section_size_type(this->data_size());
3279       unsigned char* const oview = of->get_output_view(offset, oview_size);
3280       unsigned char* pov = oview;
3281       unsigned char* endpov = oview + oview_size;
3282
3283       // The address of the .glink branch table
3284       const Output_data_glink<size, big_endian>* glink
3285         = this->targ_->glink_section();
3286       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3287
3288       while (pov < endpov)
3289         {
3290           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3291           pov += 4;
3292           branch_tab += 4;
3293         }
3294
3295       of->write_output_view(offset, oview_size, oview);
3296     }
3297 }
3298
3299 // Create the PLT section.
3300
3301 template<int size, bool big_endian>
3302 void
3303 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3304                                                    Layout* layout)
3305 {
3306   if (this->plt_ == NULL)
3307     {
3308       if (this->got_ == NULL)
3309         this->got_section(symtab, layout);
3310
3311       if (this->glink_ == NULL)
3312         make_glink_section(layout);
3313
3314       // Ensure that .rela.dyn always appears before .rela.plt  This is
3315       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3316       // needs to include .rela.plt in its range.
3317       this->rela_dyn_section(layout);
3318
3319       Reloc_section* plt_rel = new Reloc_section(false);
3320       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3321                                       elfcpp::SHF_ALLOC, plt_rel,
3322                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3323       this->plt_
3324         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3325                                                         "** PLT");
3326       layout->add_output_section_data(".plt",
3327                                       (size == 32
3328                                        ? elfcpp::SHT_PROGBITS
3329                                        : elfcpp::SHT_NOBITS),
3330                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3331                                       this->plt_,
3332                                       (size == 32
3333                                        ? ORDER_SMALL_DATA
3334                                        : ORDER_SMALL_BSS),
3335                                       false);
3336     }
3337 }
3338
3339 // Create the IPLT section.
3340
3341 template<int size, bool big_endian>
3342 void
3343 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3344                                                     Layout* layout)
3345 {
3346   if (this->iplt_ == NULL)
3347     {
3348       this->make_plt_section(symtab, layout);
3349
3350       Reloc_section* iplt_rel = new Reloc_section(false);
3351       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3352       this->iplt_
3353         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3354                                                         "** IPLT");
3355       this->plt_->output_section()->add_output_section_data(this->iplt_);
3356     }
3357 }
3358
3359 // A section for huge long branch addresses, similar to plt section.
3360
3361 template<int size, bool big_endian>
3362 class Output_data_brlt_powerpc : public Output_section_data_build
3363 {
3364  public:
3365   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3366   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3367                             size, big_endian> Reloc_section;
3368
3369   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3370                            Reloc_section* brlt_rel)
3371     : Output_section_data_build(size == 32 ? 4 : 8),
3372       rel_(brlt_rel),
3373       targ_(targ)
3374   { }
3375
3376   void
3377   reset_brlt_sizes()
3378   {
3379     this->reset_data_size();
3380     this->rel_->reset_data_size();
3381   }
3382
3383   void
3384   finalize_brlt_sizes()
3385   {
3386     this->finalize_data_size();
3387     this->rel_->finalize_data_size();
3388   }
3389
3390   // Add a reloc for an entry in the BRLT.
3391   void
3392   add_reloc(Address to, unsigned int off)
3393   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3394
3395   // Update section and reloc section size.
3396   void
3397   set_current_size(unsigned int num_branches)
3398   {
3399     this->reset_address_and_file_offset();
3400     this->set_current_data_size(num_branches * 16);
3401     this->finalize_data_size();
3402     Output_section* os = this->output_section();
3403     os->set_section_offsets_need_adjustment();
3404     if (this->rel_ != NULL)
3405       {
3406         unsigned int reloc_size
3407           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3408         this->rel_->reset_address_and_file_offset();
3409         this->rel_->set_current_data_size(num_branches * reloc_size);
3410         this->rel_->finalize_data_size();
3411         Output_section* os = this->rel_->output_section();
3412         os->set_section_offsets_need_adjustment();
3413       }
3414   }
3415
3416  protected:
3417   void
3418   do_adjust_output_section(Output_section* os)
3419   {
3420     os->set_entsize(0);
3421   }
3422
3423   // Write to a map file.
3424   void
3425   do_print_to_mapfile(Mapfile* mapfile) const
3426   { mapfile->print_output_data(this, "** BRLT"); }
3427
3428  private:
3429   // Write out the BRLT data.
3430   void
3431   do_write(Output_file*);
3432
3433   // The reloc section.
3434   Reloc_section* rel_;
3435   Target_powerpc<size, big_endian>* targ_;
3436 };
3437
3438 // Make the branch lookup table section.
3439
3440 template<int size, bool big_endian>
3441 void
3442 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3443 {
3444   if (size == 64 && this->brlt_section_ == NULL)
3445     {
3446       Reloc_section* brlt_rel = NULL;
3447       bool is_pic = parameters->options().output_is_position_independent();
3448       if (is_pic)
3449         {
3450           // When PIC we can't fill in .branch_lt (like .plt it can be
3451           // a bss style section) but must initialise at runtime via
3452           // dynamic relocats.
3453           this->rela_dyn_section(layout);
3454           brlt_rel = new Reloc_section(false);
3455           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3456         }
3457       this->brlt_section_
3458         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3459       if (this->plt_ && is_pic)
3460         this->plt_->output_section()
3461           ->add_output_section_data(this->brlt_section_);
3462       else
3463         layout->add_output_section_data(".branch_lt",
3464                                         (is_pic ? elfcpp::SHT_NOBITS
3465                                          : elfcpp::SHT_PROGBITS),
3466                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3467                                         this->brlt_section_,
3468                                         (is_pic ? ORDER_SMALL_BSS
3469                                          : ORDER_SMALL_DATA),
3470                                         false);
3471     }
3472 }
3473
3474 // Write out .branch_lt when non-PIC.
3475
3476 template<int size, bool big_endian>
3477 void
3478 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3479 {
3480   if (size == 64 && !parameters->options().output_is_position_independent())
3481     {
3482       const section_size_type offset = this->offset();
3483       const section_size_type oview_size
3484         = convert_to_section_size_type(this->data_size());
3485       unsigned char* const oview = of->get_output_view(offset, oview_size);
3486
3487       this->targ_->write_branch_lookup_table(oview);
3488       of->write_output_view(offset, oview_size, oview);
3489     }
3490 }
3491
3492 static inline uint32_t
3493 l(uint32_t a)
3494 {
3495   return a & 0xffff;
3496 }
3497
3498 static inline uint32_t
3499 hi(uint32_t a)
3500 {
3501   return l(a >> 16);
3502 }
3503
3504 static inline uint32_t
3505 ha(uint32_t a)
3506 {
3507   return hi(a + 0x8000);
3508 }
3509
3510 template<int size>
3511 struct Eh_cie
3512 {
3513   static const unsigned char eh_frame_cie[12];
3514 };
3515
3516 template<int size>
3517 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3518 {
3519   1,                                    // CIE version.
3520   'z', 'R', 0,                          // Augmentation string.
3521   4,                                    // Code alignment.
3522   0x80 - size / 8 ,                     // Data alignment.
3523   65,                                   // RA reg.
3524   1,                                    // Augmentation size.
3525   (elfcpp::DW_EH_PE_pcrel
3526    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3527   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3528 };
3529
3530 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3531 static const unsigned char glink_eh_frame_fde_64v1[] =
3532 {
3533   0, 0, 0, 0,                           // Replaced with offset to .glink.
3534   0, 0, 0, 0,                           // Replaced with size of .glink.
3535   0,                                    // Augmentation size.
3536   elfcpp::DW_CFA_advance_loc + 1,
3537   elfcpp::DW_CFA_register, 65, 12,
3538   elfcpp::DW_CFA_advance_loc + 4,
3539   elfcpp::DW_CFA_restore_extended, 65
3540 };
3541
3542 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3543 static const unsigned char glink_eh_frame_fde_64v2[] =
3544 {
3545   0, 0, 0, 0,                           // Replaced with offset to .glink.
3546   0, 0, 0, 0,                           // Replaced with size of .glink.
3547   0,                                    // Augmentation size.
3548   elfcpp::DW_CFA_advance_loc + 1,
3549   elfcpp::DW_CFA_register, 65, 0,
3550   elfcpp::DW_CFA_advance_loc + 4,
3551   elfcpp::DW_CFA_restore_extended, 65
3552 };
3553
3554 // Describe __glink_PLTresolve use of LR, 32-bit version.
3555 static const unsigned char glink_eh_frame_fde_32[] =
3556 {
3557   0, 0, 0, 0,                           // Replaced with offset to .glink.
3558   0, 0, 0, 0,                           // Replaced with size of .glink.
3559   0,                                    // Augmentation size.
3560   elfcpp::DW_CFA_advance_loc + 2,
3561   elfcpp::DW_CFA_register, 65, 0,
3562   elfcpp::DW_CFA_advance_loc + 4,
3563   elfcpp::DW_CFA_restore_extended, 65
3564 };
3565
3566 static const unsigned char default_fde[] =
3567 {
3568   0, 0, 0, 0,                           // Replaced with offset to stubs.
3569   0, 0, 0, 0,                           // Replaced with size of stubs.
3570   0,                                    // Augmentation size.
3571   elfcpp::DW_CFA_nop,                   // Pad.
3572   elfcpp::DW_CFA_nop,
3573   elfcpp::DW_CFA_nop
3574 };
3575
3576 template<bool big_endian>
3577 static inline void
3578 write_insn(unsigned char* p, uint32_t v)
3579 {
3580   elfcpp::Swap<32, big_endian>::writeval(p, v);
3581 }
3582
3583 // Stub_table holds information about plt and long branch stubs.
3584 // Stubs are built in an area following some input section determined
3585 // by group_sections().  This input section is converted to a relaxed
3586 // input section allowing it to be resized to accommodate the stubs
3587
3588 template<int size, bool big_endian>
3589 class Stub_table : public Output_relaxed_input_section
3590 {
3591  public:
3592   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3593   static const Address invalid_address = static_cast<Address>(0) - 1;
3594
3595   Stub_table(Target_powerpc<size, big_endian>* targ,
3596              Output_section* output_section,
3597              const Output_section::Input_section* owner)
3598     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3599                                    owner->relobj()
3600                                    ->section_addralign(owner->shndx())),
3601       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3602       orig_data_size_(owner->current_data_size()),
3603       plt_size_(0), last_plt_size_(0),
3604       branch_size_(0), last_branch_size_(0), eh_frame_added_(false),
3605       need_save_res_(false)
3606   {
3607     this->set_output_section(output_section);
3608
3609     std::vector<Output_relaxed_input_section*> new_relaxed;
3610     new_relaxed.push_back(this);
3611     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3612   }
3613
3614   // Add a plt call stub.
3615   bool
3616   add_plt_call_entry(Address,
3617                      const Sized_relobj_file<size, big_endian>*,
3618                      const Symbol*,
3619                      unsigned int,
3620                      Address);
3621
3622   bool
3623   add_plt_call_entry(Address,
3624                      const Sized_relobj_file<size, big_endian>*,
3625                      unsigned int,
3626                      unsigned int,
3627                      Address);
3628
3629   // Find a given plt call stub.
3630   Address
3631   find_plt_call_entry(const Symbol*) const;
3632
3633   Address
3634   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3635                       unsigned int) const;
3636
3637   Address
3638   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3639                       const Symbol*,
3640                       unsigned int,
3641                       Address) const;
3642
3643   Address
3644   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3645                       unsigned int,
3646                       unsigned int,
3647                       Address) const;
3648
3649   // Add a long branch stub.
3650   bool
3651   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3652                         unsigned int, Address, Address, bool);
3653
3654   Address
3655   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3656                          Address) const;
3657
3658   bool
3659   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3660   {
3661     Address max_branch_offset = max_branch_delta(r_type);
3662     if (max_branch_offset == 0)
3663       return true;
3664     gold_assert(from != invalid_address);
3665     Address loc = off + this->stub_address();
3666     return loc - from + max_branch_offset < 2 * max_branch_offset;
3667   }
3668
3669   void
3670   clear_stubs(bool all)
3671   {
3672     this->plt_call_stubs_.clear();
3673     this->plt_size_ = 0;
3674     this->long_branch_stubs_.clear();
3675     this->branch_size_ = 0;
3676     this->need_save_res_ = false;
3677     if (all)
3678       {
3679         this->last_plt_size_ = 0;
3680         this->last_branch_size_ = 0;
3681       }
3682   }
3683
3684   Address
3685   set_address_and_size(const Output_section* os, Address off)
3686   {
3687     Address start_off = off;
3688     off += this->orig_data_size_;
3689     Address my_size = this->plt_size_ + this->branch_size_;
3690     if (this->need_save_res_)
3691       my_size += this->targ_->savres_section()->data_size();
3692     if (my_size != 0)
3693       off = align_address(off, this->stub_align());
3694     // Include original section size and alignment padding in size
3695     my_size += off - start_off;
3696     this->reset_address_and_file_offset();
3697     this->set_current_data_size(my_size);
3698     this->set_address_and_file_offset(os->address() + start_off,
3699                                       os->offset() + start_off);
3700     return my_size;
3701   }
3702
3703   Address
3704   stub_address() const
3705   {
3706     return align_address(this->address() + this->orig_data_size_,
3707                          this->stub_align());
3708   }
3709
3710   Address
3711   stub_offset() const
3712   {
3713     return align_address(this->offset() + this->orig_data_size_,
3714                          this->stub_align());
3715   }
3716
3717   section_size_type
3718   plt_size() const
3719   { return this->plt_size_; }
3720
3721   bool
3722   size_update()
3723   {
3724     Output_section* os = this->output_section();
3725     if (os->addralign() < this->stub_align())
3726       {
3727         os->set_addralign(this->stub_align());
3728         // FIXME: get rid of the insane checkpointing.
3729         // We can't increase alignment of the input section to which
3730         // stubs are attached;  The input section may be .init which
3731         // is pasted together with other .init sections to form a
3732         // function.  Aligning might insert zero padding resulting in
3733         // sigill.  However we do need to increase alignment of the
3734         // output section so that the align_address() on offset in
3735         // set_address_and_size() adds the same padding as the
3736         // align_address() on address in stub_address().
3737         // What's more, we need this alignment for the layout done in
3738         // relaxation_loop_body() so that the output section starts at
3739         // a suitably aligned address.
3740         os->checkpoint_set_addralign(this->stub_align());
3741       }
3742     if (this->last_plt_size_ != this->plt_size_
3743         || this->last_branch_size_ != this->branch_size_)
3744       {
3745         this->last_plt_size_ = this->plt_size_;
3746         this->last_branch_size_ = this->branch_size_;
3747         return true;
3748       }
3749     return false;
3750   }
3751
3752   // Add .eh_frame info for this stub section.  Unlike other linker
3753   // generated .eh_frame this is added late in the link, because we
3754   // only want the .eh_frame info if this particular stub section is
3755   // non-empty.
3756   void
3757   add_eh_frame(Layout* layout)
3758   {
3759     if (!this->eh_frame_added_)
3760       {
3761         if (!parameters->options().ld_generated_unwind_info())
3762           return;
3763
3764         // Since we add stub .eh_frame info late, it must be placed
3765         // after all other linker generated .eh_frame info so that
3766         // merge mapping need not be updated for input sections.
3767         // There is no provision to use a different CIE to that used
3768         // by .glink.
3769         if (!this->targ_->has_glink())
3770           return;
3771
3772         layout->add_eh_frame_for_plt(this,
3773                                      Eh_cie<size>::eh_frame_cie,
3774                                      sizeof (Eh_cie<size>::eh_frame_cie),
3775                                      default_fde,
3776                                      sizeof (default_fde));
3777         this->eh_frame_added_ = true;
3778       }
3779   }
3780
3781   Target_powerpc<size, big_endian>*
3782   targ() const
3783   { return targ_; }
3784
3785  private:
3786   class Plt_stub_ent;
3787   class Plt_stub_ent_hash;
3788   typedef Unordered_map<Plt_stub_ent, unsigned int,
3789                         Plt_stub_ent_hash> Plt_stub_entries;
3790
3791   // Alignment of stub section.
3792   unsigned int
3793   stub_align() const
3794   {
3795     if (size == 32)
3796       return 16;
3797     unsigned int min_align = 32;
3798     unsigned int user_align = 1 << parameters->options().plt_align();
3799     return std::max(user_align, min_align);
3800   }
3801
3802   // Return the plt offset for the given call stub.
3803   Address
3804   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3805   {
3806     const Symbol* gsym = p->first.sym_;
3807     if (gsym != NULL)
3808       {
3809         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3810                     && gsym->can_use_relative_reloc(false));
3811         return gsym->plt_offset();
3812       }
3813     else
3814       {
3815         *is_iplt = true;
3816         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3817         unsigned int local_sym_index = p->first.locsym_;
3818         return relobj->local_plt_offset(local_sym_index);
3819       }
3820   }
3821
3822   // Size of a given plt call stub.
3823   unsigned int
3824   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3825   {
3826     if (size == 32)
3827       return 16;
3828
3829     bool is_iplt;
3830     Address plt_addr = this->plt_off(p, &is_iplt);
3831     if (is_iplt)
3832       plt_addr += this->targ_->iplt_section()->address();
3833     else
3834       plt_addr += this->targ_->plt_section()->address();
3835     Address got_addr = this->targ_->got_section()->output_section()->address();
3836     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3837       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3838     got_addr += ppcobj->toc_base_offset();
3839     Address off = plt_addr - got_addr;
3840     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3841     if (this->targ_->abiversion() < 2)
3842       {
3843         bool static_chain = parameters->options().plt_static_chain();
3844         bool thread_safe = this->targ_->plt_thread_safe();
3845         bytes += (4
3846                   + 4 * static_chain
3847                   + 8 * thread_safe
3848                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3849       }
3850     unsigned int align = 1 << parameters->options().plt_align();
3851     if (align > 1)
3852       bytes = (bytes + align - 1) & -align;
3853     return bytes;
3854   }
3855
3856   // Return long branch stub size.
3857   unsigned int
3858   branch_stub_size(Address to)
3859   {
3860     Address loc
3861       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3862     if (to - loc + (1 << 25) < 2 << 25)
3863       return 4;
3864     if (size == 64 || !parameters->options().output_is_position_independent())
3865       return 16;
3866     return 32;
3867   }
3868
3869   // Write out stubs.
3870   void
3871   do_write(Output_file*);
3872
3873   // Plt call stub keys.
3874   class Plt_stub_ent
3875   {
3876   public:
3877     Plt_stub_ent(const Symbol* sym)
3878       : sym_(sym), object_(0), addend_(0), locsym_(0)
3879     { }
3880
3881     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3882                  unsigned int locsym_index)
3883       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3884     { }
3885
3886     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3887                  const Symbol* sym,
3888                  unsigned int r_type,
3889                  Address addend)
3890       : sym_(sym), object_(0), addend_(0), locsym_(0)
3891     {
3892       if (size != 32)
3893         this->addend_ = addend;
3894       else if (parameters->options().output_is_position_independent()
3895                && r_type == elfcpp::R_PPC_PLTREL24)
3896         {
3897           this->addend_ = addend;
3898           if (this->addend_ >= 32768)
3899             this->object_ = object;
3900         }
3901     }
3902
3903     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3904                  unsigned int locsym_index,
3905                  unsigned int r_type,
3906                  Address addend)
3907       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3908     {
3909       if (size != 32)
3910         this->addend_ = addend;
3911       else if (parameters->options().output_is_position_independent()
3912                && r_type == elfcpp::R_PPC_PLTREL24)
3913         this->addend_ = addend;
3914     }
3915
3916     bool operator==(const Plt_stub_ent& that) const
3917     {
3918       return (this->sym_ == that.sym_
3919               && this->object_ == that.object_
3920               && this->addend_ == that.addend_
3921               && this->locsym_ == that.locsym_);
3922     }
3923
3924     const Symbol* sym_;
3925     const Sized_relobj_file<size, big_endian>* object_;
3926     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3927     unsigned int locsym_;
3928   };
3929
3930   class Plt_stub_ent_hash
3931   {
3932   public:
3933     size_t operator()(const Plt_stub_ent& ent) const
3934     {
3935       return (reinterpret_cast<uintptr_t>(ent.sym_)
3936               ^ reinterpret_cast<uintptr_t>(ent.object_)
3937               ^ ent.addend_
3938               ^ ent.locsym_);
3939     }
3940   };
3941
3942   // Long branch stub keys.
3943   class Branch_stub_ent
3944   {
3945   public:
3946     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
3947                     Address to, bool save_res)
3948       : dest_(to), toc_base_off_(0), save_res_(save_res)
3949     {
3950       if (size == 64)
3951         toc_base_off_ = obj->toc_base_offset();
3952     }
3953
3954     bool operator==(const Branch_stub_ent& that) const
3955     {
3956       return (this->dest_ == that.dest_
3957               && (size == 32
3958                   || this->toc_base_off_ == that.toc_base_off_));
3959     }
3960
3961     Address dest_;
3962     unsigned int toc_base_off_;
3963     bool save_res_;
3964   };
3965
3966   class Branch_stub_ent_hash
3967   {
3968   public:
3969     size_t operator()(const Branch_stub_ent& ent) const
3970     { return ent.dest_ ^ ent.toc_base_off_; }
3971   };
3972
3973   // In a sane world this would be a global.
