2013-01-16 Sriraman Tallam <tmsriram@google.com>
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <algorithm>
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "powerpc.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40 #include "errors.h"
41 #include "gc.h"
42
43 namespace
44 {
45
46 using namespace gold;
47
48 template<int size, bool big_endian>
49 class Output_data_plt_powerpc;
50
51 template<int size, bool big_endian>
52 class Output_data_brlt_powerpc;
53
54 template<int size, bool big_endian>
55 class Output_data_got_powerpc;
56
57 template<int size, bool big_endian>
58 class Output_data_glink;
59
60 template<int size, bool big_endian>
61 class Stub_table;
62
63 template<int size, bool big_endian>
64 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
65 {
66 public:
67   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
68   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
69   typedef Unordered_map<Address, Section_refs> Access_from;
70
71   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
72                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
73     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
74       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
75       opd_ent_(), access_from_map_(), has14_(), stub_table_()
76   { }
77
78   ~Powerpc_relobj()
79   { }
80
81   // The .got2 section shndx.
82   unsigned int
83   got2_shndx() const
84   {
85     if (size == 32)
86       return this->special_;
87     else
88       return 0;
89   }
90
91   // The .opd section shndx.
92   unsigned int
93   opd_shndx() const
94   {
95     if (size == 32)
96       return 0;
97     else
98       return this->special_;
99   }
100
101   // Init OPD entry arrays.
102   void
103   init_opd(size_t opd_size)
104   {
105     size_t count = this->opd_ent_ndx(opd_size);
106     this->opd_ent_.resize(count);
107   }
108
109   // Return section and offset of function entry for .opd + R_OFF.
110   unsigned int
111   get_opd_ent(Address r_off, Address* value = NULL) const
112   {
113     size_t ndx = this->opd_ent_ndx(r_off);
114     gold_assert(ndx < this->opd_ent_.size());
115     gold_assert(this->opd_ent_[ndx].shndx != 0);
116     if (value != NULL)
117       *value = this->opd_ent_[ndx].off;
118     return this->opd_ent_[ndx].shndx;
119   }
120
121   // Set section and offset of function entry for .opd + R_OFF.
122   void
123   set_opd_ent(Address r_off, unsigned int shndx, Address value)
124   {
125     size_t ndx = this->opd_ent_ndx(r_off);
126     gold_assert(ndx < this->opd_ent_.size());
127     this->opd_ent_[ndx].shndx = shndx;
128     this->opd_ent_[ndx].off = value;
129   }
130
131   // Return discard flag for .opd + R_OFF.
132   bool
133   get_opd_discard(Address r_off) const
134   {
135     size_t ndx = this->opd_ent_ndx(r_off);
136     gold_assert(ndx < this->opd_ent_.size());
137     return this->opd_ent_[ndx].discard;
138   }
139
140   // Set discard flag for .opd + R_OFF.
141   void
142   set_opd_discard(Address r_off)
143   {
144     size_t ndx = this->opd_ent_ndx(r_off);
145     gold_assert(ndx < this->opd_ent_.size());
146     this->opd_ent_[ndx].discard = true;
147   }
148
149   Access_from*
150   access_from_map()
151   { return &this->access_from_map_; }
152
153   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
154   // section at DST_OFF.
155   void
156   add_reference(Object* src_obj,
157                 unsigned int src_indx,
158                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
159   {
160     Section_id src_id(src_obj, src_indx);
161     this->access_from_map_[dst_off].insert(src_id);
162   }
163
164   // Add a reference to the code section specified by the .opd entry
165   // at DST_OFF
166   void
167   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
168   {
169     size_t ndx = this->opd_ent_ndx(dst_off);
170     if (ndx >= this->opd_ent_.size())
171       this->opd_ent_.resize(ndx + 1);
172     this->opd_ent_[ndx].gc_mark = true;
173   }
174
175   void
176   process_gc_mark(Symbol_table* symtab)
177   {
178     for (size_t i = 0; i < this->opd_ent_.size(); i++)
179       if (this->opd_ent_[i].gc_mark)
180         {
181           unsigned int shndx = this->opd_ent_[i].shndx;
182           symtab->gc()->worklist().push(Section_id(this, shndx));
183         }
184   }
185
186   bool
187   opd_valid() const
188   { return this->opd_valid_; }
189
190   void
191   set_opd_valid()
192   { this->opd_valid_ = true; }
193
194   // Examine .rela.opd to build info about function entry points.
195   void
196   scan_opd_relocs(size_t reloc_count,
197                   const unsigned char* prelocs,
198                   const unsigned char* plocal_syms);
199
200   // Perform the Sized_relobj_file method, then set up opd info from
201   // .opd relocs.
202   void
203   do_read_relocs(Read_relocs_data*);
204
205   bool
206   do_find_special_sections(Read_symbols_data* sd);
207
208   // Adjust this local symbol value.  Return false if the symbol
209   // should be discarded from the output file.
210   bool
211   do_adjust_local_symbol(Symbol_value<size>* lv) const
212   {
213     if (size == 64 && this->opd_shndx() != 0)
214       {
215         bool is_ordinary;
216         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
217           return true;
218         if (this->get_opd_discard(lv->input_value()))
219           return false;
220       }
221     return true;
222   }
223
224   // Return offset in output GOT section that this object will use
225   // as a TOC pointer.  Won't be just a constant with multi-toc support.
226   Address
227   toc_base_offset() const
228   { return 0x8000; }
229
230   void
231   set_has_small_toc_reloc()
232   { has_small_toc_reloc_ = true; }
233
234   bool
235   has_small_toc_reloc() const
236   { return has_small_toc_reloc_; }
237
238   void
239   set_has_14bit_branch(unsigned int shndx)
240   {
241     if (shndx >= this->has14_.size())
242       this->has14_.resize(shndx + 1);
243     this->has14_[shndx] = true;
244   }
245
246   bool
247   has_14bit_branch(unsigned int shndx) const
248   { return shndx < this->has14_.size() && this->has14_[shndx];  }
249
250   void
251   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
252   {
253     if (shndx >= this->stub_table_.size())
254       this->stub_table_.resize(shndx + 1);
255     this->stub_table_[shndx] = stub_table;
256   }
257
258   Stub_table<size, big_endian>*
259   stub_table(unsigned int shndx)
260   {
261     if (shndx < this->stub_table_.size())
262       return this->stub_table_[shndx];
263     return NULL;
264   }
265
266 private:
267   struct Opd_ent
268   {
269     unsigned int shndx;
270     bool discard : 1;
271     bool gc_mark : 1;
272     Address off;
273   };
274
275   // Return index into opd_ent_ array for .opd entry at OFF.
276   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
277   // apart when the language doesn't use the last 8-byte word, the
278   // environment pointer.  Thus dividing the entry section offset by
279   // 16 will give an index into opd_ent_ that works for either layout
280   // of .opd.  (It leaves some elements of the vector unused when .opd
281   // entries are spaced 24 bytes apart, but we don't know the spacing
282   // until relocations are processed, and in any case it is possible
283   // for an object to have some entries spaced 16 bytes apart and
284   // others 24 bytes apart.)
285   size_t
286   opd_ent_ndx(size_t off) const
287   { return off >> 4;}
288
289   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
290   unsigned int special_;
291
292   // For 64-bit, whether this object uses small model relocs to access
293   // the toc.
294   bool has_small_toc_reloc_;
295
296   // Set at the start of gc_process_relocs, when we know opd_ent_
297   // vector is valid.  The flag could be made atomic and set in
298   // do_read_relocs with memory_order_release and then tested with
299   // memory_order_acquire, potentially resulting in fewer entries in
300   // access_from_map_.
301   bool opd_valid_;
302
303   // The first 8-byte word of an OPD entry gives the address of the
304   // entry point of the function.  Relocatable object files have a
305   // relocation on this word.  The following vector records the
306   // section and offset specified by these relocations.
307   std::vector<Opd_ent> opd_ent_;
308
309   // References made to this object's .opd section when running
310   // gc_process_relocs for another object, before the opd_ent_ vector
311   // is valid for this object.
312   Access_from access_from_map_;
313
314   // Whether input section has a 14-bit branch reloc.
315   std::vector<bool> has14_;
316
317   // The stub table to use for a given input section.
318   std::vector<Stub_table<size, big_endian>*> stub_table_;
319 };
320
321 template<int size, bool big_endian>
322 class Target_powerpc : public Sized_target<size, big_endian>
323 {
324  public:
325   typedef
326     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
327   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
328   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
329   static const Address invalid_address = static_cast<Address>(0) - 1;
330   // Offset of tp and dtp pointers from start of TLS block.
331   static const Address tp_offset = 0x7000;
332   static const Address dtp_offset = 0x8000;
333
334   Target_powerpc()
335     : Sized_target<size, big_endian>(&powerpc_info),
336       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
337       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
338       dynbss_(NULL), tlsld_got_offset_(-1U),
339       stub_tables_(), branch_lookup_table_(), branch_info_(),
340       plt_thread_safe_(false)
341   {
342   }
343
344   // Process the relocations to determine unreferenced sections for
345   // garbage collection.
346   void
347   gc_process_relocs(Symbol_table* symtab,
348                     Layout* layout,
349                     Sized_relobj_file<size, big_endian>* object,
350                     unsigned int data_shndx,
351                     unsigned int sh_type,
352                     const unsigned char* prelocs,
353                     size_t reloc_count,
354                     Output_section* output_section,
355                     bool needs_special_offset_handling,
356                     size_t local_symbol_count,
357                     const unsigned char* plocal_symbols);
358
359   // Scan the relocations to look for symbol adjustments.
360   void
361   scan_relocs(Symbol_table* symtab,
362               Layout* layout,
363               Sized_relobj_file<size, big_endian>* object,
364               unsigned int data_shndx,
365               unsigned int sh_type,
366               const unsigned char* prelocs,
367               size_t reloc_count,
368               Output_section* output_section,
369               bool needs_special_offset_handling,
370               size_t local_symbol_count,
371               const unsigned char* plocal_symbols);
372
373   // Map input .toc section to output .got section.
374   const char*
375   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
376   {
377     if (size == 64 && strcmp(name, ".toc") == 0)
378       {
379         *plen = 4;
380         return ".got";
381       }
382     return NULL;
383   }
384
385   // Provide linker defined save/restore functions.
386   void
387   define_save_restore_funcs(Layout*, Symbol_table*);
388
389   // No stubs unless a final link.
390   bool
391   do_may_relax() const
392   { return !parameters->options().relocatable(); }
393
394   bool
395   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
396
397   // Stash info about branches, for stub generation.
398   void
399   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
400               unsigned int data_shndx, Address r_offset,
401               unsigned int r_type, unsigned int r_sym, Address addend)
402   {
403     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
404     this->branch_info_.push_back(info);
405     if (r_type == elfcpp::R_POWERPC_REL14
406         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
407         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
408       ppc_object->set_has_14bit_branch(data_shndx);
409   }
410
411   Stub_table<size, big_endian>*
412   new_stub_table();
413
414   void
415   do_define_standard_symbols(Symbol_table*, Layout*);
416
417   // Finalize the sections.
418   void
419   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
420
421   // Return the value to use for a dynamic which requires special
422   // treatment.
423   uint64_t
424   do_dynsym_value(const Symbol*) const;
425
426   // Return the PLT address to use for a local symbol.
427   uint64_t
428   do_plt_address_for_local(const Relobj*, unsigned int) const;
429
430   // Return the PLT address to use for a global symbol.
431   uint64_t
432   do_plt_address_for_global(const Symbol*) const;
433
434   // Return the offset to use for the GOT_INDX'th got entry which is
435   // for a local tls symbol specified by OBJECT, SYMNDX.
436   int64_t
437   do_tls_offset_for_local(const Relobj* object,
438                           unsigned int symndx,
439                           unsigned int got_indx) const;
440
441   // Return the offset to use for the GOT_INDX'th got entry which is
442   // for global tls symbol GSYM.
443   int64_t
444   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
445
446   // Relocate a section.
447   void
448   relocate_section(const Relocate_info<size, big_endian>*,
449                    unsigned int sh_type,
450                    const unsigned char* prelocs,
451                    size_t reloc_count,
452                    Output_section* output_section,
453                    bool needs_special_offset_handling,
454                    unsigned char* view,
455                    Address view_address,
456                    section_size_type view_size,
457                    const Reloc_symbol_changes*);
458
459   // Scan the relocs during a relocatable link.
460   void
461   scan_relocatable_relocs(Symbol_table* symtab,
462                           Layout* layout,
463                           Sized_relobj_file<size, big_endian>* object,
464                           unsigned int data_shndx,
465                           unsigned int sh_type,
466                           const unsigned char* prelocs,
467                           size_t reloc_count,
468                           Output_section* output_section,
469                           bool needs_special_offset_handling,
470                           size_t local_symbol_count,
471                           const unsigned char* plocal_symbols,
472                           Relocatable_relocs*);
473
474   // Emit relocations for a section.
475   void
476   relocate_relocs(const Relocate_info<size, big_endian>*,
477                   unsigned int sh_type,
478                   const unsigned char* prelocs,
479                   size_t reloc_count,
480                   Output_section* output_section,
481                   typename elfcpp::Elf_types<size>::Elf_Off
482                     offset_in_output_section,
483                   const Relocatable_relocs*,
484                   unsigned char*,
485                   Address view_address,
486                   section_size_type,
487                   unsigned char* reloc_view,
488                   section_size_type reloc_view_size);
489
490   // Return whether SYM is defined by the ABI.
491   bool
492   do_is_defined_by_abi(const Symbol* sym) const
493   {
494     return strcmp(sym->name(), "__tls_get_addr") == 0;
495   }
496
497   // Return the size of the GOT section.
498   section_size_type
499   got_size() const
500   {
501     gold_assert(this->got_ != NULL);
502     return this->got_->data_size();
503   }
504
505   // Get the PLT section.
506   const Output_data_plt_powerpc<size, big_endian>*
507   plt_section() const
508   {
509     gold_assert(this->plt_ != NULL);
510     return this->plt_;
511   }
512
513   // Get the IPLT section.
514   const Output_data_plt_powerpc<size, big_endian>*
515   iplt_section() const
516   {
517     gold_assert(this->iplt_ != NULL);
518     return this->iplt_;
519   }
520
521   // Get the .glink section.
522   const Output_data_glink<size, big_endian>*
523   glink_section() const
524   {
525     gold_assert(this->glink_ != NULL);
526     return this->glink_;
527   }
528
529   // Get the GOT section.
530   const Output_data_got_powerpc<size, big_endian>*
531   got_section() const
532   {
533     gold_assert(this->got_ != NULL);
534     return this->got_;
535   }
536
537   // Get the GOT section, creating it if necessary.
538   Output_data_got_powerpc<size, big_endian>*
539   got_section(Symbol_table*, Layout*);
540
541   Object*
542   do_make_elf_object(const std::string&, Input_file*, off_t,
543                      const elfcpp::Ehdr<size, big_endian>&);
544
545   // Return the number of entries in the GOT.
546   unsigned int
547   got_entry_count() const
548   {
549     if (this->got_ == NULL)
550       return 0;
551     return this->got_size() / (size / 8);
552   }
553
554   // Return the number of entries in the PLT.
555   unsigned int
556   plt_entry_count() const;
557
558   // Return the offset of the first non-reserved PLT entry.
559   unsigned int
560   first_plt_entry_offset() const;
561
562   // Return the size of each PLT entry.
563   unsigned int
564   plt_entry_size() const;
565
566   // Add any special sections for this symbol to the gc work list.
567   // For powerpc64, this adds the code section of a function
568   // descriptor.
569   void
570   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
571
572   // Handle target specific gc actions when adding a gc reference from
573   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
574   // and DST_OFF.  For powerpc64, this adds a referenc to the code
575   // section of a function descriptor.
576   void
577   do_gc_add_reference(Symbol_table* symtab,
578                       Object* src_obj,
579                       unsigned int src_shndx,
580                       Object* dst_obj,
581                       unsigned int dst_shndx,
582                       Address dst_off) const;
583
584   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
585   const Stub_tables&
586   stub_tables() const
587   { return this->stub_tables_; }
588
589   const Output_data_brlt_powerpc<size, big_endian>*
590   brlt_section() const
591   { return this->brlt_section_; }
592
593   void
594   add_branch_lookup_table(Address to)
595   {
596     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
597     this->branch_lookup_table_.insert(std::make_pair(to, off));
598   }
599
600   Address
601   find_branch_lookup_table(Address to)
602   {
603     typename Branch_lookup_table::const_iterator p
604       = this->branch_lookup_table_.find(to);
605     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
606   }
607
608   void
609   write_branch_lookup_table(unsigned char *oview)
610   {
611     for (typename Branch_lookup_table::const_iterator p
612            = this->branch_lookup_table_.begin();
613          p != this->branch_lookup_table_.end();
614          ++p)
615       {
616         elfcpp::Swap<32, big_endian>::writeval(oview + p->second, p->first);
617       }
618   }
619
620   bool
621   plt_thread_safe() const
622   { return this->plt_thread_safe_; }
623
624  private:
625
626   class Track_tls
627   {
628   public:
629     enum Tls_get_addr
630     {
631       NOT_EXPECTED = 0,
632       EXPECTED = 1,
633       SKIP = 2,
634       NORMAL = 3
635     };
636
637     Track_tls()
638       : tls_get_addr_(NOT_EXPECTED),
639         relinfo_(NULL), relnum_(0), r_offset_(0)
640     { }
641
642     ~Track_tls()
643     {
644       if (this->tls_get_addr_ != NOT_EXPECTED)
645         this->missing();
646     }
647
648     void
649     missing(void)
650     {
651       if (this->relinfo_ != NULL)
652         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
653                                _("missing expected __tls_get_addr call"));
654     }
655
656     void
657     expect_tls_get_addr_call(
658         const Relocate_info<size, big_endian>* relinfo,
659         size_t relnum,
660         Address r_offset)
661     {
662       this->tls_get_addr_ = EXPECTED;
663       this->relinfo_ = relinfo;
664       this->relnum_ = relnum;
665       this->r_offset_ = r_offset;
666     }
667
668     void
669     expect_tls_get_addr_call()
670     { this->tls_get_addr_ = EXPECTED; }
671
672     void
673     skip_next_tls_get_addr_call()
674     {this->tls_get_addr_ = SKIP; }
675
676     Tls_get_addr
677     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
678     {
679       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
680                            || r_type == elfcpp::R_PPC_PLTREL24)
681                           && gsym != NULL
682                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
683       Tls_get_addr last_tls = this->tls_get_addr_;
684       this->tls_get_addr_ = NOT_EXPECTED;
685       if (is_tls_call && last_tls != EXPECTED)
686         return last_tls;
687       else if (!is_tls_call && last_tls != NOT_EXPECTED)
688         {
689           this->missing();
690           return EXPECTED;
691         }
692       return NORMAL;
693     }
694
695   private:
696     // What we're up to regarding calls to __tls_get_addr.
697     // On powerpc, the branch and link insn making a call to
698     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
699     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
700     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
701     // The marker relocation always comes first, and has the same
702     // symbol as the reloc on the insn setting up the __tls_get_addr
703     // argument.  This ties the arg setup insn with the call insn,
704     // allowing ld to safely optimize away the call.  We check that
705     // every call to __tls_get_addr has a marker relocation, and that
706     // every marker relocation is on a call to __tls_get_addr.
707     Tls_get_addr tls_get_addr_;
708     // Info about the last reloc for error message.
709     const Relocate_info<size, big_endian>* relinfo_;
710     size_t relnum_;
711     Address r_offset_;
712   };
713
714   // The class which scans relocations.
715   class Scan : protected Track_tls
716   {
717   public:
718     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
719
720     Scan()
721       : Track_tls(), issued_non_pic_error_(false)
722     { }
723
724     static inline int
725     get_reference_flags(unsigned int r_type);
726
727     inline void
728     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
729           Sized_relobj_file<size, big_endian>* object,
730           unsigned int data_shndx,
731           Output_section* output_section,
732           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
733           const elfcpp::Sym<size, big_endian>& lsym,
734           bool is_discarded);
735
736     inline void
737     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
738            Sized_relobj_file<size, big_endian>* object,
739            unsigned int data_shndx,
740            Output_section* output_section,
741            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
742            Symbol* gsym);
743
744     inline bool
745     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
746                                         Target_powerpc* ,
747                                         Sized_relobj_file<size, big_endian>* ,
748                                         unsigned int ,
749                                         Output_section* ,
750                                         const elfcpp::Rela<size, big_endian>& ,
751                                         unsigned int ,
752                                         const elfcpp::Sym<size, big_endian>&)
753     { return false; }
754
755     inline bool
756     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
757                                          Target_powerpc* ,
758                                          Sized_relobj_file<size, big_endian>* ,
759                                          unsigned int ,
760                                          Output_section* ,
761                                          const elfcpp::Rela<size,
762                                                             big_endian>& ,
763                                          unsigned int , Symbol*)
764     { return false; }
765
766   private:
767     static void
768     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
769                             unsigned int r_type);
770
771     static void
772     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
773                              unsigned int r_type, Symbol*);
774
775     static void
776     generate_tls_call(Symbol_table* symtab, Layout* layout,
777                       Target_powerpc* target);
778
779     void
780     check_non_pic(Relobj*, unsigned int r_type);
781
782     bool
783     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>* object,
784                               unsigned int r_type);
785
786     // Whether we have issued an error about a non-PIC compilation.
787     bool issued_non_pic_error_;
788   };
789
790   Address
791   symval_for_branch(Address value, const Sized_symbol<size>* gsym,
792                     Powerpc_relobj<size, big_endian>* object,
793                     unsigned int *dest_shndx);
794
795   // The class which implements relocation.
796   class Relocate : protected Track_tls
797   {
798    public:
799     // Use 'at' branch hints when true, 'y' when false.
800     // FIXME maybe: set this with an option.
801     static const bool is_isa_v2 = true;
802
803     Relocate()
804       : Track_tls()
805     { }
806
807     // Do a relocation.  Return false if the caller should not issue
808     // any warnings about this relocation.
809     inline bool
810     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
811              Output_section*, size_t relnum,
812              const elfcpp::Rela<size, big_endian>&,
813              unsigned int r_type, const Sized_symbol<size>*,
814              const Symbol_value<size>*,
815              unsigned char*,
816              typename elfcpp::Elf_types<size>::Elf_Addr,
817              section_size_type);
818   };
819
820   class Relocate_comdat_behavior
821   {
822    public:
823     // Decide what the linker should do for relocations that refer to
824     // discarded comdat sections.
825     inline Comdat_behavior
826     get(const char* name)
827     {
828       gold::Default_comdat_behavior default_behavior;
829       Comdat_behavior ret = default_behavior.get(name);
830       if (ret == CB_WARNING)
831         {
832           if (size == 32
833               && (strcmp(name, ".fixup") == 0
834                   || strcmp(name, ".got2") == 0))
835             ret = CB_IGNORE;
836           if (size == 64
837               && (strcmp(name, ".opd") == 0
838                   || strcmp(name, ".toc") == 0
839                   || strcmp(name, ".toc1") == 0))
840             ret = CB_IGNORE;
841         }
842       return ret;
843     }
844   };
845
846   // A class which returns the size required for a relocation type,
847   // used while scanning relocs during a relocatable link.
848   class Relocatable_size_for_reloc
849   {
850    public:
851     unsigned int
852     get_size_for_reloc(unsigned int, Relobj*)
853     {
854       gold_unreachable();
855       return 0;
856     }
857   };
858
859   // Optimize the TLS relocation type based on what we know about the
860   // symbol.  IS_FINAL is true if the final address of this symbol is
861   // known at link time.
862
863   tls::Tls_optimization
864   optimize_tls_gd(bool is_final)
865   {
866     // If we are generating a shared library, then we can't do anything
867     // in the linker.
868     if (parameters->options().shared())
869       return tls::TLSOPT_NONE;
870
871     if (!is_final)
872       return tls::TLSOPT_TO_IE;
873     return tls::TLSOPT_TO_LE;
874   }
875
876   tls::Tls_optimization
877   optimize_tls_ld()
878   {
879     if (parameters->options().shared())
880       return tls::TLSOPT_NONE;
881
882     return tls::TLSOPT_TO_LE;
883   }
884
885   tls::Tls_optimization
886   optimize_tls_ie(bool is_final)
887   {
888     if (!is_final || parameters->options().shared())
889       return tls::TLSOPT_NONE;
890
891     return tls::TLSOPT_TO_LE;
892   }
893
894   // Create glink.
895   void
896   make_glink_section(Layout*);
897
898   // Create the PLT section.
899   void
900   make_plt_section(Symbol_table*, Layout*);
901
902   void
903   make_iplt_section(Symbol_table*, Layout*);
904
905   void
906   make_brlt_section(Layout*);
907
908   // Create a PLT entry for a global symbol.
909   void
910   make_plt_entry(Symbol_table*, Layout*, Symbol*);
911
912   // Create a PLT entry for a local IFUNC symbol.
913   void
914   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
915                              Sized_relobj_file<size, big_endian>*,
916                              unsigned int);
917
918
919   // Create a GOT entry for local dynamic __tls_get_addr.
920   unsigned int
921   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
922                    Sized_relobj_file<size, big_endian>* object);
923
924   unsigned int
925   tlsld_got_offset() const
926   {
927     return this->tlsld_got_offset_;
928   }
929
930   // Get the dynamic reloc section, creating it if necessary.
931   Reloc_section*
932   rela_dyn_section(Layout*);
933
934   // Copy a relocation against a global symbol.
935   void
936   copy_reloc(Symbol_table* symtab, Layout* layout,
937              Sized_relobj_file<size, big_endian>* object,
938              unsigned int shndx, Output_section* output_section,
939              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
940   {
941     this->copy_relocs_.copy_reloc(symtab, layout,
942                                   symtab->get_sized_symbol<size>(sym),
943                                   object, shndx, output_section,
944                                   reloc, this->rela_dyn_section(layout));
945   }
946
947   // Look over all the input sections, deciding where to place stub.
948   void
949   group_sections(Layout*, const Task*);
950
951   // Sort output sections by address.
952   struct Sort_sections
953   {
954     bool
955     operator()(const Output_section* sec1, const Output_section* sec2)
956     { return sec1->address() < sec2->address(); }
957   };
958
959   class Branch_info
960   {
961    public:
962     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
963                 unsigned int data_shndx,
964                 Address r_offset,
965                 unsigned int r_type,
966                 unsigned int r_sym,
967                 Address addend)
968       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
969         r_type_(r_type), r_sym_(r_sym), addend_(addend)
970     { }
971
972     ~Branch_info()
973     { }
974
975     // If this branch needs a plt call stub, or a long branch stub, make one.
976     void
977     make_stub(Stub_table<size, big_endian>*,
978               Stub_table<size, big_endian>*,
979               Symbol_table*) const;
980
981    private:
982     // The branch location..
983     Powerpc_relobj<size, big_endian>* object_;
984     unsigned int shndx_;
985     Address offset_;
986     // ..and the branch type and destination.
987     unsigned int r_type_;
988     unsigned int r_sym_;
989     Address addend_;
990   };
991
992   // Information about this specific target which we pass to the
993   // general Target structure.
994   static Target::Target_info powerpc_info;
995
996   // The types of GOT entries needed for this platform.
997   // These values are exposed to the ABI in an incremental link.
998   // Do not renumber existing values without changing the version
999   // number of the .gnu_incremental_inputs section.
1000   enum Got_type
1001   {
1002     GOT_TYPE_STANDARD,
1003     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1004     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1005     GOT_TYPE_TPREL      // entry for @got@tprel
1006   };
1007
1008   // The GOT section.
1009   Output_data_got_powerpc<size, big_endian>* got_;
1010   // The PLT section.
1011   Output_data_plt_powerpc<size, big_endian>* plt_;
1012   // The IPLT section.
1013   Output_data_plt_powerpc<size, big_endian>* iplt_;
1014   // Section holding long branch destinations.
1015   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1016   // The .glink section.
1017   Output_data_glink<size, big_endian>* glink_;
1018   // The dynamic reloc section.
1019   Reloc_section* rela_dyn_;
1020   // Relocs saved to avoid a COPY reloc.
1021   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1022   // Space for variables copied with a COPY reloc.
