0a42e5d3c03079809a333469aa4711e0d7c139d5
[external/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2017 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73   Stub_table_owner()
74     : output_section(NULL), owner(NULL)
75   { }
76
77   Output_section* output_section;
78   const Output_section::Input_section* owner;
79 };
80
81 inline bool
82 is_branch_reloc(unsigned int r_type);
83
84 template<int size, bool big_endian>
85 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
86 {
87 public:
88   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
89   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
90   typedef Unordered_map<Address, Section_refs> Access_from;
91
92   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
93                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
94     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
95       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
96       opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
97       e_flags_(ehdr.get_e_flags()), st_other_()
98   {
99     this->set_abiversion(0);
100   }
101
102   ~Powerpc_relobj()
103   { }
104
105   // Read the symbols then set up st_other vector.
106   void
107   do_read_symbols(Read_symbols_data*);
108
109   // The .got2 section shndx.
110   unsigned int
111   got2_shndx() const
112   {
113     if (size == 32)
114       return this->special_;
115     else
116       return 0;
117   }
118
119   // The .opd section shndx.
120   unsigned int
121   opd_shndx() const
122   {
123     if (size == 32)
124       return 0;
125     else
126       return this->special_;
127   }
128
129   // Init OPD entry arrays.
130   void
131   init_opd(size_t opd_size)
132   {
133     size_t count = this->opd_ent_ndx(opd_size);
134     this->opd_ent_.resize(count);
135   }
136
137   // Return section and offset of function entry for .opd + R_OFF.
138   unsigned int
139   get_opd_ent(Address r_off, Address* value = NULL) const
140   {
141     size_t ndx = this->opd_ent_ndx(r_off);
142     gold_assert(ndx < this->opd_ent_.size());
143     gold_assert(this->opd_ent_[ndx].shndx != 0);
144     if (value != NULL)
145       *value = this->opd_ent_[ndx].off;
146     return this->opd_ent_[ndx].shndx;
147   }
148
149   // Set section and offset of function entry for .opd + R_OFF.
150   void
151   set_opd_ent(Address r_off, unsigned int shndx, Address value)
152   {
153     size_t ndx = this->opd_ent_ndx(r_off);
154     gold_assert(ndx < this->opd_ent_.size());
155     this->opd_ent_[ndx].shndx = shndx;
156     this->opd_ent_[ndx].off = value;
157   }
158
159   // Return discard flag for .opd + R_OFF.
160   bool
161   get_opd_discard(Address r_off) const
162   {
163     size_t ndx = this->opd_ent_ndx(r_off);
164     gold_assert(ndx < this->opd_ent_.size());
165     return this->opd_ent_[ndx].discard;
166   }
167
168   // Set discard flag for .opd + R_OFF.
169   void
170   set_opd_discard(Address r_off)
171   {
172     size_t ndx = this->opd_ent_ndx(r_off);
173     gold_assert(ndx < this->opd_ent_.size());
174     this->opd_ent_[ndx].discard = true;
175   }
176
177   bool
178   opd_valid() const
179   { return this->opd_valid_; }
180
181   void
182   set_opd_valid()
183   { this->opd_valid_ = true; }
184
185   // Examine .rela.opd to build info about function entry points.
186   void
187   scan_opd_relocs(size_t reloc_count,
188                   const unsigned char* prelocs,
189                   const unsigned char* plocal_syms);
190
191   // Perform the Sized_relobj_file method, then set up opd info from
192   // .opd relocs.
193   void
194   do_read_relocs(Read_relocs_data*);
195
196   bool
197   do_find_special_sections(Read_symbols_data* sd);
198
199   // Adjust this local symbol value.  Return false if the symbol
200   // should be discarded from the output file.
201   bool
202   do_adjust_local_symbol(Symbol_value<size>* lv) const
203   {
204     if (size == 64 && this->opd_shndx() != 0)
205       {
206         bool is_ordinary;
207         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
208           return true;
209         if (this->get_opd_discard(lv->input_value()))
210           return false;
211       }
212     return true;
213   }
214
215   Access_from*
216   access_from_map()
217   { return &this->access_from_map_; }
218
219   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
220   // section at DST_OFF.
221   void
222   add_reference(Relobj* src_obj,
223                 unsigned int src_indx,
224                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
225   {
226     Section_id src_id(src_obj, src_indx);
227     this->access_from_map_[dst_off].insert(src_id);
228   }
229
230   // Add a reference to the code section specified by the .opd entry
231   // at DST_OFF
232   void
233   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
234   {
235     size_t ndx = this->opd_ent_ndx(dst_off);
236     if (ndx >= this->opd_ent_.size())
237       this->opd_ent_.resize(ndx + 1);
238     this->opd_ent_[ndx].gc_mark = true;
239   }
240
241   void
242   process_gc_mark(Symbol_table* symtab)
243   {
244     for (size_t i = 0; i < this->opd_ent_.size(); i++)
245       if (this->opd_ent_[i].gc_mark)
246         {
247           unsigned int shndx = this->opd_ent_[i].shndx;
248           symtab->gc()->worklist().push_back(Section_id(this, shndx));
249         }
250   }
251
252   // Return offset in output GOT section that this object will use
253   // as a TOC pointer.  Won't be just a constant with multi-toc support.
254   Address
255   toc_base_offset() const
256   { return 0x8000; }
257
258   void
259   set_has_small_toc_reloc()
260   { has_small_toc_reloc_ = true; }
261
262   bool
263   has_small_toc_reloc() const
264   { return has_small_toc_reloc_; }
265
266   void
267   set_has_14bit_branch(unsigned int shndx)
268   {
269     if (shndx >= this->has14_.size())
270       this->has14_.resize(shndx + 1);
271     this->has14_[shndx] = true;
272   }
273
274   bool
275   has_14bit_branch(unsigned int shndx) const
276   { return shndx < this->has14_.size() && this->has14_[shndx];  }
277
278   void
279   set_stub_table(unsigned int shndx, unsigned int stub_index)
280   {
281     if (shndx >= this->stub_table_index_.size())
282       this->stub_table_index_.resize(shndx + 1, -1);
283     this->stub_table_index_[shndx] = stub_index;
284   }
285
286   Stub_table<size, big_endian>*
287   stub_table(unsigned int shndx)
288   {
289     if (shndx < this->stub_table_index_.size())
290       {
291         Target_powerpc<size, big_endian>* target
292           = static_cast<Target_powerpc<size, big_endian>*>(
293               parameters->sized_target<size, big_endian>());
294         unsigned int indx = this->stub_table_index_[shndx];
295         if (indx < target->stub_tables().size())
296           return target->stub_tables()[indx];
297       }
298     return NULL;
299   }
300
301   void
302   clear_stub_table()
303   {
304     this->stub_table_index_.clear();
305   }
306
307   int
308   abiversion() const
309   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
310
311   // Set ABI version for input and output
312   void
313   set_abiversion(int ver);
314
315   unsigned int
316   ppc64_local_entry_offset(const Symbol* sym) const
317   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
318
319   unsigned int
320   ppc64_local_entry_offset(unsigned int symndx) const
321   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
322
323 private:
324   struct Opd_ent
325   {
326     unsigned int shndx;
327     bool discard : 1;
328     bool gc_mark : 1;
329     Address off;
330   };
331
332   // Return index into opd_ent_ array for .opd entry at OFF.
333   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
334   // apart when the language doesn't use the last 8-byte word, the
335   // environment pointer.  Thus dividing the entry section offset by
336   // 16 will give an index into opd_ent_ that works for either layout
337   // of .opd.  (It leaves some elements of the vector unused when .opd
338   // entries are spaced 24 bytes apart, but we don't know the spacing
339   // until relocations are processed, and in any case it is possible
340   // for an object to have some entries spaced 16 bytes apart and
341   // others 24 bytes apart.)
342   size_t
343   opd_ent_ndx(size_t off) const
344   { return off >> 4;}
345
346   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
347   unsigned int special_;
348
349   // For 64-bit, whether this object uses small model relocs to access
350   // the toc.
351   bool has_small_toc_reloc_;
352
353   // Set at the start of gc_process_relocs, when we know opd_ent_
354   // vector is valid.  The flag could be made atomic and set in
355   // do_read_relocs with memory_order_release and then tested with
356   // memory_order_acquire, potentially resulting in fewer entries in
357   // access_from_map_.
358   bool opd_valid_;
359
360   // The first 8-byte word of an OPD entry gives the address of the
361   // entry point of the function.  Relocatable object files have a
362   // relocation on this word.  The following vector records the
363   // section and offset specified by these relocations.
364   std::vector<Opd_ent> opd_ent_;
365
366   // References made to this object's .opd section when running
367   // gc_process_relocs for another object, before the opd_ent_ vector
368   // is valid for this object.
369   Access_from access_from_map_;
370
371   // Whether input section has a 14-bit branch reloc.
372   std::vector<bool> has14_;
373
374   // The stub table to use for a given input section.
375   std::vector<unsigned int> stub_table_index_;
376
377   // Header e_flags
378   elfcpp::Elf_Word e_flags_;
379
380   // ELF st_other field for local symbols.
381   std::vector<unsigned char> st_other_;
382 };
383
384 template<int size, bool big_endian>
385 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
386 {
387 public:
388   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
389
390   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
391                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
392     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
393       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
394   {
395     this->set_abiversion(0);
396   }
397
398   ~Powerpc_dynobj()
399   { }
400
401   // Call Sized_dynobj::do_read_symbols to read the symbols then
402   // read .opd from a dynamic object, filling in opd_ent_ vector,
403   void
404   do_read_symbols(Read_symbols_data*);
405
406   // The .opd section shndx.
407   unsigned int
408   opd_shndx() const
409   {
410     return this->opd_shndx_;
411   }
412
413   // The .opd section address.
414   Address
415   opd_address() const
416   {
417     return this->opd_address_;
418   }
419
420   // Init OPD entry arrays.
421   void
422   init_opd(size_t opd_size)
423   {
424     size_t count = this->opd_ent_ndx(opd_size);
425     this->opd_ent_.resize(count);
426   }
427
428   // Return section and offset of function entry for .opd + R_OFF.
429   unsigned int
430   get_opd_ent(Address r_off, Address* value = NULL) const
431   {
432     size_t ndx = this->opd_ent_ndx(r_off);
433     gold_assert(ndx < this->opd_ent_.size());
434     gold_assert(this->opd_ent_[ndx].shndx != 0);
435     if (value != NULL)
436       *value = this->opd_ent_[ndx].off;
437     return this->opd_ent_[ndx].shndx;
438   }
439
440   // Set section and offset of function entry for .opd + R_OFF.
441   void
442   set_opd_ent(Address r_off, unsigned int shndx, Address value)
443   {
444     size_t ndx = this->opd_ent_ndx(r_off);
445     gold_assert(ndx < this->opd_ent_.size());
446     this->opd_ent_[ndx].shndx = shndx;
447     this->opd_ent_[ndx].off = value;
448   }
449
450   int
451   abiversion() const
452   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
453
454   // Set ABI version for input and output.
455   void
456   set_abiversion(int ver);
457
458 private:
459   // Used to specify extent of executable sections.
460   struct Sec_info
461   {
462     Sec_info(Address start_, Address len_, unsigned int shndx_)
463       : start(start_), len(len_), shndx(shndx_)
464     { }
465
466     bool
467     operator<(const Sec_info& that) const
468     { return this->start < that.start; }
469
470     Address start;
471     Address len;
472     unsigned int shndx;
473   };
474
475   struct Opd_ent
476   {
477     unsigned int shndx;
478     Address off;
479   };
480
481   // Return index into opd_ent_ array for .opd entry at OFF.
482   size_t
483   opd_ent_ndx(size_t off) const
484   { return off >> 4;}
485
486   // For 64-bit the .opd section shndx and address.
487   unsigned int opd_shndx_;
488   Address opd_address_;
489
490   // The first 8-byte word of an OPD entry gives the address of the
491   // entry point of the function.  Records the section and offset
492   // corresponding to the address.  Note that in dynamic objects,
493   // offset is *not* relative to the section.
494   std::vector<Opd_ent> opd_ent_;
495
496   // Header e_flags
497   elfcpp::Elf_Word e_flags_;
498 };
499
500 template<int size, bool big_endian>
501 class Target_powerpc : public Sized_target<size, big_endian>
502 {
503  public:
504   typedef
505     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
506   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
507   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
508   static const Address invalid_address = static_cast<Address>(0) - 1;
509   // Offset of tp and dtp pointers from start of TLS block.
510   static const Address tp_offset = 0x7000;
511   static const Address dtp_offset = 0x8000;
512
513   Target_powerpc()
514     : Sized_target<size, big_endian>(&powerpc_info),
515       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
516       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
517       tlsld_got_offset_(-1U),
518       stub_tables_(), branch_lookup_table_(), branch_info_(),
519       plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
520       stub_group_size_(0), savres_section_(0)
521   {
522   }
523
524   // Process the relocations to determine unreferenced sections for
525   // garbage collection.
526   void
527   gc_process_relocs(Symbol_table* symtab,
528                     Layout* layout,
529                     Sized_relobj_file<size, big_endian>* object,
530                     unsigned int data_shndx,
531                     unsigned int sh_type,
532                     const unsigned char* prelocs,
533                     size_t reloc_count,
534                     Output_section* output_section,
535                     bool needs_special_offset_handling,
536                     size_t local_symbol_count,
537                     const unsigned char* plocal_symbols);
538
539   // Scan the relocations to look for symbol adjustments.