3974   Target_powerpc<size, big_endian>* targ_;
3975   // Map sym/object/addend to stub offset.
3976   Plt_stub_entries plt_call_stubs_;
3977   // Map destination address to stub offset.
3978   typedef Unordered_map<Branch_stub_ent, unsigned int,
3979                         Branch_stub_ent_hash> Branch_stub_entries;
3980   Branch_stub_entries long_branch_stubs_;
3981   // size of input section
3982   section_size_type orig_data_size_;
3983   // size of stubs
3984   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3985   // Whether .eh_frame info has been created for this stub section.
3986   bool eh_frame_added_;
3987   // Set if this stub group needs a copy of out-of-line register
3988   // save/restore functions.
3989   bool need_save_res_;
3990 };
3991
3992 // Add a plt call stub, if we do not already have one for this
3993 // sym/object/addend combo.
3994
3995 template<int size, bool big_endian>
3996 bool
3997 Stub_table<size, big_endian>::add_plt_call_entry(
3998     Address from,
3999     const Sized_relobj_file<size, big_endian>* object,
4000     const Symbol* gsym,
4001     unsigned int r_type,
4002     Address addend)
4003 {
4004   Plt_stub_ent ent(object, gsym, r_type, addend);
4005   unsigned int off = this->plt_size_;
4006   std::pair<typename Plt_stub_entries::iterator, bool> p
4007     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4008   if (p.second)
4009     this->plt_size_ = off + this->plt_call_size(p.first);
4010   return this->can_reach_stub(from, off, r_type);
4011 }
4012
4013 template<int size, bool big_endian>
4014 bool
4015 Stub_table<size, big_endian>::add_plt_call_entry(
4016     Address from,
4017     const Sized_relobj_file<size, big_endian>* object,
4018     unsigned int locsym_index,
4019     unsigned int r_type,
4020     Address addend)
4021 {
4022   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4023   unsigned int off = this->plt_size_;
4024   std::pair<typename Plt_stub_entries::iterator, bool> p
4025     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4026   if (p.second)
4027     this->plt_size_ = off + this->plt_call_size(p.first);
4028   return this->can_reach_stub(from, off, r_type);
4029 }
4030
4031 // Find a plt call stub.
4032
4033 template<int size, bool big_endian>
4034 typename Stub_table<size, big_endian>::Address
4035 Stub_table<size, big_endian>::find_plt_call_entry(
4036     const Sized_relobj_file<size, big_endian>* object,
4037     const Symbol* gsym,
4038     unsigned int r_type,
4039     Address addend) const
4040 {
4041   Plt_stub_ent ent(object, gsym, r_type, addend);
4042   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4043   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4044 }
4045
4046 template<int size, bool big_endian>
4047 typename Stub_table<size, big_endian>::Address
4048 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4049 {
4050   Plt_stub_ent ent(gsym);
4051   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4052   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4053 }
4054
4055 template<int size, bool big_endian>
4056 typename Stub_table<size, big_endian>::Address
4057 Stub_table<size, big_endian>::find_plt_call_entry(
4058     const Sized_relobj_file<size, big_endian>* object,
4059     unsigned int locsym_index,
4060     unsigned int r_type,
4061     Address addend) const
4062 {
4063   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4064   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4065   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4066 }
4067
4068 template<int size, bool big_endian>
4069 typename Stub_table<size, big_endian>::Address
4070 Stub_table<size, big_endian>::find_plt_call_entry(
4071     const Sized_relobj_file<size, big_endian>* object,
4072     unsigned int locsym_index) const
4073 {
4074   Plt_stub_ent ent(object, locsym_index);
4075   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4076   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4077 }
4078
4079 // Add a long branch stub if we don't already have one to given
4080 // destination.
4081
4082 template<int size, bool big_endian>
4083 bool
4084 Stub_table<size, big_endian>::add_long_branch_entry(
4085     const Powerpc_relobj<size, big_endian>* object,
4086     unsigned int r_type,
4087     Address from,
4088     Address to,
4089     bool save_res)
4090 {
4091   Branch_stub_ent ent(object, to, save_res);
4092   Address off = this->branch_size_;
4093   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4094     {
4095       if (save_res)
4096         this->need_save_res_ = true;
4097       else
4098         {
4099           unsigned int stub_size = this->branch_stub_size(to);
4100           this->branch_size_ = off + stub_size;
4101           if (size == 64 && stub_size != 4)
4102             this->targ_->add_branch_lookup_table(to);
4103         }
4104     }
4105   return this->can_reach_stub(from, off, r_type);
4106 }
4107
4108 // Find long branch stub offset.
4109
4110 template<int size, bool big_endian>
4111 typename Stub_table<size, big_endian>::Address
4112 Stub_table<size, big_endian>::find_long_branch_entry(
4113     const Powerpc_relobj<size, big_endian>* object,
4114     Address to) const
4115 {
4116   Branch_stub_ent ent(object, to, false);
4117   typename Branch_stub_entries::const_iterator p
4118     = this->long_branch_stubs_.find(ent);
4119   if (p == this->long_branch_stubs_.end())
4120     return invalid_address;
4121   if (p->first.save_res_)
4122     return to - this->targ_->savres_section()->address() + this->branch_size_;
4123   return p->second;
4124 }
4125
4126 // A class to handle .glink.
4127
4128 template<int size, bool big_endian>
4129 class Output_data_glink : public Output_section_data
4130 {
4131  public:
4132   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4133   static const Address invalid_address = static_cast<Address>(0) - 1;
4134   static const int pltresolve_size = 16*4;
4135
4136   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4137     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4138       end_branch_table_(), ge_size_(0)
4139   { }
4140
4141   void
4142   add_eh_frame(Layout* layout);
4143
4144   void
4145   add_global_entry(const Symbol*);
4146
4147   Address
4148   find_global_entry(const Symbol*) const;
4149
4150   Address
4151   global_entry_address() const
4152   {
4153     gold_assert(this->is_data_size_valid());
4154     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4155     return this->address() + global_entry_off;
4156   }
4157
4158  protected:
4159   // Write to a map file.
4160   void
4161   do_print_to_mapfile(Mapfile* mapfile) const
4162   { mapfile->print_output_data(this, _("** glink")); }
4163
4164  private:
4165   void
4166   set_final_data_size();
4167
4168   // Write out .glink
4169   void
4170   do_write(Output_file*);
4171
4172   // Allows access to .got and .plt for do_write.
4173   Target_powerpc<size, big_endian>* targ_;
4174
4175   // Map sym to stub offset.
4176   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4177   Global_entry_stub_entries global_entry_stubs_;
4178
4179   unsigned int end_branch_table_, ge_size_;
4180 };
4181
4182 template<int size, bool big_endian>
4183 void
4184 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4185 {
4186   if (!parameters->options().ld_generated_unwind_info())
4187     return;
4188
4189   if (size == 64)
4190     {
4191       if (this->targ_->abiversion() < 2)
4192         layout->add_eh_frame_for_plt(this,
4193                                      Eh_cie<64>::eh_frame_cie,
4194                                      sizeof (Eh_cie<64>::eh_frame_cie),
4195                                      glink_eh_frame_fde_64v1,
4196                                      sizeof (glink_eh_frame_fde_64v1));
4197       else
4198         layout->add_eh_frame_for_plt(this,
4199                                      Eh_cie<64>::eh_frame_cie,
4200                                      sizeof (Eh_cie<64>::eh_frame_cie),
4201                                      glink_eh_frame_fde_64v2,
4202                                      sizeof (glink_eh_frame_fde_64v2));
4203     }
4204   else
4205     {
4206       // 32-bit .glink can use the default since the CIE return
4207       // address reg, LR, is valid.
4208       layout->add_eh_frame_for_plt(this,
4209                                    Eh_cie<32>::eh_frame_cie,
4210                                    sizeof (Eh_cie<32>::eh_frame_cie),
4211                                    default_fde,
4212                                    sizeof (default_fde));
4213       // Except where LR is used in a PIC __glink_PLTresolve.
4214       if (parameters->options().output_is_position_independent())
4215         layout->add_eh_frame_for_plt(this,
4216                                      Eh_cie<32>::eh_frame_cie,
4217                                      sizeof (Eh_cie<32>::eh_frame_cie),
4218                                      glink_eh_frame_fde_32,
4219                                      sizeof (glink_eh_frame_fde_32));
4220     }
4221 }
4222
4223 template<int size, bool big_endian>
4224 void
4225 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4226 {
4227   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4228     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4229   if (p.second)
4230     this->ge_size_ += 16;
4231 }
4232
4233 template<int size, bool big_endian>
4234 typename Output_data_glink<size, big_endian>::Address
4235 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4236 {
4237   typename Global_entry_stub_entries::const_iterator p
4238     = this->global_entry_stubs_.find(gsym);
4239   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4240 }
4241
4242 template<int size, bool big_endian>
4243 void
4244 Output_data_glink<size, big_endian>::set_final_data_size()
4245 {
4246   unsigned int count = this->targ_->plt_entry_count();
4247   section_size_type total = 0;
4248
4249   if (count != 0)
4250     {
4251       if (size == 32)
4252         {
4253           // space for branch table
4254           total += 4 * (count - 1);
4255
4256           total += -total & 15;
4257           total += this->pltresolve_size;
4258         }
4259       else
4260         {
4261           total += this->pltresolve_size;
4262
4263           // space for branch table
4264           total += 4 * count;
4265           if (this->targ_->abiversion() < 2)
4266             {
4267               total += 4 * count;
4268               if (count > 0x8000)
4269                 total += 4 * (count - 0x8000);
4270             }
4271         }
4272     }
4273   this->end_branch_table_ = total;
4274   total = (total + 15) & -16;
4275   total += this->ge_size_;
4276
4277   this->set_data_size(total);
4278 }
4279
4280 // Write out plt and long branch stub code.
4281
4282 template<int size, bool big_endian>
4283 void
4284 Stub_table<size, big_endian>::do_write(Output_file* of)
4285 {
4286   if (this->plt_call_stubs_.empty()
4287       && this->long_branch_stubs_.empty())
4288     return;
4289
4290   const section_size_type start_off = this->offset();
4291   const section_size_type off = this->stub_offset();
4292   const section_size_type oview_size =
4293     convert_to_section_size_type(this->data_size() - (off - start_off));
4294   unsigned char* const oview = of->get_output_view(off, oview_size);
4295   unsigned char* p;
4296
4297   if (size == 64)
4298     {
4299       const Output_data_got_powerpc<size, big_endian>* got
4300         = this->targ_->got_section();
4301       Address got_os_addr = got->output_section()->address();
4302
4303       if (!this->plt_call_stubs_.empty())
4304         {
4305           // The base address of the .plt section.
4306           Address plt_base = this->targ_->plt_section()->address();
4307           Address iplt_base = invalid_address;
4308
4309           // Write out plt call stubs.
4310           typename Plt_stub_entries::const_iterator cs;
4311           for (cs = this->plt_call_stubs_.begin();
4312                cs != this->plt_call_stubs_.end();
4313                ++cs)
4314             {
4315               bool is_iplt;
4316               Address pltoff = this->plt_off(cs, &is_iplt);
4317               Address plt_addr = pltoff;
4318               if (is_iplt)
4319                 {
4320                   if (iplt_base == invalid_address)
4321                     iplt_base = this->targ_->iplt_section()->address();
4322                   plt_addr += iplt_base;
4323                 }
4324               else
4325                 plt_addr += plt_base;
4326               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4327                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4328               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4329               Address off = plt_addr - got_addr;
4330
4331               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4332                 gold_error(_("%s: linkage table error against `%s'"),
4333                            cs->first.object_->name().c_str(),
4334                            cs->first.sym_->demangled_name().c_str());
4335
4336               bool plt_load_toc = this->targ_->abiversion() < 2;
4337               bool static_chain
4338                 = plt_load_toc && parameters->options().plt_static_chain();
4339               bool thread_safe
4340                 = plt_load_toc && this->targ_->plt_thread_safe();
4341               bool use_fake_dep = false;
4342               Address cmp_branch_off = 0;
4343               if (thread_safe)
4344                 {
4345                   unsigned int pltindex
4346                     = ((pltoff - this->targ_->first_plt_entry_offset())
4347                        / this->targ_->plt_entry_size());
4348                   Address glinkoff
4349                     = (this->targ_->glink_section()->pltresolve_size
4350                        + pltindex * 8);
4351                   if (pltindex > 32768)
4352                     glinkoff += (pltindex - 32768) * 4;
4353                   Address to
4354                     = this->targ_->glink_section()->address() + glinkoff;
4355                   Address from
4356                     = (this->stub_address() + cs->second + 24
4357                        + 4 * (ha(off) != 0)
4358                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4359                        + 4 * static_chain);
4360                   cmp_branch_off = to - from;
4361                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4362                 }
4363
4364               p = oview + cs->second;
4365               if (ha(off) != 0)
4366                 {
4367                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4368                   p += 4;
4369                   if (plt_load_toc)
4370                     {
4371                       write_insn<big_endian>(p, addis_11_2 + ha(off));
4372                       p += 4;
4373                       write_insn<big_endian>(p, ld_12_11 + l(off));
4374                       p += 4;
4375                     }
4376                   else
4377                     {
4378                       write_insn<big_endian>(p, addis_12_2 + ha(off));
4379                       p += 4;
4380                       write_insn<big_endian>(p, ld_12_12 + l(off));
4381                       p += 4;
4382                     }
4383                   if (plt_load_toc
4384                       && ha(off + 8 + 8 * static_chain) != ha(off))
4385                     {
4386                       write_insn<big_endian>(p, addi_11_11 + l(off));
4387                       p += 4;
4388                       off = 0;
4389                     }
4390                   write_insn<big_endian>(p, mtctr_12);
4391                   p += 4;
4392                   if (plt_load_toc)
4393                     {
4394                       if (use_fake_dep)
4395                         {
4396                           write_insn<big_endian>(p, xor_2_12_12);
4397                           p += 4;
4398                           write_insn<big_endian>(p, add_11_11_2);
4399                           p += 4;
4400                         }
4401                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4402                       p += 4;
4403                       if (static_chain)
4404                         {
4405                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4406                           p += 4;
4407                         }
4408                     }
4409                 }
4410               else
4411                 {
4412                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4413                   p += 4;
4414                   write_insn<big_endian>(p, ld_12_2 + l(off));
4415                   p += 4;
4416                   if (plt_load_toc
4417                       && ha(off + 8 + 8 * static_chain) != ha(off))
4418                     {
4419                       write_insn<big_endian>(p, addi_2_2 + l(off));
4420                       p += 4;
4421                       off = 0;
4422                     }
4423                   write_insn<big_endian>(p, mtctr_12);
4424                   p += 4;
4425                   if (plt_load_toc)
4426                     {
4427                       if (use_fake_dep)
4428                         {
4429                           write_insn<big_endian>(p, xor_11_12_12);
4430                           p += 4;
4431                           write_insn<big_endian>(p, add_2_2_11);
4432                           p += 4;
4433                         }
4434                       if (static_chain)
4435                         {
4436                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4437                           p += 4;
4438                         }
4439                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4440                       p += 4;
4441                     }
4442                 }
4443               if (thread_safe && !use_fake_dep)
4444                 {
4445                   write_insn<big_endian>(p, cmpldi_2_0);
4446                   p += 4;
4447                   write_insn<big_endian>(p, bnectr_p4);
4448                   p += 4;
4449                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4450                 }
4451               else
4452                 write_insn<big_endian>(p, bctr);
4453             }
4454         }
4455
4456       // Write out long branch stubs.
4457       typename Branch_stub_entries::const_iterator bs;
4458       for (bs = this->long_branch_stubs_.begin();
4459            bs != this->long_branch_stubs_.end();
4460            ++bs)
4461         {
4462           if (bs->first.save_res_)
4463             continue;
4464           p = oview + this->plt_size_ + bs->second;
4465           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4466           Address delta = bs->first.dest_ - loc;
4467           if (delta + (1 << 25) < 2 << 25)
4468             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4469           else
4470             {
4471               Address brlt_addr
4472                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4473               gold_assert(brlt_addr != invalid_address);
4474               brlt_addr += this->targ_->brlt_section()->address();
4475               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4476               Address brltoff = brlt_addr - got_addr;
4477               if (ha(brltoff) == 0)
4478                 {
4479                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4480                 }
4481               else
4482                 {
4483                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
4484                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
4485                 }
4486               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4487               write_insn<big_endian>(p, bctr);
4488             }
4489         }
4490     }
4491   else
4492     {
4493       if (!this->plt_call_stubs_.empty())
4494         {
4495           // The base address of the .plt section.
4496           Address plt_base = this->targ_->plt_section()->address();
4497           Address iplt_base = invalid_address;
4498           // The address of _GLOBAL_OFFSET_TABLE_.
4499           Address g_o_t = invalid_address;
4500
4501           // Write out plt call stubs.
4502           typename Plt_stub_entries::const_iterator cs;
4503           for (cs = this->plt_call_stubs_.begin();
4504                cs != this->plt_call_stubs_.end();
4505                ++cs)
4506             {
4507               bool is_iplt;
4508               Address plt_addr = this->plt_off(cs, &is_iplt);
4509               if (is_iplt)
4510                 {
4511                   if (iplt_base == invalid_address)
4512                     iplt_base = this->targ_->iplt_section()->address();
4513                   plt_addr += iplt_base;
4514                 }
4515               else
4516                 plt_addr += plt_base;
4517
4518               p = oview + cs->second;
4519               if (parameters->options().output_is_position_independent())
4520                 {
4521                   Address got_addr;
4522                   const Powerpc_relobj<size, big_endian>* ppcobj
4523                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4524                        (cs->first.object_));
4525                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4526                     {
4527                       unsigned int got2 = ppcobj->got2_shndx();
4528                       got_addr = ppcobj->get_output_section_offset(got2);
4529                       gold_assert(got_addr != invalid_address);
4530                       got_addr += (ppcobj->output_section(got2)->address()
4531                                    + cs->first.addend_);
4532                     }
4533                   else
4534                     {
4535                       if (g_o_t == invalid_address)
4536                         {
4537                           const Output_data_got_powerpc<size, big_endian>* got
4538                             = this->targ_->got_section();
4539                           g_o_t = got->address() + got->g_o_t();
4540                         }
4541                       got_addr = g_o_t;
4542                     }
4543
4544                   Address off = plt_addr - got_addr;
4545                   if (ha(off) == 0)
4546                     {
4547                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4548                       write_insn<big_endian>(p +  4, mtctr_11);
4549                       write_insn<big_endian>(p +  8, bctr);
4550                     }
4551                   else
4552                     {
4553                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4554                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4555                       write_insn<big_endian>(p +  8, mtctr_11);
4556                       write_insn<big_endian>(p + 12, bctr);
4557                     }
4558                 }
4559               else
4560                 {
4561                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4562                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4563                   write_insn<big_endian>(p +  8, mtctr_11);
4564                   write_insn<big_endian>(p + 12, bctr);
4565                 }
4566             }
4567         }
4568
4569       // Write out long branch stubs.
4570       typename Branch_stub_entries::const_iterator bs;
4571       for (bs = this->long_branch_stubs_.begin();
4572            bs != this->long_branch_stubs_.end();
4573            ++bs)
4574         {
4575           if (bs->first.save_res_)
4576             continue;
4577           p = oview + this->plt_size_ + bs->second;
4578           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4579           Address delta = bs->first.dest_ - loc;
4580           if (delta + (1 << 25) < 2 << 25)
4581             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4582           else if (!parameters->options().output_is_position_independent())
4583             {
4584               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4585               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4586               write_insn<big_endian>(p +  8, mtctr_12);
4587               write_insn<big_endian>(p + 12, bctr);
4588             }
4589           else
4590             {
4591               delta -= 8;
4592               write_insn<big_endian>(p +  0, mflr_0);
4593               write_insn<big_endian>(p +  4, bcl_20_31);
4594               write_insn<big_endian>(p +  8, mflr_12);
4595               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4596               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4597               write_insn<big_endian>(p + 20, mtlr_0);
4598               write_insn<big_endian>(p + 24, mtctr_12);
4599               write_insn<big_endian>(p + 28, bctr);
4600             }
4601         }
4602     }
4603   if (this->need_save_res_)
4604     {
4605       p = oview + this->plt_size_ + this->branch_size_;
4606       memcpy (p, this->targ_->savres_section()->contents(),
4607               this->targ_->savres_section()->data_size());
4608     }
4609 }
4610
4611 // Write out .glink.
4612
4613 template<int size, bool big_endian>
4614 void
4615 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4616 {
4617   const section_size_type off = this->offset();
4618   const section_size_type oview_size =
4619     convert_to_section_size_type(this->data_size());
4620   unsigned char* const oview = of->get_output_view(off, oview_size);
4621   unsigned char* p;
4622
4623   // The base address of the .plt section.
4624   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4625   Address plt_base = this->targ_->plt_section()->address();
4626
4627   if (size == 64)
4628     {
4629       if (this->end_branch_table_ != 0)
4630         {
4631           // Write pltresolve stub.
