[GOLD] R_PPC64_REL16_HIGH relocs
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2019 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44 #include "attributes.h"
45
46 namespace
47 {
48
49 using namespace gold;
50
51 template<int size, bool big_endian>
52 class Output_data_plt_powerpc;
53
54 template<int size, bool big_endian>
55 class Output_data_brlt_powerpc;
56
57 template<int size, bool big_endian>
58 class Output_data_got_powerpc;
59
60 template<int size, bool big_endian>
61 class Output_data_glink;
62
63 template<int size, bool big_endian>
64 class Stub_table;
65
66 template<int size, bool big_endian>
67 class Output_data_save_res;
68
69 template<int size, bool big_endian>
70 class Target_powerpc;
71
72 struct Stub_table_owner
73 {
74   Stub_table_owner()
75     : output_section(NULL), owner(NULL)
76   { }
77
78   Output_section* output_section;
79   const Output_section::Input_section* owner;
80 };
81
82 inline bool is_branch_reloc(unsigned int);
83
84 template<int size>
85 inline bool is_plt16_reloc(unsigned int);
86
87 // Counter incremented on every Powerpc_relobj constructed.
88 static uint32_t object_id = 0;
89
90 template<int size, bool big_endian>
91 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
92 {
93 public:
94   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
95   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
96   typedef Unordered_map<Address, Section_refs> Access_from;
97
98   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
99                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
100     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
101       uniq_(object_id++), special_(0), relatoc_(0), toc_(0),
102       has_small_toc_reloc_(false), opd_valid_(false),
103       e_flags_(ehdr.get_e_flags()), no_toc_opt_(), opd_ent_(),
104       access_from_map_(), has14_(), stub_table_index_(), st_other_(),
105       attributes_section_data_(NULL)
106   {
107     this->set_abiversion(0);
108   }
109
110   ~Powerpc_relobj()
111   { delete this->attributes_section_data_; }
112
113   // Read the symbols then set up st_other vector.
114   void
115   do_read_symbols(Read_symbols_data*);
116
117   // Arrange to always relocate .toc first.
118   virtual void
119   do_relocate_sections(
120       const Symbol_table* symtab, const Layout* layout,
121       const unsigned char* pshdrs, Output_file* of,
122       typename Sized_relobj_file<size, big_endian>::Views* pviews);
123
124   // The .toc section index.
125   unsigned int
126   toc_shndx() const
127   {
128     return this->toc_;
129   }
130
131   // Mark .toc entry at OFF as not optimizable.
132   void
133   set_no_toc_opt(Address off)
134   {
135     if (this->no_toc_opt_.empty())
136       this->no_toc_opt_.resize(this->section_size(this->toc_shndx())
137                                / (size / 8));
138     off /= size / 8;
139     if (off < this->no_toc_opt_.size())
140       this->no_toc_opt_[off] = true;
141   }
142
143   // Mark the entire .toc as not optimizable.
144   void
145   set_no_toc_opt()
146   {
147     this->no_toc_opt_.resize(1);
148     this->no_toc_opt_[0] = true;
149   }
150
151   // Return true if code using the .toc entry at OFF should not be edited.
152   bool
153   no_toc_opt(Address off) const
154   {
155     if (this->no_toc_opt_.empty())
156       return false;
157     off /= size / 8;
158     if (off >= this->no_toc_opt_.size())
159       return true;
160     return this->no_toc_opt_[off];
161   }
162
163   // The .got2 section shndx.
164   unsigned int
165   got2_shndx() const
166   {
167     if (size == 32)
168       return this->special_;
169     else
170       return 0;
171   }
172
173   // The .opd section shndx.
174   unsigned int
175   opd_shndx() const
176   {
177     if (size == 32)
178       return 0;
179     else
180       return this->special_;
181   }
182
183   // Init OPD entry arrays.
184   void
185   init_opd(size_t opd_size)
186   {
187     size_t count = this->opd_ent_ndx(opd_size);
188     this->opd_ent_.resize(count);
189   }
190
191   // Return section and offset of function entry for .opd + R_OFF.
192   unsigned int
193   get_opd_ent(Address r_off, Address* value = NULL) const
194   {
195     size_t ndx = this->opd_ent_ndx(r_off);
196     gold_assert(ndx < this->opd_ent_.size());
197     gold_assert(this->opd_ent_[ndx].shndx != 0);
198     if (value != NULL)
199       *value = this->opd_ent_[ndx].off;
200     return this->opd_ent_[ndx].shndx;
201   }
202
203   // Set section and offset of function entry for .opd + R_OFF.
204   void
205   set_opd_ent(Address r_off, unsigned int shndx, Address value)
206   {
207     size_t ndx = this->opd_ent_ndx(r_off);
208     gold_assert(ndx < this->opd_ent_.size());
209     this->opd_ent_[ndx].shndx = shndx;
210     this->opd_ent_[ndx].off = value;
211   }
212
213   // Return discard flag for .opd + R_OFF.
214   bool
215   get_opd_discard(Address r_off) const
216   {
217     size_t ndx = this->opd_ent_ndx(r_off);
218     gold_assert(ndx < this->opd_ent_.size());
219     return this->opd_ent_[ndx].discard;
220   }
221
222   // Set discard flag for .opd + R_OFF.
223   void
224   set_opd_discard(Address r_off)
225   {
226     size_t ndx = this->opd_ent_ndx(r_off);
227     gold_assert(ndx < this->opd_ent_.size());
228     this->opd_ent_[ndx].discard = true;
229   }
230
231   bool
232   opd_valid() const
233   { return this->opd_valid_; }
234
235   void
236   set_opd_valid()
237   { this->opd_valid_ = true; }
238
239   // Examine .rela.opd to build info about function entry points.
240   void
241   scan_opd_relocs(size_t reloc_count,
242                   const unsigned char* prelocs,
243                   const unsigned char* plocal_syms);
244
245   // Returns true if a code sequence loading a TOC entry can be
246   // converted into code calculating a TOC pointer relative offset.
247   bool
248   make_toc_relative(Target_powerpc<size, big_endian>* target,
249                     Address* value);
250
251   // Perform the Sized_relobj_file method, then set up opd info from
252   // .opd relocs.
253   void
254   do_read_relocs(Read_relocs_data*);
255
256   bool
257   do_find_special_sections(Read_symbols_data* sd);
258
259   // Adjust this local symbol value.  Return false if the symbol
260   // should be discarded from the output file.
261   bool
262   do_adjust_local_symbol(Symbol_value<size>* lv) const
263   {
264     if (size == 64 && this->opd_shndx() != 0)
265       {
266         bool is_ordinary;
267         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
268           return true;
269         if (this->get_opd_discard(lv->input_value()))
270           return false;
271       }
272     return true;
273   }
274
275   Access_from*
276   access_from_map()
277   { return &this->access_from_map_; }
278
279   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
280   // section at DST_OFF.
281   void
282   add_reference(Relobj* src_obj,
283                 unsigned int src_indx,
284                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
285   {
286     Section_id src_id(src_obj, src_indx);
287     this->access_from_map_[dst_off].insert(src_id);
288   }
289
290   // Add a reference to the code section specified by the .opd entry
291   // at DST_OFF
292   void
293   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
294   {
295     size_t ndx = this->opd_ent_ndx(dst_off);
296     if (ndx >= this->opd_ent_.size())
297       this->opd_ent_.resize(ndx + 1);
298     this->opd_ent_[ndx].gc_mark = true;
299   }
300
301   void
302   process_gc_mark(Symbol_table* symtab)
303   {
304     for (size_t i = 0; i < this->opd_ent_.size(); i++)
305       if (this->opd_ent_[i].gc_mark)
306         {
307           unsigned int shndx = this->opd_ent_[i].shndx;
308           symtab->gc()->worklist().push_back(Section_id(this, shndx));
309         }
310   }
311
312   // Return offset in output GOT section that this object will use
313   // as a TOC pointer.  Won't be just a constant with multi-toc support.
314   Address
315   toc_base_offset() const
316   { return 0x8000; }
317
318   void
319   set_has_small_toc_reloc()
320   { has_small_toc_reloc_ = true; }
321
322   bool
323   has_small_toc_reloc() const
324   { return has_small_toc_reloc_; }
325
326   void
327   set_has_14bit_branch(unsigned int shndx)
328   {
329     if (shndx >= this->has14_.size())
330       this->has14_.resize(shndx + 1);
331     this->has14_[shndx] = true;
332   }
333
334   bool
335   has_14bit_branch(unsigned int shndx) const
336   { return shndx < this->has14_.size() && this->has14_[shndx];  }
337
338   void
339   set_stub_table(unsigned int shndx, unsigned int stub_index)
340   {
341     if (shndx >= this->stub_table_index_.size())
342       this->stub_table_index_.resize(shndx + 1, -1);
343     this->stub_table_index_[shndx] = stub_index;
344   }
345
346   Stub_table<size, big_endian>*
347   stub_table(unsigned int shndx)
348   {
349     if (shndx < this->stub_table_index_.size())
350       {
351         Target_powerpc<size, big_endian>* target
352           = static_cast<Target_powerpc<size, big_endian>*>(
353               parameters->sized_target<size, big_endian>());
354         unsigned int indx = this->stub_table_index_[shndx];
355         if (indx < target->stub_tables().size())
356           return target->stub_tables()[indx];
357       }
358     return NULL;
359   }
360
361   void
362   clear_stub_table()
363   {
364     this->stub_table_index_.clear();
365   }
366
367   uint32_t
368   uniq() const
369   { return this->uniq_; }
370
371   int
372   abiversion() const
373   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
374
375   // Set ABI version for input and output
376   void
377   set_abiversion(int ver);
378
379   unsigned int
380   st_other (unsigned int symndx) const
381   {
382     return this->st_other_[symndx];
383   }
384
385   unsigned int
386   ppc64_local_entry_offset(const Symbol* sym) const
387   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
388
389   unsigned int
390   ppc64_local_entry_offset(unsigned int symndx) const
391   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
392
393   // The contents of the .gnu.attributes section if there is one.
394   const Attributes_section_data*
395   attributes_section_data() const
396   { return this->attributes_section_data_; }
397
398 private:
399   struct Opd_ent
400   {
401     unsigned int shndx;
402     bool discard : 1;
403     bool gc_mark : 1;
404     Address off;
405   };
406
407   // Return index into opd_ent_ array for .opd entry at OFF.
408   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
409   // apart when the language doesn't use the last 8-byte word, the
410   // environment pointer.  Thus dividing the entry section offset by
411   // 16 will give an index into opd_ent_ that works for either layout
412   // of .opd.  (It leaves some elements of the vector unused when .opd
413   // entries are spaced 24 bytes apart, but we don't know the spacing
414   // until relocations are processed, and in any case it is possible
415   // for an object to have some entries spaced 16 bytes apart and
416   // others 24 bytes apart.)
417   size_t
418   opd_ent_ndx(size_t off) const
419   { return off >> 4;}
420
421   // Per object unique identifier
422   uint32_t uniq_;
423
424   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
425   unsigned int special_;
426
427   // For 64-bit the .rela.toc and .toc section shdnx.
428   unsigned int relatoc_;
429   unsigned int toc_;
430
431   // For 64-bit, whether this object uses small model relocs to access
432   // the toc.
433   bool has_small_toc_reloc_;
434
435   // Set at the start of gc_process_relocs, when we know opd_ent_
436   // vector is valid.  The flag could be made atomic and set in
437   // do_read_relocs with memory_order_release and then tested with
438   // memory_order_acquire, potentially resulting in fewer entries in
439   // access_from_map_.
440   bool opd_valid_;
441
442   // Header e_flags
443   elfcpp::Elf_Word e_flags_;
444
445   // For 64-bit, an array with one entry per 64-bit word in the .toc
446   // section, set if accesses using that word cannot be optimised.
447   std::vector<bool> no_toc_opt_;
448
449   // The first 8-byte word of an OPD entry gives the address of the
450   // entry point of the function.  Relocatable object files have a
451   // relocation on this word.  The following vector records the
452   // section and offset specified by these relocations.
453   std::vector<Opd_ent> opd_ent_;
454
455   // References made to this object's .opd section when running
456   // gc_process_relocs for another object, before the opd_ent_ vector
457   // is valid for this object.
458   Access_from access_from_map_;
459
460   // Whether input section has a 14-bit branch reloc.
461   std::vector<bool> has14_;
462
463   // The stub table to use for a given input section.
464   std::vector<unsigned int> stub_table_index_;
465
466   // ELF st_other field for local symbols.
467   std::vector<unsigned char> st_other_;
468
469   // Object attributes if there is a .gnu.attributes section.
470   Attributes_section_data* attributes_section_data_;
471 };
472
473 template<int size, bool big_endian>
474 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
475 {
476 public:
477   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478
479   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
480                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
481     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
482       opd_shndx_(0), e_flags_(ehdr.get_e_flags()), opd_ent_(),
483       attributes_section_data_(NULL)
484   {
485     this->set_abiversion(0);
486   }
487
488   ~Powerpc_dynobj()
489   { delete this->attributes_section_data_; }
490
491   // Call Sized_dynobj::do_read_symbols to read the symbols then
492   // read .opd from a dynamic object, filling in opd_ent_ vector,
493   void
494   do_read_symbols(Read_symbols_data*);
495
496   // The .opd section shndx.
497   unsigned int
498   opd_shndx() const
499   {
500     return this->opd_shndx_;
501   }
502
503   // The .opd section address.
504   Address
505   opd_address() const
506   {
507     return this->opd_address_;
508   }
509
510   // Init OPD entry arrays.
511   void
512   init_opd(size_t opd_size)
513   {
514     size_t count = this->opd_ent_ndx(opd_size);
515     this->opd_ent_.resize(count);
516   }
517
518   // Return section and offset of function entry for .opd + R_OFF.
519   unsigned int
520   get_opd_ent(Address r_off, Address* value = NULL) const
521   {
522     size_t ndx = this->opd_ent_ndx(r_off);
523     gold_assert(ndx < this->opd_ent_.size());
524     gold_assert(this->opd_ent_[ndx].shndx != 0);
525     if (value != NULL)
526       *value = this->opd_ent_[ndx].off;
527     return this->opd_ent_[ndx].shndx;
528   }
529
530   // Set section and offset of function entry for .opd + R_OFF.
531   void
532   set_opd_ent(Address r_off, unsigned int shndx, Address value)
533   {
534     size_t ndx = this->opd_ent_ndx(r_off);
535     gold_assert(ndx < this->opd_ent_.size());
536     this->opd_ent_[ndx].shndx = shndx;
537     this->opd_ent_[ndx].off = value;
538   }
539
540   int
541   abiversion() const
542   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
543
544   // Set ABI version for input and output.
545   void
546   set_abiversion(int ver);
547
548   // The contents of the .gnu.attributes section if there is one.
549   const Attributes_section_data*
550   attributes_section_data() const
551   { return this->attributes_section_data_; }
552
553 private:
554   // Used to specify extent of executable sections.
555   struct Sec_info
556   {
557     Sec_info(Address start_, Address len_, unsigned int shndx_)
558       : start(start_), len(len_), shndx(shndx_)
559     { }
560
561     bool
562     operator<(const Sec_info& that) const
563     { return this->start < that.start; }
564
565     Address start;
566     Address len;
567     unsigned int shndx;
568   };
569
570   struct Opd_ent
571   {
572     unsigned int shndx;
573     Address off;
574   };
575
576   // Return index into opd_ent_ array for .opd entry at OFF.
577   size_t
578   opd_ent_ndx(size_t off) const
579   { return off >> 4;}
580
581   // For 64-bit the .opd section shndx and address.
582   unsigned int opd_shndx_;
583   Address opd_address_;
584
585   // Header e_flags
586   elfcpp::Elf_Word e_flags_;
587
588   // The first 8-byte word of an OPD entry gives the address of the
589   // entry point of the function.  Records the section and offset
590   // corresponding to the address.  Note that in dynamic objects,
591   // offset is *not* relative to the section.
592   std::vector<Opd_ent> opd_ent_;
593
594   // Object attributes if there is a .gnu.attributes section.
595   Attributes_section_data* attributes_section_data_;
596 };
597
598 // Powerpc_copy_relocs class.  Needed to peek at dynamic relocs the
599 // base class will emit.
600
601 template<int sh_type, int size, bool big_endian>
602 class Powerpc_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
603 {
604  public:
605   Powerpc_copy_relocs()
606     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_POWERPC_COPY)
607   { }
608
609   // Emit any saved relocations which turn out to be needed.  This is
610   // called after all the relocs have been scanned.
611   void
612   emit(Output_data_reloc<sh_type, true, size, big_endian>*);
613 };
614
615 template<int size, bool big_endian>
616 class Target_powerpc : public Sized_target<size, big_endian>
617 {
618  public:
619   typedef
620     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
621   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
622   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
623   typedef Unordered_set<Symbol_location, Symbol_location_hash> Tocsave_loc;
624   static const Address invalid_address = static_cast<Address>(0) - 1;
625   // Offset of tp and dtp pointers from start of TLS block.
626   static const Address tp_offset = 0x7000;
627   static const Address dtp_offset = 0x8000;
628
629   Target_powerpc()
630     : Sized_target<size, big_endian>(&powerpc_info),
631       got_(NULL), plt_(NULL), iplt_(NULL), lplt_(NULL), brlt_section_(NULL),
632       glink_(NULL), rela_dyn_(NULL), copy_relocs_(),
633       tlsld_got_offset_(-1U),
634       stub_tables_(), branch_lookup_table_(), branch_info_(), tocsave_loc_(),
635       plt_thread_safe_(false), plt_localentry0_(false),
636       plt_localentry0_init_(false), has_localentry0_(false),
637       has_tls_get_addr_opt_(false),
638       relax_failed_(false), relax_fail_count_(0),
639       stub_group_size_(0), savres_section_(0),
640       tls_get_addr_(NULL), tls_get_addr_opt_(NULL),
641       attributes_section_data_(NULL),
642       last_fp_(NULL), last_ld_(NULL), last_vec_(NULL), last_struct_(NULL)
643   {
644   }
645
646   // Process the relocations to determine unreferenced sections for
647   // garbage collection.
648   void
649   gc_process_relocs(Symbol_table* symtab,
650                     Layout* layout,
651                     Sized_relobj_file<size, big_endian>* object,
652                     unsigned int data_shndx,
653                     unsigned int sh_type,
654                     const unsigned char* prelocs,
655                     size_t reloc_count,
656                     Output_section* output_section,
657                     bool needs_special_offset_handling,
658                     size_t local_symbol_count,
659                     const unsigned char* plocal_symbols);
660
661   // Scan the relocations to look for symbol adjustments.
662   void
663   scan_relocs(Symbol_table* symtab,
664               Layout* layout,
665               Sized_relobj_file<size, big_endian>* object,
666               unsigned int data_shndx,
667               unsigned int sh_type,
668               const unsigned char* prelocs,
669               size_t reloc_count,
670               Output_section* output_section,
671               bool needs_special_offset_handling,
672               size_t local_symbol_count,
673               const unsigned char* plocal_symbols);
674
675   // Map input .toc section to output .got section.
676   const char*
677   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
678   {
679     if (size == 64 && strcmp(name, ".toc") == 0)
680       {
681         *plen = 4;
682         return ".got";
683       }
684     return NULL;
685   }
686
687   // Provide linker defined save/restore functions.
688   void
689   define_save_restore_funcs(Layout*, Symbol_table*);
690
691   // No stubs unless a final link.
692   bool
693   do_may_relax() const
694   { return !parameters->options().relocatable(); }
695
696   bool
697   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
698
699   void
700   do_plt_fde_location(const Output_data*, unsigned char*,
701                       uint64_t*, off_t*) const;
702
703   // Stash info about branches, for stub generation.
704   void
705   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
706               unsigned int data_shndx, Address r_offset,
707               unsigned int r_type, unsigned int r_sym, Address addend)
708   {
709     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
710     this->branch_info_.push_back(info);
711     if (r_type == elfcpp::R_POWERPC_REL14
712         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
713         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
714       ppc_object->set_has_14bit_branch(data_shndx);
715   }
716
717   // Return whether the last branch is a plt call, and if so, mark the
718   // branch as having an R_PPC64_TOCSAVE.
719   bool
720   mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
721                unsigned int data_shndx, Address r_offset, Symbol_table* symtab)
722   {
723     return (size == 64
724             && !this->branch_info_.empty()
725             && this->branch_info_.back().mark_pltcall(ppc_object, data_shndx,
726                                                       r_offset, this, symtab));
727   }
728
729   // Say the given location, that of a nop in a function prologue with
730   // an R_PPC64_TOCSAVE reloc, will be used to save r2.
731   // R_PPC64_TOCSAVE relocs on nops following calls point at this nop.
732   void
733   add_tocsave(Powerpc_relobj<size, big_endian>* ppc_object,
734               unsigned int shndx, Address offset)
735   {
736     Symbol_location loc;
737     loc.object = ppc_object;
738     loc.shndx = shndx;
739     loc.offset = offset;
740     this->tocsave_loc_.insert(loc);
741   }
742
743   // Accessor
744   const Tocsave_loc
745   tocsave_loc() const
746   {
747     return this->tocsave_loc_;
748   }
749
750   void
751   do_define_standard_symbols(Symbol_table*, Layout*);
752
753   // Finalize the sections.
754   void
755   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
756
757   // Return the value to use for a dynamic which requires special
758   // treatment.
759   uint64_t
760   do_dynsym_value(const Symbol*) const;
761
762   // Return the PLT address to use for a local symbol.
763   uint64_t
764   do_plt_address_for_local(const Relobj*, unsigned int) const;
765
766   // Return the PLT address to use for a global symbol.
767   uint64_t
768   do_plt_address_for_global(const Symbol*) const;
769
770   // Return the offset to use for the GOT_INDX'th got entry which is
771   // for a local tls symbol specified by OBJECT, SYMNDX.
772   int64_t
773   do_tls_offset_for_local(const Relobj* object,
774                           unsigned int symndx,
775                           unsigned int got_indx) const;
776
777   // Return the offset to use for the GOT_INDX'th got entry which is
778   // for global tls symbol GSYM.
779   int64_t
780   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
781
782   void
783   do_function_location(Symbol_location*) const;
784
785   bool
786   do_can_check_for_function_pointers() const
787   { return true; }
788
789   // Adjust -fsplit-stack code which calls non-split-stack code.
790   void
791   do_calls_non_split(Relobj* object, unsigned int shndx,
792                      section_offset_type fnoffset, section_size_type fnsize,
793                      const unsigned char* prelocs, size_t reloc_count,
794                      unsigned char* view, section_size_type view_size,
795                      std::string* from, std::string* to) const;
796
797   // Relocate a section.
798   void
799   relocate_section(const Relocate_info<size, big_endian>*,
800                    unsigned int sh_type,
801                    const unsigned char* prelocs,
802                    size_t reloc_count,
803                    Output_section* output_section,
804                    bool needs_special_offset_handling,
805                    unsigned char* view,
806                    Address view_address,
807                    section_size_type view_size,
808                    const Reloc_symbol_changes*);
809
810   // Scan the relocs during a relocatable link.
811   void
812   scan_relocatable_relocs(Symbol_table* symtab,
813                           Layout* layout,
814                           Sized_relobj_file<size, big_endian>* object,
815                           unsigned int data_shndx,
816                           unsigned int sh_type,
817                           const unsigned char* prelocs,
818                           size_t reloc_count,
819                           Output_section* output_section,
820                           bool needs_special_offset_handling,
821                           size_t local_symbol_count,
822                           const unsigned char* plocal_symbols,
823                           Relocatable_relocs*);
824
825   // Scan the relocs for --emit-relocs.
826   void
827   emit_relocs_scan(Symbol_table* symtab,
828                    Layout* layout,
829                    Sized_relobj_file<size, big_endian>* object,
830                    unsigned int data_shndx,
831                    unsigned int sh_type,
832                    const unsigned char* prelocs,
833                    size_t reloc_count,
834                    Output_section* output_section,
835                    bool needs_special_offset_handling,
836                    size_t local_symbol_count,
837                    const unsigned char* plocal_syms,
838                    Relocatable_relocs* rr);
839
840   // Emit relocations for a section.
841   void
842   relocate_relocs(const Relocate_info<size, big_endian>*,
843                   unsigned int sh_type,
844                   const unsigned char* prelocs,
845                   size_t reloc_count,
846                   Output_section* output_section,
847                   typename elfcpp::Elf_types<size>::Elf_Off
848                     offset_in_output_section,
849                   unsigned char*,
850                   Address view_address,
851                   section_size_type,
852                   unsigned char* reloc_view,
853                   section_size_type reloc_view_size);
854
855   // Return whether SYM is defined by the ABI.
856   bool
857   do_is_defined_by_abi(const Symbol* sym) const
858   {
859     return strcmp(sym->name(), "__tls_get_addr") == 0;
860   }
861
862   // Return the size of the GOT section.
863   section_size_type
864   got_size() const
865   {
866     gold_assert(this->got_ != NULL);
867     return this->got_->data_size();
868   }
869
870   // Get the PLT section.
871   const Output_data_plt_powerpc<size, big_endian>*
872   plt_section() const
873   {
874     gold_assert(this->plt_ != NULL);
875     return this->plt_;
876   }
877
878   // Get the IPLT section.
879   const Output_data_plt_powerpc<size, big_endian>*
880   iplt_section() const
881   {
882     gold_assert(this->iplt_ != NULL);
883     return this->iplt_;
884   }
885
886   // Get the LPLT section.
887   const Output_data_plt_powerpc<size, big_endian>*
888   lplt_section() const
889   {
890     return this->lplt_;
891   }
892
893   // Return the plt offset and section for the given global sym.
894   Address
895   plt_off(const Symbol* gsym,
896           const Output_data_plt_powerpc<size, big_endian>** sec) const
897   {
898     if (gsym->type() == elfcpp::STT_GNU_IFUNC
899         && gsym->can_use_relative_reloc(false))
900       *sec = this->iplt_section();
901     else
902       *sec = this->plt_section();
903     return gsym->plt_offset();
904   }
905
906   // Return the plt offset and section for the given local sym.
907   Address
908   plt_off(const Sized_relobj_file<size, big_endian>* relobj,
909           unsigned int local_sym_index,
910           const Output_data_plt_powerpc<size, big_endian>** sec) const
911   {
912     const Symbol_value<size>* lsym = relobj->local_symbol(local_sym_index);
913     if (lsym->is_ifunc_symbol())
914       *sec = this->iplt_section();
915     else
916       *sec = this->lplt_section();
917     return relobj->local_plt_offset(local_sym_index);
918   }
919
920   // Get the .glink section.
921   const Output_data_glink<size, big_endian>*
922   glink_section() const
923   {
924     gold_assert(this->glink_ != NULL);
925     return this->glink_;
926   }
927
928   Output_data_glink<size, big_endian>*
929   glink_section()
930   {
931     gold_assert(this->glink_ != NULL);
932     return this->glink_;
933   }
934
935   bool has_glink() const
936   { return this->glink_ != NULL; }
937
938   // Get the GOT section.
939   const Output_data_got_powerpc<size, big_endian>*
940   got_section() const
941   {
942     gold_assert(this->got_ != NULL);
943     return this->got_;
944   }
945
946   // Get the GOT section, creating it if necessary.
947   Output_data_got_powerpc<size, big_endian>*
948   got_section(Symbol_table*, Layout*);
949
950   Object*
951   do_make_elf_object(const std::string&, Input_file*, off_t,
952                      const elfcpp::Ehdr<size, big_endian>&);
953
954   // Return the number of entries in the GOT.
955   unsigned int
956   got_entry_count() const
957   {
958     if (this->got_ == NULL)
959       return 0;
960     return this->got_size() / (size / 8);
961   }
962
963   // Return the number of entries in the PLT.
964   unsigned int
965   plt_entry_count() const;
966
967   // Return the offset of the first non-reserved PLT entry.
968   unsigned int
969   first_plt_entry_offset() const
970   {
971     if (size == 32)
972       return 0;
973     if (this->abiversion() >= 2)
974       return 16;
975     return 24;
976   }
977
978   // Return the size of each PLT entry.
979   unsigned int
980   plt_entry_size() const
981   {
982     if (size == 32)
983       return 4;
984     if (this->abiversion() >= 2)
985       return 8;
986     return 24;
987   }
988
989   Output_data_save_res<size, big_endian>*
990   savres_section() const
991   {
992     return this->savres_section_;
993   }
994
995   // Add any special sections for this symbol to the gc work list.
996   // For powerpc64, this adds the code section of a function
997   // descriptor.
998   void
999   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
1000
1001   // Handle target specific gc actions when adding a gc reference from
1002   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
1003   // and DST_OFF.  For powerpc64, this adds a referenc to the code
1004   // section of a function descriptor.
1005   void
1006   do_gc_add_reference(Symbol_table* symtab,
1007                       Relobj* src_obj,
1008                       unsigned int src_shndx,
1009                       Relobj* dst_obj,
1010                       unsigned int dst_shndx,
1011                       Address dst_off) const;
1012
1013   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
1014   const Stub_tables&
1015   stub_tables() const
1016   { return this->stub_tables_; }
1017
1018   const Output_data_brlt_powerpc<size, big_endian>*
1019   brlt_section() const
1020   { return this->brlt_section_; }
1021
1022   void
1023   add_branch_lookup_table(Address to)
1024   {
1025     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
1026     this->branch_lookup_table_.insert(std::make_pair(to, off));
1027   }
1028
1029   Address
1030   find_branch_lookup_table(Address to)
1031   {
1032     typename Branch_lookup_table::const_iterator p
1033       = this->branch_lookup_table_.find(to);
1034     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
1035   }
1036
1037   void
1038   write_branch_lookup_table(unsigned char *oview)
1039   {
1040     for (typename Branch_lookup_table::const_iterator p
1041            = this->branch_lookup_table_.begin();
1042          p != this->branch_lookup_table_.end();
1043          ++p)
1044       {
1045         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
1046       }
1047   }
1048
1049   // Wrapper used after relax to define a local symbol in output data,
1050   // from the end if value < 0.
1051   void
1052   define_local(Symbol_table* symtab, const char* name,
1053                Output_data* od, Address value, unsigned int symsize)
1054   {
1055     Symbol* sym
1056       = symtab->define_in_output_data(name, NULL, Symbol_table::PREDEFINED,
1057                                       od, value, symsize, elfcpp::STT_NOTYPE,
1058                                       elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0,
1059                                       static_cast<Signed_address>(value) < 0,
1060                                       false);
1061     // We are creating this symbol late, so need to fix up things
1062     // done early in Layout::finalize.
1063     sym->set_dynsym_index(-1U);
1064   }
1065
1066   bool
1067   plt_thread_safe() const
1068   { return this->plt_thread_safe_; }
1069
1070   bool
1071   plt_localentry0() const
1072   { return this->plt_localentry0_; }
1073
1074   void
1075   set_has_localentry0()
1076   {
1077     this->has_localentry0_ = true;
1078   }
1079
1080   bool
1081   is_elfv2_localentry0(const Symbol* gsym) const
1082   {
1083     return (size == 64
1084             && this->abiversion() >= 2
1085             && this->plt_localentry0()
1086             && gsym->type() == elfcpp::STT_FUNC
1087             && gsym->is_defined()
1088             && gsym->nonvis() >> 3 == 0
1089             && !gsym->non_zero_localentry());
1090   }
1091
1092   bool
1093   is_elfv2_localentry0(const Sized_relobj_file<size, big_endian>* object,
1094                        unsigned int r_sym) const
1095   {
1096     const Powerpc_relobj<size, big_endian>* ppc_object
1097       = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
1098
1099     if (size == 64
1100         && this->abiversion() >= 2
1101         && this->plt_localentry0()
1102         && ppc_object->st_other(r_sym) >> 5 == 0)
1103       {
1104         const Symbol_value<size>* psymval = object->local_symbol(r_sym);
1105         bool is_ordinary;
1106         if (!psymval->is_ifunc_symbol()
1107             && psymval->input_shndx(&is_ordinary) != elfcpp::SHN_UNDEF
1108             && is_ordinary)
1109           return true;
1110       }
1111     return false;
1112   }
1113
1114   // Remember any symbols seen with non-zero localentry, even those
1115   // not providing a definition
1116   bool
1117   resolve(Symbol* to, const elfcpp::Sym<size, big_endian>& sym, Object*,
1118           const char*)
1119   {
1120     if (size == 64)
1121       {
1122         unsigned char st_other = sym.get_st_other();
1123         if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1124           to->set_non_zero_localentry();
1125       }
1126     // We haven't resolved anything, continue normal processing.
1127     return false;
1128   }
1129
1130   int
1131   abiversion() const
1132   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
1133
1134   void
1135   set_abiversion(int ver)
1136   {
1137     elfcpp::Elf_Word flags = this->processor_specific_flags();
1138     flags &= ~elfcpp::EF_PPC64_ABI;
1139     flags |= ver & elfcpp::EF_PPC64_ABI;
1140     this->set_processor_specific_flags(flags);
1141   }
1142
1143   Symbol*
1144   tls_get_addr_opt() const
1145   { return this->tls_get_addr_opt_; }
1146
1147   Symbol*
1148   tls_get_addr() const
1149   { return this->tls_get_addr_; }
1150
1151   // If optimizing __tls_get_addr calls, whether this is the
1152   // "__tls_get_addr" symbol.
1153   bool
1154   is_tls_get_addr_opt(const Symbol* gsym) const
1155   {
1156     return this->tls_get_addr_opt_ && (gsym == this->tls_get_addr_
1157                                        || gsym == this->tls_get_addr_opt_);
1158   }
1159
1160   bool
1161   replace_tls_get_addr(const Symbol* gsym) const
1162   { return this->tls_get_addr_opt_ && gsym == this->tls_get_addr_; }
1163
1164   void
1165   set_has_tls_get_addr_opt()
1166   { this->has_tls_get_addr_opt_ = true; }
1167
1168   // Offset to toc save stack slot
1169   int
1170   stk_toc() const
1171   { return this->abiversion() < 2 ? 40 : 24; }
1172
1173   // Offset to linker save stack slot.  ELFv2 doesn't have a linker word,
1174   // so use the CR save slot.  Used only by __tls_get_addr call stub,
1175   // relying on __tls_get_addr not saving CR itself.
1176   int
1177   stk_linker() const
1178   { return this->abiversion() < 2 ? 32 : 8; }
1179
1180   // Merge object attributes from input object with those in the output.
1181   void
1182   merge_object_attributes(const char*, const Attributes_section_data*);
1183
1184  private:
1185
1186   class Track_tls
1187   {
1188   public:
1189     enum Tls_get_addr
1190     {
1191       NOT_EXPECTED = 0,
1192       EXPECTED = 1,
1193       SKIP = 2,
1194       NORMAL = 3
1195     };
1196
1197     Track_tls()
1198       : tls_get_addr_state_(NOT_EXPECTED),
1199         relinfo_(NULL), relnum_(0), r_offset_(0)
1200     { }
1201
1202     ~Track_tls()
1203     {
1204       if (this->tls_get_addr_state_ != NOT_EXPECTED)
1205         this->missing();
1206     }
1207
1208     void
1209     missing(void)
1210     {
1211       if (this->relinfo_ != NULL)
1212         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
1213                                _("missing expected __tls_get_addr call"));
1214     }
1215
1216     void
1217     expect_tls_get_addr_call(
1218         const Relocate_info<size, big_endian>* relinfo,
1219         size_t relnum,
1220         Address r_offset)
1221     {
1222       this->tls_get_addr_state_ = EXPECTED;
1223       this->relinfo_ = relinfo;
1224       this->relnum_ = relnum;
1225       this->r_offset_ = r_offset;
1226     }
1227
1228     void
1229     expect_tls_get_addr_call()
1230     { this->tls_get_addr_state_ = EXPECTED; }
1231
1232     void
1233     skip_next_tls_get_addr_call()
1234     {this->tls_get_addr_state_ = SKIP; }
1235
1236     Tls_get_addr
1237     maybe_skip_tls_get_addr_call(Target_powerpc<size, big_endian>* target,
1238                                  unsigned int r_type, const Symbol* gsym)
1239     {
1240       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
1241                            || r_type == elfcpp::R_PPC_PLTREL24
1242                            || is_plt16_reloc<size>(r_type)
1243                            || r_type == elfcpp::R_POWERPC_PLTSEQ
1244                            || r_type == elfcpp::R_POWERPC_PLTCALL)
1245                           && gsym != NULL
1246                           && (gsym == target->tls_get_addr()
1247                               || gsym == target->tls_get_addr_opt()));
1248       Tls_get_addr last_tls = this->tls_get_addr_state_;
1249       this->tls_get_addr_state_ = NOT_EXPECTED;
1250       if (is_tls_call && last_tls != EXPECTED)
1251         return last_tls;
1252       else if (!is_tls_call && last_tls != NOT_EXPECTED)
1253         {
1254           this->missing();
1255           return EXPECTED;
1256         }
1257       return NORMAL;
1258     }
1259
1260   private:
1261     // What we're up to regarding calls to __tls_get_addr.
1262     // On powerpc, the branch and link insn making a call to
1263     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
1264     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
1265     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
1266     // The marker relocation always comes first, and has the same
1267     // symbol as the reloc on the insn setting up the __tls_get_addr
1268     // argument.  This ties the arg setup insn with the call insn,
1269     // allowing ld to safely optimize away the call.  We check that
1270     // every call to __tls_get_addr has a marker relocation, and that
1271     // every marker relocation is on a call to __tls_get_addr.
1272     Tls_get_addr tls_get_addr_state_;
1273     // Info about the last reloc for error message.
1274     const Relocate_info<size, big_endian>* relinfo_;
1275     size_t relnum_;
1276     Address r_offset_;
1277   };
1278
1279   // The class which scans relocations.
1280   class Scan : protected Track_tls
1281   {
1282   public:
1283     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1284
1285     Scan()
1286       : Track_tls(), issued_non_pic_error_(false)
1287     { }
1288
1289     static inline int
1290     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
1291
1292     inline void
1293     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1294           Sized_relobj_file<size, big_endian>* object,
1295           unsigned int data_shndx,
1296           Output_section* output_section,
1297           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1298           const elfcpp::Sym<size, big_endian>& lsym,
1299           bool is_discarded);
1300
1301     inline void
1302     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1303            Sized_relobj_file<size, big_endian>* object,
1304            unsigned int data_shndx,
1305            Output_section* output_section,
1306            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1307            Symbol* gsym);
1308
1309     inline bool
1310     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1311                                         Target_powerpc* ,
1312                                         Sized_relobj_file<size, big_endian>* relobj,
1313                                         unsigned int ,
1314                                         Output_section* ,
1315                                         const elfcpp::Rela<size, big_endian>& ,
1316                                         unsigned int r_type,
1317                                         const elfcpp::Sym<size, big_endian>&)
1318     {
1319       // PowerPC64 .opd is not folded, so any identical function text
1320       // may be folded and we'll still keep function addresses distinct.
1321       // That means no reloc is of concern here.
1322       if (size == 64)
1323         {
1324           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1325             <Powerpc_relobj<size, big_endian>*>(relobj);
1326           if (ppcobj->abiversion() == 1)
1327             return false;
1328         }
1329       // For 32-bit and ELFv2, conservatively assume anything but calls to
1330       // function code might be taking the address of the function.
1331       return !is_branch_reloc(r_type);
1332     }
1333
1334     inline bool
1335     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1336                                          Target_powerpc* ,
1337                                          Sized_relobj_file<size, big_endian>* relobj,
1338                                          unsigned int ,
1339                                          Output_section* ,
1340                                          const elfcpp::Rela<size, big_endian>& ,
1341                                          unsigned int r_type,
1342                                          Symbol*)
1343     {
1344       // As above.
1345       if (size == 64)
1346         {
1347           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1348             <Powerpc_relobj<size, big_endian>*>(relobj);
1349           if (ppcobj->abiversion() == 1)
1350             return false;
1351         }
1352       return !is_branch_reloc(r_type);
1353     }
1354
1355     static bool
1356     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1357                               Sized_relobj_file<size, big_endian>* object,
1358                               unsigned int r_type, bool report_err);
1359
1360   private:
1361     static void
1362     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1363                             unsigned int r_type);
1364
1365     static void
1366     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1367                              unsigned int r_type, Symbol*);
1368
1369     static void
1370     generate_tls_call(Symbol_table* symtab, Layout* layout,
1371                       Target_powerpc* target);
1372
1373     void
1374     check_non_pic(Relobj*, unsigned int r_type);
1375
1376     // Whether we have issued an error about a non-PIC compilation.
1377     bool issued_non_pic_error_;
1378   };
1379
1380   bool
1381   symval_for_branch(const Symbol_table* symtab,
1382                     const Sized_symbol<size>* gsym,
1383                     Powerpc_relobj<size, big_endian>* object,
1384                     Address *value, unsigned int *dest_shndx);
1385
1386   // The class which implements relocation.
1387   class Relocate : protected Track_tls
1388   {
1389    public:
1390     // Use 'at' branch hints when true, 'y' when false.
1391     // FIXME maybe: set this with an option.
1392     static const bool is_isa_v2 = true;
1393
1394     Relocate()
1395       : Track_tls()
1396     { }
1397
1398     // Do a relocation.  Return false if the caller should not issue
1399     // any warnings about this relocation.
1400     inline bool
1401     relocate(const Relocate_info<size, big_endian>*, unsigned int,
1402              Target_powerpc*, Output_section*, size_t, const unsigned char*,
1403              const Sized_symbol<size>*, const Symbol_value<size>*,
1404              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1405              section_size_type);
1406   };
1407
1408   class Relocate_comdat_behavior
1409   {
1410    public:
1411     // Decide what the linker should do for relocations that refer to
1412     // discarded comdat sections.
1413     inline Comdat_behavior
1414     get(const char* name)
1415     {
1416       gold::Default_comdat_behavior default_behavior;
1417       Comdat_behavior ret = default_behavior.get(name);
1418       if (ret == CB_ERROR)
1419         {
1420           if (size == 32
1421               && (strcmp(name, ".fixup") == 0
1422                   || strcmp(name, ".got2") == 0))
1423             ret = CB_IGNORE;
1424           if (size == 64
1425               && (strcmp(name, ".opd") == 0
1426                   || strcmp(name, ".toc") == 0
1427                   || strcmp(name, ".toc1") == 0))
1428             ret = CB_IGNORE;
1429         }
1430       return ret;
1431     }
1432   };
1433
1434   // Optimize the TLS relocation type based on what we know about the
1435   // symbol.  IS_FINAL is true if the final address of this symbol is
1436   // known at link time.
1437
1438   tls::Tls_optimization
1439   optimize_tls_gd(bool is_final)
1440   {
1441     // If we are generating a shared library, then we can't do anything
1442     // in the linker.
1443     if (parameters->options().shared()
1444         || !parameters->options().tls_optimize())
1445       return tls::TLSOPT_NONE;
1446
1447     if (!is_final)
1448       return tls::TLSOPT_TO_IE;
1449     return tls::TLSOPT_TO_LE;
1450   }
1451
1452   tls::Tls_optimization
1453   optimize_tls_ld()
1454   {
1455     if (parameters->options().shared()
1456         || !parameters->options().tls_optimize())
1457       return tls::TLSOPT_NONE;
1458
1459     return tls::TLSOPT_TO_LE;
1460   }
1461
1462   tls::Tls_optimization
1463   optimize_tls_ie(bool is_final)
1464   {
1465     if (!is_final
1466         || parameters->options().shared()
1467         || !parameters->options().tls_optimize())
1468       return tls::TLSOPT_NONE;
1469
1470     return tls::TLSOPT_TO_LE;
1471   }
1472
1473   // Create glink.
1474   void
1475   make_glink_section(Layout*);
1476
1477   // Create the PLT section.
1478   void
1479   make_plt_section(Symbol_table*, Layout*);
1480
1481   void
1482   make_iplt_section(Symbol_table*, Layout*);
1483
1484   void
1485   make_lplt_section(Layout*);
1486
1487   void
1488   make_brlt_section(Layout*);
1489
1490   // Create a PLT entry for a global symbol.
1491   void
1492   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1493
1494   // Create a PLT entry for a local IFUNC symbol.
1495   void
1496   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1497                              Sized_relobj_file<size, big_endian>*,
1498                              unsigned int);
1499
1500   // Create a PLT entry for a local non-IFUNC symbol.
1501   void
1502   make_local_plt_entry(Layout*,
1503                        Sized_relobj_file<size, big_endian>*,
1504                        unsigned int);
1505
1506
1507   // Create a GOT entry for local dynamic __tls_get_addr.
1508   unsigned int
1509   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1510                    Sized_relobj_file<size, big_endian>* object);
1511
1512   unsigned int
1513   tlsld_got_offset() const
1514   {
1515     return this->tlsld_got_offset_;
1516   }
1517
1518   // Get the dynamic reloc section, creating it if necessary.
1519   Reloc_section*
1520   rela_dyn_section(Layout*);
1521
1522   // Similarly, but for ifunc symbols get the one for ifunc.
1523   Reloc_section*
1524   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1525
1526   // Copy a relocation against a global symbol.
1527   void
1528   copy_reloc(Symbol_table* symtab, Layout* layout,
1529              Sized_relobj_file<size, big_endian>* object,
1530              unsigned int shndx, Output_section* output_section,
1531              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1532   {
1533     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1534     this->copy_relocs_.copy_reloc(symtab, layout,
1535                                   symtab->get_sized_symbol<size>(sym),
1536                                   object, shndx, output_section,
1537                                   r_type, reloc.get_r_offset(),
1538                                   reloc.get_r_addend(),
1539                                   this->rela_dyn_section(layout));
1540   }
1541
1542   // Look over all the input sections, deciding where to place stubs.