540   void
541   scan_relocs(Symbol_table* symtab,
542               Layout* layout,
543               Sized_relobj_file<size, big_endian>* object,
544               unsigned int data_shndx,
545               unsigned int sh_type,
546               const unsigned char* prelocs,
547               size_t reloc_count,
548               Output_section* output_section,
549               bool needs_special_offset_handling,
550               size_t local_symbol_count,
551               const unsigned char* plocal_symbols);
552
553   // Map input .toc section to output .got section.
554   const char*
555   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
556   {
557     if (size == 64 && strcmp(name, ".toc") == 0)
558       {
559         *plen = 4;
560         return ".got";
561       }
562     return NULL;
563   }
564
565   // Provide linker defined save/restore functions.
566   void
567   define_save_restore_funcs(Layout*, Symbol_table*);
568
569   // No stubs unless a final link.
570   bool
571   do_may_relax() const
572   { return !parameters->options().relocatable(); }
573
574   bool
575   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
576
577   void
578   do_plt_fde_location(const Output_data*, unsigned char*,
579                       uint64_t*, off_t*) const;
580
581   // Stash info about branches, for stub generation.
582   void
583   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
584               unsigned int data_shndx, Address r_offset,
585               unsigned int r_type, unsigned int r_sym, Address addend)
586   {
587     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
588     this->branch_info_.push_back(info);
589     if (r_type == elfcpp::R_POWERPC_REL14
590         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
591         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
592       ppc_object->set_has_14bit_branch(data_shndx);
593   }
594
595   void
596   do_define_standard_symbols(Symbol_table*, Layout*);
597
598   // Finalize the sections.
599   void
600   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
601
602   // Return the value to use for a dynamic which requires special
603   // treatment.
604   uint64_t
605   do_dynsym_value(const Symbol*) const;
606
607   // Return the PLT address to use for a local symbol.
608   uint64_t
609   do_plt_address_for_local(const Relobj*, unsigned int) const;
610
611   // Return the PLT address to use for a global symbol.
612   uint64_t
613   do_plt_address_for_global(const Symbol*) const;
614
615   // Return the offset to use for the GOT_INDX'th got entry which is
616   // for a local tls symbol specified by OBJECT, SYMNDX.
617   int64_t
618   do_tls_offset_for_local(const Relobj* object,
619                           unsigned int symndx,
620                           unsigned int got_indx) const;
621
622   // Return the offset to use for the GOT_INDX'th got entry which is
623   // for global tls symbol GSYM.
624   int64_t
625   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
626
627   void
628   do_function_location(Symbol_location*) const;
629
630   bool
631   do_can_check_for_function_pointers() const
632   { return true; }
633
634   // Adjust -fsplit-stack code which calls non-split-stack code.
635   void
636   do_calls_non_split(Relobj* object, unsigned int shndx,
637                      section_offset_type fnoffset, section_size_type fnsize,
638                      const unsigned char* prelocs, size_t reloc_count,
639                      unsigned char* view, section_size_type view_size,
640                      std::string* from, std::string* to) const;
641
642   // Relocate a section.
643   void
644   relocate_section(const Relocate_info<size, big_endian>*,
645                    unsigned int sh_type,
646                    const unsigned char* prelocs,
647                    size_t reloc_count,
648                    Output_section* output_section,
649                    bool needs_special_offset_handling,
650                    unsigned char* view,
651                    Address view_address,
652                    section_size_type view_size,
653                    const Reloc_symbol_changes*);
654
655   // Scan the relocs during a relocatable link.
656   void
657   scan_relocatable_relocs(Symbol_table* symtab,
658                           Layout* layout,
659                           Sized_relobj_file<size, big_endian>* object,
660                           unsigned int data_shndx,
661                           unsigned int sh_type,
662                           const unsigned char* prelocs,
663                           size_t reloc_count,
664                           Output_section* output_section,
665                           bool needs_special_offset_handling,
666                           size_t local_symbol_count,
667                           const unsigned char* plocal_symbols,
668                           Relocatable_relocs*);
669
670   // Scan the relocs for --emit-relocs.
671   void
672   emit_relocs_scan(Symbol_table* symtab,
673                    Layout* layout,
674                    Sized_relobj_file<size, big_endian>* object,
675                    unsigned int data_shndx,
676                    unsigned int sh_type,
677                    const unsigned char* prelocs,
678                    size_t reloc_count,
679                    Output_section* output_section,
680                    bool needs_special_offset_handling,
681                    size_t local_symbol_count,
682                    const unsigned char* plocal_syms,
683                    Relocatable_relocs* rr);
684
685   // Emit relocations for a section.
686   void
687   relocate_relocs(const Relocate_info<size, big_endian>*,
688                   unsigned int sh_type,
689                   const unsigned char* prelocs,
690                   size_t reloc_count,
691                   Output_section* output_section,
692                   typename elfcpp::Elf_types<size>::Elf_Off
693                     offset_in_output_section,
694                   unsigned char*,
695                   Address view_address,
696                   section_size_type,
697                   unsigned char* reloc_view,
698                   section_size_type reloc_view_size);
699
700   // Return whether SYM is defined by the ABI.
701   bool
702   do_is_defined_by_abi(const Symbol* sym) const
703   {
704     return strcmp(sym->name(), "__tls_get_addr") == 0;
705   }
706
707   // Return the size of the GOT section.
708   section_size_type
709   got_size() const
710   {
711     gold_assert(this->got_ != NULL);
712     return this->got_->data_size();
713   }
714
715   // Get the PLT section.
716   const Output_data_plt_powerpc<size, big_endian>*
717   plt_section() const
718   {
719     gold_assert(this->plt_ != NULL);
720     return this->plt_;
721   }
722
723   // Get the IPLT section.
724   const Output_data_plt_powerpc<size, big_endian>*
725   iplt_section() const
726   {
727     gold_assert(this->iplt_ != NULL);
728     return this->iplt_;
729   }
730
731   // Get the .glink section.
732   const Output_data_glink<size, big_endian>*
733   glink_section() const
734   {
735     gold_assert(this->glink_ != NULL);
736     return this->glink_;
737   }
738
739   Output_data_glink<size, big_endian>*
740   glink_section()
741   {
742     gold_assert(this->glink_ != NULL);
743     return this->glink_;
744   }
745
746   bool has_glink() const
747   { return this->glink_ != NULL; }
748
749   // Get the GOT section.
750   const Output_data_got_powerpc<size, big_endian>*
751   got_section() const
752   {
753     gold_assert(this->got_ != NULL);
754     return this->got_;
755   }
756
757   // Get the GOT section, creating it if necessary.
758   Output_data_got_powerpc<size, big_endian>*
759   got_section(Symbol_table*, Layout*);
760
761   Object*
762   do_make_elf_object(const std::string&, Input_file*, off_t,
763                      const elfcpp::Ehdr<size, big_endian>&);
764
765   // Return the number of entries in the GOT.
766   unsigned int
767   got_entry_count() const
768   {
769     if (this->got_ == NULL)
770       return 0;
771     return this->got_size() / (size / 8);
772   }
773
774   // Return the number of entries in the PLT.
775   unsigned int
776   plt_entry_count() const;
777
778   // Return the offset of the first non-reserved PLT entry.
779   unsigned int
780   first_plt_entry_offset() const
781   {
782     if (size == 32)
783       return 0;
784     if (this->abiversion() >= 2)
785       return 16;
786     return 24;
787   }
788
789   // Return the size of each PLT entry.
790   unsigned int
791   plt_entry_size() const
792   {
793     if (size == 32)
794       return 4;
795     if (this->abiversion() >= 2)
796       return 8;
797     return 24;
798   }
799
800   Output_data_save_res<size, big_endian>*
801   savres_section() const
802   {
803     return this->savres_section_;
804   }
805
806   // Add any special sections for this symbol to the gc work list.
807   // For powerpc64, this adds the code section of a function
808   // descriptor.
809   void
810   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
811
812   // Handle target specific gc actions when adding a gc reference from
813   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
814   // and DST_OFF.  For powerpc64, this adds a referenc to the code
815   // section of a function descriptor.
816   void
817   do_gc_add_reference(Symbol_table* symtab,
818                       Relobj* src_obj,
819                       unsigned int src_shndx,
820                       Relobj* dst_obj,
821                       unsigned int dst_shndx,
822                       Address dst_off) const;
823
824   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
825   const Stub_tables&
826   stub_tables() const
827   { return this->stub_tables_; }
828
829   const Output_data_brlt_powerpc<size, big_endian>*
830   brlt_section() const
831   { return this->brlt_section_; }
832
833   void
834   add_branch_lookup_table(Address to)
835   {
836     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
837     this->branch_lookup_table_.insert(std::make_pair(to, off));
838   }
839
840   Address
841   find_branch_lookup_table(Address to)
842   {
843     typename Branch_lookup_table::const_iterator p
844       = this->branch_lookup_table_.find(to);
845     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
846   }
847
848   void
849   write_branch_lookup_table(unsigned char *oview)
850   {
851     for (typename Branch_lookup_table::const_iterator p
852            = this->branch_lookup_table_.begin();
853          p != this->branch_lookup_table_.end();
854          ++p)
855       {
856         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
857       }
858   }
859
860   bool
861   plt_thread_safe() const
862   { return this->plt_thread_safe_; }
863
864   int
865   abiversion () const
866   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
867
868   void
869   set_abiversion (int ver)
870   {
871     elfcpp::Elf_Word flags = this->processor_specific_flags();
872     flags &= ~elfcpp::EF_PPC64_ABI;
873     flags |= ver & elfcpp::EF_PPC64_ABI;
874     this->set_processor_specific_flags(flags);
875   }
876
877   // Offset to to save stack slot
878   int
879   stk_toc () const
880   { return this->abiversion() < 2 ? 40 : 24; }
881
882  private:
883
884   class Track_tls
885   {
886   public:
887     enum Tls_get_addr
888     {
889       NOT_EXPECTED = 0,
890       EXPECTED = 1,
891       SKIP = 2,
892       NORMAL = 3
893     };
894
895     Track_tls()
896       : tls_get_addr_(NOT_EXPECTED),
897         relinfo_(NULL), relnum_(0), r_offset_(0)
898     { }
899
900     ~Track_tls()
901     {
902       if (this->tls_get_addr_ != NOT_EXPECTED)
903         this->missing();
904     }
905
906     void
907     missing(void)
908     {
909       if (this->relinfo_ != NULL)
910         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
911                                _("missing expected __tls_get_addr call"));
912     }
913
914     void
915     expect_tls_get_addr_call(
916         const Relocate_info<size, big_endian>* relinfo,
917         size_t relnum,
918         Address r_offset)
919     {
920       this->tls_get_addr_ = EXPECTED;
921       this->relinfo_ = relinfo;
922       this->relnum_ = relnum;
923       this->r_offset_ = r_offset;
924     }
925
926     void
927     expect_tls_get_addr_call()
928     { this->tls_get_addr_ = EXPECTED; }
929
930     void
931     skip_next_tls_get_addr_call()
932     {this->tls_get_addr_ = SKIP; }
933
934     Tls_get_addr
935     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
936     {
937       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
938                            || r_type == elfcpp::R_PPC_PLTREL24)
939                           && gsym != NULL
940                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
941       Tls_get_addr last_tls = this->tls_get_addr_;
942       this->tls_get_addr_ = NOT_EXPECTED;
943       if (is_tls_call && last_tls != EXPECTED)
944         return last_tls;
945       else if (!is_tls_call && last_tls != NOT_EXPECTED)
946         {
947           this->missing();
948           return EXPECTED;
949         }
950       return NORMAL;
951     }
952
953   private:
954     // What we're up to regarding calls to __tls_get_addr.
955     // On powerpc, the branch and link insn making a call to
956     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
957     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
958     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
959     // The marker relocation always comes first, and has the same
960     // symbol as the reloc on the insn setting up the __tls_get_addr
961     // argument.  This ties the arg setup insn with the call insn,
962     // allowing ld to safely optimize away the call.  We check that
963     // every call to __tls_get_addr has a marker relocation, and that
964     // every marker relocation is on a call to __tls_get_addr.
965     Tls_get_addr tls_get_addr_;
966     // Info about the last reloc for error message.
967     const Relocate_info<size, big_endian>* relinfo_;
968     size_t relnum_;
969     Address r_offset_;
970   };
971
972   // The class which scans relocations.
973   class Scan : protected Track_tls
974   {
975   public:
976     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
977
978     Scan()
979       : Track_tls(), issued_non_pic_error_(false)
980     { }
981
982     static inline int
983     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
984
985     inline void
986     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
987           Sized_relobj_file<size, big_endian>* object,
988           unsigned int data_shndx,
989           Output_section* output_section,
990           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
991           const elfcpp::Sym<size, big_endian>& lsym,
992           bool is_discarded);
993
994     inline void
995     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
996            Sized_relobj_file<size, big_endian>* object,
997            unsigned int data_shndx,
998            Output_section* output_section,
999            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1000            Symbol* gsym);
1001
1002     inline bool
1003     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1004                                         Target_powerpc* ,
1005                                         Sized_relobj_file<size, big_endian>* relobj,
1006                                         unsigned int ,
1007                                         Output_section* ,
1008                                         const elfcpp::Rela<size, big_endian>& ,
1009                                         unsigned int r_type,
1010                                         const elfcpp::Sym<size, big_endian>&)
1011     {
1012       // PowerPC64 .opd is not folded, so any identical function text
1013       // may be folded and we'll still keep function addresses distinct.
1014       // That means no reloc is of concern here.