4632           p = oview;
4633           Address after_bcl = this->address() + 16;
4634           Address pltoff = plt_base - after_bcl;
4635
4636           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4637
4638           if (this->targ_->abiversion() < 2)
4639             {
4640               write_insn<big_endian>(p, mflr_12),               p += 4;
4641               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4642               write_insn<big_endian>(p, mflr_11),               p += 4;
4643               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4644               write_insn<big_endian>(p, mtlr_12),               p += 4;
4645               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4646               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4647               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4648               write_insn<big_endian>(p, mtctr_12),              p += 4;
4649               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4650             }
4651           else
4652             {
4653               write_insn<big_endian>(p, mflr_0),                p += 4;
4654               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4655               write_insn<big_endian>(p, mflr_11),               p += 4;
4656               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4657               write_insn<big_endian>(p, mtlr_0),                p += 4;
4658               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4659               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4660               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4661               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4662               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4663               write_insn<big_endian>(p, mtctr_12),              p += 4;
4664               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4665             }
4666           write_insn<big_endian>(p, bctr),                      p += 4;
4667           while (p < oview + this->pltresolve_size)
4668             write_insn<big_endian>(p, nop), p += 4;
4669
4670           // Write lazy link call stubs.
4671           uint32_t indx = 0;
4672           while (p < oview + this->end_branch_table_)
4673             {
4674               if (this->targ_->abiversion() < 2)
4675                 {
4676                   if (indx < 0x8000)
4677                     {
4678                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4679                     }
4680                   else
4681                     {
4682                       write_insn<big_endian>(p, lis_0 + hi(indx)),      p += 4;
4683                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4684                     }
4685                 }
4686               uint32_t branch_off = 8 - (p - oview);
4687               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4688               indx++;
4689             }
4690         }
4691
4692       Address plt_base = this->targ_->plt_section()->address();
4693       Address iplt_base = invalid_address;
4694       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4695       Address global_entry_base = this->address() + global_entry_off;
4696       typename Global_entry_stub_entries::const_iterator ge;
4697       for (ge = this->global_entry_stubs_.begin();
4698            ge != this->global_entry_stubs_.end();
4699            ++ge)
4700         {
4701           p = oview + global_entry_off + ge->second;
4702           Address plt_addr = ge->first->plt_offset();
4703           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4704               && ge->first->can_use_relative_reloc(false))
4705             {
4706               if (iplt_base == invalid_address)
4707                 iplt_base = this->targ_->iplt_section()->address();
4708               plt_addr += iplt_base;
4709             }
4710           else
4711             plt_addr += plt_base;
4712           Address my_addr = global_entry_base + ge->second;
4713           Address off = plt_addr - my_addr;
4714
4715           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4716             gold_error(_("%s: linkage table error against `%s'"),
4717                        ge->first->object()->name().c_str(),
4718                        ge->first->demangled_name().c_str());
4719
4720           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4721           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4722           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4723           write_insn<big_endian>(p, bctr);
4724         }
4725     }
4726   else
4727     {
4728       const Output_data_got_powerpc<size, big_endian>* got
4729         = this->targ_->got_section();
4730       // The address of _GLOBAL_OFFSET_TABLE_.
4731       Address g_o_t = got->address() + got->g_o_t();
4732
4733       // Write out pltresolve branch table.
4734       p = oview;
4735       unsigned int the_end = oview_size - this->pltresolve_size;
4736       unsigned char* end_p = oview + the_end;
4737       while (p < end_p - 8 * 4)
4738         write_insn<big_endian>(p, b + end_p - p), p += 4;
4739       while (p < end_p)
4740         write_insn<big_endian>(p, nop), p += 4;
4741
4742       // Write out pltresolve call stub.
4743       if (parameters->options().output_is_position_independent())
4744         {
4745           Address res0_off = 0;
4746           Address after_bcl_off = the_end + 12;
4747           Address bcl_res0 = after_bcl_off - res0_off;
4748
4749           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4750           write_insn<big_endian>(p +  4, mflr_0);
4751           write_insn<big_endian>(p +  8, bcl_20_31);
4752           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4753           write_insn<big_endian>(p + 16, mflr_12);
4754           write_insn<big_endian>(p + 20, mtlr_0);
4755           write_insn<big_endian>(p + 24, sub_11_11_12);
4756
4757           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4758
4759           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4760           if (ha(got_bcl) == ha(got_bcl + 4))
4761             {
4762               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4763               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4764             }
4765           else
4766             {
4767               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4768               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4769             }
4770           write_insn<big_endian>(p + 40, mtctr_0);
4771           write_insn<big_endian>(p + 44, add_0_11_11);
4772           write_insn<big_endian>(p + 48, add_11_0_11);
4773           write_insn<big_endian>(p + 52, bctr);
4774           write_insn<big_endian>(p + 56, nop);
4775           write_insn<big_endian>(p + 60, nop);
4776         }
4777       else
4778         {
4779           Address res0 = this->address();
4780
4781           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4782           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4783           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4784             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4785           else
4786             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4787           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4788           write_insn<big_endian>(p + 16, mtctr_0);
4789           write_insn<big_endian>(p + 20, add_0_11_11);
4790           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4791             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4792           else
4793             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4794           write_insn<big_endian>(p + 28, add_11_0_11);
4795           write_insn<big_endian>(p + 32, bctr);
4796           write_insn<big_endian>(p + 36, nop);
4797           write_insn<big_endian>(p + 40, nop);
4798           write_insn<big_endian>(p + 44, nop);
4799           write_insn<big_endian>(p + 48, nop);
4800           write_insn<big_endian>(p + 52, nop);
4801           write_insn<big_endian>(p + 56, nop);
4802           write_insn<big_endian>(p + 60, nop);
4803         }
4804       p += 64;
4805     }
4806
4807   of->write_output_view(off, oview_size, oview);
4808 }
4809
4810
4811 // A class to handle linker generated save/restore functions.
4812
4813 template<int size, bool big_endian>
4814 class Output_data_save_res : public Output_section_data_build
4815 {
4816  public:
4817   Output_data_save_res(Symbol_table* symtab);
4818
4819   const unsigned char*
4820   contents() const
4821   {
4822     return contents_;
4823   }
4824
4825  protected:
4826   // Write to a map file.
4827   void
4828   do_print_to_mapfile(Mapfile* mapfile) const
4829   { mapfile->print_output_data(this, _("** save/restore")); }
4830
4831   void
4832   do_write(Output_file*);
4833
4834  private:
4835   // The maximum size of save/restore contents.
4836   static const unsigned int savres_max = 218*4;
4837
4838   void
4839   savres_define(Symbol_table* symtab,
4840                 const char *name,
4841                 unsigned int lo, unsigned int hi,
4842                 unsigned char* write_ent(unsigned char*, int),
4843                 unsigned char* write_tail(unsigned char*, int));
4844
4845   unsigned char *contents_;
4846 };
4847
4848 template<bool big_endian>
4849 static unsigned char*
4850 savegpr0(unsigned char* p, int r)
4851 {
4852   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4853   write_insn<big_endian>(p, insn);
4854   return p + 4;
4855 }
4856
4857 template<bool big_endian>
4858 static unsigned char*
4859 savegpr0_tail(unsigned char* p, int r)
4860 {
4861   p = savegpr0<big_endian>(p, r);
4862   uint32_t insn = std_0_1 + 16;
4863   write_insn<big_endian>(p, insn);
4864   p = p + 4;
4865   write_insn<big_endian>(p, blr);
4866   return p + 4;
4867 }
4868
4869 template<bool big_endian>
4870 static unsigned char*
4871 restgpr0(unsigned char* p, int r)
4872 {
4873   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4874   write_insn<big_endian>(p, insn);
4875   return p + 4;
4876 }
4877
4878 template<bool big_endian>
4879 static unsigned char*
4880 restgpr0_tail(unsigned char* p, int r)
4881 {
4882   uint32_t insn = ld_0_1 + 16;
4883   write_insn<big_endian>(p, insn);
4884   p = p + 4;
4885   p = restgpr0<big_endian>(p, r);
4886   write_insn<big_endian>(p, mtlr_0);
4887   p = p + 4;
4888   if (r == 29)
4889     {
4890       p = restgpr0<big_endian>(p, 30);
4891       p = restgpr0<big_endian>(p, 31);
4892     }
4893   write_insn<big_endian>(p, blr);
4894   return p + 4;
4895 }
4896
4897 template<bool big_endian>
4898 static unsigned char*
4899 savegpr1(unsigned char* p, int r)
4900 {
4901   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4902   write_insn<big_endian>(p, insn);
4903   return p + 4;
4904 }
4905
4906 template<bool big_endian>
4907 static unsigned char*
4908 savegpr1_tail(unsigned char* p, int r)
4909 {
4910   p = savegpr1<big_endian>(p, r);
4911   write_insn<big_endian>(p, blr);
4912   return p + 4;
4913 }
4914
4915 template<bool big_endian>
4916 static unsigned char*
4917 restgpr1(unsigned char* p, int r)
4918 {
4919   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4920   write_insn<big_endian>(p, insn);
4921   return p + 4;
4922 }
4923
4924 template<bool big_endian>
4925 static unsigned char*
4926 restgpr1_tail(unsigned char* p, int r)
4927 {
4928   p = restgpr1<big_endian>(p, r);
4929   write_insn<big_endian>(p, blr);
4930   return p + 4;
4931 }
4932
4933 template<bool big_endian>
4934 static unsigned char*
4935 savefpr(unsigned char* p, int r)
4936 {
4937   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4938   write_insn<big_endian>(p, insn);
4939   return p + 4;
4940 }
4941
4942 template<bool big_endian>
4943 static unsigned char*
4944 savefpr0_tail(unsigned char* p, int r)
4945 {
4946   p = savefpr<big_endian>(p, r);
4947   write_insn<big_endian>(p, std_0_1 + 16);
4948   p = p + 4;
4949   write_insn<big_endian>(p, blr);
4950   return p + 4;
4951 }
4952
4953 template<bool big_endian>
4954 static unsigned char*
4955 restfpr(unsigned char* p, int r)
4956 {
4957   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4958   write_insn<big_endian>(p, insn);
4959   return p + 4;
4960 }
4961
4962 template<bool big_endian>
4963 static unsigned char*
4964 restfpr0_tail(unsigned char* p, int r)
4965 {
4966   write_insn<big_endian>(p, ld_0_1 + 16);
4967   p = p + 4;
4968   p = restfpr<big_endian>(p, r);
4969   write_insn<big_endian>(p, mtlr_0);
4970   p = p + 4;
4971   if (r == 29)
4972     {
4973       p = restfpr<big_endian>(p, 30);
4974       p = restfpr<big_endian>(p, 31);
4975     }
4976   write_insn<big_endian>(p, blr);
4977   return p + 4;
4978 }
4979
4980 template<bool big_endian>
4981 static unsigned char*
4982 savefpr1_tail(unsigned char* p, int r)
4983 {
4984   p = savefpr<big_endian>(p, r);
4985   write_insn<big_endian>(p, blr);
4986   return p + 4;
4987 }
4988
4989 template<bool big_endian>
4990 static unsigned char*
4991 restfpr1_tail(unsigned char* p, int r)
4992 {
4993   p = restfpr<big_endian>(p, r);
4994   write_insn<big_endian>(p, blr);
4995   return p + 4;
4996 }
4997
4998 template<bool big_endian>
4999 static unsigned char*
5000 savevr(unsigned char* p, int r)
5001 {
5002   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5003   write_insn<big_endian>(p, insn);
5004   p = p + 4;
5005   insn = stvx_0_12_0 + (r << 21);
5006   write_insn<big_endian>(p, insn);
5007   return p + 4;
5008 }
5009
5010 template<bool big_endian>
5011 static unsigned char*
5012 savevr_tail(unsigned char* p, int r)
5013 {
5014   p = savevr<big_endian>(p, r);
5015   write_insn<big_endian>(p, blr);
5016   return p + 4;
5017 }
5018
5019 template<bool big_endian>
5020 static unsigned char*
5021 restvr(unsigned char* p, int r)
5022 {
5023   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5024   write_insn<big_endian>(p, insn);
5025   p = p + 4;
5026   insn = lvx_0_12_0 + (r << 21);
5027   write_insn<big_endian>(p, insn);
5028   return p + 4;
5029 }
5030
5031 template<bool big_endian>
5032 static unsigned char*
5033 restvr_tail(unsigned char* p, int r)
5034 {
5035   p = restvr<big_endian>(p, r);
5036   write_insn<big_endian>(p, blr);
5037   return p + 4;
5038 }
5039
5040
5041 template<int size, bool big_endian>
5042 Output_data_save_res<size, big_endian>::Output_data_save_res(
5043     Symbol_table* symtab)
5044   : Output_section_data_build(4),
5045     contents_(NULL)
5046 {
5047   this->savres_define(symtab,
5048                       "_savegpr0_", 14, 31,
5049                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
5050   this->savres_define(symtab,
5051                       "_restgpr0_", 14, 29,
5052                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5053   this->savres_define(symtab,
5054                       "_restgpr0_", 30, 31,
5055                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5056   this->savres_define(symtab,
5057                       "_savegpr1_", 14, 31,
5058                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
5059   this->savres_define(symtab,
5060                       "_restgpr1_", 14, 31,
5061                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
5062   this->savres_define(symtab,
5063                       "_savefpr_", 14, 31,
5064                       savefpr<big_endian>, savefpr0_tail<big_endian>);
5065   this->savres_define(symtab,
5066                       "_restfpr_", 14, 29,
5067                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5068   this->savres_define(symtab,
5069                       "_restfpr_", 30, 31,
5070                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5071   this->savres_define(symtab,
5072                       "._savef", 14, 31,
5073                       savefpr<big_endian>, savefpr1_tail<big_endian>);
5074   this->savres_define(symtab,
5075                       "._restf", 14, 31,
5076                       restfpr<big_endian>, restfpr1_tail<big_endian>);
5077   this->savres_define(symtab,
5078                       "_savevr_", 20, 31,
5079                       savevr<big_endian>, savevr_tail<big_endian>);
5080   this->savres_define(symtab,
5081                       "_restvr_", 20, 31,
5082                       restvr<big_endian>, restvr_tail<big_endian>);
5083 }
5084
5085 template<int size, bool big_endian>
5086 void
5087 Output_data_save_res<size, big_endian>::savres_define(
5088     Symbol_table* symtab,
5089     const char *name,
5090     unsigned int lo, unsigned int hi,
5091     unsigned char* write_ent(unsigned char*, int),
5092     unsigned char* write_tail(unsigned char*, int))
5093 {
5094   size_t len = strlen(name);
5095   bool writing = false;
5096   char sym[16];
5097
5098   memcpy(sym, name, len);
5099   sym[len + 2] = 0;
5100
5101   for (unsigned int i = lo; i <= hi; i++)
5102     {
5103       sym[len + 0] = i / 10 + '0';
5104       sym[len + 1] = i % 10 + '0';
5105       Symbol* gsym = symtab->lookup(sym);
5106       bool refd = gsym != NULL && gsym->is_undefined();
5107       writing = writing || refd;
5108       if (writing)
5109         {
5110           if (this->contents_ == NULL)
5111             this->contents_ = new unsigned char[this->savres_max];
5112
5113           section_size_type value = this->current_data_size();
5114           unsigned char* p = this->contents_ + value;
5115           if (i != hi)
5116             p = write_ent(p, i);
5117           else
5118             p = write_tail(p, i);
5119           section_size_type cur_size = p - this->contents_;
5120           this->set_current_data_size(cur_size);
5121           if (refd)
5122             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5123                                           this, value, cur_size - value,
5124                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5125                                           elfcpp::STV_HIDDEN, 0, false, false);
5126         }
5127     }
5128 }
5129
5130 // Write out save/restore.
5131
5132 template<int size, bool big_endian>
5133 void
5134 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5135 {
5136   const section_size_type off = this->offset();
5137   const section_size_type oview_size =
5138     convert_to_section_size_type(this->data_size());
5139   unsigned char* const oview = of->get_output_view(off, oview_size);
5140   memcpy(oview, this->contents_, oview_size);
5141   of->write_output_view(off, oview_size, oview);
5142 }
5143
5144
5145 // Create the glink section.
5146
5147 template<int size, bool big_endian>
5148 void
5149 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5150 {
5151   if (this->glink_ == NULL)
5152     {
5153       this->glink_ = new Output_data_glink<size, big_endian>(this);
5154       this->glink_->add_eh_frame(layout);
5155       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5156                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5157                                       this->glink_, ORDER_TEXT, false);
5158     }
5159 }
5160
5161 // Create a PLT entry for a global symbol.
5162
5163 template<int size, bool big_endian>
5164 void
5165 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5166                                                  Layout* layout,
5167                                                  Symbol* gsym)
5168 {
5169   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5170       && gsym->can_use_relative_reloc(false))
5171     {
5172       if (this->iplt_ == NULL)
5173         this->make_iplt_section(symtab, layout);
5174       this->iplt_->add_ifunc_entry(gsym);
5175     }
5176   else
5177     {
5178       if (this->plt_ == NULL)
5179         this->make_plt_section(symtab, layout);
5180       this->plt_->add_entry(gsym);
5181     }
5182 }
5183
5184 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5185
5186 template<int size, bool big_endian>
5187 void
5188 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5189     Symbol_table* symtab,
5190     Layout* layout,
5191     Sized_relobj_file<size, big_endian>* relobj,
5192     unsigned int r_sym)
5193 {
5194   if (this->iplt_ == NULL)
5195     this->make_iplt_section(symtab, layout);
5196   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5197 }
5198
5199 // Return the number of entries in the PLT.
5200
5201 template<int size, bool big_endian>
5202 unsigned int
5203 Target_powerpc<size, big_endian>::plt_entry_count() const
5204 {
5205   if (this->plt_ == NULL)
5206     return 0;
5207   return this->plt_->entry_count();
5208 }
5209
5210 // Create a GOT entry for local dynamic __tls_get_addr calls.
5211
5212 template<int size, bool big_endian>
5213 unsigned int
5214 Target_powerpc<size, big_endian>::tlsld_got_offset(
5215     Symbol_table* symtab,
5216     Layout* layout,
5217     Sized_relobj_file<size, big_endian>* object)
5218 {
5219   if (this->tlsld_got_offset_ == -1U)
5220     {
5221       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5222       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5223       Output_data_got_powerpc<size, big_endian>* got
5224         = this->got_section(symtab, layout);
5225       unsigned int got_offset = got->add_constant_pair(0, 0);
5226       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5227                           got_offset, 0);
5228       this->tlsld_got_offset_ = got_offset;
5229     }
5230   return this->tlsld_got_offset_;
5231 }
5232
5233 // Get the Reference_flags for a particular relocation.
5234
5235 template<int size, bool big_endian>
5236 int
5237 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5238     unsigned int r_type,
5239     const Target_powerpc* target)
5240 {
5241   int ref = 0;
5242
5243   switch (r_type)
5244     {
5245     case elfcpp::R_POWERPC_NONE:
5246     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5247     case elfcpp::R_POWERPC_GNU_VTENTRY:
5248     case elfcpp::R_PPC64_TOC:
5249       // No symbol reference.
5250       break;
5251
5252     case elfcpp::R_PPC64_ADDR64:
5253     case elfcpp::R_PPC64_UADDR64:
5254     case elfcpp::R_POWERPC_ADDR32:
5255     case elfcpp::R_POWERPC_UADDR32:
5256     case elfcpp::R_POWERPC_ADDR16:
5257     case elfcpp::R_POWERPC_UADDR16:
5258     case elfcpp::R_POWERPC_ADDR16_LO:
5259     case elfcpp::R_POWERPC_ADDR16_HI:
5260     case elfcpp::R_POWERPC_ADDR16_HA:
5261       ref = Symbol::ABSOLUTE_REF;
5262       break;
5263
5264     case elfcpp::R_POWERPC_ADDR24:
5265     case elfcpp::R_POWERPC_ADDR14:
5266     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5267     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5268       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5269       break;
5270
5271     case elfcpp::R_PPC64_REL64:
5272     case elfcpp::R_POWERPC_REL32:
5273     case elfcpp::R_PPC_LOCAL24PC:
5274     case elfcpp::R_POWERPC_REL16:
5275     case elfcpp::R_POWERPC_REL16_LO:
5276     case elfcpp::R_POWERPC_REL16_HI:
5277     case elfcpp::R_POWERPC_REL16_HA:
5278       ref = Symbol::RELATIVE_REF;
5279       break;
5280
5281     case elfcpp::R_POWERPC_REL24:
5282     case elfcpp::R_PPC_PLTREL24:
5283     case elfcpp::R_POWERPC_REL14:
5284     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5285     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5286       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5287       break;
5288
5289     case elfcpp::R_POWERPC_GOT16:
5290     case elfcpp::R_POWERPC_GOT16_LO:
5291     case elfcpp::R_POWERPC_GOT16_HI:
5292     case elfcpp::R_POWERPC_GOT16_HA:
5293     case elfcpp::R_PPC64_GOT16_DS:
5294     case elfcpp::R_PPC64_GOT16_LO_DS:
5295     case elfcpp::R_PPC64_TOC16:
5296     case elfcpp::R_PPC64_TOC16_LO:
5297     case elfcpp::R_PPC64_TOC16_HI:
5298     case elfcpp::R_PPC64_TOC16_HA:
5299     case elfcpp::R_PPC64_TOC16_DS:
5300     case elfcpp::R_PPC64_TOC16_LO_DS:
5301       // Absolute in GOT.
