gold: x86_64-nacl: Correct 9-byte nop sequence to match what the assembler generates.
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74   typedef Unordered_map<Address, Section_refs> Access_from;
75
76   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80       opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81       e_flags_(ehdr.get_e_flags()), st_other_()
82   {
83     this->set_abiversion(0);
84   }
85
86   ~Powerpc_relobj()
87   { }
88
89   // Read the symbols then set up st_other vector.
90   void
91   do_read_symbols(Read_symbols_data*);
92
93   // The .got2 section shndx.
94   unsigned int
95   got2_shndx() const
96   {
97     if (size == 32)
98       return this->special_;
99     else
100       return 0;
101   }
102
103   // The .opd section shndx.
104   unsigned int
105   opd_shndx() const
106   {
107     if (size == 32)
108       return 0;
109     else
110       return this->special_;
111   }
112
113   // Init OPD entry arrays.
114   void
115   init_opd(size_t opd_size)
116   {
117     size_t count = this->opd_ent_ndx(opd_size);
118     this->opd_ent_.resize(count);
119   }
120
121   // Return section and offset of function entry for .opd + R_OFF.
122   unsigned int
123   get_opd_ent(Address r_off, Address* value = NULL) const
124   {
125     size_t ndx = this->opd_ent_ndx(r_off);
126     gold_assert(ndx < this->opd_ent_.size());
127     gold_assert(this->opd_ent_[ndx].shndx != 0);
128     if (value != NULL)
129       *value = this->opd_ent_[ndx].off;
130     return this->opd_ent_[ndx].shndx;
131   }
132
133   // Set section and offset of function entry for .opd + R_OFF.
134   void
135   set_opd_ent(Address r_off, unsigned int shndx, Address value)
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     this->opd_ent_[ndx].shndx = shndx;
140     this->opd_ent_[ndx].off = value;
141   }
142
143   // Return discard flag for .opd + R_OFF.
144   bool
145   get_opd_discard(Address r_off) const
146   {
147     size_t ndx = this->opd_ent_ndx(r_off);
148     gold_assert(ndx < this->opd_ent_.size());
149     return this->opd_ent_[ndx].discard;
150   }
151
152   // Set discard flag for .opd + R_OFF.
153   void
154   set_opd_discard(Address r_off)
155   {
156     size_t ndx = this->opd_ent_ndx(r_off);
157     gold_assert(ndx < this->opd_ent_.size());
158     this->opd_ent_[ndx].discard = true;
159   }
160
161   bool
162   opd_valid() const
163   { return this->opd_valid_; }
164
165   void
166   set_opd_valid()
167   { this->opd_valid_ = true; }
168
169   // Examine .rela.opd to build info about function entry points.
170   void
171   scan_opd_relocs(size_t reloc_count,
172                   const unsigned char* prelocs,
173                   const unsigned char* plocal_syms);
174
175   // Perform the Sized_relobj_file method, then set up opd info from
176   // .opd relocs.
177   void
178   do_read_relocs(Read_relocs_data*);
179
180   bool
181   do_find_special_sections(Read_symbols_data* sd);
182
183   // Adjust this local symbol value.  Return false if the symbol
184   // should be discarded from the output file.
185   bool
186   do_adjust_local_symbol(Symbol_value<size>* lv) const
187   {
188     if (size == 64 && this->opd_shndx() != 0)
189       {
190         bool is_ordinary;
191         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192           return true;
193         if (this->get_opd_discard(lv->input_value()))
194           return false;
195       }
196     return true;
197   }
198
199   Access_from*
200   access_from_map()
201   { return &this->access_from_map_; }
202
203   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204   // section at DST_OFF.
205   void
206   add_reference(Object* src_obj,
207                 unsigned int src_indx,
208                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209   {
210     Section_id src_id(src_obj, src_indx);
211     this->access_from_map_[dst_off].insert(src_id);
212   }
213
214   // Add a reference to the code section specified by the .opd entry
215   // at DST_OFF
216   void
217   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218   {
219     size_t ndx = this->opd_ent_ndx(dst_off);
220     if (ndx >= this->opd_ent_.size())
221       this->opd_ent_.resize(ndx + 1);
222     this->opd_ent_[ndx].gc_mark = true;
223   }
224
225   void
226   process_gc_mark(Symbol_table* symtab)
227   {
228     for (size_t i = 0; i < this->opd_ent_.size(); i++)
229       if (this->opd_ent_[i].gc_mark)
230         {
231           unsigned int shndx = this->opd_ent_[i].shndx;
232           symtab->gc()->worklist().push(Section_id(this, shndx));
233         }
234   }
235
236   // Return offset in output GOT section that this object will use
237   // as a TOC pointer.  Won't be just a constant with multi-toc support.
238   Address
239   toc_base_offset() const
240   { return 0x8000; }
241
242   void
243   set_has_small_toc_reloc()
244   { has_small_toc_reloc_ = true; }
245
246   bool
247   has_small_toc_reloc() const
248   { return has_small_toc_reloc_; }
249
250   void
251   set_has_14bit_branch(unsigned int shndx)
252   {
253     if (shndx >= this->has14_.size())
254       this->has14_.resize(shndx + 1);
255     this->has14_[shndx] = true;
256   }
257
258   bool
259   has_14bit_branch(unsigned int shndx) const
260   { return shndx < this->has14_.size() && this->has14_[shndx];  }
261
262   void
263   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264   {
265     if (shndx >= this->stub_table_.size())
266       this->stub_table_.resize(shndx + 1);
267     this->stub_table_[shndx] = stub_table;
268   }
269
270   Stub_table<size, big_endian>*
271   stub_table(unsigned int shndx)
272   {
273     if (shndx < this->stub_table_.size())
274       return this->stub_table_[shndx];
275     return NULL;
276   }
277
278   int
279   abiversion() const
280   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282   // Set ABI version for input and output
283   void
284   set_abiversion(int ver);
285
286   unsigned int
287   ppc64_local_entry_offset(const Symbol* sym) const
288   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290   unsigned int
291   ppc64_local_entry_offset(unsigned int symndx) const
292   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295   struct Opd_ent
296   {
297     unsigned int shndx;
298     bool discard : 1;
299     bool gc_mark : 1;
300     Address off;
301   };
302
303   // Return index into opd_ent_ array for .opd entry at OFF.
304   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305   // apart when the language doesn't use the last 8-byte word, the
306   // environment pointer.  Thus dividing the entry section offset by
307   // 16 will give an index into opd_ent_ that works for either layout
308   // of .opd.  (It leaves some elements of the vector unused when .opd
309   // entries are spaced 24 bytes apart, but we don't know the spacing
310   // until relocations are processed, and in any case it is possible
311   // for an object to have some entries spaced 16 bytes apart and
312   // others 24 bytes apart.)
313   size_t
314   opd_ent_ndx(size_t off) const
315   { return off >> 4;}
316
317   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318   unsigned int special_;
319
320   // For 64-bit, whether this object uses small model relocs to access
321   // the toc.
322   bool has_small_toc_reloc_;
323
324   // Set at the start of gc_process_relocs, when we know opd_ent_
325   // vector is valid.  The flag could be made atomic and set in
326   // do_read_relocs with memory_order_release and then tested with
327   // memory_order_acquire, potentially resulting in fewer entries in
328   // access_from_map_.
329   bool opd_valid_;
330
331   // The first 8-byte word of an OPD entry gives the address of the
332   // entry point of the function.  Relocatable object files have a
333   // relocation on this word.  The following vector records the
334   // section and offset specified by these relocations.
335   std::vector<Opd_ent> opd_ent_;
336
337   // References made to this object's .opd section when running
338   // gc_process_relocs for another object, before the opd_ent_ vector
339   // is valid for this object.
340   Access_from access_from_map_;
341
342   // Whether input section has a 14-bit branch reloc.
343   std::vector<bool> has14_;
344
345   // The stub table to use for a given input section.
346   std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348   // Header e_flags
349   elfcpp::Elf_Word e_flags_;
350
351   // ELF st_other field for local symbols.
352   std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365   {
366     this->set_abiversion(0);
367   }
368
369   ~Powerpc_dynobj()
370   { }
371
372   // Call Sized_dynobj::do_read_symbols to read the symbols then
373   // read .opd from a dynamic object, filling in opd_ent_ vector,
374   void
375   do_read_symbols(Read_symbols_data*);
376
377   // The .opd section shndx.
378   unsigned int
379   opd_shndx() const
380   {
381     return this->opd_shndx_;
382   }
383
384   // The .opd section address.
385   Address
386   opd_address() const
387   {
388     return this->opd_address_;
389   }
390
391   // Init OPD entry arrays.
392   void
393   init_opd(size_t opd_size)
394   {
395     size_t count = this->opd_ent_ndx(opd_size);
396     this->opd_ent_.resize(count);
397   }
398
399   // Return section and offset of function entry for .opd + R_OFF.
400   unsigned int
401   get_opd_ent(Address r_off, Address* value = NULL) const
402   {
403     size_t ndx = this->opd_ent_ndx(r_off);
404     gold_assert(ndx < this->opd_ent_.size());
405     gold_assert(this->opd_ent_[ndx].shndx != 0);
406     if (value != NULL)
407       *value = this->opd_ent_[ndx].off;
408     return this->opd_ent_[ndx].shndx;
409   }
410
411   // Set section and offset of function entry for .opd + R_OFF.
412   void
413   set_opd_ent(Address r_off, unsigned int shndx, Address value)
414   {
415     size_t ndx = this->opd_ent_ndx(r_off);
416     gold_assert(ndx < this->opd_ent_.size());
417     this->opd_ent_[ndx].shndx = shndx;
418     this->opd_ent_[ndx].off = value;
419   }
420
421   int
422   abiversion() const
423   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425   // Set ABI version for input and output.
426   void
427   set_abiversion(int ver);
428
429 private:
430   // Used to specify extent of executable sections.
431   struct Sec_info
432   {
433     Sec_info(Address start_, Address len_, unsigned int shndx_)
434       : start(start_), len(len_), shndx(shndx_)
435     { }
436
437     bool
438     operator<(const Sec_info& that) const
439     { return this->start < that.start; }
440
441     Address start;
442     Address len;
443     unsigned int shndx;
444   };
445
446   struct Opd_ent
447   {
448     unsigned int shndx;
449     Address off;
450   };
451
452   // Return index into opd_ent_ array for .opd entry at OFF.
453   size_t
454   opd_ent_ndx(size_t off) const
455   { return off >> 4;}
456
457   // For 64-bit the .opd section shndx and address.
458   unsigned int opd_shndx_;
459   Address opd_address_;
460
461   // The first 8-byte word of an OPD entry gives the address of the
462   // entry point of the function.  Records the section and offset
463   // corresponding to the address.  Note that in dynamic objects,
464   // offset is *not* relative to the section.
465   std::vector<Opd_ent> opd_ent_;
466
467   // Header e_flags
468   elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474  public:
475   typedef
476     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479   static const Address invalid_address = static_cast<Address>(0) - 1;
480   // Offset of tp and dtp pointers from start of TLS block.
481   static const Address tp_offset = 0x7000;
482   static const Address dtp_offset = 0x8000;
483
484   Target_powerpc()
485     : Sized_target<size, big_endian>(&powerpc_info),
486       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488       tlsld_got_offset_(-1U),
489       stub_tables_(), branch_lookup_table_(), branch_info_(),
490       plt_thread_safe_(false)
491   {
492   }
493
494   // Process the relocations to determine unreferenced sections for
495   // garbage collection.
496   void
497   gc_process_relocs(Symbol_table* symtab,
498                     Layout* layout,
499                     Sized_relobj_file<size, big_endian>* object,
500                     unsigned int data_shndx,
501                     unsigned int sh_type,
502                     const unsigned char* prelocs,
503                     size_t reloc_count,
504                     Output_section* output_section,
505                     bool needs_special_offset_handling,
506                     size_t local_symbol_count,
507                     const unsigned char* plocal_symbols);
508
509   // Scan the relocations to look for symbol adjustments.
510   void
511   scan_relocs(Symbol_table* symtab,
512               Layout* layout,
513               Sized_relobj_file<size, big_endian>* object,
514               unsigned int data_shndx,
515               unsigned int sh_type,
516               const unsigned char* prelocs,
517               size_t reloc_count,
518               Output_section* output_section,
519               bool needs_special_offset_handling,
520               size_t local_symbol_count,
521               const unsigned char* plocal_symbols);
522
523   // Map input .toc section to output .got section.
524   const char*
525   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526   {
527     if (size == 64 && strcmp(name, ".toc") == 0)
528       {
529         *plen = 4;
530         return ".got";
531       }
532     return NULL;
533   }
534
535   // Provide linker defined save/restore functions.
536   void
537   define_save_restore_funcs(Layout*, Symbol_table*);
538
539   // No stubs unless a final link.
540   bool
541   do_may_relax() const
542   { return !parameters->options().relocatable(); }
543
544   bool
545   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547   void
548   do_plt_fde_location(const Output_data*, unsigned char*,
549                       uint64_t*, off_t*) const;
550
551   // Stash info about branches, for stub generation.
552   void
553   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554               unsigned int data_shndx, Address r_offset,
555               unsigned int r_type, unsigned int r_sym, Address addend)
556   {
557     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558     this->branch_info_.push_back(info);
559     if (r_type == elfcpp::R_POWERPC_REL14
560         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562       ppc_object->set_has_14bit_branch(data_shndx);
563   }
564
565   Stub_table<size, big_endian>*
566   new_stub_table();
567
568   void
569   do_define_standard_symbols(Symbol_table*, Layout*);
570
571   // Finalize the sections.
572   void
573   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575   // Return the value to use for a dynamic which requires special
576   // treatment.
577   uint64_t
578   do_dynsym_value(const Symbol*) const;
579
580   // Return the PLT address to use for a local symbol.
581   uint64_t
582   do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584   // Return the PLT address to use for a global symbol.
585   uint64_t
586   do_plt_address_for_global(const Symbol*) const;
587
588   // Return the offset to use for the GOT_INDX'th got entry which is
589   // for a local tls symbol specified by OBJECT, SYMNDX.
590   int64_t
591   do_tls_offset_for_local(const Relobj* object,
592                           unsigned int symndx,
593                           unsigned int got_indx) const;
594
595   // Return the offset to use for the GOT_INDX'th got entry which is
596   // for global tls symbol GSYM.
597   int64_t
598   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600   void
601   do_function_location(Symbol_location*) const;
602
603   bool
604   do_can_check_for_function_pointers() const
605   { return true; }
606
607   // Relocate a section.
608   void
609   relocate_section(const Relocate_info<size, big_endian>*,
610                    unsigned int sh_type,
611                    const unsigned char* prelocs,
612                    size_t reloc_count,
613                    Output_section* output_section,
614                    bool needs_special_offset_handling,
615                    unsigned char* view,
616                    Address view_address,
617                    section_size_type view_size,
618                    const Reloc_symbol_changes*);
619
620   // Scan the relocs during a relocatable link.
621   void
622   scan_relocatable_relocs(Symbol_table* symtab,
623                           Layout* layout,
624                           Sized_relobj_file<size, big_endian>* object,
625                           unsigned int data_shndx,
626                           unsigned int sh_type,
627                           const unsigned char* prelocs,
628                           size_t reloc_count,
629                           Output_section* output_section,
630                           bool needs_special_offset_handling,
631                           size_t local_symbol_count,
632                           const unsigned char* plocal_symbols,
633                           Relocatable_relocs*);
634
635   // Emit relocations for a section.
636   void
637   relocate_relocs(const Relocate_info<size, big_endian>*,
638                   unsigned int sh_type,
639                   const unsigned char* prelocs,
640                   size_t reloc_count,
641                   Output_section* output_section,
642                   typename elfcpp::Elf_types<size>::Elf_Off
643                     offset_in_output_section,
644                   const Relocatable_relocs*,
645                   unsigned char*,
646                   Address view_address,
647                   section_size_type,
648                   unsigned char* reloc_view,
649                   section_size_type reloc_view_size);
650
651   // Return whether SYM is defined by the ABI.
652   bool
653   do_is_defined_by_abi(const Symbol* sym) const
654   {
655     return strcmp(sym->name(), "__tls_get_addr") == 0;
656   }
657
658   // Return the size of the GOT section.
659   section_size_type
660   got_size() const
661   {
662     gold_assert(this->got_ != NULL);
663     return this->got_->data_size();
664   }
665
666   // Get the PLT section.
667   const Output_data_plt_powerpc<size, big_endian>*
668   plt_section() const
669   {
670     gold_assert(this->plt_ != NULL);
671     return this->plt_;
672   }
673
674   // Get the IPLT section.
675   const Output_data_plt_powerpc<size, big_endian>*
676   iplt_section() const
677   {
678     gold_assert(this->iplt_ != NULL);
679     return this->iplt_;
680   }
681
682   // Get the .glink section.
683   const Output_data_glink<size, big_endian>*
684   glink_section() const
685   {
686     gold_assert(this->glink_ != NULL);
687     return this->glink_;
688   }
689
690   bool has_glink() const
691   { return this->glink_ != NULL; }
692
693   // Get the GOT section.
694   const Output_data_got_powerpc<size, big_endian>*
695   got_section() const
696   {
697     gold_assert(this->got_ != NULL);
698     return this->got_;
699   }
700
701   // Get the GOT section, creating it if necessary.
702   Output_data_got_powerpc<size, big_endian>*
703   got_section(Symbol_table*, Layout*);
704
705   Object*
706   do_make_elf_object(const std::string&, Input_file*, off_t,
707                      const elfcpp::Ehdr<size, big_endian>&);
708
709   // Return the number of entries in the GOT.
710   unsigned int
711   got_entry_count() const
712   {
713     if (this->got_ == NULL)
714       return 0;
715     return this->got_size() / (size / 8);
716   }
717
718   // Return the number of entries in the PLT.
719   unsigned int
720   plt_entry_count() const;
721
722   // Return the offset of the first non-reserved PLT entry.
723   unsigned int
724   first_plt_entry_offset() const
725   {
726     if (size == 32)
727       return 0;
728     if (this->abiversion() >= 2)
729       return 16;
730     return 24;
731   }
732
733   // Return the size of each PLT entry.
734   unsigned int
735   plt_entry_size() const
736   {
737     if (size == 32)
738       return 4;
739     if (this->abiversion() >= 2)
740       return 8;
741     return 24;
742   }
743
744   // Add any special sections for this symbol to the gc work list.
745   // For powerpc64, this adds the code section of a function
746   // descriptor.
747   void
748   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
749
750   // Handle target specific gc actions when adding a gc reference from
751   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
752   // and DST_OFF.  For powerpc64, this adds a referenc to the code
753   // section of a function descriptor.
754   void
755   do_gc_add_reference(Symbol_table* symtab,
756                       Object* src_obj,
757                       unsigned int src_shndx,
758                       Object* dst_obj,
759                       unsigned int dst_shndx,
760                       Address dst_off) const;
761
762   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
763   const Stub_tables&
764   stub_tables() const
765   { return this->stub_tables_; }
766
767   const Output_data_brlt_powerpc<size, big_endian>*
768   brlt_section() const
769   { return this->brlt_section_; }
770
771   void
772   add_branch_lookup_table(Address to)
773   {
774     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
775     this->branch_lookup_table_.insert(std::make_pair(to, off));
776   }
777
778   Address
779   find_branch_lookup_table(Address to)
780   {
781     typename Branch_lookup_table::const_iterator p
782       = this->branch_lookup_table_.find(to);
783     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
784   }
785
786   void
787   write_branch_lookup_table(unsigned char *oview)
788   {
789     for (typename Branch_lookup_table::const_iterator p
790            = this->branch_lookup_table_.begin();
791          p != this->branch_lookup_table_.end();
792          ++p)
793       {
794         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
795       }
796   }
797
798   bool
799   plt_thread_safe() const
800   { return this->plt_thread_safe_; }
801
802   int
803   abiversion () const
804   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
805
806   void
807   set_abiversion (int ver)
808   {
809     elfcpp::Elf_Word flags = this->processor_specific_flags();
810     flags &= ~elfcpp::EF_PPC64_ABI;
811     flags |= ver & elfcpp::EF_PPC64_ABI;
812     this->set_processor_specific_flags(flags);
813   }
814
815   // Offset to to save stack slot
816   int
817   stk_toc () const
818   { return this->abiversion() < 2 ? 40 : 24; }
819
820  private:
821
822   class Track_tls
823   {
824   public:
825     enum Tls_get_addr
826     {
827       NOT_EXPECTED = 0,
828       EXPECTED = 1,
829       SKIP = 2,
830       NORMAL = 3
831     };
832
833     Track_tls()
834       : tls_get_addr_(NOT_EXPECTED),
835         relinfo_(NULL), relnum_(0), r_offset_(0)
836     { }
837
838     ~Track_tls()
839     {
840       if (this->tls_get_addr_ != NOT_EXPECTED)
841         this->missing();
842     }
843
844     void
845     missing(void)
846     {
847       if (this->relinfo_ != NULL)
848         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
849                                _("missing expected __tls_get_addr call"));
850     }
851
852     void
853     expect_tls_get_addr_call(
854         const Relocate_info<size, big_endian>* relinfo,
855         size_t relnum,
856         Address r_offset)
857     {
858       this->tls_get_addr_ = EXPECTED;
859       this->relinfo_ = relinfo;
860       this->relnum_ = relnum;
861       this->r_offset_ = r_offset;
862     }
863
864     void
865     expect_tls_get_addr_call()
866     { this->tls_get_addr_ = EXPECTED; }
867
868     void
869     skip_next_tls_get_addr_call()
870     {this->tls_get_addr_ = SKIP; }
871
872     Tls_get_addr
873     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
874     {
875       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
876                            || r_type == elfcpp::R_PPC_PLTREL24)
877                           && gsym != NULL
878                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
879       Tls_get_addr last_tls = this->tls_get_addr_;
880       this->tls_get_addr_ = NOT_EXPECTED;
881       if (is_tls_call && last_tls != EXPECTED)
882         return last_tls;
883       else if (!is_tls_call && last_tls != NOT_EXPECTED)
884         {
885           this->missing();
886           return EXPECTED;
887         }
888       return NORMAL;
889     }
890
891   private:
892     // What we're up to regarding calls to __tls_get_addr.
893     // On powerpc, the branch and link insn making a call to
894     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
895     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
896     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
897     // The marker relocation always comes first, and has the same
898     // symbol as the reloc on the insn setting up the __tls_get_addr
899     // argument.  This ties the arg setup insn with the call insn,
900     // allowing ld to safely optimize away the call.  We check that
901     // every call to __tls_get_addr has a marker relocation, and that
902     // every marker relocation is on a call to __tls_get_addr.
903     Tls_get_addr tls_get_addr_;
904     // Info about the last reloc for error message.
905     const Relocate_info<size, big_endian>* relinfo_;
906     size_t relnum_;
907     Address r_offset_;
908   };
909
910   // The class which scans relocations.
911   class Scan : protected Track_tls
912   {
913   public:
914     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
915
916     Scan()
917       : Track_tls(), issued_non_pic_error_(false)
918     { }
919
920     static inline int
921     get_reference_flags(unsigned int r_type);
922
923     inline void
924     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
925           Sized_relobj_file<size, big_endian>* object,
926           unsigned int data_shndx,
927           Output_section* output_section,
928           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
929           const elfcpp::Sym<size, big_endian>& lsym,
930           bool is_discarded);
931
932     inline void
933     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
934            Sized_relobj_file<size, big_endian>* object,
935            unsigned int data_shndx,
936            Output_section* output_section,
937            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
938            Symbol* gsym);
939
940     inline bool
941     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
942                                         Target_powerpc* ,
943                                         Sized_relobj_file<size, big_endian>* ,
944                                         unsigned int ,
945                                         Output_section* ,
946                                         const elfcpp::Rela<size, big_endian>& ,
947                                         unsigned int r_type,
948                                         const elfcpp::Sym<size, big_endian>&)
949     {
950       // PowerPC64 .opd is not folded, so any identical function text
951       // may be folded and we'll still keep function addresses distinct.
952       // That means no reloc is of concern here.
953       if (size == 64)
954         return false;
955       // For 32-bit, conservatively assume anything but calls to
956       // function code might be taking the address of the function.
957       return !is_branch_reloc(r_type);
958     }
959
960     inline bool
961     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
962                                          Target_powerpc* ,
963                                          Sized_relobj_file<size, big_endian>* ,
964                                          unsigned int ,
965                                          Output_section* ,
966                                          const elfcpp::Rela<size, big_endian>& ,
967                                          unsigned int r_type,
968                                          Symbol*)
969     {
970       // As above.
971       if (size == 64)
972         return false;
973       return !is_branch_reloc(r_type);
974     }
975
976     static bool
977     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>* object,
978                               unsigned int r_type, bool report_err);
979
980   private:
981     static void
982     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
983                             unsigned int r_type);
984
985     static void
986     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
987                              unsigned int r_type, Symbol*);
988
989     static void
990     generate_tls_call(Symbol_table* symtab, Layout* layout,
991                       Target_powerpc* target);
992
993     void
994     check_non_pic(Relobj*, unsigned int r_type);
995
996     // Whether we have issued an error about a non-PIC compilation.
997     bool issued_non_pic_error_;
998   };
999
1000   Address
1001   symval_for_branch(const Symbol_table* symtab, Address value,
1002                     const Sized_symbol<size>* gsym,
1003                     Powerpc_relobj<size, big_endian>* object,
1004                     unsigned int *dest_shndx);
1005
1006   // The class which implements relocation.
1007   class Relocate : protected Track_tls
1008   {
1009    public:
1010     // Use 'at' branch hints when true, 'y' when false.
1011     // FIXME maybe: set this with an option.
1012     static const bool is_isa_v2 = true;
1013
1014     Relocate()
1015       : Track_tls()
1016     { }
1017
1018     // Do a relocation.  Return false if the caller should not issue
1019     // any warnings about this relocation.
1020     inline bool
1021     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1022              Output_section*, size_t relnum,
1023              const elfcpp::Rela<size, big_endian>&,
1024              unsigned int r_type, const Sized_symbol<size>*,
1025              const Symbol_value<size>*,
1026              unsigned char*,
1027              typename elfcpp::Elf_types<size>::Elf_Addr,
1028              section_size_type);
1029   };
1030
1031   class Relocate_comdat_behavior
1032   {
1033    public:
1034     // Decide what the linker should do for relocations that refer to
1035     // discarded comdat sections.
1036     inline Comdat_behavior
1037     get(const char* name)
1038     {
1039       gold::Default_comdat_behavior default_behavior;
1040       Comdat_behavior ret = default_behavior.get(name);
1041       if (ret == CB_WARNING)
1042         {
1043           if (size == 32
1044               && (strcmp(name, ".fixup") == 0
1045                   || strcmp(name, ".got2") == 0))
1046             ret = CB_IGNORE;
1047           if (size == 64
1048               && (strcmp(name, ".opd") == 0
1049                   || strcmp(name, ".toc") == 0
1050                   || strcmp(name, ".toc1") == 0))
1051             ret = CB_IGNORE;
1052         }
1053       return ret;
1054     }
1055   };
1056
1057   // A class which returns the size required for a relocation type,
1058   // used while scanning relocs during a relocatable link.
1059   class Relocatable_size_for_reloc
1060   {
1061    public:
1062     unsigned int
1063     get_size_for_reloc(unsigned int, Relobj*)
1064     {
1065       gold_unreachable();
1066       return 0;
1067     }
1068   };
1069
1070   // Optimize the TLS relocation type based on what we know about the
1071   // symbol.  IS_FINAL is true if the final address of this symbol is
1072   // known at link time.
1073
1074   tls::Tls_optimization
1075   optimize_tls_gd(bool is_final)
1076   {
1077     // If we are generating a shared library, then we can't do anything
1078     // in the linker.
1079     if (parameters->options().shared())
1080       return tls::TLSOPT_NONE;
1081
1082     if (!is_final)
1083       return tls::TLSOPT_TO_IE;
1084     return tls::TLSOPT_TO_LE;
1085   }
1086
1087   tls::Tls_optimization
1088   optimize_tls_ld()
1089   {
1090     if (parameters->options().shared())
1091       return tls::TLSOPT_NONE;
1092
1093     return tls::TLSOPT_TO_LE;
1094   }
1095
1096   tls::Tls_optimization
1097   optimize_tls_ie(bool is_final)
1098   {
1099     if (!is_final || parameters->options().shared())
1100       return tls::TLSOPT_NONE;
1101
1102     return tls::TLSOPT_TO_LE;
1103   }
1104
1105   // Create glink.
1106   void
1107   make_glink_section(Layout*);
1108
1109   // Create the PLT section.
1110   void
1111   make_plt_section(Symbol_table*, Layout*);
1112
1113   void
1114   make_iplt_section(Symbol_table*, Layout*);
1115
1116   void
1117   make_brlt_section(Layout*);
1118
1119   // Create a PLT entry for a global symbol.
1120   void
1121   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1122
1123   // Create a PLT entry for a local IFUNC symbol.
1124   void
1125   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1126                              Sized_relobj_file<size, big_endian>*,
1127                              unsigned int);
1128
1129
1130   // Create a GOT entry for local dynamic __tls_get_addr.
1131   unsigned int
1132   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1133                    Sized_relobj_file<size, big_endian>* object);
1134
1135   unsigned int
1136   tlsld_got_offset() const
1137   {
1138     return this->tlsld_got_offset_;
1139   }
1140
1141   // Get the dynamic reloc section, creating it if necessary.
1142   Reloc_section*
1143   rela_dyn_section(Layout*);
1144
1145   // Similarly, but for ifunc symbols get the one for ifunc.
1146   Reloc_section*
1147   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1148
1149   // Copy a relocation against a global symbol.
1150   void
1151   copy_reloc(Symbol_table* symtab, Layout* layout,
1152              Sized_relobj_file<size, big_endian>* object,
1153              unsigned int shndx, Output_section* output_section,
1154              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1155   {
1156     this->copy_relocs_.copy_reloc(symtab, layout,
1157                                   symtab->get_sized_symbol<size>(sym),
1158                                   object, shndx, output_section,
1159                                   reloc, this->rela_dyn_section(layout));
1160   }
1161
1162   // Look over all the input sections, deciding where to place stubs.
1163   void
1164   group_sections(Layout*, const Task*);
1165
1166   // Sort output sections by address.
1167   struct Sort_sections
1168   {
1169     bool
1170     operator()(const Output_section* sec1, const Output_section* sec2)
1171     { return sec1->address() < sec2->address(); }
1172   };
1173
1174   class Branch_info
1175   {
1176    public:
1177     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1178                 unsigned int data_shndx,
1179                 Address r_offset,
1180                 unsigned int r_type,
1181                 unsigned int r_sym,
1182                 Address addend)
1183       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1184         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1185     { }
1186
1187     ~Branch_info()
1188     { }
1189
1190     // If this branch needs a plt call stub, or a long branch stub, make one.
1191     void
1192     make_stub(Stub_table<size, big_endian>*,
1193               Stub_table<size, big_endian>*,
1194               Symbol_table*) const;
1195
1196    private:
1197     // The branch location..
1198     Powerpc_relobj<size, big_endian>* object_;
1199     unsigned int shndx_;
1200     Address offset_;
1201     // ..and the branch type and destination.
1202     unsigned int r_type_;
1203     unsigned int r_sym_;
1204     Address addend_;
1205   };
1206
1207   // Information about this specific target which we pass to the
1208   // general Target structure.
1209   static Target::Target_info powerpc_info;
1210
1211   // The types of GOT entries needed for this platform.
1212   // These values are exposed to the ABI in an incremental link.