1015       if (size == 64)
1016         {
1017           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1018             <Powerpc_relobj<size, big_endian>*>(relobj);
1019           if (ppcobj->abiversion() == 1)
1020             return false;
1021         }
1022       // For 32-bit and ELFv2, conservatively assume anything but calls to
1023       // function code might be taking the address of the function.
1024       return !is_branch_reloc(r_type);
1025     }
1026
1027     inline bool
1028     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1029                                          Target_powerpc* ,
1030                                          Sized_relobj_file<size, big_endian>* relobj,
1031                                          unsigned int ,
1032                                          Output_section* ,
1033                                          const elfcpp::Rela<size, big_endian>& ,
1034                                          unsigned int r_type,
1035                                          Symbol*)
1036     {
1037       // As above.
1038       if (size == 64)
1039         {
1040           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1041             <Powerpc_relobj<size, big_endian>*>(relobj);
1042           if (ppcobj->abiversion() == 1)
1043             return false;
1044         }
1045       return !is_branch_reloc(r_type);
1046     }
1047
1048     static bool
1049     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1050                               Sized_relobj_file<size, big_endian>* object,
1051                               unsigned int r_type, bool report_err);
1052
1053   private:
1054     static void
1055     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1056                             unsigned int r_type);
1057
1058     static void
1059     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1060                              unsigned int r_type, Symbol*);
1061
1062     static void
1063     generate_tls_call(Symbol_table* symtab, Layout* layout,
1064                       Target_powerpc* target);
1065
1066     void
1067     check_non_pic(Relobj*, unsigned int r_type);
1068
1069     // Whether we have issued an error about a non-PIC compilation.
1070     bool issued_non_pic_error_;
1071   };
1072
1073   bool
1074   symval_for_branch(const Symbol_table* symtab,
1075                     const Sized_symbol<size>* gsym,
1076                     Powerpc_relobj<size, big_endian>* object,
1077                     Address *value, unsigned int *dest_shndx);
1078
1079   // The class which implements relocation.
1080   class Relocate : protected Track_tls
1081   {
1082    public:
1083     // Use 'at' branch hints when true, 'y' when false.
1084     // FIXME maybe: set this with an option.
1085     static const bool is_isa_v2 = true;
1086
1087     Relocate()
1088       : Track_tls()
1089     { }
1090
1091     // Do a relocation.  Return false if the caller should not issue
1092     // any warnings about this relocation.
1093     inline bool
1094     relocate(const Relocate_info<size, big_endian>*, unsigned int,
1095              Target_powerpc*, Output_section*, size_t, const unsigned char*,
1096              const Sized_symbol<size>*, const Symbol_value<size>*,
1097              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1098              section_size_type);
1099   };
1100
1101   class Relocate_comdat_behavior
1102   {
1103    public:
1104     // Decide what the linker should do for relocations that refer to
1105     // discarded comdat sections.
1106     inline Comdat_behavior
1107     get(const char* name)
1108     {
1109       gold::Default_comdat_behavior default_behavior;
1110       Comdat_behavior ret = default_behavior.get(name);
1111       if (ret == CB_WARNING)
1112         {
1113           if (size == 32
1114               && (strcmp(name, ".fixup") == 0
1115                   || strcmp(name, ".got2") == 0))
1116             ret = CB_IGNORE;
1117           if (size == 64
1118               && (strcmp(name, ".opd") == 0
1119                   || strcmp(name, ".toc") == 0
1120                   || strcmp(name, ".toc1") == 0))
1121             ret = CB_IGNORE;
1122         }
1123       return ret;
1124     }
1125   };
1126
1127   // Optimize the TLS relocation type based on what we know about the
1128   // symbol.  IS_FINAL is true if the final address of this symbol is
1129   // known at link time.
1130
1131   tls::Tls_optimization
1132   optimize_tls_gd(bool is_final)
1133   {
1134     // If we are generating a shared library, then we can't do anything
1135     // in the linker.
1136     if (parameters->options().shared())
1137       return tls::TLSOPT_NONE;
1138
1139     if (!is_final)
1140       return tls::TLSOPT_TO_IE;
1141     return tls::TLSOPT_TO_LE;
1142   }
1143
1144   tls::Tls_optimization
1145   optimize_tls_ld()
1146   {
1147     if (parameters->options().shared())
1148       return tls::TLSOPT_NONE;
1149
1150     return tls::TLSOPT_TO_LE;
1151   }
1152
1153   tls::Tls_optimization
1154   optimize_tls_ie(bool is_final)
1155   {
1156     if (!is_final || parameters->options().shared())
1157       return tls::TLSOPT_NONE;
1158
1159     return tls::TLSOPT_TO_LE;
1160   }
1161
1162   // Create glink.
1163   void
1164   make_glink_section(Layout*);
1165
1166   // Create the PLT section.
1167   void
1168   make_plt_section(Symbol_table*, Layout*);
1169
1170   void
1171   make_iplt_section(Symbol_table*, Layout*);
1172
1173   void
1174   make_brlt_section(Layout*);
1175
1176   // Create a PLT entry for a global symbol.
1177   void
1178   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1179
1180   // Create a PLT entry for a local IFUNC symbol.
1181   void
1182   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1183                              Sized_relobj_file<size, big_endian>*,
1184                              unsigned int);
1185
1186
1187   // Create a GOT entry for local dynamic __tls_get_addr.
1188   unsigned int
1189   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1190                    Sized_relobj_file<size, big_endian>* object);
1191
1192   unsigned int
1193   tlsld_got_offset() const
1194   {
1195     return this->tlsld_got_offset_;
1196   }
1197
1198   // Get the dynamic reloc section, creating it if necessary.
1199   Reloc_section*
1200   rela_dyn_section(Layout*);
1201
1202   // Similarly, but for ifunc symbols get the one for ifunc.
1203   Reloc_section*
1204   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1205
1206   // Copy a relocation against a global symbol.
1207   void
1208   copy_reloc(Symbol_table* symtab, Layout* layout,
1209              Sized_relobj_file<size, big_endian>* object,
1210              unsigned int shndx, Output_section* output_section,
1211              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1212   {
1213     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1214     this->copy_relocs_.copy_reloc(symtab, layout,
1215                                   symtab->get_sized_symbol<size>(sym),
1216                                   object, shndx, output_section,
1217                                   r_type, reloc.get_r_offset(),
1218                                   reloc.get_r_addend(),
1219                                   this->rela_dyn_section(layout));
1220   }
1221
1222   // Look over all the input sections, deciding where to place stubs.
1223   void
1224   group_sections(Layout*, const Task*, bool);
1225
1226   // Sort output sections by address.
1227   struct Sort_sections
1228   {
1229     bool
1230     operator()(const Output_section* sec1, const Output_section* sec2)
1231     { return sec1->address() < sec2->address(); }
1232   };
1233
1234   class Branch_info
1235   {
1236    public:
1237     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1238                 unsigned int data_shndx,
1239                 Address r_offset,
1240                 unsigned int r_type,
1241                 unsigned int r_sym,
1242                 Address addend)
1243       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1244         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1245     { }
1246
1247     ~Branch_info()
1248     { }
1249
1250     // If this branch needs a plt call stub, or a long branch stub, make one.
1251     bool
1252     make_stub(Stub_table<size, big_endian>*,
1253               Stub_table<size, big_endian>*,
1254               Symbol_table*) const;
1255
1256    private:
1257     // The branch location..
1258     Powerpc_relobj<size, big_endian>* object_;
1259     unsigned int shndx_;
1260     Address offset_;
1261     // ..and the branch type and destination.
1262     unsigned int r_type_;
1263     unsigned int r_sym_;
1264     Address addend_;
1265   };
1266
1267   // Information about this specific target which we pass to the
1268   // general Target structure.
1269   static Target::Target_info powerpc_info;
1270
1271   // The types of GOT entries needed for this platform.
1272   // These values are exposed to the ABI in an incremental link.
1273   // Do not renumber existing values without changing the version
1274   // number of the .gnu_incremental_inputs section.
1275   enum Got_type
1276   {
1277     GOT_TYPE_STANDARD,
1278     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1279     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1280     GOT_TYPE_TPREL      // entry for @got@tprel
1281   };
1282
1283   // The GOT section.
1284   Output_data_got_powerpc<size, big_endian>* got_;
1285   // The PLT section.  This is a container for a table of addresses,
1286   // and their relocations.  Each address in the PLT has a dynamic
1287   // relocation (R_*_JMP_SLOT) and each address will have a
1288   // corresponding entry in .glink for lazy resolution of the PLT.
1289   // ppc32 initialises the PLT to point at the .glink entry, while
1290   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1291   // linker adds a stub that loads the PLT entry into ctr then
1292   // branches to ctr.  There may be more than one stub for each PLT
1293   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1294   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1295   Output_data_plt_powerpc<size, big_endian>* plt_;
1296   // The IPLT section.  Like plt_, this is a container for a table of
1297   // addresses and their relocations, specifically for STT_GNU_IFUNC
1298   // functions that resolve locally (STT_GNU_IFUNC functions that
1299   // don't resolve locally go in PLT).  Unlike plt_, these have no
1300   // entry in .glink for lazy resolution, and the relocation section
1301   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1302   // the relocation section may contain relocations against
1303   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1304   // relocation section will appear at the end of other dynamic
1305   // relocations, so that ld.so applies these relocations after other
1306   // dynamic relocations.  In a static executable, the relocation
1307   // section is emitted and marked with __rela_iplt_start and
1308   // __rela_iplt_end symbols.
1309   Output_data_plt_powerpc<size, big_endian>* iplt_;
1310   // Section holding long branch destinations.
1311   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1312   // The .glink section.
1313   Output_data_glink<size, big_endian>* glink_;
1314   // The dynamic reloc section.
1315   Reloc_section* rela_dyn_;
1316   // Relocs saved to avoid a COPY reloc.
1317   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1318   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1319   unsigned int tlsld_got_offset_;
1320
1321   Stub_tables stub_tables_;
1322   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1323   Branch_lookup_table branch_lookup_table_;
1324
1325   typedef std::vector<Branch_info> Branches;
1326   Branches branch_info_;
1327
1328   bool plt_thread_safe_;
1329
1330   bool relax_failed_;
1331   int relax_fail_count_;
1332   int32_t stub_group_size_;
1333
1334   Output_data_save_res<size, big_endian> *savres_section_;
1335 };
1336
1337 template<>
1338 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1339 {
1340   32,                   // size
1341   true,                 // is_big_endian
1342   elfcpp::EM_PPC,       // machine_code
1343   false,                // has_make_symbol
1344   false,                // has_resolve
1345   false,                // has_code_fill
1346   true,                 // is_default_stack_executable
1347   false,                // can_icf_inline_merge_sections
1348   '\0',                 // wrap_char
1349   "/usr/lib/ld.so.1",   // dynamic_linker
1350   0x10000000,           // default_text_segment_address
1351   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1352   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1353   false,                // isolate_execinstr
1354   0,                    // rosegment_gap
1355   elfcpp::SHN_UNDEF,    // small_common_shndx
1356   elfcpp::SHN_UNDEF,    // large_common_shndx
1357   0,                    // small_common_section_flags
1358   0,                    // large_common_section_flags
1359   NULL,                 // attributes_section
1360   NULL,                 // attributes_vendor
1361   "_start",             // entry_symbol_name
1362   32,                   // hash_entry_size
1363 };
1364
1365 template<>
1366 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1367 {
1368   32,                   // size
1369   false,                // is_big_endian
1370   elfcpp::EM_PPC,       // machine_code
1371   false,                // has_make_symbol
1372   false,                // has_resolve
1373   false,                // has_code_fill
1374   true,                 // is_default_stack_executable
1375   false,                // can_icf_inline_merge_sections
1376   '\0',                 // wrap_char
1377   "/usr/lib/ld.so.1",   // dynamic_linker
1378   0x10000000,           // default_text_segment_address
1379   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1380   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1381   false,                // isolate_execinstr
1382   0,                    // rosegment_gap
1383   elfcpp::SHN_UNDEF,    // small_common_shndx
1384   elfcpp::SHN_UNDEF,    // large_common_shndx
1385   0,                    // small_common_section_flags
1386   0,                    // large_common_section_flags
1387   NULL,                 // attributes_section
1388   NULL,                 // attributes_vendor
1389   "_start",             // entry_symbol_name
1390   32,                   // hash_entry_size
1391 };
1392
1393 template<>
1394 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1395 {
1396   64,                   // size
1397   true,                 // is_big_endian
1398   elfcpp::EM_PPC64,     // machine_code
1399   false,                // has_make_symbol
1400   false,                // has_resolve
1401   false,                // has_code_fill
1402   true,                 // is_default_stack_executable
1403   false,                // can_icf_inline_merge_sections
1404   '\0',                 // wrap_char
1405   "/usr/lib/ld.so.1",   // dynamic_linker
1406   0x10000000,           // default_text_segment_address
1407   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1408   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1409   false,                // isolate_execinstr
1410   0,                    // rosegment_gap
1411   elfcpp::SHN_UNDEF,    // small_common_shndx
1412   elfcpp::SHN_UNDEF,    // large_common_shndx
1413   0,                    // small_common_section_flags
1414   0,                    // large_common_section_flags
1415   NULL,                 // attributes_section
1416   NULL,                 // attributes_vendor
1417   "_start",             // entry_symbol_name
1418   32,                   // hash_entry_size
1419 };
1420
1421 template<>
1422 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1423 {
1424   64,                   // size
1425   false,                // is_big_endian
1426   elfcpp::EM_PPC64,     // machine_code
1427   false,                // has_make_symbol
1428   false,                // has_resolve
1429   false,                // has_code_fill
1430   true,                 // is_default_stack_executable
1431   false,                // can_icf_inline_merge_sections
1432   '\0',                 // wrap_char
1433   "/usr/lib/ld.so.1",   // dynamic_linker
1434   0x10000000,           // default_text_segment_address
1435   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1436   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1437   false,                // isolate_execinstr
1438   0,                    // rosegment_gap
1439   elfcpp::SHN_UNDEF,    // small_common_shndx
1440   elfcpp::SHN_UNDEF,    // large_common_shndx
1441   0,                    // small_common_section_flags
1442   0,                    // large_common_section_flags
1443   NULL,                 // attributes_section
1444   NULL,                 // attributes_vendor
1445   "_start",             // entry_symbol_name
1446   32,                   // hash_entry_size
1447 };
1448
1449 inline bool
1450 is_branch_reloc(unsigned int r_type)
1451 {
1452   return (r_type == elfcpp::R_POWERPC_REL24
1453           || r_type == elfcpp::R_PPC_PLTREL24
1454           || r_type == elfcpp::R_PPC_LOCAL24PC
1455           || r_type == elfcpp::R_POWERPC_REL14
1456           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1457           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1458           || r_type == elfcpp::R_POWERPC_ADDR24
1459           || r_type == elfcpp::R_POWERPC_ADDR14
1460           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1461           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1462 }
1463
1464 // If INSN is an opcode that may be used with an @tls operand, return
1465 // the transformed insn for TLS optimisation, otherwise return 0.  If
1466 // REG is non-zero only match an insn with RB or RA equal to REG.