1023   Output_data_space* dynbss_;
1024   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1025   unsigned int tlsld_got_offset_;
1026
1027   Stub_tables stub_tables_;
1028   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1029   Branch_lookup_table branch_lookup_table_;
1030
1031   typedef std::vector<Branch_info> Branches;
1032   Branches branch_info_;
1033
1034   bool plt_thread_safe_;
1035 };
1036
1037 template<>
1038 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1039 {
1040   32,                   // size
1041   true,                 // is_big_endian
1042   elfcpp::EM_PPC,       // machine_code
1043   false,                // has_make_symbol
1044   false,                // has_resolve
1045   false,                // has_code_fill
1046   true,                 // is_default_stack_executable
1047   false,                // can_icf_inline_merge_sections
1048   '\0',                 // wrap_char
1049   "/usr/lib/ld.so.1",   // dynamic_linker
1050   0x10000000,           // default_text_segment_address
1051   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1052   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1053   false,                // isolate_execinstr
1054   0,                    // rosegment_gap
1055   elfcpp::SHN_UNDEF,    // small_common_shndx
1056   elfcpp::SHN_UNDEF,    // large_common_shndx
1057   0,                    // small_common_section_flags
1058   0,                    // large_common_section_flags
1059   NULL,                 // attributes_section
1060   NULL                  // attributes_vendor
1061 };
1062
1063 template<>
1064 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1065 {
1066   32,                   // size
1067   false,                // is_big_endian
1068   elfcpp::EM_PPC,       // machine_code
1069   false,                // has_make_symbol
1070   false,                // has_resolve
1071   false,                // has_code_fill
1072   true,                 // is_default_stack_executable
1073   false,                // can_icf_inline_merge_sections
1074   '\0',                 // wrap_char
1075   "/usr/lib/ld.so.1",   // dynamic_linker
1076   0x10000000,           // default_text_segment_address
1077   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1078   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1079   false,                // isolate_execinstr
1080   0,                    // rosegment_gap
1081   elfcpp::SHN_UNDEF,    // small_common_shndx
1082   elfcpp::SHN_UNDEF,    // large_common_shndx
1083   0,                    // small_common_section_flags
1084   0,                    // large_common_section_flags
1085   NULL,                 // attributes_section
1086   NULL                  // attributes_vendor
1087 };
1088
1089 template<>
1090 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1091 {
1092   64,                   // size
1093   true,                 // is_big_endian
1094   elfcpp::EM_PPC64,     // machine_code
1095   false,                // has_make_symbol
1096   false,                // has_resolve
1097   false,                // has_code_fill
1098   true,                 // is_default_stack_executable
1099   false,                // can_icf_inline_merge_sections
1100   '\0',                 // wrap_char
1101   "/usr/lib/ld.so.1",   // dynamic_linker
1102   0x10000000,           // default_text_segment_address
1103   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1104   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1105   false,                // isolate_execinstr
1106   0,                    // rosegment_gap
1107   elfcpp::SHN_UNDEF,    // small_common_shndx
1108   elfcpp::SHN_UNDEF,    // large_common_shndx
1109   0,                    // small_common_section_flags
1110   0,                    // large_common_section_flags
1111   NULL,                 // attributes_section
1112   NULL                  // attributes_vendor
1113 };
1114
1115 template<>
1116 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1117 {
1118   64,                   // size
1119   false,                // is_big_endian
1120   elfcpp::EM_PPC64,     // machine_code
1121   false,                // has_make_symbol
1122   false,                // has_resolve
1123   false,                // has_code_fill
1124   true,                 // is_default_stack_executable
1125   false,                // can_icf_inline_merge_sections
1126   '\0',                 // wrap_char
1127   "/usr/lib/ld.so.1",   // dynamic_linker
1128   0x10000000,           // default_text_segment_address
1129   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1130   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1131   false,                // isolate_execinstr
1132   0,                    // rosegment_gap
1133   elfcpp::SHN_UNDEF,    // small_common_shndx
1134   elfcpp::SHN_UNDEF,    // large_common_shndx
1135   0,                    // small_common_section_flags
1136   0,                    // large_common_section_flags
1137   NULL,                 // attributes_section
1138   NULL                  // attributes_vendor
1139 };
1140
1141 inline bool
1142 is_branch_reloc(unsigned int r_type)
1143 {
1144   return (r_type == elfcpp::R_POWERPC_REL24
1145           || r_type == elfcpp::R_PPC_PLTREL24
1146           || r_type == elfcpp::R_PPC_LOCAL24PC
1147           || r_type == elfcpp::R_POWERPC_REL14
1148           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1149           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1150           || r_type == elfcpp::R_POWERPC_ADDR24
1151           || r_type == elfcpp::R_POWERPC_ADDR14
1152           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1153           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1154 }
1155
1156 // If INSN is an opcode that may be used with an @tls operand, return
1157 // the transformed insn for TLS optimisation, otherwise return 0.  If
1158 // REG is non-zero only match an insn with RB or RA equal to REG.
1159 uint32_t
1160 at_tls_transform(uint32_t insn, unsigned int reg)
1161 {
1162   if ((insn & (0x3f << 26)) != 31 << 26)
1163     return 0;
1164
1165   unsigned int rtra;
1166   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1167     rtra = insn & ((1 << 26) - (1 << 16));
1168   else if (((insn >> 16) & 0x1f) == reg)
1169     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1170   else
1171     return 0;
1172
1173   if ((insn & (0x3ff << 1)) == 266 << 1)
1174     // add -> addi
1175     insn = 14 << 26;
1176   else if ((insn & (0x1f << 1)) == 23 << 1
1177            && ((insn & (0x1f << 6)) < 14 << 6
1178                || ((insn & (0x1f << 6)) >= 16 << 6
1179                    && (insn & (0x1f << 6)) < 24 << 6)))
1180     // load and store indexed -> dform
1181     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1182   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1183     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1184     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1185   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1186     // lwax -> lwa
1187     insn = (58 << 26) | 2;
1188   else
1189     return 0;
1190   insn |= rtra;
1191   return insn;
1192 }
1193
1194 // Modified version of symtab.h class Symbol member
1195 // Given a direct absolute or pc-relative static relocation against
1196 // the global symbol, this function returns whether a dynamic relocation
1197 // is needed.
1198
1199 template<int size>
1200 bool
1201 needs_dynamic_reloc(const Symbol* gsym, int flags)
1202 {
1203   // No dynamic relocations in a static link!
1204   if (parameters->doing_static_link())
1205     return false;
1206
1207   // A reference to an undefined symbol from an executable should be
1208   // statically resolved to 0, and does not need a dynamic relocation.
1209   // This matches gnu ld behavior.
1210   if (gsym->is_undefined() && !parameters->options().shared())
1211     return false;
1212
1213   // A reference to an absolute symbol does not need a dynamic relocation.
1214   if (gsym->is_absolute())
1215     return false;
1216
1217   // An absolute reference within a position-independent output file
1218   // will need a dynamic relocation.
1219   if ((flags & Symbol::ABSOLUTE_REF)
1220       && parameters->options().output_is_position_independent())
1221     return true;
1222
1223   // A function call that can branch to a local PLT entry does not need
1224   // a dynamic relocation.
1225   if ((flags & Symbol::FUNCTION_CALL) && gsym->has_plt_offset())
1226     return false;
1227
1228   // A reference to any PLT entry in a non-position-independent executable
1229   // does not need a dynamic relocation.
1230   // Except due to having function descriptors on powerpc64 we don't define
1231   // functions to their plt code in an executable, so this doesn't apply.
1232   if (size == 32
1233       && !parameters->options().output_is_position_independent()
1234       && gsym->has_plt_offset())
1235     return false;
1236
1237   // A reference to a symbol defined in a dynamic object or to a
1238   // symbol that is preemptible will need a dynamic relocation.
1239   if (gsym->is_from_dynobj()
1240       || gsym->is_undefined()
1241       || gsym->is_preemptible())
1242     return true;
1243
1244   // For all other cases, return FALSE.
1245   return false;
1246 }
1247
1248 // Modified version of symtab.h class Symbol member
1249 // Whether we should use the PLT offset associated with a symbol for
1250 // a relocation.  FLAGS is a set of Reference_flags.
1251
1252 template<int size>
1253 bool
1254 use_plt_offset(const Symbol* gsym, int flags)
1255 {
1256   // If the symbol doesn't have a PLT offset, then naturally we
1257   // don't want to use it.
1258   if (!gsym->has_plt_offset())
1259     return false;
1260
1261   // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
1262   if (gsym->type() == elfcpp::STT_GNU_IFUNC)
1263     return true;
1264
1265   // If we are going to generate a dynamic relocation, then we will
1266   // wind up using that, so no need to use the PLT entry.
1267   if (needs_dynamic_reloc<size>(gsym, flags))
1268     return false;
1269
1270   // If the symbol is from a dynamic object, we need to use the PLT
1271   // entry.
1272   if (gsym->is_from_dynobj())
1273     return true;
1274
1275   // If we are generating a shared object, and this symbol is
1276   // undefined or preemptible, we need to use the PLT entry.
1277   if (parameters->options().shared()
1278       && (gsym->is_undefined() || gsym->is_preemptible()))
1279     return true;
1280
1281   // If this is a call to a weak undefined symbol, we need to use
1282   // the PLT entry; the symbol may be defined by a library loaded
1283   // at runtime.
1284   if ((flags & Symbol::FUNCTION_CALL) && gsym->is_weak_undefined())
1285     return true;
1286
1287   // Otherwise we can use the regular definition.
1288   return false;
1289 }
1290
1291 template<int size, bool big_endian>
1292 class Powerpc_relocate_functions
1293 {
1294 public:
1295   enum Overflow_check
1296   {
1297     CHECK_NONE,
1298     CHECK_SIGNED,
1299     CHECK_BITFIELD
1300   };
1301
1302   enum Status
1303   {
1304     STATUS_OK,
1305     STATUS_OVERFLOW
1306   };
1307
1308 private:
1309   typedef Powerpc_relocate_functions<size, big_endian> This;
1310   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1311
1312   template<int valsize>
1313   static inline bool
1314   has_overflow_signed(Address value)
1315   {
1316     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1317     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1318     limit <<= ((valsize - 1) >> 1);
1319     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1320     return value + limit > (limit << 1) - 1;
1321   }
1322
1323   template<int valsize>
1324   static inline bool
1325   has_overflow_bitfield(Address value)
1326   {
1327     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1328     limit <<= ((valsize - 1) >> 1);
1329     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1330     return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
1331   }
1332
1333   template<int valsize>
1334   static inline Status
1335   overflowed(Address value, Overflow_check overflow)
1336   {
1337     if (overflow == CHECK_SIGNED)
1338       {
1339         if (has_overflow_signed<valsize>(value))
1340           return STATUS_OVERFLOW;
1341       }
1342     else if (overflow == CHECK_BITFIELD)
1343       {
1344         if (has_overflow_bitfield<valsize>(value))
1345           return STATUS_OVERFLOW;
1346       }
1347     return STATUS_OK;
1348   }
1349
1350   // Do a simple RELA relocation
1351   template<int valsize>
1352   static inline Status
1353   rela(unsigned char* view, Address value, Overflow_check overflow)
1354   {
1355     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1356     Valtype* wv = reinterpret_cast<Valtype*>(view);
1357     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1358     return overflowed<valsize>(value, overflow);
1359   }
1360
1361   template<int valsize>
1362   static inline Status
1363   rela(unsigned char* view,
1364        unsigned int right_shift,
1365        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1366        Address value,
1367        Overflow_check overflow)
1368   {
1369     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1370     Valtype* wv = reinterpret_cast<Valtype*>(view);
1371     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1372     Valtype reloc = value >> right_shift;
1373     val &= ~dst_mask;
1374     reloc &= dst_mask;
1375     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1376     return overflowed<valsize>(value >> right_shift, overflow);
1377   }
1378
1379   // Do a simple RELA relocation, unaligned.
1380   template<int valsize>
1381   static inline Status
1382   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1383   {
1384     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1385     return overflowed<valsize>(value, overflow);
1386   }
1387
1388   template<int valsize>
1389   static inline Status
1390   rela_ua(unsigned char* view,
1391           unsigned int right_shift,
1392           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1393           Address value,
1394           Overflow_check overflow)
1395   {
1396     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1397       Valtype;
1398     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1399     Valtype reloc = value >> right_shift;
1400     val &= ~dst_mask;
1401     reloc &= dst_mask;
1402     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1403     return overflowed<valsize>(value >> right_shift, overflow);
1404   }
1405
1406 public:
1407   // R_PPC64_ADDR64: (Symbol + Addend)
1408   static inline void
1409   addr64(unsigned char* view, Address value)
1410   { This::template rela<64>(view, value, CHECK_NONE); }
1411
1412   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1413   static inline void
1414   addr64_u(unsigned char* view, Address value)
1415   { This::template rela_ua<64>(view, value, CHECK_NONE); }
1416
1417   // R_POWERPC_ADDR32: (Symbol + Addend)
1418   static inline Status
1419   addr32(unsigned char* view, Address value, Overflow_check overflow)
1420   { return This::template rela<32>(view, value, overflow); }
1421
1422   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1423   static inline Status
1424   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1425   { return This::template rela_ua<32>(view, value, overflow); }
1426
1427   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1428   static inline Status
1429   addr24(unsigned char* view, Address value, Overflow_check overflow)
1430   {
1431     Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1432     if (overflow != CHECK_NONE && (value & 3) != 0)
1433       stat = STATUS_OVERFLOW;
1434     return stat;
1435   }
1436
1437   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1438   static inline Status
1439   addr16(unsigned char* view, Address value, Overflow_check overflow)
1440   { return This::template rela<16>(view, value, overflow); }
1441
1442   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1443   static inline Status
1444   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1445   { return This::template rela_ua<16>(view, value, overflow); }
1446
1447   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1448   static inline Status
1449   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1450   {
1451     Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1452     if (overflow != CHECK_NONE && (value & 3) != 0)
1453       stat = STATUS_OVERFLOW;
1454     return stat;
1455   }
1456
1457   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1458   static inline void
1459   addr16_hi(unsigned char* view, Address value)
1460   { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1461
1462   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1463   static inline void
1464   addr16_ha(unsigned char* view, Address value)
1465   { This::addr16_hi(view, value + 0x8000); }
1466
1467   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1468   static inline void
1469   addr16_hi2(unsigned char* view, Address value)
1470   { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1471
1472   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1473   static inline void
1474   addr16_ha2(unsigned char* view, Address value)
1475   { This::addr16_hi2(view, value + 0x8000); }
1476
1477   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1478   static inline void
1479   addr16_hi3(unsigned char* view, Address value)
1480   { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1481
1482   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1483   static inline void
1484   addr16_ha3(unsigned char* view, Address value)
1485   { This::addr16_hi3(view, value + 0x8000); }
1486
1487   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1488   static inline Status
1489   addr14(unsigned char* view, Address value, Overflow_check overflow)
1490   {
1491     Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1492     if (overflow != CHECK_NONE && (value & 3) != 0)
1493       stat = STATUS_OVERFLOW;
1494     return stat;
1495   }
1496 };
1497
1498 // Stash away the index of .got2 or .opd in a relocatable object, if
1499 // such a section exists.
1500
1501 template<int size, bool big_endian>
1502 bool
1503 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1504     Read_symbols_data* sd)
1505 {
1506   const unsigned char* const pshdrs = sd->section_headers->data();
1507   const unsigned char* namesu = sd->section_names->data();
1508   const char* names = reinterpret_cast<const char*>(namesu);
1509   section_size_type names_size = sd->section_names_size;
1510   const unsigned char* s;
1511
1512   s = this->find_shdr(pshdrs, size == 32 ? ".got2" : ".opd",
1513                       names, names_size, NULL);
1514   if (s != NULL)
1515     {
1516       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1517       this->special_ = ndx;
1518     }
1519   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1520 }
1521
1522 // Examine .rela.opd to build info about function entry points.
1523
1524 template<int size, bool big_endian>
1525 void
1526 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1527     size_t reloc_count,
1528     const unsigned char* prelocs,
1529     const unsigned char* plocal_syms)
1530 {
1531   if (size == 64)
1532     {
1533       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1534         Reltype;
1535       const int reloc_size
1536         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1537       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1538       Address expected_off = 0;
1539       bool regular = true;
1540       unsigned int opd_ent_size = 0;
1541
1542       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1543         {
1544           Reltype reloc(prelocs);
1545           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1546             = reloc.get_r_info();
1547           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1548           if (r_type == elfcpp::R_PPC64_ADDR64)
1549             {
1550               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1551               typename elfcpp::Elf_types<size>::Elf_Addr value;
1552               bool is_ordinary;
1553               unsigned int shndx;
1554               if (r_sym < this->local_symbol_count())
1555                 {
1556                   typename elfcpp::Sym<size, big_endian>
1557                     lsym(plocal_syms + r_sym * sym_size);
1558                   shndx = lsym.get_st_shndx();
1559                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1560                   value = lsym.get_st_value();
1561                 }
1562               else
1563                 shndx = this->symbol_section_and_value(r_sym, &value,
1564                                                        &is_ordinary);
1565               this->set_opd_ent(reloc.get_r_offset(), shndx,
1566                                 value + reloc.get_r_addend());
1567               if (i == 2)
1568                 {
1569                   expected_off = reloc.get_r_offset();
1570                   opd_ent_size = expected_off;
1571                 }
1572               else if (expected_off != reloc.get_r_offset())
1573                 regular = false;
1574               expected_off += opd_ent_size;
1575             }
1576           else if (r_type == elfcpp::R_PPC64_TOC)
1577             {
1578               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1579                 regular = false;
1580             }
1581           else
1582             {
1583               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1584                            this->name().c_str(), r_type);
1585               regular = false;
1586             }
1587         }
1588       if (reloc_count <= 2)
1589         opd_ent_size = this->section_size(this->opd_shndx());
1590       if (opd_ent_size != 24 && opd_ent_size != 16)
1591         regular = false;
1592       if (!regular)
1593         {
1594           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1595                        this->name().c_str());
1596           opd_ent_size = 0;
1597         }
1598     }
1599 }
1600
1601 template<int size, bool big_endian>
1602 void
1603 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1604 {
1605   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1606   if (size == 64)
1607     {
1608       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1609            p != rd->relocs.end();
1610            ++p)
1611         {
1612           if (p->data_shndx == this->opd_shndx())
1613             {
1614               uint64_t opd_size = this->section_size(this->opd_shndx());
1615               gold_assert(opd_size == static_cast<size_t>(opd_size));
1616               if (opd_size != 0)
1617                 {
1618                   this->init_opd(opd_size);
1619                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1620                                         rd->local_symbols->data());
1621                 }
1622               break;
1623             }
1624         }
1625     }
1626 }
1627
1628 // Set up some symbols.
1629
1630 template<int size, bool big_endian>
1631 void
1632 Target_powerpc<size, big_endian>::do_define_standard_symbols(
1633     Symbol_table* symtab,
1634     Layout* layout)
1635 {
1636   if (size == 32)
1637     {
1638       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
1639       // undefined when scanning relocs (and thus requires
1640       // non-relative dynamic relocs).  The proper value will be
1641       // updated later.
1642       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1643       if (gotsym != NULL && gotsym->is_undefined())
1644         {
1645           Target_powerpc<size, big_endian>* target =
1646             static_cast<Target_powerpc<size, big_endian>*>(
1647                 parameters->sized_target<size, big_endian>());
1648           Output_data_got_powerpc<size, big_endian>* got
1649             = target->got_section(symtab, layout);
1650           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1651                                         Symbol_table::PREDEFINED,
1652                                         got, 0, 0,
1653                                         elfcpp::STT_OBJECT,
1654                                         elfcpp::STB_LOCAL,
1655                                         elfcpp::STV_HIDDEN, 0,
1656                                         false, false);
1657         }
1658
1659       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
1660       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
1661       if (sdasym != NULL && sdasym->is_undefined())
1662         {
1663           Output_data_space* sdata = new Output_data_space(4, "** sdata");
1664           Output_section* os
1665             = layout->add_output_section_data(".sdata", 0,
1666                                               elfcpp::SHF_ALLOC
1667                                               | elfcpp::SHF_WRITE,
1668                                               sdata, ORDER_SMALL_DATA, false);
1669           symtab->define_in_output_data("_SDA_BASE_", NULL,
1670                                         Symbol_table::PREDEFINED,
1671                                         os, 32768, 0, elfcpp::STT_OBJECT,
1672                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
1673                                         0, false, false);
1674         }
1675     }
1676 }
1677
1678 // Set up PowerPC target specific relobj.
1679
1680 template<int size, bool big_endian>
1681 Object*
1682 Target_powerpc<size, big_endian>::do_make_elf_object(
1683     const std::string& name,
1684     Input_file* input_file,
1685     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1686 {
1687   int et = ehdr.get_e_type();
1688   // ET_EXEC files are valid input for --just-symbols/-R,
1689   // and we treat them as relocatable objects.
1690   if (et == elfcpp::ET_REL
1691       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
1692     {
1693       Powerpc_relobj<size, big_endian>* obj =
1694         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
1695       obj->setup();
1696       return obj;
1697     }
1698   else if (et == elfcpp::ET_DYN)
1699     {
1700       Sized_dynobj<size, big_endian>* obj =
1701         new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1702       obj->setup();
1703       return obj;
1704     }
1705   else
1706     {
1707       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
1708       return NULL;
1709     }
1710 }
1711
1712 template<int size, bool big_endian>
1713 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
1714 {
1715 public:
1716   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1717   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1718
1719   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
1720     : Output_data_got<size, big_endian>(),
1721       symtab_(symtab), layout_(layout),
1722       header_ent_cnt_(size == 32 ? 3 : 1),
1723       header_index_(size == 32 ? 0x2000 : 0)
1724   { }
1725
1726   class Got_entry;
1727
1728   // Create a new GOT entry and return its offset.
1729   unsigned int
1730   add_got_entry(Got_entry got_entry)
1731   {
1732     this->reserve_ent();
1733     return Output_data_got<size, big_endian>::add_got_entry(got_entry);
1734   }
1735
1736   // Create a pair of new GOT entries and return the offset of the first.
1737   unsigned int
1738   add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2)
1739   {
1740     this->reserve_ent(2);
1741     return Output_data_got<size, big_endian>::add_got_entry_pair(got_entry_1,
1742                                                                  got_entry_2);
1743   }
1744
1745   unsigned int
1746   add_constant_pair(Valtype c1, Valtype c2)
1747   {
1748     this->reserve_ent(2);
1749     unsigned int got_offset = this->add_constant(c1);
1750     this->add_constant(c2);
1751     return got_offset;
1752   }
1753
1754   // Offset of _GLOBAL_OFFSET_TABLE_.
1755   unsigned int
1756   g_o_t() const
1757   {
1758     return this->got_offset(this->header_index_);
1759   }
1760
1761   // Offset of base used to access the GOT/TOC.
1762   // The got/toc pointer reg will be set to this value.
1763   Valtype
1764   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
1765   {
1766     if (size == 32)
1767       return this->g_o_t();
1768     else
1769       return (this->output_section()->address()
1770               + object->toc_base_offset()
1771               - this->address());
1772   }
1773
1774   // Ensure our GOT has a header.
1775   void
1776   set_final_data_size()
1777   {
1778     if (this->header_ent_cnt_ != 0)
1779       this->make_header();
1780     Output_data_got<size, big_endian>::set_final_data_size();
1781   }
1782
1783   // First word of GOT header needs some values that are not
1784   // handled by Output_data_got so poke them in here.
1785   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
1786   void
1787   do_write(Output_file* of)
1788   {
1789     Valtype val = 0;
1790     if (size == 32 && this->layout_->dynamic_data() != NULL)
1791       val = this->layout_->dynamic_section()->address();
1792     if (size == 64)
1793       val = this->output_section()->address() + 0x8000;
1794     this->replace_constant(this->header_index_, val);
1795     Output_data_got<size, big_endian>::do_write(of);
1796   }
1797
1798 private:
1799   void
1800   reserve_ent(unsigned int cnt = 1)
1801   {
1802     if (this->header_ent_cnt_ == 0)
1803       return;
1804     if (this->num_entries() + cnt > this->header_index_)
1805       this->make_header();
1806   }
1807
1808   void
1809   make_header()
1810   {
1811     this->header_ent_cnt_ = 0;
1812     this->header_index_ = this->num_entries();
1813     if (size == 32)
1814       {
1815         Output_data_got<size, big_endian>::add_constant(0);
1816         Output_data_got<size, big_endian>::add_constant(0);
1817         Output_data_got<size, big_endian>::add_constant(0);
1818
1819         // Define _GLOBAL_OFFSET_TABLE_ at the header
1820         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1821         if (gotsym != NULL)
1822           {
1823             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
1824             sym->set_value(this->g_o_t());
1825           }
1826         else
1827           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1828                                                Symbol_table::PREDEFINED,
1829                                                this, this->g_o_t(), 0,
1830                                                elfcpp::STT_OBJECT,
1831                                                elfcpp::STB_LOCAL,
1832                                                elfcpp::STV_HIDDEN, 0,
1833                                                false, false);
1834       }
1835     else
1836       Output_data_got<size, big_endian>::add_constant(0);
1837   }
1838
1839   // Stashed pointers.
1840   Symbol_table* symtab_;
1841   Layout* layout_;
1842
1843   // GOT header size.
1844   unsigned int header_ent_cnt_;
1845   // GOT header index.
1846   unsigned int header_index_;
1847 };
1848
1849 // Get the GOT section, creating it if necessary.
1850
1851 template<int size, bool big_endian>
1852 Output_data_got_powerpc<size, big_endian>*
1853 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
1854                                               Layout* layout)
1855 {
1856   if (this->got_ == NULL)
1857     {
1858       gold_assert(symtab != NULL && layout != NULL);
1859
1860       this->got_
1861         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
1862
1863       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1864                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1865                                       this->got_, ORDER_DATA, false);
1866     }
1867
1868   return this->got_;
1869 }
1870
1871 // Get the dynamic reloc section, creating it if necessary.
1872
1873 template<int size, bool big_endian>
1874 typename Target_powerpc<size, big_endian>::Reloc_section*
1875 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
1876 {
1877   if (this->rela_dyn_ == NULL)
1878     {
1879       gold_assert(layout != NULL);
1880       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1881       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1882                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1883                                       ORDER_DYNAMIC_RELOCS, false);
1884     }
1885   return this->rela_dyn_;
1886 }
1887
1888 class Stub_control
1889 {
1890  public:
1891   // Determine the stub group size.  The group size is the absolute
1892   // value of the parameter --stub-group-size.  If --stub-group-size
1893   // is passed a negative value, we restrict stubs to be always before
1894   // the stubbed branches.
1895   Stub_control(int32_t size)
1896     : state_(NO_GROUP), stub_group_size_(abs(size)),
1897       stub14_group_size_(abs(size)),
1898       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
1899       group_end_addr_(0), owner_(NULL), output_section_(NULL)
1900   {
1901     if (stub_group_size_ == 1)
1902       {
1903         // Default values.
1904         if (stubs_always_before_branch_)
1905           {
1906             stub_group_size_ = 0x1e00000;
1907             stub14_group_size_ = 0x7800;
1908           }
1909         else
1910           {
1911             stub_group_size_ = 0x1c00000;
1912             stub14_group_size_ = 0x7000;
1913           }
1914         suppress_size_errors_ = true;
1915       }
1916   }
1917
1918   // Return true iff input section can be handled by current stub
1919   // group.
1920   bool
1921   can_add_to_stub_group(Output_section* o,
1922                         const Output_section::Input_section* i,
1923                         bool has14);
1924
1925   const Output_section::Input_section*
1926   owner()
1927   { return owner_; }
1928
1929   Output_section*
1930   output_section()
1931   { return output_section_; }
1932
1933  private:
1934   typedef enum
1935   {
1936     NO_GROUP,
1937     FINDING_STUB_SECTION,
1938     HAS_STUB_SECTION
1939   } State;
1940
1941   State state_;
1942   uint32_t stub_group_size_;
1943   uint32_t stub14_group_size_;
1944   bool stubs_always_before_branch_;
1945   bool suppress_size_errors_;
1946   uint64_t group_end_addr_;
1947   const Output_section::Input_section* owner_;
1948   Output_section* output_section_;
1949 };
1950
1951 // Return true iff input section can be handled by current stub/
1952 // group.
1953
1954 bool
1955 Stub_control::can_add_to_stub_group(Output_section* o,
1956                                     const Output_section::Input_section* i,
1957                                     bool has14)
1958 {
1959   uint32_t group_size
1960     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
1961   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
1962   uint64_t this_size;
1963   uint64_t start_addr = o->address();
1964
1965   if (whole_sec)
1966     // .init and .fini sections are pasted together to form a single
1967     // function.  We can't be adding stubs in the middle of the function.
1968     this_size = o->data_size();
1969   else
1970     {
1971       start_addr += i->relobj()->output_section_offset(i->shndx());
1972       this_size = i->data_size();
1973     }
1974   uint64_t end_addr = start_addr + this_size;
1975   bool toobig = this_size > group_size;
1976
1977   if (toobig && !this->suppress_size_errors_)
1978     gold_warning(_("%s:%s exceeds group size"),
1979                  i->relobj()->name().c_str(),
1980                  i->relobj()->section_name(i->shndx()).c_str());
1981
1982   if (this->state_ != HAS_STUB_SECTION
1983       && (!whole_sec || this->output_section_ != o))
1984     {
1985       this->owner_ = i;
1986       this->output_section_ = o;
1987     }
1988
1989   if (this->state_ == NO_GROUP)
1990     {
1991       this->state_ = FINDING_STUB_SECTION;
1992       this->group_end_addr_ = end_addr;
1993     }
1994   else if (this->group_end_addr_ - start_addr < group_size)
1995     ;
1996   // Adding this section would make the group larger than GROUP_SIZE.