1213   // Do not renumber existing values without changing the version
1214   // number of the .gnu_incremental_inputs section.
1215   enum Got_type
1216   {
1217     GOT_TYPE_STANDARD,
1218     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1219     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1220     GOT_TYPE_TPREL      // entry for @got@tprel
1221   };
1222
1223   // The GOT section.
1224   Output_data_got_powerpc<size, big_endian>* got_;
1225   // The PLT section.  This is a container for a table of addresses,
1226   // and their relocations.  Each address in the PLT has a dynamic
1227   // relocation (R_*_JMP_SLOT) and each address will have a
1228   // corresponding entry in .glink for lazy resolution of the PLT.
1229   // ppc32 initialises the PLT to point at the .glink entry, while
1230   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1231   // linker adds a stub that loads the PLT entry into ctr then
1232   // branches to ctr.  There may be more than one stub for each PLT
1233   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1234   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1235   Output_data_plt_powerpc<size, big_endian>* plt_;
1236   // The IPLT section.  Like plt_, this is a container for a table of
1237   // addresses and their relocations, specifically for STT_GNU_IFUNC
1238   // functions that resolve locally (STT_GNU_IFUNC functions that
1239   // don't resolve locally go in PLT).  Unlike plt_, these have no
1240   // entry in .glink for lazy resolution, and the relocation section
1241   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1242   // the relocation section may contain relocations against
1243   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1244   // relocation section will appear at the end of other dynamic
1245   // relocations, so that ld.so applies these relocations after other
1246   // dynamic relocations.  In a static executable, the relocation
1247   // section is emitted and marked with __rela_iplt_start and
1248   // __rela_iplt_end symbols.
1249   Output_data_plt_powerpc<size, big_endian>* iplt_;
1250   // Section holding long branch destinations.
1251   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1252   // The .glink section.
1253   Output_data_glink<size, big_endian>* glink_;
1254   // The dynamic reloc section.
1255   Reloc_section* rela_dyn_;
1256   // Relocs saved to avoid a COPY reloc.
1257   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1258   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1259   unsigned int tlsld_got_offset_;
1260
1261   Stub_tables stub_tables_;
1262   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1263   Branch_lookup_table branch_lookup_table_;
1264
1265   typedef std::vector<Branch_info> Branches;
1266   Branches branch_info_;
1267
1268   bool plt_thread_safe_;
1269 };
1270
1271 template<>
1272 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1273 {
1274   32,                   // size
1275   true,                 // is_big_endian
1276   elfcpp::EM_PPC,       // machine_code
1277   false,                // has_make_symbol
1278   false,                // has_resolve
1279   false,                // has_code_fill
1280   true,                 // is_default_stack_executable
1281   false,                // can_icf_inline_merge_sections
1282   '\0',                 // wrap_char
1283   "/usr/lib/ld.so.1",   // dynamic_linker
1284   0x10000000,           // default_text_segment_address
1285   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1286   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1287   false,                // isolate_execinstr
1288   0,                    // rosegment_gap
1289   elfcpp::SHN_UNDEF,    // small_common_shndx
1290   elfcpp::SHN_UNDEF,    // large_common_shndx
1291   0,                    // small_common_section_flags
1292   0,                    // large_common_section_flags
1293   NULL,                 // attributes_section
1294   NULL,                 // attributes_vendor
1295   "_start"              // entry_symbol_name
1296 };
1297
1298 template<>
1299 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1300 {
1301   32,                   // size
1302   false,                // is_big_endian
1303   elfcpp::EM_PPC,       // machine_code
1304   false,                // has_make_symbol
1305   false,                // has_resolve
1306   false,                // has_code_fill
1307   true,                 // is_default_stack_executable
1308   false,                // can_icf_inline_merge_sections
1309   '\0',                 // wrap_char
1310   "/usr/lib/ld.so.1",   // dynamic_linker
1311   0x10000000,           // default_text_segment_address
1312   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1313   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1314   false,                // isolate_execinstr
1315   0,                    // rosegment_gap
1316   elfcpp::SHN_UNDEF,    // small_common_shndx
1317   elfcpp::SHN_UNDEF,    // large_common_shndx
1318   0,                    // small_common_section_flags
1319   0,                    // large_common_section_flags
1320   NULL,                 // attributes_section
1321   NULL,                 // attributes_vendor
1322   "_start"              // entry_symbol_name
1323 };
1324
1325 template<>
1326 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1327 {
1328   64,                   // size
1329   true,                 // is_big_endian
1330   elfcpp::EM_PPC64,     // machine_code
1331   false,                // has_make_symbol
1332   false,                // has_resolve
1333   false,                // has_code_fill
1334   true,                 // is_default_stack_executable
1335   false,                // can_icf_inline_merge_sections
1336   '\0',                 // wrap_char
1337   "/usr/lib/ld.so.1",   // dynamic_linker
1338   0x10000000,           // default_text_segment_address
1339   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1340   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1341   false,                // isolate_execinstr
1342   0,                    // rosegment_gap
1343   elfcpp::SHN_UNDEF,    // small_common_shndx
1344   elfcpp::SHN_UNDEF,    // large_common_shndx
1345   0,                    // small_common_section_flags
1346   0,                    // large_common_section_flags
1347   NULL,                 // attributes_section
1348   NULL,                 // attributes_vendor
1349   "_start"              // entry_symbol_name
1350 };
1351
1352 template<>
1353 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1354 {
1355   64,                   // size
1356   false,                // is_big_endian
1357   elfcpp::EM_PPC64,     // machine_code
1358   false,                // has_make_symbol
1359   false,                // has_resolve
1360   false,                // has_code_fill
1361   true,                 // is_default_stack_executable
1362   false,                // can_icf_inline_merge_sections
1363   '\0',                 // wrap_char
1364   "/usr/lib/ld.so.1",   // dynamic_linker
1365   0x10000000,           // default_text_segment_address
1366   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1367   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1368   false,                // isolate_execinstr
1369   0,                    // rosegment_gap
1370   elfcpp::SHN_UNDEF,    // small_common_shndx
1371   elfcpp::SHN_UNDEF,    // large_common_shndx
1372   0,                    // small_common_section_flags
1373   0,                    // large_common_section_flags
1374   NULL,                 // attributes_section
1375   NULL,                 // attributes_vendor
1376   "_start"              // entry_symbol_name
1377 };
1378
1379 inline bool
1380 is_branch_reloc(unsigned int r_type)
1381 {
1382   return (r_type == elfcpp::R_POWERPC_REL24
1383           || r_type == elfcpp::R_PPC_PLTREL24
1384           || r_type == elfcpp::R_PPC_LOCAL24PC
1385           || r_type == elfcpp::R_POWERPC_REL14
1386           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1387           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1388           || r_type == elfcpp::R_POWERPC_ADDR24
1389           || r_type == elfcpp::R_POWERPC_ADDR14
1390           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1391           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1392 }
1393
1394 // If INSN is an opcode that may be used with an @tls operand, return
1395 // the transformed insn for TLS optimisation, otherwise return 0.  If
1396 // REG is non-zero only match an insn with RB or RA equal to REG.
1397 uint32_t
1398 at_tls_transform(uint32_t insn, unsigned int reg)
1399 {
1400   if ((insn & (0x3f << 26)) != 31 << 26)
1401     return 0;
1402
1403   unsigned int rtra;
1404   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1405     rtra = insn & ((1 << 26) - (1 << 16));
1406   else if (((insn >> 16) & 0x1f) == reg)
1407     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1408   else
1409     return 0;
1410
1411   if ((insn & (0x3ff << 1)) == 266 << 1)
1412     // add -> addi
1413     insn = 14 << 26;
1414   else if ((insn & (0x1f << 1)) == 23 << 1
1415            && ((insn & (0x1f << 6)) < 14 << 6
1416                || ((insn & (0x1f << 6)) >= 16 << 6
1417                    && (insn & (0x1f << 6)) < 24 << 6)))
1418     // load and store indexed -> dform
1419     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1420   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1421     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1422     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1423   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1424     // lwax -> lwa
1425     insn = (58 << 26) | 2;
1426   else
1427     return 0;
1428   insn |= rtra;
1429   return insn;
1430 }
1431
1432 // Modified version of symtab.h class Symbol member
1433 // Given a direct absolute or pc-relative static relocation against
1434 // the global symbol, this function returns whether a dynamic relocation
1435 // is needed.
1436
1437 template<int size>
1438 bool
1439 needs_dynamic_reloc(const Symbol* gsym, int flags)
1440 {
1441   // No dynamic relocations in a static link!
1442   if (parameters->doing_static_link())
1443     return false;
1444
1445   // A reference to an undefined symbol from an executable should be
1446   // statically resolved to 0, and does not need a dynamic relocation.
1447   // This matches gnu ld behavior.
1448   if (gsym->is_undefined() && !parameters->options().shared())
1449     return false;
1450
1451   // A reference to an absolute symbol does not need a dynamic relocation.
1452   if (gsym->is_absolute())
1453     return false;
1454
1455   // An absolute reference within a position-independent output file
1456   // will need a dynamic relocation.
1457   if ((flags & Symbol::ABSOLUTE_REF)
1458       && parameters->options().output_is_position_independent())
1459     return true;
1460
1461   // A function call that can branch to a local PLT entry does not need
1462   // a dynamic relocation.
1463   if ((flags & Symbol::FUNCTION_CALL) && gsym->has_plt_offset())
1464     return false;
1465
1466   // A reference to any PLT entry in a non-position-independent executable
1467   // does not need a dynamic relocation.
1468   // Except due to having function descriptors on powerpc64 we don't define
1469   // functions to their plt code in an executable, so this doesn't apply.
1470   if (size == 32
1471       && !parameters->options().output_is_position_independent()
1472       && gsym->has_plt_offset())
1473     return false;
1474
1475   // A reference to a symbol defined in a dynamic object or to a
1476   // symbol that is preemptible will need a dynamic relocation.
1477   if (gsym->is_from_dynobj()
1478       || gsym->is_undefined()
1479       || gsym->is_preemptible())
1480     return true;
1481
1482   // For all other cases, return FALSE.
1483   return false;
1484 }
1485
1486 // Modified version of symtab.h class Symbol member
1487 // Whether we should use the PLT offset associated with a symbol for
1488 // a relocation.  FLAGS is a set of Reference_flags.
1489
1490 template<int size>
1491 bool
1492 use_plt_offset(const Symbol* gsym, int flags)
1493 {
1494   // If the symbol doesn't have a PLT offset, then naturally we
1495   // don't want to use it.
1496   if (!gsym->has_plt_offset())
1497     return false;
1498
1499   // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
1500   if (gsym->type() == elfcpp::STT_GNU_IFUNC)
1501     return true;
1502
1503   // If we are going to generate a dynamic relocation, then we will
1504   // wind up using that, so no need to use the PLT entry.
1505   if (needs_dynamic_reloc<size>(gsym, flags))
1506     return false;
1507
1508   // If the symbol is from a dynamic object, we need to use the PLT
1509   // entry.
1510   if (gsym->is_from_dynobj())
1511     return true;
1512
1513   // If we are generating a shared object, and this symbol is
1514   // undefined or preemptible, we need to use the PLT entry.
1515   if (parameters->options().shared()
1516       && (gsym->is_undefined() || gsym->is_preemptible()))
1517     return true;
1518
1519   // If this is a call to a weak undefined symbol, we need to use
1520   // the PLT entry; the symbol may be defined by a library loaded
1521   // at runtime.
1522   if ((flags & Symbol::FUNCTION_CALL) && gsym->is_weak_undefined())
1523     return true;
1524
1525   // Otherwise we can use the regular definition.
1526   return false;
1527 }
1528
1529 template<int size, bool big_endian>
1530 class Powerpc_relocate_functions
1531 {
1532 public:
1533   enum Overflow_check
1534   {
1535     CHECK_NONE,
1536     CHECK_SIGNED,
1537     CHECK_BITFIELD
1538   };
1539
1540   enum Status
1541   {
1542     STATUS_OK,
1543     STATUS_OVERFLOW
1544   };
1545
1546 private:
1547   typedef Powerpc_relocate_functions<size, big_endian> This;
1548   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1549
1550   template<int valsize>
1551   static inline bool
1552   has_overflow_signed(Address value)
1553   {
1554     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1555     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1556     limit <<= ((valsize - 1) >> 1);
1557     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1558     return value + limit > (limit << 1) - 1;
1559   }
1560
1561   template<int valsize>
1562   static inline bool
1563   has_overflow_bitfield(Address value)
1564   {
1565     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1566     limit <<= ((valsize - 1) >> 1);
1567     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1568     return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
1569   }
1570
1571   template<int valsize>
1572   static inline Status
1573   overflowed(Address value, Overflow_check overflow)
1574   {
1575     if (overflow == CHECK_SIGNED)
1576       {
1577         if (has_overflow_signed<valsize>(value))
1578           return STATUS_OVERFLOW;
1579       }
1580     else if (overflow == CHECK_BITFIELD)
1581       {
1582         if (has_overflow_bitfield<valsize>(value))
1583           return STATUS_OVERFLOW;
1584       }
1585     return STATUS_OK;
1586   }
1587
1588   // Do a simple RELA relocation
1589   template<int valsize>
1590   static inline Status
1591   rela(unsigned char* view, Address value, Overflow_check overflow)
1592   {
1593     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1594     Valtype* wv = reinterpret_cast<Valtype*>(view);
1595     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1596     return overflowed<valsize>(value, overflow);
1597   }
1598
1599   template<int valsize>
1600   static inline Status
1601   rela(unsigned char* view,
1602        unsigned int right_shift,
1603        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1604        Address value,
1605        Overflow_check overflow)
1606   {
1607     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1608     Valtype* wv = reinterpret_cast<Valtype*>(view);
1609     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1610     Valtype reloc = value >> right_shift;
1611     val &= ~dst_mask;
1612     reloc &= dst_mask;
1613     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1614     return overflowed<valsize>(value >> right_shift, overflow);
1615   }
1616
1617   // Do a simple RELA relocation, unaligned.
1618   template<int valsize>
1619   static inline Status
1620   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1621   {
1622     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1623     return overflowed<valsize>(value, overflow);
1624   }
1625
1626   template<int valsize>
1627   static inline Status
1628   rela_ua(unsigned char* view,
1629           unsigned int right_shift,
1630           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1631           Address value,
1632           Overflow_check overflow)
1633   {
1634     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1635       Valtype;
1636     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1637     Valtype reloc = value >> right_shift;
1638     val &= ~dst_mask;
1639     reloc &= dst_mask;
1640     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1641     return overflowed<valsize>(value >> right_shift, overflow);
1642   }
1643
1644 public:
1645   // R_PPC64_ADDR64: (Symbol + Addend)
1646   static inline void
1647   addr64(unsigned char* view, Address value)
1648   { This::template rela<64>(view, value, CHECK_NONE); }
1649
1650   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1651   static inline void
1652   addr64_u(unsigned char* view, Address value)
1653   { This::template rela_ua<64>(view, value, CHECK_NONE); }
1654
1655   // R_POWERPC_ADDR32: (Symbol + Addend)
1656   static inline Status
1657   addr32(unsigned char* view, Address value, Overflow_check overflow)
1658   { return This::template rela<32>(view, value, overflow); }
1659
1660   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1661   static inline Status
1662   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1663   { return This::template rela_ua<32>(view, value, overflow); }
1664
1665   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1666   static inline Status
1667   addr24(unsigned char* view, Address value, Overflow_check overflow)
1668   {
1669     Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1670     if (overflow != CHECK_NONE && (value & 3) != 0)
1671       stat = STATUS_OVERFLOW;
1672     return stat;
1673   }
1674
1675   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1676   static inline Status
1677   addr16(unsigned char* view, Address value, Overflow_check overflow)
1678   { return This::template rela<16>(view, value, overflow); }
1679
1680   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1681   static inline Status
1682   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1683   { return This::template rela_ua<16>(view, value, overflow); }
1684
1685   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1686   static inline Status
1687   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1688   {
1689     Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1690     if (overflow != CHECK_NONE && (value & 3) != 0)
1691       stat = STATUS_OVERFLOW;
1692     return stat;
1693   }
1694
1695   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1696   static inline void
1697   addr16_hi(unsigned char* view, Address value)
1698   { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1699
1700   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1701   static inline void
1702   addr16_ha(unsigned char* view, Address value)
1703   { This::addr16_hi(view, value + 0x8000); }
1704
1705   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1706   static inline void
1707   addr16_hi2(unsigned char* view, Address value)
1708   { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1709
1710   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1711   static inline void
1712   addr16_ha2(unsigned char* view, Address value)
1713   { This::addr16_hi2(view, value + 0x8000); }
1714
1715   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1716   static inline void
1717   addr16_hi3(unsigned char* view, Address value)
1718   { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1719
1720   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1721   static inline void
1722   addr16_ha3(unsigned char* view, Address value)
1723   { This::addr16_hi3(view, value + 0x8000); }
1724
1725   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1726   static inline Status
1727   addr14(unsigned char* view, Address value, Overflow_check overflow)
1728   {
1729     Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1730     if (overflow != CHECK_NONE && (value & 3) != 0)
1731       stat = STATUS_OVERFLOW;
1732     return stat;
1733   }
1734 };
1735
1736 // Set ABI version for input and output.
1737
1738 template<int size, bool big_endian>
1739 void
1740 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1741 {
1742   this->e_flags_ |= ver;
1743   if (this->abiversion() != 0)
1744     {
1745       Target_powerpc<size, big_endian>* target =
1746         static_cast<Target_powerpc<size, big_endian>*>(
1747            parameters->sized_target<size, big_endian>());
1748       if (target->abiversion() == 0)
1749         target->set_abiversion(this->abiversion());
1750       else if (target->abiversion() != this->abiversion())
1751         gold_error(_("%s: ABI version %d is not compatible "
1752                      "with ABI version %d output"),
1753                    this->name().c_str(),
1754                    this->abiversion(), target->abiversion());
1755
1756     }
1757 }
1758
1759 // Stash away the index of .got2 or .opd in a relocatable object, if
1760 // such a section exists.
1761
1762 template<int size, bool big_endian>
1763 bool
1764 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1765     Read_symbols_data* sd)
1766 {
1767   const unsigned char* const pshdrs = sd->section_headers->data();
1768   const unsigned char* namesu = sd->section_names->data();
1769   const char* names = reinterpret_cast<const char*>(namesu);
1770   section_size_type names_size = sd->section_names_size;
1771   const unsigned char* s;
1772
1773   s = this->template find_shdr<size, big_endian>(pshdrs,
1774                                                  size == 32 ? ".got2" : ".opd",
1775                                                  names, names_size, NULL);
1776   if (s != NULL)
1777     {
1778       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1779       this->special_ = ndx;
1780       if (size == 64)
1781         {
1782           if (this->abiversion() == 0)
1783             this->set_abiversion(1);
1784           else if (this->abiversion() > 1)
1785             gold_error(_("%s: .opd invalid in abiv%d"),
1786                        this->name().c_str(), this->abiversion());
1787         }
1788     }
1789   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1790 }
1791
1792 // Examine .rela.opd to build info about function entry points.
1793
1794 template<int size, bool big_endian>
1795 void
1796 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1797     size_t reloc_count,
1798     const unsigned char* prelocs,
1799     const unsigned char* plocal_syms)
1800 {
1801   if (size == 64)
1802     {
1803       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1804         Reltype;
1805       const int reloc_size
1806         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1807       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1808       Address expected_off = 0;
1809       bool regular = true;
1810       unsigned int opd_ent_size = 0;
1811
1812       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1813         {
1814           Reltype reloc(prelocs);
1815           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1816             = reloc.get_r_info();
1817           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1818           if (r_type == elfcpp::R_PPC64_ADDR64)
1819             {
1820               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1821               typename elfcpp::Elf_types<size>::Elf_Addr value;
1822               bool is_ordinary;
1823               unsigned int shndx;
1824               if (r_sym < this->local_symbol_count())
1825                 {
1826                   typename elfcpp::Sym<size, big_endian>
1827                     lsym(plocal_syms + r_sym * sym_size);
1828                   shndx = lsym.get_st_shndx();
1829                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1830                   value = lsym.get_st_value();
1831                 }
1832               else
1833                 shndx = this->symbol_section_and_value(r_sym, &value,
1834                                                        &is_ordinary);
1835               this->set_opd_ent(reloc.get_r_offset(), shndx,
1836                                 value + reloc.get_r_addend());
1837               if (i == 2)
1838                 {
1839                   expected_off = reloc.get_r_offset();
1840                   opd_ent_size = expected_off;
1841                 }
1842               else if (expected_off != reloc.get_r_offset())
1843                 regular = false;
1844               expected_off += opd_ent_size;
1845             }
1846           else if (r_type == elfcpp::R_PPC64_TOC)
1847             {
1848               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1849                 regular = false;
1850             }
1851           else
1852             {
1853               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1854                            this->name().c_str(), r_type);
1855               regular = false;
1856             }
1857         }
1858       if (reloc_count <= 2)
1859         opd_ent_size = this->section_size(this->opd_shndx());
1860       if (opd_ent_size != 24 && opd_ent_size != 16)
1861         regular = false;
1862       if (!regular)
1863         {
1864           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1865                        this->name().c_str());
1866           opd_ent_size = 0;
1867         }
1868     }
1869 }
1870
1871 template<int size, bool big_endian>
1872 void
1873 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1874 {
1875   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1876   if (size == 64)
1877     {
1878       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1879            p != rd->relocs.end();
1880            ++p)
1881         {
1882           if (p->data_shndx == this->opd_shndx())
1883             {
1884               uint64_t opd_size = this->section_size(this->opd_shndx());
1885               gold_assert(opd_size == static_cast<size_t>(opd_size));
1886               if (opd_size != 0)
1887                 {
1888                   this->init_opd(opd_size);
1889                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1890                                         rd->local_symbols->data());
1891                 }
1892               break;
1893             }
1894         }
1895     }
1896 }
1897
1898 // Read the symbols then set up st_other vector.
1899
1900 template<int size, bool big_endian>
1901 void
1902 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1903 {
1904   Sized_relobj_file<size, big_endian>::do_read_symbols(sd);
1905   if (size == 64)
1906     {
1907       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1908       const unsigned char* const pshdrs = sd->section_headers->data();
1909       const unsigned int loccount = this->do_local_symbol_count();
1910       if (loccount != 0)
1911         {
1912           this->st_other_.resize(loccount);
1913           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1914           off_t locsize = loccount * sym_size;
1915           const unsigned int symtab_shndx = this->symtab_shndx();
1916           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1917           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1918           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1919                                                       locsize, true, false);
1920           psyms += sym_size;
1921           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1922             {
1923               elfcpp::Sym<size, big_endian> sym(psyms);
1924               unsigned char st_other = sym.get_st_other();
1925               this->st_other_[i] = st_other;
1926               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1927                 {
1928                   if (this->abiversion() == 0)
1929                     this->set_abiversion(2);
1930                   else if (this->abiversion() < 2)
1931                     gold_error(_("%s: local symbol %d has invalid st_other"
1932                                  " for ABI version 1"),
1933                                this->name().c_str(), i);
1934                 }
1935             }
1936         }
1937     }
1938 }
1939
1940 template<int size, bool big_endian>
1941 void
1942 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1943 {
1944   this->e_flags_ |= ver;
1945   if (this->abiversion() != 0)
1946     {
1947       Target_powerpc<size, big_endian>* target =
1948         static_cast<Target_powerpc<size, big_endian>*>(
1949           parameters->sized_target<size, big_endian>());
1950       if (target->abiversion() == 0)
1951         target->set_abiversion(this->abiversion());
1952       else if (target->abiversion() != this->abiversion())
1953         gold_error(_("%s: ABI version %d is not compatible "
1954                      "with ABI version %d output"),
1955                    this->name().c_str(),
1956                    this->abiversion(), target->abiversion());
1957
1958     }
1959 }
1960
1961 // Call Sized_dynobj::do_read_symbols to read the symbols then
1962 // read .opd from a dynamic object, filling in opd_ent_ vector,
1963
1964 template<int size, bool big_endian>
1965 void
1966 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1967 {
1968   Sized_dynobj<size, big_endian>::do_read_symbols(sd);
1969   if (size == 64)
1970     {
1971       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1972       const unsigned char* const pshdrs = sd->section_headers->data();
1973       const unsigned char* namesu = sd->section_names->data();
1974       const char* names = reinterpret_cast<const char*>(namesu);
1975       const unsigned char* s = NULL;
1976       const unsigned char* opd;
1977       section_size_type opd_size;
1978
1979       // Find and read .opd section.
1980       while (1)
1981         {
1982           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1983                                                          sd->section_names_size,
1984                                                          s);
1985           if (s == NULL)
1986             return;
1987
1988           typename elfcpp::Shdr<size, big_endian> shdr(s);
1989           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1990               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1991             {
1992               if (this->abiversion() == 0)
1993                 this->set_abiversion(1);
1994               else if (this->abiversion() > 1)
1995                 gold_error(_("%s: .opd invalid in abiv%d"),
1996                            this->name().c_str(), this->abiversion());
1997
1998               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1999               this->opd_address_ = shdr.get_sh_addr();
2000               opd_size = convert_to_section_size_type(shdr.get_sh_size());
2001               opd = this->get_view(shdr.get_sh_offset(), opd_size,
2002                                    true, false);
2003               break;
2004             }
2005         }
2006
2007       // Build set of executable sections.
2008       // Using a set is probably overkill.  There is likely to be only
2009       // a few executable sections, typically .init, .text and .fini,
2010       // and they are generally grouped together.
2011       typedef std::set<Sec_info> Exec_sections;
2012       Exec_sections exec_sections;
2013       s = pshdrs;
2014       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2015         {
2016           typename elfcpp::Shdr<size, big_endian> shdr(s);
2017           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2018               && ((shdr.get_sh_flags()
2019                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2020                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2021               && shdr.get_sh_size() != 0)
2022             {
2023               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2024                                             shdr.get_sh_size(), i));
2025             }
2026         }
2027       if (exec_sections.empty())
2028         return;
2029
2030       // Look over the OPD entries.  This is complicated by the fact
2031       // that some binaries will use two-word entries while others
2032       // will use the standard three-word entries.  In most cases
2033       // the third word (the environment pointer for languages like
2034       // Pascal) is unused and will be zero.  If the third word is
2035       // used it should not be pointing into executable sections,
2036       // I think.
2037       this->init_opd(opd_size);
2038       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2039         {
2040           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2041           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2042           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2043           if (val == 0)
2044             // Chances are that this is the third word of an OPD entry.
2045             continue;
2046           typename Exec_sections::const_iterator e
2047             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2048           if (e != exec_sections.begin())
2049             {
2050               --e;
2051               if (e->start <= val && val < e->start + e->len)
2052                 {
2053                   // We have an address in an executable section.
2054                   // VAL ought to be the function entry, set it up.
2055                   this->set_opd_ent(p - opd, e->shndx, val);
2056                   // Skip second word of OPD entry, the TOC pointer.
2057                   p += 8;
2058                 }
2059             }
2060           // If we didn't match any executable sections, we likely
2061           // have a non-zero third word in the OPD entry.
2062         }
2063     }
2064 }
2065
2066 // Set up some symbols.
2067
2068 template<int size, bool big_endian>
2069 void
2070 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2071     Symbol_table* symtab,
2072     Layout* layout)
2073 {
2074   if (size == 32)
2075     {
2076       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2077       // undefined when scanning relocs (and thus requires
2078       // non-relative dynamic relocs).  The proper value will be
2079       // updated later.
2080       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2081       if (gotsym != NULL && gotsym->is_undefined())
2082         {
2083           Target_powerpc<size, big_endian>* target =
2084             static_cast<Target_powerpc<size, big_endian>*>(
2085                 parameters->sized_target<size, big_endian>());
2086           Output_data_got_powerpc<size, big_endian>* got
2087             = target->got_section(symtab, layout);
2088           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2089                                         Symbol_table::PREDEFINED,
2090                                         got, 0, 0,
2091                                         elfcpp::STT_OBJECT,
2092                                         elfcpp::STB_LOCAL,
2093                                         elfcpp::STV_HIDDEN, 0,
2094                                         false, false);
2095         }
2096
2097       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2098       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2099       if (sdasym != NULL && sdasym->is_undefined())
2100         {
2101           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2102           Output_section* os
2103             = layout->add_output_section_data(".sdata", 0,
2104                                               elfcpp::SHF_ALLOC
2105                                               | elfcpp::SHF_WRITE,
2106                                               sdata, ORDER_SMALL_DATA, false);
2107           symtab->define_in_output_data("_SDA_BASE_", NULL,
2108                                         Symbol_table::PREDEFINED,
2109                                         os, 32768, 0, elfcpp::STT_OBJECT,
2110                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2111                                         0, false, false);
2112         }
2113     }
2114   else
2115     {
2116       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2117       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2118       if (gotsym != NULL && gotsym->is_undefined())
2119         {
2120           Target_powerpc<size, big_endian>* target =
2121             static_cast<Target_powerpc<size, big_endian>*>(
2122                 parameters->sized_target<size, big_endian>());
2123           Output_data_got_powerpc<size, big_endian>* got
2124             = target->got_section(symtab, layout);
2125           symtab->define_in_output_data(".TOC.", NULL,
2126                                         Symbol_table::PREDEFINED,
2127                                         got, 0x8000, 0,
2128                                         elfcpp::STT_OBJECT,
2129                                         elfcpp::STB_LOCAL,
2130                                         elfcpp::STV_HIDDEN, 0,
2131                                         false, false);
2132         }
2133     }
2134 }
2135
2136 // Set up PowerPC target specific relobj.
2137
2138 template<int size, bool big_endian>
2139 Object*
2140 Target_powerpc<size, big_endian>::do_make_elf_object(
2141     const std::string& name,
2142     Input_file* input_file,
2143     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2144 {
2145   int et = ehdr.get_e_type();
2146   // ET_EXEC files are valid input for --just-symbols/-R,
2147   // and we treat them as relocatable objects.
2148   if (et == elfcpp::ET_REL
2149       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2150     {
2151       Powerpc_relobj<size, big_endian>* obj =
2152         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2153       obj->setup();
2154       return obj;
2155     }
2156   else if (et == elfcpp::ET_DYN)
2157     {
2158       Powerpc_dynobj<size, big_endian>* obj =
2159         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2160       obj->setup();
2161       return obj;
2162     }
2163   else
2164     {
2165       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2166       return NULL;
2167     }
2168 }
2169
2170 template<int size, bool big_endian>
2171 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2172 {
2173 public:
2174   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2175   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2176
2177   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2178     : Output_data_got<size, big_endian>(),
2179       symtab_(symtab), layout_(layout),
2180       header_ent_cnt_(size == 32 ? 3 : 1),
2181       header_index_(size == 32 ? 0x2000 : 0)
2182   { }
2183
2184   // Override all the Output_data_got methods we use so as to first call
2185   // reserve_ent().