1467 uint32_t
1468 at_tls_transform(uint32_t insn, unsigned int reg)
1469 {
1470   if ((insn & (0x3f << 26)) != 31 << 26)
1471     return 0;
1472
1473   unsigned int rtra;
1474   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1475     rtra = insn & ((1 << 26) - (1 << 16));
1476   else if (((insn >> 16) & 0x1f) == reg)
1477     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1478   else
1479     return 0;
1480
1481   if ((insn & (0x3ff << 1)) == 266 << 1)
1482     // add -> addi
1483     insn = 14 << 26;
1484   else if ((insn & (0x1f << 1)) == 23 << 1
1485            && ((insn & (0x1f << 6)) < 14 << 6
1486                || ((insn & (0x1f << 6)) >= 16 << 6
1487                    && (insn & (0x1f << 6)) < 24 << 6)))
1488     // load and store indexed -> dform
1489     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1490   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1491     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1492     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1493   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1494     // lwax -> lwa
1495     insn = (58 << 26) | 2;
1496   else
1497     return 0;
1498   insn |= rtra;
1499   return insn;
1500 }
1501
1502
1503 template<int size, bool big_endian>
1504 class Powerpc_relocate_functions
1505 {
1506 public:
1507   enum Overflow_check
1508   {
1509     CHECK_NONE,
1510     CHECK_SIGNED,
1511     CHECK_UNSIGNED,
1512     CHECK_BITFIELD,
1513     CHECK_LOW_INSN,
1514     CHECK_HIGH_INSN
1515   };
1516
1517   enum Status
1518   {
1519     STATUS_OK,
1520     STATUS_OVERFLOW
1521   };
1522
1523 private:
1524   typedef Powerpc_relocate_functions<size, big_endian> This;
1525   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1526   typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1527
1528   template<int valsize>
1529   static inline bool
1530   has_overflow_signed(Address value)
1531   {
1532     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1533     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1534     limit <<= ((valsize - 1) >> 1);
1535     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1536     return value + limit > (limit << 1) - 1;
1537   }
1538
1539   template<int valsize>
1540   static inline bool
1541   has_overflow_unsigned(Address value)
1542   {
1543     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1544     limit <<= ((valsize - 1) >> 1);
1545     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1546     return value > (limit << 1) - 1;
1547   }
1548
1549   template<int valsize>
1550   static inline bool
1551   has_overflow_bitfield(Address value)
1552   {
1553     return (has_overflow_unsigned<valsize>(value)
1554             && has_overflow_signed<valsize>(value));
1555   }
1556
1557   template<int valsize>
1558   static inline Status
1559   overflowed(Address value, Overflow_check overflow)
1560   {
1561     if (overflow == CHECK_SIGNED)
1562       {
1563         if (has_overflow_signed<valsize>(value))
1564           return STATUS_OVERFLOW;
1565       }
1566     else if (overflow == CHECK_UNSIGNED)
1567       {
1568         if (has_overflow_unsigned<valsize>(value))
1569           return STATUS_OVERFLOW;
1570       }
1571     else if (overflow == CHECK_BITFIELD)
1572       {
1573         if (has_overflow_bitfield<valsize>(value))
1574           return STATUS_OVERFLOW;
1575       }
1576     return STATUS_OK;
1577   }
1578
1579   // Do a simple RELA relocation
1580   template<int fieldsize, int valsize>
1581   static inline Status
1582   rela(unsigned char* view, Address value, Overflow_check overflow)
1583   {
1584     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1585     Valtype* wv = reinterpret_cast<Valtype*>(view);
1586     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1587     return overflowed<valsize>(value, overflow);
1588   }
1589
1590   template<int fieldsize, int valsize>
1591   static inline Status
1592   rela(unsigned char* view,
1593        unsigned int right_shift,
1594        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1595        Address value,
1596        Overflow_check overflow)
1597   {
1598     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1599     Valtype* wv = reinterpret_cast<Valtype*>(view);
1600     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1601     Valtype reloc = value >> right_shift;
1602     val &= ~dst_mask;
1603     reloc &= dst_mask;
1604     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1605     return overflowed<valsize>(value >> right_shift, overflow);
1606   }
1607
1608   // Do a simple RELA relocation, unaligned.
1609   template<int fieldsize, int valsize>
1610   static inline Status
1611   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1612   {
1613     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1614     return overflowed<valsize>(value, overflow);
1615   }
1616
1617   template<int fieldsize, int valsize>
1618   static inline Status
1619   rela_ua(unsigned char* view,
1620           unsigned int right_shift,
1621           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1622           Address value,
1623           Overflow_check overflow)
1624   {
1625     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1626       Valtype;
1627     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1628     Valtype reloc = value >> right_shift;
1629     val &= ~dst_mask;
1630     reloc &= dst_mask;
1631     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1632     return overflowed<valsize>(value >> right_shift, overflow);
1633   }
1634
1635 public:
1636   // R_PPC64_ADDR64: (Symbol + Addend)
1637   static inline void
1638   addr64(unsigned char* view, Address value)
1639   { This::template rela<64,64>(view, value, CHECK_NONE); }
1640
1641   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1642   static inline void
1643   addr64_u(unsigned char* view, Address value)
1644   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1645
1646   // R_POWERPC_ADDR32: (Symbol + Addend)
1647   static inline Status
1648   addr32(unsigned char* view, Address value, Overflow_check overflow)
1649   { return This::template rela<32,32>(view, value, overflow); }
1650
1651   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1652   static inline Status
1653   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1654   { return This::template rela_ua<32,32>(view, value, overflow); }
1655
1656   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1657   static inline Status
1658   addr24(unsigned char* view, Address value, Overflow_check overflow)
1659   {
1660     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1661                                              value, overflow);
1662     if (overflow != CHECK_NONE && (value & 3) != 0)
1663       stat = STATUS_OVERFLOW;
1664     return stat;
1665   }
1666
1667   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1668   static inline Status
1669   addr16(unsigned char* view, Address value, Overflow_check overflow)
1670   { return This::template rela<16,16>(view, value, overflow); }
1671
1672   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1673   static inline Status
1674   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1675   { return This::template rela_ua<16,16>(view, value, overflow); }
1676
1677   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1678   static inline Status
1679   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1680   {
1681     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1682     if ((value & 3) != 0)
1683       stat = STATUS_OVERFLOW;
1684     return stat;
1685   }
1686
1687   // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1688   static inline Status
1689   addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1690   {
1691     Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1692     if ((value & 15) != 0)
1693       stat = STATUS_OVERFLOW;
1694     return stat;
1695   }
1696
1697   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1698   static inline void
1699   addr16_hi(unsigned char* view, Address value)
1700   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1701
1702   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1703   static inline void
1704   addr16_ha(unsigned char* view, Address value)
1705   { This::addr16_hi(view, value + 0x8000); }
1706
1707   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1708   static inline void
1709   addr16_hi2(unsigned char* view, Address value)
1710   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1711
1712   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1713   static inline void
1714   addr16_ha2(unsigned char* view, Address value)
1715   { This::addr16_hi2(view, value + 0x8000); }
1716
1717   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1718   static inline void
1719   addr16_hi3(unsigned char* view, Address value)
1720   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1721
1722   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1723   static inline void
1724   addr16_ha3(unsigned char* view, Address value)
1725   { This::addr16_hi3(view, value + 0x8000); }
1726
1727   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1728   static inline Status
1729   addr14(unsigned char* view, Address value, Overflow_check overflow)
1730   {
1731     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1732     if (overflow != CHECK_NONE && (value & 3) != 0)
1733       stat = STATUS_OVERFLOW;
1734     return stat;
1735   }
1736
1737   // R_POWERPC_REL16DX_HA
1738   static inline Status
1739   addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1740   {
1741     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1742     Valtype* wv = reinterpret_cast<Valtype*>(view);
1743     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1744     value += 0x8000;
1745     value = static_cast<SignedAddress>(value) >> 16;
1746     val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1747     elfcpp::Swap<32, big_endian>::writeval(wv, val);
1748     return overflowed<16>(value, overflow);
1749   }
1750 };
1751
1752 // Set ABI version for input and output.
1753
1754 template<int size, bool big_endian>
1755 void
1756 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1757 {
1758   this->e_flags_ |= ver;
1759   if (this->abiversion() != 0)
1760     {
1761       Target_powerpc<size, big_endian>* target =
1762         static_cast<Target_powerpc<size, big_endian>*>(
1763            parameters->sized_target<size, big_endian>());
1764       if (target->abiversion() == 0)
1765         target->set_abiversion(this->abiversion());
1766       else if (target->abiversion() != this->abiversion())
1767         gold_error(_("%s: ABI version %d is not compatible "
1768                      "with ABI version %d output"),
1769                    this->name().c_str(),
1770                    this->abiversion(), target->abiversion());
1771
1772     }
1773 }
1774
1775 // Stash away the index of .got2 or .opd in a relocatable object, if
1776 // such a section exists.
1777
1778 template<int size, bool big_endian>
1779 bool
1780 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1781     Read_symbols_data* sd)
1782 {
1783   const unsigned char* const pshdrs = sd->section_headers->data();
1784   const unsigned char* namesu = sd->section_names->data();
1785   const char* names = reinterpret_cast<const char*>(namesu);
1786   section_size_type names_size = sd->section_names_size;
1787   const unsigned char* s;
1788
1789   s = this->template find_shdr<size, big_endian>(pshdrs,
1790                                                  size == 32 ? ".got2" : ".opd",
1791                                                  names, names_size, NULL);
1792   if (s != NULL)
1793     {
1794       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1795       this->special_ = ndx;
1796       if (size == 64)
1797         {
1798           if (this->abiversion() == 0)
1799             this->set_abiversion(1);
1800           else if (this->abiversion() > 1)
1801             gold_error(_("%s: .opd invalid in abiv%d"),
1802                        this->name().c_str(), this->abiversion());
1803         }
1804     }
1805   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1806 }
1807
1808 // Examine .rela.opd to build info about function entry points.
1809
1810 template<int size, bool big_endian>
1811 void
1812 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1813     size_t reloc_count,
1814     const unsigned char* prelocs,
1815     const unsigned char* plocal_syms)
1816 {
1817   if (size == 64)
1818     {
1819       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1820         Reltype;
1821       const int reloc_size
1822         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1823       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1824       Address expected_off = 0;
1825       bool regular = true;
1826       unsigned int opd_ent_size = 0;
1827
1828       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1829         {
1830           Reltype reloc(prelocs);
1831           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1832             = reloc.get_r_info();
1833           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1834           if (r_type == elfcpp::R_PPC64_ADDR64)
1835             {
1836               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1837               typename elfcpp::Elf_types<size>::Elf_Addr value;
1838               bool is_ordinary;
1839               unsigned int shndx;
1840               if (r_sym < this->local_symbol_count())
1841                 {
1842                   typename elfcpp::Sym<size, big_endian>
1843                     lsym(plocal_syms + r_sym * sym_size);
1844                   shndx = lsym.get_st_shndx();
1845                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1846                   value = lsym.get_st_value();
1847                 }
1848               else
1849                 shndx = this->symbol_section_and_value(r_sym, &value,
1850                                                        &is_ordinary);
1851               this->set_opd_ent(reloc.get_r_offset(), shndx,
1852                                 value + reloc.get_r_addend());
1853               if (i == 2)
1854                 {
1855                   expected_off = reloc.get_r_offset();
1856                   opd_ent_size = expected_off;
1857                 }
1858               else if (expected_off != reloc.get_r_offset())
1859                 regular = false;
1860               expected_off += opd_ent_size;
1861             }
1862           else if (r_type == elfcpp::R_PPC64_TOC)
1863             {
1864               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1865                 regular = false;
1866             }
1867           else
1868             {
1869               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1870                            this->name().c_str(), r_type);
1871               regular = false;
1872             }
1873         }
1874       if (reloc_count <= 2)
1875         opd_ent_size = this->section_size(this->opd_shndx());
1876       if (opd_ent_size != 24 && opd_ent_size != 16)
1877         regular = false;
1878       if (!regular)
1879         {
1880           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1881                        this->name().c_str());
1882           opd_ent_size = 0;
1883         }
1884     }
1885 }
1886
1887 template<int size, bool big_endian>
1888 void
1889 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1890 {
1891   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1892   if (size == 64)
1893     {
1894       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1895            p != rd->relocs.end();
1896            ++p)
1897         {
1898           if (p->data_shndx == this->opd_shndx())
1899             {
1900               uint64_t opd_size = this->section_size(this->opd_shndx());
1901               gold_assert(opd_size == static_cast<size_t>(opd_size));
1902               if (opd_size != 0)
1903                 {
1904                   this->init_opd(opd_size);
1905                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1906                                         rd->local_symbols->data());
1907                 }
1908               break;
1909             }
1910         }
1911     }
1912 }
1913
1914 // Read the symbols then set up st_other vector.