1997   else if (this->state_ == FINDING_STUB_SECTION
1998            && !this->stubs_always_before_branch_
1999            && !toobig)
2000     {
2001       // But wait, there's more!  Input sections up to GROUP_SIZE
2002       // bytes before the stub table can be handled by it too.
2003       this->state_ = HAS_STUB_SECTION;
2004       this->group_end_addr_ = end_addr;
2005     }
2006   else
2007     {
2008       this->state_ = NO_GROUP;
2009       return false;
2010     }
2011   return true;
2012 }
2013
2014 // Look over all the input sections, deciding where to place stubs.
2015
2016 template<int size, bool big_endian>
2017 void
2018 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2019                                                  const Task*)
2020 {
2021   Stub_control stub_control(parameters->options().stub_group_size());
2022
2023   // Group input sections and insert stub table
2024   Stub_table<size, big_endian>* stub_table = NULL;
2025   Layout::Section_list section_list;
2026   layout->get_executable_sections(&section_list);
2027   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2028   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2029        o != section_list.rend();
2030        ++o)
2031     {
2032       typedef Output_section::Input_section_list Input_section_list;
2033       for (Input_section_list::const_reverse_iterator i
2034              = (*o)->input_sections().rbegin();
2035            i != (*o)->input_sections().rend();
2036            ++i)
2037         {
2038           if (i->is_input_section())
2039             {
2040               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2041                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2042               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2043               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2044                 {
2045                   stub_table->init(stub_control.owner(),
2046                                    stub_control.output_section());
2047                   stub_table = NULL;
2048                 }
2049               if (stub_table == NULL)
2050                 stub_table = this->new_stub_table();
2051               ppcobj->set_stub_table(i->shndx(), stub_table);
2052             }
2053         }
2054     }
2055   if (stub_table != NULL)
2056     stub_table->init(stub_control.owner(), stub_control.output_section());
2057 }
2058
2059 // If this branch needs a plt call stub, or a long branch stub, make one.
2060
2061 template<int size, bool big_endian>
2062 void
2063 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2064     Stub_table<size, big_endian>* stub_table,
2065     Stub_table<size, big_endian>* ifunc_stub_table,
2066     Symbol_table* symtab) const
2067 {
2068   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2069   if (sym != NULL && sym->is_forwarder())
2070     sym = symtab->resolve_forwards(sym);
2071   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2072   if (gsym != NULL
2073       ? use_plt_offset<size>(gsym, Scan::get_reference_flags(this->r_type_))
2074       : this->object_->local_has_plt_offset(this->r_sym_))
2075     {
2076       if (stub_table == NULL)
2077         stub_table = this->object_->stub_table(this->shndx_);
2078       if (stub_table == NULL)
2079         {
2080           // This is a ref from a data section to an ifunc symbol.
2081           stub_table = ifunc_stub_table;
2082         }
2083       gold_assert(stub_table != NULL);
2084       if (gsym != NULL)
2085         stub_table->add_plt_call_entry(this->object_, gsym,
2086                                        this->r_type_, this->addend_);
2087       else
2088         stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2089                                        this->r_type_, this->addend_);
2090     }
2091   else
2092     {
2093       unsigned int max_branch_offset;
2094       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2095           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2096           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2097         max_branch_offset = 1 << 15;
2098       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2099                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2100                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2101         max_branch_offset = 1 << 25;
2102       else
2103         return;
2104       Address from = this->object_->get_output_section_offset(this->shndx_);
2105       gold_assert(from != invalid_address);
2106       from += (this->object_->output_section(this->shndx_)->address()
2107                + this->offset_);
2108       Address to;
2109       if (gsym != NULL)
2110         {
2111           switch (gsym->source())
2112             {
2113             case Symbol::FROM_OBJECT:
2114               {
2115                 Object* symobj = gsym->object();
2116                 if (symobj->is_dynamic()
2117                     || symobj->pluginobj() != NULL)
2118                   return;
2119                 bool is_ordinary;
2120                 unsigned int shndx = gsym->shndx(&is_ordinary);
2121                 if (shndx == elfcpp::SHN_UNDEF)
2122                   return;
2123               }
2124               break;
2125
2126             case Symbol::IS_UNDEFINED:
2127               return;
2128
2129             default:
2130               break;
2131             }
2132           Symbol_table::Compute_final_value_status status;
2133           to = symtab->compute_final_value<size>(gsym, &status);
2134           if (status != Symbol_table::CFVS_OK)
2135             return;
2136         }
2137       else
2138         {
2139           const Symbol_value<size>* psymval
2140             = this->object_->local_symbol(this->r_sym_);
2141           Symbol_value<size> symval;
2142           typedef Sized_relobj_file<size, big_endian> ObjType;
2143           typename ObjType::Compute_final_local_value_status status
2144             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2145                                                        &symval, symtab);
2146           if (status != ObjType::CFLV_OK
2147               || !symval.has_output_value())
2148             return;
2149           to = symval.value(this->object_, 0);
2150         }
2151       to += this->addend_;
2152       if (stub_table == NULL)
2153         stub_table = this->object_->stub_table(this->shndx_);
2154       gold_assert(stub_table != NULL);
2155       if (size == 64 && is_branch_reloc(this->r_type_))
2156         {
2157           unsigned int dest_shndx;
2158           to = stub_table->targ()->symval_for_branch(to, gsym, this->object_,
2159                                                      &dest_shndx);
2160         }
2161       Address delta = to - from;
2162       if (delta + max_branch_offset >= 2 * max_branch_offset)
2163         {
2164           stub_table->add_long_branch_entry(this->object_, to);
2165         }
2166     }
2167 }
2168
2169 // Relaxation hook.  This is where we do stub generation.
2170
2171 template<int size, bool big_endian>
2172 bool
2173 Target_powerpc<size, big_endian>::do_relax(int pass,
2174                                            const Input_objects*,
2175                                            Symbol_table* symtab,
2176                                            Layout* layout,
2177                                            const Task* task)
2178 {
2179   unsigned int prev_brlt_size = 0;
2180   if (pass == 1)
2181     {
2182       bool thread_safe = parameters->options().plt_thread_safe();
2183       if (size == 64 && !parameters->options().user_set_plt_thread_safe())
2184         {
2185           static const char* const thread_starter[] =
2186             {
2187               "pthread_create",
2188               /* libstdc++ */
2189               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2190               /* librt */
2191               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2192               "mq_notify", "create_timer",
2193               /* libanl */
2194               "getaddrinfo_a",
2195               /* libgomp */
2196               "GOMP_parallel_start",
2197               "GOMP_parallel_loop_static_start",
2198               "GOMP_parallel_loop_dynamic_start",
2199               "GOMP_parallel_loop_guided_start",
2200               "GOMP_parallel_loop_runtime_start",
2201               "GOMP_parallel_sections_start", 
2202             };
2203
2204           if (parameters->options().shared())
2205             thread_safe = true;
2206           else
2207             {
2208               for (unsigned int i = 0;
2209                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2210                    i++)
2211                 {
2212                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2213                   thread_safe = (sym != NULL
2214                                  && sym->in_reg()
2215                                  && sym->in_real_elf());
2216                   if (thread_safe)
2217                     break;
2218                 }
2219             }
2220         }
2221       this->plt_thread_safe_ = thread_safe;
2222       this->group_sections(layout, task);
2223     }
2224
2225   // We need address of stub tables valid for make_stub.
2226   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2227        p != this->stub_tables_.end();
2228        ++p)
2229     {
2230       const Powerpc_relobj<size, big_endian>* object
2231         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2232       Address off = object->get_output_section_offset((*p)->shndx());
2233       gold_assert(off != invalid_address);
2234       Output_section* os = (*p)->output_section();
2235       (*p)->set_address_and_size(os, off);
2236     }
2237
2238   if (pass != 1)
2239     {
2240       // Clear plt call stubs, long branch stubs and branch lookup table.
2241       prev_brlt_size = this->branch_lookup_table_.size();
2242       this->branch_lookup_table_.clear();
2243       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2244            p != this->stub_tables_.end();
2245            ++p)
2246         {
2247           (*p)->clear_stubs();
2248         }
2249     }
2250
2251   // Build all the stubs.
2252   Stub_table<size, big_endian>* ifunc_stub_table
2253     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2254   Stub_table<size, big_endian>* one_stub_table
2255     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2256   for (typename Branches::const_iterator b = this->branch_info_.begin();
2257        b != this->branch_info_.end();
2258        b++)
2259     {
2260       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2261     }
2262
2263   // Did anything change size?
2264   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2265   bool again = num_huge_branches != prev_brlt_size;
2266   if (size == 64 && num_huge_branches != 0)
2267     this->make_brlt_section(layout);
2268   if (size == 64 && again)
2269     this->brlt_section_->set_current_size(num_huge_branches);
2270
2271   typedef Unordered_set<Output_section*> Output_sections;
2272   Output_sections os_need_update;
2273   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2274        p != this->stub_tables_.end();
2275        ++p)
2276     {
2277       if ((*p)->size_update())
2278         {
2279           again = true;
2280           os_need_update.insert((*p)->output_section());
2281         }
2282     }
2283
2284   // Set output section offsets for all input sections in an output
2285   // section that just changed size.  Anything past the stubs will
2286   // need updating.
2287   for (typename Output_sections::iterator p = os_need_update.begin();
2288        p != os_need_update.end();
2289        p++)
2290     {
2291       Output_section* os = *p;
2292       Address off = 0;
2293       typedef Output_section::Input_section_list Input_section_list;
2294       for (Input_section_list::const_iterator i = os->input_sections().begin();
2295            i != os->input_sections().end();
2296            ++i)
2297         {
2298           off = align_address(off, i->addralign());
2299           if (i->is_input_section() || i->is_relaxed_input_section())
2300             i->relobj()->set_section_offset(i->shndx(), off);
2301           if (i->is_relaxed_input_section())
2302             {
2303               Stub_table<size, big_endian>* stub_table
2304                 = static_cast<Stub_table<size, big_endian>*>(
2305                     i->relaxed_input_section());
2306               off += stub_table->set_address_and_size(os, off);
2307             }
2308           else
2309             off += i->data_size();
2310         }
2311       // If .brlt is part of this output section, then we have just
2312       // done the offset adjustment.
2313       os->clear_section_offsets_need_adjustment();
2314     }
2315
2316   if (size == 64
2317       && !again
2318       && num_huge_branches != 0
2319       && parameters->options().output_is_position_independent())
2320     {
2321       // Fill in the BRLT relocs.
2322       this->brlt_section_->reset_data_size();
2323       for (typename Branch_lookup_table::const_iterator p
2324              = this->branch_lookup_table_.begin();
2325            p != this->branch_lookup_table_.end();
2326            ++p)
2327         {
2328           this->brlt_section_->add_reloc(p->first, p->second);
2329         }
2330       this->brlt_section_->finalize_data_size();
2331     }
2332   return again;
2333 }
2334
2335 // A class to handle the PLT data.
2336
2337 template<int size, bool big_endian>
2338 class Output_data_plt_powerpc : public Output_section_data_build
2339 {
2340  public:
2341   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2342                             size, big_endian> Reloc_section;
2343
2344   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2345                           Reloc_section* plt_rel,
2346                           unsigned int reserved_size,
2347                           const char* name)
2348     : Output_section_data_build(size == 32 ? 4 : 8),
2349       rel_(plt_rel),
2350       targ_(targ),
2351       initial_plt_entry_size_(reserved_size),
2352       name_(name)
2353   { }
2354
2355   // Add an entry to the PLT.
2356   void
2357   add_entry(Symbol*);
2358
2359   void
2360   add_ifunc_entry(Symbol*);
2361
2362   void
2363   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2364
2365   // Return the .rela.plt section data.
2366   Reloc_section*
2367   rel_plt() const
2368   {
2369     return this->rel_;
2370   }
2371
2372   // Return the number of PLT entries.
2373   unsigned int
2374   entry_count() const
2375   {
2376     return ((this->current_data_size() - this->initial_plt_entry_size_)
2377             / plt_entry_size);
2378   }
2379
2380   // Return the offset of the first non-reserved PLT entry.
2381   unsigned int
2382   first_plt_entry_offset()
2383   { return this->initial_plt_entry_size_; }
2384
2385   // Return the size of a PLT entry.
2386   static unsigned int
2387   get_plt_entry_size()
2388   { return plt_entry_size; }
2389
2390  protected:
2391   void
2392   do_adjust_output_section(Output_section* os)
2393   {
2394     os->set_entsize(0);
2395   }
2396
2397   // Write to a map file.
2398   void
2399   do_print_to_mapfile(Mapfile* mapfile) const
2400   { mapfile->print_output_data(this, this->name_); }
2401
2402  private:
2403   // The size of an entry in the PLT.
2404   static const int plt_entry_size = size == 32 ? 4 : 24;
2405
2406   // Write out the PLT data.
2407   void
2408   do_write(Output_file*);
2409
2410   // The reloc section.
2411   Reloc_section* rel_;
2412   // Allows access to .glink for do_write.
2413   Target_powerpc<size, big_endian>* targ_;
2414   // The size of the first reserved entry.
2415   int initial_plt_entry_size_;
2416   // What to report in map file.
2417   const char *name_;
2418 };
2419
2420 // Add an entry to the PLT.
2421
2422 template<int size, bool big_endian>
2423 void
2424 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
2425 {
2426   if (!gsym->has_plt_offset())
2427     {
2428       section_size_type off = this->current_data_size();
2429       if (off == 0)
2430         off += this->first_plt_entry_offset();
2431       gsym->set_plt_offset(off);
2432       gsym->set_needs_dynsym_entry();
2433       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
2434       this->rel_->add_global(gsym, dynrel, this, off, 0);
2435       off += plt_entry_size;
2436       this->set_current_data_size(off);
2437     }
2438 }
2439
2440 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
2441
2442 template<int size, bool big_endian>
2443 void
2444 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
2445 {
2446   if (!gsym->has_plt_offset())
2447     {
2448       section_size_type off = this->current_data_size();
2449       gsym->set_plt_offset(off);
2450       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2451       if (size == 64)
2452         dynrel = elfcpp::R_PPC64_JMP_IREL;
2453       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
2454       off += plt_entry_size;
2455       this->set_current_data_size(off);
2456     }
2457 }
2458
2459 // Add an entry for a local ifunc symbol to the IPLT.
2460
2461 template<int size, bool big_endian>
2462 void
2463 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
2464     Sized_relobj_file<size, big_endian>* relobj,
2465     unsigned int local_sym_index)
2466 {
2467   if (!relobj->local_has_plt_offset(local_sym_index))
2468     {
2469       section_size_type off = this->current_data_size();
2470       relobj->set_local_plt_offset(local_sym_index, off);
2471       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2472       if (size == 64)
2473         dynrel = elfcpp::R_PPC64_JMP_IREL;
2474       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
2475                                               this, off, 0);
2476       off += plt_entry_size;
2477       this->set_current_data_size(off);
2478     }
2479 }
2480
2481 static const uint32_t add_0_11_11       = 0x7c0b5a14;
2482 static const uint32_t add_2_2_11        = 0x7c425a14;
2483 static const uint32_t add_3_3_2         = 0x7c631214;
2484 static const uint32_t add_3_3_13        = 0x7c636a14;
2485 static const uint32_t add_11_0_11       = 0x7d605a14;
2486 static const uint32_t add_12_2_11       = 0x7d825a14;
2487 static const uint32_t add_12_12_11      = 0x7d8c5a14;
2488 static const uint32_t addi_11_11        = 0x396b0000;
2489 static const uint32_t addi_12_12        = 0x398c0000;
2490 static const uint32_t addi_2_2          = 0x38420000;
2491 static const uint32_t addi_3_2          = 0x38620000;
2492 static const uint32_t addi_3_3          = 0x38630000;
2493 static const uint32_t addis_0_2         = 0x3c020000;
2494 static const uint32_t addis_0_13        = 0x3c0d0000;
2495 static const uint32_t addis_11_11       = 0x3d6b0000;
2496 static const uint32_t addis_11_30       = 0x3d7e0000;
2497 static const uint32_t addis_12_12       = 0x3d8c0000;
2498 static const uint32_t addis_12_2        = 0x3d820000;
2499 static const uint32_t addis_3_2         = 0x3c620000;
2500 static const uint32_t addis_3_13        = 0x3c6d0000;
2501 static const uint32_t b                 = 0x48000000;
2502 static const uint32_t bcl_20_31         = 0x429f0005;
2503 static const uint32_t bctr              = 0x4e800420;
2504 static const uint32_t blr               = 0x4e800020;
2505 static const uint32_t blrl              = 0x4e800021;
2506 static const uint32_t bnectr_p4         = 0x4ce20420;
2507 static const uint32_t cmpldi_2_0        = 0x28220000;
2508 static const uint32_t cror_15_15_15     = 0x4def7b82;
2509 static const uint32_t cror_31_31_31     = 0x4ffffb82;
2510 static const uint32_t ld_0_1            = 0xe8010000;
2511 static const uint32_t ld_0_12           = 0xe80c0000;
2512 static const uint32_t ld_11_12          = 0xe96c0000;
2513 static const uint32_t ld_11_2           = 0xe9620000;
2514 static const uint32_t ld_2_1            = 0xe8410000;
2515 static const uint32_t ld_2_11           = 0xe84b0000;
2516 static const uint32_t ld_2_12           = 0xe84c0000;
2517 static const uint32_t ld_2_2            = 0xe8420000;
2518 static const uint32_t lfd_0_1           = 0xc8010000;
2519 static const uint32_t li_0_0            = 0x38000000;
2520 static const uint32_t li_12_0           = 0x39800000;
2521 static const uint32_t lis_0_0           = 0x3c000000;
2522 static const uint32_t lis_11            = 0x3d600000;
2523 static const uint32_t lis_12            = 0x3d800000;
2524 static const uint32_t lwz_0_12          = 0x800c0000;
2525 static const uint32_t lwz_11_11         = 0x816b0000;
2526 static const uint32_t lwz_11_30         = 0x817e0000;
2527 static const uint32_t lwz_12_12         = 0x818c0000;
2528 static const uint32_t lwzu_0_12         = 0x840c0000;
2529 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
2530 static const uint32_t mflr_0            = 0x7c0802a6;
2531 static const uint32_t mflr_11           = 0x7d6802a6;
2532 static const uint32_t mflr_12           = 0x7d8802a6;
2533 static const uint32_t mtctr_0           = 0x7c0903a6;
2534 static const uint32_t mtctr_11          = 0x7d6903a6;
2535 static const uint32_t mtctr_12          = 0x7d8903a6;
2536 static const uint32_t mtlr_0            = 0x7c0803a6;
2537 static const uint32_t mtlr_12           = 0x7d8803a6;
2538 static const uint32_t nop               = 0x60000000;
2539 static const uint32_t ori_0_0_0         = 0x60000000;
2540 static const uint32_t std_0_1           = 0xf8010000;
2541 static const uint32_t std_0_12          = 0xf80c0000;
2542 static const uint32_t std_2_1           = 0xf8410000;
2543 static const uint32_t stfd_0_1          = 0xd8010000;
2544 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
2545 static const uint32_t sub_11_11_12      = 0x7d6c5850;
2546 static const uint32_t xor_11_11_11      = 0x7d6b5a78;
2547
2548 // Write out the PLT.
2549
2550 template<int size, bool big_endian>
2551 void
2552 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
2553 {
2554   if (size == 32)
2555     {
2556       const section_size_type offset = this->offset();
2557       const section_size_type oview_size
2558         = convert_to_section_size_type(this->data_size());
2559       unsigned char* const oview = of->get_output_view(offset, oview_size);
2560       unsigned char* pov = oview;
2561       unsigned char* endpov = oview + oview_size;
2562
2563       // The address of the .glink branch table
2564       const Output_data_glink<size, big_endian>* glink
2565         = this->targ_->glink_section();
2566       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
2567
2568       while (pov < endpov)
2569         {
2570           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
2571           pov += 4;
2572           branch_tab += 4;
2573         }
2574
2575       of->write_output_view(offset, oview_size, oview);
2576     }
2577 }
2578
2579 // Create the PLT section.
2580
2581 template<int size, bool big_endian>
2582 void
2583 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
2584                                                    Layout* layout)
2585 {
2586   if (this->plt_ == NULL)
2587     {
2588       if (this->got_ == NULL)
2589         this->got_section(symtab, layout);
2590
2591       if (this->glink_ == NULL)
2592         make_glink_section(layout);
2593
2594       // Ensure that .rela.dyn always appears before .rela.plt  This is
2595       // necessary due to how, on PowerPC and some other targets, .rela.dyn
2596       // needs to include .rela.plt in it's range.
2597       this->rela_dyn_section(layout);
2598
2599       Reloc_section* plt_rel = new Reloc_section(false);
2600       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
2601                                       elfcpp::SHF_ALLOC, plt_rel,
2602                                       ORDER_DYNAMIC_PLT_RELOCS, false);
2603       this->plt_
2604         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
2605                                                         size == 32 ? 0 : 24,
2606                                                         "** PLT");
2607       layout->add_output_section_data(".plt",
2608                                       (size == 32
2609                                        ? elfcpp::SHT_PROGBITS
2610                                        : elfcpp::SHT_NOBITS),
2611                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2612                                       this->plt_,
2613                                       (size == 32
2614                                        ? ORDER_SMALL_DATA
2615                                        : ORDER_SMALL_BSS),
2616                                       false);
2617     }
2618 }
2619
2620 // Create the IPLT section.
2621
2622 template<int size, bool big_endian>
2623 void
2624 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
2625                                                     Layout* layout)
2626 {
2627   if (this->iplt_ == NULL)
2628     {
2629       this->make_plt_section(symtab, layout);
2630
2631       Reloc_section* iplt_rel = new Reloc_section(false);
2632       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
2633       this->iplt_
2634         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
2635                                                         0, "** IPLT");
2636       this->plt_->output_section()->add_output_section_data(this->iplt_);
2637     }
2638 }
2639
2640 // A section for huge long branch addresses, similar to plt section.
2641
2642 template<int size, bool big_endian>
2643 class Output_data_brlt_powerpc : public Output_section_data_build
2644 {
2645  public:
2646   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2647   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2648                             size, big_endian> Reloc_section;
2649
2650   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
2651                            Reloc_section* brlt_rel)
2652     : Output_section_data_build(size == 32 ? 4 : 8),
2653       rel_(brlt_rel),
2654       targ_(targ)
2655   { }
2656
2657   // Add a reloc for an entry in the BRLT.
2658   void
2659   add_reloc(Address to, unsigned int off)
2660   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
2661
2662   // Update section and reloc section size.
2663   void
2664   set_current_size(unsigned int num_branches)
2665   {
2666     this->reset_address_and_file_offset();
2667     this->set_current_data_size(num_branches * 16);
2668     this->finalize_data_size();
2669     Output_section* os = this->output_section();
2670     os->set_section_offsets_need_adjustment();
2671     if (this->rel_ != NULL)
2672       {
2673         unsigned int reloc_size
2674           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
2675         this->rel_->reset_address_and_file_offset();
2676         this->rel_->set_current_data_size(num_branches * reloc_size);
2677         this->rel_->finalize_data_size();
2678         Output_section* os = this->rel_->output_section();
2679         os->set_section_offsets_need_adjustment();
2680       }
2681   }
2682
2683  protected:
2684   void
2685   do_adjust_output_section(Output_section* os)
2686   {
2687     os->set_entsize(0);
2688   }
2689
2690   // Write to a map file.
2691   void
2692   do_print_to_mapfile(Mapfile* mapfile) const
2693   { mapfile->print_output_data(this, "** BRLT"); }
2694
2695  private:
2696   // Write out the BRLT data.
2697   void
2698   do_write(Output_file*);
2699
2700   // The reloc section.
2701   Reloc_section* rel_;
2702   Target_powerpc<size, big_endian>* targ_;
2703 };
2704
2705 // Make the branch lookup table section.
2706
2707 template<int size, bool big_endian>
2708 void
2709 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
2710 {
2711   if (size == 64 && this->brlt_section_ == NULL)
2712     {
2713       Reloc_section* brlt_rel = NULL;
2714       bool is_pic = parameters->options().output_is_position_independent();
2715       if (is_pic)
2716         {
2717           // When PIC we can't fill in .brlt (like .plt it can be a
2718           // bss style section) but must initialise at runtime via
2719           // dynamic relocats.
2720           this->rela_dyn_section(layout);
2721           brlt_rel = new Reloc_section(false);
2722           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
2723         }
2724       this->brlt_section_
2725         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
2726       if (this->plt_ && is_pic)
2727         this->plt_->output_section()
2728           ->add_output_section_data(this->brlt_section_);
2729       else
2730         layout->add_output_section_data(".brlt",
2731                                         (is_pic ? elfcpp::SHT_NOBITS
2732                                          : elfcpp::SHT_PROGBITS),
2733                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2734                                         this->brlt_section_,
2735                                         (is_pic ? ORDER_SMALL_BSS
2736                                          : ORDER_SMALL_DATA),
2737                                         false);
2738     }
2739 }
2740
2741 // Write out .brlt when non-PIC.
2742
2743 template<int size, bool big_endian>
2744 void
2745 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
2746 {
2747   if (size == 64 && !parameters->options().output_is_position_independent())
2748     {
2749       const section_size_type offset = this->offset();
2750       const section_size_type oview_size
2751         = convert_to_section_size_type(this->data_size());
2752       unsigned char* const oview = of->get_output_view(offset, oview_size);
2753
2754       this->targ_->write_branch_lookup_table(oview);
2755       of->write_output_view(offset, oview_size, oview);
2756     }
2757 }
2758
2759 static inline uint32_t
2760 l(uint32_t a)
2761 {
2762   return a & 0xffff;
2763 }
2764
2765 static inline uint32_t
2766 hi(uint32_t a)
2767 {
2768   return l(a >> 16);
2769 }
2770
2771 static inline uint32_t
2772 ha(uint32_t a)
2773 {
2774   return hi(a + 0x8000);
2775 }
2776
2777 template<bool big_endian>
2778 static inline void
2779 write_insn(unsigned char* p, uint32_t v)
2780 {
2781   elfcpp::Swap<32, big_endian>::writeval(p, v);
2782 }
2783
2784 // Stub_table holds information about plt and long branch stubs.
2785 // Stubs are built in an area following some input section determined
2786 // by group_sections().  This input section is converted to a relaxed
2787 // input section allowing it to be resized to accommodate the stubs
2788
2789 template<int size, bool big_endian>
2790 class Stub_table : public Output_relaxed_input_section
2791 {
2792  public:
2793   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2794   static const Address invalid_address = static_cast<Address>(0) - 1;
2795
2796   Stub_table(Target_powerpc<size, big_endian>* targ)
2797     : Output_relaxed_input_section(NULL, 0, 0),
2798       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
2799       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
2800       branch_size_(0), last_branch_size_(0)
2801   { }
2802
2803   // Delayed Output_relaxed_input_section init.
2804   void
2805   init(const Output_section::Input_section*, Output_section*);
2806
2807   // Add a plt call stub.
2808   void
2809   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2810                      const Symbol*,
2811                      unsigned int,
2812                      Address);
2813
2814   void
2815   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2816                      unsigned int,
2817                      unsigned int,
2818                      Address);
2819
2820   // Find a given plt call stub.
2821   Address
2822   find_plt_call_entry(const Symbol*) const;
2823
2824   Address
2825   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2826                       unsigned int) const;
2827
2828   Address
2829   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2830                       const Symbol*,
2831                       unsigned int,
2832                       Address) const;
2833
2834   Address
2835   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
2836                       unsigned int,
2837                       unsigned int,
2838                       Address) const;
2839
2840   // Add a long branch stub.