5302       ref = Symbol::ABSOLUTE_REF;
5303       break;
5304
5305     case elfcpp::R_POWERPC_GOT_TPREL16:
5306     case elfcpp::R_POWERPC_TLS:
5307       ref = Symbol::TLS_REF;
5308       break;
5309
5310     case elfcpp::R_POWERPC_COPY:
5311     case elfcpp::R_POWERPC_GLOB_DAT:
5312     case elfcpp::R_POWERPC_JMP_SLOT:
5313     case elfcpp::R_POWERPC_RELATIVE:
5314     case elfcpp::R_POWERPC_DTPMOD:
5315     default:
5316       // Not expected.  We will give an error later.
5317       break;
5318     }
5319
5320   if (size == 64 && target->abiversion() < 2)
5321     ref |= Symbol::FUNC_DESC_ABI;
5322   return ref;
5323 }
5324
5325 // Report an unsupported relocation against a local symbol.
5326
5327 template<int size, bool big_endian>
5328 void
5329 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5330     Sized_relobj_file<size, big_endian>* object,
5331     unsigned int r_type)
5332 {
5333   gold_error(_("%s: unsupported reloc %u against local symbol"),
5334              object->name().c_str(), r_type);
5335 }
5336
5337 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5338 // dynamic linker does not support it, issue an error.
5339
5340 template<int size, bool big_endian>
5341 void
5342 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5343                                                       unsigned int r_type)
5344 {
5345   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5346
5347   // These are the relocation types supported by glibc for both 32-bit
5348   // and 64-bit powerpc.
5349   switch (r_type)
5350     {
5351     case elfcpp::R_POWERPC_NONE:
5352     case elfcpp::R_POWERPC_RELATIVE:
5353     case elfcpp::R_POWERPC_GLOB_DAT:
5354     case elfcpp::R_POWERPC_DTPMOD:
5355     case elfcpp::R_POWERPC_DTPREL:
5356     case elfcpp::R_POWERPC_TPREL:
5357     case elfcpp::R_POWERPC_JMP_SLOT:
5358     case elfcpp::R_POWERPC_COPY:
5359     case elfcpp::R_POWERPC_IRELATIVE:
5360     case elfcpp::R_POWERPC_ADDR32:
5361     case elfcpp::R_POWERPC_UADDR32:
5362     case elfcpp::R_POWERPC_ADDR24:
5363     case elfcpp::R_POWERPC_ADDR16:
5364     case elfcpp::R_POWERPC_UADDR16:
5365     case elfcpp::R_POWERPC_ADDR16_LO:
5366     case elfcpp::R_POWERPC_ADDR16_HI:
5367     case elfcpp::R_POWERPC_ADDR16_HA:
5368     case elfcpp::R_POWERPC_ADDR14:
5369     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5370     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5371     case elfcpp::R_POWERPC_REL32:
5372     case elfcpp::R_POWERPC_REL24:
5373     case elfcpp::R_POWERPC_TPREL16:
5374     case elfcpp::R_POWERPC_TPREL16_LO:
5375     case elfcpp::R_POWERPC_TPREL16_HI:
5376     case elfcpp::R_POWERPC_TPREL16_HA:
5377       return;
5378
5379     default:
5380       break;
5381     }
5382
5383   if (size == 64)
5384     {
5385       switch (r_type)
5386         {
5387           // These are the relocation types supported only on 64-bit.
5388         case elfcpp::R_PPC64_ADDR64:
5389         case elfcpp::R_PPC64_UADDR64:
5390         case elfcpp::R_PPC64_JMP_IREL:
5391         case elfcpp::R_PPC64_ADDR16_DS:
5392         case elfcpp::R_PPC64_ADDR16_LO_DS:
5393         case elfcpp::R_PPC64_ADDR16_HIGH:
5394         case elfcpp::R_PPC64_ADDR16_HIGHA:
5395         case elfcpp::R_PPC64_ADDR16_HIGHER:
5396         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5397         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5398         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5399         case elfcpp::R_PPC64_REL64:
5400         case elfcpp::R_POWERPC_ADDR30:
5401         case elfcpp::R_PPC64_TPREL16_DS:
5402         case elfcpp::R_PPC64_TPREL16_LO_DS:
5403         case elfcpp::R_PPC64_TPREL16_HIGH:
5404         case elfcpp::R_PPC64_TPREL16_HIGHA:
5405         case elfcpp::R_PPC64_TPREL16_HIGHER:
5406         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5407         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5408         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5409           return;
5410
5411         default:
5412           break;
5413         }
5414     }
5415   else
5416     {
5417       switch (r_type)
5418         {
5419           // These are the relocation types supported only on 32-bit.
5420           // ??? glibc ld.so doesn't need to support these.
5421         case elfcpp::R_POWERPC_DTPREL16:
5422         case elfcpp::R_POWERPC_DTPREL16_LO:
5423         case elfcpp::R_POWERPC_DTPREL16_HI:
5424         case elfcpp::R_POWERPC_DTPREL16_HA:
5425           return;
5426
5427         default:
5428           break;
5429         }
5430     }
5431
5432   // This prevents us from issuing more than one error per reloc
5433   // section.  But we can still wind up issuing more than one
5434   // error per object file.
5435   if (this->issued_non_pic_error_)
5436     return;
5437   gold_assert(parameters->options().output_is_position_independent());
5438   object->error(_("requires unsupported dynamic reloc; "
5439                   "recompile with -fPIC"));
5440   this->issued_non_pic_error_ = true;
5441   return;
5442 }
5443
5444 // Return whether we need to make a PLT entry for a relocation of the
5445 // given type against a STT_GNU_IFUNC symbol.
5446
5447 template<int size, bool big_endian>
5448 bool
5449 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5450      Target_powerpc<size, big_endian>* target,
5451      Sized_relobj_file<size, big_endian>* object,
5452      unsigned int r_type,
5453      bool report_err)
5454 {
5455   // In non-pic code any reference will resolve to the plt call stub
5456   // for the ifunc symbol.
5457   if ((size == 32 || target->abiversion() >= 2)
5458       && !parameters->options().output_is_position_independent())
5459     return true;
5460
5461   switch (r_type)
5462     {
5463     // Word size refs from data sections are OK, but don't need a PLT entry.
5464     case elfcpp::R_POWERPC_ADDR32:
5465     case elfcpp::R_POWERPC_UADDR32:
5466       if (size == 32)
5467         return false;
5468       break;
5469
5470     case elfcpp::R_PPC64_ADDR64:
5471     case elfcpp::R_PPC64_UADDR64:
5472       if (size == 64)
5473         return false;
5474       break;
5475
5476     // GOT refs are good, but also don't need a PLT entry.
5477     case elfcpp::R_POWERPC_GOT16:
5478     case elfcpp::R_POWERPC_GOT16_LO:
5479     case elfcpp::R_POWERPC_GOT16_HI:
5480     case elfcpp::R_POWERPC_GOT16_HA:
5481     case elfcpp::R_PPC64_GOT16_DS:
5482     case elfcpp::R_PPC64_GOT16_LO_DS:
5483       return false;
5484
5485     // Function calls are good, and these do need a PLT entry.
5486     case elfcpp::R_POWERPC_ADDR24:
5487     case elfcpp::R_POWERPC_ADDR14:
5488     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5489     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5490     case elfcpp::R_POWERPC_REL24:
5491     case elfcpp::R_PPC_PLTREL24:
5492     case elfcpp::R_POWERPC_REL14:
5493     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5494     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5495       return true;
5496
5497     default:
5498       break;
5499     }
5500
5501   // Anything else is a problem.
5502   // If we are building a static executable, the libc startup function
5503   // responsible for applying indirect function relocations is going
5504   // to complain about the reloc type.
5505   // If we are building a dynamic executable, we will have a text
5506   // relocation.  The dynamic loader will set the text segment
5507   // writable and non-executable to apply text relocations.  So we'll
5508   // segfault when trying to run the indirection function to resolve
5509   // the reloc.
5510   if (report_err)
5511     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5512                object->name().c_str(), r_type);
5513   return false;
5514 }
5515
5516 // Scan a relocation for a local symbol.
5517
5518 template<int size, bool big_endian>
5519 inline void
5520 Target_powerpc<size, big_endian>::Scan::local(
5521     Symbol_table* symtab,
5522     Layout* layout,
5523     Target_powerpc<size, big_endian>* target,
5524     Sized_relobj_file<size, big_endian>* object,
5525     unsigned int data_shndx,
5526     Output_section* output_section,
5527     const elfcpp::Rela<size, big_endian>& reloc,
5528     unsigned int r_type,
5529     const elfcpp::Sym<size, big_endian>& lsym,
5530     bool is_discarded)
5531 {
5532   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5533
5534   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5535       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5536     {
5537       this->expect_tls_get_addr_call();
5538       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5539       if (tls_type != tls::TLSOPT_NONE)
5540         this->skip_next_tls_get_addr_call();
5541     }
5542   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5543            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5544     {
5545       this->expect_tls_get_addr_call();
5546       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5547       if (tls_type != tls::TLSOPT_NONE)
5548         this->skip_next_tls_get_addr_call();
5549     }
5550
5551   Powerpc_relobj<size, big_endian>* ppc_object
5552     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5553
5554   if (is_discarded)
5555     {
5556       if (size == 64
5557           && data_shndx == ppc_object->opd_shndx()
5558           && r_type == elfcpp::R_PPC64_ADDR64)
5559         ppc_object->set_opd_discard(reloc.get_r_offset());
5560       return;
5561     }
5562
5563   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5564   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5565   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5566     {
5567       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5568       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5569                           r_type, r_sym, reloc.get_r_addend());
5570       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5571     }
5572
5573   switch (r_type)
5574     {
5575     case elfcpp::R_POWERPC_NONE:
5576     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5577     case elfcpp::R_POWERPC_GNU_VTENTRY:
5578     case elfcpp::R_PPC64_TOCSAVE:
5579     case elfcpp::R_POWERPC_TLS:
5580       break;
5581
5582     case elfcpp::R_PPC64_TOC:
5583       {
5584         Output_data_got_powerpc<size, big_endian>* got
5585           = target->got_section(symtab, layout);
5586         if (parameters->options().output_is_position_independent())
5587           {
5588             Address off = reloc.get_r_offset();
5589             if (size == 64
5590                 && target->abiversion() < 2
5591                 && data_shndx == ppc_object->opd_shndx()
5592                 && ppc_object->get_opd_discard(off - 8))
5593               break;
5594
5595             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5596             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5597             rela_dyn->add_output_section_relative(got->output_section(),
5598                                                   elfcpp::R_POWERPC_RELATIVE,
5599                                                   output_section,
5600                                                   object, data_shndx, off,
5601                                                   symobj->toc_base_offset());
5602           }
5603       }
5604       break;
5605
5606     case elfcpp::R_PPC64_ADDR64:
5607     case elfcpp::R_PPC64_UADDR64:
5608     case elfcpp::R_POWERPC_ADDR32:
5609     case elfcpp::R_POWERPC_UADDR32:
5610     case elfcpp::R_POWERPC_ADDR24:
5611     case elfcpp::R_POWERPC_ADDR16:
5612     case elfcpp::R_POWERPC_ADDR16_LO:
5613     case elfcpp::R_POWERPC_ADDR16_HI:
5614     case elfcpp::R_POWERPC_ADDR16_HA:
5615     case elfcpp::R_POWERPC_UADDR16:
5616     case elfcpp::R_PPC64_ADDR16_HIGH:
5617     case elfcpp::R_PPC64_ADDR16_HIGHA:
5618     case elfcpp::R_PPC64_ADDR16_HIGHER:
5619     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5620     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5621     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5622     case elfcpp::R_PPC64_ADDR16_DS:
5623     case elfcpp::R_PPC64_ADDR16_LO_DS:
5624     case elfcpp::R_POWERPC_ADDR14:
5625     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5626     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5627       // If building a shared library (or a position-independent
5628       // executable), we need to create a dynamic relocation for
5629       // this location.
5630       if (parameters->options().output_is_position_independent()
5631           || (size == 64 && is_ifunc && target->abiversion() < 2))
5632         {
5633           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5634                                                              is_ifunc);
5635           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5636           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5637               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5638             {
5639               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5640                                      : elfcpp::R_POWERPC_RELATIVE);
5641               rela_dyn->add_local_relative(object, r_sym, dynrel,
5642                                            output_section, data_shndx,
5643                                            reloc.get_r_offset(),
5644                                            reloc.get_r_addend(), false);
5645             }
5646           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5647             {
5648               check_non_pic(object, r_type);
5649               rela_dyn->add_local(object, r_sym, r_type, output_section,
5650                                   data_shndx, reloc.get_r_offset(),
5651                                   reloc.get_r_addend());
5652             }
5653           else
5654             {
5655               gold_assert(lsym.get_st_value() == 0);
5656               unsigned int shndx = lsym.get_st_shndx();
5657               bool is_ordinary;
5658               shndx = object->adjust_sym_shndx(r_sym, shndx,
5659                                                &is_ordinary);
5660               if (!is_ordinary)
5661                 object->error(_("section symbol %u has bad shndx %u"),
5662                               r_sym, shndx);
5663               else
5664                 rela_dyn->add_local_section(object, shndx, r_type,
5665                                             output_section, data_shndx,
5666                                             reloc.get_r_offset());
5667             }
5668         }
5669       break;
5670
5671     case elfcpp::R_POWERPC_REL24:
5672     case elfcpp::R_PPC_PLTREL24:
5673     case elfcpp::R_PPC_LOCAL24PC:
5674     case elfcpp::R_POWERPC_REL14:
5675     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5676     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5677       if (!is_ifunc)
5678         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5679                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5680                             reloc.get_r_addend());
5681       break;
5682
5683     case elfcpp::R_PPC64_REL64:
5684     case elfcpp::R_POWERPC_REL32:
5685     case elfcpp::R_POWERPC_REL16:
5686     case elfcpp::R_POWERPC_REL16_LO:
5687     case elfcpp::R_POWERPC_REL16_HI:
5688     case elfcpp::R_POWERPC_REL16_HA:
5689     case elfcpp::R_POWERPC_SECTOFF:
5690     case elfcpp::R_POWERPC_SECTOFF_LO:
5691     case elfcpp::R_POWERPC_SECTOFF_HI:
5692     case elfcpp::R_POWERPC_SECTOFF_HA:
5693     case elfcpp::R_PPC64_SECTOFF_DS:
5694     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5695     case elfcpp::R_POWERPC_TPREL16:
5696     case elfcpp::R_POWERPC_TPREL16_LO:
5697     case elfcpp::R_POWERPC_TPREL16_HI:
5698     case elfcpp::R_POWERPC_TPREL16_HA:
5699     case elfcpp::R_PPC64_TPREL16_DS:
5700     case elfcpp::R_PPC64_TPREL16_LO_DS:
5701     case elfcpp::R_PPC64_TPREL16_HIGH:
5702     case elfcpp::R_PPC64_TPREL16_HIGHA:
5703     case elfcpp::R_PPC64_TPREL16_HIGHER:
5704     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5705     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5706     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5707     case elfcpp::R_POWERPC_DTPREL16:
5708     case elfcpp::R_POWERPC_DTPREL16_LO:
5709     case elfcpp::R_POWERPC_DTPREL16_HI:
5710     case elfcpp::R_POWERPC_DTPREL16_HA:
5711     case elfcpp::R_PPC64_DTPREL16_DS:
5712     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5713     case elfcpp::R_PPC64_DTPREL16_HIGH:
5714     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5715     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5716     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5717     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5718     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5719     case elfcpp::R_PPC64_TLSGD:
5720     case elfcpp::R_PPC64_TLSLD:
5721     case elfcpp::R_PPC64_ADDR64_LOCAL:
5722       break;
5723
5724     case elfcpp::R_POWERPC_GOT16:
5725     case elfcpp::R_POWERPC_GOT16_LO:
5726     case elfcpp::R_POWERPC_GOT16_HI:
5727     case elfcpp::R_POWERPC_GOT16_HA:
5728     case elfcpp::R_PPC64_GOT16_DS:
5729     case elfcpp::R_PPC64_GOT16_LO_DS:
5730       {
5731         // The symbol requires a GOT entry.
5732         Output_data_got_powerpc<size, big_endian>* got
5733           = target->got_section(symtab, layout);
5734         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5735
5736         if (!parameters->options().output_is_position_independent())
5737           {
5738             if (is_ifunc
5739                 && (size == 32 || target->abiversion() >= 2))
5740               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5741             else
5742               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5743           }
5744         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5745           {
5746             // If we are generating a shared object or a pie, this
5747             // symbol's GOT entry will be set by a dynamic relocation.
5748             unsigned int off;
5749             off = got->add_constant(0);
5750             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5751
5752             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5753                                                                is_ifunc);
5754             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5755                                    : elfcpp::R_POWERPC_RELATIVE);
5756             rela_dyn->add_local_relative(object, r_sym, dynrel,
5757                                          got, off, 0, false);
5758           }
5759       }
5760       break;
5761
5762     case elfcpp::R_PPC64_TOC16:
5763     case elfcpp::R_PPC64_TOC16_LO:
5764     case elfcpp::R_PPC64_TOC16_HI:
5765     case elfcpp::R_PPC64_TOC16_HA:
5766     case elfcpp::R_PPC64_TOC16_DS:
5767     case elfcpp::R_PPC64_TOC16_LO_DS:
5768       // We need a GOT section.
5769       target->got_section(symtab, layout);
5770       break;
5771
5772     case elfcpp::R_POWERPC_GOT_TLSGD16:
5773     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5774     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5775     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5776       {
5777         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5778         if (tls_type == tls::TLSOPT_NONE)
5779           {
5780             Output_data_got_powerpc<size, big_endian>* got
5781               = target->got_section(symtab, layout);
5782             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5783             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5784             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5785                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5786           }
5787         else if (tls_type == tls::TLSOPT_TO_LE)
5788           {
5789             // no GOT relocs needed for Local Exec.
5790           }
5791         else
5792           gold_unreachable();
5793       }
5794       break;
5795
5796     case elfcpp::R_POWERPC_GOT_TLSLD16:
5797     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5798     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5799     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5800       {
5801         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5802         if (tls_type == tls::TLSOPT_NONE)
5803           target->tlsld_got_offset(symtab, layout, object);
5804         else if (tls_type == tls::TLSOPT_TO_LE)
5805           {
5806             // no GOT relocs needed for Local Exec.
5807             if (parameters->options().emit_relocs())
5808               {
5809                 Output_section* os = layout->tls_segment()->first_section();
5810                 gold_assert(os != NULL);
5811                 os->set_needs_symtab_index();
5812               }
5813           }
5814         else
5815           gold_unreachable();
5816       }
5817       break;
5818
5819     case elfcpp::R_POWERPC_GOT_DTPREL16:
5820     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5821     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5822     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5823       {
5824         Output_data_got_powerpc<size, big_endian>* got
5825           = target->got_section(symtab, layout);
5826         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5827         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5828       }
5829       break;
5830
5831     case elfcpp::R_POWERPC_GOT_TPREL16:
5832     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5833     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5834     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5835       {
5836         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5837         if (tls_type == tls::TLSOPT_NONE)
5838           {
5839             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5840             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5841               {
5842                 Output_data_got_powerpc<size, big_endian>* got
5843                   = target->got_section(symtab, layout);
5844                 unsigned int off = got->add_constant(0);
5845                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5846
5847                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5848                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5849                                                       elfcpp::R_POWERPC_TPREL,
5850                                                       got, off, 0);
5851               }
5852           }
5853         else if (tls_type == tls::TLSOPT_TO_LE)
5854           {
5855             // no GOT relocs needed for Local Exec.
5856           }
5857         else
5858           gold_unreachable();
5859       }
5860       break;
5861
5862     default:
5863       unsupported_reloc_local(object, r_type);
5864       break;
5865     }
5866
5867   switch (r_type)
5868     {
5869     case elfcpp::R_POWERPC_GOT_TLSLD16:
5870     case elfcpp::R_POWERPC_GOT_TLSGD16:
5871     case elfcpp::R_POWERPC_GOT_TPREL16:
5872     case elfcpp::R_POWERPC_GOT_DTPREL16:
5873     case elfcpp::R_POWERPC_GOT16:
5874     case elfcpp::R_PPC64_GOT16_DS:
5875     case elfcpp::R_PPC64_TOC16:
5876     case elfcpp::R_PPC64_TOC16_DS:
5877       ppc_object->set_has_small_toc_reloc();
5878     default:
5879       break;
5880     }
5881 }
5882
5883 // Report an unsupported relocation against a global symbol.
5884
5885 template<int size, bool big_endian>
5886 void
5887 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5888     Sized_relobj_file<size, big_endian>* object,
5889     unsigned int r_type,
5890     Symbol* gsym)
5891 {
5892   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5893              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5894 }
5895
5896 // Scan a relocation for a global symbol.
