powerpc gold, work around pr17670
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Target_powerpc;
67
68 struct Stub_table_owner
69 {
70   Output_section* output_section;
71   const Output_section::Input_section* owner;
72 };
73
74 inline bool
75 is_branch_reloc(unsigned int r_type);
76
77 template<int size, bool big_endian>
78 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
79 {
80 public:
81   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
82   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
83   typedef Unordered_map<Address, Section_refs> Access_from;
84
85   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
86                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
87     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
88       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
89       opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
90       e_flags_(ehdr.get_e_flags()), st_other_()
91   {
92     this->set_abiversion(0);
93   }
94
95   ~Powerpc_relobj()
96   { }
97
98   // Read the symbols then set up st_other vector.
99   void
100   do_read_symbols(Read_symbols_data*);
101
102   // The .got2 section shndx.
103   unsigned int
104   got2_shndx() const
105   {
106     if (size == 32)
107       return this->special_;
108     else
109       return 0;
110   }
111
112   // The .opd section shndx.
113   unsigned int
114   opd_shndx() const
115   {
116     if (size == 32)
117       return 0;
118     else
119       return this->special_;
120   }
121
122   // Init OPD entry arrays.
123   void
124   init_opd(size_t opd_size)
125   {
126     size_t count = this->opd_ent_ndx(opd_size);
127     this->opd_ent_.resize(count);
128   }
129
130   // Return section and offset of function entry for .opd + R_OFF.
131   unsigned int
132   get_opd_ent(Address r_off, Address* value = NULL) const
133   {
134     size_t ndx = this->opd_ent_ndx(r_off);
135     gold_assert(ndx < this->opd_ent_.size());
136     gold_assert(this->opd_ent_[ndx].shndx != 0);
137     if (value != NULL)
138       *value = this->opd_ent_[ndx].off;
139     return this->opd_ent_[ndx].shndx;
140   }
141
142   // Set section and offset of function entry for .opd + R_OFF.
143   void
144   set_opd_ent(Address r_off, unsigned int shndx, Address value)
145   {
146     size_t ndx = this->opd_ent_ndx(r_off);
147     gold_assert(ndx < this->opd_ent_.size());
148     this->opd_ent_[ndx].shndx = shndx;
149     this->opd_ent_[ndx].off = value;
150   }
151
152   // Return discard flag for .opd + R_OFF.
153   bool
154   get_opd_discard(Address r_off) const
155   {
156     size_t ndx = this->opd_ent_ndx(r_off);
157     gold_assert(ndx < this->opd_ent_.size());
158     return this->opd_ent_[ndx].discard;
159   }
160
161   // Set discard flag for .opd + R_OFF.
162   void
163   set_opd_discard(Address r_off)
164   {
165     size_t ndx = this->opd_ent_ndx(r_off);
166     gold_assert(ndx < this->opd_ent_.size());
167     this->opd_ent_[ndx].discard = true;
168   }
169
170   bool
171   opd_valid() const
172   { return this->opd_valid_; }
173
174   void
175   set_opd_valid()
176   { this->opd_valid_ = true; }
177
178   // Examine .rela.opd to build info about function entry points.
179   void
180   scan_opd_relocs(size_t reloc_count,
181                   const unsigned char* prelocs,
182                   const unsigned char* plocal_syms);
183
184   // Perform the Sized_relobj_file method, then set up opd info from
185   // .opd relocs.
186   void
187   do_read_relocs(Read_relocs_data*);
188
189   bool
190   do_find_special_sections(Read_symbols_data* sd);
191
192   // Adjust this local symbol value.  Return false if the symbol
193   // should be discarded from the output file.
194   bool
195   do_adjust_local_symbol(Symbol_value<size>* lv) const
196   {
197     if (size == 64 && this->opd_shndx() != 0)
198       {
199         bool is_ordinary;
200         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
201           return true;
202         if (this->get_opd_discard(lv->input_value()))
203           return false;
204       }
205     return true;
206   }
207
208   Access_from*
209   access_from_map()
210   { return &this->access_from_map_; }
211
212   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
213   // section at DST_OFF.
214   void
215   add_reference(Object* src_obj,
216                 unsigned int src_indx,
217                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218   {
219     Section_id src_id(src_obj, src_indx);
220     this->access_from_map_[dst_off].insert(src_id);
221   }
222
223   // Add a reference to the code section specified by the .opd entry
224   // at DST_OFF
225   void
226   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
227   {
228     size_t ndx = this->opd_ent_ndx(dst_off);
229     if (ndx >= this->opd_ent_.size())
230       this->opd_ent_.resize(ndx + 1);
231     this->opd_ent_[ndx].gc_mark = true;
232   }
233
234   void
235   process_gc_mark(Symbol_table* symtab)
236   {
237     for (size_t i = 0; i < this->opd_ent_.size(); i++)
238       if (this->opd_ent_[i].gc_mark)
239         {
240           unsigned int shndx = this->opd_ent_[i].shndx;
241           symtab->gc()->worklist().push(Section_id(this, shndx));
242         }
243   }
244
245   // Return offset in output GOT section that this object will use
246   // as a TOC pointer.  Won't be just a constant with multi-toc support.
247   Address
248   toc_base_offset() const
249   { return 0x8000; }
250
251   void
252   set_has_small_toc_reloc()
253   { has_small_toc_reloc_ = true; }
254
255   bool
256   has_small_toc_reloc() const
257   { return has_small_toc_reloc_; }
258
259   void
260   set_has_14bit_branch(unsigned int shndx)
261   {
262     if (shndx >= this->has14_.size())
263       this->has14_.resize(shndx + 1);
264     this->has14_[shndx] = true;
265   }
266
267   bool
268   has_14bit_branch(unsigned int shndx) const
269   { return shndx < this->has14_.size() && this->has14_[shndx];  }
270
271   void
272   set_stub_table(unsigned int shndx, unsigned int stub_index)
273   {
274     if (shndx >= this->stub_table_index_.size())
275       this->stub_table_index_.resize(shndx + 1);
276     this->stub_table_index_[shndx] = stub_index;
277   }
278
279   Stub_table<size, big_endian>*
280   stub_table(unsigned int shndx)
281   {
282     if (shndx < this->stub_table_index_.size())
283       {
284         Target_powerpc<size, big_endian>* target
285           = static_cast<Target_powerpc<size, big_endian>*>(
286               parameters->sized_target<size, big_endian>());
287         unsigned int indx = this->stub_table_index_[shndx];
288         gold_assert(indx < target->stub_tables().size());
289         return target->stub_tables()[indx];
290       }
291     return NULL;
292   }
293
294   void
295   clear_stub_table()
296   {
297     this->stub_table_index_.clear();
298   }
299
300   int
301   abiversion() const
302   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
303
304   // Set ABI version for input and output
305   void
306   set_abiversion(int ver);
307
308   unsigned int
309   ppc64_local_entry_offset(const Symbol* sym) const
310   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
311
312   unsigned int
313   ppc64_local_entry_offset(unsigned int symndx) const
314   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
315
316 private:
317   struct Opd_ent
318   {
319     unsigned int shndx;
320     bool discard : 1;
321     bool gc_mark : 1;
322     Address off;
323   };
324
325   // Return index into opd_ent_ array for .opd entry at OFF.
326   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
327   // apart when the language doesn't use the last 8-byte word, the
328   // environment pointer.  Thus dividing the entry section offset by
329   // 16 will give an index into opd_ent_ that works for either layout
330   // of .opd.  (It leaves some elements of the vector unused when .opd
331   // entries are spaced 24 bytes apart, but we don't know the spacing
332   // until relocations are processed, and in any case it is possible
333   // for an object to have some entries spaced 16 bytes apart and
334   // others 24 bytes apart.)
335   size_t
336   opd_ent_ndx(size_t off) const
337   { return off >> 4;}
338
339   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
340   unsigned int special_;
341
342   // For 64-bit, whether this object uses small model relocs to access
343   // the toc.
344   bool has_small_toc_reloc_;
345
346   // Set at the start of gc_process_relocs, when we know opd_ent_
347   // vector is valid.  The flag could be made atomic and set in
348   // do_read_relocs with memory_order_release and then tested with
349   // memory_order_acquire, potentially resulting in fewer entries in
350   // access_from_map_.
351   bool opd_valid_;
352
353   // The first 8-byte word of an OPD entry gives the address of the
354   // entry point of the function.  Relocatable object files have a
355   // relocation on this word.  The following vector records the
356   // section and offset specified by these relocations.
357   std::vector<Opd_ent> opd_ent_;
358
359   // References made to this object's .opd section when running
360   // gc_process_relocs for another object, before the opd_ent_ vector
361   // is valid for this object.
362   Access_from access_from_map_;
363
364   // Whether input section has a 14-bit branch reloc.
365   std::vector<bool> has14_;
366
367   // The stub table to use for a given input section.
368   std::vector<unsigned int> stub_table_index_;
369
370   // Header e_flags
371   elfcpp::Elf_Word e_flags_;
372
373   // ELF st_other field for local symbols.
374   std::vector<unsigned char> st_other_;
375 };
376
377 template<int size, bool big_endian>
378 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
379 {
380 public:
381   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
382
383   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
384                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
385     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
386       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
387   {
388     this->set_abiversion(0);
389   }
390
391   ~Powerpc_dynobj()
392   { }
393
394   // Call Sized_dynobj::do_read_symbols to read the symbols then
395   // read .opd from a dynamic object, filling in opd_ent_ vector,
396   void
397   do_read_symbols(Read_symbols_data*);
398
399   // The .opd section shndx.
400   unsigned int
401   opd_shndx() const
402   {
403     return this->opd_shndx_;
404   }
405
406   // The .opd section address.
407   Address
408   opd_address() const
409   {
410     return this->opd_address_;
411   }
412
413   // Init OPD entry arrays.
414   void
415   init_opd(size_t opd_size)
416   {
417     size_t count = this->opd_ent_ndx(opd_size);
418     this->opd_ent_.resize(count);
419   }
420
421   // Return section and offset of function entry for .opd + R_OFF.
422   unsigned int
423   get_opd_ent(Address r_off, Address* value = NULL) const
424   {
425     size_t ndx = this->opd_ent_ndx(r_off);
426     gold_assert(ndx < this->opd_ent_.size());
427     gold_assert(this->opd_ent_[ndx].shndx != 0);
428     if (value != NULL)
429       *value = this->opd_ent_[ndx].off;
430     return this->opd_ent_[ndx].shndx;
431   }
432
433   // Set section and offset of function entry for .opd + R_OFF.
434   void
435   set_opd_ent(Address r_off, unsigned int shndx, Address value)
436   {
437     size_t ndx = this->opd_ent_ndx(r_off);
438     gold_assert(ndx < this->opd_ent_.size());
439     this->opd_ent_[ndx].shndx = shndx;
440     this->opd_ent_[ndx].off = value;
441   }
442
443   int
444   abiversion() const
445   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
446
447   // Set ABI version for input and output.
448   void
449   set_abiversion(int ver);
450
451 private:
452   // Used to specify extent of executable sections.
453   struct Sec_info
454   {
455     Sec_info(Address start_, Address len_, unsigned int shndx_)
456       : start(start_), len(len_), shndx(shndx_)
457     { }
458
459     bool
460     operator<(const Sec_info& that) const
461     { return this->start < that.start; }
462
463     Address start;
464     Address len;
465     unsigned int shndx;
466   };
467
468   struct Opd_ent
469   {
470     unsigned int shndx;
471     Address off;
472   };
473
474   // Return index into opd_ent_ array for .opd entry at OFF.
475   size_t
476   opd_ent_ndx(size_t off) const
477   { return off >> 4;}
478
479   // For 64-bit the .opd section shndx and address.
480   unsigned int opd_shndx_;
481   Address opd_address_;
482
483   // The first 8-byte word of an OPD entry gives the address of the
484   // entry point of the function.  Records the section and offset
485   // corresponding to the address.  Note that in dynamic objects,
486   // offset is *not* relative to the section.
487   std::vector<Opd_ent> opd_ent_;
488
489   // Header e_flags
490   elfcpp::Elf_Word e_flags_;
491 };
492
493 template<int size, bool big_endian>
494 class Target_powerpc : public Sized_target<size, big_endian>
495 {
496  public:
497   typedef
498     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
499   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
500   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
501   static const Address invalid_address = static_cast<Address>(0) - 1;
502   // Offset of tp and dtp pointers from start of TLS block.
503   static const Address tp_offset = 0x7000;
504   static const Address dtp_offset = 0x8000;
505
506   Target_powerpc()
507     : Sized_target<size, big_endian>(&powerpc_info),
508       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
509       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
510       tlsld_got_offset_(-1U),
511       stub_tables_(), branch_lookup_table_(), branch_info_(),
512       plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
513       stub_group_size_(0)
514   {
515   }
516
517   // Process the relocations to determine unreferenced sections for
518   // garbage collection.
519   void
520   gc_process_relocs(Symbol_table* symtab,
521                     Layout* layout,
522                     Sized_relobj_file<size, big_endian>* object,
523                     unsigned int data_shndx,
524                     unsigned int sh_type,
525                     const unsigned char* prelocs,
526                     size_t reloc_count,
527                     Output_section* output_section,
528                     bool needs_special_offset_handling,
529                     size_t local_symbol_count,
530                     const unsigned char* plocal_symbols);
531
532   // Scan the relocations to look for symbol adjustments.
533   void
534   scan_relocs(Symbol_table* symtab,
535               Layout* layout,
536               Sized_relobj_file<size, big_endian>* object,
537               unsigned int data_shndx,
538               unsigned int sh_type,
539               const unsigned char* prelocs,
540               size_t reloc_count,
541               Output_section* output_section,
542               bool needs_special_offset_handling,
543               size_t local_symbol_count,
544               const unsigned char* plocal_symbols);
545
546   // Map input .toc section to output .got section.
547   const char*
548   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
549   {
550     if (size == 64 && strcmp(name, ".toc") == 0)
551       {
552         *plen = 4;
553         return ".got";
554       }
555     return NULL;
556   }
557
558   // Provide linker defined save/restore functions.
559   void
560   define_save_restore_funcs(Layout*, Symbol_table*);
561
562   // No stubs unless a final link.
563   bool
564   do_may_relax() const
565   { return !parameters->options().relocatable(); }
566
567   bool
568   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
569
570   void
571   do_plt_fde_location(const Output_data*, unsigned char*,
572                       uint64_t*, off_t*) const;
573
574   // Stash info about branches, for stub generation.
575   void
576   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
577               unsigned int data_shndx, Address r_offset,
578               unsigned int r_type, unsigned int r_sym, Address addend)
579   {
580     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
581     this->branch_info_.push_back(info);
582     if (r_type == elfcpp::R_POWERPC_REL14
583         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
584         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
585       ppc_object->set_has_14bit_branch(data_shndx);
586   }
587
588   void
589   do_define_standard_symbols(Symbol_table*, Layout*);
590
591   // Finalize the sections.
592   void
593   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
594
595   // Return the value to use for a dynamic which requires special
596   // treatment.
597   uint64_t
598   do_dynsym_value(const Symbol*) const;
599
600   // Return the PLT address to use for a local symbol.
601   uint64_t
602   do_plt_address_for_local(const Relobj*, unsigned int) const;
603
604   // Return the PLT address to use for a global symbol.
605   uint64_t
606   do_plt_address_for_global(const Symbol*) const;
607
608   // Return the offset to use for the GOT_INDX'th got entry which is
609   // for a local tls symbol specified by OBJECT, SYMNDX.
610   int64_t
611   do_tls_offset_for_local(const Relobj* object,
612                           unsigned int symndx,
613                           unsigned int got_indx) const;
614
615   // Return the offset to use for the GOT_INDX'th got entry which is
616   // for global tls symbol GSYM.
617   int64_t
618   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
619
620   void
621   do_function_location(Symbol_location*) const;
622
623   bool
624   do_can_check_for_function_pointers() const
625   { return true; }
626
627   // Relocate a section.
628   void
629   relocate_section(const Relocate_info<size, big_endian>*,
630                    unsigned int sh_type,
631                    const unsigned char* prelocs,
632                    size_t reloc_count,
633                    Output_section* output_section,
634                    bool needs_special_offset_handling,
635                    unsigned char* view,
636                    Address view_address,
637                    section_size_type view_size,
638                    const Reloc_symbol_changes*);
639
640   // Scan the relocs during a relocatable link.
641   void
642   scan_relocatable_relocs(Symbol_table* symtab,
643                           Layout* layout,
644                           Sized_relobj_file<size, big_endian>* object,
645                           unsigned int data_shndx,
646                           unsigned int sh_type,
647                           const unsigned char* prelocs,
648                           size_t reloc_count,
649                           Output_section* output_section,
650                           bool needs_special_offset_handling,
651                           size_t local_symbol_count,
652                           const unsigned char* plocal_symbols,
653                           Relocatable_relocs*);
654
655   // Emit relocations for a section.
656   void
657   relocate_relocs(const Relocate_info<size, big_endian>*,
658                   unsigned int sh_type,
659                   const unsigned char* prelocs,
660                   size_t reloc_count,
661                   Output_section* output_section,
662                   typename elfcpp::Elf_types<size>::Elf_Off
663                     offset_in_output_section,
664                   const Relocatable_relocs*,
665                   unsigned char*,
666                   Address view_address,
667                   section_size_type,
668                   unsigned char* reloc_view,
669                   section_size_type reloc_view_size);
670
671   // Return whether SYM is defined by the ABI.
672   bool
673   do_is_defined_by_abi(const Symbol* sym) const
674   {
675     return strcmp(sym->name(), "__tls_get_addr") == 0;
676   }
677
678   // Return the size of the GOT section.
679   section_size_type
680   got_size() const
681   {
682     gold_assert(this->got_ != NULL);
683     return this->got_->data_size();
684   }
685
686   // Get the PLT section.
687   const Output_data_plt_powerpc<size, big_endian>*
688   plt_section() const
689   {
690     gold_assert(this->plt_ != NULL);
691     return this->plt_;
692   }
693
694   // Get the IPLT section.
695   const Output_data_plt_powerpc<size, big_endian>*
696   iplt_section() const
697   {
698     gold_assert(this->iplt_ != NULL);
699     return this->iplt_;
700   }
701
702   // Get the .glink section.
703   const Output_data_glink<size, big_endian>*
704   glink_section() const
705   {
706     gold_assert(this->glink_ != NULL);
707     return this->glink_;
708   }
709
710   Output_data_glink<size, big_endian>*
711   glink_section()
712   {
713     gold_assert(this->glink_ != NULL);
714     return this->glink_;
715   }
716
717   bool has_glink() const
718   { return this->glink_ != NULL; }
719
720   // Get the GOT section.
721   const Output_data_got_powerpc<size, big_endian>*
722   got_section() const
723   {
724     gold_assert(this->got_ != NULL);
725     return this->got_;
726   }
727
728   // Get the GOT section, creating it if necessary.
729   Output_data_got_powerpc<size, big_endian>*
730   got_section(Symbol_table*, Layout*);
731
732   Object*
733   do_make_elf_object(const std::string&, Input_file*, off_t,
734                      const elfcpp::Ehdr<size, big_endian>&);
735
736   // Return the number of entries in the GOT.
737   unsigned int
738   got_entry_count() const
739   {
740     if (this->got_ == NULL)
741       return 0;
742     return this->got_size() / (size / 8);
743   }
744
745   // Return the number of entries in the PLT.
746   unsigned int
747   plt_entry_count() const;
748
749   // Return the offset of the first non-reserved PLT entry.
750   unsigned int
751   first_plt_entry_offset() const
752   {
753     if (size == 32)
754       return 0;
755     if (this->abiversion() >= 2)
756       return 16;
757     return 24;
758   }
759
760   // Return the size of each PLT entry.
761   unsigned int
762   plt_entry_size() const
763   {
764     if (size == 32)
765       return 4;
766     if (this->abiversion() >= 2)
767       return 8;
768     return 24;
769   }
770
771   // Add any special sections for this symbol to the gc work list.
772   // For powerpc64, this adds the code section of a function
773   // descriptor.
774   void
775   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
776
777   // Handle target specific gc actions when adding a gc reference from
778   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
779   // and DST_OFF.  For powerpc64, this adds a referenc to the code
780   // section of a function descriptor.
781   void
782   do_gc_add_reference(Symbol_table* symtab,
783                       Object* src_obj,
784                       unsigned int src_shndx,
785                       Object* dst_obj,
786                       unsigned int dst_shndx,
787                       Address dst_off) const;
788
789   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
790   const Stub_tables&
791   stub_tables() const
792   { return this->stub_tables_; }
793
794   const Output_data_brlt_powerpc<size, big_endian>*
795   brlt_section() const
796   { return this->brlt_section_; }
797
798   void
799   add_branch_lookup_table(Address to)
800   {
801     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
802     this->branch_lookup_table_.insert(std::make_pair(to, off));
803   }
804
805   Address
806   find_branch_lookup_table(Address to)
807   {
808     typename Branch_lookup_table::const_iterator p
809       = this->branch_lookup_table_.find(to);
810     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
811   }
812
813   void
814   write_branch_lookup_table(unsigned char *oview)
815   {
816     for (typename Branch_lookup_table::const_iterator p
817            = this->branch_lookup_table_.begin();
818          p != this->branch_lookup_table_.end();
819          ++p)
820       {
821         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
822       }
823   }
824
825   bool
826   plt_thread_safe() const
827   { return this->plt_thread_safe_; }
828
829   int
830   abiversion () const
831   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
832
833   void
834   set_abiversion (int ver)
835   {
836     elfcpp::Elf_Word flags = this->processor_specific_flags();
837     flags &= ~elfcpp::EF_PPC64_ABI;
838     flags |= ver & elfcpp::EF_PPC64_ABI;
839     this->set_processor_specific_flags(flags);
840   }
841
842   // Offset to to save stack slot
843   int
844   stk_toc () const
845   { return this->abiversion() < 2 ? 40 : 24; }
846
847  private:
848
849   class Track_tls
850   {
851   public:
852     enum Tls_get_addr
853     {
854       NOT_EXPECTED = 0,
855       EXPECTED = 1,
856       SKIP = 2,
857       NORMAL = 3
858     };
859
860     Track_tls()
861       : tls_get_addr_(NOT_EXPECTED),
862         relinfo_(NULL), relnum_(0), r_offset_(0)
863     { }
864
865     ~Track_tls()
866     {
867       if (this->tls_get_addr_ != NOT_EXPECTED)
868         this->missing();
869     }
870
871     void
872     missing(void)
873     {
874       if (this->relinfo_ != NULL)
875         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
876                                _("missing expected __tls_get_addr call"));
877     }
878
879     void
880     expect_tls_get_addr_call(
881         const Relocate_info<size, big_endian>* relinfo,
882         size_t relnum,
883         Address r_offset)
884     {
885       this->tls_get_addr_ = EXPECTED;
886       this->relinfo_ = relinfo;
887       this->relnum_ = relnum;
888       this->r_offset_ = r_offset;
889     }
890
891     void
892     expect_tls_get_addr_call()
893     { this->tls_get_addr_ = EXPECTED; }
894
895     void
896     skip_next_tls_get_addr_call()
897     {this->tls_get_addr_ = SKIP; }
898
899     Tls_get_addr
900     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
901     {
902       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
903                            || r_type == elfcpp::R_PPC_PLTREL24)
904                           && gsym != NULL
905                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
906       Tls_get_addr last_tls = this->tls_get_addr_;
907       this->tls_get_addr_ = NOT_EXPECTED;
908       if (is_tls_call && last_tls != EXPECTED)
909         return last_tls;
910       else if (!is_tls_call && last_tls != NOT_EXPECTED)
911         {
912           this->missing();
913           return EXPECTED;
914         }
915       return NORMAL;
916     }
917
918   private:
919     // What we're up to regarding calls to __tls_get_addr.
920     // On powerpc, the branch and link insn making a call to
921     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
922     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
923     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
924     // The marker relocation always comes first, and has the same
925     // symbol as the reloc on the insn setting up the __tls_get_addr
926     // argument.  This ties the arg setup insn with the call insn,
927     // allowing ld to safely optimize away the call.  We check that
928     // every call to __tls_get_addr has a marker relocation, and that
929     // every marker relocation is on a call to __tls_get_addr.
930     Tls_get_addr tls_get_addr_;
931     // Info about the last reloc for error message.
932     const Relocate_info<size, big_endian>* relinfo_;
933     size_t relnum_;
934     Address r_offset_;
935   };
936
937   // The class which scans relocations.
938   class Scan : protected Track_tls
939   {
940   public:
941     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
942
943     Scan()
944       : Track_tls(), issued_non_pic_error_(false)
945     { }
946
947     static inline int
948     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
949
950     inline void
951     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
952           Sized_relobj_file<size, big_endian>* object,
953           unsigned int data_shndx,
954           Output_section* output_section,
955           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
956           const elfcpp::Sym<size, big_endian>& lsym,
957           bool is_discarded);
958
959     inline void
960     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
961            Sized_relobj_file<size, big_endian>* object,
962            unsigned int data_shndx,
963            Output_section* output_section,
964            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
965            Symbol* gsym);
966
967     inline bool
968     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
969                                         Target_powerpc* ,
970                                         Sized_relobj_file<size, big_endian>* relobj,
971                                         unsigned int ,
972                                         Output_section* ,
973                                         const elfcpp::Rela<size, big_endian>& ,
974                                         unsigned int r_type,
975                                         const elfcpp::Sym<size, big_endian>&)
976     {
977       // PowerPC64 .opd is not folded, so any identical function text
978       // may be folded and we'll still keep function addresses distinct.
979       // That means no reloc is of concern here.
980       if (size == 64)
981         {
982           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
983             <Powerpc_relobj<size, big_endian>*>(relobj);
984           if (ppcobj->abiversion() == 1)
985             return false;
986         }
987       // For 32-bit and ELFv2, conservatively assume anything but calls to
988       // function code might be taking the address of the function.
989       return !is_branch_reloc(r_type);
990     }
991
992     inline bool
993     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
994                                          Target_powerpc* ,
995                                          Sized_relobj_file<size, big_endian>* relobj,
996                                          unsigned int ,
997                                          Output_section* ,
998                                          const elfcpp::Rela<size, big_endian>& ,
999                                          unsigned int r_type,
1000                                          Symbol*)
1001     {
1002       // As above.
1003       if (size == 64)
1004         {
1005           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1006             <Powerpc_relobj<size, big_endian>*>(relobj);
1007           if (ppcobj->abiversion() == 1)
1008             return false;
1009         }
1010       return !is_branch_reloc(r_type);
1011     }
1012
1013     static bool
1014     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1015                               Sized_relobj_file<size, big_endian>* object,
1016                               unsigned int r_type, bool report_err);
1017
1018   private:
1019     static void
1020     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1021                             unsigned int r_type);
1022
1023     static void
1024     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1025                              unsigned int r_type, Symbol*);
1026
1027     static void
1028     generate_tls_call(Symbol_table* symtab, Layout* layout,
1029                       Target_powerpc* target);
1030
1031     void
1032     check_non_pic(Relobj*, unsigned int r_type);
1033
1034     // Whether we have issued an error about a non-PIC compilation.
1035     bool issued_non_pic_error_;
1036   };
1037
1038   bool
1039   symval_for_branch(const Symbol_table* symtab,
1040                     const Sized_symbol<size>* gsym,
1041                     Powerpc_relobj<size, big_endian>* object,
1042                     Address *value, unsigned int *dest_shndx);
1043
1044   // The class which implements relocation.
1045   class Relocate : protected Track_tls
1046   {
1047    public:
1048     // Use 'at' branch hints when true, 'y' when false.
1049     // FIXME maybe: set this with an option.
1050     static const bool is_isa_v2 = true;
1051
1052     Relocate()
1053       : Track_tls()
1054     { }
1055
1056     // Do a relocation.  Return false if the caller should not issue
1057     // any warnings about this relocation.
1058     inline bool
1059     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1060              Output_section*, size_t relnum,
1061              const elfcpp::Rela<size, big_endian>&,
1062              unsigned int r_type, const Sized_symbol<size>*,
1063              const Symbol_value<size>*,
1064              unsigned char*,
1065              typename elfcpp::Elf_types<size>::Elf_Addr,
1066              section_size_type);
1067   };
1068
1069   class Relocate_comdat_behavior
1070   {
1071    public:
1072     // Decide what the linker should do for relocations that refer to
1073     // discarded comdat sections.
1074     inline Comdat_behavior
1075     get(const char* name)
1076     {
1077       gold::Default_comdat_behavior default_behavior;
1078       Comdat_behavior ret = default_behavior.get(name);
1079       if (ret == CB_WARNING)
1080         {
1081           if (size == 32
1082               && (strcmp(name, ".fixup") == 0
1083                   || strcmp(name, ".got2") == 0))
1084             ret = CB_IGNORE;
1085           if (size == 64
1086               && (strcmp(name, ".opd") == 0
1087                   || strcmp(name, ".toc") == 0
1088                   || strcmp(name, ".toc1") == 0))
1089             ret = CB_IGNORE;
1090         }
1091       return ret;
1092     }
1093   };
1094
1095   // A class which returns the size required for a relocation type,
1096   // used while scanning relocs during a relocatable link.
1097   class Relocatable_size_for_reloc
1098   {
1099    public:
1100     unsigned int
1101     get_size_for_reloc(unsigned int, Relobj*)
1102     {
1103       gold_unreachable();
1104       return 0;
1105     }
1106   };
1107
1108   // Optimize the TLS relocation type based on what we know about the
1109   // symbol.  IS_FINAL is true if the final address of this symbol is
1110   // known at link time.
1111
1112   tls::Tls_optimization
1113   optimize_tls_gd(bool is_final)
1114   {
1115     // If we are generating a shared library, then we can't do anything
1116     // in the linker.
1117     if (parameters->options().shared())
1118       return tls::TLSOPT_NONE;
1119
1120     if (!is_final)
1121       return tls::TLSOPT_TO_IE;
1122     return tls::TLSOPT_TO_LE;
1123   }
1124
1125   tls::Tls_optimization
1126   optimize_tls_ld()
1127   {
1128     if (parameters->options().shared())
1129       return tls::TLSOPT_NONE;
1130
1131     return tls::TLSOPT_TO_LE;
1132   }
1133
1134   tls::Tls_optimization
1135   optimize_tls_ie(bool is_final)
1136   {
1137     if (!is_final || parameters->options().shared())
1138       return tls::TLSOPT_NONE;
1139
1140     return tls::TLSOPT_TO_LE;
1141   }
1142
1143   // Create glink.
1144   void
1145   make_glink_section(Layout*);
1146
1147   // Create the PLT section.
1148   void
1149   make_plt_section(Symbol_table*, Layout*);
1150
1151   void
1152   make_iplt_section(Symbol_table*, Layout*);
1153
1154   void
1155   make_brlt_section(Layout*);
1156
1157   // Create a PLT entry for a global symbol.
1158   void
1159   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1160
1161   // Create a PLT entry for a local IFUNC symbol.
1162   void
1163   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1164                              Sized_relobj_file<size, big_endian>*,
1165                              unsigned int);
1166
1167
1168   // Create a GOT entry for local dynamic __tls_get_addr.
1169   unsigned int
1170   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1171                    Sized_relobj_file<size, big_endian>* object);
1172
1173   unsigned int
1174   tlsld_got_offset() const
1175   {
1176     return this->tlsld_got_offset_;
1177   }
1178
1179   // Get the dynamic reloc section, creating it if necessary.
1180   Reloc_section*
1181   rela_dyn_section(Layout*);
1182
1183   // Similarly, but for ifunc symbols get the one for ifunc.
1184   Reloc_section*
1185   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1186
1187   // Copy a relocation against a global symbol.
1188   void
1189   copy_reloc(Symbol_table* symtab, Layout* layout,
1190              Sized_relobj_file<size, big_endian>* object,
1191              unsigned int shndx, Output_section* output_section,
1192              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1193   {
1194     this->copy_relocs_.copy_reloc(symtab, layout,
1195                                   symtab->get_sized_symbol<size>(sym),
1196                                   object, shndx, output_section,
1197                                   reloc, this->rela_dyn_section(layout));
1198   }
1199
1200   // Look over all the input sections, deciding where to place stubs.
1201   void
1202   group_sections(Layout*, const Task*, bool);
1203
1204   // Sort output sections by address.
1205   struct Sort_sections
1206   {
1207     bool
1208     operator()(const Output_section* sec1, const Output_section* sec2)
1209     { return sec1->address() < sec2->address(); }
1210   };
1211
1212   class Branch_info
1213   {
1214    public:
1215     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1216                 unsigned int data_shndx,
1217                 Address r_offset,
1218                 unsigned int r_type,
1219                 unsigned int r_sym,
1220                 Address addend)
1221       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1222         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1223     { }
1224
1225     ~Branch_info()
1226     { }
1227
1228     // If this branch needs a plt call stub, or a long branch stub, make one.