1543   void
1544   group_sections(Layout*, const Task*, bool);
1545
1546   // Sort output sections by address.
1547   struct Sort_sections
1548   {
1549     bool
1550     operator()(const Output_section* sec1, const Output_section* sec2)
1551     { return sec1->address() < sec2->address(); }
1552   };
1553
1554   class Branch_info
1555   {
1556    public:
1557     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1558                 unsigned int data_shndx,
1559                 Address r_offset,
1560                 unsigned int r_type,
1561                 unsigned int r_sym,
1562                 Address addend)
1563       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1564         r_type_(r_type), tocsave_ (0), r_sym_(r_sym), addend_(addend)
1565     { }
1566
1567     ~Branch_info()
1568     { }
1569
1570     // Return whether this branch is going via a plt call stub, and if
1571     // so, mark it as having an R_PPC64_TOCSAVE.
1572     bool
1573     mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
1574                  unsigned int shndx, Address offset,
1575                  Target_powerpc* target, Symbol_table* symtab);
1576
1577     // If this branch needs a plt call stub, or a long branch stub, make one.
1578     bool
1579     make_stub(Stub_table<size, big_endian>*,
1580               Stub_table<size, big_endian>*,
1581               Symbol_table*) const;
1582
1583    private:
1584     // The branch location..
1585     Powerpc_relobj<size, big_endian>* object_;
1586     unsigned int shndx_;
1587     Address offset_;
1588     // ..and the branch type and destination.
1589     unsigned int r_type_ : 31;
1590     unsigned int tocsave_ : 1;
1591     unsigned int r_sym_;
1592     Address addend_;
1593   };
1594
1595   // Information about this specific target which we pass to the
1596   // general Target structure.
1597   static Target::Target_info powerpc_info;
1598
1599   // The types of GOT entries needed for this platform.
1600   // These values are exposed to the ABI in an incremental link.
1601   // Do not renumber existing values without changing the version
1602   // number of the .gnu_incremental_inputs section.
1603   enum Got_type
1604   {
1605     GOT_TYPE_STANDARD,
1606     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1607     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1608     GOT_TYPE_TPREL      // entry for @got@tprel
1609   };
1610
1611   // The GOT section.
1612   Output_data_got_powerpc<size, big_endian>* got_;
1613   // The PLT section.  This is a container for a table of addresses,
1614   // and their relocations.  Each address in the PLT has a dynamic
1615   // relocation (R_*_JMP_SLOT) and each address will have a
1616   // corresponding entry in .glink for lazy resolution of the PLT.
1617   // ppc32 initialises the PLT to point at the .glink entry, while
1618   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1619   // linker adds a stub that loads the PLT entry into ctr then
1620   // branches to ctr.  There may be more than one stub for each PLT
1621   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1622   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1623   Output_data_plt_powerpc<size, big_endian>* plt_;
1624   // The IPLT section.  Like plt_, this is a container for a table of
1625   // addresses and their relocations, specifically for STT_GNU_IFUNC
1626   // functions that resolve locally (STT_GNU_IFUNC functions that
1627   // don't resolve locally go in PLT).  Unlike plt_, these have no
1628   // entry in .glink for lazy resolution, and the relocation section
1629   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1630   // the relocation section may contain relocations against
1631   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1632   // relocation section will appear at the end of other dynamic
1633   // relocations, so that ld.so applies these relocations after other
1634   // dynamic relocations.  In a static executable, the relocation
1635   // section is emitted and marked with __rela_iplt_start and
1636   // __rela_iplt_end symbols.
1637   Output_data_plt_powerpc<size, big_endian>* iplt_;
1638   // A PLT style section for local, non-ifunc symbols
1639   Output_data_plt_powerpc<size, big_endian>* lplt_;
1640   // Section holding long branch destinations.
1641   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1642   // The .glink section.
1643   Output_data_glink<size, big_endian>* glink_;
1644   // The dynamic reloc section.
1645   Reloc_section* rela_dyn_;
1646   // Relocs saved to avoid a COPY reloc.
1647   Powerpc_copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1648   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1649   unsigned int tlsld_got_offset_;
1650
1651   Stub_tables stub_tables_;
1652   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1653   Branch_lookup_table branch_lookup_table_;
1654
1655   typedef std::vector<Branch_info> Branches;
1656   Branches branch_info_;
1657   Tocsave_loc tocsave_loc_;
1658
1659   bool plt_thread_safe_;
1660   bool plt_localentry0_;
1661   bool plt_localentry0_init_;
1662   bool has_localentry0_;
1663   bool has_tls_get_addr_opt_;
1664
1665   bool relax_failed_;
1666   int relax_fail_count_;
1667   int32_t stub_group_size_;
1668
1669   Output_data_save_res<size, big_endian> *savres_section_;
1670
1671   // The "__tls_get_addr" symbol, if present
1672   Symbol* tls_get_addr_;
1673   // If optimizing __tls_get_addr calls, the "__tls_get_addr_opt" symbol.
1674   Symbol* tls_get_addr_opt_;
1675
1676   // Attributes in output.
1677   Attributes_section_data* attributes_section_data_;
1678
1679   // Last input file to change various attribute tags
1680   const char* last_fp_;
1681   const char* last_ld_;
1682   const char* last_vec_;
1683   const char* last_struct_;
1684 };
1685
1686 template<>
1687 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1688 {
1689   32,                   // size
1690   true,                 // is_big_endian
1691   elfcpp::EM_PPC,       // machine_code
1692   false,                // has_make_symbol
1693   false,                // has_resolve
1694   false,                // has_code_fill
1695   true,                 // is_default_stack_executable
1696   false,                // can_icf_inline_merge_sections
1697   '\0',                 // wrap_char
1698   "/usr/lib/ld.so.1",   // dynamic_linker
1699   0x10000000,           // default_text_segment_address
1700   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1701   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1702   false,                // isolate_execinstr
1703   0,                    // rosegment_gap
1704   elfcpp::SHN_UNDEF,    // small_common_shndx
1705   elfcpp::SHN_UNDEF,    // large_common_shndx
1706   0,                    // small_common_section_flags
1707   0,                    // large_common_section_flags
1708   NULL,                 // attributes_section
1709   NULL,                 // attributes_vendor
1710   "_start",             // entry_symbol_name
1711   32,                   // hash_entry_size
1712   elfcpp::SHT_PROGBITS, // unwind_section_type
1713 };
1714
1715 template<>
1716 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1717 {
1718   32,                   // size
1719   false,                // is_big_endian
1720   elfcpp::EM_PPC,       // machine_code
1721   false,                // has_make_symbol
1722   false,                // has_resolve
1723   false,                // has_code_fill
1724   true,                 // is_default_stack_executable
1725   false,                // can_icf_inline_merge_sections
1726   '\0',                 // wrap_char
1727   "/usr/lib/ld.so.1",   // dynamic_linker
1728   0x10000000,           // default_text_segment_address
1729   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1730   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1731   false,                // isolate_execinstr
1732   0,                    // rosegment_gap
1733   elfcpp::SHN_UNDEF,    // small_common_shndx
1734   elfcpp::SHN_UNDEF,    // large_common_shndx
1735   0,                    // small_common_section_flags
1736   0,                    // large_common_section_flags
1737   NULL,                 // attributes_section
1738   NULL,                 // attributes_vendor
1739   "_start",             // entry_symbol_name
1740   32,                   // hash_entry_size
1741   elfcpp::SHT_PROGBITS, // unwind_section_type
1742 };
1743
1744 template<>
1745 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1746 {
1747   64,                   // size
1748   true,                 // is_big_endian
1749   elfcpp::EM_PPC64,     // machine_code
1750   false,                // has_make_symbol
1751   true,                 // has_resolve
1752   false,                // has_code_fill
1753   false,                // is_default_stack_executable
1754   false,                // can_icf_inline_merge_sections
1755   '\0',                 // wrap_char
1756   "/usr/lib/ld.so.1",   // dynamic_linker
1757   0x10000000,           // default_text_segment_address
1758   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1759   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1760   false,                // isolate_execinstr
1761   0,                    // rosegment_gap
1762   elfcpp::SHN_UNDEF,    // small_common_shndx
1763   elfcpp::SHN_UNDEF,    // large_common_shndx
1764   0,                    // small_common_section_flags
1765   0,                    // large_common_section_flags
1766   NULL,                 // attributes_section
1767   NULL,                 // attributes_vendor
1768   "_start",             // entry_symbol_name
1769   32,                   // hash_entry_size
1770   elfcpp::SHT_PROGBITS, // unwind_section_type
1771 };
1772
1773 template<>
1774 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1775 {
1776   64,                   // size
1777   false,                // is_big_endian
1778   elfcpp::EM_PPC64,     // machine_code
1779   false,                // has_make_symbol
1780   true,                 // has_resolve
1781   false,                // has_code_fill
1782   false,                // is_default_stack_executable
1783   false,                // can_icf_inline_merge_sections
1784   '\0',                 // wrap_char
1785   "/usr/lib/ld.so.1",   // dynamic_linker
1786   0x10000000,           // default_text_segment_address
1787   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1788   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1789   false,                // isolate_execinstr
1790   0,                    // rosegment_gap
1791   elfcpp::SHN_UNDEF,    // small_common_shndx
1792   elfcpp::SHN_UNDEF,    // large_common_shndx
1793   0,                    // small_common_section_flags
1794   0,                    // large_common_section_flags
1795   NULL,                 // attributes_section
1796   NULL,                 // attributes_vendor
1797   "_start",             // entry_symbol_name
1798   32,                   // hash_entry_size
1799   elfcpp::SHT_PROGBITS, // unwind_section_type
1800 };
1801
1802 inline bool
1803 is_branch_reloc(unsigned int r_type)
1804 {
1805   return (r_type == elfcpp::R_POWERPC_REL24
1806           || r_type == elfcpp::R_PPC_PLTREL24
1807           || r_type == elfcpp::R_PPC_LOCAL24PC
1808           || r_type == elfcpp::R_POWERPC_REL14
1809           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1810           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1811           || r_type == elfcpp::R_POWERPC_ADDR24
1812           || r_type == elfcpp::R_POWERPC_ADDR14
1813           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1814           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1815 }
1816
1817 // Reloc resolves to plt entry.
1818 template<int size>
1819 inline bool
1820 is_plt16_reloc(unsigned int r_type)
1821 {
1822   return (r_type == elfcpp::R_POWERPC_PLT16_LO
1823           || r_type == elfcpp::R_POWERPC_PLT16_HI
1824           || r_type == elfcpp::R_POWERPC_PLT16_HA
1825           || (size == 64 && r_type == elfcpp::R_PPC64_PLT16_LO_DS));
1826 }
1827
1828 // If INSN is an opcode that may be used with an @tls operand, return
1829 // the transformed insn for TLS optimisation, otherwise return 0.  If
1830 // REG is non-zero only match an insn with RB or RA equal to REG.
1831 uint32_t
1832 at_tls_transform(uint32_t insn, unsigned int reg)
1833 {
1834   if ((insn & (0x3f << 26)) != 31 << 26)
1835     return 0;
1836
1837   unsigned int rtra;
1838   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1839     rtra = insn & ((1 << 26) - (1 << 16));
1840   else if (((insn >> 16) & 0x1f) == reg)
1841     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1842   else
1843     return 0;
1844
1845   if ((insn & (0x3ff << 1)) == 266 << 1)
1846     // add -> addi
1847     insn = 14 << 26;
1848   else if ((insn & (0x1f << 1)) == 23 << 1
1849            && ((insn & (0x1f << 6)) < 14 << 6
1850                || ((insn & (0x1f << 6)) >= 16 << 6
1851                    && (insn & (0x1f << 6)) < 24 << 6)))
1852     // load and store indexed -> dform
1853     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1854   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1855     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1856     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1857   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1858     // lwax -> lwa
1859     insn = (58 << 26) | 2;
1860   else
1861     return 0;
1862   insn |= rtra;
1863   return insn;
1864 }
1865
1866
1867 template<int size, bool big_endian>
1868 class Powerpc_relocate_functions
1869 {
1870 public:
1871   enum Overflow_check
1872   {
1873     CHECK_NONE,
1874     CHECK_SIGNED,
1875     CHECK_UNSIGNED,
1876     CHECK_BITFIELD,
1877     CHECK_LOW_INSN,
1878     CHECK_HIGH_INSN
1879   };
1880
1881   enum Status
1882   {
1883     STATUS_OK,
1884     STATUS_OVERFLOW
1885   };
1886
1887 private:
1888   typedef Powerpc_relocate_functions<size, big_endian> This;
1889   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1890   typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1891
1892   template<int valsize>
1893   static inline bool
1894   has_overflow_signed(Address value)
1895   {
1896     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1897     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1898     limit <<= ((valsize - 1) >> 1);
1899     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1900     return value + limit > (limit << 1) - 1;
1901   }
1902
1903   template<int valsize>
1904   static inline bool
1905   has_overflow_unsigned(Address value)
1906   {
1907     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1908     limit <<= ((valsize - 1) >> 1);
1909     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1910     return value > (limit << 1) - 1;
1911   }
1912
1913   template<int valsize>
1914   static inline bool
1915   has_overflow_bitfield(Address value)
1916   {
1917     return (has_overflow_unsigned<valsize>(value)
1918             && has_overflow_signed<valsize>(value));
1919   }
1920
1921   template<int valsize>
1922   static inline Status
1923   overflowed(Address value, Overflow_check overflow)
1924   {
1925     if (overflow == CHECK_SIGNED)
1926       {
1927         if (has_overflow_signed<valsize>(value))
1928           return STATUS_OVERFLOW;
1929       }
1930     else if (overflow == CHECK_UNSIGNED)
1931       {
1932         if (has_overflow_unsigned<valsize>(value))
1933           return STATUS_OVERFLOW;
1934       }
1935     else if (overflow == CHECK_BITFIELD)
1936       {
1937         if (has_overflow_bitfield<valsize>(value))
1938           return STATUS_OVERFLOW;
1939       }
1940     return STATUS_OK;
1941   }
1942
1943   // Do a simple RELA relocation
1944   template<int fieldsize, int valsize>
1945   static inline Status
1946   rela(unsigned char* view, Address value, Overflow_check overflow)
1947   {
1948     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1949     Valtype* wv = reinterpret_cast<Valtype*>(view);
1950     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1951     return overflowed<valsize>(value, overflow);
1952   }
1953
1954   template<int fieldsize, int valsize>
1955   static inline Status
1956   rela(unsigned char* view,
1957        unsigned int right_shift,
1958        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1959        Address value,
1960        Overflow_check overflow)
1961   {
1962     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1963     Valtype* wv = reinterpret_cast<Valtype*>(view);
1964     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1965     Valtype reloc = value >> right_shift;
1966     val &= ~dst_mask;
1967     reloc &= dst_mask;
1968     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1969     return overflowed<valsize>(value >> right_shift, overflow);
1970   }
1971
1972   // Do a simple RELA relocation, unaligned.
1973   template<int fieldsize, int valsize>
1974   static inline Status
1975   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1976   {
1977     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1978     return overflowed<valsize>(value, overflow);
1979   }
1980
1981   template<int fieldsize, int valsize>
1982   static inline Status
1983   rela_ua(unsigned char* view,
1984           unsigned int right_shift,
1985           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1986           Address value,
1987           Overflow_check overflow)
1988   {
1989     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1990       Valtype;
1991     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1992     Valtype reloc = value >> right_shift;
1993     val &= ~dst_mask;
1994     reloc &= dst_mask;
1995     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1996     return overflowed<valsize>(value >> right_shift, overflow);
1997   }
1998
1999 public:
2000   // R_PPC64_ADDR64: (Symbol + Addend)
2001   static inline void
2002   addr64(unsigned char* view, Address value)
2003   { This::template rela<64,64>(view, value, CHECK_NONE); }
2004
2005   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
2006   static inline void
2007   addr64_u(unsigned char* view, Address value)
2008   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
2009
2010   // R_POWERPC_ADDR32: (Symbol + Addend)
2011   static inline Status
2012   addr32(unsigned char* view, Address value, Overflow_check overflow)
2013   { return This::template rela<32,32>(view, value, overflow); }
2014
2015   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
2016   static inline Status
2017   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
2018   { return This::template rela_ua<32,32>(view, value, overflow); }
2019
2020   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
2021   static inline Status
2022   addr24(unsigned char* view, Address value, Overflow_check overflow)
2023   {
2024     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
2025                                              value, overflow);
2026     if (overflow != CHECK_NONE && (value & 3) != 0)
2027       stat = STATUS_OVERFLOW;
2028     return stat;
2029   }
2030
2031   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
2032   static inline Status
2033   addr16(unsigned char* view, Address value, Overflow_check overflow)
2034   { return This::template rela<16,16>(view, value, overflow); }
2035
2036   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
2037   static inline Status
2038   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
2039   { return This::template rela_ua<16,16>(view, value, overflow); }
2040
2041   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
2042   static inline Status
2043   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
2044   {
2045     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
2046     if ((value & 3) != 0)
2047       stat = STATUS_OVERFLOW;
2048     return stat;
2049   }
2050
2051   // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
2052   static inline Status
2053   addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
2054   {
2055     Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
2056     if ((value & 15) != 0)
2057       stat = STATUS_OVERFLOW;
2058     return stat;
2059   }
2060
2061   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
2062   static inline void
2063   addr16_hi(unsigned char* view, Address value)
2064   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
2065
2066   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
2067   static inline void
2068   addr16_ha(unsigned char* view, Address value)
2069   { This::addr16_hi(view, value + 0x8000); }
2070
2071   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
2072   static inline void
2073   addr16_hi2(unsigned char* view, Address value)
2074   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
2075
2076   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
2077   static inline void
2078   addr16_ha2(unsigned char* view, Address value)
2079   { This::addr16_hi2(view, value + 0x8000); }
2080
2081   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
2082   static inline void
2083   addr16_hi3(unsigned char* view, Address value)
2084   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
2085
2086   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
2087   static inline void
2088   addr16_ha3(unsigned char* view, Address value)
2089   { This::addr16_hi3(view, value + 0x8000); }
2090
2091   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
2092   static inline Status
2093   addr14(unsigned char* view, Address value, Overflow_check overflow)
2094   {
2095     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
2096     if (overflow != CHECK_NONE && (value & 3) != 0)
2097       stat = STATUS_OVERFLOW;
2098     return stat;
2099   }
2100
2101   // R_POWERPC_REL16DX_HA
2102   static inline Status
2103   addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
2104   {
2105     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2106     Valtype* wv = reinterpret_cast<Valtype*>(view);
2107     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2108     value += 0x8000;
2109     value = static_cast<SignedAddress>(value) >> 16;
2110     val |= (value & 0xffc1) | ((value & 0x3e) << 15);
2111     elfcpp::Swap<32, big_endian>::writeval(wv, val);
2112     return overflowed<16>(value, overflow);
2113   }
2114 };
2115
2116 // Set ABI version for input and output.
2117
2118 template<int size, bool big_endian>
2119 void
2120 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
2121 {
2122   this->e_flags_ |= ver;
2123   if (this->abiversion() != 0)
2124     {
2125       Target_powerpc<size, big_endian>* target =
2126         static_cast<Target_powerpc<size, big_endian>*>(
2127            parameters->sized_target<size, big_endian>());
2128       if (target->abiversion() == 0)
2129         target->set_abiversion(this->abiversion());
2130       else if (target->abiversion() != this->abiversion())
2131         gold_error(_("%s: ABI version %d is not compatible "
2132                      "with ABI version %d output"),
2133                    this->name().c_str(),
2134                    this->abiversion(), target->abiversion());
2135
2136     }
2137 }
2138
2139 // Stash away the index of .got2, .opd, .rela.toc, and .toc in a
2140 // relocatable object, if such sections exists.
2141
2142 template<int size, bool big_endian>
2143 bool
2144 Powerpc_relobj<size, big_endian>::do_find_special_sections(
2145     Read_symbols_data* sd)
2146 {
2147   const unsigned char* const pshdrs = sd->section_headers->data();
2148   const unsigned char* namesu = sd->section_names->data();
2149   const char* names = reinterpret_cast<const char*>(namesu);
2150   section_size_type names_size = sd->section_names_size;
2151   const unsigned char* s;
2152
2153   s = this->template find_shdr<size, big_endian>(pshdrs,
2154                                                  size == 32 ? ".got2" : ".opd",
2155                                                  names, names_size, NULL);
2156   if (s != NULL)
2157     {
2158       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2159       this->special_ = ndx;
2160       if (size == 64)
2161         {
2162           if (this->abiversion() == 0)
2163             this->set_abiversion(1);
2164           else if (this->abiversion() > 1)
2165             gold_error(_("%s: .opd invalid in abiv%d"),
2166                        this->name().c_str(), this->abiversion());
2167         }
2168     }
2169   if (size == 64)
2170     {
2171       s = this->template find_shdr<size, big_endian>(pshdrs, ".rela.toc",
2172                                                      names, names_size, NULL);
2173       if (s != NULL)
2174         {
2175           unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2176           this->relatoc_ = ndx;
2177           typename elfcpp::Shdr<size, big_endian> shdr(s);
2178           this->toc_ = this->adjust_shndx(shdr.get_sh_info());
2179         }
2180     }
2181   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
2182 }
2183
2184 // Examine .rela.opd to build info about function entry points.
2185
2186 template<int size, bool big_endian>
2187 void
2188 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
2189     size_t reloc_count,
2190     const unsigned char* prelocs,
2191     const unsigned char* plocal_syms)
2192 {
2193   if (size == 64)
2194     {
2195       typedef typename elfcpp::Rela<size, big_endian> Reltype;
2196       const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2197       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2198       Address expected_off = 0;
2199       bool regular = true;
2200       unsigned int opd_ent_size = 0;
2201
2202       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
2203         {
2204           Reltype reloc(prelocs);
2205           typename elfcpp::Elf_types<size>::Elf_WXword r_info
2206             = reloc.get_r_info();
2207           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
2208           if (r_type == elfcpp::R_PPC64_ADDR64)
2209             {
2210               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
2211               typename elfcpp::Elf_types<size>::Elf_Addr value;
2212               bool is_ordinary;
2213               unsigned int shndx;
2214               if (r_sym < this->local_symbol_count())
2215                 {
2216                   typename elfcpp::Sym<size, big_endian>
2217                     lsym(plocal_syms + r_sym * sym_size);
2218                   shndx = lsym.get_st_shndx();
2219                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2220                   value = lsym.get_st_value();
2221                 }
2222               else
2223                 shndx = this->symbol_section_and_value(r_sym, &value,
2224                                                        &is_ordinary);
2225               this->set_opd_ent(reloc.get_r_offset(), shndx,
2226                                 value + reloc.get_r_addend());
2227               if (i == 2)
2228                 {
2229                   expected_off = reloc.get_r_offset();
2230                   opd_ent_size = expected_off;
2231                 }
2232               else if (expected_off != reloc.get_r_offset())
2233                 regular = false;
2234               expected_off += opd_ent_size;
2235             }
2236           else if (r_type == elfcpp::R_PPC64_TOC)
2237             {
2238               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
2239                 regular = false;
2240             }
2241           else
2242             {
2243               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
2244                            this->name().c_str(), r_type);
2245               regular = false;
2246             }
2247         }
2248       if (reloc_count <= 2)
2249         opd_ent_size = this->section_size(this->opd_shndx());
2250       if (opd_ent_size != 24 && opd_ent_size != 16)
2251         regular = false;
2252       if (!regular)
2253         {
2254           gold_warning(_("%s: .opd is not a regular array of opd entries"),
2255                        this->name().c_str());
2256           opd_ent_size = 0;
2257         }
2258     }
2259 }
2260
2261 // Returns true if a code sequence loading the TOC entry at VALUE
2262 // relative to the TOC pointer can be converted into code calculating
2263 // a TOC pointer relative offset.
2264 // If so, the TOC pointer relative offset is stored to VALUE.
2265
2266 template<int size, bool big_endian>
2267 bool
2268 Powerpc_relobj<size, big_endian>::make_toc_relative(
2269     Target_powerpc<size, big_endian>* target,
2270     Address* value)
2271 {
2272   if (size != 64)
2273     return false;
2274
2275   // With -mcmodel=medium code it is quite possible to have
2276   // toc-relative relocs referring to objects outside the TOC.
2277   // Don't try to look at a non-existent TOC.
2278   if (this->toc_shndx() == 0)
2279     return false;
2280
2281   // Convert VALUE back to an address by adding got_base (see below),
2282   // then to an offset in the TOC by subtracting the TOC output
2283   // section address and the TOC output offset.  Since this TOC output
2284   // section and the got output section are one and the same, we can
2285   // omit adding and subtracting the output section address.
2286   Address off = (*value + this->toc_base_offset()
2287                  - this->output_section_offset(this->toc_shndx()));
2288   // Is this offset in the TOC?  -mcmodel=medium code may be using
2289   // TOC relative access to variables outside the TOC.  Those of
2290   // course can't be optimized.  We also don't try to optimize code
2291   // that is using a different object's TOC.
2292   if (off >= this->section_size(this->toc_shndx()))
2293     return false;
2294
2295   if (this->no_toc_opt(off))
2296     return false;
2297
2298   section_size_type vlen;
2299   unsigned char* view = this->get_output_view(this->toc_shndx(), &vlen);
2300   Address addr = elfcpp::Swap<size, big_endian>::readval(view + off);
2301   // The TOC pointer
2302   Address got_base = (target->got_section()->output_section()->address()
2303                       + this->toc_base_offset());
2304   addr -= got_base;
2305   if (addr + (uint64_t) 0x80008000 >= (uint64_t) 1 << 32)
2306     return false;
2307
2308   *value = addr;
2309   return true;
2310 }
2311
2312 // Perform the Sized_relobj_file method, then set up opd info from
2313 // .opd relocs.
2314
2315 template<int size, bool big_endian>
2316 void
2317 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
2318 {
2319   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
2320   if (size == 64)
2321     {
2322       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
2323            p != rd->relocs.end();
2324            ++p)
2325         {
2326           if (p->data_shndx == this->opd_shndx())
2327             {
2328               uint64_t opd_size = this->section_size(this->opd_shndx());
2329               gold_assert(opd_size == static_cast<size_t>(opd_size));
2330               if (opd_size != 0)
2331                 {
2332                   this->init_opd(opd_size);
2333                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
2334                                         rd->local_symbols->data());
2335                 }
2336               break;
2337             }
2338         }
2339     }
2340 }
2341
2342 // Read the symbols then set up st_other vector.
2343
2344 template<int size, bool big_endian>
2345 void
2346 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2347 {
2348   this->base_read_symbols(sd);
2349   if (this->input_file()->format() != Input_file::FORMAT_ELF)
2350     return;
2351   if (size == 64)
2352     {
2353       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2354       const unsigned char* const pshdrs = sd->section_headers->data();
2355       const unsigned int loccount = this->do_local_symbol_count();
2356       if (loccount != 0)
2357         {
2358           this->st_other_.resize(loccount);
2359           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2360           off_t locsize = loccount * sym_size;
2361           const unsigned int symtab_shndx = this->symtab_shndx();
2362           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
2363           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
2364           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
2365                                                       locsize, true, false);
2366           psyms += sym_size;
2367           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2368             {
2369               elfcpp::Sym<size, big_endian> sym(psyms);
2370               unsigned char st_other = sym.get_st_other();
2371               this->st_other_[i] = st_other;
2372               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
2373                 {
2374                   if (this->abiversion() == 0)
2375                     this->set_abiversion(2);
2376                   else if (this->abiversion() < 2)
2377                     gold_error(_("%s: local symbol %d has invalid st_other"
2378                                  " for ABI version 1"),
2379                                this->name().c_str(), i);
2380                 }
2381             }
2382         }
2383     }
2384
2385   const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2386   const unsigned char* ps = sd->section_headers->data() + shdr_size;
2387   bool merge_attributes = false;
2388   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
2389     {
2390       elfcpp::Shdr<size, big_endian> shdr(ps);
2391       switch (shdr.get_sh_type())
2392         {
2393         case elfcpp::SHT_GNU_ATTRIBUTES:
2394           {
2395             gold_assert(this->attributes_section_data_ == NULL);
2396             section_offset_type section_offset = shdr.get_sh_offset();
2397             section_size_type section_size =
2398               convert_to_section_size_type(shdr.get_sh_size());
2399             const unsigned char* view =
2400               this->get_view(section_offset, section_size, true, false);
2401             this->attributes_section_data_ =
2402               new Attributes_section_data(view, section_size);
2403           }
2404           break;
2405
2406         case elfcpp::SHT_SYMTAB:
2407           {
2408             // Sometimes an object has no contents except the section
2409             // name string table and an empty symbol table with the
2410             // undefined symbol.  We don't want to merge
2411             // processor-specific flags from such an object.
2412             const typename elfcpp::Elf_types<size>::Elf_WXword sym_size =
2413               elfcpp::Elf_sizes<size>::sym_size;
2414             if (shdr.get_sh_size() > sym_size)
2415               merge_attributes = true;
2416           }
2417           break;
2418
2419         case elfcpp::SHT_STRTAB:
2420           break;
2421
2422         default:
2423           merge_attributes = true;
2424           break;
2425         }
2426     }
2427
2428   if (!merge_attributes)
2429     {
2430       // Should rarely happen.
2431       delete this->attributes_section_data_;
2432       this->attributes_section_data_ = NULL;
2433     }
2434 }
2435
2436 template<int size, bool big_endian>
2437 void
2438 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
2439 {
2440   this->e_flags_ |= ver;
2441   if (this->abiversion() != 0)
2442     {
2443       Target_powerpc<size, big_endian>* target =
2444         static_cast<Target_powerpc<size, big_endian>*>(
2445           parameters->sized_target<size, big_endian>());
2446       if (target->abiversion() == 0)
2447         target->set_abiversion(this->abiversion());
2448       else if (target->abiversion() != this->abiversion())
2449         gold_error(_("%s: ABI version %d is not compatible "
2450                      "with ABI version %d output"),
2451                    this->name().c_str(),
2452                    this->abiversion(), target->abiversion());
2453
2454     }
2455 }
2456
2457 // Call Sized_dynobj::base_read_symbols to read the symbols then
2458 // read .opd from a dynamic object, filling in opd_ent_ vector,
2459
2460 template<int size, bool big_endian>
2461 void
2462 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2463 {
2464   this->base_read_symbols(sd);
2465   const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2466   const unsigned char* ps =
2467     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
2468   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
2469     {
2470       elfcpp::Shdr<size, big_endian> shdr(ps);
2471       if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
2472         {
2473           section_offset_type section_offset = shdr.get_sh_offset();
2474           section_size_type section_size =
2475             convert_to_section_size_type(shdr.get_sh_size());
2476           const unsigned char* view =
2477             this->get_view(section_offset, section_size, true, false);
2478           this->attributes_section_data_ =
2479             new Attributes_section_data(view, section_size);
2480           break;
2481         }
2482     }
2483   if (size == 64)
2484     {
2485       const unsigned char* const pshdrs = sd->section_headers->data();
2486       const unsigned char* namesu = sd->section_names->data();
2487       const char* names = reinterpret_cast<const char*>(namesu);
2488       const unsigned char* s = NULL;
2489       const unsigned char* opd;
2490       section_size_type opd_size;
2491
2492       // Find and read .opd section.
2493       while (1)
2494         {
2495           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
2496                                                          sd->section_names_size,
2497                                                          s);
2498           if (s == NULL)
2499             return;
2500
2501           typename elfcpp::Shdr<size, big_endian> shdr(s);
2502           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2503               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2504             {
2505               if (this->abiversion() == 0)
2506                 this->set_abiversion(1);
2507               else if (this->abiversion() > 1)
2508                 gold_error(_("%s: .opd invalid in abiv%d"),
2509                            this->name().c_str(), this->abiversion());
2510
2511               this->opd_shndx_ = (s - pshdrs) / shdr_size;
2512               this->opd_address_ = shdr.get_sh_addr();
2513               opd_size = convert_to_section_size_type(shdr.get_sh_size());
2514               opd = this->get_view(shdr.get_sh_offset(), opd_size,
2515                                    true, false);
2516               break;
2517             }
2518         }
2519
2520       // Build set of executable sections.
2521       // Using a set is probably overkill.  There is likely to be only
2522       // a few executable sections, typically .init, .text and .fini,
2523       // and they are generally grouped together.
2524       typedef std::set<Sec_info> Exec_sections;
2525       Exec_sections exec_sections;
2526       s = pshdrs;
2527       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2528         {
2529           typename elfcpp::Shdr<size, big_endian> shdr(s);
2530           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2531               && ((shdr.get_sh_flags()
2532                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2533                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2534               && shdr.get_sh_size() != 0)
2535             {
2536               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2537                                             shdr.get_sh_size(), i));
2538             }
2539         }
2540       if (exec_sections.empty())
2541         return;
2542
2543       // Look over the OPD entries.  This is complicated by the fact
2544       // that some binaries will use two-word entries while others
2545       // will use the standard three-word entries.  In most cases
2546       // the third word (the environment pointer for languages like
2547       // Pascal) is unused and will be zero.  If the third word is
2548       // used it should not be pointing into executable sections,
2549       // I think.
2550       this->init_opd(opd_size);
2551       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2552         {
2553           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2554           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2555           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2556           if (val == 0)
2557             // Chances are that this is the third word of an OPD entry.
2558             continue;
2559           typename Exec_sections::const_iterator e
2560             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2561           if (e != exec_sections.begin())
2562             {
2563               --e;
2564               if (e->start <= val && val < e->start + e->len)
2565                 {
2566                   // We have an address in an executable section.
2567                   // VAL ought to be the function entry, set it up.
2568                   this->set_opd_ent(p - opd, e->shndx, val);
2569                   // Skip second word of OPD entry, the TOC pointer.
2570                   p += 8;
2571                 }
2572             }
2573           // If we didn't match any executable sections, we likely
2574           // have a non-zero third word in the OPD entry.
2575         }
2576     }
2577 }
2578
2579 // Relocate sections.
2580
2581 template<int size, bool big_endian>
2582 void
2583 Powerpc_relobj<size, big_endian>::do_relocate_sections(
2584     const Symbol_table* symtab, const Layout* layout,
2585     const unsigned char* pshdrs, Output_file* of,
2586     typename Sized_relobj_file<size, big_endian>::Views* pviews)
2587 {
2588   unsigned int start = 1;
2589   if (size == 64
2590       && this->relatoc_ != 0
2591       && !parameters->options().relocatable())
2592     {
2593       // Relocate .toc first.
2594       this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2595                                    this->relatoc_, this->relatoc_);
2596       this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2597                                    1, this->relatoc_ - 1);
2598       start = this->relatoc_ + 1;
2599     }
2600   this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2601                                start, this->shnum() - 1);
2602
2603   if (!parameters->options().output_is_position_independent())
2604     {
2605       Target_powerpc<size, big_endian>* target
2606         = static_cast<Target_powerpc<size, big_endian>*>(
2607             parameters->sized_target<size, big_endian>());
2608       if (target->lplt_section() && target->lplt_section()->data_size() != 0)
2609         {
2610           const section_size_type offset = target->lplt_section()->offset();
2611           const section_size_type oview_size
2612             = convert_to_section_size_type(target->lplt_section()->data_size());
2613           unsigned char* const oview = of->get_output_view(offset, oview_size);
2614
2615           bool modified = false;
2616           unsigned int nsyms = this->local_symbol_count();
2617           for (unsigned int i = 0; i < nsyms; i++)
2618             if (this->local_has_plt_offset(i))
2619               {
2620                 Address value = this->local_symbol_value(i, 0);
2621                 if (size == 64)
2622                   value += ppc64_local_entry_offset(i);
2623                 size_t off = this->local_plt_offset(i);
2624                 elfcpp::Swap<size, big_endian>::writeval(oview + off, value);
2625                 modified = true;
2626               }
2627           if (modified)
2628             of->write_output_view(offset, oview_size, oview);
2629         }
2630     }
2631 }
2632
2633 // Set up some symbols.
2634
2635 template<int size, bool big_endian>
2636 void
2637 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2638     Symbol_table* symtab,
2639     Layout* layout)
2640 {
2641   if (size == 32)
2642     {
2643       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2644       // undefined when scanning relocs (and thus requires
2645       // non-relative dynamic relocs).  The proper value will be
2646       // updated later.
2647       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2648       if (gotsym != NULL && gotsym->is_undefined())
2649         {
2650           Target_powerpc<size, big_endian>* target =
2651             static_cast<Target_powerpc<size, big_endian>*>(
2652                 parameters->sized_target<size, big_endian>());
2653           Output_data_got_powerpc<size, big_endian>* got
2654             = target->got_section(symtab, layout);
2655           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2656                                         Symbol_table::PREDEFINED,
2657                                         got, 0, 0,
2658                                         elfcpp::STT_OBJECT,
2659                                         elfcpp::STB_LOCAL,
2660                                         elfcpp::STV_HIDDEN, 0,
2661                                         false, false);
2662         }
2663
2664       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2665       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2666       if (sdasym != NULL && sdasym->is_undefined())
2667         {
2668           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2669           Output_section* os
2670             = layout->add_output_section_data(".sdata", 0,
2671                                               elfcpp::SHF_ALLOC
2672                                               | elfcpp::SHF_WRITE,
2673                                               sdata, ORDER_SMALL_DATA, false);
2674           symtab->define_in_output_data("_SDA_BASE_", NULL,
2675                                         Symbol_table::PREDEFINED,
2676                                         os, 32768, 0, elfcpp::STT_OBJECT,
2677                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2678                                         0, false, false);
2679         }
2680     }
2681   else
2682     {
2683       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2684       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2685       if (gotsym != NULL && gotsym->is_undefined())
2686         {
2687           Target_powerpc<size, big_endian>* target =
2688             static_cast<Target_powerpc<size, big_endian>*>(
2689                 parameters->sized_target<size, big_endian>());
2690           Output_data_got_powerpc<size, big_endian>* got
2691             = target->got_section(symtab, layout);
2692           symtab->define_in_output_data(".TOC.", NULL,
2693                                         Symbol_table::PREDEFINED,
2694                                         got, 0x8000, 0,
2695                                         elfcpp::STT_OBJECT,
2696                                         elfcpp::STB_LOCAL,
2697                                         elfcpp::STV_HIDDEN, 0,
2698                                         false, false);
2699         }
2700     }
2701
2702   this->tls_get_addr_ = symtab->lookup("__tls_get_addr");
2703   if (parameters->options().tls_get_addr_optimize()
2704       && this->tls_get_addr_ != NULL
2705       && this->tls_get_addr_->in_reg())
2706     this->tls_get_addr_opt_ = symtab->lookup("__tls_get_addr_opt");
2707   if (this->tls_get_addr_opt_ != NULL)
2708     {
2709       if (this->tls_get_addr_->is_undefined()
2710           || this->tls_get_addr_->is_from_dynobj())
2711         {
2712           // Make it seem as if references to __tls_get_addr are
2713           // really to __tls_get_addr_opt, so the latter symbol is
2714           // made dynamic, not the former.
2715           this->tls_get_addr_->clear_in_reg();
2716           this->tls_get_addr_opt_->set_in_reg();
2717         }
2718       // We have a non-dynamic definition for __tls_get_addr.
2719       // Make __tls_get_addr_opt the same, if it does not already have
2720       // a non-dynamic definition.
2721       else if (this->tls_get_addr_opt_->is_undefined()
2722                || this->tls_get_addr_opt_->is_from_dynobj())
2723         {
2724           Sized_symbol<size>* from
2725             = static_cast<Sized_symbol<size>*>(this->tls_get_addr_);
2726           Sized_symbol<size>* to
2727             = static_cast<Sized_symbol<size>*>(this->tls_get_addr_opt_);
2728           symtab->clone<size>(to, from);
2729         }
2730     }
2731 }
2732
2733 // Set up PowerPC target specific relobj.
2734
2735 template<int size, bool big_endian>
2736 Object*
2737 Target_powerpc<size, big_endian>::do_make_elf_object(
2738     const std::string& name,
2739     Input_file* input_file,
2740     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2741 {
2742   int et = ehdr.get_e_type();
2743   // ET_EXEC files are valid input for --just-symbols/-R,
2744   // and we treat them as relocatable objects.
2745   if (et == elfcpp::ET_REL
2746       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2747     {
2748       Powerpc_relobj<size, big_endian>* obj =
2749         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2750       obj->setup();
2751       return obj;
2752     }
2753   else if (et == elfcpp::ET_DYN)
2754     {
2755       Powerpc_dynobj<size, big_endian>* obj =
2756         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2757       obj->setup();
2758       return obj;
2759     }
2760   else
2761     {
2762       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2763       return NULL;
2764     }
2765 }
2766
2767 template<int size, bool big_endian>
2768 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2769 {
2770 public:
2771   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2772   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2773
2774   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2775     : Output_data_got<size, big_endian>(),
2776       symtab_(symtab), layout_(layout),
2777       header_ent_cnt_(size == 32 ? 3 : 1),
2778       header_index_(size == 32 ? 0x2000 : 0)
2779   {
2780     if (size == 64)
2781       this->set_addralign(256);
2782   }
2783
2784   // Override all the Output_data_got methods we use so as to first call
2785   // reserve_ent().
2786   bool
2787   add_global(Symbol* gsym, unsigned int got_type)
2788   {
2789     this->reserve_ent();
2790     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2791   }
2792
2793   bool
2794   add_global_plt(Symbol* gsym, unsigned int got_type)
2795   {
2796     this->reserve_ent();
2797     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2798   }
2799
2800   bool
2801   add_global_tls(Symbol* gsym, unsigned int got_type)
2802   { return this->add_global_plt(gsym, got_type); }
2803
2804   void
2805   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2806                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2807   {
2808     this->reserve_ent();
2809     Output_data_got<size, big_endian>::
2810       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2811   }
2812
2813   void
2814   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2815                            Output_data_reloc_generic* rel_dyn,
2816                            unsigned int r_type_1, unsigned int r_type_2)
2817   {
2818     if (gsym->has_got_offset(got_type))
2819       return;
2820
2821     this->reserve_ent(2);
2822     Output_data_got<size, big_endian>::
2823       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2824   }
2825
2826   bool
2827   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2828   {
2829     this->reserve_ent();
2830     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2831                                                         got_type);
2832   }
2833
2834   bool
2835   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2836   {
2837     this->reserve_ent();
2838     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2839                                                             got_type);
2840   }
2841
2842   bool
2843   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2844   { return this->add_local_plt(object, sym_index, got_type); }
2845
2846   void
2847   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2848                      unsigned int got_type,
2849                      Output_data_reloc_generic* rel_dyn,
2850                      unsigned int r_type)
2851   {
2852     if (object->local_has_got_offset(sym_index, got_type))
2853       return;
2854
2855     this->reserve_ent(2);
2856     Output_data_got<size, big_endian>::
2857       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2858   }
2859
2860   unsigned int
2861   add_constant(Valtype constant)
2862   {
2863     this->reserve_ent();
2864     return Output_data_got<size, big_endian>::add_constant(constant);
2865   }
2866
2867   unsigned int
2868   add_constant_pair(Valtype c1, Valtype c2)
2869   {
2870     this->reserve_ent(2);
2871     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2872   }
2873
2874   // Offset of _GLOBAL_OFFSET_TABLE_.
2875   unsigned int
2876   g_o_t() const
2877   {
2878     return this->got_offset(this->header_index_);
2879   }
2880
2881   // Offset of base used to access the GOT/TOC.
2882   // The got/toc pointer reg will be set to this value.
2883   Valtype
2884   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2885   {
2886     if (size == 32)
2887       return this->g_o_t();
2888     else
2889       return (this->output_section()->address()
2890               + object->toc_base_offset()
2891               - this->address());
2892   }
2893
2894   // Ensure our GOT has a header.
2895   void
2896   set_final_data_size()
2897   {
2898     if (this->header_ent_cnt_ != 0)
2899       this->make_header();
2900     Output_data_got<size, big_endian>::set_final_data_size();
2901   }
2902
2903   // First word of GOT header needs some values that are not
2904   // handled by Output_data_got so poke them in here.
2905   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2906   void
2907   do_write(Output_file* of)
2908   {
2909     Valtype val = 0;
2910     if (size == 32 && this->layout_->dynamic_data() != NULL)
2911       val = this->layout_->dynamic_section()->address();
2912     if (size == 64)
2913       val = this->output_section()->address() + 0x8000;
2914     this->replace_constant(this->header_index_, val);
2915     Output_data_got<size, big_endian>::do_write(of);
2916   }
2917
2918 private:
2919   void
2920   reserve_ent(unsigned int cnt = 1)
2921   {
2922     if (this->header_ent_cnt_ == 0)
2923       return;
2924     if (this->num_entries() + cnt > this->header_index_)
2925       this->make_header();
2926   }
2927
2928   void
2929   make_header()
2930   {
2931     this->header_ent_cnt_ = 0;
2932     this->header_index_ = this->num_entries();
2933     if (size == 32)
2934       {
2935         Output_data_got<size, big_endian>::add_constant(0);
2936         Output_data_got<size, big_endian>::add_constant(0);
2937         Output_data_got<size, big_endian>::add_constant(0);
2938
2939         // Define _GLOBAL_OFFSET_TABLE_ at the header
2940         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2941         if (gotsym != NULL)
2942           {
2943             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2944             sym->set_value(this->g_o_t());
2945           }
2946         else
2947           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2948                                                Symbol_table::PREDEFINED,
2949                                                this, this->g_o_t(), 0,
2950                                                elfcpp::STT_OBJECT,
2951                                                elfcpp::STB_LOCAL,
2952                                                elfcpp::STV_HIDDEN, 0,
2953                                                false, false);
2954       }
2955     else
2956       Output_data_got<size, big_endian>::add_constant(0);
2957   }
2958
2959   // Stashed pointers.