2841   void
2842   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
2843
2844   Address
2845   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
2846
2847   void
2848   clear_stubs()
2849   {
2850     this->plt_call_stubs_.clear();
2851     this->plt_size_ = 0;
2852     this->long_branch_stubs_.clear();
2853     this->branch_size_ = 0;
2854   }
2855
2856   Address
2857   set_address_and_size(const Output_section* os, Address off)
2858   {
2859     Address start_off = off;
2860     off += this->orig_data_size_;
2861     Address my_size = this->plt_size_ + this->branch_size_;
2862     if (my_size != 0)
2863       off = align_address(off, this->stub_align());
2864     // Include original section size and alignment padding in size
2865     my_size += off - start_off;
2866     this->reset_address_and_file_offset();
2867     this->set_current_data_size(my_size);
2868     this->set_address_and_file_offset(os->address() + start_off,
2869                                       os->offset() + start_off);
2870     return my_size;
2871   }
2872
2873   Address
2874   stub_address()
2875   {
2876     return align_address(this->address() + this->orig_data_size_,
2877                          this->stub_align());
2878   }
2879
2880   Address
2881   stub_offset()
2882   {
2883     return align_address(this->offset() + this->orig_data_size_,
2884                          this->stub_align());
2885   }
2886
2887   section_size_type
2888   plt_size() const
2889   { return this->plt_size_; }
2890
2891   bool
2892   size_update()
2893   {
2894     Output_section* os = this->output_section();
2895     if (os->addralign() < this->stub_align())
2896       {
2897         os->set_addralign(this->stub_align());
2898         // FIXME: get rid of the insane checkpointing.
2899         // We can't increase alignment of the input section to which
2900         // stubs are attached;  The input section may be .init which
2901         // is pasted together with other .init sections to form a
2902         // function.  Aligning might insert zero padding resulting in
2903         // sigill.  However we do need to increase alignment of the
2904         // output section so that the align_address() on offset in
2905         // set_address_and_size() adds the same padding as the
2906         // align_address() on address in stub_address().
2907         // What's more, we need this alignment for the layout done in
2908         // relaxation_loop_body() so that the output section starts at
2909         // a suitably aligned address.
2910         os->checkpoint_set_addralign(this->stub_align());
2911       }
2912     if (this->last_plt_size_ != this->plt_size_
2913         || this->last_branch_size_ != this->branch_size_)
2914       {
2915         this->last_plt_size_ = this->plt_size_;
2916         this->last_branch_size_ = this->branch_size_;
2917         return true;
2918       }
2919     return false;
2920   }
2921
2922   Target_powerpc<size, big_endian>*
2923   targ() const
2924   { return targ_; }
2925
2926  private:
2927   class Plt_stub_ent;
2928   class Plt_stub_ent_hash;
2929   typedef Unordered_map<Plt_stub_ent, unsigned int,
2930                         Plt_stub_ent_hash> Plt_stub_entries;
2931
2932   // Alignment of stub section.
2933   unsigned int
2934   stub_align() const
2935   {
2936     if (size == 32)
2937       return 16;
2938     unsigned int min_align = 32;
2939     unsigned int user_align = 1 << parameters->options().plt_align();
2940     return std::max(user_align, min_align);
2941   }
2942
2943   // Size of a given plt call stub.
2944   unsigned int
2945   plt_call_size(typename Plt_stub_entries::const_iterator p) const
2946   {
2947     if (size == 32)
2948       return 16;
2949
2950     Address pltaddr = p->second;
2951     if (p->first.sym_ == NULL 
2952         || (p->first.sym_->type() == elfcpp::STT_GNU_IFUNC
2953             && p->first.sym_->can_use_relative_reloc(false)))
2954       pltaddr += this->targ_->iplt_section()->address();
2955     else
2956       pltaddr += this->targ_->plt_section()->address();
2957     Address tocbase = this->targ_->got_section()->output_section()->address();
2958     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2959       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
2960     tocbase += ppcobj->toc_base_offset();
2961     Address off = pltaddr - tocbase;
2962     bool static_chain = parameters->options().plt_static_chain();
2963     bool thread_safe = this->targ_->plt_thread_safe();
2964     unsigned int bytes = (4 * 5
2965                           + 4 * static_chain
2966                           + 8 * thread_safe
2967                           + 4 * (ha(off) != 0)
2968                           + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
2969     unsigned int align = 1 << parameters->options().plt_align();
2970     if (align > 1)
2971       bytes = (bytes + align - 1) & -align;
2972     return bytes;
2973   }
2974
2975   // Return long branch stub size.
2976   unsigned int
2977   branch_stub_size(Address to)
2978   {
2979     Address loc
2980       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
2981     if (to - loc + (1 << 25) < 2 << 25)
2982       return 4;
2983     if (size == 64 || !parameters->options().output_is_position_independent())
2984       return 16;
2985     return 32;
2986   }
2987
2988   // Write out stubs.
2989   void
2990   do_write(Output_file*);
2991
2992   // Plt call stub keys.
2993   class Plt_stub_ent
2994   {
2995   public:
2996     Plt_stub_ent(const Symbol* sym)
2997       : sym_(sym), object_(0), addend_(0), locsym_(0)
2998     { }
2999
3000     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3001                  unsigned int locsym_index)
3002       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3003     { }
3004
3005     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3006                  const Symbol* sym,
3007                  unsigned int r_type,
3008                  Address addend)
3009       : sym_(sym), object_(0), addend_(0), locsym_(0)
3010     {
3011       if (size != 32)
3012         this->addend_ = addend;
3013       else if (parameters->options().output_is_position_independent()
3014                && r_type == elfcpp::R_PPC_PLTREL24)
3015         {
3016           this->addend_ = addend;
3017           if (this->addend_ >= 32768)
3018             this->object_ = object;
3019         }
3020     }
3021
3022     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3023                  unsigned int locsym_index,
3024                  unsigned int r_type,
3025                  Address addend)
3026       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3027     {
3028       if (size != 32)
3029         this->addend_ = addend;
3030       else if (parameters->options().output_is_position_independent()
3031                && r_type == elfcpp::R_PPC_PLTREL24)
3032         this->addend_ = addend;
3033     }
3034
3035     bool operator==(const Plt_stub_ent& that) const
3036     {
3037       return (this->sym_ == that.sym_
3038               && this->object_ == that.object_
3039               && this->addend_ == that.addend_
3040               && this->locsym_ == that.locsym_);
3041     }
3042
3043     const Symbol* sym_;
3044     const Sized_relobj_file<size, big_endian>* object_;
3045     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3046     unsigned int locsym_;
3047   };
3048
3049   class Plt_stub_ent_hash
3050   {
3051   public:
3052     size_t operator()(const Plt_stub_ent& ent) const
3053     {
3054       return (reinterpret_cast<uintptr_t>(ent.sym_)
3055               ^ reinterpret_cast<uintptr_t>(ent.object_)
3056               ^ ent.addend_
3057               ^ ent.locsym_);
3058     }
3059   };
3060
3061   // Long branch stub keys.
3062   class Branch_stub_ent
3063   {
3064   public:
3065     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3066       : dest_(to), toc_base_off_(0)
3067     {
3068       if (size == 64)
3069         toc_base_off_ = obj->toc_base_offset();
3070     }
3071
3072     bool operator==(const Branch_stub_ent& that) const
3073     {
3074       return (this->dest_ == that.dest_
3075               && (size == 32
3076                   || this->toc_base_off_ == that.toc_base_off_));
3077     }
3078
3079     Address dest_;
3080     unsigned int toc_base_off_;
3081   };
3082
3083   class Branch_stub_ent_hash
3084   {
3085   public:
3086     size_t operator()(const Branch_stub_ent& ent) const
3087     { return ent.dest_ ^ ent.toc_base_off_; }
3088   };
3089
3090   // In a sane world this would be a global.
3091   Target_powerpc<size, big_endian>* targ_;
3092   // Map sym/object/addend to stub offset.
3093   Plt_stub_entries plt_call_stubs_;
3094   // Map destination address to stub offset.
3095   typedef Unordered_map<Branch_stub_ent, unsigned int,
3096                         Branch_stub_ent_hash> Branch_stub_entries;
3097   Branch_stub_entries long_branch_stubs_;
3098   // size of input section
3099   section_size_type orig_data_size_;
3100   // size of stubs
3101   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3102 };
3103
3104 // Make a new stub table, and record.
3105
3106 template<int size, bool big_endian>
3107 Stub_table<size, big_endian>*
3108 Target_powerpc<size, big_endian>::new_stub_table()
3109 {
3110   Stub_table<size, big_endian>* stub_table
3111     = new Stub_table<size, big_endian>(this);
3112   this->stub_tables_.push_back(stub_table);
3113   return stub_table;
3114 }
3115
3116 // Delayed stub table initialisation, because we create the stub table
3117 // before we know to which section it will be attached.
3118
3119 template<int size, bool big_endian>
3120 void
3121 Stub_table<size, big_endian>::init(
3122     const Output_section::Input_section* owner,
3123     Output_section* output_section)
3124 {
3125   this->set_relobj(owner->relobj());
3126   this->set_shndx(owner->shndx());
3127   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3128   this->set_output_section(output_section);
3129   this->orig_data_size_ = owner->current_data_size();
3130
3131   std::vector<Output_relaxed_input_section*> new_relaxed;
3132   new_relaxed.push_back(this);
3133   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3134 }
3135
3136 // Add a plt call stub, if we do not already have one for this
3137 // sym/object/addend combo.
3138
3139 template<int size, bool big_endian>
3140 void
3141 Stub_table<size, big_endian>::add_plt_call_entry(
3142     const Sized_relobj_file<size, big_endian>* object,
3143     const Symbol* gsym,
3144     unsigned int r_type,
3145     Address addend)
3146 {
3147   Plt_stub_ent ent(object, gsym, r_type, addend);
3148   Address off = this->plt_size_;
3149   std::pair<typename Plt_stub_entries::iterator, bool> p
3150     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3151   if (p.second)
3152     this->plt_size_ = off + this->plt_call_size(p.first);
3153 }
3154
3155 template<int size, bool big_endian>
3156 void
3157 Stub_table<size, big_endian>::add_plt_call_entry(
3158     const Sized_relobj_file<size, big_endian>* object,
3159     unsigned int locsym_index,
3160     unsigned int r_type,
3161     Address addend)
3162 {
3163   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3164   Address off = this->plt_size_;
3165   std::pair<typename Plt_stub_entries::iterator, bool> p
3166     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3167   if (p.second)
3168     this->plt_size_ = off + this->plt_call_size(p.first);
3169 }
3170
3171 // Find a plt call stub.
3172
3173 template<int size, bool big_endian>
3174 typename elfcpp::Elf_types<size>::Elf_Addr
3175 Stub_table<size, big_endian>::find_plt_call_entry(
3176     const Sized_relobj_file<size, big_endian>* object,
3177     const Symbol* gsym,
3178     unsigned int r_type,
3179     Address addend) const
3180 {
3181   Plt_stub_ent ent(object, gsym, r_type, addend);
3182   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3183   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3184 }
3185
3186 template<int size, bool big_endian>
3187 typename elfcpp::Elf_types<size>::Elf_Addr
3188 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3189 {
3190   Plt_stub_ent ent(gsym);
3191   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3192   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3193 }
3194
3195 template<int size, bool big_endian>
3196 typename elfcpp::Elf_types<size>::Elf_Addr
3197 Stub_table<size, big_endian>::find_plt_call_entry(
3198     const Sized_relobj_file<size, big_endian>* object,
3199     unsigned int locsym_index,
3200     unsigned int r_type,
3201     Address addend) const
3202 {
3203   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3204   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3205   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3206 }
3207
3208 template<int size, bool big_endian>
3209 typename elfcpp::Elf_types<size>::Elf_Addr
3210 Stub_table<size, big_endian>::find_plt_call_entry(
3211     const Sized_relobj_file<size, big_endian>* object,
3212     unsigned int locsym_index) const
3213 {
3214   Plt_stub_ent ent(object, locsym_index);
3215   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3216   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3217 }
3218
3219 // Add a long branch stub if we don't already have one to given
3220 // destination.
3221
3222 template<int size, bool big_endian>
3223 void
3224 Stub_table<size, big_endian>::add_long_branch_entry(
3225     const Powerpc_relobj<size, big_endian>* object,
3226     Address to)
3227 {
3228   Branch_stub_ent ent(object, to);
3229   Address off = this->branch_size_;
3230   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3231     {
3232       unsigned int stub_size = this->branch_stub_size(to);
3233       this->branch_size_ = off + stub_size;
3234       if (size == 64 && stub_size != 4)
3235         this->targ_->add_branch_lookup_table(to);
3236     }
3237 }
3238
3239 // Find long branch stub.
3240
3241 template<int size, bool big_endian>
3242 typename elfcpp::Elf_types<size>::Elf_Addr
3243 Stub_table<size, big_endian>::find_long_branch_entry(
3244     const Powerpc_relobj<size, big_endian>* object,
3245     Address to)
3246 {
3247   Branch_stub_ent ent(object, to);
3248   typename Branch_stub_entries::const_iterator p
3249     = this->long_branch_stubs_.find(ent);
3250   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3251 }
3252
3253 // A class to handle .glink.
3254
3255 template<int size, bool big_endian>
3256 class Output_data_glink : public Output_section_data
3257 {
3258  public:
3259   static const int pltresolve_size = 16*4;
3260
3261   Output_data_glink(Target_powerpc<size, big_endian>* targ)
3262     : Output_section_data(16), targ_(targ)
3263   { }
3264
3265  protected:
3266   // Write to a map file.
3267   void
3268   do_print_to_mapfile(Mapfile* mapfile) const
3269   { mapfile->print_output_data(this, _("** glink")); }
3270
3271  private:
3272   void
3273   set_final_data_size();
3274
3275   // Write out .glink
3276   void
3277   do_write(Output_file*);
3278
3279   // Allows access to .got and .plt for do_write.
3280   Target_powerpc<size, big_endian>* targ_;
3281 };
3282
3283 template<int size, bool big_endian>
3284 void
3285 Output_data_glink<size, big_endian>::set_final_data_size()
3286 {
3287   unsigned int count = this->targ_->plt_entry_count();
3288   section_size_type total = 0;
3289
3290   if (count != 0)
3291     {
3292       if (size == 32)
3293         {
3294           // space for branch table
3295           total += 4 * (count - 1);
3296
3297           total += -total & 15;
3298           total += this->pltresolve_size;
3299         }
3300       else
3301         {
3302           total += this->pltresolve_size;
3303
3304           // space for branch table
3305           total += 8 * count;
3306           if (count > 0x8000)
3307             total += 4 * (count - 0x8000);
3308         }
3309     }
3310
3311   this->set_data_size(total);
3312 }
3313
3314 // Write out plt and long branch stub code.
3315
3316 template<int size, bool big_endian>
3317 void
3318 Stub_table<size, big_endian>::do_write(Output_file* of)
3319 {
3320   if (this->plt_call_stubs_.empty()
3321       && this->long_branch_stubs_.empty())
3322     return;
3323
3324   const section_size_type start_off = this->offset();
3325   const section_size_type off = this->stub_offset();
3326   const section_size_type oview_size =
3327     convert_to_section_size_type(this->data_size() - (off - start_off));
3328   unsigned char* const oview = of->get_output_view(off, oview_size);
3329   unsigned char* p;
3330
3331   if (size == 64)
3332     {
3333       const Output_data_got_powerpc<size, big_endian>* got
3334         = this->targ_->got_section();
3335       Address got_os_addr = got->output_section()->address();
3336
3337       if (!this->plt_call_stubs_.empty())
3338         {
3339           // The base address of the .plt section.
3340           Address plt_base = this->targ_->plt_section()->address();
3341           Address iplt_base = invalid_address;
3342
3343           // Write out plt call stubs.
3344           typename Plt_stub_entries::const_iterator cs;
3345           for (cs = this->plt_call_stubs_.begin();
3346                cs != this->plt_call_stubs_.end();
3347                ++cs)
3348             {
3349               Address pltoff;
3350               bool is_ifunc;
3351               const Symbol* gsym = cs->first.sym_;
3352               if (gsym != NULL)
3353                 {
3354                   is_ifunc = (gsym->type() == elfcpp::STT_GNU_IFUNC
3355                               && gsym->can_use_relative_reloc(false));
3356                   pltoff = gsym->plt_offset();
3357                 }
3358               else
3359                 {
3360                   is_ifunc = true;
3361                   const Sized_relobj_file<size, big_endian>* relobj
3362                     = cs->first.object_;
3363                   unsigned int local_sym_index = cs->first.locsym_;
3364                   pltoff = relobj->local_plt_offset(local_sym_index);
3365                 }
3366               Address plt_addr = pltoff;
3367               if (is_ifunc)
3368                 {
3369                   if (iplt_base == invalid_address)
3370                     iplt_base = this->targ_->iplt_section()->address();
3371                   plt_addr += iplt_base;
3372                 }
3373               else
3374                 plt_addr += plt_base;
3375               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3376                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
3377               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
3378               Address off = plt_addr - got_addr;
3379
3380               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
3381                 gold_error(_("%s: linkage table error against `%s'"),
3382                            cs->first.object_->name().c_str(),
3383                            cs->first.sym_->demangled_name().c_str());
3384
3385               bool static_chain = parameters->options().plt_static_chain();
3386               bool thread_safe = this->targ_->plt_thread_safe();
3387               bool use_fake_dep = false;
3388               Address cmp_branch_off = 0;
3389               if (thread_safe)
3390                 {
3391                   unsigned int pltindex
3392                     = ((pltoff - this->targ_->first_plt_entry_offset())
3393                        / this->targ_->plt_entry_size());
3394                   Address glinkoff
3395                     = (this->targ_->glink_section()->pltresolve_size
3396                        + pltindex * 8);
3397                   if (pltindex > 32768)
3398                     glinkoff += (pltindex - 32768) * 4;
3399                   Address to
3400                     = this->targ_->glink_section()->address() + glinkoff;
3401                   Address from
3402                     = (this->stub_address() + cs->second + 24
3403                        + 4 * (ha(off) != 0)
3404                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
3405                        + 4 * static_chain);
3406                   cmp_branch_off = to - from;
3407                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
3408                 }
3409
3410               p = oview + cs->second;
3411               if (ha(off) != 0)
3412                 {
3413                   write_insn<big_endian>(p, std_2_1 + 40),              p += 4;
3414                   write_insn<big_endian>(p, addis_12_2 + ha(off)),      p += 4;
3415                   write_insn<big_endian>(p, ld_11_12 + l(off)),         p += 4;
3416                   if (ha(off + 8 + 8 * static_chain) != ha(off))
3417                     {
3418                       write_insn<big_endian>(p, addi_12_12 + l(off)),   p += 4;
3419                       off = 0;
3420                     }
3421                   write_insn<big_endian>(p, mtctr_11),                  p += 4;
3422                   if (use_fake_dep)
3423                     {
3424                       write_insn<big_endian>(p, xor_11_11_11),          p += 4;
3425                       write_insn<big_endian>(p, add_12_12_11),          p += 4;
3426                     }
3427                   write_insn<big_endian>(p, ld_2_12 + l(off + 8)),      p += 4;
3428                   if (static_chain)
3429                     write_insn<big_endian>(p, ld_11_12 + l(off + 16)),  p += 4;
3430                 }
3431               else
3432                 {
3433                   write_insn<big_endian>(p, std_2_1 + 40),              p += 4;
3434                   write_insn<big_endian>(p, ld_11_2 + l(off)),  p += 4;
3435                   if (ha(off + 8 + 8 * static_chain) != ha(off))
3436                     {
3437                       write_insn<big_endian>(p, addi_2_2 + l(off)),     p += 4;
3438                       off = 0;
3439                     }
3440                   write_insn<big_endian>(p, mtctr_11),                  p += 4;
3441                   if (use_fake_dep)
3442                     {
3443                       write_insn<big_endian>(p, xor_11_11_11),          p += 4;
3444                       write_insn<big_endian>(p, add_2_2_11),            p += 4;
3445                     }
3446                   if (static_chain)
3447                     write_insn<big_endian>(p, ld_11_2 + l(off + 16)),   p += 4;
3448                   write_insn<big_endian>(p, ld_2_2 + l(off + 8)),       p += 4;
3449                 }
3450               if (thread_safe && !use_fake_dep)
3451                 {
3452                   write_insn<big_endian>(p, cmpldi_2_0),                p += 4;
3453                   write_insn<big_endian>(p, bnectr_p4),                 p += 4;
3454                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
3455                 }
3456               else
3457                 write_insn<big_endian>(p, bctr);
3458             }
3459         }
3460
3461       // Write out long branch stubs.
3462       typename Branch_stub_entries::const_iterator bs;
3463       for (bs = this->long_branch_stubs_.begin();
3464            bs != this->long_branch_stubs_.end();
3465            ++bs)
3466         {
3467           p = oview + this->plt_size_ + bs->second;
3468           Address loc = this->stub_address() + this->plt_size_ + bs->second;
3469           Address delta = bs->first.dest_ - loc;
3470           if (delta + (1 << 25) < 2 << 25)
3471             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
3472           else
3473             {
3474               Address brlt_addr
3475                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
3476               gold_assert(brlt_addr != invalid_address);
3477               brlt_addr += this->targ_->brlt_section()->address();
3478               Address got_addr = got_os_addr + bs->first.toc_base_off_;
3479               Address brltoff = brlt_addr - got_addr;
3480               if (ha(brltoff) == 0)
3481                 {
3482                   write_insn<big_endian>(p, ld_11_2 + l(brltoff)),      p += 4;
3483                 }
3484               else
3485                 {
3486                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
3487                   write_insn<big_endian>(p, ld_11_12 + l(brltoff)),     p += 4;
3488                 }
3489               write_insn<big_endian>(p, mtctr_11),                      p += 4;
3490               write_insn<big_endian>(p, bctr);
3491             }
3492         }
3493     }
3494   else
3495     {
3496       if (!this->plt_call_stubs_.empty())
3497         {
3498           // The base address of the .plt section.
3499           Address plt_base = this->targ_->plt_section()->address();
3500           Address iplt_base = invalid_address;
3501           // The address of _GLOBAL_OFFSET_TABLE_.
3502           Address g_o_t = invalid_address;
3503
3504           // Write out plt call stubs.
3505           typename Plt_stub_entries::const_iterator cs;
3506           for (cs = this->plt_call_stubs_.begin();
3507                cs != this->plt_call_stubs_.end();
3508                ++cs)
3509             {
3510               Address plt_addr;
3511               bool is_ifunc;
3512               const Symbol* gsym = cs->first.sym_;
3513               if (gsym != NULL)
3514                 {
3515                   is_ifunc = (gsym->type() == elfcpp::STT_GNU_IFUNC
3516                               && gsym->can_use_relative_reloc(false));
3517                   plt_addr = gsym->plt_offset();
3518                 }
3519               else
3520                 {
3521                   is_ifunc = true;
3522                   const Sized_relobj_file<size, big_endian>* relobj
3523                     = cs->first.object_;
3524                   unsigned int local_sym_index = cs->first.locsym_;
3525                   plt_addr = relobj->local_plt_offset(local_sym_index);
3526                 }
3527               if (is_ifunc)
3528                 {
3529                   if (iplt_base == invalid_address)
3530                     iplt_base = this->targ_->iplt_section()->address();
3531                   plt_addr += iplt_base;
3532                 }
3533               else
3534                 plt_addr += plt_base;
3535
3536               p = oview + cs->second;
3537               if (parameters->options().output_is_position_independent())
3538                 {
3539                   Address got_addr;
3540                   const Powerpc_relobj<size, big_endian>* ppcobj
3541                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
3542                        (cs->first.object_));
3543                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
3544                     {
3545                       unsigned int got2 = ppcobj->got2_shndx();
3546                       got_addr = ppcobj->get_output_section_offset(got2);
3547                       gold_assert(got_addr != invalid_address);
3548                       got_addr += (ppcobj->output_section(got2)->address()
3549                                    + cs->first.addend_);
3550                     }
3551                   else
3552                     {
3553                       if (g_o_t == invalid_address)
3554                         {
3555                           const Output_data_got_powerpc<size, big_endian>* got
3556                             = this->targ_->got_section();
3557                           g_o_t = got->address() + got->g_o_t();
3558                         }
3559                       got_addr = g_o_t;
3560                     }
3561
3562                   Address off = plt_addr - got_addr;
3563                   if (ha(off) == 0)
3564                     {
3565                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
3566                       write_insn<big_endian>(p +  4, mtctr_11);
3567                       write_insn<big_endian>(p +  8, bctr);
3568                     }
3569                   else
3570                     {
3571                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
3572                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
3573                       write_insn<big_endian>(p +  8, mtctr_11);
3574                       write_insn<big_endian>(p + 12, bctr);
3575                     }
3576                 }
3577               else
3578                 {
3579                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
3580                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
3581                   write_insn<big_endian>(p +  8, mtctr_11);
3582                   write_insn<big_endian>(p + 12, bctr);
3583                 }
3584             }
3585         }
3586
3587       // Write out long branch stubs.
3588       typename Branch_stub_entries::const_iterator bs;
3589       for (bs = this->long_branch_stubs_.begin();
3590            bs != this->long_branch_stubs_.end();
3591            ++bs)
3592         {
3593           p = oview + this->plt_size_ + bs->second;
3594           Address loc = this->stub_address() + this->plt_size_ + bs->second;
3595           Address delta = bs->first.dest_ - loc;
3596           if (delta + (1 << 25) < 2 << 25)
3597             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
3598           else if (!parameters->options().output_is_position_independent())
3599             {
3600               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
3601               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
3602               write_insn<big_endian>(p +  8, mtctr_12);
3603               write_insn<big_endian>(p + 12, bctr);
3604             }
3605           else
3606             {
3607               delta -= 8;
3608               write_insn<big_endian>(p +  0, mflr_0);
3609               write_insn<big_endian>(p +  4, bcl_20_31);
3610               write_insn<big_endian>(p +  8, mflr_12);
3611               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
3612               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
3613               write_insn<big_endian>(p + 20, mtlr_0);
3614               write_insn<big_endian>(p + 24, mtctr_12);
3615               write_insn<big_endian>(p + 28, bctr);
3616             }
3617         }
3618     }
3619 }
3620
3621 // Write out .glink.
3622
3623 template<int size, bool big_endian>
3624 void
3625 Output_data_glink<size, big_endian>::do_write(Output_file* of)
3626 {
3627   const section_size_type off = this->offset();
3628   const section_size_type oview_size =
3629     convert_to_section_size_type(this->data_size());
3630   unsigned char* const oview = of->get_output_view(off, oview_size);
3631   unsigned char* p;
3632
3633   // The base address of the .plt section.
3634   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3635   Address plt_base = this->targ_->plt_section()->address();
3636
3637   if (size == 64)
3638     {
3639       // Write pltresolve stub.
3640       p = oview;
3641       Address after_bcl = this->address() + 16;
3642       Address pltoff = plt_base - after_bcl;
3643
3644       elfcpp::Swap<64, big_endian>::writeval(p, pltoff),        p += 8;
3645
3646       write_insn<big_endian>(p, mflr_12),                       p += 4;
3647       write_insn<big_endian>(p, bcl_20_31),                     p += 4;
3648       write_insn<big_endian>(p, mflr_11),                       p += 4;
3649       write_insn<big_endian>(p, ld_2_11 + l(-16)),              p += 4;
3650       write_insn<big_endian>(p, mtlr_12),                       p += 4;
3651       write_insn<big_endian>(p, add_12_2_11),                   p += 4;
3652       write_insn<big_endian>(p, ld_11_12 + 0),                  p += 4;
3653       write_insn<big_endian>(p, ld_2_12 + 8),                   p += 4;
3654       write_insn<big_endian>(p, mtctr_11),                      p += 4;
3655       write_insn<big_endian>(p, ld_11_12 + 16),                 p += 4;
3656       write_insn<big_endian>(p, bctr),                          p += 4;
3657       while (p < oview + this->pltresolve_size)
3658         write_insn<big_endian>(p, nop), p += 4;
3659
3660       // Write lazy link call stubs.
3661       uint32_t indx = 0;
3662       while (p < oview + oview_size)
3663         {
3664           if (indx < 0x8000)
3665             {
3666               write_insn<big_endian>(p, li_0_0 + indx),                 p += 4;
3667             }
3668           else
3669             {
3670               write_insn<big_endian>(p, lis_0_0 + hi(indx)),            p += 4;
3671               write_insn<big_endian>(p, ori_0_0_0 + l(indx)),           p += 4;
3672             }
3673           uint32_t branch_off = 8 - (p - oview);
3674           write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),      p += 4;
3675           indx++;
3676         }
3677     }
3678   else
3679     {
3680       const Output_data_got_powerpc<size, big_endian>* got
3681         = this->targ_->got_section();
3682       // The address of _GLOBAL_OFFSET_TABLE_.
3683       Address g_o_t = got->address() + got->g_o_t();
3684
3685       // Write out pltresolve branch table.
3686       p = oview;
3687       unsigned int the_end = oview_size - this->pltresolve_size;
3688       unsigned char* end_p = oview + the_end;
3689       while (p < end_p - 8 * 4)
3690         write_insn<big_endian>(p, b + end_p - p), p += 4;
3691       while (p < end_p)
3692         write_insn<big_endian>(p, nop), p += 4;
3693
3694       // Write out pltresolve call stub.