1229     bool
1230     make_stub(Stub_table<size, big_endian>*,
1231               Stub_table<size, big_endian>*,
1232               Symbol_table*) const;
1233
1234    private:
1235     // The branch location..
1236     Powerpc_relobj<size, big_endian>* object_;
1237     unsigned int shndx_;
1238     Address offset_;
1239     // ..and the branch type and destination.
1240     unsigned int r_type_;
1241     unsigned int r_sym_;
1242     Address addend_;
1243   };
1244
1245   // Information about this specific target which we pass to the
1246   // general Target structure.
1247   static Target::Target_info powerpc_info;
1248
1249   // The types of GOT entries needed for this platform.
1250   // These values are exposed to the ABI in an incremental link.
1251   // Do not renumber existing values without changing the version
1252   // number of the .gnu_incremental_inputs section.
1253   enum Got_type
1254   {
1255     GOT_TYPE_STANDARD,
1256     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1257     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1258     GOT_TYPE_TPREL      // entry for @got@tprel
1259   };
1260
1261   // The GOT section.
1262   Output_data_got_powerpc<size, big_endian>* got_;
1263   // The PLT section.  This is a container for a table of addresses,
1264   // and their relocations.  Each address in the PLT has a dynamic
1265   // relocation (R_*_JMP_SLOT) and each address will have a
1266   // corresponding entry in .glink for lazy resolution of the PLT.
1267   // ppc32 initialises the PLT to point at the .glink entry, while
1268   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1269   // linker adds a stub that loads the PLT entry into ctr then
1270   // branches to ctr.  There may be more than one stub for each PLT
1271   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1272   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1273   Output_data_plt_powerpc<size, big_endian>* plt_;
1274   // The IPLT section.  Like plt_, this is a container for a table of
1275   // addresses and their relocations, specifically for STT_GNU_IFUNC
1276   // functions that resolve locally (STT_GNU_IFUNC functions that
1277   // don't resolve locally go in PLT).  Unlike plt_, these have no
1278   // entry in .glink for lazy resolution, and the relocation section
1279   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1280   // the relocation section may contain relocations against
1281   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1282   // relocation section will appear at the end of other dynamic
1283   // relocations, so that ld.so applies these relocations after other
1284   // dynamic relocations.  In a static executable, the relocation
1285   // section is emitted and marked with __rela_iplt_start and
1286   // __rela_iplt_end symbols.
1287   Output_data_plt_powerpc<size, big_endian>* iplt_;
1288   // Section holding long branch destinations.
1289   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1290   // The .glink section.
1291   Output_data_glink<size, big_endian>* glink_;
1292   // The dynamic reloc section.
1293   Reloc_section* rela_dyn_;
1294   // Relocs saved to avoid a COPY reloc.
1295   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1296   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1297   unsigned int tlsld_got_offset_;
1298
1299   Stub_tables stub_tables_;
1300   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1301   Branch_lookup_table branch_lookup_table_;
1302
1303   typedef std::vector<Branch_info> Branches;
1304   Branches branch_info_;
1305
1306   bool plt_thread_safe_;
1307
1308   bool relax_failed_;
1309   int relax_fail_count_;
1310   int32_t stub_group_size_;
1311 };
1312
1313 template<>
1314 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1315 {
1316   32,                   // size
1317   true,                 // is_big_endian
1318   elfcpp::EM_PPC,       // machine_code
1319   false,                // has_make_symbol
1320   false,                // has_resolve
1321   false,                // has_code_fill
1322   true,                 // is_default_stack_executable
1323   false,                // can_icf_inline_merge_sections
1324   '\0',                 // wrap_char
1325   "/usr/lib/ld.so.1",   // dynamic_linker
1326   0x10000000,           // default_text_segment_address
1327   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1328   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1329   false,                // isolate_execinstr
1330   0,                    // rosegment_gap
1331   elfcpp::SHN_UNDEF,    // small_common_shndx
1332   elfcpp::SHN_UNDEF,    // large_common_shndx
1333   0,                    // small_common_section_flags
1334   0,                    // large_common_section_flags
1335   NULL,                 // attributes_section
1336   NULL,                 // attributes_vendor
1337   "_start"              // entry_symbol_name
1338 };
1339
1340 template<>
1341 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1342 {
1343   32,                   // size
1344   false,                // is_big_endian
1345   elfcpp::EM_PPC,       // machine_code
1346   false,                // has_make_symbol
1347   false,                // has_resolve
1348   false,                // has_code_fill
1349   true,                 // is_default_stack_executable
1350   false,                // can_icf_inline_merge_sections
1351   '\0',                 // wrap_char
1352   "/usr/lib/ld.so.1",   // dynamic_linker
1353   0x10000000,           // default_text_segment_address
1354   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1355   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1356   false,                // isolate_execinstr
1357   0,                    // rosegment_gap
1358   elfcpp::SHN_UNDEF,    // small_common_shndx
1359   elfcpp::SHN_UNDEF,    // large_common_shndx
1360   0,                    // small_common_section_flags
1361   0,                    // large_common_section_flags
1362   NULL,                 // attributes_section
1363   NULL,                 // attributes_vendor
1364   "_start"              // entry_symbol_name
1365 };
1366
1367 template<>
1368 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1369 {
1370   64,                   // size
1371   true,                 // is_big_endian
1372   elfcpp::EM_PPC64,     // machine_code
1373   false,                // has_make_symbol
1374   false,                // has_resolve
1375   false,                // has_code_fill
1376   true,                 // is_default_stack_executable
1377   false,                // can_icf_inline_merge_sections
1378   '\0',                 // wrap_char
1379   "/usr/lib/ld.so.1",   // dynamic_linker
1380   0x10000000,           // default_text_segment_address
1381   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1382   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1383   false,                // isolate_execinstr
1384   0,                    // rosegment_gap
1385   elfcpp::SHN_UNDEF,    // small_common_shndx
1386   elfcpp::SHN_UNDEF,    // large_common_shndx
1387   0,                    // small_common_section_flags
1388   0,                    // large_common_section_flags
1389   NULL,                 // attributes_section
1390   NULL,                 // attributes_vendor
1391   "_start"              // entry_symbol_name
1392 };
1393
1394 template<>
1395 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1396 {
1397   64,                   // size
1398   false,                // is_big_endian
1399   elfcpp::EM_PPC64,     // machine_code
1400   false,                // has_make_symbol
1401   false,                // has_resolve
1402   false,                // has_code_fill
1403   true,                 // is_default_stack_executable
1404   false,                // can_icf_inline_merge_sections
1405   '\0',                 // wrap_char
1406   "/usr/lib/ld.so.1",   // dynamic_linker
1407   0x10000000,           // default_text_segment_address
1408   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1409   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1410   false,                // isolate_execinstr
1411   0,                    // rosegment_gap
1412   elfcpp::SHN_UNDEF,    // small_common_shndx
1413   elfcpp::SHN_UNDEF,    // large_common_shndx
1414   0,                    // small_common_section_flags
1415   0,                    // large_common_section_flags
1416   NULL,                 // attributes_section
1417   NULL,                 // attributes_vendor
1418   "_start"              // entry_symbol_name
1419 };
1420
1421 inline bool
1422 is_branch_reloc(unsigned int r_type)
1423 {
1424   return (r_type == elfcpp::R_POWERPC_REL24
1425           || r_type == elfcpp::R_PPC_PLTREL24
1426           || r_type == elfcpp::R_PPC_LOCAL24PC
1427           || r_type == elfcpp::R_POWERPC_REL14
1428           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1429           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1430           || r_type == elfcpp::R_POWERPC_ADDR24
1431           || r_type == elfcpp::R_POWERPC_ADDR14
1432           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1433           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1434 }
1435
1436 // If INSN is an opcode that may be used with an @tls operand, return
1437 // the transformed insn for TLS optimisation, otherwise return 0.  If
1438 // REG is non-zero only match an insn with RB or RA equal to REG.
1439 uint32_t
1440 at_tls_transform(uint32_t insn, unsigned int reg)
1441 {
1442   if ((insn & (0x3f << 26)) != 31 << 26)
1443     return 0;
1444
1445   unsigned int rtra;
1446   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1447     rtra = insn & ((1 << 26) - (1 << 16));
1448   else if (((insn >> 16) & 0x1f) == reg)
1449     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1450   else
1451     return 0;
1452
1453   if ((insn & (0x3ff << 1)) == 266 << 1)
1454     // add -> addi
1455     insn = 14 << 26;
1456   else if ((insn & (0x1f << 1)) == 23 << 1
1457            && ((insn & (0x1f << 6)) < 14 << 6
1458                || ((insn & (0x1f << 6)) >= 16 << 6
1459                    && (insn & (0x1f << 6)) < 24 << 6)))
1460     // load and store indexed -> dform
1461     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1462   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1463     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1464     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1465   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1466     // lwax -> lwa
1467     insn = (58 << 26) | 2;
1468   else
1469     return 0;
1470   insn |= rtra;
1471   return insn;
1472 }
1473
1474
1475 template<int size, bool big_endian>
1476 class Powerpc_relocate_functions
1477 {
1478 public:
1479   enum Overflow_check
1480   {
1481     CHECK_NONE,
1482     CHECK_SIGNED,
1483     CHECK_UNSIGNED,
1484     CHECK_BITFIELD,
1485     CHECK_LOW_INSN,
1486     CHECK_HIGH_INSN
1487   };
1488
1489   enum Status
1490   {
1491     STATUS_OK,
1492     STATUS_OVERFLOW
1493   };
1494
1495 private:
1496   typedef Powerpc_relocate_functions<size, big_endian> This;
1497   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1498
1499   template<int valsize>
1500   static inline bool
1501   has_overflow_signed(Address value)
1502   {
1503     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1504     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1505     limit <<= ((valsize - 1) >> 1);
1506     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1507     return value + limit > (limit << 1) - 1;
1508   }
1509
1510   template<int valsize>
1511   static inline bool
1512   has_overflow_unsigned(Address value)
1513   {
1514     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1515     limit <<= ((valsize - 1) >> 1);
1516     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1517     return value > (limit << 1) - 1;
1518   }
1519
1520   template<int valsize>
1521   static inline bool
1522   has_overflow_bitfield(Address value)
1523   {
1524     return (has_overflow_unsigned<valsize>(value)
1525             && has_overflow_signed<valsize>(value));
1526   }
1527
1528   template<int valsize>
1529   static inline Status
1530   overflowed(Address value, Overflow_check overflow)
1531   {
1532     if (overflow == CHECK_SIGNED)
1533       {
1534         if (has_overflow_signed<valsize>(value))
1535           return STATUS_OVERFLOW;
1536       }
1537     else if (overflow == CHECK_UNSIGNED)
1538       {
1539         if (has_overflow_unsigned<valsize>(value))
1540           return STATUS_OVERFLOW;
1541       }
1542     else if (overflow == CHECK_BITFIELD)
1543       {
1544         if (has_overflow_bitfield<valsize>(value))
1545           return STATUS_OVERFLOW;
1546       }
1547     return STATUS_OK;
1548   }
1549
1550   // Do a simple RELA relocation
1551   template<int fieldsize, int valsize>
1552   static inline Status
1553   rela(unsigned char* view, Address value, Overflow_check overflow)
1554   {
1555     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1556     Valtype* wv = reinterpret_cast<Valtype*>(view);
1557     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1558     return overflowed<valsize>(value, overflow);
1559   }
1560
1561   template<int fieldsize, int valsize>
1562   static inline Status
1563   rela(unsigned char* view,
1564        unsigned int right_shift,
1565        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1566        Address value,
1567        Overflow_check overflow)
1568   {
1569     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1570     Valtype* wv = reinterpret_cast<Valtype*>(view);
1571     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1572     Valtype reloc = value >> right_shift;
1573     val &= ~dst_mask;
1574     reloc &= dst_mask;
1575     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1576     return overflowed<valsize>(value >> right_shift, overflow);
1577   }
1578
1579   // Do a simple RELA relocation, unaligned.
1580   template<int fieldsize, int valsize>
1581   static inline Status
1582   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1583   {
1584     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1585     return overflowed<valsize>(value, overflow);
1586   }
1587
1588   template<int fieldsize, int valsize>
1589   static inline Status
1590   rela_ua(unsigned char* view,
1591           unsigned int right_shift,
1592           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1593           Address value,
1594           Overflow_check overflow)
1595   {
1596     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1597       Valtype;
1598     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1599     Valtype reloc = value >> right_shift;
1600     val &= ~dst_mask;
1601     reloc &= dst_mask;
1602     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1603     return overflowed<valsize>(value >> right_shift, overflow);
1604   }
1605
1606 public:
1607   // R_PPC64_ADDR64: (Symbol + Addend)
1608   static inline void
1609   addr64(unsigned char* view, Address value)
1610   { This::template rela<64,64>(view, value, CHECK_NONE); }
1611
1612   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1613   static inline void
1614   addr64_u(unsigned char* view, Address value)
1615   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1616
1617   // R_POWERPC_ADDR32: (Symbol + Addend)
1618   static inline Status
1619   addr32(unsigned char* view, Address value, Overflow_check overflow)
1620   { return This::template rela<32,32>(view, value, overflow); }
1621
1622   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1623   static inline Status
1624   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1625   { return This::template rela_ua<32,32>(view, value, overflow); }
1626
1627   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1628   static inline Status
1629   addr24(unsigned char* view, Address value, Overflow_check overflow)
1630   {
1631     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1632                                              value, overflow);
1633     if (overflow != CHECK_NONE && (value & 3) != 0)
1634       stat = STATUS_OVERFLOW;
1635     return stat;
1636   }
1637
1638   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1639   static inline Status
1640   addr16(unsigned char* view, Address value, Overflow_check overflow)
1641   { return This::template rela<16,16>(view, value, overflow); }
1642
1643   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1644   static inline Status
1645   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1646   { return This::template rela_ua<16,16>(view, value, overflow); }
1647
1648   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1649   static inline Status
1650   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1651   {
1652     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1653     if (overflow != CHECK_NONE && (value & 3) != 0)
1654       stat = STATUS_OVERFLOW;
1655     return stat;
1656   }
1657
1658   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1659   static inline void
1660   addr16_hi(unsigned char* view, Address value)
1661   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1662
1663   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1664   static inline void
1665   addr16_ha(unsigned char* view, Address value)
1666   { This::addr16_hi(view, value + 0x8000); }
1667
1668   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1669   static inline void
1670   addr16_hi2(unsigned char* view, Address value)
1671   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1672
1673   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1674   static inline void
1675   addr16_ha2(unsigned char* view, Address value)
1676   { This::addr16_hi2(view, value + 0x8000); }
1677
1678   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1679   static inline void
1680   addr16_hi3(unsigned char* view, Address value)
1681   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1682
1683   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1684   static inline void
1685   addr16_ha3(unsigned char* view, Address value)
1686   { This::addr16_hi3(view, value + 0x8000); }
1687
1688   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1689   static inline Status
1690   addr14(unsigned char* view, Address value, Overflow_check overflow)
1691   {
1692     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1693     if (overflow != CHECK_NONE && (value & 3) != 0)
1694       stat = STATUS_OVERFLOW;
1695     return stat;
1696   }
1697 };
1698
1699 // Set ABI version for input and output.
1700
1701 template<int size, bool big_endian>
1702 void
1703 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1704 {
1705   this->e_flags_ |= ver;
1706   if (this->abiversion() != 0)
1707     {
1708       Target_powerpc<size, big_endian>* target =
1709         static_cast<Target_powerpc<size, big_endian>*>(
1710            parameters->sized_target<size, big_endian>());
1711       if (target->abiversion() == 0)
1712         target->set_abiversion(this->abiversion());
1713       else if (target->abiversion() != this->abiversion())
1714         gold_error(_("%s: ABI version %d is not compatible "
1715                      "with ABI version %d output"),
1716                    this->name().c_str(),
1717                    this->abiversion(), target->abiversion());
1718
1719     }
1720 }
1721
1722 // Stash away the index of .got2 or .opd in a relocatable object, if
1723 // such a section exists.
1724
1725 template<int size, bool big_endian>
1726 bool
1727 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1728     Read_symbols_data* sd)
1729 {
1730   const unsigned char* const pshdrs = sd->section_headers->data();
1731   const unsigned char* namesu = sd->section_names->data();
1732   const char* names = reinterpret_cast<const char*>(namesu);
1733   section_size_type names_size = sd->section_names_size;
1734   const unsigned char* s;
1735
1736   s = this->template find_shdr<size, big_endian>(pshdrs,
1737                                                  size == 32 ? ".got2" : ".opd",
1738                                                  names, names_size, NULL);
1739   if (s != NULL)
1740     {
1741       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1742       this->special_ = ndx;
1743       if (size == 64)
1744         {
1745           if (this->abiversion() == 0)
1746             this->set_abiversion(1);
1747           else if (this->abiversion() > 1)
1748             gold_error(_("%s: .opd invalid in abiv%d"),
1749                        this->name().c_str(), this->abiversion());
1750         }
1751     }
1752   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1753 }
1754
1755 // Examine .rela.opd to build info about function entry points.
1756
1757 template<int size, bool big_endian>
1758 void
1759 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1760     size_t reloc_count,
1761     const unsigned char* prelocs,
1762     const unsigned char* plocal_syms)
1763 {
1764   if (size == 64)
1765     {
1766       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1767         Reltype;
1768       const int reloc_size
1769         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1770       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1771       Address expected_off = 0;
1772       bool regular = true;
1773       unsigned int opd_ent_size = 0;
1774
1775       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1776         {
1777           Reltype reloc(prelocs);
1778           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1779             = reloc.get_r_info();
1780           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1781           if (r_type == elfcpp::R_PPC64_ADDR64)
1782             {
1783               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1784               typename elfcpp::Elf_types<size>::Elf_Addr value;
1785               bool is_ordinary;
1786               unsigned int shndx;
1787               if (r_sym < this->local_symbol_count())
1788                 {
1789                   typename elfcpp::Sym<size, big_endian>
1790                     lsym(plocal_syms + r_sym * sym_size);
1791                   shndx = lsym.get_st_shndx();
1792                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1793                   value = lsym.get_st_value();
1794                 }
1795               else
1796                 shndx = this->symbol_section_and_value(r_sym, &value,
1797                                                        &is_ordinary);
1798               this->set_opd_ent(reloc.get_r_offset(), shndx,
1799                                 value + reloc.get_r_addend());
1800               if (i == 2)
1801                 {
1802                   expected_off = reloc.get_r_offset();
1803                   opd_ent_size = expected_off;
1804                 }
1805               else if (expected_off != reloc.get_r_offset())
1806                 regular = false;
1807               expected_off += opd_ent_size;
1808             }
1809           else if (r_type == elfcpp::R_PPC64_TOC)
1810             {
1811               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1812                 regular = false;
1813             }
1814           else
1815             {
1816               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1817                            this->name().c_str(), r_type);
1818               regular = false;
1819             }
1820         }
1821       if (reloc_count <= 2)
1822         opd_ent_size = this->section_size(this->opd_shndx());
1823       if (opd_ent_size != 24 && opd_ent_size != 16)
1824         regular = false;
1825       if (!regular)
1826         {
1827           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1828                        this->name().c_str());
1829           opd_ent_size = 0;
1830         }
1831     }
1832 }
1833
1834 template<int size, bool big_endian>
1835 void
1836 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1837 {
1838   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1839   if (size == 64)
1840     {
1841       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1842            p != rd->relocs.end();
1843            ++p)
1844         {
1845           if (p->data_shndx == this->opd_shndx())
1846             {
1847               uint64_t opd_size = this->section_size(this->opd_shndx());
1848               gold_assert(opd_size == static_cast<size_t>(opd_size));
1849               if (opd_size != 0)
1850                 {
1851                   this->init_opd(opd_size);
1852                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1853                                         rd->local_symbols->data());
1854                 }
1855               break;
1856             }
1857         }
1858     }
1859 }
1860
1861 // Read the symbols then set up st_other vector.
1862
1863 template<int size, bool big_endian>
1864 void
1865 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1866 {
1867   this->base_read_symbols(sd);
1868   if (size == 64)
1869     {
1870       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1871       const unsigned char* const pshdrs = sd->section_headers->data();
1872       const unsigned int loccount = this->do_local_symbol_count();
1873       if (loccount != 0)
1874         {
1875           this->st_other_.resize(loccount);
1876           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1877           off_t locsize = loccount * sym_size;
1878           const unsigned int symtab_shndx = this->symtab_shndx();
1879           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1880           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1881           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1882                                                       locsize, true, false);
1883           psyms += sym_size;
1884           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1885             {
1886               elfcpp::Sym<size, big_endian> sym(psyms);
1887               unsigned char st_other = sym.get_st_other();
1888               this->st_other_[i] = st_other;
1889               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1890                 {
1891                   if (this->abiversion() == 0)
1892                     this->set_abiversion(2);
1893                   else if (this->abiversion() < 2)
1894                     gold_error(_("%s: local symbol %d has invalid st_other"
1895                                  " for ABI version 1"),
1896                                this->name().c_str(), i);
1897                 }
1898             }
1899         }
1900     }
1901 }
1902
1903 template<int size, bool big_endian>
1904 void
1905 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1906 {
1907   this->e_flags_ |= ver;
1908   if (this->abiversion() != 0)
1909     {
1910       Target_powerpc<size, big_endian>* target =
1911         static_cast<Target_powerpc<size, big_endian>*>(
1912           parameters->sized_target<size, big_endian>());
1913       if (target->abiversion() == 0)
1914         target->set_abiversion(this->abiversion());
1915       else if (target->abiversion() != this->abiversion())
1916         gold_error(_("%s: ABI version %d is not compatible "
1917                      "with ABI version %d output"),
1918                    this->name().c_str(),
1919                    this->abiversion(), target->abiversion());
1920
1921     }
1922 }
1923
1924 // Call Sized_dynobj::base_read_symbols to read the symbols then
1925 // read .opd from a dynamic object, filling in opd_ent_ vector,
1926
1927 template<int size, bool big_endian>
1928 void
1929 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1930 {
1931   this->base_read_symbols(sd);
1932   if (size == 64)
1933     {
1934       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1935       const unsigned char* const pshdrs = sd->section_headers->data();
1936       const unsigned char* namesu = sd->section_names->data();
1937       const char* names = reinterpret_cast<const char*>(namesu);
1938       const unsigned char* s = NULL;
1939       const unsigned char* opd;
1940       section_size_type opd_size;
1941
1942       // Find and read .opd section.
1943       while (1)
1944         {
1945           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1946                                                          sd->section_names_size,
1947                                                          s);
1948           if (s == NULL)
1949             return;
1950
1951           typename elfcpp::Shdr<size, big_endian> shdr(s);
1952           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1953               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1954             {
1955               if (this->abiversion() == 0)
1956                 this->set_abiversion(1);
1957               else if (this->abiversion() > 1)
1958                 gold_error(_("%s: .opd invalid in abiv%d"),
1959                            this->name().c_str(), this->abiversion());
1960
1961               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1962               this->opd_address_ = shdr.get_sh_addr();
1963               opd_size = convert_to_section_size_type(shdr.get_sh_size());
1964               opd = this->get_view(shdr.get_sh_offset(), opd_size,
1965                                    true, false);
1966               break;
1967             }
1968         }
1969
1970       // Build set of executable sections.
1971       // Using a set is probably overkill.  There is likely to be only
1972       // a few executable sections, typically .init, .text and .fini,
1973       // and they are generally grouped together.
1974       typedef std::set<Sec_info> Exec_sections;
1975       Exec_sections exec_sections;
1976       s = pshdrs;
1977       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1978         {
1979           typename elfcpp::Shdr<size, big_endian> shdr(s);
1980           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1981               && ((shdr.get_sh_flags()
1982                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1983                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1984               && shdr.get_sh_size() != 0)
1985             {
1986               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1987                                             shdr.get_sh_size(), i));
1988             }
1989         }
1990       if (exec_sections.empty())
1991         return;
1992
1993       // Look over the OPD entries.  This is complicated by the fact
1994       // that some binaries will use two-word entries while others
1995       // will use the standard three-word entries.  In most cases
1996       // the third word (the environment pointer for languages like
1997       // Pascal) is unused and will be zero.  If the third word is
1998       // used it should not be pointing into executable sections,
1999       // I think.
2000       this->init_opd(opd_size);
2001       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2002         {
2003           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2004           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2005           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2006           if (val == 0)
2007             // Chances are that this is the third word of an OPD entry.
2008             continue;
2009           typename Exec_sections::const_iterator e
2010             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2011           if (e != exec_sections.begin())
2012             {
2013               --e;
2014               if (e->start <= val && val < e->start + e->len)
2015                 {
2016                   // We have an address in an executable section.
2017                   // VAL ought to be the function entry, set it up.
2018                   this->set_opd_ent(p - opd, e->shndx, val);
2019                   // Skip second word of OPD entry, the TOC pointer.
2020                   p += 8;
2021                 }
2022             }
2023           // If we didn't match any executable sections, we likely
2024           // have a non-zero third word in the OPD entry.
2025         }
2026     }
2027 }
2028
2029 // Set up some symbols.
2030
2031 template<int size, bool big_endian>
2032 void
2033 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2034     Symbol_table* symtab,
2035     Layout* layout)
2036 {
2037   if (size == 32)
2038     {
2039       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2040       // undefined when scanning relocs (and thus requires
2041       // non-relative dynamic relocs).  The proper value will be
2042       // updated later.
2043       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2044       if (gotsym != NULL && gotsym->is_undefined())
2045         {
2046           Target_powerpc<size, big_endian>* target =
2047             static_cast<Target_powerpc<size, big_endian>*>(
2048                 parameters->sized_target<size, big_endian>());
2049           Output_data_got_powerpc<size, big_endian>* got
2050             = target->got_section(symtab, layout);
2051           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2052                                         Symbol_table::PREDEFINED,
2053                                         got, 0, 0,
2054                                         elfcpp::STT_OBJECT,
2055                                         elfcpp::STB_LOCAL,
2056                                         elfcpp::STV_HIDDEN, 0,
2057                                         false, false);
2058         }
2059
2060       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2061       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2062       if (sdasym != NULL && sdasym->is_undefined())
2063         {
2064           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2065           Output_section* os
2066             = layout->add_output_section_data(".sdata", 0,
2067                                               elfcpp::SHF_ALLOC
2068                                               | elfcpp::SHF_WRITE,
2069                                               sdata, ORDER_SMALL_DATA, false);
2070           symtab->define_in_output_data("_SDA_BASE_", NULL,
2071                                         Symbol_table::PREDEFINED,
2072                                         os, 32768, 0, elfcpp::STT_OBJECT,
2073                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2074                                         0, false, false);
2075         }
2076     }
2077   else
2078     {
2079       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2080       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2081       if (gotsym != NULL && gotsym->is_undefined())
2082         {
2083           Target_powerpc<size, big_endian>* target =
2084             static_cast<Target_powerpc<size, big_endian>*>(
2085                 parameters->sized_target<size, big_endian>());
2086           Output_data_got_powerpc<size, big_endian>* got
2087             = target->got_section(symtab, layout);
2088           symtab->define_in_output_data(".TOC.", NULL,
2089                                         Symbol_table::PREDEFINED,
2090                                         got, 0x8000, 0,
2091                                         elfcpp::STT_OBJECT,
2092                                         elfcpp::STB_LOCAL,
2093                                         elfcpp::STV_HIDDEN, 0,
2094                                         false, false);
2095         }
2096     }
2097 }
2098
2099 // Set up PowerPC target specific relobj.
2100
2101 template<int size, bool big_endian>
2102 Object*
2103 Target_powerpc<size, big_endian>::do_make_elf_object(
2104     const std::string& name,
2105     Input_file* input_file,
2106     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2107 {
2108   int et = ehdr.get_e_type();
2109   // ET_EXEC files are valid input for --just-symbols/-R,
2110   // and we treat them as relocatable objects.
2111   if (et == elfcpp::ET_REL
2112       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2113     {
2114       Powerpc_relobj<size, big_endian>* obj =
2115         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2116       obj->setup();
2117       return obj;
2118     }
2119   else if (et == elfcpp::ET_DYN)
2120     {
2121       Powerpc_dynobj<size, big_endian>* obj =
2122         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2123       obj->setup();
2124       return obj;
2125     }
2126   else
2127     {
2128       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2129       return NULL;
2130     }
2131 }
2132
2133 template<int size, bool big_endian>
2134 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2135 {
2136 public:
2137   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2138   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2139
2140   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2141     : Output_data_got<size, big_endian>(),
2142       symtab_(symtab), layout_(layout),
2143       header_ent_cnt_(size == 32 ? 3 : 1),
2144       header_index_(size == 32 ? 0x2000 : 0)
2145   { }
2146
2147   // Override all the Output_data_got methods we use so as to first call
2148   // reserve_ent().
2149   bool
2150   add_global(Symbol* gsym, unsigned int got_type)
2151   {
2152     this->reserve_ent();
2153     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2154   }
2155
2156   bool
2157   add_global_plt(Symbol* gsym, unsigned int got_type)
2158   {
2159     this->reserve_ent();
2160     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2161   }
2162
2163   bool
2164   add_global_tls(Symbol* gsym, unsigned int got_type)
2165   { return this->add_global_plt(gsym, got_type); }
2166
2167   void
2168   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2169                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2170   {
2171     this->reserve_ent();
2172     Output_data_got<size, big_endian>::
2173       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2174   }
2175
2176   void
2177   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2178                            Output_data_reloc_generic* rel_dyn,
2179                            unsigned int r_type_1, unsigned int r_type_2)
2180   {
2181     this->reserve_ent(2);
2182     Output_data_got<size, big_endian>::
2183       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2184   }
2185
2186   bool
2187   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2188   {
2189     this->reserve_ent();
2190     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2191                                                         got_type);
2192   }
2193
2194   bool
2195   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2196   {
2197     this->reserve_ent();
2198     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2199                                                             got_type);
2200   }
2201
2202   bool
2203   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2204   { return this->add_local_plt(object, sym_index, got_type); }
2205
2206   void
2207   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2208                      unsigned int got_type,
2209                      Output_data_reloc_generic* rel_dyn,
2210                      unsigned int r_type)
2211   {
2212     this->reserve_ent(2);
2213     Output_data_got<size, big_endian>::
2214       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2215   }
2216
2217   unsigned int
2218   add_constant(Valtype constant)
2219   {
2220     this->reserve_ent();
2221     return Output_data_got<size, big_endian>::add_constant(constant);
2222   }
2223
2224   unsigned int
2225   add_constant_pair(Valtype c1, Valtype c2)
2226   {
2227     this->reserve_ent(2);
2228     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2229   }
2230
2231   // Offset of _GLOBAL_OFFSET_TABLE_.
2232   unsigned int
2233   g_o_t() const
2234   {
2235     return this->got_offset(this->header_index_);
2236   }
2237
2238   // Offset of base used to access the GOT/TOC.
2239   // The got/toc pointer reg will be set to this value.
2240   Valtype
2241   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2242   {
2243     if (size == 32)
2244       return this->g_o_t();
2245     else
2246       return (this->output_section()->address()
2247               + object->toc_base_offset()
2248               - this->address());
2249   }
2250
2251   // Ensure our GOT has a header.
2252   void
2253   set_final_data_size()
2254   {
2255     if (this->header_ent_cnt_ != 0)
2256       this->make_header();
2257     Output_data_got<size, big_endian>::set_final_data_size();
2258   }
2259
2260   // First word of GOT header needs some values that are not
2261   // handled by Output_data_got so poke them in here.
2262   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2263   void
2264   do_write(Output_file* of)
2265   {
2266     Valtype val = 0;
2267     if (size == 32 && this->layout_->dynamic_data() != NULL)
2268       val = this->layout_->dynamic_section()->address();
2269     if (size == 64)
2270       val = this->output_section()->address() + 0x8000;
2271     this->replace_constant(this->header_index_, val);
2272     Output_data_got<size, big_endian>::do_write(of);
2273   }
2274
2275 private:
2276   void
2277   reserve_ent(unsigned int cnt = 1)
2278   {
2279     if (this->header_ent_cnt_ == 0)
2280       return;
2281     if (this->num_entries() + cnt > this->header_index_)
2282       this->make_header();
2283   }
2284
2285   void
2286   make_header()
2287   {
2288     this->header_ent_cnt_ = 0;
2289     this->header_index_ = this->num_entries();
2290     if (size == 32)
2291       {
2292         Output_data_got<size, big_endian>::add_constant(0);
2293         Output_data_got<size, big_endian>::add_constant(0);
2294         Output_data_got<size, big_endian>::add_constant(0);
2295
2296         // Define _GLOBAL_OFFSET_TABLE_ at the header
2297         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2298         if (gotsym != NULL)
2299           {
2300             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2301             sym->set_value(this->g_o_t());
2302           }
2303         else
2304           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2305                                                Symbol_table::PREDEFINED,
2306                                                this, this->g_o_t(), 0,
2307                                                elfcpp::STT_OBJECT,
2308                                                elfcpp::STB_LOCAL,
2309                                                elfcpp::STV_HIDDEN, 0,
2310                                                false, false);
2311       }
2312     else
2313       Output_data_got<size, big_endian>::add_constant(0);
2314   }
2315
2316   // Stashed pointers.