2960   Symbol_table* symtab_;
2961   Layout* layout_;
2962
2963   // GOT header size.
2964   unsigned int header_ent_cnt_;
2965   // GOT header index.
2966   unsigned int header_index_;
2967 };
2968
2969 // Get the GOT section, creating it if necessary.
2970
2971 template<int size, bool big_endian>
2972 Output_data_got_powerpc<size, big_endian>*
2973 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2974                                               Layout* layout)
2975 {
2976   if (this->got_ == NULL)
2977     {
2978       gold_assert(symtab != NULL && layout != NULL);
2979
2980       this->got_
2981         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2982
2983       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2984                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2985                                       this->got_, ORDER_DATA, false);
2986     }
2987
2988   return this->got_;
2989 }
2990
2991 // Get the dynamic reloc section, creating it if necessary.
2992
2993 template<int size, bool big_endian>
2994 typename Target_powerpc<size, big_endian>::Reloc_section*
2995 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2996 {
2997   if (this->rela_dyn_ == NULL)
2998     {
2999       gold_assert(layout != NULL);
3000       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3001       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3002                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
3003                                       ORDER_DYNAMIC_RELOCS, false);
3004     }
3005   return this->rela_dyn_;
3006 }
3007
3008 // Similarly, but for ifunc symbols get the one for ifunc.
3009
3010 template<int size, bool big_endian>
3011 typename Target_powerpc<size, big_endian>::Reloc_section*
3012 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
3013                                                    Layout* layout,
3014                                                    bool for_ifunc)
3015 {
3016   if (!for_ifunc)
3017     return this->rela_dyn_section(layout);
3018
3019   if (this->iplt_ == NULL)
3020     this->make_iplt_section(symtab, layout);
3021   return this->iplt_->rel_plt();
3022 }
3023
3024 class Stub_control
3025 {
3026  public:
3027   // Determine the stub group size.  The group size is the absolute
3028   // value of the parameter --stub-group-size.  If --stub-group-size
3029   // is passed a negative value, we restrict stubs to be always after
3030   // the stubbed branches.
3031   Stub_control(int32_t size, bool no_size_errors, bool multi_os)
3032     : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
3033       suppress_size_errors_(no_size_errors), multi_os_(multi_os),
3034       state_(NO_GROUP), group_size_(0), group_start_addr_(0),
3035       owner_(NULL), output_section_(NULL)
3036   {
3037   }
3038
3039   // Return true iff input section can be handled by current stub
3040   // group.
3041   bool
3042   can_add_to_stub_group(Output_section* o,
3043                         const Output_section::Input_section* i,
3044                         bool has14);
3045
3046   const Output_section::Input_section*
3047   owner()
3048   { return owner_; }
3049
3050   Output_section*
3051   output_section()
3052   { return output_section_; }
3053
3054   void
3055   set_output_and_owner(Output_section* o,
3056                        const Output_section::Input_section* i)
3057   {
3058     this->output_section_ = o;
3059     this->owner_ = i;
3060   }
3061
3062  private:
3063   typedef enum
3064   {
3065     // Initial state.
3066     NO_GROUP,
3067     // Adding group sections before the stubs.
3068     FINDING_STUB_SECTION,
3069     // Adding group sections after the stubs.
3070     HAS_STUB_SECTION
3071   } State;
3072
3073   uint32_t stub_group_size_;
3074   bool stubs_always_after_branch_;
3075   bool suppress_size_errors_;
3076   // True if a stub group can serve multiple output sections.
3077   bool multi_os_;
3078   State state_;
3079   // Current max size of group.  Starts at stub_group_size_ but is
3080   // reduced to stub_group_size_/1024 on seeing a section with
3081   // external conditional branches.
3082   uint32_t group_size_;
3083   uint64_t group_start_addr_;
3084   // owner_ and output_section_ specify the section to which stubs are
3085   // attached.  The stubs are placed at the end of this section.
3086   const Output_section::Input_section* owner_;
3087   Output_section* output_section_;
3088 };
3089
3090 // Return true iff input section can be handled by current stub
3091 // group.  Sections are presented to this function in order,
3092 // so the first section is the head of the group.
3093
3094 bool
3095 Stub_control::can_add_to_stub_group(Output_section* o,
3096                                     const Output_section::Input_section* i,
3097                                     bool has14)
3098 {
3099   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
3100   uint64_t this_size;
3101   uint64_t start_addr = o->address();
3102
3103   if (whole_sec)
3104     // .init and .fini sections are pasted together to form a single
3105     // function.  We can't be adding stubs in the middle of the function.
3106     this_size = o->data_size();
3107   else
3108     {
3109       start_addr += i->relobj()->output_section_offset(i->shndx());
3110       this_size = i->data_size();
3111     }
3112
3113   uint64_t end_addr = start_addr + this_size;
3114   uint32_t group_size = this->stub_group_size_;
3115   if (has14)
3116     this->group_size_ = group_size = group_size >> 10;
3117
3118   if (this_size > group_size && !this->suppress_size_errors_)
3119     gold_warning(_("%s:%s exceeds group size"),
3120                  i->relobj()->name().c_str(),
3121                  i->relobj()->section_name(i->shndx()).c_str());
3122
3123   gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
3124              has14 ? " 14bit" : "",
3125              i->relobj()->name().c_str(),
3126              i->relobj()->section_name(i->shndx()).c_str(),
3127              (long long) this_size,
3128              (this->state_ == NO_GROUP
3129               ? this_size
3130               : (long long) end_addr - this->group_start_addr_));
3131
3132   if (this->state_ == NO_GROUP)
3133     {
3134       // Only here on very first use of Stub_control
3135       this->owner_ = i;
3136       this->output_section_ = o;
3137       this->state_ = FINDING_STUB_SECTION;
3138       this->group_size_ = group_size;
3139       this->group_start_addr_ = start_addr;
3140       return true;
3141     }
3142   else if (!this->multi_os_ && this->output_section_ != o)
3143     ;
3144   else if (this->state_ == HAS_STUB_SECTION)
3145     {
3146       // Can we add this section, which is after the stubs, to the
3147       // group?
3148       if (end_addr - this->group_start_addr_ <= this->group_size_)
3149         return true;
3150     }
3151   else if (this->state_ == FINDING_STUB_SECTION)
3152     {
3153       if ((whole_sec && this->output_section_ == o)
3154           || end_addr - this->group_start_addr_ <= this->group_size_)
3155         {
3156           // Stubs are added at the end of "owner_".
3157           this->owner_ = i;
3158           this->output_section_ = o;
3159           return true;
3160         }
3161       // The group before the stubs has reached maximum size.
3162       // Now see about adding sections after the stubs to the
3163       // group.  If the current section has a 14-bit branch and
3164       // the group before the stubs exceeds group_size_ (because
3165       // they didn't have 14-bit branches), don't add sections
3166       // after the stubs:  The size of stubs for such a large
3167       // group may exceed the reach of a 14-bit branch.
3168       if (!this->stubs_always_after_branch_
3169           && this_size <= this->group_size_
3170           && start_addr - this->group_start_addr_ <= this->group_size_)
3171         {
3172           gold_debug(DEBUG_TARGET, "adding after stubs");
3173           this->state_ = HAS_STUB_SECTION;
3174           this->group_start_addr_ = start_addr;
3175           return true;
3176         }
3177     }
3178   else
3179     gold_unreachable();
3180
3181   gold_debug(DEBUG_TARGET,
3182              !this->multi_os_ && this->output_section_ != o
3183              ? "nope, new output section\n"
3184              : "nope, didn't fit\n");
3185
3186   // The section fails to fit in the current group.  Set up a few
3187   // things for the next group.  owner_ and output_section_ will be
3188   // set later after we've retrieved those values for the current
3189   // group.
3190   this->state_ = FINDING_STUB_SECTION;
3191   this->group_size_ = group_size;
3192   this->group_start_addr_ = start_addr;
3193   return false;
3194 }
3195
3196 // Look over all the input sections, deciding where to place stubs.
3197
3198 template<int size, bool big_endian>
3199 void
3200 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
3201                                                  const Task*,
3202                                                  bool no_size_errors)
3203 {
3204   Stub_control stub_control(this->stub_group_size_, no_size_errors,
3205                             parameters->options().stub_group_multi());
3206
3207   // Group input sections and insert stub table
3208   Stub_table_owner* table_owner = NULL;
3209   std::vector<Stub_table_owner*> tables;
3210   Layout::Section_list section_list;
3211   layout->get_executable_sections(&section_list);
3212   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
3213   for (Layout::Section_list::iterator o = section_list.begin();
3214        o != section_list.end();
3215        ++o)
3216     {
3217       typedef Output_section::Input_section_list Input_section_list;
3218       for (Input_section_list::const_iterator i
3219              = (*o)->input_sections().begin();
3220            i != (*o)->input_sections().end();
3221            ++i)
3222         {
3223           if (i->is_input_section()
3224               || i->is_relaxed_input_section())
3225             {
3226               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3227                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
3228               bool has14 = ppcobj->has_14bit_branch(i->shndx());
3229               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
3230                 {
3231                   table_owner->output_section = stub_control.output_section();
3232                   table_owner->owner = stub_control.owner();
3233                   stub_control.set_output_and_owner(*o, &*i);
3234                   table_owner = NULL;
3235                 }
3236               if (table_owner == NULL)
3237                 {
3238                   table_owner = new Stub_table_owner;
3239                   tables.push_back(table_owner);
3240                 }
3241               ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
3242             }
3243         }
3244     }
3245   if (table_owner != NULL)
3246     {
3247       table_owner->output_section = stub_control.output_section();
3248       table_owner->owner = stub_control.owner();;
3249     }
3250   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
3251        t != tables.end();
3252        ++t)
3253     {
3254       Stub_table<size, big_endian>* stub_table;
3255
3256       if ((*t)->owner->is_input_section())
3257         stub_table = new Stub_table<size, big_endian>(this,
3258                                                       (*t)->output_section,
3259                                                       (*t)->owner,
3260                                                       this->stub_tables_.size());
3261       else if ((*t)->owner->is_relaxed_input_section())
3262         stub_table = static_cast<Stub_table<size, big_endian>*>(
3263                         (*t)->owner->relaxed_input_section());
3264       else
3265         gold_unreachable();
3266       this->stub_tables_.push_back(stub_table);
3267       delete *t;
3268     }
3269 }
3270
3271 static unsigned long
3272 max_branch_delta (unsigned int r_type)
3273 {
3274   if (r_type == elfcpp::R_POWERPC_REL14
3275       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
3276       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
3277     return 1L << 15;
3278   if (r_type == elfcpp::R_POWERPC_REL24
3279       || r_type == elfcpp::R_PPC_PLTREL24
3280       || r_type == elfcpp::R_PPC_LOCAL24PC)
3281     return 1L << 25;
3282   return 0;
3283 }
3284
3285 // Return whether this branch is going via a plt call stub.
3286
3287 template<int size, bool big_endian>
3288 bool
3289 Target_powerpc<size, big_endian>::Branch_info::mark_pltcall(
3290     Powerpc_relobj<size, big_endian>* ppc_object,
3291     unsigned int shndx,
3292     Address offset,
3293     Target_powerpc* target,
3294     Symbol_table* symtab)
3295 {
3296   if (this->object_ != ppc_object
3297       || this->shndx_ != shndx
3298       || this->offset_ != offset)
3299     return false;
3300
3301   Symbol* sym = this->object_->global_symbol(this->r_sym_);
3302   if (sym != NULL && sym->is_forwarder())
3303     sym = symtab->resolve_forwards(sym);
3304   if (target->replace_tls_get_addr(sym))
3305     sym = target->tls_get_addr_opt();
3306   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3307   if (gsym != NULL
3308       ? (gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3309          && !target->is_elfv2_localentry0(gsym))
3310       : (this->object_->local_has_plt_offset(this->r_sym_)
3311          && !target->is_elfv2_localentry0(this->object_, this->r_sym_)))
3312     {
3313       this->tocsave_ = 1;
3314       return true;
3315     }
3316   return false;
3317 }
3318
3319 // If this branch needs a plt call stub, or a long branch stub, make one.
3320
3321 template<int size, bool big_endian>
3322 bool
3323 Target_powerpc<size, big_endian>::Branch_info::make_stub(
3324     Stub_table<size, big_endian>* stub_table,
3325     Stub_table<size, big_endian>* ifunc_stub_table,
3326     Symbol_table* symtab) const
3327 {
3328   Symbol* sym = this->object_->global_symbol(this->r_sym_);
3329   Target_powerpc<size, big_endian>* target =
3330     static_cast<Target_powerpc<size, big_endian>*>(
3331       parameters->sized_target<size, big_endian>());
3332   if (sym != NULL && sym->is_forwarder())
3333     sym = symtab->resolve_forwards(sym);
3334   if (target->replace_tls_get_addr(sym))
3335     sym = target->tls_get_addr_opt();
3336   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3337   bool ok = true;
3338
3339   if (gsym != NULL
3340       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3341       : this->object_->local_has_plt_offset(this->r_sym_))
3342     {
3343       if (size == 64
3344           && gsym != NULL
3345           && target->abiversion() >= 2
3346           && !parameters->options().output_is_position_independent()
3347           && !is_branch_reloc(this->r_type_))
3348         target->glink_section()->add_global_entry(gsym);
3349       else
3350         {
3351           if (stub_table == NULL
3352               && !(size == 32
3353                    && gsym != NULL
3354                    && !parameters->options().output_is_position_independent()
3355                    && !is_branch_reloc(this->r_type_)))
3356             stub_table = this->object_->stub_table(this->shndx_);
3357           if (stub_table == NULL)
3358             {
3359               // This is a ref from a data section to an ifunc symbol,
3360               // or a non-branch reloc for which we always want to use
3361               // one set of stubs for resolving function addresses.
3362               stub_table = ifunc_stub_table;
3363             }
3364           gold_assert(stub_table != NULL);
3365           Address from = this->object_->get_output_section_offset(this->shndx_);
3366           if (from != invalid_address)
3367             from += (this->object_->output_section(this->shndx_)->address()
3368                      + this->offset_);
3369           if (gsym != NULL)
3370             ok = stub_table->add_plt_call_entry(from,
3371                                                 this->object_, gsym,
3372                                                 this->r_type_, this->addend_,
3373                                                 this->tocsave_);
3374           else
3375             ok = stub_table->add_plt_call_entry(from,
3376                                                 this->object_, this->r_sym_,
3377                                                 this->r_type_, this->addend_,
3378                                                 this->tocsave_);
3379         }
3380     }
3381   else
3382     {
3383       Address max_branch_offset = max_branch_delta(this->r_type_);
3384       if (max_branch_offset == 0)
3385         return true;
3386       Address from = this->object_->get_output_section_offset(this->shndx_);
3387       gold_assert(from != invalid_address);
3388       from += (this->object_->output_section(this->shndx_)->address()
3389                + this->offset_);
3390       Address to;
3391       if (gsym != NULL)
3392         {
3393           switch (gsym->source())
3394             {
3395             case Symbol::FROM_OBJECT:
3396               {
3397                 Object* symobj = gsym->object();
3398                 if (symobj->is_dynamic()
3399                     || symobj->pluginobj() != NULL)
3400                   return true;
3401                 bool is_ordinary;
3402                 unsigned int shndx = gsym->shndx(&is_ordinary);
3403                 if (shndx == elfcpp::SHN_UNDEF)
3404                   return true;
3405               }
3406               break;
3407
3408             case Symbol::IS_UNDEFINED:
3409               return true;
3410
3411             default:
3412               break;
3413             }
3414           Symbol_table::Compute_final_value_status status;
3415           to = symtab->compute_final_value<size>(gsym, &status);
3416           if (status != Symbol_table::CFVS_OK)
3417             return true;
3418           if (size == 64)
3419             to += this->object_->ppc64_local_entry_offset(gsym);
3420         }
3421       else
3422         {
3423           const Symbol_value<size>* psymval
3424             = this->object_->local_symbol(this->r_sym_);
3425           Symbol_value<size> symval;
3426           if (psymval->is_section_symbol())
3427             symval.set_is_section_symbol();
3428           typedef Sized_relobj_file<size, big_endian> ObjType;
3429           typename ObjType::Compute_final_local_value_status status
3430             = this->object_->compute_final_local_value(this->r_sym_, psymval,
3431                                                        &symval, symtab);
3432           if (status != ObjType::CFLV_OK
3433               || !symval.has_output_value())
3434             return true;
3435           to = symval.value(this->object_, 0);
3436           if (size == 64)
3437             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
3438         }
3439       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
3440         to += this->addend_;
3441       if (stub_table == NULL)
3442         stub_table = this->object_->stub_table(this->shndx_);
3443       if (size == 64 && target->abiversion() < 2)
3444         {
3445           unsigned int dest_shndx;
3446           if (!target->symval_for_branch(symtab, gsym, this->object_,
3447                                          &to, &dest_shndx))
3448             return true;
3449         }
3450       Address delta = to - from;
3451       if (delta + max_branch_offset >= 2 * max_branch_offset)
3452         {
3453           if (stub_table == NULL)
3454             {
3455               gold_warning(_("%s:%s: branch in non-executable section,"
3456                              " no long branch stub for you"),
3457                            this->object_->name().c_str(),
3458                            this->object_->section_name(this->shndx_).c_str());
3459               return true;
3460             }
3461           bool save_res = (size == 64
3462                            && gsym != NULL
3463                            && gsym->source() == Symbol::IN_OUTPUT_DATA
3464                            && gsym->output_data() == target->savres_section());
3465           ok = stub_table->add_long_branch_entry(this->object_,
3466                                                  this->r_type_,
3467                                                  from, to, save_res);
3468         }
3469     }
3470   if (!ok)
3471     gold_debug(DEBUG_TARGET,
3472                "branch at %s:%s+%#lx\n"
3473                "can't reach stub attached to %s:%s",
3474                this->object_->name().c_str(),
3475                this->object_->section_name(this->shndx_).c_str(),
3476                (unsigned long) this->offset_,
3477                stub_table->relobj()->name().c_str(),
3478                stub_table->relobj()->section_name(stub_table->shndx()).c_str());
3479
3480   return ok;
3481 }
3482
3483 // Relaxation hook.  This is where we do stub generation.
3484
3485 template<int size, bool big_endian>
3486 bool
3487 Target_powerpc<size, big_endian>::do_relax(int pass,
3488                                            const Input_objects*,
3489                                            Symbol_table* symtab,
3490                                            Layout* layout,
3491                                            const Task* task)
3492 {
3493   unsigned int prev_brlt_size = 0;
3494   if (pass == 1)
3495     {
3496       bool thread_safe
3497         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
3498       if (size == 64
3499           && this->abiversion() < 2
3500           && !thread_safe
3501           && !parameters->options().user_set_plt_thread_safe())
3502         {
3503           static const char* const thread_starter[] =
3504             {
3505               "pthread_create",
3506               /* libstdc++ */
3507               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
3508               /* librt */
3509               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
3510               "mq_notify", "create_timer",
3511               /* libanl */
3512               "getaddrinfo_a",
3513               /* libgomp */
3514               "GOMP_parallel",
3515               "GOMP_parallel_start",
3516               "GOMP_parallel_loop_static",
3517               "GOMP_parallel_loop_static_start",
3518               "GOMP_parallel_loop_dynamic",
3519               "GOMP_parallel_loop_dynamic_start",
3520               "GOMP_parallel_loop_guided",
3521               "GOMP_parallel_loop_guided_start",
3522               "GOMP_parallel_loop_runtime",
3523               "GOMP_parallel_loop_runtime_start",
3524               "GOMP_parallel_sections",
3525               "GOMP_parallel_sections_start",
3526               /* libgo */
3527               "__go_go",
3528             };
3529
3530           if (parameters->options().shared())
3531             thread_safe = true;
3532           else
3533             {
3534               for (unsigned int i = 0;
3535                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
3536                    i++)
3537                 {
3538                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
3539                   thread_safe = (sym != NULL
3540                                  && sym->in_reg()
3541                                  && sym->in_real_elf());
3542                   if (thread_safe)
3543                     break;
3544                 }
3545             }
3546         }
3547       this->plt_thread_safe_ = thread_safe;
3548     }
3549
3550   if (pass == 1)
3551     {
3552       this->stub_group_size_ = parameters->options().stub_group_size();
3553       bool no_size_errors = true;
3554       if (this->stub_group_size_ == 1)
3555         this->stub_group_size_ = 0x1c00000;
3556       else if (this->stub_group_size_ == -1)
3557         this->stub_group_size_ = -0x1e00000;
3558       else
3559         no_size_errors = false;
3560       this->group_sections(layout, task, no_size_errors);
3561     }
3562   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
3563     {
3564       this->branch_lookup_table_.clear();
3565       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3566            p != this->stub_tables_.end();
3567            ++p)
3568         {
3569           (*p)->clear_stubs(true);
3570         }
3571       this->stub_tables_.clear();
3572       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
3573       gold_info(_("%s: stub group size is too large; retrying with %#x"),
3574                 program_name, this->stub_group_size_);
3575       this->group_sections(layout, task, true);
3576     }
3577
3578   // We need address of stub tables valid for make_stub.
3579   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3580        p != this->stub_tables_.end();
3581        ++p)
3582     {
3583       const Powerpc_relobj<size, big_endian>* object
3584         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
3585       Address off = object->get_output_section_offset((*p)->shndx());
3586       gold_assert(off != invalid_address);
3587       Output_section* os = (*p)->output_section();
3588       (*p)->set_address_and_size(os, off);
3589     }
3590
3591   if (pass != 1)
3592     {
3593       // Clear plt call stubs, long branch stubs and branch lookup table.
3594       prev_brlt_size = this->branch_lookup_table_.size();
3595       this->branch_lookup_table_.clear();
3596       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3597            p != this->stub_tables_.end();
3598            ++p)
3599         {
3600           (*p)->clear_stubs(false);
3601         }
3602     }
3603
3604   // Build all the stubs.
3605   this->relax_failed_ = false;
3606   Stub_table<size, big_endian>* ifunc_stub_table
3607     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
3608   Stub_table<size, big_endian>* one_stub_table
3609     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
3610   for (typename Branches::const_iterator b = this->branch_info_.begin();
3611        b != this->branch_info_.end();
3612        b++)
3613     {
3614       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3615           && !this->relax_failed_)
3616         {
3617           this->relax_failed_ = true;
3618           this->relax_fail_count_++;
3619           if (this->relax_fail_count_ < 3)
3620             return true;
3621         }
3622     }
3623
3624   // Did anything change size?
3625   unsigned int num_huge_branches = this->branch_lookup_table_.size();
3626   bool again = num_huge_branches != prev_brlt_size;
3627   if (size == 64 && num_huge_branches != 0)
3628     this->make_brlt_section(layout);
3629   if (size == 64 && again)
3630     this->brlt_section_->set_current_size(num_huge_branches);
3631
3632   for (typename Stub_tables::reverse_iterator p = this->stub_tables_.rbegin();
3633        p != this->stub_tables_.rend();
3634        ++p)
3635     (*p)->remove_eh_frame(layout);
3636
3637   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3638        p != this->stub_tables_.end();
3639        ++p)
3640     (*p)->add_eh_frame(layout);
3641
3642   typedef Unordered_set<Output_section*> Output_sections;
3643   Output_sections os_need_update;
3644   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3645        p != this->stub_tables_.end();
3646        ++p)
3647     {
3648       if ((*p)->size_update())
3649         {
3650           again = true;
3651           os_need_update.insert((*p)->output_section());
3652         }
3653     }
3654
3655   // Set output section offsets for all input sections in an output
3656   // section that just changed size.  Anything past the stubs will
3657   // need updating.
3658   for (typename Output_sections::iterator p = os_need_update.begin();
3659        p != os_need_update.end();
3660        p++)
3661     {
3662       Output_section* os = *p;
3663       Address off = 0;
3664       typedef Output_section::Input_section_list Input_section_list;
3665       for (Input_section_list::const_iterator i = os->input_sections().begin();
3666            i != os->input_sections().end();
3667            ++i)
3668         {
3669           off = align_address(off, i->addralign());
3670           if (i->is_input_section() || i->is_relaxed_input_section())
3671             i->relobj()->set_section_offset(i->shndx(), off);
3672           if (i->is_relaxed_input_section())
3673             {
3674               Stub_table<size, big_endian>* stub_table
3675                 = static_cast<Stub_table<size, big_endian>*>(
3676                     i->relaxed_input_section());
3677               Address stub_table_size = stub_table->set_address_and_size(os, off);
3678               off += stub_table_size;
3679               // After a few iterations, set current stub table size
3680               // as min size threshold, so later stub tables can only
3681               // grow in size.
3682               if (pass >= 4)
3683                 stub_table->set_min_size_threshold(stub_table_size);
3684             }
3685           else
3686             off += i->data_size();
3687         }
3688       // If .branch_lt is part of this output section, then we have
3689       // just done the offset adjustment.
3690       os->clear_section_offsets_need_adjustment();
3691     }
3692
3693   if (size == 64
3694       && !again
3695       && num_huge_branches != 0
3696       && parameters->options().output_is_position_independent())
3697     {
3698       // Fill in the BRLT relocs.
3699       this->brlt_section_->reset_brlt_sizes();
3700       for (typename Branch_lookup_table::const_iterator p
3701              = this->branch_lookup_table_.begin();
3702            p != this->branch_lookup_table_.end();
3703            ++p)
3704         {
3705           this->brlt_section_->add_reloc(p->first, p->second);
3706         }
3707       this->brlt_section_->finalize_brlt_sizes();
3708     }
3709
3710   if (!again
3711       && (parameters->options().user_set_emit_stub_syms()
3712           ? parameters->options().emit_stub_syms()
3713           : (size == 64
3714              || parameters->options().output_is_position_independent()
3715              || parameters->options().emit_relocs())))
3716     {
3717       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3718            p != this->stub_tables_.end();
3719            ++p)
3720         (*p)->define_stub_syms(symtab);
3721
3722       if (this->glink_ != NULL)
3723         {
3724           int stub_size = this->glink_->pltresolve_size();
3725           Address value = -stub_size;
3726           if (size == 64)
3727             {
3728               value = 8;
3729               stub_size -= 8;
3730             }
3731           this->define_local(symtab, "__glink_PLTresolve",
3732                              this->glink_, value, stub_size);
3733
3734           if (size != 64)
3735             this->define_local(symtab, "__glink", this->glink_, 0, 0);
3736         }
3737     }
3738
3739   return again;
3740 }
3741
3742 template<int size, bool big_endian>
3743 void
3744 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3745                                                       unsigned char* oview,
3746                                                       uint64_t* paddress,
3747                                                       off_t* plen) const
3748 {
3749   uint64_t address = plt->address();
3750   off_t len = plt->data_size();
3751
3752   if (plt == this->glink_)
3753     {
3754       // See Output_data_glink::do_write() for glink contents.
3755       if (len == 0)
3756         {
3757           gold_assert(parameters->doing_static_link());
3758           // Static linking may need stubs, to support ifunc and long
3759           // branches.  We need to create an output section for
3760           // .eh_frame early in the link process, to have a place to
3761           // attach stub .eh_frame info.  We also need to have
3762           // registered a CIE that matches the stub CIE.  Both of
3763           // these requirements are satisfied by creating an FDE and
3764           // CIE for .glink, even though static linking will leave
3765           // .glink zero length.
3766           // ??? Hopefully generating an FDE with a zero address range
3767           // won't confuse anything that consumes .eh_frame info.
3768         }
3769       else if (size == 64)
3770         {
3771           // There is one word before __glink_PLTresolve
3772           address += 8;
3773           len -= 8;
3774         }
3775       else if (parameters->options().output_is_position_independent())
3776         {
3777           // There are two FDEs for a position independent glink.
3778           // The first covers the branch table, the second
3779           // __glink_PLTresolve at the end of glink.
3780           off_t resolve_size = this->glink_->pltresolve_size();
3781           if (oview[9] == elfcpp::DW_CFA_nop)
3782             len -= resolve_size;
3783           else
3784             {
3785               address += len - resolve_size;
3786               len = resolve_size;
3787             }
3788         }
3789     }
3790   else
3791     {
3792       // Must be a stub table.
3793       const Stub_table<size, big_endian>* stub_table
3794         = static_cast<const Stub_table<size, big_endian>*>(plt);
3795       uint64_t stub_address = stub_table->stub_address();
3796       len -= stub_address - address;
3797       address = stub_address;
3798     }
3799
3800   *paddress = address;
3801   *plen = len;
3802 }
3803
3804 // A class to handle the PLT data.
3805
3806 template<int size, bool big_endian>
3807 class Output_data_plt_powerpc : public Output_section_data_build
3808 {
3809  public:
3810   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3811                             size, big_endian> Reloc_section;
3812
3813   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3814                           Reloc_section* plt_rel,
3815                           const char* name)
3816     : Output_section_data_build(size == 32 ? 4 : 8),
3817       rel_(plt_rel),
3818       targ_(targ),
3819       name_(name)
3820   { }
3821
3822   // Add an entry to the PLT.
3823   void
3824   add_entry(Symbol*);
3825
3826   void
3827   add_ifunc_entry(Symbol*);
3828
3829   void
3830   add_local_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3831
3832   void
3833   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3834
3835   // Return the .rela.plt section data.
3836   Reloc_section*
3837   rel_plt() const
3838   {
3839     return this->rel_;
3840   }
3841
3842   // Return the number of PLT entries.
3843   unsigned int
3844   entry_count() const
3845   {
3846     if (this->current_data_size() == 0)
3847       return 0;
3848     return ((this->current_data_size() - this->first_plt_entry_offset())
3849             / this->plt_entry_size());
3850   }
3851
3852  protected:
3853   void
3854   do_adjust_output_section(Output_section* os)
3855   {
3856     os->set_entsize(0);
3857   }
3858
3859   // Write to a map file.
3860   void
3861   do_print_to_mapfile(Mapfile* mapfile) const
3862   { mapfile->print_output_data(this, this->name_); }
3863
3864  private:
3865   // Return the offset of the first non-reserved PLT entry.
3866   unsigned int
3867   first_plt_entry_offset() const
3868   {
3869     // IPLT and LPLT have no reserved entry.
3870     if (this->name_[3] == 'I' || this->name_[3] == 'L')
3871       return 0;
3872     return this->targ_->first_plt_entry_offset();
3873   }
3874
3875   // Return the size of each PLT entry.
3876   unsigned int
3877   plt_entry_size() const
3878   {
3879     return this->targ_->plt_entry_size();
3880   }
3881
3882   // Write out the PLT data.
3883   void
3884   do_write(Output_file*);
3885
3886   // The reloc section.
3887   Reloc_section* rel_;
3888   // Allows access to .glink for do_write.
3889   Target_powerpc<size, big_endian>* targ_;
3890   // What to report in map file.
3891   const char *name_;
3892 };
3893
3894 // Add an entry to the PLT.
3895
3896 template<int size, bool big_endian>
3897 void
3898 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3899 {
3900   if (!gsym->has_plt_offset())
3901     {
3902       section_size_type off = this->current_data_size();
3903       if (off == 0)
3904         off += this->first_plt_entry_offset();
3905       gsym->set_plt_offset(off);
3906       gsym->set_needs_dynsym_entry();
3907       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3908       this->rel_->add_global(gsym, dynrel, this, off, 0);
3909       off += this->plt_entry_size();
3910       this->set_current_data_size(off);
3911     }
3912 }
3913
3914 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3915
3916 template<int size, bool big_endian>
3917 void
3918 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3919 {
3920   if (!gsym->has_plt_offset())
3921     {
3922       section_size_type off = this->current_data_size();
3923       gsym->set_plt_offset(off);
3924       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3925       if (size == 64 && this->targ_->abiversion() < 2)
3926         dynrel = elfcpp::R_PPC64_JMP_IREL;
3927       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3928       off += this->plt_entry_size();
3929       this->set_current_data_size(off);
3930     }
3931 }
3932
3933 // Add an entry for a local symbol to the PLT.
3934
3935 template<int size, bool big_endian>
3936 void
3937 Output_data_plt_powerpc<size, big_endian>::add_local_entry(
3938     Sized_relobj_file<size, big_endian>* relobj,
3939     unsigned int local_sym_index)
3940 {
3941   if (!relobj->local_has_plt_offset(local_sym_index))
3942     {
3943       section_size_type off = this->current_data_size();
3944       relobj->set_local_plt_offset(local_sym_index, off);
3945       if (this->rel_)
3946         {
3947           unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
3948           if (size == 64 && this->targ_->abiversion() < 2)
3949             dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3950           this->rel_->add_symbolless_local_addend(relobj, local_sym_index,
3951                                                   dynrel, this, off, 0);
3952         }
3953       off += this->plt_entry_size();
3954       this->set_current_data_size(off);
3955     }
3956 }
3957
3958 // Add an entry for a local ifunc symbol to the IPLT.
3959
3960 template<int size, bool big_endian>
3961 void
3962 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3963     Sized_relobj_file<size, big_endian>* relobj,
3964     unsigned int local_sym_index)
3965 {
3966   if (!relobj->local_has_plt_offset(local_sym_index))
3967     {
3968       section_size_type off = this->current_data_size();
3969       relobj->set_local_plt_offset(local_sym_index, off);
3970       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3971       if (size == 64 && this->targ_->abiversion() < 2)
3972         dynrel = elfcpp::R_PPC64_JMP_IREL;
3973       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3974                                               this, off, 0);
3975       off += this->plt_entry_size();
3976       this->set_current_data_size(off);
3977     }
3978 }
3979
3980 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3981 static const uint32_t add_2_2_11        = 0x7c425a14;
3982 static const uint32_t add_2_2_12        = 0x7c426214;
3983 static const uint32_t add_3_3_2         = 0x7c631214;
3984 static const uint32_t add_3_3_13        = 0x7c636a14;
3985 static const uint32_t add_3_12_2        = 0x7c6c1214;
3986 static const uint32_t add_3_12_13       = 0x7c6c6a14;
3987 static const uint32_t add_11_0_11       = 0x7d605a14;
3988 static const uint32_t add_11_2_11       = 0x7d625a14;
3989 static const uint32_t add_11_11_2       = 0x7d6b1214;
3990 static const uint32_t addi_0_12         = 0x380c0000;
3991 static const uint32_t addi_2_2          = 0x38420000;
3992 static const uint32_t addi_3_3          = 0x38630000;
3993 static const uint32_t addi_11_11        = 0x396b0000;
3994 static const uint32_t addi_12_1         = 0x39810000;
3995 static const uint32_t addi_12_12        = 0x398c0000;
3996 static const uint32_t addis_0_2         = 0x3c020000;
3997 static const uint32_t addis_0_13        = 0x3c0d0000;
3998 static const uint32_t addis_2_12        = 0x3c4c0000;
3999 static const uint32_t addis_11_2        = 0x3d620000;
4000 static const uint32_t addis_11_11       = 0x3d6b0000;
4001 static const uint32_t addis_11_30       = 0x3d7e0000;
4002 static const uint32_t addis_12_1        = 0x3d810000;
4003 static const uint32_t addis_12_2        = 0x3d820000;
4004 static const uint32_t addis_12_12       = 0x3d8c0000;
4005 static const uint32_t b                 = 0x48000000;
4006 static const uint32_t bcl_20_31         = 0x429f0005;
4007 static const uint32_t bctr              = 0x4e800420;
4008 static const uint32_t bctrl             = 0x4e800421;
4009 static const uint32_t beqlr             = 0x4d820020;
4010 static const uint32_t blr               = 0x4e800020;
4011 static const uint32_t bnectr_p4         = 0x4ce20420;
4012 static const uint32_t cmpld_7_12_0      = 0x7fac0040;
4013 static const uint32_t cmpldi_2_0        = 0x28220000;
4014 static const uint32_t cmpdi_11_0        = 0x2c2b0000;
4015 static const uint32_t cmpwi_11_0        = 0x2c0b0000;
4016 static const uint32_t cror_15_15_15     = 0x4def7b82;
4017 static const uint32_t cror_31_31_31     = 0x4ffffb82;
4018 static const uint32_t ld_0_1            = 0xe8010000;
4019 static const uint32_t ld_0_12           = 0xe80c0000;
4020 static const uint32_t ld_2_1            = 0xe8410000;
4021 static const uint32_t ld_2_2            = 0xe8420000;
4022 static const uint32_t ld_2_11           = 0xe84b0000;
4023 static const uint32_t ld_2_12           = 0xe84c0000;
4024 static const uint32_t ld_11_1           = 0xe9610000;
4025 static const uint32_t ld_11_2           = 0xe9620000;
4026 static const uint32_t ld_11_3           = 0xe9630000;
4027 static const uint32_t ld_11_11          = 0xe96b0000;
4028 static const uint32_t ld_12_2           = 0xe9820000;
4029 static const uint32_t ld_12_3           = 0xe9830000;
4030 static const uint32_t ld_12_11          = 0xe98b0000;
4031 static const uint32_t ld_12_12          = 0xe98c0000;
4032 static const uint32_t lfd_0_1           = 0xc8010000;
4033 static const uint32_t li_0_0            = 0x38000000;
4034 static const uint32_t li_12_0           = 0x39800000;
4035 static const uint32_t lis_0             = 0x3c000000;
4036 static const uint32_t lis_2             = 0x3c400000;
4037 static const uint32_t lis_11            = 0x3d600000;
4038 static const uint32_t lis_12            = 0x3d800000;
4039 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
4040 static const uint32_t lwz_0_12          = 0x800c0000;
4041 static const uint32_t lwz_11_3          = 0x81630000;
4042 static const uint32_t lwz_11_11         = 0x816b0000;
4043 static const uint32_t lwz_11_30         = 0x817e0000;
4044 static const uint32_t lwz_12_3          = 0x81830000;
4045 static const uint32_t lwz_12_12         = 0x818c0000;
4046 static const uint32_t lwzu_0_12         = 0x840c0000;
4047 static const uint32_t mflr_0            = 0x7c0802a6;
4048 static const uint32_t mflr_11           = 0x7d6802a6;
4049 static const uint32_t mflr_12           = 0x7d8802a6;
4050 static const uint32_t mr_0_3            = 0x7c601b78;
4051 static const uint32_t mr_3_0            = 0x7c030378;
4052 static const uint32_t mtctr_0           = 0x7c0903a6;
4053 static const uint32_t mtctr_11          = 0x7d6903a6;
4054 static const uint32_t mtctr_12          = 0x7d8903a6;
4055 static const uint32_t mtlr_0            = 0x7c0803a6;
4056 static const uint32_t mtlr_11           = 0x7d6803a6;
4057 static const uint32_t mtlr_12           = 0x7d8803a6;
4058 static const uint32_t nop               = 0x60000000;
4059 static const uint32_t ori_0_0_0         = 0x60000000;
4060 static const uint32_t srdi_0_0_2        = 0x7800f082;
4061 static const uint32_t std_0_1           = 0xf8010000;
4062 static const uint32_t std_0_12          = 0xf80c0000;
4063 static const uint32_t std_2_1           = 0xf8410000;
4064 static const uint32_t std_11_1          = 0xf9610000;
4065 static const uint32_t stfd_0_1          = 0xd8010000;
4066 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
4067 static const uint32_t sub_11_11_12      = 0x7d6c5850;
4068 static const uint32_t sub_12_12_11      = 0x7d8b6050;
4069 static const uint32_t xor_2_12_12       = 0x7d826278;
4070 static const uint32_t xor_11_12_12      = 0x7d8b6278;
4071
4072 // Write out the PLT.
4073
4074 template<int size, bool big_endian>
4075 void
4076 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
4077 {
4078   if (size == 32 && (this->name_[3] != 'I' && this->name_[3] != 'L'))
4079     {
4080       const section_size_type offset = this->offset();
4081       const section_size_type oview_size
4082         = convert_to_section_size_type(this->data_size());
4083       unsigned char* const oview = of->get_output_view(offset, oview_size);
4084       unsigned char* pov = oview;
4085       unsigned char* endpov = oview + oview_size;
4086
4087       // The address of the .glink branch table
4088       const Output_data_glink<size, big_endian>* glink
4089         = this->targ_->glink_section();
4090       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
4091
4092       while (pov < endpov)
4093         {
4094           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
4095           pov += 4;
4096           branch_tab += 4;
4097         }
4098
4099       of->write_output_view(offset, oview_size, oview);
4100     }
4101 }
4102
4103 // Create the PLT section.
4104
4105 template<int size, bool big_endian>
4106 void
4107 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
4108                                                    Layout* layout)
4109 {
4110   if (this->plt_ == NULL)
4111     {
4112       if (this->got_ == NULL)
4113         this->got_section(symtab, layout);
4114
4115       if (this->glink_ == NULL)
4116         make_glink_section(layout);
4117
4118       // Ensure that .rela.dyn always appears before .rela.plt  This is
4119       // necessary due to how, on PowerPC and some other targets, .rela.dyn
4120       // needs to include .rela.plt in its range.
4121       this->rela_dyn_section(layout);
4122
4123       Reloc_section* plt_rel = new Reloc_section(false);
4124       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4125                                       elfcpp::SHF_ALLOC, plt_rel,
4126                                       ORDER_DYNAMIC_PLT_RELOCS, false);
4127       this->plt_
4128         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
4129                                                         "** PLT");
4130       layout->add_output_section_data(".plt",
4131                                       (size == 32
4132                                        ? elfcpp::SHT_PROGBITS
4133                                        : elfcpp::SHT_NOBITS),
4134                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4135                                       this->plt_,
4136                                       (size == 32
4137                                        ? ORDER_SMALL_DATA
4138                                        : ORDER_SMALL_BSS),
4139                                       false);
4140
4141       Output_section* rela_plt_os = plt_rel->output_section();
4142       rela_plt_os->set_info_section(this->plt_->output_section());
4143     }
4144 }
4145
4146 // Create the IPLT section.
4147
4148 template<int size, bool big_endian>
4149 void
4150 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
4151                                                     Layout* layout)
4152 {
4153   if (this->iplt_ == NULL)
4154     {
4155       this->make_plt_section(symtab, layout);
4156       this->make_lplt_section(layout);
4157
4158       Reloc_section* iplt_rel = new Reloc_section(false);
4159       if (this->rela_dyn_->output_section())
4160         this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
4161       this->iplt_
4162         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
4163                                                         "** IPLT");
4164       if (this->plt_->output_section())
4165         this->plt_->output_section()->add_output_section_data(this->iplt_);
4166     }
4167 }
4168
4169 // Create the LPLT section.
4170
4171 template<int size, bool big_endian>
4172 void
4173 Target_powerpc<size, big_endian>::make_lplt_section(Layout* layout)
4174 {
4175   if (this->lplt_ == NULL)
4176     {
4177       Reloc_section* lplt_rel = NULL;
4178       if (parameters->options().output_is_position_independent())
4179         {
4180           lplt_rel = new Reloc_section(false);
4181           this->rela_dyn_section(layout);
4182           if (this->rela_dyn_->output_section())
4183             this->rela_dyn_->output_section()
4184               ->add_output_section_data(lplt_rel);
4185         }
4186       this->lplt_
4187         = new Output_data_plt_powerpc<size, big_endian>(this, lplt_rel,
4188                                                         "** LPLT");
4189       this->make_brlt_section(layout);
4190       if (this->brlt_section_ && this->brlt_section_->output_section())
4191         this->brlt_section_->output_section()
4192           ->add_output_section_data(this->lplt_);
4193       else
4194         layout->add_output_section_data(".branch_lt",
4195                                         elfcpp::SHT_PROGBITS,
4196                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4197                                         this->lplt_,
4198                                         ORDER_RELRO,
4199                                         true);
4200     }
4201 }
4202
4203 // A section for huge long branch addresses, similar to plt section.
4204
4205 template<int size, bool big_endian>
4206 class Output_data_brlt_powerpc : public Output_section_data_build
4207 {
4208  public:
4209   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4210   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
4211                             size, big_endian> Reloc_section;
4212
4213   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
4214                            Reloc_section* brlt_rel)
4215     : Output_section_data_build(size == 32 ? 4 : 8),
4216       rel_(brlt_rel),
4217       targ_(targ)
4218   { }
4219
4220   void
4221   reset_brlt_sizes()
4222   {
4223     this->reset_data_size();
4224     this->rel_->reset_data_size();
4225   }
4226
4227   void
4228   finalize_brlt_sizes()
4229   {
4230     this->finalize_data_size();
4231     this->rel_->finalize_data_size();
4232   }
4233
4234   // Add a reloc for an entry in the BRLT.
4235   void
4236   add_reloc(Address to, unsigned int off)
4237   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
4238
4239   // Update section and reloc section size.
4240   void
4241   set_current_size(unsigned int num_branches)
4242   {
4243     this->reset_address_and_file_offset();
4244     this->set_current_data_size(num_branches * 16);
4245     this->finalize_data_size();
4246     Output_section* os = this->output_section();
4247     os->set_section_offsets_need_adjustment();
4248     if (this->rel_ != NULL)
4249       {
4250         const unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
4251         this->rel_->reset_address_and_file_offset();
4252         this->rel_->set_current_data_size(num_branches * reloc_size);
4253         this->rel_->finalize_data_size();
4254         Output_section* os = this->rel_->output_section();
4255         os->set_section_offsets_need_adjustment();
4256       }
4257   }
4258
4259  protected:
4260   void
4261   do_adjust_output_section(Output_section* os)
4262   {
4263     os->set_entsize(0);
4264   }
4265
4266   // Write to a map file.