3695       if (parameters->options().output_is_position_independent())
3696         {
3697           Address res0_off = 0;
3698           Address after_bcl_off = the_end + 12;
3699           Address bcl_res0 = after_bcl_off - res0_off;
3700
3701           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
3702           write_insn<big_endian>(p +  4, mflr_0);
3703           write_insn<big_endian>(p +  8, bcl_20_31);
3704           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
3705           write_insn<big_endian>(p + 16, mflr_12);
3706           write_insn<big_endian>(p + 20, mtlr_0);
3707           write_insn<big_endian>(p + 24, sub_11_11_12);
3708
3709           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
3710
3711           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
3712           if (ha(got_bcl) == ha(got_bcl + 4))
3713             {
3714               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
3715               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
3716             }
3717           else
3718             {
3719               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
3720               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
3721             }
3722           write_insn<big_endian>(p + 40, mtctr_0);
3723           write_insn<big_endian>(p + 44, add_0_11_11);
3724           write_insn<big_endian>(p + 48, add_11_0_11);
3725           write_insn<big_endian>(p + 52, bctr);
3726           write_insn<big_endian>(p + 56, nop);
3727           write_insn<big_endian>(p + 60, nop);
3728         }
3729       else
3730         {
3731           Address res0 = this->address();
3732
3733           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
3734           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
3735           if (ha(g_o_t + 4) == ha(g_o_t + 8))
3736             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
3737           else
3738             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
3739           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
3740           write_insn<big_endian>(p + 16, mtctr_0);
3741           write_insn<big_endian>(p + 20, add_0_11_11);
3742           if (ha(g_o_t + 4) == ha(g_o_t + 8))
3743             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
3744           else
3745             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
3746           write_insn<big_endian>(p + 28, add_11_0_11);
3747           write_insn<big_endian>(p + 32, bctr);
3748           write_insn<big_endian>(p + 36, nop);
3749           write_insn<big_endian>(p + 40, nop);
3750           write_insn<big_endian>(p + 44, nop);
3751           write_insn<big_endian>(p + 48, nop);
3752           write_insn<big_endian>(p + 52, nop);
3753           write_insn<big_endian>(p + 56, nop);
3754           write_insn<big_endian>(p + 60, nop);
3755         }
3756       p += 64;
3757     }
3758
3759   of->write_output_view(off, oview_size, oview);
3760 }
3761
3762
3763 // A class to handle linker generated save/restore functions.
3764
3765 template<int size, bool big_endian>
3766 class Output_data_save_res : public Output_section_data_build
3767 {
3768  public:
3769   Output_data_save_res(Symbol_table* symtab);
3770
3771  protected:
3772   // Write to a map file.
3773   void
3774   do_print_to_mapfile(Mapfile* mapfile) const
3775   { mapfile->print_output_data(this, _("** save/restore")); }
3776
3777   void
3778   do_write(Output_file*);
3779
3780  private:
3781   // The maximum size of save/restore contents.
3782   static const unsigned int savres_max = 218*4;
3783
3784   void
3785   savres_define(Symbol_table* symtab,
3786                 const char *name,
3787                 unsigned int lo, unsigned int hi,
3788                 unsigned char* write_ent(unsigned char*, int),
3789                 unsigned char* write_tail(unsigned char*, int));
3790
3791   unsigned char *contents_;
3792 };
3793
3794 template<bool big_endian>
3795 static unsigned char*
3796 savegpr0(unsigned char* p, int r)
3797 {
3798   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
3799   write_insn<big_endian>(p, insn);
3800   return p + 4;
3801 }
3802
3803 template<bool big_endian>
3804 static unsigned char*
3805 savegpr0_tail(unsigned char* p, int r)
3806 {
3807   p = savegpr0<big_endian>(p, r);
3808   uint32_t insn = std_0_1 + 16;
3809   write_insn<big_endian>(p, insn);
3810   p = p + 4;
3811   write_insn<big_endian>(p, blr);
3812   return p + 4;
3813 }
3814
3815 template<bool big_endian>
3816 static unsigned char*
3817 restgpr0(unsigned char* p, int r)
3818 {
3819   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
3820   write_insn<big_endian>(p, insn);
3821   return p + 4;
3822 }
3823
3824 template<bool big_endian>
3825 static unsigned char*
3826 restgpr0_tail(unsigned char* p, int r)
3827 {
3828   uint32_t insn = ld_0_1 + 16;
3829   write_insn<big_endian>(p, insn);
3830   p = p + 4;
3831   p = restgpr0<big_endian>(p, r);
3832   write_insn<big_endian>(p, mtlr_0);
3833   p = p + 4;
3834   if (r == 29)
3835     {
3836       p = restgpr0<big_endian>(p, 30);
3837       p = restgpr0<big_endian>(p, 31);
3838     }
3839   write_insn<big_endian>(p, blr);
3840   return p + 4;
3841 }
3842
3843 template<bool big_endian>
3844 static unsigned char*
3845 savegpr1(unsigned char* p, int r)
3846 {
3847   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
3848   write_insn<big_endian>(p, insn);
3849   return p + 4;
3850 }
3851
3852 template<bool big_endian>
3853 static unsigned char*
3854 savegpr1_tail(unsigned char* p, int r)
3855 {
3856   p = savegpr1<big_endian>(p, r);
3857   write_insn<big_endian>(p, blr);
3858   return p + 4;
3859 }
3860
3861 template<bool big_endian>
3862 static unsigned char*
3863 restgpr1(unsigned char* p, int r)
3864 {
3865   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
3866   write_insn<big_endian>(p, insn);
3867   return p + 4;
3868 }
3869
3870 template<bool big_endian>
3871 static unsigned char*
3872 restgpr1_tail(unsigned char* p, int r)
3873 {
3874   p = restgpr1<big_endian>(p, r);
3875   write_insn<big_endian>(p, blr);
3876   return p + 4;
3877 }
3878
3879 template<bool big_endian>
3880 static unsigned char*
3881 savefpr(unsigned char* p, int r)
3882 {
3883   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
3884   write_insn<big_endian>(p, insn);
3885   return p + 4;
3886 }
3887
3888 template<bool big_endian>
3889 static unsigned char*
3890 savefpr0_tail(unsigned char* p, int r)
3891 {
3892   p = savefpr<big_endian>(p, r);
3893   write_insn<big_endian>(p, std_0_1 + 16);
3894   p = p + 4;
3895   write_insn<big_endian>(p, blr);
3896   return p + 4;
3897 }
3898
3899 template<bool big_endian>
3900 static unsigned char*
3901 restfpr(unsigned char* p, int r)
3902 {
3903   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
3904   write_insn<big_endian>(p, insn);
3905   return p + 4;
3906 }
3907
3908 template<bool big_endian>
3909 static unsigned char*
3910 restfpr0_tail(unsigned char* p, int r)
3911 {
3912   write_insn<big_endian>(p, ld_0_1 + 16);
3913   p = p + 4;
3914   p = restfpr<big_endian>(p, r);
3915   write_insn<big_endian>(p, mtlr_0);
3916   p = p + 4;
3917   if (r == 29)
3918     {
3919       p = restfpr<big_endian>(p, 30);
3920       p = restfpr<big_endian>(p, 31);
3921     }
3922   write_insn<big_endian>(p, blr);
3923   return p + 4;
3924 }
3925
3926 template<bool big_endian>
3927 static unsigned char*
3928 savefpr1_tail(unsigned char* p, int r)
3929 {
3930   p = savefpr<big_endian>(p, r);
3931   write_insn<big_endian>(p, blr);
3932   return p + 4;
3933 }
3934
3935 template<bool big_endian>
3936 static unsigned char*
3937 restfpr1_tail(unsigned char* p, int r)
3938 {
3939   p = restfpr<big_endian>(p, r);
3940   write_insn<big_endian>(p, blr);
3941   return p + 4;
3942 }
3943
3944 template<bool big_endian>
3945 static unsigned char*
3946 savevr(unsigned char* p, int r)
3947 {
3948   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
3949   write_insn<big_endian>(p, insn);
3950   p = p + 4;
3951   insn = stvx_0_12_0 + (r << 21);
3952   write_insn<big_endian>(p, insn);
3953   return p + 4;
3954 }
3955
3956 template<bool big_endian>
3957 static unsigned char*
3958 savevr_tail(unsigned char* p, int r)
3959 {
3960   p = savevr<big_endian>(p, r);
3961   write_insn<big_endian>(p, blr);
3962   return p + 4;
3963 }
3964
3965 template<bool big_endian>
3966 static unsigned char*
3967 restvr(unsigned char* p, int r)
3968 {
3969   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
3970   write_insn<big_endian>(p, insn);
3971   p = p + 4;
3972   insn = lvx_0_12_0 + (r << 21);
3973   write_insn<big_endian>(p, insn);
3974   return p + 4;
3975 }
3976
3977 template<bool big_endian>
3978 static unsigned char*
3979 restvr_tail(unsigned char* p, int r)
3980 {
3981   p = restvr<big_endian>(p, r);
3982   write_insn<big_endian>(p, blr);
3983   return p + 4;
3984 }
3985
3986
3987 template<int size, bool big_endian>
3988 Output_data_save_res<size, big_endian>::Output_data_save_res(
3989     Symbol_table* symtab)
3990   : Output_section_data_build(4),
3991     contents_(NULL)
3992 {
3993   this->savres_define(symtab,
3994                       "_savegpr0_", 14, 31,
3995                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
3996   this->savres_define(symtab,
3997                       "_restgpr0_", 14, 29,
3998                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
3999   this->savres_define(symtab,
4000                       "_restgpr0_", 30, 31,
4001                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4002   this->savres_define(symtab,
4003                       "_savegpr1_", 14, 31,
4004                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4005   this->savres_define(symtab,
4006                       "_restgpr1_", 14, 31,
4007                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4008   this->savres_define(symtab,
4009                       "_savefpr_", 14, 31,
4010                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4011   this->savres_define(symtab,
4012                       "_restfpr_", 14, 29,
4013                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4014   this->savres_define(symtab,
4015                       "_restfpr_", 30, 31,
4016                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4017   this->savres_define(symtab,
4018                       "._savef", 14, 31,
4019                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4020   this->savres_define(symtab,
4021                       "._restf", 14, 31,
4022                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4023   this->savres_define(symtab,
4024                       "_savevr_", 20, 31,
4025                       savevr<big_endian>, savevr_tail<big_endian>);
4026   this->savres_define(symtab,
4027                       "_restvr_", 20, 31,
4028                       restvr<big_endian>, restvr_tail<big_endian>);
4029 }
4030
4031 template<int size, bool big_endian>
4032 void
4033 Output_data_save_res<size, big_endian>::savres_define(
4034     Symbol_table* symtab,
4035     const char *name,
4036     unsigned int lo, unsigned int hi,
4037     unsigned char* write_ent(unsigned char*, int),
4038     unsigned char* write_tail(unsigned char*, int))
4039 {
4040   size_t len = strlen(name);
4041   bool writing = false;
4042   char sym[16];
4043
4044   memcpy(sym, name, len);
4045   sym[len + 2] = 0;
4046
4047   for (unsigned int i = lo; i <= hi; i++)
4048     {
4049       sym[len + 0] = i / 10 + '0';
4050       sym[len + 1] = i % 10 + '0';
4051       Symbol* gsym = symtab->lookup(sym);
4052       bool refd = gsym != NULL && gsym->is_undefined();
4053       writing = writing || refd;
4054       if (writing)
4055         {
4056           if (this->contents_ == NULL)
4057             this->contents_ = new unsigned char[this->savres_max];
4058
4059           section_size_type value = this->current_data_size();
4060           unsigned char* p = this->contents_ + value;
4061           if (i != hi)
4062             p = write_ent(p, i);
4063           else
4064             p = write_tail(p, i);
4065           section_size_type cur_size = p - this->contents_;
4066           this->set_current_data_size(cur_size);
4067           if (refd)
4068             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4069                                           this, value, cur_size - value,
4070                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4071                                           elfcpp::STV_HIDDEN, 0, false, false);
4072         }
4073     }
4074 }
4075
4076 // Write out save/restore.
4077
4078 template<int size, bool big_endian>
4079 void
4080 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4081 {
4082   const section_size_type off = this->offset();
4083   const section_size_type oview_size =
4084     convert_to_section_size_type(this->data_size());
4085   unsigned char* const oview = of->get_output_view(off, oview_size);
4086   memcpy(oview, this->contents_, oview_size);
4087   of->write_output_view(off, oview_size, oview);
4088 }
4089
4090
4091 // Create the glink section.
4092
4093 template<int size, bool big_endian>
4094 void
4095 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4096 {
4097   if (this->glink_ == NULL)
4098     {
4099       this->glink_ = new Output_data_glink<size, big_endian>(this);
4100       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4101                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4102                                       this->glink_, ORDER_TEXT, false);
4103     }
4104 }
4105
4106 // Create a PLT entry for a global symbol.
4107
4108 template<int size, bool big_endian>
4109 void
4110 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4111                                                  Layout* layout,
4112                                                  Symbol* gsym)
4113 {
4114   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4115       && gsym->can_use_relative_reloc(false))
4116     {
4117       if (this->iplt_ == NULL)
4118         this->make_iplt_section(symtab, layout);
4119       this->iplt_->add_ifunc_entry(gsym);
4120     }
4121   else
4122     {
4123       if (this->plt_ == NULL)
4124         this->make_plt_section(symtab, layout);
4125       this->plt_->add_entry(gsym);
4126     }
4127 }
4128
4129 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
4130
4131 template<int size, bool big_endian>
4132 void
4133 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
4134     Symbol_table* symtab,
4135     Layout* layout,
4136     Sized_relobj_file<size, big_endian>* relobj,
4137     unsigned int r_sym)
4138 {
4139   if (this->iplt_ == NULL)
4140     this->make_iplt_section(symtab, layout);
4141   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
4142 }
4143
4144 // Return the number of entries in the PLT.
4145
4146 template<int size, bool big_endian>
4147 unsigned int
4148 Target_powerpc<size, big_endian>::plt_entry_count() const
4149 {
4150   if (this->plt_ == NULL)
4151     return 0;
4152   unsigned int count = this->plt_->entry_count();
4153   if (this->iplt_ != NULL)
4154     count += this->iplt_->entry_count();
4155   return count;
4156 }
4157
4158 // Return the offset of the first non-reserved PLT entry.
4159
4160 template<int size, bool big_endian>
4161 unsigned int
4162 Target_powerpc<size, big_endian>::first_plt_entry_offset() const
4163 {
4164   return this->plt_->first_plt_entry_offset();
4165 }
4166
4167 // Return the size of each PLT entry.
4168
4169 template<int size, bool big_endian>
4170 unsigned int
4171 Target_powerpc<size, big_endian>::plt_entry_size() const
4172 {
4173   return Output_data_plt_powerpc<size, big_endian>::get_plt_entry_size();
4174 }
4175
4176 // Create a GOT entry for local dynamic __tls_get_addr calls.
4177
4178 template<int size, bool big_endian>
4179 unsigned int
4180 Target_powerpc<size, big_endian>::tlsld_got_offset(
4181     Symbol_table* symtab,
4182     Layout* layout,
4183     Sized_relobj_file<size, big_endian>* object)
4184 {
4185   if (this->tlsld_got_offset_ == -1U)
4186     {
4187       gold_assert(symtab != NULL && layout != NULL && object != NULL);
4188       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
4189       Output_data_got_powerpc<size, big_endian>* got
4190         = this->got_section(symtab, layout);
4191       unsigned int got_offset = got->add_constant_pair(0, 0);
4192       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
4193                           got_offset, 0);
4194       this->tlsld_got_offset_ = got_offset;
4195     }
4196   return this->tlsld_got_offset_;
4197 }
4198
4199 // Get the Reference_flags for a particular relocation.
4200
4201 template<int size, bool big_endian>
4202 int
4203 Target_powerpc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
4204 {
4205   switch (r_type)
4206     {
4207     case elfcpp::R_POWERPC_NONE:
4208     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4209     case elfcpp::R_POWERPC_GNU_VTENTRY:
4210     case elfcpp::R_PPC64_TOC:
4211       // No symbol reference.
4212       return 0;
4213
4214     case elfcpp::R_PPC64_ADDR64:
4215     case elfcpp::R_PPC64_UADDR64:
4216     case elfcpp::R_POWERPC_ADDR32:
4217     case elfcpp::R_POWERPC_UADDR32:
4218     case elfcpp::R_POWERPC_ADDR16:
4219     case elfcpp::R_POWERPC_UADDR16:
4220     case elfcpp::R_POWERPC_ADDR16_LO:
4221     case elfcpp::R_POWERPC_ADDR16_HI:
4222     case elfcpp::R_POWERPC_ADDR16_HA:
4223       return Symbol::ABSOLUTE_REF;
4224
4225     case elfcpp::R_POWERPC_ADDR24:
4226     case elfcpp::R_POWERPC_ADDR14:
4227     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4228     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4229       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
4230
4231     case elfcpp::R_PPC64_REL64:
4232     case elfcpp::R_POWERPC_REL32:
4233     case elfcpp::R_PPC_LOCAL24PC:
4234     case elfcpp::R_POWERPC_REL16:
4235     case elfcpp::R_POWERPC_REL16_LO:
4236     case elfcpp::R_POWERPC_REL16_HI:
4237     case elfcpp::R_POWERPC_REL16_HA:
4238       return Symbol::RELATIVE_REF;
4239
4240     case elfcpp::R_POWERPC_REL24:
4241     case elfcpp::R_PPC_PLTREL24:
4242     case elfcpp::R_POWERPC_REL14:
4243     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4244     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4245       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
4246
4247     case elfcpp::R_POWERPC_GOT16:
4248     case elfcpp::R_POWERPC_GOT16_LO:
4249     case elfcpp::R_POWERPC_GOT16_HI:
4250     case elfcpp::R_POWERPC_GOT16_HA:
4251     case elfcpp::R_PPC64_GOT16_DS:
4252     case elfcpp::R_PPC64_GOT16_LO_DS:
4253     case elfcpp::R_PPC64_TOC16:
4254     case elfcpp::R_PPC64_TOC16_LO:
4255     case elfcpp::R_PPC64_TOC16_HI:
4256     case elfcpp::R_PPC64_TOC16_HA:
4257     case elfcpp::R_PPC64_TOC16_DS:
4258     case elfcpp::R_PPC64_TOC16_LO_DS:
4259       // Absolute in GOT.
4260       return Symbol::ABSOLUTE_REF;
4261
4262     case elfcpp::R_POWERPC_GOT_TPREL16:
4263     case elfcpp::R_POWERPC_TLS:
4264       return Symbol::TLS_REF;
4265
4266     case elfcpp::R_POWERPC_COPY:
4267     case elfcpp::R_POWERPC_GLOB_DAT:
4268     case elfcpp::R_POWERPC_JMP_SLOT:
4269     case elfcpp::R_POWERPC_RELATIVE:
4270     case elfcpp::R_POWERPC_DTPMOD:
4271     default:
4272       // Not expected.  We will give an error later.
4273       return 0;
4274     }
4275 }
4276
4277 // Report an unsupported relocation against a local symbol.
4278
4279 template<int size, bool big_endian>
4280 void
4281 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
4282     Sized_relobj_file<size, big_endian>* object,
4283     unsigned int r_type)
4284 {
4285   gold_error(_("%s: unsupported reloc %u against local symbol"),
4286              object->name().c_str(), r_type);
4287 }
4288
4289 // We are about to emit a dynamic relocation of type R_TYPE.  If the
4290 // dynamic linker does not support it, issue an error.
4291
4292 template<int size, bool big_endian>
4293 void
4294 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
4295                                                       unsigned int r_type)
4296 {
4297   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
4298
4299   // These are the relocation types supported by glibc for both 32-bit
4300   // and 64-bit powerpc.
4301   switch (r_type)
4302     {
4303     case elfcpp::R_POWERPC_NONE:
4304     case elfcpp::R_POWERPC_RELATIVE:
4305     case elfcpp::R_POWERPC_GLOB_DAT:
4306     case elfcpp::R_POWERPC_DTPMOD:
4307     case elfcpp::R_POWERPC_DTPREL:
4308     case elfcpp::R_POWERPC_TPREL:
4309     case elfcpp::R_POWERPC_JMP_SLOT:
4310     case elfcpp::R_POWERPC_COPY:
4311     case elfcpp::R_POWERPC_IRELATIVE:
4312     case elfcpp::R_POWERPC_ADDR32:
4313     case elfcpp::R_POWERPC_UADDR32:
4314     case elfcpp::R_POWERPC_ADDR24:
4315     case elfcpp::R_POWERPC_ADDR16:
4316     case elfcpp::R_POWERPC_UADDR16:
4317     case elfcpp::R_POWERPC_ADDR16_LO:
4318     case elfcpp::R_POWERPC_ADDR16_HI:
4319     case elfcpp::R_POWERPC_ADDR16_HA:
4320     case elfcpp::R_POWERPC_ADDR14:
4321     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4322     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4323     case elfcpp::R_POWERPC_REL32:
4324     case elfcpp::R_POWERPC_REL24:
4325     case elfcpp::R_POWERPC_TPREL16:
4326     case elfcpp::R_POWERPC_TPREL16_LO:
4327     case elfcpp::R_POWERPC_TPREL16_HI:
4328     case elfcpp::R_POWERPC_TPREL16_HA:
4329       return;
4330
4331     default:
4332       break;
4333     }
4334
4335   if (size == 64)
4336     {
4337       switch (r_type)
4338         {
4339           // These are the relocation types supported only on 64-bit.
4340         case elfcpp::R_PPC64_ADDR64:
4341         case elfcpp::R_PPC64_UADDR64:
4342         case elfcpp::R_PPC64_JMP_IREL:
4343         case elfcpp::R_PPC64_ADDR16_DS:
4344         case elfcpp::R_PPC64_ADDR16_LO_DS:
4345         case elfcpp::R_PPC64_ADDR16_HIGHER:
4346         case elfcpp::R_PPC64_ADDR16_HIGHEST:
4347         case elfcpp::R_PPC64_ADDR16_HIGHERA:
4348         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
4349         case elfcpp::R_PPC64_REL64:
4350         case elfcpp::R_POWERPC_ADDR30:
4351         case elfcpp::R_PPC64_TPREL16_DS:
4352         case elfcpp::R_PPC64_TPREL16_LO_DS:
4353         case elfcpp::R_PPC64_TPREL16_HIGHER:
4354         case elfcpp::R_PPC64_TPREL16_HIGHEST:
4355         case elfcpp::R_PPC64_TPREL16_HIGHERA:
4356         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4357           return;
4358
4359         default:
4360           break;
4361         }
4362     }
4363   else
4364     {
4365       switch (r_type)
4366         {
4367           // These are the relocation types supported only on 32-bit.
4368           // ??? glibc ld.so doesn't need to support these.
4369         case elfcpp::R_POWERPC_DTPREL16:
4370         case elfcpp::R_POWERPC_DTPREL16_LO:
4371         case elfcpp::R_POWERPC_DTPREL16_HI:
4372         case elfcpp::R_POWERPC_DTPREL16_HA:
4373           return;
4374
4375         default:
4376           break;
4377         }
4378     }
4379
4380   // This prevents us from issuing more than one error per reloc
4381   // section.  But we can still wind up issuing more than one
4382   // error per object file.
4383   if (this->issued_non_pic_error_)
4384     return;
4385   gold_assert(parameters->options().output_is_position_independent());
4386   object->error(_("requires unsupported dynamic reloc; "
4387                   "recompile with -fPIC"));
4388   this->issued_non_pic_error_ = true;
4389   return;
4390 }
4391
4392 // Return whether we need to make a PLT entry for a relocation of the
4393 // given type against a STT_GNU_IFUNC symbol.
4394
4395 template<int size, bool big_endian>
4396 bool
4397 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
4398      Sized_relobj_file<size, big_endian>* object,
4399      unsigned int r_type)
4400 {
4401   // In non-pic code any reference will resolve to the plt call stub
4402   // for the ifunc symbol.
4403   if (size == 32 && !parameters->options().output_is_position_independent())
4404     return true;
4405
4406   switch (r_type)
4407     {
4408     // Word size refs from data sections are OK.
4409     case elfcpp::R_POWERPC_ADDR32:
4410     case elfcpp::R_POWERPC_UADDR32:
4411       if (size == 32)
4412         return true;
4413       break;
4414
4415     case elfcpp::R_PPC64_ADDR64:
4416     case elfcpp::R_PPC64_UADDR64:
4417       if (size == 64)
4418         return true;
4419       break;
4420
4421     // GOT refs are good.
4422     case elfcpp::R_POWERPC_GOT16:
4423     case elfcpp::R_POWERPC_GOT16_LO:
4424     case elfcpp::R_POWERPC_GOT16_HI:
4425     case elfcpp::R_POWERPC_GOT16_HA:
4426     case elfcpp::R_PPC64_GOT16_DS:
4427     case elfcpp::R_PPC64_GOT16_LO_DS:
4428       return true;
4429
4430     // So are function calls.
4431     case elfcpp::R_POWERPC_ADDR24:
4432     case elfcpp::R_POWERPC_ADDR14:
4433     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4434     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4435     case elfcpp::R_POWERPC_REL24:
4436     case elfcpp::R_PPC_PLTREL24:
4437     case elfcpp::R_POWERPC_REL14:
4438     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4439     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4440       return true;
4441
4442     default:
4443       break;
4444     }
4445
4446   // Anything else is a problem.
4447   // If we are building a static executable, the libc startup function
4448   // responsible for applying indirect function relocations is going
4449   // to complain about the reloc type.
4450   // If we are building a dynamic executable, we will have a text
4451   // relocation.  The dynamic loader will set the text segment
4452   // writable and non-executable to apply text relocations.  So we'll
4453   // segfault when trying to run the indirection function to resolve
4454   // the reloc.
4455   gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
4456                object->name().c_str(), r_type);
4457   return false;
4458 }
4459
4460 // Scan a relocation for a local symbol.
4461
4462 template<int size, bool big_endian>
4463 inline void
4464 Target_powerpc<size, big_endian>::Scan::local(
4465     Symbol_table* symtab,
4466     Layout* layout,
4467     Target_powerpc<size, big_endian>* target,
4468     Sized_relobj_file<size, big_endian>* object,
4469     unsigned int data_shndx,
4470     Output_section* output_section,
4471     const elfcpp::Rela<size, big_endian>& reloc,
4472     unsigned int r_type,
4473     const elfcpp::Sym<size, big_endian>& lsym,
4474     bool is_discarded)
4475 {
4476   this->maybe_skip_tls_get_addr_call(r_type, NULL);
4477
4478   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
4479       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
4480     {
4481       this->expect_tls_get_addr_call();
4482       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
4483       if (tls_type != tls::TLSOPT_NONE)
4484         this->skip_next_tls_get_addr_call();
4485     }
4486   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
4487            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
4488     {
4489       this->expect_tls_get_addr_call();
4490       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4491       if (tls_type != tls::TLSOPT_NONE)
4492         this->skip_next_tls_get_addr_call();
4493     }
4494
4495   Powerpc_relobj<size, big_endian>* ppc_object
4496     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
4497
4498   if (is_discarded)
4499     {
4500       if (size == 64
4501           && data_shndx == ppc_object->opd_shndx()
4502           && r_type == elfcpp::R_PPC64_ADDR64)
4503         ppc_object->set_opd_discard(reloc.get_r_offset());
4504       return;
4505     }
4506
4507   // A local STT_GNU_IFUNC symbol may require a PLT entry.
4508   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
4509   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
4510     {
4511       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4512       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4513                           r_type, r_sym, reloc.get_r_addend());
4514       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
4515     }
4516
4517   switch (r_type)
4518     {
4519     case elfcpp::R_POWERPC_NONE:
4520     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4521     case elfcpp::R_POWERPC_GNU_VTENTRY:
4522     case elfcpp::R_PPC64_TOCSAVE:
4523     case elfcpp::R_PPC_EMB_MRKREF:
4524     case elfcpp::R_POWERPC_TLS:
4525       break;
4526
4527     case elfcpp::R_PPC64_TOC:
4528       {
4529         Output_data_got_powerpc<size, big_endian>* got
4530           = target->got_section(symtab, layout);
4531         if (parameters->options().output_is_position_independent())
4532           {
4533             Address off = reloc.get_r_offset();
4534             if (size == 64
4535                 && data_shndx == ppc_object->opd_shndx()
4536                 && ppc_object->get_opd_discard(off - 8))
4537               break;
4538
4539             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4540             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
4541             rela_dyn->add_output_section_relative(got->output_section(),
4542                                                   elfcpp::R_POWERPC_RELATIVE,
4543                                                   output_section,
4544                                                   object, data_shndx, off,
4545                                                   symobj->toc_base_offset());
4546           }
4547       }
4548       break;
4549
4550     case elfcpp::R_PPC64_ADDR64:
4551     case elfcpp::R_PPC64_UADDR64:
4552     case elfcpp::R_POWERPC_ADDR32:
4553     case elfcpp::R_POWERPC_UADDR32:
4554     case elfcpp::R_POWERPC_ADDR24:
4555     case elfcpp::R_POWERPC_ADDR16:
4556     case elfcpp::R_POWERPC_ADDR16_LO:
4557     case elfcpp::R_POWERPC_ADDR16_HI:
4558     case elfcpp::R_POWERPC_ADDR16_HA:
4559     case elfcpp::R_POWERPC_UADDR16:
4560     case elfcpp::R_PPC64_ADDR16_HIGHER:
4561     case elfcpp::R_PPC64_ADDR16_HIGHERA:
4562     case elfcpp::R_PPC64_ADDR16_HIGHEST:
4563     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
4564     case elfcpp::R_PPC64_ADDR16_DS:
4565     case elfcpp::R_PPC64_ADDR16_LO_DS:
4566     case elfcpp::R_POWERPC_ADDR14:
4567     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4568     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4569       // If building a shared library (or a position-independent
4570       // executable), we need to create a dynamic relocation for
4571       // this location.