2317   Symbol_table* symtab_;
2318   Layout* layout_;
2319
2320   // GOT header size.
2321   unsigned int header_ent_cnt_;
2322   // GOT header index.
2323   unsigned int header_index_;
2324 };
2325
2326 // Get the GOT section, creating it if necessary.
2327
2328 template<int size, bool big_endian>
2329 Output_data_got_powerpc<size, big_endian>*
2330 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2331                                               Layout* layout)
2332 {
2333   if (this->got_ == NULL)
2334     {
2335       gold_assert(symtab != NULL && layout != NULL);
2336
2337       this->got_
2338         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2339
2340       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2341                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2342                                       this->got_, ORDER_DATA, false);
2343     }
2344
2345   return this->got_;
2346 }
2347
2348 // Get the dynamic reloc section, creating it if necessary.
2349
2350 template<int size, bool big_endian>
2351 typename Target_powerpc<size, big_endian>::Reloc_section*
2352 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2353 {
2354   if (this->rela_dyn_ == NULL)
2355     {
2356       gold_assert(layout != NULL);
2357       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2358       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2359                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2360                                       ORDER_DYNAMIC_RELOCS, false);
2361     }
2362   return this->rela_dyn_;
2363 }
2364
2365 // Similarly, but for ifunc symbols get the one for ifunc.
2366
2367 template<int size, bool big_endian>
2368 typename Target_powerpc<size, big_endian>::Reloc_section*
2369 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2370                                                    Layout* layout,
2371                                                    bool for_ifunc)
2372 {
2373   if (!for_ifunc)
2374     return this->rela_dyn_section(layout);
2375
2376   if (this->iplt_ == NULL)
2377     this->make_iplt_section(symtab, layout);
2378   return this->iplt_->rel_plt();
2379 }
2380
2381 class Stub_control
2382 {
2383  public:
2384   // Determine the stub group size.  The group size is the absolute
2385   // value of the parameter --stub-group-size.  If --stub-group-size
2386   // is passed a negative value, we restrict stubs to be always before
2387   // the stubbed branches.
2388   Stub_control(int32_t size, bool no_size_errors)
2389     : state_(NO_GROUP), stub_group_size_(abs(size)),
2390       stub14_group_size_(abs(size) >> 10),
2391       stubs_always_before_branch_(size < 0),
2392       suppress_size_errors_(no_size_errors),
2393       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2394   {
2395   }
2396
2397   // Return true iff input section can be handled by current stub
2398   // group.
2399   bool
2400   can_add_to_stub_group(Output_section* o,
2401                         const Output_section::Input_section* i,
2402                         bool has14);
2403
2404   const Output_section::Input_section*
2405   owner()
2406   { return owner_; }
2407
2408   Output_section*
2409   output_section()
2410   { return output_section_; }
2411
2412   void
2413   set_output_and_owner(Output_section* o,
2414                        const Output_section::Input_section* i)
2415   {
2416     this->output_section_ = o;
2417     this->owner_ = i;
2418   }
2419
2420  private:
2421   typedef enum
2422   {
2423     NO_GROUP,
2424     FINDING_STUB_SECTION,
2425     HAS_STUB_SECTION
2426   } State;
2427
2428   State state_;
2429   uint32_t stub_group_size_;
2430   uint32_t stub14_group_size_;
2431   bool stubs_always_before_branch_;
2432   bool suppress_size_errors_;
2433   uint64_t group_end_addr_;
2434   const Output_section::Input_section* owner_;
2435   Output_section* output_section_;
2436 };
2437
2438 // Return true iff input section can be handled by current stub
2439 // group.
2440
2441 bool
2442 Stub_control::can_add_to_stub_group(Output_section* o,
2443                                     const Output_section::Input_section* i,
2444                                     bool has14)
2445 {
2446   uint32_t group_size
2447     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2448   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2449   uint64_t this_size;
2450   uint64_t start_addr = o->address();
2451
2452   if (whole_sec)
2453     // .init and .fini sections are pasted together to form a single
2454     // function.  We can't be adding stubs in the middle of the function.
2455     this_size = o->data_size();
2456   else
2457     {
2458       start_addr += i->relobj()->output_section_offset(i->shndx());
2459       this_size = i->data_size();
2460     }
2461   uint64_t end_addr = start_addr + this_size;
2462   bool toobig = this_size > group_size;
2463
2464   if (toobig && !this->suppress_size_errors_)
2465     gold_warning(_("%s:%s exceeds group size"),
2466                  i->relobj()->name().c_str(),
2467                  i->relobj()->section_name(i->shndx()).c_str());
2468
2469   if (this->state_ != HAS_STUB_SECTION
2470       && (!whole_sec || this->output_section_ != o)
2471       && (this->state_ == NO_GROUP
2472           || this->group_end_addr_ - end_addr < group_size))
2473     {
2474       this->owner_ = i;
2475       this->output_section_ = o;
2476     }
2477
2478   if (this->state_ == NO_GROUP)
2479     {
2480       this->state_ = FINDING_STUB_SECTION;
2481       this->group_end_addr_ = end_addr;
2482     }
2483   else if (this->group_end_addr_ - start_addr < group_size)
2484     ;
2485   // Adding this section would make the group larger than GROUP_SIZE.
2486   else if (this->state_ == FINDING_STUB_SECTION
2487            && !this->stubs_always_before_branch_
2488            && !toobig)
2489     {
2490       // But wait, there's more!  Input sections up to GROUP_SIZE
2491       // bytes before the stub table can be handled by it too.
2492       this->state_ = HAS_STUB_SECTION;
2493       this->group_end_addr_ = end_addr;
2494     }
2495   else
2496     {
2497       this->state_ = NO_GROUP;
2498       return false;
2499     }
2500   return true;
2501 }
2502
2503 // Look over all the input sections, deciding where to place stubs.
2504
2505 template<int size, bool big_endian>
2506 void
2507 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2508                                                  const Task*,
2509                                                  bool no_size_errors)
2510 {
2511   Stub_control stub_control(this->stub_group_size_, no_size_errors);
2512
2513   // Group input sections and insert stub table
2514   Stub_table_owner* table_owner = NULL;
2515   std::vector<Stub_table_owner*> tables;
2516   Layout::Section_list section_list;
2517   layout->get_executable_sections(&section_list);
2518   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2519   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2520        o != section_list.rend();
2521        ++o)
2522     {
2523       typedef Output_section::Input_section_list Input_section_list;
2524       for (Input_section_list::const_reverse_iterator i
2525              = (*o)->input_sections().rbegin();
2526            i != (*o)->input_sections().rend();
2527            ++i)
2528         {
2529           if (i->is_input_section()
2530               || i->is_relaxed_input_section())
2531             {
2532               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2533                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2534               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2535               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2536                 {
2537                   table_owner->output_section = stub_control.output_section();
2538                   table_owner->owner = stub_control.owner();
2539                   stub_control.set_output_and_owner(*o, &*i);
2540                   table_owner = NULL;
2541                 }
2542               if (table_owner == NULL)
2543                 {
2544                   table_owner = new Stub_table_owner;
2545                   tables.push_back(table_owner);
2546                 }
2547               ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2548             }
2549         }
2550     }
2551   if (table_owner != NULL)
2552     {
2553       const Output_section::Input_section* i = stub_control.owner();
2554
2555       if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2556         {
2557           // Corner case.  A new stub group was made for the first
2558           // section (last one looked at here) for some reason, but
2559           // the first section is already being used as the owner for
2560           // a stub table for following sections.  Force it into that
2561           // stub group.
2562           tables.pop_back();
2563           delete table_owner;
2564           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2565             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2566           ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2567         }
2568       else
2569         {
2570           table_owner->output_section = stub_control.output_section();
2571           table_owner->owner = i;
2572         }
2573     }
2574   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2575        t != tables.end();
2576        ++t)
2577     {
2578       Stub_table<size, big_endian>* stub_table;
2579
2580       if ((*t)->owner->is_input_section())
2581         stub_table = new Stub_table<size, big_endian>(this,
2582                                                       (*t)->output_section,
2583                                                       (*t)->owner);
2584       else if ((*t)->owner->is_relaxed_input_section())
2585         stub_table = static_cast<Stub_table<size, big_endian>*>(
2586                         (*t)->owner->relaxed_input_section());
2587       else
2588         gold_unreachable();
2589       this->stub_tables_.push_back(stub_table);
2590       delete *t;
2591     }
2592 }
2593
2594 static unsigned long
2595 max_branch_delta (unsigned int r_type)
2596 {
2597   if (r_type == elfcpp::R_POWERPC_REL14
2598       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2599       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2600     return 1L << 15;
2601   if (r_type == elfcpp::R_POWERPC_REL24
2602       || r_type == elfcpp::R_PPC_PLTREL24
2603       || r_type == elfcpp::R_PPC_LOCAL24PC)
2604     return 1L << 25;
2605   return 0;
2606 }
2607
2608 // If this branch needs a plt call stub, or a long branch stub, make one.
2609
2610 template<int size, bool big_endian>
2611 bool
2612 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2613     Stub_table<size, big_endian>* stub_table,
2614     Stub_table<size, big_endian>* ifunc_stub_table,
2615     Symbol_table* symtab) const
2616 {
2617   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2618   if (sym != NULL && sym->is_forwarder())
2619     sym = symtab->resolve_forwards(sym);
2620   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2621   Target_powerpc<size, big_endian>* target =
2622     static_cast<Target_powerpc<size, big_endian>*>(
2623       parameters->sized_target<size, big_endian>());
2624   if (gsym != NULL
2625       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2626       : this->object_->local_has_plt_offset(this->r_sym_))
2627     {
2628       if (size == 64
2629           && gsym != NULL
2630           && target->abiversion() >= 2
2631           && !parameters->options().output_is_position_independent()
2632           && !is_branch_reloc(this->r_type_))
2633         target->glink_section()->add_global_entry(gsym);
2634       else
2635         {
2636           if (stub_table == NULL)
2637             stub_table = this->object_->stub_table(this->shndx_);
2638           if (stub_table == NULL)
2639             {
2640               // This is a ref from a data section to an ifunc symbol.
2641               stub_table = ifunc_stub_table;
2642             }
2643           gold_assert(stub_table != NULL);
2644           Address from = this->object_->get_output_section_offset(this->shndx_);
2645           if (from != invalid_address)
2646             from += (this->object_->output_section(this->shndx_)->address()
2647                      + this->offset_);
2648           if (gsym != NULL)
2649             return stub_table->add_plt_call_entry(from,
2650                                                   this->object_, gsym,
2651                                                   this->r_type_, this->addend_);
2652           else
2653             return stub_table->add_plt_call_entry(from,
2654                                                   this->object_, this->r_sym_,
2655                                                   this->r_type_, this->addend_);
2656         }
2657     }
2658   else
2659     {
2660       unsigned long max_branch_offset = max_branch_delta(this->r_type_);
2661       if (max_branch_offset == 0)
2662         return true;
2663       Address from = this->object_->get_output_section_offset(this->shndx_);
2664       gold_assert(from != invalid_address);
2665       from += (this->object_->output_section(this->shndx_)->address()
2666                + this->offset_);
2667       Address to;
2668       if (gsym != NULL)
2669         {
2670           switch (gsym->source())
2671             {
2672             case Symbol::FROM_OBJECT:
2673               {
2674                 Object* symobj = gsym->object();
2675                 if (symobj->is_dynamic()
2676                     || symobj->pluginobj() != NULL)
2677                   return true;
2678                 bool is_ordinary;
2679                 unsigned int shndx = gsym->shndx(&is_ordinary);
2680                 if (shndx == elfcpp::SHN_UNDEF)
2681                   return true;
2682               }
2683               break;
2684
2685             case Symbol::IS_UNDEFINED:
2686               return true;
2687
2688             default:
2689               break;
2690             }
2691           Symbol_table::Compute_final_value_status status;
2692           to = symtab->compute_final_value<size>(gsym, &status);
2693           if (status != Symbol_table::CFVS_OK)
2694             return true;
2695           if (size == 64)
2696             to += this->object_->ppc64_local_entry_offset(gsym);
2697         }
2698       else
2699         {
2700           const Symbol_value<size>* psymval
2701             = this->object_->local_symbol(this->r_sym_);
2702           Symbol_value<size> symval;
2703           typedef Sized_relobj_file<size, big_endian> ObjType;
2704           typename ObjType::Compute_final_local_value_status status
2705             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2706                                                        &symval, symtab);
2707           if (status != ObjType::CFLV_OK
2708               || !symval.has_output_value())
2709             return true;
2710           to = symval.value(this->object_, 0);
2711           if (size == 64)
2712             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2713         }
2714       to += this->addend_;
2715       if (stub_table == NULL)
2716         stub_table = this->object_->stub_table(this->shndx_);
2717       if (size == 64 && target->abiversion() < 2)
2718         {
2719           unsigned int dest_shndx;
2720           if (!target->symval_for_branch(symtab, gsym, this->object_,
2721                                          &to, &dest_shndx))
2722             return true;
2723         }
2724       Address delta = to - from;
2725       if (delta + max_branch_offset >= 2 * max_branch_offset)
2726         {
2727           if (stub_table == NULL)
2728             {
2729               gold_warning(_("%s:%s: branch in non-executable section,"
2730                              " no long branch stub for you"),
2731                            this->object_->name().c_str(),
2732                            this->object_->section_name(this->shndx_).c_str());
2733               return true;
2734             }
2735           return stub_table->add_long_branch_entry(this->object_,
2736                                                    this->r_type_, from, to);
2737         }
2738     }
2739   return true;
2740 }
2741
2742 // Relaxation hook.  This is where we do stub generation.
2743
2744 template<int size, bool big_endian>
2745 bool
2746 Target_powerpc<size, big_endian>::do_relax(int pass,
2747                                            const Input_objects*,
2748                                            Symbol_table* symtab,
2749                                            Layout* layout,
2750                                            const Task* task)
2751 {
2752   unsigned int prev_brlt_size = 0;
2753   if (pass == 1)
2754     {
2755       bool thread_safe
2756         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2757       if (size == 64
2758           && this->abiversion() < 2
2759           && !thread_safe
2760           && !parameters->options().user_set_plt_thread_safe())
2761         {
2762           static const char* const thread_starter[] =
2763             {
2764               "pthread_create",
2765               /* libstdc++ */
2766               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2767               /* librt */
2768               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2769               "mq_notify", "create_timer",
2770               /* libanl */
2771               "getaddrinfo_a",
2772               /* libgomp */
2773               "GOMP_parallel",
2774               "GOMP_parallel_start",
2775               "GOMP_parallel_loop_static",
2776               "GOMP_parallel_loop_static_start",
2777               "GOMP_parallel_loop_dynamic",
2778               "GOMP_parallel_loop_dynamic_start",
2779               "GOMP_parallel_loop_guided",
2780               "GOMP_parallel_loop_guided_start",
2781               "GOMP_parallel_loop_runtime",
2782               "GOMP_parallel_loop_runtime_start",
2783               "GOMP_parallel_sections",
2784               "GOMP_parallel_sections_start",
2785               /* libgo */
2786               "__go_go",
2787             };
2788
2789           if (parameters->options().shared())
2790             thread_safe = true;
2791           else
2792             {
2793               for (unsigned int i = 0;
2794                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2795                    i++)
2796                 {
2797                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2798                   thread_safe = (sym != NULL
2799                                  && sym->in_reg()
2800                                  && sym->in_real_elf());
2801                   if (thread_safe)
2802                     break;
2803                 }
2804             }
2805         }
2806       this->plt_thread_safe_ = thread_safe;
2807     }
2808
2809   if (pass == 1)
2810     {
2811       this->stub_group_size_ = parameters->options().stub_group_size();
2812       bool no_size_errors = true;
2813       if (this->stub_group_size_ == 1)
2814         this->stub_group_size_ = 0x1c00000;
2815       else if (this->stub_group_size_ == -1)
2816         this->stub_group_size_ = -0x1e00000;
2817       else
2818         no_size_errors = false;
2819       this->group_sections(layout, task, no_size_errors);
2820     }
2821   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2822     {
2823       this->branch_lookup_table_.clear();
2824       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2825            p != this->stub_tables_.end();
2826            ++p)
2827         {
2828           (*p)->clear_stubs(true);
2829         }
2830       this->stub_tables_.clear();
2831       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2832       gold_info(_("%s: stub group size is too large; retrying with %d"),
2833                 program_name, this->stub_group_size_);
2834       this->group_sections(layout, task, true);
2835     }
2836
2837   // We need address of stub tables valid for make_stub.
2838   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2839        p != this->stub_tables_.end();
2840        ++p)
2841     {
2842       const Powerpc_relobj<size, big_endian>* object
2843         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2844       Address off = object->get_output_section_offset((*p)->shndx());
2845       gold_assert(off != invalid_address);
2846       Output_section* os = (*p)->output_section();
2847       (*p)->set_address_and_size(os, off);
2848     }
2849
2850   if (pass != 1)
2851     {
2852       // Clear plt call stubs, long branch stubs and branch lookup table.
2853       prev_brlt_size = this->branch_lookup_table_.size();
2854       this->branch_lookup_table_.clear();
2855       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2856            p != this->stub_tables_.end();
2857            ++p)
2858         {
2859           (*p)->clear_stubs(false);
2860         }
2861     }
2862
2863   // Build all the stubs.
2864   this->relax_failed_ = false;
2865   Stub_table<size, big_endian>* ifunc_stub_table
2866     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2867   Stub_table<size, big_endian>* one_stub_table
2868     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2869   for (typename Branches::const_iterator b = this->branch_info_.begin();
2870        b != this->branch_info_.end();
2871        b++)
2872     {
2873       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2874           && !this->relax_failed_)
2875         {
2876           this->relax_failed_ = true;
2877           this->relax_fail_count_++;
2878           if (this->relax_fail_count_ < 3)
2879             return true;
2880         }
2881     }
2882
2883   // Did anything change size?
2884   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2885   bool again = num_huge_branches != prev_brlt_size;
2886   if (size == 64 && num_huge_branches != 0)
2887     this->make_brlt_section(layout);
2888   if (size == 64 && again)
2889     this->brlt_section_->set_current_size(num_huge_branches);
2890
2891   typedef Unordered_set<Output_section*> Output_sections;
2892   Output_sections os_need_update;
2893   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2894        p != this->stub_tables_.end();
2895        ++p)
2896     {
2897       if ((*p)->size_update())
2898         {
2899           again = true;
2900           (*p)->add_eh_frame(layout);
2901           os_need_update.insert((*p)->output_section());
2902         }
2903     }
2904
2905   // Set output section offsets for all input sections in an output
2906   // section that just changed size.  Anything past the stubs will
2907   // need updating.
2908   for (typename Output_sections::iterator p = os_need_update.begin();
2909        p != os_need_update.end();
2910        p++)
2911     {
2912       Output_section* os = *p;
2913       Address off = 0;
2914       typedef Output_section::Input_section_list Input_section_list;
2915       for (Input_section_list::const_iterator i = os->input_sections().begin();
2916            i != os->input_sections().end();
2917            ++i)
2918         {
2919           off = align_address(off, i->addralign());
2920           if (i->is_input_section() || i->is_relaxed_input_section())
2921             i->relobj()->set_section_offset(i->shndx(), off);
2922           if (i->is_relaxed_input_section())
2923             {
2924               Stub_table<size, big_endian>* stub_table
2925                 = static_cast<Stub_table<size, big_endian>*>(
2926                     i->relaxed_input_section());
2927               off += stub_table->set_address_and_size(os, off);
2928             }
2929           else
2930             off += i->data_size();
2931         }
2932       // If .branch_lt is part of this output section, then we have
2933       // just done the offset adjustment.
2934       os->clear_section_offsets_need_adjustment();
2935     }
2936
2937   if (size == 64
2938       && !again
2939       && num_huge_branches != 0
2940       && parameters->options().output_is_position_independent())
2941     {
2942       // Fill in the BRLT relocs.
2943       this->brlt_section_->reset_brlt_sizes();
2944       for (typename Branch_lookup_table::const_iterator p
2945              = this->branch_lookup_table_.begin();
2946            p != this->branch_lookup_table_.end();
2947            ++p)
2948         {
2949           this->brlt_section_->add_reloc(p->first, p->second);
2950         }
2951       this->brlt_section_->finalize_brlt_sizes();
2952     }
2953   return again;
2954 }
2955
2956 template<int size, bool big_endian>
2957 void
2958 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2959                                                       unsigned char* oview,
2960                                                       uint64_t* paddress,
2961                                                       off_t* plen) const
2962 {
2963   uint64_t address = plt->address();
2964   off_t len = plt->data_size();
2965
2966   if (plt == this->glink_)
2967     {
2968       // See Output_data_glink::do_write() for glink contents.
2969       if (len == 0)
2970         {
2971           gold_assert(parameters->doing_static_link());
2972           // Static linking may need stubs, to support ifunc and long
2973           // branches.  We need to create an output section for
2974           // .eh_frame early in the link process, to have a place to
2975           // attach stub .eh_frame info.  We also need to have
2976           // registered a CIE that matches the stub CIE.  Both of
2977           // these requirements are satisfied by creating an FDE and
2978           // CIE for .glink, even though static linking will leave
2979           // .glink zero length.
2980           // ??? Hopefully generating an FDE with a zero address range
2981           // won't confuse anything that consumes .eh_frame info.
2982         }
2983       else if (size == 64)
2984         {
2985           // There is one word before __glink_PLTresolve
2986           address += 8;
2987           len -= 8;
2988         }
2989       else if (parameters->options().output_is_position_independent())
2990         {
2991           // There are two FDEs for a position independent glink.
2992           // The first covers the branch table, the second
2993           // __glink_PLTresolve at the end of glink.
2994           off_t resolve_size = this->glink_->pltresolve_size;
2995           if (oview[9] == elfcpp::DW_CFA_nop)
2996             len -= resolve_size;
2997           else
2998             {
2999               address += len - resolve_size;
3000               len = resolve_size;
3001             }
3002         }
3003     }
3004   else
3005     {
3006       // Must be a stub table.
3007       const Stub_table<size, big_endian>* stub_table
3008         = static_cast<const Stub_table<size, big_endian>*>(plt);
3009       uint64_t stub_address = stub_table->stub_address();
3010       len -= stub_address - address;
3011       address = stub_address;
3012     }
3013
3014   *paddress = address;
3015   *plen = len;
3016 }
3017
3018 // A class to handle the PLT data.
3019
3020 template<int size, bool big_endian>
3021 class Output_data_plt_powerpc : public Output_section_data_build
3022 {
3023  public:
3024   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3025                             size, big_endian> Reloc_section;
3026
3027   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3028                           Reloc_section* plt_rel,
3029                           const char* name)
3030     : Output_section_data_build(size == 32 ? 4 : 8),
3031       rel_(plt_rel),
3032       targ_(targ),
3033       name_(name)
3034   { }
3035
3036   // Add an entry to the PLT.
3037   void
3038   add_entry(Symbol*);
3039
3040   void
3041   add_ifunc_entry(Symbol*);
3042
3043   void
3044   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3045
3046   // Return the .rela.plt section data.
3047   Reloc_section*
3048   rel_plt() const
3049   {
3050     return this->rel_;
3051   }
3052
3053   // Return the number of PLT entries.
3054   unsigned int
3055   entry_count() const
3056   {
3057     if (this->current_data_size() == 0)
3058       return 0;
3059     return ((this->current_data_size() - this->first_plt_entry_offset())
3060             / this->plt_entry_size());
3061   }
3062
3063  protected:
3064   void
3065   do_adjust_output_section(Output_section* os)
3066   {
3067     os->set_entsize(0);
3068   }
3069
3070   // Write to a map file.
3071   void
3072   do_print_to_mapfile(Mapfile* mapfile) const
3073   { mapfile->print_output_data(this, this->name_); }
3074
3075  private:
3076   // Return the offset of the first non-reserved PLT entry.
3077   unsigned int
3078   first_plt_entry_offset() const
3079   {
3080     // IPLT has no reserved entry.
3081     if (this->name_[3] == 'I')
3082       return 0;
3083     return this->targ_->first_plt_entry_offset();
3084   }
3085
3086   // Return the size of each PLT entry.
3087   unsigned int
3088   plt_entry_size() const
3089   {
3090     return this->targ_->plt_entry_size();
3091   }
3092
3093   // Write out the PLT data.
3094   void
3095   do_write(Output_file*);
3096
3097   // The reloc section.
3098   Reloc_section* rel_;
3099   // Allows access to .glink for do_write.
3100   Target_powerpc<size, big_endian>* targ_;
3101   // What to report in map file.
3102   const char *name_;
3103 };
3104
3105 // Add an entry to the PLT.
3106
3107 template<int size, bool big_endian>
3108 void
3109 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3110 {
3111   if (!gsym->has_plt_offset())
3112     {
3113       section_size_type off = this->current_data_size();
3114       if (off == 0)
3115         off += this->first_plt_entry_offset();
3116       gsym->set_plt_offset(off);
3117       gsym->set_needs_dynsym_entry();
3118       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3119       this->rel_->add_global(gsym, dynrel, this, off, 0);
3120       off += this->plt_entry_size();
3121       this->set_current_data_size(off);
3122     }
3123 }
3124
3125 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3126
3127 template<int size, bool big_endian>
3128 void
3129 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3130 {
3131   if (!gsym->has_plt_offset())
3132     {
3133       section_size_type off = this->current_data_size();
3134       gsym->set_plt_offset(off);
3135       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3136       if (size == 64 && this->targ_->abiversion() < 2)
3137         dynrel = elfcpp::R_PPC64_JMP_IREL;
3138       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3139       off += this->plt_entry_size();
3140       this->set_current_data_size(off);
3141     }
3142 }
3143
3144 // Add an entry for a local ifunc symbol to the IPLT.
3145
3146 template<int size, bool big_endian>
3147 void
3148 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3149     Sized_relobj_file<size, big_endian>* relobj,
3150     unsigned int local_sym_index)
3151 {
3152   if (!relobj->local_has_plt_offset(local_sym_index))
3153     {
3154       section_size_type off = this->current_data_size();
3155       relobj->set_local_plt_offset(local_sym_index, off);
3156       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3157       if (size == 64 && this->targ_->abiversion() < 2)
3158         dynrel = elfcpp::R_PPC64_JMP_IREL;
3159       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3160                                               this, off, 0);
3161       off += this->plt_entry_size();
3162       this->set_current_data_size(off);
3163     }
3164 }
3165
3166 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3167 static const uint32_t add_2_2_11        = 0x7c425a14;
3168 static const uint32_t add_3_3_2         = 0x7c631214;
3169 static const uint32_t add_3_3_13        = 0x7c636a14;
3170 static const uint32_t add_11_0_11       = 0x7d605a14;
3171 static const uint32_t add_11_2_11       = 0x7d625a14;
3172 static const uint32_t add_11_11_2       = 0x7d6b1214;
3173 static const uint32_t addi_0_12         = 0x380c0000;
3174 static const uint32_t addi_2_2          = 0x38420000;
3175 static const uint32_t addi_3_3          = 0x38630000;
3176 static const uint32_t addi_11_11        = 0x396b0000;
3177 static const uint32_t addi_12_12        = 0x398c0000;
3178 static const uint32_t addis_0_2         = 0x3c020000;
3179 static const uint32_t addis_0_13        = 0x3c0d0000;
3180 static const uint32_t addis_3_2         = 0x3c620000;
3181 static const uint32_t addis_3_13        = 0x3c6d0000;
3182 static const uint32_t addis_11_2        = 0x3d620000;
3183 static const uint32_t addis_11_11       = 0x3d6b0000;
3184 static const uint32_t addis_11_30       = 0x3d7e0000;
3185 static const uint32_t addis_12_2        = 0x3d820000;
3186 static const uint32_t addis_12_12       = 0x3d8c0000;
3187 static const uint32_t b                 = 0x48000000;
3188 static const uint32_t bcl_20_31         = 0x429f0005;
3189 static const uint32_t bctr              = 0x4e800420;
3190 static const uint32_t blr               = 0x4e800020;
3191 static const uint32_t bnectr_p4         = 0x4ce20420;
3192 static const uint32_t cmpldi_2_0        = 0x28220000;
3193 static const uint32_t cror_15_15_15     = 0x4def7b82;
3194 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3195 static const uint32_t ld_0_1            = 0xe8010000;
3196 static const uint32_t ld_0_12           = 0xe80c0000;
3197 static const uint32_t ld_2_1            = 0xe8410000;
3198 static const uint32_t ld_2_2            = 0xe8420000;
3199 static const uint32_t ld_2_11           = 0xe84b0000;
3200 static const uint32_t ld_11_2           = 0xe9620000;
3201 static const uint32_t ld_11_11          = 0xe96b0000;
3202 static const uint32_t ld_12_2           = 0xe9820000;
3203 static const uint32_t ld_12_11          = 0xe98b0000;
3204 static const uint32_t ld_12_12          = 0xe98c0000;
3205 static const uint32_t lfd_0_1           = 0xc8010000;
3206 static const uint32_t li_0_0            = 0x38000000;
3207 static const uint32_t li_12_0           = 0x39800000;
3208 static const uint32_t lis_0_0           = 0x3c000000;
3209 static const uint32_t lis_11            = 0x3d600000;
3210 static const uint32_t lis_12            = 0x3d800000;
3211 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3212 static const uint32_t lwz_0_12          = 0x800c0000;
3213 static const uint32_t lwz_11_11         = 0x816b0000;
3214 static const uint32_t lwz_11_30         = 0x817e0000;
3215 static const uint32_t lwz_12_12         = 0x818c0000;
3216 static const uint32_t lwzu_0_12         = 0x840c0000;
3217 static const uint32_t mflr_0            = 0x7c0802a6;
3218 static const uint32_t mflr_11           = 0x7d6802a6;
3219 static const uint32_t mflr_12           = 0x7d8802a6;
3220 static const uint32_t mtctr_0           = 0x7c0903a6;
3221 static const uint32_t mtctr_11          = 0x7d6903a6;
3222 static const uint32_t mtctr_12          = 0x7d8903a6;
3223 static const uint32_t mtlr_0            = 0x7c0803a6;
3224 static const uint32_t mtlr_12           = 0x7d8803a6;
3225 static const uint32_t nop               = 0x60000000;
3226 static const uint32_t ori_0_0_0         = 0x60000000;
3227 static const uint32_t srdi_0_0_2        = 0x7800f082;
3228 static const uint32_t std_0_1           = 0xf8010000;
3229 static const uint32_t std_0_12          = 0xf80c0000;
3230 static const uint32_t std_2_1           = 0xf8410000;
3231 static const uint32_t stfd_0_1          = 0xd8010000;
3232 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3233 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3234 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3235 static const uint32_t xor_2_12_12       = 0x7d826278;
3236 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3237
3238 // Write out the PLT.
3239
3240 template<int size, bool big_endian>
3241 void
3242 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3243 {
3244   if (size == 32 && this->name_[3] != 'I')
3245     {
3246       const section_size_type offset = this->offset();
3247       const section_size_type oview_size
3248         = convert_to_section_size_type(this->data_size());
3249       unsigned char* const oview = of->get_output_view(offset, oview_size);
3250       unsigned char* pov = oview;
3251       unsigned char* endpov = oview + oview_size;
3252
3253       // The address of the .glink branch table
3254       const Output_data_glink<size, big_endian>* glink
3255         = this->targ_->glink_section();
3256       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3257
3258       while (pov < endpov)
3259         {
3260           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3261           pov += 4;
3262           branch_tab += 4;
3263         }
3264
3265       of->write_output_view(offset, oview_size, oview);
3266     }
3267 }
3268
3269 // Create the PLT section.
3270
3271 template<int size, bool big_endian>
3272 void
3273 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3274                                                    Layout* layout)
3275 {
3276   if (this->plt_ == NULL)
3277     {
3278       if (this->got_ == NULL)
3279         this->got_section(symtab, layout);
3280
3281       if (this->glink_ == NULL)
3282         make_glink_section(layout);
3283
3284       // Ensure that .rela.dyn always appears before .rela.plt  This is
3285       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3286       // needs to include .rela.plt in its range.