2186   bool
2187   add_global(Symbol* gsym, unsigned int got_type)
2188   {
2189     this->reserve_ent();
2190     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2191   }
2192
2193   bool
2194   add_global_plt(Symbol* gsym, unsigned int got_type)
2195   {
2196     this->reserve_ent();
2197     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2198   }
2199
2200   bool
2201   add_global_tls(Symbol* gsym, unsigned int got_type)
2202   { return this->add_global_plt(gsym, got_type); }
2203
2204   void
2205   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2206                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2207   {
2208     this->reserve_ent();
2209     Output_data_got<size, big_endian>::
2210       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2211   }
2212
2213   void
2214   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2215                            Output_data_reloc_generic* rel_dyn,
2216                            unsigned int r_type_1, unsigned int r_type_2)
2217   {
2218     this->reserve_ent(2);
2219     Output_data_got<size, big_endian>::
2220       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2221   }
2222
2223   bool
2224   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2225   {
2226     this->reserve_ent();
2227     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2228                                                         got_type);
2229   }
2230
2231   bool
2232   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2233   {
2234     this->reserve_ent();
2235     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2236                                                             got_type);
2237   }
2238
2239   bool
2240   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2241   { return this->add_local_plt(object, sym_index, got_type); }
2242
2243   void
2244   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2245                      unsigned int got_type,
2246                      Output_data_reloc_generic* rel_dyn,
2247                      unsigned int r_type)
2248   {
2249     this->reserve_ent(2);
2250     Output_data_got<size, big_endian>::
2251       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2252   }
2253
2254   unsigned int
2255   add_constant(Valtype constant)
2256   {
2257     this->reserve_ent();
2258     return Output_data_got<size, big_endian>::add_constant(constant);
2259   }
2260
2261   unsigned int
2262   add_constant_pair(Valtype c1, Valtype c2)
2263   {
2264     this->reserve_ent(2);
2265     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2266   }
2267
2268   // Offset of _GLOBAL_OFFSET_TABLE_.
2269   unsigned int
2270   g_o_t() const
2271   {
2272     return this->got_offset(this->header_index_);
2273   }
2274
2275   // Offset of base used to access the GOT/TOC.
2276   // The got/toc pointer reg will be set to this value.
2277   Valtype
2278   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2279   {
2280     if (size == 32)
2281       return this->g_o_t();
2282     else
2283       return (this->output_section()->address()
2284               + object->toc_base_offset()
2285               - this->address());
2286   }
2287
2288   // Ensure our GOT has a header.
2289   void
2290   set_final_data_size()
2291   {
2292     if (this->header_ent_cnt_ != 0)
2293       this->make_header();
2294     Output_data_got<size, big_endian>::set_final_data_size();
2295   }
2296
2297   // First word of GOT header needs some values that are not
2298   // handled by Output_data_got so poke them in here.
2299   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2300   void
2301   do_write(Output_file* of)
2302   {
2303     Valtype val = 0;
2304     if (size == 32 && this->layout_->dynamic_data() != NULL)
2305       val = this->layout_->dynamic_section()->address();
2306     if (size == 64)
2307       val = this->output_section()->address() + 0x8000;
2308     this->replace_constant(this->header_index_, val);
2309     Output_data_got<size, big_endian>::do_write(of);
2310   }
2311
2312 private:
2313   void
2314   reserve_ent(unsigned int cnt = 1)
2315   {
2316     if (this->header_ent_cnt_ == 0)
2317       return;
2318     if (this->num_entries() + cnt > this->header_index_)
2319       this->make_header();
2320   }
2321
2322   void
2323   make_header()
2324   {
2325     this->header_ent_cnt_ = 0;
2326     this->header_index_ = this->num_entries();
2327     if (size == 32)
2328       {
2329         Output_data_got<size, big_endian>::add_constant(0);
2330         Output_data_got<size, big_endian>::add_constant(0);
2331         Output_data_got<size, big_endian>::add_constant(0);
2332
2333         // Define _GLOBAL_OFFSET_TABLE_ at the header
2334         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2335         if (gotsym != NULL)
2336           {
2337             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2338             sym->set_value(this->g_o_t());
2339           }
2340         else
2341           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2342                                                Symbol_table::PREDEFINED,
2343                                                this, this->g_o_t(), 0,
2344                                                elfcpp::STT_OBJECT,
2345                                                elfcpp::STB_LOCAL,
2346                                                elfcpp::STV_HIDDEN, 0,
2347                                                false, false);
2348       }
2349     else
2350       Output_data_got<size, big_endian>::add_constant(0);
2351   }
2352
2353   // Stashed pointers.
2354   Symbol_table* symtab_;
2355   Layout* layout_;
2356
2357   // GOT header size.
2358   unsigned int header_ent_cnt_;
2359   // GOT header index.
2360   unsigned int header_index_;
2361 };
2362
2363 // Get the GOT section, creating it if necessary.
2364
2365 template<int size, bool big_endian>
2366 Output_data_got_powerpc<size, big_endian>*
2367 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2368                                               Layout* layout)
2369 {
2370   if (this->got_ == NULL)
2371     {
2372       gold_assert(symtab != NULL && layout != NULL);
2373
2374       this->got_
2375         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2376
2377       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2378                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2379                                       this->got_, ORDER_DATA, false);
2380     }
2381
2382   return this->got_;
2383 }
2384
2385 // Get the dynamic reloc section, creating it if necessary.
2386
2387 template<int size, bool big_endian>
2388 typename Target_powerpc<size, big_endian>::Reloc_section*
2389 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2390 {
2391   if (this->rela_dyn_ == NULL)
2392     {
2393       gold_assert(layout != NULL);
2394       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2395       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2396                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2397                                       ORDER_DYNAMIC_RELOCS, false);
2398     }
2399   return this->rela_dyn_;
2400 }
2401
2402 // Similarly, but for ifunc symbols get the one for ifunc.
2403
2404 template<int size, bool big_endian>
2405 typename Target_powerpc<size, big_endian>::Reloc_section*
2406 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2407                                                    Layout* layout,
2408                                                    bool for_ifunc)
2409 {
2410   if (!for_ifunc)
2411     return this->rela_dyn_section(layout);
2412
2413   if (this->iplt_ == NULL)
2414     this->make_iplt_section(symtab, layout);
2415   return this->iplt_->rel_plt();
2416 }
2417
2418 class Stub_control
2419 {
2420  public:
2421   // Determine the stub group size.  The group size is the absolute
2422   // value of the parameter --stub-group-size.  If --stub-group-size
2423   // is passed a negative value, we restrict stubs to be always before
2424   // the stubbed branches.
2425   Stub_control(int32_t size)
2426     : state_(NO_GROUP), stub_group_size_(abs(size)),
2427       stub14_group_size_(abs(size)),
2428       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2429       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2430   {
2431     if (stub_group_size_ == 1)
2432       {
2433         // Default values.
2434         if (stubs_always_before_branch_)
2435           {
2436             stub_group_size_ = 0x1e00000;
2437             stub14_group_size_ = 0x7800;
2438           }
2439         else
2440           {
2441             stub_group_size_ = 0x1c00000;
2442             stub14_group_size_ = 0x7000;
2443           }
2444         suppress_size_errors_ = true;
2445       }
2446   }
2447
2448   // Return true iff input section can be handled by current stub
2449   // group.
2450   bool
2451   can_add_to_stub_group(Output_section* o,
2452                         const Output_section::Input_section* i,
2453                         bool has14);
2454
2455   const Output_section::Input_section*
2456   owner()
2457   { return owner_; }
2458
2459   Output_section*
2460   output_section()
2461   { return output_section_; }
2462
2463  private:
2464   typedef enum
2465   {
2466     NO_GROUP,
2467     FINDING_STUB_SECTION,
2468     HAS_STUB_SECTION
2469   } State;
2470
2471   State state_;
2472   uint32_t stub_group_size_;
2473   uint32_t stub14_group_size_;
2474   bool stubs_always_before_branch_;
2475   bool suppress_size_errors_;
2476   uint64_t group_end_addr_;
2477   const Output_section::Input_section* owner_;
2478   Output_section* output_section_;
2479 };
2480
2481 // Return true iff input section can be handled by current stub
2482 // group.
2483
2484 bool
2485 Stub_control::can_add_to_stub_group(Output_section* o,
2486                                     const Output_section::Input_section* i,
2487                                     bool has14)
2488 {
2489   uint32_t group_size
2490     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2491   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2492   uint64_t this_size;
2493   uint64_t start_addr = o->address();
2494
2495   if (whole_sec)
2496     // .init and .fini sections are pasted together to form a single
2497     // function.  We can't be adding stubs in the middle of the function.
2498     this_size = o->data_size();
2499   else
2500     {
2501       start_addr += i->relobj()->output_section_offset(i->shndx());
2502       this_size = i->data_size();
2503     }
2504   uint64_t end_addr = start_addr + this_size;
2505   bool toobig = this_size > group_size;
2506
2507   if (toobig && !this->suppress_size_errors_)
2508     gold_warning(_("%s:%s exceeds group size"),
2509                  i->relobj()->name().c_str(),
2510                  i->relobj()->section_name(i->shndx()).c_str());
2511
2512   if (this->state_ != HAS_STUB_SECTION
2513       && (!whole_sec || this->output_section_ != o)
2514       && (this->state_ == NO_GROUP
2515           || this->group_end_addr_ - end_addr < group_size))
2516     {
2517       this->owner_ = i;
2518       this->output_section_ = o;
2519     }
2520
2521   if (this->state_ == NO_GROUP)
2522     {
2523       this->state_ = FINDING_STUB_SECTION;
2524       this->group_end_addr_ = end_addr;
2525     }
2526   else if (this->group_end_addr_ - start_addr < group_size)
2527     ;
2528   // Adding this section would make the group larger than GROUP_SIZE.
2529   else if (this->state_ == FINDING_STUB_SECTION
2530            && !this->stubs_always_before_branch_
2531            && !toobig)
2532     {
2533       // But wait, there's more!  Input sections up to GROUP_SIZE
2534       // bytes before the stub table can be handled by it too.
2535       this->state_ = HAS_STUB_SECTION;
2536       this->group_end_addr_ = end_addr;
2537     }
2538   else
2539     {
2540       this->state_ = NO_GROUP;
2541       return false;
2542     }
2543   return true;
2544 }
2545
2546 // Look over all the input sections, deciding where to place stubs.
2547
2548 template<int size, bool big_endian>
2549 void
2550 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2551                                                  const Task*)
2552 {
2553   Stub_control stub_control(parameters->options().stub_group_size());
2554
2555   // Group input sections and insert stub table
2556   Stub_table<size, big_endian>* stub_table = NULL;
2557   Layout::Section_list section_list;
2558   layout->get_executable_sections(&section_list);
2559   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2560   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2561        o != section_list.rend();
2562        ++o)
2563     {
2564       typedef Output_section::Input_section_list Input_section_list;
2565       for (Input_section_list::const_reverse_iterator i
2566              = (*o)->input_sections().rbegin();
2567            i != (*o)->input_sections().rend();
2568            ++i)
2569         {
2570           if (i->is_input_section())
2571             {
2572               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2573                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2574               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2575               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2576                 {
2577                   stub_table->init(stub_control.owner(),
2578                                    stub_control.output_section());
2579                   stub_table = NULL;
2580                 }
2581               if (stub_table == NULL)
2582                 stub_table = this->new_stub_table();
2583               ppcobj->set_stub_table(i->shndx(), stub_table);
2584             }
2585         }
2586     }
2587   if (stub_table != NULL)
2588     {
2589       const Output_section::Input_section* i = stub_control.owner();
2590       if (!i->is_input_section())
2591         {
2592           // Corner case.  A new stub group was made for the first
2593           // section (last one looked at here) for some reason, but
2594           // the first section is already being used as the owner for
2595           // a stub table for following sections.  Force it into that
2596           // stub group.
2597           gold_assert(this->stub_tables_.size() >= 2);
2598           this->stub_tables_.pop_back();
2599           delete stub_table;
2600           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2601             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2602           ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2603         }
2604       else
2605         stub_table->init(i, stub_control.output_section());
2606     }
2607 }
2608
2609 // If this branch needs a plt call stub, or a long branch stub, make one.
2610
2611 template<int size, bool big_endian>
2612 void
2613 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2614     Stub_table<size, big_endian>* stub_table,
2615     Stub_table<size, big_endian>* ifunc_stub_table,
2616     Symbol_table* symtab) const
2617 {
2618   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2619   if (sym != NULL && sym->is_forwarder())
2620     sym = symtab->resolve_forwards(sym);
2621   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2622   if (gsym != NULL
2623       ? use_plt_offset<size>(gsym, Scan::get_reference_flags(this->r_type_))
2624       : this->object_->local_has_plt_offset(this->r_sym_))
2625     {
2626       if (stub_table == NULL)
2627         stub_table = this->object_->stub_table(this->shndx_);
2628       if (stub_table == NULL)
2629         {
2630           // This is a ref from a data section to an ifunc symbol.
2631           stub_table = ifunc_stub_table;
2632         }
2633       gold_assert(stub_table != NULL);
2634       if (gsym != NULL)
2635         stub_table->add_plt_call_entry(this->object_, gsym,
2636                                        this->r_type_, this->addend_);
2637       else
2638         stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2639                                        this->r_type_, this->addend_);
2640     }
2641   else
2642     {
2643       unsigned long max_branch_offset;
2644       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2645           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2646           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2647         max_branch_offset = 1 << 15;
2648       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2649                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2650                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2651         max_branch_offset = 1 << 25;
2652       else
2653         return;
2654       Address from = this->object_->get_output_section_offset(this->shndx_);
2655       gold_assert(from != invalid_address);
2656       from += (this->object_->output_section(this->shndx_)->address()
2657                + this->offset_);
2658       Address to;
2659       if (gsym != NULL)
2660         {
2661           switch (gsym->source())
2662             {
2663             case Symbol::FROM_OBJECT:
2664               {
2665                 Object* symobj = gsym->object();
2666                 if (symobj->is_dynamic()
2667                     || symobj->pluginobj() != NULL)
2668                   return;
2669                 bool is_ordinary;
2670                 unsigned int shndx = gsym->shndx(&is_ordinary);
2671                 if (shndx == elfcpp::SHN_UNDEF)
2672                   return;
2673               }
2674               break;
2675
2676             case Symbol::IS_UNDEFINED:
2677               return;
2678
2679             default:
2680               break;
2681             }
2682           Symbol_table::Compute_final_value_status status;
2683           to = symtab->compute_final_value<size>(gsym, &status);
2684           if (status != Symbol_table::CFVS_OK)
2685             return;
2686           to += this->object_->ppc64_local_entry_offset(gsym);
2687         }
2688       else
2689         {
2690           const Symbol_value<size>* psymval
2691             = this->object_->local_symbol(this->r_sym_);
2692           Symbol_value<size> symval;
2693           typedef Sized_relobj_file<size, big_endian> ObjType;
2694           typename ObjType::Compute_final_local_value_status status
2695             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2696                                                        &symval, symtab);
2697           if (status != ObjType::CFLV_OK
2698               || !symval.has_output_value())
2699             return;
2700           to = symval.value(this->object_, 0);
2701           to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2702         }
2703       to += this->addend_;
2704       if (stub_table == NULL)
2705         stub_table = this->object_->stub_table(this->shndx_);
2706       if (size == 64 && is_branch_reloc(this->r_type_))
2707         {
2708           unsigned int dest_shndx;
2709           Target_powerpc<size, big_endian>* target =
2710             static_cast<Target_powerpc<size, big_endian>*>(
2711                 parameters->sized_target<size, big_endian>());
2712           to = target->symval_for_branch(symtab, to, gsym,
2713                                          this->object_, &dest_shndx);
2714         }
2715       Address delta = to - from;
2716       if (delta + max_branch_offset >= 2 * max_branch_offset)
2717         {
2718           if (stub_table == NULL)
2719             {
2720               gold_warning(_("%s:%s: branch in non-executable section,"
2721                              " no long branch stub for you"),
2722                            this->object_->name().c_str(),
2723                            this->object_->section_name(this->shndx_).c_str());
2724               return;
2725             }
2726           stub_table->add_long_branch_entry(this->object_, to);
2727         }
2728     }
2729 }
2730
2731 // Relaxation hook.  This is where we do stub generation.
2732
2733 template<int size, bool big_endian>
2734 bool
2735 Target_powerpc<size, big_endian>::do_relax(int pass,
2736                                            const Input_objects*,
2737                                            Symbol_table* symtab,
2738                                            Layout* layout,
2739                                            const Task* task)
2740 {
2741   unsigned int prev_brlt_size = 0;
2742   if (pass == 1)
2743     {
2744       bool thread_safe
2745         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2746       if (size == 64
2747           && this->abiversion() < 2
2748           && !thread_safe
2749           && !parameters->options().user_set_plt_thread_safe())
2750         {
2751           static const char* const thread_starter[] =
2752             {
2753               "pthread_create",
2754               /* libstdc++ */
2755               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2756               /* librt */
2757               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2758               "mq_notify", "create_timer",
2759               /* libanl */
2760               "getaddrinfo_a",
2761               /* libgomp */
2762               "GOMP_parallel_start",
2763               "GOMP_parallel_loop_static_start",
2764               "GOMP_parallel_loop_dynamic_start",
2765               "GOMP_parallel_loop_guided_start",
2766               "GOMP_parallel_loop_runtime_start",
2767               "GOMP_parallel_sections_start",
2768             };
2769
2770           if (parameters->options().shared())
2771             thread_safe = true;
2772           else
2773             {
2774               for (unsigned int i = 0;
2775                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2776                    i++)
2777                 {
2778                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2779                   thread_safe = (sym != NULL
2780                                  && sym->in_reg()
2781                                  && sym->in_real_elf());
2782                   if (thread_safe)
2783                     break;
2784                 }
2785             }
2786         }
2787       this->plt_thread_safe_ = thread_safe;
2788       this->group_sections(layout, task);
2789     }
2790
2791   // We need address of stub tables valid for make_stub.
2792   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2793        p != this->stub_tables_.end();
2794        ++p)
2795     {
2796       const Powerpc_relobj<size, big_endian>* object
2797         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2798       Address off = object->get_output_section_offset((*p)->shndx());
2799       gold_assert(off != invalid_address);
2800       Output_section* os = (*p)->output_section();
2801       (*p)->set_address_and_size(os, off);
2802     }
2803
2804   if (pass != 1)
2805     {
2806       // Clear plt call stubs, long branch stubs and branch lookup table.
2807       prev_brlt_size = this->branch_lookup_table_.size();
2808       this->branch_lookup_table_.clear();
2809       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2810            p != this->stub_tables_.end();
2811            ++p)
2812         {
2813           (*p)->clear_stubs();
2814         }
2815     }
2816
2817   // Build all the stubs.
2818   Stub_table<size, big_endian>* ifunc_stub_table
2819     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2820   Stub_table<size, big_endian>* one_stub_table
2821     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2822   for (typename Branches::const_iterator b = this->branch_info_.begin();
2823        b != this->branch_info_.end();
2824        b++)
2825     {
2826       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2827     }
2828
2829   // Did anything change size?
2830   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2831   bool again = num_huge_branches != prev_brlt_size;
2832   if (size == 64 && num_huge_branches != 0)
2833     this->make_brlt_section(layout);
2834   if (size == 64 && again)
2835     this->brlt_section_->set_current_size(num_huge_branches);
2836
2837   typedef Unordered_set<Output_section*> Output_sections;
2838   Output_sections os_need_update;
2839   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2840        p != this->stub_tables_.end();
2841        ++p)
2842     {
2843       if ((*p)->size_update())
2844         {
2845           again = true;
2846           (*p)->add_eh_frame(layout);
2847           os_need_update.insert((*p)->output_section());
2848         }
2849     }
2850
2851   // Set output section offsets for all input sections in an output
2852   // section that just changed size.  Anything past the stubs will
2853   // need updating.
2854   for (typename Output_sections::iterator p = os_need_update.begin();
2855        p != os_need_update.end();
2856        p++)
2857     {
2858       Output_section* os = *p;
2859       Address off = 0;
2860       typedef Output_section::Input_section_list Input_section_list;
2861       for (Input_section_list::const_iterator i = os->input_sections().begin();
2862            i != os->input_sections().end();
2863            ++i)
2864         {
2865           off = align_address(off, i->addralign());
2866           if (i->is_input_section() || i->is_relaxed_input_section())
2867             i->relobj()->set_section_offset(i->shndx(), off);
2868           if (i->is_relaxed_input_section())
2869             {
2870               Stub_table<size, big_endian>* stub_table
2871                 = static_cast<Stub_table<size, big_endian>*>(
2872                     i->relaxed_input_section());
2873               off += stub_table->set_address_and_size(os, off);
2874             }
2875           else
2876             off += i->data_size();
2877         }
2878       // If .branch_lt is part of this output section, then we have
2879       // just done the offset adjustment.
2880       os->clear_section_offsets_need_adjustment();
2881     }
2882
2883   if (size == 64
2884       && !again
2885       && num_huge_branches != 0
2886       && parameters->options().output_is_position_independent())
2887     {
2888       // Fill in the BRLT relocs.
2889       this->brlt_section_->reset_brlt_sizes();
2890       for (typename Branch_lookup_table::const_iterator p
2891              = this->branch_lookup_table_.begin();
2892            p != this->branch_lookup_table_.end();
2893            ++p)
2894         {
2895           this->brlt_section_->add_reloc(p->first, p->second);
2896         }
2897       this->brlt_section_->finalize_brlt_sizes();
2898     }
2899   return again;
2900 }
2901
2902 template<int size, bool big_endian>
2903 void
2904 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2905                                                       unsigned char* oview,
2906                                                       uint64_t* paddress,
2907                                                       off_t* plen) const
2908 {
2909   uint64_t address = plt->address();
2910   off_t len = plt->data_size();
2911
2912   if (plt == this->glink_)
2913     {
2914       // See Output_data_glink::do_write() for glink contents.
2915       if (size == 64)
2916         {
2917           // There is one word before __glink_PLTresolve
2918           address += 8;
2919           len -= 8;
2920         }
2921       else if (parameters->options().output_is_position_independent())
2922         {
2923           // There are two FDEs for a position independent glink.
2924           // The first covers the branch table, the second
2925           // __glink_PLTresolve at the end of glink.
2926           off_t resolve_size = this->glink_->pltresolve_size;
2927           if (oview[9] == 0)
2928             len -= resolve_size;
2929           else
2930             {
2931               address += len - resolve_size;
2932               len = resolve_size;
2933             }
2934         }
2935     }
2936   else
2937     {
2938       // Must be a stub table.
2939       const Stub_table<size, big_endian>* stub_table
2940         = static_cast<const Stub_table<size, big_endian>*>(plt);
2941       uint64_t stub_address = stub_table->stub_address();
2942       len -= stub_address - address;
2943       address = stub_address;
2944     }
2945
2946   *paddress = address;
2947   *plen = len;
2948 }
2949
2950 // A class to handle the PLT data.
2951
2952 template<int size, bool big_endian>
2953 class Output_data_plt_powerpc : public Output_section_data_build
2954 {
2955  public:
2956   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2957                             size, big_endian> Reloc_section;
2958
2959   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2960                           Reloc_section* plt_rel,
2961                           const char* name)
2962     : Output_section_data_build(size == 32 ? 4 : 8),
2963       rel_(plt_rel),
2964       targ_(targ),
2965       name_(name)
2966   { }
2967
2968   // Add an entry to the PLT.
2969   void
2970   add_entry(Symbol*);
2971
2972   void
2973   add_ifunc_entry(Symbol*);
2974
2975   void
2976   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2977
2978   // Return the .rela.plt section data.
2979   Reloc_section*
2980   rel_plt() const
2981   {
2982     return this->rel_;
2983   }
2984
2985   // Return the number of PLT entries.
2986   unsigned int
2987   entry_count() const
2988   {
2989     if (this->current_data_size() == 0)
2990       return 0;
2991     return ((this->current_data_size() - this->first_plt_entry_offset())
2992             / this->plt_entry_size());
2993   }
2994
2995  protected:
2996   void
2997   do_adjust_output_section(Output_section* os)
2998   {
2999     os->set_entsize(0);
3000   }
3001
3002   // Write to a map file.
3003   void
3004   do_print_to_mapfile(Mapfile* mapfile) const
3005   { mapfile->print_output_data(this, this->name_); }
3006
3007  private:
3008   // Return the offset of the first non-reserved PLT entry.
3009   unsigned int
3010   first_plt_entry_offset() const
3011   {
3012     // IPLT has no reserved entry.
3013     if (this->name_[3] == 'I')
3014       return 0;
3015     return this->targ_->first_plt_entry_offset();
3016   }
3017
3018   // Return the size of each PLT entry.
3019   unsigned int
3020   plt_entry_size() const
3021   {
3022     return this->targ_->plt_entry_size();
3023   }
3024
3025   // Write out the PLT data.
3026   void
3027   do_write(Output_file*);
3028
3029   // The reloc section.
3030   Reloc_section* rel_;
3031   // Allows access to .glink for do_write.
3032   Target_powerpc<size, big_endian>* targ_;
3033   // What to report in map file.
3034   const char *name_;
3035 };
3036
3037 // Add an entry to the PLT.
3038
3039 template<int size, bool big_endian>
3040 void
3041 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3042 {
3043   if (!gsym->has_plt_offset())
3044     {
3045       section_size_type off = this->current_data_size();
3046       if (off == 0)
3047         off += this->first_plt_entry_offset();
3048       gsym->set_plt_offset(off);
3049       gsym->set_needs_dynsym_entry();
3050       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3051       this->rel_->add_global(gsym, dynrel, this, off, 0);
3052       off += this->plt_entry_size();
3053       this->set_current_data_size(off);
3054     }
3055 }
3056
3057 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3058
3059 template<int size, bool big_endian>
3060 void
3061 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3062 {
3063   if (!gsym->has_plt_offset())
3064     {
3065       section_size_type off = this->current_data_size();
3066       gsym->set_plt_offset(off);
3067       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3068       if (size == 64 && this->targ_->abiversion() < 2)
3069         dynrel = elfcpp::R_PPC64_JMP_IREL;
3070       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3071       off += this->plt_entry_size();
3072       this->set_current_data_size(off);
3073     }
3074 }
3075
3076 // Add an entry for a local ifunc symbol to the IPLT.
3077
3078 template<int size, bool big_endian>
3079 void
3080 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3081     Sized_relobj_file<size, big_endian>* relobj,
3082     unsigned int local_sym_index)
3083 {
3084   if (!relobj->local_has_plt_offset(local_sym_index))
3085     {
3086       section_size_type off = this->current_data_size();
3087       relobj->set_local_plt_offset(local_sym_index, off);
3088       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3089       if (size == 64 && this->targ_->abiversion() < 2)
3090         dynrel = elfcpp::R_PPC64_JMP_IREL;
3091       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3092                                               this, off, 0);
3093       off += this->plt_entry_size();
3094       this->set_current_data_size(off);
3095     }
3096 }
3097
3098 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3099 static const uint32_t add_2_2_11        = 0x7c425a14;
3100 static const uint32_t add_3_3_2         = 0x7c631214;
3101 static const uint32_t add_3_3_13        = 0x7c636a14;
3102 static const uint32_t add_11_0_11       = 0x7d605a14;
3103 static const uint32_t add_11_2_11       = 0x7d625a14;
3104 static const uint32_t add_11_11_2       = 0x7d6b1214;
3105 static const uint32_t addi_0_12         = 0x380c0000;
3106 static const uint32_t addi_2_2          = 0x38420000;
3107 static const uint32_t addi_3_3          = 0x38630000;
3108 static const uint32_t addi_11_11        = 0x396b0000;
3109 static const uint32_t addi_12_12        = 0x398c0000;
3110 static const uint32_t addis_0_2         = 0x3c020000;
3111 static const uint32_t addis_0_13        = 0x3c0d0000;
3112 static const uint32_t addis_3_2         = 0x3c620000;
3113 static const uint32_t addis_3_13        = 0x3c6d0000;
3114 static const uint32_t addis_11_2        = 0x3d620000;
3115 static const uint32_t addis_11_11       = 0x3d6b0000;
3116 static const uint32_t addis_11_30       = 0x3d7e0000;
3117 static const uint32_t addis_12_12       = 0x3d8c0000;
3118 static const uint32_t b                 = 0x48000000;
3119 static const uint32_t bcl_20_31         = 0x429f0005;
3120 static const uint32_t bctr              = 0x4e800420;
3121 static const uint32_t blr               = 0x4e800020;
3122 static const uint32_t bnectr_p4         = 0x4ce20420;
3123 static const uint32_t cmpldi_2_0        = 0x28220000;
3124 static const uint32_t cror_15_15_15     = 0x4def7b82;
3125 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3126 static const uint32_t ld_0_1            = 0xe8010000;
3127 static const uint32_t ld_0_12           = 0xe80c0000;
3128 static const uint32_t ld_2_1            = 0xe8410000;
3129 static const uint32_t ld_2_2            = 0xe8420000;
3130 static const uint32_t ld_2_11           = 0xe84b0000;
3131 static const uint32_t ld_11_2           = 0xe9620000;
3132 static const uint32_t ld_11_11          = 0xe96b0000;
3133 static const uint32_t ld_12_2           = 0xe9820000;
3134 static const uint32_t ld_12_11          = 0xe98b0000;
3135 static const uint32_t lfd_0_1           = 0xc8010000;
3136 static const uint32_t li_0_0            = 0x38000000;
3137 static const uint32_t li_12_0           = 0x39800000;
3138 static const uint32_t lis_0_0           = 0x3c000000;
3139 static const uint32_t lis_11            = 0x3d600000;
3140 static const uint32_t lis_12            = 0x3d800000;
3141 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3142 static const uint32_t lwz_0_12          = 0x800c0000;
3143 static const uint32_t lwz_11_11         = 0x816b0000;
3144 static const uint32_t lwz_11_30         = 0x817e0000;
3145 static const uint32_t lwz_12_12         = 0x818c0000;
3146 static const uint32_t lwzu_0_12         = 0x840c0000;
3147 static const uint32_t mflr_0            = 0x7c0802a6;
3148 static const uint32_t mflr_11           = 0x7d6802a6;
3149 static const uint32_t mflr_12           = 0x7d8802a6;
3150 static const uint32_t mtctr_0           = 0x7c0903a6;
3151 static const uint32_t mtctr_11          = 0x7d6903a6;
3152 static const uint32_t mtctr_12          = 0x7d8903a6;
3153 static const uint32_t mtlr_0            = 0x7c0803a6;
3154 static const uint32_t mtlr_12           = 0x7d8803a6;
3155 static const uint32_t nop               = 0x60000000;
3156 static const uint32_t ori_0_0_0         = 0x60000000;
3157 static const uint32_t srdi_0_0_2        = 0x7800f082;
3158 static const uint32_t std_0_1           = 0xf8010000;
3159 static const uint32_t std_0_12          = 0xf80c0000;
3160 static const uint32_t std_2_1           = 0xf8410000;
3161 static const uint32_t stfd_0_1          = 0xd8010000;
3162 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3163 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3164 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3165 static const uint32_t xor_2_12_12       = 0x7d826278;
3166 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3167
3168 // Write out the PLT.
3169
3170 template<int size, bool big_endian>
3171 void
3172 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3173 {
3174   if (size == 32 && this->name_[3] != 'I')
3175     {
3176       const section_size_type offset = this->offset();
3177       const section_size_type oview_size
3178         = convert_to_section_size_type(this->data_size());
3179       unsigned char* const oview = of->get_output_view(offset, oview_size);
3180       unsigned char* pov = oview;
3181       unsigned char* endpov = oview + oview_size;
3182
3183       // The address of the .glink branch table
3184       const Output_data_glink<size, big_endian>* glink
3185         = this->targ_->glink_section();
3186       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3187
3188       while (pov < endpov)
3189         {
3190           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3191           pov += 4;
3192           branch_tab += 4;
3193         }
3194
3195       of->write_output_view(offset, oview_size, oview);
3196     }
3197 }
3198
3199 // Create the PLT section.