4572       if (parameters->options().output_is_position_independent()
4573           || (size == 64 && is_ifunc))
4574         {
4575           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4576
4577           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
4578               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
4579             {
4580               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4581               unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
4582               if (is_ifunc)
4583                 {
4584                   rela_dyn = target->iplt_section()->rel_plt();
4585                   dynrel = elfcpp::R_POWERPC_IRELATIVE;
4586                 }
4587               rela_dyn->add_local_relative(object, r_sym, dynrel,
4588                                            output_section, data_shndx,
4589                                            reloc.get_r_offset(),
4590                                            reloc.get_r_addend(), false);
4591             }
4592           else
4593             {
4594               check_non_pic(object, r_type);
4595               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4596               rela_dyn->add_local(object, r_sym, r_type, output_section,
4597                                   data_shndx, reloc.get_r_offset(),
4598                                   reloc.get_r_addend());
4599             }
4600         }
4601       break;
4602
4603     case elfcpp::R_POWERPC_REL24:
4604     case elfcpp::R_PPC_PLTREL24:
4605     case elfcpp::R_PPC_LOCAL24PC:
4606       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4607                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
4608                           reloc.get_r_addend());
4609       break;
4610
4611     case elfcpp::R_POWERPC_REL14:
4612     case elfcpp::R_POWERPC_REL14_BRTAKEN:
4613     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4614       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4615                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
4616                           reloc.get_r_addend());
4617       break;
4618
4619     case elfcpp::R_PPC64_REL64:
4620     case elfcpp::R_POWERPC_REL32:
4621     case elfcpp::R_POWERPC_REL16:
4622     case elfcpp::R_POWERPC_REL16_LO:
4623     case elfcpp::R_POWERPC_REL16_HI:
4624     case elfcpp::R_POWERPC_REL16_HA:
4625     case elfcpp::R_POWERPC_SECTOFF:
4626     case elfcpp::R_POWERPC_TPREL16:
4627     case elfcpp::R_POWERPC_DTPREL16:
4628     case elfcpp::R_POWERPC_SECTOFF_LO:
4629     case elfcpp::R_POWERPC_TPREL16_LO:
4630     case elfcpp::R_POWERPC_DTPREL16_LO:
4631     case elfcpp::R_POWERPC_SECTOFF_HI:
4632     case elfcpp::R_POWERPC_TPREL16_HI:
4633     case elfcpp::R_POWERPC_DTPREL16_HI:
4634     case elfcpp::R_POWERPC_SECTOFF_HA:
4635     case elfcpp::R_POWERPC_TPREL16_HA:
4636     case elfcpp::R_POWERPC_DTPREL16_HA:
4637     case elfcpp::R_PPC64_DTPREL16_HIGHER:
4638     case elfcpp::R_PPC64_TPREL16_HIGHER:
4639     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
4640     case elfcpp::R_PPC64_TPREL16_HIGHERA:
4641     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
4642     case elfcpp::R_PPC64_TPREL16_HIGHEST:
4643     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
4644     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4645     case elfcpp::R_PPC64_TPREL16_DS:
4646     case elfcpp::R_PPC64_TPREL16_LO_DS:
4647     case elfcpp::R_PPC64_DTPREL16_DS:
4648     case elfcpp::R_PPC64_DTPREL16_LO_DS:
4649     case elfcpp::R_PPC64_SECTOFF_DS:
4650     case elfcpp::R_PPC64_SECTOFF_LO_DS:
4651     case elfcpp::R_PPC64_TLSGD:
4652     case elfcpp::R_PPC64_TLSLD:
4653       break;
4654
4655     case elfcpp::R_POWERPC_GOT16:
4656     case elfcpp::R_POWERPC_GOT16_LO:
4657     case elfcpp::R_POWERPC_GOT16_HI:
4658     case elfcpp::R_POWERPC_GOT16_HA:
4659     case elfcpp::R_PPC64_GOT16_DS:
4660     case elfcpp::R_PPC64_GOT16_LO_DS:
4661       {
4662         // The symbol requires a GOT entry.
4663         Output_data_got_powerpc<size, big_endian>* got
4664           = target->got_section(symtab, layout);
4665         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4666
4667         if (!parameters->options().output_is_position_independent())
4668           {
4669             if (size == 32 && is_ifunc)
4670               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
4671             else
4672               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
4673           }
4674         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
4675           {
4676             // If we are generating a shared object or a pie, this
4677             // symbol's GOT entry will be set by a dynamic relocation.
4678             unsigned int off;
4679             off = got->add_constant(0);
4680             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
4681
4682             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4683             unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
4684             if (is_ifunc)
4685               {
4686                 rela_dyn = target->iplt_section()->rel_plt();
4687                 dynrel = elfcpp::R_POWERPC_IRELATIVE;
4688               }
4689             rela_dyn->add_local_relative(object, r_sym, dynrel,
4690                                          got, off, 0, false);
4691           }
4692       }
4693       break;
4694
4695     case elfcpp::R_PPC64_TOC16:
4696     case elfcpp::R_PPC64_TOC16_LO:
4697     case elfcpp::R_PPC64_TOC16_HI:
4698     case elfcpp::R_PPC64_TOC16_HA:
4699     case elfcpp::R_PPC64_TOC16_DS:
4700     case elfcpp::R_PPC64_TOC16_LO_DS:
4701       // We need a GOT section.
4702       target->got_section(symtab, layout);
4703       break;
4704
4705     case elfcpp::R_POWERPC_GOT_TLSGD16:
4706     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
4707     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
4708     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
4709       {
4710         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
4711         if (tls_type == tls::TLSOPT_NONE)
4712           {
4713             Output_data_got_powerpc<size, big_endian>* got
4714               = target->got_section(symtab, layout);
4715             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4716             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4717             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
4718                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
4719           }
4720         else if (tls_type == tls::TLSOPT_TO_LE)
4721           {
4722             // no GOT relocs needed for Local Exec.
4723           }
4724         else
4725           gold_unreachable();
4726       }
4727       break;
4728
4729     case elfcpp::R_POWERPC_GOT_TLSLD16:
4730     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
4731     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
4732     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
4733       {
4734         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4735         if (tls_type == tls::TLSOPT_NONE)
4736           target->tlsld_got_offset(symtab, layout, object);
4737         else if (tls_type == tls::TLSOPT_TO_LE)
4738           {
4739             // no GOT relocs needed for Local Exec.
4740             if (parameters->options().emit_relocs())
4741               {
4742                 Output_section* os = layout->tls_segment()->first_section();
4743                 gold_assert(os != NULL);
4744                 os->set_needs_symtab_index();
4745               }
4746           }
4747         else
4748           gold_unreachable();
4749       }
4750       break;
4751
4752     case elfcpp::R_POWERPC_GOT_DTPREL16:
4753     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
4754     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
4755     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
4756       {
4757         Output_data_got_powerpc<size, big_endian>* got
4758           = target->got_section(symtab, layout);
4759         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4760         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
4761       }
4762       break;
4763
4764     case elfcpp::R_POWERPC_GOT_TPREL16:
4765     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
4766     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
4767     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
4768       {
4769         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
4770         if (tls_type == tls::TLSOPT_NONE)
4771           {
4772             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4773             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
4774               {
4775                 Output_data_got_powerpc<size, big_endian>* got
4776                   = target->got_section(symtab, layout);
4777                 unsigned int off = got->add_constant(0);
4778                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
4779
4780                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4781                 rela_dyn->add_symbolless_local_addend(object, r_sym,
4782                                                       elfcpp::R_POWERPC_TPREL,
4783                                                       got, off, 0);
4784               }
4785           }
4786         else if (tls_type == tls::TLSOPT_TO_LE)
4787           {
4788             // no GOT relocs needed for Local Exec.
4789           }
4790         else
4791           gold_unreachable();
4792       }
4793       break;
4794
4795     default:
4796       unsupported_reloc_local(object, r_type);
4797       break;
4798     }
4799
4800   switch (r_type)
4801     {
4802     case elfcpp::R_POWERPC_GOT_TLSLD16:
4803     case elfcpp::R_POWERPC_GOT_TLSGD16:
4804     case elfcpp::R_POWERPC_GOT_TPREL16:
4805     case elfcpp::R_POWERPC_GOT_DTPREL16:
4806     case elfcpp::R_POWERPC_GOT16:
4807     case elfcpp::R_PPC64_GOT16_DS:
4808     case elfcpp::R_PPC64_TOC16:
4809     case elfcpp::R_PPC64_TOC16_DS:
4810       ppc_object->set_has_small_toc_reloc();
4811     default:
4812       break;
4813     }
4814 }
4815
4816 // Report an unsupported relocation against a global symbol.
4817
4818 template<int size, bool big_endian>
4819 void
4820 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
4821     Sized_relobj_file<size, big_endian>* object,
4822     unsigned int r_type,
4823     Symbol* gsym)
4824 {
4825   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
4826              object->name().c_str(), r_type, gsym->demangled_name().c_str());
4827 }
4828
4829 // Scan a relocation for a global symbol.
4830
4831 template<int size, bool big_endian>
4832 inline void
4833 Target_powerpc<size, big_endian>::Scan::global(
4834     Symbol_table* symtab,
4835     Layout* layout,
4836     Target_powerpc<size, big_endian>* target,
4837     Sized_relobj_file<size, big_endian>* object,
4838     unsigned int data_shndx,
4839     Output_section* output_section,
4840     const elfcpp::Rela<size, big_endian>& reloc,
4841     unsigned int r_type,
4842     Symbol* gsym)
4843 {
4844   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
4845     return;
4846
4847   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
4848       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
4849     {
4850       this->expect_tls_get_addr_call();
4851       const bool final = gsym->final_value_is_known();
4852       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
4853       if (tls_type != tls::TLSOPT_NONE)
4854         this->skip_next_tls_get_addr_call();
4855     }
4856   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
4857            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
4858     {
4859       this->expect_tls_get_addr_call();
4860       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4861       if (tls_type != tls::TLSOPT_NONE)
4862         this->skip_next_tls_get_addr_call();
4863     }
4864
4865   Powerpc_relobj<size, big_endian>* ppc_object
4866     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
4867
4868   // A STT_GNU_IFUNC symbol may require a PLT entry.
4869   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4870       && this->reloc_needs_plt_for_ifunc(object, r_type))
4871     {
4872       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4873                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
4874                           reloc.get_r_addend());
4875       target->make_plt_entry(symtab, layout, gsym);
4876     }
4877
4878   switch (r_type)
4879     {
4880     case elfcpp::R_POWERPC_NONE:
4881     case elfcpp::R_POWERPC_GNU_VTINHERIT:
4882     case elfcpp::R_POWERPC_GNU_VTENTRY:
4883     case elfcpp::R_PPC_LOCAL24PC:
4884     case elfcpp::R_PPC_EMB_MRKREF:
4885     case elfcpp::R_POWERPC_TLS:
4886       break;
4887
4888     case elfcpp::R_PPC64_TOC:
4889       {
4890         Output_data_got_powerpc<size, big_endian>* got
4891           = target->got_section(symtab, layout);
4892         if (parameters->options().output_is_position_independent())
4893           {
4894             Address off = reloc.get_r_offset();
4895             if (size == 64
4896                 && data_shndx == ppc_object->opd_shndx()
4897                 && ppc_object->get_opd_discard(off - 8))
4898               break;
4899
4900             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4901             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
4902             if (data_shndx != ppc_object->opd_shndx())
4903               symobj = static_cast
4904                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
4905             rela_dyn->add_output_section_relative(got->output_section(),
4906                                                   elfcpp::R_POWERPC_RELATIVE,
4907                                                   output_section,
4908                                                   object, data_shndx, off,
4909                                                   symobj->toc_base_offset());
4910           }
4911       }
4912       break;
4913
4914     case elfcpp::R_PPC64_ADDR64:
4915       if (size == 64
4916           && data_shndx == ppc_object->opd_shndx()
4917           && (gsym->is_defined_in_discarded_section()
4918               || gsym->object() != object))
4919         {
4920           ppc_object->set_opd_discard(reloc.get_r_offset());
4921           break;
4922         }
4923       // Fall thru
4924     case elfcpp::R_PPC64_UADDR64:
4925     case elfcpp::R_POWERPC_ADDR32:
4926     case elfcpp::R_POWERPC_UADDR32:
4927     case elfcpp::R_POWERPC_ADDR24:
4928     case elfcpp::R_POWERPC_ADDR16:
4929     case elfcpp::R_POWERPC_ADDR16_LO:
4930     case elfcpp::R_POWERPC_ADDR16_HI:
4931     case elfcpp::R_POWERPC_ADDR16_HA:
4932     case elfcpp::R_POWERPC_UADDR16:
4933     case elfcpp::R_PPC64_ADDR16_HIGHER:
4934     case elfcpp::R_PPC64_ADDR16_HIGHERA:
4935     case elfcpp::R_PPC64_ADDR16_HIGHEST:
4936     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
4937     case elfcpp::R_PPC64_ADDR16_DS:
4938     case elfcpp::R_PPC64_ADDR16_LO_DS:
4939     case elfcpp::R_POWERPC_ADDR14:
4940     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4941     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4942       {
4943         // Make a PLT entry if necessary.
4944         if (gsym->needs_plt_entry())
4945           {
4946             target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4947                                 r_type,
4948                                 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
4949                                 reloc.get_r_addend());
4950             target->make_plt_entry(symtab, layout, gsym);
4951             // Since this is not a PC-relative relocation, we may be
4952             // taking the address of a function. In that case we need to
4953             // set the entry in the dynamic symbol table to the address of
4954             // the PLT call stub.
4955             if (size == 32
4956                 && gsym->is_from_dynobj()
4957                 && !parameters->options().output_is_position_independent())
4958               gsym->set_needs_dynsym_value();
4959           }
4960         // Make a dynamic relocation if necessary.
4961         if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type))
4962             || (size == 64 && gsym->type() == elfcpp::STT_GNU_IFUNC))
4963           {
4964             if (gsym->may_need_copy_reloc())
4965               {
4966                 target->copy_reloc(symtab, layout, object,
4967                                    data_shndx, output_section, gsym, reloc);
4968               }
4969             else if ((size == 32
4970                       && r_type == elfcpp::R_POWERPC_ADDR32
4971                       && gsym->can_use_relative_reloc(false)
4972                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
4973                            && parameters->options().shared()))
4974                      || (size == 64
4975                          && r_type == elfcpp::R_PPC64_ADDR64
4976                          && (gsym->can_use_relative_reloc(false)
4977                              || data_shndx == ppc_object->opd_shndx())))
4978               {
4979                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4980                 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
4981                 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
4982                   {
4983                     rela_dyn = target->iplt_section()->rel_plt();
4984                     dynrel = elfcpp::R_POWERPC_IRELATIVE;
4985                   }
4986                 rela_dyn->add_symbolless_global_addend(
4987                     gsym, dynrel, output_section, object, data_shndx,
4988                     reloc.get_r_offset(), reloc.get_r_addend());
4989               }
4990             else
4991               {
4992                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4993                 check_non_pic(object, r_type);
4994                 rela_dyn->add_global(gsym, r_type, output_section,
4995                                      object, data_shndx,
4996                                      reloc.get_r_offset(),
4997                                      reloc.get_r_addend());
4998               }
4999           }
5000       }
5001       break;
5002
5003     case elfcpp::R_PPC_PLTREL24:
5004     case elfcpp::R_POWERPC_REL24:
5005       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5006                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5007                           reloc.get_r_addend());
5008       if (gsym->needs_plt_entry()
5009           || (!gsym->final_value_is_known()
5010               && (gsym->is_undefined()
5011                   || gsym->is_from_dynobj()
5012                   || gsym->is_preemptible())))
5013         target->make_plt_entry(symtab, layout, gsym);
5014       // Fall thru
5015
5016     case elfcpp::R_PPC64_REL64:
5017     case elfcpp::R_POWERPC_REL32:
5018       // Make a dynamic relocation if necessary.
5019       if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type)))
5020         {
5021           if (gsym->may_need_copy_reloc())
5022             {
5023               target->copy_reloc(symtab, layout, object,
5024                                  data_shndx, output_section, gsym,
5025                                  reloc);
5026             }
5027           else
5028             {
5029               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5030               check_non_pic(object, r_type);
5031               rela_dyn->add_global(gsym, r_type, output_section, object,
5032                                    data_shndx, reloc.get_r_offset(),
5033                                    reloc.get_r_addend());
5034             }
5035         }
5036       break;
5037
5038     case elfcpp::R_POWERPC_REL14:
5039     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5040     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5041       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5042                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5043                           reloc.get_r_addend());
5044       break;
5045
5046     case elfcpp::R_POWERPC_REL16:
5047     case elfcpp::R_POWERPC_REL16_LO:
5048     case elfcpp::R_POWERPC_REL16_HI:
5049     case elfcpp::R_POWERPC_REL16_HA:
5050     case elfcpp::R_POWERPC_SECTOFF:
5051     case elfcpp::R_POWERPC_TPREL16:
5052     case elfcpp::R_POWERPC_DTPREL16:
5053     case elfcpp::R_POWERPC_SECTOFF_LO:
5054     case elfcpp::R_POWERPC_TPREL16_LO:
5055     case elfcpp::R_POWERPC_DTPREL16_LO:
5056     case elfcpp::R_POWERPC_SECTOFF_HI:
5057     case elfcpp::R_POWERPC_TPREL16_HI:
5058     case elfcpp::R_POWERPC_DTPREL16_HI:
5059     case elfcpp::R_POWERPC_SECTOFF_HA:
5060     case elfcpp::R_POWERPC_TPREL16_HA:
5061     case elfcpp::R_POWERPC_DTPREL16_HA:
5062     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5063     case elfcpp::R_PPC64_TPREL16_HIGHER:
5064     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5065     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5066     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5067     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5068     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5069     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5070     case elfcpp::R_PPC64_TPREL16_DS:
5071     case elfcpp::R_PPC64_TPREL16_LO_DS:
5072     case elfcpp::R_PPC64_DTPREL16_DS:
5073     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5074     case elfcpp::R_PPC64_SECTOFF_DS:
5075     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5076     case elfcpp::R_PPC64_TLSGD:
5077     case elfcpp::R_PPC64_TLSLD:
5078       break;
5079
5080     case elfcpp::R_POWERPC_GOT16:
5081     case elfcpp::R_POWERPC_GOT16_LO:
5082     case elfcpp::R_POWERPC_GOT16_HI:
5083     case elfcpp::R_POWERPC_GOT16_HA:
5084     case elfcpp::R_PPC64_GOT16_DS:
5085     case elfcpp::R_PPC64_GOT16_LO_DS:
5086       {
5087         // The symbol requires a GOT entry.
5088         Output_data_got_powerpc<size, big_endian>* got;
5089
5090         got = target->got_section(symtab, layout);
5091         if (gsym->final_value_is_known())
5092           {
5093             if (size == 32 && gsym->type() == elfcpp::STT_GNU_IFUNC)
5094               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5095             else
5096               got->add_global(gsym, GOT_TYPE_STANDARD);
5097           }
5098         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5099           {
5100             // If we are generating a shared object or a pie, this
5101             // symbol's GOT entry will be set by a dynamic relocation.
5102             unsigned int off = got->add_constant(0);
5103             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
5104
5105             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5106             if (gsym->can_use_relative_reloc(false)
5107                 && !(size == 32
5108                      && gsym->visibility() == elfcpp::STV_PROTECTED
5109                      && parameters->options().shared()))
5110               {
5111                 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
5112                 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
5113                   {
5114                     rela_dyn = target->iplt_section()->rel_plt();
5115                     dynrel = elfcpp::R_POWERPC_IRELATIVE;
5116                   }
5117                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
5118               }
5119             else
5120               {
5121                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
5122                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
5123               }
5124           }
5125       }
5126       break;
5127
5128     case elfcpp::R_PPC64_TOC16:
5129     case elfcpp::R_PPC64_TOC16_LO:
5130     case elfcpp::R_PPC64_TOC16_HI:
5131     case elfcpp::R_PPC64_TOC16_HA:
5132     case elfcpp::R_PPC64_TOC16_DS:
5133     case elfcpp::R_PPC64_TOC16_LO_DS:
5134       // We need a GOT section.
5135       target->got_section(symtab, layout);
5136       break;
5137
5138     case elfcpp::R_POWERPC_GOT_TLSGD16:
5139     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5140     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5141     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5142       {
5143         const bool final = gsym->final_value_is_known();
5144         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5145         if (tls_type == tls::TLSOPT_NONE)
5146           {
5147             Output_data_got_powerpc<size, big_endian>* got
5148               = target->got_section(symtab, layout);
5149             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD,
5150                                           target->rela_dyn_section(layout),
5151                                           elfcpp::R_POWERPC_DTPMOD,
5152                                           elfcpp::R_POWERPC_DTPREL);
5153           }
5154         else if (tls_type == tls::TLSOPT_TO_IE)
5155           {
5156             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5157               {
5158                 Output_data_got_powerpc<size, big_endian>* got
5159                   = target->got_section(symtab, layout);
5160                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5161                 if (gsym->is_undefined()
5162                     || gsym->is_from_dynobj())
5163                   {
5164                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5165                                              elfcpp::R_POWERPC_TPREL);
5166                   }
5167                 else
5168                   {
5169                     unsigned int off = got->add_constant(0);
5170                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5171                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5172                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5173                                                            got, off, 0);
5174                   }
5175               }
5176           }
5177         else if (tls_type == tls::TLSOPT_TO_LE)
5178           {
5179             // no GOT relocs needed for Local Exec.
5180           }
5181         else
5182           gold_unreachable();
5183       }
5184       break;
5185
5186     case elfcpp::R_POWERPC_GOT_TLSLD16:
5187     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5188     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5189     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5190       {
5191         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5192         if (tls_type == tls::TLSOPT_NONE)
5193           target->tlsld_got_offset(symtab, layout, object);
5194         else if (tls_type == tls::TLSOPT_TO_LE)
5195           {
5196             // no GOT relocs needed for Local Exec.
5197             if (parameters->options().emit_relocs())
5198               {
5199                 Output_section* os = layout->tls_segment()->first_section();
5200                 gold_assert(os != NULL);
5201                 os->set_needs_symtab_index();
5202               }
5203           }
5204         else
5205           gold_unreachable();
5206       }
5207       break;
5208
5209     case elfcpp::R_POWERPC_GOT_DTPREL16:
5210     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5211     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5212     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5213       {
5214         Output_data_got_powerpc<size, big_endian>* got
5215           = target->got_section(symtab, layout);
5216         if (!gsym->final_value_is_known()
5217             && (gsym->is_from_dynobj()
5218                 || gsym->is_undefined()
5219                 || gsym->is_preemptible()))
5220           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
5221                                    target->rela_dyn_section(layout),
5222                                    elfcpp::R_POWERPC_DTPREL);
5223         else
5224           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
5225       }
5226       break;
5227
5228     case elfcpp::R_POWERPC_GOT_TPREL16:
5229     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5230     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5231     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5232       {
5233         const bool final = gsym->final_value_is_known();
5234         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
5235         if (tls_type == tls::TLSOPT_NONE)
5236           {
5237             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5238               {
5239                 Output_data_got_powerpc<size, big_endian>* got
5240                   = target->got_section(symtab, layout);
5241                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5242                 if (gsym->is_undefined()
5243                     || gsym->is_from_dynobj())
5244                   {
5245                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5246                                              elfcpp::R_POWERPC_TPREL);
5247                   }
5248                 else
5249                   {
5250                     unsigned int off = got->add_constant(0);
5251                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5252                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5253                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5254                                                            got, off, 0);
5255                   }
5256               }
5257           }
5258         else if (tls_type == tls::TLSOPT_TO_LE)
5259           {
5260             // no GOT relocs needed for Local Exec.
5261           }
5262         else
5263           gold_unreachable();
5264       }
5265       break;
5266
5267     default:
5268       unsupported_reloc_global(object, r_type, gsym);
5269       break;
5270     }
5271
5272   switch (r_type)
5273     {
5274     case elfcpp::R_POWERPC_GOT_TLSLD16:
5275     case elfcpp::R_POWERPC_GOT_TLSGD16:
5276     case elfcpp::R_POWERPC_GOT_TPREL16:
5277     case elfcpp::R_POWERPC_GOT_DTPREL16:
5278     case elfcpp::R_POWERPC_GOT16:
5279     case elfcpp::R_PPC64_GOT16_DS:
5280     case elfcpp::R_PPC64_TOC16:
5281     case elfcpp::R_PPC64_TOC16_DS:
5282       ppc_object->set_has_small_toc_reloc();
5283     default:
5284       break;
5285     }
5286 }
5287
5288 // Process relocations for gc.
5289
5290 template<int size, bool big_endian>
5291 void
5292 Target_powerpc<size, big_endian>::gc_process_relocs(
5293     Symbol_table* symtab,
5294     Layout* layout,
5295     Sized_relobj_file<size, big_endian>* object,
5296     unsigned int data_shndx,
5297     unsigned int,
5298     const unsigned char* prelocs,
5299     size_t reloc_count,
5300     Output_section* output_section,
5301     bool needs_special_offset_handling,
5302     size_t local_symbol_count,
5303     const unsigned char* plocal_symbols)
5304 {
5305   typedef Target_powerpc<size, big_endian> Powerpc;
5306   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
5307   Powerpc_relobj<size, big_endian>* ppc_object
5308     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5309   if (size == 64)
5310     ppc_object->set_opd_valid();
5311   if (size == 64 && data_shndx == ppc_object->opd_shndx())
5312     {
5313       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
5314       for (p = ppc_object->access_from_map()->begin();
5315            p != ppc_object->access_from_map()->end();
5316            ++p)
5317         {
5318           Address dst_off = p->first;
5319           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
5320           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
5321           for (s = p->second.begin(); s != p->second.end(); ++s)
5322             {
5323               Object* src_obj = s->first;
5324               unsigned int src_indx = s->second;
5325               symtab->gc()->add_reference(src_obj, src_indx,
5326                                           ppc_object, dst_indx);
5327             }
5328           p->second.clear();
5329         }
5330       ppc_object->access_from_map()->clear();
5331       ppc_object->process_gc_mark(symtab);
5332       // Don't look at .opd relocs as .opd will reference everything.
5333       return;
5334     }
5335
5336   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
5337                           typename Target_powerpc::Relocatable_size_for_reloc>(
5338     symtab,
5339     layout,
5340     this,
5341     object,
5342     data_shndx,
5343     prelocs,
5344     reloc_count,
5345     output_section,
5346     needs_special_offset_handling,
5347     local_symbol_count,
5348     plocal_symbols);
5349 }
5350
5351 // Handle target specific gc actions when adding a gc reference from
5352 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
5353 // and DST_OFF.  For powerpc64, this adds a referenc to the code
5354 // section of a function descriptor.
5355
5356 template<int size, bool big_endian>
5357 void
5358 Target_powerpc<size, big_endian>::do_gc_add_reference(
5359     Symbol_table* symtab,
5360     Object* src_obj,
5361     unsigned int src_shndx,
5362     Object* dst_obj,
5363     unsigned int dst_shndx,
5364     Address dst_off) const
5365 {
5366   Powerpc_relobj<size, big_endian>* ppc_object
5367     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
5368   if (size == 64
5369       && !ppc_object->is_dynamic()
5370       && dst_shndx == ppc_object->opd_shndx())
5371     {
5372       if (ppc_object->opd_valid())
5373         {
5374           dst_shndx = ppc_object->get_opd_ent(dst_off);
5375           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
5376         }
5377       else
5378         {
5379           // If we haven't run scan_opd_relocs, we must delay
5380           // processing this function descriptor reference.