4267   void
4268   do_print_to_mapfile(Mapfile* mapfile) const
4269   { mapfile->print_output_data(this, "** BRLT"); }
4270
4271  private:
4272   // Write out the BRLT data.
4273   void
4274   do_write(Output_file*);
4275
4276   // The reloc section.
4277   Reloc_section* rel_;
4278   Target_powerpc<size, big_endian>* targ_;
4279 };
4280
4281 // Make the branch lookup table section.
4282
4283 template<int size, bool big_endian>
4284 void
4285 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
4286 {
4287   if (size == 64 && this->brlt_section_ == NULL)
4288     {
4289       Reloc_section* brlt_rel = NULL;
4290       bool is_pic = parameters->options().output_is_position_independent();
4291       if (is_pic)
4292         {
4293           // When PIC we can't fill in .branch_lt but must initialise at
4294           // runtime via dynamic relocations.
4295           this->rela_dyn_section(layout);
4296           brlt_rel = new Reloc_section(false);
4297           if (this->rela_dyn_->output_section())
4298             this->rela_dyn_->output_section()
4299               ->add_output_section_data(brlt_rel);
4300         }
4301       this->brlt_section_
4302         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
4303       if (this->plt_ && is_pic && this->plt_->output_section())
4304         this->plt_->output_section()
4305           ->add_output_section_data(this->brlt_section_);
4306       else
4307         layout->add_output_section_data(".branch_lt",
4308                                         elfcpp::SHT_PROGBITS,
4309                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4310                                         this->brlt_section_,
4311                                         ORDER_RELRO,
4312                                         true);
4313     }
4314 }
4315
4316 // Write out .branch_lt when non-PIC.
4317
4318 template<int size, bool big_endian>
4319 void
4320 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
4321 {
4322   if (size == 64 && !parameters->options().output_is_position_independent())
4323     {
4324       const section_size_type offset = this->offset();
4325       const section_size_type oview_size
4326         = convert_to_section_size_type(this->data_size());
4327       unsigned char* const oview = of->get_output_view(offset, oview_size);
4328
4329       this->targ_->write_branch_lookup_table(oview);
4330       of->write_output_view(offset, oview_size, oview);
4331     }
4332 }
4333
4334 static inline uint32_t
4335 l(uint32_t a)
4336 {
4337   return a & 0xffff;
4338 }
4339
4340 static inline uint32_t
4341 hi(uint32_t a)
4342 {
4343   return l(a >> 16);
4344 }
4345
4346 static inline uint32_t
4347 ha(uint32_t a)
4348 {
4349   return hi(a + 0x8000);
4350 }
4351
4352 template<int size>
4353 struct Eh_cie
4354 {
4355   static const unsigned char eh_frame_cie[12];
4356 };
4357
4358 template<int size>
4359 const unsigned char Eh_cie<size>::eh_frame_cie[] =
4360 {
4361   1,                                    // CIE version.
4362   'z', 'R', 0,                          // Augmentation string.
4363   4,                                    // Code alignment.
4364   0x80 - size / 8 ,                     // Data alignment.
4365   65,                                   // RA reg.
4366   1,                                    // Augmentation size.
4367   (elfcpp::DW_EH_PE_pcrel
4368    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
4369   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
4370 };
4371
4372 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
4373 static const unsigned char glink_eh_frame_fde_64v1[] =
4374 {
4375   0, 0, 0, 0,                           // Replaced with offset to .glink.
4376   0, 0, 0, 0,                           // Replaced with size of .glink.
4377   0,                                    // Augmentation size.
4378   elfcpp::DW_CFA_advance_loc + 1,
4379   elfcpp::DW_CFA_register, 65, 12,
4380   elfcpp::DW_CFA_advance_loc + 5,
4381   elfcpp::DW_CFA_restore_extended, 65
4382 };
4383
4384 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
4385 static const unsigned char glink_eh_frame_fde_64v2[] =
4386 {
4387   0, 0, 0, 0,                           // Replaced with offset to .glink.
4388   0, 0, 0, 0,                           // Replaced with size of .glink.
4389   0,                                    // Augmentation size.
4390   elfcpp::DW_CFA_advance_loc + 1,
4391   elfcpp::DW_CFA_register, 65, 0,
4392   elfcpp::DW_CFA_advance_loc + 7,
4393   elfcpp::DW_CFA_restore_extended, 65
4394 };
4395
4396 // Describe __glink_PLTresolve use of LR, 32-bit version.
4397 static const unsigned char glink_eh_frame_fde_32[] =
4398 {
4399   0, 0, 0, 0,                           // Replaced with offset to .glink.
4400   0, 0, 0, 0,                           // Replaced with size of .glink.
4401   0,                                    // Augmentation size.
4402   elfcpp::DW_CFA_advance_loc + 2,
4403   elfcpp::DW_CFA_register, 65, 0,
4404   elfcpp::DW_CFA_advance_loc + 4,
4405   elfcpp::DW_CFA_restore_extended, 65
4406 };
4407
4408 static const unsigned char default_fde[] =
4409 {
4410   0, 0, 0, 0,                           // Replaced with offset to stubs.
4411   0, 0, 0, 0,                           // Replaced with size of stubs.
4412   0,                                    // Augmentation size.
4413   elfcpp::DW_CFA_nop,                   // Pad.
4414   elfcpp::DW_CFA_nop,
4415   elfcpp::DW_CFA_nop
4416 };
4417
4418 template<bool big_endian>
4419 static inline void
4420 write_insn(unsigned char* p, uint32_t v)
4421 {
4422   elfcpp::Swap<32, big_endian>::writeval(p, v);
4423 }
4424
4425 template<int size>
4426 static inline unsigned int
4427 param_plt_align()
4428 {
4429   if (!parameters->options().user_set_plt_align())
4430     return size == 64 ? 32 : 8;
4431   return 1 << parameters->options().plt_align();
4432 }
4433
4434 // Stub_table holds information about plt and long branch stubs.
4435 // Stubs are built in an area following some input section determined
4436 // by group_sections().  This input section is converted to a relaxed
4437 // input section allowing it to be resized to accommodate the stubs
4438
4439 template<int size, bool big_endian>
4440 class Stub_table : public Output_relaxed_input_section
4441 {
4442  public:
4443   struct Plt_stub_ent
4444   {
4445     Plt_stub_ent(unsigned int off, unsigned int indx)
4446       : off_(off), indx_(indx), r2save_(0), localentry0_(0)
4447     { }
4448
4449     unsigned int off_;
4450     unsigned int indx_ : 30;
4451     unsigned int r2save_ : 1;
4452     unsigned int localentry0_ : 1;
4453   };
4454   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4455   static const Address invalid_address = static_cast<Address>(0) - 1;
4456
4457   Stub_table(Target_powerpc<size, big_endian>* targ,
4458              Output_section* output_section,
4459              const Output_section::Input_section* owner,
4460              uint32_t id)
4461     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
4462                                    owner->relobj()
4463                                    ->section_addralign(owner->shndx())),
4464       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
4465       orig_data_size_(owner->current_data_size()),
4466       plt_size_(0), last_plt_size_(0),
4467       branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
4468       need_save_res_(false), uniq_(id), tls_get_addr_opt_bctrl_(-1u),
4469       plt_fde_len_(0)
4470   {
4471     this->set_output_section(output_section);
4472
4473     std::vector<Output_relaxed_input_section*> new_relaxed;
4474     new_relaxed.push_back(this);
4475     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
4476   }
4477
4478   // Add a plt call stub.
4479   bool
4480   add_plt_call_entry(Address,
4481                      const Sized_relobj_file<size, big_endian>*,
4482                      const Symbol*,
4483                      unsigned int,
4484                      Address,
4485                      bool);
4486
4487   bool
4488   add_plt_call_entry(Address,
4489                      const Sized_relobj_file<size, big_endian>*,
4490                      unsigned int,
4491                      unsigned int,
4492                      Address,
4493                      bool);
4494
4495   // Find a given plt call stub.
4496   const Plt_stub_ent*
4497   find_plt_call_entry(const Symbol*) const;
4498
4499   const Plt_stub_ent*
4500   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4501                       unsigned int) const;
4502
4503   const Plt_stub_ent*
4504   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4505                       const Symbol*,
4506                       unsigned int,
4507                       Address) const;
4508
4509   const Plt_stub_ent*
4510   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4511                       unsigned int,
4512                       unsigned int,
4513                       Address) const;
4514
4515   // Add a long branch stub.
4516   bool
4517   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4518                         unsigned int, Address, Address, bool);
4519
4520   Address
4521   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4522                          Address) const;
4523
4524   bool
4525   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
4526   {
4527     Address max_branch_offset = max_branch_delta(r_type);
4528     if (max_branch_offset == 0)
4529       return true;
4530     gold_assert(from != invalid_address);
4531     Address loc = off + this->stub_address();
4532     return loc - from + max_branch_offset < 2 * max_branch_offset;
4533   }
4534
4535   void
4536   clear_stubs(bool all)
4537   {
4538     this->plt_call_stubs_.clear();
4539     this->plt_size_ = 0;
4540     this->long_branch_stubs_.clear();
4541     this->branch_size_ = 0;
4542     this->need_save_res_ = false;
4543     if (all)
4544       {
4545         this->last_plt_size_ = 0;
4546         this->last_branch_size_ = 0;
4547       }
4548   }
4549
4550   Address
4551   set_address_and_size(const Output_section* os, Address off)
4552   {
4553     Address start_off = off;
4554     off += this->orig_data_size_;
4555     Address my_size = this->plt_size_ + this->branch_size_;
4556     if (this->need_save_res_)
4557       my_size += this->targ_->savres_section()->data_size();
4558     if (my_size != 0)
4559       off = align_address(off, this->stub_align());
4560     // Include original section size and alignment padding in size
4561     my_size += off - start_off;
4562     // Ensure new size is always larger than min size
4563     // threshold. Alignment requirement is included in "my_size", so
4564     // increase "my_size" does not invalidate alignment.
4565     if (my_size < this->min_size_threshold_)
4566       my_size = this->min_size_threshold_;
4567     this->reset_address_and_file_offset();
4568     this->set_current_data_size(my_size);
4569     this->set_address_and_file_offset(os->address() + start_off,
4570                                       os->offset() + start_off);
4571     return my_size;
4572   }
4573
4574   Address
4575   stub_address() const
4576   {
4577     return align_address(this->address() + this->orig_data_size_,
4578                          this->stub_align());
4579   }
4580
4581   Address
4582   stub_offset() const
4583   {
4584     return align_address(this->offset() + this->orig_data_size_,
4585                          this->stub_align());
4586   }
4587
4588   section_size_type
4589   plt_size() const
4590   { return this->plt_size_; }
4591
4592   void
4593   set_min_size_threshold(Address min_size)
4594   { this->min_size_threshold_ = min_size; }
4595
4596   void
4597   define_stub_syms(Symbol_table*);
4598
4599   bool
4600   size_update()
4601   {
4602     Output_section* os = this->output_section();
4603     if (os->addralign() < this->stub_align())
4604       {
4605         os->set_addralign(this->stub_align());
4606         // FIXME: get rid of the insane checkpointing.
4607         // We can't increase alignment of the input section to which
4608         // stubs are attached;  The input section may be .init which
4609         // is pasted together with other .init sections to form a
4610         // function.  Aligning might insert zero padding resulting in
4611         // sigill.  However we do need to increase alignment of the
4612         // output section so that the align_address() on offset in
4613         // set_address_and_size() adds the same padding as the
4614         // align_address() on address in stub_address().
4615         // What's more, we need this alignment for the layout done in
4616         // relaxation_loop_body() so that the output section starts at
4617         // a suitably aligned address.
4618         os->checkpoint_set_addralign(this->stub_align());
4619       }
4620     if (this->last_plt_size_ != this->plt_size_
4621         || this->last_branch_size_ != this->branch_size_)
4622       {
4623         this->last_plt_size_ = this->plt_size_;
4624         this->last_branch_size_ = this->branch_size_;
4625         return true;
4626       }
4627     return false;
4628   }
4629
4630   // Generate a suitable FDE to describe code in this stub group.
4631   void
4632   init_plt_fde();
4633
4634   // Add .eh_frame info for this stub section.
4635   void
4636   add_eh_frame(Layout* layout);
4637
4638   // Remove .eh_frame info for this stub section.
4639   void
4640   remove_eh_frame(Layout* layout);
4641
4642   Target_powerpc<size, big_endian>*
4643   targ() const
4644   { return targ_; }
4645
4646  private:
4647   class Plt_stub_key;
4648   class Plt_stub_key_hash;
4649   typedef Unordered_map<Plt_stub_key, Plt_stub_ent,
4650                         Plt_stub_key_hash> Plt_stub_entries;
4651   class Branch_stub_ent;
4652   class Branch_stub_ent_hash;
4653   typedef Unordered_map<Branch_stub_ent, unsigned int,
4654                         Branch_stub_ent_hash> Branch_stub_entries;
4655
4656   // Alignment of stub section.
4657   unsigned int
4658   stub_align() const
4659   {
4660     unsigned int min_align = size == 64 ? 32 : 16;
4661     unsigned int user_align = 1 << parameters->options().plt_align();
4662     return std::max(user_align, min_align);
4663   }
4664
4665   // Return the plt offset for the given call stub.
4666   Address
4667   plt_off(typename Plt_stub_entries::const_iterator p,
4668           const Output_data_plt_powerpc<size, big_endian>** sec) const
4669   {
4670     const Symbol* gsym = p->first.sym_;
4671     if (gsym != NULL)
4672       return this->targ_->plt_off(gsym, sec);
4673     else
4674       {
4675         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
4676         unsigned int local_sym_index = p->first.locsym_;
4677         return this->targ_->plt_off(relobj, local_sym_index, sec);
4678       }
4679   }
4680
4681   // Size of a given plt call stub.
4682   unsigned int
4683   plt_call_size(typename Plt_stub_entries::const_iterator p) const
4684   {
4685     if (size == 32)
4686       {
4687         const Symbol* gsym = p->first.sym_;
4688         return (4 * 4
4689                 + (this->targ_->is_tls_get_addr_opt(gsym) ? 8 * 4 : 0));
4690       }
4691
4692     const Output_data_plt_powerpc<size, big_endian>* plt;
4693     Address plt_addr = this->plt_off(p, &plt);
4694     plt_addr += plt->address();
4695     Address got_addr = this->targ_->got_section()->output_section()->address();
4696     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4697       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
4698     got_addr += ppcobj->toc_base_offset();
4699     Address off = plt_addr - got_addr;
4700     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
4701     const Symbol* gsym = p->first.sym_;
4702     if (this->targ_->is_tls_get_addr_opt(gsym))
4703       bytes += 13 * 4;
4704     if (this->targ_->abiversion() < 2)
4705       {
4706         bool static_chain = parameters->options().plt_static_chain();
4707         bool thread_safe = this->targ_->plt_thread_safe();
4708         bytes += (4
4709                   + 4 * static_chain
4710                   + 8 * thread_safe
4711                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
4712       }
4713     return bytes;
4714   }
4715
4716   unsigned int
4717   plt_call_align(unsigned int bytes) const
4718   {
4719     unsigned int align = param_plt_align<size>();
4720     return (bytes + align - 1) & -align;
4721   }
4722
4723   // Return long branch stub size.
4724   unsigned int
4725   branch_stub_size(typename Branch_stub_entries::const_iterator p)
4726   {
4727     Address loc = this->stub_address() + this->last_plt_size_ + p->second;
4728     if (p->first.dest_ - loc + (1 << 25) < 2 << 25)
4729       return 4;
4730     unsigned int bytes = 16;
4731     if (size == 32 && parameters->options().output_is_position_independent())
4732       bytes += 16;
4733     return bytes;
4734   }
4735
4736   // Write out stubs.
4737   void
4738   do_write(Output_file*);
4739
4740   // Plt call stub keys.
4741   class Plt_stub_key
4742   {
4743   public:
4744     Plt_stub_key(const Symbol* sym)
4745       : sym_(sym), object_(0), addend_(0), locsym_(0)
4746     { }
4747
4748     Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4749                  unsigned int locsym_index)
4750       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4751     { }
4752
4753     Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4754                  const Symbol* sym,
4755                  unsigned int r_type,
4756                  Address addend)
4757       : sym_(sym), object_(0), addend_(0), locsym_(0)
4758     {
4759       if (size != 32)
4760         this->addend_ = addend;
4761       else if (parameters->options().output_is_position_independent()
4762                && (r_type == elfcpp::R_PPC_PLTREL24
4763                    || r_type == elfcpp::R_POWERPC_PLTCALL))
4764         {
4765           this->addend_ = addend;
4766           if (this->addend_ >= 32768)
4767             this->object_ = object;
4768         }
4769     }
4770
4771     Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4772                  unsigned int locsym_index,
4773                  unsigned int r_type,
4774                  Address addend)
4775       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4776     {
4777       if (size != 32)
4778         this->addend_ = addend;
4779       else if (parameters->options().output_is_position_independent()
4780                && (r_type == elfcpp::R_PPC_PLTREL24
4781                    || r_type == elfcpp::R_POWERPC_PLTCALL))
4782         this->addend_ = addend;
4783     }
4784
4785     bool operator==(const Plt_stub_key& that) const
4786     {
4787       return (this->sym_ == that.sym_
4788               && this->object_ == that.object_
4789               && this->addend_ == that.addend_
4790               && this->locsym_ == that.locsym_);
4791     }
4792
4793     const Symbol* sym_;
4794     const Sized_relobj_file<size, big_endian>* object_;
4795     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4796     unsigned int locsym_;
4797   };
4798
4799   class Plt_stub_key_hash
4800   {
4801   public:
4802     size_t operator()(const Plt_stub_key& ent) const
4803     {
4804       return (reinterpret_cast<uintptr_t>(ent.sym_)
4805               ^ reinterpret_cast<uintptr_t>(ent.object_)
4806               ^ ent.addend_
4807               ^ ent.locsym_);
4808     }
4809   };
4810
4811   // Long branch stub keys.
4812   class Branch_stub_ent
4813   {
4814   public:
4815     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4816                     Address to, bool save_res)
4817       : dest_(to), toc_base_off_(0), save_res_(save_res)
4818     {
4819       if (size == 64)
4820         toc_base_off_ = obj->toc_base_offset();
4821     }
4822
4823     bool operator==(const Branch_stub_ent& that) const
4824     {
4825       return (this->dest_ == that.dest_
4826               && (size == 32
4827                   || this->toc_base_off_ == that.toc_base_off_));
4828     }
4829
4830     Address dest_;
4831     unsigned int toc_base_off_;
4832     bool save_res_;
4833   };
4834
4835   class Branch_stub_ent_hash
4836   {
4837   public:
4838     size_t operator()(const Branch_stub_ent& ent) const
4839     { return ent.dest_ ^ ent.toc_base_off_; }
4840   };
4841
4842   // In a sane world this would be a global.
4843   Target_powerpc<size, big_endian>* targ_;
4844   // Map sym/object/addend to stub offset.
4845   Plt_stub_entries plt_call_stubs_;
4846   // Map destination address to stub offset.
4847   Branch_stub_entries long_branch_stubs_;
4848   // size of input section
4849   section_size_type orig_data_size_;
4850   // size of stubs
4851   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4852   // Some rare cases cause (PR/20529) fluctuation in stub table
4853   // size, which leads to an endless relax loop. This is to be fixed
4854   // by, after the first few iterations, allowing only increase of
4855   // stub table size. This variable sets the minimal possible size of
4856   // a stub table, it is zero for the first few iterations, then
4857   // increases monotonically.
4858   Address min_size_threshold_;
4859   // Set if this stub group needs a copy of out-of-line register
4860   // save/restore functions.
4861   bool need_save_res_;
4862   // Per stub table unique identifier.
4863   uint32_t uniq_;
4864   // The bctrl in the __tls_get_addr_opt stub, if present.
4865   unsigned int tls_get_addr_opt_bctrl_;
4866   // FDE unwind info for this stub group.
4867   unsigned int plt_fde_len_;
4868   unsigned char plt_fde_[20];
4869 };
4870
4871 // Add a plt call stub, if we do not already have one for this
4872 // sym/object/addend combo.
4873
4874 template<int size, bool big_endian>
4875 bool
4876 Stub_table<size, big_endian>::add_plt_call_entry(
4877     Address from,
4878     const Sized_relobj_file<size, big_endian>* object,
4879     const Symbol* gsym,
4880     unsigned int r_type,
4881     Address addend,
4882     bool tocsave)
4883 {
4884   Plt_stub_key key(object, gsym, r_type, addend);
4885   Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4886   std::pair<typename Plt_stub_entries::iterator, bool> p
4887     = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4888   if (p.second)
4889     {
4890       this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4891       if (size == 64
4892           && this->targ_->is_elfv2_localentry0(gsym))
4893         {
4894           p.first->second.localentry0_ = 1;
4895           this->targ_->set_has_localentry0();
4896         }
4897       if (this->targ_->is_tls_get_addr_opt(gsym))
4898         {
4899           this->targ_->set_has_tls_get_addr_opt();
4900           this->tls_get_addr_opt_bctrl_ = this->plt_size_ - 5 * 4;
4901         }
4902       this->plt_size_ = this->plt_call_align(this->plt_size_);
4903     }
4904   if (size == 64
4905       && !tocsave
4906       && !p.first->second.localentry0_)
4907     p.first->second.r2save_ = 1;
4908   return this->can_reach_stub(from, ent.off_, r_type);
4909 }
4910
4911 template<int size, bool big_endian>
4912 bool
4913 Stub_table<size, big_endian>::add_plt_call_entry(
4914     Address from,
4915     const Sized_relobj_file<size, big_endian>* object,
4916     unsigned int locsym_index,
4917     unsigned int r_type,
4918     Address addend,
4919     bool tocsave)
4920 {
4921   Plt_stub_key key(object, locsym_index, r_type, addend);
4922   Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4923   std::pair<typename Plt_stub_entries::iterator, bool> p
4924     = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4925   if (p.second)
4926     {
4927       this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4928       this->plt_size_ = this->plt_call_align(this->plt_size_);
4929       if (size == 64
4930           && this->targ_->is_elfv2_localentry0(object, locsym_index))
4931         {
4932           p.first->second.localentry0_ = 1;
4933           this->targ_->set_has_localentry0();
4934         }
4935     }
4936   if (size == 64
4937       && !tocsave
4938       && !p.first->second.localentry0_)
4939     p.first->second.r2save_ = 1;
4940   return this->can_reach_stub(from, ent.off_, r_type);
4941 }
4942
4943 // Find a plt call stub.
4944
4945 template<int size, bool big_endian>
4946 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4947 Stub_table<size, big_endian>::find_plt_call_entry(
4948     const Sized_relobj_file<size, big_endian>* object,
4949     const Symbol* gsym,
4950     unsigned int r_type,
4951     Address addend) const
4952 {
4953   Plt_stub_key key(object, gsym, r_type, addend);
4954   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4955   if (p == this->plt_call_stubs_.end())
4956     return NULL;
4957   return &p->second;
4958 }
4959
4960 template<int size, bool big_endian>
4961 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4962 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4963 {
4964   Plt_stub_key key(gsym);
4965   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4966   if (p == this->plt_call_stubs_.end())
4967     return NULL;
4968   return &p->second;
4969 }
4970
4971 template<int size, bool big_endian>
4972 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4973 Stub_table<size, big_endian>::find_plt_call_entry(
4974     const Sized_relobj_file<size, big_endian>* object,
4975     unsigned int locsym_index,
4976     unsigned int r_type,
4977     Address addend) const
4978 {
4979   Plt_stub_key key(object, locsym_index, r_type, addend);
4980   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4981   if (p == this->plt_call_stubs_.end())
4982     return NULL;
4983   return &p->second;
4984 }
4985
4986 template<int size, bool big_endian>
4987 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4988 Stub_table<size, big_endian>::find_plt_call_entry(
4989     const Sized_relobj_file<size, big_endian>* object,
4990     unsigned int locsym_index) const
4991 {
4992   Plt_stub_key key(object, locsym_index);
4993   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4994   if (p == this->plt_call_stubs_.end())
4995     return NULL;
4996   return &p->second;
4997 }
4998
4999 // Add a long branch stub if we don't already have one to given
5000 // destination.
5001
5002 template<int size, bool big_endian>
5003 bool
5004 Stub_table<size, big_endian>::add_long_branch_entry(
5005     const Powerpc_relobj<size, big_endian>* object,
5006     unsigned int r_type,
5007     Address from,
5008     Address to,
5009     bool save_res)
5010 {
5011   Branch_stub_ent ent(object, to, save_res);
5012   Address off = this->branch_size_;
5013   std::pair<typename Branch_stub_entries::iterator, bool> p
5014     = this->long_branch_stubs_.insert(std::make_pair(ent, off));
5015   if (p.second)
5016     {
5017       if (save_res)
5018         this->need_save_res_ = true;
5019       else
5020         {
5021           unsigned int stub_size = this->branch_stub_size(p.first);
5022           this->branch_size_ = off + stub_size;
5023           if (size == 64 && stub_size != 4)
5024             this->targ_->add_branch_lookup_table(to);
5025         }
5026     }
5027   return this->can_reach_stub(from, off, r_type);
5028 }
5029
5030 // Find long branch stub offset.
5031
5032 template<int size, bool big_endian>
5033 typename Stub_table<size, big_endian>::Address
5034 Stub_table<size, big_endian>::find_long_branch_entry(
5035     const Powerpc_relobj<size, big_endian>* object,
5036     Address to) const
5037 {
5038   Branch_stub_ent ent(object, to, false);
5039   typename Branch_stub_entries::const_iterator p
5040     = this->long_branch_stubs_.find(ent);
5041   if (p == this->long_branch_stubs_.end())
5042     return invalid_address;
5043   if (p->first.save_res_)
5044     return to - this->targ_->savres_section()->address() + this->branch_size_;
5045   return p->second;
5046 }
5047
5048 // Generate a suitable FDE to describe code in this stub group.
5049 // The __tls_get_addr_opt call stub needs to describe where it saves
5050 // LR, to support exceptions that might be thrown from __tls_get_addr.
5051
5052 template<int size, bool big_endian>
5053 void
5054 Stub_table<size, big_endian>::init_plt_fde()
5055 {
5056   unsigned char* p = this->plt_fde_;
5057   // offset pcrel sdata4, size udata4, and augmentation size byte.
5058   memset (p, 0, 9);
5059   p += 9;
5060   if (this->tls_get_addr_opt_bctrl_ != -1u)
5061     {
5062       unsigned int to_bctrl = this->tls_get_addr_opt_bctrl_ / 4;
5063       if (to_bctrl < 64)
5064         *p++ = elfcpp::DW_CFA_advance_loc + to_bctrl;
5065       else if (to_bctrl < 256)
5066         {
5067           *p++ = elfcpp::DW_CFA_advance_loc1;
5068           *p++ = to_bctrl;
5069         }
5070       else if (to_bctrl < 65536)
5071         {
5072           *p++ = elfcpp::DW_CFA_advance_loc2;
5073           elfcpp::Swap<16, big_endian>::writeval(p, to_bctrl);
5074           p += 2;
5075         }
5076       else
5077         {
5078           *p++ = elfcpp::DW_CFA_advance_loc4;
5079           elfcpp::Swap<32, big_endian>::writeval(p, to_bctrl);
5080           p += 4;
5081         }
5082       *p++ = elfcpp::DW_CFA_offset_extended_sf;
5083       *p++ = 65;
5084       *p++ = -(this->targ_->stk_linker() / 8) & 0x7f;
5085       *p++ = elfcpp::DW_CFA_advance_loc + 4;
5086       *p++ = elfcpp::DW_CFA_restore_extended;
5087       *p++ = 65;
5088     }
5089   this->plt_fde_len_ = p - this->plt_fde_;
5090 }
5091
5092 // Add .eh_frame info for this stub section.  Unlike other linker
5093 // generated .eh_frame this is added late in the link, because we
5094 // only want the .eh_frame info if this particular stub section is
5095 // non-empty.
5096
5097 template<int size, bool big_endian>
5098 void
5099 Stub_table<size, big_endian>::add_eh_frame(Layout* layout)
5100 {
5101   if (!parameters->options().ld_generated_unwind_info())
5102     return;
5103
5104   // Since we add stub .eh_frame info late, it must be placed
5105   // after all other linker generated .eh_frame info so that
5106   // merge mapping need not be updated for input sections.
5107   // There is no provision to use a different CIE to that used
5108   // by .glink.
5109   if (!this->targ_->has_glink())
5110     return;
5111
5112   if (this->plt_size_ + this->branch_size_ + this->need_save_res_ == 0)
5113     return;
5114
5115   this->init_plt_fde();
5116   layout->add_eh_frame_for_plt(this,
5117                                Eh_cie<size>::eh_frame_cie,
5118                                sizeof (Eh_cie<size>::eh_frame_cie),
5119                                this->plt_fde_, this->plt_fde_len_);
5120 }
5121
5122 template<int size, bool big_endian>
5123 void
5124 Stub_table<size, big_endian>::remove_eh_frame(Layout* layout)
5125 {
5126   if (this->plt_fde_len_ != 0)
5127     {
5128       layout->remove_eh_frame_for_plt(this,
5129                                       Eh_cie<size>::eh_frame_cie,
5130                                       sizeof (Eh_cie<size>::eh_frame_cie),
5131                                       this->plt_fde_, this->plt_fde_len_);
5132       this->plt_fde_len_ = 0;
5133     }
5134 }
5135
5136 // A class to handle .glink.
5137
5138 template<int size, bool big_endian>
5139 class Output_data_glink : public Output_section_data
5140 {
5141  public:
5142   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5143   static const Address invalid_address = static_cast<Address>(0) - 1;
5144
5145   Output_data_glink(Target_powerpc<size, big_endian>* targ)
5146     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
5147       end_branch_table_(), ge_size_(0)
5148   { }
5149
5150   void
5151   add_eh_frame(Layout* layout);
5152
5153   void
5154   add_global_entry(const Symbol*);
5155
5156   Address
5157   find_global_entry(const Symbol*) const;
5158
5159   unsigned int
5160   global_entry_align(unsigned int off) const
5161   {
5162     unsigned int align = param_plt_align<size>();
5163     return (off + align - 1) & -align;
5164   }
5165
5166   unsigned int
5167   global_entry_off() const
5168   {
5169     return this->global_entry_align(this->end_branch_table_);
5170   }
5171
5172   Address
5173   global_entry_address() const
5174   {
5175     gold_assert(this->is_data_size_valid());
5176     return this->address() + this->global_entry_off();
5177   }
5178
5179   int
5180   pltresolve_size() const
5181   {
5182     if (size == 64)
5183       return (8
5184               + (this->targ_->abiversion() < 2 ? 11 * 4 : 14 * 4));
5185     return 16 * 4;
5186   }
5187
5188  protected:
5189   // Write to a map file.
5190   void
5191   do_print_to_mapfile(Mapfile* mapfile) const
5192   { mapfile->print_output_data(this, _("** glink")); }
5193
5194  private:
5195   void
5196   set_final_data_size();
5197
5198   // Write out .glink
5199   void
5200   do_write(Output_file*);
5201
5202   // Allows access to .got and .plt for do_write.
5203   Target_powerpc<size, big_endian>* targ_;
5204
5205   // Map sym to stub offset.
5206   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
5207   Global_entry_stub_entries global_entry_stubs_;
5208
5209   unsigned int end_branch_table_, ge_size_;
5210 };
5211
5212 template<int size, bool big_endian>
5213 void
5214 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
5215 {
5216   if (!parameters->options().ld_generated_unwind_info())
5217     return;
5218
5219   if (size == 64)
5220     {
5221       if (this->targ_->abiversion() < 2)
5222         layout->add_eh_frame_for_plt(this,
5223                                      Eh_cie<64>::eh_frame_cie,
5224                                      sizeof (Eh_cie<64>::eh_frame_cie),
5225                                      glink_eh_frame_fde_64v1,
5226                                      sizeof (glink_eh_frame_fde_64v1));
5227       else
5228         layout->add_eh_frame_for_plt(this,
5229                                      Eh_cie<64>::eh_frame_cie,
5230                                      sizeof (Eh_cie<64>::eh_frame_cie),
5231                                      glink_eh_frame_fde_64v2,
5232                                      sizeof (glink_eh_frame_fde_64v2));
5233     }
5234   else
5235     {
5236       // 32-bit .glink can use the default since the CIE return
5237       // address reg, LR, is valid.
5238       layout->add_eh_frame_for_plt(this,
5239                                    Eh_cie<32>::eh_frame_cie,
5240                                    sizeof (Eh_cie<32>::eh_frame_cie),
5241                                    default_fde,
5242                                    sizeof (default_fde));
5243       // Except where LR is used in a PIC __glink_PLTresolve.
5244       if (parameters->options().output_is_position_independent())
5245         layout->add_eh_frame_for_plt(this,
5246                                      Eh_cie<32>::eh_frame_cie,
5247                                      sizeof (Eh_cie<32>::eh_frame_cie),
5248                                      glink_eh_frame_fde_32,
5249                                      sizeof (glink_eh_frame_fde_32));
5250     }
5251 }
5252
5253 template<int size, bool big_endian>
5254 void
5255 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
5256 {
5257   unsigned int off = this->global_entry_align(this->ge_size_);
5258   std::pair<typename Global_entry_stub_entries::iterator, bool> p
5259     = this->global_entry_stubs_.insert(std::make_pair(gsym, off));
5260   if (p.second)
5261     this->ge_size_ = off + 16;
5262 }
5263
5264 template<int size, bool big_endian>
5265 typename Output_data_glink<size, big_endian>::Address
5266 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
5267 {
5268   typename Global_entry_stub_entries::const_iterator p
5269     = this->global_entry_stubs_.find(gsym);
5270   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
5271 }
5272
5273 template<int size, bool big_endian>
5274 void
5275 Output_data_glink<size, big_endian>::set_final_data_size()
5276 {
5277   unsigned int count = this->targ_->plt_entry_count();
5278   section_size_type total = 0;
5279
5280   if (count != 0)
5281     {
5282       if (size == 32)
5283         {
5284           // space for branch table
5285           total += 4 * (count - 1);
5286
5287           total += -total & 15;
5288           total += this->pltresolve_size();
5289         }
5290       else
5291         {
5292           total += this->pltresolve_size();
5293
5294           // space for branch table
5295           total += 4 * count;
5296           if (this->targ_->abiversion() < 2)
5297             {
5298               total += 4 * count;
5299               if (count > 0x8000)
5300                 total += 4 * (count - 0x8000);
5301             }
5302         }
5303     }
5304   this->end_branch_table_ = total;
5305   total = this->global_entry_align(total);
5306   total += this->ge_size_;
5307
5308   this->set_data_size(total);
5309 }
5310
5311 // Define symbols on stubs, identifying the stub.
5312
5313 template<int size, bool big_endian>
5314 void
5315 Stub_table<size, big_endian>::define_stub_syms(Symbol_table* symtab)
5316 {
5317   if (!this->plt_call_stubs_.empty())
5318     {
5319       // The key for the plt call stub hash table includes addresses,
5320       // therefore traversal order depends on those addresses, which
5321       // can change between runs if gold is a PIE.  Unfortunately the
5322       // output .symtab ordering depends on the order in which symbols
5323       // are added to the linker symtab.  We want reproducible output
5324       // so must sort the call stub symbols.
5325       typedef typename Plt_stub_entries::const_iterator plt_iter;
5326       std::vector<plt_iter> sorted;
5327       sorted.resize(this->plt_call_stubs_.size());
5328
5329       for (plt_iter cs = this->plt_call_stubs_.begin();
5330            cs != this->plt_call_stubs_.end();
5331            ++cs)
5332         sorted[cs->second.indx_] = cs;
5333
5334       for (unsigned int i = 0; i < this->plt_call_stubs_.size(); ++i)
5335         {
5336           plt_iter cs = sorted[i];
5337           char add[10];
5338           add[0] = 0;
5339           if (cs->first.addend_ != 0)
5340             sprintf(add, "+%x", static_cast<uint32_t>(cs->first.addend_));
5341           char obj[10];
5342           obj[0] = 0;
5343           if (cs->first.object_)
5344             {
5345               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5346                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5347               sprintf(obj, "%x:", ppcobj->uniq());
5348             }
5349           char localname[9];
5350           const char *symname;
5351           if (cs->first.sym_ == NULL)
5352             {
5353               sprintf(localname, "%x", cs->first.locsym_);
5354               symname = localname;
5355             }
5356           else if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
5357             symname = this->targ_->tls_get_addr_opt()->name();
5358           else
5359             symname = cs->first.sym_->name();
5360           char* name = new char[8 + 10 + strlen(obj) + strlen(symname) + strlen(add) + 1];
5361           sprintf(name, "%08x.plt_call.%s%s%s", this->uniq_, obj, symname, add);
5362           Address value
5363             = this->stub_address() - this->address() + cs->second.off_;
5364           unsigned int stub_size = this->plt_call_align(this->plt_call_size(cs));
5365           this->targ_->define_local(symtab, name, this, value, stub_size);
5366         }
5367     }
5368
5369   typedef typename Branch_stub_entries::const_iterator branch_iter;
5370   for (branch_iter bs = this->long_branch_stubs_.begin();
5371        bs != this->long_branch_stubs_.end();
5372        ++bs)
5373     {
5374       if (bs->first.save_res_)
5375         continue;
5376
5377       char* name = new char[8 + 13 + 16 + 1];
5378       sprintf(name, "%08x.long_branch.%llx", this->uniq_,
5379               static_cast<unsigned long long>(bs->first.dest_));
5380       Address value = (this->stub_address() - this->address()
5381                        + this->plt_size_ + bs->second);
5382       unsigned int stub_size = this->branch_stub_size(bs);
5383       this->targ_->define_local(symtab, name, this, value, stub_size);
5384     }
5385 }
5386
5387 // Write out plt and long branch stub code.
5388
5389 template<int size, bool big_endian>
5390 void
5391 Stub_table<size, big_endian>::do_write(Output_file* of)
5392 {
5393   if (this->plt_call_stubs_.empty()
5394       && this->long_branch_stubs_.empty())
5395     return;
5396
5397   const section_size_type start_off = this->offset();
5398   const section_size_type off = this->stub_offset();
5399   const section_size_type oview_size =
5400     convert_to_section_size_type(this->data_size() - (off - start_off));
5401   unsigned char* const oview = of->get_output_view(off, oview_size);
5402   unsigned char* p;
5403
5404   if (size == 64)
5405     {
5406       const Output_data_got_powerpc<size, big_endian>* got
5407         = this->targ_->got_section();
5408       Address got_os_addr = got->output_section()->address();
5409
5410       if (!this->plt_call_stubs_.empty())
5411         {
5412           // Write out plt call stubs.
5413           typename Plt_stub_entries::const_iterator cs;
5414           for (cs = this->plt_call_stubs_.begin();
5415                cs != this->plt_call_stubs_.end();
5416                ++cs)
5417             {
5418               const Output_data_plt_powerpc<size, big_endian>* plt;
5419               Address pltoff = this->plt_off(cs, &plt);
5420               Address plt_addr = pltoff + plt->address();
5421               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5422                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5423               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
5424               Address off = plt_addr - got_addr;
5425
5426               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
5427                 gold_error(_("%s: linkage table error against `%s'"),
5428                            cs->first.object_->name().c_str(),
5429                            cs->first.sym_->demangled_name().c_str());
5430
5431               bool plt_load_toc = this->targ_->abiversion() < 2;
5432               bool static_chain
5433                 = plt_load_toc && parameters->options().plt_static_chain();
5434               bool thread_safe
5435                 = plt_load_toc && this->targ_->plt_thread_safe();
5436               bool use_fake_dep = false;
5437               Address cmp_branch_off = 0;
5438               if (thread_safe)
5439                 {
5440                   unsigned int pltindex
5441                     = ((pltoff - this->targ_->first_plt_entry_offset())
5442                        / this->targ_->plt_entry_size());
5443                   Address glinkoff
5444                     = (this->targ_->glink_section()->pltresolve_size()
5445                        + pltindex * 8);
5446                   if (pltindex > 32768)
5447                     glinkoff += (pltindex - 32768) * 4;
5448                   Address to
5449                     = this->targ_->glink_section()->address() + glinkoff;
5450                   Address from
5451                     = (this->stub_address() + cs->second.off_ + 20
5452                        + 4 * cs->second.r2save_
5453                        + 4 * (ha(off) != 0)
5454                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
5455                        + 4 * static_chain);
5456                   cmp_branch_off = to - from;
5457                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
5458                 }
5459
5460               p = oview + cs->second.off_;
5461               const Symbol* gsym = cs->first.sym_;
5462               if (this->targ_->is_tls_get_addr_opt(gsym))
5463                 {
5464                   write_insn<big_endian>(p, ld_11_3 + 0);
5465                   p += 4;
5466                   write_insn<big_endian>(p, ld_12_3 + 8);
5467                   p += 4;
5468                   write_insn<big_endian>(p, mr_0_3);
5469                   p += 4;
5470                   write_insn<big_endian>(p, cmpdi_11_0);
5471                   p += 4;
5472                   write_insn<big_endian>(p, add_3_12_13);
5473                   p += 4;
5474                   write_insn<big_endian>(p, beqlr);
5475                   p += 4;
5476                   write_insn<big_endian>(p, mr_3_0);
5477                   p += 4;
5478                   if (!cs->second.localentry0_)
5479                     {
5480                       write_insn<big_endian>(p, mflr_11);
5481                       p += 4;
5482                       write_insn<big_endian>(p, (std_11_1
5483                                                  + this->targ_->stk_linker()));
5484                       p += 4;
5485                     }
5486                   use_fake_dep = thread_safe;
5487                 }
5488               if (ha(off) != 0)
5489                 {
5490                   if (cs->second.r2save_)
5491                     {
5492                       write_insn<big_endian>(p,
5493                                              std_2_1 + this->targ_->stk_toc());
5494                       p += 4;
5495                     }
5496                   if (plt_load_toc)
5497                     {
5498                       write_insn<big_endian>(p, addis_11_2 + ha(off));
5499                       p += 4;
5500                       write_insn<big_endian>(p, ld_12_11 + l(off));
5501                       p += 4;
5502                     }
5503                   else
5504                     {
5505                       write_insn<big_endian>(p, addis_12_2 + ha(off));
5506                       p += 4;
5507                       write_insn<big_endian>(p, ld_12_12 + l(off));
5508                       p += 4;
5509                     }
5510                   if (plt_load_toc
5511                       && ha(off + 8 + 8 * static_chain) != ha(off))
5512                     {
5513                       write_insn<big_endian>(p, addi_11_11 + l(off));
5514                       p += 4;
5515                       off = 0;
5516                     }
5517                   write_insn<big_endian>(p, mtctr_12);
5518                   p += 4;
5519                   if (plt_load_toc)
5520                     {
5521                       if (use_fake_dep)
5522                         {
5523                           write_insn<big_endian>(p, xor_2_12_12);
5524                           p += 4;
5525                           write_insn<big_endian>(p, add_11_11_2);
5526                           p += 4;
5527                         }
5528                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
5529                       p += 4;
5530                       if (static_chain)
5531                         {
5532                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
5533                           p += 4;
5534                         }
5535                     }
5536                 }
5537               else
5538                 {
5539                   if (cs->second.r2save_)
5540                     {
5541                       write_insn<big_endian>(p,
5542                                              std_2_1 + this->targ_->stk_toc());
5543                       p += 4;
5544                     }
5545                   write_insn<big_endian>(p, ld_12_2 + l(off));
5546                   p += 4;
5547                   if (plt_load_toc
5548                       && ha(off + 8 + 8 * static_chain) != ha(off))
5549                     {
5550                       write_insn<big_endian>(p, addi_2_2 + l(off));
5551                       p += 4;
5552                       off = 0;
5553                     }
5554                   write_insn<big_endian>(p, mtctr_12);
5555                   p += 4;
5556                   if (plt_load_toc)
5557                     {
5558                       if (use_fake_dep)
5559                         {
5560                           write_insn<big_endian>(p, xor_11_12_12);
5561                           p += 4;
5562                           write_insn<big_endian>(p, add_2_2_11);
5563                           p += 4;
5564                         }
5565                       if (static_chain)
5566                         {
5567                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
5568                           p += 4;
5569                         }
5570                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
5571                       p += 4;
5572                     }
5573                 }
5574               if (!cs->second.localentry0_
5575                   && this->targ_->is_tls_get_addr_opt(gsym))
5576                 {
5577                   write_insn<big_endian>(p, bctrl);
5578                   p += 4;
5579                   write_insn<big_endian>(p, ld_2_1 + this->targ_->stk_toc());
5580                   p += 4;
5581                   write_insn<big_endian>(p, ld_11_1 + this->targ_->stk_linker());
5582                   p += 4;
5583                   write_insn<big_endian>(p, mtlr_11);
5584                   p += 4;
5585                   write_insn<big_endian>(p, blr);
5586                 }
5587               else if (thread_safe && !use_fake_dep)
5588                 {
5589                   write_insn<big_endian>(p, cmpldi_2_0);
5590                   p += 4;
5591                   write_insn<big_endian>(p, bnectr_p4);
5592                   p += 4;
5593                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
5594                 }
5595               else
5596                 write_insn<big_endian>(p, bctr);
5597             }
5598         }
5599
5600       // Write out long branch stubs.