3287       this->rela_dyn_section(layout);
3288
3289       Reloc_section* plt_rel = new Reloc_section(false);
3290       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3291                                       elfcpp::SHF_ALLOC, plt_rel,
3292                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3293       this->plt_
3294         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3295                                                         "** PLT");
3296       layout->add_output_section_data(".plt",
3297                                       (size == 32
3298                                        ? elfcpp::SHT_PROGBITS
3299                                        : elfcpp::SHT_NOBITS),
3300                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3301                                       this->plt_,
3302                                       (size == 32
3303                                        ? ORDER_SMALL_DATA
3304                                        : ORDER_SMALL_BSS),
3305                                       false);
3306     }
3307 }
3308
3309 // Create the IPLT section.
3310
3311 template<int size, bool big_endian>
3312 void
3313 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3314                                                     Layout* layout)
3315 {
3316   if (this->iplt_ == NULL)
3317     {
3318       this->make_plt_section(symtab, layout);
3319
3320       Reloc_section* iplt_rel = new Reloc_section(false);
3321       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3322       this->iplt_
3323         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3324                                                         "** IPLT");
3325       this->plt_->output_section()->add_output_section_data(this->iplt_);
3326     }
3327 }
3328
3329 // A section for huge long branch addresses, similar to plt section.
3330
3331 template<int size, bool big_endian>
3332 class Output_data_brlt_powerpc : public Output_section_data_build
3333 {
3334  public:
3335   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3336   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3337                             size, big_endian> Reloc_section;
3338
3339   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3340                            Reloc_section* brlt_rel)
3341     : Output_section_data_build(size == 32 ? 4 : 8),
3342       rel_(brlt_rel),
3343       targ_(targ)
3344   { }
3345
3346   void
3347   reset_brlt_sizes()
3348   {
3349     this->reset_data_size();
3350     this->rel_->reset_data_size();
3351   }
3352
3353   void
3354   finalize_brlt_sizes()
3355   {
3356     this->finalize_data_size();
3357     this->rel_->finalize_data_size();
3358   }
3359
3360   // Add a reloc for an entry in the BRLT.
3361   void
3362   add_reloc(Address to, unsigned int off)
3363   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3364
3365   // Update section and reloc section size.
3366   void
3367   set_current_size(unsigned int num_branches)
3368   {
3369     this->reset_address_and_file_offset();
3370     this->set_current_data_size(num_branches * 16);
3371     this->finalize_data_size();
3372     Output_section* os = this->output_section();
3373     os->set_section_offsets_need_adjustment();
3374     if (this->rel_ != NULL)
3375       {
3376         unsigned int reloc_size
3377           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3378         this->rel_->reset_address_and_file_offset();
3379         this->rel_->set_current_data_size(num_branches * reloc_size);
3380         this->rel_->finalize_data_size();
3381         Output_section* os = this->rel_->output_section();
3382         os->set_section_offsets_need_adjustment();
3383       }
3384   }
3385
3386  protected:
3387   void
3388   do_adjust_output_section(Output_section* os)
3389   {
3390     os->set_entsize(0);
3391   }
3392
3393   // Write to a map file.
3394   void
3395   do_print_to_mapfile(Mapfile* mapfile) const
3396   { mapfile->print_output_data(this, "** BRLT"); }
3397
3398  private:
3399   // Write out the BRLT data.
3400   void
3401   do_write(Output_file*);
3402
3403   // The reloc section.
3404   Reloc_section* rel_;
3405   Target_powerpc<size, big_endian>* targ_;
3406 };
3407
3408 // Make the branch lookup table section.
3409
3410 template<int size, bool big_endian>
3411 void
3412 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3413 {
3414   if (size == 64 && this->brlt_section_ == NULL)
3415     {
3416       Reloc_section* brlt_rel = NULL;
3417       bool is_pic = parameters->options().output_is_position_independent();
3418       if (is_pic)
3419         {
3420           // When PIC we can't fill in .branch_lt (like .plt it can be
3421           // a bss style section) but must initialise at runtime via
3422           // dynamic relocats.
3423           this->rela_dyn_section(layout);
3424           brlt_rel = new Reloc_section(false);
3425           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3426         }
3427       this->brlt_section_
3428         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3429       if (this->plt_ && is_pic)
3430         this->plt_->output_section()
3431           ->add_output_section_data(this->brlt_section_);
3432       else
3433         layout->add_output_section_data(".branch_lt",
3434                                         (is_pic ? elfcpp::SHT_NOBITS
3435                                          : elfcpp::SHT_PROGBITS),
3436                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3437                                         this->brlt_section_,
3438                                         (is_pic ? ORDER_SMALL_BSS
3439                                          : ORDER_SMALL_DATA),
3440                                         false);
3441     }
3442 }
3443
3444 // Write out .branch_lt when non-PIC.
3445
3446 template<int size, bool big_endian>
3447 void
3448 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3449 {
3450   if (size == 64 && !parameters->options().output_is_position_independent())
3451     {
3452       const section_size_type offset = this->offset();
3453       const section_size_type oview_size
3454         = convert_to_section_size_type(this->data_size());
3455       unsigned char* const oview = of->get_output_view(offset, oview_size);
3456
3457       this->targ_->write_branch_lookup_table(oview);
3458       of->write_output_view(offset, oview_size, oview);
3459     }
3460 }
3461
3462 static inline uint32_t
3463 l(uint32_t a)
3464 {
3465   return a & 0xffff;
3466 }
3467
3468 static inline uint32_t
3469 hi(uint32_t a)
3470 {
3471   return l(a >> 16);
3472 }
3473
3474 static inline uint32_t
3475 ha(uint32_t a)
3476 {
3477   return hi(a + 0x8000);
3478 }
3479
3480 template<int size>
3481 struct Eh_cie
3482 {
3483   static const unsigned char eh_frame_cie[12];
3484 };
3485
3486 template<int size>
3487 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3488 {
3489   1,                                    // CIE version.
3490   'z', 'R', 0,                          // Augmentation string.
3491   4,                                    // Code alignment.
3492   0x80 - size / 8 ,                     // Data alignment.
3493   65,                                   // RA reg.
3494   1,                                    // Augmentation size.
3495   (elfcpp::DW_EH_PE_pcrel
3496    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3497   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3498 };
3499
3500 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3501 static const unsigned char glink_eh_frame_fde_64v1[] =
3502 {
3503   0, 0, 0, 0,                           // Replaced with offset to .glink.
3504   0, 0, 0, 0,                           // Replaced with size of .glink.
3505   0,                                    // Augmentation size.
3506   elfcpp::DW_CFA_advance_loc + 1,
3507   elfcpp::DW_CFA_register, 65, 12,
3508   elfcpp::DW_CFA_advance_loc + 4,
3509   elfcpp::DW_CFA_restore_extended, 65
3510 };
3511
3512 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3513 static const unsigned char glink_eh_frame_fde_64v2[] =
3514 {
3515   0, 0, 0, 0,                           // Replaced with offset to .glink.
3516   0, 0, 0, 0,                           // Replaced with size of .glink.
3517   0,                                    // Augmentation size.
3518   elfcpp::DW_CFA_advance_loc + 1,
3519   elfcpp::DW_CFA_register, 65, 0,
3520   elfcpp::DW_CFA_advance_loc + 4,
3521   elfcpp::DW_CFA_restore_extended, 65
3522 };
3523
3524 // Describe __glink_PLTresolve use of LR, 32-bit version.
3525 static const unsigned char glink_eh_frame_fde_32[] =
3526 {
3527   0, 0, 0, 0,                           // Replaced with offset to .glink.
3528   0, 0, 0, 0,                           // Replaced with size of .glink.
3529   0,                                    // Augmentation size.
3530   elfcpp::DW_CFA_advance_loc + 2,
3531   elfcpp::DW_CFA_register, 65, 0,
3532   elfcpp::DW_CFA_advance_loc + 4,
3533   elfcpp::DW_CFA_restore_extended, 65
3534 };
3535
3536 static const unsigned char default_fde[] =
3537 {
3538   0, 0, 0, 0,                           // Replaced with offset to stubs.
3539   0, 0, 0, 0,                           // Replaced with size of stubs.
3540   0,                                    // Augmentation size.
3541   elfcpp::DW_CFA_nop,                   // Pad.
3542   elfcpp::DW_CFA_nop,
3543   elfcpp::DW_CFA_nop
3544 };
3545
3546 template<bool big_endian>
3547 static inline void
3548 write_insn(unsigned char* p, uint32_t v)
3549 {
3550   elfcpp::Swap<32, big_endian>::writeval(p, v);
3551 }
3552
3553 // Stub_table holds information about plt and long branch stubs.
3554 // Stubs are built in an area following some input section determined
3555 // by group_sections().  This input section is converted to a relaxed
3556 // input section allowing it to be resized to accommodate the stubs
3557
3558 template<int size, bool big_endian>
3559 class Stub_table : public Output_relaxed_input_section
3560 {
3561  public:
3562   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3563   static const Address invalid_address = static_cast<Address>(0) - 1;
3564
3565   Stub_table(Target_powerpc<size, big_endian>* targ,
3566              Output_section* output_section,
3567              const Output_section::Input_section* owner)
3568     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3569                                    owner->relobj()
3570                                    ->section_addralign(owner->shndx())),
3571       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3572       orig_data_size_(owner->current_data_size()),
3573       plt_size_(0), last_plt_size_(0),
3574       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3575   {
3576     this->set_output_section(output_section);
3577
3578     std::vector<Output_relaxed_input_section*> new_relaxed;
3579     new_relaxed.push_back(this);
3580     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3581   }
3582
3583   // Add a plt call stub.
3584   bool
3585   add_plt_call_entry(Address,
3586                      const Sized_relobj_file<size, big_endian>*,
3587                      const Symbol*,
3588                      unsigned int,
3589                      Address);
3590
3591   bool
3592   add_plt_call_entry(Address,
3593                      const Sized_relobj_file<size, big_endian>*,
3594                      unsigned int,
3595                      unsigned int,
3596                      Address);
3597
3598   // Find a given plt call stub.
3599   Address
3600   find_plt_call_entry(const Symbol*) const;
3601
3602   Address
3603   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3604                       unsigned int) const;
3605
3606   Address
3607   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3608                       const Symbol*,
3609                       unsigned int,
3610                       Address) const;
3611
3612   Address
3613   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3614                       unsigned int,
3615                       unsigned int,
3616                       Address) const;
3617
3618   // Add a long branch stub.
3619   bool
3620   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3621                         unsigned int, Address, Address);
3622
3623   Address
3624   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3625                          Address) const;
3626
3627   bool
3628   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3629   {
3630     unsigned long max_branch_offset = max_branch_delta(r_type);
3631     if (max_branch_offset == 0)
3632       return true;
3633     gold_assert(from != invalid_address);
3634     Address loc = off + this->stub_address();
3635     return loc - from + max_branch_offset < 2 * max_branch_offset;
3636   }
3637
3638   void
3639   clear_stubs(bool all)
3640   {
3641     this->plt_call_stubs_.clear();
3642     this->plt_size_ = 0;
3643     this->long_branch_stubs_.clear();
3644     this->branch_size_ = 0;
3645     if (all)
3646       {
3647         this->last_plt_size_ = 0;
3648         this->last_branch_size_ = 0;
3649       }
3650   }
3651
3652   Address
3653   set_address_and_size(const Output_section* os, Address off)
3654   {
3655     Address start_off = off;
3656     off += this->orig_data_size_;
3657     Address my_size = this->plt_size_ + this->branch_size_;
3658     if (my_size != 0)
3659       off = align_address(off, this->stub_align());
3660     // Include original section size and alignment padding in size
3661     my_size += off - start_off;
3662     this->reset_address_and_file_offset();
3663     this->set_current_data_size(my_size);
3664     this->set_address_and_file_offset(os->address() + start_off,
3665                                       os->offset() + start_off);
3666     return my_size;
3667   }
3668
3669   Address
3670   stub_address() const
3671   {
3672     return align_address(this->address() + this->orig_data_size_,
3673                          this->stub_align());
3674   }
3675
3676   Address
3677   stub_offset() const
3678   {
3679     return align_address(this->offset() + this->orig_data_size_,
3680                          this->stub_align());
3681   }
3682
3683   section_size_type
3684   plt_size() const
3685   { return this->plt_size_; }
3686
3687   bool
3688   size_update()
3689   {
3690     Output_section* os = this->output_section();
3691     if (os->addralign() < this->stub_align())
3692       {
3693         os->set_addralign(this->stub_align());
3694         // FIXME: get rid of the insane checkpointing.
3695         // We can't increase alignment of the input section to which
3696         // stubs are attached;  The input section may be .init which
3697         // is pasted together with other .init sections to form a
3698         // function.  Aligning might insert zero padding resulting in
3699         // sigill.  However we do need to increase alignment of the
3700         // output section so that the align_address() on offset in
3701         // set_address_and_size() adds the same padding as the
3702         // align_address() on address in stub_address().
3703         // What's more, we need this alignment for the layout done in
3704         // relaxation_loop_body() so that the output section starts at
3705         // a suitably aligned address.
3706         os->checkpoint_set_addralign(this->stub_align());
3707       }
3708     if (this->last_plt_size_ != this->plt_size_
3709         || this->last_branch_size_ != this->branch_size_)
3710       {
3711         this->last_plt_size_ = this->plt_size_;
3712         this->last_branch_size_ = this->branch_size_;
3713         return true;
3714       }
3715     return false;
3716   }
3717
3718   // Add .eh_frame info for this stub section.  Unlike other linker
3719   // generated .eh_frame this is added late in the link, because we
3720   // only want the .eh_frame info if this particular stub section is
3721   // non-empty.
3722   void
3723   add_eh_frame(Layout* layout)
3724   {
3725     if (!this->eh_frame_added_)
3726       {
3727         if (!parameters->options().ld_generated_unwind_info())
3728           return;
3729
3730         // Since we add stub .eh_frame info late, it must be placed
3731         // after all other linker generated .eh_frame info so that
3732         // merge mapping need not be updated for input sections.
3733         // There is no provision to use a different CIE to that used
3734         // by .glink.
3735         if (!this->targ_->has_glink())
3736           return;
3737
3738         layout->add_eh_frame_for_plt(this,
3739                                      Eh_cie<size>::eh_frame_cie,
3740                                      sizeof (Eh_cie<size>::eh_frame_cie),
3741                                      default_fde,
3742                                      sizeof (default_fde));
3743         this->eh_frame_added_ = true;
3744       }
3745   }
3746
3747   Target_powerpc<size, big_endian>*
3748   targ() const
3749   { return targ_; }
3750
3751  private:
3752   class Plt_stub_ent;
3753   class Plt_stub_ent_hash;
3754   typedef Unordered_map<Plt_stub_ent, unsigned int,
3755                         Plt_stub_ent_hash> Plt_stub_entries;
3756
3757   // Alignment of stub section.
3758   unsigned int
3759   stub_align() const
3760   {
3761     if (size == 32)
3762       return 16;
3763     unsigned int min_align = 32;
3764     unsigned int user_align = 1 << parameters->options().plt_align();
3765     return std::max(user_align, min_align);
3766   }
3767
3768   // Return the plt offset for the given call stub.
3769   Address
3770   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3771   {
3772     const Symbol* gsym = p->first.sym_;
3773     if (gsym != NULL)
3774       {
3775         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3776                     && gsym->can_use_relative_reloc(false));
3777         return gsym->plt_offset();
3778       }
3779     else
3780       {
3781         *is_iplt = true;
3782         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3783         unsigned int local_sym_index = p->first.locsym_;
3784         return relobj->local_plt_offset(local_sym_index);
3785       }
3786   }
3787
3788   // Size of a given plt call stub.
3789   unsigned int
3790   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3791   {
3792     if (size == 32)
3793       return 16;
3794
3795     bool is_iplt;
3796     Address plt_addr = this->plt_off(p, &is_iplt);
3797     if (is_iplt)
3798       plt_addr += this->targ_->iplt_section()->address();
3799     else
3800       plt_addr += this->targ_->plt_section()->address();
3801     Address got_addr = this->targ_->got_section()->output_section()->address();
3802     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3803       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3804     got_addr += ppcobj->toc_base_offset();
3805     Address off = plt_addr - got_addr;
3806     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3807     if (this->targ_->abiversion() < 2)
3808       {
3809         bool static_chain = parameters->options().plt_static_chain();
3810         bool thread_safe = this->targ_->plt_thread_safe();
3811         bytes += (4
3812                   + 4 * static_chain
3813                   + 8 * thread_safe
3814                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3815       }
3816     unsigned int align = 1 << parameters->options().plt_align();
3817     if (align > 1)
3818       bytes = (bytes + align - 1) & -align;
3819     return bytes;
3820   }
3821
3822   // Return long branch stub size.
3823   unsigned int
3824   branch_stub_size(Address to)
3825   {
3826     Address loc
3827       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3828     if (to - loc + (1 << 25) < 2 << 25)
3829       return 4;
3830     if (size == 64 || !parameters->options().output_is_position_independent())
3831       return 16;
3832     return 32;
3833   }
3834
3835   // Write out stubs.
3836   void
3837   do_write(Output_file*);
3838
3839   // Plt call stub keys.
3840   class Plt_stub_ent
3841   {
3842   public:
3843     Plt_stub_ent(const Symbol* sym)
3844       : sym_(sym), object_(0), addend_(0), locsym_(0)
3845     { }
3846
3847     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3848                  unsigned int locsym_index)
3849       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3850     { }
3851
3852     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3853                  const Symbol* sym,
3854                  unsigned int r_type,
3855                  Address addend)
3856       : sym_(sym), object_(0), addend_(0), locsym_(0)
3857     {
3858       if (size != 32)
3859         this->addend_ = addend;
3860       else if (parameters->options().output_is_position_independent()
3861                && r_type == elfcpp::R_PPC_PLTREL24)
3862         {
3863           this->addend_ = addend;
3864           if (this->addend_ >= 32768)
3865             this->object_ = object;
3866         }
3867     }
3868
3869     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3870                  unsigned int locsym_index,
3871                  unsigned int r_type,
3872                  Address addend)
3873       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3874     {
3875       if (size != 32)
3876         this->addend_ = addend;
3877       else if (parameters->options().output_is_position_independent()
3878                && r_type == elfcpp::R_PPC_PLTREL24)
3879         this->addend_ = addend;
3880     }
3881
3882     bool operator==(const Plt_stub_ent& that) const
3883     {
3884       return (this->sym_ == that.sym_
3885               && this->object_ == that.object_
3886               && this->addend_ == that.addend_
3887               && this->locsym_ == that.locsym_);
3888     }
3889
3890     const Symbol* sym_;
3891     const Sized_relobj_file<size, big_endian>* object_;
3892     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3893     unsigned int locsym_;
3894   };
3895
3896   class Plt_stub_ent_hash
3897   {
3898   public:
3899     size_t operator()(const Plt_stub_ent& ent) const
3900     {
3901       return (reinterpret_cast<uintptr_t>(ent.sym_)
3902               ^ reinterpret_cast<uintptr_t>(ent.object_)
3903               ^ ent.addend_
3904               ^ ent.locsym_);
3905     }
3906   };
3907
3908   // Long branch stub keys.
3909   class Branch_stub_ent
3910   {
3911   public:
3912     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3913       : dest_(to), toc_base_off_(0)
3914     {
3915       if (size == 64)
3916         toc_base_off_ = obj->toc_base_offset();
3917     }
3918
3919     bool operator==(const Branch_stub_ent& that) const
3920     {
3921       return (this->dest_ == that.dest_
3922               && (size == 32
3923                   || this->toc_base_off_ == that.toc_base_off_));
3924     }
3925
3926     Address dest_;
3927     unsigned int toc_base_off_;
3928   };
3929
3930   class Branch_stub_ent_hash
3931   {
3932   public:
3933     size_t operator()(const Branch_stub_ent& ent) const
3934     { return ent.dest_ ^ ent.toc_base_off_; }
3935   };
3936
3937   // In a sane world this would be a global.
3938   Target_powerpc<size, big_endian>* targ_;
3939   // Map sym/object/addend to stub offset.
3940   Plt_stub_entries plt_call_stubs_;
3941   // Map destination address to stub offset.
3942   typedef Unordered_map<Branch_stub_ent, unsigned int,
3943                         Branch_stub_ent_hash> Branch_stub_entries;
3944   Branch_stub_entries long_branch_stubs_;
3945   // size of input section
3946   section_size_type orig_data_size_;
3947   // size of stubs
3948   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3949   // Whether .eh_frame info has been created for this stub section.
3950   bool eh_frame_added_;
3951 };
3952
3953 // Add a plt call stub, if we do not already have one for this
3954 // sym/object/addend combo.
3955
3956 template<int size, bool big_endian>
3957 bool
3958 Stub_table<size, big_endian>::add_plt_call_entry(
3959     Address from,
3960     const Sized_relobj_file<size, big_endian>* object,
3961     const Symbol* gsym,
3962     unsigned int r_type,
3963     Address addend)
3964 {
3965   Plt_stub_ent ent(object, gsym, r_type, addend);
3966   unsigned int off = this->plt_size_;
3967   std::pair<typename Plt_stub_entries::iterator, bool> p
3968     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3969   if (p.second)
3970     this->plt_size_ = off + this->plt_call_size(p.first);
3971   return this->can_reach_stub(from, off, r_type);
3972 }
3973
3974 template<int size, bool big_endian>
3975 bool
3976 Stub_table<size, big_endian>::add_plt_call_entry(
3977     Address from,
3978     const Sized_relobj_file<size, big_endian>* object,
3979     unsigned int locsym_index,
3980     unsigned int r_type,
3981     Address addend)
3982 {
3983   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3984   unsigned int off = this->plt_size_;
3985   std::pair<typename Plt_stub_entries::iterator, bool> p
3986     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3987   if (p.second)
3988     this->plt_size_ = off + this->plt_call_size(p.first);
3989   return this->can_reach_stub(from, off, r_type);
3990 }
3991
3992 // Find a plt call stub.
3993
3994 template<int size, bool big_endian>
3995 typename Stub_table<size, big_endian>::Address
3996 Stub_table<size, big_endian>::find_plt_call_entry(
3997     const Sized_relobj_file<size, big_endian>* object,
3998     const Symbol* gsym,
3999     unsigned int r_type,
4000     Address addend) const
4001 {
4002   Plt_stub_ent ent(object, gsym, r_type, addend);
4003   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4004   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4005 }
4006
4007 template<int size, bool big_endian>
4008 typename Stub_table<size, big_endian>::Address
4009 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4010 {
4011   Plt_stub_ent ent(gsym);
4012   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4013   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4014 }
4015
4016 template<int size, bool big_endian>
4017 typename Stub_table<size, big_endian>::Address
4018 Stub_table<size, big_endian>::find_plt_call_entry(
4019     const Sized_relobj_file<size, big_endian>* object,
4020     unsigned int locsym_index,
4021     unsigned int r_type,
4022     Address addend) const
4023 {
4024   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4025   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4026   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4027 }
4028
4029 template<int size, bool big_endian>
4030 typename Stub_table<size, big_endian>::Address
4031 Stub_table<size, big_endian>::find_plt_call_entry(
4032     const Sized_relobj_file<size, big_endian>* object,
4033     unsigned int locsym_index) const
4034 {
4035   Plt_stub_ent ent(object, locsym_index);
4036   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4037   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4038 }
4039
4040 // Add a long branch stub if we don't already have one to given
4041 // destination.
4042
4043 template<int size, bool big_endian>
4044 bool
4045 Stub_table<size, big_endian>::add_long_branch_entry(
4046     const Powerpc_relobj<size, big_endian>* object,
4047     unsigned int r_type,
4048     Address from,
4049     Address to)
4050 {
4051   Branch_stub_ent ent(object, to);
4052   Address off = this->branch_size_;
4053   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4054     {
4055       unsigned int stub_size = this->branch_stub_size(to);
4056       this->branch_size_ = off + stub_size;
4057       if (size == 64 && stub_size != 4)
4058         this->targ_->add_branch_lookup_table(to);
4059     }
4060   return this->can_reach_stub(from, off, r_type);
4061 }
4062
4063 // Find long branch stub.
4064
4065 template<int size, bool big_endian>
4066 typename Stub_table<size, big_endian>::Address
4067 Stub_table<size, big_endian>::find_long_branch_entry(
4068     const Powerpc_relobj<size, big_endian>* object,
4069     Address to) const
4070 {
4071   Branch_stub_ent ent(object, to);
4072   typename Branch_stub_entries::const_iterator p
4073     = this->long_branch_stubs_.find(ent);
4074   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
4075 }
4076
4077 // A class to handle .glink.
4078
4079 template<int size, bool big_endian>
4080 class Output_data_glink : public Output_section_data
4081 {
4082  public:
4083   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4084   static const Address invalid_address = static_cast<Address>(0) - 1;
4085   static const int pltresolve_size = 16*4;
4086
4087   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4088     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4089       end_branch_table_(), ge_size_(0)
4090   { }
4091
4092   void
4093   add_eh_frame(Layout* layout);
4094
4095   void
4096   add_global_entry(const Symbol*);
4097
4098   Address
4099   find_global_entry(const Symbol*) const;
4100
4101   Address
4102   global_entry_address() const
4103   {
4104     gold_assert(this->is_data_size_valid());
4105     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4106     return this->address() + global_entry_off;
4107   }
4108
4109  protected:
4110   // Write to a map file.
4111   void
4112   do_print_to_mapfile(Mapfile* mapfile) const
4113   { mapfile->print_output_data(this, _("** glink")); }
4114
4115  private:
4116   void
4117   set_final_data_size();
4118
4119   // Write out .glink
4120   void
4121   do_write(Output_file*);
4122
4123   // Allows access to .got and .plt for do_write.
4124   Target_powerpc<size, big_endian>* targ_;
4125
4126   // Map sym to stub offset.
4127   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4128   Global_entry_stub_entries global_entry_stubs_;
4129
4130   unsigned int end_branch_table_, ge_size_;
4131 };
4132
4133 template<int size, bool big_endian>
4134 void
4135 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4136 {
4137   if (!parameters->options().ld_generated_unwind_info())
4138     return;
4139
4140   if (size == 64)
4141     {
4142       if (this->targ_->abiversion() < 2)
4143         layout->add_eh_frame_for_plt(this,
4144                                      Eh_cie<64>::eh_frame_cie,
4145                                      sizeof (Eh_cie<64>::eh_frame_cie),
4146                                      glink_eh_frame_fde_64v1,
4147                                      sizeof (glink_eh_frame_fde_64v1));
4148       else
4149         layout->add_eh_frame_for_plt(this,
4150                                      Eh_cie<64>::eh_frame_cie,
4151                                      sizeof (Eh_cie<64>::eh_frame_cie),
4152                                      glink_eh_frame_fde_64v2,
4153                                      sizeof (glink_eh_frame_fde_64v2));
4154     }
4155   else
4156     {
4157       // 32-bit .glink can use the default since the CIE return
4158       // address reg, LR, is valid.
4159       layout->add_eh_frame_for_plt(this,
4160                                    Eh_cie<32>::eh_frame_cie,
4161                                    sizeof (Eh_cie<32>::eh_frame_cie),
4162                                    default_fde,
4163                                    sizeof (default_fde));
4164       // Except where LR is used in a PIC __glink_PLTresolve.
4165       if (parameters->options().output_is_position_independent())
4166         layout->add_eh_frame_for_plt(this,
4167                                      Eh_cie<32>::eh_frame_cie,
4168                                      sizeof (Eh_cie<32>::eh_frame_cie),
4169                                      glink_eh_frame_fde_32,
4170                                      sizeof (glink_eh_frame_fde_32));
4171     }
4172 }
4173
4174 template<int size, bool big_endian>
4175 void
4176 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4177 {
4178   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4179     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4180   if (p.second)
4181     this->ge_size_ += 16;
4182 }
4183
4184 template<int size, bool big_endian>
4185 typename Output_data_glink<size, big_endian>::Address
4186 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4187 {
4188   typename Global_entry_stub_entries::const_iterator p
4189     = this->global_entry_stubs_.find(gsym);
4190   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4191 }
4192
4193 template<int size, bool big_endian>
4194 void
4195 Output_data_glink<size, big_endian>::set_final_data_size()
4196 {
4197   unsigned int count = this->targ_->plt_entry_count();
4198   section_size_type total = 0;
4199
4200   if (count != 0)
4201     {
4202       if (size == 32)
4203         {
4204           // space for branch table
4205           total += 4 * (count - 1);
4206
4207           total += -total & 15;
4208           total += this->pltresolve_size;
4209         }
4210       else
4211         {
4212           total += this->pltresolve_size;
4213
4214           // space for branch table
4215           total += 4 * count;
4216           if (this->targ_->abiversion() < 2)
4217             {
4218               total += 4 * count;
4219               if (count > 0x8000)
4220                 total += 4 * (count - 0x8000);
4221             }
4222         }
4223     }
4224   this->end_branch_table_ = total;
4225   total = (total + 15) & -16;
4226   total += this->ge_size_;
4227
4228   this->set_data_size(total);
4229 }
4230
4231 // Write out plt and long branch stub code.
4232
4233 template<int size, bool big_endian>
4234 void
4235 Stub_table<size, big_endian>::do_write(Output_file* of)
4236 {
4237   if (this->plt_call_stubs_.empty()
4238       && this->long_branch_stubs_.empty())
4239     return;
4240
4241   const section_size_type start_off = this->offset();
4242   const section_size_type off = this->stub_offset();
4243   const section_size_type oview_size =
4244     convert_to_section_size_type(this->data_size() - (off - start_off));
4245   unsigned char* const oview = of->get_output_view(off, oview_size);
4246   unsigned char* p;
4247
4248   if (size == 64)
4249     {
4250       const Output_data_got_powerpc<size, big_endian>* got
4251         = this->targ_->got_section();
4252       Address got_os_addr = got->output_section()->address();
4253
4254       if (!this->plt_call_stubs_.empty())
4255         {
4256           // The base address of the .plt section.
4257           Address plt_base = this->targ_->plt_section()->address();
4258           Address iplt_base = invalid_address;
4259
4260           // Write out plt call stubs.
4261           typename Plt_stub_entries::const_iterator cs;
4262           for (cs = this->plt_call_stubs_.begin();
4263                cs != this->plt_call_stubs_.end();
4264                ++cs)
4265             {
4266               bool is_iplt;
4267               Address pltoff = this->plt_off(cs, &is_iplt);
4268               Address plt_addr = pltoff;
4269               if (is_iplt)
4270                 {
4271                   if (iplt_base == invalid_address)
4272                     iplt_base = this->targ_->iplt_section()->address();
4273                   plt_addr += iplt_base;
4274                 }
4275               else
4276                 plt_addr += plt_base;
4277               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4278                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4279               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4280               Address off = plt_addr - got_addr;
4281
4282               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4283                 gold_error(_("%s: linkage table error against `%s'"),
4284                            cs->first.object_->name().c_str(),
4285                            cs->first.sym_->demangled_name().c_str());
4286
4287               bool plt_load_toc = this->targ_->abiversion() < 2;
4288               bool static_chain
4289                 = plt_load_toc && parameters->options().plt_static_chain();
4290               bool thread_safe
4291                 = plt_load_toc && this->targ_->plt_thread_safe();
4292               bool use_fake_dep = false;
4293               Address cmp_branch_off = 0;
4294               if (thread_safe)
4295                 {
4296                   unsigned int pltindex
4297                     = ((pltoff - this->targ_->first_plt_entry_offset())
4298                        / this->targ_->plt_entry_size());
4299                   Address glinkoff
4300                     = (this->targ_->glink_section()->pltresolve_size
4301                        + pltindex * 8);
4302                   if (pltindex > 32768)
4303                     glinkoff += (pltindex - 32768) * 4;
4304                   Address to
4305                     = this->targ_->glink_section()->address() + glinkoff;
4306                   Address from
4307                     = (this->stub_address() + cs->second + 24
4308                        + 4 * (ha(off) != 0)
4309                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4310                        + 4 * static_chain);
4311                   cmp_branch_off = to - from;
4312                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4313                 }
4314
4315               p = oview + cs->second;
4316               if (ha(off) != 0)
4317                 {
4318                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4319                   p += 4;
4320                   if (plt_load_toc)
4321                     {
4322                       write_insn<big_endian>(p, addis_11_2 + ha(off));
4323                       p += 4;
4324                       write_insn<big_endian>(p, ld_12_11 + l(off));
4325                       p += 4;
4326                     }
4327                   else
4328                     {
4329                       write_insn<big_endian>(p, addis_12_2 + ha(off));
4330                       p += 4;
4331                       write_insn<big_endian>(p, ld_12_12 + l(off));
4332                       p += 4;
4333                     }
4334                   if (plt_load_toc
4335                       && ha(off + 8 + 8 * static_chain) != ha(off))
4336                     {
4337                       write_insn<big_endian>(p, addi_11_11 + l(off));
4338                       p += 4;
4339                       off = 0;
4340                     }
4341                   write_insn<big_endian>(p, mtctr_12);
4342                   p += 4;
4343                   if (plt_load_toc)
4344                     {
4345                       if (use_fake_dep)
4346                         {
4347                           write_insn<big_endian>(p, xor_2_12_12);
4348                           p += 4;
4349                           write_insn<big_endian>(p, add_11_11_2);
4350                           p += 4;
4351                         }
4352                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4353                       p += 4;
4354                       if (static_chain)
4355                         {
4356                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4357                           p += 4;
4358                         }
4359                     }
4360                 }
4361               else
4362                 {
4363                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4364                   p += 4;
4365                   write_insn<big_endian>(p, ld_12_2 + l(off));
4366                   p += 4;
4367                   if (plt_load_toc
4368                       && ha(off + 8 + 8 * static_chain) != ha(off))
4369                     {
4370                       write_insn<big_endian>(p, addi_2_2 + l(off));
4371                       p += 4;
4372                       off = 0;
4373                     }
4374                   write_insn<big_endian>(p, mtctr_12);
4375                   p += 4;
4376                   if (plt_load_toc)
4377                     {
4378                       if (use_fake_dep)
4379                         {
4380                           write_insn<big_endian>(p, xor_11_12_12);
4381                           p += 4;
4382                           write_insn<big_endian>(p, add_2_2_11);
4383                           p += 4;
4384                         }
4385                       if (static_chain)
4386                         {
4387                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4388                           p += 4;
4389                         }
4390                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4391                       p += 4;
4392                     }
4393                 }
4394               if (thread_safe && !use_fake_dep)
4395                 {
4396                   write_insn<big_endian>(p, cmpldi_2_0);
4397                   p += 4;
4398                   write_insn<big_endian>(p, bnectr_p4);
4399                   p += 4;
4400                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4401                 }
4402               else
4403                 write_insn<big_endian>(p, bctr);
4404             }
4405         }
4406
4407       // Write out long branch stubs.