1915
1916 template<int size, bool big_endian>
1917 void
1918 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1919 {
1920   this->base_read_symbols(sd);
1921   if (size == 64)
1922     {
1923       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1924       const unsigned char* const pshdrs = sd->section_headers->data();
1925       const unsigned int loccount = this->do_local_symbol_count();
1926       if (loccount != 0)
1927         {
1928           this->st_other_.resize(loccount);
1929           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1930           off_t locsize = loccount * sym_size;
1931           const unsigned int symtab_shndx = this->symtab_shndx();
1932           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1933           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1934           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1935                                                       locsize, true, false);
1936           psyms += sym_size;
1937           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1938             {
1939               elfcpp::Sym<size, big_endian> sym(psyms);
1940               unsigned char st_other = sym.get_st_other();
1941               this->st_other_[i] = st_other;
1942               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1943                 {
1944                   if (this->abiversion() == 0)
1945                     this->set_abiversion(2);
1946                   else if (this->abiversion() < 2)
1947                     gold_error(_("%s: local symbol %d has invalid st_other"
1948                                  " for ABI version 1"),
1949                                this->name().c_str(), i);
1950                 }
1951             }
1952         }
1953     }
1954 }
1955
1956 template<int size, bool big_endian>
1957 void
1958 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1959 {
1960   this->e_flags_ |= ver;
1961   if (this->abiversion() != 0)
1962     {
1963       Target_powerpc<size, big_endian>* target =
1964         static_cast<Target_powerpc<size, big_endian>*>(
1965           parameters->sized_target<size, big_endian>());
1966       if (target->abiversion() == 0)
1967         target->set_abiversion(this->abiversion());
1968       else if (target->abiversion() != this->abiversion())
1969         gold_error(_("%s: ABI version %d is not compatible "
1970                      "with ABI version %d output"),
1971                    this->name().c_str(),
1972                    this->abiversion(), target->abiversion());
1973
1974     }
1975 }
1976
1977 // Call Sized_dynobj::base_read_symbols to read the symbols then
1978 // read .opd from a dynamic object, filling in opd_ent_ vector,
1979
1980 template<int size, bool big_endian>
1981 void
1982 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1983 {
1984   this->base_read_symbols(sd);
1985   if (size == 64)
1986     {
1987       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1988       const unsigned char* const pshdrs = sd->section_headers->data();
1989       const unsigned char* namesu = sd->section_names->data();
1990       const char* names = reinterpret_cast<const char*>(namesu);
1991       const unsigned char* s = NULL;
1992       const unsigned char* opd;
1993       section_size_type opd_size;
1994
1995       // Find and read .opd section.
1996       while (1)
1997         {
1998           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1999                                                          sd->section_names_size,
2000                                                          s);
2001           if (s == NULL)
2002             return;
2003
2004           typename elfcpp::Shdr<size, big_endian> shdr(s);
2005           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2006               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2007             {
2008               if (this->abiversion() == 0)
2009                 this->set_abiversion(1);
2010               else if (this->abiversion() > 1)
2011                 gold_error(_("%s: .opd invalid in abiv%d"),
2012                            this->name().c_str(), this->abiversion());
2013
2014               this->opd_shndx_ = (s - pshdrs) / shdr_size;
2015               this->opd_address_ = shdr.get_sh_addr();
2016               opd_size = convert_to_section_size_type(shdr.get_sh_size());
2017               opd = this->get_view(shdr.get_sh_offset(), opd_size,
2018                                    true, false);
2019               break;
2020             }
2021         }
2022
2023       // Build set of executable sections.
2024       // Using a set is probably overkill.  There is likely to be only
2025       // a few executable sections, typically .init, .text and .fini,
2026       // and they are generally grouped together.
2027       typedef std::set<Sec_info> Exec_sections;
2028       Exec_sections exec_sections;
2029       s = pshdrs;
2030       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2031         {
2032           typename elfcpp::Shdr<size, big_endian> shdr(s);
2033           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2034               && ((shdr.get_sh_flags()
2035                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2036                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2037               && shdr.get_sh_size() != 0)
2038             {
2039               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2040                                             shdr.get_sh_size(), i));
2041             }
2042         }
2043       if (exec_sections.empty())
2044         return;
2045
2046       // Look over the OPD entries.  This is complicated by the fact
2047       // that some binaries will use two-word entries while others
2048       // will use the standard three-word entries.  In most cases
2049       // the third word (the environment pointer for languages like
2050       // Pascal) is unused and will be zero.  If the third word is
2051       // used it should not be pointing into executable sections,
2052       // I think.
2053       this->init_opd(opd_size);
2054       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2055         {
2056           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2057           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2058           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2059           if (val == 0)
2060             // Chances are that this is the third word of an OPD entry.
2061             continue;
2062           typename Exec_sections::const_iterator e
2063             = exec_sections.upper_bound(Sec_info(val, 0, 0));
2064           if (e != exec_sections.begin())
2065             {
2066               --e;
2067               if (e->start <= val && val < e->start + e->len)
2068                 {
2069                   // We have an address in an executable section.
2070                   // VAL ought to be the function entry, set it up.
2071                   this->set_opd_ent(p - opd, e->shndx, val);
2072                   // Skip second word of OPD entry, the TOC pointer.
2073                   p += 8;
2074                 }
2075             }
2076           // If we didn't match any executable sections, we likely
2077           // have a non-zero third word in the OPD entry.
2078         }
2079     }
2080 }
2081
2082 // Set up some symbols.
2083
2084 template<int size, bool big_endian>
2085 void
2086 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2087     Symbol_table* symtab,
2088     Layout* layout)
2089 {
2090   if (size == 32)
2091     {
2092       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2093       // undefined when scanning relocs (and thus requires
2094       // non-relative dynamic relocs).  The proper value will be
2095       // updated later.
2096       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2097       if (gotsym != NULL && gotsym->is_undefined())
2098         {
2099           Target_powerpc<size, big_endian>* target =
2100             static_cast<Target_powerpc<size, big_endian>*>(
2101                 parameters->sized_target<size, big_endian>());
2102           Output_data_got_powerpc<size, big_endian>* got
2103             = target->got_section(symtab, layout);
2104           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2105                                         Symbol_table::PREDEFINED,
2106                                         got, 0, 0,
2107                                         elfcpp::STT_OBJECT,
2108                                         elfcpp::STB_LOCAL,
2109                                         elfcpp::STV_HIDDEN, 0,
2110                                         false, false);
2111         }
2112
2113       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2114       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2115       if (sdasym != NULL && sdasym->is_undefined())
2116         {
2117           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2118           Output_section* os
2119             = layout->add_output_section_data(".sdata", 0,
2120                                               elfcpp::SHF_ALLOC
2121                                               | elfcpp::SHF_WRITE,
2122                                               sdata, ORDER_SMALL_DATA, false);
2123           symtab->define_in_output_data("_SDA_BASE_", NULL,
2124                                         Symbol_table::PREDEFINED,
2125                                         os, 32768, 0, elfcpp::STT_OBJECT,
2126                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2127                                         0, false, false);
2128         }
2129     }
2130   else
2131     {
2132       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2133       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2134       if (gotsym != NULL && gotsym->is_undefined())
2135         {
2136           Target_powerpc<size, big_endian>* target =
2137             static_cast<Target_powerpc<size, big_endian>*>(
2138                 parameters->sized_target<size, big_endian>());
2139           Output_data_got_powerpc<size, big_endian>* got
2140             = target->got_section(symtab, layout);
2141           symtab->define_in_output_data(".TOC.", NULL,
2142                                         Symbol_table::PREDEFINED,
2143                                         got, 0x8000, 0,
2144                                         elfcpp::STT_OBJECT,
2145                                         elfcpp::STB_LOCAL,
2146                                         elfcpp::STV_HIDDEN, 0,
2147                                         false, false);
2148         }
2149     }
2150 }
2151
2152 // Set up PowerPC target specific relobj.
2153
2154 template<int size, bool big_endian>
2155 Object*
2156 Target_powerpc<size, big_endian>::do_make_elf_object(
2157     const std::string& name,
2158     Input_file* input_file,
2159     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2160 {
2161   int et = ehdr.get_e_type();
2162   // ET_EXEC files are valid input for --just-symbols/-R,
2163   // and we treat them as relocatable objects.
2164   if (et == elfcpp::ET_REL
2165       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2166     {
2167       Powerpc_relobj<size, big_endian>* obj =
2168         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2169       obj->setup();
2170       return obj;
2171     }
2172   else if (et == elfcpp::ET_DYN)
2173     {
2174       Powerpc_dynobj<size, big_endian>* obj =
2175         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2176       obj->setup();
2177       return obj;
2178     }
2179   else
2180     {
2181       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2182       return NULL;
2183     }
2184 }
2185
2186 template<int size, bool big_endian>
2187 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2188 {
2189 public:
2190   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2191   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2192
2193   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2194     : Output_data_got<size, big_endian>(),
2195       symtab_(symtab), layout_(layout),
2196       header_ent_cnt_(size == 32 ? 3 : 1),
2197       header_index_(size == 32 ? 0x2000 : 0)
2198   {
2199     if (size == 64)
2200       this->set_addralign(256);
2201   }
2202
2203   // Override all the Output_data_got methods we use so as to first call
2204   // reserve_ent().
2205   bool
2206   add_global(Symbol* gsym, unsigned int got_type)
2207   {
2208     this->reserve_ent();
2209     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2210   }
2211
2212   bool
2213   add_global_plt(Symbol* gsym, unsigned int got_type)
2214   {
2215     this->reserve_ent();
2216     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2217   }
2218
2219   bool
2220   add_global_tls(Symbol* gsym, unsigned int got_type)
2221   { return this->add_global_plt(gsym, got_type); }
2222
2223   void
2224   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2225                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2226   {
2227     this->reserve_ent();
2228     Output_data_got<size, big_endian>::
2229       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2230   }
2231
2232   void
2233   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2234                            Output_data_reloc_generic* rel_dyn,
2235                            unsigned int r_type_1, unsigned int r_type_2)
2236   {
2237     this->reserve_ent(2);
2238     Output_data_got<size, big_endian>::
2239       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2240   }
2241
2242   bool
2243   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2244   {
2245     this->reserve_ent();
2246     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2247                                                         got_type);
2248   }
2249
2250   bool
2251   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2252   {
2253     this->reserve_ent();
2254     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2255                                                             got_type);
2256   }
2257
2258   bool
2259   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2260   { return this->add_local_plt(object, sym_index, got_type); }
2261
2262   void
2263   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2264                      unsigned int got_type,
2265                      Output_data_reloc_generic* rel_dyn,
2266                      unsigned int r_type)
2267   {
2268     this->reserve_ent(2);
2269     Output_data_got<size, big_endian>::
2270       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2271   }
2272
2273   unsigned int
2274   add_constant(Valtype constant)
2275   {
2276     this->reserve_ent();
2277     return Output_data_got<size, big_endian>::add_constant(constant);
2278   }
2279
2280   unsigned int
2281   add_constant_pair(Valtype c1, Valtype c2)
2282   {
2283     this->reserve_ent(2);
2284     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2285   }
2286
2287   // Offset of _GLOBAL_OFFSET_TABLE_.
2288   unsigned int
2289   g_o_t() const
2290   {
2291     return this->got_offset(this->header_index_);
2292   }
2293
2294   // Offset of base used to access the GOT/TOC.
2295   // The got/toc pointer reg will be set to this value.
2296   Valtype
2297   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2298   {
2299     if (size == 32)
2300       return this->g_o_t();
2301     else
2302       return (this->output_section()->address()
2303               + object->toc_base_offset()
2304               - this->address());
2305   }
2306
2307   // Ensure our GOT has a header.
2308   void
2309   set_final_data_size()
2310   {
2311     if (this->header_ent_cnt_ != 0)
2312       this->make_header();
2313     Output_data_got<size, big_endian>::set_final_data_size();
2314   }
2315
2316   // First word of GOT header needs some values that are not
2317   // handled by Output_data_got so poke them in here.