5601       typename Branch_stub_entries::const_iterator bs;
5602       for (bs = this->long_branch_stubs_.begin();
5603            bs != this->long_branch_stubs_.end();
5604            ++bs)
5605         {
5606           if (bs->first.save_res_)
5607             continue;
5608           p = oview + this->plt_size_ + bs->second;
5609           Address loc = this->stub_address() + this->plt_size_ + bs->second;
5610           Address delta = bs->first.dest_ - loc;
5611           if (delta + (1 << 25) < 2 << 25)
5612             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5613           else
5614             {
5615               Address brlt_addr
5616                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
5617               gold_assert(brlt_addr != invalid_address);
5618               brlt_addr += this->targ_->brlt_section()->address();
5619               Address got_addr = got_os_addr + bs->first.toc_base_off_;
5620               Address brltoff = brlt_addr - got_addr;
5621               if (ha(brltoff) == 0)
5622                 {
5623                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
5624                 }
5625               else
5626                 {
5627                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
5628                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
5629                 }
5630               write_insn<big_endian>(p, mtctr_12),                      p += 4;
5631               write_insn<big_endian>(p, bctr);
5632             }
5633         }
5634     }
5635   else
5636     {
5637       if (!this->plt_call_stubs_.empty())
5638         {
5639           // The address of _GLOBAL_OFFSET_TABLE_.
5640           Address g_o_t = invalid_address;
5641
5642           // Write out plt call stubs.
5643           typename Plt_stub_entries::const_iterator cs;
5644           for (cs = this->plt_call_stubs_.begin();
5645                cs != this->plt_call_stubs_.end();
5646                ++cs)
5647             {
5648               const Output_data_plt_powerpc<size, big_endian>* plt;
5649               Address plt_addr = this->plt_off(cs, &plt);
5650               plt_addr += plt->address();
5651
5652               p = oview + cs->second.off_;
5653               const Symbol* gsym = cs->first.sym_;
5654               if (this->targ_->is_tls_get_addr_opt(gsym))
5655                 {
5656                   write_insn<big_endian>(p, lwz_11_3 + 0);
5657                   p += 4;
5658                   write_insn<big_endian>(p, lwz_12_3 + 4);
5659                   p += 4;
5660                   write_insn<big_endian>(p, mr_0_3);
5661                   p += 4;
5662                   write_insn<big_endian>(p, cmpwi_11_0);
5663                   p += 4;
5664                   write_insn<big_endian>(p, add_3_12_2);
5665                   p += 4;
5666                   write_insn<big_endian>(p, beqlr);
5667                   p += 4;
5668                   write_insn<big_endian>(p, mr_3_0);
5669                   p += 4;
5670                   write_insn<big_endian>(p, nop);
5671                   p += 4;
5672                 }
5673               if (parameters->options().output_is_position_independent())
5674                 {
5675                   Address got_addr;
5676                   const Powerpc_relobj<size, big_endian>* ppcobj
5677                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
5678                        (cs->first.object_));
5679                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
5680                     {
5681                       unsigned int got2 = ppcobj->got2_shndx();
5682                       got_addr = ppcobj->get_output_section_offset(got2);
5683                       gold_assert(got_addr != invalid_address);
5684                       got_addr += (ppcobj->output_section(got2)->address()
5685                                    + cs->first.addend_);
5686                     }
5687                   else
5688                     {
5689                       if (g_o_t == invalid_address)
5690                         {
5691                           const Output_data_got_powerpc<size, big_endian>* got
5692                             = this->targ_->got_section();
5693                           g_o_t = got->address() + got->g_o_t();
5694                         }
5695                       got_addr = g_o_t;
5696                     }
5697
5698                   Address off = plt_addr - got_addr;
5699                   if (ha(off) == 0)
5700                     write_insn<big_endian>(p, lwz_11_30 + l(off));
5701                   else
5702                     {
5703                       write_insn<big_endian>(p, addis_11_30 + ha(off));
5704                       p += 4;
5705                       write_insn<big_endian>(p, lwz_11_11 + l(off));
5706                     }
5707                 }
5708               else
5709                 {
5710                   write_insn<big_endian>(p, lis_11 + ha(plt_addr));
5711                   p += 4;
5712                   write_insn<big_endian>(p, lwz_11_11 + l(plt_addr));
5713                 }
5714               p += 4;
5715               write_insn<big_endian>(p, mtctr_11);
5716               p += 4;
5717               write_insn<big_endian>(p, bctr);
5718             }
5719         }
5720
5721       // Write out long branch stubs.
5722       typename Branch_stub_entries::const_iterator bs;
5723       for (bs = this->long_branch_stubs_.begin();
5724            bs != this->long_branch_stubs_.end();
5725            ++bs)
5726         {
5727           if (bs->first.save_res_)
5728             continue;
5729           p = oview + this->plt_size_ + bs->second;
5730           Address loc = this->stub_address() + this->plt_size_ + bs->second;
5731           Address delta = bs->first.dest_ - loc;
5732           if (delta + (1 << 25) < 2 << 25)
5733             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5734           else if (!parameters->options().output_is_position_independent())
5735             {
5736               write_insn<big_endian>(p, lis_12 + ha(bs->first.dest_));
5737               p += 4;
5738               write_insn<big_endian>(p, addi_12_12 + l(bs->first.dest_));
5739             }
5740           else
5741             {
5742               delta -= 8;
5743               write_insn<big_endian>(p, mflr_0);
5744               p += 4;
5745               write_insn<big_endian>(p, bcl_20_31);
5746               p += 4;
5747               write_insn<big_endian>(p, mflr_12);
5748               p += 4;
5749               write_insn<big_endian>(p, addis_12_12 + ha(delta));
5750               p += 4;
5751               write_insn<big_endian>(p, addi_12_12 + l(delta));
5752               p += 4;
5753               write_insn<big_endian>(p, mtlr_0);
5754             }
5755           p += 4;
5756           write_insn<big_endian>(p, mtctr_12);
5757           p += 4;
5758           write_insn<big_endian>(p, bctr);
5759         }
5760     }
5761   if (this->need_save_res_)
5762     {
5763       p = oview + this->plt_size_ + this->branch_size_;
5764       memcpy (p, this->targ_->savres_section()->contents(),
5765               this->targ_->savres_section()->data_size());
5766     }
5767 }
5768
5769 // Write out .glink.
5770
5771 template<int size, bool big_endian>
5772 void
5773 Output_data_glink<size, big_endian>::do_write(Output_file* of)
5774 {
5775   const section_size_type off = this->offset();
5776   const section_size_type oview_size =
5777     convert_to_section_size_type(this->data_size());
5778   unsigned char* const oview = of->get_output_view(off, oview_size);
5779   unsigned char* p;
5780
5781   // The base address of the .plt section.
5782   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5783   Address plt_base = this->targ_->plt_section()->address();
5784
5785   if (size == 64)
5786     {
5787       if (this->end_branch_table_ != 0)
5788         {
5789           // Write pltresolve stub.
5790           p = oview;
5791           Address after_bcl = this->address() + 16;
5792           Address pltoff = plt_base - after_bcl;
5793
5794           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
5795
5796           if (this->targ_->abiversion() < 2)
5797             {
5798               write_insn<big_endian>(p, mflr_12),               p += 4;
5799               write_insn<big_endian>(p, bcl_20_31),             p += 4;
5800               write_insn<big_endian>(p, mflr_11),               p += 4;
5801               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
5802               write_insn<big_endian>(p, mtlr_12),               p += 4;
5803               write_insn<big_endian>(p, add_11_2_11),           p += 4;
5804               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
5805               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
5806               write_insn<big_endian>(p, mtctr_12),              p += 4;
5807               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
5808             }
5809           else
5810             {
5811               write_insn<big_endian>(p, mflr_0),                p += 4;
5812               write_insn<big_endian>(p, bcl_20_31),             p += 4;
5813               write_insn<big_endian>(p, mflr_11),               p += 4;
5814               write_insn<big_endian>(p, std_2_1 + 24),          p += 4;
5815               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
5816               write_insn<big_endian>(p, mtlr_0),                p += 4;
5817               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
5818               write_insn<big_endian>(p, add_11_2_11),           p += 4;
5819               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
5820               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
5821               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
5822               write_insn<big_endian>(p, mtctr_12),              p += 4;
5823               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
5824             }
5825           write_insn<big_endian>(p, bctr),                      p += 4;
5826           gold_assert(p == oview + this->pltresolve_size());
5827
5828           // Write lazy link call stubs.
5829           uint32_t indx = 0;
5830           while (p < oview + this->end_branch_table_)
5831             {
5832               if (this->targ_->abiversion() < 2)
5833                 {
5834                   if (indx < 0x8000)
5835                     {
5836                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
5837                     }
5838                   else
5839                     {
5840                       write_insn<big_endian>(p, lis_0 + hi(indx)),      p += 4;
5841                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
5842                     }
5843                 }
5844               uint32_t branch_off = 8 - (p - oview);
5845               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
5846               indx++;
5847             }
5848         }
5849
5850       Address plt_base = this->targ_->plt_section()->address();
5851       Address iplt_base = invalid_address;
5852       unsigned int global_entry_off = this->global_entry_off();
5853       Address global_entry_base = this->address() + global_entry_off;
5854       typename Global_entry_stub_entries::const_iterator ge;
5855       for (ge = this->global_entry_stubs_.begin();
5856            ge != this->global_entry_stubs_.end();
5857            ++ge)
5858         {
5859           p = oview + global_entry_off + ge->second;
5860           Address plt_addr = ge->first->plt_offset();
5861           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
5862               && ge->first->can_use_relative_reloc(false))
5863             {
5864               if (iplt_base == invalid_address)
5865                 iplt_base = this->targ_->iplt_section()->address();
5866               plt_addr += iplt_base;
5867             }
5868           else
5869             plt_addr += plt_base;
5870           Address my_addr = global_entry_base + ge->second;
5871           Address off = plt_addr - my_addr;
5872
5873           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
5874             gold_error(_("%s: linkage table error against `%s'"),
5875                        ge->first->object()->name().c_str(),
5876                        ge->first->demangled_name().c_str());
5877
5878           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
5879           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
5880           write_insn<big_endian>(p, mtctr_12),                  p += 4;
5881           write_insn<big_endian>(p, bctr);
5882         }
5883     }
5884   else
5885     {
5886       const Output_data_got_powerpc<size, big_endian>* got
5887         = this->targ_->got_section();
5888       // The address of _GLOBAL_OFFSET_TABLE_.
5889       Address g_o_t = got->address() + got->g_o_t();
5890
5891       // Write out pltresolve branch table.
5892       p = oview;
5893       unsigned int the_end = oview_size - this->pltresolve_size();
5894       unsigned char* end_p = oview + the_end;
5895       while (p < end_p - 8 * 4)
5896         write_insn<big_endian>(p, b + end_p - p), p += 4;
5897       while (p < end_p)
5898         write_insn<big_endian>(p, nop), p += 4;
5899
5900       // Write out pltresolve call stub.
5901       end_p = oview + oview_size;
5902       if (parameters->options().output_is_position_independent())
5903         {
5904           Address res0_off = 0;
5905           Address after_bcl_off = the_end + 12;
5906           Address bcl_res0 = after_bcl_off - res0_off;
5907
5908           write_insn<big_endian>(p, addis_11_11 + ha(bcl_res0));
5909           p += 4;
5910           write_insn<big_endian>(p, mflr_0);
5911           p += 4;
5912           write_insn<big_endian>(p, bcl_20_31);
5913           p += 4;
5914           write_insn<big_endian>(p, addi_11_11 + l(bcl_res0));
5915           p += 4;
5916           write_insn<big_endian>(p, mflr_12);
5917           p += 4;
5918           write_insn<big_endian>(p, mtlr_0);
5919           p += 4;
5920           write_insn<big_endian>(p, sub_11_11_12);
5921           p += 4;
5922
5923           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
5924
5925           write_insn<big_endian>(p, addis_12_12 + ha(got_bcl));
5926           p += 4;
5927           if (ha(got_bcl) == ha(got_bcl + 4))
5928             {
5929               write_insn<big_endian>(p, lwz_0_12 + l(got_bcl));
5930               p += 4;
5931               write_insn<big_endian>(p, lwz_12_12 + l(got_bcl + 4));
5932             }
5933           else
5934             {
5935               write_insn<big_endian>(p, lwzu_0_12 + l(got_bcl));
5936               p += 4;
5937               write_insn<big_endian>(p, lwz_12_12 + 4);
5938             }
5939           p += 4;
5940           write_insn<big_endian>(p, mtctr_0);
5941           p += 4;
5942           write_insn<big_endian>(p, add_0_11_11);
5943           p += 4;
5944           write_insn<big_endian>(p, add_11_0_11);
5945         }
5946       else
5947         {
5948           Address res0 = this->address();
5949
5950           write_insn<big_endian>(p, lis_12 + ha(g_o_t + 4));
5951           p += 4;
5952           write_insn<big_endian>(p, addis_11_11 + ha(-res0));
5953           p += 4;
5954           if (ha(g_o_t + 4) == ha(g_o_t + 8))
5955             write_insn<big_endian>(p, lwz_0_12 + l(g_o_t + 4));
5956           else
5957             write_insn<big_endian>(p, lwzu_0_12 + l(g_o_t + 4));
5958           p += 4;
5959           write_insn<big_endian>(p, addi_11_11 + l(-res0));
5960           p += 4;
5961           write_insn<big_endian>(p, mtctr_0);
5962           p += 4;
5963           write_insn<big_endian>(p, add_0_11_11);
5964           p += 4;
5965           if (ha(g_o_t + 4) == ha(g_o_t + 8))
5966             write_insn<big_endian>(p, lwz_12_12 + l(g_o_t + 8));
5967           else
5968             write_insn<big_endian>(p, lwz_12_12 + 4);
5969           p += 4;
5970           write_insn<big_endian>(p, add_11_0_11);
5971         }
5972       p += 4;
5973       write_insn<big_endian>(p, bctr);
5974       p += 4;
5975       while (p < end_p)
5976         {
5977           write_insn<big_endian>(p, nop);
5978           p += 4;
5979         }
5980     }
5981
5982   of->write_output_view(off, oview_size, oview);
5983 }
5984
5985
5986 // A class to handle linker generated save/restore functions.
5987
5988 template<int size, bool big_endian>
5989 class Output_data_save_res : public Output_section_data_build
5990 {
5991  public:
5992   Output_data_save_res(Symbol_table* symtab);
5993
5994   const unsigned char*
5995   contents() const
5996   {
5997     return contents_;
5998   }
5999
6000  protected:
6001   // Write to a map file.
6002   void
6003   do_print_to_mapfile(Mapfile* mapfile) const
6004   { mapfile->print_output_data(this, _("** save/restore")); }
6005
6006   void
6007   do_write(Output_file*);
6008
6009  private:
6010   // The maximum size of save/restore contents.
6011   static const unsigned int savres_max = 218*4;
6012
6013   void
6014   savres_define(Symbol_table* symtab,
6015                 const char *name,
6016                 unsigned int lo, unsigned int hi,
6017                 unsigned char* write_ent(unsigned char*, int),
6018                 unsigned char* write_tail(unsigned char*, int));
6019
6020   unsigned char *contents_;
6021 };
6022
6023 template<bool big_endian>
6024 static unsigned char*
6025 savegpr0(unsigned char* p, int r)
6026 {
6027   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
6028   write_insn<big_endian>(p, insn);
6029   return p + 4;
6030 }
6031
6032 template<bool big_endian>
6033 static unsigned char*
6034 savegpr0_tail(unsigned char* p, int r)
6035 {
6036   p = savegpr0<big_endian>(p, r);
6037   uint32_t insn = std_0_1 + 16;
6038   write_insn<big_endian>(p, insn);
6039   p = p + 4;
6040   write_insn<big_endian>(p, blr);
6041   return p + 4;
6042 }
6043
6044 template<bool big_endian>
6045 static unsigned char*
6046 restgpr0(unsigned char* p, int r)
6047 {
6048   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
6049   write_insn<big_endian>(p, insn);
6050   return p + 4;
6051 }
6052
6053 template<bool big_endian>
6054 static unsigned char*
6055 restgpr0_tail(unsigned char* p, int r)
6056 {
6057   uint32_t insn = ld_0_1 + 16;
6058   write_insn<big_endian>(p, insn);
6059   p = p + 4;
6060   p = restgpr0<big_endian>(p, r);
6061   write_insn<big_endian>(p, mtlr_0);
6062   p = p + 4;
6063   if (r == 29)
6064     {
6065       p = restgpr0<big_endian>(p, 30);
6066       p = restgpr0<big_endian>(p, 31);
6067     }
6068   write_insn<big_endian>(p, blr);
6069   return p + 4;
6070 }
6071
6072 template<bool big_endian>
6073 static unsigned char*
6074 savegpr1(unsigned char* p, int r)
6075 {
6076   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
6077   write_insn<big_endian>(p, insn);
6078   return p + 4;
6079 }
6080
6081 template<bool big_endian>
6082 static unsigned char*
6083 savegpr1_tail(unsigned char* p, int r)
6084 {
6085   p = savegpr1<big_endian>(p, r);
6086   write_insn<big_endian>(p, blr);
6087   return p + 4;
6088 }
6089
6090 template<bool big_endian>
6091 static unsigned char*
6092 restgpr1(unsigned char* p, int r)
6093 {
6094   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
6095   write_insn<big_endian>(p, insn);
6096   return p + 4;
6097 }
6098
6099 template<bool big_endian>
6100 static unsigned char*
6101 restgpr1_tail(unsigned char* p, int r)
6102 {
6103   p = restgpr1<big_endian>(p, r);
6104   write_insn<big_endian>(p, blr);
6105   return p + 4;
6106 }
6107
6108 template<bool big_endian>
6109 static unsigned char*
6110 savefpr(unsigned char* p, int r)
6111 {
6112   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
6113   write_insn<big_endian>(p, insn);
6114   return p + 4;
6115 }
6116
6117 template<bool big_endian>
6118 static unsigned char*
6119 savefpr0_tail(unsigned char* p, int r)
6120 {
6121   p = savefpr<big_endian>(p, r);
6122   write_insn<big_endian>(p, std_0_1 + 16);
6123   p = p + 4;
6124   write_insn<big_endian>(p, blr);
6125   return p + 4;
6126 }
6127
6128 template<bool big_endian>
6129 static unsigned char*
6130 restfpr(unsigned char* p, int r)
6131 {
6132   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
6133   write_insn<big_endian>(p, insn);
6134   return p + 4;
6135 }
6136
6137 template<bool big_endian>
6138 static unsigned char*
6139 restfpr0_tail(unsigned char* p, int r)
6140 {
6141   write_insn<big_endian>(p, ld_0_1 + 16);
6142   p = p + 4;
6143   p = restfpr<big_endian>(p, r);
6144   write_insn<big_endian>(p, mtlr_0);
6145   p = p + 4;
6146   if (r == 29)
6147     {
6148       p = restfpr<big_endian>(p, 30);
6149       p = restfpr<big_endian>(p, 31);
6150     }
6151   write_insn<big_endian>(p, blr);
6152   return p + 4;
6153 }
6154
6155 template<bool big_endian>
6156 static unsigned char*
6157 savefpr1_tail(unsigned char* p, int r)
6158 {
6159   p = savefpr<big_endian>(p, r);
6160   write_insn<big_endian>(p, blr);
6161   return p + 4;
6162 }
6163
6164 template<bool big_endian>
6165 static unsigned char*
6166 restfpr1_tail(unsigned char* p, int r)
6167 {
6168   p = restfpr<big_endian>(p, r);
6169   write_insn<big_endian>(p, blr);
6170   return p + 4;
6171 }
6172
6173 template<bool big_endian>
6174 static unsigned char*
6175 savevr(unsigned char* p, int r)
6176 {
6177   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
6178   write_insn<big_endian>(p, insn);
6179   p = p + 4;
6180   insn = stvx_0_12_0 + (r << 21);
6181   write_insn<big_endian>(p, insn);
6182   return p + 4;
6183 }
6184
6185 template<bool big_endian>
6186 static unsigned char*
6187 savevr_tail(unsigned char* p, int r)
6188 {
6189   p = savevr<big_endian>(p, r);
6190   write_insn<big_endian>(p, blr);
6191   return p + 4;
6192 }
6193
6194 template<bool big_endian>
6195 static unsigned char*
6196 restvr(unsigned char* p, int r)
6197 {
6198   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
6199   write_insn<big_endian>(p, insn);
6200   p = p + 4;
6201   insn = lvx_0_12_0 + (r << 21);
6202   write_insn<big_endian>(p, insn);
6203   return p + 4;
6204 }
6205
6206 template<bool big_endian>
6207 static unsigned char*
6208 restvr_tail(unsigned char* p, int r)
6209 {
6210   p = restvr<big_endian>(p, r);
6211   write_insn<big_endian>(p, blr);
6212   return p + 4;
6213 }
6214
6215
6216 template<int size, bool big_endian>
6217 Output_data_save_res<size, big_endian>::Output_data_save_res(
6218     Symbol_table* symtab)
6219   : Output_section_data_build(4),
6220     contents_(NULL)
6221 {
6222   this->savres_define(symtab,
6223                       "_savegpr0_", 14, 31,
6224                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
6225   this->savres_define(symtab,
6226                       "_restgpr0_", 14, 29,
6227                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
6228   this->savres_define(symtab,
6229                       "_restgpr0_", 30, 31,
6230                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
6231   this->savres_define(symtab,
6232                       "_savegpr1_", 14, 31,
6233                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
6234   this->savres_define(symtab,
6235                       "_restgpr1_", 14, 31,
6236                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
6237   this->savres_define(symtab,
6238                       "_savefpr_", 14, 31,
6239                       savefpr<big_endian>, savefpr0_tail<big_endian>);
6240   this->savres_define(symtab,
6241                       "_restfpr_", 14, 29,
6242                       restfpr<big_endian>, restfpr0_tail<big_endian>);
6243   this->savres_define(symtab,
6244                       "_restfpr_", 30, 31,
6245                       restfpr<big_endian>, restfpr0_tail<big_endian>);
6246   this->savres_define(symtab,
6247                       "._savef", 14, 31,
6248                       savefpr<big_endian>, savefpr1_tail<big_endian>);
6249   this->savres_define(symtab,
6250                       "._restf", 14, 31,
6251                       restfpr<big_endian>, restfpr1_tail<big_endian>);
6252   this->savres_define(symtab,
6253                       "_savevr_", 20, 31,
6254                       savevr<big_endian>, savevr_tail<big_endian>);
6255   this->savres_define(symtab,
6256                       "_restvr_", 20, 31,
6257                       restvr<big_endian>, restvr_tail<big_endian>);
6258 }
6259
6260 template<int size, bool big_endian>
6261 void
6262 Output_data_save_res<size, big_endian>::savres_define(
6263     Symbol_table* symtab,
6264     const char *name,
6265     unsigned int lo, unsigned int hi,
6266     unsigned char* write_ent(unsigned char*, int),
6267     unsigned char* write_tail(unsigned char*, int))
6268 {
6269   size_t len = strlen(name);
6270   bool writing = false;
6271   char sym[16];
6272
6273   memcpy(sym, name, len);
6274   sym[len + 2] = 0;
6275
6276   for (unsigned int i = lo; i <= hi; i++)
6277     {
6278       sym[len + 0] = i / 10 + '0';
6279       sym[len + 1] = i % 10 + '0';
6280       Symbol* gsym = symtab->lookup(sym);
6281       bool refd = gsym != NULL && gsym->is_undefined();
6282       writing = writing || refd;
6283       if (writing)
6284         {
6285           if (this->contents_ == NULL)
6286             this->contents_ = new unsigned char[this->savres_max];
6287
6288           section_size_type value = this->current_data_size();
6289           unsigned char* p = this->contents_ + value;
6290           if (i != hi)
6291             p = write_ent(p, i);
6292           else
6293             p = write_tail(p, i);
6294           section_size_type cur_size = p - this->contents_;
6295           this->set_current_data_size(cur_size);
6296           if (refd)
6297             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
6298                                           this, value, cur_size - value,
6299                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
6300                                           elfcpp::STV_HIDDEN, 0, false, false);
6301         }
6302     }
6303 }
6304
6305 // Write out save/restore.
6306
6307 template<int size, bool big_endian>
6308 void
6309 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
6310 {
6311   const section_size_type off = this->offset();
6312   const section_size_type oview_size =
6313     convert_to_section_size_type(this->data_size());
6314   unsigned char* const oview = of->get_output_view(off, oview_size);
6315   memcpy(oview, this->contents_, oview_size);
6316   of->write_output_view(off, oview_size, oview);
6317 }
6318
6319
6320 // Create the glink section.
6321
6322 template<int size, bool big_endian>
6323 void
6324 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
6325 {
6326   if (this->glink_ == NULL)
6327     {
6328       this->glink_ = new Output_data_glink<size, big_endian>(this);
6329       this->glink_->add_eh_frame(layout);
6330       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6331                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6332                                       this->glink_, ORDER_TEXT, false);
6333     }
6334 }
6335
6336 // Create a PLT entry for a global symbol.
6337
6338 template<int size, bool big_endian>
6339 void
6340 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
6341                                                  Layout* layout,
6342                                                  Symbol* gsym)
6343 {
6344   if (gsym->type() == elfcpp::STT_GNU_IFUNC
6345       && gsym->can_use_relative_reloc(false))
6346     {
6347       if (this->iplt_ == NULL)
6348         this->make_iplt_section(symtab, layout);
6349       this->iplt_->add_ifunc_entry(gsym);
6350     }
6351   else
6352     {
6353       if (this->plt_ == NULL)
6354         this->make_plt_section(symtab, layout);
6355       this->plt_->add_entry(gsym);
6356     }
6357 }
6358
6359 // Make a PLT entry for a local symbol.
6360
6361 template<int size, bool big_endian>
6362 void
6363 Target_powerpc<size, big_endian>::make_local_plt_entry(
6364     Layout* layout,
6365     Sized_relobj_file<size, big_endian>* relobj,
6366     unsigned int r_sym)
6367 {
6368   if (this->lplt_ == NULL)
6369     this->make_lplt_section(layout);
6370   this->lplt_->add_local_entry(relobj, r_sym);
6371 }
6372
6373 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6374
6375 template<int size, bool big_endian>
6376 void
6377 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
6378     Symbol_table* symtab,
6379     Layout* layout,
6380     Sized_relobj_file<size, big_endian>* relobj,
6381     unsigned int r_sym)
6382 {
6383   if (this->iplt_ == NULL)
6384     this->make_iplt_section(symtab, layout);
6385   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
6386 }
6387
6388 // Return the number of entries in the PLT.
6389
6390 template<int size, bool big_endian>
6391 unsigned int
6392 Target_powerpc<size, big_endian>::plt_entry_count() const
6393 {
6394   if (this->plt_ == NULL)
6395     return 0;
6396   return this->plt_->entry_count();
6397 }
6398
6399 // Create a GOT entry for local dynamic __tls_get_addr calls.
6400
6401 template<int size, bool big_endian>
6402 unsigned int
6403 Target_powerpc<size, big_endian>::tlsld_got_offset(
6404     Symbol_table* symtab,
6405     Layout* layout,
6406     Sized_relobj_file<size, big_endian>* object)
6407 {
6408   if (this->tlsld_got_offset_ == -1U)
6409     {
6410       gold_assert(symtab != NULL && layout != NULL && object != NULL);
6411       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
6412       Output_data_got_powerpc<size, big_endian>* got
6413         = this->got_section(symtab, layout);
6414       unsigned int got_offset = got->add_constant_pair(0, 0);
6415       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
6416                           got_offset, 0);
6417       this->tlsld_got_offset_ = got_offset;
6418     }
6419   return this->tlsld_got_offset_;
6420 }
6421
6422 // Get the Reference_flags for a particular relocation.
6423
6424 template<int size, bool big_endian>
6425 int
6426 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
6427     unsigned int r_type,
6428     const Target_powerpc* target)
6429 {
6430   int ref = 0;
6431
6432   switch (r_type)
6433     {
6434     case elfcpp::R_POWERPC_NONE:
6435     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6436     case elfcpp::R_POWERPC_GNU_VTENTRY:
6437     case elfcpp::R_PPC64_TOC:
6438       // No symbol reference.
6439       break;
6440
6441     case elfcpp::R_PPC64_ADDR64:
6442     case elfcpp::R_PPC64_UADDR64:
6443     case elfcpp::R_POWERPC_ADDR32:
6444     case elfcpp::R_POWERPC_UADDR32:
6445     case elfcpp::R_POWERPC_ADDR16:
6446     case elfcpp::R_POWERPC_UADDR16:
6447     case elfcpp::R_POWERPC_ADDR16_LO:
6448     case elfcpp::R_POWERPC_ADDR16_HI:
6449     case elfcpp::R_POWERPC_ADDR16_HA:
6450       ref = Symbol::ABSOLUTE_REF;
6451       break;
6452
6453     case elfcpp::R_POWERPC_ADDR24:
6454     case elfcpp::R_POWERPC_ADDR14:
6455     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6456     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6457       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
6458       break;
6459
6460     case elfcpp::R_PPC64_REL64:
6461     case elfcpp::R_POWERPC_REL32:
6462     case elfcpp::R_PPC_LOCAL24PC:
6463     case elfcpp::R_POWERPC_REL16:
6464     case elfcpp::R_POWERPC_REL16_LO:
6465     case elfcpp::R_POWERPC_REL16_HI:
6466     case elfcpp::R_POWERPC_REL16_HA:
6467     case elfcpp::R_PPC64_REL16_HIGH:
6468     case elfcpp::R_PPC64_REL16_HIGHA:
6469     case elfcpp::R_PPC64_REL16_HIGHER:
6470     case elfcpp::R_PPC64_REL16_HIGHERA:
6471     case elfcpp::R_PPC64_REL16_HIGHEST:
6472     case elfcpp::R_PPC64_REL16_HIGHESTA:
6473       ref = Symbol::RELATIVE_REF;
6474       break;
6475
6476     case elfcpp::R_POWERPC_REL24:
6477     case elfcpp::R_PPC_PLTREL24:
6478     case elfcpp::R_POWERPC_REL14:
6479     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6480     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6481       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
6482       break;
6483
6484     case elfcpp::R_POWERPC_GOT16:
6485     case elfcpp::R_POWERPC_GOT16_LO:
6486     case elfcpp::R_POWERPC_GOT16_HI:
6487     case elfcpp::R_POWERPC_GOT16_HA:
6488     case elfcpp::R_PPC64_GOT16_DS:
6489     case elfcpp::R_PPC64_GOT16_LO_DS:
6490     case elfcpp::R_PPC64_TOC16:
6491     case elfcpp::R_PPC64_TOC16_LO:
6492     case elfcpp::R_PPC64_TOC16_HI:
6493     case elfcpp::R_PPC64_TOC16_HA:
6494     case elfcpp::R_PPC64_TOC16_DS:
6495     case elfcpp::R_PPC64_TOC16_LO_DS:
6496     case elfcpp::R_POWERPC_PLT16_LO:
6497     case elfcpp::R_POWERPC_PLT16_HI:
6498     case elfcpp::R_POWERPC_PLT16_HA:
6499     case elfcpp::R_PPC64_PLT16_LO_DS:
6500       ref = Symbol::RELATIVE_REF;
6501       break;
6502
6503     case elfcpp::R_POWERPC_GOT_TPREL16:
6504     case elfcpp::R_POWERPC_TLS:
6505       ref = Symbol::TLS_REF;
6506       break;
6507
6508     case elfcpp::R_POWERPC_COPY:
6509     case elfcpp::R_POWERPC_GLOB_DAT:
6510     case elfcpp::R_POWERPC_JMP_SLOT:
6511     case elfcpp::R_POWERPC_RELATIVE:
6512     case elfcpp::R_POWERPC_DTPMOD:
6513     default:
6514       // Not expected.  We will give an error later.
6515       break;
6516     }
6517
6518   if (size == 64 && target->abiversion() < 2)
6519     ref |= Symbol::FUNC_DESC_ABI;
6520   return ref;
6521 }
6522
6523 // Report an unsupported relocation against a local symbol.
6524
6525 template<int size, bool big_endian>
6526 void
6527 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
6528     Sized_relobj_file<size, big_endian>* object,
6529     unsigned int r_type)
6530 {
6531   gold_error(_("%s: unsupported reloc %u against local symbol"),
6532              object->name().c_str(), r_type);
6533 }
6534
6535 // We are about to emit a dynamic relocation of type R_TYPE.  If the
6536 // dynamic linker does not support it, issue an error.
6537
6538 template<int size, bool big_endian>
6539 void
6540 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
6541                                                       unsigned int r_type)
6542 {
6543   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
6544
6545   // These are the relocation types supported by glibc for both 32-bit
6546   // and 64-bit powerpc.
6547   switch (r_type)
6548     {
6549     case elfcpp::R_POWERPC_NONE:
6550     case elfcpp::R_POWERPC_RELATIVE:
6551     case elfcpp::R_POWERPC_GLOB_DAT:
6552     case elfcpp::R_POWERPC_DTPMOD:
6553     case elfcpp::R_POWERPC_DTPREL:
6554     case elfcpp::R_POWERPC_TPREL:
6555     case elfcpp::R_POWERPC_JMP_SLOT:
6556     case elfcpp::R_POWERPC_COPY:
6557     case elfcpp::R_POWERPC_IRELATIVE:
6558     case elfcpp::R_POWERPC_ADDR32:
6559     case elfcpp::R_POWERPC_UADDR32:
6560     case elfcpp::R_POWERPC_ADDR24:
6561     case elfcpp::R_POWERPC_ADDR16:
6562     case elfcpp::R_POWERPC_UADDR16:
6563     case elfcpp::R_POWERPC_ADDR16_LO:
6564     case elfcpp::R_POWERPC_ADDR16_HI:
6565     case elfcpp::R_POWERPC_ADDR16_HA:
6566     case elfcpp::R_POWERPC_ADDR14:
6567     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6568     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6569     case elfcpp::R_POWERPC_REL32:
6570     case elfcpp::R_POWERPC_REL24:
6571     case elfcpp::R_POWERPC_TPREL16:
6572     case elfcpp::R_POWERPC_TPREL16_LO:
6573     case elfcpp::R_POWERPC_TPREL16_HI:
6574     case elfcpp::R_POWERPC_TPREL16_HA:
6575       return;
6576
6577     default:
6578       break;
6579     }
6580
6581   if (size == 64)
6582     {
6583       switch (r_type)
6584         {
6585           // These are the relocation types supported only on 64-bit.
6586         case elfcpp::R_PPC64_ADDR64:
6587         case elfcpp::R_PPC64_UADDR64:
6588         case elfcpp::R_PPC64_JMP_IREL:
6589         case elfcpp::R_PPC64_ADDR16_DS:
6590         case elfcpp::R_PPC64_ADDR16_LO_DS:
6591         case elfcpp::R_PPC64_ADDR16_HIGH:
6592         case elfcpp::R_PPC64_ADDR16_HIGHA:
6593         case elfcpp::R_PPC64_ADDR16_HIGHER:
6594         case elfcpp::R_PPC64_ADDR16_HIGHEST:
6595         case elfcpp::R_PPC64_ADDR16_HIGHERA:
6596         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6597         case elfcpp::R_PPC64_REL64:
6598         case elfcpp::R_POWERPC_ADDR30:
6599         case elfcpp::R_PPC64_TPREL16_DS:
6600         case elfcpp::R_PPC64_TPREL16_LO_DS:
6601         case elfcpp::R_PPC64_TPREL16_HIGH:
6602         case elfcpp::R_PPC64_TPREL16_HIGHA:
6603         case elfcpp::R_PPC64_TPREL16_HIGHER:
6604         case elfcpp::R_PPC64_TPREL16_HIGHEST:
6605         case elfcpp::R_PPC64_TPREL16_HIGHERA:
6606         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6607           return;
6608
6609         default:
6610           break;
6611         }
6612     }
6613   else
6614     {
6615       switch (r_type)
6616         {
6617           // These are the relocation types supported only on 32-bit.
6618           // ??? glibc ld.so doesn't need to support these.
6619         case elfcpp::R_POWERPC_DTPREL16:
6620         case elfcpp::R_POWERPC_DTPREL16_LO:
6621         case elfcpp::R_POWERPC_DTPREL16_HI:
6622         case elfcpp::R_POWERPC_DTPREL16_HA:
6623           return;
6624
6625         default:
6626           break;
6627         }
6628     }
6629
6630   // This prevents us from issuing more than one error per reloc
6631   // section.  But we can still wind up issuing more than one
6632   // error per object file.
6633   if (this->issued_non_pic_error_)
6634     return;
6635   gold_assert(parameters->options().output_is_position_independent());
6636   object->error(_("requires unsupported dynamic reloc; "
6637                   "recompile with -fPIC"));
6638   this->issued_non_pic_error_ = true;
6639   return;
6640 }
6641
6642 // Return whether we need to make a PLT entry for a relocation of the
6643 // given type against a STT_GNU_IFUNC symbol.
6644
6645 template<int size, bool big_endian>
6646 bool
6647 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
6648      Target_powerpc<size, big_endian>* target,
6649      Sized_relobj_file<size, big_endian>* object,
6650      unsigned int r_type,
6651      bool report_err)
6652 {
6653   // In non-pic code any reference will resolve to the plt call stub
6654   // for the ifunc symbol.
6655   if ((size == 32 || target->abiversion() >= 2)
6656       && !parameters->options().output_is_position_independent())
6657     return true;
6658
6659   switch (r_type)
6660     {
6661     // Word size refs from data sections are OK, but don't need a PLT entry.
6662     case elfcpp::R_POWERPC_ADDR32:
6663     case elfcpp::R_POWERPC_UADDR32:
6664       if (size == 32)
6665         return false;
6666       break;
6667
6668     case elfcpp::R_PPC64_ADDR64:
6669     case elfcpp::R_PPC64_UADDR64:
6670       if (size == 64)
6671         return false;
6672       break;
6673
6674     // GOT refs are good, but also don't need a PLT entry.
6675     case elfcpp::R_POWERPC_GOT16:
6676     case elfcpp::R_POWERPC_GOT16_LO:
6677     case elfcpp::R_POWERPC_GOT16_HI:
6678     case elfcpp::R_POWERPC_GOT16_HA:
6679     case elfcpp::R_PPC64_GOT16_DS:
6680     case elfcpp::R_PPC64_GOT16_LO_DS:
6681       return false;
6682
6683     // PLT relocs are OK and need a PLT entry.
6684     case elfcpp::R_POWERPC_PLT16_LO:
6685     case elfcpp::R_POWERPC_PLT16_HI:
6686     case elfcpp::R_POWERPC_PLT16_HA:
6687     case elfcpp::R_PPC64_PLT16_LO_DS:
6688     case elfcpp::R_POWERPC_PLTSEQ:
6689     case elfcpp::R_POWERPC_PLTCALL:
6690       return true;
6691       break;
6692
6693     // Function calls are good, and these do need a PLT entry.
6694     case elfcpp::R_POWERPC_ADDR24:
6695     case elfcpp::R_POWERPC_ADDR14:
6696     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6697     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6698     case elfcpp::R_POWERPC_REL24:
6699     case elfcpp::R_PPC_PLTREL24:
6700     case elfcpp::R_POWERPC_REL14:
6701     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6702     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6703       return true;
6704
6705     default:
6706       break;
6707     }
6708
6709   // Anything else is a problem.
6710   // If we are building a static executable, the libc startup function
6711   // responsible for applying indirect function relocations is going
6712   // to complain about the reloc type.
6713   // If we are building a dynamic executable, we will have a text
6714   // relocation.  The dynamic loader will set the text segment
6715   // writable and non-executable to apply text relocations.  So we'll
6716   // segfault when trying to run the indirection function to resolve
6717   // the reloc.
6718   if (report_err)
6719     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
6720                object->name().c_str(), r_type);
6721   return false;
6722 }
6723
6724 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6725 // reloc.
6726
6727 static bool
6728 ok_lo_toc_insn(uint32_t insn, unsigned int r_type)
6729 {
6730   return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
6731           || (insn & (0x3f << 26)) == 14u << 26 /* addi */
6732           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6733           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6734           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6735           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6736           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6737           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6738           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6739           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6740           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6741           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6742           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6743           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6744           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6745           || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
6746           || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
6747               /* Exclude lfqu by testing reloc.  If relocs are ever
6748                  defined for the reduced D field in psq_lu then those
6749                  will need testing too.  */
6750               && r_type != elfcpp::R_PPC64_TOC16_LO
6751               && r_type != elfcpp::R_POWERPC_GOT16_LO)
6752           || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
6753               && (insn & 1) == 0)
6754           || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
6755           || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
6756               /* Exclude stfqu.  psq_stu as above for psq_lu.  */
6757               && r_type != elfcpp::R_PPC64_TOC16_LO
6758               && r_type != elfcpp::R_POWERPC_GOT16_LO)
6759           || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
6760               && (insn & 1) == 0));
6761 }
6762
6763 // Scan a relocation for a local symbol.
6764
6765 template<int size, bool big_endian>
6766 inline void
6767 Target_powerpc<size, big_endian>::Scan::local(
6768     Symbol_table* symtab,
6769     Layout* layout,
6770     Target_powerpc<size, big_endian>* target,
6771     Sized_relobj_file<size, big_endian>* object,
6772     unsigned int data_shndx,
6773     Output_section* output_section,
6774     const elfcpp::Rela<size, big_endian>& reloc,
6775     unsigned int r_type,
6776     const elfcpp::Sym<size, big_endian>& lsym,
6777     bool is_discarded)
6778 {
6779   this->maybe_skip_tls_get_addr_call(target, r_type, NULL);
6780
6781   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6782       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6783     {
6784       this->expect_tls_get_addr_call();
6785       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6786       if (tls_type != tls::TLSOPT_NONE)
6787         this->skip_next_tls_get_addr_call();
6788     }
6789   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6790            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6791     {
6792       this->expect_tls_get_addr_call();
6793       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6794       if (tls_type != tls::TLSOPT_NONE)
6795         this->skip_next_tls_get_addr_call();
6796     }
6797
6798   Powerpc_relobj<size, big_endian>* ppc_object
6799     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6800
6801   if (is_discarded)
6802     {
6803       if (size == 64
6804           && data_shndx == ppc_object->opd_shndx()
6805           && r_type == elfcpp::R_PPC64_ADDR64)
6806         ppc_object->set_opd_discard(reloc.get_r_offset());
6807       return;
6808     }
6809
6810   // A local STT_GNU_IFUNC symbol may require a PLT entry.
6811   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6812   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6813     {
6814       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6815       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6816                           r_type, r_sym, reloc.get_r_addend());
6817       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6818     }
6819
6820   switch (r_type)
6821     {
6822     case elfcpp::R_POWERPC_NONE:
6823     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6824     case elfcpp::R_POWERPC_GNU_VTENTRY:
6825     case elfcpp::R_POWERPC_TLS:
6826     case elfcpp::R_PPC64_ENTRY:
6827     case elfcpp::R_POWERPC_PLTSEQ:
6828     case elfcpp::R_POWERPC_PLTCALL:
6829       break;
6830
6831     case elfcpp::R_PPC64_TOC:
6832       {
6833         Output_data_got_powerpc<size, big_endian>* got
6834           = target->got_section(symtab, layout);
6835         if (parameters->options().output_is_position_independent())
6836           {
6837             Address off = reloc.get_r_offset();
6838             if (size == 64
6839                 && target->abiversion() < 2
6840                 && data_shndx == ppc_object->opd_shndx()
6841                 && ppc_object->get_opd_discard(off - 8))
6842               break;
6843
6844             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6845             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6846             rela_dyn->add_output_section_relative(got->output_section(),
6847                                                   elfcpp::R_POWERPC_RELATIVE,
6848                                                   output_section,
6849                                                   object, data_shndx, off,
6850                                                   symobj->toc_base_offset());
6851           }
6852       }
6853       break;
6854
6855     case elfcpp::R_PPC64_ADDR64:
6856     case elfcpp::R_PPC64_UADDR64:
6857     case elfcpp::R_POWERPC_ADDR32:
6858     case elfcpp::R_POWERPC_UADDR32:
6859     case elfcpp::R_POWERPC_ADDR24:
6860     case elfcpp::R_POWERPC_ADDR16:
6861     case elfcpp::R_POWERPC_ADDR16_LO:
6862     case elfcpp::R_POWERPC_ADDR16_HI:
6863     case elfcpp::R_POWERPC_ADDR16_HA:
6864     case elfcpp::R_POWERPC_UADDR16:
6865     case elfcpp::R_PPC64_ADDR16_HIGH:
6866     case elfcpp::R_PPC64_ADDR16_HIGHA:
6867     case elfcpp::R_PPC64_ADDR16_HIGHER:
6868     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6869     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6870     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6871     case elfcpp::R_PPC64_ADDR16_DS:
6872     case elfcpp::R_PPC64_ADDR16_LO_DS:
6873     case elfcpp::R_POWERPC_ADDR14:
6874     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6875     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6876       // If building a shared library (or a position-independent
6877       // executable), we need to create a dynamic relocation for
6878       // this location.