5897
5898 template<int size, bool big_endian>
5899 inline void
5900 Target_powerpc<size, big_endian>::Scan::global(
5901     Symbol_table* symtab,
5902     Layout* layout,
5903     Target_powerpc<size, big_endian>* target,
5904     Sized_relobj_file<size, big_endian>* object,
5905     unsigned int data_shndx,
5906     Output_section* output_section,
5907     const elfcpp::Rela<size, big_endian>& reloc,
5908     unsigned int r_type,
5909     Symbol* gsym)
5910 {
5911   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5912     return;
5913
5914   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5915       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5916     {
5917       this->expect_tls_get_addr_call();
5918       const bool final = gsym->final_value_is_known();
5919       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5920       if (tls_type != tls::TLSOPT_NONE)
5921         this->skip_next_tls_get_addr_call();
5922     }
5923   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5924            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5925     {
5926       this->expect_tls_get_addr_call();
5927       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5928       if (tls_type != tls::TLSOPT_NONE)
5929         this->skip_next_tls_get_addr_call();
5930     }
5931
5932   Powerpc_relobj<size, big_endian>* ppc_object
5933     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5934
5935   // A STT_GNU_IFUNC symbol may require a PLT entry.
5936   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5937   bool pushed_ifunc = false;
5938   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5939     {
5940       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5941                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5942                           reloc.get_r_addend());
5943       target->make_plt_entry(symtab, layout, gsym);
5944       pushed_ifunc = true;
5945     }
5946
5947   switch (r_type)
5948     {
5949     case elfcpp::R_POWERPC_NONE:
5950     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5951     case elfcpp::R_POWERPC_GNU_VTENTRY:
5952     case elfcpp::R_PPC_LOCAL24PC:
5953     case elfcpp::R_POWERPC_TLS:
5954       break;
5955
5956     case elfcpp::R_PPC64_TOC:
5957       {
5958         Output_data_got_powerpc<size, big_endian>* got
5959           = target->got_section(symtab, layout);
5960         if (parameters->options().output_is_position_independent())
5961           {
5962             Address off = reloc.get_r_offset();
5963             if (size == 64
5964                 && data_shndx == ppc_object->opd_shndx()
5965                 && ppc_object->get_opd_discard(off - 8))
5966               break;
5967
5968             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5969             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5970             if (data_shndx != ppc_object->opd_shndx())
5971               symobj = static_cast
5972                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5973             rela_dyn->add_output_section_relative(got->output_section(),
5974                                                   elfcpp::R_POWERPC_RELATIVE,
5975                                                   output_section,
5976                                                   object, data_shndx, off,
5977                                                   symobj->toc_base_offset());
5978           }
5979       }
5980       break;
5981
5982     case elfcpp::R_PPC64_ADDR64:
5983       if (size == 64
5984           && target->abiversion() < 2
5985           && data_shndx == ppc_object->opd_shndx()
5986           && (gsym->is_defined_in_discarded_section()
5987               || gsym->object() != object))
5988         {
5989           ppc_object->set_opd_discard(reloc.get_r_offset());
5990           break;
5991         }
5992       // Fall thru
5993     case elfcpp::R_PPC64_UADDR64:
5994     case elfcpp::R_POWERPC_ADDR32:
5995     case elfcpp::R_POWERPC_UADDR32:
5996     case elfcpp::R_POWERPC_ADDR24:
5997     case elfcpp::R_POWERPC_ADDR16:
5998     case elfcpp::R_POWERPC_ADDR16_LO:
5999     case elfcpp::R_POWERPC_ADDR16_HI:
6000     case elfcpp::R_POWERPC_ADDR16_HA:
6001     case elfcpp::R_POWERPC_UADDR16:
6002     case elfcpp::R_PPC64_ADDR16_HIGH:
6003     case elfcpp::R_PPC64_ADDR16_HIGHA:
6004     case elfcpp::R_PPC64_ADDR16_HIGHER:
6005     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6006     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6007     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6008     case elfcpp::R_PPC64_ADDR16_DS:
6009     case elfcpp::R_PPC64_ADDR16_LO_DS:
6010     case elfcpp::R_POWERPC_ADDR14:
6011     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6012     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6013       {
6014         // Make a PLT entry if necessary.
6015         if (gsym->needs_plt_entry())
6016           {
6017             // Since this is not a PC-relative relocation, we may be
6018             // taking the address of a function. In that case we need to
6019             // set the entry in the dynamic symbol table to the address of
6020             // the PLT call stub.
6021             bool need_ifunc_plt = false;
6022             if ((size == 32 || target->abiversion() >= 2)
6023                 && gsym->is_from_dynobj()
6024                 && !parameters->options().output_is_position_independent())
6025               {
6026                 gsym->set_needs_dynsym_value();
6027                 need_ifunc_plt = true;
6028               }
6029             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6030               {
6031                 target->push_branch(ppc_object, data_shndx,
6032                                     reloc.get_r_offset(), r_type,
6033                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6034                                     reloc.get_r_addend());
6035                 target->make_plt_entry(symtab, layout, gsym);
6036               }
6037           }
6038         // Make a dynamic relocation if necessary.
6039         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6040             || (size == 64 && is_ifunc && target->abiversion() < 2))
6041           {
6042             if (!parameters->options().output_is_position_independent()
6043                 && gsym->may_need_copy_reloc())
6044               {
6045                 target->copy_reloc(symtab, layout, object,
6046                                    data_shndx, output_section, gsym, reloc);
6047               }
6048             else if ((((size == 32
6049                         && r_type == elfcpp::R_POWERPC_ADDR32)
6050                        || (size == 64
6051                            && r_type == elfcpp::R_PPC64_ADDR64
6052                            && target->abiversion() >= 2))
6053                       && gsym->can_use_relative_reloc(false)
6054                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
6055                            && parameters->options().shared()))
6056                      || (size == 64
6057                          && r_type == elfcpp::R_PPC64_ADDR64
6058                          && target->abiversion() < 2
6059                          && (gsym->can_use_relative_reloc(false)
6060                              || data_shndx == ppc_object->opd_shndx())))
6061               {
6062                 Reloc_section* rela_dyn
6063                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6064                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6065                                        : elfcpp::R_POWERPC_RELATIVE);
6066                 rela_dyn->add_symbolless_global_addend(
6067                     gsym, dynrel, output_section, object, data_shndx,
6068                     reloc.get_r_offset(), reloc.get_r_addend());
6069               }
6070             else
6071               {
6072                 Reloc_section* rela_dyn
6073                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6074                 check_non_pic(object, r_type);
6075                 rela_dyn->add_global(gsym, r_type, output_section,
6076                                      object, data_shndx,
6077                                      reloc.get_r_offset(),
6078                                      reloc.get_r_addend());
6079               }
6080           }
6081       }
6082       break;
6083
6084     case elfcpp::R_PPC_PLTREL24:
6085     case elfcpp::R_POWERPC_REL24:
6086       if (!is_ifunc)
6087         {
6088           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6089                               r_type,
6090                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6091                               reloc.get_r_addend());
6092           if (gsym->needs_plt_entry()
6093               || (!gsym->final_value_is_known()
6094                   && (gsym->is_undefined()
6095                       || gsym->is_from_dynobj()
6096                       || gsym->is_preemptible())))
6097             target->make_plt_entry(symtab, layout, gsym);
6098         }
6099       // Fall thru
6100
6101     case elfcpp::R_PPC64_REL64:
6102     case elfcpp::R_POWERPC_REL32:
6103       // Make a dynamic relocation if necessary.
6104       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6105         {
6106           if (!parameters->options().output_is_position_independent()
6107               && gsym->may_need_copy_reloc())
6108             {
6109               target->copy_reloc(symtab, layout, object,
6110                                  data_shndx, output_section, gsym,
6111                                  reloc);
6112             }
6113           else
6114             {
6115               Reloc_section* rela_dyn
6116                 = target->rela_dyn_section(symtab, layout, is_ifunc);
6117               check_non_pic(object, r_type);
6118               rela_dyn->add_global(gsym, r_type, output_section, object,
6119                                    data_shndx, reloc.get_r_offset(),
6120                                    reloc.get_r_addend());
6121             }
6122         }
6123       break;
6124
6125     case elfcpp::R_POWERPC_REL14:
6126     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6127     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6128       if (!is_ifunc)
6129         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6130                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6131                             reloc.get_r_addend());
6132       break;
6133
6134     case elfcpp::R_POWERPC_REL16:
6135     case elfcpp::R_POWERPC_REL16_LO:
6136     case elfcpp::R_POWERPC_REL16_HI:
6137     case elfcpp::R_POWERPC_REL16_HA:
6138     case elfcpp::R_POWERPC_SECTOFF:
6139     case elfcpp::R_POWERPC_SECTOFF_LO:
6140     case elfcpp::R_POWERPC_SECTOFF_HI:
6141     case elfcpp::R_POWERPC_SECTOFF_HA:
6142     case elfcpp::R_PPC64_SECTOFF_DS:
6143     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6144     case elfcpp::R_POWERPC_TPREL16:
6145     case elfcpp::R_POWERPC_TPREL16_LO:
6146     case elfcpp::R_POWERPC_TPREL16_HI:
6147     case elfcpp::R_POWERPC_TPREL16_HA:
6148     case elfcpp::R_PPC64_TPREL16_DS:
6149     case elfcpp::R_PPC64_TPREL16_LO_DS:
6150     case elfcpp::R_PPC64_TPREL16_HIGH:
6151     case elfcpp::R_PPC64_TPREL16_HIGHA:
6152     case elfcpp::R_PPC64_TPREL16_HIGHER:
6153     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6154     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6155     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6156     case elfcpp::R_POWERPC_DTPREL16:
6157     case elfcpp::R_POWERPC_DTPREL16_LO:
6158     case elfcpp::R_POWERPC_DTPREL16_HI:
6159     case elfcpp::R_POWERPC_DTPREL16_HA:
6160     case elfcpp::R_PPC64_DTPREL16_DS:
6161     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6162     case elfcpp::R_PPC64_DTPREL16_HIGH:
6163     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6164     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6165     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6166     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6167     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6168     case elfcpp::R_PPC64_TLSGD:
6169     case elfcpp::R_PPC64_TLSLD:
6170     case elfcpp::R_PPC64_ADDR64_LOCAL:
6171       break;
6172
6173     case elfcpp::R_POWERPC_GOT16:
6174     case elfcpp::R_POWERPC_GOT16_LO:
6175     case elfcpp::R_POWERPC_GOT16_HI:
6176     case elfcpp::R_POWERPC_GOT16_HA:
6177     case elfcpp::R_PPC64_GOT16_DS:
6178     case elfcpp::R_PPC64_GOT16_LO_DS:
6179       {
6180         // The symbol requires a GOT entry.
6181         Output_data_got_powerpc<size, big_endian>* got;
6182
6183         got = target->got_section(symtab, layout);
6184         if (gsym->final_value_is_known())
6185           {
6186             if (is_ifunc
6187                 && (size == 32 || target->abiversion() >= 2))
6188               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6189             else
6190               got->add_global(gsym, GOT_TYPE_STANDARD);
6191           }
6192         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6193           {
6194             // If we are generating a shared object or a pie, this
6195             // symbol's GOT entry will be set by a dynamic relocation.
6196             unsigned int off = got->add_constant(0);
6197             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6198
6199             Reloc_section* rela_dyn
6200               = target->rela_dyn_section(symtab, layout, is_ifunc);
6201
6202             if (gsym->can_use_relative_reloc(false)
6203                 && !((size == 32
6204                       || target->abiversion() >= 2)
6205                      && gsym->visibility() == elfcpp::STV_PROTECTED
6206                      && parameters->options().shared()))
6207               {
6208                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6209                                        : elfcpp::R_POWERPC_RELATIVE);
6210                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6211               }
6212             else
6213               {
6214                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6215                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6216               }
6217           }
6218       }
6219       break;
6220
6221     case elfcpp::R_PPC64_TOC16:
6222     case elfcpp::R_PPC64_TOC16_LO:
6223     case elfcpp::R_PPC64_TOC16_HI:
6224     case elfcpp::R_PPC64_TOC16_HA:
6225     case elfcpp::R_PPC64_TOC16_DS:
6226     case elfcpp::R_PPC64_TOC16_LO_DS:
6227       // We need a GOT section.
6228       target->got_section(symtab, layout);
6229       break;
6230
6231     case elfcpp::R_POWERPC_GOT_TLSGD16:
6232     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6233     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6234     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6235       {
6236         const bool final = gsym->final_value_is_known();
6237         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6238         if (tls_type == tls::TLSOPT_NONE)
6239           {
6240             Output_data_got_powerpc<size, big_endian>* got
6241               = target->got_section(symtab, layout);
6242             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6243             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6244                                           elfcpp::R_POWERPC_DTPMOD,
6245                                           elfcpp::R_POWERPC_DTPREL);
6246           }
6247         else if (tls_type == tls::TLSOPT_TO_IE)
6248           {
6249             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6250               {
6251                 Output_data_got_powerpc<size, big_endian>* got
6252                   = target->got_section(symtab, layout);
6253                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6254                 if (gsym->is_undefined()
6255                     || gsym->is_from_dynobj())
6256                   {
6257                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6258                                              elfcpp::R_POWERPC_TPREL);
6259                   }
6260                 else
6261                   {
6262                     unsigned int off = got->add_constant(0);
6263                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6264                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6265                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6266                                                            got, off, 0);
6267                   }
6268               }
6269           }
6270         else if (tls_type == tls::TLSOPT_TO_LE)
6271           {
6272             // no GOT relocs needed for Local Exec.
6273           }
6274         else
6275           gold_unreachable();
6276       }
6277       break;
6278
6279     case elfcpp::R_POWERPC_GOT_TLSLD16:
6280     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6281     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6282     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6283       {
6284         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6285         if (tls_type == tls::TLSOPT_NONE)
6286           target->tlsld_got_offset(symtab, layout, object);
6287         else if (tls_type == tls::TLSOPT_TO_LE)
6288           {
6289             // no GOT relocs needed for Local Exec.
6290             if (parameters->options().emit_relocs())
6291               {
6292                 Output_section* os = layout->tls_segment()->first_section();
6293                 gold_assert(os != NULL);
6294                 os->set_needs_symtab_index();
6295               }
6296           }
6297         else
6298           gold_unreachable();
6299       }
6300       break;
6301
6302     case elfcpp::R_POWERPC_GOT_DTPREL16:
6303     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6304     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6305     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6306       {
6307         Output_data_got_powerpc<size, big_endian>* got
6308           = target->got_section(symtab, layout);
6309         if (!gsym->final_value_is_known()
6310             && (gsym->is_from_dynobj()
6311                 || gsym->is_undefined()
6312                 || gsym->is_preemptible()))
6313           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6314                                    target->rela_dyn_section(layout),
6315                                    elfcpp::R_POWERPC_DTPREL);
6316         else
6317           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6318       }
6319       break;
6320
6321     case elfcpp::R_POWERPC_GOT_TPREL16:
6322     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6323     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6324     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6325       {
6326         const bool final = gsym->final_value_is_known();
6327         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6328         if (tls_type == tls::TLSOPT_NONE)
6329           {
6330             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6331               {
6332                 Output_data_got_powerpc<size, big_endian>* got
6333                   = target->got_section(symtab, layout);
6334                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6335                 if (gsym->is_undefined()
6336                     || gsym->is_from_dynobj())
6337                   {
6338                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6339                                              elfcpp::R_POWERPC_TPREL);
6340                   }
6341                 else
6342                   {
6343                     unsigned int off = got->add_constant(0);
6344                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6345                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6346                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6347                                                            got, off, 0);
6348                   }
6349               }
6350           }
6351         else if (tls_type == tls::TLSOPT_TO_LE)
6352           {
6353             // no GOT relocs needed for Local Exec.
6354           }
6355         else
6356           gold_unreachable();
6357       }
6358       break;
6359
6360     default:
6361       unsupported_reloc_global(object, r_type, gsym);
6362       break;
6363     }
6364
6365   switch (r_type)
6366     {
6367     case elfcpp::R_POWERPC_GOT_TLSLD16:
6368     case elfcpp::R_POWERPC_GOT_TLSGD16:
6369     case elfcpp::R_POWERPC_GOT_TPREL16:
6370     case elfcpp::R_POWERPC_GOT_DTPREL16:
6371     case elfcpp::R_POWERPC_GOT16:
6372     case elfcpp::R_PPC64_GOT16_DS:
6373     case elfcpp::R_PPC64_TOC16:
6374     case elfcpp::R_PPC64_TOC16_DS:
6375       ppc_object->set_has_small_toc_reloc();
6376     default:
6377       break;
6378     }
6379 }
6380
6381 // Process relocations for gc.
6382
6383 template<int size, bool big_endian>
6384 void
6385 Target_powerpc<size, big_endian>::gc_process_relocs(
6386     Symbol_table* symtab,
6387     Layout* layout,
6388     Sized_relobj_file<size, big_endian>* object,
6389     unsigned int data_shndx,
6390     unsigned int,
6391     const unsigned char* prelocs,
6392     size_t reloc_count,
6393     Output_section* output_section,
6394     bool needs_special_offset_handling,
6395     size_t local_symbol_count,
6396     const unsigned char* plocal_symbols)
6397 {
6398   typedef Target_powerpc<size, big_endian> Powerpc;
6399   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6400   Powerpc_relobj<size, big_endian>* ppc_object
6401     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6402   if (size == 64)
6403     ppc_object->set_opd_valid();
6404   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6405     {
6406       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6407       for (p = ppc_object->access_from_map()->begin();
6408            p != ppc_object->access_from_map()->end();
6409            ++p)
6410         {
6411           Address dst_off = p->first;
6412           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6413           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6414           for (s = p->second.begin(); s != p->second.end(); ++s)
6415             {
6416               Relobj* src_obj = s->first;
6417               unsigned int src_indx = s->second;
6418               symtab->gc()->add_reference(src_obj, src_indx,
6419                                           ppc_object, dst_indx);
6420             }
6421           p->second.clear();
6422         }
6423       ppc_object->access_from_map()->clear();
6424       ppc_object->process_gc_mark(symtab);
6425       // Don't look at .opd relocs as .opd will reference everything.
6426       return;
6427     }
6428
6429   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6430                           typename Target_powerpc::Relocatable_size_for_reloc>(
6431     symtab,
6432     layout,
6433     this,
6434     object,
6435     data_shndx,
6436     prelocs,
6437     reloc_count,
6438     output_section,
6439     needs_special_offset_handling,
6440     local_symbol_count,
6441     plocal_symbols);
6442 }
6443
6444 // Handle target specific gc actions when adding a gc reference from
6445 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6446 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6447 // section of a function descriptor.
6448
6449 template<int size, bool big_endian>
6450 void
6451 Target_powerpc<size, big_endian>::do_gc_add_reference(
6452     Symbol_table* symtab,
6453     Relobj* src_obj,
6454     unsigned int src_shndx,
6455     Relobj* dst_obj,
6456     unsigned int dst_shndx,
6457     Address dst_off) const
6458 {
6459   if (size != 64 || dst_obj->is_dynamic())
6460     return;
6461
6462   Powerpc_relobj<size, big_endian>* ppc_object
6463     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6464   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6465     {
6466       if (ppc_object->opd_valid())
6467         {
6468           dst_shndx = ppc_object->get_opd_ent(dst_off);
6469           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6470         }
6471       else
6472         {
6473           // If we haven't run scan_opd_relocs, we must delay
6474           // processing this function descriptor reference.
6475           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6476         }
6477     }
6478 }
6479
6480 // Add any special sections for this symbol to the gc work list.
6481 // For powerpc64, this adds the code section of a function
6482 // descriptor.
6483
6484 template<int size, bool big_endian>
6485 void
6486 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6487     Symbol_table* symtab,
6488     Symbol* sym) const
6489 {
6490   if (size == 64)
6491     {
6492       Powerpc_relobj<size, big_endian>* ppc_object
6493         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6494       bool is_ordinary;
6495       unsigned int shndx = sym->shndx(&is_ordinary);
6496       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6497         {
6498           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6499           Address dst_off = gsym->value();
6500           if (ppc_object->opd_valid())
6501             {
6502               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6503               symtab->gc()->worklist().push_back(Section_id(ppc_object,
6504                                                             dst_indx));
6505             }
6506           else
6507             ppc_object->add_gc_mark(dst_off);
6508         }
6509     }
6510 }
6511
6512 // For a symbol location in .opd, set LOC to the location of the
6513 // function entry.
6514
6515 template<int size, bool big_endian>
6516 void
6517 Target_powerpc<size, big_endian>::do_function_location(
6518     Symbol_location* loc) const
6519 {
6520   if (size == 64 && loc->shndx != 0)
6521     {
6522       if (loc->object->is_dynamic())
6523         {
6524           Powerpc_dynobj<size, big_endian>* ppc_object
6525             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6526           if (loc->shndx == ppc_object->opd_shndx())
6527             {
6528               Address dest_off;
6529               Address off = loc->offset - ppc_object->opd_address();
6530               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6531               loc->offset = dest_off;
6532             }
6533         }
6534       else
6535         {
6536           const Powerpc_relobj<size, big_endian>* ppc_object
6537             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6538           if (loc->shndx == ppc_object->opd_shndx())
6539             {
6540               Address dest_off;
6541               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6542               loc->offset = dest_off;
6543             }
6544         }
6545     }
6546 }
6547
6548 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6549 // compiled with -fsplit-stack.  The function calls non-split-stack
6550 // code.  Change the function to ensure it has enough stack space to
6551 // call some random function.
6552
6553 template<int size, bool big_endian>
6554 void
6555 Target_powerpc<size, big_endian>::do_calls_non_split(
6556     Relobj* object,
6557     unsigned int shndx,
6558     section_offset_type fnoffset,
6559     section_size_type fnsize,
6560     unsigned char* view,
6561     section_size_type view_size,
6562     std::string* from,
6563     std::string* to) const
6564 {
6565   // 32-bit not supported.