2318   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2319   void
2320   do_write(Output_file* of)
2321   {
2322     Valtype val = 0;
2323     if (size == 32 && this->layout_->dynamic_data() != NULL)
2324       val = this->layout_->dynamic_section()->address();
2325     if (size == 64)
2326       val = this->output_section()->address() + 0x8000;
2327     this->replace_constant(this->header_index_, val);
2328     Output_data_got<size, big_endian>::do_write(of);
2329   }
2330
2331 private:
2332   void
2333   reserve_ent(unsigned int cnt = 1)
2334   {
2335     if (this->header_ent_cnt_ == 0)
2336       return;
2337     if (this->num_entries() + cnt > this->header_index_)
2338       this->make_header();
2339   }
2340
2341   void
2342   make_header()
2343   {
2344     this->header_ent_cnt_ = 0;
2345     this->header_index_ = this->num_entries();
2346     if (size == 32)
2347       {
2348         Output_data_got<size, big_endian>::add_constant(0);
2349         Output_data_got<size, big_endian>::add_constant(0);
2350         Output_data_got<size, big_endian>::add_constant(0);
2351
2352         // Define _GLOBAL_OFFSET_TABLE_ at the header
2353         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2354         if (gotsym != NULL)
2355           {
2356             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2357             sym->set_value(this->g_o_t());
2358           }
2359         else
2360           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2361                                                Symbol_table::PREDEFINED,
2362                                                this, this->g_o_t(), 0,
2363                                                elfcpp::STT_OBJECT,
2364                                                elfcpp::STB_LOCAL,
2365                                                elfcpp::STV_HIDDEN, 0,
2366                                                false, false);
2367       }
2368     else
2369       Output_data_got<size, big_endian>::add_constant(0);
2370   }
2371
2372   // Stashed pointers.
2373   Symbol_table* symtab_;
2374   Layout* layout_;
2375
2376   // GOT header size.
2377   unsigned int header_ent_cnt_;
2378   // GOT header index.
2379   unsigned int header_index_;
2380 };
2381
2382 // Get the GOT section, creating it if necessary.
2383
2384 template<int size, bool big_endian>
2385 Output_data_got_powerpc<size, big_endian>*
2386 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2387                                               Layout* layout)
2388 {
2389   if (this->got_ == NULL)
2390     {
2391       gold_assert(symtab != NULL && layout != NULL);
2392
2393       this->got_
2394         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2395
2396       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2397                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2398                                       this->got_, ORDER_DATA, false);
2399     }
2400
2401   return this->got_;
2402 }
2403
2404 // Get the dynamic reloc section, creating it if necessary.
2405
2406 template<int size, bool big_endian>
2407 typename Target_powerpc<size, big_endian>::Reloc_section*
2408 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2409 {
2410   if (this->rela_dyn_ == NULL)
2411     {
2412       gold_assert(layout != NULL);
2413       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2414       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2415                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2416                                       ORDER_DYNAMIC_RELOCS, false);
2417     }
2418   return this->rela_dyn_;
2419 }
2420
2421 // Similarly, but for ifunc symbols get the one for ifunc.
2422
2423 template<int size, bool big_endian>
2424 typename Target_powerpc<size, big_endian>::Reloc_section*
2425 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2426                                                    Layout* layout,
2427                                                    bool for_ifunc)
2428 {
2429   if (!for_ifunc)
2430     return this->rela_dyn_section(layout);
2431
2432   if (this->iplt_ == NULL)
2433     this->make_iplt_section(symtab, layout);
2434   return this->iplt_->rel_plt();
2435 }
2436
2437 class Stub_control
2438 {
2439  public:
2440   // Determine the stub group size.  The group size is the absolute
2441   // value of the parameter --stub-group-size.  If --stub-group-size
2442   // is passed a negative value, we restrict stubs to be always after
2443   // the stubbed branches.
2444   Stub_control(int32_t size, bool no_size_errors, bool multi_os)
2445     : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
2446       suppress_size_errors_(no_size_errors), multi_os_(multi_os),
2447       state_(NO_GROUP), group_size_(0), group_start_addr_(0),
2448       owner_(NULL), output_section_(NULL)
2449   {
2450   }
2451
2452   // Return true iff input section can be handled by current stub
2453   // group.
2454   bool
2455   can_add_to_stub_group(Output_section* o,
2456                         const Output_section::Input_section* i,
2457                         bool has14);
2458
2459   const Output_section::Input_section*
2460   owner()
2461   { return owner_; }
2462
2463   Output_section*
2464   output_section()
2465   { return output_section_; }
2466
2467   void
2468   set_output_and_owner(Output_section* o,
2469                        const Output_section::Input_section* i)
2470   {
2471     this->output_section_ = o;
2472     this->owner_ = i;
2473   }
2474
2475  private:
2476   typedef enum
2477   {
2478     // Initial state.
2479     NO_GROUP,
2480     // Adding group sections before the stubs.
2481     FINDING_STUB_SECTION,
2482     // Adding group sections after the stubs.
2483     HAS_STUB_SECTION
2484   } State;
2485
2486   uint32_t stub_group_size_;
2487   bool stubs_always_after_branch_;
2488   bool suppress_size_errors_;
2489   // True if a stub group can serve multiple output sections.
2490   bool multi_os_;
2491   State state_;
2492   // Current max size of group.  Starts at stub_group_size_ but is
2493   // reduced to stub_group_size_/1024 on seeing a section with
2494   // external conditional branches.
2495   uint32_t group_size_;
2496   uint64_t group_start_addr_;
2497   // owner_ and output_section_ specify the section to which stubs are
2498   // attached.  The stubs are placed at the end of this section.
2499   const Output_section::Input_section* owner_;
2500   Output_section* output_section_;
2501 };
2502
2503 // Return true iff input section can be handled by current stub
2504 // group.  Sections are presented to this function in order,
2505 // so the first section is the head of the group.
2506
2507 bool
2508 Stub_control::can_add_to_stub_group(Output_section* o,
2509                                     const Output_section::Input_section* i,
2510                                     bool has14)
2511 {
2512   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2513   uint64_t this_size;
2514   uint64_t start_addr = o->address();
2515
2516   if (whole_sec)
2517     // .init and .fini sections are pasted together to form a single
2518     // function.  We can't be adding stubs in the middle of the function.
2519     this_size = o->data_size();
2520   else
2521     {
2522       start_addr += i->relobj()->output_section_offset(i->shndx());
2523       this_size = i->data_size();
2524     }
2525
2526   uint64_t end_addr = start_addr + this_size;
2527   uint32_t group_size = this->stub_group_size_;
2528   if (has14)
2529     this->group_size_ = group_size = group_size >> 10;
2530
2531   if (this_size > group_size && !this->suppress_size_errors_)
2532     gold_warning(_("%s:%s exceeds group size"),
2533                  i->relobj()->name().c_str(),
2534                  i->relobj()->section_name(i->shndx()).c_str());
2535
2536   gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
2537              has14 ? " 14bit" : "",
2538              i->relobj()->name().c_str(),
2539              i->relobj()->section_name(i->shndx()).c_str(),
2540              (long long) this_size,
2541              (this->state_ == NO_GROUP
2542               ? this_size
2543               : (long long) end_addr - this->group_start_addr_));
2544
2545   if (this->state_ == NO_GROUP)
2546     {
2547       // Only here on very first use of Stub_control
2548       this->owner_ = i;
2549       this->output_section_ = o;
2550       this->state_ = FINDING_STUB_SECTION;
2551       this->group_size_ = group_size;
2552       this->group_start_addr_ = start_addr;
2553       return true;
2554     }
2555   else if (!this->multi_os_ && this->output_section_ != o)
2556     ;
2557   else if (this->state_ == HAS_STUB_SECTION)
2558     {
2559       // Can we add this section, which is after the stubs, to the
2560       // group?
2561       if (end_addr - this->group_start_addr_ <= this->group_size_)
2562         return true;
2563     }
2564   else if (this->state_ == FINDING_STUB_SECTION)
2565     {
2566       if ((whole_sec && this->output_section_ == o)
2567           || end_addr - this->group_start_addr_ <= this->group_size_)
2568         {
2569           // Stubs are added at the end of "owner_".
2570           this->owner_ = i;
2571           this->output_section_ = o;
2572           return true;
2573         }
2574       // The group before the stubs has reached maximum size.
2575       // Now see about adding sections after the stubs to the
2576       // group.  If the current section has a 14-bit branch and
2577       // the group before the stubs exceeds group_size_ (because
2578       // they didn't have 14-bit branches), don't add sections
2579       // after the stubs:  The size of stubs for such a large
2580       // group may exceed the reach of a 14-bit branch.
2581       if (!this->stubs_always_after_branch_
2582           && this_size <= this->group_size_
2583           && start_addr - this->group_start_addr_ <= this->group_size_)
2584         {
2585           gold_debug(DEBUG_TARGET, "adding after stubs");
2586           this->state_ = HAS_STUB_SECTION;
2587           this->group_start_addr_ = start_addr;
2588           return true;
2589         }
2590     }
2591   else
2592     gold_unreachable();
2593
2594   gold_debug(DEBUG_TARGET,
2595              !this->multi_os_ && this->output_section_ != o
2596              ? "nope, new output section\n"
2597              : "nope, didn't fit\n");
2598
2599   // The section fails to fit in the current group.  Set up a few
2600   // things for the next group.  owner_ and output_section_ will be
2601   // set later after we've retrieved those values for the current
2602   // group.
2603   this->state_ = FINDING_STUB_SECTION;
2604   this->group_size_ = group_size;
2605   this->group_start_addr_ = start_addr;
2606   return false;
2607 }
2608
2609 // Look over all the input sections, deciding where to place stubs.
2610
2611 template<int size, bool big_endian>
2612 void
2613 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2614                                                  const Task*,
2615                                                  bool no_size_errors)
2616 {
2617   Stub_control stub_control(this->stub_group_size_, no_size_errors,
2618                             parameters->options().stub_group_multi());
2619
2620   // Group input sections and insert stub table
2621   Stub_table_owner* table_owner = NULL;
2622   std::vector<Stub_table_owner*> tables;
2623   Layout::Section_list section_list;
2624   layout->get_executable_sections(&section_list);
2625   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2626   for (Layout::Section_list::iterator o = section_list.begin();
2627        o != section_list.end();
2628        ++o)
2629     {
2630       typedef Output_section::Input_section_list Input_section_list;
2631       for (Input_section_list::const_iterator i
2632              = (*o)->input_sections().begin();
2633            i != (*o)->input_sections().end();
2634            ++i)
2635         {
2636           if (i->is_input_section()
2637               || i->is_relaxed_input_section())
2638             {
2639               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2640                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2641               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2642               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2643                 {
2644                   table_owner->output_section = stub_control.output_section();
2645                   table_owner->owner = stub_control.owner();
2646                   stub_control.set_output_and_owner(*o, &*i);
2647                   table_owner = NULL;
2648                 }
2649               if (table_owner == NULL)
2650                 {
2651                   table_owner = new Stub_table_owner;
2652                   tables.push_back(table_owner);
2653                 }
2654               ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2655             }
2656         }
2657     }
2658   if (table_owner != NULL)
2659     {
2660       table_owner->output_section = stub_control.output_section();
2661       table_owner->owner = stub_control.owner();;
2662     }
2663   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2664        t != tables.end();
2665        ++t)
2666     {
2667       Stub_table<size, big_endian>* stub_table;
2668
2669       if ((*t)->owner->is_input_section())
2670         stub_table = new Stub_table<size, big_endian>(this,
2671                                                       (*t)->output_section,
2672                                                       (*t)->owner);
2673       else if ((*t)->owner->is_relaxed_input_section())
2674         stub_table = static_cast<Stub_table<size, big_endian>*>(
2675                         (*t)->owner->relaxed_input_section());
2676       else
2677         gold_unreachable();
2678       this->stub_tables_.push_back(stub_table);
2679       delete *t;
2680     }
2681 }
2682
2683 static unsigned long
2684 max_branch_delta (unsigned int r_type)
2685 {
2686   if (r_type == elfcpp::R_POWERPC_REL14
2687       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2688       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2689     return 1L << 15;
2690   if (r_type == elfcpp::R_POWERPC_REL24
2691       || r_type == elfcpp::R_PPC_PLTREL24
2692       || r_type == elfcpp::R_PPC_LOCAL24PC)
2693     return 1L << 25;
2694   return 0;
2695 }
2696
2697 // If this branch needs a plt call stub, or a long branch stub, make one.
2698
2699 template<int size, bool big_endian>
2700 bool
2701 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2702     Stub_table<size, big_endian>* stub_table,
2703     Stub_table<size, big_endian>* ifunc_stub_table,
2704     Symbol_table* symtab) const
2705 {
2706   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2707   if (sym != NULL && sym->is_forwarder())
2708     sym = symtab->resolve_forwards(sym);
2709   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2710   Target_powerpc<size, big_endian>* target =
2711     static_cast<Target_powerpc<size, big_endian>*>(
2712       parameters->sized_target<size, big_endian>());
2713   bool ok = true;
2714
2715   if (gsym != NULL
2716       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2717       : this->object_->local_has_plt_offset(this->r_sym_))
2718     {
2719       if (size == 64
2720           && gsym != NULL
2721           && target->abiversion() >= 2
2722           && !parameters->options().output_is_position_independent()
2723           && !is_branch_reloc(this->r_type_))
2724         target->glink_section()->add_global_entry(gsym);
2725       else
2726         {
2727           if (stub_table == NULL)
2728             stub_table = this->object_->stub_table(this->shndx_);
2729           if (stub_table == NULL)
2730             {
2731               // This is a ref from a data section to an ifunc symbol.