3200
3201 template<int size, bool big_endian>
3202 void
3203 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3204                                                    Layout* layout)
3205 {
3206   if (this->plt_ == NULL)
3207     {
3208       if (this->got_ == NULL)
3209         this->got_section(symtab, layout);
3210
3211       if (this->glink_ == NULL)
3212         make_glink_section(layout);
3213
3214       // Ensure that .rela.dyn always appears before .rela.plt  This is
3215       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3216       // needs to include .rela.plt in its range.
3217       this->rela_dyn_section(layout);
3218
3219       Reloc_section* plt_rel = new Reloc_section(false);
3220       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3221                                       elfcpp::SHF_ALLOC, plt_rel,
3222                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3223       this->plt_
3224         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3225                                                         "** PLT");
3226       layout->add_output_section_data(".plt",
3227                                       (size == 32
3228                                        ? elfcpp::SHT_PROGBITS
3229                                        : elfcpp::SHT_NOBITS),
3230                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3231                                       this->plt_,
3232                                       (size == 32
3233                                        ? ORDER_SMALL_DATA
3234                                        : ORDER_SMALL_BSS),
3235                                       false);
3236     }
3237 }
3238
3239 // Create the IPLT section.
3240
3241 template<int size, bool big_endian>
3242 void
3243 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3244                                                     Layout* layout)
3245 {
3246   if (this->iplt_ == NULL)
3247     {
3248       this->make_plt_section(symtab, layout);
3249
3250       Reloc_section* iplt_rel = new Reloc_section(false);
3251       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3252       this->iplt_
3253         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3254                                                         "** IPLT");
3255       this->plt_->output_section()->add_output_section_data(this->iplt_);
3256     }
3257 }
3258
3259 // A section for huge long branch addresses, similar to plt section.
3260
3261 template<int size, bool big_endian>
3262 class Output_data_brlt_powerpc : public Output_section_data_build
3263 {
3264  public:
3265   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3266   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3267                             size, big_endian> Reloc_section;
3268
3269   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3270                            Reloc_section* brlt_rel)
3271     : Output_section_data_build(size == 32 ? 4 : 8),
3272       rel_(brlt_rel),
3273       targ_(targ)
3274   { }
3275
3276   void
3277   reset_brlt_sizes()
3278   {
3279     this->reset_data_size();
3280     this->rel_->reset_data_size();
3281   }
3282
3283   void
3284   finalize_brlt_sizes()
3285   {
3286     this->finalize_data_size();
3287     this->rel_->finalize_data_size();
3288   }
3289
3290   // Add a reloc for an entry in the BRLT.
3291   void
3292   add_reloc(Address to, unsigned int off)
3293   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3294
3295   // Update section and reloc section size.
3296   void
3297   set_current_size(unsigned int num_branches)
3298   {
3299     this->reset_address_and_file_offset();
3300     this->set_current_data_size(num_branches * 16);
3301     this->finalize_data_size();
3302     Output_section* os = this->output_section();
3303     os->set_section_offsets_need_adjustment();
3304     if (this->rel_ != NULL)
3305       {
3306         unsigned int reloc_size
3307           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3308         this->rel_->reset_address_and_file_offset();
3309         this->rel_->set_current_data_size(num_branches * reloc_size);
3310         this->rel_->finalize_data_size();
3311         Output_section* os = this->rel_->output_section();
3312         os->set_section_offsets_need_adjustment();
3313       }
3314   }
3315
3316  protected:
3317   void
3318   do_adjust_output_section(Output_section* os)
3319   {
3320     os->set_entsize(0);
3321   }
3322
3323   // Write to a map file.
3324   void
3325   do_print_to_mapfile(Mapfile* mapfile) const
3326   { mapfile->print_output_data(this, "** BRLT"); }
3327
3328  private:
3329   // Write out the BRLT data.
3330   void
3331   do_write(Output_file*);
3332
3333   // The reloc section.
3334   Reloc_section* rel_;
3335   Target_powerpc<size, big_endian>* targ_;
3336 };
3337
3338 // Make the branch lookup table section.
3339
3340 template<int size, bool big_endian>
3341 void
3342 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3343 {
3344   if (size == 64 && this->brlt_section_ == NULL)
3345     {
3346       Reloc_section* brlt_rel = NULL;
3347       bool is_pic = parameters->options().output_is_position_independent();
3348       if (is_pic)
3349         {
3350           // When PIC we can't fill in .branch_lt (like .plt it can be
3351           // a bss style section) but must initialise at runtime via
3352           // dynamic relocats.
3353           this->rela_dyn_section(layout);
3354           brlt_rel = new Reloc_section(false);
3355           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3356         }
3357       this->brlt_section_
3358         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3359       if (this->plt_ && is_pic)
3360         this->plt_->output_section()
3361           ->add_output_section_data(this->brlt_section_);
3362       else
3363         layout->add_output_section_data(".branch_lt",
3364                                         (is_pic ? elfcpp::SHT_NOBITS
3365                                          : elfcpp::SHT_PROGBITS),
3366                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3367                                         this->brlt_section_,
3368                                         (is_pic ? ORDER_SMALL_BSS
3369                                          : ORDER_SMALL_DATA),
3370                                         false);
3371     }
3372 }
3373
3374 // Write out .branch_lt when non-PIC.
3375
3376 template<int size, bool big_endian>
3377 void
3378 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3379 {
3380   if (size == 64 && !parameters->options().output_is_position_independent())
3381     {
3382       const section_size_type offset = this->offset();
3383       const section_size_type oview_size
3384         = convert_to_section_size_type(this->data_size());
3385       unsigned char* const oview = of->get_output_view(offset, oview_size);
3386
3387       this->targ_->write_branch_lookup_table(oview);
3388       of->write_output_view(offset, oview_size, oview);
3389     }
3390 }
3391
3392 static inline uint32_t
3393 l(uint32_t a)
3394 {
3395   return a & 0xffff;
3396 }
3397
3398 static inline uint32_t
3399 hi(uint32_t a)
3400 {
3401   return l(a >> 16);
3402 }
3403
3404 static inline uint32_t
3405 ha(uint32_t a)
3406 {
3407   return hi(a + 0x8000);
3408 }
3409
3410 template<int size>
3411 struct Eh_cie
3412 {
3413   static const unsigned char eh_frame_cie[12];
3414 };
3415
3416 template<int size>
3417 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3418 {
3419   1,                                    // CIE version.
3420   'z', 'R', 0,                          // Augmentation string.
3421   4,                                    // Code alignment.
3422   0x80 - size / 8 ,                     // Data alignment.
3423   65,                                   // RA reg.
3424   1,                                    // Augmentation size.
3425   (elfcpp::DW_EH_PE_pcrel
3426    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3427   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3428 };
3429
3430 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3431 static const unsigned char glink_eh_frame_fde_64v1[] =
3432 {
3433   0, 0, 0, 0,                           // Replaced with offset to .glink.
3434   0, 0, 0, 0,                           // Replaced with size of .glink.
3435   0,                                    // Augmentation size.
3436   elfcpp::DW_CFA_advance_loc + 1,
3437   elfcpp::DW_CFA_register, 65, 12,
3438   elfcpp::DW_CFA_advance_loc + 4,
3439   elfcpp::DW_CFA_restore_extended, 65
3440 };
3441
3442 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3443 static const unsigned char glink_eh_frame_fde_64v2[] =
3444 {
3445   0, 0, 0, 0,                           // Replaced with offset to .glink.
3446   0, 0, 0, 0,                           // Replaced with size of .glink.
3447   0,                                    // Augmentation size.
3448   elfcpp::DW_CFA_advance_loc + 1,
3449   elfcpp::DW_CFA_register, 65, 0,
3450   elfcpp::DW_CFA_advance_loc + 4,
3451   elfcpp::DW_CFA_restore_extended, 65
3452 };
3453
3454 // Describe __glink_PLTresolve use of LR, 32-bit version.
3455 static const unsigned char glink_eh_frame_fde_32[] =
3456 {
3457   0, 0, 0, 0,                           // Replaced with offset to .glink.
3458   0, 0, 0, 0,                           // Replaced with size of .glink.
3459   0,                                    // Augmentation size.
3460   elfcpp::DW_CFA_advance_loc + 2,
3461   elfcpp::DW_CFA_register, 65, 0,
3462   elfcpp::DW_CFA_advance_loc + 4,
3463   elfcpp::DW_CFA_restore_extended, 65
3464 };
3465
3466 static const unsigned char default_fde[] =
3467 {
3468   0, 0, 0, 0,                           // Replaced with offset to stubs.
3469   0, 0, 0, 0,                           // Replaced with size of stubs.
3470   0,                                    // Augmentation size.
3471   elfcpp::DW_CFA_nop,                   // Pad.
3472   elfcpp::DW_CFA_nop,
3473   elfcpp::DW_CFA_nop
3474 };
3475
3476 template<bool big_endian>
3477 static inline void
3478 write_insn(unsigned char* p, uint32_t v)
3479 {
3480   elfcpp::Swap<32, big_endian>::writeval(p, v);
3481 }
3482
3483 // Stub_table holds information about plt and long branch stubs.
3484 // Stubs are built in an area following some input section determined
3485 // by group_sections().  This input section is converted to a relaxed
3486 // input section allowing it to be resized to accommodate the stubs
3487
3488 template<int size, bool big_endian>
3489 class Stub_table : public Output_relaxed_input_section
3490 {
3491  public:
3492   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3493   static const Address invalid_address = static_cast<Address>(0) - 1;
3494
3495   Stub_table(Target_powerpc<size, big_endian>* targ)
3496     : Output_relaxed_input_section(NULL, 0, 0),
3497       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3498       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3499       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3500   { }
3501
3502   // Delayed Output_relaxed_input_section init.
3503   void
3504   init(const Output_section::Input_section*, Output_section*);
3505
3506   // Add a plt call stub.
3507   void
3508   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3509                      const Symbol*,
3510                      unsigned int,
3511                      Address);
3512
3513   void
3514   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3515                      unsigned int,
3516                      unsigned int,
3517                      Address);
3518
3519   // Find a given plt call stub.
3520   Address
3521   find_plt_call_entry(const Symbol*) const;
3522
3523   Address
3524   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3525                       unsigned int) const;
3526
3527   Address
3528   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3529                       const Symbol*,
3530                       unsigned int,
3531                       Address) const;
3532
3533   Address
3534   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3535                       unsigned int,
3536                       unsigned int,
3537                       Address) const;
3538
3539   // Add a long branch stub.
3540   void
3541   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3542
3543   Address
3544   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3545                          Address) const;
3546
3547   void
3548   clear_stubs()
3549   {
3550     this->plt_call_stubs_.clear();
3551     this->plt_size_ = 0;
3552     this->long_branch_stubs_.clear();
3553     this->branch_size_ = 0;
3554   }
3555
3556   Address
3557   set_address_and_size(const Output_section* os, Address off)
3558   {
3559     Address start_off = off;
3560     off += this->orig_data_size_;
3561     Address my_size = this->plt_size_ + this->branch_size_;
3562     if (my_size != 0)
3563       off = align_address(off, this->stub_align());
3564     // Include original section size and alignment padding in size
3565     my_size += off - start_off;
3566     this->reset_address_and_file_offset();
3567     this->set_current_data_size(my_size);
3568     this->set_address_and_file_offset(os->address() + start_off,
3569                                       os->offset() + start_off);
3570     return my_size;
3571   }
3572
3573   Address
3574   stub_address() const
3575   {
3576     return align_address(this->address() + this->orig_data_size_,
3577                          this->stub_align());
3578   }
3579
3580   Address
3581   stub_offset() const
3582   {
3583     return align_address(this->offset() + this->orig_data_size_,
3584                          this->stub_align());
3585   }
3586
3587   section_size_type
3588   plt_size() const
3589   { return this->plt_size_; }
3590
3591   bool
3592   size_update()
3593   {
3594     Output_section* os = this->output_section();
3595     if (os->addralign() < this->stub_align())
3596       {
3597         os->set_addralign(this->stub_align());
3598         // FIXME: get rid of the insane checkpointing.
3599         // We can't increase alignment of the input section to which
3600         // stubs are attached;  The input section may be .init which
3601         // is pasted together with other .init sections to form a
3602         // function.  Aligning might insert zero padding resulting in
3603         // sigill.  However we do need to increase alignment of the
3604         // output section so that the align_address() on offset in
3605         // set_address_and_size() adds the same padding as the
3606         // align_address() on address in stub_address().
3607         // What's more, we need this alignment for the layout done in
3608         // relaxation_loop_body() so that the output section starts at
3609         // a suitably aligned address.
3610         os->checkpoint_set_addralign(this->stub_align());
3611       }
3612     if (this->last_plt_size_ != this->plt_size_
3613         || this->last_branch_size_ != this->branch_size_)
3614       {
3615         this->last_plt_size_ = this->plt_size_;
3616         this->last_branch_size_ = this->branch_size_;
3617         return true;
3618       }
3619     return false;
3620   }
3621
3622   // Add .eh_frame info for this stub section.  Unlike other linker
3623   // generated .eh_frame this is added late in the link, because we
3624   // only want the .eh_frame info if this particular stub section is
3625   // non-empty.
3626   void
3627   add_eh_frame(Layout* layout)
3628   {
3629     if (!this->eh_frame_added_)
3630       {
3631         if (!parameters->options().ld_generated_unwind_info())
3632           return;
3633
3634         // Since we add stub .eh_frame info late, it must be placed
3635         // after all other linker generated .eh_frame info so that
3636         // merge mapping need not be updated for input sections.
3637         // There is no provision to use a different CIE to that used
3638         // by .glink.
3639         if (!this->targ_->has_glink())
3640           return;
3641
3642         layout->add_eh_frame_for_plt(this,
3643                                      Eh_cie<size>::eh_frame_cie,
3644                                      sizeof (Eh_cie<size>::eh_frame_cie),
3645                                      default_fde,
3646                                      sizeof (default_fde));
3647         this->eh_frame_added_ = true;
3648       }
3649   }
3650
3651   Target_powerpc<size, big_endian>*
3652   targ() const
3653   { return targ_; }
3654
3655  private:
3656   class Plt_stub_ent;
3657   class Plt_stub_ent_hash;
3658   typedef Unordered_map<Plt_stub_ent, unsigned int,
3659                         Plt_stub_ent_hash> Plt_stub_entries;
3660
3661   // Alignment of stub section.
3662   unsigned int
3663   stub_align() const
3664   {
3665     if (size == 32)
3666       return 16;
3667     unsigned int min_align = 32;
3668     unsigned int user_align = 1 << parameters->options().plt_align();
3669     return std::max(user_align, min_align);
3670   }
3671
3672   // Return the plt offset for the given call stub.
3673   Address
3674   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3675   {
3676     const Symbol* gsym = p->first.sym_;
3677     if (gsym != NULL)
3678       {
3679         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3680                     && gsym->can_use_relative_reloc(false));
3681         return gsym->plt_offset();
3682       }
3683     else
3684       {
3685         *is_iplt = true;
3686         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3687         unsigned int local_sym_index = p->first.locsym_;
3688         return relobj->local_plt_offset(local_sym_index);
3689       }
3690   }
3691
3692   // Size of a given plt call stub.
3693   unsigned int
3694   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3695   {
3696     if (size == 32)
3697       return 16;
3698
3699     bool is_iplt;
3700     Address plt_addr = this->plt_off(p, &is_iplt);
3701     if (is_iplt)
3702       plt_addr += this->targ_->iplt_section()->address();
3703     else
3704       plt_addr += this->targ_->plt_section()->address();
3705     Address got_addr = this->targ_->got_section()->output_section()->address();
3706     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3707       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3708     got_addr += ppcobj->toc_base_offset();
3709     Address off = plt_addr - got_addr;
3710     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3711     if (this->targ_->abiversion() < 2)
3712       {
3713         bool static_chain = parameters->options().plt_static_chain();
3714         bool thread_safe = this->targ_->plt_thread_safe();
3715         bytes += (4
3716                   + 4 * static_chain
3717                   + 8 * thread_safe
3718                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3719       }
3720     unsigned int align = 1 << parameters->options().plt_align();
3721     if (align > 1)
3722       bytes = (bytes + align - 1) & -align;
3723     return bytes;
3724   }
3725
3726   // Return long branch stub size.
3727   unsigned int
3728   branch_stub_size(Address to)
3729   {
3730     Address loc
3731       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3732     if (to - loc + (1 << 25) < 2 << 25)
3733       return 4;
3734     if (size == 64 || !parameters->options().output_is_position_independent())
3735       return 16;
3736     return 32;
3737   }
3738
3739   // Write out stubs.
3740   void
3741   do_write(Output_file*);
3742
3743   // Plt call stub keys.
3744   class Plt_stub_ent
3745   {
3746   public:
3747     Plt_stub_ent(const Symbol* sym)
3748       : sym_(sym), object_(0), addend_(0), locsym_(0)
3749     { }
3750
3751     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3752                  unsigned int locsym_index)
3753       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3754     { }
3755
3756     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3757                  const Symbol* sym,
3758                  unsigned int r_type,
3759                  Address addend)
3760       : sym_(sym), object_(0), addend_(0), locsym_(0)
3761     {
3762       if (size != 32)
3763         this->addend_ = addend;
3764       else if (parameters->options().output_is_position_independent()
3765                && r_type == elfcpp::R_PPC_PLTREL24)
3766         {
3767           this->addend_ = addend;
3768           if (this->addend_ >= 32768)
3769             this->object_ = object;
3770         }
3771     }
3772
3773     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3774                  unsigned int locsym_index,
3775                  unsigned int r_type,
3776                  Address addend)
3777       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3778     {
3779       if (size != 32)
3780         this->addend_ = addend;
3781       else if (parameters->options().output_is_position_independent()
3782                && r_type == elfcpp::R_PPC_PLTREL24)
3783         this->addend_ = addend;
3784     }
3785
3786     bool operator==(const Plt_stub_ent& that) const
3787     {
3788       return (this->sym_ == that.sym_
3789               && this->object_ == that.object_
3790               && this->addend_ == that.addend_
3791               && this->locsym_ == that.locsym_);
3792     }
3793
3794     const Symbol* sym_;
3795     const Sized_relobj_file<size, big_endian>* object_;
3796     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3797     unsigned int locsym_;
3798   };
3799
3800   class Plt_stub_ent_hash
3801   {
3802   public:
3803     size_t operator()(const Plt_stub_ent& ent) const
3804     {
3805       return (reinterpret_cast<uintptr_t>(ent.sym_)
3806               ^ reinterpret_cast<uintptr_t>(ent.object_)
3807               ^ ent.addend_
3808               ^ ent.locsym_);
3809     }
3810   };
3811
3812   // Long branch stub keys.
3813   class Branch_stub_ent
3814   {
3815   public:
3816     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3817       : dest_(to), toc_base_off_(0)
3818     {
3819       if (size == 64)
3820         toc_base_off_ = obj->toc_base_offset();
3821     }
3822
3823     bool operator==(const Branch_stub_ent& that) const
3824     {
3825       return (this->dest_ == that.dest_
3826               && (size == 32
3827                   || this->toc_base_off_ == that.toc_base_off_));
3828     }
3829
3830     Address dest_;
3831     unsigned int toc_base_off_;
3832   };
3833
3834   class Branch_stub_ent_hash
3835   {
3836   public:
3837     size_t operator()(const Branch_stub_ent& ent) const
3838     { return ent.dest_ ^ ent.toc_base_off_; }
3839   };
3840
3841   // In a sane world this would be a global.
3842   Target_powerpc<size, big_endian>* targ_;
3843   // Map sym/object/addend to stub offset.
3844   Plt_stub_entries plt_call_stubs_;
3845   // Map destination address to stub offset.
3846   typedef Unordered_map<Branch_stub_ent, unsigned int,
3847                         Branch_stub_ent_hash> Branch_stub_entries;
3848   Branch_stub_entries long_branch_stubs_;
3849   // size of input section
3850   section_size_type orig_data_size_;
3851   // size of stubs
3852   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3853   // Whether .eh_frame info has been created for this stub section.
3854   bool eh_frame_added_;
3855 };
3856
3857 // Make a new stub table, and record.
3858
3859 template<int size, bool big_endian>
3860 Stub_table<size, big_endian>*
3861 Target_powerpc<size, big_endian>::new_stub_table()
3862 {
3863   Stub_table<size, big_endian>* stub_table
3864     = new Stub_table<size, big_endian>(this);
3865   this->stub_tables_.push_back(stub_table);
3866   return stub_table;
3867 }
3868
3869 // Delayed stub table initialisation, because we create the stub table
3870 // before we know to which section it will be attached.
3871
3872 template<int size, bool big_endian>
3873 void
3874 Stub_table<size, big_endian>::init(
3875     const Output_section::Input_section* owner,
3876     Output_section* output_section)
3877 {
3878   this->set_relobj(owner->relobj());
3879   this->set_shndx(owner->shndx());
3880   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3881   this->set_output_section(output_section);
3882   this->orig_data_size_ = owner->current_data_size();
3883
3884   std::vector<Output_relaxed_input_section*> new_relaxed;
3885   new_relaxed.push_back(this);
3886   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3887 }
3888
3889 // Add a plt call stub, if we do not already have one for this
3890 // sym/object/addend combo.
3891
3892 template<int size, bool big_endian>
3893 void
3894 Stub_table<size, big_endian>::add_plt_call_entry(
3895     const Sized_relobj_file<size, big_endian>* object,
3896     const Symbol* gsym,
3897     unsigned int r_type,
3898     Address addend)
3899 {
3900   Plt_stub_ent ent(object, gsym, r_type, addend);
3901   Address off = this->plt_size_;
3902   std::pair<typename Plt_stub_entries::iterator, bool> p
3903     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3904   if (p.second)
3905     this->plt_size_ = off + this->plt_call_size(p.first);
3906 }
3907
3908 template<int size, bool big_endian>
3909 void
3910 Stub_table<size, big_endian>::add_plt_call_entry(
3911     const Sized_relobj_file<size, big_endian>* object,
3912     unsigned int locsym_index,
3913     unsigned int r_type,
3914     Address addend)
3915 {
3916   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3917   Address off = this->plt_size_;
3918   std::pair<typename Plt_stub_entries::iterator, bool> p
3919     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3920   if (p.second)
3921     this->plt_size_ = off + this->plt_call_size(p.first);
3922 }
3923
3924 // Find a plt call stub.
3925
3926 template<int size, bool big_endian>
3927 typename Stub_table<size, big_endian>::Address
3928 Stub_table<size, big_endian>::find_plt_call_entry(
3929     const Sized_relobj_file<size, big_endian>* object,
3930     const Symbol* gsym,
3931     unsigned int r_type,
3932     Address addend) const
3933 {
3934   Plt_stub_ent ent(object, gsym, r_type, addend);
3935   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3936   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3937 }
3938
3939 template<int size, bool big_endian>
3940 typename Stub_table<size, big_endian>::Address
3941 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3942 {
3943   Plt_stub_ent ent(gsym);
3944   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3945   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3946 }
3947
3948 template<int size, bool big_endian>
3949 typename Stub_table<size, big_endian>::Address
3950 Stub_table<size, big_endian>::find_plt_call_entry(
3951     const Sized_relobj_file<size, big_endian>* object,
3952     unsigned int locsym_index,
3953     unsigned int r_type,
3954     Address addend) const
3955 {
3956   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3957   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3958   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3959 }
3960
3961 template<int size, bool big_endian>
3962 typename Stub_table<size, big_endian>::Address
3963 Stub_table<size, big_endian>::find_plt_call_entry(
3964     const Sized_relobj_file<size, big_endian>* object,
3965     unsigned int locsym_index) const
3966 {
3967   Plt_stub_ent ent(object, locsym_index);
3968   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3969   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3970 }
3971
3972 // Add a long branch stub if we don't already have one to given
3973 // destination.
3974
3975 template<int size, bool big_endian>
3976 void
3977 Stub_table<size, big_endian>::add_long_branch_entry(
3978     const Powerpc_relobj<size, big_endian>* object,
3979     Address to)
3980 {
3981   Branch_stub_ent ent(object, to);
3982   Address off = this->branch_size_;
3983   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3984     {
3985       unsigned int stub_size = this->branch_stub_size(to);
3986       this->branch_size_ = off + stub_size;
3987       if (size == 64 && stub_size != 4)
3988         this->targ_->add_branch_lookup_table(to);
3989     }
3990 }
3991
3992 // Find long branch stub.
3993
3994 template<int size, bool big_endian>
3995 typename Stub_table<size, big_endian>::Address
3996 Stub_table<size, big_endian>::find_long_branch_entry(
3997     const Powerpc_relobj<size, big_endian>* object,
3998     Address to) const
3999 {
4000   Branch_stub_ent ent(object, to);
4001   typename Branch_stub_entries::const_iterator p
4002     = this->long_branch_stubs_.find(ent);
4003   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
4004 }
4005
4006 // A class to handle .glink.
4007
4008 template<int size, bool big_endian>
4009 class Output_data_glink : public Output_section_data
4010 {
4011  public:
4012   static const int pltresolve_size = 16*4;
4013
4014   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4015     : Output_section_data(16), targ_(targ)
4016   { }
4017
4018   void
4019   add_eh_frame(Layout* layout)
4020   {
4021     if (!parameters->options().ld_generated_unwind_info())
4022       return;
4023
4024     if (size == 64)
4025       {
4026         if (this->targ_->abiversion() < 2)
4027           layout->add_eh_frame_for_plt(this,
4028                                        Eh_cie<64>::eh_frame_cie,
4029                                        sizeof (Eh_cie<64>::eh_frame_cie),
4030                                        glink_eh_frame_fde_64v1,
4031                                        sizeof (glink_eh_frame_fde_64v1));
4032         else
4033           layout->add_eh_frame_for_plt(this,
4034                                        Eh_cie<64>::eh_frame_cie,
4035                                        sizeof (Eh_cie<64>::eh_frame_cie),
4036                                        glink_eh_frame_fde_64v2,
4037                                        sizeof (glink_eh_frame_fde_64v2));
4038       }
4039     else
4040       {
4041         // 32-bit .glink can use the default since the CIE return
4042         // address reg, LR, is valid.
4043         layout->add_eh_frame_for_plt(this,
4044                                      Eh_cie<32>::eh_frame_cie,
4045                                      sizeof (Eh_cie<32>::eh_frame_cie),
4046                                      default_fde,
4047                                      sizeof (default_fde));
4048         // Except where LR is used in a PIC __glink_PLTresolve.
4049         if (parameters->options().output_is_position_independent())
4050           layout->add_eh_frame_for_plt(this,
4051                                        Eh_cie<32>::eh_frame_cie,
4052                                        sizeof (Eh_cie<32>::eh_frame_cie),
4053                                        glink_eh_frame_fde_32,
4054                                        sizeof (glink_eh_frame_fde_32));
4055       }
4056   }
4057
4058  protected:
4059   // Write to a map file.
4060   void
4061   do_print_to_mapfile(Mapfile* mapfile) const
4062   { mapfile->print_output_data(this, _("** glink")); }
4063
4064  private:
4065   void
4066   set_final_data_size();
4067
4068   // Write out .glink
4069   void
4070   do_write(Output_file*);
4071
4072   // Allows access to .got and .plt for do_write.
4073   Target_powerpc<size, big_endian>* targ_;
4074 };
4075
4076 template<int size, bool big_endian>
4077 void
4078 Output_data_glink<size, big_endian>::set_final_data_size()
4079 {
4080   unsigned int count = this->targ_->plt_entry_count();
4081   section_size_type total = 0;
4082
4083   if (count != 0)
4084     {
4085       if (size == 32)
4086         {
4087           // space for branch table
4088           total += 4 * (count - 1);
4089
4090           total += -total & 15;
4091           total += this->pltresolve_size;
4092         }
4093       else
4094         {
4095           total += this->pltresolve_size;
4096
4097           // space for branch table
4098           total += 4 * count;
4099           if (this->targ_->abiversion() < 2)
4100             {
4101               total += 4 * count;
4102               if (count > 0x8000)
4103                 total += 4 * (count - 0x8000);
4104             }
4105         }
4106     }
4107
4108   this->set_data_size(total);
4109 }
4110
4111 // Write out plt and long branch stub code.
4112
4113 template<int size, bool big_endian>
4114 void
4115 Stub_table<size, big_endian>::do_write(Output_file* of)
4116 {
4117   if (this->plt_call_stubs_.empty()
4118       && this->long_branch_stubs_.empty())
4119     return;
4120
4121   const section_size_type start_off = this->offset();
4122   const section_size_type off = this->stub_offset();
4123   const section_size_type oview_size =
4124     convert_to_section_size_type(this->data_size() - (off - start_off));
4125   unsigned char* const oview = of->get_output_view(off, oview_size);
4126   unsigned char* p;
4127
4128   if (size == 64)
4129     {
4130       const Output_data_got_powerpc<size, big_endian>* got
4131         = this->targ_->got_section();
4132       Address got_os_addr = got->output_section()->address();
4133
4134       if (!this->plt_call_stubs_.empty())
4135         {
4136           // The base address of the .plt section.
4137           Address plt_base = this->targ_->plt_section()->address();
4138           Address iplt_base = invalid_address;
4139
4140           // Write out plt call stubs.
4141           typename Plt_stub_entries::const_iterator cs;
4142           for (cs = this->plt_call_stubs_.begin();
4143                cs != this->plt_call_stubs_.end();
4144                ++cs)
4145             {
4146               bool is_iplt;
4147               Address pltoff = this->plt_off(cs, &is_iplt);
4148               Address plt_addr = pltoff;
4149               if (is_iplt)
4150                 {
4151                   if (iplt_base == invalid_address)
4152                     iplt_base = this->targ_->iplt_section()->address();
4153                   plt_addr += iplt_base;
4154                 }
4155               else
4156                 plt_addr += plt_base;
4157               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4158                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4159               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4160               Address off = plt_addr - got_addr;
4161
4162               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4163                 gold_error(_("%s: linkage table error against `%s'"),
4164                            cs->first.object_->name().c_str(),
4165                            cs->first.sym_->demangled_name().c_str());
4166
4167               bool plt_load_toc = this->targ_->abiversion() < 2;
4168               bool static_chain
4169                 = plt_load_toc && parameters->options().plt_static_chain();
4170               bool thread_safe
4171                 = plt_load_toc && this->targ_->plt_thread_safe();
4172               bool use_fake_dep = false;
4173               Address cmp_branch_off = 0;
4174               if (thread_safe)
4175                 {
4176                   unsigned int pltindex
4177                     = ((pltoff - this->targ_->first_plt_entry_offset())
4178                        / this->targ_->plt_entry_size());
4179                   Address glinkoff
4180                     = (this->targ_->glink_section()->pltresolve_size
4181                        + pltindex * 8);
4182                   if (pltindex > 32768)
4183                     glinkoff += (pltindex - 32768) * 4;
4184                   Address to
4185                     = this->targ_->glink_section()->address() + glinkoff;
4186                   Address from
4187                     = (this->stub_address() + cs->second + 24
4188                        + 4 * (ha(off) != 0)
4189                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4190                        + 4 * static_chain);
4191                   cmp_branch_off = to - from;
4192                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4193                 }
4194
4195               p = oview + cs->second;
4196               if (ha(off) != 0)
4197                 {
4198                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4199                   p += 4;
4200                   write_insn<big_endian>(p, addis_11_2 + ha(off));
4201                   p += 4;
4202                   write_insn<big_endian>(p, ld_12_11 + l(off));
4203                   p += 4;
4204                   if (plt_load_toc
4205                       && ha(off + 8 + 8 * static_chain) != ha(off))
4206                     {
4207                       write_insn<big_endian>(p, addi_11_11 + l(off));
4208                       p += 4;
4209                       off = 0;
4210                     }
4211                   write_insn<big_endian>(p, mtctr_12);
4212                   p += 4;
4213                   if (plt_load_toc)
4214                     {
4215                       if (use_fake_dep)
4216                         {
4217                           write_insn<big_endian>(p, xor_2_12_12);
4218                           p += 4;
4219                           write_insn<big_endian>(p, add_11_11_2);
4220                           p += 4;
4221                         }
4222                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4223                       p += 4;
4224                       if (static_chain)
4225                         {
4226                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4227                           p += 4;
4228                         }
4229                     }
4230                 }
4231               else
4232                 {
4233                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4234                   p += 4;
4235                   write_insn<big_endian>(p, ld_12_2 + l(off));
4236                   p += 4;
4237                   if (plt_load_toc
4238                       && ha(off + 8 + 8 * static_chain) != ha(off))
4239                     {
4240                       write_insn<big_endian>(p, addi_2_2 + l(off));
4241                       p += 4;
4242                       off = 0;
4243                     }
4244                   write_insn<big_endian>(p, mtctr_12);
4245                   p += 4;
4246                   if (plt_load_toc)
4247                     {
4248                       if (use_fake_dep)
4249                         {
4250                           write_insn<big_endian>(p, xor_11_12_12);
4251                           p += 4;
4252                           write_insn<big_endian>(p, add_2_2_11);
4253                           p += 4;
4254                         }
4255                       if (static_chain)
4256                         {
4257                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4258                           p += 4;
4259                         }
4260                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4261                       p += 4;
4262                     }
4263                 }
4264               if (thread_safe && !use_fake_dep)
4265                 {
4266                   write_insn<big_endian>(p, cmpldi_2_0);
4267                   p += 4;
4268                   write_insn<big_endian>(p, bnectr_p4);
4269                   p += 4;
4270                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4271                 }
4272               else
4273                 write_insn<big_endian>(p, bctr);
4274             }
4275         }
4276
4277       // Write out long branch stubs.