5381           ppc_object->add_reference(src_obj, src_shndx, dst_off);
5382         }
5383     }
5384 }
5385
5386 // Add any special sections for this symbol to the gc work list.
5387 // For powerpc64, this adds the code section of a function
5388 // descriptor.
5389
5390 template<int size, bool big_endian>
5391 void
5392 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
5393     Symbol_table* symtab,
5394     Symbol* sym) const
5395 {
5396   if (size == 64)
5397     {
5398       Powerpc_relobj<size, big_endian>* ppc_object
5399         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
5400       bool is_ordinary;
5401       unsigned int shndx = sym->shndx(&is_ordinary);
5402       if (is_ordinary && shndx == ppc_object->opd_shndx())
5403         {
5404           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
5405           Address dst_off = gsym->value();
5406           if (ppc_object->opd_valid())
5407             {
5408               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
5409               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
5410             }
5411           else
5412             ppc_object->add_gc_mark(dst_off);
5413         }
5414     }
5415 }
5416
5417 // Scan relocations for a section.
5418
5419 template<int size, bool big_endian>
5420 void
5421 Target_powerpc<size, big_endian>::scan_relocs(
5422     Symbol_table* symtab,
5423     Layout* layout,
5424     Sized_relobj_file<size, big_endian>* object,
5425     unsigned int data_shndx,
5426     unsigned int sh_type,
5427     const unsigned char* prelocs,
5428     size_t reloc_count,
5429     Output_section* output_section,
5430     bool needs_special_offset_handling,
5431     size_t local_symbol_count,
5432     const unsigned char* plocal_symbols)
5433 {
5434   typedef Target_powerpc<size, big_endian> Powerpc;
5435   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
5436
5437   if (sh_type == elfcpp::SHT_REL)
5438     {
5439       gold_error(_("%s: unsupported REL reloc section"),
5440                  object->name().c_str());
5441       return;
5442     }
5443
5444   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
5445     symtab,
5446     layout,
5447     this,
5448     object,
5449     data_shndx,
5450     prelocs,
5451     reloc_count,
5452     output_section,
5453     needs_special_offset_handling,
5454     local_symbol_count,
5455     plocal_symbols);
5456 }
5457
5458 // Functor class for processing the global symbol table.
5459 // Removes symbols defined on discarded opd entries.
5460
5461 template<bool big_endian>
5462 class Global_symbol_visitor_opd
5463 {
5464  public:
5465   Global_symbol_visitor_opd()
5466   { }
5467
5468   void
5469   operator()(Sized_symbol<64>* sym)
5470   {
5471     if (sym->has_symtab_index()
5472         || sym->source() != Symbol::FROM_OBJECT
5473         || !sym->in_real_elf())
5474       return;
5475
5476     Powerpc_relobj<64, big_endian>* symobj
5477       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
5478     if (symobj->is_dynamic()
5479         || symobj->opd_shndx() == 0)
5480       return;
5481
5482     bool is_ordinary;
5483     unsigned int shndx = sym->shndx(&is_ordinary);
5484     if (shndx == symobj->opd_shndx()
5485         && symobj->get_opd_discard(sym->value()))
5486       sym->set_symtab_index(-1U);
5487   }
5488 };
5489
5490 template<int size, bool big_endian>
5491 void
5492 Target_powerpc<size, big_endian>::define_save_restore_funcs(
5493     Layout* layout,
5494     Symbol_table* symtab)
5495 {
5496   if (size == 64)
5497     {
5498       Output_data_save_res<64, big_endian>* savres
5499         = new Output_data_save_res<64, big_endian>(symtab);
5500       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5501                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5502                                       savres, ORDER_TEXT, false);
5503     }
5504 }
5505
5506 // Sort linker created .got section first (for the header), then input
5507 // sections belonging to files using small model code.
5508
5509 template<bool big_endian>
5510 class Sort_toc_sections
5511 {
5512  public:
5513   bool
5514   operator()(const Output_section::Input_section& is1,
5515              const Output_section::Input_section& is2) const
5516   {
5517     if (!is1.is_input_section() && is2.is_input_section())
5518       return true;
5519     bool small1
5520       = (is1.is_input_section()
5521          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
5522              ->has_small_toc_reloc()));
5523     bool small2
5524       = (is2.is_input_section()
5525          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
5526              ->has_small_toc_reloc()));
5527     return small1 && !small2;
5528   }
5529 };
5530
5531 // Finalize the sections.
5532
5533 template<int size, bool big_endian>
5534 void
5535 Target_powerpc<size, big_endian>::do_finalize_sections(
5536     Layout* layout,
5537     const Input_objects*,
5538     Symbol_table* symtab)
5539 {
5540   if (parameters->doing_static_link())
5541     {
5542       // At least some versions of glibc elf-init.o have a strong
5543       // reference to __rela_iplt marker syms.  A weak ref would be
5544       // better..
5545       if (this->iplt_ != NULL)
5546         {
5547           Reloc_section* rel = this->iplt_->rel_plt();
5548           symtab->define_in_output_data("__rela_iplt_start", NULL,
5549                                         Symbol_table::PREDEFINED, rel, 0, 0,
5550                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
5551                                         elfcpp::STV_HIDDEN, 0, false, true);
5552           symtab->define_in_output_data("__rela_iplt_end", NULL,
5553                                         Symbol_table::PREDEFINED, rel, 0, 0,
5554                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
5555                                         elfcpp::STV_HIDDEN, 0, true, true);
5556         }
5557       else
5558         {
5559           symtab->define_as_constant("__rela_iplt_start", NULL,
5560                                      Symbol_table::PREDEFINED, 0, 0,
5561                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
5562                                      elfcpp::STV_HIDDEN, 0, true, false);
5563           symtab->define_as_constant("__rela_iplt_end", NULL,
5564                                      Symbol_table::PREDEFINED, 0, 0,
5565                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
5566                                      elfcpp::STV_HIDDEN, 0, true, false);
5567         }
5568     }
5569
5570   if (size == 64)
5571     {
5572       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
5573       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
5574
5575       if (!parameters->options().relocatable())
5576         {
5577           this->define_save_restore_funcs(layout, symtab);
5578
5579           // Annoyingly, we need to make these sections now whether or
5580           // not we need them.  If we delay until do_relax then we
5581           // need to mess with the relaxation machinery checkpointing.
5582           this->got_section(symtab, layout);
5583           this->make_brlt_section(layout);
5584
5585           if (parameters->options().toc_sort())
5586             {
5587               Output_section* os = this->got_->output_section();
5588               if (os != NULL && os->input_sections().size() > 1)
5589                 std::stable_sort(os->input_sections().begin(),
5590                                  os->input_sections().end(),
5591                                  Sort_toc_sections<big_endian>());
5592             }
5593         }
5594     }
5595
5596   // Fill in some more dynamic tags.
5597   Output_data_dynamic* odyn = layout->dynamic_data();
5598   if (odyn != NULL)
5599     {
5600       const Reloc_section* rel_plt = (this->plt_ == NULL
5601                                       ? NULL
5602                                       : this->plt_->rel_plt());
5603       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
5604                                       this->rela_dyn_, true, size == 32);
5605
5606       if (size == 32)
5607         {
5608           if (this->got_ != NULL)
5609             {
5610               this->got_->finalize_data_size();
5611               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
5612                                             this->got_, this->got_->g_o_t());
5613             }
5614         }
5615       else
5616         {
5617           if (this->glink_ != NULL)
5618             {
5619               this->glink_->finalize_data_size();
5620               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
5621                                             this->glink_,
5622                                             (this->glink_->pltresolve_size
5623                                              - 32));
5624             }
5625         }
5626     }
5627
5628   // Emit any relocs we saved in an attempt to avoid generating COPY
5629   // relocs.
5630   if (this->copy_relocs_.any_saved_relocs())
5631     this->copy_relocs_.emit(this->rela_dyn_section(layout));
5632 }
5633
5634 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
5635 // reloc.
5636
5637 static bool
5638 ok_lo_toc_insn(uint32_t insn)
5639 {
5640   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
5641           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
5642           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
5643           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
5644           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
5645           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
5646           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
5647           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
5648           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
5649           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
5650           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
5651           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
5652           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
5653           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
5654           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
5655               && (insn & 3) != 1)
5656           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
5657               && ((insn & 3) == 0 || (insn & 3) == 3))
5658           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
5659 }
5660
5661 // Return the value to use for a branch relocation.
5662
5663 template<int size, bool big_endian>
5664 typename elfcpp::Elf_types<size>::Elf_Addr
5665 Target_powerpc<size, big_endian>::symval_for_branch(
5666     Address value,
5667     const Sized_symbol<size>* gsym,
5668     Powerpc_relobj<size, big_endian>* object,
5669     unsigned int *dest_shndx)
5670 {
5671   *dest_shndx = 0;
5672   if (size == 32)
5673     return value;
5674
5675   // If the symbol is defined in an opd section, ie. is a function
5676   // descriptor, use the function descriptor code entry address
5677   Powerpc_relobj<size, big_endian>* symobj = object;
5678   if (gsym != NULL
5679       && gsym->source() != Symbol::FROM_OBJECT)
5680     return value;
5681   if (gsym != NULL)
5682     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
5683   unsigned int shndx = symobj->opd_shndx();
5684   if (shndx == 0)
5685     return value;
5686   Address opd_addr = symobj->get_output_section_offset(shndx);
5687   gold_assert(opd_addr != invalid_address);
5688   opd_addr += symobj->output_section(shndx)->address();
5689   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
5690     {
5691       Address sec_off;
5692       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
5693       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
5694       gold_assert(sec_addr != invalid_address);
5695       sec_addr += symobj->output_section(*dest_shndx)->address();
5696       value = sec_addr + sec_off;
5697     }
5698   return value;
5699 }
5700
5701 // Perform a relocation.
5702
5703 template<int size, bool big_endian>
5704 inline bool
5705 Target_powerpc<size, big_endian>::Relocate::relocate(
5706     const Relocate_info<size, big_endian>* relinfo,
5707     Target_powerpc* target,
5708     Output_section* os,
5709     size_t relnum,
5710     const elfcpp::Rela<size, big_endian>& rela,
5711     unsigned int r_type,
5712     const Sized_symbol<size>* gsym,
5713     const Symbol_value<size>* psymval,
5714     unsigned char* view,
5715     Address address,
5716     section_size_type view_size)
5717 {
5718   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
5719     {
5720     case Track_tls::NOT_EXPECTED:
5721       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5722                              _("__tls_get_addr call lacks marker reloc"));
5723       break;
5724     case Track_tls::EXPECTED:
5725       // We have already complained.
5726       break;
5727     case Track_tls::SKIP:
5728       return true;
5729     case Track_tls::NORMAL:
5730       break;
5731     }
5732
5733   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
5734   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
5735   Powerpc_relobj<size, big_endian>* const object
5736     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
5737   Address value = 0;
5738   bool has_plt_value = false;
5739   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5740   if (gsym != NULL
5741       ? use_plt_offset<size>(gsym, Scan::get_reference_flags(r_type))
5742       : object->local_has_plt_offset(r_sym))
5743     {
5744       Stub_table<size, big_endian>* stub_table
5745         = object->stub_table(relinfo->data_shndx);
5746       if (stub_table == NULL)
5747         {
5748           // This is a ref from a data section to an ifunc symbol.
5749           if (target->stub_tables().size() != 0)
5750             stub_table = target->stub_tables()[0];
5751         }
5752       gold_assert(stub_table != NULL);
5753       Address off;
5754       if (gsym != NULL)
5755         off = stub_table->find_plt_call_entry(object, gsym, r_type,
5756                                               rela.get_r_addend());
5757       else
5758         off = stub_table->find_plt_call_entry(object, r_sym, r_type,
5759                                               rela.get_r_addend());
5760       gold_assert(off != invalid_address);
5761       value = stub_table->stub_address() + off;
5762       has_plt_value = true;
5763     }
5764
5765   if (r_type == elfcpp::R_POWERPC_GOT16
5766       || r_type == elfcpp::R_POWERPC_GOT16_LO
5767       || r_type == elfcpp::R_POWERPC_GOT16_HI
5768       || r_type == elfcpp::R_POWERPC_GOT16_HA
5769       || r_type == elfcpp::R_PPC64_GOT16_DS
5770       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
5771     {
5772       if (gsym != NULL)
5773         {
5774           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
5775           value = gsym->got_offset(GOT_TYPE_STANDARD);
5776         }
5777       else
5778         {
5779           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5780           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
5781           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
5782         }
5783       value -= target->got_section()->got_base_offset(object);
5784     }
5785   else if (r_type == elfcpp::R_PPC64_TOC)
5786     {
5787       value = (target->got_section()->output_section()->address()
5788                + object->toc_base_offset());
5789     }
5790   else if (gsym != NULL
5791            && (r_type == elfcpp::R_POWERPC_REL24
5792                || r_type == elfcpp::R_PPC_PLTREL24)
5793            && has_plt_value)
5794     {
5795       if (size == 64)
5796         {
5797           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5798           Valtype* wv = reinterpret_cast<Valtype*>(view);
5799           bool can_plt_call = false;
5800           if (rela.get_r_offset() + 8 <= view_size)
5801             {
5802               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
5803               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
5804               if ((insn & 1) != 0
5805                   && (insn2 == nop
5806                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
5807                 {
5808                   elfcpp::Swap<32, big_endian>::writeval(wv + 1, ld_2_1 + 40);
5809                   can_plt_call = true;
5810                 }
5811             }
5812           if (!can_plt_call)
5813             {
5814               // If we don't have a branch and link followed by a nop,
5815               // we can't go via the plt because there is no place to
5816               // put a toc restoring instruction.
5817               // Unless we know we won't be returning.
5818               if (strcmp(gsym->name(), "__libc_start_main") == 0)
5819                 can_plt_call = true;
5820             }
5821           if (!can_plt_call)
5822             {
5823               // This is not an error in one special case: A self
5824               // call.  It isn't possible to cheaply verify we have
5825               // such a call so just check for a call to the same
5826               // section.
5827               bool ok = false;
5828               Address code = value;
5829               if (gsym->source() == Symbol::FROM_OBJECT
5830                   && gsym->object() == object)
5831                 {
5832                   Address addend = rela.get_r_addend();
5833                   unsigned int dest_shndx;
5834                   Address opdent = psymval->value(object, addend);
5835                   code = target->symval_for_branch(opdent, gsym, object,
5836                                                    &dest_shndx);
5837                   bool is_ordinary;
5838                   if (dest_shndx == 0)
5839                     dest_shndx = gsym->shndx(&is_ordinary);
5840                   ok = dest_shndx == relinfo->data_shndx;
5841                 }
5842               if (!ok)
5843                 {
5844                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5845                                          _("call lacks nop, can't restore toc; "
5846                                            "recompile with -fPIC"));
5847                   value = code;
5848                 }
5849             }
5850         }
5851     }
5852   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
5853            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
5854            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
5855            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
5856     {
5857       // First instruction of a global dynamic sequence, arg setup insn.
5858       const bool final = gsym == NULL || gsym->final_value_is_known();
5859       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5860       enum Got_type got_type = GOT_TYPE_STANDARD;
5861       if (tls_type == tls::TLSOPT_NONE)
5862         got_type = GOT_TYPE_TLSGD;
5863       else if (tls_type == tls::TLSOPT_TO_IE)
5864         got_type = GOT_TYPE_TPREL;
5865       if (got_type != GOT_TYPE_STANDARD)
5866         {
5867           if (gsym != NULL)
5868             {
5869               gold_assert(gsym->has_got_offset(got_type));
5870               value = gsym->got_offset(got_type);
5871             }
5872           else
5873             {
5874               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5875               gold_assert(object->local_has_got_offset(r_sym, got_type));
5876               value = object->local_got_offset(r_sym, got_type);
5877             }
5878           value -= target->got_section()->got_base_offset(object);
5879         }
5880       if (tls_type == tls::TLSOPT_TO_IE)
5881         {
5882           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
5883               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
5884             {
5885               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
5886               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
5887               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
5888               if (size == 32)
5889                 insn |= 32 << 26; // lwz
5890               else
5891                 insn |= 58 << 26; // ld
5892               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
5893             }
5894           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
5895                      - elfcpp::R_POWERPC_GOT_TLSGD16);
5896         }
5897       else if (tls_type == tls::TLSOPT_TO_LE)
5898         {
5899           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
5900               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
5901             {
5902               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
5903               Insn insn = addis_3_13;
5904               if (size == 32)
5905                 insn = addis_3_2;
5906               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
5907               r_type = elfcpp::R_POWERPC_TPREL16_HA;
5908               value = psymval->value(object, rela.get_r_addend());
5909             }
5910           else
5911             {
5912               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
5913               Insn insn = nop;
5914               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
5915               r_type = elfcpp::R_POWERPC_NONE;
5916             }
5917         }
5918     }
5919   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
5920            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
5921            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
5922            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
5923     {
5924       // First instruction of a local dynamic sequence, arg setup insn.
5925       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5926       if (tls_type == tls::TLSOPT_NONE)
5927         {
5928           value = target->tlsld_got_offset();
5929           value -= target->got_section()->got_base_offset(object);
5930         }
5931       else
5932         {
5933           gold_assert(tls_type == tls::TLSOPT_TO_LE);
5934           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
5935               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
5936             {
5937               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
5938               Insn insn = addis_3_13;
5939               if (size == 32)
5940                 insn = addis_3_2;
5941               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
5942               r_type = elfcpp::R_POWERPC_TPREL16_HA;
5943               value = dtp_offset;
5944             }
5945           else
5946             {
5947               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
5948               Insn insn = nop;
5949               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
5950               r_type = elfcpp::R_POWERPC_NONE;
5951             }
5952         }
5953     }
5954   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
5955            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
5956            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
5957            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
5958     {
5959       // Accesses relative to a local dynamic sequence address,
5960       // no optimisation here.
5961       if (gsym != NULL)
5962         {
5963           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
5964           value = gsym->got_offset(GOT_TYPE_DTPREL);
5965         }
5966       else
5967         {
5968           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5969           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
5970           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
5971         }
5972       value -= target->got_section()->got_base_offset(object);
5973     }
5974   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
5975            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
5976            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
5977            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
5978     {
5979       // First instruction of initial exec sequence.
5980       const bool final = gsym == NULL || gsym->final_value_is_known();
5981       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
5982       if (tls_type == tls::TLSOPT_NONE)
5983         {
5984           if (gsym != NULL)
5985             {
5986               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
5987               value = gsym->got_offset(GOT_TYPE_TPREL);
5988             }
5989           else
5990             {
5991               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5992               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
5993               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
5994             }
5995           value -= target->got_section()->got_base_offset(object);
5996         }
5997       else
5998         {
5999           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6000           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6001               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6002             {
6003               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6004               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6005               insn &= (1 << 26) - (1 << 21); // extract rt from ld
6006               if (size == 32)
6007                 insn |= addis_0_2;
6008               else
6009                 insn |= addis_0_13;
6010               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6011               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6012               value = psymval->value(object, rela.get_r_addend());
6013             }
6014           else
6015             {
6016               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6017               Insn insn = nop;
6018               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6019               r_type = elfcpp::R_POWERPC_NONE;
6020             }
6021         }
6022     }
6023   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6024            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6025     {
6026       // Second instruction of a global dynamic sequence,
6027       // the __tls_get_addr call
6028       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6029       const bool final = gsym == NULL || gsym->final_value_is_known();
6030       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6031       if (tls_type != tls::TLSOPT_NONE)
6032         {
6033           if (tls_type == tls::TLSOPT_TO_IE)
6034             {
6035               Insn* iview = reinterpret_cast<Insn*>(view);
6036               Insn insn = add_3_3_13;
6037               if (size == 32)
6038                 insn = add_3_3_2;
6039               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6040               r_type = elfcpp::R_POWERPC_NONE;
6041             }
6042           else
6043             {
6044               Insn* iview = reinterpret_cast<Insn*>(view);
6045               Insn insn = addi_3_3;
6046               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6047               r_type = elfcpp::R_POWERPC_TPREL16_LO;
6048               view += 2 * big_endian;
6049               value = psymval->value(object, rela.get_r_addend());
6050             }
6051           this->skip_next_tls_get_addr_call();
6052         }
6053     }
6054   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6055            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6056     {
6057       // Second instruction of a local dynamic sequence,
6058       // the __tls_get_addr call
6059       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6060       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6061       if (tls_type == tls::TLSOPT_TO_LE)
6062         {
6063           Insn* iview = reinterpret_cast<Insn*>(view);
6064           Insn insn = addi_3_3;
6065           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6066           this->skip_next_tls_get_addr_call();
6067           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6068           view += 2 * big_endian;
6069           value = dtp_offset;
6070         }
6071     }
6072   else if (r_type == elfcpp::R_POWERPC_TLS)
6073     {
6074       // Second instruction of an initial exec sequence
6075       const bool final = gsym == NULL || gsym->final_value_is_known();
6076       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6077       if (tls_type == tls::TLSOPT_TO_LE)
6078         {
6079           Insn* iview = reinterpret_cast<Insn*>(view);
6080           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6081           unsigned int reg = size == 32 ? 2 : 13;
6082           insn = at_tls_transform(insn, reg);
6083           gold_assert(insn != 0);
6084           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6085           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6086           view += 2 * big_endian;
6087           value = psymval->value(object, rela.get_r_addend());
6088         }
6089     }
6090   else if (!has_plt_value)
6091     {
6092       Address addend = 0;
6093       unsigned int dest_shndx;
6094       if (r_type != elfcpp::R_PPC_PLTREL24)
6095         addend = rela.get_r_addend();
6096       value = psymval->value(object, addend);
6097       if (size == 64 && is_branch_reloc(r_type))
6098         value = target->symval_for_branch(value, gsym, object, &dest_shndx);
6099       unsigned int max_branch_offset = 0;
6100       if (r_type == elfcpp::R_POWERPC_REL24
6101           || r_type == elfcpp::R_PPC_PLTREL24
6102           || r_type == elfcpp::R_PPC_LOCAL24PC)
6103         max_branch_offset = 1 << 25;
6104       else if (r_type == elfcpp::R_POWERPC_REL14
6105                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
6106                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
6107         max_branch_offset = 1 << 15;
6108       if (max_branch_offset != 0
6109           && value - address + max_branch_offset >= 2 * max_branch_offset)
6110         {
6111           Stub_table<size, big_endian>* stub_table
6112             = object->stub_table(relinfo->data_shndx);
6113           gold_assert(stub_table != NULL);
6114           Address off = stub_table->find_long_branch_entry(object, value);
6115           if (off != invalid_address)
6116             value = stub_table->stub_address() + stub_table->plt_size() + off;
6117         }
6118     }
6119
6120   switch (r_type)
6121     {
6122     case elfcpp::R_PPC64_REL64:
6123     case elfcpp::R_POWERPC_REL32:
6124     case elfcpp::R_POWERPC_REL24:
6125     case elfcpp::R_PPC_PLTREL24:
6126     case elfcpp::R_PPC_LOCAL24PC:
6127     case elfcpp::R_POWERPC_REL16:
6128     case elfcpp::R_POWERPC_REL16_LO:
6129     case elfcpp::R_POWERPC_REL16_HI:
6130     case elfcpp::R_POWERPC_REL16_HA:
6131     case elfcpp::R_POWERPC_REL14:
6132     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6133     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6134       value -= address;
6135       break;
6136
6137     case elfcpp::R_PPC64_TOC16:
6138     case elfcpp::R_PPC64_TOC16_LO:
6139     case elfcpp::R_PPC64_TOC16_HI:
6140     case elfcpp::R_PPC64_TOC16_HA:
6141     case elfcpp::R_PPC64_TOC16_DS:
6142     case elfcpp::R_PPC64_TOC16_LO_DS:
6143       // Subtract the TOC base address.
6144       value -= (target->got_section()->output_section()->address()
6145                 + object->toc_base_offset());
6146       break;
6147
6148     case elfcpp::R_POWERPC_SECTOFF:
6149     case elfcpp::R_POWERPC_SECTOFF_LO:
6150     case elfcpp::R_POWERPC_SECTOFF_HI:
6151     case elfcpp::R_POWERPC_SECTOFF_HA:
6152     case elfcpp::R_PPC64_SECTOFF_DS:
6153     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6154       if (os != NULL)
6155         value -= os->address();
6156       break;
6157
6158     case elfcpp::R_PPC64_TPREL16_DS:
6159     case elfcpp::R_PPC64_TPREL16_LO_DS:
6160       if (size != 64)
6161         // R_PPC_TLSGD and R_PPC_TLSLD
6162         break;
6163     case elfcpp::R_POWERPC_TPREL16:
6164     case elfcpp::R_POWERPC_TPREL16_LO:
6165     case elfcpp::R_POWERPC_TPREL16_HI:
6166     case elfcpp::R_POWERPC_TPREL16_HA:
6167     case elfcpp::R_POWERPC_TPREL:
6168     case elfcpp::R_PPC64_TPREL16_HIGHER:
6169     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6170     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6171     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6172       // tls symbol values are relative to tls_segment()->vaddr()
6173       value -= tp_offset;
6174       break;
6175
6176     case elfcpp::R_PPC64_DTPREL16_DS:
6177     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6178     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6179     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6180     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6181     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6182       if (size != 64)
6183         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
6184         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
6185         break;
6186     case elfcpp::R_POWERPC_DTPREL16:
6187     case elfcpp::R_POWERPC_DTPREL16_LO:
6188     case elfcpp::R_POWERPC_DTPREL16_HI:
6189     case elfcpp::R_POWERPC_DTPREL16_HA:
6190     case elfcpp::R_POWERPC_DTPREL:
6191       // tls symbol values are relative to tls_segment()->vaddr()
6192       value -= dtp_offset;
6193       break;
6194
6195     default:
6196       break;
6197     }
6198
6199   Insn branch_bit = 0;
6200   switch (r_type)
6201     {
6202     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6203     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6204       branch_bit = 1 << 21;
6205     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6206     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6207       {
6208         Insn* iview = reinterpret_cast<Insn*>(view);
6209         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6210         insn &= ~(1 << 21);
6211         insn |= branch_bit;
6212         if (this->is_isa_v2)
6213           {
6214             // Set 'a' bit.  This is 0b00010 in BO field for branch
6215             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
6216             // for branch on CTR insns (BO == 1a00t or 1a01t).
6217             if ((insn & (0x14 << 21)) == (0x04 << 21))
6218               insn |= 0x02 << 21;
6219             else if ((insn & (0x14 << 21)) == (0x10 << 21))
6220               insn |= 0x08 << 21;
6221             else
6222               break;
6223           }
6224         else
6225           {
6226             // Invert 'y' bit if not the default.
6227             if (static_cast<Signed_address>(value) < 0)
6228               insn ^= 1 << 21;
6229           }
6230         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6231       }
6232       break;
6233
6234     default:
6235       break;
6236     }
6237
6238   if (size == 64)
6239     {
6240       // Multi-instruction sequences that access the TOC can be
6241       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
6242       // to             nop;           addi rb,r2,x;
6243       switch (r_type)
6244         {
6245         default:
6246           break;
6247
6248         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6249         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6250         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6251         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6252         case elfcpp::R_POWERPC_GOT16_HA:
6253         case elfcpp::R_PPC64_TOC16_HA:
6254           if (parameters->options().toc_optimize())
6255             {
6256               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6257               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6258               if ((insn & ((0x3f << 26) | 0x1f << 16))
6259                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
6260                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6261                                        _("toc optimization is not supported "
6262                                          "for %#08x instruction"), insn);
6263               else if (value + 0x8000 < 0x10000)
6264                 {
6265                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
6266                   return true;
6267                 }
6268             }
6269           break;
6270
6271         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6272         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6273         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6274         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6275         case elfcpp::R_POWERPC_GOT16_LO:
6276         case elfcpp::R_PPC64_GOT16_LO_DS:
6277         case elfcpp::R_PPC64_TOC16_LO:
6278         case elfcpp::R_PPC64_TOC16_LO_DS:
6279           if (parameters->options().toc_optimize())
6280             {
6281               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6282               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6283               if (!ok_lo_toc_insn(insn))
6284                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6285                                        _("toc optimization is not supported "
6286                                          "for %#08x instruction"), insn);
6287               else if (value + 0x8000 < 0x10000)
6288                 {
6289                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
6290                     {
6291                       // Transform addic to addi when we change reg.