6879       if (parameters->options().output_is_position_independent()
6880           || (size == 64 && is_ifunc && target->abiversion() < 2))
6881         {
6882           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6883                                                              is_ifunc);
6884           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6885           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
6886               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
6887             {
6888               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6889                                      : elfcpp::R_POWERPC_RELATIVE);
6890               rela_dyn->add_local_relative(object, r_sym, dynrel,
6891                                            output_section, data_shndx,
6892                                            reloc.get_r_offset(),
6893                                            reloc.get_r_addend(), false);
6894             }
6895           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
6896             {
6897               check_non_pic(object, r_type);
6898               rela_dyn->add_local(object, r_sym, r_type, output_section,
6899                                   data_shndx, reloc.get_r_offset(),
6900                                   reloc.get_r_addend());
6901             }
6902           else
6903             {
6904               gold_assert(lsym.get_st_value() == 0);
6905               unsigned int shndx = lsym.get_st_shndx();
6906               bool is_ordinary;
6907               shndx = object->adjust_sym_shndx(r_sym, shndx,
6908                                                &is_ordinary);
6909               if (!is_ordinary)
6910                 object->error(_("section symbol %u has bad shndx %u"),
6911                               r_sym, shndx);
6912               else
6913                 rela_dyn->add_local_section(object, shndx, r_type,
6914                                             output_section, data_shndx,
6915                                             reloc.get_r_offset());
6916             }
6917         }
6918       break;
6919
6920     case elfcpp::R_POWERPC_PLT16_LO:
6921     case elfcpp::R_POWERPC_PLT16_HI:
6922     case elfcpp::R_POWERPC_PLT16_HA:
6923     case elfcpp::R_PPC64_PLT16_LO_DS:
6924       if (!is_ifunc)
6925         {
6926           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6927           target->make_local_plt_entry(layout, object, r_sym);
6928         }
6929       break;
6930
6931     case elfcpp::R_POWERPC_REL24:
6932     case elfcpp::R_PPC_PLTREL24:
6933     case elfcpp::R_PPC_LOCAL24PC:
6934     case elfcpp::R_POWERPC_REL14:
6935     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6936     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6937       if (!is_ifunc)
6938         {
6939           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6940           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6941                               r_type, r_sym, reloc.get_r_addend());
6942         }
6943       break;
6944
6945     case elfcpp::R_PPC64_TOCSAVE:
6946       // R_PPC64_TOCSAVE follows a call instruction to indicate the
6947       // caller has already saved r2 and thus a plt call stub need not
6948       // save r2.
6949       if (size == 64
6950           && target->mark_pltcall(ppc_object, data_shndx,
6951                                   reloc.get_r_offset() - 4, symtab))
6952         {
6953           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6954           unsigned int shndx = lsym.get_st_shndx();
6955           bool is_ordinary;
6956           shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6957           if (!is_ordinary)
6958             object->error(_("tocsave symbol %u has bad shndx %u"),
6959                           r_sym, shndx);
6960           else
6961             target->add_tocsave(ppc_object, shndx,
6962                                 lsym.get_st_value() + reloc.get_r_addend());
6963         }
6964       break;
6965
6966     case elfcpp::R_PPC64_REL64:
6967     case elfcpp::R_POWERPC_REL32:
6968     case elfcpp::R_POWERPC_REL16:
6969     case elfcpp::R_POWERPC_REL16_LO:
6970     case elfcpp::R_POWERPC_REL16_HI:
6971     case elfcpp::R_POWERPC_REL16_HA:
6972     case elfcpp::R_POWERPC_REL16DX_HA:
6973     case elfcpp::R_PPC64_REL16_HIGH:
6974     case elfcpp::R_PPC64_REL16_HIGHA:
6975     case elfcpp::R_PPC64_REL16_HIGHER:
6976     case elfcpp::R_PPC64_REL16_HIGHERA:
6977     case elfcpp::R_PPC64_REL16_HIGHEST:
6978     case elfcpp::R_PPC64_REL16_HIGHESTA:
6979     case elfcpp::R_POWERPC_SECTOFF:
6980     case elfcpp::R_POWERPC_SECTOFF_LO:
6981     case elfcpp::R_POWERPC_SECTOFF_HI:
6982     case elfcpp::R_POWERPC_SECTOFF_HA:
6983     case elfcpp::R_PPC64_SECTOFF_DS:
6984     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6985     case elfcpp::R_POWERPC_TPREL16:
6986     case elfcpp::R_POWERPC_TPREL16_LO:
6987     case elfcpp::R_POWERPC_TPREL16_HI:
6988     case elfcpp::R_POWERPC_TPREL16_HA:
6989     case elfcpp::R_PPC64_TPREL16_DS:
6990     case elfcpp::R_PPC64_TPREL16_LO_DS:
6991     case elfcpp::R_PPC64_TPREL16_HIGH:
6992     case elfcpp::R_PPC64_TPREL16_HIGHA:
6993     case elfcpp::R_PPC64_TPREL16_HIGHER:
6994     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6995     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6996     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6997     case elfcpp::R_POWERPC_DTPREL16:
6998     case elfcpp::R_POWERPC_DTPREL16_LO:
6999     case elfcpp::R_POWERPC_DTPREL16_HI:
7000     case elfcpp::R_POWERPC_DTPREL16_HA:
7001     case elfcpp::R_PPC64_DTPREL16_DS:
7002     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7003     case elfcpp::R_PPC64_DTPREL16_HIGH:
7004     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7005     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7006     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7007     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7008     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7009     case elfcpp::R_PPC64_TLSGD:
7010     case elfcpp::R_PPC64_TLSLD:
7011     case elfcpp::R_PPC64_ADDR64_LOCAL:
7012       break;
7013
7014     case elfcpp::R_POWERPC_GOT16:
7015     case elfcpp::R_POWERPC_GOT16_LO:
7016     case elfcpp::R_POWERPC_GOT16_HI:
7017     case elfcpp::R_POWERPC_GOT16_HA:
7018     case elfcpp::R_PPC64_GOT16_DS:
7019     case elfcpp::R_PPC64_GOT16_LO_DS:
7020       {
7021         // The symbol requires a GOT entry.
7022         Output_data_got_powerpc<size, big_endian>* got
7023           = target->got_section(symtab, layout);
7024         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7025
7026         if (!parameters->options().output_is_position_independent())
7027           {
7028             if (is_ifunc
7029                 && (size == 32 || target->abiversion() >= 2))
7030               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
7031             else
7032               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
7033           }
7034         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
7035           {
7036             // If we are generating a shared object or a pie, this
7037             // symbol's GOT entry will be set by a dynamic relocation.
7038             unsigned int off;
7039             off = got->add_constant(0);
7040             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
7041
7042             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
7043                                                                is_ifunc);
7044             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7045                                    : elfcpp::R_POWERPC_RELATIVE);
7046             rela_dyn->add_local_relative(object, r_sym, dynrel,
7047                                          got, off, 0, false);
7048           }
7049       }
7050       break;
7051
7052     case elfcpp::R_PPC64_TOC16:
7053     case elfcpp::R_PPC64_TOC16_LO:
7054     case elfcpp::R_PPC64_TOC16_HI:
7055     case elfcpp::R_PPC64_TOC16_HA:
7056     case elfcpp::R_PPC64_TOC16_DS:
7057     case elfcpp::R_PPC64_TOC16_LO_DS:
7058       // We need a GOT section.
7059       target->got_section(symtab, layout);
7060       break;
7061
7062     case elfcpp::R_POWERPC_GOT_TLSGD16:
7063     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7064     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7065     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7066       {
7067         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
7068         if (tls_type == tls::TLSOPT_NONE)
7069           {
7070             Output_data_got_powerpc<size, big_endian>* got
7071               = target->got_section(symtab, layout);
7072             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7073             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7074             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
7075                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
7076           }
7077         else if (tls_type == tls::TLSOPT_TO_LE)
7078           {
7079             // no GOT relocs needed for Local Exec.
7080           }
7081         else
7082           gold_unreachable();
7083       }
7084       break;
7085
7086     case elfcpp::R_POWERPC_GOT_TLSLD16:
7087     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7088     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7089     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7090       {
7091         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7092         if (tls_type == tls::TLSOPT_NONE)
7093           target->tlsld_got_offset(symtab, layout, object);
7094         else if (tls_type == tls::TLSOPT_TO_LE)
7095           {
7096             // no GOT relocs needed for Local Exec.
7097             if (parameters->options().emit_relocs())
7098               {
7099                 Output_section* os = layout->tls_segment()->first_section();
7100                 gold_assert(os != NULL);
7101                 os->set_needs_symtab_index();
7102               }
7103           }
7104         else
7105           gold_unreachable();
7106       }
7107       break;
7108
7109     case elfcpp::R_POWERPC_GOT_DTPREL16:
7110     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7111     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7112     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7113       {
7114         Output_data_got_powerpc<size, big_endian>* got
7115           = target->got_section(symtab, layout);
7116         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7117         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
7118       }
7119       break;
7120
7121     case elfcpp::R_POWERPC_GOT_TPREL16:
7122     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7123     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7124     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7125       {
7126         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
7127         if (tls_type == tls::TLSOPT_NONE)
7128           {
7129             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7130             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
7131               {
7132                 Output_data_got_powerpc<size, big_endian>* got
7133                   = target->got_section(symtab, layout);
7134                 unsigned int off = got->add_constant(0);
7135                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
7136
7137                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7138                 rela_dyn->add_symbolless_local_addend(object, r_sym,
7139                                                       elfcpp::R_POWERPC_TPREL,
7140                                                       got, off, 0);
7141               }
7142           }
7143         else if (tls_type == tls::TLSOPT_TO_LE)
7144           {
7145             // no GOT relocs needed for Local Exec.
7146           }
7147         else
7148           gold_unreachable();
7149       }
7150       break;
7151
7152     default:
7153       unsupported_reloc_local(object, r_type);
7154       break;
7155     }
7156
7157   if (size == 64
7158       && parameters->options().toc_optimize())
7159     {
7160       if (data_shndx == ppc_object->toc_shndx())
7161         {
7162           bool ok = true;
7163           if (r_type != elfcpp::R_PPC64_ADDR64
7164               || (is_ifunc && target->abiversion() < 2))
7165             ok = false;
7166           else if (parameters->options().output_is_position_independent())
7167             {
7168               if (is_ifunc)
7169                 ok = false;
7170               else
7171                 {
7172                   unsigned int shndx = lsym.get_st_shndx();
7173                   if (shndx >= elfcpp::SHN_LORESERVE
7174                       && shndx != elfcpp::SHN_XINDEX)
7175                     ok = false;
7176                 }
7177             }
7178           if (!ok)
7179             ppc_object->set_no_toc_opt(reloc.get_r_offset());
7180         }
7181
7182       enum {no_check, check_lo, check_ha} insn_check;
7183       switch (r_type)
7184         {
7185         default:
7186           insn_check = no_check;
7187           break;
7188
7189         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7190         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7191         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7192         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7193         case elfcpp::R_POWERPC_GOT16_HA:
7194         case elfcpp::R_PPC64_TOC16_HA:
7195           insn_check = check_ha;
7196           break;
7197
7198         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7199         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7200         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7201         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7202         case elfcpp::R_POWERPC_GOT16_LO:
7203         case elfcpp::R_PPC64_GOT16_LO_DS:
7204         case elfcpp::R_PPC64_TOC16_LO:
7205         case elfcpp::R_PPC64_TOC16_LO_DS:
7206           insn_check = check_lo;
7207           break;
7208         }
7209
7210       section_size_type slen;
7211       const unsigned char* view = NULL;
7212       if (insn_check != no_check)
7213         {
7214           view = ppc_object->section_contents(data_shndx, &slen, false);
7215           section_size_type off =
7216             convert_to_section_size_type(reloc.get_r_offset()) & -4;
7217           if (off < slen)
7218             {
7219               uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
7220               if (insn_check == check_lo
7221                   ? !ok_lo_toc_insn(insn, r_type)
7222                   : ((insn & ((0x3f << 26) | 0x1f << 16))
7223                      != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
7224                 {
7225                   ppc_object->set_no_toc_opt();
7226                   gold_warning(_("%s: toc optimization is not supported "
7227                                  "for %#08x instruction"),
7228                                ppc_object->name().c_str(), insn);
7229                 }
7230             }
7231         }
7232
7233       switch (r_type)
7234         {
7235         default:
7236           break;
7237         case elfcpp::R_PPC64_TOC16:
7238         case elfcpp::R_PPC64_TOC16_LO:
7239         case elfcpp::R_PPC64_TOC16_HI:
7240         case elfcpp::R_PPC64_TOC16_HA:
7241         case elfcpp::R_PPC64_TOC16_DS:
7242         case elfcpp::R_PPC64_TOC16_LO_DS:
7243           unsigned int shndx = lsym.get_st_shndx();
7244           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7245           bool is_ordinary;
7246           shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7247           if (is_ordinary && shndx == ppc_object->toc_shndx())
7248             {
7249               Address dst_off = lsym.get_st_value() + reloc.get_r_addend();
7250               if (dst_off < ppc_object->section_size(shndx))
7251                 {
7252                   bool ok = false;
7253                   if (r_type == elfcpp::R_PPC64_TOC16_HA)
7254                     ok = true;
7255                   else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
7256                     {
7257                       // Need to check that the insn is a ld
7258                       if (!view)
7259                         view = ppc_object->section_contents(data_shndx,
7260                                                             &slen,
7261                                                             false);
7262                       section_size_type off =
7263                         (convert_to_section_size_type(reloc.get_r_offset())
7264                          + (big_endian ? -2 : 3));
7265                       if (off < slen
7266                           && (view[off] & (0x3f << 2)) == 58u << 2)
7267                         ok = true;
7268                     }
7269                   if (!ok)
7270                     ppc_object->set_no_toc_opt(dst_off);
7271                 }
7272             }
7273           break;
7274         }
7275     }
7276
7277   if (size == 32)
7278     {
7279       switch (r_type)
7280         {
7281         case elfcpp::R_POWERPC_REL32:
7282           if (ppc_object->got2_shndx() != 0
7283               && parameters->options().output_is_position_independent())
7284             {
7285               unsigned int shndx = lsym.get_st_shndx();
7286               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7287               bool is_ordinary;
7288               shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7289               if (is_ordinary && shndx == ppc_object->got2_shndx()
7290                   && (ppc_object->section_flags(data_shndx)
7291                       & elfcpp::SHF_EXECINSTR) != 0)
7292                 gold_error(_("%s: unsupported -mbss-plt code"),
7293                            ppc_object->name().c_str());
7294             }
7295           break;
7296         default:
7297           break;
7298         }
7299     }
7300
7301   switch (r_type)
7302     {
7303     case elfcpp::R_POWERPC_GOT_TLSLD16:
7304     case elfcpp::R_POWERPC_GOT_TLSGD16:
7305     case elfcpp::R_POWERPC_GOT_TPREL16:
7306     case elfcpp::R_POWERPC_GOT_DTPREL16:
7307     case elfcpp::R_POWERPC_GOT16:
7308     case elfcpp::R_PPC64_GOT16_DS:
7309     case elfcpp::R_PPC64_TOC16:
7310     case elfcpp::R_PPC64_TOC16_DS:
7311       ppc_object->set_has_small_toc_reloc();
7312     default:
7313       break;
7314     }
7315 }
7316
7317 // Report an unsupported relocation against a global symbol.
7318
7319 template<int size, bool big_endian>
7320 void
7321 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
7322     Sized_relobj_file<size, big_endian>* object,
7323     unsigned int r_type,
7324     Symbol* gsym)
7325 {
7326   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7327              object->name().c_str(), r_type, gsym->demangled_name().c_str());
7328 }
7329
7330 // Scan a relocation for a global symbol.
7331
7332 template<int size, bool big_endian>
7333 inline void
7334 Target_powerpc<size, big_endian>::Scan::global(
7335     Symbol_table* symtab,
7336     Layout* layout,
7337     Target_powerpc<size, big_endian>* target,
7338     Sized_relobj_file<size, big_endian>* object,
7339     unsigned int data_shndx,
7340     Output_section* output_section,
7341     const elfcpp::Rela<size, big_endian>& reloc,
7342     unsigned int r_type,
7343     Symbol* gsym)
7344 {
7345   if (this->maybe_skip_tls_get_addr_call(target, r_type, gsym)
7346       == Track_tls::SKIP)
7347     return;
7348
7349   if (target->replace_tls_get_addr(gsym))
7350     // Change a __tls_get_addr reference to __tls_get_addr_opt
7351     // so dynamic relocs are emitted against the latter symbol.
7352     gsym = target->tls_get_addr_opt();
7353
7354   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7355       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7356     {
7357       this->expect_tls_get_addr_call();
7358       const bool final = gsym->final_value_is_known();
7359       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7360       if (tls_type != tls::TLSOPT_NONE)
7361         this->skip_next_tls_get_addr_call();
7362     }
7363   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7364            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7365     {
7366       this->expect_tls_get_addr_call();
7367       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7368       if (tls_type != tls::TLSOPT_NONE)
7369         this->skip_next_tls_get_addr_call();
7370     }
7371
7372   Powerpc_relobj<size, big_endian>* ppc_object
7373     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7374
7375   // A STT_GNU_IFUNC symbol may require a PLT entry.
7376   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
7377   bool pushed_ifunc = false;
7378   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
7379     {
7380       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7381       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7382                           r_type, r_sym, reloc.get_r_addend());
7383       target->make_plt_entry(symtab, layout, gsym);
7384       pushed_ifunc = true;
7385     }
7386
7387   switch (r_type)
7388     {
7389     case elfcpp::R_POWERPC_NONE:
7390     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7391     case elfcpp::R_POWERPC_GNU_VTENTRY:
7392     case elfcpp::R_PPC_LOCAL24PC:
7393     case elfcpp::R_POWERPC_TLS:
7394     case elfcpp::R_PPC64_ENTRY:
7395     case elfcpp::R_POWERPC_PLTSEQ:
7396     case elfcpp::R_POWERPC_PLTCALL:
7397       break;
7398
7399     case elfcpp::R_PPC64_TOC:
7400       {
7401         Output_data_got_powerpc<size, big_endian>* got
7402           = target->got_section(symtab, layout);
7403         if (parameters->options().output_is_position_independent())
7404           {
7405             Address off = reloc.get_r_offset();
7406             if (size == 64
7407                 && data_shndx == ppc_object->opd_shndx()
7408                 && ppc_object->get_opd_discard(off - 8))
7409               break;
7410
7411             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7412             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
7413             if (data_shndx != ppc_object->opd_shndx())
7414               symobj = static_cast
7415                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
7416             rela_dyn->add_output_section_relative(got->output_section(),
7417                                                   elfcpp::R_POWERPC_RELATIVE,
7418                                                   output_section,
7419                                                   object, data_shndx, off,
7420                                                   symobj->toc_base_offset());
7421           }
7422       }
7423       break;
7424
7425     case elfcpp::R_PPC64_ADDR64:
7426       if (size == 64
7427           && target->abiversion() < 2
7428           && data_shndx == ppc_object->opd_shndx()
7429           && (gsym->is_defined_in_discarded_section()
7430               || gsym->object() != object))
7431         {
7432           ppc_object->set_opd_discard(reloc.get_r_offset());
7433           break;
7434         }
7435       // Fall through.
7436     case elfcpp::R_PPC64_UADDR64:
7437     case elfcpp::R_POWERPC_ADDR32:
7438     case elfcpp::R_POWERPC_UADDR32:
7439     case elfcpp::R_POWERPC_ADDR24:
7440     case elfcpp::R_POWERPC_ADDR16:
7441     case elfcpp::R_POWERPC_ADDR16_LO:
7442     case elfcpp::R_POWERPC_ADDR16_HI:
7443     case elfcpp::R_POWERPC_ADDR16_HA:
7444     case elfcpp::R_POWERPC_UADDR16:
7445     case elfcpp::R_PPC64_ADDR16_HIGH:
7446     case elfcpp::R_PPC64_ADDR16_HIGHA:
7447     case elfcpp::R_PPC64_ADDR16_HIGHER:
7448     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7449     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7450     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7451     case elfcpp::R_PPC64_ADDR16_DS:
7452     case elfcpp::R_PPC64_ADDR16_LO_DS:
7453     case elfcpp::R_POWERPC_ADDR14:
7454     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7455     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7456       {
7457         // Make a PLT entry if necessary.
7458         if (gsym->needs_plt_entry())
7459           {
7460             // Since this is not a PC-relative relocation, we may be
7461             // taking the address of a function. In that case we need to
7462             // set the entry in the dynamic symbol table to the address of
7463             // the PLT call stub.
7464             bool need_ifunc_plt = false;
7465             if ((size == 32 || target->abiversion() >= 2)
7466                 && gsym->is_from_dynobj()
7467                 && !parameters->options().output_is_position_independent())
7468               {
7469                 gsym->set_needs_dynsym_value();
7470                 need_ifunc_plt = true;
7471               }
7472             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
7473               {
7474                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7475                 target->push_branch(ppc_object, data_shndx,
7476                                     reloc.get_r_offset(), r_type, r_sym,
7477                                     reloc.get_r_addend());
7478                 target->make_plt_entry(symtab, layout, gsym);
7479               }
7480           }
7481         // Make a dynamic relocation if necessary.
7482         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
7483             || (size == 64 && is_ifunc && target->abiversion() < 2))
7484           {
7485             if (!parameters->options().output_is_position_independent()
7486                 && gsym->may_need_copy_reloc())
7487               {
7488                 target->copy_reloc(symtab, layout, object,
7489                                    data_shndx, output_section, gsym, reloc);
7490               }
7491             else if ((((size == 32
7492                         && r_type == elfcpp::R_POWERPC_ADDR32)
7493                        || (size == 64
7494                            && r_type == elfcpp::R_PPC64_ADDR64
7495                            && target->abiversion() >= 2))
7496                       && gsym->can_use_relative_reloc(false)
7497                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
7498                            && parameters->options().shared()))
7499                      || (size == 64
7500                          && r_type == elfcpp::R_PPC64_ADDR64
7501                          && target->abiversion() < 2
7502                          && (gsym->can_use_relative_reloc(false)
7503                              || data_shndx == ppc_object->opd_shndx())))
7504               {
7505                 Reloc_section* rela_dyn
7506                   = target->rela_dyn_section(symtab, layout, is_ifunc);
7507                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7508                                        : elfcpp::R_POWERPC_RELATIVE);
7509                 rela_dyn->add_symbolless_global_addend(
7510                     gsym, dynrel, output_section, object, data_shndx,
7511                     reloc.get_r_offset(), reloc.get_r_addend());
7512               }
7513             else
7514               {
7515                 Reloc_section* rela_dyn
7516                   = target->rela_dyn_section(symtab, layout, is_ifunc);
7517                 check_non_pic(object, r_type);
7518                 rela_dyn->add_global(gsym, r_type, output_section,
7519                                      object, data_shndx,
7520                                      reloc.get_r_offset(),
7521                                      reloc.get_r_addend());
7522
7523                 if (size == 64
7524                     && parameters->options().toc_optimize()
7525                     && data_shndx == ppc_object->toc_shndx())
7526                   ppc_object->set_no_toc_opt(reloc.get_r_offset());
7527               }
7528           }
7529       }
7530       break;
7531
7532     case elfcpp::R_POWERPC_PLT16_LO:
7533     case elfcpp::R_POWERPC_PLT16_HI:
7534     case elfcpp::R_POWERPC_PLT16_HA:
7535     case elfcpp::R_PPC64_PLT16_LO_DS:
7536       if (!pushed_ifunc)
7537         target->make_plt_entry(symtab, layout, gsym);
7538       break;
7539
7540     case elfcpp::R_PPC_PLTREL24:
7541     case elfcpp::R_POWERPC_REL24:
7542       if (!is_ifunc)
7543         {
7544           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7545           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7546                               r_type, r_sym, reloc.get_r_addend());
7547           if (gsym->needs_plt_entry()
7548               || (!gsym->final_value_is_known()
7549                   && (gsym->is_undefined()
7550                       || gsym->is_from_dynobj()
7551                       || gsym->is_preemptible())))
7552             target->make_plt_entry(symtab, layout, gsym);
7553         }
7554       // Fall through.
7555
7556     case elfcpp::R_PPC64_REL64:
7557     case elfcpp::R_POWERPC_REL32:
7558       // Make a dynamic relocation if necessary.
7559       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
7560         {
7561           if (!parameters->options().output_is_position_independent()
7562               && gsym->may_need_copy_reloc())
7563             {
7564               target->copy_reloc(symtab, layout, object,
7565                                  data_shndx, output_section, gsym,
7566                                  reloc);
7567             }
7568           else
7569             {
7570               Reloc_section* rela_dyn
7571                 = target->rela_dyn_section(symtab, layout, is_ifunc);
7572               check_non_pic(object, r_type);
7573               rela_dyn->add_global(gsym, r_type, output_section, object,
7574                                    data_shndx, reloc.get_r_offset(),
7575                                    reloc.get_r_addend());
7576             }
7577         }
7578       break;
7579
7580     case elfcpp::R_POWERPC_REL14:
7581     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7582     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7583       if (!is_ifunc)
7584         {
7585           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7586           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7587                               r_type, r_sym, reloc.get_r_addend());
7588         }
7589       break;
7590
7591     case elfcpp::R_PPC64_TOCSAVE:
7592       // R_PPC64_TOCSAVE follows a call instruction to indicate the
7593       // caller has already saved r2 and thus a plt call stub need not
7594       // save r2.
7595       if (size == 64
7596           && target->mark_pltcall(ppc_object, data_shndx,
7597                                   reloc.get_r_offset() - 4, symtab))
7598         {
7599           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7600           bool is_ordinary;
7601           unsigned int shndx = gsym->shndx(&is_ordinary);
7602           if (!is_ordinary)
7603             object->error(_("tocsave symbol %u has bad shndx %u"),
7604                           r_sym, shndx);
7605           else
7606             {
7607               Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7608               target->add_tocsave(ppc_object, shndx,
7609                                   sym->value() + reloc.get_r_addend());
7610             }
7611         }
7612       break;
7613
7614     case elfcpp::R_POWERPC_REL16:
7615     case elfcpp::R_POWERPC_REL16_LO:
7616     case elfcpp::R_POWERPC_REL16_HI:
7617     case elfcpp::R_POWERPC_REL16_HA:
7618     case elfcpp::R_POWERPC_REL16DX_HA:
7619     case elfcpp::R_PPC64_REL16_HIGH:
7620     case elfcpp::R_PPC64_REL16_HIGHA:
7621     case elfcpp::R_PPC64_REL16_HIGHER:
7622     case elfcpp::R_PPC64_REL16_HIGHERA:
7623     case elfcpp::R_PPC64_REL16_HIGHEST:
7624     case elfcpp::R_PPC64_REL16_HIGHESTA:
7625     case elfcpp::R_POWERPC_SECTOFF:
7626     case elfcpp::R_POWERPC_SECTOFF_LO:
7627     case elfcpp::R_POWERPC_SECTOFF_HI:
7628     case elfcpp::R_POWERPC_SECTOFF_HA:
7629     case elfcpp::R_PPC64_SECTOFF_DS:
7630     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7631     case elfcpp::R_POWERPC_TPREL16:
7632     case elfcpp::R_POWERPC_TPREL16_LO:
7633     case elfcpp::R_POWERPC_TPREL16_HI:
7634     case elfcpp::R_POWERPC_TPREL16_HA:
7635     case elfcpp::R_PPC64_TPREL16_DS:
7636     case elfcpp::R_PPC64_TPREL16_LO_DS:
7637     case elfcpp::R_PPC64_TPREL16_HIGH:
7638     case elfcpp::R_PPC64_TPREL16_HIGHA:
7639     case elfcpp::R_PPC64_TPREL16_HIGHER:
7640     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7641     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7642     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7643     case elfcpp::R_POWERPC_DTPREL16:
7644     case elfcpp::R_POWERPC_DTPREL16_LO:
7645     case elfcpp::R_POWERPC_DTPREL16_HI:
7646     case elfcpp::R_POWERPC_DTPREL16_HA:
7647     case elfcpp::R_PPC64_DTPREL16_DS:
7648     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7649     case elfcpp::R_PPC64_DTPREL16_HIGH:
7650     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7651     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7652     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7653     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7654     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7655     case elfcpp::R_PPC64_TLSGD:
7656     case elfcpp::R_PPC64_TLSLD:
7657     case elfcpp::R_PPC64_ADDR64_LOCAL:
7658       break;
7659
7660     case elfcpp::R_POWERPC_GOT16:
7661     case elfcpp::R_POWERPC_GOT16_LO:
7662     case elfcpp::R_POWERPC_GOT16_HI:
7663     case elfcpp::R_POWERPC_GOT16_HA:
7664     case elfcpp::R_PPC64_GOT16_DS:
7665     case elfcpp::R_PPC64_GOT16_LO_DS:
7666       {
7667         // The symbol requires a GOT entry.
7668         Output_data_got_powerpc<size, big_endian>* got;
7669
7670         got = target->got_section(symtab, layout);
7671         if (gsym->final_value_is_known())
7672           {
7673             if (is_ifunc
7674                 && (size == 32 || target->abiversion() >= 2))
7675               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
7676             else
7677               got->add_global(gsym, GOT_TYPE_STANDARD);
7678           }
7679         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
7680           {
7681             // If we are generating a shared object or a pie, this
7682             // symbol's GOT entry will be set by a dynamic relocation.
7683             unsigned int off = got->add_constant(0);
7684             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
7685
7686             Reloc_section* rela_dyn
7687               = target->rela_dyn_section(symtab, layout, is_ifunc);
7688
7689             if (gsym->can_use_relative_reloc(false)
7690                 && !((size == 32
7691                       || target->abiversion() >= 2)
7692                      && gsym->visibility() == elfcpp::STV_PROTECTED
7693                      && parameters->options().shared()))
7694               {
7695                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7696                                        : elfcpp::R_POWERPC_RELATIVE);
7697                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
7698               }
7699             else
7700               {
7701                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
7702                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
7703               }
7704           }
7705       }
7706       break;
7707
7708     case elfcpp::R_PPC64_TOC16:
7709     case elfcpp::R_PPC64_TOC16_LO:
7710     case elfcpp::R_PPC64_TOC16_HI:
7711     case elfcpp::R_PPC64_TOC16_HA:
7712     case elfcpp::R_PPC64_TOC16_DS:
7713     case elfcpp::R_PPC64_TOC16_LO_DS:
7714       // We need a GOT section.
7715       target->got_section(symtab, layout);
7716       break;
7717
7718     case elfcpp::R_POWERPC_GOT_TLSGD16:
7719     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7720     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7721     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7722       {
7723         const bool final = gsym->final_value_is_known();
7724         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7725         if (tls_type == tls::TLSOPT_NONE)
7726           {
7727             Output_data_got_powerpc<size, big_endian>* got
7728               = target->got_section(symtab, layout);
7729             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7730             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
7731                                           elfcpp::R_POWERPC_DTPMOD,
7732                                           elfcpp::R_POWERPC_DTPREL);
7733           }
7734         else if (tls_type == tls::TLSOPT_TO_IE)
7735           {
7736             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7737               {
7738                 Output_data_got_powerpc<size, big_endian>* got
7739                   = target->got_section(symtab, layout);
7740                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7741                 if (gsym->is_undefined()
7742                     || gsym->is_from_dynobj())
7743                   {
7744                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7745                                              elfcpp::R_POWERPC_TPREL);
7746                   }
7747                 else
7748                   {
7749                     unsigned int off = got->add_constant(0);
7750                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
7751                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7752                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7753                                                            got, off, 0);
7754                   }
7755               }
7756           }
7757         else if (tls_type == tls::TLSOPT_TO_LE)
7758           {
7759             // no GOT relocs needed for Local Exec.
7760           }
7761         else
7762           gold_unreachable();
7763       }
7764       break;
7765
7766     case elfcpp::R_POWERPC_GOT_TLSLD16:
7767     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7768     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7769     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7770       {
7771         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7772         if (tls_type == tls::TLSOPT_NONE)
7773           target->tlsld_got_offset(symtab, layout, object);
7774         else if (tls_type == tls::TLSOPT_TO_LE)
7775           {
7776             // no GOT relocs needed for Local Exec.
7777             if (parameters->options().emit_relocs())
7778               {
7779                 Output_section* os = layout->tls_segment()->first_section();
7780                 gold_assert(os != NULL);
7781                 os->set_needs_symtab_index();
7782               }
7783           }
7784         else
7785           gold_unreachable();
7786       }
7787       break;
7788
7789     case elfcpp::R_POWERPC_GOT_DTPREL16:
7790     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7791     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7792     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7793       {
7794         Output_data_got_powerpc<size, big_endian>* got
7795           = target->got_section(symtab, layout);
7796         if (!gsym->final_value_is_known()
7797             && (gsym->is_from_dynobj()
7798                 || gsym->is_undefined()
7799                 || gsym->is_preemptible()))
7800           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
7801                                    target->rela_dyn_section(layout),
7802                                    elfcpp::R_POWERPC_DTPREL);
7803         else
7804           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
7805       }
7806       break;
7807
7808     case elfcpp::R_POWERPC_GOT_TPREL16:
7809     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7810     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7811     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7812       {
7813         const bool final = gsym->final_value_is_known();
7814         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7815         if (tls_type == tls::TLSOPT_NONE)
7816           {
7817             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7818               {
7819                 Output_data_got_powerpc<size, big_endian>* got
7820                   = target->got_section(symtab, layout);
7821                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7822                 if (gsym->is_undefined()
7823                     || gsym->is_from_dynobj())
7824                   {
7825                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7826                                              elfcpp::R_POWERPC_TPREL);
7827                   }
7828                 else
7829                   {
7830                     unsigned int off = got->add_constant(0);
7831                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
7832                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7833                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7834                                                            got, off, 0);
7835                   }
7836               }
7837           }
7838         else if (tls_type == tls::TLSOPT_TO_LE)
7839           {
7840             // no GOT relocs needed for Local Exec.
7841           }
7842         else
7843           gold_unreachable();
7844       }
7845       break;
7846
7847     default:
7848       unsupported_reloc_global(object, r_type, gsym);
7849       break;
7850     }
7851
7852   if (size == 64
7853       && parameters->options().toc_optimize())
7854     {
7855       if (data_shndx == ppc_object->toc_shndx())
7856         {
7857           bool ok = true;
7858           if (r_type != elfcpp::R_PPC64_ADDR64
7859               || (is_ifunc && target->abiversion() < 2))
7860             ok = false;
7861           else if (parameters->options().output_is_position_independent()
7862                    && (is_ifunc || gsym->is_absolute() || gsym->is_undefined()))
7863             ok = false;
7864           if (!ok)
7865             ppc_object->set_no_toc_opt(reloc.get_r_offset());
7866         }
7867
7868       enum {no_check, check_lo, check_ha} insn_check;
7869       switch (r_type)
7870         {
7871         default:
7872           insn_check = no_check;
7873           break;
7874
7875         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7876         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7877         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7878         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7879         case elfcpp::R_POWERPC_GOT16_HA:
7880         case elfcpp::R_PPC64_TOC16_HA:
7881           insn_check = check_ha;
7882           break;
7883
7884         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7885         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7886         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7887         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7888         case elfcpp::R_POWERPC_GOT16_LO:
7889         case elfcpp::R_PPC64_GOT16_LO_DS:
7890         case elfcpp::R_PPC64_TOC16_LO:
7891         case elfcpp::R_PPC64_TOC16_LO_DS:
7892           insn_check = check_lo;
7893           break;
7894         }
7895
7896       section_size_type slen;
7897       const unsigned char* view = NULL;
7898       if (insn_check != no_check)
7899         {
7900           view = ppc_object->section_contents(data_shndx, &slen, false);
7901           section_size_type off =
7902             convert_to_section_size_type(reloc.get_r_offset()) & -4;
7903           if (off < slen)
7904             {
7905               uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
7906               if (insn_check == check_lo
7907                   ? !ok_lo_toc_insn(insn, r_type)
7908                   : ((insn & ((0x3f << 26) | 0x1f << 16))
7909                      != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
7910                 {
7911                   ppc_object->set_no_toc_opt();
7912                   gold_warning(_("%s: toc optimization is not supported "
7913                                  "for %#08x instruction"),
7914                                ppc_object->name().c_str(), insn);
7915                 }
7916             }
7917         }
7918
7919       switch (r_type)
7920         {
7921         default:
7922           break;
7923         case elfcpp::R_PPC64_TOC16:
7924         case elfcpp::R_PPC64_TOC16_LO:
7925         case elfcpp::R_PPC64_TOC16_HI:
7926         case elfcpp::R_PPC64_TOC16_HA:
7927         case elfcpp::R_PPC64_TOC16_DS:
7928         case elfcpp::R_PPC64_TOC16_LO_DS:
7929           if (gsym->source() == Symbol::FROM_OBJECT
7930               && !gsym->object()->is_dynamic())
7931             {
7932               Powerpc_relobj<size, big_endian>* sym_object
7933                 = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7934               bool is_ordinary;
7935               unsigned int shndx = gsym->shndx(&is_ordinary);
7936               if (shndx == sym_object->toc_shndx())
7937                 {
7938                   Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7939                   Address dst_off = sym->value() + reloc.get_r_addend();
7940                   if (dst_off < sym_object->section_size(shndx))
7941                     {
7942                       bool ok = false;
7943                       if (r_type == elfcpp::R_PPC64_TOC16_HA)
7944                         ok = true;
7945                       else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
7946                         {
7947                           // Need to check that the insn is a ld
7948                           if (!view)
7949                             view = ppc_object->section_contents(data_shndx,
7950                                                                 &slen,
7951                                                                 false);
7952                           section_size_type off =
7953                             (convert_to_section_size_type(reloc.get_r_offset())
7954                              + (big_endian ? -2 : 3));
7955                           if (off < slen
7956                               && (view[off] & (0x3f << 2)) == (58u << 2))
7957                             ok = true;
7958                         }
7959                       if (!ok)
7960                         sym_object->set_no_toc_opt(dst_off);
7961                     }
7962                 }
7963             }
7964           break;
7965         }
7966     }
7967
7968   if (size == 32)
7969     {
7970       switch (r_type)
7971         {
7972         case elfcpp::R_PPC_LOCAL24PC:
7973           if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7974             gold_error(_("%s: unsupported -mbss-plt code"),
7975                        ppc_object->name().c_str());
7976           break;
7977         default:
7978           break;
7979         }
7980     }
7981
7982   switch (r_type)
7983     {
7984     case elfcpp::R_POWERPC_GOT_TLSLD16:
7985     case elfcpp::R_POWERPC_GOT_TLSGD16:
7986     case elfcpp::R_POWERPC_GOT_TPREL16:
7987     case elfcpp::R_POWERPC_GOT_DTPREL16:
7988     case elfcpp::R_POWERPC_GOT16:
7989     case elfcpp::R_PPC64_GOT16_DS:
7990     case elfcpp::R_PPC64_TOC16:
7991     case elfcpp::R_PPC64_TOC16_DS:
7992       ppc_object->set_has_small_toc_reloc();
7993     default:
7994       break;
7995     }
7996 }
7997
7998 // Process relocations for gc.
7999
8000 template<int size, bool big_endian>
8001 void
8002 Target_powerpc<size, big_endian>::gc_process_relocs(
8003     Symbol_table* symtab,
8004     Layout* layout,
8005     Sized_relobj_file<size, big_endian>* object,
8006     unsigned int data_shndx,
8007     unsigned int,
8008     const unsigned char* prelocs,
8009     size_t reloc_count,
8010     Output_section* output_section,
8011     bool needs_special_offset_handling,
8012     size_t local_symbol_count,
8013     const unsigned char* plocal_symbols)
8014 {
8015   typedef Target_powerpc<size, big_endian> Powerpc;
8016   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8017       Classify_reloc;
8018
8019   Powerpc_relobj<size, big_endian>* ppc_object
8020     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
8021   if (size == 64)
8022     ppc_object->set_opd_valid();
8023   if (size == 64 && data_shndx == ppc_object->opd_shndx())
8024     {
8025       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
8026       for (p = ppc_object->access_from_map()->begin();
8027            p != ppc_object->access_from_map()->end();
8028            ++p)
8029         {
8030           Address dst_off = p->first;
8031           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
8032           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
8033           for (s = p->second.begin(); s != p->second.end(); ++s)
8034             {
8035               Relobj* src_obj = s->first;
8036               unsigned int src_indx = s->second;
8037               symtab->gc()->add_reference(src_obj, src_indx,
8038                                           ppc_object, dst_indx);
8039             }
8040           p->second.clear();
8041         }
8042       ppc_object->access_from_map()->clear();
8043       ppc_object->process_gc_mark(symtab);
8044       // Don't look at .opd relocs as .opd will reference everything.
8045       return;
8046     }
8047
8048   gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
8049     symtab,
8050     layout,
8051     this,
8052     object,
8053     data_shndx,
8054     prelocs,
8055     reloc_count,
8056     output_section,
8057     needs_special_offset_handling,
8058     local_symbol_count,
8059     plocal_symbols);
8060 }
8061
8062 // Handle target specific gc actions when adding a gc reference from
8063 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
8064 // and DST_OFF.  For powerpc64, this adds a referenc to the code
8065 // section of a function descriptor.
8066
8067 template<int size, bool big_endian>
8068 void
8069 Target_powerpc<size, big_endian>::do_gc_add_reference(
8070     Symbol_table* symtab,
8071     Relobj* src_obj,
8072     unsigned int src_shndx,
8073     Relobj* dst_obj,
8074     unsigned int dst_shndx,
8075     Address dst_off) const
8076 {
8077   if (size != 64 || dst_obj->is_dynamic())
8078     return;
8079
8080   Powerpc_relobj<size, big_endian>* ppc_object
8081     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
8082   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
8083     {
8084       if (ppc_object->opd_valid())
8085         {
8086           dst_shndx = ppc_object->get_opd_ent(dst_off);
8087           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
8088         }
8089       else
8090         {
8091           // If we haven't run scan_opd_relocs, we must delay
8092           // processing this function descriptor reference.
8093           ppc_object->add_reference(src_obj, src_shndx, dst_off);
8094         }
8095     }
8096 }
8097
8098 // Add any special sections for this symbol to the gc work list.
8099 // For powerpc64, this adds the code section of a function
8100 // descriptor.
8101
8102 template<int size, bool big_endian>
8103 void
8104 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
8105     Symbol_table* symtab,
8106     Symbol* sym) const
8107 {
8108   if (size == 64)
8109     {
8110       Powerpc_relobj<size, big_endian>* ppc_object
8111         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
8112       bool is_ordinary;
8113       unsigned int shndx = sym->shndx(&is_ordinary);
8114       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
8115         {
8116           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
8117           Address dst_off = gsym->value();
8118           if (ppc_object->opd_valid())
8119             {
8120               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
8121               symtab->gc()->worklist().push_back(Section_id(ppc_object,
8122                                                             dst_indx));
8123             }
8124           else
8125             ppc_object->add_gc_mark(dst_off);
8126         }
8127     }
8128 }
8129
8130 // For a symbol location in .opd, set LOC to the location of the
8131 // function entry.
8132
8133 template<int size, bool big_endian>
8134 void
8135 Target_powerpc<size, big_endian>::do_function_location(
8136     Symbol_location* loc) const
8137 {
8138   if (size == 64 && loc->shndx != 0)
8139     {
8140       if (loc->object->is_dynamic())
8141         {
8142           Powerpc_dynobj<size, big_endian>* ppc_object
8143             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
8144           if (loc->shndx == ppc_object->opd_shndx())
8145             {
8146               Address dest_off;
8147               Address off = loc->offset - ppc_object->opd_address();
8148               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
8149               loc->offset = dest_off;
8150             }
8151         }
8152       else
8153         {
8154           const Powerpc_relobj<size, big_endian>* ppc_object
8155             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
8156           if (loc->shndx == ppc_object->opd_shndx())
8157             {
8158               Address dest_off;
8159               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
8160               loc->offset = dest_off;
8161             }
8162         }
8163     }
8164 }
8165
8166 // FNOFFSET in section SHNDX in OBJECT is the start of a function
8167 // compiled with -fsplit-stack.  The function calls non-split-stack
8168 // code.  Change the function to ensure it has enough stack space to
8169 // call some random function.
8170
8171 template<int size, bool big_endian>
8172 void
8173 Target_powerpc<size, big_endian>::do_calls_non_split(
8174     Relobj* object,
8175     unsigned int shndx,
8176     section_offset_type fnoffset,
8177     section_size_type fnsize,
8178     const unsigned char* prelocs,
8179     size_t reloc_count,
8180     unsigned char* view,
8181     section_size_type view_size,
8182     std::string* from,
8183     std::string* to) const
8184 {
8185   // 32-bit not supported.
8186   if (size == 32)
8187     {
8188       // warn
8189       Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
8190                                  prelocs, reloc_count, view, view_size,
8191                                  from, to);
8192       return;
8193     }
8194
8195   // The function always starts with
8196   //    ld %r0,-0x7000-64(%r13)  # tcbhead_t.__private_ss
8197   //    addis %r12,%r1,-allocate@ha
8198   //    addi %r12,%r12,-allocate@l
8199   //    cmpld %r12,%r0
8200   // but note that the addis or addi may be replaced with a nop
8201
8202   unsigned char *entry = view + fnoffset;
8203   uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
8204
8205   if ((insn & 0xffff0000) == addis_2_12)
8206     {
8207       /* Skip ELFv2 global entry code.  */
8208       entry += 8;
8209       insn = elfcpp::Swap<32, big_endian>::readval(entry);
8210     }
8211
8212   unsigned char *pinsn = entry;
8213   bool ok = false;
8214   const uint32_t ld_private_ss = 0xe80d8fc0;
8215   if (insn == ld_private_ss)
8216     {
8217       int32_t allocate = 0;
8218       while (1)
8219         {
8220           pinsn += 4;
8221           insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
8222           if ((insn & 0xffff0000) == addis_12_1)
8223             allocate += (insn & 0xffff) << 16;
8224           else if ((insn & 0xffff0000) == addi_12_1
8225                    || (insn & 0xffff0000) == addi_12_12)
8226             allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
8227           else if (insn != nop)
8228             break;
8229         }
8230       if (insn == cmpld_7_12_0 && pinsn == entry + 12)
8231         {
8232           int extra = parameters->options().split_stack_adjust_size();
8233           allocate -= extra;
8234           if (allocate >= 0 || extra < 0)
8235             {
8236               object->error(_("split-stack stack size overflow at "
8237                               "section %u offset %0zx"),
8238                             shndx, static_cast<size_t>(fnoffset));
8239               return;
8240             }
8241           pinsn = entry + 4;
8242           insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
8243           if (insn != addis_12_1)
8244             {
8245               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
8246               pinsn += 4;
8247               insn = addi_12_12 | (allocate & 0xffff);
8248               if (insn != addi_12_12)
8249                 {
8250                   elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
8251                   pinsn += 4;
8252                 }
8253             }
8254           else
8255             {
8256               insn = addi_12_1 | (allocate & 0xffff);
8257               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
8258               pinsn += 4;
8259             }
8260           if (pinsn != entry + 12)
8261             elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
8262
8263           ok = true;
8264         }
8265     }
8266
8267   if (!ok)
8268     {
8269       if (!object->has_no_split_stack())
8270         object->error(_("failed to match split-stack sequence at "
8271                         "section %u offset %0zx"),
8272                       shndx, static_cast<size_t>(fnoffset));
8273     }
8274 }
8275
8276 // Scan relocations for a section.