4278       typename Branch_stub_entries::const_iterator bs;
4279       for (bs = this->long_branch_stubs_.begin();
4280            bs != this->long_branch_stubs_.end();
4281            ++bs)
4282         {
4283           p = oview + this->plt_size_ + bs->second;
4284           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4285           Address delta = bs->first.dest_ - loc;
4286           if (delta + (1 << 25) < 2 << 25)
4287             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4288           else
4289             {
4290               Address brlt_addr
4291                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4292               gold_assert(brlt_addr != invalid_address);
4293               brlt_addr += this->targ_->brlt_section()->address();
4294               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4295               Address brltoff = brlt_addr - got_addr;
4296               if (ha(brltoff) == 0)
4297                 {
4298                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4299                 }
4300               else
4301                 {
4302                   write_insn<big_endian>(p, addis_11_2 + ha(brltoff)),  p += 4;
4303                   write_insn<big_endian>(p, ld_12_11 + l(brltoff)),     p += 4;
4304                 }
4305               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4306               write_insn<big_endian>(p, bctr);
4307             }
4308         }
4309     }
4310   else
4311     {
4312       if (!this->plt_call_stubs_.empty())
4313         {
4314           // The base address of the .plt section.
4315           Address plt_base = this->targ_->plt_section()->address();
4316           Address iplt_base = invalid_address;
4317           // The address of _GLOBAL_OFFSET_TABLE_.
4318           Address g_o_t = invalid_address;
4319
4320           // Write out plt call stubs.
4321           typename Plt_stub_entries::const_iterator cs;
4322           for (cs = this->plt_call_stubs_.begin();
4323                cs != this->plt_call_stubs_.end();
4324                ++cs)
4325             {
4326               bool is_iplt;
4327               Address plt_addr = this->plt_off(cs, &is_iplt);
4328               if (is_iplt)
4329                 {
4330                   if (iplt_base == invalid_address)
4331                     iplt_base = this->targ_->iplt_section()->address();
4332                   plt_addr += iplt_base;
4333                 }
4334               else
4335                 plt_addr += plt_base;
4336
4337               p = oview + cs->second;
4338               if (parameters->options().output_is_position_independent())
4339                 {
4340                   Address got_addr;
4341                   const Powerpc_relobj<size, big_endian>* ppcobj
4342                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4343                        (cs->first.object_));
4344                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4345                     {
4346                       unsigned int got2 = ppcobj->got2_shndx();
4347                       got_addr = ppcobj->get_output_section_offset(got2);
4348                       gold_assert(got_addr != invalid_address);
4349                       got_addr += (ppcobj->output_section(got2)->address()
4350                                    + cs->first.addend_);
4351                     }
4352                   else
4353                     {
4354                       if (g_o_t == invalid_address)
4355                         {
4356                           const Output_data_got_powerpc<size, big_endian>* got
4357                             = this->targ_->got_section();
4358                           g_o_t = got->address() + got->g_o_t();
4359                         }
4360                       got_addr = g_o_t;
4361                     }
4362
4363                   Address off = plt_addr - got_addr;
4364                   if (ha(off) == 0)
4365                     {
4366                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4367                       write_insn<big_endian>(p +  4, mtctr_11);
4368                       write_insn<big_endian>(p +  8, bctr);
4369                     }
4370                   else
4371                     {
4372                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4373                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4374                       write_insn<big_endian>(p +  8, mtctr_11);
4375                       write_insn<big_endian>(p + 12, bctr);
4376                     }
4377                 }
4378               else
4379                 {
4380                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4381                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4382                   write_insn<big_endian>(p +  8, mtctr_11);
4383                   write_insn<big_endian>(p + 12, bctr);
4384                 }
4385             }
4386         }
4387
4388       // Write out long branch stubs.
4389       typename Branch_stub_entries::const_iterator bs;
4390       for (bs = this->long_branch_stubs_.begin();
4391            bs != this->long_branch_stubs_.end();
4392            ++bs)
4393         {
4394           p = oview + this->plt_size_ + bs->second;
4395           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4396           Address delta = bs->first.dest_ - loc;
4397           if (delta + (1 << 25) < 2 << 25)
4398             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4399           else if (!parameters->options().output_is_position_independent())
4400             {
4401               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4402               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4403               write_insn<big_endian>(p +  8, mtctr_12);
4404               write_insn<big_endian>(p + 12, bctr);
4405             }
4406           else
4407             {
4408               delta -= 8;
4409               write_insn<big_endian>(p +  0, mflr_0);
4410               write_insn<big_endian>(p +  4, bcl_20_31);
4411               write_insn<big_endian>(p +  8, mflr_12);
4412               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4413               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4414               write_insn<big_endian>(p + 20, mtlr_0);
4415               write_insn<big_endian>(p + 24, mtctr_12);
4416               write_insn<big_endian>(p + 28, bctr);
4417             }
4418         }
4419     }
4420 }
4421
4422 // Write out .glink.
4423
4424 template<int size, bool big_endian>
4425 void
4426 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4427 {
4428   const section_size_type off = this->offset();
4429   const section_size_type oview_size =
4430     convert_to_section_size_type(this->data_size());
4431   unsigned char* const oview = of->get_output_view(off, oview_size);
4432   unsigned char* p;
4433
4434   // The base address of the .plt section.
4435   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4436   Address plt_base = this->targ_->plt_section()->address();
4437
4438   if (size == 64)
4439     {
4440       // Write pltresolve stub.
4441       p = oview;
4442       Address after_bcl = this->address() + 16;
4443       Address pltoff = plt_base - after_bcl;
4444
4445       elfcpp::Swap<64, big_endian>::writeval(p, pltoff),        p += 8;
4446
4447       if (this->targ_->abiversion() < 2)
4448         {
4449           write_insn<big_endian>(p, mflr_12),                   p += 4;
4450           write_insn<big_endian>(p, bcl_20_31),                 p += 4;
4451           write_insn<big_endian>(p, mflr_11),                   p += 4;
4452           write_insn<big_endian>(p, ld_2_11 + l(-16)),          p += 4;
4453           write_insn<big_endian>(p, mtlr_12),                   p += 4;
4454           write_insn<big_endian>(p, add_11_2_11),               p += 4;
4455           write_insn<big_endian>(p, ld_12_11 + 0),              p += 4;
4456           write_insn<big_endian>(p, ld_2_11 + 8),               p += 4;
4457           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4458           write_insn<big_endian>(p, ld_11_11 + 16),             p += 4;
4459         }
4460       else
4461         {
4462           write_insn<big_endian>(p, mflr_0),                    p += 4;
4463           write_insn<big_endian>(p, bcl_20_31),                 p += 4;
4464           write_insn<big_endian>(p, mflr_11),                   p += 4;
4465           write_insn<big_endian>(p, ld_2_11 + l(-16)),          p += 4;
4466           write_insn<big_endian>(p, mtlr_0),                    p += 4;
4467           write_insn<big_endian>(p, sub_12_12_11),              p += 4;
4468           write_insn<big_endian>(p, add_11_2_11),               p += 4;
4469           write_insn<big_endian>(p, addi_0_12 + l(-48)),        p += 4;
4470           write_insn<big_endian>(p, ld_12_11 + 0),              p += 4;
4471           write_insn<big_endian>(p, srdi_0_0_2),                p += 4;
4472           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4473           write_insn<big_endian>(p, ld_11_11 + 8),              p += 4;
4474         }
4475       write_insn<big_endian>(p, bctr),                          p += 4;
4476       while (p < oview + this->pltresolve_size)
4477         write_insn<big_endian>(p, nop), p += 4;
4478
4479       // Write lazy link call stubs.
4480       uint32_t indx = 0;
4481       while (p < oview + oview_size)
4482         {
4483           if (this->targ_->abiversion() < 2)
4484             {
4485               if (indx < 0x8000)
4486                 {
4487                   write_insn<big_endian>(p, li_0_0 + indx),             p += 4;
4488                 }
4489               else
4490                 {
4491                   write_insn<big_endian>(p, lis_0_0 + hi(indx)),        p += 4;
4492                   write_insn<big_endian>(p, ori_0_0_0 + l(indx)),       p += 4;
4493                 }
4494             }
4495           uint32_t branch_off = 8 - (p - oview);
4496           write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),      p += 4;
4497           indx++;
4498         }
4499     }
4500   else
4501     {
4502       const Output_data_got_powerpc<size, big_endian>* got
4503         = this->targ_->got_section();
4504       // The address of _GLOBAL_OFFSET_TABLE_.
4505       Address g_o_t = got->address() + got->g_o_t();
4506
4507       // Write out pltresolve branch table.
4508       p = oview;
4509       unsigned int the_end = oview_size - this->pltresolve_size;
4510       unsigned char* end_p = oview + the_end;
4511       while (p < end_p - 8 * 4)
4512         write_insn<big_endian>(p, b + end_p - p), p += 4;
4513       while (p < end_p)
4514         write_insn<big_endian>(p, nop), p += 4;
4515
4516       // Write out pltresolve call stub.
4517       if (parameters->options().output_is_position_independent())
4518         {
4519           Address res0_off = 0;
4520           Address after_bcl_off = the_end + 12;
4521           Address bcl_res0 = after_bcl_off - res0_off;
4522
4523           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4524           write_insn<big_endian>(p +  4, mflr_0);
4525           write_insn<big_endian>(p +  8, bcl_20_31);
4526           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4527           write_insn<big_endian>(p + 16, mflr_12);
4528           write_insn<big_endian>(p + 20, mtlr_0);
4529           write_insn<big_endian>(p + 24, sub_11_11_12);
4530
4531           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4532
4533           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4534           if (ha(got_bcl) == ha(got_bcl + 4))
4535             {
4536               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4537               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4538             }
4539           else
4540             {
4541               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4542               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4543             }
4544           write_insn<big_endian>(p + 40, mtctr_0);
4545           write_insn<big_endian>(p + 44, add_0_11_11);
4546           write_insn<big_endian>(p + 48, add_11_0_11);
4547           write_insn<big_endian>(p + 52, bctr);
4548           write_insn<big_endian>(p + 56, nop);
4549           write_insn<big_endian>(p + 60, nop);
4550         }
4551       else
4552         {
4553           Address res0 = this->address();
4554
4555           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4556           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4557           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4558             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4559           else
4560             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4561           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4562           write_insn<big_endian>(p + 16, mtctr_0);
4563           write_insn<big_endian>(p + 20, add_0_11_11);
4564           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4565             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4566           else
4567             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4568           write_insn<big_endian>(p + 28, add_11_0_11);
4569           write_insn<big_endian>(p + 32, bctr);
4570           write_insn<big_endian>(p + 36, nop);
4571           write_insn<big_endian>(p + 40, nop);
4572           write_insn<big_endian>(p + 44, nop);
4573           write_insn<big_endian>(p + 48, nop);
4574           write_insn<big_endian>(p + 52, nop);
4575           write_insn<big_endian>(p + 56, nop);
4576           write_insn<big_endian>(p + 60, nop);
4577         }
4578       p += 64;
4579     }
4580
4581   of->write_output_view(off, oview_size, oview);
4582 }
4583
4584
4585 // A class to handle linker generated save/restore functions.
4586
4587 template<int size, bool big_endian>
4588 class Output_data_save_res : public Output_section_data_build
4589 {
4590  public:
4591   Output_data_save_res(Symbol_table* symtab);
4592
4593  protected:
4594   // Write to a map file.
4595   void
4596   do_print_to_mapfile(Mapfile* mapfile) const
4597   { mapfile->print_output_data(this, _("** save/restore")); }
4598
4599   void
4600   do_write(Output_file*);
4601
4602  private:
4603   // The maximum size of save/restore contents.
4604   static const unsigned int savres_max = 218*4;
4605
4606   void
4607   savres_define(Symbol_table* symtab,
4608                 const char *name,
4609                 unsigned int lo, unsigned int hi,
4610                 unsigned char* write_ent(unsigned char*, int),
4611                 unsigned char* write_tail(unsigned char*, int));
4612
4613   unsigned char *contents_;
4614 };
4615
4616 template<bool big_endian>
4617 static unsigned char*
4618 savegpr0(unsigned char* p, int r)
4619 {
4620   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4621   write_insn<big_endian>(p, insn);
4622   return p + 4;
4623 }
4624
4625 template<bool big_endian>
4626 static unsigned char*
4627 savegpr0_tail(unsigned char* p, int r)
4628 {
4629   p = savegpr0<big_endian>(p, r);
4630   uint32_t insn = std_0_1 + 16;
4631   write_insn<big_endian>(p, insn);
4632   p = p + 4;
4633   write_insn<big_endian>(p, blr);
4634   return p + 4;
4635 }
4636
4637 template<bool big_endian>
4638 static unsigned char*
4639 restgpr0(unsigned char* p, int r)
4640 {
4641   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4642   write_insn<big_endian>(p, insn);
4643   return p + 4;
4644 }
4645
4646 template<bool big_endian>
4647 static unsigned char*
4648 restgpr0_tail(unsigned char* p, int r)
4649 {
4650   uint32_t insn = ld_0_1 + 16;
4651   write_insn<big_endian>(p, insn);
4652   p = p + 4;
4653   p = restgpr0<big_endian>(p, r);
4654   write_insn<big_endian>(p, mtlr_0);
4655   p = p + 4;
4656   if (r == 29)
4657     {
4658       p = restgpr0<big_endian>(p, 30);
4659       p = restgpr0<big_endian>(p, 31);
4660     }
4661   write_insn<big_endian>(p, blr);
4662   return p + 4;
4663 }
4664
4665 template<bool big_endian>
4666 static unsigned char*
4667 savegpr1(unsigned char* p, int r)
4668 {
4669   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4670   write_insn<big_endian>(p, insn);
4671   return p + 4;
4672 }
4673
4674 template<bool big_endian>
4675 static unsigned char*
4676 savegpr1_tail(unsigned char* p, int r)
4677 {
4678   p = savegpr1<big_endian>(p, r);
4679   write_insn<big_endian>(p, blr);
4680   return p + 4;
4681 }
4682
4683 template<bool big_endian>
4684 static unsigned char*
4685 restgpr1(unsigned char* p, int r)
4686 {
4687   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4688   write_insn<big_endian>(p, insn);
4689   return p + 4;
4690 }
4691
4692 template<bool big_endian>
4693 static unsigned char*
4694 restgpr1_tail(unsigned char* p, int r)
4695 {
4696   p = restgpr1<big_endian>(p, r);
4697   write_insn<big_endian>(p, blr);
4698   return p + 4;
4699 }
4700
4701 template<bool big_endian>
4702 static unsigned char*
4703 savefpr(unsigned char* p, int r)
4704 {
4705   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4706   write_insn<big_endian>(p, insn);
4707   return p + 4;
4708 }
4709
4710 template<bool big_endian>
4711 static unsigned char*
4712 savefpr0_tail(unsigned char* p, int r)
4713 {
4714   p = savefpr<big_endian>(p, r);
4715   write_insn<big_endian>(p, std_0_1 + 16);
4716   p = p + 4;
4717   write_insn<big_endian>(p, blr);
4718   return p + 4;
4719 }
4720
4721 template<bool big_endian>
4722 static unsigned char*
4723 restfpr(unsigned char* p, int r)
4724 {
4725   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4726   write_insn<big_endian>(p, insn);
4727   return p + 4;
4728 }
4729
4730 template<bool big_endian>
4731 static unsigned char*
4732 restfpr0_tail(unsigned char* p, int r)
4733 {
4734   write_insn<big_endian>(p, ld_0_1 + 16);
4735   p = p + 4;
4736   p = restfpr<big_endian>(p, r);
4737   write_insn<big_endian>(p, mtlr_0);
4738   p = p + 4;
4739   if (r == 29)
4740     {
4741       p = restfpr<big_endian>(p, 30);
4742       p = restfpr<big_endian>(p, 31);
4743     }
4744   write_insn<big_endian>(p, blr);
4745   return p + 4;
4746 }
4747
4748 template<bool big_endian>
4749 static unsigned char*
4750 savefpr1_tail(unsigned char* p, int r)
4751 {
4752   p = savefpr<big_endian>(p, r);
4753   write_insn<big_endian>(p, blr);
4754   return p + 4;
4755 }
4756
4757 template<bool big_endian>
4758 static unsigned char*
4759 restfpr1_tail(unsigned char* p, int r)
4760 {
4761   p = restfpr<big_endian>(p, r);
4762   write_insn<big_endian>(p, blr);
4763   return p + 4;
4764 }
4765
4766 template<bool big_endian>
4767 static unsigned char*
4768 savevr(unsigned char* p, int r)
4769 {
4770   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4771   write_insn<big_endian>(p, insn);
4772   p = p + 4;
4773   insn = stvx_0_12_0 + (r << 21);
4774   write_insn<big_endian>(p, insn);
4775   return p + 4;
4776 }
4777
4778 template<bool big_endian>
4779 static unsigned char*
4780 savevr_tail(unsigned char* p, int r)
4781 {
4782   p = savevr<big_endian>(p, r);
4783   write_insn<big_endian>(p, blr);
4784   return p + 4;
4785 }
4786
4787 template<bool big_endian>
4788 static unsigned char*
4789 restvr(unsigned char* p, int r)
4790 {
4791   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4792   write_insn<big_endian>(p, insn);
4793   p = p + 4;
4794   insn = lvx_0_12_0 + (r << 21);
4795   write_insn<big_endian>(p, insn);
4796   return p + 4;
4797 }
4798
4799 template<bool big_endian>
4800 static unsigned char*
4801 restvr_tail(unsigned char* p, int r)
4802 {
4803   p = restvr<big_endian>(p, r);
4804   write_insn<big_endian>(p, blr);
4805   return p + 4;
4806 }
4807
4808
4809 template<int size, bool big_endian>
4810 Output_data_save_res<size, big_endian>::Output_data_save_res(
4811     Symbol_table* symtab)
4812   : Output_section_data_build(4),
4813     contents_(NULL)
4814 {
4815   this->savres_define(symtab,
4816                       "_savegpr0_", 14, 31,
4817                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4818   this->savres_define(symtab,
4819                       "_restgpr0_", 14, 29,
4820                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4821   this->savres_define(symtab,
4822                       "_restgpr0_", 30, 31,
4823                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4824   this->savres_define(symtab,
4825                       "_savegpr1_", 14, 31,
4826                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4827   this->savres_define(symtab,
4828                       "_restgpr1_", 14, 31,
4829                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4830   this->savres_define(symtab,
4831                       "_savefpr_", 14, 31,
4832                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4833   this->savres_define(symtab,
4834                       "_restfpr_", 14, 29,
4835                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4836   this->savres_define(symtab,
4837                       "_restfpr_", 30, 31,
4838                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4839   this->savres_define(symtab,
4840                       "._savef", 14, 31,
4841                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4842   this->savres_define(symtab,
4843                       "._restf", 14, 31,
4844                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4845   this->savres_define(symtab,
4846                       "_savevr_", 20, 31,
4847                       savevr<big_endian>, savevr_tail<big_endian>);
4848   this->savres_define(symtab,
4849                       "_restvr_", 20, 31,
4850                       restvr<big_endian>, restvr_tail<big_endian>);
4851 }
4852
4853 template<int size, bool big_endian>
4854 void
4855 Output_data_save_res<size, big_endian>::savres_define(
4856     Symbol_table* symtab,
4857     const char *name,
4858     unsigned int lo, unsigned int hi,
4859     unsigned char* write_ent(unsigned char*, int),
4860     unsigned char* write_tail(unsigned char*, int))
4861 {
4862   size_t len = strlen(name);
4863   bool writing = false;
4864   char sym[16];
4865
4866   memcpy(sym, name, len);
4867   sym[len + 2] = 0;
4868
4869   for (unsigned int i = lo; i <= hi; i++)
4870     {
4871       sym[len + 0] = i / 10 + '0';
4872       sym[len + 1] = i % 10 + '0';
4873       Symbol* gsym = symtab->lookup(sym);
4874       bool refd = gsym != NULL && gsym->is_undefined();
4875       writing = writing || refd;
4876       if (writing)
4877         {
4878           if (this->contents_ == NULL)
4879             this->contents_ = new unsigned char[this->savres_max];
4880
4881           section_size_type value = this->current_data_size();
4882           unsigned char* p = this->contents_ + value;
4883           if (i != hi)
4884             p = write_ent(p, i);
4885           else
4886             p = write_tail(p, i);
4887           section_size_type cur_size = p - this->contents_;
4888           this->set_current_data_size(cur_size);
4889           if (refd)
4890             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4891                                           this, value, cur_size - value,
4892                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4893                                           elfcpp::STV_HIDDEN, 0, false, false);
4894         }
4895     }
4896 }
4897
4898 // Write out save/restore.
4899
4900 template<int size, bool big_endian>
4901 void
4902 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4903 {
4904   const section_size_type off = this->offset();
4905   const section_size_type oview_size =
4906     convert_to_section_size_type(this->data_size());
4907   unsigned char* const oview = of->get_output_view(off, oview_size);
4908   memcpy(oview, this->contents_, oview_size);
4909   of->write_output_view(off, oview_size, oview);
4910 }
4911
4912
4913 // Create the glink section.
4914
4915 template<int size, bool big_endian>
4916 void
4917 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4918 {
4919   if (this->glink_ == NULL)
4920     {
4921       this->glink_ = new Output_data_glink<size, big_endian>(this);
4922       this->glink_->add_eh_frame(layout);
4923       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4924                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4925                                       this->glink_, ORDER_TEXT, false);
4926     }
4927 }
4928
4929 // Create a PLT entry for a global symbol.
4930
4931 template<int size, bool big_endian>
4932 void
4933 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4934                                                  Layout* layout,
4935                                                  Symbol* gsym)
4936 {
4937   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4938       && gsym->can_use_relative_reloc(false))
4939     {
4940       if (this->iplt_ == NULL)
4941         this->make_iplt_section(symtab, layout);
4942       this->iplt_->add_ifunc_entry(gsym);
4943     }
4944   else
4945     {
4946       if (this->plt_ == NULL)
4947         this->make_plt_section(symtab, layout);
4948       this->plt_->add_entry(gsym);
4949     }
4950 }
4951
4952 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
4953
4954 template<int size, bool big_endian>
4955 void
4956 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
4957     Symbol_table* symtab,
4958     Layout* layout,
4959     Sized_relobj_file<size, big_endian>* relobj,
4960     unsigned int r_sym)
4961 {
4962   if (this->iplt_ == NULL)
4963     this->make_iplt_section(symtab, layout);
4964   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
4965 }
4966
4967 // Return the number of entries in the PLT.
4968
4969 template<int size, bool big_endian>
4970 unsigned int
4971 Target_powerpc<size, big_endian>::plt_entry_count() const
4972 {
4973   if (this->plt_ == NULL)
4974     return 0;
4975   return this->plt_->entry_count();
4976 }
4977
4978 // Create a GOT entry for local dynamic __tls_get_addr calls.
4979
4980 template<int size, bool big_endian>
4981 unsigned int
4982 Target_powerpc<size, big_endian>::tlsld_got_offset(
4983     Symbol_table* symtab,
4984     Layout* layout,
4985     Sized_relobj_file<size, big_endian>* object)
4986 {
4987   if (this->tlsld_got_offset_ == -1U)
4988     {
4989       gold_assert(symtab != NULL && layout != NULL && object != NULL);
4990       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
4991       Output_data_got_powerpc<size, big_endian>* got
4992         = this->got_section(symtab, layout);
4993       unsigned int got_offset = got->add_constant_pair(0, 0);
4994       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
4995                           got_offset, 0);
4996       this->tlsld_got_offset_ = got_offset;
4997     }
4998   return this->tlsld_got_offset_;
4999 }
5000
5001 // Get the Reference_flags for a particular relocation.
5002
5003 template<int size, bool big_endian>
5004 int
5005 Target_powerpc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
5006 {
5007   switch (r_type)
5008     {
5009     case elfcpp::R_POWERPC_NONE:
5010     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5011     case elfcpp::R_POWERPC_GNU_VTENTRY:
5012     case elfcpp::R_PPC64_TOC:
5013       // No symbol reference.
5014       return 0;
5015
5016     case elfcpp::R_PPC64_ADDR64:
5017     case elfcpp::R_PPC64_UADDR64:
5018     case elfcpp::R_POWERPC_ADDR32:
5019     case elfcpp::R_POWERPC_UADDR32:
5020     case elfcpp::R_POWERPC_ADDR16:
5021     case elfcpp::R_POWERPC_UADDR16:
5022     case elfcpp::R_POWERPC_ADDR16_LO:
5023     case elfcpp::R_POWERPC_ADDR16_HI:
5024     case elfcpp::R_POWERPC_ADDR16_HA:
5025       return Symbol::ABSOLUTE_REF;
5026
5027     case elfcpp::R_POWERPC_ADDR24:
5028     case elfcpp::R_POWERPC_ADDR14:
5029     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5030     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5031       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5032
5033     case elfcpp::R_PPC64_REL64:
5034     case elfcpp::R_POWERPC_REL32:
5035     case elfcpp::R_PPC_LOCAL24PC:
5036     case elfcpp::R_POWERPC_REL16:
5037     case elfcpp::R_POWERPC_REL16_LO:
5038     case elfcpp::R_POWERPC_REL16_HI:
5039     case elfcpp::R_POWERPC_REL16_HA:
5040       return Symbol::RELATIVE_REF;
5041
5042     case elfcpp::R_POWERPC_REL24:
5043     case elfcpp::R_PPC_PLTREL24:
5044     case elfcpp::R_POWERPC_REL14:
5045     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5046     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5047       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5048
5049     case elfcpp::R_POWERPC_GOT16:
5050     case elfcpp::R_POWERPC_GOT16_LO:
5051     case elfcpp::R_POWERPC_GOT16_HI:
5052     case elfcpp::R_POWERPC_GOT16_HA:
5053     case elfcpp::R_PPC64_GOT16_DS:
5054     case elfcpp::R_PPC64_GOT16_LO_DS:
5055     case elfcpp::R_PPC64_TOC16:
5056     case elfcpp::R_PPC64_TOC16_LO:
5057     case elfcpp::R_PPC64_TOC16_HI:
5058     case elfcpp::R_PPC64_TOC16_HA:
5059     case elfcpp::R_PPC64_TOC16_DS:
5060     case elfcpp::R_PPC64_TOC16_LO_DS:
5061       // Absolute in GOT.
5062       return Symbol::ABSOLUTE_REF;
5063
5064     case elfcpp::R_POWERPC_GOT_TPREL16:
5065     case elfcpp::R_POWERPC_TLS:
5066       return Symbol::TLS_REF;
5067
5068     case elfcpp::R_POWERPC_COPY:
5069     case elfcpp::R_POWERPC_GLOB_DAT:
5070     case elfcpp::R_POWERPC_JMP_SLOT:
5071     case elfcpp::R_POWERPC_RELATIVE:
5072     case elfcpp::R_POWERPC_DTPMOD:
5073     default:
5074       // Not expected.  We will give an error later.
5075       return 0;
5076     }
5077 }
5078
5079 // Report an unsupported relocation against a local symbol.
5080
5081 template<int size, bool big_endian>
5082 void
5083 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5084     Sized_relobj_file<size, big_endian>* object,
5085     unsigned int r_type)
5086 {
5087   gold_error(_("%s: unsupported reloc %u against local symbol"),
5088              object->name().c_str(), r_type);
5089 }
5090
5091 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5092 // dynamic linker does not support it, issue an error.
5093
5094 template<int size, bool big_endian>
5095 void
5096 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5097                                                       unsigned int r_type)
5098 {
5099   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5100
5101   // These are the relocation types supported by glibc for both 32-bit
5102   // and 64-bit powerpc.
5103   switch (r_type)
5104     {
5105     case elfcpp::R_POWERPC_NONE:
5106     case elfcpp::R_POWERPC_RELATIVE:
5107     case elfcpp::R_POWERPC_GLOB_DAT:
5108     case elfcpp::R_POWERPC_DTPMOD:
5109     case elfcpp::R_POWERPC_DTPREL:
5110     case elfcpp::R_POWERPC_TPREL:
5111     case elfcpp::R_POWERPC_JMP_SLOT:
5112     case elfcpp::R_POWERPC_COPY:
5113     case elfcpp::R_POWERPC_IRELATIVE:
5114     case elfcpp::R_POWERPC_ADDR32:
5115     case elfcpp::R_POWERPC_UADDR32:
5116     case elfcpp::R_POWERPC_ADDR24:
5117     case elfcpp::R_POWERPC_ADDR16:
5118     case elfcpp::R_POWERPC_UADDR16:
5119     case elfcpp::R_POWERPC_ADDR16_LO:
5120     case elfcpp::R_POWERPC_ADDR16_HI:
5121     case elfcpp::R_POWERPC_ADDR16_HA:
5122     case elfcpp::R_POWERPC_ADDR14:
5123     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5124     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5125     case elfcpp::R_POWERPC_REL32:
5126     case elfcpp::R_POWERPC_REL24:
5127     case elfcpp::R_POWERPC_TPREL16:
5128     case elfcpp::R_POWERPC_TPREL16_LO:
5129     case elfcpp::R_POWERPC_TPREL16_HI:
5130     case elfcpp::R_POWERPC_TPREL16_HA:
5131       return;
5132
5133     default:
5134       break;
5135     }
5136
5137   if (size == 64)
5138     {
5139       switch (r_type)
5140         {
5141           // These are the relocation types supported only on 64-bit.