6566   if (size == 32)
6567     {
6568       // warn
6569       Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6570                                  view, view_size, from, to);
6571       return;
6572     }
6573
6574   // The function always starts with
6575   //    ld %r0,-0x7000-64(%r13)  # tcbhead_t.__private_ss
6576   //    addis %r12,%r1,-allocate@ha
6577   //    addi %r12,%r12,-allocate@l
6578   //    cmpld %r12,%r0
6579   // but note that the addis or addi may be replaced with a nop
6580
6581   unsigned char *entry = view + fnoffset;
6582   uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6583
6584   if ((insn & 0xffff0000) == addis_2_12)
6585     {
6586       /* Skip ELFv2 global entry code.  */
6587       entry += 8;
6588       insn = elfcpp::Swap<32, big_endian>::readval(entry);
6589     }
6590
6591   unsigned char *pinsn = entry;
6592   bool ok = false;
6593   const uint32_t ld_private_ss = 0xe80d8fc0;
6594   if (insn == ld_private_ss)
6595     {
6596       int32_t allocate = 0;
6597       while (1)
6598         {
6599           pinsn += 4;
6600           insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6601           if ((insn & 0xffff0000) == addis_12_1)
6602             allocate += (insn & 0xffff) << 16;
6603           else if ((insn & 0xffff0000) == addi_12_1
6604                    || (insn & 0xffff0000) == addi_12_12)
6605             allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6606           else if (insn != nop)
6607             break;
6608         }
6609       if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6610         {
6611           int extra = parameters->options().split_stack_adjust_size();
6612           allocate -= extra;
6613           if (allocate >= 0 || extra < 0)
6614             {
6615               object->error(_("split-stack stack size overflow at "
6616                               "section %u offset %0zx"),
6617                             shndx, static_cast<size_t>(fnoffset));
6618               return;
6619             }
6620           pinsn = entry + 4;
6621           insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6622           if (insn != addis_12_1)
6623             {
6624               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6625               pinsn += 4;
6626               insn = addi_12_12 | (allocate & 0xffff);
6627               if (insn != addi_12_12)
6628                 {
6629                   elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6630                   pinsn += 4;
6631                 }
6632             }
6633           else
6634             {
6635               insn = addi_12_1 | (allocate & 0xffff);
6636               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6637               pinsn += 4;
6638             }
6639           if (pinsn != entry + 12)
6640             elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6641
6642           ok = true;
6643         }
6644     }
6645
6646   if (!ok)
6647     {
6648       if (!object->has_no_split_stack())
6649         object->error(_("failed to match split-stack sequence at "
6650                         "section %u offset %0zx"),
6651                       shndx, static_cast<size_t>(fnoffset));
6652     }
6653 }
6654
6655 // Scan relocations for a section.
6656
6657 template<int size, bool big_endian>
6658 void
6659 Target_powerpc<size, big_endian>::scan_relocs(
6660     Symbol_table* symtab,
6661     Layout* layout,
6662     Sized_relobj_file<size, big_endian>* object,
6663     unsigned int data_shndx,
6664     unsigned int sh_type,
6665     const unsigned char* prelocs,
6666     size_t reloc_count,
6667     Output_section* output_section,
6668     bool needs_special_offset_handling,
6669     size_t local_symbol_count,
6670     const unsigned char* plocal_symbols)
6671 {
6672   typedef Target_powerpc<size, big_endian> Powerpc;
6673   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6674
6675   if (sh_type == elfcpp::SHT_REL)
6676     {
6677       gold_error(_("%s: unsupported REL reloc section"),
6678                  object->name().c_str());
6679       return;
6680     }
6681
6682   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6683     symtab,
6684     layout,
6685     this,
6686     object,
6687     data_shndx,
6688     prelocs,
6689     reloc_count,
6690     output_section,
6691     needs_special_offset_handling,
6692     local_symbol_count,
6693     plocal_symbols);
6694 }
6695
6696 // Functor class for processing the global symbol table.
6697 // Removes symbols defined on discarded opd entries.
6698
6699 template<bool big_endian>
6700 class Global_symbol_visitor_opd
6701 {
6702  public:
6703   Global_symbol_visitor_opd()
6704   { }
6705
6706   void
6707   operator()(Sized_symbol<64>* sym)
6708   {
6709     if (sym->has_symtab_index()
6710         || sym->source() != Symbol::FROM_OBJECT
6711         || !sym->in_real_elf())
6712       return;
6713
6714     if (sym->object()->is_dynamic())
6715       return;
6716
6717     Powerpc_relobj<64, big_endian>* symobj
6718       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6719     if (symobj->opd_shndx() == 0)
6720       return;
6721
6722     bool is_ordinary;
6723     unsigned int shndx = sym->shndx(&is_ordinary);
6724     if (shndx == symobj->opd_shndx()
6725         && symobj->get_opd_discard(sym->value()))
6726       {
6727         sym->set_undefined();
6728         sym->set_visibility(elfcpp::STV_DEFAULT);
6729         sym->set_is_defined_in_discarded_section();
6730         sym->set_symtab_index(-1U);
6731       }
6732   }
6733 };
6734
6735 template<int size, bool big_endian>
6736 void
6737 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6738     Layout* layout,
6739     Symbol_table* symtab)
6740 {
6741   if (size == 64)
6742     {
6743       Output_data_save_res<size, big_endian>* savres
6744         = new Output_data_save_res<size, big_endian>(symtab);
6745       this->savres_section_ = savres;
6746       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6747                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6748                                       savres, ORDER_TEXT, false);
6749     }
6750 }
6751
6752 // Sort linker created .got section first (for the header), then input
6753 // sections belonging to files using small model code.
6754
6755 template<bool big_endian>
6756 class Sort_toc_sections
6757 {
6758  public:
6759   bool
6760   operator()(const Output_section::Input_section& is1,
6761              const Output_section::Input_section& is2) const
6762   {
6763     if (!is1.is_input_section() && is2.is_input_section())
6764       return true;
6765     bool small1
6766       = (is1.is_input_section()
6767          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6768              ->has_small_toc_reloc()));
6769     bool small2
6770       = (is2.is_input_section()
6771          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6772              ->has_small_toc_reloc()));
6773     return small1 && !small2;
6774   }
6775 };
6776
6777 // Finalize the sections.
6778
6779 template<int size, bool big_endian>
6780 void
6781 Target_powerpc<size, big_endian>::do_finalize_sections(
6782     Layout* layout,
6783     const Input_objects*,
6784     Symbol_table* symtab)
6785 {
6786   if (parameters->doing_static_link())
6787     {
6788       // At least some versions of glibc elf-init.o have a strong
6789       // reference to __rela_iplt marker syms.  A weak ref would be
6790       // better..
6791       if (this->iplt_ != NULL)
6792         {
6793           Reloc_section* rel = this->iplt_->rel_plt();
6794           symtab->define_in_output_data("__rela_iplt_start", NULL,
6795                                         Symbol_table::PREDEFINED, rel, 0, 0,
6796                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6797                                         elfcpp::STV_HIDDEN, 0, false, true);
6798           symtab->define_in_output_data("__rela_iplt_end", NULL,
6799                                         Symbol_table::PREDEFINED, rel, 0, 0,
6800                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6801                                         elfcpp::STV_HIDDEN, 0, true, true);
6802         }
6803       else
6804         {
6805           symtab->define_as_constant("__rela_iplt_start", NULL,
6806                                      Symbol_table::PREDEFINED, 0, 0,
6807                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6808                                      elfcpp::STV_HIDDEN, 0, true, false);
6809           symtab->define_as_constant("__rela_iplt_end", NULL,
6810                                      Symbol_table::PREDEFINED, 0, 0,
6811                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6812                                      elfcpp::STV_HIDDEN, 0, true, false);
6813         }
6814     }
6815
6816   if (size == 64)
6817     {
6818       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6819       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6820
6821       if (!parameters->options().relocatable())
6822         {
6823           this->define_save_restore_funcs(layout, symtab);
6824
6825           // Annoyingly, we need to make these sections now whether or
6826           // not we need them.  If we delay until do_relax then we
6827           // need to mess with the relaxation machinery checkpointing.
6828           this->got_section(symtab, layout);
6829           this->make_brlt_section(layout);
6830
6831           if (parameters->options().toc_sort())
6832             {
6833               Output_section* os = this->got_->output_section();
6834               if (os != NULL && os->input_sections().size() > 1)
6835                 std::stable_sort(os->input_sections().begin(),
6836                                  os->input_sections().end(),
6837                                  Sort_toc_sections<big_endian>());
6838             }
6839         }
6840     }
6841
6842   // Fill in some more dynamic tags.
6843   Output_data_dynamic* odyn = layout->dynamic_data();
6844   if (odyn != NULL)
6845     {
6846       const Reloc_section* rel_plt = (this->plt_ == NULL
6847                                       ? NULL
6848                                       : this->plt_->rel_plt());
6849       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6850                                       this->rela_dyn_, true, size == 32);
6851
6852       if (size == 32)
6853         {
6854           if (this->got_ != NULL)
6855             {
6856               this->got_->finalize_data_size();
6857               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6858                                             this->got_, this->got_->g_o_t());
6859             }
6860         }
6861       else
6862         {
6863           if (this->glink_ != NULL)
6864             {
6865               this->glink_->finalize_data_size();
6866               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6867                                             this->glink_,
6868                                             (this->glink_->pltresolve_size
6869                                              - 32));
6870             }
6871         }
6872     }
6873
6874   // Emit any relocs we saved in an attempt to avoid generating COPY
6875   // relocs.
6876   if (this->copy_relocs_.any_saved_relocs())
6877     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6878 }
6879
6880 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6881 // reloc.
6882
6883 static bool
6884 ok_lo_toc_insn(uint32_t insn)
6885 {
6886   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6887           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6888           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6889           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6890           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6891           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6892           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6893           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6894           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6895           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6896           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6897           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6898           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6899           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6900           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6901               && (insn & 3) != 1)
6902           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6903               && ((insn & 3) == 0 || (insn & 3) == 3))
6904           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6905 }
6906
6907 // Return the value to use for a branch relocation.
6908
6909 template<int size, bool big_endian>
6910 bool
6911 Target_powerpc<size, big_endian>::symval_for_branch(
6912     const Symbol_table* symtab,
6913     const Sized_symbol<size>* gsym,
6914     Powerpc_relobj<size, big_endian>* object,
6915     Address *value,
6916     unsigned int *dest_shndx)
6917 {
6918   if (size == 32 || this->abiversion() >= 2)
6919     gold_unreachable();
6920   *dest_shndx = 0;
6921
6922   // If the symbol is defined in an opd section, ie. is a function
6923   // descriptor, use the function descriptor code entry address
6924   Powerpc_relobj<size, big_endian>* symobj = object;
6925   if (gsym != NULL
6926       && gsym->source() != Symbol::FROM_OBJECT)
6927     return true;
6928   if (gsym != NULL)
6929     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6930   unsigned int shndx = symobj->opd_shndx();
6931   if (shndx == 0)
6932     return true;
6933   Address opd_addr = symobj->get_output_section_offset(shndx);
6934   if (opd_addr == invalid_address)
6935     return true;
6936   opd_addr += symobj->output_section_address(shndx);
6937   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6938     {
6939       Address sec_off;
6940       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6941       if (symtab->is_section_folded(symobj, *dest_shndx))
6942         {
6943           Section_id folded
6944             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6945           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6946           *dest_shndx = folded.second;
6947         }
6948       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6949       if (sec_addr == invalid_address)
6950         return false;
6951
6952       sec_addr += symobj->output_section(*dest_shndx)->address();
6953       *value = sec_addr + sec_off;
6954     }
6955   return true;
6956 }
6957
6958 // Perform a relocation.
6959
6960 template<int size, bool big_endian>
6961 inline bool
6962 Target_powerpc<size, big_endian>::Relocate::relocate(
6963     const Relocate_info<size, big_endian>* relinfo,
6964     Target_powerpc* target,
6965     Output_section* os,
6966     size_t relnum,
6967     const elfcpp::Rela<size, big_endian>& rela,
6968     unsigned int r_type,
6969     const Sized_symbol<size>* gsym,
6970     const Symbol_value<size>* psymval,
6971     unsigned char* view,
6972     Address address,
6973     section_size_type view_size)
6974 {
6975   if (view == NULL)
6976     return true;
6977
6978   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6979     {
6980     case Track_tls::NOT_EXPECTED:
6981       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6982                              _("__tls_get_addr call lacks marker reloc"));
6983       break;
6984     case Track_tls::EXPECTED:
6985       // We have already complained.
6986       break;
6987     case Track_tls::SKIP:
6988       return true;
6989     case Track_tls::NORMAL:
6990       break;
6991     }
6992
6993   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6994   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6995   Powerpc_relobj<size, big_endian>* const object
6996     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6997   Address value = 0;
6998   bool has_stub_value = false;
6999   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7000   if ((gsym != NULL
7001        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7002        : object->local_has_plt_offset(r_sym))
7003       && (!psymval->is_ifunc_symbol()
7004           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7005     {
7006       if (size == 64
7007           && gsym != NULL
7008           && target->abiversion() >= 2
7009           && !parameters->options().output_is_position_independent()
7010           && !is_branch_reloc(r_type))
7011         {
7012           Address off = target->glink_section()->find_global_entry(gsym);
7013           if (off != invalid_address)
7014             {
7015               value = target->glink_section()->global_entry_address() + off;
7016               has_stub_value = true;
7017             }
7018         }
7019       else
7020         {
7021           Stub_table<size, big_endian>* stub_table
7022             = object->stub_table(relinfo->data_shndx);
7023           if (stub_table == NULL)
7024             {
7025               // This is a ref from a data section to an ifunc symbol.
7026               if (target->stub_tables().size() != 0)
7027                 stub_table = target->stub_tables()[0];
7028             }
7029           if (stub_table != NULL)
7030             {
7031               Address off;
7032               if (gsym != NULL)
7033                 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7034                                                       rela.get_r_addend());
7035               else
7036                 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7037                                                       rela.get_r_addend());
7038               if (off != invalid_address)
7039                 {
7040                   value = stub_table->stub_address() + off;
7041                   has_stub_value = true;
7042                 }
7043             }
7044         }
7045       // We don't care too much about bogus debug references to
7046       // non-local functions, but otherwise there had better be a plt
7047       // call stub or global entry stub as appropriate.
7048       gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7049     }
7050
7051   if (r_type == elfcpp::R_POWERPC_GOT16
7052       || r_type == elfcpp::R_POWERPC_GOT16_LO
7053       || r_type == elfcpp::R_POWERPC_GOT16_HI
7054       || r_type == elfcpp::R_POWERPC_GOT16_HA
7055       || r_type == elfcpp::R_PPC64_GOT16_DS
7056       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7057     {
7058       if (gsym != NULL)
7059         {
7060           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7061           value = gsym->got_offset(GOT_TYPE_STANDARD);
7062         }
7063       else
7064         {
7065           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7066           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7067           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7068         }
7069       value -= target->got_section()->got_base_offset(object);
7070     }
7071   else if (r_type == elfcpp::R_PPC64_TOC)
7072     {
7073       value = (target->got_section()->output_section()->address()
7074                + object->toc_base_offset());
7075     }
7076   else if (gsym != NULL
7077            && (r_type == elfcpp::R_POWERPC_REL24
7078                || r_type == elfcpp::R_PPC_PLTREL24)
7079            && has_stub_value)
7080     {
7081       if (size == 64)
7082         {
7083           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7084           Valtype* wv = reinterpret_cast<Valtype*>(view);
7085           bool can_plt_call = false;
7086           if (rela.get_r_offset() + 8 <= view_size)
7087             {
7088               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7089               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7090               if ((insn & 1) != 0
7091                   && (insn2 == nop
7092                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7093                 {
7094                   elfcpp::Swap<32, big_endian>::
7095                     writeval(wv + 1, ld_2_1 + target->stk_toc());
7096                   can_plt_call = true;
7097                 }
7098             }
7099           if (!can_plt_call)
7100             {
7101               // If we don't have a branch and link followed by a nop,
7102               // we can't go via the plt because there is no place to
7103               // put a toc restoring instruction.
7104               // Unless we know we won't be returning.
7105               if (strcmp(gsym->name(), "__libc_start_main") == 0)
7106                 can_plt_call = true;
7107             }
7108           if (!can_plt_call)
7109             {
7110               // g++ as of 20130507 emits self-calls without a
7111               // following nop.  This is arguably wrong since we have
7112               // conflicting information.  On the one hand a global
7113               // symbol and on the other a local call sequence, but
7114               // don't error for this special case.
7115               // It isn't possible to cheaply verify we have exactly
7116               // such a call.  Allow all calls to the same section.
7117               bool ok = false;
7118               Address code = value;
7119               if (gsym->source() == Symbol::FROM_OBJECT
7120                   && gsym->object() == object)
7121                 {
7122                   unsigned int dest_shndx = 0;
7123                   if (target->abiversion() < 2)
7124                     {
7125                       Address addend = rela.get_r_addend();
7126                       code = psymval->value(object, addend);
7127                       target->symval_for_branch(relinfo->symtab, gsym, object,
7128                                                 &code, &dest_shndx);
7129                     }
7130                   bool is_ordinary;
7131                   if (dest_shndx == 0)
7132                     dest_shndx = gsym->shndx(&is_ordinary);
7133                   ok = dest_shndx == relinfo->data_shndx;
7134                 }
7135               if (!ok)
7136                 {
7137                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7138                                          _("call lacks nop, can't restore toc; "
7139                                            "recompile with -fPIC"));
7140                   value = code;
7141                 }
7142             }
7143         }
7144     }
7145   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7146            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7147            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7148            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7149     {
7150       // First instruction of a global dynamic sequence, arg setup insn.
7151       const bool final = gsym == NULL || gsym->final_value_is_known();
7152       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7153       enum Got_type got_type = GOT_TYPE_STANDARD;
7154       if (tls_type == tls::TLSOPT_NONE)
7155         got_type = GOT_TYPE_TLSGD;
7156       else if (tls_type == tls::TLSOPT_TO_IE)
7157         got_type = GOT_TYPE_TPREL;
7158       if (got_type != GOT_TYPE_STANDARD)
7159         {
7160           if (gsym != NULL)
7161             {
7162               gold_assert(gsym->has_got_offset(got_type));
7163               value = gsym->got_offset(got_type);
7164             }
7165           else
7166             {
7167               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7168               gold_assert(object->local_has_got_offset(r_sym, got_type));
7169               value = object->local_got_offset(r_sym, got_type);
7170             }
7171           value -= target->got_section()->got_base_offset(object);
7172         }
7173       if (tls_type == tls::TLSOPT_TO_IE)
7174         {
7175           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7176               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7177             {
7178               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7179               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7180               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7181               if (size == 32)
7182                 insn |= 32 << 26; // lwz
7183               else
7184                 insn |= 58 << 26; // ld
7185               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7186             }
7187           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7188                      - elfcpp::R_POWERPC_GOT_TLSGD16);
7189         }
7190       else if (tls_type == tls::TLSOPT_TO_LE)
7191         {
7192           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7193               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7194             {
7195               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7196               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7197               insn &= (1 << 26) - (1 << 21); // extract rt
7198               if (size == 32)
7199                 insn |= addis_0_2;
7200               else
7201                 insn |= addis_0_13;
7202               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7203               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7204               value = psymval->value(object, rela.get_r_addend());
7205             }
7206           else
7207             {
7208               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7209               Insn insn = nop;
7210               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7211               r_type = elfcpp::R_POWERPC_NONE;
7212             }
7213         }
7214     }
7215   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7216            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7217            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7218            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7219     {
7220       // First instruction of a local dynamic sequence, arg setup insn.
7221       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7222       if (tls_type == tls::TLSOPT_NONE)
7223         {
7224           value = target->tlsld_got_offset();
7225           value -= target->got_section()->got_base_offset(object);
7226         }
7227       else
7228         {
7229           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7230           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7231               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7232             {
7233               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7234               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7235               insn &= (1 << 26) - (1 << 21); // extract rt
7236               if (size == 32)
7237                 insn |= addis_0_2;
7238               else
7239                 insn |= addis_0_13;
7240               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7241               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7242               value = dtp_offset;
7243             }
7244           else
7245             {
7246               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7247               Insn insn = nop;
7248               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7249               r_type = elfcpp::R_POWERPC_NONE;
7250             }
7251         }
7252     }
7253   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7254            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7255            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7256            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7257     {
7258       // Accesses relative to a local dynamic sequence address,
7259       // no optimisation here.
7260       if (gsym != NULL)
7261         {
7262           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7263           value = gsym->got_offset(GOT_TYPE_DTPREL);
7264         }
7265       else
7266         {
7267           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7268           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7269           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7270         }
7271       value -= target->got_section()->got_base_offset(object);
7272     }
7273   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7274            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7275            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7276            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7277     {
7278       // First instruction of initial exec sequence.