4408       typename Branch_stub_entries::const_iterator bs;
4409       for (bs = this->long_branch_stubs_.begin();
4410            bs != this->long_branch_stubs_.end();
4411            ++bs)
4412         {
4413           p = oview + this->plt_size_ + bs->second;
4414           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4415           Address delta = bs->first.dest_ - loc;
4416           if (delta + (1 << 25) < 2 << 25)
4417             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4418           else
4419             {
4420               Address brlt_addr
4421                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4422               gold_assert(brlt_addr != invalid_address);
4423               brlt_addr += this->targ_->brlt_section()->address();
4424               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4425               Address brltoff = brlt_addr - got_addr;
4426               if (ha(brltoff) == 0)
4427                 {
4428                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4429                 }
4430               else
4431                 {
4432                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
4433                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
4434                 }
4435               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4436               write_insn<big_endian>(p, bctr);
4437             }
4438         }
4439     }
4440   else
4441     {
4442       if (!this->plt_call_stubs_.empty())
4443         {
4444           // The base address of the .plt section.
4445           Address plt_base = this->targ_->plt_section()->address();
4446           Address iplt_base = invalid_address;
4447           // The address of _GLOBAL_OFFSET_TABLE_.
4448           Address g_o_t = invalid_address;
4449
4450           // Write out plt call stubs.
4451           typename Plt_stub_entries::const_iterator cs;
4452           for (cs = this->plt_call_stubs_.begin();
4453                cs != this->plt_call_stubs_.end();
4454                ++cs)
4455             {
4456               bool is_iplt;
4457               Address plt_addr = this->plt_off(cs, &is_iplt);
4458               if (is_iplt)
4459                 {
4460                   if (iplt_base == invalid_address)
4461                     iplt_base = this->targ_->iplt_section()->address();
4462                   plt_addr += iplt_base;
4463                 }
4464               else
4465                 plt_addr += plt_base;
4466
4467               p = oview + cs->second;
4468               if (parameters->options().output_is_position_independent())
4469                 {
4470                   Address got_addr;
4471                   const Powerpc_relobj<size, big_endian>* ppcobj
4472                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4473                        (cs->first.object_));
4474                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4475                     {
4476                       unsigned int got2 = ppcobj->got2_shndx();
4477                       got_addr = ppcobj->get_output_section_offset(got2);
4478                       gold_assert(got_addr != invalid_address);
4479                       got_addr += (ppcobj->output_section(got2)->address()
4480                                    + cs->first.addend_);
4481                     }
4482                   else
4483                     {
4484                       if (g_o_t == invalid_address)
4485                         {
4486                           const Output_data_got_powerpc<size, big_endian>* got
4487                             = this->targ_->got_section();
4488                           g_o_t = got->address() + got->g_o_t();
4489                         }
4490                       got_addr = g_o_t;
4491                     }
4492
4493                   Address off = plt_addr - got_addr;
4494                   if (ha(off) == 0)
4495                     {
4496                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4497                       write_insn<big_endian>(p +  4, mtctr_11);
4498                       write_insn<big_endian>(p +  8, bctr);
4499                     }
4500                   else
4501                     {
4502                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4503                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4504                       write_insn<big_endian>(p +  8, mtctr_11);
4505                       write_insn<big_endian>(p + 12, bctr);
4506                     }
4507                 }
4508               else
4509                 {
4510                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4511                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4512                   write_insn<big_endian>(p +  8, mtctr_11);
4513                   write_insn<big_endian>(p + 12, bctr);
4514                 }
4515             }
4516         }
4517
4518       // Write out long branch stubs.
4519       typename Branch_stub_entries::const_iterator bs;
4520       for (bs = this->long_branch_stubs_.begin();
4521            bs != this->long_branch_stubs_.end();
4522            ++bs)
4523         {
4524           p = oview + this->plt_size_ + bs->second;
4525           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4526           Address delta = bs->first.dest_ - loc;
4527           if (delta + (1 << 25) < 2 << 25)
4528             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4529           else if (!parameters->options().output_is_position_independent())
4530             {
4531               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4532               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4533               write_insn<big_endian>(p +  8, mtctr_12);
4534               write_insn<big_endian>(p + 12, bctr);
4535             }
4536           else
4537             {
4538               delta -= 8;
4539               write_insn<big_endian>(p +  0, mflr_0);
4540               write_insn<big_endian>(p +  4, bcl_20_31);
4541               write_insn<big_endian>(p +  8, mflr_12);
4542               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4543               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4544               write_insn<big_endian>(p + 20, mtlr_0);
4545               write_insn<big_endian>(p + 24, mtctr_12);
4546               write_insn<big_endian>(p + 28, bctr);
4547             }
4548         }
4549     }
4550 }
4551
4552 // Write out .glink.
4553
4554 template<int size, bool big_endian>
4555 void
4556 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4557 {
4558   const section_size_type off = this->offset();
4559   const section_size_type oview_size =
4560     convert_to_section_size_type(this->data_size());
4561   unsigned char* const oview = of->get_output_view(off, oview_size);
4562   unsigned char* p;
4563
4564   // The base address of the .plt section.
4565   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4566   Address plt_base = this->targ_->plt_section()->address();
4567
4568   if (size == 64)
4569     {
4570       if (this->end_branch_table_ != 0)
4571         {
4572           // Write pltresolve stub.
4573           p = oview;
4574           Address after_bcl = this->address() + 16;
4575           Address pltoff = plt_base - after_bcl;
4576
4577           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4578
4579           if (this->targ_->abiversion() < 2)
4580             {
4581               write_insn<big_endian>(p, mflr_12),               p += 4;
4582               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4583               write_insn<big_endian>(p, mflr_11),               p += 4;
4584               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4585               write_insn<big_endian>(p, mtlr_12),               p += 4;
4586               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4587               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4588               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4589               write_insn<big_endian>(p, mtctr_12),              p += 4;
4590               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4591             }
4592           else
4593             {
4594               write_insn<big_endian>(p, mflr_0),                p += 4;
4595               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4596               write_insn<big_endian>(p, mflr_11),               p += 4;
4597               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4598               write_insn<big_endian>(p, mtlr_0),                p += 4;
4599               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4600               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4601               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4602               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4603               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4604               write_insn<big_endian>(p, mtctr_12),              p += 4;
4605               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4606             }
4607           write_insn<big_endian>(p, bctr),                      p += 4;
4608           while (p < oview + this->pltresolve_size)
4609             write_insn<big_endian>(p, nop), p += 4;
4610
4611           // Write lazy link call stubs.
4612           uint32_t indx = 0;
4613           while (p < oview + this->end_branch_table_)
4614             {
4615               if (this->targ_->abiversion() < 2)
4616                 {
4617                   if (indx < 0x8000)
4618                     {
4619                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4620                     }
4621                   else
4622                     {
4623                       write_insn<big_endian>(p, lis_0_0 + hi(indx)),    p += 4;
4624                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4625                     }
4626                 }
4627               uint32_t branch_off = 8 - (p - oview);
4628               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4629               indx++;
4630             }
4631         }
4632
4633       Address plt_base = this->targ_->plt_section()->address();
4634       Address iplt_base = invalid_address;
4635       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4636       Address global_entry_base = this->address() + global_entry_off;
4637       typename Global_entry_stub_entries::const_iterator ge;
4638       for (ge = this->global_entry_stubs_.begin();
4639            ge != this->global_entry_stubs_.end();
4640            ++ge)
4641         {
4642           p = oview + global_entry_off + ge->second;
4643           Address plt_addr = ge->first->plt_offset();
4644           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4645               && ge->first->can_use_relative_reloc(false))
4646             {
4647               if (iplt_base == invalid_address)
4648                 iplt_base = this->targ_->iplt_section()->address();
4649               plt_addr += iplt_base;
4650             }
4651           else
4652             plt_addr += plt_base;
4653           Address my_addr = global_entry_base + ge->second;
4654           Address off = plt_addr - my_addr;
4655
4656           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4657             gold_error(_("%s: linkage table error against `%s'"),
4658                        ge->first->object()->name().c_str(),
4659                        ge->first->demangled_name().c_str());
4660
4661           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4662           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4663           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4664           write_insn<big_endian>(p, bctr);
4665         }
4666     }
4667   else
4668     {
4669       const Output_data_got_powerpc<size, big_endian>* got
4670         = this->targ_->got_section();
4671       // The address of _GLOBAL_OFFSET_TABLE_.
4672       Address g_o_t = got->address() + got->g_o_t();
4673
4674       // Write out pltresolve branch table.
4675       p = oview;
4676       unsigned int the_end = oview_size - this->pltresolve_size;
4677       unsigned char* end_p = oview + the_end;
4678       while (p < end_p - 8 * 4)
4679         write_insn<big_endian>(p, b + end_p - p), p += 4;
4680       while (p < end_p)
4681         write_insn<big_endian>(p, nop), p += 4;
4682
4683       // Write out pltresolve call stub.
4684       if (parameters->options().output_is_position_independent())
4685         {
4686           Address res0_off = 0;
4687           Address after_bcl_off = the_end + 12;
4688           Address bcl_res0 = after_bcl_off - res0_off;
4689
4690           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4691           write_insn<big_endian>(p +  4, mflr_0);
4692           write_insn<big_endian>(p +  8, bcl_20_31);
4693           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4694           write_insn<big_endian>(p + 16, mflr_12);
4695           write_insn<big_endian>(p + 20, mtlr_0);
4696           write_insn<big_endian>(p + 24, sub_11_11_12);
4697
4698           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4699
4700           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4701           if (ha(got_bcl) == ha(got_bcl + 4))
4702             {
4703               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4704               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4705             }
4706           else
4707             {
4708               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4709               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4710             }
4711           write_insn<big_endian>(p + 40, mtctr_0);
4712           write_insn<big_endian>(p + 44, add_0_11_11);
4713           write_insn<big_endian>(p + 48, add_11_0_11);
4714           write_insn<big_endian>(p + 52, bctr);
4715           write_insn<big_endian>(p + 56, nop);
4716           write_insn<big_endian>(p + 60, nop);
4717         }
4718       else
4719         {
4720           Address res0 = this->address();
4721
4722           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4723           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4724           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4725             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4726           else
4727             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4728           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4729           write_insn<big_endian>(p + 16, mtctr_0);
4730           write_insn<big_endian>(p + 20, add_0_11_11);
4731           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4732             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4733           else
4734             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4735           write_insn<big_endian>(p + 28, add_11_0_11);
4736           write_insn<big_endian>(p + 32, bctr);
4737           write_insn<big_endian>(p + 36, nop);
4738           write_insn<big_endian>(p + 40, nop);
4739           write_insn<big_endian>(p + 44, nop);
4740           write_insn<big_endian>(p + 48, nop);
4741           write_insn<big_endian>(p + 52, nop);
4742           write_insn<big_endian>(p + 56, nop);
4743           write_insn<big_endian>(p + 60, nop);
4744         }
4745       p += 64;
4746     }
4747
4748   of->write_output_view(off, oview_size, oview);
4749 }
4750
4751
4752 // A class to handle linker generated save/restore functions.
4753
4754 template<int size, bool big_endian>
4755 class Output_data_save_res : public Output_section_data_build
4756 {
4757  public:
4758   Output_data_save_res(Symbol_table* symtab);
4759
4760  protected:
4761   // Write to a map file.
4762   void
4763   do_print_to_mapfile(Mapfile* mapfile) const
4764   { mapfile->print_output_data(this, _("** save/restore")); }
4765
4766   void
4767   do_write(Output_file*);
4768
4769  private:
4770   // The maximum size of save/restore contents.
4771   static const unsigned int savres_max = 218*4;
4772
4773   void
4774   savres_define(Symbol_table* symtab,
4775                 const char *name,
4776                 unsigned int lo, unsigned int hi,
4777                 unsigned char* write_ent(unsigned char*, int),
4778                 unsigned char* write_tail(unsigned char*, int));
4779
4780   unsigned char *contents_;
4781 };
4782
4783 template<bool big_endian>
4784 static unsigned char*
4785 savegpr0(unsigned char* p, int r)
4786 {
4787   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4788   write_insn<big_endian>(p, insn);
4789   return p + 4;
4790 }
4791
4792 template<bool big_endian>
4793 static unsigned char*
4794 savegpr0_tail(unsigned char* p, int r)
4795 {
4796   p = savegpr0<big_endian>(p, r);
4797   uint32_t insn = std_0_1 + 16;
4798   write_insn<big_endian>(p, insn);
4799   p = p + 4;
4800   write_insn<big_endian>(p, blr);
4801   return p + 4;
4802 }
4803
4804 template<bool big_endian>
4805 static unsigned char*
4806 restgpr0(unsigned char* p, int r)
4807 {
4808   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4809   write_insn<big_endian>(p, insn);
4810   return p + 4;
4811 }
4812
4813 template<bool big_endian>
4814 static unsigned char*
4815 restgpr0_tail(unsigned char* p, int r)
4816 {
4817   uint32_t insn = ld_0_1 + 16;
4818   write_insn<big_endian>(p, insn);
4819   p = p + 4;
4820   p = restgpr0<big_endian>(p, r);
4821   write_insn<big_endian>(p, mtlr_0);
4822   p = p + 4;
4823   if (r == 29)
4824     {
4825       p = restgpr0<big_endian>(p, 30);
4826       p = restgpr0<big_endian>(p, 31);
4827     }
4828   write_insn<big_endian>(p, blr);
4829   return p + 4;
4830 }
4831
4832 template<bool big_endian>
4833 static unsigned char*
4834 savegpr1(unsigned char* p, int r)
4835 {
4836   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4837   write_insn<big_endian>(p, insn);
4838   return p + 4;
4839 }
4840
4841 template<bool big_endian>
4842 static unsigned char*
4843 savegpr1_tail(unsigned char* p, int r)
4844 {
4845   p = savegpr1<big_endian>(p, r);
4846   write_insn<big_endian>(p, blr);
4847   return p + 4;
4848 }
4849
4850 template<bool big_endian>
4851 static unsigned char*
4852 restgpr1(unsigned char* p, int r)
4853 {
4854   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4855   write_insn<big_endian>(p, insn);
4856   return p + 4;
4857 }
4858
4859 template<bool big_endian>
4860 static unsigned char*
4861 restgpr1_tail(unsigned char* p, int r)
4862 {
4863   p = restgpr1<big_endian>(p, r);
4864   write_insn<big_endian>(p, blr);
4865   return p + 4;
4866 }
4867
4868 template<bool big_endian>
4869 static unsigned char*
4870 savefpr(unsigned char* p, int r)
4871 {
4872   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4873   write_insn<big_endian>(p, insn);
4874   return p + 4;
4875 }
4876
4877 template<bool big_endian>
4878 static unsigned char*
4879 savefpr0_tail(unsigned char* p, int r)
4880 {
4881   p = savefpr<big_endian>(p, r);
4882   write_insn<big_endian>(p, std_0_1 + 16);
4883   p = p + 4;
4884   write_insn<big_endian>(p, blr);
4885   return p + 4;
4886 }
4887
4888 template<bool big_endian>
4889 static unsigned char*
4890 restfpr(unsigned char* p, int r)
4891 {
4892   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4893   write_insn<big_endian>(p, insn);
4894   return p + 4;
4895 }
4896
4897 template<bool big_endian>
4898 static unsigned char*
4899 restfpr0_tail(unsigned char* p, int r)
4900 {
4901   write_insn<big_endian>(p, ld_0_1 + 16);
4902   p = p + 4;
4903   p = restfpr<big_endian>(p, r);
4904   write_insn<big_endian>(p, mtlr_0);
4905   p = p + 4;
4906   if (r == 29)
4907     {
4908       p = restfpr<big_endian>(p, 30);
4909       p = restfpr<big_endian>(p, 31);
4910     }
4911   write_insn<big_endian>(p, blr);
4912   return p + 4;
4913 }
4914
4915 template<bool big_endian>
4916 static unsigned char*
4917 savefpr1_tail(unsigned char* p, int r)
4918 {
4919   p = savefpr<big_endian>(p, r);
4920   write_insn<big_endian>(p, blr);
4921   return p + 4;
4922 }
4923
4924 template<bool big_endian>
4925 static unsigned char*
4926 restfpr1_tail(unsigned char* p, int r)
4927 {
4928   p = restfpr<big_endian>(p, r);
4929   write_insn<big_endian>(p, blr);
4930   return p + 4;
4931 }
4932
4933 template<bool big_endian>
4934 static unsigned char*
4935 savevr(unsigned char* p, int r)
4936 {
4937   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4938   write_insn<big_endian>(p, insn);
4939   p = p + 4;
4940   insn = stvx_0_12_0 + (r << 21);
4941   write_insn<big_endian>(p, insn);
4942   return p + 4;
4943 }
4944
4945 template<bool big_endian>
4946 static unsigned char*
4947 savevr_tail(unsigned char* p, int r)
4948 {
4949   p = savevr<big_endian>(p, r);
4950   write_insn<big_endian>(p, blr);
4951   return p + 4;
4952 }
4953
4954 template<bool big_endian>
4955 static unsigned char*
4956 restvr(unsigned char* p, int r)
4957 {
4958   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4959   write_insn<big_endian>(p, insn);
4960   p = p + 4;
4961   insn = lvx_0_12_0 + (r << 21);
4962   write_insn<big_endian>(p, insn);
4963   return p + 4;
4964 }
4965
4966 template<bool big_endian>
4967 static unsigned char*
4968 restvr_tail(unsigned char* p, int r)
4969 {
4970   p = restvr<big_endian>(p, r);
4971   write_insn<big_endian>(p, blr);
4972   return p + 4;
4973 }
4974
4975
4976 template<int size, bool big_endian>
4977 Output_data_save_res<size, big_endian>::Output_data_save_res(
4978     Symbol_table* symtab)
4979   : Output_section_data_build(4),
4980     contents_(NULL)
4981 {
4982   this->savres_define(symtab,
4983                       "_savegpr0_", 14, 31,
4984                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4985   this->savres_define(symtab,
4986                       "_restgpr0_", 14, 29,
4987                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4988   this->savres_define(symtab,
4989                       "_restgpr0_", 30, 31,
4990                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4991   this->savres_define(symtab,
4992                       "_savegpr1_", 14, 31,
4993                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4994   this->savres_define(symtab,
4995                       "_restgpr1_", 14, 31,
4996                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4997   this->savres_define(symtab,
4998                       "_savefpr_", 14, 31,
4999                       savefpr<big_endian>, savefpr0_tail<big_endian>);
5000   this->savres_define(symtab,
5001                       "_restfpr_", 14, 29,
5002                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5003   this->savres_define(symtab,
5004                       "_restfpr_", 30, 31,
5005                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5006   this->savres_define(symtab,
5007                       "._savef", 14, 31,
5008                       savefpr<big_endian>, savefpr1_tail<big_endian>);
5009   this->savres_define(symtab,
5010                       "._restf", 14, 31,
5011                       restfpr<big_endian>, restfpr1_tail<big_endian>);
5012   this->savres_define(symtab,
5013                       "_savevr_", 20, 31,
5014                       savevr<big_endian>, savevr_tail<big_endian>);
5015   this->savres_define(symtab,
5016                       "_restvr_", 20, 31,
5017                       restvr<big_endian>, restvr_tail<big_endian>);
5018 }
5019
5020 template<int size, bool big_endian>
5021 void
5022 Output_data_save_res<size, big_endian>::savres_define(
5023     Symbol_table* symtab,
5024     const char *name,
5025     unsigned int lo, unsigned int hi,
5026     unsigned char* write_ent(unsigned char*, int),
5027     unsigned char* write_tail(unsigned char*, int))
5028 {
5029   size_t len = strlen(name);
5030   bool writing = false;
5031   char sym[16];
5032
5033   memcpy(sym, name, len);
5034   sym[len + 2] = 0;
5035
5036   for (unsigned int i = lo; i <= hi; i++)
5037     {
5038       sym[len + 0] = i / 10 + '0';
5039       sym[len + 1] = i % 10 + '0';
5040       Symbol* gsym = symtab->lookup(sym);
5041       bool refd = gsym != NULL && gsym->is_undefined();
5042       writing = writing || refd;
5043       if (writing)
5044         {
5045           if (this->contents_ == NULL)
5046             this->contents_ = new unsigned char[this->savres_max];
5047
5048           section_size_type value = this->current_data_size();
5049           unsigned char* p = this->contents_ + value;
5050           if (i != hi)
5051             p = write_ent(p, i);
5052           else
5053             p = write_tail(p, i);
5054           section_size_type cur_size = p - this->contents_;
5055           this->set_current_data_size(cur_size);
5056           if (refd)
5057             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5058                                           this, value, cur_size - value,
5059                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5060                                           elfcpp::STV_HIDDEN, 0, false, false);
5061         }
5062     }
5063 }
5064
5065 // Write out save/restore.
5066
5067 template<int size, bool big_endian>
5068 void
5069 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5070 {
5071   const section_size_type off = this->offset();
5072   const section_size_type oview_size =
5073     convert_to_section_size_type(this->data_size());
5074   unsigned char* const oview = of->get_output_view(off, oview_size);
5075   memcpy(oview, this->contents_, oview_size);
5076   of->write_output_view(off, oview_size, oview);
5077 }
5078
5079
5080 // Create the glink section.
5081
5082 template<int size, bool big_endian>
5083 void
5084 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5085 {
5086   if (this->glink_ == NULL)
5087     {
5088       this->glink_ = new Output_data_glink<size, big_endian>(this);
5089       this->glink_->add_eh_frame(layout);
5090       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5091                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5092                                       this->glink_, ORDER_TEXT, false);
5093     }
5094 }
5095
5096 // Create a PLT entry for a global symbol.
5097
5098 template<int size, bool big_endian>
5099 void
5100 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5101                                                  Layout* layout,
5102                                                  Symbol* gsym)
5103 {
5104   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5105       && gsym->can_use_relative_reloc(false))
5106     {
5107       if (this->iplt_ == NULL)
5108         this->make_iplt_section(symtab, layout);
5109       this->iplt_->add_ifunc_entry(gsym);
5110     }
5111   else
5112     {
5113       if (this->plt_ == NULL)
5114         this->make_plt_section(symtab, layout);
5115       this->plt_->add_entry(gsym);
5116     }
5117 }
5118
5119 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5120
5121 template<int size, bool big_endian>
5122 void
5123 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5124     Symbol_table* symtab,
5125     Layout* layout,
5126     Sized_relobj_file<size, big_endian>* relobj,
5127     unsigned int r_sym)
5128 {
5129   if (this->iplt_ == NULL)
5130     this->make_iplt_section(symtab, layout);
5131   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5132 }
5133
5134 // Return the number of entries in the PLT.
5135
5136 template<int size, bool big_endian>
5137 unsigned int
5138 Target_powerpc<size, big_endian>::plt_entry_count() const
5139 {
5140   if (this->plt_ == NULL)
5141     return 0;
5142   return this->plt_->entry_count();
5143 }
5144
5145 // Create a GOT entry for local dynamic __tls_get_addr calls.
5146
5147 template<int size, bool big_endian>
5148 unsigned int
5149 Target_powerpc<size, big_endian>::tlsld_got_offset(
5150     Symbol_table* symtab,
5151     Layout* layout,
5152     Sized_relobj_file<size, big_endian>* object)
5153 {
5154   if (this->tlsld_got_offset_ == -1U)
5155     {
5156       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5157       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5158       Output_data_got_powerpc<size, big_endian>* got
5159         = this->got_section(symtab, layout);
5160       unsigned int got_offset = got->add_constant_pair(0, 0);
5161       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5162                           got_offset, 0);
5163       this->tlsld_got_offset_ = got_offset;
5164     }
5165   return this->tlsld_got_offset_;
5166 }
5167
5168 // Get the Reference_flags for a particular relocation.
5169
5170 template<int size, bool big_endian>
5171 int
5172 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5173     unsigned int r_type,
5174     const Target_powerpc* target)
5175 {
5176   int ref = 0;
5177
5178   switch (r_type)
5179     {
5180     case elfcpp::R_POWERPC_NONE:
5181     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5182     case elfcpp::R_POWERPC_GNU_VTENTRY:
5183     case elfcpp::R_PPC64_TOC:
5184       // No symbol reference.
5185       break;
5186
5187     case elfcpp::R_PPC64_ADDR64:
5188     case elfcpp::R_PPC64_UADDR64:
5189     case elfcpp::R_POWERPC_ADDR32:
5190     case elfcpp::R_POWERPC_UADDR32:
5191     case elfcpp::R_POWERPC_ADDR16:
5192     case elfcpp::R_POWERPC_UADDR16:
5193     case elfcpp::R_POWERPC_ADDR16_LO:
5194     case elfcpp::R_POWERPC_ADDR16_HI:
5195     case elfcpp::R_POWERPC_ADDR16_HA:
5196       ref = Symbol::ABSOLUTE_REF;
5197       break;
5198
5199     case elfcpp::R_POWERPC_ADDR24:
5200     case elfcpp::R_POWERPC_ADDR14:
5201     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5202     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5203       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5204       break;
5205
5206     case elfcpp::R_PPC64_REL64:
5207     case elfcpp::R_POWERPC_REL32:
5208     case elfcpp::R_PPC_LOCAL24PC:
5209     case elfcpp::R_POWERPC_REL16:
5210     case elfcpp::R_POWERPC_REL16_LO:
5211     case elfcpp::R_POWERPC_REL16_HI:
5212     case elfcpp::R_POWERPC_REL16_HA:
5213       ref = Symbol::RELATIVE_REF;
5214       break;
5215
5216     case elfcpp::R_POWERPC_REL24:
5217     case elfcpp::R_PPC_PLTREL24:
5218     case elfcpp::R_POWERPC_REL14:
5219     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5220     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5221       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5222       break;
5223
5224     case elfcpp::R_POWERPC_GOT16:
5225     case elfcpp::R_POWERPC_GOT16_LO:
5226     case elfcpp::R_POWERPC_GOT16_HI:
5227     case elfcpp::R_POWERPC_GOT16_HA:
5228     case elfcpp::R_PPC64_GOT16_DS:
5229     case elfcpp::R_PPC64_GOT16_LO_DS:
5230     case elfcpp::R_PPC64_TOC16:
5231     case elfcpp::R_PPC64_TOC16_LO:
5232     case elfcpp::R_PPC64_TOC16_HI:
5233     case elfcpp::R_PPC64_TOC16_HA:
5234     case elfcpp::R_PPC64_TOC16_DS:
5235     case elfcpp::R_PPC64_TOC16_LO_DS:
5236       // Absolute in GOT.
5237       ref = Symbol::ABSOLUTE_REF;
5238       break;
5239
5240     case elfcpp::R_POWERPC_GOT_TPREL16:
5241     case elfcpp::R_POWERPC_TLS:
5242       ref = Symbol::TLS_REF;
5243       break;
5244
5245     case elfcpp::R_POWERPC_COPY:
5246     case elfcpp::R_POWERPC_GLOB_DAT:
5247     case elfcpp::R_POWERPC_JMP_SLOT:
5248     case elfcpp::R_POWERPC_RELATIVE:
5249     case elfcpp::R_POWERPC_DTPMOD:
5250     default:
5251       // Not expected.  We will give an error later.
5252       break;
5253     }
5254
5255   if (size == 64 && target->abiversion() < 2)
5256     ref |= Symbol::FUNC_DESC_ABI;
5257   return ref;
5258 }
5259
5260 // Report an unsupported relocation against a local symbol.
5261
5262 template<int size, bool big_endian>
5263 void
5264 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5265     Sized_relobj_file<size, big_endian>* object,
5266     unsigned int r_type)
5267 {
5268   gold_error(_("%s: unsupported reloc %u against local symbol"),
5269              object->name().c_str(), r_type);
5270 }
5271
5272 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5273 // dynamic linker does not support it, issue an error.
5274
5275 template<int size, bool big_endian>
5276 void
5277 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5278                                                       unsigned int r_type)
5279 {
5280   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5281
5282   // These are the relocation types supported by glibc for both 32-bit
5283   // and 64-bit powerpc.
5284   switch (r_type)
5285     {
5286     case elfcpp::R_POWERPC_NONE:
5287     case elfcpp::R_POWERPC_RELATIVE:
5288     case elfcpp::R_POWERPC_GLOB_DAT:
5289     case elfcpp::R_POWERPC_DTPMOD:
5290     case elfcpp::R_POWERPC_DTPREL:
5291     case elfcpp::R_POWERPC_TPREL:
5292     case elfcpp::R_POWERPC_JMP_SLOT:
5293     case elfcpp::R_POWERPC_COPY:
5294     case elfcpp::R_POWERPC_IRELATIVE:
5295     case elfcpp::R_POWERPC_ADDR32:
5296     case elfcpp::R_POWERPC_UADDR32:
5297     case elfcpp::R_POWERPC_ADDR24:
5298     case elfcpp::R_POWERPC_ADDR16:
5299     case elfcpp::R_POWERPC_UADDR16:
5300     case elfcpp::R_POWERPC_ADDR16_LO:
5301     case elfcpp::R_POWERPC_ADDR16_HI:
5302     case elfcpp::R_POWERPC_ADDR16_HA:
5303     case elfcpp::R_POWERPC_ADDR14:
5304     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5305     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5306     case elfcpp::R_POWERPC_REL32:
5307     case elfcpp::R_POWERPC_REL24:
5308     case elfcpp::R_POWERPC_TPREL16:
5309     case elfcpp::R_POWERPC_TPREL16_LO:
5310     case elfcpp::R_POWERPC_TPREL16_HI:
5311     case elfcpp::R_POWERPC_TPREL16_HA:
5312       return;
5313
5314     default:
5315       break;
5316     }
5317
5318   if (size == 64)
5319     {
5320       switch (r_type)
5321         {
5322           // These are the relocation types supported only on 64-bit.
5323         case elfcpp::R_PPC64_ADDR64:
5324         case elfcpp::R_PPC64_UADDR64:
5325         case elfcpp::R_PPC64_JMP_IREL:
5326         case elfcpp::R_PPC64_ADDR16_DS:
5327         case elfcpp::R_PPC64_ADDR16_LO_DS:
5328         case elfcpp::R_PPC64_ADDR16_HIGH:
5329         case elfcpp::R_PPC64_ADDR16_HIGHA:
5330         case elfcpp::R_PPC64_ADDR16_HIGHER:
5331         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5332         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5333         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5334         case elfcpp::R_PPC64_REL64:
5335         case elfcpp::R_POWERPC_ADDR30:
5336         case elfcpp::R_PPC64_TPREL16_DS:
5337         case elfcpp::R_PPC64_TPREL16_LO_DS:
5338         case elfcpp::R_PPC64_TPREL16_HIGH:
5339         case elfcpp::R_PPC64_TPREL16_HIGHA:
5340         case elfcpp::R_PPC64_TPREL16_HIGHER:
5341         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5342         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5343         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5344           return;
5345
5346         default:
5347           break;
5348         }
5349     }
5350   else
5351     {
5352       switch (r_type)
5353         {
5354           // These are the relocation types supported only on 32-bit.