5142         case elfcpp::R_PPC64_ADDR64:
5143         case elfcpp::R_PPC64_UADDR64:
5144         case elfcpp::R_PPC64_JMP_IREL:
5145         case elfcpp::R_PPC64_ADDR16_DS:
5146         case elfcpp::R_PPC64_ADDR16_LO_DS:
5147         case elfcpp::R_PPC64_ADDR16_HIGH:
5148         case elfcpp::R_PPC64_ADDR16_HIGHA:
5149         case elfcpp::R_PPC64_ADDR16_HIGHER:
5150         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5151         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5152         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5153         case elfcpp::R_PPC64_REL64:
5154         case elfcpp::R_POWERPC_ADDR30:
5155         case elfcpp::R_PPC64_TPREL16_DS:
5156         case elfcpp::R_PPC64_TPREL16_LO_DS:
5157         case elfcpp::R_PPC64_TPREL16_HIGH:
5158         case elfcpp::R_PPC64_TPREL16_HIGHA:
5159         case elfcpp::R_PPC64_TPREL16_HIGHER:
5160         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5161         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5162         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5163           return;
5164
5165         default:
5166           break;
5167         }
5168     }
5169   else
5170     {
5171       switch (r_type)
5172         {
5173           // These are the relocation types supported only on 32-bit.
5174           // ??? glibc ld.so doesn't need to support these.
5175         case elfcpp::R_POWERPC_DTPREL16:
5176         case elfcpp::R_POWERPC_DTPREL16_LO:
5177         case elfcpp::R_POWERPC_DTPREL16_HI:
5178         case elfcpp::R_POWERPC_DTPREL16_HA:
5179           return;
5180
5181         default:
5182           break;
5183         }
5184     }
5185
5186   // This prevents us from issuing more than one error per reloc
5187   // section.  But we can still wind up issuing more than one
5188   // error per object file.
5189   if (this->issued_non_pic_error_)
5190     return;
5191   gold_assert(parameters->options().output_is_position_independent());
5192   object->error(_("requires unsupported dynamic reloc; "
5193                   "recompile with -fPIC"));
5194   this->issued_non_pic_error_ = true;
5195   return;
5196 }
5197
5198 // Return whether we need to make a PLT entry for a relocation of the
5199 // given type against a STT_GNU_IFUNC symbol.
5200
5201 template<int size, bool big_endian>
5202 bool
5203 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5204      Sized_relobj_file<size, big_endian>* object,
5205      unsigned int r_type,
5206      bool report_err)
5207 {
5208   // In non-pic code any reference will resolve to the plt call stub
5209   // for the ifunc symbol.
5210   if (size == 32 && !parameters->options().output_is_position_independent())
5211     return true;
5212
5213   switch (r_type)
5214     {
5215     // Word size refs from data sections are OK, but don't need a PLT entry.
5216     case elfcpp::R_POWERPC_ADDR32:
5217     case elfcpp::R_POWERPC_UADDR32:
5218       if (size == 32)
5219         return false;
5220       break;
5221
5222     case elfcpp::R_PPC64_ADDR64:
5223     case elfcpp::R_PPC64_UADDR64:
5224       if (size == 64)
5225         return false;
5226       break;
5227
5228     // GOT refs are good, but also don't need a PLT entry.
5229     case elfcpp::R_POWERPC_GOT16:
5230     case elfcpp::R_POWERPC_GOT16_LO:
5231     case elfcpp::R_POWERPC_GOT16_HI:
5232     case elfcpp::R_POWERPC_GOT16_HA:
5233     case elfcpp::R_PPC64_GOT16_DS:
5234     case elfcpp::R_PPC64_GOT16_LO_DS:
5235       return false;
5236
5237     // Function calls are good, and these do need a PLT entry.
5238     case elfcpp::R_POWERPC_ADDR24:
5239     case elfcpp::R_POWERPC_ADDR14:
5240     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5241     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5242     case elfcpp::R_POWERPC_REL24:
5243     case elfcpp::R_PPC_PLTREL24:
5244     case elfcpp::R_POWERPC_REL14:
5245     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5246     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5247       return true;
5248
5249     default:
5250       break;
5251     }
5252
5253   // Anything else is a problem.
5254   // If we are building a static executable, the libc startup function
5255   // responsible for applying indirect function relocations is going
5256   // to complain about the reloc type.
5257   // If we are building a dynamic executable, we will have a text
5258   // relocation.  The dynamic loader will set the text segment
5259   // writable and non-executable to apply text relocations.  So we'll
5260   // segfault when trying to run the indirection function to resolve
5261   // the reloc.
5262   if (report_err)
5263     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5264                object->name().c_str(), r_type);
5265   return false;
5266 }
5267
5268 // Scan a relocation for a local symbol.
5269
5270 template<int size, bool big_endian>
5271 inline void
5272 Target_powerpc<size, big_endian>::Scan::local(
5273     Symbol_table* symtab,
5274     Layout* layout,
5275     Target_powerpc<size, big_endian>* target,
5276     Sized_relobj_file<size, big_endian>* object,
5277     unsigned int data_shndx,
5278     Output_section* output_section,
5279     const elfcpp::Rela<size, big_endian>& reloc,
5280     unsigned int r_type,
5281     const elfcpp::Sym<size, big_endian>& lsym,
5282     bool is_discarded)
5283 {
5284   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5285
5286   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5287       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5288     {
5289       this->expect_tls_get_addr_call();
5290       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5291       if (tls_type != tls::TLSOPT_NONE)
5292         this->skip_next_tls_get_addr_call();
5293     }
5294   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5295            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5296     {
5297       this->expect_tls_get_addr_call();
5298       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5299       if (tls_type != tls::TLSOPT_NONE)
5300         this->skip_next_tls_get_addr_call();
5301     }
5302
5303   Powerpc_relobj<size, big_endian>* ppc_object
5304     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5305
5306   if (is_discarded)
5307     {
5308       if (size == 64
5309           && data_shndx == ppc_object->opd_shndx()
5310           && r_type == elfcpp::R_PPC64_ADDR64)
5311         ppc_object->set_opd_discard(reloc.get_r_offset());
5312       return;
5313     }
5314
5315   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5316   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5317   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type, true))
5318     {
5319       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5320       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5321                           r_type, r_sym, reloc.get_r_addend());
5322       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5323     }
5324
5325   switch (r_type)
5326     {
5327     case elfcpp::R_POWERPC_NONE:
5328     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5329     case elfcpp::R_POWERPC_GNU_VTENTRY:
5330     case elfcpp::R_PPC64_TOCSAVE:
5331     case elfcpp::R_POWERPC_TLS:
5332       break;
5333
5334     case elfcpp::R_PPC64_TOC:
5335       {
5336         Output_data_got_powerpc<size, big_endian>* got
5337           = target->got_section(symtab, layout);
5338         if (parameters->options().output_is_position_independent())
5339           {
5340             Address off = reloc.get_r_offset();
5341             if (size == 64
5342                 && data_shndx == ppc_object->opd_shndx()
5343                 && ppc_object->get_opd_discard(off - 8))
5344               break;
5345
5346             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5347             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5348             rela_dyn->add_output_section_relative(got->output_section(),
5349                                                   elfcpp::R_POWERPC_RELATIVE,
5350                                                   output_section,
5351                                                   object, data_shndx, off,
5352                                                   symobj->toc_base_offset());
5353           }
5354       }
5355       break;
5356
5357     case elfcpp::R_PPC64_ADDR64:
5358     case elfcpp::R_PPC64_UADDR64:
5359     case elfcpp::R_POWERPC_ADDR32:
5360     case elfcpp::R_POWERPC_UADDR32:
5361     case elfcpp::R_POWERPC_ADDR24:
5362     case elfcpp::R_POWERPC_ADDR16:
5363     case elfcpp::R_POWERPC_ADDR16_LO:
5364     case elfcpp::R_POWERPC_ADDR16_HI:
5365     case elfcpp::R_POWERPC_ADDR16_HA:
5366     case elfcpp::R_POWERPC_UADDR16:
5367     case elfcpp::R_PPC64_ADDR16_HIGH:
5368     case elfcpp::R_PPC64_ADDR16_HIGHA:
5369     case elfcpp::R_PPC64_ADDR16_HIGHER:
5370     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5371     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5372     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5373     case elfcpp::R_PPC64_ADDR16_DS:
5374     case elfcpp::R_PPC64_ADDR16_LO_DS:
5375     case elfcpp::R_POWERPC_ADDR14:
5376     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5377     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5378       // If building a shared library (or a position-independent
5379       // executable), we need to create a dynamic relocation for
5380       // this location.
5381       if (parameters->options().output_is_position_independent()
5382           || (size == 64 && is_ifunc))
5383         {
5384           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5385                                                              is_ifunc);
5386           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5387               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5388             {
5389               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5390               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5391                                      : elfcpp::R_POWERPC_RELATIVE);
5392               rela_dyn->add_local_relative(object, r_sym, dynrel,
5393                                            output_section, data_shndx,
5394                                            reloc.get_r_offset(),
5395                                            reloc.get_r_addend(), false);
5396             }
5397           else
5398             {
5399               check_non_pic(object, r_type);
5400               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5401               rela_dyn->add_local(object, r_sym, r_type, output_section,
5402                                   data_shndx, reloc.get_r_offset(),
5403                                   reloc.get_r_addend());
5404             }
5405         }
5406       break;
5407
5408     case elfcpp::R_POWERPC_REL24:
5409     case elfcpp::R_PPC_PLTREL24:
5410     case elfcpp::R_PPC_LOCAL24PC:
5411     case elfcpp::R_POWERPC_REL14:
5412     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5413     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5414       if (!is_ifunc)
5415         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5416                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5417                             reloc.get_r_addend());
5418       break;
5419
5420     case elfcpp::R_PPC64_REL64:
5421     case elfcpp::R_POWERPC_REL32:
5422     case elfcpp::R_POWERPC_REL16:
5423     case elfcpp::R_POWERPC_REL16_LO:
5424     case elfcpp::R_POWERPC_REL16_HI:
5425     case elfcpp::R_POWERPC_REL16_HA:
5426     case elfcpp::R_POWERPC_SECTOFF:
5427     case elfcpp::R_POWERPC_SECTOFF_LO:
5428     case elfcpp::R_POWERPC_SECTOFF_HI:
5429     case elfcpp::R_POWERPC_SECTOFF_HA:
5430     case elfcpp::R_PPC64_SECTOFF_DS:
5431     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5432     case elfcpp::R_POWERPC_TPREL16:
5433     case elfcpp::R_POWERPC_TPREL16_LO:
5434     case elfcpp::R_POWERPC_TPREL16_HI:
5435     case elfcpp::R_POWERPC_TPREL16_HA:
5436     case elfcpp::R_PPC64_TPREL16_DS:
5437     case elfcpp::R_PPC64_TPREL16_LO_DS:
5438     case elfcpp::R_PPC64_TPREL16_HIGH:
5439     case elfcpp::R_PPC64_TPREL16_HIGHA:
5440     case elfcpp::R_PPC64_TPREL16_HIGHER:
5441     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5442     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5443     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5444     case elfcpp::R_POWERPC_DTPREL16:
5445     case elfcpp::R_POWERPC_DTPREL16_LO:
5446     case elfcpp::R_POWERPC_DTPREL16_HI:
5447     case elfcpp::R_POWERPC_DTPREL16_HA:
5448     case elfcpp::R_PPC64_DTPREL16_DS:
5449     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5450     case elfcpp::R_PPC64_DTPREL16_HIGH:
5451     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5452     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5453     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5454     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5455     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5456     case elfcpp::R_PPC64_TLSGD:
5457     case elfcpp::R_PPC64_TLSLD:
5458       break;
5459
5460     case elfcpp::R_POWERPC_GOT16:
5461     case elfcpp::R_POWERPC_GOT16_LO:
5462     case elfcpp::R_POWERPC_GOT16_HI:
5463     case elfcpp::R_POWERPC_GOT16_HA:
5464     case elfcpp::R_PPC64_GOT16_DS:
5465     case elfcpp::R_PPC64_GOT16_LO_DS:
5466       {
5467         // The symbol requires a GOT entry.
5468         Output_data_got_powerpc<size, big_endian>* got
5469           = target->got_section(symtab, layout);
5470         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5471
5472         if (!parameters->options().output_is_position_independent())
5473           {
5474             if (size == 32 && is_ifunc)
5475               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5476             else
5477               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5478           }
5479         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5480           {
5481             // If we are generating a shared object or a pie, this
5482             // symbol's GOT entry will be set by a dynamic relocation.
5483             unsigned int off;
5484             off = got->add_constant(0);
5485             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5486
5487             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5488                                                                is_ifunc);
5489             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5490                                    : elfcpp::R_POWERPC_RELATIVE);
5491             rela_dyn->add_local_relative(object, r_sym, dynrel,
5492                                          got, off, 0, false);
5493           }
5494       }
5495       break;
5496
5497     case elfcpp::R_PPC64_TOC16:
5498     case elfcpp::R_PPC64_TOC16_LO:
5499     case elfcpp::R_PPC64_TOC16_HI:
5500     case elfcpp::R_PPC64_TOC16_HA:
5501     case elfcpp::R_PPC64_TOC16_DS:
5502     case elfcpp::R_PPC64_TOC16_LO_DS:
5503       // We need a GOT section.
5504       target->got_section(symtab, layout);
5505       break;
5506
5507     case elfcpp::R_POWERPC_GOT_TLSGD16:
5508     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5509     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5510     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5511       {
5512         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5513         if (tls_type == tls::TLSOPT_NONE)
5514           {
5515             Output_data_got_powerpc<size, big_endian>* got
5516               = target->got_section(symtab, layout);
5517             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5518             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5519             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5520                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5521           }
5522         else if (tls_type == tls::TLSOPT_TO_LE)
5523           {
5524             // no GOT relocs needed for Local Exec.
5525           }
5526         else
5527           gold_unreachable();
5528       }
5529       break;
5530
5531     case elfcpp::R_POWERPC_GOT_TLSLD16:
5532     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5533     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5534     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5535       {
5536         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5537         if (tls_type == tls::TLSOPT_NONE)
5538           target->tlsld_got_offset(symtab, layout, object);
5539         else if (tls_type == tls::TLSOPT_TO_LE)
5540           {
5541             // no GOT relocs needed for Local Exec.
5542             if (parameters->options().emit_relocs())
5543               {
5544                 Output_section* os = layout->tls_segment()->first_section();
5545                 gold_assert(os != NULL);
5546                 os->set_needs_symtab_index();
5547               }
5548           }
5549         else
5550           gold_unreachable();
5551       }
5552       break;
5553
5554     case elfcpp::R_POWERPC_GOT_DTPREL16:
5555     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5556     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5557     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5558       {
5559         Output_data_got_powerpc<size, big_endian>* got
5560           = target->got_section(symtab, layout);
5561         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5562         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5563       }
5564       break;
5565
5566     case elfcpp::R_POWERPC_GOT_TPREL16:
5567     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5568     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5569     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5570       {
5571         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5572         if (tls_type == tls::TLSOPT_NONE)
5573           {
5574             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5575             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5576               {
5577                 Output_data_got_powerpc<size, big_endian>* got
5578                   = target->got_section(symtab, layout);
5579                 unsigned int off = got->add_constant(0);
5580                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5581
5582                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5583                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5584                                                       elfcpp::R_POWERPC_TPREL,
5585                                                       got, off, 0);
5586               }
5587           }
5588         else if (tls_type == tls::TLSOPT_TO_LE)
5589           {
5590             // no GOT relocs needed for Local Exec.
5591           }
5592         else
5593           gold_unreachable();
5594       }
5595       break;
5596
5597     default:
5598       unsupported_reloc_local(object, r_type);
5599       break;
5600     }
5601
5602   switch (r_type)
5603     {
5604     case elfcpp::R_POWERPC_GOT_TLSLD16:
5605     case elfcpp::R_POWERPC_GOT_TLSGD16:
5606     case elfcpp::R_POWERPC_GOT_TPREL16:
5607     case elfcpp::R_POWERPC_GOT_DTPREL16:
5608     case elfcpp::R_POWERPC_GOT16:
5609     case elfcpp::R_PPC64_GOT16_DS:
5610     case elfcpp::R_PPC64_TOC16:
5611     case elfcpp::R_PPC64_TOC16_DS:
5612       ppc_object->set_has_small_toc_reloc();
5613     default:
5614       break;
5615     }
5616 }
5617
5618 // Report an unsupported relocation against a global symbol.
5619
5620 template<int size, bool big_endian>
5621 void
5622 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5623     Sized_relobj_file<size, big_endian>* object,
5624     unsigned int r_type,
5625     Symbol* gsym)
5626 {
5627   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5628              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5629 }
5630
5631 // Scan a relocation for a global symbol.
5632
5633 template<int size, bool big_endian>
5634 inline void
5635 Target_powerpc<size, big_endian>::Scan::global(
5636     Symbol_table* symtab,
5637     Layout* layout,
5638     Target_powerpc<size, big_endian>* target,
5639     Sized_relobj_file<size, big_endian>* object,
5640     unsigned int data_shndx,
5641     Output_section* output_section,
5642     const elfcpp::Rela<size, big_endian>& reloc,
5643     unsigned int r_type,
5644     Symbol* gsym)
5645 {
5646   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5647     return;
5648
5649   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5650       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5651     {
5652       this->expect_tls_get_addr_call();
5653       const bool final = gsym->final_value_is_known();
5654       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5655       if (tls_type != tls::TLSOPT_NONE)
5656         this->skip_next_tls_get_addr_call();
5657     }
5658   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5659            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5660     {
5661       this->expect_tls_get_addr_call();
5662       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5663       if (tls_type != tls::TLSOPT_NONE)
5664         this->skip_next_tls_get_addr_call();
5665     }
5666
5667   Powerpc_relobj<size, big_endian>* ppc_object
5668     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5669
5670   // A STT_GNU_IFUNC symbol may require a PLT entry.
5671   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5672   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type, true))
5673     {
5674       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5675                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5676                           reloc.get_r_addend());
5677       target->make_plt_entry(symtab, layout, gsym);
5678     }
5679
5680   switch (r_type)
5681     {
5682     case elfcpp::R_POWERPC_NONE:
5683     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5684     case elfcpp::R_POWERPC_GNU_VTENTRY:
5685     case elfcpp::R_PPC_LOCAL24PC:
5686     case elfcpp::R_POWERPC_TLS:
5687       break;
5688
5689     case elfcpp::R_PPC64_TOC:
5690       {
5691         Output_data_got_powerpc<size, big_endian>* got
5692           = target->got_section(symtab, layout);
5693         if (parameters->options().output_is_position_independent())
5694           {
5695             Address off = reloc.get_r_offset();
5696             if (size == 64
5697                 && data_shndx == ppc_object->opd_shndx()
5698                 && ppc_object->get_opd_discard(off - 8))
5699               break;
5700
5701             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5702             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5703             if (data_shndx != ppc_object->opd_shndx())
5704               symobj = static_cast
5705                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5706             rela_dyn->add_output_section_relative(got->output_section(),
5707                                                   elfcpp::R_POWERPC_RELATIVE,
5708                                                   output_section,
5709                                                   object, data_shndx, off,
5710                                                   symobj->toc_base_offset());
5711           }
5712       }
5713       break;
5714
5715     case elfcpp::R_PPC64_ADDR64:
5716       if (size == 64
5717           && data_shndx == ppc_object->opd_shndx()
5718           && (gsym->is_defined_in_discarded_section()
5719               || gsym->object() != object))
5720         {
5721           ppc_object->set_opd_discard(reloc.get_r_offset());
5722           break;
5723         }
5724       // Fall thru
5725     case elfcpp::R_PPC64_UADDR64:
5726     case elfcpp::R_POWERPC_ADDR32:
5727     case elfcpp::R_POWERPC_UADDR32:
5728     case elfcpp::R_POWERPC_ADDR24:
5729     case elfcpp::R_POWERPC_ADDR16:
5730     case elfcpp::R_POWERPC_ADDR16_LO:
5731     case elfcpp::R_POWERPC_ADDR16_HI:
5732     case elfcpp::R_POWERPC_ADDR16_HA:
5733     case elfcpp::R_POWERPC_UADDR16:
5734     case elfcpp::R_PPC64_ADDR16_HIGH:
5735     case elfcpp::R_PPC64_ADDR16_HIGHA:
5736     case elfcpp::R_PPC64_ADDR16_HIGHER:
5737     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5738     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5739     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5740     case elfcpp::R_PPC64_ADDR16_DS:
5741     case elfcpp::R_PPC64_ADDR16_LO_DS:
5742     case elfcpp::R_POWERPC_ADDR14:
5743     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5744     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5745       {
5746         // Make a PLT entry if necessary.
5747         if (gsym->needs_plt_entry())
5748           {
5749             if (!is_ifunc)
5750               {
5751                 target->push_branch(ppc_object, data_shndx,
5752                                     reloc.get_r_offset(), r_type,
5753                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5754                                     reloc.get_r_addend());
5755                 target->make_plt_entry(symtab, layout, gsym);
5756               }
5757             // Since this is not a PC-relative relocation, we may be
5758             // taking the address of a function. In that case we need to
5759             // set the entry in the dynamic symbol table to the address of
5760             // the PLT call stub.
5761             if (size == 32
5762                 && gsym->is_from_dynobj()
5763                 && !parameters->options().output_is_position_independent())
5764               gsym->set_needs_dynsym_value();
5765           }
5766         // Make a dynamic relocation if necessary.
5767         if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type))
5768             || (size == 64 && is_ifunc))
5769           {
5770             if (gsym->may_need_copy_reloc())
5771               {
5772                 target->copy_reloc(symtab, layout, object,
5773                                    data_shndx, output_section, gsym, reloc);
5774               }
5775             else if ((size == 32
5776                       && r_type == elfcpp::R_POWERPC_ADDR32
5777                       && gsym->can_use_relative_reloc(false)
5778                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5779                            && parameters->options().shared()))
5780                      || (size == 64
5781                          && r_type == elfcpp::R_PPC64_ADDR64
5782                          && (gsym->can_use_relative_reloc(false)
5783                              || data_shndx == ppc_object->opd_shndx())))
5784               {
5785                 Reloc_section* rela_dyn
5786                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5787                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5788                                        : elfcpp::R_POWERPC_RELATIVE);
5789                 rela_dyn->add_symbolless_global_addend(
5790                     gsym, dynrel, output_section, object, data_shndx,
5791                     reloc.get_r_offset(), reloc.get_r_addend());
5792               }
5793             else
5794               {
5795                 Reloc_section* rela_dyn
5796                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5797                 check_non_pic(object, r_type);
5798                 rela_dyn->add_global(gsym, r_type, output_section,
5799                                      object, data_shndx,
5800                                      reloc.get_r_offset(),
5801                                      reloc.get_r_addend());
5802               }
5803           }
5804       }
5805       break;
5806
5807     case elfcpp::R_PPC_PLTREL24:
5808     case elfcpp::R_POWERPC_REL24:
5809       if (!is_ifunc)
5810         {
5811           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5812                               r_type,
5813                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5814                               reloc.get_r_addend());
5815           if (gsym->needs_plt_entry()
5816               || (!gsym->final_value_is_known()
5817                   && (gsym->is_undefined()
5818                       || gsym->is_from_dynobj()
5819                       || gsym->is_preemptible())))
5820             target->make_plt_entry(symtab, layout, gsym);
5821         }
5822       // Fall thru
5823
5824     case elfcpp::R_PPC64_REL64:
5825     case elfcpp::R_POWERPC_REL32:
5826       // Make a dynamic relocation if necessary.
5827       if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type)))
5828         {
5829           if (gsym->may_need_copy_reloc())
5830             {
5831               target->copy_reloc(symtab, layout, object,
5832                                  data_shndx, output_section, gsym,
5833                                  reloc);
5834             }
5835           else
5836             {
5837               Reloc_section* rela_dyn
5838                 = target->rela_dyn_section(symtab, layout, is_ifunc);
5839               check_non_pic(object, r_type);
5840               rela_dyn->add_global(gsym, r_type, output_section, object,
5841                                    data_shndx, reloc.get_r_offset(),
5842                                    reloc.get_r_addend());
5843             }
5844         }
5845       break;
5846
5847     case elfcpp::R_POWERPC_REL14:
5848     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5849     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5850       if (!is_ifunc)
5851         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5852                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5853                             reloc.get_r_addend());
5854       break;
5855
5856     case elfcpp::R_POWERPC_REL16:
5857     case elfcpp::R_POWERPC_REL16_LO:
5858     case elfcpp::R_POWERPC_REL16_HI:
5859     case elfcpp::R_POWERPC_REL16_HA:
5860     case elfcpp::R_POWERPC_SECTOFF:
5861     case elfcpp::R_POWERPC_SECTOFF_LO:
5862     case elfcpp::R_POWERPC_SECTOFF_HI:
5863     case elfcpp::R_POWERPC_SECTOFF_HA:
5864     case elfcpp::R_PPC64_SECTOFF_DS:
5865     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5866     case elfcpp::R_POWERPC_TPREL16:
5867     case elfcpp::R_POWERPC_TPREL16_LO:
5868     case elfcpp::R_POWERPC_TPREL16_HI:
5869     case elfcpp::R_POWERPC_TPREL16_HA:
5870     case elfcpp::R_PPC64_TPREL16_DS:
5871     case elfcpp::R_PPC64_TPREL16_LO_DS:
5872     case elfcpp::R_PPC64_TPREL16_HIGH:
5873     case elfcpp::R_PPC64_TPREL16_HIGHA:
5874     case elfcpp::R_PPC64_TPREL16_HIGHER:
5875     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5876     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5877     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5878     case elfcpp::R_POWERPC_DTPREL16:
5879     case elfcpp::R_POWERPC_DTPREL16_LO:
5880     case elfcpp::R_POWERPC_DTPREL16_HI:
5881     case elfcpp::R_POWERPC_DTPREL16_HA:
5882     case elfcpp::R_PPC64_DTPREL16_DS:
5883     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5884     case elfcpp::R_PPC64_DTPREL16_HIGH:
5885     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5886     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5887     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5888     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5889     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5890     case elfcpp::R_PPC64_TLSGD:
5891     case elfcpp::R_PPC64_TLSLD:
5892       break;
5893
5894     case elfcpp::R_POWERPC_GOT16:
5895     case elfcpp::R_POWERPC_GOT16_LO:
5896     case elfcpp::R_POWERPC_GOT16_HI:
5897     case elfcpp::R_POWERPC_GOT16_HA:
5898     case elfcpp::R_PPC64_GOT16_DS:
5899     case elfcpp::R_PPC64_GOT16_LO_DS:
5900       {
5901         // The symbol requires a GOT entry.
5902         Output_data_got_powerpc<size, big_endian>* got;
5903
5904         got = target->got_section(symtab, layout);
5905         if (gsym->final_value_is_known())
5906           {
5907             if (size == 32 && is_ifunc)
5908               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5909             else
5910               got->add_global(gsym, GOT_TYPE_STANDARD);
5911           }
5912         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5913           {
5914             // If we are generating a shared object or a pie, this
5915             // symbol's GOT entry will be set by a dynamic relocation.
5916             unsigned int off = got->add_constant(0);
5917             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
5918
5919             Reloc_section* rela_dyn
5920               = target->rela_dyn_section(symtab, layout, is_ifunc);
5921
5922             if (gsym->can_use_relative_reloc(false)
5923                 && !(size == 32
5924                      && gsym->visibility() == elfcpp::STV_PROTECTED
5925                      && parameters->options().shared()))
5926               {
5927                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5928                                        : elfcpp::R_POWERPC_RELATIVE);
5929                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
5930               }
5931             else
5932               {
5933                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
5934                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
5935               }
5936           }
5937       }
5938       break;
5939
5940     case elfcpp::R_PPC64_TOC16:
5941     case elfcpp::R_PPC64_TOC16_LO:
5942     case elfcpp::R_PPC64_TOC16_HI:
5943     case elfcpp::R_PPC64_TOC16_HA:
5944     case elfcpp::R_PPC64_TOC16_DS:
5945     case elfcpp::R_PPC64_TOC16_LO_DS:
5946       // We need a GOT section.
5947       target->got_section(symtab, layout);
5948       break;
5949
5950     case elfcpp::R_POWERPC_GOT_TLSGD16:
5951     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5952     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5953     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5954       {
5955         const bool final = gsym->final_value_is_known();
5956         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5957         if (tls_type == tls::TLSOPT_NONE)
5958           {
5959             Output_data_got_powerpc<size, big_endian>* got
5960               = target->got_section(symtab, layout);
5961             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5962             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
5963                                           elfcpp::R_POWERPC_DTPMOD,
5964                                           elfcpp::R_POWERPC_DTPREL);
5965           }
5966         else if (tls_type == tls::TLSOPT_TO_IE)
5967           {
5968             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5969               {
5970                 Output_data_got_powerpc<size, big_endian>* got
5971                   = target->got_section(symtab, layout);
5972                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5973                 if (gsym->is_undefined()
5974                     || gsym->is_from_dynobj())
5975                   {
5976                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5977                                              elfcpp::R_POWERPC_TPREL);
5978                   }
5979                 else
5980                   {
5981                     unsigned int off = got->add_constant(0);
5982                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
5983                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5984                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5985                                                            got, off, 0);
5986                   }
5987               }
5988           }
5989         else if (tls_type == tls::TLSOPT_TO_LE)
5990           {
5991             // no GOT relocs needed for Local Exec.
5992           }
5993         else
5994           gold_unreachable();
5995       }
5996       break;
5997
5998     case elfcpp::R_POWERPC_GOT_TLSLD16:
5999     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6000     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6001     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6002       {
6003         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6004         if (tls_type == tls::TLSOPT_NONE)
6005           target->tlsld_got_offset(symtab, layout, object);
6006         else if (tls_type == tls::TLSOPT_TO_LE)
6007           {
6008             // no GOT relocs needed for Local Exec.
6009             if (parameters->options().emit_relocs())
6010               {
6011                 Output_section* os = layout->tls_segment()->first_section();
6012                 gold_assert(os != NULL);
6013                 os->set_needs_symtab_index();
6014               }
6015           }
6016         else
6017           gold_unreachable();
6018       }
6019       break;
6020
6021     case elfcpp::R_POWERPC_GOT_DTPREL16:
6022     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6023     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6024     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6025       {
6026         Output_data_got_powerpc<size, big_endian>* got
6027           = target->got_section(symtab, layout);
6028         if (!gsym->final_value_is_known()
6029             && (gsym->is_from_dynobj()
6030                 || gsym->is_undefined()
6031                 || gsym->is_preemptible()))
6032           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6033                                    target->rela_dyn_section(layout),
6034                                    elfcpp::R_POWERPC_DTPREL);
6035         else
6036           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6037       }
6038       break;
6039
6040     case elfcpp::R_POWERPC_GOT_TPREL16:
6041     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6042     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6043     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6044       {
6045         const bool final = gsym->final_value_is_known();
6046         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6047         if (tls_type == tls::TLSOPT_NONE)
6048           {
6049             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6050               {
6051                 Output_data_got_powerpc<size, big_endian>* got
6052                   = target->got_section(symtab, layout);
6053                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6054                 if (gsym->is_undefined()
6055                     || gsym->is_from_dynobj())
6056                   {
6057                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6058                                              elfcpp::R_POWERPC_TPREL);
6059                   }
6060                 else
6061                   {
6062                     unsigned int off = got->add_constant(0);
6063                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6064                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6065                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6066                                                            got, off, 0);
6067                   }
6068               }
6069           }
6070         else if (tls_type == tls::TLSOPT_TO_LE)
6071           {
6072             // no GOT relocs needed for Local Exec.