6292                       insn &= ~((0x3f << 26) | (0x1f << 16));
6293                       insn |= (14u << 26) | (2 << 16);
6294                     }
6295                   else
6296                     {
6297                       insn &= ~(0x1f << 16);
6298                       insn |= 2 << 16;
6299                     }
6300                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6301                 }
6302             }
6303           break;
6304         }
6305     }
6306
6307   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
6308   switch (r_type)
6309     {
6310     case elfcpp::R_POWERPC_ADDR32:
6311     case elfcpp::R_POWERPC_UADDR32:
6312       if (size == 64)
6313         overflow = Reloc::CHECK_BITFIELD;
6314       break;
6315
6316     case elfcpp::R_POWERPC_REL32:
6317       if (size == 64)
6318         overflow = Reloc::CHECK_SIGNED;
6319       break;
6320
6321     case elfcpp::R_POWERPC_ADDR24:
6322     case elfcpp::R_POWERPC_ADDR16:
6323     case elfcpp::R_POWERPC_UADDR16:
6324     case elfcpp::R_PPC64_ADDR16_DS:
6325     case elfcpp::R_POWERPC_ADDR14:
6326     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6327     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6328       overflow = Reloc::CHECK_BITFIELD;
6329       break;
6330
6331     case elfcpp::R_POWERPC_REL24:
6332     case elfcpp::R_PPC_PLTREL24:
6333     case elfcpp::R_PPC_LOCAL24PC:
6334     case elfcpp::R_POWERPC_REL16:
6335     case elfcpp::R_PPC64_TOC16:
6336     case elfcpp::R_POWERPC_GOT16:
6337     case elfcpp::R_POWERPC_SECTOFF:
6338     case elfcpp::R_POWERPC_TPREL16:
6339     case elfcpp::R_POWERPC_DTPREL16:
6340     case elfcpp::R_PPC64_TPREL16_DS:
6341     case elfcpp::R_PPC64_DTPREL16_DS:
6342     case elfcpp::R_PPC64_TOC16_DS:
6343     case elfcpp::R_PPC64_GOT16_DS:
6344     case elfcpp::R_PPC64_SECTOFF_DS:
6345     case elfcpp::R_POWERPC_REL14:
6346     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6347     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6348     case elfcpp::R_POWERPC_GOT_TLSGD16:
6349     case elfcpp::R_POWERPC_GOT_TLSLD16:
6350     case elfcpp::R_POWERPC_GOT_TPREL16:
6351     case elfcpp::R_POWERPC_GOT_DTPREL16:
6352       overflow = Reloc::CHECK_SIGNED;
6353       break;
6354     }
6355
6356   typename Powerpc_relocate_functions<size, big_endian>::Status status
6357     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
6358   switch (r_type)
6359     {
6360     case elfcpp::R_POWERPC_NONE:
6361     case elfcpp::R_POWERPC_TLS:
6362     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6363     case elfcpp::R_POWERPC_GNU_VTENTRY:
6364     case elfcpp::R_PPC_EMB_MRKREF:
6365       break;
6366
6367     case elfcpp::R_PPC64_ADDR64:
6368     case elfcpp::R_PPC64_REL64:
6369     case elfcpp::R_PPC64_TOC:
6370       Reloc::addr64(view, value);
6371       break;
6372
6373     case elfcpp::R_POWERPC_TPREL:
6374     case elfcpp::R_POWERPC_DTPREL:
6375       if (size == 64)
6376         Reloc::addr64(view, value);
6377       else
6378         status = Reloc::addr32(view, value, overflow);
6379       break;
6380
6381     case elfcpp::R_PPC64_UADDR64:
6382       Reloc::addr64_u(view, value);
6383       break;
6384
6385     case elfcpp::R_POWERPC_ADDR32:
6386       status = Reloc::addr32(view, value, overflow);
6387       break;
6388
6389     case elfcpp::R_POWERPC_REL32:
6390     case elfcpp::R_POWERPC_UADDR32:
6391       status = Reloc::addr32_u(view, value, overflow);
6392       break;
6393
6394     case elfcpp::R_POWERPC_ADDR24:
6395     case elfcpp::R_POWERPC_REL24:
6396     case elfcpp::R_PPC_PLTREL24:
6397     case elfcpp::R_PPC_LOCAL24PC:
6398       status = Reloc::addr24(view, value, overflow);
6399       break;
6400
6401     case elfcpp::R_POWERPC_GOT_DTPREL16:
6402     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6403       if (size == 64)
6404         {
6405           status = Reloc::addr16_ds(view, value, overflow);
6406           break;
6407         }
6408     case elfcpp::R_POWERPC_ADDR16:
6409     case elfcpp::R_POWERPC_REL16:
6410     case elfcpp::R_PPC64_TOC16:
6411     case elfcpp::R_POWERPC_GOT16:
6412     case elfcpp::R_POWERPC_SECTOFF:
6413     case elfcpp::R_POWERPC_TPREL16:
6414     case elfcpp::R_POWERPC_DTPREL16:
6415     case elfcpp::R_POWERPC_GOT_TLSGD16:
6416     case elfcpp::R_POWERPC_GOT_TLSLD16:
6417     case elfcpp::R_POWERPC_GOT_TPREL16:
6418     case elfcpp::R_POWERPC_ADDR16_LO:
6419     case elfcpp::R_POWERPC_REL16_LO:
6420     case elfcpp::R_PPC64_TOC16_LO:
6421     case elfcpp::R_POWERPC_GOT16_LO:
6422     case elfcpp::R_POWERPC_SECTOFF_LO:
6423     case elfcpp::R_POWERPC_TPREL16_LO:
6424     case elfcpp::R_POWERPC_DTPREL16_LO:
6425     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6426     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6427     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6428       status = Reloc::addr16(view, value, overflow);
6429       break;
6430
6431     case elfcpp::R_POWERPC_UADDR16:
6432       status = Reloc::addr16_u(view, value, overflow);
6433       break;
6434
6435     case elfcpp::R_POWERPC_ADDR16_HI:
6436     case elfcpp::R_POWERPC_REL16_HI:
6437     case elfcpp::R_PPC64_TOC16_HI:
6438     case elfcpp::R_POWERPC_GOT16_HI:
6439     case elfcpp::R_POWERPC_SECTOFF_HI:
6440     case elfcpp::R_POWERPC_TPREL16_HI:
6441     case elfcpp::R_POWERPC_DTPREL16_HI:
6442     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6443     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6444     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6445     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6446       Reloc::addr16_hi(view, value);
6447       break;
6448
6449     case elfcpp::R_POWERPC_ADDR16_HA:
6450     case elfcpp::R_POWERPC_REL16_HA:
6451     case elfcpp::R_PPC64_TOC16_HA:
6452     case elfcpp::R_POWERPC_GOT16_HA:
6453     case elfcpp::R_POWERPC_SECTOFF_HA:
6454     case elfcpp::R_POWERPC_TPREL16_HA:
6455     case elfcpp::R_POWERPC_DTPREL16_HA:
6456     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6457     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6458     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6459     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6460       Reloc::addr16_ha(view, value);
6461       break;
6462
6463     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6464       if (size == 32)
6465         // R_PPC_EMB_NADDR16_LO
6466         goto unsupp;
6467     case elfcpp::R_PPC64_ADDR16_HIGHER:
6468     case elfcpp::R_PPC64_TPREL16_HIGHER:
6469       Reloc::addr16_hi2(view, value);
6470       break;
6471
6472     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6473       if (size == 32)
6474         // R_PPC_EMB_NADDR16_HI
6475         goto unsupp;
6476     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6477     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6478       Reloc::addr16_ha2(view, value);
6479       break;
6480
6481     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6482       if (size == 32)
6483         // R_PPC_EMB_NADDR16_HA
6484         goto unsupp;
6485     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6486     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6487       Reloc::addr16_hi3(view, value);
6488       break;
6489
6490     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6491       if (size == 32)
6492         // R_PPC_EMB_SDAI16
6493         goto unsupp;
6494     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6495     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6496       Reloc::addr16_ha3(view, value);
6497       break;
6498
6499     case elfcpp::R_PPC64_DTPREL16_DS:
6500     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6501       if (size == 32)
6502         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
6503         goto unsupp;
6504     case elfcpp::R_PPC64_TPREL16_DS:
6505     case elfcpp::R_PPC64_TPREL16_LO_DS:
6506       if (size == 32)
6507         // R_PPC_TLSGD, R_PPC_TLSLD
6508         break;
6509     case elfcpp::R_PPC64_ADDR16_DS:
6510     case elfcpp::R_PPC64_ADDR16_LO_DS:
6511     case elfcpp::R_PPC64_TOC16_DS:
6512     case elfcpp::R_PPC64_TOC16_LO_DS:
6513     case elfcpp::R_PPC64_GOT16_DS:
6514     case elfcpp::R_PPC64_GOT16_LO_DS:
6515     case elfcpp::R_PPC64_SECTOFF_DS:
6516     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6517       status = Reloc::addr16_ds(view, value, overflow);
6518       break;
6519
6520     case elfcpp::R_POWERPC_ADDR14:
6521     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6522     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6523     case elfcpp::R_POWERPC_REL14:
6524     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6525     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6526       status = Reloc::addr14(view, value, overflow);
6527       break;
6528
6529     case elfcpp::R_POWERPC_COPY:
6530     case elfcpp::R_POWERPC_GLOB_DAT:
6531     case elfcpp::R_POWERPC_JMP_SLOT:
6532     case elfcpp::R_POWERPC_RELATIVE:
6533     case elfcpp::R_POWERPC_DTPMOD:
6534     case elfcpp::R_PPC64_JMP_IREL:
6535     case elfcpp::R_POWERPC_IRELATIVE:
6536       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6537                              _("unexpected reloc %u in object file"),
6538                              r_type);
6539       break;
6540
6541     case elfcpp::R_PPC_EMB_SDA21:
6542       if (size == 32)
6543         goto unsupp;
6544       else
6545         {
6546           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
6547         }
6548       break;
6549
6550     case elfcpp::R_PPC_EMB_SDA2I16:
6551     case elfcpp::R_PPC_EMB_SDA2REL:
6552       if (size == 32)
6553         goto unsupp;
6554       // R_PPC64_TLSGD, R_PPC64_TLSLD
6555       break;
6556
6557     case elfcpp::R_POWERPC_PLT32:
6558     case elfcpp::R_POWERPC_PLTREL32:
6559     case elfcpp::R_POWERPC_PLT16_LO:
6560     case elfcpp::R_POWERPC_PLT16_HI:
6561     case elfcpp::R_POWERPC_PLT16_HA:
6562     case elfcpp::R_PPC_SDAREL16:
6563     case elfcpp::R_POWERPC_ADDR30:
6564     case elfcpp::R_PPC64_PLT64:
6565     case elfcpp::R_PPC64_PLTREL64:
6566     case elfcpp::R_PPC64_PLTGOT16:
6567     case elfcpp::R_PPC64_PLTGOT16_LO:
6568     case elfcpp::R_PPC64_PLTGOT16_HI:
6569     case elfcpp::R_PPC64_PLTGOT16_HA:
6570     case elfcpp::R_PPC64_PLT16_LO_DS:
6571     case elfcpp::R_PPC64_PLTGOT16_DS:
6572     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
6573     case elfcpp::R_PPC_EMB_RELSEC16:
6574     case elfcpp::R_PPC_EMB_RELST_LO:
6575     case elfcpp::R_PPC_EMB_RELST_HI:
6576     case elfcpp::R_PPC_EMB_RELST_HA:
6577     case elfcpp::R_PPC_EMB_BIT_FLD:
6578     case elfcpp::R_PPC_EMB_RELSDA:
6579     case elfcpp::R_PPC_TOC16:
6580     default:
6581     unsupp:
6582       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6583                              _("unsupported reloc %u"),
6584                              r_type);
6585       break;
6586     }
6587   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
6588     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6589                            _("relocation overflow"));
6590
6591   return true;
6592 }
6593
6594 // Relocate section data.
6595
6596 template<int size, bool big_endian>
6597 void
6598 Target_powerpc<size, big_endian>::relocate_section(
6599     const Relocate_info<size, big_endian>* relinfo,
6600     unsigned int sh_type,
6601     const unsigned char* prelocs,
6602     size_t reloc_count,
6603     Output_section* output_section,
6604     bool needs_special_offset_handling,
6605     unsigned char* view,
6606     Address address,
6607     section_size_type view_size,
6608     const Reloc_symbol_changes* reloc_symbol_changes)
6609 {
6610   typedef Target_powerpc<size, big_endian> Powerpc;
6611   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
6612   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
6613     Powerpc_comdat_behavior;
6614
6615   gold_assert(sh_type == elfcpp::SHT_RELA);
6616
6617   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
6618                          Powerpc_relocate, Powerpc_comdat_behavior>(
6619     relinfo,
6620     this,
6621     prelocs,
6622     reloc_count,
6623     output_section,
6624     needs_special_offset_handling,
6625     view,
6626     address,
6627     view_size,
6628     reloc_symbol_changes);
6629 }
6630
6631 class Powerpc_scan_relocatable_reloc
6632 {
6633 public:
6634   // Return the strategy to use for a local symbol which is not a
6635   // section symbol, given the relocation type.
6636   inline Relocatable_relocs::Reloc_strategy
6637   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
6638   {
6639     if (r_type == 0 && r_sym == 0)
6640       return Relocatable_relocs::RELOC_DISCARD;
6641     return Relocatable_relocs::RELOC_COPY;
6642   }
6643
6644   // Return the strategy to use for a local symbol which is a section
6645   // symbol, given the relocation type.
6646   inline Relocatable_relocs::Reloc_strategy
6647   local_section_strategy(unsigned int, Relobj*)
6648   {
6649     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
6650   }
6651
6652   // Return the strategy to use for a global symbol, given the
6653   // relocation type, the object, and the symbol index.
6654   inline Relocatable_relocs::Reloc_strategy
6655   global_strategy(unsigned int r_type, Relobj*, unsigned int)
6656   {
6657     if (r_type == elfcpp::R_PPC_PLTREL24)
6658       return Relocatable_relocs::RELOC_SPECIAL;
6659     return Relocatable_relocs::RELOC_COPY;
6660   }
6661 };
6662
6663 // Scan the relocs during a relocatable link.
6664
6665 template<int size, bool big_endian>
6666 void
6667 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
6668     Symbol_table* symtab,
6669     Layout* layout,
6670     Sized_relobj_file<size, big_endian>* object,
6671     unsigned int data_shndx,
6672     unsigned int sh_type,
6673     const unsigned char* prelocs,
6674     size_t reloc_count,
6675     Output_section* output_section,
6676     bool needs_special_offset_handling,
6677     size_t local_symbol_count,
6678     const unsigned char* plocal_symbols,
6679     Relocatable_relocs* rr)
6680 {
6681   gold_assert(sh_type == elfcpp::SHT_RELA);
6682
6683   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
6684                                 Powerpc_scan_relocatable_reloc>(
6685     symtab,
6686     layout,
6687     object,
6688     data_shndx,
6689     prelocs,
6690     reloc_count,
6691     output_section,
6692     needs_special_offset_handling,
6693     local_symbol_count,
6694     plocal_symbols,
6695     rr);
6696 }
6697
6698 // Emit relocations for a section.
6699 // This is a modified version of the function by the same name in
6700 // target-reloc.h.  Using relocate_special_relocatable for
6701 // R_PPC_PLTREL24 would require duplication of the entire body of the
6702 // loop, so we may as well duplicate the whole thing.
6703
6704 template<int size, bool big_endian>
6705 void
6706 Target_powerpc<size, big_endian>::relocate_relocs(
6707     const Relocate_info<size, big_endian>* relinfo,
6708     unsigned int sh_type,
6709     const unsigned char* prelocs,
6710     size_t reloc_count,
6711     Output_section* output_section,
6712     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
6713     const Relocatable_relocs* rr,
6714     unsigned char*,
6715     Address view_address,
6716     section_size_type,
6717     unsigned char* reloc_view,
6718     section_size_type reloc_view_size)
6719 {
6720   gold_assert(sh_type == elfcpp::SHT_RELA);
6721
6722   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
6723     Reltype;
6724   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
6725     Reltype_write;
6726   const int reloc_size
6727     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
6728
6729   Powerpc_relobj<size, big_endian>* const object
6730     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6731   const unsigned int local_count = object->local_symbol_count();
6732   unsigned int got2_shndx = object->got2_shndx();
6733   Address got2_addend = 0;
6734   if (got2_shndx != 0)
6735     {
6736       got2_addend = object->get_output_section_offset(got2_shndx);
6737       gold_assert(got2_addend != invalid_address);
6738     }
6739
6740   unsigned char* pwrite = reloc_view;
6741   bool zap_next = false;
6742   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6743     {
6744       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
6745       if (strategy == Relocatable_relocs::RELOC_DISCARD)
6746         continue;
6747
6748       Reltype reloc(prelocs);
6749       Reltype_write reloc_write(pwrite);
6750
6751       Address offset = reloc.get_r_offset();
6752       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
6753       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
6754       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
6755       const unsigned int orig_r_sym = r_sym;
6756       typename elfcpp::Elf_types<size>::Elf_Swxword addend
6757         = reloc.get_r_addend();
6758       const Symbol* gsym = NULL;
6759
6760       if (zap_next)
6761         {
6762           // We could arrange to discard these and other relocs for
6763           // tls optimised sequences in the strategy methods, but for
6764           // now do as BFD ld does.
6765           r_type = elfcpp::R_POWERPC_NONE;
6766           zap_next = false;
6767         }
6768
6769       // Get the new symbol index.
6770       if (r_sym < local_count)
6771         {
6772           switch (strategy)
6773             {
6774             case Relocatable_relocs::RELOC_COPY:
6775             case Relocatable_relocs::RELOC_SPECIAL:
6776               if (r_sym != 0)
6777                 {
6778                   r_sym = object->symtab_index(r_sym);
6779                   gold_assert(r_sym != -1U);
6780                 }
6781               break;
6782
6783             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
6784               {
6785                 // We are adjusting a section symbol.  We need to find
6786                 // the symbol table index of the section symbol for
6787                 // the output section corresponding to input section
6788                 // in which this symbol is defined.
6789                 gold_assert(r_sym < local_count);
6790                 bool is_ordinary;
6791                 unsigned int shndx =
6792                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
6793                 gold_assert(is_ordinary);
6794                 Output_section* os = object->output_section(shndx);
6795                 gold_assert(os != NULL);
6796                 gold_assert(os->needs_symtab_index());
6797                 r_sym = os->symtab_index();
6798               }
6799               break;
6800
6801             default:
6802               gold_unreachable();
6803             }
6804         }
6805       else
6806         {
6807           gsym = object->global_symbol(r_sym);
6808           gold_assert(gsym != NULL);
6809           if (gsym->is_forwarder())
6810             gsym = relinfo->symtab->resolve_forwards(gsym);
6811
6812           gold_assert(gsym->has_symtab_index());
6813           r_sym = gsym->symtab_index();
6814         }
6815
6816       // Get the new offset--the location in the output section where
6817       // this relocation should be applied.
6818       if (static_cast<Address>(offset_in_output_section) != invalid_address)
6819         offset += offset_in_output_section;
6820       else
6821         {
6822           section_offset_type sot_offset =
6823             convert_types<section_offset_type, Address>(offset);
6824           section_offset_type new_sot_offset =
6825             output_section->output_offset(object, relinfo->data_shndx,
6826                                           sot_offset);
6827           gold_assert(new_sot_offset != -1);
6828           offset = new_sot_offset;
6829         }
6830
6831       // In an object file, r_offset is an offset within the section.
6832       // In an executable or dynamic object, generated by
6833       // --emit-relocs, r_offset is an absolute address.
6834       if (!parameters->options().relocatable())
6835         {
6836           offset += view_address;
6837           if (static_cast<Address>(offset_in_output_section) != invalid_address)
6838             offset -= offset_in_output_section;
6839         }
6840
6841       // Handle the reloc addend based on the strategy.
6842       if (strategy == Relocatable_relocs::RELOC_COPY)
6843         ;
6844       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
6845         {
6846           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
6847           addend = psymval->value(object, addend);
6848         }
6849       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
6850         {
6851           if (addend >= 32768)
6852             addend += got2_addend;
6853         }
6854       else
6855         gold_unreachable();
6856
6857       if (!parameters->options().relocatable())
6858         {
6859           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6860               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6861               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6862               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6863             {
6864               // First instruction of a global dynamic sequence,
6865               // arg setup insn.
6866               const bool final = gsym == NULL || gsym->final_value_is_known();
6867               switch (this->optimize_tls_gd(final))
6868                 {
6869                 case tls::TLSOPT_TO_IE:
6870                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6871                              - elfcpp::R_POWERPC_GOT_TLSGD16);
6872                   break;
6873                 case tls::TLSOPT_TO_LE:
6874                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6875                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6876                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
6877                   else
6878                     {
6879                       r_type = elfcpp::R_POWERPC_NONE;
6880                       offset -= 2 * big_endian;
6881                     }
6882                   break;
6883                 default:
6884                   break;
6885                 }
6886             }
6887           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6888                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6889                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6890                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6891             {
6892               // First instruction of a local dynamic sequence,
6893               // arg setup insn.
6894               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
6895                 {
6896                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6897                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6898                     {
6899                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
6900                       const Output_section* os = relinfo->layout->tls_segment()
6901                         ->first_section();
6902                       gold_assert(os != NULL);
6903                       gold_assert(os->needs_symtab_index());
6904                       r_sym = os->symtab_index();
6905                       addend = dtp_offset;
6906                     }
6907                   else
6908                     {
6909                       r_type = elfcpp::R_POWERPC_NONE;
6910                       offset -= 2 * big_endian;
6911                     }
6912                 }
6913             }
6914           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6915                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6916                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6917                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6918             {
6919               // First instruction of initial exec sequence.
6920               const bool final = gsym == NULL || gsym->final_value_is_known();
6921               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
6922                 {
6923                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6924                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6925                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
6926                   else
6927                     {
6928                       r_type = elfcpp::R_POWERPC_NONE;
6929                       offset -= 2 * big_endian;
6930                     }
6931                 }
6932             }
6933           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6934                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6935             {
6936               // Second instruction of a global dynamic sequence,
6937               // the __tls_get_addr call
6938               const bool final = gsym == NULL || gsym->final_value_is_known();
6939               switch (this->optimize_tls_gd(final))
6940                 {
6941                 case tls::TLSOPT_TO_IE:
6942                   r_type = elfcpp::R_POWERPC_NONE;
6943                   zap_next = true;
6944                   break;
6945                 case tls::TLSOPT_TO_LE:
6946                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
6947                   offset += 2 * big_endian;
6948                   zap_next = true;
6949                   break;
6950                 default:
6951                   break;
6952                 }
6953             }
6954           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6955                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6956             {
6957               // Second instruction of a local dynamic sequence,
6958               // the __tls_get_addr call
6959               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
6960                 {
6961                   const Output_section* os = relinfo->layout->tls_segment()
6962                     ->first_section();
6963                   gold_assert(os != NULL);
6964                   gold_assert(os->needs_symtab_index());
6965                   r_sym = os->symtab_index();
6966                   addend = dtp_offset;
6967                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
6968                   offset += 2 * big_endian;
6969                   zap_next = true;
6970                 }
6971             }
6972           else if (r_type == elfcpp::R_POWERPC_TLS)
6973             {
6974               // Second instruction of an initial exec sequence
6975               const bool final = gsym == NULL || gsym->final_value_is_known();
6976               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
6977                 {
6978                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
6979                   offset += 2 * big_endian;
6980                 }
6981             }
6982         }
6983
6984       reloc_write.put_r_offset(offset);
6985       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
6986       reloc_write.put_r_addend(addend);
6987
6988       pwrite += reloc_size;
6989     }
6990
6991   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
6992               == reloc_view_size);
6993 }
6994
6995 // Return the value to use for a dynamic symbol which requires special
6996 // treatment.  This is how we support equality comparisons of function
6997 // pointers across shared library boundaries, as described in the
6998 // processor specific ABI supplement.
6999
7000 template<int size, bool big_endian>
7001 uint64_t
7002 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7003 {
7004   if (size == 32)
7005     {
7006       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
7007       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7008            p != this->stub_tables_.end();
7009            ++p)
7010         {
7011           Address off = (*p)->find_plt_call_entry(gsym);
7012           if (off != invalid_address)
7013             return (*p)->stub_address() + off;
7014         }
7015     }
7016   gold_unreachable();
7017 }
7018
7019 // Return the PLT address to use for a local symbol.
7020 template<int size, bool big_endian>
7021 uint64_t
7022 Target_powerpc<size, big_endian>::do_plt_address_for_local(
7023     const Relobj* object,
7024     unsigned int symndx) const
7025 {
7026   if (size == 32)
7027     {
7028       const Sized_relobj<size, big_endian>* relobj
7029         = static_cast<const Sized_relobj<size, big_endian>*>(object);
7030       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7031            p != this->stub_tables_.end();
7032            ++p)
7033         {
7034           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
7035                                                   symndx);
7036           if (off != invalid_address)
7037             return (*p)->stub_address() + off;
7038         }
7039     }
7040   gold_unreachable();
7041 }
7042
7043 // Return the PLT address to use for a global symbol.
7044 template<int size, bool big_endian>
7045 uint64_t
7046 Target_powerpc<size, big_endian>::do_plt_address_for_global(
7047     const Symbol* gsym) const
7048 {
7049   if (size == 32)
7050     {
7051       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7052            p != this->stub_tables_.end();
7053            ++p)
7054         {
7055           Address off = (*p)->find_plt_call_entry(gsym);
7056           if (off != invalid_address)
7057             return (*p)->stub_address() + off;
7058         }
7059     }
7060   gold_unreachable();
7061 }
7062
7063 // Return the offset to use for the GOT_INDX'th got entry which is
7064 // for a local tls symbol specified by OBJECT, SYMNDX.
7065 template<int size, bool big_endian>
7066 int64_t
7067 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
7068     const Relobj* object,
7069     unsigned int symndx,
7070     unsigned int got_indx) const
7071 {
7072   const Powerpc_relobj<size, big_endian>* ppc_object
7073     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
7074   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
7075     {
7076       for (Got_type got_type = GOT_TYPE_TLSGD;
7077            got_type <= GOT_TYPE_TPREL;
7078            got_type = Got_type(got_type + 1))
7079         if (ppc_object->local_has_got_offset(symndx, got_type))
7080           {
7081             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
7082             if (got_type == GOT_TYPE_TLSGD)
7083               off += size / 8;
7084             if (off == got_indx * (size / 8))
7085               {
7086                 if (got_type == GOT_TYPE_TPREL)
7087                   return -tp_offset;
7088                 else
7089                   return -dtp_offset;
7090               }
7091           }
7092     }
7093   gold_unreachable();
7094 }
7095
7096 // Return the offset to use for the GOT_INDX'th got entry which is
7097 // for global tls symbol GSYM.
7098 template<int size, bool big_endian>
7099 int64_t
7100 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
7101     Symbol* gsym,
7102     unsigned int got_indx) const
7103 {
7104   if (gsym->type() == elfcpp::STT_TLS)
7105     {
7106       for (Got_type got_type = GOT_TYPE_TLSGD;
7107            got_type <= GOT_TYPE_TPREL;
7108            got_type = Got_type(got_type + 1))
7109         if (gsym->has_got_offset(got_type))
7110           {
7111             unsigned int off = gsym->got_offset(got_type);
7112             if (got_type == GOT_TYPE_TLSGD)
7113               off += size / 8;
7114             if (off == got_indx * (size / 8))
7115               {
7116                 if (got_type == GOT_TYPE_TPREL)
7117                   return -tp_offset;
7118                 else
7119                   return -dtp_offset;
7120               }
7121           }
7122     }
7123   gold_unreachable();
7124 }
7125
7126 // The selector for powerpc object files.
7127
7128 template<int size, bool big_endian>
7129 class Target_selector_powerpc : public Target_selector
7130 {
7131 public:
7132   Target_selector_powerpc()
7133     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
7134                       size, big_endian,
7135                       (size == 64
7136                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
7137                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
7138                       (size == 64
7139                        ? (big_endian ? "elf64ppc" : "elf64lppc")
7140                        : (big_endian ? "elf32ppc" : "elf32lppc")))
7141   { }
7142
7143   virtual Target*
7144   do_instantiate_target()
7145   { return new Target_powerpc<size, big_endian>(); }
7146 };
7147
7148 Target_selector_powerpc<32, true> target_selector_ppc32;
7149 Target_selector_powerpc<32, false> target_selector_ppc32le;
7150 Target_selector_powerpc<64, true> target_selector_ppc64;
7151 Target_selector_powerpc<64, false> target_selector_ppc64le;
7152
7153 // Instantiate these constants for -O0
7154 template<int size, bool big_endian>
7155 const int Output_data_glink<size, big_endian>::pltresolve_size;
7156 template<int size, bool big_endian>
7157 const typename Stub_table<size, big_endian>::Address
7158   Stub_table<size, big_endian>::invalid_address;
7159 template<int size, bool big_endian>
7160 const typename Target_powerpc<size, big_endian>::Address
7161   Target_powerpc<size, big_endian>::invalid_address;
7162
7163 } // End anonymous namespace.