5355           // ??? glibc ld.so doesn't need to support these.
5356         case elfcpp::R_POWERPC_DTPREL16:
5357         case elfcpp::R_POWERPC_DTPREL16_LO:
5358         case elfcpp::R_POWERPC_DTPREL16_HI:
5359         case elfcpp::R_POWERPC_DTPREL16_HA:
5360           return;
5361
5362         default:
5363           break;
5364         }
5365     }
5366
5367   // This prevents us from issuing more than one error per reloc
5368   // section.  But we can still wind up issuing more than one
5369   // error per object file.
5370   if (this->issued_non_pic_error_)
5371     return;
5372   gold_assert(parameters->options().output_is_position_independent());
5373   object->error(_("requires unsupported dynamic reloc; "
5374                   "recompile with -fPIC"));
5375   this->issued_non_pic_error_ = true;
5376   return;
5377 }
5378
5379 // Return whether we need to make a PLT entry for a relocation of the
5380 // given type against a STT_GNU_IFUNC symbol.
5381
5382 template<int size, bool big_endian>
5383 bool
5384 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5385      Target_powerpc<size, big_endian>* target,
5386      Sized_relobj_file<size, big_endian>* object,
5387      unsigned int r_type,
5388      bool report_err)
5389 {
5390   // In non-pic code any reference will resolve to the plt call stub
5391   // for the ifunc symbol.
5392   if ((size == 32 || target->abiversion() >= 2)
5393       && !parameters->options().output_is_position_independent())
5394     return true;
5395
5396   switch (r_type)
5397     {
5398     // Word size refs from data sections are OK, but don't need a PLT entry.
5399     case elfcpp::R_POWERPC_ADDR32:
5400     case elfcpp::R_POWERPC_UADDR32:
5401       if (size == 32)
5402         return false;
5403       break;
5404
5405     case elfcpp::R_PPC64_ADDR64:
5406     case elfcpp::R_PPC64_UADDR64:
5407       if (size == 64)
5408         return false;
5409       break;
5410
5411     // GOT refs are good, but also don't need a PLT entry.
5412     case elfcpp::R_POWERPC_GOT16:
5413     case elfcpp::R_POWERPC_GOT16_LO:
5414     case elfcpp::R_POWERPC_GOT16_HI:
5415     case elfcpp::R_POWERPC_GOT16_HA:
5416     case elfcpp::R_PPC64_GOT16_DS:
5417     case elfcpp::R_PPC64_GOT16_LO_DS:
5418       return false;
5419
5420     // Function calls are good, and these do need a PLT entry.
5421     case elfcpp::R_POWERPC_ADDR24:
5422     case elfcpp::R_POWERPC_ADDR14:
5423     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5424     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5425     case elfcpp::R_POWERPC_REL24:
5426     case elfcpp::R_PPC_PLTREL24:
5427     case elfcpp::R_POWERPC_REL14:
5428     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5429     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5430       return true;
5431
5432     default:
5433       break;
5434     }
5435
5436   // Anything else is a problem.
5437   // If we are building a static executable, the libc startup function
5438   // responsible for applying indirect function relocations is going
5439   // to complain about the reloc type.
5440   // If we are building a dynamic executable, we will have a text
5441   // relocation.  The dynamic loader will set the text segment
5442   // writable and non-executable to apply text relocations.  So we'll
5443   // segfault when trying to run the indirection function to resolve
5444   // the reloc.
5445   if (report_err)
5446     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5447                object->name().c_str(), r_type);
5448   return false;
5449 }
5450
5451 // Scan a relocation for a local symbol.
5452
5453 template<int size, bool big_endian>
5454 inline void
5455 Target_powerpc<size, big_endian>::Scan::local(
5456     Symbol_table* symtab,
5457     Layout* layout,
5458     Target_powerpc<size, big_endian>* target,
5459     Sized_relobj_file<size, big_endian>* object,
5460     unsigned int data_shndx,
5461     Output_section* output_section,
5462     const elfcpp::Rela<size, big_endian>& reloc,
5463     unsigned int r_type,
5464     const elfcpp::Sym<size, big_endian>& lsym,
5465     bool is_discarded)
5466 {
5467   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5468
5469   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5470       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5471     {
5472       this->expect_tls_get_addr_call();
5473       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5474       if (tls_type != tls::TLSOPT_NONE)
5475         this->skip_next_tls_get_addr_call();
5476     }
5477   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5478            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5479     {
5480       this->expect_tls_get_addr_call();
5481       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5482       if (tls_type != tls::TLSOPT_NONE)
5483         this->skip_next_tls_get_addr_call();
5484     }
5485
5486   Powerpc_relobj<size, big_endian>* ppc_object
5487     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5488
5489   if (is_discarded)
5490     {
5491       if (size == 64
5492           && data_shndx == ppc_object->opd_shndx()
5493           && r_type == elfcpp::R_PPC64_ADDR64)
5494         ppc_object->set_opd_discard(reloc.get_r_offset());
5495       return;
5496     }
5497
5498   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5499   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5500   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5501     {
5502       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5503       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5504                           r_type, r_sym, reloc.get_r_addend());
5505       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5506     }
5507
5508   switch (r_type)
5509     {
5510     case elfcpp::R_POWERPC_NONE:
5511     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5512     case elfcpp::R_POWERPC_GNU_VTENTRY:
5513     case elfcpp::R_PPC64_TOCSAVE:
5514     case elfcpp::R_POWERPC_TLS:
5515       break;
5516
5517     case elfcpp::R_PPC64_TOC:
5518       {
5519         Output_data_got_powerpc<size, big_endian>* got
5520           = target->got_section(symtab, layout);
5521         if (parameters->options().output_is_position_independent())
5522           {
5523             Address off = reloc.get_r_offset();
5524             if (size == 64
5525                 && target->abiversion() < 2
5526                 && data_shndx == ppc_object->opd_shndx()
5527                 && ppc_object->get_opd_discard(off - 8))
5528               break;
5529
5530             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5531             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5532             rela_dyn->add_output_section_relative(got->output_section(),
5533                                                   elfcpp::R_POWERPC_RELATIVE,
5534                                                   output_section,
5535                                                   object, data_shndx, off,
5536                                                   symobj->toc_base_offset());
5537           }
5538       }
5539       break;
5540
5541     case elfcpp::R_PPC64_ADDR64:
5542     case elfcpp::R_PPC64_UADDR64:
5543     case elfcpp::R_POWERPC_ADDR32:
5544     case elfcpp::R_POWERPC_UADDR32:
5545     case elfcpp::R_POWERPC_ADDR24:
5546     case elfcpp::R_POWERPC_ADDR16:
5547     case elfcpp::R_POWERPC_ADDR16_LO:
5548     case elfcpp::R_POWERPC_ADDR16_HI:
5549     case elfcpp::R_POWERPC_ADDR16_HA:
5550     case elfcpp::R_POWERPC_UADDR16:
5551     case elfcpp::R_PPC64_ADDR16_HIGH:
5552     case elfcpp::R_PPC64_ADDR16_HIGHA:
5553     case elfcpp::R_PPC64_ADDR16_HIGHER:
5554     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5555     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5556     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5557     case elfcpp::R_PPC64_ADDR16_DS:
5558     case elfcpp::R_PPC64_ADDR16_LO_DS:
5559     case elfcpp::R_POWERPC_ADDR14:
5560     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5561     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5562       // If building a shared library (or a position-independent
5563       // executable), we need to create a dynamic relocation for
5564       // this location.
5565       if (parameters->options().output_is_position_independent()
5566           || (size == 64 && is_ifunc && target->abiversion() < 2))
5567         {
5568           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5569                                                              is_ifunc);
5570           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5571           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5572               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5573             {
5574               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5575                                      : elfcpp::R_POWERPC_RELATIVE);
5576               rela_dyn->add_local_relative(object, r_sym, dynrel,
5577                                            output_section, data_shndx,
5578                                            reloc.get_r_offset(),
5579                                            reloc.get_r_addend(), false);
5580             }
5581           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5582             {
5583               check_non_pic(object, r_type);
5584               rela_dyn->add_local(object, r_sym, r_type, output_section,
5585                                   data_shndx, reloc.get_r_offset(),
5586                                   reloc.get_r_addend());
5587             }
5588           else
5589             {
5590               gold_assert(lsym.get_st_value() == 0);
5591               unsigned int shndx = lsym.get_st_shndx();
5592               bool is_ordinary;
5593               shndx = object->adjust_sym_shndx(r_sym, shndx,
5594                                                &is_ordinary);
5595               if (!is_ordinary)
5596                 object->error(_("section symbol %u has bad shndx %u"),
5597                               r_sym, shndx);
5598               else
5599                 rela_dyn->add_local_section(object, shndx, r_type,
5600                                             output_section, data_shndx,
5601                                             reloc.get_r_offset());
5602             }
5603         }
5604       break;
5605
5606     case elfcpp::R_POWERPC_REL24:
5607     case elfcpp::R_PPC_PLTREL24:
5608     case elfcpp::R_PPC_LOCAL24PC:
5609     case elfcpp::R_POWERPC_REL14:
5610     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5611     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5612       if (!is_ifunc)
5613         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5614                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5615                             reloc.get_r_addend());
5616       break;
5617
5618     case elfcpp::R_PPC64_REL64:
5619     case elfcpp::R_POWERPC_REL32:
5620     case elfcpp::R_POWERPC_REL16:
5621     case elfcpp::R_POWERPC_REL16_LO:
5622     case elfcpp::R_POWERPC_REL16_HI:
5623     case elfcpp::R_POWERPC_REL16_HA:
5624     case elfcpp::R_POWERPC_SECTOFF:
5625     case elfcpp::R_POWERPC_SECTOFF_LO:
5626     case elfcpp::R_POWERPC_SECTOFF_HI:
5627     case elfcpp::R_POWERPC_SECTOFF_HA:
5628     case elfcpp::R_PPC64_SECTOFF_DS:
5629     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5630     case elfcpp::R_POWERPC_TPREL16:
5631     case elfcpp::R_POWERPC_TPREL16_LO:
5632     case elfcpp::R_POWERPC_TPREL16_HI:
5633     case elfcpp::R_POWERPC_TPREL16_HA:
5634     case elfcpp::R_PPC64_TPREL16_DS:
5635     case elfcpp::R_PPC64_TPREL16_LO_DS:
5636     case elfcpp::R_PPC64_TPREL16_HIGH:
5637     case elfcpp::R_PPC64_TPREL16_HIGHA:
5638     case elfcpp::R_PPC64_TPREL16_HIGHER:
5639     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5640     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5641     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5642     case elfcpp::R_POWERPC_DTPREL16:
5643     case elfcpp::R_POWERPC_DTPREL16_LO:
5644     case elfcpp::R_POWERPC_DTPREL16_HI:
5645     case elfcpp::R_POWERPC_DTPREL16_HA:
5646     case elfcpp::R_PPC64_DTPREL16_DS:
5647     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5648     case elfcpp::R_PPC64_DTPREL16_HIGH:
5649     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5650     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5651     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5652     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5653     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5654     case elfcpp::R_PPC64_TLSGD:
5655     case elfcpp::R_PPC64_TLSLD:
5656     case elfcpp::R_PPC64_ADDR64_LOCAL:
5657       break;
5658
5659     case elfcpp::R_POWERPC_GOT16:
5660     case elfcpp::R_POWERPC_GOT16_LO:
5661     case elfcpp::R_POWERPC_GOT16_HI:
5662     case elfcpp::R_POWERPC_GOT16_HA:
5663     case elfcpp::R_PPC64_GOT16_DS:
5664     case elfcpp::R_PPC64_GOT16_LO_DS:
5665       {
5666         // The symbol requires a GOT entry.
5667         Output_data_got_powerpc<size, big_endian>* got
5668           = target->got_section(symtab, layout);
5669         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5670
5671         if (!parameters->options().output_is_position_independent())
5672           {
5673             if ((size == 32 && is_ifunc)
5674                 || (size == 64 && target->abiversion() >= 2))
5675               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5676             else
5677               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5678           }
5679         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5680           {
5681             // If we are generating a shared object or a pie, this
5682             // symbol's GOT entry will be set by a dynamic relocation.
5683             unsigned int off;
5684             off = got->add_constant(0);
5685             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5686
5687             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5688                                                                is_ifunc);
5689             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5690                                    : elfcpp::R_POWERPC_RELATIVE);
5691             rela_dyn->add_local_relative(object, r_sym, dynrel,
5692                                          got, off, 0, false);
5693           }
5694       }
5695       break;
5696
5697     case elfcpp::R_PPC64_TOC16:
5698     case elfcpp::R_PPC64_TOC16_LO:
5699     case elfcpp::R_PPC64_TOC16_HI:
5700     case elfcpp::R_PPC64_TOC16_HA:
5701     case elfcpp::R_PPC64_TOC16_DS:
5702     case elfcpp::R_PPC64_TOC16_LO_DS:
5703       // We need a GOT section.
5704       target->got_section(symtab, layout);
5705       break;
5706
5707     case elfcpp::R_POWERPC_GOT_TLSGD16:
5708     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5709     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5710     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5711       {
5712         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5713         if (tls_type == tls::TLSOPT_NONE)
5714           {
5715             Output_data_got_powerpc<size, big_endian>* got
5716               = target->got_section(symtab, layout);
5717             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5718             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5719             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5720                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5721           }
5722         else if (tls_type == tls::TLSOPT_TO_LE)
5723           {
5724             // no GOT relocs needed for Local Exec.
5725           }
5726         else
5727           gold_unreachable();
5728       }
5729       break;
5730
5731     case elfcpp::R_POWERPC_GOT_TLSLD16:
5732     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5733     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5734     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5735       {
5736         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5737         if (tls_type == tls::TLSOPT_NONE)
5738           target->tlsld_got_offset(symtab, layout, object);
5739         else if (tls_type == tls::TLSOPT_TO_LE)
5740           {
5741             // no GOT relocs needed for Local Exec.
5742             if (parameters->options().emit_relocs())
5743               {
5744                 Output_section* os = layout->tls_segment()->first_section();
5745                 gold_assert(os != NULL);
5746                 os->set_needs_symtab_index();
5747               }
5748           }
5749         else
5750           gold_unreachable();
5751       }
5752       break;
5753
5754     case elfcpp::R_POWERPC_GOT_DTPREL16:
5755     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5756     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5757     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5758       {
5759         Output_data_got_powerpc<size, big_endian>* got
5760           = target->got_section(symtab, layout);
5761         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5762         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5763       }
5764       break;
5765
5766     case elfcpp::R_POWERPC_GOT_TPREL16:
5767     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5768     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5769     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5770       {
5771         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5772         if (tls_type == tls::TLSOPT_NONE)
5773           {
5774             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5775             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5776               {
5777                 Output_data_got_powerpc<size, big_endian>* got
5778                   = target->got_section(symtab, layout);
5779                 unsigned int off = got->add_constant(0);
5780                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5781
5782                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5783                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5784                                                       elfcpp::R_POWERPC_TPREL,
5785                                                       got, off, 0);
5786               }
5787           }
5788         else if (tls_type == tls::TLSOPT_TO_LE)
5789           {
5790             // no GOT relocs needed for Local Exec.
5791           }
5792         else
5793           gold_unreachable();
5794       }
5795       break;
5796
5797     default:
5798       unsupported_reloc_local(object, r_type);
5799       break;
5800     }
5801
5802   switch (r_type)
5803     {
5804     case elfcpp::R_POWERPC_GOT_TLSLD16:
5805     case elfcpp::R_POWERPC_GOT_TLSGD16:
5806     case elfcpp::R_POWERPC_GOT_TPREL16:
5807     case elfcpp::R_POWERPC_GOT_DTPREL16:
5808     case elfcpp::R_POWERPC_GOT16:
5809     case elfcpp::R_PPC64_GOT16_DS:
5810     case elfcpp::R_PPC64_TOC16:
5811     case elfcpp::R_PPC64_TOC16_DS:
5812       ppc_object->set_has_small_toc_reloc();
5813     default:
5814       break;
5815     }
5816 }
5817
5818 // Report an unsupported relocation against a global symbol.
5819
5820 template<int size, bool big_endian>
5821 void
5822 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5823     Sized_relobj_file<size, big_endian>* object,
5824     unsigned int r_type,
5825     Symbol* gsym)
5826 {
5827   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5828              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5829 }
5830
5831 // Scan a relocation for a global symbol.
5832
5833 template<int size, bool big_endian>
5834 inline void
5835 Target_powerpc<size, big_endian>::Scan::global(
5836     Symbol_table* symtab,
5837     Layout* layout,
5838     Target_powerpc<size, big_endian>* target,
5839     Sized_relobj_file<size, big_endian>* object,
5840     unsigned int data_shndx,
5841     Output_section* output_section,
5842     const elfcpp::Rela<size, big_endian>& reloc,
5843     unsigned int r_type,
5844     Symbol* gsym)
5845 {
5846   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5847     return;
5848
5849   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5850       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5851     {
5852       this->expect_tls_get_addr_call();
5853       const bool final = gsym->final_value_is_known();
5854       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5855       if (tls_type != tls::TLSOPT_NONE)
5856         this->skip_next_tls_get_addr_call();
5857     }
5858   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5859            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5860     {
5861       this->expect_tls_get_addr_call();
5862       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5863       if (tls_type != tls::TLSOPT_NONE)
5864         this->skip_next_tls_get_addr_call();
5865     }
5866
5867   Powerpc_relobj<size, big_endian>* ppc_object
5868     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5869
5870   // A STT_GNU_IFUNC symbol may require a PLT entry.
5871   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5872   bool pushed_ifunc = false;
5873   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5874     {
5875       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5876                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5877                           reloc.get_r_addend());
5878       target->make_plt_entry(symtab, layout, gsym);
5879       pushed_ifunc = true;
5880     }
5881
5882   switch (r_type)
5883     {
5884     case elfcpp::R_POWERPC_NONE:
5885     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5886     case elfcpp::R_POWERPC_GNU_VTENTRY:
5887     case elfcpp::R_PPC_LOCAL24PC:
5888     case elfcpp::R_POWERPC_TLS:
5889       break;
5890
5891     case elfcpp::R_PPC64_TOC:
5892       {
5893         Output_data_got_powerpc<size, big_endian>* got
5894           = target->got_section(symtab, layout);
5895         if (parameters->options().output_is_position_independent())
5896           {
5897             Address off = reloc.get_r_offset();
5898             if (size == 64
5899                 && data_shndx == ppc_object->opd_shndx()
5900                 && ppc_object->get_opd_discard(off - 8))
5901               break;
5902
5903             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5904             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5905             if (data_shndx != ppc_object->opd_shndx())
5906               symobj = static_cast
5907                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5908             rela_dyn->add_output_section_relative(got->output_section(),
5909                                                   elfcpp::R_POWERPC_RELATIVE,
5910                                                   output_section,
5911                                                   object, data_shndx, off,
5912                                                   symobj->toc_base_offset());
5913           }
5914       }
5915       break;
5916
5917     case elfcpp::R_PPC64_ADDR64:
5918       if (size == 64
5919           && target->abiversion() < 2
5920           && data_shndx == ppc_object->opd_shndx()
5921           && (gsym->is_defined_in_discarded_section()
5922               || gsym->object() != object))
5923         {
5924           ppc_object->set_opd_discard(reloc.get_r_offset());
5925           break;
5926         }
5927       // Fall thru
5928     case elfcpp::R_PPC64_UADDR64:
5929     case elfcpp::R_POWERPC_ADDR32:
5930     case elfcpp::R_POWERPC_UADDR32:
5931     case elfcpp::R_POWERPC_ADDR24:
5932     case elfcpp::R_POWERPC_ADDR16:
5933     case elfcpp::R_POWERPC_ADDR16_LO:
5934     case elfcpp::R_POWERPC_ADDR16_HI:
5935     case elfcpp::R_POWERPC_ADDR16_HA:
5936     case elfcpp::R_POWERPC_UADDR16:
5937     case elfcpp::R_PPC64_ADDR16_HIGH:
5938     case elfcpp::R_PPC64_ADDR16_HIGHA:
5939     case elfcpp::R_PPC64_ADDR16_HIGHER:
5940     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5941     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5942     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5943     case elfcpp::R_PPC64_ADDR16_DS:
5944     case elfcpp::R_PPC64_ADDR16_LO_DS:
5945     case elfcpp::R_POWERPC_ADDR14:
5946     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5947     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5948       {
5949         // Make a PLT entry if necessary.
5950         if (gsym->needs_plt_entry())
5951           {
5952             // Since this is not a PC-relative relocation, we may be
5953             // taking the address of a function. In that case we need to
5954             // set the entry in the dynamic symbol table to the address of
5955             // the PLT call stub.
5956             bool need_ifunc_plt = false;
5957             if ((size == 32 || target->abiversion() >= 2)
5958                 && gsym->is_from_dynobj()
5959                 && !parameters->options().output_is_position_independent())
5960               {
5961                 gsym->set_needs_dynsym_value();
5962                 need_ifunc_plt = true;
5963               }
5964             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5965               {
5966                 target->push_branch(ppc_object, data_shndx,
5967                                     reloc.get_r_offset(), r_type,
5968                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5969                                     reloc.get_r_addend());
5970                 target->make_plt_entry(symtab, layout, gsym);
5971               }
5972           }
5973         // Make a dynamic relocation if necessary.
5974         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5975             || (size == 64 && is_ifunc && target->abiversion() < 2))
5976           {
5977             if (!parameters->options().output_is_position_independent()
5978                 && gsym->may_need_copy_reloc())
5979               {
5980                 target->copy_reloc(symtab, layout, object,
5981                                    data_shndx, output_section, gsym, reloc);
5982               }
5983             else if ((((size == 32
5984                         && r_type == elfcpp::R_POWERPC_ADDR32)
5985                        || (size == 64
5986                            && r_type == elfcpp::R_PPC64_ADDR64
5987                            && target->abiversion() >= 2))
5988                       && gsym->can_use_relative_reloc(false)
5989                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5990                            && parameters->options().shared()))
5991                      || (size == 64
5992                          && r_type == elfcpp::R_PPC64_ADDR64
5993                          && target->abiversion() < 2
5994                          && (gsym->can_use_relative_reloc(false)
5995                              || data_shndx == ppc_object->opd_shndx())))
5996               {
5997                 Reloc_section* rela_dyn
5998                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5999                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6000                                        : elfcpp::R_POWERPC_RELATIVE);
6001                 rela_dyn->add_symbolless_global_addend(
6002                     gsym, dynrel, output_section, object, data_shndx,
6003                     reloc.get_r_offset(), reloc.get_r_addend());
6004               }
6005             else
6006               {
6007                 Reloc_section* rela_dyn
6008                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6009                 check_non_pic(object, r_type);
6010                 rela_dyn->add_global(gsym, r_type, output_section,
6011                                      object, data_shndx,
6012                                      reloc.get_r_offset(),
6013                                      reloc.get_r_addend());
6014               }
6015           }
6016       }
6017       break;
6018
6019     case elfcpp::R_PPC_PLTREL24:
6020     case elfcpp::R_POWERPC_REL24:
6021       if (!is_ifunc)
6022         {
6023           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6024                               r_type,
6025                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6026                               reloc.get_r_addend());
6027           if (gsym->needs_plt_entry()
6028               || (!gsym->final_value_is_known()
6029                   && (gsym->is_undefined()
6030                       || gsym->is_from_dynobj()
6031                       || gsym->is_preemptible())))
6032             target->make_plt_entry(symtab, layout, gsym);
6033         }
6034       // Fall thru
6035
6036     case elfcpp::R_PPC64_REL64:
6037     case elfcpp::R_POWERPC_REL32:
6038       // Make a dynamic relocation if necessary.
6039       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6040         {
6041           if (!parameters->options().output_is_position_independent()
6042               && gsym->may_need_copy_reloc())
6043             {
6044               target->copy_reloc(symtab, layout, object,
6045                                  data_shndx, output_section, gsym,
6046                                  reloc);
6047             }
6048           else
6049             {
6050               Reloc_section* rela_dyn
6051                 = target->rela_dyn_section(symtab, layout, is_ifunc);
6052               check_non_pic(object, r_type);
6053               rela_dyn->add_global(gsym, r_type, output_section, object,
6054                                    data_shndx, reloc.get_r_offset(),
6055                                    reloc.get_r_addend());
6056             }
6057         }
6058       break;
6059
6060     case elfcpp::R_POWERPC_REL14:
6061     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6062     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6063       if (!is_ifunc)
6064         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6065                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6066                             reloc.get_r_addend());
6067       break;
6068
6069     case elfcpp::R_POWERPC_REL16:
6070     case elfcpp::R_POWERPC_REL16_LO:
6071     case elfcpp::R_POWERPC_REL16_HI:
6072     case elfcpp::R_POWERPC_REL16_HA:
6073     case elfcpp::R_POWERPC_SECTOFF:
6074     case elfcpp::R_POWERPC_SECTOFF_LO:
6075     case elfcpp::R_POWERPC_SECTOFF_HI:
6076     case elfcpp::R_POWERPC_SECTOFF_HA:
6077     case elfcpp::R_PPC64_SECTOFF_DS:
6078     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6079     case elfcpp::R_POWERPC_TPREL16:
6080     case elfcpp::R_POWERPC_TPREL16_LO:
6081     case elfcpp::R_POWERPC_TPREL16_HI:
6082     case elfcpp::R_POWERPC_TPREL16_HA:
6083     case elfcpp::R_PPC64_TPREL16_DS:
6084     case elfcpp::R_PPC64_TPREL16_LO_DS:
6085     case elfcpp::R_PPC64_TPREL16_HIGH:
6086     case elfcpp::R_PPC64_TPREL16_HIGHA:
6087     case elfcpp::R_PPC64_TPREL16_HIGHER:
6088     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6089     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6090     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6091     case elfcpp::R_POWERPC_DTPREL16:
6092     case elfcpp::R_POWERPC_DTPREL16_LO:
6093     case elfcpp::R_POWERPC_DTPREL16_HI:
6094     case elfcpp::R_POWERPC_DTPREL16_HA:
6095     case elfcpp::R_PPC64_DTPREL16_DS:
6096     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6097     case elfcpp::R_PPC64_DTPREL16_HIGH:
6098     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6099     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6100     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6101     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6102     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6103     case elfcpp::R_PPC64_TLSGD:
6104     case elfcpp::R_PPC64_TLSLD:
6105     case elfcpp::R_PPC64_ADDR64_LOCAL:
6106       break;
6107
6108     case elfcpp::R_POWERPC_GOT16:
6109     case elfcpp::R_POWERPC_GOT16_LO:
6110     case elfcpp::R_POWERPC_GOT16_HI:
6111     case elfcpp::R_POWERPC_GOT16_HA:
6112     case elfcpp::R_PPC64_GOT16_DS:
6113     case elfcpp::R_PPC64_GOT16_LO_DS:
6114       {
6115         // The symbol requires a GOT entry.
6116         Output_data_got_powerpc<size, big_endian>* got;
6117
6118         got = target->got_section(symtab, layout);
6119         if (gsym->final_value_is_known())
6120           {
6121             if ((size == 32 && is_ifunc)
6122                 || (size == 64 && target->abiversion() >= 2))
6123               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6124             else
6125               got->add_global(gsym, GOT_TYPE_STANDARD);
6126           }
6127         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6128           {
6129             // If we are generating a shared object or a pie, this
6130             // symbol's GOT entry will be set by a dynamic relocation.
6131             unsigned int off = got->add_constant(0);
6132             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6133
6134             Reloc_section* rela_dyn
6135               = target->rela_dyn_section(symtab, layout, is_ifunc);
6136
6137             if (gsym->can_use_relative_reloc(false)
6138                 && !((size == 32
6139                       || target->abiversion() >= 2)
6140                      && gsym->visibility() == elfcpp::STV_PROTECTED
6141                      && parameters->options().shared()))
6142               {
6143                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6144                                        : elfcpp::R_POWERPC_RELATIVE);
6145                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6146               }
6147             else
6148               {
6149                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6150                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6151               }
6152           }
6153       }
6154       break;
6155
6156     case elfcpp::R_PPC64_TOC16:
6157     case elfcpp::R_PPC64_TOC16_LO:
6158     case elfcpp::R_PPC64_TOC16_HI:
6159     case elfcpp::R_PPC64_TOC16_HA:
6160     case elfcpp::R_PPC64_TOC16_DS:
6161     case elfcpp::R_PPC64_TOC16_LO_DS:
6162       // We need a GOT section.
6163       target->got_section(symtab, layout);
6164       break;
6165
6166     case elfcpp::R_POWERPC_GOT_TLSGD16:
6167     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6168     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6169     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6170       {
6171         const bool final = gsym->final_value_is_known();
6172         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6173         if (tls_type == tls::TLSOPT_NONE)
6174           {
6175             Output_data_got_powerpc<size, big_endian>* got
6176               = target->got_section(symtab, layout);
6177             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6178             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6179                                           elfcpp::R_POWERPC_DTPMOD,
6180                                           elfcpp::R_POWERPC_DTPREL);
6181           }
6182         else if (tls_type == tls::TLSOPT_TO_IE)
6183           {
6184             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6185               {
6186                 Output_data_got_powerpc<size, big_endian>* got
6187                   = target->got_section(symtab, layout);
6188                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6189                 if (gsym->is_undefined()
6190                     || gsym->is_from_dynobj())
6191                   {
6192                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6193                                              elfcpp::R_POWERPC_TPREL);
6194                   }
6195                 else
6196                   {
6197                     unsigned int off = got->add_constant(0);
6198                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6199                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6200                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6201                                                            got, off, 0);
6202                   }
6203               }
6204           }
6205         else if (tls_type == tls::TLSOPT_TO_LE)
6206           {
6207             // no GOT relocs needed for Local Exec.
6208           }
6209         else
6210           gold_unreachable();
6211       }
6212       break;
6213
6214     case elfcpp::R_POWERPC_GOT_TLSLD16:
6215     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6216     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6217     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6218       {
6219         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6220         if (tls_type == tls::TLSOPT_NONE)
6221           target->tlsld_got_offset(symtab, layout, object);
6222         else if (tls_type == tls::TLSOPT_TO_LE)
6223           {
6224             // no GOT relocs needed for Local Exec.
6225             if (parameters->options().emit_relocs())
6226               {
6227                 Output_section* os = layout->tls_segment()->first_section();
6228                 gold_assert(os != NULL);
6229                 os->set_needs_symtab_index();
6230               }
6231           }
6232         else
6233           gold_unreachable();
6234       }
6235       break;
6236
6237     case elfcpp::R_POWERPC_GOT_DTPREL16:
6238     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6239     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6240     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6241       {
6242         Output_data_got_powerpc<size, big_endian>* got
6243           = target->got_section(symtab, layout);
6244         if (!gsym->final_value_is_known()
6245             && (gsym->is_from_dynobj()
6246                 || gsym->is_undefined()
6247                 || gsym->is_preemptible()))
6248           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6249                                    target->rela_dyn_section(layout),
6250                                    elfcpp::R_POWERPC_DTPREL);
6251         else
6252           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6253       }
6254       break;
6255
6256     case elfcpp::R_POWERPC_GOT_TPREL16:
6257     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6258     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6259     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6260       {
6261         const bool final = gsym->final_value_is_known();
6262         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6263         if (tls_type == tls::TLSOPT_NONE)
6264           {
6265             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6266               {
6267                 Output_data_got_powerpc<size, big_endian>* got
6268                   = target->got_section(symtab, layout);
6269                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6270                 if (gsym->is_undefined()
6271                     || gsym->is_from_dynobj())
6272                   {
6273                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6274                                              elfcpp::R_POWERPC_TPREL);
6275                   }
6276                 else
6277                   {
6278                     unsigned int off = got->add_constant(0);
6279                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6280                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6281                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6282                                                            got, off, 0);
6283                   }
6284               }
6285           }
6286         else if (tls_type == tls::TLSOPT_TO_LE)
6287           {
6288             // no GOT relocs needed for Local Exec.