2732               stub_table = ifunc_stub_table;
2733             }
2734           gold_assert(stub_table != NULL);
2735           Address from = this->object_->get_output_section_offset(this->shndx_);
2736           if (from != invalid_address)
2737             from += (this->object_->output_section(this->shndx_)->address()
2738                      + this->offset_);
2739           if (gsym != NULL)
2740             ok = stub_table->add_plt_call_entry(from,
2741                                                 this->object_, gsym,
2742                                                 this->r_type_, this->addend_);
2743           else
2744             ok = stub_table->add_plt_call_entry(from,
2745                                                 this->object_, this->r_sym_,
2746                                                 this->r_type_, this->addend_);
2747         }
2748     }
2749   else
2750     {
2751       Address max_branch_offset = max_branch_delta(this->r_type_);
2752       if (max_branch_offset == 0)
2753         return true;
2754       Address from = this->object_->get_output_section_offset(this->shndx_);
2755       gold_assert(from != invalid_address);
2756       from += (this->object_->output_section(this->shndx_)->address()
2757                + this->offset_);
2758       Address to;
2759       if (gsym != NULL)
2760         {
2761           switch (gsym->source())
2762             {
2763             case Symbol::FROM_OBJECT:
2764               {
2765                 Object* symobj = gsym->object();
2766                 if (symobj->is_dynamic()
2767                     || symobj->pluginobj() != NULL)
2768                   return true;
2769                 bool is_ordinary;
2770                 unsigned int shndx = gsym->shndx(&is_ordinary);
2771                 if (shndx == elfcpp::SHN_UNDEF)
2772                   return true;
2773               }
2774               break;
2775
2776             case Symbol::IS_UNDEFINED:
2777               return true;
2778
2779             default:
2780               break;
2781             }
2782           Symbol_table::Compute_final_value_status status;
2783           to = symtab->compute_final_value<size>(gsym, &status);
2784           if (status != Symbol_table::CFVS_OK)
2785             return true;
2786           if (size == 64)
2787             to += this->object_->ppc64_local_entry_offset(gsym);
2788         }
2789       else
2790         {
2791           const Symbol_value<size>* psymval
2792             = this->object_->local_symbol(this->r_sym_);
2793           Symbol_value<size> symval;
2794           if (psymval->is_section_symbol())
2795             symval.set_is_section_symbol();
2796           typedef Sized_relobj_file<size, big_endian> ObjType;
2797           typename ObjType::Compute_final_local_value_status status
2798             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2799                                                        &symval, symtab);
2800           if (status != ObjType::CFLV_OK
2801               || !symval.has_output_value())
2802             return true;
2803           to = symval.value(this->object_, 0);
2804           if (size == 64)
2805             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2806         }
2807       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2808         to += this->addend_;
2809       if (stub_table == NULL)
2810         stub_table = this->object_->stub_table(this->shndx_);
2811       if (size == 64 && target->abiversion() < 2)
2812         {
2813           unsigned int dest_shndx;
2814           if (!target->symval_for_branch(symtab, gsym, this->object_,
2815                                          &to, &dest_shndx))
2816             return true;
2817         }
2818       Address delta = to - from;
2819       if (delta + max_branch_offset >= 2 * max_branch_offset)
2820         {
2821           if (stub_table == NULL)
2822             {
2823               gold_warning(_("%s:%s: branch in non-executable section,"
2824                              " no long branch stub for you"),
2825                            this->object_->name().c_str(),
2826                            this->object_->section_name(this->shndx_).c_str());
2827               return true;
2828             }
2829           bool save_res = (size == 64
2830                            && gsym != NULL
2831                            && gsym->source() == Symbol::IN_OUTPUT_DATA
2832                            && gsym->output_data() == target->savres_section());
2833           ok = stub_table->add_long_branch_entry(this->object_,
2834                                                  this->r_type_,
2835                                                  from, to, save_res);
2836         }
2837     }
2838   if (!ok)
2839     gold_debug(DEBUG_TARGET,
2840                "branch at %s:%s+%#lx\n"
2841                "can't reach stub attached to %s:%s",
2842                this->object_->name().c_str(),
2843                this->object_->section_name(this->shndx_).c_str(),
2844                (unsigned long) this->offset_,
2845                stub_table->relobj()->name().c_str(),
2846                stub_table->relobj()->section_name(stub_table->shndx()).c_str());
2847
2848   return ok;
2849 }
2850
2851 // Relaxation hook.  This is where we do stub generation.
2852
2853 template<int size, bool big_endian>
2854 bool
2855 Target_powerpc<size, big_endian>::do_relax(int pass,
2856                                            const Input_objects*,
2857                                            Symbol_table* symtab,
2858                                            Layout* layout,
2859                                            const Task* task)
2860 {
2861   unsigned int prev_brlt_size = 0;
2862   if (pass == 1)
2863     {
2864       bool thread_safe
2865         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2866       if (size == 64
2867           && this->abiversion() < 2
2868           && !thread_safe
2869           && !parameters->options().user_set_plt_thread_safe())
2870         {
2871           static const char* const thread_starter[] =
2872             {
2873               "pthread_create",
2874               /* libstdc++ */
2875               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2876               /* librt */
2877               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2878               "mq_notify", "create_timer",
2879               /* libanl */
2880               "getaddrinfo_a",
2881               /* libgomp */
2882               "GOMP_parallel",
2883               "GOMP_parallel_start",
2884               "GOMP_parallel_loop_static",
2885               "GOMP_parallel_loop_static_start",
2886               "GOMP_parallel_loop_dynamic",
2887               "GOMP_parallel_loop_dynamic_start",
2888               "GOMP_parallel_loop_guided",
2889               "GOMP_parallel_loop_guided_start",
2890               "GOMP_parallel_loop_runtime",
2891               "GOMP_parallel_loop_runtime_start",
2892               "GOMP_parallel_sections",
2893               "GOMP_parallel_sections_start",
2894               /* libgo */
2895               "__go_go",
2896             };
2897
2898           if (parameters->options().shared())
2899             thread_safe = true;
2900           else
2901             {
2902               for (unsigned int i = 0;
2903                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2904                    i++)
2905                 {
2906                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2907                   thread_safe = (sym != NULL
2908                                  && sym->in_reg()
2909                                  && sym->in_real_elf());
2910                   if (thread_safe)
2911                     break;
2912                 }
2913             }
2914         }
2915       this->plt_thread_safe_ = thread_safe;
2916     }
2917
2918   if (pass == 1)
2919     {
2920       this->stub_group_size_ = parameters->options().stub_group_size();
2921       bool no_size_errors = true;
2922       if (this->stub_group_size_ == 1)
2923         this->stub_group_size_ = 0x1c00000;
2924       else if (this->stub_group_size_ == -1)
2925         this->stub_group_size_ = -0x1e00000;
2926       else
2927         no_size_errors = false;
2928       this->group_sections(layout, task, no_size_errors);
2929     }
2930   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2931     {
2932       this->branch_lookup_table_.clear();
2933       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2934            p != this->stub_tables_.end();
2935            ++p)
2936         {
2937           (*p)->clear_stubs(true);
2938         }
2939       this->stub_tables_.clear();
2940       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2941       gold_info(_("%s: stub group size is too large; retrying with %#x"),
2942                 program_name, this->stub_group_size_);
2943       this->group_sections(layout, task, true);
2944     }
2945
2946   // We need address of stub tables valid for make_stub.
2947   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2948        p != this->stub_tables_.end();
2949        ++p)
2950     {
2951       const Powerpc_relobj<size, big_endian>* object
2952         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2953       Address off = object->get_output_section_offset((*p)->shndx());
2954       gold_assert(off != invalid_address);
2955       Output_section* os = (*p)->output_section();
2956       (*p)->set_address_and_size(os, off);
2957     }
2958
2959   if (pass != 1)
2960     {
2961       // Clear plt call stubs, long branch stubs and branch lookup table.
2962       prev_brlt_size = this->branch_lookup_table_.size();
2963       this->branch_lookup_table_.clear();
2964       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2965            p != this->stub_tables_.end();
2966            ++p)
2967         {
2968           (*p)->clear_stubs(false);
2969         }
2970     }
2971
2972   // Build all the stubs.
2973   this->relax_failed_ = false;
2974   Stub_table<size, big_endian>* ifunc_stub_table
2975     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2976   Stub_table<size, big_endian>* one_stub_table
2977     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2978   for (typename Branches::const_iterator b = this->branch_info_.begin();
2979        b != this->branch_info_.end();
2980        b++)
2981     {
2982       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2983           && !this->relax_failed_)
2984         {
2985           this->relax_failed_ = true;
2986           this->relax_fail_count_++;
2987           if (this->relax_fail_count_ < 3)
2988             return true;
2989         }
2990     }
2991
2992   // Did anything change size?
2993   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2994   bool again = num_huge_branches != prev_brlt_size;
2995   if (size == 64 && num_huge_branches != 0)
2996     this->make_brlt_section(layout);
2997   if (size == 64 && again)
2998     this->brlt_section_->set_current_size(num_huge_branches);
2999
3000   typedef Unordered_set<Output_section*> Output_sections;
3001   Output_sections os_need_update;
3002   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3003        p != this->stub_tables_.end();
3004        ++p)
3005     {
3006       if ((*p)->size_update())
3007         {
3008           again = true;
3009           (*p)->add_eh_frame(layout);
3010           os_need_update.insert((*p)->output_section());
3011         }
3012     }
3013
3014   // Set output section offsets for all input sections in an output
3015   // section that just changed size.  Anything past the stubs will
3016   // need updating.
3017   for (typename Output_sections::iterator p = os_need_update.begin();
3018        p != os_need_update.end();
3019        p++)
3020     {
3021       Output_section* os = *p;
3022       Address off = 0;
3023       typedef Output_section::Input_section_list Input_section_list;
3024       for (Input_section_list::const_iterator i = os->input_sections().begin();
3025            i != os->input_sections().end();
3026            ++i)
3027         {
3028           off = align_address(off, i->addralign());
3029           if (i->is_input_section() || i->is_relaxed_input_section())
3030             i->relobj()->set_section_offset(i->shndx(), off);
3031           if (i->is_relaxed_input_section())
3032             {
3033               Stub_table<size, big_endian>* stub_table
3034                 = static_cast<Stub_table<size, big_endian>*>(
3035                     i->relaxed_input_section());
3036               Address stub_table_size = stub_table->set_address_and_size(os, off);
3037               off += stub_table_size;
3038               // After a few iterations, set current stub table size
3039               // as min size threshold, so later stub tables can only
3040               // grow in size.
3041               if (pass >= 4)
3042                 stub_table->set_min_size_threshold(stub_table_size);
3043             }
3044           else
3045             off += i->data_size();
3046         }
3047       // If .branch_lt is part of this output section, then we have
3048       // just done the offset adjustment.
3049       os->clear_section_offsets_need_adjustment();
3050     }
3051
3052   if (size == 64
3053       && !again
3054       && num_huge_branches != 0
3055       && parameters->options().output_is_position_independent())
3056     {
3057       // Fill in the BRLT relocs.
3058       this->brlt_section_->reset_brlt_sizes();
3059       for (typename Branch_lookup_table::const_iterator p
3060              = this->branch_lookup_table_.begin();
3061            p != this->branch_lookup_table_.end();
3062            ++p)
3063         {
3064           this->brlt_section_->add_reloc(p->first, p->second);
3065         }
3066       this->brlt_section_->finalize_brlt_sizes();
3067     }
3068   return again;
3069 }
3070
3071 template<int size, bool big_endian>
3072 void
3073 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3074                                                       unsigned char* oview,
3075                                                       uint64_t* paddress,
3076                                                       off_t* plen) const
3077 {
3078   uint64_t address = plt->address();
3079   off_t len = plt->data_size();
3080
3081   if (plt == this->glink_)
3082     {
3083       // See Output_data_glink::do_write() for glink contents.
3084       if (len == 0)
3085         {
3086           gold_assert(parameters->doing_static_link());
3087           // Static linking may need stubs, to support ifunc and long
3088           // branches.  We need to create an output section for
3089           // .eh_frame early in the link process, to have a place to
3090           // attach stub .eh_frame info.  We also need to have
3091           // registered a CIE that matches the stub CIE.  Both of
3092           // these requirements are satisfied by creating an FDE and
3093           // CIE for .glink, even though static linking will leave
3094           // .glink zero length.
3095           // ??? Hopefully generating an FDE with a zero address range
3096           // won't confuse anything that consumes .eh_frame info.
3097         }
3098       else if (size == 64)
3099         {
3100           // There is one word before __glink_PLTresolve
3101           address += 8;
3102           len -= 8;
3103         }
3104       else if (parameters->options().output_is_position_independent())
3105         {
3106           // There are two FDEs for a position independent glink.
3107           // The first covers the branch table, the second
3108           // __glink_PLTresolve at the end of glink.
3109           off_t resolve_size = this->glink_->pltresolve_size;
3110           if (oview[9] == elfcpp::DW_CFA_nop)
3111             len -= resolve_size;
3112           else
3113             {
3114               address += len - resolve_size;
3115               len = resolve_size;
3116             }
3117         }
3118     }
3119   else
3120     {
3121       // Must be a stub table.
3122       const Stub_table<size, big_endian>* stub_table
3123         = static_cast<const Stub_table<size, big_endian>*>(plt);
3124       uint64_t stub_address = stub_table->stub_address();
3125       len -= stub_address - address;
3126       address = stub_address;
3127     }
3128
3129   *paddress = address;
3130   *plen = len;
3131 }
3132
3133 // A class to handle the PLT data.
3134
3135 template<int size, bool big_endian>
3136 class Output_data_plt_powerpc : public Output_section_data_build
3137 {
3138  public:
3139   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3140                             size, big_endian> Reloc_section;
3141
3142   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3143                           Reloc_section* plt_rel,
3144                           const char* name)
3145     : Output_section_data_build(size == 32 ? 4 : 8),
3146       rel_(plt_rel),
3147       targ_(targ),
3148       name_(name)
3149   { }
3150
3151   // Add an entry to the PLT.