7279       const bool final = gsym == NULL || gsym->final_value_is_known();
7280       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7281       if (tls_type == tls::TLSOPT_NONE)
7282         {
7283           if (gsym != NULL)
7284             {
7285               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7286               value = gsym->got_offset(GOT_TYPE_TPREL);
7287             }
7288           else
7289             {
7290               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7291               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7292               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7293             }
7294           value -= target->got_section()->got_base_offset(object);
7295         }
7296       else
7297         {
7298           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7299           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7300               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7301             {
7302               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7303               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7304               insn &= (1 << 26) - (1 << 21); // extract rt from ld
7305               if (size == 32)
7306                 insn |= addis_0_2;
7307               else
7308                 insn |= addis_0_13;
7309               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7310               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7311               value = psymval->value(object, rela.get_r_addend());
7312             }
7313           else
7314             {
7315               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7316               Insn insn = nop;
7317               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7318               r_type = elfcpp::R_POWERPC_NONE;
7319             }
7320         }
7321     }
7322   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7323            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7324     {
7325       // Second instruction of a global dynamic sequence,
7326       // the __tls_get_addr call
7327       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7328       const bool final = gsym == NULL || gsym->final_value_is_known();
7329       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7330       if (tls_type != tls::TLSOPT_NONE)
7331         {
7332           if (tls_type == tls::TLSOPT_TO_IE)
7333             {
7334               Insn* iview = reinterpret_cast<Insn*>(view);
7335               Insn insn = add_3_3_13;
7336               if (size == 32)
7337                 insn = add_3_3_2;
7338               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7339               r_type = elfcpp::R_POWERPC_NONE;
7340             }
7341           else
7342             {
7343               Insn* iview = reinterpret_cast<Insn*>(view);
7344               Insn insn = addi_3_3;
7345               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7346               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7347               view += 2 * big_endian;
7348               value = psymval->value(object, rela.get_r_addend());
7349             }
7350           this->skip_next_tls_get_addr_call();
7351         }
7352     }
7353   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7354            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7355     {
7356       // Second instruction of a local dynamic sequence,
7357       // the __tls_get_addr call
7358       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7359       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7360       if (tls_type == tls::TLSOPT_TO_LE)
7361         {
7362           Insn* iview = reinterpret_cast<Insn*>(view);
7363           Insn insn = addi_3_3;
7364           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7365           this->skip_next_tls_get_addr_call();
7366           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7367           view += 2 * big_endian;
7368           value = dtp_offset;
7369         }
7370     }
7371   else if (r_type == elfcpp::R_POWERPC_TLS)
7372     {
7373       // Second instruction of an initial exec sequence
7374       const bool final = gsym == NULL || gsym->final_value_is_known();
7375       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7376       if (tls_type == tls::TLSOPT_TO_LE)
7377         {
7378           Insn* iview = reinterpret_cast<Insn*>(view);
7379           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7380           unsigned int reg = size == 32 ? 2 : 13;
7381           insn = at_tls_transform(insn, reg);
7382           gold_assert(insn != 0);
7383           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7384           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7385           view += 2 * big_endian;
7386           value = psymval->value(object, rela.get_r_addend());
7387         }
7388     }
7389   else if (!has_stub_value)
7390     {
7391       Address addend = 0;
7392       if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7393         addend = rela.get_r_addend();
7394       value = psymval->value(object, addend);
7395       if (size == 64 && is_branch_reloc(r_type))
7396         {
7397           if (target->abiversion() >= 2)
7398             {
7399               if (gsym != NULL)
7400                 value += object->ppc64_local_entry_offset(gsym);
7401               else
7402                 value += object->ppc64_local_entry_offset(r_sym);
7403             }
7404           else
7405             {
7406               unsigned int dest_shndx;
7407               target->symval_for_branch(relinfo->symtab, gsym, object,
7408                                         &value, &dest_shndx);
7409             }
7410         }
7411       Address max_branch_offset = max_branch_delta(r_type);
7412       if (max_branch_offset != 0
7413           && value - address + max_branch_offset >= 2 * max_branch_offset)
7414         {
7415           Stub_table<size, big_endian>* stub_table
7416             = object->stub_table(relinfo->data_shndx);
7417           if (stub_table != NULL)
7418             {
7419               Address off = stub_table->find_long_branch_entry(object, value);
7420               if (off != invalid_address)
7421                 {
7422                   value = (stub_table->stub_address() + stub_table->plt_size()
7423                            + off);
7424                   has_stub_value = true;
7425                 }
7426             }
7427         }
7428     }
7429
7430   switch (r_type)
7431     {
7432     case elfcpp::R_PPC64_REL64:
7433     case elfcpp::R_POWERPC_REL32:
7434     case elfcpp::R_POWERPC_REL24:
7435     case elfcpp::R_PPC_PLTREL24:
7436     case elfcpp::R_PPC_LOCAL24PC:
7437     case elfcpp::R_POWERPC_REL16:
7438     case elfcpp::R_POWERPC_REL16_LO:
7439     case elfcpp::R_POWERPC_REL16_HI:
7440     case elfcpp::R_POWERPC_REL16_HA:
7441     case elfcpp::R_POWERPC_REL14:
7442     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7443     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7444       value -= address;
7445       break;
7446
7447     case elfcpp::R_PPC64_TOC16:
7448     case elfcpp::R_PPC64_TOC16_LO:
7449     case elfcpp::R_PPC64_TOC16_HI:
7450     case elfcpp::R_PPC64_TOC16_HA:
7451     case elfcpp::R_PPC64_TOC16_DS:
7452     case elfcpp::R_PPC64_TOC16_LO_DS:
7453       // Subtract the TOC base address.
7454       value -= (target->got_section()->output_section()->address()
7455                 + object->toc_base_offset());
7456       break;
7457
7458     case elfcpp::R_POWERPC_SECTOFF:
7459     case elfcpp::R_POWERPC_SECTOFF_LO:
7460     case elfcpp::R_POWERPC_SECTOFF_HI:
7461     case elfcpp::R_POWERPC_SECTOFF_HA:
7462     case elfcpp::R_PPC64_SECTOFF_DS:
7463     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7464       if (os != NULL)
7465         value -= os->address();
7466       break;
7467
7468     case elfcpp::R_PPC64_TPREL16_DS:
7469     case elfcpp::R_PPC64_TPREL16_LO_DS:
7470     case elfcpp::R_PPC64_TPREL16_HIGH:
7471     case elfcpp::R_PPC64_TPREL16_HIGHA:
7472       if (size != 64)
7473         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7474         break;
7475     case elfcpp::R_POWERPC_TPREL16:
7476     case elfcpp::R_POWERPC_TPREL16_LO:
7477     case elfcpp::R_POWERPC_TPREL16_HI:
7478     case elfcpp::R_POWERPC_TPREL16_HA:
7479     case elfcpp::R_POWERPC_TPREL:
7480     case elfcpp::R_PPC64_TPREL16_HIGHER:
7481     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7482     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7483     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7484       // tls symbol values are relative to tls_segment()->vaddr()
7485       value -= tp_offset;
7486       break;
7487
7488     case elfcpp::R_PPC64_DTPREL16_DS:
7489     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7490     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7491     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7492     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7493     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7494       if (size != 64)
7495         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7496         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7497         break;
7498     case elfcpp::R_POWERPC_DTPREL16:
7499     case elfcpp::R_POWERPC_DTPREL16_LO:
7500     case elfcpp::R_POWERPC_DTPREL16_HI:
7501     case elfcpp::R_POWERPC_DTPREL16_HA:
7502     case elfcpp::R_POWERPC_DTPREL:
7503     case elfcpp::R_PPC64_DTPREL16_HIGH:
7504     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7505       // tls symbol values are relative to tls_segment()->vaddr()
7506       value -= dtp_offset;
7507       break;
7508
7509     case elfcpp::R_PPC64_ADDR64_LOCAL:
7510       if (gsym != NULL)
7511         value += object->ppc64_local_entry_offset(gsym);
7512       else
7513         value += object->ppc64_local_entry_offset(r_sym);
7514       break;
7515
7516     default:
7517       break;
7518     }
7519
7520   Insn branch_bit = 0;
7521   switch (r_type)
7522     {
7523     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7524     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7525       branch_bit = 1 << 21;
7526     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7527     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7528       {
7529         Insn* iview = reinterpret_cast<Insn*>(view);
7530         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7531         insn &= ~(1 << 21);
7532         insn |= branch_bit;
7533         if (this->is_isa_v2)
7534           {
7535             // Set 'a' bit.  This is 0b00010 in BO field for branch
7536             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7537             // for branch on CTR insns (BO == 1a00t or 1a01t).
7538             if ((insn & (0x14 << 21)) == (0x04 << 21))
7539               insn |= 0x02 << 21;
7540             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7541               insn |= 0x08 << 21;
7542             else
7543               break;
7544           }
7545         else
7546           {
7547             // Invert 'y' bit if not the default.
7548             if (static_cast<Signed_address>(value) < 0)
7549               insn ^= 1 << 21;
7550           }
7551         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7552       }
7553       break;
7554
7555     default:
7556       break;
7557     }
7558
7559   if (size == 64)
7560     {
7561       // Multi-instruction sequences that access the TOC can be
7562       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7563       // to             nop;           addi rb,r2,x;
7564       switch (r_type)
7565         {
7566         default:
7567           break;
7568
7569         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7570         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7571         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7572         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7573         case elfcpp::R_POWERPC_GOT16_HA:
7574         case elfcpp::R_PPC64_TOC16_HA:
7575           if (parameters->options().toc_optimize())
7576             {
7577               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7578               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7579               if ((insn & ((0x3f << 26) | 0x1f << 16))
7580                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7581                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7582                                        _("toc optimization is not supported "
7583                                          "for %#08x instruction"), insn);
7584               else if (value + 0x8000 < 0x10000)
7585                 {
7586                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7587                   return true;
7588                 }
7589             }
7590           break;
7591
7592         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7593         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7594         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7595         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7596         case elfcpp::R_POWERPC_GOT16_LO:
7597         case elfcpp::R_PPC64_GOT16_LO_DS:
7598         case elfcpp::R_PPC64_TOC16_LO:
7599         case elfcpp::R_PPC64_TOC16_LO_DS:
7600           if (parameters->options().toc_optimize())
7601             {
7602               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7603               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7604               if (!ok_lo_toc_insn(insn))
7605                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7606                                        _("toc optimization is not supported "
7607                                          "for %#08x instruction"), insn);
7608               else if (value + 0x8000 < 0x10000)
7609                 {
7610                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7611                     {
7612                       // Transform addic to addi when we change reg.
7613                       insn &= ~((0x3f << 26) | (0x1f << 16));
7614                       insn |= (14u << 26) | (2 << 16);
7615                     }
7616                   else
7617                     {
7618                       insn &= ~(0x1f << 16);
7619                       insn |= 2 << 16;
7620                     }
7621                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7622                 }
7623             }
7624           break;
7625         }
7626     }
7627
7628   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7629   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7630   switch (r_type)
7631     {
7632     case elfcpp::R_POWERPC_ADDR32:
7633     case elfcpp::R_POWERPC_UADDR32:
7634       if (size == 64)
7635         overflow = Reloc::CHECK_BITFIELD;
7636       break;
7637
7638     case elfcpp::R_POWERPC_REL32:
7639       if (size == 64)
7640         overflow = Reloc::CHECK_SIGNED;
7641       break;
7642
7643     case elfcpp::R_POWERPC_UADDR16:
7644       overflow = Reloc::CHECK_BITFIELD;
7645       break;
7646
7647     case elfcpp::R_POWERPC_ADDR16:
7648       // We really should have three separate relocations,
7649       // one for 16-bit data, one for insns with 16-bit signed fields,
7650       // and one for insns with 16-bit unsigned fields.
7651       overflow = Reloc::CHECK_BITFIELD;
7652       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7653         overflow = Reloc::CHECK_LOW_INSN;
7654       break;
7655
7656     case elfcpp::R_POWERPC_ADDR16_HI:
7657     case elfcpp::R_POWERPC_ADDR16_HA:
7658     case elfcpp::R_POWERPC_GOT16_HI:
7659     case elfcpp::R_POWERPC_GOT16_HA:
7660     case elfcpp::R_POWERPC_PLT16_HI:
7661     case elfcpp::R_POWERPC_PLT16_HA:
7662     case elfcpp::R_POWERPC_SECTOFF_HI:
7663     case elfcpp::R_POWERPC_SECTOFF_HA:
7664     case elfcpp::R_PPC64_TOC16_HI:
7665     case elfcpp::R_PPC64_TOC16_HA:
7666     case elfcpp::R_PPC64_PLTGOT16_HI:
7667     case elfcpp::R_PPC64_PLTGOT16_HA:
7668     case elfcpp::R_POWERPC_TPREL16_HI:
7669     case elfcpp::R_POWERPC_TPREL16_HA:
7670     case elfcpp::R_POWERPC_DTPREL16_HI:
7671     case elfcpp::R_POWERPC_DTPREL16_HA:
7672     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7673     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7674     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7675     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7676     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7677     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7678     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7679     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7680     case elfcpp::R_POWERPC_REL16_HI:
7681     case elfcpp::R_POWERPC_REL16_HA:
7682       if (size != 32)
7683         overflow = Reloc::CHECK_HIGH_INSN;
7684       break;
7685
7686     case elfcpp::R_POWERPC_REL16:
7687     case elfcpp::R_PPC64_TOC16:
7688     case elfcpp::R_POWERPC_GOT16:
7689     case elfcpp::R_POWERPC_SECTOFF:
7690     case elfcpp::R_POWERPC_TPREL16:
7691     case elfcpp::R_POWERPC_DTPREL16:
7692     case elfcpp::R_POWERPC_GOT_TLSGD16:
7693     case elfcpp::R_POWERPC_GOT_TLSLD16:
7694     case elfcpp::R_POWERPC_GOT_TPREL16:
7695     case elfcpp::R_POWERPC_GOT_DTPREL16:
7696       overflow = Reloc::CHECK_LOW_INSN;
7697       break;
7698
7699     case elfcpp::R_POWERPC_ADDR24:
7700     case elfcpp::R_POWERPC_ADDR14:
7701     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7702     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7703     case elfcpp::R_PPC64_ADDR16_DS:
7704     case elfcpp::R_POWERPC_REL24:
7705     case elfcpp::R_PPC_PLTREL24:
7706     case elfcpp::R_PPC_LOCAL24PC:
7707     case elfcpp::R_PPC64_TPREL16_DS:
7708     case elfcpp::R_PPC64_DTPREL16_DS:
7709     case elfcpp::R_PPC64_TOC16_DS:
7710     case elfcpp::R_PPC64_GOT16_DS:
7711     case elfcpp::R_PPC64_SECTOFF_DS:
7712     case elfcpp::R_POWERPC_REL14:
7713     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7714     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7715       overflow = Reloc::CHECK_SIGNED;
7716       break;
7717     }
7718
7719   if (overflow == Reloc::CHECK_LOW_INSN
7720       || overflow == Reloc::CHECK_HIGH_INSN)
7721     {
7722       Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7723       Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7724
7725       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7726         overflow = Reloc::CHECK_BITFIELD;
7727       else if (overflow == Reloc::CHECK_LOW_INSN
7728                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7729                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7730                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7731                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7732                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7733                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7734         overflow = Reloc::CHECK_UNSIGNED;
7735       else
7736         overflow = Reloc::CHECK_SIGNED;
7737     }
7738
7739   typename Powerpc_relocate_functions<size, big_endian>::Status status
7740     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7741   switch (r_type)
7742     {
7743     case elfcpp::R_POWERPC_NONE:
7744     case elfcpp::R_POWERPC_TLS:
7745     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7746     case elfcpp::R_POWERPC_GNU_VTENTRY:
7747       break;
7748
7749     case elfcpp::R_PPC64_ADDR64:
7750     case elfcpp::R_PPC64_REL64:
7751     case elfcpp::R_PPC64_TOC:
7752     case elfcpp::R_PPC64_ADDR64_LOCAL:
7753       Reloc::addr64(view, value);
7754       break;
7755
7756     case elfcpp::R_POWERPC_TPREL:
7757     case elfcpp::R_POWERPC_DTPREL:
7758       if (size == 64)
7759         Reloc::addr64(view, value);
7760       else
7761         status = Reloc::addr32(view, value, overflow);
7762       break;
7763
7764     case elfcpp::R_PPC64_UADDR64:
7765       Reloc::addr64_u(view, value);
7766       break;
7767
7768     case elfcpp::R_POWERPC_ADDR32:
7769       status = Reloc::addr32(view, value, overflow);
7770       break;
7771
7772     case elfcpp::R_POWERPC_REL32:
7773     case elfcpp::R_POWERPC_UADDR32:
7774       status = Reloc::addr32_u(view, value, overflow);
7775       break;
7776
7777     case elfcpp::R_POWERPC_ADDR24:
7778     case elfcpp::R_POWERPC_REL24:
7779     case elfcpp::R_PPC_PLTREL24:
7780     case elfcpp::R_PPC_LOCAL24PC:
7781       status = Reloc::addr24(view, value, overflow);
7782       break;
7783
7784     case elfcpp::R_POWERPC_GOT_DTPREL16:
7785     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7786     case elfcpp::R_POWERPC_GOT_TPREL16:
7787     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7788       if (size == 64)
7789         {
7790           // On ppc64 these are all ds form
7791           status = Reloc::addr16_ds(view, value, overflow);
7792           break;
7793         }
7794     case elfcpp::R_POWERPC_ADDR16:
7795     case elfcpp::R_POWERPC_REL16:
7796     case elfcpp::R_PPC64_TOC16:
7797     case elfcpp::R_POWERPC_GOT16:
7798     case elfcpp::R_POWERPC_SECTOFF:
7799     case elfcpp::R_POWERPC_TPREL16:
7800     case elfcpp::R_POWERPC_DTPREL16:
7801     case elfcpp::R_POWERPC_GOT_TLSGD16:
7802     case elfcpp::R_POWERPC_GOT_TLSLD16:
7803     case elfcpp::R_POWERPC_ADDR16_LO:
7804     case elfcpp::R_POWERPC_REL16_LO:
7805     case elfcpp::R_PPC64_TOC16_LO:
7806     case elfcpp::R_POWERPC_GOT16_LO:
7807     case elfcpp::R_POWERPC_SECTOFF_LO:
7808     case elfcpp::R_POWERPC_TPREL16_LO:
7809     case elfcpp::R_POWERPC_DTPREL16_LO:
7810     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7811     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7812       status = Reloc::addr16(view, value, overflow);
7813       break;
7814
7815     case elfcpp::R_POWERPC_UADDR16:
7816       status = Reloc::addr16_u(view, value, overflow);
7817       break;
7818
7819     case elfcpp::R_PPC64_ADDR16_HIGH:
7820     case elfcpp::R_PPC64_TPREL16_HIGH:
7821     case elfcpp::R_PPC64_DTPREL16_HIGH:
7822       if (size == 32)
7823         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7824         goto unsupp;
7825     case elfcpp::R_POWERPC_ADDR16_HI:
7826     case elfcpp::R_POWERPC_REL16_HI:
7827     case elfcpp::R_PPC64_TOC16_HI:
7828     case elfcpp::R_POWERPC_GOT16_HI:
7829     case elfcpp::R_POWERPC_SECTOFF_HI:
7830     case elfcpp::R_POWERPC_TPREL16_HI:
7831     case elfcpp::R_POWERPC_DTPREL16_HI:
7832     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7833     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7834     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7835     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7836       Reloc::addr16_hi(view, value);
7837       break;
7838
7839     case elfcpp::R_PPC64_ADDR16_HIGHA:
7840     case elfcpp::R_PPC64_TPREL16_HIGHA:
7841     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7842       if (size == 32)
7843         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7844         goto unsupp;
7845     case elfcpp::R_POWERPC_ADDR16_HA:
7846     case elfcpp::R_POWERPC_REL16_HA:
7847     case elfcpp::R_PPC64_TOC16_HA:
7848     case elfcpp::R_POWERPC_GOT16_HA:
7849     case elfcpp::R_POWERPC_SECTOFF_HA:
7850     case elfcpp::R_POWERPC_TPREL16_HA:
7851     case elfcpp::R_POWERPC_DTPREL16_HA:
7852     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7853     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7854     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7855     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7856       Reloc::addr16_ha(view, value);
7857       break;
7858
7859     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7860       if (size == 32)
7861         // R_PPC_EMB_NADDR16_LO
7862         goto unsupp;
7863     case elfcpp::R_PPC64_ADDR16_HIGHER:
7864     case elfcpp::R_PPC64_TPREL16_HIGHER:
7865       Reloc::addr16_hi2(view, value);
7866       break;
7867
7868     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7869       if (size == 32)
7870         // R_PPC_EMB_NADDR16_HI
7871         goto unsupp;
7872     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7873     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7874       Reloc::addr16_ha2(view, value);
7875       break;
7876
7877     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7878       if (size == 32)
7879         // R_PPC_EMB_NADDR16_HA
7880         goto unsupp;
7881     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7882     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7883       Reloc::addr16_hi3(view, value);
7884       break;
7885
7886     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7887       if (size == 32)
7888         // R_PPC_EMB_SDAI16
7889         goto unsupp;
7890     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7891     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7892       Reloc::addr16_ha3(view, value);
7893       break;
7894
7895     case elfcpp::R_PPC64_DTPREL16_DS:
7896     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7897       if (size == 32)
7898         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7899         goto unsupp;
7900     case elfcpp::R_PPC64_TPREL16_DS:
7901     case elfcpp::R_PPC64_TPREL16_LO_DS:
7902       if (size == 32)
7903         // R_PPC_TLSGD, R_PPC_TLSLD
7904         break;
7905     case elfcpp::R_PPC64_ADDR16_DS:
7906     case elfcpp::R_PPC64_ADDR16_LO_DS:
7907     case elfcpp::R_PPC64_TOC16_DS:
7908     case elfcpp::R_PPC64_TOC16_LO_DS:
7909     case elfcpp::R_PPC64_GOT16_DS:
7910     case elfcpp::R_PPC64_GOT16_LO_DS:
7911     case elfcpp::R_PPC64_SECTOFF_DS:
7912     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7913       status = Reloc::addr16_ds(view, value, overflow);
7914       break;
7915
7916     case elfcpp::R_POWERPC_ADDR14:
7917     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7918     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7919     case elfcpp::R_POWERPC_REL14:
7920     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7921     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7922       status = Reloc::addr14(view, value, overflow);
7923       break;
7924
7925     case elfcpp::R_POWERPC_COPY:
7926     case elfcpp::R_POWERPC_GLOB_DAT:
7927     case elfcpp::R_POWERPC_JMP_SLOT:
7928     case elfcpp::R_POWERPC_RELATIVE:
7929     case elfcpp::R_POWERPC_DTPMOD:
7930     case elfcpp::R_PPC64_JMP_IREL:
7931     case elfcpp::R_POWERPC_IRELATIVE:
7932       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7933                              _("unexpected reloc %u in object file"),
7934                              r_type);
7935       break;
7936
7937     case elfcpp::R_PPC_EMB_SDA21:
7938       if (size == 32)
7939         goto unsupp;
7940       else
7941         {
7942           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7943         }
7944       break;
7945
7946     case elfcpp::R_PPC_EMB_SDA2I16:
7947     case elfcpp::R_PPC_EMB_SDA2REL:
7948       if (size == 32)
7949         goto unsupp;
7950       // R_PPC64_TLSGD, R_PPC64_TLSLD
7951       break;
7952
7953     case elfcpp::R_POWERPC_PLT32:
7954     case elfcpp::R_POWERPC_PLTREL32:
7955     case elfcpp::R_POWERPC_PLT16_LO:
7956     case elfcpp::R_POWERPC_PLT16_HI:
7957     case elfcpp::R_POWERPC_PLT16_HA:
7958     case elfcpp::R_PPC_SDAREL16:
7959     case elfcpp::R_POWERPC_ADDR30:
7960     case elfcpp::R_PPC64_PLT64:
7961     case elfcpp::R_PPC64_PLTREL64:
7962     case elfcpp::R_PPC64_PLTGOT16:
7963     case elfcpp::R_PPC64_PLTGOT16_LO:
7964     case elfcpp::R_PPC64_PLTGOT16_HI:
7965     case elfcpp::R_PPC64_PLTGOT16_HA:
7966     case elfcpp::R_PPC64_PLT16_LO_DS:
7967     case elfcpp::R_PPC64_PLTGOT16_DS:
7968     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7969     case elfcpp::R_PPC_EMB_RELSDA:
7970     case elfcpp::R_PPC_TOC16:
7971     default:
7972     unsupp:
7973       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7974                              _("unsupported reloc %u"),
7975                              r_type);
7976       break;
7977     }
7978   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
7979       && (has_stub_value
7980           || !(gsym != NULL
7981                && gsym->is_undefined()
7982                && is_branch_reloc(r_type))))
7983     {
7984       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7985                              _("relocation overflow"));
7986       if (has_stub_value)
7987         gold_info(_("try relinking with a smaller --stub-group-size"));
7988     }
7989
7990   return true;
7991 }
7992
7993 // Relocate section data.