6073           }
6074         else
6075           gold_unreachable();
6076       }
6077       break;
6078
6079     default:
6080       unsupported_reloc_global(object, r_type, gsym);
6081       break;
6082     }
6083
6084   switch (r_type)
6085     {
6086     case elfcpp::R_POWERPC_GOT_TLSLD16:
6087     case elfcpp::R_POWERPC_GOT_TLSGD16:
6088     case elfcpp::R_POWERPC_GOT_TPREL16:
6089     case elfcpp::R_POWERPC_GOT_DTPREL16:
6090     case elfcpp::R_POWERPC_GOT16:
6091     case elfcpp::R_PPC64_GOT16_DS:
6092     case elfcpp::R_PPC64_TOC16:
6093     case elfcpp::R_PPC64_TOC16_DS:
6094       ppc_object->set_has_small_toc_reloc();
6095     default:
6096       break;
6097     }
6098 }
6099
6100 // Process relocations for gc.
6101
6102 template<int size, bool big_endian>
6103 void
6104 Target_powerpc<size, big_endian>::gc_process_relocs(
6105     Symbol_table* symtab,
6106     Layout* layout,
6107     Sized_relobj_file<size, big_endian>* object,
6108     unsigned int data_shndx,
6109     unsigned int,
6110     const unsigned char* prelocs,
6111     size_t reloc_count,
6112     Output_section* output_section,
6113     bool needs_special_offset_handling,
6114     size_t local_symbol_count,
6115     const unsigned char* plocal_symbols)
6116 {
6117   typedef Target_powerpc<size, big_endian> Powerpc;
6118   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6119   Powerpc_relobj<size, big_endian>* ppc_object
6120     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6121   if (size == 64)
6122     ppc_object->set_opd_valid();
6123   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6124     {
6125       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6126       for (p = ppc_object->access_from_map()->begin();
6127            p != ppc_object->access_from_map()->end();
6128            ++p)
6129         {
6130           Address dst_off = p->first;
6131           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6132           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6133           for (s = p->second.begin(); s != p->second.end(); ++s)
6134             {
6135               Object* src_obj = s->first;
6136               unsigned int src_indx = s->second;
6137               symtab->gc()->add_reference(src_obj, src_indx,
6138                                           ppc_object, dst_indx);
6139             }
6140           p->second.clear();
6141         }
6142       ppc_object->access_from_map()->clear();
6143       ppc_object->process_gc_mark(symtab);
6144       // Don't look at .opd relocs as .opd will reference everything.
6145       return;
6146     }
6147
6148   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6149                           typename Target_powerpc::Relocatable_size_for_reloc>(
6150     symtab,
6151     layout,
6152     this,
6153     object,
6154     data_shndx,
6155     prelocs,
6156     reloc_count,
6157     output_section,
6158     needs_special_offset_handling,
6159     local_symbol_count,
6160     plocal_symbols);
6161 }
6162
6163 // Handle target specific gc actions when adding a gc reference from
6164 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6165 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6166 // section of a function descriptor.
6167
6168 template<int size, bool big_endian>
6169 void
6170 Target_powerpc<size, big_endian>::do_gc_add_reference(
6171     Symbol_table* symtab,
6172     Object* src_obj,
6173     unsigned int src_shndx,
6174     Object* dst_obj,
6175     unsigned int dst_shndx,
6176     Address dst_off) const
6177 {
6178   if (size != 64 || dst_obj->is_dynamic())
6179     return;
6180
6181   Powerpc_relobj<size, big_endian>* ppc_object
6182     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6183   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6184     {
6185       if (ppc_object->opd_valid())
6186         {
6187           dst_shndx = ppc_object->get_opd_ent(dst_off);
6188           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6189         }
6190       else
6191         {
6192           // If we haven't run scan_opd_relocs, we must delay
6193           // processing this function descriptor reference.
6194           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6195         }
6196     }
6197 }
6198
6199 // Add any special sections for this symbol to the gc work list.
6200 // For powerpc64, this adds the code section of a function
6201 // descriptor.
6202
6203 template<int size, bool big_endian>
6204 void
6205 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6206     Symbol_table* symtab,
6207     Symbol* sym) const
6208 {
6209   if (size == 64)
6210     {
6211       Powerpc_relobj<size, big_endian>* ppc_object
6212         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6213       bool is_ordinary;
6214       unsigned int shndx = sym->shndx(&is_ordinary);
6215       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6216         {
6217           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6218           Address dst_off = gsym->value();
6219           if (ppc_object->opd_valid())
6220             {
6221               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6222               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6223             }
6224           else
6225             ppc_object->add_gc_mark(dst_off);
6226         }
6227     }
6228 }
6229
6230 // For a symbol location in .opd, set LOC to the location of the
6231 // function entry.
6232
6233 template<int size, bool big_endian>
6234 void
6235 Target_powerpc<size, big_endian>::do_function_location(
6236     Symbol_location* loc) const
6237 {
6238   if (size == 64 && loc->shndx != 0)
6239     {
6240       if (loc->object->is_dynamic())
6241         {
6242           Powerpc_dynobj<size, big_endian>* ppc_object
6243             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6244           if (loc->shndx == ppc_object->opd_shndx())
6245             {
6246               Address dest_off;
6247               Address off = loc->offset - ppc_object->opd_address();
6248               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6249               loc->offset = dest_off;
6250             }
6251         }
6252       else
6253         {
6254           const Powerpc_relobj<size, big_endian>* ppc_object
6255             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6256           if (loc->shndx == ppc_object->opd_shndx())
6257             {
6258               Address dest_off;
6259               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6260               loc->offset = dest_off;
6261             }
6262         }
6263     }
6264 }
6265
6266 // Scan relocations for a section.
6267
6268 template<int size, bool big_endian>
6269 void
6270 Target_powerpc<size, big_endian>::scan_relocs(
6271     Symbol_table* symtab,
6272     Layout* layout,
6273     Sized_relobj_file<size, big_endian>* object,
6274     unsigned int data_shndx,
6275     unsigned int sh_type,
6276     const unsigned char* prelocs,
6277     size_t reloc_count,
6278     Output_section* output_section,
6279     bool needs_special_offset_handling,
6280     size_t local_symbol_count,
6281     const unsigned char* plocal_symbols)
6282 {
6283   typedef Target_powerpc<size, big_endian> Powerpc;
6284   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6285
6286   if (sh_type == elfcpp::SHT_REL)
6287     {
6288       gold_error(_("%s: unsupported REL reloc section"),
6289                  object->name().c_str());
6290       return;
6291     }
6292
6293   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6294     symtab,
6295     layout,
6296     this,
6297     object,
6298     data_shndx,
6299     prelocs,
6300     reloc_count,
6301     output_section,
6302     needs_special_offset_handling,
6303     local_symbol_count,
6304     plocal_symbols);
6305 }
6306
6307 // Functor class for processing the global symbol table.
6308 // Removes symbols defined on discarded opd entries.
6309
6310 template<bool big_endian>
6311 class Global_symbol_visitor_opd
6312 {
6313  public:
6314   Global_symbol_visitor_opd()
6315   { }
6316
6317   void
6318   operator()(Sized_symbol<64>* sym)
6319   {
6320     if (sym->has_symtab_index()
6321         || sym->source() != Symbol::FROM_OBJECT
6322         || !sym->in_real_elf())
6323       return;
6324
6325     if (sym->object()->is_dynamic())
6326       return;
6327
6328     Powerpc_relobj<64, big_endian>* symobj
6329       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6330     if (symobj->opd_shndx() == 0)
6331       return;
6332
6333     bool is_ordinary;
6334     unsigned int shndx = sym->shndx(&is_ordinary);
6335     if (shndx == symobj->opd_shndx()
6336         && symobj->get_opd_discard(sym->value()))
6337       sym->set_symtab_index(-1U);
6338   }
6339 };
6340
6341 template<int size, bool big_endian>
6342 void
6343 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6344     Layout* layout,
6345     Symbol_table* symtab)
6346 {
6347   if (size == 64)
6348     {
6349       Output_data_save_res<64, big_endian>* savres
6350         = new Output_data_save_res<64, big_endian>(symtab);
6351       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6352                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6353                                       savres, ORDER_TEXT, false);
6354     }
6355 }
6356
6357 // Sort linker created .got section first (for the header), then input
6358 // sections belonging to files using small model code.
6359
6360 template<bool big_endian>
6361 class Sort_toc_sections
6362 {
6363  public:
6364   bool
6365   operator()(const Output_section::Input_section& is1,
6366              const Output_section::Input_section& is2) const
6367   {
6368     if (!is1.is_input_section() && is2.is_input_section())
6369       return true;
6370     bool small1
6371       = (is1.is_input_section()
6372          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6373              ->has_small_toc_reloc()));
6374     bool small2
6375       = (is2.is_input_section()
6376          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6377              ->has_small_toc_reloc()));
6378     return small1 && !small2;
6379   }
6380 };
6381
6382 // Finalize the sections.
6383
6384 template<int size, bool big_endian>
6385 void
6386 Target_powerpc<size, big_endian>::do_finalize_sections(
6387     Layout* layout,
6388     const Input_objects*,
6389     Symbol_table* symtab)
6390 {
6391   if (parameters->doing_static_link())
6392     {
6393       // At least some versions of glibc elf-init.o have a strong
6394       // reference to __rela_iplt marker syms.  A weak ref would be
6395       // better..
6396       if (this->iplt_ != NULL)
6397         {
6398           Reloc_section* rel = this->iplt_->rel_plt();
6399           symtab->define_in_output_data("__rela_iplt_start", NULL,
6400                                         Symbol_table::PREDEFINED, rel, 0, 0,
6401                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6402                                         elfcpp::STV_HIDDEN, 0, false, true);
6403           symtab->define_in_output_data("__rela_iplt_end", NULL,
6404                                         Symbol_table::PREDEFINED, rel, 0, 0,
6405                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6406                                         elfcpp::STV_HIDDEN, 0, true, true);
6407         }
6408       else
6409         {
6410           symtab->define_as_constant("__rela_iplt_start", NULL,
6411                                      Symbol_table::PREDEFINED, 0, 0,
6412                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6413                                      elfcpp::STV_HIDDEN, 0, true, false);
6414           symtab->define_as_constant("__rela_iplt_end", NULL,
6415                                      Symbol_table::PREDEFINED, 0, 0,
6416                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6417                                      elfcpp::STV_HIDDEN, 0, true, false);
6418         }
6419     }
6420
6421   if (size == 64)
6422     {
6423       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6424       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6425
6426       if (!parameters->options().relocatable())
6427         {
6428           this->define_save_restore_funcs(layout, symtab);
6429
6430           // Annoyingly, we need to make these sections now whether or
6431           // not we need them.  If we delay until do_relax then we
6432           // need to mess with the relaxation machinery checkpointing.
6433           this->got_section(symtab, layout);
6434           this->make_brlt_section(layout);
6435
6436           if (parameters->options().toc_sort())
6437             {
6438               Output_section* os = this->got_->output_section();
6439               if (os != NULL && os->input_sections().size() > 1)
6440                 std::stable_sort(os->input_sections().begin(),
6441                                  os->input_sections().end(),
6442                                  Sort_toc_sections<big_endian>());
6443             }
6444         }
6445     }
6446
6447   // Fill in some more dynamic tags.
6448   Output_data_dynamic* odyn = layout->dynamic_data();
6449   if (odyn != NULL)
6450     {
6451       const Reloc_section* rel_plt = (this->plt_ == NULL
6452                                       ? NULL
6453                                       : this->plt_->rel_plt());
6454       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6455                                       this->rela_dyn_, true, size == 32);
6456
6457       if (size == 32)
6458         {
6459           if (this->got_ != NULL)
6460             {
6461               this->got_->finalize_data_size();
6462               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6463                                             this->got_, this->got_->g_o_t());
6464             }
6465         }
6466       else
6467         {
6468           if (this->glink_ != NULL)
6469             {
6470               this->glink_->finalize_data_size();
6471               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6472                                             this->glink_,
6473                                             (this->glink_->pltresolve_size
6474                                              - 32));
6475             }
6476         }
6477     }
6478
6479   // Emit any relocs we saved in an attempt to avoid generating COPY
6480   // relocs.
6481   if (this->copy_relocs_.any_saved_relocs())
6482     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6483 }
6484
6485 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6486 // reloc.
6487
6488 static bool
6489 ok_lo_toc_insn(uint32_t insn)
6490 {
6491   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6492           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6493           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6494           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6495           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6496           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6497           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6498           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6499           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6500           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6501           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6502           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6503           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6504           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6505           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6506               && (insn & 3) != 1)
6507           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6508               && ((insn & 3) == 0 || (insn & 3) == 3))
6509           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6510 }
6511
6512 // Return the value to use for a branch relocation.
6513
6514 template<int size, bool big_endian>
6515 typename Target_powerpc<size, big_endian>::Address
6516 Target_powerpc<size, big_endian>::symval_for_branch(
6517     const Symbol_table* symtab,
6518     Address value,
6519     const Sized_symbol<size>* gsym,
6520     Powerpc_relobj<size, big_endian>* object,
6521     unsigned int *dest_shndx)
6522 {
6523   *dest_shndx = 0;
6524   if (size == 32)
6525     return value;
6526
6527   // If the symbol is defined in an opd section, ie. is a function
6528   // descriptor, use the function descriptor code entry address
6529   Powerpc_relobj<size, big_endian>* symobj = object;
6530   if (gsym != NULL
6531       && gsym->source() != Symbol::FROM_OBJECT)
6532     return value;
6533   if (gsym != NULL)
6534     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6535   unsigned int shndx = symobj->opd_shndx();
6536   if (shndx == 0)
6537     return value;
6538   Address opd_addr = symobj->get_output_section_offset(shndx);
6539   if (opd_addr == invalid_address)
6540     return value;
6541   opd_addr += symobj->output_section_address(shndx);
6542   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6543     {
6544       Address sec_off;
6545       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6546       if (symtab->is_section_folded(symobj, *dest_shndx))
6547         {
6548           Section_id folded
6549             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6550           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6551           *dest_shndx = folded.second;
6552         }
6553       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6554       gold_assert(sec_addr != invalid_address);
6555       sec_addr += symobj->output_section(*dest_shndx)->address();
6556       value = sec_addr + sec_off;
6557     }
6558   return value;
6559 }
6560
6561 // Perform a relocation.
6562
6563 template<int size, bool big_endian>
6564 inline bool
6565 Target_powerpc<size, big_endian>::Relocate::relocate(
6566     const Relocate_info<size, big_endian>* relinfo,
6567     Target_powerpc* target,
6568     Output_section* os,
6569     size_t relnum,
6570     const elfcpp::Rela<size, big_endian>& rela,
6571     unsigned int r_type,
6572     const Sized_symbol<size>* gsym,
6573     const Symbol_value<size>* psymval,
6574     unsigned char* view,
6575     Address address,
6576     section_size_type view_size)
6577 {
6578   if (view == NULL)
6579     return true;
6580
6581   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6582     {
6583     case Track_tls::NOT_EXPECTED:
6584       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6585                              _("__tls_get_addr call lacks marker reloc"));
6586       break;
6587     case Track_tls::EXPECTED:
6588       // We have already complained.
6589       break;
6590     case Track_tls::SKIP:
6591       return true;
6592     case Track_tls::NORMAL:
6593       break;
6594     }
6595
6596   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6597   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6598   Powerpc_relobj<size, big_endian>* const object
6599     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6600   Address value = 0;
6601   bool has_plt_value = false;
6602   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6603   if ((gsym != NULL
6604        ? use_plt_offset<size>(gsym, Scan::get_reference_flags(r_type))
6605        : object->local_has_plt_offset(r_sym))
6606       && (!psymval->is_ifunc_symbol()
6607           || Scan::reloc_needs_plt_for_ifunc(object, r_type, false)))
6608     {
6609       Stub_table<size, big_endian>* stub_table
6610         = object->stub_table(relinfo->data_shndx);
6611       if (stub_table == NULL)
6612         {
6613           // This is a ref from a data section to an ifunc symbol.
6614           if (target->stub_tables().size() != 0)
6615             stub_table = target->stub_tables()[0];
6616         }
6617       gold_assert(stub_table != NULL);
6618       Address off;
6619       if (gsym != NULL)
6620         off = stub_table->find_plt_call_entry(object, gsym, r_type,
6621                                               rela.get_r_addend());
6622       else
6623         off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6624                                               rela.get_r_addend());
6625       gold_assert(off != invalid_address);
6626       value = stub_table->stub_address() + off;
6627       has_plt_value = true;
6628     }
6629
6630   if (r_type == elfcpp::R_POWERPC_GOT16
6631       || r_type == elfcpp::R_POWERPC_GOT16_LO
6632       || r_type == elfcpp::R_POWERPC_GOT16_HI
6633       || r_type == elfcpp::R_POWERPC_GOT16_HA
6634       || r_type == elfcpp::R_PPC64_GOT16_DS
6635       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6636     {
6637       if (gsym != NULL)
6638         {
6639           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6640           value = gsym->got_offset(GOT_TYPE_STANDARD);
6641         }
6642       else
6643         {
6644           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6645           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6646           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6647         }
6648       value -= target->got_section()->got_base_offset(object);
6649     }
6650   else if (r_type == elfcpp::R_PPC64_TOC)
6651     {
6652       value = (target->got_section()->output_section()->address()
6653                + object->toc_base_offset());
6654     }
6655   else if (gsym != NULL
6656            && (r_type == elfcpp::R_POWERPC_REL24
6657                || r_type == elfcpp::R_PPC_PLTREL24)
6658            && has_plt_value)
6659     {
6660       if (size == 64)
6661         {
6662           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6663           Valtype* wv = reinterpret_cast<Valtype*>(view);
6664           bool can_plt_call = false;
6665           if (rela.get_r_offset() + 8 <= view_size)
6666             {
6667               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6668               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6669               if ((insn & 1) != 0
6670                   && (insn2 == nop
6671                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6672                 {
6673                   elfcpp::Swap<32, big_endian>::
6674                     writeval(wv + 1, ld_2_1 + target->stk_toc());
6675                   can_plt_call = true;
6676                 }
6677             }
6678           if (!can_plt_call)
6679             {
6680               // If we don't have a branch and link followed by a nop,
6681               // we can't go via the plt because there is no place to
6682               // put a toc restoring instruction.
6683               // Unless we know we won't be returning.
6684               if (strcmp(gsym->name(), "__libc_start_main") == 0)
6685                 can_plt_call = true;
6686             }
6687           if (!can_plt_call)
6688             {
6689               // g++ as of 20130507 emits self-calls without a
6690               // following nop.  This is arguably wrong since we have
6691               // conflicting information.  On the one hand a global
6692               // symbol and on the other a local call sequence, but
6693               // don't error for this special case.
6694               // It isn't possible to cheaply verify we have exactly
6695               // such a call.  Allow all calls to the same section.
6696               bool ok = false;
6697               Address code = value;
6698               if (gsym->source() == Symbol::FROM_OBJECT
6699                   && gsym->object() == object)
6700                 {
6701                   Address addend = rela.get_r_addend();
6702                   unsigned int dest_shndx;
6703                   Address opdent = psymval->value(object, addend);
6704                   code = target->symval_for_branch(relinfo->symtab, opdent,
6705                                                    gsym, object, &dest_shndx);
6706                   bool is_ordinary;
6707                   if (dest_shndx == 0)
6708                     dest_shndx = gsym->shndx(&is_ordinary);
6709                   ok = dest_shndx == relinfo->data_shndx;
6710                 }
6711               if (!ok)
6712                 {
6713                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6714                                          _("call lacks nop, can't restore toc; "
6715                                            "recompile with -fPIC"));
6716                   value = code;
6717                 }
6718             }
6719         }
6720     }
6721   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6722            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6723            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6724            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6725     {
6726       // First instruction of a global dynamic sequence, arg setup insn.
6727       const bool final = gsym == NULL || gsym->final_value_is_known();
6728       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6729       enum Got_type got_type = GOT_TYPE_STANDARD;
6730       if (tls_type == tls::TLSOPT_NONE)
6731         got_type = GOT_TYPE_TLSGD;
6732       else if (tls_type == tls::TLSOPT_TO_IE)
6733         got_type = GOT_TYPE_TPREL;
6734       if (got_type != GOT_TYPE_STANDARD)
6735         {
6736           if (gsym != NULL)
6737             {
6738               gold_assert(gsym->has_got_offset(got_type));
6739               value = gsym->got_offset(got_type);
6740             }
6741           else
6742             {
6743               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6744               gold_assert(object->local_has_got_offset(r_sym, got_type));
6745               value = object->local_got_offset(r_sym, got_type);
6746             }
6747           value -= target->got_section()->got_base_offset(object);
6748         }
6749       if (tls_type == tls::TLSOPT_TO_IE)
6750         {
6751           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6752               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6753             {
6754               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6755               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6756               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6757               if (size == 32)
6758                 insn |= 32 << 26; // lwz
6759               else
6760                 insn |= 58 << 26; // ld
6761               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6762             }
6763           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6764                      - elfcpp::R_POWERPC_GOT_TLSGD16);
6765         }
6766       else if (tls_type == tls::TLSOPT_TO_LE)
6767         {
6768           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6769               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6770             {
6771               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6772               Insn insn = addis_3_13;
6773               if (size == 32)
6774                 insn = addis_3_2;
6775               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6776               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6777               value = psymval->value(object, rela.get_r_addend());
6778             }
6779           else
6780             {
6781               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6782               Insn insn = nop;
6783               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6784               r_type = elfcpp::R_POWERPC_NONE;
6785             }
6786         }
6787     }
6788   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6789            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6790            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6791            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6792     {
6793       // First instruction of a local dynamic sequence, arg setup insn.
6794       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6795       if (tls_type == tls::TLSOPT_NONE)
6796         {
6797           value = target->tlsld_got_offset();
6798           value -= target->got_section()->got_base_offset(object);
6799         }
6800       else
6801         {
6802           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6803           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6804               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6805             {
6806               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6807               Insn insn = addis_3_13;
6808               if (size == 32)
6809                 insn = addis_3_2;
6810               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6811               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6812               value = dtp_offset;
6813             }
6814           else
6815             {
6816               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6817               Insn insn = nop;
6818               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6819               r_type = elfcpp::R_POWERPC_NONE;
6820             }
6821         }
6822     }
6823   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6824            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6825            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6826            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6827     {
6828       // Accesses relative to a local dynamic sequence address,
6829       // no optimisation here.
6830       if (gsym != NULL)
6831         {
6832           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6833           value = gsym->got_offset(GOT_TYPE_DTPREL);
6834         }
6835       else
6836         {
6837           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6838           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6839           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6840         }
6841       value -= target->got_section()->got_base_offset(object);
6842     }
6843   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6844            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6845            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6846            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6847     {
6848       // First instruction of initial exec sequence.
6849       const bool final = gsym == NULL || gsym->final_value_is_known();
6850       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6851       if (tls_type == tls::TLSOPT_NONE)
6852         {
6853           if (gsym != NULL)
6854             {
6855               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6856               value = gsym->got_offset(GOT_TYPE_TPREL);
6857             }
6858           else
6859             {
6860               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6861               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6862               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6863             }
6864           value -= target->got_section()->got_base_offset(object);
6865         }
6866       else
6867         {
6868           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6869           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6870               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6871             {
6872               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6873               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6874               insn &= (1 << 26) - (1 << 21); // extract rt from ld
6875               if (size == 32)
6876                 insn |= addis_0_2;
6877               else
6878                 insn |= addis_0_13;
6879               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6880               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6881               value = psymval->value(object, rela.get_r_addend());
6882             }
6883           else
6884             {
6885               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6886               Insn insn = nop;
6887               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6888               r_type = elfcpp::R_POWERPC_NONE;
6889             }
6890         }
6891     }
6892   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6893            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6894     {
6895       // Second instruction of a global dynamic sequence,
6896       // the __tls_get_addr call
6897       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6898       const bool final = gsym == NULL || gsym->final_value_is_known();
6899       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6900       if (tls_type != tls::TLSOPT_NONE)
6901         {
6902           if (tls_type == tls::TLSOPT_TO_IE)
6903             {
6904               Insn* iview = reinterpret_cast<Insn*>(view);
6905               Insn insn = add_3_3_13;
6906               if (size == 32)
6907                 insn = add_3_3_2;
6908               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6909               r_type = elfcpp::R_POWERPC_NONE;
6910             }
6911           else
6912             {
6913               Insn* iview = reinterpret_cast<Insn*>(view);
6914               Insn insn = addi_3_3;
6915               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6916               r_type = elfcpp::R_POWERPC_TPREL16_LO;
6917               view += 2 * big_endian;
6918               value = psymval->value(object, rela.get_r_addend());
6919             }
6920           this->skip_next_tls_get_addr_call();
6921         }
6922     }
6923   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6924            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6925     {
6926       // Second instruction of a local dynamic sequence,
6927       // the __tls_get_addr call
6928       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6929       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6930       if (tls_type == tls::TLSOPT_TO_LE)
6931         {
6932           Insn* iview = reinterpret_cast<Insn*>(view);
6933           Insn insn = addi_3_3;
6934           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6935           this->skip_next_tls_get_addr_call();
6936           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6937           view += 2 * big_endian;
6938           value = dtp_offset;
6939         }
6940     }
6941   else if (r_type == elfcpp::R_POWERPC_TLS)
6942     {
6943       // Second instruction of an initial exec sequence
6944       const bool final = gsym == NULL || gsym->final_value_is_known();
6945       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6946       if (tls_type == tls::TLSOPT_TO_LE)
6947         {
6948           Insn* iview = reinterpret_cast<Insn*>(view);
6949           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6950           unsigned int reg = size == 32 ? 2 : 13;
6951           insn = at_tls_transform(insn, reg);
6952           gold_assert(insn != 0);
6953           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6954           r_type = elfcpp::R_POWERPC_TPREL16_LO;
6955           view += 2 * big_endian;
6956           value = psymval->value(object, rela.get_r_addend());
6957         }
6958     }
6959   else if (!has_plt_value)
6960     {
6961       Address addend = 0;
6962       unsigned int dest_shndx;
6963       if (r_type != elfcpp::R_PPC_PLTREL24)
6964         addend = rela.get_r_addend();
6965       value = psymval->value(object, addend);
6966       if (gsym != NULL)
6967         value += object->ppc64_local_entry_offset(gsym);
6968       else
6969         value += object->ppc64_local_entry_offset(r_sym);
6970       if (size == 64 && is_branch_reloc(r_type))
6971         value = target->symval_for_branch(relinfo->symtab, value,
6972                                           gsym, object, &dest_shndx);
6973       unsigned int max_branch_offset = 0;
6974       if (r_type == elfcpp::R_POWERPC_REL24
6975           || r_type == elfcpp::R_PPC_PLTREL24
6976           || r_type == elfcpp::R_PPC_LOCAL24PC)
6977         max_branch_offset = 1 << 25;
6978       else if (r_type == elfcpp::R_POWERPC_REL14
6979                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
6980                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
6981         max_branch_offset = 1 << 15;
6982       if (max_branch_offset != 0
6983           && value - address + max_branch_offset >= 2 * max_branch_offset)
6984         {
6985           Stub_table<size, big_endian>* stub_table
6986             = object->stub_table(relinfo->data_shndx);
6987           if (stub_table != NULL)
6988             {
6989               Address off = stub_table->find_long_branch_entry(object, value);
6990               if (off != invalid_address)
6991                 value = (stub_table->stub_address() + stub_table->plt_size()
6992                          + off);
6993             }
6994         }
6995     }
6996
6997   switch (r_type)
6998     {
6999     case elfcpp::R_PPC64_REL64:
7000     case elfcpp::R_POWERPC_REL32:
7001     case elfcpp::R_POWERPC_REL24:
7002     case elfcpp::R_PPC_PLTREL24:
7003     case elfcpp::R_PPC_LOCAL24PC:
7004     case elfcpp::R_POWERPC_REL16:
7005     case elfcpp::R_POWERPC_REL16_LO:
7006     case elfcpp::R_POWERPC_REL16_HI:
7007     case elfcpp::R_POWERPC_REL16_HA:
7008     case elfcpp::R_POWERPC_REL14:
7009     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7010     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7011       value -= address;
7012       break;
7013
7014     case elfcpp::R_PPC64_TOC16:
7015     case elfcpp::R_PPC64_TOC16_LO:
7016     case elfcpp::R_PPC64_TOC16_HI:
7017     case elfcpp::R_PPC64_TOC16_HA:
7018     case elfcpp::R_PPC64_TOC16_DS:
7019     case elfcpp::R_PPC64_TOC16_LO_DS:
7020       // Subtract the TOC base address.
7021       value -= (target->got_section()->output_section()->address()
7022                 + object->toc_base_offset());
7023       break;
7024
7025     case elfcpp::R_POWERPC_SECTOFF:
7026     case elfcpp::R_POWERPC_SECTOFF_LO:
7027     case elfcpp::R_POWERPC_SECTOFF_HI:
7028     case elfcpp::R_POWERPC_SECTOFF_HA:
7029     case elfcpp::R_PPC64_SECTOFF_DS:
7030     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7031       if (os != NULL)
7032         value -= os->address();
7033       break;
7034
7035     case elfcpp::R_PPC64_TPREL16_DS:
7036     case elfcpp::R_PPC64_TPREL16_LO_DS:
7037     case elfcpp::R_PPC64_TPREL16_HIGH:
7038     case elfcpp::R_PPC64_TPREL16_HIGHA:
7039       if (size != 64)
7040         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7041         break;
7042     case elfcpp::R_POWERPC_TPREL16:
7043     case elfcpp::R_POWERPC_TPREL16_LO:
7044     case elfcpp::R_POWERPC_TPREL16_HI:
7045     case elfcpp::R_POWERPC_TPREL16_HA:
7046     case elfcpp::R_POWERPC_TPREL:
7047     case elfcpp::R_PPC64_TPREL16_HIGHER:
7048     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7049     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7050     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7051       // tls symbol values are relative to tls_segment()->vaddr()
7052       value -= tp_offset;
7053       break;
7054
7055     case elfcpp::R_PPC64_DTPREL16_DS:
7056     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7057     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7058     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7059     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7060     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7061       if (size != 64)
7062         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7063         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7064         break;
7065     case elfcpp::R_POWERPC_DTPREL16:
7066     case elfcpp::R_POWERPC_DTPREL16_LO:
7067     case elfcpp::R_POWERPC_DTPREL16_HI:
7068     case elfcpp::R_POWERPC_DTPREL16_HA:
7069     case elfcpp::R_POWERPC_DTPREL:
7070     case elfcpp::R_PPC64_DTPREL16_HIGH:
7071     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7072       // tls symbol values are relative to tls_segment()->vaddr()
7073       value -= dtp_offset;
7074       break;
7075
7076     default:
7077       break;
7078     }
7079
7080   Insn branch_bit = 0;
7081   switch (r_type)
7082     {
7083     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7084     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7085       branch_bit = 1 << 21;
7086     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7087     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7088       {
7089         Insn* iview = reinterpret_cast<Insn*>(view);
7090         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7091         insn &= ~(1 << 21);
7092         insn |= branch_bit;
7093         if (this->is_isa_v2)
7094           {
7095             // Set 'a' bit.  This is 0b00010 in BO field for branch
7096             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7097             // for branch on CTR insns (BO == 1a00t or 1a01t).
7098             if ((insn & (0x14 << 21)) == (0x04 << 21))
7099               insn |= 0x02 << 21;
7100             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7101               insn |= 0x08 << 21;
7102             else
7103               break;
7104           }
7105         else
7106           {
7107             // Invert 'y' bit if not the default.