8277
8278 template<int size, bool big_endian>
8279 void
8280 Target_powerpc<size, big_endian>::scan_relocs(
8281     Symbol_table* symtab,
8282     Layout* layout,
8283     Sized_relobj_file<size, big_endian>* object,
8284     unsigned int data_shndx,
8285     unsigned int sh_type,
8286     const unsigned char* prelocs,
8287     size_t reloc_count,
8288     Output_section* output_section,
8289     bool needs_special_offset_handling,
8290     size_t local_symbol_count,
8291     const unsigned char* plocal_symbols)
8292 {
8293   typedef Target_powerpc<size, big_endian> Powerpc;
8294   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8295       Classify_reloc;
8296
8297   if (!this->plt_localentry0_init_)
8298     {
8299       bool plt_localentry0 = false;
8300       if (size == 64
8301           && this->abiversion() >= 2)
8302         {
8303           if (parameters->options().user_set_plt_localentry())
8304             plt_localentry0 = parameters->options().plt_localentry();
8305           if (plt_localentry0
8306               && symtab->lookup("GLIBC_2.26", NULL) == NULL)
8307             gold_warning(_("--plt-localentry is especially dangerous without "
8308                            "ld.so support to detect ABI violations"));
8309         }
8310       this->plt_localentry0_ = plt_localentry0;
8311       this->plt_localentry0_init_ = true;
8312     }
8313
8314   if (sh_type == elfcpp::SHT_REL)
8315     {
8316       gold_error(_("%s: unsupported REL reloc section"),
8317                  object->name().c_str());
8318       return;
8319     }
8320
8321   gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
8322     symtab,
8323     layout,
8324     this,
8325     object,
8326     data_shndx,
8327     prelocs,
8328     reloc_count,
8329     output_section,
8330     needs_special_offset_handling,
8331     local_symbol_count,
8332     plocal_symbols);
8333 }
8334
8335 // Functor class for processing the global symbol table.
8336 // Removes symbols defined on discarded opd entries.
8337
8338 template<bool big_endian>
8339 class Global_symbol_visitor_opd
8340 {
8341  public:
8342   Global_symbol_visitor_opd()
8343   { }
8344
8345   void
8346   operator()(Sized_symbol<64>* sym)
8347   {
8348     if (sym->has_symtab_index()
8349         || sym->source() != Symbol::FROM_OBJECT
8350         || !sym->in_real_elf())
8351       return;
8352
8353     if (sym->object()->is_dynamic())
8354       return;
8355
8356     Powerpc_relobj<64, big_endian>* symobj
8357       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
8358     if (symobj->opd_shndx() == 0)
8359       return;
8360
8361     bool is_ordinary;
8362     unsigned int shndx = sym->shndx(&is_ordinary);
8363     if (shndx == symobj->opd_shndx()
8364         && symobj->get_opd_discard(sym->value()))
8365       {
8366         sym->set_undefined();
8367         sym->set_visibility(elfcpp::STV_DEFAULT);
8368         sym->set_is_defined_in_discarded_section();
8369         sym->set_symtab_index(-1U);
8370       }
8371   }
8372 };
8373
8374 template<int size, bool big_endian>
8375 void
8376 Target_powerpc<size, big_endian>::define_save_restore_funcs(
8377     Layout* layout,
8378     Symbol_table* symtab)
8379 {
8380   if (size == 64)
8381     {
8382       Output_data_save_res<size, big_endian>* savres
8383         = new Output_data_save_res<size, big_endian>(symtab);
8384       this->savres_section_ = savres;
8385       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8386                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
8387                                       savres, ORDER_TEXT, false);
8388     }
8389 }
8390
8391 // Sort linker created .got section first (for the header), then input
8392 // sections belonging to files using small model code.
8393
8394 template<bool big_endian>
8395 class Sort_toc_sections
8396 {
8397  public:
8398   bool
8399   operator()(const Output_section::Input_section& is1,
8400              const Output_section::Input_section& is2) const
8401   {
8402     if (!is1.is_input_section() && is2.is_input_section())
8403       return true;
8404     bool small1
8405       = (is1.is_input_section()
8406          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
8407              ->has_small_toc_reloc()));
8408     bool small2
8409       = (is2.is_input_section()
8410          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
8411              ->has_small_toc_reloc()));
8412     return small1 && !small2;
8413   }
8414 };
8415
8416 // Finalize the sections.
8417
8418 template<int size, bool big_endian>
8419 void
8420 Target_powerpc<size, big_endian>::do_finalize_sections(
8421     Layout* layout,
8422     const Input_objects* input_objects,
8423     Symbol_table* symtab)
8424 {
8425   if (parameters->doing_static_link())
8426     {
8427       // At least some versions of glibc elf-init.o have a strong
8428       // reference to __rela_iplt marker syms.  A weak ref would be
8429       // better..
8430       if (this->iplt_ != NULL)
8431         {
8432           Reloc_section* rel = this->iplt_->rel_plt();
8433           symtab->define_in_output_data("__rela_iplt_start", NULL,
8434                                         Symbol_table::PREDEFINED, rel, 0, 0,
8435                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8436                                         elfcpp::STV_HIDDEN, 0, false, true);
8437           symtab->define_in_output_data("__rela_iplt_end", NULL,
8438                                         Symbol_table::PREDEFINED, rel, 0, 0,
8439                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8440                                         elfcpp::STV_HIDDEN, 0, true, true);
8441         }
8442       else
8443         {
8444           symtab->define_as_constant("__rela_iplt_start", NULL,
8445                                      Symbol_table::PREDEFINED, 0, 0,
8446                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8447                                      elfcpp::STV_HIDDEN, 0, true, false);
8448           symtab->define_as_constant("__rela_iplt_end", NULL,
8449                                      Symbol_table::PREDEFINED, 0, 0,
8450                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8451                                      elfcpp::STV_HIDDEN, 0, true, false);
8452         }
8453     }
8454
8455   if (size == 64)
8456     {
8457       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
8458       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
8459
8460       if (!parameters->options().relocatable())
8461         {
8462           this->define_save_restore_funcs(layout, symtab);
8463
8464           // Annoyingly, we need to make these sections now whether or
8465           // not we need them.  If we delay until do_relax then we
8466           // need to mess with the relaxation machinery checkpointing.
8467           this->got_section(symtab, layout);
8468           this->make_brlt_section(layout);
8469
8470           if (parameters->options().toc_sort())
8471             {
8472               Output_section* os = this->got_->output_section();
8473               if (os != NULL && os->input_sections().size() > 1)
8474                 std::stable_sort(os->input_sections().begin(),
8475                                  os->input_sections().end(),
8476                                  Sort_toc_sections<big_endian>());
8477             }
8478         }
8479     }
8480
8481   // Fill in some more dynamic tags.
8482   Output_data_dynamic* odyn = layout->dynamic_data();
8483   if (odyn != NULL)
8484     {
8485       const Reloc_section* rel_plt = (this->plt_ == NULL
8486                                       ? NULL
8487                                       : this->plt_->rel_plt());
8488       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
8489                                       this->rela_dyn_, true, size == 32);
8490
8491       if (size == 32)
8492         {
8493           if (this->got_ != NULL)
8494             {
8495               this->got_->finalize_data_size();
8496               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
8497                                             this->got_, this->got_->g_o_t());
8498             }
8499           if (this->has_tls_get_addr_opt_)
8500             odyn->add_constant(elfcpp::DT_PPC_OPT, elfcpp::PPC_OPT_TLS);
8501         }
8502       else
8503         {
8504           if (this->glink_ != NULL)
8505             {
8506               this->glink_->finalize_data_size();
8507               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
8508                                             this->glink_,
8509                                             (this->glink_->pltresolve_size()
8510                                              - 32));
8511             }
8512           if (this->has_localentry0_ || this->has_tls_get_addr_opt_)
8513             odyn->add_constant(elfcpp::DT_PPC64_OPT,
8514                                ((this->has_localentry0_
8515                                  ? elfcpp::PPC64_OPT_LOCALENTRY : 0)
8516                                 | (this->has_tls_get_addr_opt_
8517                                    ? elfcpp::PPC64_OPT_TLS : 0)));
8518         }
8519     }
8520
8521   // Emit any relocs we saved in an attempt to avoid generating COPY
8522   // relocs.
8523   if (this->copy_relocs_.any_saved_relocs())
8524     this->copy_relocs_.emit(this->rela_dyn_section(layout));
8525
8526   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8527        p != input_objects->relobj_end();
8528        ++p)
8529     {
8530       Powerpc_relobj<size, big_endian>* ppc_relobj
8531         = static_cast<Powerpc_relobj<size, big_endian>*>(*p);
8532       if (ppc_relobj->attributes_section_data())
8533         this->merge_object_attributes(ppc_relobj->name().c_str(),
8534                                       ppc_relobj->attributes_section_data());
8535     }
8536   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8537        p != input_objects->dynobj_end();
8538        ++p)
8539     {
8540       Powerpc_dynobj<size, big_endian>* ppc_dynobj
8541         = static_cast<Powerpc_dynobj<size, big_endian>*>(*p);
8542       if (ppc_dynobj->attributes_section_data())
8543         this->merge_object_attributes(ppc_dynobj->name().c_str(),
8544                                       ppc_dynobj->attributes_section_data());
8545     }
8546
8547   // Create a .gnu.attributes section if we have merged any attributes
8548   // from inputs.
8549   if (this->attributes_section_data_ != NULL
8550       && this->attributes_section_data_->size() != 0)
8551     {
8552       Output_attributes_section_data* attributes_section
8553         = new Output_attributes_section_data(*this->attributes_section_data_);
8554       layout->add_output_section_data(".gnu.attributes",
8555                                       elfcpp::SHT_GNU_ATTRIBUTES, 0,
8556                                       attributes_section, ORDER_INVALID, false);
8557     }
8558 }
8559
8560 // Merge object attributes from input file called NAME with those of the
8561 // output.  The input object attributes are in the object pointed by PASD.
8562
8563 template<int size, bool big_endian>
8564 void
8565 Target_powerpc<size, big_endian>::merge_object_attributes(
8566     const char* name,
8567     const Attributes_section_data* pasd)
8568 {
8569   // Return if there is no attributes section data.
8570   if (pasd == NULL)
8571     return;
8572
8573   // Create output object attributes.
8574   if (this->attributes_section_data_ == NULL)
8575     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8576
8577   const int vendor = Object_attribute::OBJ_ATTR_GNU;
8578   const Object_attribute* in_attr = pasd->known_attributes(vendor);
8579   Object_attribute* out_attr
8580     = this->attributes_section_data_->known_attributes(vendor);
8581
8582   const char* err;
8583   const char* first;
8584   const char* second;
8585   int tag = elfcpp::Tag_GNU_Power_ABI_FP;
8586   int in_fp = in_attr[tag].int_value() & 0xf;
8587   int out_fp = out_attr[tag].int_value() & 0xf;
8588   if (in_fp != out_fp)
8589     {
8590       err = NULL;
8591       if ((in_fp & 3) == 0)
8592         ;
8593       else if ((out_fp & 3) == 0)
8594         {
8595           out_fp |= in_fp & 3;
8596           out_attr[tag].set_int_value(out_fp);
8597           out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
8598           this->last_fp_ = name;
8599         }
8600       else if ((out_fp & 3) != 2 && (in_fp & 3) == 2)
8601         {
8602           err = N_("%s uses hard float, %s uses soft float");
8603           first = this->last_fp_;
8604           second = name;
8605         }
8606       else if ((out_fp & 3) == 2 && (in_fp & 3) != 2)
8607         {
8608           err = N_("%s uses hard float, %s uses soft float");
8609           first = name;
8610           second = this->last_fp_;
8611         }
8612       else if ((out_fp & 3) == 1 && (in_fp & 3) == 3)
8613         {
8614           err = N_("%s uses double-precision hard float, "
8615                    "%s uses single-precision hard float");
8616           first = this->last_fp_;
8617           second = name;
8618         }
8619       else if ((out_fp & 3) == 3 && (in_fp & 3) == 1)
8620         {
8621           err = N_("%s uses double-precision hard float, "
8622                    "%s uses single-precision hard float");
8623           first = name;
8624           second = this->last_fp_;
8625         }
8626
8627       if (err || (in_fp & 0xc) == 0)
8628         ;
8629       else if ((out_fp & 0xc) == 0)
8630         {
8631           out_fp |= in_fp & 0xc;
8632           out_attr[tag].set_int_value(out_fp);
8633           out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
8634           this->last_ld_ = name;
8635         }
8636       else if ((out_fp & 0xc) != 2 * 4 && (in_fp & 0xc) == 2 * 4)
8637         {
8638           err = N_("%s uses 64-bit long double, %s uses 128-bit long double");
8639           first = name;
8640           second = this->last_ld_;
8641         }
8642       else if ((in_fp & 0xc) != 2 * 4 && (out_fp & 0xc) == 2 * 4)
8643         {
8644           err = N_("%s uses 64-bit long double, %s uses 128-bit long double");
8645           first = this->last_ld_;
8646           second = name;
8647         }
8648       else if ((out_fp & 0xc) == 1 * 4 && (in_fp & 0xc) == 3 * 4)
8649         {
8650           err = N_("%s uses IBM long double, %s uses IEEE long double");
8651           first = this->last_ld_;
8652           second = name;
8653         }
8654       else if ((out_fp & 0xc) == 3 * 4 && (in_fp & 0xc) == 1 * 4)
8655         {
8656           err = N_("%s uses IBM long double, %s uses IEEE long double");
8657           first = name;
8658           second = this->last_ld_;
8659         }
8660
8661       if (err)
8662         {
8663           if (parameters->options().warn_mismatch())
8664             gold_error(_(err), first, second);
8665           // Arrange for this attribute to be deleted.  It's better to
8666           // say "don't know" about a file than to wrongly claim compliance.
8667           out_attr[tag].set_type(0);
8668         }
8669     }
8670
8671   if (size == 32)
8672     {
8673       tag = elfcpp::Tag_GNU_Power_ABI_Vector;
8674       int in_vec = in_attr[tag].int_value() & 3;
8675       int out_vec = out_attr[tag].int_value() & 3;
8676       if (in_vec != out_vec)
8677         {
8678           err = NULL;
8679           if (in_vec == 0)
8680             ;
8681           else if (out_vec == 0)
8682             {
8683               out_vec = in_vec;
8684               out_attr[tag].set_int_value(out_vec);
8685               out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
8686               this->last_vec_ = name;
8687             }
8688           // For now, allow generic to transition to AltiVec or SPE
8689           // without a warning.  If GCC marked files with their stack
8690           // alignment and used don't-care markings for files which are
8691           // not affected by the vector ABI, we could warn about this
8692           // case too.  */
8693           else if (in_vec == 1)
8694             ;
8695           else if (out_vec == 1)
8696             {
8697               out_vec = in_vec;
8698               out_attr[tag].set_int_value(out_vec);
8699               out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
8700               this->last_vec_ = name;
8701             }
8702           else if (out_vec < in_vec)
8703             {
8704               err = N_("%s uses AltiVec vector ABI, %s uses SPE vector ABI");
8705               first = this->last_vec_;
8706               second = name;
8707             }
8708           else if (out_vec > in_vec)
8709             {
8710               err = N_("%s uses AltiVec vector ABI, %s uses SPE vector ABI");
8711               first = name;
8712               second = this->last_vec_;
8713             }
8714           if (err)
8715             {
8716               if (parameters->options().warn_mismatch())
8717                 gold_error(_(err), first, second);
8718               out_attr[tag].set_type(0);
8719             }
8720         }
8721
8722       tag = elfcpp::Tag_GNU_Power_ABI_Struct_Return;
8723       int in_struct = in_attr[tag].int_value() & 3;
8724       int out_struct = out_attr[tag].int_value() & 3;
8725       if (in_struct != out_struct)
8726         {
8727           err = NULL;
8728           if (in_struct == 0 || in_struct == 3)
8729             ;
8730           else if (out_struct == 0)
8731             {
8732               out_struct = in_struct;
8733               out_attr[tag].set_int_value(out_struct);
8734               out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
8735               this->last_struct_ = name;
8736             }
8737           else if (out_struct < in_struct)
8738             {
8739               err = N_("%s uses r3/r4 for small structure returns, "
8740                        "%s uses memory");
8741               first = this->last_struct_;
8742               second = name;
8743             }
8744           else if (out_struct > in_struct)
8745             {
8746               err = N_("%s uses r3/r4 for small structure returns, "
8747                        "%s uses memory");
8748               first = name;
8749               second = this->last_struct_;
8750             }
8751           if (err)
8752             {
8753               if (parameters->options().warn_mismatch())
8754                 gold_error(_(err), first, second);
8755               out_attr[tag].set_type(0);
8756             }
8757         }
8758     }
8759
8760   // Merge Tag_compatibility attributes and any common GNU ones.
8761   this->attributes_section_data_->merge(name, pasd);
8762 }
8763
8764 // Emit any saved relocs, and mark toc entries using any of these
8765 // relocs as not optimizable.
8766
8767 template<int sh_type, int size, bool big_endian>
8768 void
8769 Powerpc_copy_relocs<sh_type, size, big_endian>::emit(
8770     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section)
8771 {
8772   if (size == 64
8773       && parameters->options().toc_optimize())
8774     {
8775       for (typename Copy_relocs<sh_type, size, big_endian>::
8776              Copy_reloc_entries::iterator p = this->entries_.begin();
8777            p != this->entries_.end();
8778            ++p)
8779         {
8780           typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry&
8781             entry = *p;
8782
8783           // If the symbol is no longer defined in a dynamic object,
8784           // then we emitted a COPY relocation.  If it is still
8785           // dynamic then we'll need dynamic relocations and thus
8786           // can't optimize toc entries.
8787           if (entry.sym_->is_from_dynobj())
8788             {
8789               Powerpc_relobj<size, big_endian>* ppc_object
8790                 = static_cast<Powerpc_relobj<size, big_endian>*>(entry.relobj_);
8791               if (entry.shndx_ == ppc_object->toc_shndx())
8792                 ppc_object->set_no_toc_opt(entry.address_);
8793             }
8794         }
8795     }
8796
8797   Copy_relocs<sh_type, size, big_endian>::emit(reloc_section);
8798 }
8799
8800 // Return the value to use for a branch relocation.
8801
8802 template<int size, bool big_endian>
8803 bool
8804 Target_powerpc<size, big_endian>::symval_for_branch(
8805     const Symbol_table* symtab,
8806     const Sized_symbol<size>* gsym,
8807     Powerpc_relobj<size, big_endian>* object,
8808     Address *value,
8809     unsigned int *dest_shndx)
8810 {
8811   if (size == 32 || this->abiversion() >= 2)
8812     gold_unreachable();
8813   *dest_shndx = 0;
8814
8815   // If the symbol is defined in an opd section, ie. is a function
8816   // descriptor, use the function descriptor code entry address
8817   Powerpc_relobj<size, big_endian>* symobj = object;
8818   if (gsym != NULL
8819       && (gsym->source() != Symbol::FROM_OBJECT
8820           || gsym->object()->is_dynamic()))
8821     return true;
8822   if (gsym != NULL)
8823     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
8824   unsigned int shndx = symobj->opd_shndx();
8825   if (shndx == 0)
8826     return true;
8827   Address opd_addr = symobj->get_output_section_offset(shndx);
8828   if (opd_addr == invalid_address)
8829     return true;
8830   opd_addr += symobj->output_section_address(shndx);
8831   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
8832     {
8833       Address sec_off;
8834       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
8835       if (symtab->is_section_folded(symobj, *dest_shndx))
8836         {
8837           Section_id folded
8838             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
8839           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
8840           *dest_shndx = folded.second;
8841         }
8842       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
8843       if (sec_addr == invalid_address)
8844         return false;
8845
8846       sec_addr += symobj->output_section(*dest_shndx)->address();
8847       *value = sec_addr + sec_off;
8848     }
8849   return true;
8850 }
8851
8852 // Perform a relocation.
8853
8854 template<int size, bool big_endian>
8855 inline bool
8856 Target_powerpc<size, big_endian>::Relocate::relocate(
8857     const Relocate_info<size, big_endian>* relinfo,
8858     unsigned int,
8859     Target_powerpc* target,
8860     Output_section* os,
8861     size_t relnum,
8862     const unsigned char* preloc,
8863     const Sized_symbol<size>* gsym,
8864     const Symbol_value<size>* psymval,
8865     unsigned char* view,
8866     Address address,
8867     section_size_type view_size)
8868 {
8869   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
8870   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
8871   typedef typename elfcpp::Rela<size, big_endian> Reltype;
8872
8873   if (view == NULL)
8874     return true;
8875
8876   if (target->replace_tls_get_addr(gsym))
8877     gsym = static_cast<const Sized_symbol<size>*>(target->tls_get_addr_opt());
8878
8879   const elfcpp::Rela<size, big_endian> rela(preloc);
8880   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
8881   switch (this->maybe_skip_tls_get_addr_call(target, r_type, gsym))
8882     {
8883     case Track_tls::NOT_EXPECTED:
8884       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8885                              _("__tls_get_addr call lacks marker reloc"));
8886       break;
8887     case Track_tls::EXPECTED:
8888       // We have already complained.
8889       break;
8890     case Track_tls::SKIP:
8891       if (is_plt16_reloc<size>(r_type)
8892           || r_type == elfcpp::R_POWERPC_PLTSEQ)
8893         {
8894           Insn* iview = reinterpret_cast<Insn*>(view);
8895           elfcpp::Swap<32, big_endian>::writeval(iview, nop);
8896         }
8897       else if (size == 64 && r_type == elfcpp::R_POWERPC_PLTCALL)
8898         {
8899           Insn* iview = reinterpret_cast<Insn*>(view);
8900           elfcpp::Swap<32, big_endian>::writeval(iview + 1, nop);
8901         }
8902       return true;
8903     case Track_tls::NORMAL:
8904       break;
8905     }
8906
8907   // Offset from start of insn to d-field reloc.
8908   const int d_offset = big_endian ? 2 : 0;
8909
8910   Powerpc_relobj<size, big_endian>* const object
8911     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8912   Address value = 0;
8913   bool has_stub_value = false;
8914   bool localentry0 = false;
8915   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
8916   bool has_plt_offset
8917     = (gsym != NULL
8918        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
8919        : object->local_has_plt_offset(r_sym));
8920   if (has_plt_offset
8921       && !is_plt16_reloc<size>(r_type)
8922       && r_type != elfcpp::R_POWERPC_PLTSEQ
8923       && r_type != elfcpp::R_POWERPC_PLTCALL
8924       && (!psymval->is_ifunc_symbol()
8925           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
8926     {
8927       if (size == 64
8928           && gsym != NULL
8929           && target->abiversion() >= 2
8930           && !parameters->options().output_is_position_independent()
8931           && !is_branch_reloc(r_type))
8932         {
8933           Address off = target->glink_section()->find_global_entry(gsym);
8934           if (off != invalid_address)
8935             {
8936               value = target->glink_section()->global_entry_address() + off;
8937               has_stub_value = true;
8938             }
8939         }
8940       else
8941         {
8942           Stub_table<size, big_endian>* stub_table = NULL;
8943           if (target->stub_tables().size() == 1)
8944             stub_table = target->stub_tables()[0];
8945           if (stub_table == NULL
8946               && !(size == 32
8947                    && gsym != NULL
8948                    && !parameters->options().output_is_position_independent()
8949                    && !is_branch_reloc(r_type)))
8950             stub_table = object->stub_table(relinfo->data_shndx);
8951           if (stub_table == NULL)
8952             {
8953               // This is a ref from a data section to an ifunc symbol,
8954               // or a non-branch reloc for which we always want to use
8955               // one set of stubs for resolving function addresses.
8956               if (target->stub_tables().size() != 0)
8957                 stub_table = target->stub_tables()[0];
8958             }
8959           if (stub_table != NULL)
8960             {
8961               const typename Stub_table<size, big_endian>::Plt_stub_ent* ent;
8962               if (gsym != NULL)
8963                 ent = stub_table->find_plt_call_entry(object, gsym, r_type,
8964                                                       rela.get_r_addend());
8965               else
8966                 ent = stub_table->find_plt_call_entry(object, r_sym, r_type,
8967                                                       rela.get_r_addend());
8968               if (ent != NULL)
8969                 {
8970                   value = stub_table->stub_address() + ent->off_;
8971                   const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8972                   elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
8973                   size_t reloc_count = shdr.get_sh_size() / reloc_size;
8974                   if (size == 64
8975                       && ent->r2save_
8976                       && relnum + 1 < reloc_count)
8977                     {
8978                       Reltype next_rela(preloc + reloc_size);
8979                       if (elfcpp::elf_r_type<size>(next_rela.get_r_info())
8980                           == elfcpp::R_PPC64_TOCSAVE
8981                           && next_rela.get_r_offset() == rela.get_r_offset() + 4)
8982                         value += 4;
8983                     }
8984                   localentry0 = ent->localentry0_;
8985                   has_stub_value = true;
8986                 }
8987             }
8988         }
8989       // We don't care too much about bogus debug references to
8990       // non-local functions, but otherwise there had better be a plt
8991       // call stub or global entry stub as appropriate.
8992       gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
8993     }
8994
8995   if (has_plt_offset && is_plt16_reloc<size>(r_type))
8996     {
8997       const Output_data_plt_powerpc<size, big_endian>* plt;
8998       if (gsym)
8999         value = target->plt_off(gsym, &plt);
9000       else
9001         value = target->plt_off(object, r_sym, &plt);
9002       value += plt->address();
9003
9004       if (size == 64)
9005         value -= (target->got_section()->output_section()->address()
9006                   + object->toc_base_offset());
9007       else if (parameters->options().output_is_position_independent())
9008         {
9009           if (rela.get_r_addend() >= 32768)
9010             {
9011               unsigned int got2 = object->got2_shndx();
9012               value -= (object->get_output_section_offset(got2)
9013                         + object->output_section(got2)->address()
9014                         + rela.get_r_addend());
9015             }
9016           else
9017             value -= (target->got_section()->address()
9018                       + target->got_section()->g_o_t());
9019         }
9020     }
9021   else if (!has_plt_offset
9022            && (is_plt16_reloc<size>(r_type)
9023                || r_type == elfcpp::R_POWERPC_PLTSEQ))
9024     {
9025       Insn* iview = reinterpret_cast<Insn*>(view);
9026       elfcpp::Swap<32, big_endian>::writeval(iview, nop);
9027       r_type = elfcpp::R_POWERPC_NONE;
9028     }
9029   else if (r_type == elfcpp::R_POWERPC_GOT16
9030            || r_type == elfcpp::R_POWERPC_GOT16_LO
9031            || r_type == elfcpp::R_POWERPC_GOT16_HI
9032            || r_type == elfcpp::R_POWERPC_GOT16_HA
9033            || r_type == elfcpp::R_PPC64_GOT16_DS
9034            || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
9035     {
9036       if (gsym != NULL)
9037         {
9038           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9039           value = gsym->got_offset(GOT_TYPE_STANDARD);
9040         }
9041       else
9042         {
9043           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
9044           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
9045         }
9046       value -= target->got_section()->got_base_offset(object);
9047     }
9048   else if (r_type == elfcpp::R_PPC64_TOC)
9049     {
9050       value = (target->got_section()->output_section()->address()
9051                + object->toc_base_offset());
9052     }
9053   else if (gsym != NULL
9054            && (r_type == elfcpp::R_POWERPC_REL24
9055                || r_type == elfcpp::R_PPC_PLTREL24)
9056            && has_stub_value)
9057     {
9058       if (size == 64)
9059         {
9060           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
9061           Valtype* wv = reinterpret_cast<Valtype*>(view);
9062           bool can_plt_call = localentry0 || target->is_tls_get_addr_opt(gsym);
9063           if (!can_plt_call && rela.get_r_offset() + 8 <= view_size)
9064             {
9065               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
9066               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
9067               if ((insn & 1) != 0
9068                   && (insn2 == nop
9069                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
9070                 {
9071                   elfcpp::Swap<32, big_endian>::
9072                     writeval(wv + 1, ld_2_1 + target->stk_toc());
9073                   can_plt_call = true;
9074                 }
9075             }
9076           if (!can_plt_call)
9077             {
9078               // If we don't have a branch and link followed by a nop,
9079               // we can't go via the plt because there is no place to
9080               // put a toc restoring instruction.
9081               // Unless we know we won't be returning.
9082               if (strcmp(gsym->name(), "__libc_start_main") == 0)
9083                 can_plt_call = true;
9084             }
9085           if (!can_plt_call)
9086             {
9087               // g++ as of 20130507 emits self-calls without a
9088               // following nop.  This is arguably wrong since we have
9089               // conflicting information.  On the one hand a global
9090               // symbol and on the other a local call sequence, but
9091               // don't error for this special case.
9092               // It isn't possible to cheaply verify we have exactly
9093               // such a call.  Allow all calls to the same section.
9094               bool ok = false;
9095               Address code = value;
9096               if (gsym->source() == Symbol::FROM_OBJECT
9097                   && gsym->object() == object)
9098                 {
9099                   unsigned int dest_shndx = 0;
9100                   if (target->abiversion() < 2)
9101                     {
9102                       Address addend = rela.get_r_addend();
9103                       code = psymval->value(object, addend);
9104                       target->symval_for_branch(relinfo->symtab, gsym, object,
9105                                                 &code, &dest_shndx);
9106                     }
9107                   bool is_ordinary;
9108                   if (dest_shndx == 0)
9109                     dest_shndx = gsym->shndx(&is_ordinary);
9110                   ok = dest_shndx == relinfo->data_shndx;
9111                 }
9112               if (!ok)
9113                 {
9114                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9115                                          _("call lacks nop, can't restore toc; "
9116                                            "recompile with -fPIC"));
9117                   value = code;
9118                 }
9119             }
9120         }
9121     }
9122   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9123            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
9124            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
9125            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
9126     {
9127       // First instruction of a global dynamic sequence, arg setup insn.
9128       const bool final = gsym == NULL || gsym->final_value_is_known();
9129       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
9130       enum Got_type got_type = GOT_TYPE_STANDARD;
9131       if (tls_type == tls::TLSOPT_NONE)
9132         got_type = GOT_TYPE_TLSGD;
9133       else if (tls_type == tls::TLSOPT_TO_IE)
9134         got_type = GOT_TYPE_TPREL;
9135       if (got_type != GOT_TYPE_STANDARD)
9136         {
9137           if (gsym != NULL)
9138             {
9139               gold_assert(gsym->has_got_offset(got_type));
9140               value = gsym->got_offset(got_type);
9141             }
9142           else
9143             {
9144               gold_assert(object->local_has_got_offset(r_sym, got_type));
9145               value = object->local_got_offset(r_sym, got_type);
9146             }
9147           value -= target->got_section()->got_base_offset(object);
9148         }
9149       if (tls_type == tls::TLSOPT_TO_IE)
9150         {
9151           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9152               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
9153             {
9154               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9155               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9156               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
9157               if (size == 32)
9158                 insn |= 32 << 26; // lwz
9159               else
9160                 insn |= 58 << 26; // ld
9161               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9162             }
9163           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
9164                      - elfcpp::R_POWERPC_GOT_TLSGD16);
9165         }
9166       else if (tls_type == tls::TLSOPT_TO_LE)
9167         {
9168           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9169               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
9170             {
9171               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9172               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9173               insn &= (1 << 26) - (1 << 21); // extract rt
9174               if (size == 32)
9175                 insn |= addis_0_2;
9176               else
9177                 insn |= addis_0_13;
9178               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9179               r_type = elfcpp::R_POWERPC_TPREL16_HA;
9180               value = psymval->value(object, rela.get_r_addend());
9181             }
9182           else
9183             {
9184               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9185               Insn insn = nop;
9186               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9187               r_type = elfcpp::R_POWERPC_NONE;
9188             }
9189         }
9190     }
9191   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9192            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
9193            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
9194            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
9195     {
9196       // First instruction of a local dynamic sequence, arg setup insn.
9197       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
9198       if (tls_type == tls::TLSOPT_NONE)
9199         {
9200           value = target->tlsld_got_offset();
9201           value -= target->got_section()->got_base_offset(object);
9202         }
9203       else
9204         {
9205           gold_assert(tls_type == tls::TLSOPT_TO_LE);
9206           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9207               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
9208             {
9209               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9210               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9211               insn &= (1 << 26) - (1 << 21); // extract rt
9212               if (size == 32)
9213                 insn |= addis_0_2;
9214               else
9215                 insn |= addis_0_13;
9216               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9217               r_type = elfcpp::R_POWERPC_TPREL16_HA;
9218               value = dtp_offset;
9219             }
9220           else
9221             {
9222               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9223               Insn insn = nop;
9224               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9225               r_type = elfcpp::R_POWERPC_NONE;
9226             }
9227         }
9228     }
9229   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
9230            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
9231            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
9232            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
9233     {
9234       // Accesses relative to a local dynamic sequence address,
9235       // no optimisation here.
9236       if (gsym != NULL)
9237         {
9238           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
9239           value = gsym->got_offset(GOT_TYPE_DTPREL);
9240         }
9241       else
9242         {
9243           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
9244           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
9245         }
9246       value -= target->got_section()->got_base_offset(object);
9247     }
9248   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9249            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
9250            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
9251            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
9252     {
9253       // First instruction of initial exec sequence.
9254       const bool final = gsym == NULL || gsym->final_value_is_known();
9255       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
9256       if (tls_type == tls::TLSOPT_NONE)
9257         {
9258           if (gsym != NULL)
9259             {
9260               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
9261               value = gsym->got_offset(GOT_TYPE_TPREL);
9262             }
9263           else
9264             {
9265               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
9266               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
9267             }
9268           value -= target->got_section()->got_base_offset(object);
9269         }
9270       else
9271         {
9272           gold_assert(tls_type == tls::TLSOPT_TO_LE);
9273           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9274               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
9275             {
9276               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9277               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9278               insn &= (1 << 26) - (1 << 21); // extract rt from ld
9279               if (size == 32)
9280                 insn |= addis_0_2;
9281               else
9282                 insn |= addis_0_13;
9283               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9284               r_type = elfcpp::R_POWERPC_TPREL16_HA;
9285               value = psymval->value(object, rela.get_r_addend());
9286             }
9287           else
9288             {
9289               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9290               Insn insn = nop;
9291               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9292               r_type = elfcpp::R_POWERPC_NONE;
9293             }
9294         }
9295     }
9296   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
9297            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
9298     {
9299       // Second instruction of a global dynamic sequence,
9300       // the __tls_get_addr call
9301       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
9302       const bool final = gsym == NULL || gsym->final_value_is_known();
9303       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
9304       if (tls_type != tls::TLSOPT_NONE)
9305         {
9306           if (tls_type == tls::TLSOPT_TO_IE)
9307             {
9308               Insn* iview = reinterpret_cast<Insn*>(view);
9309               Insn insn = add_3_3_13;
9310               if (size == 32)
9311                 insn = add_3_3_2;
9312               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9313               r_type = elfcpp::R_POWERPC_NONE;
9314             }
9315           else
9316             {
9317               Insn* iview = reinterpret_cast<Insn*>(view);
9318               Insn insn = addi_3_3;
9319               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9320               r_type = elfcpp::R_POWERPC_TPREL16_LO;
9321               view += d_offset;
9322               value = psymval->value(object, rela.get_r_addend());
9323             }
9324           this->skip_next_tls_get_addr_call();
9325         }
9326     }
9327   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
9328            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
9329     {
9330       // Second instruction of a local dynamic sequence,
9331       // the __tls_get_addr call
9332       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
9333       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
9334       if (tls_type == tls::TLSOPT_TO_LE)
9335         {
9336           Insn* iview = reinterpret_cast<Insn*>(view);
9337           Insn insn = addi_3_3;
9338           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9339           this->skip_next_tls_get_addr_call();
9340           r_type = elfcpp::R_POWERPC_TPREL16_LO;
9341           view += d_offset;
9342           value = dtp_offset;
9343         }
9344     }
9345   else if (r_type == elfcpp::R_POWERPC_TLS)
9346     {
9347       // Second instruction of an initial exec sequence
9348       const bool final = gsym == NULL || gsym->final_value_is_known();
9349       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
9350       if (tls_type == tls::TLSOPT_TO_LE)
9351         {
9352           Insn* iview = reinterpret_cast<Insn*>(view);
9353           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9354           unsigned int reg = size == 32 ? 2 : 13;
9355           insn = at_tls_transform(insn, reg);
9356           gold_assert(insn != 0);
9357           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9358           r_type = elfcpp::R_POWERPC_TPREL16_LO;
9359           view += d_offset;
9360           value = psymval->value(object, rela.get_r_addend());
9361         }
9362     }
9363   else if (!has_stub_value)
9364     {
9365       if (!has_plt_offset && r_type == elfcpp::R_POWERPC_PLTCALL)
9366         {
9367           // PLTCALL without plt entry => convert to direct call
9368           Insn* iview = reinterpret_cast<Insn*>(view);
9369           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9370           insn = (insn & 1) | b;
9371           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9372           if (size == 32)
9373             r_type = elfcpp::R_PPC_PLTREL24;
9374           else
9375             r_type = elfcpp::R_POWERPC_REL24;
9376         }
9377       Address addend = 0;
9378       if (!(size == 32
9379             && (r_type == elfcpp::R_PPC_PLTREL24
9380                 || r_type == elfcpp::R_POWERPC_PLT16_LO
9381                 || r_type == elfcpp::R_POWERPC_PLT16_HI
9382                 || r_type == elfcpp::R_POWERPC_PLT16_HA)))
9383         addend = rela.get_r_addend();
9384       value = psymval->value(object, addend);
9385       if (size == 64 && is_branch_reloc(r_type))
9386         {
9387           if (target->abiversion() >= 2)
9388             {
9389               if (gsym != NULL)
9390                 value += object->ppc64_local_entry_offset(gsym);
9391               else
9392                 value += object->ppc64_local_entry_offset(r_sym);
9393             }
9394           else
9395             {
9396               unsigned int dest_shndx;
9397               target->symval_for_branch(relinfo->symtab, gsym, object,
9398                                         &value, &dest_shndx);
9399             }
9400         }
9401       Address max_branch_offset = max_branch_delta(r_type);
9402       if (max_branch_offset != 0
9403           && value - address + max_branch_offset >= 2 * max_branch_offset)
9404         {
9405           Stub_table<size, big_endian>* stub_table
9406             = object->stub_table(relinfo->data_shndx);
9407           if (stub_table != NULL)
9408             {
9409               Address off = stub_table->find_long_branch_entry(object, value);
9410               if (off != invalid_address)
9411                 {
9412                   value = (stub_table->stub_address() + stub_table->plt_size()
9413                            + off);
9414                   has_stub_value = true;
9415                 }
9416             }
9417         }
9418     }
9419
9420   switch (r_type)
9421     {
9422     case elfcpp::R_PPC64_REL64:
9423     case elfcpp::R_POWERPC_REL32:
9424     case elfcpp::R_POWERPC_REL24:
9425     case elfcpp::R_PPC_PLTREL24:
9426     case elfcpp::R_PPC_LOCAL24PC:
9427     case elfcpp::R_POWERPC_REL16:
9428     case elfcpp::R_POWERPC_REL16_LO:
9429     case elfcpp::R_POWERPC_REL16_HI:
9430     case elfcpp::R_POWERPC_REL16_HA:
9431     case elfcpp::R_POWERPC_REL16DX_HA:
9432     case elfcpp::R_PPC64_REL16_HIGH:
9433     case elfcpp::R_PPC64_REL16_HIGHA:
9434     case elfcpp::R_PPC64_REL16_HIGHER:
9435     case elfcpp::R_PPC64_REL16_HIGHERA:
9436     case elfcpp::R_PPC64_REL16_HIGHEST:
9437     case elfcpp::R_PPC64_REL16_HIGHESTA:
9438     case elfcpp::R_POWERPC_REL14:
9439     case elfcpp::R_POWERPC_REL14_BRTAKEN:
9440     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9441       value -= address;
9442       break;
9443
9444     case elfcpp::R_PPC64_TOC16:
9445     case elfcpp::R_PPC64_TOC16_LO:
9446     case elfcpp::R_PPC64_TOC16_HI:
9447     case elfcpp::R_PPC64_TOC16_HA:
9448     case elfcpp::R_PPC64_TOC16_DS:
9449     case elfcpp::R_PPC64_TOC16_LO_DS:
9450       // Subtract the TOC base address.
9451       value -= (target->got_section()->output_section()->address()
9452                 + object->toc_base_offset());
9453       break;
9454
9455     case elfcpp::R_POWERPC_SECTOFF:
9456     case elfcpp::R_POWERPC_SECTOFF_LO:
9457     case elfcpp::R_POWERPC_SECTOFF_HI:
9458     case elfcpp::R_POWERPC_SECTOFF_HA:
9459     case elfcpp::R_PPC64_SECTOFF_DS:
9460     case elfcpp::R_PPC64_SECTOFF_LO_DS:
9461       if (os != NULL)
9462         value -= os->address();
9463       break;
9464
9465     case elfcpp::R_PPC64_TPREL16_DS:
9466     case elfcpp::R_PPC64_TPREL16_LO_DS:
9467     case elfcpp::R_PPC64_TPREL16_HIGH:
9468     case elfcpp::R_PPC64_TPREL16_HIGHA:
9469       if (size != 64)
9470         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
9471         break;
9472       // Fall through.
9473     case elfcpp::R_POWERPC_TPREL16:
9474     case elfcpp::R_POWERPC_TPREL16_LO:
9475     case elfcpp::R_POWERPC_TPREL16_HI:
9476     case elfcpp::R_POWERPC_TPREL16_HA:
9477     case elfcpp::R_POWERPC_TPREL:
9478     case elfcpp::R_PPC64_TPREL16_HIGHER:
9479     case elfcpp::R_PPC64_TPREL16_HIGHERA:
9480     case elfcpp::R_PPC64_TPREL16_HIGHEST:
9481     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
9482       // tls symbol values are relative to tls_segment()->vaddr()
9483       value -= tp_offset;
9484       break;
9485
9486     case elfcpp::R_PPC64_DTPREL16_DS:
9487     case elfcpp::R_PPC64_DTPREL16_LO_DS:
9488     case elfcpp::R_PPC64_DTPREL16_HIGHER:
9489     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
9490     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
9491     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
9492       if (size != 64)
9493         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
9494         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
9495         break;
9496       // Fall through.
9497     case elfcpp::R_POWERPC_DTPREL16:
9498     case elfcpp::R_POWERPC_DTPREL16_LO:
9499     case elfcpp::R_POWERPC_DTPREL16_HI:
9500     case elfcpp::R_POWERPC_DTPREL16_HA:
9501     case elfcpp::R_POWERPC_DTPREL:
9502     case elfcpp::R_PPC64_DTPREL16_HIGH:
9503     case elfcpp::R_PPC64_DTPREL16_HIGHA:
9504       // tls symbol values are relative to tls_segment()->vaddr()
9505       value -= dtp_offset;
9506       break;
9507
9508     case elfcpp::R_PPC64_ADDR64_LOCAL:
9509       if (gsym != NULL)
9510         value += object->ppc64_local_entry_offset(gsym);
9511       else
9512         value += object->ppc64_local_entry_offset(r_sym);
9513       break;
9514
9515     default:
9516       break;
9517     }
9518
9519   Insn branch_bit = 0;
9520   switch (r_type)
9521     {
9522     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9523     case elfcpp::R_POWERPC_REL14_BRTAKEN:
9524       branch_bit = 1 << 21;
9525       // Fall through.
9526     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9527     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9528       {
9529         Insn* iview = reinterpret_cast<Insn*>(view);
9530         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9531         insn &= ~(1 << 21);
9532         insn |= branch_bit;
9533         if (this->is_isa_v2)
9534           {
9535             // Set 'a' bit.  This is 0b00010 in BO field for branch
9536             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
9537             // for branch on CTR insns (BO == 1a00t or 1a01t).
9538             if ((insn & (0x14 << 21)) == (0x04 << 21))
9539               insn |= 0x02 << 21;
9540             else if ((insn & (0x14 << 21)) == (0x10 << 21))
9541               insn |= 0x08 << 21;
9542             else
9543               break;
9544           }
9545         else
9546           {
9547             // Invert 'y' bit if not the default.
9548             if (static_cast<Signed_address>(value) < 0)
9549               insn ^= 1 << 21;
9550           }
9551         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9552       }
9553       break;
9554
9555     case elfcpp::R_POWERPC_PLT16_HA:
9556       if (size == 32
9557           && !parameters->options().output_is_position_independent())
9558         {
9559           Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9560           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9561
9562           // Convert addis to lis.