7994
7995 template<int size, bool big_endian>
7996 void
7997 Target_powerpc<size, big_endian>::relocate_section(
7998     const Relocate_info<size, big_endian>* relinfo,
7999     unsigned int sh_type,
8000     const unsigned char* prelocs,
8001     size_t reloc_count,
8002     Output_section* output_section,
8003     bool needs_special_offset_handling,
8004     unsigned char* view,
8005     Address address,
8006     section_size_type view_size,
8007     const Reloc_symbol_changes* reloc_symbol_changes)
8008 {
8009   typedef Target_powerpc<size, big_endian> Powerpc;
8010   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8011   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8012     Powerpc_comdat_behavior;
8013
8014   gold_assert(sh_type == elfcpp::SHT_RELA);
8015
8016   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
8017                          Powerpc_relocate, Powerpc_comdat_behavior>(
8018     relinfo,
8019     this,
8020     prelocs,
8021     reloc_count,
8022     output_section,
8023     needs_special_offset_handling,
8024     view,
8025     address,
8026     view_size,
8027     reloc_symbol_changes);
8028 }
8029
8030 class Powerpc_scan_relocatable_reloc
8031 {
8032 public:
8033   // Return the strategy to use for a local symbol which is not a
8034   // section symbol, given the relocation type.
8035   inline Relocatable_relocs::Reloc_strategy
8036   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8037   {
8038     if (r_type == 0 && r_sym == 0)
8039       return Relocatable_relocs::RELOC_DISCARD;
8040     return Relocatable_relocs::RELOC_COPY;
8041   }
8042
8043   // Return the strategy to use for a local symbol which is a section
8044   // symbol, given the relocation type.
8045   inline Relocatable_relocs::Reloc_strategy
8046   local_section_strategy(unsigned int, Relobj*)
8047   {
8048     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8049   }
8050
8051   // Return the strategy to use for a global symbol, given the
8052   // relocation type, the object, and the symbol index.
8053   inline Relocatable_relocs::Reloc_strategy
8054   global_strategy(unsigned int r_type, Relobj*, unsigned int)
8055   {
8056     if (r_type == elfcpp::R_PPC_PLTREL24)
8057       return Relocatable_relocs::RELOC_SPECIAL;
8058     return Relocatable_relocs::RELOC_COPY;
8059   }
8060 };
8061
8062 // Scan the relocs during a relocatable link.
8063
8064 template<int size, bool big_endian>
8065 void
8066 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8067     Symbol_table* symtab,
8068     Layout* layout,
8069     Sized_relobj_file<size, big_endian>* object,
8070     unsigned int data_shndx,
8071     unsigned int sh_type,
8072     const unsigned char* prelocs,
8073     size_t reloc_count,
8074     Output_section* output_section,
8075     bool needs_special_offset_handling,
8076     size_t local_symbol_count,
8077     const unsigned char* plocal_symbols,
8078     Relocatable_relocs* rr)
8079 {
8080   gold_assert(sh_type == elfcpp::SHT_RELA);
8081
8082   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
8083                                 Powerpc_scan_relocatable_reloc>(
8084     symtab,
8085     layout,
8086     object,
8087     data_shndx,
8088     prelocs,
8089     reloc_count,
8090     output_section,
8091     needs_special_offset_handling,
8092     local_symbol_count,
8093     plocal_symbols,
8094     rr);
8095 }
8096
8097 // Emit relocations for a section.
8098 // This is a modified version of the function by the same name in
8099 // target-reloc.h.  Using relocate_special_relocatable for
8100 // R_PPC_PLTREL24 would require duplication of the entire body of the
8101 // loop, so we may as well duplicate the whole thing.
8102
8103 template<int size, bool big_endian>
8104 void
8105 Target_powerpc<size, big_endian>::relocate_relocs(
8106     const Relocate_info<size, big_endian>* relinfo,
8107     unsigned int sh_type,
8108     const unsigned char* prelocs,
8109     size_t reloc_count,
8110     Output_section* output_section,
8111     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8112     const Relocatable_relocs* rr,
8113     unsigned char*,
8114     Address view_address,
8115     section_size_type,
8116     unsigned char* reloc_view,
8117     section_size_type reloc_view_size)
8118 {
8119   gold_assert(sh_type == elfcpp::SHT_RELA);
8120
8121   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8122     Reltype;
8123   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8124     Reltype_write;
8125   const int reloc_size
8126     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8127
8128   Powerpc_relobj<size, big_endian>* const object
8129     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8130   const unsigned int local_count = object->local_symbol_count();
8131   unsigned int got2_shndx = object->got2_shndx();
8132   Address got2_addend = 0;
8133   if (got2_shndx != 0)
8134     {
8135       got2_addend = object->get_output_section_offset(got2_shndx);
8136       gold_assert(got2_addend != invalid_address);
8137     }
8138
8139   unsigned char* pwrite = reloc_view;
8140   bool zap_next = false;
8141   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8142     {
8143       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
8144       if (strategy == Relocatable_relocs::RELOC_DISCARD)
8145         continue;
8146
8147       Reltype reloc(prelocs);
8148       Reltype_write reloc_write(pwrite);
8149
8150       Address offset = reloc.get_r_offset();
8151       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8152       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8153       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8154       const unsigned int orig_r_sym = r_sym;
8155       typename elfcpp::Elf_types<size>::Elf_Swxword addend
8156         = reloc.get_r_addend();
8157       const Symbol* gsym = NULL;
8158
8159       if (zap_next)
8160         {
8161           // We could arrange to discard these and other relocs for
8162           // tls optimised sequences in the strategy methods, but for
8163           // now do as BFD ld does.
8164           r_type = elfcpp::R_POWERPC_NONE;
8165           zap_next = false;
8166         }
8167
8168       // Get the new symbol index.
8169       Output_section* os = NULL;
8170       if (r_sym < local_count)
8171         {
8172           switch (strategy)
8173             {
8174             case Relocatable_relocs::RELOC_COPY:
8175             case Relocatable_relocs::RELOC_SPECIAL:
8176               if (r_sym != 0)
8177                 {
8178                   r_sym = object->symtab_index(r_sym);
8179                   gold_assert(r_sym != -1U);
8180                 }
8181               break;
8182
8183             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8184               {
8185                 // We are adjusting a section symbol.  We need to find
8186                 // the symbol table index of the section symbol for
8187                 // the output section corresponding to input section
8188                 // in which this symbol is defined.
8189                 gold_assert(r_sym < local_count);
8190                 bool is_ordinary;
8191                 unsigned int shndx =
8192                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
8193                 gold_assert(is_ordinary);
8194                 os = object->output_section(shndx);
8195                 gold_assert(os != NULL);
8196                 gold_assert(os->needs_symtab_index());
8197                 r_sym = os->symtab_index();
8198               }
8199               break;
8200
8201             default:
8202               gold_unreachable();
8203             }
8204         }
8205       else
8206         {
8207           gsym = object->global_symbol(r_sym);
8208           gold_assert(gsym != NULL);
8209           if (gsym->is_forwarder())
8210             gsym = relinfo->symtab->resolve_forwards(gsym);
8211
8212           gold_assert(gsym->has_symtab_index());
8213           r_sym = gsym->symtab_index();
8214         }
8215
8216       // Get the new offset--the location in the output section where
8217       // this relocation should be applied.
8218       if (static_cast<Address>(offset_in_output_section) != invalid_address)
8219         offset += offset_in_output_section;
8220       else
8221         {
8222           section_offset_type sot_offset =
8223             convert_types<section_offset_type, Address>(offset);
8224           section_offset_type new_sot_offset =
8225             output_section->output_offset(object, relinfo->data_shndx,
8226                                           sot_offset);
8227           gold_assert(new_sot_offset != -1);
8228           offset = new_sot_offset;
8229         }
8230
8231       // In an object file, r_offset is an offset within the section.
8232       // In an executable or dynamic object, generated by
8233       // --emit-relocs, r_offset is an absolute address.
8234       if (!parameters->options().relocatable())
8235         {
8236           offset += view_address;
8237           if (static_cast<Address>(offset_in_output_section) != invalid_address)
8238             offset -= offset_in_output_section;
8239         }
8240
8241       // Handle the reloc addend based on the strategy.
8242       if (strategy == Relocatable_relocs::RELOC_COPY)
8243         ;
8244       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8245         {
8246           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8247           gold_assert(os != NULL);
8248           addend = psymval->value(object, addend) - os->address();
8249         }
8250       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8251         {
8252           if (addend >= 32768)
8253             addend += got2_addend;
8254         }
8255       else
8256         gold_unreachable();
8257
8258       if (!parameters->options().relocatable())
8259         {
8260           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8261               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8262               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8263               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8264             {
8265               // First instruction of a global dynamic sequence,
8266               // arg setup insn.
8267               const bool final = gsym == NULL || gsym->final_value_is_known();
8268               switch (this->optimize_tls_gd(final))
8269                 {
8270                 case tls::TLSOPT_TO_IE:
8271                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8272                              - elfcpp::R_POWERPC_GOT_TLSGD16);
8273                   break;
8274                 case tls::TLSOPT_TO_LE:
8275                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8276                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8277                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8278                   else
8279                     {
8280                       r_type = elfcpp::R_POWERPC_NONE;
8281                       offset -= 2 * big_endian;
8282                     }
8283                   break;
8284                 default:
8285                   break;
8286                 }
8287             }
8288           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8289                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8290                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8291                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8292             {
8293               // First instruction of a local dynamic sequence,
8294               // arg setup insn.
8295               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8296                 {
8297                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8298                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8299                     {
8300                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
8301                       const Output_section* os = relinfo->layout->tls_segment()
8302                         ->first_section();
8303                       gold_assert(os != NULL);
8304                       gold_assert(os->needs_symtab_index());
8305                       r_sym = os->symtab_index();
8306                       addend = dtp_offset;
8307                     }
8308                   else
8309                     {
8310                       r_type = elfcpp::R_POWERPC_NONE;
8311                       offset -= 2 * big_endian;
8312                     }
8313                 }
8314             }
8315           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8316                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8317                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8318                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8319             {
8320               // First instruction of initial exec sequence.
8321               const bool final = gsym == NULL || gsym->final_value_is_known();
8322               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8323                 {
8324                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8325                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8326                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8327                   else
8328                     {
8329                       r_type = elfcpp::R_POWERPC_NONE;
8330                       offset -= 2 * big_endian;
8331                     }
8332                 }
8333             }
8334           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8335                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8336             {
8337               // Second instruction of a global dynamic sequence,
8338               // the __tls_get_addr call
8339               const bool final = gsym == NULL || gsym->final_value_is_known();
8340               switch (this->optimize_tls_gd(final))
8341                 {
8342                 case tls::TLSOPT_TO_IE:
8343                   r_type = elfcpp::R_POWERPC_NONE;
8344                   zap_next = true;
8345                   break;
8346                 case tls::TLSOPT_TO_LE:
8347                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8348                   offset += 2 * big_endian;
8349                   zap_next = true;
8350                   break;
8351                 default:
8352                   break;
8353                 }
8354             }
8355           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8356                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8357             {
8358               // Second instruction of a local dynamic sequence,
8359               // the __tls_get_addr call
8360               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8361                 {
8362                   const Output_section* os = relinfo->layout->tls_segment()
8363                     ->first_section();
8364                   gold_assert(os != NULL);
8365                   gold_assert(os->needs_symtab_index());
8366                   r_sym = os->symtab_index();
8367                   addend = dtp_offset;
8368                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8369                   offset += 2 * big_endian;
8370                   zap_next = true;
8371                 }
8372             }
8373           else if (r_type == elfcpp::R_POWERPC_TLS)
8374             {
8375               // Second instruction of an initial exec sequence
8376               const bool final = gsym == NULL || gsym->final_value_is_known();
8377               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8378                 {
8379                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8380                   offset += 2 * big_endian;
8381                 }
8382             }
8383         }
8384
8385       reloc_write.put_r_offset(offset);
8386       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8387       reloc_write.put_r_addend(addend);
8388
8389       pwrite += reloc_size;
8390     }
8391
8392   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8393               == reloc_view_size);
8394 }
8395
8396 // Return the value to use for a dynamic symbol which requires special
8397 // treatment.  This is how we support equality comparisons of function
8398 // pointers across shared library boundaries, as described in the
8399 // processor specific ABI supplement.
8400
8401 template<int size, bool big_endian>
8402 uint64_t
8403 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8404 {
8405   if (size == 32)
8406     {
8407       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8408       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8409            p != this->stub_tables_.end();
8410            ++p)
8411         {
8412           Address off = (*p)->find_plt_call_entry(gsym);
8413           if (off != invalid_address)
8414             return (*p)->stub_address() + off;
8415         }
8416     }
8417   else if (this->abiversion() >= 2)
8418     {
8419       Address off = this->glink_section()->find_global_entry(gsym);
8420       if (off != invalid_address)
8421         return this->glink_section()->global_entry_address() + off;
8422     }
8423   gold_unreachable();
8424 }
8425
8426 // Return the PLT address to use for a local symbol.
8427 template<int size, bool big_endian>
8428 uint64_t
8429 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8430     const Relobj* object,
8431     unsigned int symndx) const
8432 {
8433   if (size == 32)
8434     {
8435       const Sized_relobj<size, big_endian>* relobj
8436         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8437       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8438            p != this->stub_tables_.end();
8439            ++p)
8440         {
8441           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8442                                                   symndx);
8443           if (off != invalid_address)
8444             return (*p)->stub_address() + off;
8445         }
8446     }
8447   gold_unreachable();
8448 }
8449
8450 // Return the PLT address to use for a global symbol.
8451 template<int size, bool big_endian>
8452 uint64_t
8453 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8454     const Symbol* gsym) const
8455 {
8456   if (size == 32)
8457     {
8458       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8459            p != this->stub_tables_.end();
8460            ++p)
8461         {
8462           Address off = (*p)->find_plt_call_entry(gsym);
8463           if (off != invalid_address)
8464             return (*p)->stub_address() + off;
8465         }
8466     }
8467   else if (this->abiversion() >= 2)
8468     {
8469       Address off = this->glink_section()->find_global_entry(gsym);
8470       if (off != invalid_address)
8471         return this->glink_section()->global_entry_address() + off;
8472     }
8473   gold_unreachable();
8474 }
8475
8476 // Return the offset to use for the GOT_INDX'th got entry which is
8477 // for a local tls symbol specified by OBJECT, SYMNDX.
8478 template<int size, bool big_endian>
8479 int64_t
8480 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8481     const Relobj* object,
8482     unsigned int symndx,
8483     unsigned int got_indx) const
8484 {
8485   const Powerpc_relobj<size, big_endian>* ppc_object
8486     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8487   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8488     {
8489       for (Got_type got_type = GOT_TYPE_TLSGD;
8490            got_type <= GOT_TYPE_TPREL;
8491            got_type = Got_type(got_type + 1))
8492         if (ppc_object->local_has_got_offset(symndx, got_type))
8493           {
8494             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8495             if (got_type == GOT_TYPE_TLSGD)
8496               off += size / 8;
8497             if (off == got_indx * (size / 8))
8498               {
8499                 if (got_type == GOT_TYPE_TPREL)
8500                   return -tp_offset;
8501                 else
8502                   return -dtp_offset;
8503               }
8504           }
8505     }
8506   gold_unreachable();
8507 }
8508
8509 // Return the offset to use for the GOT_INDX'th got entry which is
8510 // for global tls symbol GSYM.
8511 template<int size, bool big_endian>
8512 int64_t
8513 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8514     Symbol* gsym,
8515     unsigned int got_indx) const
8516 {
8517   if (gsym->type() == elfcpp::STT_TLS)
8518     {
8519       for (Got_type got_type = GOT_TYPE_TLSGD;
8520            got_type <= GOT_TYPE_TPREL;
8521            got_type = Got_type(got_type + 1))
8522         if (gsym->has_got_offset(got_type))
8523           {
8524             unsigned int off = gsym->got_offset(got_type);
8525             if (got_type == GOT_TYPE_TLSGD)
8526               off += size / 8;
8527             if (off == got_indx * (size / 8))
8528               {
8529                 if (got_type == GOT_TYPE_TPREL)
8530                   return -tp_offset;
8531                 else
8532                   return -dtp_offset;
8533               }
8534           }
8535     }
8536   gold_unreachable();
8537 }
8538
8539 // The selector for powerpc object files.
8540
8541 template<int size, bool big_endian>
8542 class Target_selector_powerpc : public Target_selector
8543 {
8544 public:
8545   Target_selector_powerpc()
8546     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8547                       size, big_endian,
8548                       (size == 64
8549                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8550                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8551                       (size == 64
8552                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8553                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8554   { }
8555
8556   virtual Target*
8557   do_instantiate_target()
8558   { return new Target_powerpc<size, big_endian>(); }
8559 };
8560
8561 Target_selector_powerpc<32, true> target_selector_ppc32;
8562 Target_selector_powerpc<32, false> target_selector_ppc32le;
8563 Target_selector_powerpc<64, true> target_selector_ppc64;
8564 Target_selector_powerpc<64, false> target_selector_ppc64le;
8565
8566 // Instantiate these constants for -O0
8567 template<int size, bool big_endian>
8568 const int Output_data_glink<size, big_endian>::pltresolve_size;
8569 template<int size, bool big_endian>
8570 const typename Output_data_glink<size, big_endian>::Address
8571   Output_data_glink<size, big_endian>::invalid_address;
8572 template<int size, bool big_endian>
8573 const typename Stub_table<size, big_endian>::Address
8574   Stub_table<size, big_endian>::invalid_address;
8575 template<int size, bool big_endian>
8576 const typename Target_powerpc<size, big_endian>::Address
8577   Target_powerpc<size, big_endian>::invalid_address;
8578
8579 } // End anonymous namespace.