7108             if (static_cast<Signed_address>(value) < 0)
7109               insn ^= 1 << 21;
7110           }
7111         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7112       }
7113       break;
7114
7115     default:
7116       break;
7117     }
7118
7119   if (size == 64)
7120     {
7121       // Multi-instruction sequences that access the TOC can be
7122       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7123       // to             nop;           addi rb,r2,x;
7124       switch (r_type)
7125         {
7126         default:
7127           break;
7128
7129         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7130         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7131         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7132         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7133         case elfcpp::R_POWERPC_GOT16_HA:
7134         case elfcpp::R_PPC64_TOC16_HA:
7135           if (parameters->options().toc_optimize())
7136             {
7137               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7138               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7139               if ((insn & ((0x3f << 26) | 0x1f << 16))
7140                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7141                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7142                                        _("toc optimization is not supported "
7143                                          "for %#08x instruction"), insn);
7144               else if (value + 0x8000 < 0x10000)
7145                 {
7146                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7147                   return true;
7148                 }
7149             }
7150           break;
7151
7152         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7153         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7154         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7155         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7156         case elfcpp::R_POWERPC_GOT16_LO:
7157         case elfcpp::R_PPC64_GOT16_LO_DS:
7158         case elfcpp::R_PPC64_TOC16_LO:
7159         case elfcpp::R_PPC64_TOC16_LO_DS:
7160           if (parameters->options().toc_optimize())
7161             {
7162               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7163               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7164               if (!ok_lo_toc_insn(insn))
7165                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7166                                        _("toc optimization is not supported "
7167                                          "for %#08x instruction"), insn);
7168               else if (value + 0x8000 < 0x10000)
7169                 {
7170                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7171                     {
7172                       // Transform addic to addi when we change reg.
7173                       insn &= ~((0x3f << 26) | (0x1f << 16));
7174                       insn |= (14u << 26) | (2 << 16);
7175                     }
7176                   else
7177                     {
7178                       insn &= ~(0x1f << 16);
7179                       insn |= 2 << 16;
7180                     }
7181                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7182                 }
7183             }
7184           break;
7185         }
7186     }
7187
7188   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7189   switch (r_type)
7190     {
7191     case elfcpp::R_POWERPC_ADDR32:
7192     case elfcpp::R_POWERPC_UADDR32:
7193       if (size == 64)
7194         overflow = Reloc::CHECK_BITFIELD;
7195       break;
7196
7197     case elfcpp::R_POWERPC_REL32:
7198       if (size == 64)
7199         overflow = Reloc::CHECK_SIGNED;
7200       break;
7201
7202     case elfcpp::R_POWERPC_ADDR24:
7203     case elfcpp::R_POWERPC_ADDR16:
7204     case elfcpp::R_POWERPC_UADDR16:
7205     case elfcpp::R_PPC64_ADDR16_DS:
7206     case elfcpp::R_POWERPC_ADDR14:
7207     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7208     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7209       overflow = Reloc::CHECK_BITFIELD;
7210       break;
7211
7212     case elfcpp::R_POWERPC_ADDR16_HI:
7213     case elfcpp::R_POWERPC_ADDR16_HA:
7214     case elfcpp::R_POWERPC_GOT16_HI:
7215     case elfcpp::R_POWERPC_GOT16_HA:
7216     case elfcpp::R_POWERPC_PLT16_HI:
7217     case elfcpp::R_POWERPC_PLT16_HA:
7218     case elfcpp::R_POWERPC_SECTOFF_HI:
7219     case elfcpp::R_POWERPC_SECTOFF_HA:
7220     case elfcpp::R_PPC64_TOC16_HI:
7221     case elfcpp::R_PPC64_TOC16_HA:
7222     case elfcpp::R_PPC64_PLTGOT16_HI:
7223     case elfcpp::R_PPC64_PLTGOT16_HA:
7224     case elfcpp::R_POWERPC_TPREL16_HI:
7225     case elfcpp::R_POWERPC_TPREL16_HA:
7226     case elfcpp::R_POWERPC_DTPREL16_HI:
7227     case elfcpp::R_POWERPC_DTPREL16_HA:
7228     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7229     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7230     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7231     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7232     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7233     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7234     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7235     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7236     case elfcpp::R_POWERPC_REL16_HI:
7237     case elfcpp::R_POWERPC_REL16_HA:
7238       if (size == 32)
7239         break;
7240     case elfcpp::R_POWERPC_REL24:
7241     case elfcpp::R_PPC_PLTREL24:
7242     case elfcpp::R_PPC_LOCAL24PC:
7243     case elfcpp::R_POWERPC_REL16:
7244     case elfcpp::R_PPC64_TOC16:
7245     case elfcpp::R_POWERPC_GOT16:
7246     case elfcpp::R_POWERPC_SECTOFF:
7247     case elfcpp::R_POWERPC_TPREL16:
7248     case elfcpp::R_POWERPC_DTPREL16:
7249     case elfcpp::R_PPC64_TPREL16_DS:
7250     case elfcpp::R_PPC64_DTPREL16_DS:
7251     case elfcpp::R_PPC64_TOC16_DS:
7252     case elfcpp::R_PPC64_GOT16_DS:
7253     case elfcpp::R_PPC64_SECTOFF_DS:
7254     case elfcpp::R_POWERPC_REL14:
7255     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7256     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7257     case elfcpp::R_POWERPC_GOT_TLSGD16:
7258     case elfcpp::R_POWERPC_GOT_TLSLD16:
7259     case elfcpp::R_POWERPC_GOT_TPREL16:
7260     case elfcpp::R_POWERPC_GOT_DTPREL16:
7261       overflow = Reloc::CHECK_SIGNED;
7262       break;
7263     }
7264
7265   typename Powerpc_relocate_functions<size, big_endian>::Status status
7266     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7267   switch (r_type)
7268     {
7269     case elfcpp::R_POWERPC_NONE:
7270     case elfcpp::R_POWERPC_TLS:
7271     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7272     case elfcpp::R_POWERPC_GNU_VTENTRY:
7273       break;
7274
7275     case elfcpp::R_PPC64_ADDR64:
7276     case elfcpp::R_PPC64_REL64:
7277     case elfcpp::R_PPC64_TOC:
7278       Reloc::addr64(view, value);
7279       break;
7280
7281     case elfcpp::R_POWERPC_TPREL:
7282     case elfcpp::R_POWERPC_DTPREL:
7283       if (size == 64)
7284         Reloc::addr64(view, value);
7285       else
7286         status = Reloc::addr32(view, value, overflow);
7287       break;
7288
7289     case elfcpp::R_PPC64_UADDR64:
7290       Reloc::addr64_u(view, value);
7291       break;
7292
7293     case elfcpp::R_POWERPC_ADDR32:
7294       status = Reloc::addr32(view, value, overflow);
7295       break;
7296
7297     case elfcpp::R_POWERPC_REL32:
7298     case elfcpp::R_POWERPC_UADDR32:
7299       status = Reloc::addr32_u(view, value, overflow);
7300       break;
7301
7302     case elfcpp::R_POWERPC_ADDR24:
7303     case elfcpp::R_POWERPC_REL24:
7304     case elfcpp::R_PPC_PLTREL24:
7305     case elfcpp::R_PPC_LOCAL24PC:
7306       status = Reloc::addr24(view, value, overflow);
7307       break;
7308
7309     case elfcpp::R_POWERPC_GOT_DTPREL16:
7310     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7311       if (size == 64)
7312         {
7313           status = Reloc::addr16_ds(view, value, overflow);
7314           break;
7315         }
7316     case elfcpp::R_POWERPC_ADDR16:
7317     case elfcpp::R_POWERPC_REL16:
7318     case elfcpp::R_PPC64_TOC16:
7319     case elfcpp::R_POWERPC_GOT16:
7320     case elfcpp::R_POWERPC_SECTOFF:
7321     case elfcpp::R_POWERPC_TPREL16:
7322     case elfcpp::R_POWERPC_DTPREL16:
7323     case elfcpp::R_POWERPC_GOT_TLSGD16:
7324     case elfcpp::R_POWERPC_GOT_TLSLD16:
7325     case elfcpp::R_POWERPC_GOT_TPREL16:
7326     case elfcpp::R_POWERPC_ADDR16_LO:
7327     case elfcpp::R_POWERPC_REL16_LO:
7328     case elfcpp::R_PPC64_TOC16_LO:
7329     case elfcpp::R_POWERPC_GOT16_LO:
7330     case elfcpp::R_POWERPC_SECTOFF_LO:
7331     case elfcpp::R_POWERPC_TPREL16_LO:
7332     case elfcpp::R_POWERPC_DTPREL16_LO:
7333     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7334     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7335     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7336       status = Reloc::addr16(view, value, overflow);
7337       break;
7338
7339     case elfcpp::R_POWERPC_UADDR16:
7340       status = Reloc::addr16_u(view, value, overflow);
7341       break;
7342
7343     case elfcpp::R_PPC64_ADDR16_HIGH:
7344     case elfcpp::R_PPC64_TPREL16_HIGH:
7345     case elfcpp::R_PPC64_DTPREL16_HIGH:
7346       if (size == 32)
7347         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7348         goto unsupp;
7349     case elfcpp::R_POWERPC_ADDR16_HI:
7350     case elfcpp::R_POWERPC_REL16_HI:
7351     case elfcpp::R_PPC64_TOC16_HI:
7352     case elfcpp::R_POWERPC_GOT16_HI:
7353     case elfcpp::R_POWERPC_SECTOFF_HI:
7354     case elfcpp::R_POWERPC_TPREL16_HI:
7355     case elfcpp::R_POWERPC_DTPREL16_HI:
7356     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7357     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7358     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7359     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7360       Reloc::addr16_hi(view, value);
7361       break;
7362
7363     case elfcpp::R_PPC64_ADDR16_HIGHA:
7364     case elfcpp::R_PPC64_TPREL16_HIGHA:
7365     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7366       if (size == 32)
7367         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7368         goto unsupp;
7369     case elfcpp::R_POWERPC_ADDR16_HA:
7370     case elfcpp::R_POWERPC_REL16_HA:
7371     case elfcpp::R_PPC64_TOC16_HA:
7372     case elfcpp::R_POWERPC_GOT16_HA:
7373     case elfcpp::R_POWERPC_SECTOFF_HA:
7374     case elfcpp::R_POWERPC_TPREL16_HA:
7375     case elfcpp::R_POWERPC_DTPREL16_HA:
7376     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7377     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7378     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7379     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7380       Reloc::addr16_ha(view, value);
7381       break;
7382
7383     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7384       if (size == 32)
7385         // R_PPC_EMB_NADDR16_LO
7386         goto unsupp;
7387     case elfcpp::R_PPC64_ADDR16_HIGHER:
7388     case elfcpp::R_PPC64_TPREL16_HIGHER:
7389       Reloc::addr16_hi2(view, value);
7390       break;
7391
7392     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7393       if (size == 32)
7394         // R_PPC_EMB_NADDR16_HI
7395         goto unsupp;
7396     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7397     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7398       Reloc::addr16_ha2(view, value);
7399       break;
7400
7401     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7402       if (size == 32)
7403         // R_PPC_EMB_NADDR16_HA
7404         goto unsupp;
7405     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7406     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7407       Reloc::addr16_hi3(view, value);
7408       break;
7409
7410     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7411       if (size == 32)
7412         // R_PPC_EMB_SDAI16
7413         goto unsupp;
7414     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7415     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7416       Reloc::addr16_ha3(view, value);
7417       break;
7418
7419     case elfcpp::R_PPC64_DTPREL16_DS:
7420     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7421       if (size == 32)
7422         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7423         goto unsupp;
7424     case elfcpp::R_PPC64_TPREL16_DS:
7425     case elfcpp::R_PPC64_TPREL16_LO_DS:
7426       if (size == 32)
7427         // R_PPC_TLSGD, R_PPC_TLSLD
7428         break;
7429     case elfcpp::R_PPC64_ADDR16_DS:
7430     case elfcpp::R_PPC64_ADDR16_LO_DS:
7431     case elfcpp::R_PPC64_TOC16_DS:
7432     case elfcpp::R_PPC64_TOC16_LO_DS:
7433     case elfcpp::R_PPC64_GOT16_DS:
7434     case elfcpp::R_PPC64_GOT16_LO_DS:
7435     case elfcpp::R_PPC64_SECTOFF_DS:
7436     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7437       status = Reloc::addr16_ds(view, value, overflow);
7438       break;
7439
7440     case elfcpp::R_POWERPC_ADDR14:
7441     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7442     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7443     case elfcpp::R_POWERPC_REL14:
7444     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7445     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7446       status = Reloc::addr14(view, value, overflow);
7447       break;
7448
7449     case elfcpp::R_POWERPC_COPY:
7450     case elfcpp::R_POWERPC_GLOB_DAT:
7451     case elfcpp::R_POWERPC_JMP_SLOT:
7452     case elfcpp::R_POWERPC_RELATIVE:
7453     case elfcpp::R_POWERPC_DTPMOD:
7454     case elfcpp::R_PPC64_JMP_IREL:
7455     case elfcpp::R_POWERPC_IRELATIVE:
7456       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7457                              _("unexpected reloc %u in object file"),
7458                              r_type);
7459       break;
7460
7461     case elfcpp::R_PPC_EMB_SDA21:
7462       if (size == 32)
7463         goto unsupp;
7464       else
7465         {
7466           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7467         }
7468       break;
7469
7470     case elfcpp::R_PPC_EMB_SDA2I16:
7471     case elfcpp::R_PPC_EMB_SDA2REL:
7472       if (size == 32)
7473         goto unsupp;
7474       // R_PPC64_TLSGD, R_PPC64_TLSLD
7475       break;
7476
7477     case elfcpp::R_POWERPC_PLT32:
7478     case elfcpp::R_POWERPC_PLTREL32:
7479     case elfcpp::R_POWERPC_PLT16_LO:
7480     case elfcpp::R_POWERPC_PLT16_HI:
7481     case elfcpp::R_POWERPC_PLT16_HA:
7482     case elfcpp::R_PPC_SDAREL16:
7483     case elfcpp::R_POWERPC_ADDR30:
7484     case elfcpp::R_PPC64_PLT64:
7485     case elfcpp::R_PPC64_PLTREL64:
7486     case elfcpp::R_PPC64_PLTGOT16:
7487     case elfcpp::R_PPC64_PLTGOT16_LO:
7488     case elfcpp::R_PPC64_PLTGOT16_HI:
7489     case elfcpp::R_PPC64_PLTGOT16_HA:
7490     case elfcpp::R_PPC64_PLT16_LO_DS:
7491     case elfcpp::R_PPC64_PLTGOT16_DS:
7492     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7493     case elfcpp::R_PPC_EMB_RELSDA:
7494     case elfcpp::R_PPC_TOC16:
7495     default:
7496     unsupp:
7497       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7498                              _("unsupported reloc %u"),
7499                              r_type);
7500       break;
7501     }
7502   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7503     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7504                            _("relocation overflow"));
7505
7506   return true;
7507 }
7508
7509 // Relocate section data.
7510
7511 template<int size, bool big_endian>
7512 void
7513 Target_powerpc<size, big_endian>::relocate_section(
7514     const Relocate_info<size, big_endian>* relinfo,
7515     unsigned int sh_type,
7516     const unsigned char* prelocs,
7517     size_t reloc_count,
7518     Output_section* output_section,
7519     bool needs_special_offset_handling,
7520     unsigned char* view,
7521     Address address,
7522     section_size_type view_size,
7523     const Reloc_symbol_changes* reloc_symbol_changes)
7524 {
7525   typedef Target_powerpc<size, big_endian> Powerpc;
7526   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7527   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7528     Powerpc_comdat_behavior;
7529
7530   gold_assert(sh_type == elfcpp::SHT_RELA);
7531
7532   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7533                          Powerpc_relocate, Powerpc_comdat_behavior>(
7534     relinfo,
7535     this,
7536     prelocs,
7537     reloc_count,
7538     output_section,
7539     needs_special_offset_handling,
7540     view,
7541     address,
7542     view_size,
7543     reloc_symbol_changes);
7544 }
7545
7546 class Powerpc_scan_relocatable_reloc
7547 {
7548 public:
7549   // Return the strategy to use for a local symbol which is not a
7550   // section symbol, given the relocation type.
7551   inline Relocatable_relocs::Reloc_strategy
7552   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7553   {
7554     if (r_type == 0 && r_sym == 0)
7555       return Relocatable_relocs::RELOC_DISCARD;
7556     return Relocatable_relocs::RELOC_COPY;
7557   }
7558
7559   // Return the strategy to use for a local symbol which is a section
7560   // symbol, given the relocation type.
7561   inline Relocatable_relocs::Reloc_strategy
7562   local_section_strategy(unsigned int, Relobj*)
7563   {
7564     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7565   }
7566
7567   // Return the strategy to use for a global symbol, given the
7568   // relocation type, the object, and the symbol index.
7569   inline Relocatable_relocs::Reloc_strategy
7570   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7571   {
7572     if (r_type == elfcpp::R_PPC_PLTREL24)
7573       return Relocatable_relocs::RELOC_SPECIAL;
7574     return Relocatable_relocs::RELOC_COPY;
7575   }
7576 };
7577
7578 // Scan the relocs during a relocatable link.
7579
7580 template<int size, bool big_endian>
7581 void
7582 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7583     Symbol_table* symtab,
7584     Layout* layout,
7585     Sized_relobj_file<size, big_endian>* object,
7586     unsigned int data_shndx,
7587     unsigned int sh_type,
7588     const unsigned char* prelocs,
7589     size_t reloc_count,
7590     Output_section* output_section,
7591     bool needs_special_offset_handling,
7592     size_t local_symbol_count,
7593     const unsigned char* plocal_symbols,
7594     Relocatable_relocs* rr)
7595 {
7596   gold_assert(sh_type == elfcpp::SHT_RELA);
7597
7598   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7599                                 Powerpc_scan_relocatable_reloc>(
7600     symtab,
7601     layout,
7602     object,
7603     data_shndx,
7604     prelocs,
7605     reloc_count,
7606     output_section,
7607     needs_special_offset_handling,
7608     local_symbol_count,
7609     plocal_symbols,
7610     rr);
7611 }
7612
7613 // Emit relocations for a section.
7614 // This is a modified version of the function by the same name in
7615 // target-reloc.h.  Using relocate_special_relocatable for
7616 // R_PPC_PLTREL24 would require duplication of the entire body of the
7617 // loop, so we may as well duplicate the whole thing.
7618
7619 template<int size, bool big_endian>
7620 void
7621 Target_powerpc<size, big_endian>::relocate_relocs(
7622     const Relocate_info<size, big_endian>* relinfo,
7623     unsigned int sh_type,
7624     const unsigned char* prelocs,
7625     size_t reloc_count,
7626     Output_section* output_section,
7627     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7628     const Relocatable_relocs* rr,
7629     unsigned char*,
7630     Address view_address,
7631     section_size_type,
7632     unsigned char* reloc_view,
7633     section_size_type reloc_view_size)
7634 {
7635   gold_assert(sh_type == elfcpp::SHT_RELA);
7636
7637   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7638     Reltype;
7639   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7640     Reltype_write;
7641   const int reloc_size
7642     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7643
7644   Powerpc_relobj<size, big_endian>* const object
7645     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7646   const unsigned int local_count = object->local_symbol_count();
7647   unsigned int got2_shndx = object->got2_shndx();
7648   Address got2_addend = 0;
7649   if (got2_shndx != 0)
7650     {
7651       got2_addend = object->get_output_section_offset(got2_shndx);
7652       gold_assert(got2_addend != invalid_address);
7653     }
7654
7655   unsigned char* pwrite = reloc_view;
7656   bool zap_next = false;
7657   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7658     {
7659       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7660       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7661         continue;
7662
7663       Reltype reloc(prelocs);
7664       Reltype_write reloc_write(pwrite);
7665
7666       Address offset = reloc.get_r_offset();
7667       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7668       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7669       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7670       const unsigned int orig_r_sym = r_sym;
7671       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7672         = reloc.get_r_addend();
7673       const Symbol* gsym = NULL;
7674
7675       if (zap_next)
7676         {
7677           // We could arrange to discard these and other relocs for
7678           // tls optimised sequences in the strategy methods, but for
7679           // now do as BFD ld does.
7680           r_type = elfcpp::R_POWERPC_NONE;
7681           zap_next = false;
7682         }
7683
7684       // Get the new symbol index.
7685       if (r_sym < local_count)
7686         {
7687           switch (strategy)
7688             {
7689             case Relocatable_relocs::RELOC_COPY:
7690             case Relocatable_relocs::RELOC_SPECIAL:
7691               if (r_sym != 0)
7692                 {
7693                   r_sym = object->symtab_index(r_sym);
7694                   gold_assert(r_sym != -1U);
7695                 }
7696               break;
7697
7698             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7699               {
7700                 // We are adjusting a section symbol.  We need to find
7701                 // the symbol table index of the section symbol for
7702                 // the output section corresponding to input section
7703                 // in which this symbol is defined.
7704                 gold_assert(r_sym < local_count);
7705                 bool is_ordinary;
7706                 unsigned int shndx =
7707                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
7708                 gold_assert(is_ordinary);
7709                 Output_section* os = object->output_section(shndx);
7710                 gold_assert(os != NULL);
7711                 gold_assert(os->needs_symtab_index());
7712                 r_sym = os->symtab_index();
7713               }
7714               break;
7715
7716             default:
7717               gold_unreachable();
7718             }
7719         }
7720       else
7721         {
7722           gsym = object->global_symbol(r_sym);
7723           gold_assert(gsym != NULL);
7724           if (gsym->is_forwarder())
7725             gsym = relinfo->symtab->resolve_forwards(gsym);
7726
7727           gold_assert(gsym->has_symtab_index());
7728           r_sym = gsym->symtab_index();
7729         }
7730
7731       // Get the new offset--the location in the output section where
7732       // this relocation should be applied.
7733       if (static_cast<Address>(offset_in_output_section) != invalid_address)
7734         offset += offset_in_output_section;
7735       else
7736         {
7737           section_offset_type sot_offset =
7738             convert_types<section_offset_type, Address>(offset);
7739           section_offset_type new_sot_offset =
7740             output_section->output_offset(object, relinfo->data_shndx,
7741                                           sot_offset);
7742           gold_assert(new_sot_offset != -1);
7743           offset = new_sot_offset;
7744         }
7745
7746       // In an object file, r_offset is an offset within the section.
7747       // In an executable or dynamic object, generated by
7748       // --emit-relocs, r_offset is an absolute address.
7749       if (!parameters->options().relocatable())
7750         {
7751           offset += view_address;
7752           if (static_cast<Address>(offset_in_output_section) != invalid_address)
7753             offset -= offset_in_output_section;
7754         }
7755
7756       // Handle the reloc addend based on the strategy.
7757       if (strategy == Relocatable_relocs::RELOC_COPY)
7758         ;
7759       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7760         {
7761           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7762           addend = psymval->value(object, addend);
7763         }
7764       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7765         {
7766           if (addend >= 32768)
7767             addend += got2_addend;
7768         }
7769       else
7770         gold_unreachable();
7771
7772       if (!parameters->options().relocatable())
7773         {
7774           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7775               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7776               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7777               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7778             {
7779               // First instruction of a global dynamic sequence,
7780               // arg setup insn.
7781               const bool final = gsym == NULL || gsym->final_value_is_known();
7782               switch (this->optimize_tls_gd(final))
7783                 {
7784                 case tls::TLSOPT_TO_IE:
7785                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7786                              - elfcpp::R_POWERPC_GOT_TLSGD16);
7787                   break;
7788                 case tls::TLSOPT_TO_LE:
7789                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7790                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7791                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7792                   else
7793                     {
7794                       r_type = elfcpp::R_POWERPC_NONE;
7795                       offset -= 2 * big_endian;
7796                     }
7797                   break;
7798                 default:
7799                   break;
7800                 }
7801             }
7802           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7803                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7804                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7805                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7806             {
7807               // First instruction of a local dynamic sequence,
7808               // arg setup insn.
7809               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7810                 {
7811                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7812                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7813                     {
7814                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
7815                       const Output_section* os = relinfo->layout->tls_segment()
7816                         ->first_section();
7817                       gold_assert(os != NULL);
7818                       gold_assert(os->needs_symtab_index());
7819                       r_sym = os->symtab_index();
7820                       addend = dtp_offset;
7821                     }
7822                   else
7823                     {
7824                       r_type = elfcpp::R_POWERPC_NONE;
7825                       offset -= 2 * big_endian;
7826                     }
7827                 }
7828             }
7829           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7830                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7831                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7832                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7833             {
7834               // First instruction of initial exec sequence.
7835               const bool final = gsym == NULL || gsym->final_value_is_known();
7836               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7837                 {
7838                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7839                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7840                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7841                   else
7842                     {
7843                       r_type = elfcpp::R_POWERPC_NONE;
7844                       offset -= 2 * big_endian;
7845                     }
7846                 }
7847             }
7848           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7849                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7850             {
7851               // Second instruction of a global dynamic sequence,
7852               // the __tls_get_addr call
7853               const bool final = gsym == NULL || gsym->final_value_is_known();
7854               switch (this->optimize_tls_gd(final))
7855                 {
7856                 case tls::TLSOPT_TO_IE:
7857                   r_type = elfcpp::R_POWERPC_NONE;
7858                   zap_next = true;
7859                   break;
7860                 case tls::TLSOPT_TO_LE:
7861                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7862                   offset += 2 * big_endian;
7863                   zap_next = true;
7864                   break;
7865                 default:
7866                   break;
7867                 }
7868             }
7869           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7870                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7871             {
7872               // Second instruction of a local dynamic sequence,
7873               // the __tls_get_addr call
7874               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7875                 {
7876                   const Output_section* os = relinfo->layout->tls_segment()
7877                     ->first_section();
7878                   gold_assert(os != NULL);
7879                   gold_assert(os->needs_symtab_index());
7880                   r_sym = os->symtab_index();
7881                   addend = dtp_offset;
7882                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7883                   offset += 2 * big_endian;
7884                   zap_next = true;
7885                 }
7886             }
7887           else if (r_type == elfcpp::R_POWERPC_TLS)
7888             {
7889               // Second instruction of an initial exec sequence
7890               const bool final = gsym == NULL || gsym->final_value_is_known();
7891               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7892                 {
7893                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
7894                   offset += 2 * big_endian;
7895                 }
7896             }
7897         }
7898
7899       reloc_write.put_r_offset(offset);
7900       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
7901       reloc_write.put_r_addend(addend);
7902
7903       pwrite += reloc_size;
7904     }
7905
7906   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
7907               == reloc_view_size);
7908 }
7909
7910 // Return the value to use for a dynamic symbol which requires special
7911 // treatment.  This is how we support equality comparisons of function
7912 // pointers across shared library boundaries, as described in the
7913 // processor specific ABI supplement.
7914
7915 template<int size, bool big_endian>
7916 uint64_t
7917 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7918 {
7919   if (size == 32)
7920     {
7921       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
7922       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7923            p != this->stub_tables_.end();
7924            ++p)
7925         {
7926           Address off = (*p)->find_plt_call_entry(gsym);
7927           if (off != invalid_address)
7928             return (*p)->stub_address() + off;
7929         }
7930     }
7931   gold_unreachable();
7932 }
7933
7934 // Return the PLT address to use for a local symbol.
7935 template<int size, bool big_endian>
7936 uint64_t
7937 Target_powerpc<size, big_endian>::do_plt_address_for_local(
7938     const Relobj* object,
7939     unsigned int symndx) const
7940 {
7941   if (size == 32)
7942     {
7943       const Sized_relobj<size, big_endian>* relobj
7944         = static_cast<const Sized_relobj<size, big_endian>*>(object);
7945       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7946            p != this->stub_tables_.end();
7947            ++p)
7948         {
7949           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
7950                                                   symndx);
7951           if (off != invalid_address)
7952             return (*p)->stub_address() + off;
7953         }
7954     }
7955   gold_unreachable();
7956 }
7957
7958 // Return the PLT address to use for a global symbol.
7959 template<int size, bool big_endian>
7960 uint64_t
7961 Target_powerpc<size, big_endian>::do_plt_address_for_global(
7962     const Symbol* gsym) const
7963 {
7964   if (size == 32)
7965     {
7966       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7967            p != this->stub_tables_.end();
7968            ++p)
7969         {
7970           Address off = (*p)->find_plt_call_entry(gsym);
7971           if (off != invalid_address)
7972             return (*p)->stub_address() + off;
7973         }
7974     }
7975   gold_unreachable();
7976 }
7977
7978 // Return the offset to use for the GOT_INDX'th got entry which is
7979 // for a local tls symbol specified by OBJECT, SYMNDX.
7980 template<int size, bool big_endian>
7981 int64_t
7982 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
7983     const Relobj* object,
7984     unsigned int symndx,
7985     unsigned int got_indx) const
7986 {
7987   const Powerpc_relobj<size, big_endian>* ppc_object
7988     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
7989   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
7990     {
7991       for (Got_type got_type = GOT_TYPE_TLSGD;
7992            got_type <= GOT_TYPE_TPREL;
7993            got_type = Got_type(got_type + 1))
7994         if (ppc_object->local_has_got_offset(symndx, got_type))
7995           {
7996             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
7997             if (got_type == GOT_TYPE_TLSGD)
7998               off += size / 8;
7999             if (off == got_indx * (size / 8))
8000               {
8001                 if (got_type == GOT_TYPE_TPREL)
8002                   return -tp_offset;
8003                 else
8004                   return -dtp_offset;
8005               }
8006           }
8007     }
8008   gold_unreachable();
8009 }
8010
8011 // Return the offset to use for the GOT_INDX'th got entry which is
8012 // for global tls symbol GSYM.
8013 template<int size, bool big_endian>
8014 int64_t
8015 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8016     Symbol* gsym,
8017     unsigned int got_indx) const
8018 {
8019   if (gsym->type() == elfcpp::STT_TLS)
8020     {
8021       for (Got_type got_type = GOT_TYPE_TLSGD;
8022            got_type <= GOT_TYPE_TPREL;
8023            got_type = Got_type(got_type + 1))
8024         if (gsym->has_got_offset(got_type))
8025           {
8026             unsigned int off = gsym->got_offset(got_type);
8027             if (got_type == GOT_TYPE_TLSGD)
8028               off += size / 8;
8029             if (off == got_indx * (size / 8))
8030               {
8031                 if (got_type == GOT_TYPE_TPREL)
8032                   return -tp_offset;
8033                 else
8034                   return -dtp_offset;
8035               }
8036           }
8037     }
8038   gold_unreachable();
8039 }
8040
8041 // The selector for powerpc object files.
8042
8043 template<int size, bool big_endian>
8044 class Target_selector_powerpc : public Target_selector
8045 {
8046 public:
8047   Target_selector_powerpc()
8048     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8049                       size, big_endian,
8050                       (size == 64
8051                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8052                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8053                       (size == 64
8054                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8055                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8056   { }
8057
8058   virtual Target*
8059   do_instantiate_target()
8060   { return new Target_powerpc<size, big_endian>(); }
8061 };
8062
8063 Target_selector_powerpc<32, true> target_selector_ppc32;
8064 Target_selector_powerpc<32, false> target_selector_ppc32le;
8065 Target_selector_powerpc<64, true> target_selector_ppc64;
8066 Target_selector_powerpc<64, false> target_selector_ppc64le;
8067
8068 // Instantiate these constants for -O0
8069 template<int size, bool big_endian>
8070 const int Output_data_glink<size, big_endian>::pltresolve_size;
8071 template<int size, bool big_endian>
8072 const typename Stub_table<size, big_endian>::Address
8073   Stub_table<size, big_endian>::invalid_address;
8074 template<int size, bool big_endian>
8075 const typename Target_powerpc<size, big_endian>::Address
8076   Target_powerpc<size, big_endian>::invalid_address;
8077
8078 } // End anonymous namespace.