6289           }
6290         else
6291           gold_unreachable();
6292       }
6293       break;
6294
6295     default:
6296       unsupported_reloc_global(object, r_type, gsym);
6297       break;
6298     }
6299
6300   switch (r_type)
6301     {
6302     case elfcpp::R_POWERPC_GOT_TLSLD16:
6303     case elfcpp::R_POWERPC_GOT_TLSGD16:
6304     case elfcpp::R_POWERPC_GOT_TPREL16:
6305     case elfcpp::R_POWERPC_GOT_DTPREL16:
6306     case elfcpp::R_POWERPC_GOT16:
6307     case elfcpp::R_PPC64_GOT16_DS:
6308     case elfcpp::R_PPC64_TOC16:
6309     case elfcpp::R_PPC64_TOC16_DS:
6310       ppc_object->set_has_small_toc_reloc();
6311     default:
6312       break;
6313     }
6314 }
6315
6316 // Process relocations for gc.
6317
6318 template<int size, bool big_endian>
6319 void
6320 Target_powerpc<size, big_endian>::gc_process_relocs(
6321     Symbol_table* symtab,
6322     Layout* layout,
6323     Sized_relobj_file<size, big_endian>* object,
6324     unsigned int data_shndx,
6325     unsigned int,
6326     const unsigned char* prelocs,
6327     size_t reloc_count,
6328     Output_section* output_section,
6329     bool needs_special_offset_handling,
6330     size_t local_symbol_count,
6331     const unsigned char* plocal_symbols)
6332 {
6333   typedef Target_powerpc<size, big_endian> Powerpc;
6334   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6335   Powerpc_relobj<size, big_endian>* ppc_object
6336     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6337   if (size == 64)
6338     ppc_object->set_opd_valid();
6339   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6340     {
6341       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6342       for (p = ppc_object->access_from_map()->begin();
6343            p != ppc_object->access_from_map()->end();
6344            ++p)
6345         {
6346           Address dst_off = p->first;
6347           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6348           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6349           for (s = p->second.begin(); s != p->second.end(); ++s)
6350             {
6351               Object* src_obj = s->first;
6352               unsigned int src_indx = s->second;
6353               symtab->gc()->add_reference(src_obj, src_indx,
6354                                           ppc_object, dst_indx);
6355             }
6356           p->second.clear();
6357         }
6358       ppc_object->access_from_map()->clear();
6359       ppc_object->process_gc_mark(symtab);
6360       // Don't look at .opd relocs as .opd will reference everything.
6361       return;
6362     }
6363
6364   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6365                           typename Target_powerpc::Relocatable_size_for_reloc>(
6366     symtab,
6367     layout,
6368     this,
6369     object,
6370     data_shndx,
6371     prelocs,
6372     reloc_count,
6373     output_section,
6374     needs_special_offset_handling,
6375     local_symbol_count,
6376     plocal_symbols);
6377 }
6378
6379 // Handle target specific gc actions when adding a gc reference from
6380 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6381 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6382 // section of a function descriptor.
6383
6384 template<int size, bool big_endian>
6385 void
6386 Target_powerpc<size, big_endian>::do_gc_add_reference(
6387     Symbol_table* symtab,
6388     Object* src_obj,
6389     unsigned int src_shndx,
6390     Object* dst_obj,
6391     unsigned int dst_shndx,
6392     Address dst_off) const
6393 {
6394   if (size != 64 || dst_obj->is_dynamic())
6395     return;
6396
6397   Powerpc_relobj<size, big_endian>* ppc_object
6398     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6399   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6400     {
6401       if (ppc_object->opd_valid())
6402         {
6403           dst_shndx = ppc_object->get_opd_ent(dst_off);
6404           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6405         }
6406       else
6407         {
6408           // If we haven't run scan_opd_relocs, we must delay
6409           // processing this function descriptor reference.
6410           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6411         }
6412     }
6413 }
6414
6415 // Add any special sections for this symbol to the gc work list.
6416 // For powerpc64, this adds the code section of a function
6417 // descriptor.
6418
6419 template<int size, bool big_endian>
6420 void
6421 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6422     Symbol_table* symtab,
6423     Symbol* sym) const
6424 {
6425   if (size == 64)
6426     {
6427       Powerpc_relobj<size, big_endian>* ppc_object
6428         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6429       bool is_ordinary;
6430       unsigned int shndx = sym->shndx(&is_ordinary);
6431       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6432         {
6433           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6434           Address dst_off = gsym->value();
6435           if (ppc_object->opd_valid())
6436             {
6437               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6438               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6439             }
6440           else
6441             ppc_object->add_gc_mark(dst_off);
6442         }
6443     }
6444 }
6445
6446 // For a symbol location in .opd, set LOC to the location of the
6447 // function entry.
6448
6449 template<int size, bool big_endian>
6450 void
6451 Target_powerpc<size, big_endian>::do_function_location(
6452     Symbol_location* loc) const
6453 {
6454   if (size == 64 && loc->shndx != 0)
6455     {
6456       if (loc->object->is_dynamic())
6457         {
6458           Powerpc_dynobj<size, big_endian>* ppc_object
6459             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6460           if (loc->shndx == ppc_object->opd_shndx())
6461             {
6462               Address dest_off;
6463               Address off = loc->offset - ppc_object->opd_address();
6464               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6465               loc->offset = dest_off;
6466             }
6467         }
6468       else
6469         {
6470           const Powerpc_relobj<size, big_endian>* ppc_object
6471             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6472           if (loc->shndx == ppc_object->opd_shndx())
6473             {
6474               Address dest_off;
6475               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6476               loc->offset = dest_off;
6477             }
6478         }
6479     }
6480 }
6481
6482 // Scan relocations for a section.
6483
6484 template<int size, bool big_endian>
6485 void
6486 Target_powerpc<size, big_endian>::scan_relocs(
6487     Symbol_table* symtab,
6488     Layout* layout,
6489     Sized_relobj_file<size, big_endian>* object,
6490     unsigned int data_shndx,
6491     unsigned int sh_type,
6492     const unsigned char* prelocs,
6493     size_t reloc_count,
6494     Output_section* output_section,
6495     bool needs_special_offset_handling,
6496     size_t local_symbol_count,
6497     const unsigned char* plocal_symbols)
6498 {
6499   typedef Target_powerpc<size, big_endian> Powerpc;
6500   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6501
6502   if (sh_type == elfcpp::SHT_REL)
6503     {
6504       gold_error(_("%s: unsupported REL reloc section"),
6505                  object->name().c_str());
6506       return;
6507     }
6508
6509   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6510     symtab,
6511     layout,
6512     this,
6513     object,
6514     data_shndx,
6515     prelocs,
6516     reloc_count,
6517     output_section,
6518     needs_special_offset_handling,
6519     local_symbol_count,
6520     plocal_symbols);
6521 }
6522
6523 // Functor class for processing the global symbol table.
6524 // Removes symbols defined on discarded opd entries.
6525
6526 template<bool big_endian>
6527 class Global_symbol_visitor_opd
6528 {
6529  public:
6530   Global_symbol_visitor_opd()
6531   { }
6532
6533   void
6534   operator()(Sized_symbol<64>* sym)
6535   {
6536     if (sym->has_symtab_index()
6537         || sym->source() != Symbol::FROM_OBJECT
6538         || !sym->in_real_elf())
6539       return;
6540
6541     if (sym->object()->is_dynamic())
6542       return;
6543
6544     Powerpc_relobj<64, big_endian>* symobj
6545       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6546     if (symobj->opd_shndx() == 0)
6547       return;
6548
6549     bool is_ordinary;
6550     unsigned int shndx = sym->shndx(&is_ordinary);
6551     if (shndx == symobj->opd_shndx()
6552         && symobj->get_opd_discard(sym->value()))
6553       {
6554         sym->set_undefined();
6555         sym->set_is_defined_in_discarded_section();
6556         sym->set_symtab_index(-1U);
6557       }
6558   }
6559 };
6560
6561 template<int size, bool big_endian>
6562 void
6563 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6564     Layout* layout,
6565     Symbol_table* symtab)
6566 {
6567   if (size == 64)
6568     {
6569       Output_data_save_res<64, big_endian>* savres
6570         = new Output_data_save_res<64, big_endian>(symtab);
6571       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6572                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6573                                       savres, ORDER_TEXT, false);
6574     }
6575 }
6576
6577 // Sort linker created .got section first (for the header), then input
6578 // sections belonging to files using small model code.
6579
6580 template<bool big_endian>
6581 class Sort_toc_sections
6582 {
6583  public:
6584   bool
6585   operator()(const Output_section::Input_section& is1,
6586              const Output_section::Input_section& is2) const
6587   {
6588     if (!is1.is_input_section() && is2.is_input_section())
6589       return true;
6590     bool small1
6591       = (is1.is_input_section()
6592          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6593              ->has_small_toc_reloc()));
6594     bool small2
6595       = (is2.is_input_section()
6596          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6597              ->has_small_toc_reloc()));
6598     return small1 && !small2;
6599   }
6600 };
6601
6602 // Finalize the sections.
6603
6604 template<int size, bool big_endian>
6605 void
6606 Target_powerpc<size, big_endian>::do_finalize_sections(
6607     Layout* layout,
6608     const Input_objects*,
6609     Symbol_table* symtab)
6610 {
6611   if (parameters->doing_static_link())
6612     {
6613       // At least some versions of glibc elf-init.o have a strong
6614       // reference to __rela_iplt marker syms.  A weak ref would be
6615       // better..
6616       if (this->iplt_ != NULL)
6617         {
6618           Reloc_section* rel = this->iplt_->rel_plt();
6619           symtab->define_in_output_data("__rela_iplt_start", NULL,
6620                                         Symbol_table::PREDEFINED, rel, 0, 0,
6621                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6622                                         elfcpp::STV_HIDDEN, 0, false, true);
6623           symtab->define_in_output_data("__rela_iplt_end", NULL,
6624                                         Symbol_table::PREDEFINED, rel, 0, 0,
6625                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6626                                         elfcpp::STV_HIDDEN, 0, true, true);
6627         }
6628       else
6629         {
6630           symtab->define_as_constant("__rela_iplt_start", NULL,
6631                                      Symbol_table::PREDEFINED, 0, 0,
6632                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6633                                      elfcpp::STV_HIDDEN, 0, true, false);
6634           symtab->define_as_constant("__rela_iplt_end", NULL,
6635                                      Symbol_table::PREDEFINED, 0, 0,
6636                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6637                                      elfcpp::STV_HIDDEN, 0, true, false);
6638         }
6639     }
6640
6641   if (size == 64)
6642     {
6643       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6644       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6645
6646       if (!parameters->options().relocatable())
6647         {
6648           this->define_save_restore_funcs(layout, symtab);
6649
6650           // Annoyingly, we need to make these sections now whether or
6651           // not we need them.  If we delay until do_relax then we
6652           // need to mess with the relaxation machinery checkpointing.
6653           this->got_section(symtab, layout);
6654           this->make_brlt_section(layout);
6655
6656           if (parameters->options().toc_sort())
6657             {
6658               Output_section* os = this->got_->output_section();
6659               if (os != NULL && os->input_sections().size() > 1)
6660                 std::stable_sort(os->input_sections().begin(),
6661                                  os->input_sections().end(),
6662                                  Sort_toc_sections<big_endian>());
6663             }
6664         }
6665     }
6666
6667   // Fill in some more dynamic tags.
6668   Output_data_dynamic* odyn = layout->dynamic_data();
6669   if (odyn != NULL)
6670     {
6671       const Reloc_section* rel_plt = (this->plt_ == NULL
6672                                       ? NULL
6673                                       : this->plt_->rel_plt());
6674       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6675                                       this->rela_dyn_, true, size == 32);
6676
6677       if (size == 32)
6678         {
6679           if (this->got_ != NULL)
6680             {
6681               this->got_->finalize_data_size();
6682               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6683                                             this->got_, this->got_->g_o_t());
6684             }
6685         }
6686       else
6687         {
6688           if (this->glink_ != NULL)
6689             {
6690               this->glink_->finalize_data_size();
6691               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6692                                             this->glink_,
6693                                             (this->glink_->pltresolve_size
6694                                              - 32));
6695             }
6696         }
6697     }
6698
6699   // Emit any relocs we saved in an attempt to avoid generating COPY
6700   // relocs.
6701   if (this->copy_relocs_.any_saved_relocs())
6702     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6703 }
6704
6705 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6706 // reloc.
6707
6708 static bool
6709 ok_lo_toc_insn(uint32_t insn)
6710 {
6711   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6712           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6713           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6714           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6715           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6716           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6717           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6718           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6719           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6720           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6721           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6722           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6723           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6724           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6725           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6726               && (insn & 3) != 1)
6727           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6728               && ((insn & 3) == 0 || (insn & 3) == 3))
6729           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6730 }
6731
6732 // Return the value to use for a branch relocation.
6733
6734 template<int size, bool big_endian>
6735 bool
6736 Target_powerpc<size, big_endian>::symval_for_branch(
6737     const Symbol_table* symtab,
6738     const Sized_symbol<size>* gsym,
6739     Powerpc_relobj<size, big_endian>* object,
6740     Address *value,
6741     unsigned int *dest_shndx)
6742 {
6743   if (size == 32 || this->abiversion() >= 2)
6744     gold_unreachable();
6745   *dest_shndx = 0;
6746
6747   // If the symbol is defined in an opd section, ie. is a function
6748   // descriptor, use the function descriptor code entry address
6749   Powerpc_relobj<size, big_endian>* symobj = object;
6750   if (gsym != NULL
6751       && gsym->source() != Symbol::FROM_OBJECT)
6752     return true;
6753   if (gsym != NULL)
6754     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6755   unsigned int shndx = symobj->opd_shndx();
6756   if (shndx == 0)
6757     return true;
6758   Address opd_addr = symobj->get_output_section_offset(shndx);
6759   if (opd_addr == invalid_address)
6760     return true;
6761   opd_addr += symobj->output_section_address(shndx);
6762   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6763     {
6764       Address sec_off;
6765       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6766       if (symtab->is_section_folded(symobj, *dest_shndx))
6767         {
6768           Section_id folded
6769             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6770           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6771           *dest_shndx = folded.second;
6772         }
6773       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6774       if (sec_addr == invalid_address)
6775         return false;
6776
6777       sec_addr += symobj->output_section(*dest_shndx)->address();
6778       *value = sec_addr + sec_off;
6779     }
6780   return true;
6781 }
6782
6783 // Perform a relocation.
6784
6785 template<int size, bool big_endian>
6786 inline bool
6787 Target_powerpc<size, big_endian>::Relocate::relocate(
6788     const Relocate_info<size, big_endian>* relinfo,
6789     Target_powerpc* target,
6790     Output_section* os,
6791     size_t relnum,
6792     const elfcpp::Rela<size, big_endian>& rela,
6793     unsigned int r_type,
6794     const Sized_symbol<size>* gsym,
6795     const Symbol_value<size>* psymval,
6796     unsigned char* view,
6797     Address address,
6798     section_size_type view_size)
6799 {
6800   if (view == NULL)
6801     return true;
6802
6803   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6804     {
6805     case Track_tls::NOT_EXPECTED:
6806       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6807                              _("__tls_get_addr call lacks marker reloc"));
6808       break;
6809     case Track_tls::EXPECTED:
6810       // We have already complained.
6811       break;
6812     case Track_tls::SKIP:
6813       return true;
6814     case Track_tls::NORMAL:
6815       break;
6816     }
6817
6818   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6819   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6820   Powerpc_relobj<size, big_endian>* const object
6821     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6822   Address value = 0;
6823   bool has_stub_value = false;
6824   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6825   if ((gsym != NULL
6826        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6827        : object->local_has_plt_offset(r_sym))
6828       && (!psymval->is_ifunc_symbol()
6829           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6830     {
6831       if (size == 64
6832           && gsym != NULL
6833           && target->abiversion() >= 2
6834           && !parameters->options().output_is_position_independent()
6835           && !is_branch_reloc(r_type))
6836         {
6837           unsigned int off = target->glink_section()->find_global_entry(gsym);
6838           gold_assert(off != (unsigned int)-1);
6839           value = target->glink_section()->global_entry_address() + off;
6840         }
6841       else
6842         {
6843           Stub_table<size, big_endian>* stub_table
6844             = object->stub_table(relinfo->data_shndx);
6845           if (stub_table == NULL)
6846             {
6847               // This is a ref from a data section to an ifunc symbol.
6848               if (target->stub_tables().size() != 0)
6849                 stub_table = target->stub_tables()[0];
6850             }
6851           gold_assert(stub_table != NULL);
6852           Address off;
6853           if (gsym != NULL)
6854             off = stub_table->find_plt_call_entry(object, gsym, r_type,
6855                                                   rela.get_r_addend());
6856           else
6857             off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6858                                                   rela.get_r_addend());
6859           gold_assert(off != invalid_address);
6860           value = stub_table->stub_address() + off;
6861         }
6862       has_stub_value = true;
6863     }
6864
6865   if (r_type == elfcpp::R_POWERPC_GOT16
6866       || r_type == elfcpp::R_POWERPC_GOT16_LO
6867       || r_type == elfcpp::R_POWERPC_GOT16_HI
6868       || r_type == elfcpp::R_POWERPC_GOT16_HA
6869       || r_type == elfcpp::R_PPC64_GOT16_DS
6870       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6871     {
6872       if (gsym != NULL)
6873         {
6874           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6875           value = gsym->got_offset(GOT_TYPE_STANDARD);
6876         }
6877       else
6878         {
6879           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6880           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6881           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6882         }
6883       value -= target->got_section()->got_base_offset(object);
6884     }
6885   else if (r_type == elfcpp::R_PPC64_TOC)
6886     {
6887       value = (target->got_section()->output_section()->address()
6888                + object->toc_base_offset());
6889     }
6890   else if (gsym != NULL
6891            && (r_type == elfcpp::R_POWERPC_REL24
6892                || r_type == elfcpp::R_PPC_PLTREL24)
6893            && has_stub_value)
6894     {
6895       if (size == 64)
6896         {
6897           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6898           Valtype* wv = reinterpret_cast<Valtype*>(view);
6899           bool can_plt_call = false;
6900           if (rela.get_r_offset() + 8 <= view_size)
6901             {
6902               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6903               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6904               if ((insn & 1) != 0
6905                   && (insn2 == nop
6906                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6907                 {
6908                   elfcpp::Swap<32, big_endian>::
6909                     writeval(wv + 1, ld_2_1 + target->stk_toc());
6910                   can_plt_call = true;
6911                 }
6912             }
6913           if (!can_plt_call)
6914             {
6915               // If we don't have a branch and link followed by a nop,
6916               // we can't go via the plt because there is no place to
6917               // put a toc restoring instruction.
6918               // Unless we know we won't be returning.
6919               if (strcmp(gsym->name(), "__libc_start_main") == 0)
6920                 can_plt_call = true;
6921             }
6922           if (!can_plt_call)
6923             {
6924               // g++ as of 20130507 emits self-calls without a
6925               // following nop.  This is arguably wrong since we have
6926               // conflicting information.  On the one hand a global
6927               // symbol and on the other a local call sequence, but
6928               // don't error for this special case.
6929               // It isn't possible to cheaply verify we have exactly
6930               // such a call.  Allow all calls to the same section.
6931               bool ok = false;
6932               Address code = value;
6933               if (gsym->source() == Symbol::FROM_OBJECT
6934                   && gsym->object() == object)
6935                 {
6936                   unsigned int dest_shndx = 0;
6937                   if (target->abiversion() < 2)
6938                     {
6939                       Address addend = rela.get_r_addend();
6940                       code = psymval->value(object, addend);
6941                       target->symval_for_branch(relinfo->symtab, gsym, object,
6942                                                 &code, &dest_shndx);
6943                     }
6944                   bool is_ordinary;
6945                   if (dest_shndx == 0)
6946                     dest_shndx = gsym->shndx(&is_ordinary);
6947                   ok = dest_shndx == relinfo->data_shndx;
6948                 }
6949               if (!ok)
6950                 {
6951                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6952                                          _("call lacks nop, can't restore toc; "
6953                                            "recompile with -fPIC"));
6954                   value = code;
6955                 }
6956             }
6957         }
6958     }
6959   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6960            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6961            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6962            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6963     {
6964       // First instruction of a global dynamic sequence, arg setup insn.
6965       const bool final = gsym == NULL || gsym->final_value_is_known();
6966       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6967       enum Got_type got_type = GOT_TYPE_STANDARD;
6968       if (tls_type == tls::TLSOPT_NONE)
6969         got_type = GOT_TYPE_TLSGD;
6970       else if (tls_type == tls::TLSOPT_TO_IE)
6971         got_type = GOT_TYPE_TPREL;
6972       if (got_type != GOT_TYPE_STANDARD)
6973         {
6974           if (gsym != NULL)
6975             {
6976               gold_assert(gsym->has_got_offset(got_type));
6977               value = gsym->got_offset(got_type);
6978             }
6979           else
6980             {
6981               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6982               gold_assert(object->local_has_got_offset(r_sym, got_type));
6983               value = object->local_got_offset(r_sym, got_type);
6984             }
6985           value -= target->got_section()->got_base_offset(object);
6986         }
6987       if (tls_type == tls::TLSOPT_TO_IE)
6988         {
6989           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6990               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6991             {
6992               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6993               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6994               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6995               if (size == 32)
6996                 insn |= 32 << 26; // lwz
6997               else
6998                 insn |= 58 << 26; // ld
6999               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7000             }
7001           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7002                      - elfcpp::R_POWERPC_GOT_TLSGD16);
7003         }
7004       else if (tls_type == tls::TLSOPT_TO_LE)
7005         {
7006           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7007               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7008             {
7009               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7010               Insn insn = addis_3_13;
7011               if (size == 32)
7012                 insn = addis_3_2;
7013               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7014               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7015               value = psymval->value(object, rela.get_r_addend());
7016             }
7017           else
7018             {
7019               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7020               Insn insn = nop;
7021               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7022               r_type = elfcpp::R_POWERPC_NONE;
7023             }
7024         }
7025     }
7026   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7027            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7028            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7029            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7030     {
7031       // First instruction of a local dynamic sequence, arg setup insn.
7032       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7033       if (tls_type == tls::TLSOPT_NONE)
7034         {
7035           value = target->tlsld_got_offset();
7036           value -= target->got_section()->got_base_offset(object);
7037         }
7038       else
7039         {
7040           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7041           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7042               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7043             {
7044               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7045               Insn insn = addis_3_13;
7046               if (size == 32)
7047                 insn = addis_3_2;
7048               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7049               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7050               value = dtp_offset;
7051             }
7052           else
7053             {
7054               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7055               Insn insn = nop;
7056               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7057               r_type = elfcpp::R_POWERPC_NONE;
7058             }
7059         }
7060     }
7061   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7062            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7063            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7064            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7065     {
7066       // Accesses relative to a local dynamic sequence address,
7067       // no optimisation here.
7068       if (gsym != NULL)
7069         {
7070           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7071           value = gsym->got_offset(GOT_TYPE_DTPREL);
7072         }
7073       else
7074         {
7075           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7076           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7077           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7078         }
7079       value -= target->got_section()->got_base_offset(object);
7080     }
7081   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7082            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7083            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7084            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7085     {
7086       // First instruction of initial exec sequence.
7087       const bool final = gsym == NULL || gsym->final_value_is_known();
7088       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7089       if (tls_type == tls::TLSOPT_NONE)
7090         {
7091           if (gsym != NULL)
7092             {
7093               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7094               value = gsym->got_offset(GOT_TYPE_TPREL);
7095             }
7096           else
7097             {
7098               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7099               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7100               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7101             }
7102           value -= target->got_section()->got_base_offset(object);
7103         }
7104       else
7105         {
7106           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7107           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7108               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7109             {
7110               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7111               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7112               insn &= (1 << 26) - (1 << 21); // extract rt from ld
7113               if (size == 32)
7114                 insn |= addis_0_2;
7115               else
7116                 insn |= addis_0_13;
7117               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7118               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7119               value = psymval->value(object, rela.get_r_addend());
7120             }
7121           else
7122             {
7123               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7124               Insn insn = nop;
7125               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7126               r_type = elfcpp::R_POWERPC_NONE;
7127             }
7128         }
7129     }
7130   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7131            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7132     {
7133       // Second instruction of a global dynamic sequence,
7134       // the __tls_get_addr call
7135       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7136       const bool final = gsym == NULL || gsym->final_value_is_known();
7137       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7138       if (tls_type != tls::TLSOPT_NONE)
7139         {
7140           if (tls_type == tls::TLSOPT_TO_IE)
7141             {
7142               Insn* iview = reinterpret_cast<Insn*>(view);
7143               Insn insn = add_3_3_13;
7144               if (size == 32)
7145                 insn = add_3_3_2;
7146               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7147               r_type = elfcpp::R_POWERPC_NONE;
7148             }
7149           else
7150             {
7151               Insn* iview = reinterpret_cast<Insn*>(view);
7152               Insn insn = addi_3_3;
7153               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7154               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7155               view += 2 * big_endian;
7156               value = psymval->value(object, rela.get_r_addend());
7157             }
7158           this->skip_next_tls_get_addr_call();
7159         }
7160     }
7161   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7162            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7163     {
7164       // Second instruction of a local dynamic sequence,
7165       // the __tls_get_addr call
7166       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7167       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7168       if (tls_type == tls::TLSOPT_TO_LE)
7169         {
7170           Insn* iview = reinterpret_cast<Insn*>(view);
7171           Insn insn = addi_3_3;
7172           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7173           this->skip_next_tls_get_addr_call();
7174           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7175           view += 2 * big_endian;
7176           value = dtp_offset;
7177         }
7178     }
7179   else if (r_type == elfcpp::R_POWERPC_TLS)
7180     {
7181       // Second instruction of an initial exec sequence
7182       const bool final = gsym == NULL || gsym->final_value_is_known();
7183       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7184       if (tls_type == tls::TLSOPT_TO_LE)
7185         {
7186           Insn* iview = reinterpret_cast<Insn*>(view);
7187           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7188           unsigned int reg = size == 32 ? 2 : 13;
7189           insn = at_tls_transform(insn, reg);
7190           gold_assert(insn != 0);
7191           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7192           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7193           view += 2 * big_endian;
7194           value = psymval->value(object, rela.get_r_addend());
7195         }
7196     }
7197   else if (!has_stub_value)
7198     {
7199       Address addend = 0;
7200       if (r_type != elfcpp::R_PPC_PLTREL24)
7201         addend = rela.get_r_addend();
7202       value = psymval->value(object, addend);
7203       if (size == 64 && is_branch_reloc(r_type))
7204         {
7205           if (target->abiversion() >= 2)
7206             {
7207               if (gsym != NULL)
7208                 value += object->ppc64_local_entry_offset(gsym);
7209               else
7210                 value += object->ppc64_local_entry_offset(r_sym);
7211             }
7212           else
7213             {
7214               unsigned int dest_shndx;
7215               target->symval_for_branch(relinfo->symtab, gsym, object,
7216                                         &value, &dest_shndx);
7217             }
7218         }
7219       unsigned long max_branch_offset = max_branch_delta(r_type);
7220       if (max_branch_offset != 0
7221           && value - address + max_branch_offset >= 2 * max_branch_offset)
7222         {
7223           Stub_table<size, big_endian>* stub_table
7224             = object->stub_table(relinfo->data_shndx);
7225           if (stub_table != NULL)
7226             {
7227               Address off = stub_table->find_long_branch_entry(object, value);
7228               if (off != invalid_address)
7229                 {
7230                   value = (stub_table->stub_address() + stub_table->plt_size()
7231                            + off);
7232                   has_stub_value = true;
7233                 }
7234             }
7235         }
7236     }
7237
7238   switch (r_type)
7239     {
7240     case elfcpp::R_PPC64_REL64:
7241     case elfcpp::R_POWERPC_REL32:
7242     case elfcpp::R_POWERPC_REL24:
7243     case elfcpp::R_PPC_PLTREL24:
7244     case elfcpp::R_PPC_LOCAL24PC:
7245     case elfcpp::R_POWERPC_REL16:
7246     case elfcpp::R_POWERPC_REL16_LO:
7247     case elfcpp::R_POWERPC_REL16_HI:
7248     case elfcpp::R_POWERPC_REL16_HA:
7249     case elfcpp::R_POWERPC_REL14:
7250     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7251     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7252       value -= address;
7253       break;
7254
7255     case elfcpp::R_PPC64_TOC16:
7256     case elfcpp::R_PPC64_TOC16_LO:
7257     case elfcpp::R_PPC64_TOC16_HI:
7258     case elfcpp::R_PPC64_TOC16_HA:
7259     case elfcpp::R_PPC64_TOC16_DS:
7260     case elfcpp::R_PPC64_TOC16_LO_DS:
7261       // Subtract the TOC base address.
7262       value -= (target->got_section()->output_section()->address()
7263                 + object->toc_base_offset());
7264       break;
7265
7266     case elfcpp::R_POWERPC_SECTOFF:
7267     case elfcpp::R_POWERPC_SECTOFF_LO:
7268     case elfcpp::R_POWERPC_SECTOFF_HI:
7269     case elfcpp::R_POWERPC_SECTOFF_HA:
7270     case elfcpp::R_PPC64_SECTOFF_DS:
7271     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7272       if (os != NULL)
7273         value -= os->address();
7274       break;
7275
7276     case elfcpp::R_PPC64_TPREL16_DS:
7277     case elfcpp::R_PPC64_TPREL16_LO_DS:
7278     case elfcpp::R_PPC64_TPREL16_HIGH:
7279     case elfcpp::R_PPC64_TPREL16_HIGHA:
7280       if (size != 64)
7281         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7282         break;
7283     case elfcpp::R_POWERPC_TPREL16:
7284     case elfcpp::R_POWERPC_TPREL16_LO:
7285     case elfcpp::R_POWERPC_TPREL16_HI:
7286     case elfcpp::R_POWERPC_TPREL16_HA:
7287     case elfcpp::R_POWERPC_TPREL:
7288     case elfcpp::R_PPC64_TPREL16_HIGHER:
7289     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7290     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7291     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7292       // tls symbol values are relative to tls_segment()->vaddr()
7293       value -= tp_offset;
7294       break;
7295
7296     case elfcpp::R_PPC64_DTPREL16_DS:
7297     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7298     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7299     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7300     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7301     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7302       if (size != 64)
7303         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7304         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7305         break;
7306     case elfcpp::R_POWERPC_DTPREL16:
7307     case elfcpp::R_POWERPC_DTPREL16_LO:
7308     case elfcpp::R_POWERPC_DTPREL16_HI:
7309     case elfcpp::R_POWERPC_DTPREL16_HA:
7310     case elfcpp::R_POWERPC_DTPREL:
7311     case elfcpp::R_PPC64_DTPREL16_HIGH:
7312     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7313       // tls symbol values are relative to tls_segment()->vaddr()
7314       value -= dtp_offset;
7315       break;
7316
7317     case elfcpp::R_PPC64_ADDR64_LOCAL:
7318       if (gsym != NULL)
7319         value += object->ppc64_local_entry_offset(gsym);
7320       else
7321         value += object->ppc64_local_entry_offset(r_sym);
7322       break;
7323
7324     default:
7325       break;
7326     }
7327
7328   Insn branch_bit = 0;
7329   switch (r_type)
7330     {
7331     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7332     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7333       branch_bit = 1 << 21;
7334     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7335     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7336       {
7337         Insn* iview = reinterpret_cast<Insn*>(view);
7338         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7339         insn &= ~(1 << 21);
7340         insn |= branch_bit;
7341         if (this->is_isa_v2)
7342           {
7343             // Set 'a' bit.  This is 0b00010 in BO field for branch
7344             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7345             // for branch on CTR insns (BO == 1a00t or 1a01t).
7346             if ((insn & (0x14 << 21)) == (0x04 << 21))
7347               insn |= 0x02 << 21;
7348             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7349               insn |= 0x08 << 21;
7350             else
7351               break;
7352           }
7353         else
7354           {
7355             // Invert 'y' bit if not the default.
7356             if (static_cast<Signed_address>(value) < 0)
7357               insn ^= 1 << 21;
7358           }
7359         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7360       }
7361       break;
7362
7363     default:
7364       break;
7365     }
7366
7367   if (size == 64)
7368     {
7369       // Multi-instruction sequences that access the TOC can be
7370       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7371       // to             nop;           addi rb,r2,x;
7372       switch (r_type)
7373         {
7374         default:
7375           break;
7376
7377         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7378         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7379         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7380         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7381         case elfcpp::R_POWERPC_GOT16_HA:
7382         case elfcpp::R_PPC64_TOC16_HA:
7383           if (parameters->options().toc_optimize())
7384             {
7385               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7386               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7387               if ((insn & ((0x3f << 26) | 0x1f << 16))
7388                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7389                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7390                                        _("toc optimization is not supported "
7391                                          "for %#08x instruction"), insn);
7392               else if (value + 0x8000 < 0x10000)
7393                 {
7394                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7395                   return true;
7396                 }
7397             }
7398           break;
7399
7400         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7401         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7402         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7403         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7404         case elfcpp::R_POWERPC_GOT16_LO:
7405         case elfcpp::R_PPC64_GOT16_LO_DS:
7406         case elfcpp::R_PPC64_TOC16_LO:
7407         case elfcpp::R_PPC64_TOC16_LO_DS:
7408           if (parameters->options().toc_optimize())
7409             {
7410               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7411               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7412               if (!ok_lo_toc_insn(insn))
7413                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7414                                        _("toc optimization is not supported "
7415                                          "for %#08x instruction"), insn);
7416               else if (value + 0x8000 < 0x10000)
7417                 {
7418                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7419                     {
7420                       // Transform addic to addi when we change reg.