9563           if ((insn & (0x3f << 26)) == 15u << 26
9564               && (insn & (0x1f << 16)) != 0)
9565             {
9566               insn &= ~(0x1f << 16);
9567               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9568             }
9569         }
9570       break;
9571
9572     default:
9573       break;
9574     }
9575
9576   if (size == 64)
9577     {
9578       switch (r_type)
9579         {
9580         default:
9581           break;
9582
9583           // Multi-instruction sequences that access the GOT/TOC can
9584           // be optimized, eg.
9585           //     addis ra,r2,x@got@ha; ld rb,x@got@l(ra);
9586           // to  addis ra,r2,x@toc@ha; addi rb,ra,x@toc@l;
9587           // and
9588           //     addis ra,r2,0; addi rb,ra,x@toc@l;
9589           // to  nop;           addi rb,r2,x@toc;
9590           // FIXME: the @got sequence shown above is not yet
9591           // optimized.  Note that gcc as of 2017-01-07 doesn't use
9592           // the ELF @got relocs except for TLS, instead using the
9593           // PowerOpen variant of a compiler managed GOT (called TOC).
9594           // The PowerOpen TOC sequence equivalent to the first
9595           // example is optimized.
9596         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9597         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9598         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9599         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9600         case elfcpp::R_POWERPC_GOT16_HA:
9601         case elfcpp::R_PPC64_TOC16_HA:
9602           if (parameters->options().toc_optimize())
9603             {
9604               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9605               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9606               if (r_type == elfcpp::R_PPC64_TOC16_HA
9607                   && object->make_toc_relative(target, &value))
9608                 {
9609                   gold_assert((insn & ((0x3f << 26) | 0x1f << 16))
9610                               == ((15u << 26) | (2 << 16)));
9611                 }
9612               if (((insn & ((0x3f << 26) | 0x1f << 16))
9613                    == ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
9614                   && value + 0x8000 < 0x10000)
9615                 {
9616                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
9617                   return true;
9618                 }
9619             }
9620           break;
9621
9622         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
9623         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
9624         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
9625         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9626         case elfcpp::R_POWERPC_GOT16_LO:
9627         case elfcpp::R_PPC64_GOT16_LO_DS:
9628         case elfcpp::R_PPC64_TOC16_LO:
9629         case elfcpp::R_PPC64_TOC16_LO_DS:
9630           if (parameters->options().toc_optimize())
9631             {
9632               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9633               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9634               bool changed = false;
9635               if (r_type == elfcpp::R_PPC64_TOC16_LO_DS
9636                   && object->make_toc_relative(target, &value))
9637                 {
9638                   gold_assert ((insn & (0x3f << 26)) == 58u << 26 /* ld */);
9639                   insn ^= (14u << 26) ^ (58u << 26);
9640                   r_type = elfcpp::R_PPC64_TOC16_LO;
9641                   changed = true;
9642                 }
9643               if (ok_lo_toc_insn(insn, r_type)
9644                   && value + 0x8000 < 0x10000)
9645                 {
9646                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
9647                     {
9648                       // Transform addic to addi when we change reg.
9649                       insn &= ~((0x3f << 26) | (0x1f << 16));
9650                       insn |= (14u << 26) | (2 << 16);
9651                     }
9652                   else
9653                     {
9654                       insn &= ~(0x1f << 16);
9655                       insn |= 2 << 16;
9656                     }
9657                   changed = true;
9658                 }
9659               if (changed)
9660                 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9661             }
9662           break;
9663
9664         case elfcpp::R_POWERPC_TPREL16_HA:
9665           if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
9666             {
9667               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9668               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9669               if ((insn & ((0x3f << 26) | 0x1f << 16))
9670                   != ((15u << 26) | ((size == 32 ? 2 : 13) << 16)))
9671                 ;
9672               else
9673                 {
9674                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
9675                   return true;
9676                 }
9677             }
9678           break;
9679
9680         case elfcpp::R_PPC64_TPREL16_LO_DS:
9681           if (size == 32)
9682             // R_PPC_TLSGD, R_PPC_TLSLD
9683             break;
9684           // Fall through.
9685         case elfcpp::R_POWERPC_TPREL16_LO:
9686           if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
9687             {
9688               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9689               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9690               insn &= ~(0x1f << 16);
9691               insn |= (size == 32 ? 2 : 13) << 16;
9692               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9693             }
9694           break;
9695
9696         case elfcpp::R_PPC64_ENTRY:
9697           value = (target->got_section()->output_section()->address()
9698                    + object->toc_base_offset());
9699           if (value + 0x80008000 <= 0xffffffff
9700               && !parameters->options().output_is_position_independent())
9701             {
9702               Insn* iview = reinterpret_cast<Insn*>(view);
9703               Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
9704               Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
9705
9706               if ((insn1 & ~0xfffc) == ld_2_12
9707                   && insn2 == add_2_2_12)
9708                 {
9709                   insn1 = lis_2 + ha(value);
9710                   elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
9711                   insn2 = addi_2_2 + l(value);
9712                   elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
9713                   return true;
9714                 }
9715             }
9716           else
9717             {
9718               value -= address;
9719               if (value + 0x80008000 <= 0xffffffff)
9720                 {
9721                   Insn* iview = reinterpret_cast<Insn*>(view);
9722                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
9723                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
9724
9725                   if ((insn1 & ~0xfffc) == ld_2_12
9726                       && insn2 == add_2_2_12)
9727                     {
9728                       insn1 = addis_2_12 + ha(value);
9729                       elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
9730                       insn2 = addi_2_2 + l(value);
9731                       elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
9732                       return true;
9733                     }
9734                 }
9735             }
9736           break;
9737
9738         case elfcpp::R_POWERPC_REL16_LO:
9739           // If we are generating a non-PIC executable, edit
9740           //    0:      addis 2,12,.TOC.-0b@ha
9741           //            addi 2,2,.TOC.-0b@l
9742           // used by ELFv2 global entry points to set up r2, to
9743           //            lis 2,.TOC.@ha
9744           //            addi 2,2,.TOC.@l
9745           // if .TOC. is in range.  */
9746           if (value + address - 4 + 0x80008000 <= 0xffffffff
9747               && relnum != 0
9748               && preloc != NULL
9749               && target->abiversion() >= 2
9750               && !parameters->options().output_is_position_independent()
9751               && rela.get_r_addend() == d_offset + 4
9752               && gsym != NULL
9753               && strcmp(gsym->name(), ".TOC.") == 0)
9754             {
9755               const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9756               Reltype prev_rela(preloc - reloc_size);
9757               if ((prev_rela.get_r_info()
9758                    == elfcpp::elf_r_info<size>(r_sym,
9759                                                elfcpp::R_POWERPC_REL16_HA))
9760                   && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
9761                   && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
9762                 {
9763                   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9764                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
9765                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
9766
9767                   if ((insn1 & 0xffff0000) == addis_2_12
9768                       && (insn2 & 0xffff0000) == addi_2_2)
9769                     {
9770                       insn1 = lis_2 + ha(value + address - 4);
9771                       elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
9772                       insn2 = addi_2_2 + l(value + address - 4);
9773                       elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
9774                       if (relinfo->rr)
9775                         {
9776                           relinfo->rr->set_strategy(relnum - 1,
9777                                                     Relocatable_relocs::RELOC_SPECIAL);
9778                           relinfo->rr->set_strategy(relnum,
9779                                                     Relocatable_relocs::RELOC_SPECIAL);
9780                         }
9781                       return true;
9782                     }
9783                 }
9784             }
9785           break;
9786         }
9787     }
9788
9789   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
9790   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
9791   switch (r_type)
9792     {
9793     case elfcpp::R_POWERPC_ADDR32:
9794     case elfcpp::R_POWERPC_UADDR32:
9795       if (size == 64)
9796         overflow = Reloc::CHECK_BITFIELD;
9797       break;
9798
9799     case elfcpp::R_POWERPC_REL32:
9800     case elfcpp::R_POWERPC_REL16DX_HA:
9801       if (size == 64)
9802         overflow = Reloc::CHECK_SIGNED;
9803       break;
9804
9805     case elfcpp::R_POWERPC_UADDR16:
9806       overflow = Reloc::CHECK_BITFIELD;
9807       break;
9808
9809     case elfcpp::R_POWERPC_ADDR16:
9810       // We really should have three separate relocations,
9811       // one for 16-bit data, one for insns with 16-bit signed fields,
9812       // and one for insns with 16-bit unsigned fields.
9813       overflow = Reloc::CHECK_BITFIELD;
9814       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
9815         overflow = Reloc::CHECK_LOW_INSN;
9816       break;
9817
9818     case elfcpp::R_POWERPC_ADDR16_HI:
9819     case elfcpp::R_POWERPC_ADDR16_HA:
9820     case elfcpp::R_POWERPC_GOT16_HI:
9821     case elfcpp::R_POWERPC_GOT16_HA:
9822     case elfcpp::R_POWERPC_PLT16_HI:
9823     case elfcpp::R_POWERPC_PLT16_HA:
9824     case elfcpp::R_POWERPC_SECTOFF_HI:
9825     case elfcpp::R_POWERPC_SECTOFF_HA:
9826     case elfcpp::R_PPC64_TOC16_HI:
9827     case elfcpp::R_PPC64_TOC16_HA:
9828     case elfcpp::R_PPC64_PLTGOT16_HI:
9829     case elfcpp::R_PPC64_PLTGOT16_HA:
9830     case elfcpp::R_POWERPC_TPREL16_HI:
9831     case elfcpp::R_POWERPC_TPREL16_HA:
9832     case elfcpp::R_POWERPC_DTPREL16_HI:
9833     case elfcpp::R_POWERPC_DTPREL16_HA:
9834     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
9835     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9836     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
9837     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9838     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
9839     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9840     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
9841     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9842     case elfcpp::R_POWERPC_REL16_HI:
9843     case elfcpp::R_POWERPC_REL16_HA:
9844       if (size != 32)
9845         overflow = Reloc::CHECK_HIGH_INSN;
9846       break;
9847
9848     case elfcpp::R_POWERPC_REL16:
9849     case elfcpp::R_PPC64_TOC16:
9850     case elfcpp::R_POWERPC_GOT16:
9851     case elfcpp::R_POWERPC_SECTOFF:
9852     case elfcpp::R_POWERPC_TPREL16:
9853     case elfcpp::R_POWERPC_DTPREL16:
9854     case elfcpp::R_POWERPC_GOT_TLSGD16:
9855     case elfcpp::R_POWERPC_GOT_TLSLD16:
9856     case elfcpp::R_POWERPC_GOT_TPREL16:
9857     case elfcpp::R_POWERPC_GOT_DTPREL16:
9858       overflow = Reloc::CHECK_LOW_INSN;
9859       break;
9860
9861     case elfcpp::R_POWERPC_ADDR24:
9862     case elfcpp::R_POWERPC_ADDR14:
9863     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9864     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9865     case elfcpp::R_PPC64_ADDR16_DS:
9866     case elfcpp::R_POWERPC_REL24:
9867     case elfcpp::R_PPC_PLTREL24:
9868     case elfcpp::R_PPC_LOCAL24PC:
9869     case elfcpp::R_PPC64_TPREL16_DS:
9870     case elfcpp::R_PPC64_DTPREL16_DS:
9871     case elfcpp::R_PPC64_TOC16_DS:
9872     case elfcpp::R_PPC64_GOT16_DS:
9873     case elfcpp::R_PPC64_SECTOFF_DS:
9874     case elfcpp::R_POWERPC_REL14:
9875     case elfcpp::R_POWERPC_REL14_BRTAKEN:
9876     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9877       overflow = Reloc::CHECK_SIGNED;
9878       break;
9879     }
9880
9881   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9882   Insn insn = 0;
9883
9884   if (overflow == Reloc::CHECK_LOW_INSN
9885       || overflow == Reloc::CHECK_HIGH_INSN)
9886     {
9887       insn = elfcpp::Swap<32, big_endian>::readval(iview);
9888
9889       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
9890         overflow = Reloc::CHECK_BITFIELD;
9891       else if (overflow == Reloc::CHECK_LOW_INSN
9892                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
9893                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
9894                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
9895                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
9896                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
9897                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
9898         overflow = Reloc::CHECK_UNSIGNED;
9899       else
9900         overflow = Reloc::CHECK_SIGNED;
9901     }
9902
9903   bool maybe_dq_reloc = false;
9904   typename Powerpc_relocate_functions<size, big_endian>::Status status
9905     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
9906   switch (r_type)
9907     {
9908     case elfcpp::R_POWERPC_NONE:
9909     case elfcpp::R_POWERPC_TLS:
9910     case elfcpp::R_POWERPC_GNU_VTINHERIT:
9911     case elfcpp::R_POWERPC_GNU_VTENTRY:
9912     case elfcpp::R_POWERPC_PLTSEQ:
9913     case elfcpp::R_POWERPC_PLTCALL:
9914       break;
9915
9916     case elfcpp::R_PPC64_ADDR64:
9917     case elfcpp::R_PPC64_REL64:
9918     case elfcpp::R_PPC64_TOC:
9919     case elfcpp::R_PPC64_ADDR64_LOCAL:
9920       Reloc::addr64(view, value);
9921       break;
9922
9923     case elfcpp::R_POWERPC_TPREL:
9924     case elfcpp::R_POWERPC_DTPREL:
9925       if (size == 64)
9926         Reloc::addr64(view, value);
9927       else
9928         status = Reloc::addr32(view, value, overflow);
9929       break;
9930
9931     case elfcpp::R_PPC64_UADDR64:
9932       Reloc::addr64_u(view, value);
9933       break;
9934
9935     case elfcpp::R_POWERPC_ADDR32:
9936       status = Reloc::addr32(view, value, overflow);
9937       break;
9938
9939     case elfcpp::R_POWERPC_REL32:
9940     case elfcpp::R_POWERPC_UADDR32:
9941       status = Reloc::addr32_u(view, value, overflow);
9942       break;
9943
9944     case elfcpp::R_POWERPC_ADDR24:
9945     case elfcpp::R_POWERPC_REL24:
9946     case elfcpp::R_PPC_PLTREL24:
9947     case elfcpp::R_PPC_LOCAL24PC:
9948       status = Reloc::addr24(view, value, overflow);
9949       break;
9950
9951     case elfcpp::R_POWERPC_GOT_DTPREL16:
9952     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9953     case elfcpp::R_POWERPC_GOT_TPREL16:
9954     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
9955       if (size == 64)
9956         {
9957           // On ppc64 these are all ds form
9958           maybe_dq_reloc = true;
9959           break;
9960         }
9961       // Fall through.
9962     case elfcpp::R_POWERPC_ADDR16:
9963     case elfcpp::R_POWERPC_REL16:
9964     case elfcpp::R_PPC64_TOC16:
9965     case elfcpp::R_POWERPC_GOT16:
9966     case elfcpp::R_POWERPC_SECTOFF:
9967     case elfcpp::R_POWERPC_TPREL16:
9968     case elfcpp::R_POWERPC_DTPREL16:
9969     case elfcpp::R_POWERPC_GOT_TLSGD16:
9970     case elfcpp::R_POWERPC_GOT_TLSLD16:
9971     case elfcpp::R_POWERPC_ADDR16_LO:
9972     case elfcpp::R_POWERPC_REL16_LO:
9973     case elfcpp::R_PPC64_TOC16_LO:
9974     case elfcpp::R_POWERPC_GOT16_LO:
9975     case elfcpp::R_POWERPC_PLT16_LO:
9976     case elfcpp::R_POWERPC_SECTOFF_LO:
9977     case elfcpp::R_POWERPC_TPREL16_LO:
9978     case elfcpp::R_POWERPC_DTPREL16_LO:
9979     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
9980     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
9981       if (size == 64)
9982         status = Reloc::addr16(view, value, overflow);
9983       else
9984         maybe_dq_reloc = true;
9985       break;
9986
9987     case elfcpp::R_POWERPC_UADDR16:
9988       status = Reloc::addr16_u(view, value, overflow);
9989       break;
9990
9991     case elfcpp::R_PPC64_ADDR16_HIGH:
9992     case elfcpp::R_PPC64_TPREL16_HIGH:
9993     case elfcpp::R_PPC64_DTPREL16_HIGH:
9994       if (size == 32)
9995         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
9996         goto unsupp;
9997       // Fall through.
9998     case elfcpp::R_POWERPC_ADDR16_HI:
9999     case elfcpp::R_POWERPC_REL16_HI:
10000     case elfcpp::R_PPC64_REL16_HIGH:
10001     case elfcpp::R_PPC64_TOC16_HI:
10002     case elfcpp::R_POWERPC_GOT16_HI:
10003     case elfcpp::R_POWERPC_PLT16_HI:
10004     case elfcpp::R_POWERPC_SECTOFF_HI:
10005     case elfcpp::R_POWERPC_TPREL16_HI:
10006     case elfcpp::R_POWERPC_DTPREL16_HI:
10007     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
10008     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
10009     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
10010     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
10011       Reloc::addr16_hi(view, value);
10012       break;
10013
10014     case elfcpp::R_PPC64_ADDR16_HIGHA:
10015     case elfcpp::R_PPC64_TPREL16_HIGHA:
10016     case elfcpp::R_PPC64_DTPREL16_HIGHA:
10017       if (size == 32)
10018         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
10019         goto unsupp;
10020       // Fall through.
10021     case elfcpp::R_POWERPC_ADDR16_HA:
10022     case elfcpp::R_POWERPC_REL16_HA:
10023     case elfcpp::R_PPC64_REL16_HIGHA:
10024     case elfcpp::R_PPC64_TOC16_HA:
10025     case elfcpp::R_POWERPC_GOT16_HA:
10026     case elfcpp::R_POWERPC_PLT16_HA:
10027     case elfcpp::R_POWERPC_SECTOFF_HA:
10028     case elfcpp::R_POWERPC_TPREL16_HA:
10029     case elfcpp::R_POWERPC_DTPREL16_HA:
10030     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
10031     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
10032     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
10033     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
10034       Reloc::addr16_ha(view, value);
10035       break;
10036
10037     case elfcpp::R_POWERPC_REL16DX_HA:
10038       status = Reloc::addr16dx_ha(view, value, overflow);
10039       break;
10040
10041     case elfcpp::R_PPC64_DTPREL16_HIGHER:
10042       if (size == 32)
10043         // R_PPC_EMB_NADDR16_LO
10044         goto unsupp;
10045       // Fall through.
10046     case elfcpp::R_PPC64_ADDR16_HIGHER:
10047     case elfcpp::R_PPC64_REL16_HIGHER:
10048     case elfcpp::R_PPC64_TPREL16_HIGHER:
10049       Reloc::addr16_hi2(view, value);
10050       break;
10051
10052     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
10053       if (size == 32)
10054         // R_PPC_EMB_NADDR16_HI
10055         goto unsupp;
10056       // Fall through.
10057     case elfcpp::R_PPC64_ADDR16_HIGHERA:
10058     case elfcpp::R_PPC64_REL16_HIGHERA:
10059     case elfcpp::R_PPC64_TPREL16_HIGHERA:
10060       Reloc::addr16_ha2(view, value);
10061       break;
10062
10063     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
10064       if (size == 32)
10065         // R_PPC_EMB_NADDR16_HA
10066         goto unsupp;
10067       // Fall through.
10068     case elfcpp::R_PPC64_ADDR16_HIGHEST:
10069     case elfcpp::R_PPC64_REL16_HIGHEST:
10070     case elfcpp::R_PPC64_TPREL16_HIGHEST:
10071       Reloc::addr16_hi3(view, value);
10072       break;
10073
10074     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
10075       if (size == 32)
10076         // R_PPC_EMB_SDAI16
10077         goto unsupp;
10078       // Fall through.
10079     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
10080     case elfcpp::R_PPC64_REL16_HIGHESTA:
10081     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
10082       Reloc::addr16_ha3(view, value);
10083       break;
10084
10085     case elfcpp::R_PPC64_DTPREL16_DS:
10086     case elfcpp::R_PPC64_DTPREL16_LO_DS:
10087       if (size == 32)
10088         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
10089         goto unsupp;
10090       // Fall through.
10091     case elfcpp::R_PPC64_TPREL16_DS:
10092     case elfcpp::R_PPC64_TPREL16_LO_DS:
10093       if (size == 32)
10094         // R_PPC_TLSGD, R_PPC_TLSLD
10095         break;
10096       // Fall through.
10097     case elfcpp::R_PPC64_ADDR16_DS:
10098     case elfcpp::R_PPC64_ADDR16_LO_DS:
10099     case elfcpp::R_PPC64_TOC16_DS:
10100     case elfcpp::R_PPC64_TOC16_LO_DS:
10101     case elfcpp::R_PPC64_GOT16_DS:
10102     case elfcpp::R_PPC64_GOT16_LO_DS:
10103     case elfcpp::R_PPC64_PLT16_LO_DS:
10104     case elfcpp::R_PPC64_SECTOFF_DS:
10105     case elfcpp::R_PPC64_SECTOFF_LO_DS:
10106       maybe_dq_reloc = true;
10107       break;
10108
10109     case elfcpp::R_POWERPC_ADDR14:
10110     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
10111     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
10112     case elfcpp::R_POWERPC_REL14:
10113     case elfcpp::R_POWERPC_REL14_BRTAKEN:
10114     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
10115       status = Reloc::addr14(view, value, overflow);
10116       break;
10117
10118     case elfcpp::R_POWERPC_COPY:
10119     case elfcpp::R_POWERPC_GLOB_DAT:
10120     case elfcpp::R_POWERPC_JMP_SLOT:
10121     case elfcpp::R_POWERPC_RELATIVE:
10122     case elfcpp::R_POWERPC_DTPMOD:
10123     case elfcpp::R_PPC64_JMP_IREL:
10124     case elfcpp::R_POWERPC_IRELATIVE:
10125       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
10126                              _("unexpected reloc %u in object file"),
10127                              r_type);
10128       break;
10129
10130     case elfcpp::R_PPC64_TOCSAVE:
10131       if (size == 32)
10132         // R_PPC_EMB_SDA21
10133         goto unsupp;
10134       else
10135         {
10136           Symbol_location loc;
10137           loc.object = relinfo->object;
10138           loc.shndx = relinfo->data_shndx;
10139           loc.offset = rela.get_r_offset();
10140           Tocsave_loc::const_iterator p = target->tocsave_loc().find(loc);
10141           if (p != target->tocsave_loc().end())
10142             {
10143               // If we've generated plt calls using this tocsave, then
10144               // the nop needs to be changed to save r2.
10145               Insn* iview = reinterpret_cast<Insn*>(view);
10146               if (elfcpp::Swap<32, big_endian>::readval(iview) == nop)
10147                 elfcpp::Swap<32, big_endian>::
10148                   writeval(iview, std_2_1 + target->stk_toc());
10149             }
10150         }
10151       break;
10152
10153     case elfcpp::R_PPC_EMB_SDA2I16:
10154     case elfcpp::R_PPC_EMB_SDA2REL:
10155       if (size == 32)
10156         goto unsupp;
10157       // R_PPC64_TLSGD, R_PPC64_TLSLD
10158       break;
10159
10160     case elfcpp::R_POWERPC_PLT32:
10161     case elfcpp::R_POWERPC_PLTREL32:
10162     case elfcpp::R_PPC_SDAREL16:
10163     case elfcpp::R_POWERPC_ADDR30:
10164     case elfcpp::R_PPC64_PLT64:
10165     case elfcpp::R_PPC64_PLTREL64:
10166     case elfcpp::R_PPC64_PLTGOT16:
10167     case elfcpp::R_PPC64_PLTGOT16_LO:
10168     case elfcpp::R_PPC64_PLTGOT16_HI:
10169     case elfcpp::R_PPC64_PLTGOT16_HA:
10170     case elfcpp::R_PPC64_PLTGOT16_DS:
10171     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
10172     case elfcpp::R_PPC_EMB_RELSDA:
10173     case elfcpp::R_PPC_TOC16:
10174     default:
10175     unsupp:
10176       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
10177                              _("unsupported reloc %u"),
10178                              r_type);
10179       break;
10180     }
10181
10182   if (maybe_dq_reloc)
10183     {
10184       if (insn == 0)
10185         insn = elfcpp::Swap<32, big_endian>::readval(iview);
10186
10187       if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
10188           || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
10189               && (insn & 3) == 1))
10190         status = Reloc::addr16_dq(view, value, overflow);
10191       else if (size == 64
10192                || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
10193                || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
10194                || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
10195                || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
10196         status = Reloc::addr16_ds(view, value, overflow);
10197       else
10198         status = Reloc::addr16(view, value, overflow);
10199     }
10200
10201   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
10202       && (has_stub_value
10203           || !(gsym != NULL
10204                && gsym->is_undefined()
10205                && is_branch_reloc(r_type))))
10206     {
10207       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
10208                              _("relocation overflow"));
10209       if (has_stub_value)
10210         gold_info(_("try relinking with a smaller --stub-group-size"));
10211     }
10212
10213   return true;
10214 }
10215
10216 // Relocate section data.
10217
10218 template<int size, bool big_endian>
10219 void
10220 Target_powerpc<size, big_endian>::relocate_section(
10221     const Relocate_info<size, big_endian>* relinfo,
10222     unsigned int sh_type,
10223     const unsigned char* prelocs,
10224     size_t reloc_count,
10225     Output_section* output_section,
10226     bool needs_special_offset_handling,
10227     unsigned char* view,
10228     Address address,
10229     section_size_type view_size,
10230     const Reloc_symbol_changes* reloc_symbol_changes)
10231 {
10232   typedef Target_powerpc<size, big_endian> Powerpc;
10233   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
10234   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
10235     Powerpc_comdat_behavior;
10236   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10237       Classify_reloc;
10238
10239   gold_assert(sh_type == elfcpp::SHT_RELA);
10240
10241   gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
10242                          Powerpc_comdat_behavior, Classify_reloc>(
10243     relinfo,
10244     this,
10245     prelocs,
10246     reloc_count,
10247     output_section,
10248     needs_special_offset_handling,
10249     view,
10250     address,
10251     view_size,
10252     reloc_symbol_changes);
10253 }
10254
10255 template<int size, bool big_endian>
10256 class Powerpc_scan_relocatable_reloc
10257 {
10258 public:
10259   typedef typename elfcpp::Rela<size, big_endian> Reltype;
10260   static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
10261   static const int sh_type = elfcpp::SHT_RELA;
10262
10263   // Return the symbol referred to by the relocation.
10264   static inline unsigned int
10265   get_r_sym(const Reltype* reloc)
10266   { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
10267
10268   // Return the type of the relocation.
10269   static inline unsigned int
10270   get_r_type(const Reltype* reloc)
10271   { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
10272
10273   // Return the strategy to use for a local symbol which is not a
10274   // section symbol, given the relocation type.
10275   inline Relocatable_relocs::Reloc_strategy
10276   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
10277   {
10278     if (r_type == 0 && r_sym == 0)
10279       return Relocatable_relocs::RELOC_DISCARD;
10280     return Relocatable_relocs::RELOC_COPY;
10281   }
10282
10283   // Return the strategy to use for a local symbol which is a section
10284   // symbol, given the relocation type.
10285   inline Relocatable_relocs::Reloc_strategy
10286   local_section_strategy(unsigned int, Relobj*)
10287   {
10288     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
10289   }
10290
10291   // Return the strategy to use for a global symbol, given the
10292   // relocation type, the object, and the symbol index.
10293   inline Relocatable_relocs::Reloc_strategy
10294   global_strategy(unsigned int r_type, Relobj*, unsigned int)
10295   {
10296     if (size == 32
10297         && (r_type == elfcpp::R_PPC_PLTREL24
10298             || r_type == elfcpp::R_POWERPC_PLT16_LO
10299             || r_type == elfcpp::R_POWERPC_PLT16_HI
10300             || r_type == elfcpp::R_POWERPC_PLT16_HA))
10301       return Relocatable_relocs::RELOC_SPECIAL;
10302     return Relocatable_relocs::RELOC_COPY;
10303   }
10304 };
10305
10306 // Scan the relocs during a relocatable link.
10307
10308 template<int size, bool big_endian>
10309 void
10310 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
10311     Symbol_table* symtab,
10312     Layout* layout,
10313     Sized_relobj_file<size, big_endian>* object,
10314     unsigned int data_shndx,
10315     unsigned int sh_type,
10316     const unsigned char* prelocs,
10317     size_t reloc_count,
10318     Output_section* output_section,
10319     bool needs_special_offset_handling,
10320     size_t local_symbol_count,
10321     const unsigned char* plocal_symbols,
10322     Relocatable_relocs* rr)
10323 {
10324   typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
10325
10326   gold_assert(sh_type == elfcpp::SHT_RELA);
10327
10328   gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
10329     symtab,
10330     layout,
10331     object,
10332     data_shndx,
10333     prelocs,
10334     reloc_count,
10335     output_section,
10336     needs_special_offset_handling,
10337     local_symbol_count,
10338     plocal_symbols,
10339     rr);
10340 }
10341
10342 // Scan the relocs for --emit-relocs.
10343
10344 template<int size, bool big_endian>
10345 void
10346 Target_powerpc<size, big_endian>::emit_relocs_scan(
10347     Symbol_table* symtab,
10348     Layout* layout,
10349     Sized_relobj_file<size, big_endian>* object,
10350     unsigned int data_shndx,
10351     unsigned int sh_type,
10352     const unsigned char* prelocs,
10353     size_t reloc_count,
10354     Output_section* output_section,
10355     bool needs_special_offset_handling,
10356     size_t local_symbol_count,
10357     const unsigned char* plocal_syms,
10358     Relocatable_relocs* rr)
10359 {
10360   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10361       Classify_reloc;
10362   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10363       Emit_relocs_strategy;
10364
10365   gold_assert(sh_type == elfcpp::SHT_RELA);
10366
10367   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10368     symtab,
10369     layout,
10370     object,
10371     data_shndx,
10372     prelocs,
10373     reloc_count,
10374     output_section,
10375     needs_special_offset_handling,
10376     local_symbol_count,
10377     plocal_syms,
10378     rr);
10379 }
10380
10381 // Emit relocations for a section.
10382 // This is a modified version of the function by the same name in
10383 // target-reloc.h.  Using relocate_special_relocatable for
10384 // R_PPC_PLTREL24 would require duplication of the entire body of the
10385 // loop, so we may as well duplicate the whole thing.
10386
10387 template<int size, bool big_endian>
10388 void
10389 Target_powerpc<size, big_endian>::relocate_relocs(
10390     const Relocate_info<size, big_endian>* relinfo,
10391     unsigned int sh_type,
10392     const unsigned char* prelocs,
10393     size_t reloc_count,
10394     Output_section* output_section,
10395     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10396     unsigned char*,
10397     Address view_address,
10398     section_size_type,
10399     unsigned char* reloc_view,
10400     section_size_type reloc_view_size)
10401 {
10402   gold_assert(sh_type == elfcpp::SHT_RELA);
10403
10404   typedef typename elfcpp::Rela<size, big_endian> Reltype;
10405   typedef typename elfcpp::Rela_write<size, big_endian> Reltype_write;
10406   const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
10407   // Offset from start of insn to d-field reloc.
10408   const int d_offset = big_endian ? 2 : 0;
10409
10410   Powerpc_relobj<size, big_endian>* const object
10411     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
10412   const unsigned int local_count = object->local_symbol_count();
10413   unsigned int got2_shndx = object->got2_shndx();
10414   Address got2_addend = 0;
10415   if (got2_shndx != 0)
10416     {
10417       got2_addend = object->get_output_section_offset(got2_shndx);
10418       gold_assert(got2_addend != invalid_address);
10419     }
10420
10421   const bool relocatable = parameters->options().relocatable();
10422
10423   unsigned char* pwrite = reloc_view;
10424   bool zap_next = false;
10425   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10426     {
10427       Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
10428       if (strategy == Relocatable_relocs::RELOC_DISCARD)
10429         continue;
10430
10431       Reltype reloc(prelocs);
10432       Reltype_write reloc_write(pwrite);
10433
10434       Address offset = reloc.get_r_offset();
10435       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
10436       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10437       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10438       const unsigned int orig_r_sym = r_sym;
10439       typename elfcpp::Elf_types<size>::Elf_Swxword addend
10440         = reloc.get_r_addend();
10441       const Symbol* gsym = NULL;
10442
10443       if (zap_next)
10444         {
10445           // We could arrange to discard these and other relocs for
10446           // tls optimised sequences in the strategy methods, but for
10447           // now do as BFD ld does.
10448           r_type = elfcpp::R_POWERPC_NONE;
10449           zap_next = false;
10450         }
10451
10452       // Get the new symbol index.
10453       Output_section* os = NULL;
10454       if (r_sym < local_count)
10455         {
10456           switch (strategy)
10457             {
10458             case Relocatable_relocs::RELOC_COPY:
10459             case Relocatable_relocs::RELOC_SPECIAL:
10460               if (r_sym != 0)
10461                 {
10462                   r_sym = object->symtab_index(r_sym);
10463                   gold_assert(r_sym != -1U);
10464                 }
10465               break;
10466
10467             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
10468               {
10469                 // We are adjusting a section symbol.  We need to find
10470                 // the symbol table index of the section symbol for
10471                 // the output section corresponding to input section
10472                 // in which this symbol is defined.
10473                 gold_assert(r_sym < local_count);
10474                 bool is_ordinary;
10475                 unsigned int shndx =
10476                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
10477                 gold_assert(is_ordinary);
10478                 os = object->output_section(shndx);
10479                 gold_assert(os != NULL);
10480                 gold_assert(os->needs_symtab_index());
10481                 r_sym = os->symtab_index();
10482               }
10483               break;
10484
10485             default:
10486               gold_unreachable();
10487             }
10488         }
10489       else
10490         {
10491           gsym = object->global_symbol(r_sym);
10492           gold_assert(gsym != NULL);
10493           if (gsym->is_forwarder())
10494             gsym = relinfo->symtab->resolve_forwards(gsym);
10495
10496           gold_assert(gsym->has_symtab_index());
10497           r_sym = gsym->symtab_index();
10498         }
10499
10500       // Get the new offset--the location in the output section where
10501       // this relocation should be applied.
10502       if (static_cast<Address>(offset_in_output_section) != invalid_address)
10503         offset += offset_in_output_section;
10504       else
10505         {
10506           section_offset_type sot_offset =
10507             convert_types<section_offset_type, Address>(offset);
10508           section_offset_type new_sot_offset =
10509             output_section->output_offset(object, relinfo->data_shndx,
10510                                           sot_offset);
10511           gold_assert(new_sot_offset != -1);
10512           offset = new_sot_offset;
10513         }
10514
10515       // In an object file, r_offset is an offset within the section.
10516       // In an executable or dynamic object, generated by
10517       // --emit-relocs, r_offset is an absolute address.
10518       if (!relocatable)
10519         {
10520           offset += view_address;
10521           if (static_cast<Address>(offset_in_output_section) != invalid_address)
10522             offset -= offset_in_output_section;
10523         }
10524
10525       // Handle the reloc addend based on the strategy.
10526       if (strategy == Relocatable_relocs::RELOC_COPY)
10527         ;
10528       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
10529         {
10530           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
10531           addend = psymval->value(object, addend);
10532           // In a relocatable link, the symbol value is relative to
10533           // the start of the output section. For a non-relocatable
10534           // link, we need to adjust the addend.
10535           if (!relocatable)
10536             {
10537               gold_assert(os != NULL);
10538               addend -= os->address();
10539             }
10540         }
10541       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
10542         {
10543           if (size == 32)
10544             {
10545               if (addend >= 32768)
10546                 addend += got2_addend;
10547             }
10548           else if (r_type == elfcpp::R_POWERPC_REL16_HA)
10549             {
10550               r_type = elfcpp::R_POWERPC_ADDR16_HA;
10551               addend -= d_offset;
10552             }
10553           else if (r_type == elfcpp::R_POWERPC_REL16_LO)
10554             {
10555               r_type = elfcpp::R_POWERPC_ADDR16_LO;
10556               addend -= d_offset + 4;
10557             }
10558         }
10559       else
10560         gold_unreachable();
10561
10562       if (!relocatable)
10563         {
10564           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
10565               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
10566               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
10567               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
10568             {
10569               // First instruction of a global dynamic sequence,
10570               // arg setup insn.
10571               const bool final = gsym == NULL || gsym->final_value_is_known();
10572               switch (this->optimize_tls_gd(final))
10573                 {
10574                 case tls::TLSOPT_TO_IE:
10575                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
10576                              - elfcpp::R_POWERPC_GOT_TLSGD16);
10577                   break;
10578                 case tls::TLSOPT_TO_LE:
10579                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
10580                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
10581                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
10582                   else
10583                     {
10584                       r_type = elfcpp::R_POWERPC_NONE;
10585                       offset -= d_offset;
10586                     }
10587                   break;
10588                 default:
10589                   break;
10590                 }
10591             }
10592           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
10593                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
10594                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
10595                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
10596             {
10597               // First instruction of a local dynamic sequence,
10598               // arg setup insn.
10599               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
10600                 {
10601                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
10602                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
10603                     {
10604                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
10605                       const Output_section* os = relinfo->layout->tls_segment()
10606                         ->first_section();
10607                       gold_assert(os != NULL);
10608                       gold_assert(os->needs_symtab_index());
10609                       r_sym = os->symtab_index();
10610                       addend = dtp_offset;
10611                     }
10612                   else
10613                     {
10614                       r_type = elfcpp::R_POWERPC_NONE;
10615                       offset -= d_offset;
10616                     }
10617                 }
10618             }
10619           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
10620                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
10621                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
10622                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
10623             {
10624               // First instruction of initial exec sequence.
10625               const bool final = gsym == NULL || gsym->final_value_is_known();
10626               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
10627                 {
10628                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
10629                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
10630                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
10631                   else
10632                     {
10633                       r_type = elfcpp::R_POWERPC_NONE;
10634                       offset -= d_offset;
10635                     }
10636                 }
10637             }
10638           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
10639                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
10640             {
10641               // Second instruction of a global dynamic sequence,
10642               // the __tls_get_addr call
10643               const bool final = gsym == NULL || gsym->final_value_is_known();
10644               switch (this->optimize_tls_gd(final))
10645                 {
10646                 case tls::TLSOPT_TO_IE:
10647                   r_type = elfcpp::R_POWERPC_NONE;
10648                   zap_next = true;
10649                   break;
10650                 case tls::TLSOPT_TO_LE:
10651                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
10652                   offset += d_offset;
10653                   zap_next = true;
10654                   break;
10655                 default:
10656                   break;
10657                 }
10658             }
10659           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
10660                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
10661             {
10662               // Second instruction of a local dynamic sequence,
10663               // the __tls_get_addr call
10664               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
10665                 {
10666                   const Output_section* os = relinfo->layout->tls_segment()
10667                     ->first_section();
10668                   gold_assert(os != NULL);
10669                   gold_assert(os->needs_symtab_index());
10670                   r_sym = os->symtab_index();
10671                   addend = dtp_offset;
10672                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
10673                   offset += d_offset;
10674                   zap_next = true;
10675                 }
10676             }
10677           else if (r_type == elfcpp::R_POWERPC_TLS)
10678             {
10679               // Second instruction of an initial exec sequence
10680               const bool final = gsym == NULL || gsym->final_value_is_known();
10681               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
10682                 {
10683                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
10684                   offset += d_offset;
10685                 }
10686             }
10687         }
10688
10689       reloc_write.put_r_offset(offset);
10690       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
10691       reloc_write.put_r_addend(addend);
10692
10693       pwrite += reloc_size;
10694     }
10695
10696   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
10697               == reloc_view_size);
10698 }
10699
10700 // Return the value to use for a dynamic symbol which requires special
10701 // treatment.  This is how we support equality comparisons of function
10702 // pointers across shared library boundaries, as described in the
10703 // processor specific ABI supplement.
10704
10705 template<int size, bool big_endian>
10706 uint64_t
10707 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
10708 {
10709   if (size == 32)
10710     {
10711       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10712       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10713            p != this->stub_tables_.end();
10714            ++p)
10715         {
10716           const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10717             = (*p)->find_plt_call_entry(gsym);
10718           if (ent != NULL)
10719             return (*p)->stub_address() + ent->off_;
10720         }
10721     }
10722   else if (this->abiversion() >= 2)
10723     {
10724       Address off = this->glink_section()->find_global_entry(gsym);
10725       if (off != invalid_address)
10726         return this->glink_section()->global_entry_address() + off;
10727     }
10728   gold_unreachable();
10729 }
10730
10731 // Return the PLT address to use for a local symbol.
10732 template<int size, bool big_endian>
10733 uint64_t
10734 Target_powerpc<size, big_endian>::do_plt_address_for_local(
10735     const Relobj* object,
10736     unsigned int symndx) const
10737 {
10738   if (size == 32)
10739     {
10740       const Sized_relobj<size, big_endian>* relobj
10741         = static_cast<const Sized_relobj<size, big_endian>*>(object);
10742       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10743            p != this->stub_tables_.end();
10744            ++p)
10745         {
10746           const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10747             = (*p)->find_plt_call_entry(relobj->sized_relobj(), symndx);
10748           if (ent != NULL)
10749             return (*p)->stub_address() + ent->off_;
10750         }
10751     }
10752   gold_unreachable();
10753 }
10754
10755 // Return the PLT address to use for a global symbol.
10756 template<int size, bool big_endian>
10757 uint64_t
10758 Target_powerpc<size, big_endian>::do_plt_address_for_global(
10759     const Symbol* gsym) const
10760 {
10761   if (size == 32)
10762     {
10763       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10764            p != this->stub_tables_.end();
10765            ++p)
10766         {
10767           const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10768             = (*p)->find_plt_call_entry(gsym);
10769           if (ent != NULL)
10770             return (*p)->stub_address() + ent->off_;
10771         }
10772     }
10773   else if (this->abiversion() >= 2)
10774     {
10775       Address off = this->glink_section()->find_global_entry(gsym);
10776       if (off != invalid_address)
10777         return this->glink_section()->global_entry_address() + off;
10778     }
10779   gold_unreachable();
10780 }
10781
10782 // Return the offset to use for the GOT_INDX'th got entry which is
10783 // for a local tls symbol specified by OBJECT, SYMNDX.
10784 template<int size, bool big_endian>
10785 int64_t
10786 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
10787     const Relobj* object,
10788     unsigned int symndx,
10789     unsigned int got_indx) const
10790 {
10791   const Powerpc_relobj<size, big_endian>* ppc_object
10792     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
10793   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
10794     {
10795       for (Got_type got_type = GOT_TYPE_TLSGD;
10796            got_type <= GOT_TYPE_TPREL;
10797            got_type = Got_type(got_type + 1))
10798         if (ppc_object->local_has_got_offset(symndx, got_type))
10799           {
10800             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
10801             if (got_type == GOT_TYPE_TLSGD)
10802               off += size / 8;
10803             if (off == got_indx * (size / 8))
10804               {
10805                 if (got_type == GOT_TYPE_TPREL)
10806                   return -tp_offset;
10807                 else
10808                   return -dtp_offset;
10809               }
10810           }
10811     }
10812   gold_unreachable();
10813 }
10814
10815 // Return the offset to use for the GOT_INDX'th got entry which is
10816 // for global tls symbol GSYM.
10817 template<int size, bool big_endian>
10818 int64_t
10819 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
10820     Symbol* gsym,
10821     unsigned int got_indx) const
10822 {
10823   if (gsym->type() == elfcpp::STT_TLS)
10824     {
10825       for (Got_type got_type = GOT_TYPE_TLSGD;
10826            got_type <= GOT_TYPE_TPREL;
10827            got_type = Got_type(got_type + 1))
10828         if (gsym->has_got_offset(got_type))
10829           {
10830             unsigned int off = gsym->got_offset(got_type);
10831             if (got_type == GOT_TYPE_TLSGD)
10832               off += size / 8;
10833             if (off == got_indx * (size / 8))
10834               {
10835                 if (got_type == GOT_TYPE_TPREL)
10836                   return -tp_offset;
10837                 else
10838                   return -dtp_offset;
10839               }
10840           }
10841     }
10842   gold_unreachable();
10843 }
10844
10845 // The selector for powerpc object files.
10846
10847 template<int size, bool big_endian>
10848 class Target_selector_powerpc : public Target_selector
10849 {
10850 public:
10851   Target_selector_powerpc()
10852     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
10853                       size, big_endian,
10854                       (size == 64
10855                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
10856                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
10857                       (size == 64
10858                        ? (big_endian ? "elf64ppc" : "elf64lppc")
10859                        : (big_endian ? "elf32ppc" : "elf32lppc")))
10860   { }
10861
10862   virtual Target*
10863   do_instantiate_target()
10864   { return new Target_powerpc<size, big_endian>(); }
10865 };
10866
10867 Target_selector_powerpc<32, true> target_selector_ppc32;
10868 Target_selector_powerpc<32, false> target_selector_ppc32le;
10869 Target_selector_powerpc<64, true> target_selector_ppc64;
10870 Target_selector_powerpc<64, false> target_selector_ppc64le;
10871
10872 // Instantiate these constants for -O0
10873 template<int size, bool big_endian>
10874 const typename Output_data_glink<size, big_endian>::Address
10875   Output_data_glink<size, big_endian>::invalid_address;
10876 template<int size, bool big_endian>
10877 const typename Stub_table<size, big_endian>::Address
10878   Stub_table<size, big_endian>::invalid_address;
10879 template<int size, bool big_endian>
10880 const typename Target_powerpc<size, big_endian>::Address
10881   Target_powerpc<size, big_endian>::invalid_address;
10882
10883 } // End anonymous namespace.