7421                       insn &= ~((0x3f << 26) | (0x1f << 16));
7422                       insn |= (14u << 26) | (2 << 16);
7423                     }
7424                   else
7425                     {
7426                       insn &= ~(0x1f << 16);
7427                       insn |= 2 << 16;
7428                     }
7429                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7430                 }
7431             }
7432           break;
7433         }
7434     }
7435
7436   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7437   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7438   switch (r_type)
7439     {
7440     case elfcpp::R_POWERPC_ADDR32:
7441     case elfcpp::R_POWERPC_UADDR32:
7442       if (size == 64)
7443         overflow = Reloc::CHECK_BITFIELD;
7444       break;
7445
7446     case elfcpp::R_POWERPC_REL32:
7447       if (size == 64)
7448         overflow = Reloc::CHECK_SIGNED;
7449       break;
7450
7451     case elfcpp::R_POWERPC_UADDR16:
7452       overflow = Reloc::CHECK_BITFIELD;
7453       break;
7454
7455     case elfcpp::R_POWERPC_ADDR16:
7456       // We really should have three separate relocations,
7457       // one for 16-bit data, one for insns with 16-bit signed fields,
7458       // and one for insns with 16-bit unsigned fields.
7459       overflow = Reloc::CHECK_BITFIELD;
7460       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7461         overflow = Reloc::CHECK_LOW_INSN;
7462       break;
7463
7464     case elfcpp::R_POWERPC_ADDR16_HI:
7465     case elfcpp::R_POWERPC_ADDR16_HA:
7466     case elfcpp::R_POWERPC_GOT16_HI:
7467     case elfcpp::R_POWERPC_GOT16_HA:
7468     case elfcpp::R_POWERPC_PLT16_HI:
7469     case elfcpp::R_POWERPC_PLT16_HA:
7470     case elfcpp::R_POWERPC_SECTOFF_HI:
7471     case elfcpp::R_POWERPC_SECTOFF_HA:
7472     case elfcpp::R_PPC64_TOC16_HI:
7473     case elfcpp::R_PPC64_TOC16_HA:
7474     case elfcpp::R_PPC64_PLTGOT16_HI:
7475     case elfcpp::R_PPC64_PLTGOT16_HA:
7476     case elfcpp::R_POWERPC_TPREL16_HI:
7477     case elfcpp::R_POWERPC_TPREL16_HA:
7478     case elfcpp::R_POWERPC_DTPREL16_HI:
7479     case elfcpp::R_POWERPC_DTPREL16_HA:
7480     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7481     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7482     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7483     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7484     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7485     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7486     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7487     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7488     case elfcpp::R_POWERPC_REL16_HI:
7489     case elfcpp::R_POWERPC_REL16_HA:
7490       if (size != 32)
7491         overflow = Reloc::CHECK_HIGH_INSN;
7492       break;
7493
7494     case elfcpp::R_POWERPC_REL16:
7495     case elfcpp::R_PPC64_TOC16:
7496     case elfcpp::R_POWERPC_GOT16:
7497     case elfcpp::R_POWERPC_SECTOFF:
7498     case elfcpp::R_POWERPC_TPREL16:
7499     case elfcpp::R_POWERPC_DTPREL16:
7500     case elfcpp::R_POWERPC_GOT_TLSGD16:
7501     case elfcpp::R_POWERPC_GOT_TLSLD16:
7502     case elfcpp::R_POWERPC_GOT_TPREL16:
7503     case elfcpp::R_POWERPC_GOT_DTPREL16:
7504       overflow = Reloc::CHECK_LOW_INSN;
7505       break;
7506
7507     case elfcpp::R_POWERPC_ADDR24:
7508     case elfcpp::R_POWERPC_ADDR14:
7509     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7510     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7511     case elfcpp::R_PPC64_ADDR16_DS:
7512     case elfcpp::R_POWERPC_REL24:
7513     case elfcpp::R_PPC_PLTREL24:
7514     case elfcpp::R_PPC_LOCAL24PC:
7515     case elfcpp::R_PPC64_TPREL16_DS:
7516     case elfcpp::R_PPC64_DTPREL16_DS:
7517     case elfcpp::R_PPC64_TOC16_DS:
7518     case elfcpp::R_PPC64_GOT16_DS:
7519     case elfcpp::R_PPC64_SECTOFF_DS:
7520     case elfcpp::R_POWERPC_REL14:
7521     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7522     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7523       overflow = Reloc::CHECK_SIGNED;
7524       break;
7525     }
7526
7527   if (overflow == Reloc::CHECK_LOW_INSN
7528       || overflow == Reloc::CHECK_HIGH_INSN)
7529     {
7530       Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7531       Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7532
7533       overflow = Reloc::CHECK_SIGNED;
7534       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7535         overflow = Reloc::CHECK_BITFIELD;
7536       else if (overflow == Reloc::CHECK_LOW_INSN
7537                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7538                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7539                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7540                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7541                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7542                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7543         overflow = Reloc::CHECK_UNSIGNED;
7544     }
7545
7546   typename Powerpc_relocate_functions<size, big_endian>::Status status
7547     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7548   switch (r_type)
7549     {
7550     case elfcpp::R_POWERPC_NONE:
7551     case elfcpp::R_POWERPC_TLS:
7552     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7553     case elfcpp::R_POWERPC_GNU_VTENTRY:
7554       break;
7555
7556     case elfcpp::R_PPC64_ADDR64:
7557     case elfcpp::R_PPC64_REL64:
7558     case elfcpp::R_PPC64_TOC:
7559     case elfcpp::R_PPC64_ADDR64_LOCAL:
7560       Reloc::addr64(view, value);
7561       break;
7562
7563     case elfcpp::R_POWERPC_TPREL:
7564     case elfcpp::R_POWERPC_DTPREL:
7565       if (size == 64)
7566         Reloc::addr64(view, value);
7567       else
7568         status = Reloc::addr32(view, value, overflow);
7569       break;
7570
7571     case elfcpp::R_PPC64_UADDR64:
7572       Reloc::addr64_u(view, value);
7573       break;
7574
7575     case elfcpp::R_POWERPC_ADDR32:
7576       status = Reloc::addr32(view, value, overflow);
7577       break;
7578
7579     case elfcpp::R_POWERPC_REL32:
7580     case elfcpp::R_POWERPC_UADDR32:
7581       status = Reloc::addr32_u(view, value, overflow);
7582       break;
7583
7584     case elfcpp::R_POWERPC_ADDR24:
7585     case elfcpp::R_POWERPC_REL24:
7586     case elfcpp::R_PPC_PLTREL24:
7587     case elfcpp::R_PPC_LOCAL24PC:
7588       status = Reloc::addr24(view, value, overflow);
7589       break;
7590
7591     case elfcpp::R_POWERPC_GOT_DTPREL16:
7592     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7593       if (size == 64)
7594         {
7595           status = Reloc::addr16_ds(view, value, overflow);
7596           break;
7597         }
7598     case elfcpp::R_POWERPC_ADDR16:
7599     case elfcpp::R_POWERPC_REL16:
7600     case elfcpp::R_PPC64_TOC16:
7601     case elfcpp::R_POWERPC_GOT16:
7602     case elfcpp::R_POWERPC_SECTOFF:
7603     case elfcpp::R_POWERPC_TPREL16:
7604     case elfcpp::R_POWERPC_DTPREL16:
7605     case elfcpp::R_POWERPC_GOT_TLSGD16:
7606     case elfcpp::R_POWERPC_GOT_TLSLD16:
7607     case elfcpp::R_POWERPC_GOT_TPREL16:
7608     case elfcpp::R_POWERPC_ADDR16_LO:
7609     case elfcpp::R_POWERPC_REL16_LO:
7610     case elfcpp::R_PPC64_TOC16_LO:
7611     case elfcpp::R_POWERPC_GOT16_LO:
7612     case elfcpp::R_POWERPC_SECTOFF_LO:
7613     case elfcpp::R_POWERPC_TPREL16_LO:
7614     case elfcpp::R_POWERPC_DTPREL16_LO:
7615     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7616     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7617     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7618       status = Reloc::addr16(view, value, overflow);
7619       break;
7620
7621     case elfcpp::R_POWERPC_UADDR16:
7622       status = Reloc::addr16_u(view, value, overflow);
7623       break;
7624
7625     case elfcpp::R_PPC64_ADDR16_HIGH:
7626     case elfcpp::R_PPC64_TPREL16_HIGH:
7627     case elfcpp::R_PPC64_DTPREL16_HIGH:
7628       if (size == 32)
7629         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7630         goto unsupp;
7631     case elfcpp::R_POWERPC_ADDR16_HI:
7632     case elfcpp::R_POWERPC_REL16_HI:
7633     case elfcpp::R_PPC64_TOC16_HI:
7634     case elfcpp::R_POWERPC_GOT16_HI:
7635     case elfcpp::R_POWERPC_SECTOFF_HI:
7636     case elfcpp::R_POWERPC_TPREL16_HI:
7637     case elfcpp::R_POWERPC_DTPREL16_HI:
7638     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7639     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7640     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7641     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7642       Reloc::addr16_hi(view, value);
7643       break;
7644
7645     case elfcpp::R_PPC64_ADDR16_HIGHA:
7646     case elfcpp::R_PPC64_TPREL16_HIGHA:
7647     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7648       if (size == 32)
7649         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7650         goto unsupp;
7651     case elfcpp::R_POWERPC_ADDR16_HA:
7652     case elfcpp::R_POWERPC_REL16_HA:
7653     case elfcpp::R_PPC64_TOC16_HA:
7654     case elfcpp::R_POWERPC_GOT16_HA:
7655     case elfcpp::R_POWERPC_SECTOFF_HA:
7656     case elfcpp::R_POWERPC_TPREL16_HA:
7657     case elfcpp::R_POWERPC_DTPREL16_HA:
7658     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7659     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7660     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7661     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7662       Reloc::addr16_ha(view, value);
7663       break;
7664
7665     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7666       if (size == 32)
7667         // R_PPC_EMB_NADDR16_LO
7668         goto unsupp;
7669     case elfcpp::R_PPC64_ADDR16_HIGHER:
7670     case elfcpp::R_PPC64_TPREL16_HIGHER:
7671       Reloc::addr16_hi2(view, value);
7672       break;
7673
7674     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7675       if (size == 32)
7676         // R_PPC_EMB_NADDR16_HI
7677         goto unsupp;
7678     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7679     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7680       Reloc::addr16_ha2(view, value);
7681       break;
7682
7683     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7684       if (size == 32)
7685         // R_PPC_EMB_NADDR16_HA
7686         goto unsupp;
7687     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7688     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7689       Reloc::addr16_hi3(view, value);
7690       break;
7691
7692     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7693       if (size == 32)
7694         // R_PPC_EMB_SDAI16
7695         goto unsupp;
7696     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7697     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7698       Reloc::addr16_ha3(view, value);
7699       break;
7700
7701     case elfcpp::R_PPC64_DTPREL16_DS:
7702     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7703       if (size == 32)
7704         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7705         goto unsupp;
7706     case elfcpp::R_PPC64_TPREL16_DS:
7707     case elfcpp::R_PPC64_TPREL16_LO_DS:
7708       if (size == 32)
7709         // R_PPC_TLSGD, R_PPC_TLSLD
7710         break;
7711     case elfcpp::R_PPC64_ADDR16_DS:
7712     case elfcpp::R_PPC64_ADDR16_LO_DS:
7713     case elfcpp::R_PPC64_TOC16_DS:
7714     case elfcpp::R_PPC64_TOC16_LO_DS:
7715     case elfcpp::R_PPC64_GOT16_DS:
7716     case elfcpp::R_PPC64_GOT16_LO_DS:
7717     case elfcpp::R_PPC64_SECTOFF_DS:
7718     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7719       status = Reloc::addr16_ds(view, value, overflow);
7720       break;
7721
7722     case elfcpp::R_POWERPC_ADDR14:
7723     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7724     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7725     case elfcpp::R_POWERPC_REL14:
7726     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7727     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7728       status = Reloc::addr14(view, value, overflow);
7729       break;
7730
7731     case elfcpp::R_POWERPC_COPY:
7732     case elfcpp::R_POWERPC_GLOB_DAT:
7733     case elfcpp::R_POWERPC_JMP_SLOT:
7734     case elfcpp::R_POWERPC_RELATIVE:
7735     case elfcpp::R_POWERPC_DTPMOD:
7736     case elfcpp::R_PPC64_JMP_IREL:
7737     case elfcpp::R_POWERPC_IRELATIVE:
7738       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7739                              _("unexpected reloc %u in object file"),
7740                              r_type);
7741       break;
7742
7743     case elfcpp::R_PPC_EMB_SDA21:
7744       if (size == 32)
7745         goto unsupp;
7746       else
7747         {
7748           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7749         }
7750       break;
7751
7752     case elfcpp::R_PPC_EMB_SDA2I16:
7753     case elfcpp::R_PPC_EMB_SDA2REL:
7754       if (size == 32)
7755         goto unsupp;
7756       // R_PPC64_TLSGD, R_PPC64_TLSLD
7757       break;
7758
7759     case elfcpp::R_POWERPC_PLT32:
7760     case elfcpp::R_POWERPC_PLTREL32:
7761     case elfcpp::R_POWERPC_PLT16_LO:
7762     case elfcpp::R_POWERPC_PLT16_HI:
7763     case elfcpp::R_POWERPC_PLT16_HA:
7764     case elfcpp::R_PPC_SDAREL16:
7765     case elfcpp::R_POWERPC_ADDR30:
7766     case elfcpp::R_PPC64_PLT64:
7767     case elfcpp::R_PPC64_PLTREL64:
7768     case elfcpp::R_PPC64_PLTGOT16:
7769     case elfcpp::R_PPC64_PLTGOT16_LO:
7770     case elfcpp::R_PPC64_PLTGOT16_HI:
7771     case elfcpp::R_PPC64_PLTGOT16_HA:
7772     case elfcpp::R_PPC64_PLT16_LO_DS:
7773     case elfcpp::R_PPC64_PLTGOT16_DS:
7774     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7775     case elfcpp::R_PPC_EMB_RELSDA:
7776     case elfcpp::R_PPC_TOC16:
7777     default:
7778     unsupp:
7779       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7780                              _("unsupported reloc %u"),
7781                              r_type);
7782       break;
7783     }
7784   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
7785       && (has_stub_value
7786           || !(gsym != NULL
7787                && gsym->is_weak_undefined()
7788                && is_branch_reloc(r_type))))
7789     {
7790       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7791                              _("relocation overflow"));
7792       if (has_stub_value)
7793         gold_info(_("try relinking with a smaller --stub-group-size"));
7794     }
7795
7796   return true;
7797 }
7798
7799 // Relocate section data.
7800
7801 template<int size, bool big_endian>
7802 void
7803 Target_powerpc<size, big_endian>::relocate_section(
7804     const Relocate_info<size, big_endian>* relinfo,
7805     unsigned int sh_type,
7806     const unsigned char* prelocs,
7807     size_t reloc_count,
7808     Output_section* output_section,
7809     bool needs_special_offset_handling,
7810     unsigned char* view,
7811     Address address,
7812     section_size_type view_size,
7813     const Reloc_symbol_changes* reloc_symbol_changes)
7814 {
7815   typedef Target_powerpc<size, big_endian> Powerpc;
7816   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7817   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7818     Powerpc_comdat_behavior;
7819
7820   gold_assert(sh_type == elfcpp::SHT_RELA);
7821
7822   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7823                          Powerpc_relocate, Powerpc_comdat_behavior>(
7824     relinfo,
7825     this,
7826     prelocs,
7827     reloc_count,
7828     output_section,
7829     needs_special_offset_handling,
7830     view,
7831     address,
7832     view_size,
7833     reloc_symbol_changes);
7834 }
7835
7836 class Powerpc_scan_relocatable_reloc
7837 {
7838 public:
7839   // Return the strategy to use for a local symbol which is not a
7840   // section symbol, given the relocation type.
7841   inline Relocatable_relocs::Reloc_strategy
7842   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7843   {
7844     if (r_type == 0 && r_sym == 0)
7845       return Relocatable_relocs::RELOC_DISCARD;
7846     return Relocatable_relocs::RELOC_COPY;
7847   }
7848
7849   // Return the strategy to use for a local symbol which is a section
7850   // symbol, given the relocation type.
7851   inline Relocatable_relocs::Reloc_strategy
7852   local_section_strategy(unsigned int, Relobj*)
7853   {
7854     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7855   }
7856
7857   // Return the strategy to use for a global symbol, given the
7858   // relocation type, the object, and the symbol index.
7859   inline Relocatable_relocs::Reloc_strategy
7860   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7861   {
7862     if (r_type == elfcpp::R_PPC_PLTREL24)
7863       return Relocatable_relocs::RELOC_SPECIAL;
7864     return Relocatable_relocs::RELOC_COPY;
7865   }
7866 };
7867
7868 // Scan the relocs during a relocatable link.
7869
7870 template<int size, bool big_endian>
7871 void
7872 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7873     Symbol_table* symtab,
7874     Layout* layout,
7875     Sized_relobj_file<size, big_endian>* object,
7876     unsigned int data_shndx,
7877     unsigned int sh_type,
7878     const unsigned char* prelocs,
7879     size_t reloc_count,
7880     Output_section* output_section,
7881     bool needs_special_offset_handling,
7882     size_t local_symbol_count,
7883     const unsigned char* plocal_symbols,
7884     Relocatable_relocs* rr)
7885 {
7886   gold_assert(sh_type == elfcpp::SHT_RELA);
7887
7888   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7889                                 Powerpc_scan_relocatable_reloc>(
7890     symtab,
7891     layout,
7892     object,
7893     data_shndx,
7894     prelocs,
7895     reloc_count,
7896     output_section,
7897     needs_special_offset_handling,
7898     local_symbol_count,
7899     plocal_symbols,
7900     rr);
7901 }
7902
7903 // Emit relocations for a section.
7904 // This is a modified version of the function by the same name in
7905 // target-reloc.h.  Using relocate_special_relocatable for
7906 // R_PPC_PLTREL24 would require duplication of the entire body of the
7907 // loop, so we may as well duplicate the whole thing.
7908
7909 template<int size, bool big_endian>
7910 void
7911 Target_powerpc<size, big_endian>::relocate_relocs(
7912     const Relocate_info<size, big_endian>* relinfo,
7913     unsigned int sh_type,
7914     const unsigned char* prelocs,
7915     size_t reloc_count,
7916     Output_section* output_section,
7917     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7918     const Relocatable_relocs* rr,
7919     unsigned char*,
7920     Address view_address,
7921     section_size_type,
7922     unsigned char* reloc_view,
7923     section_size_type reloc_view_size)
7924 {
7925   gold_assert(sh_type == elfcpp::SHT_RELA);
7926
7927   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7928     Reltype;
7929   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7930     Reltype_write;
7931   const int reloc_size
7932     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7933
7934   Powerpc_relobj<size, big_endian>* const object
7935     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7936   const unsigned int local_count = object->local_symbol_count();
7937   unsigned int got2_shndx = object->got2_shndx();
7938   Address got2_addend = 0;
7939   if (got2_shndx != 0)
7940     {
7941       got2_addend = object->get_output_section_offset(got2_shndx);
7942       gold_assert(got2_addend != invalid_address);
7943     }
7944
7945   unsigned char* pwrite = reloc_view;
7946   bool zap_next = false;
7947   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7948     {
7949       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7950       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7951         continue;
7952
7953       Reltype reloc(prelocs);
7954       Reltype_write reloc_write(pwrite);
7955
7956       Address offset = reloc.get_r_offset();
7957       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7958       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7959       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7960       const unsigned int orig_r_sym = r_sym;
7961       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7962         = reloc.get_r_addend();
7963       const Symbol* gsym = NULL;
7964
7965       if (zap_next)
7966         {
7967           // We could arrange to discard these and other relocs for
7968           // tls optimised sequences in the strategy methods, but for
7969           // now do as BFD ld does.
7970           r_type = elfcpp::R_POWERPC_NONE;
7971           zap_next = false;
7972         }
7973
7974       // Get the new symbol index.
7975       if (r_sym < local_count)
7976         {
7977           switch (strategy)
7978             {
7979             case Relocatable_relocs::RELOC_COPY:
7980             case Relocatable_relocs::RELOC_SPECIAL:
7981               if (r_sym != 0)
7982                 {
7983                   r_sym = object->symtab_index(r_sym);
7984                   gold_assert(r_sym != -1U);
7985                 }
7986               break;
7987
7988             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7989               {
7990                 // We are adjusting a section symbol.  We need to find
7991                 // the symbol table index of the section symbol for
7992                 // the output section corresponding to input section
7993                 // in which this symbol is defined.
7994                 gold_assert(r_sym < local_count);
7995                 bool is_ordinary;
7996                 unsigned int shndx =
7997                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
7998                 gold_assert(is_ordinary);
7999                 Output_section* os = object->output_section(shndx);
8000                 gold_assert(os != NULL);
8001                 gold_assert(os->needs_symtab_index());
8002                 r_sym = os->symtab_index();
8003               }
8004               break;
8005
8006             default:
8007               gold_unreachable();
8008             }
8009         }
8010       else
8011         {
8012           gsym = object->global_symbol(r_sym);
8013           gold_assert(gsym != NULL);
8014           if (gsym->is_forwarder())
8015             gsym = relinfo->symtab->resolve_forwards(gsym);
8016
8017           gold_assert(gsym->has_symtab_index());
8018           r_sym = gsym->symtab_index();
8019         }
8020
8021       // Get the new offset--the location in the output section where
8022       // this relocation should be applied.
8023       if (static_cast<Address>(offset_in_output_section) != invalid_address)
8024         offset += offset_in_output_section;
8025       else
8026         {
8027           section_offset_type sot_offset =
8028             convert_types<section_offset_type, Address>(offset);
8029           section_offset_type new_sot_offset =
8030             output_section->output_offset(object, relinfo->data_shndx,
8031                                           sot_offset);
8032           gold_assert(new_sot_offset != -1);
8033           offset = new_sot_offset;
8034         }
8035
8036       // In an object file, r_offset is an offset within the section.
8037       // In an executable or dynamic object, generated by
8038       // --emit-relocs, r_offset is an absolute address.
8039       if (!parameters->options().relocatable())
8040         {
8041           offset += view_address;
8042           if (static_cast<Address>(offset_in_output_section) != invalid_address)
8043             offset -= offset_in_output_section;
8044         }
8045
8046       // Handle the reloc addend based on the strategy.
8047       if (strategy == Relocatable_relocs::RELOC_COPY)
8048         ;
8049       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8050         {
8051           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8052           addend = psymval->value(object, addend);
8053         }
8054       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8055         {
8056           if (addend >= 32768)
8057             addend += got2_addend;
8058         }
8059       else
8060         gold_unreachable();
8061
8062       if (!parameters->options().relocatable())
8063         {
8064           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8065               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8066               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8067               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8068             {
8069               // First instruction of a global dynamic sequence,
8070               // arg setup insn.
8071               const bool final = gsym == NULL || gsym->final_value_is_known();
8072               switch (this->optimize_tls_gd(final))
8073                 {
8074                 case tls::TLSOPT_TO_IE:
8075                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8076                              - elfcpp::R_POWERPC_GOT_TLSGD16);
8077                   break;
8078                 case tls::TLSOPT_TO_LE:
8079                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8080                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8081                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8082                   else
8083                     {
8084                       r_type = elfcpp::R_POWERPC_NONE;
8085                       offset -= 2 * big_endian;
8086                     }
8087                   break;
8088                 default:
8089                   break;
8090                 }
8091             }
8092           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8093                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8094                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8095                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8096             {
8097               // First instruction of a local dynamic sequence,
8098               // arg setup insn.
8099               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8100                 {
8101                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8102                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8103                     {
8104                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
8105                       const Output_section* os = relinfo->layout->tls_segment()
8106                         ->first_section();
8107                       gold_assert(os != NULL);
8108                       gold_assert(os->needs_symtab_index());
8109                       r_sym = os->symtab_index();
8110                       addend = dtp_offset;
8111                     }
8112                   else
8113                     {
8114                       r_type = elfcpp::R_POWERPC_NONE;
8115                       offset -= 2 * big_endian;
8116                     }
8117                 }
8118             }
8119           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8120                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8121                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8122                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8123             {
8124               // First instruction of initial exec sequence.
8125               const bool final = gsym == NULL || gsym->final_value_is_known();
8126               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8127                 {
8128                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8129                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8130                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8131                   else
8132                     {
8133                       r_type = elfcpp::R_POWERPC_NONE;
8134                       offset -= 2 * big_endian;
8135                     }
8136                 }
8137             }
8138           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8139                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8140             {
8141               // Second instruction of a global dynamic sequence,
8142               // the __tls_get_addr call
8143               const bool final = gsym == NULL || gsym->final_value_is_known();
8144               switch (this->optimize_tls_gd(final))
8145                 {
8146                 case tls::TLSOPT_TO_IE:
8147                   r_type = elfcpp::R_POWERPC_NONE;
8148                   zap_next = true;
8149                   break;
8150                 case tls::TLSOPT_TO_LE:
8151                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8152                   offset += 2 * big_endian;
8153                   zap_next = true;
8154                   break;
8155                 default:
8156                   break;
8157                 }
8158             }
8159           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8160                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8161             {
8162               // Second instruction of a local dynamic sequence,
8163               // the __tls_get_addr call
8164               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8165                 {
8166                   const Output_section* os = relinfo->layout->tls_segment()
8167                     ->first_section();
8168                   gold_assert(os != NULL);
8169                   gold_assert(os->needs_symtab_index());
8170                   r_sym = os->symtab_index();
8171                   addend = dtp_offset;
8172                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8173                   offset += 2 * big_endian;
8174                   zap_next = true;
8175                 }
8176             }
8177           else if (r_type == elfcpp::R_POWERPC_TLS)
8178             {
8179               // Second instruction of an initial exec sequence
8180               const bool final = gsym == NULL || gsym->final_value_is_known();
8181               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8182                 {
8183                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8184                   offset += 2 * big_endian;
8185                 }
8186             }
8187         }
8188
8189       reloc_write.put_r_offset(offset);
8190       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8191       reloc_write.put_r_addend(addend);
8192
8193       pwrite += reloc_size;
8194     }
8195
8196   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8197               == reloc_view_size);
8198 }
8199
8200 // Return the value to use for a dynamic symbol which requires special
8201 // treatment.  This is how we support equality comparisons of function
8202 // pointers across shared library boundaries, as described in the
8203 // processor specific ABI supplement.
8204
8205 template<int size, bool big_endian>
8206 uint64_t
8207 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8208 {
8209   if (size == 32)
8210     {
8211       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8212       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8213            p != this->stub_tables_.end();
8214            ++p)
8215         {
8216           Address off = (*p)->find_plt_call_entry(gsym);
8217           if (off != invalid_address)
8218             return (*p)->stub_address() + off;
8219         }
8220     }
8221   else if (this->abiversion() >= 2)
8222     {
8223       unsigned int off = this->glink_section()->find_global_entry(gsym);
8224       if (off != (unsigned int)-1)
8225         return this->glink_section()->global_entry_address() + off;
8226     }
8227   gold_unreachable();
8228 }
8229
8230 // Return the PLT address to use for a local symbol.
8231 template<int size, bool big_endian>
8232 uint64_t
8233 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8234     const Relobj* object,
8235     unsigned int symndx) const
8236 {
8237   if (size == 32)
8238     {
8239       const Sized_relobj<size, big_endian>* relobj
8240         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8241       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8242            p != this->stub_tables_.end();
8243            ++p)
8244         {
8245           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8246                                                   symndx);
8247           if (off != invalid_address)
8248             return (*p)->stub_address() + off;
8249         }
8250     }
8251   gold_unreachable();
8252 }
8253
8254 // Return the PLT address to use for a global symbol.
8255 template<int size, bool big_endian>
8256 uint64_t
8257 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8258     const Symbol* gsym) const
8259 {
8260   if (size == 32)
8261     {
8262       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8263            p != this->stub_tables_.end();
8264            ++p)
8265         {
8266           Address off = (*p)->find_plt_call_entry(gsym);
8267           if (off != invalid_address)
8268             return (*p)->stub_address() + off;
8269         }
8270     }
8271   else if (this->abiversion() >= 2)
8272     {
8273       unsigned int off = this->glink_section()->find_global_entry(gsym);
8274       if (off != (unsigned int)-1)
8275         return this->glink_section()->global_entry_address() + off;
8276     }
8277   gold_unreachable();
8278 }
8279
8280 // Return the offset to use for the GOT_INDX'th got entry which is
8281 // for a local tls symbol specified by OBJECT, SYMNDX.
8282 template<int size, bool big_endian>
8283 int64_t
8284 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8285     const Relobj* object,
8286     unsigned int symndx,
8287     unsigned int got_indx) const
8288 {
8289   const Powerpc_relobj<size, big_endian>* ppc_object
8290     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8291   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8292     {
8293       for (Got_type got_type = GOT_TYPE_TLSGD;
8294            got_type <= GOT_TYPE_TPREL;
8295            got_type = Got_type(got_type + 1))
8296         if (ppc_object->local_has_got_offset(symndx, got_type))
8297           {
8298             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8299             if (got_type == GOT_TYPE_TLSGD)
8300               off += size / 8;
8301             if (off == got_indx * (size / 8))
8302               {
8303                 if (got_type == GOT_TYPE_TPREL)
8304                   return -tp_offset;
8305                 else
8306                   return -dtp_offset;
8307               }
8308           }
8309     }
8310   gold_unreachable();
8311 }
8312
8313 // Return the offset to use for the GOT_INDX'th got entry which is
8314 // for global tls symbol GSYM.
8315 template<int size, bool big_endian>
8316 int64_t
8317 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8318     Symbol* gsym,
8319     unsigned int got_indx) const
8320 {
8321   if (gsym->type() == elfcpp::STT_TLS)
8322     {
8323       for (Got_type got_type = GOT_TYPE_TLSGD;
8324            got_type <= GOT_TYPE_TPREL;
8325            got_type = Got_type(got_type + 1))
8326         if (gsym->has_got_offset(got_type))
8327           {
8328             unsigned int off = gsym->got_offset(got_type);
8329             if (got_type == GOT_TYPE_TLSGD)
8330               off += size / 8;
8331             if (off == got_indx * (size / 8))
8332               {
8333                 if (got_type == GOT_TYPE_TPREL)
8334                   return -tp_offset;
8335                 else
8336                   return -dtp_offset;
8337               }
8338           }
8339     }
8340   gold_unreachable();
8341 }
8342
8343 // The selector for powerpc object files.
8344
8345 template<int size, bool big_endian>
8346 class Target_selector_powerpc : public Target_selector
8347 {
8348 public:
8349   Target_selector_powerpc()
8350     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8351                       size, big_endian,
8352                       (size == 64
8353                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8354                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8355                       (size == 64
8356                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8357                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8358   { }
8359
8360   virtual Target*
8361   do_instantiate_target()
8362   { return new Target_powerpc<size, big_endian>(); }
8363 };
8364
8365 Target_selector_powerpc<32, true> target_selector_ppc32;
8366 Target_selector_powerpc<32, false> target_selector_ppc32le;
8367 Target_selector_powerpc<64, true> target_selector_ppc64;
8368 Target_selector_powerpc<64, false> target_selector_ppc64le;
8369
8370 // Instantiate these constants for -O0
8371 template<int size, bool big_endian>
8372 const int Output_data_glink<size, big_endian>::pltresolve_size;
8373 template<int size, bool big_endian>
8374 const typename Output_data_glink<size, big_endian>::Address
8375   Output_data_glink<size, big_endian>::invalid_address;
8376 template<int size, bool big_endian>
8377 const typename Stub_table<size, big_endian>::Address
8378   Stub_table<size, big_endian>::invalid_address;
8379 template<int size, bool big_endian>
8380 const typename Target_powerpc<size, big_endian>::Address
8381   Target_powerpc<size, big_endian>::invalid_address;
8382
8383 } // End anonymous namespace.