3152   void
3153   add_entry(Symbol*);
3154
3155   void
3156   add_ifunc_entry(Symbol*);
3157
3158   void
3159   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3160
3161   // Return the .rela.plt section data.
3162   Reloc_section*
3163   rel_plt() const
3164   {
3165     return this->rel_;
3166   }
3167
3168   // Return the number of PLT entries.
3169   unsigned int
3170   entry_count() const
3171   {
3172     if (this->current_data_size() == 0)
3173       return 0;
3174     return ((this->current_data_size() - this->first_plt_entry_offset())
3175             / this->plt_entry_size());
3176   }
3177
3178  protected:
3179   void
3180   do_adjust_output_section(Output_section* os)
3181   {
3182     os->set_entsize(0);
3183   }
3184
3185   // Write to a map file.
3186   void
3187   do_print_to_mapfile(Mapfile* mapfile) const
3188   { mapfile->print_output_data(this, this->name_); }
3189
3190  private:
3191   // Return the offset of the first non-reserved PLT entry.
3192   unsigned int
3193   first_plt_entry_offset() const
3194   {
3195     // IPLT has no reserved entry.
3196     if (this->name_[3] == 'I')
3197       return 0;
3198     return this->targ_->first_plt_entry_offset();
3199   }
3200
3201   // Return the size of each PLT entry.
3202   unsigned int
3203   plt_entry_size() const
3204   {
3205     return this->targ_->plt_entry_size();
3206   }
3207
3208   // Write out the PLT data.
3209   void
3210   do_write(Output_file*);
3211
3212   // The reloc section.
3213   Reloc_section* rel_;
3214   // Allows access to .glink for do_write.
3215   Target_powerpc<size, big_endian>* targ_;
3216   // What to report in map file.
3217   const char *name_;
3218 };
3219
3220 // Add an entry to the PLT.
3221
3222 template<int size, bool big_endian>
3223 void
3224 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3225 {
3226   if (!gsym->has_plt_offset())
3227     {
3228       section_size_type off = this->current_data_size();
3229       if (off == 0)
3230         off += this->first_plt_entry_offset();
3231       gsym->set_plt_offset(off);
3232       gsym->set_needs_dynsym_entry();
3233       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3234       this->rel_->add_global(gsym, dynrel, this, off, 0);
3235       off += this->plt_entry_size();
3236       this->set_current_data_size(off);
3237     }
3238 }
3239
3240 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3241
3242 template<int size, bool big_endian>
3243 void
3244 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3245 {
3246   if (!gsym->has_plt_offset())
3247     {
3248       section_size_type off = this->current_data_size();
3249       gsym->set_plt_offset(off);
3250       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3251       if (size == 64 && this->targ_->abiversion() < 2)
3252         dynrel = elfcpp::R_PPC64_JMP_IREL;
3253       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3254       off += this->plt_entry_size();
3255       this->set_current_data_size(off);
3256     }
3257 }
3258
3259 // Add an entry for a local ifunc symbol to the IPLT.
3260
3261 template<int size, bool big_endian>
3262 void
3263 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3264     Sized_relobj_file<size, big_endian>* relobj,
3265     unsigned int local_sym_index)
3266 {
3267   if (!relobj->local_has_plt_offset(local_sym_index))
3268     {
3269       section_size_type off = this->current_data_size();
3270       relobj->set_local_plt_offset(local_sym_index, off);
3271       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3272       if (size == 64 && this->targ_->abiversion() < 2)
3273         dynrel = elfcpp::R_PPC64_JMP_IREL;
3274       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3275                                               this, off, 0);
3276       off += this->plt_entry_size();
3277       this->set_current_data_size(off);
3278     }
3279 }
3280
3281 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3282 static const uint32_t add_2_2_11        = 0x7c425a14;
3283 static const uint32_t add_2_2_12        = 0x7c426214;
3284 static const uint32_t add_3_3_2         = 0x7c631214;
3285 static const uint32_t add_3_3_13        = 0x7c636a14;
3286 static const uint32_t add_11_0_11       = 0x7d605a14;
3287 static const uint32_t add_11_2_11       = 0x7d625a14;
3288 static const uint32_t add_11_11_2       = 0x7d6b1214;
3289 static const uint32_t addi_0_12         = 0x380c0000;
3290 static const uint32_t addi_2_2          = 0x38420000;
3291 static const uint32_t addi_3_3          = 0x38630000;
3292 static const uint32_t addi_11_11        = 0x396b0000;
3293 static const uint32_t addi_12_1         = 0x39810000;
3294 static const uint32_t addi_12_12        = 0x398c0000;
3295 static const uint32_t addis_0_2         = 0x3c020000;
3296 static const uint32_t addis_0_13        = 0x3c0d0000;
3297 static const uint32_t addis_2_12        = 0x3c4c0000;
3298 static const uint32_t addis_11_2        = 0x3d620000;
3299 static const uint32_t addis_11_11       = 0x3d6b0000;
3300 static const uint32_t addis_11_30       = 0x3d7e0000;
3301 static const uint32_t addis_12_1        = 0x3d810000;
3302 static const uint32_t addis_12_2        = 0x3d820000;
3303 static const uint32_t addis_12_12       = 0x3d8c0000;
3304 static const uint32_t b                 = 0x48000000;
3305 static const uint32_t bcl_20_31         = 0x429f0005;
3306 static const uint32_t bctr              = 0x4e800420;
3307 static const uint32_t blr               = 0x4e800020;
3308 static const uint32_t bnectr_p4         = 0x4ce20420;
3309 static const uint32_t cmpld_7_12_0      = 0x7fac0040;
3310 static const uint32_t cmpldi_2_0        = 0x28220000;
3311 static const uint32_t cror_15_15_15     = 0x4def7b82;
3312 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3313 static const uint32_t ld_0_1            = 0xe8010000;
3314 static const uint32_t ld_0_12           = 0xe80c0000;
3315 static const uint32_t ld_2_1            = 0xe8410000;
3316 static const uint32_t ld_2_2            = 0xe8420000;
3317 static const uint32_t ld_2_11           = 0xe84b0000;
3318 static const uint32_t ld_2_12           = 0xe84c0000;
3319 static const uint32_t ld_11_2           = 0xe9620000;
3320 static const uint32_t ld_11_11          = 0xe96b0000;
3321 static const uint32_t ld_12_2           = 0xe9820000;
3322 static const uint32_t ld_12_11          = 0xe98b0000;
3323 static const uint32_t ld_12_12          = 0xe98c0000;
3324 static const uint32_t lfd_0_1           = 0xc8010000;
3325 static const uint32_t li_0_0            = 0x38000000;
3326 static const uint32_t li_12_0           = 0x39800000;
3327 static const uint32_t lis_0             = 0x3c000000;
3328 static const uint32_t lis_2             = 0x3c400000;
3329 static const uint32_t lis_11            = 0x3d600000;
3330 static const uint32_t lis_12            = 0x3d800000;
3331 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3332 static const uint32_t lwz_0_12          = 0x800c0000;
3333 static const uint32_t lwz_11_11         = 0x816b0000;
3334 static const uint32_t lwz_11_30         = 0x817e0000;
3335 static const uint32_t lwz_12_12         = 0x818c0000;
3336 static const uint32_t lwzu_0_12         = 0x840c0000;
3337 static const uint32_t mflr_0            = 0x7c0802a6;
3338 static const uint32_t mflr_11           = 0x7d6802a6;
3339 static const uint32_t mflr_12           = 0x7d8802a6;
3340 static const uint32_t mtctr_0           = 0x7c0903a6;
3341 static const uint32_t mtctr_11          = 0x7d6903a6;
3342 static const uint32_t mtctr_12          = 0x7d8903a6;
3343 static const uint32_t mtlr_0            = 0x7c0803a6;
3344 static const uint32_t mtlr_12           = 0x7d8803a6;
3345 static const uint32_t nop               = 0x60000000;
3346 static const uint32_t ori_0_0_0         = 0x60000000;
3347 static const uint32_t srdi_0_0_2        = 0x7800f082;
3348 static const uint32_t std_0_1           = 0xf8010000;
3349 static const uint32_t std_0_12          = 0xf80c0000;
3350 static const uint32_t std_2_1           = 0xf8410000;
3351 static const uint32_t stfd_0_1          = 0xd8010000;
3352 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3353 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3354 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3355 static const uint32_t xor_2_12_12       = 0x7d826278;
3356 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3357
3358 // Write out the PLT.
3359
3360 template<int size, bool big_endian>
3361 void
3362 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3363 {
3364   if (size == 32 && this->name_[3] != 'I')
3365     {
3366       const section_size_type offset = this->offset();
3367       const section_size_type oview_size
3368         = convert_to_section_size_type(this->data_size());
3369       unsigned char* const oview = of->get_output_view(offset, oview_size);
3370       unsigned char* pov = oview;
3371       unsigned char* endpov = oview + oview_size;
3372
3373       // The address of the .glink branch table
3374       const Output_data_glink<size, big_endian>* glink
3375         = this->targ_->glink_section();
3376       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3377
3378       while (pov < endpov)
3379         {
3380           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3381           pov += 4;
3382           branch_tab += 4;
3383         }
3384
3385       of->write_output_view(offset, oview_size, oview);
3386     }
3387 }
3388
3389 // Create the PLT section.
3390
3391 template<int size, bool big_endian>
3392 void
3393 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3394                                                    Layout* layout)
3395 {
3396   if (this->plt_ == NULL)
3397     {
3398       if (this->got_ == NULL)
3399         this->got_section(symtab, layout);
3400
3401       if (this->glink_ == NULL)
3402         make_glink_section(layout);
3403
3404       // Ensure that .rela.dyn always appears before .rela.plt  This is
3405       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3406       // needs to include .rela.plt in its range.
3407       this->rela_dyn_section(layout);
3408
3409       Reloc_section* plt_rel = new Reloc_section(false);
3410       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3411                                       elfcpp::SHF_ALLOC, plt_rel,
3412                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3413       this->plt_
3414         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3415                                                         "** PLT");
3416       layout->add_output_section_data(".plt",
3417                                       (size == 32
3418                                        ? elfcpp::SHT_PROGBITS
3419                                        : elfcpp::SHT_NOBITS),
3420                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3421                                       this->plt_,
3422                                       (size == 32
3423                                        ? ORDER_SMALL_DATA
3424                                        : ORDER_SMALL_BSS),
3425                                       false);
3426     }
3427 }
3428
3429 // Create the IPLT section.
3430
3431 template<int size, bool big_endian>
3432 void
3433 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3434                                                     Layout* layout)
3435 {
3436   if (this->iplt_ == NULL)
3437     {
3438       this->make_plt_section(symtab, layout);
3439
3440       Reloc_section* iplt_rel = new Reloc_section(false);
3441       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3442       this->iplt_
3443         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3444                                                         "** IPLT");
3445       this->plt_->output_section()->add_output_section_data(this->iplt_);
3446     }
3447 }
3448
3449 // A section for huge long branch addresses, similar to plt section.
3450
3451 template<int size, bool big_endian>
3452 class Output_data_brlt_powerpc : public Output_section_data_build
3453 {
3454  public:
3455   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3456   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3457                             size, big_endian> Reloc_section;
3458
3459   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3460                            Reloc_section* brlt_rel)
3461     : Output_section_data_build(size == 32 ? 4 : 8),
3462       rel_(brlt_rel),
3463       targ_(targ)
3464   { }
3465
3466   void
3467   reset_brlt_sizes()
3468   {
3469     this->reset_data_size();
3470     this->rel_->reset_data_size();
3471   }
3472
3473   void
3474   finalize_brlt_sizes()
3475   {
3476     this->finalize_data_size();
3477     this->rel_->finalize_data_size();
3478   }
3479
3480   // Add a reloc for an entry in the BRLT.
3481   void
3482   add_reloc(Address to, unsigned int off)
3483   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3484
3485   // Update section and reloc section size.
3486   void
3487   set_current_size(unsigned int num_branches)
3488   {
3489     this->reset_address_and_file_offset();
3490     this->set_current_data_size(num_branches * 16);
3491     this->finalize_data_size();
3492     Output_section* os = this->output_section();
3493     os->set_section_offsets_need_adjustment();
3494     if (this->rel_ != NULL)
3495       {
3496         unsigned int reloc_size
3497           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3498         this->rel_->reset_address_and_file_offset();
3499         this->rel_->set_current_data_size(num_branches * reloc_size);
3500         this->rel_->finalize_data_size();
3501         Output_section* os = this->rel_->output_section();
3502         os->set_section_offsets_need_adjustment();
3503       }
3504   }
3505
3506  protected:
3507   void
3508   do_adjust_output_section(Output_section* os)
3509   {
3510     os->set_entsize(0);
3511   }
3512
3513   // Write to a map file.
3514   void
3515   do_print_to_mapfile(Mapfile* mapfile) const
3516   { mapfile->print_output_data(this, "** BRLT"); }
3517
3518  private:
3519   // Write out the BRLT data.
3520   void
3521   do_write(Output_file*);
3522
3523   // The reloc section.
3524   Reloc_section* rel_;
3525   Target_powerpc<size, big_endian>* targ_;
3526 };
3527
3528 // Make the branch lookup table section.
3529
3530 template<int size, bool big_endian>
3531 void
3532 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3533 {
3534   if (size == 64 && this->brlt_section_ == NULL)
3535     {
3536       Reloc_section* brlt_rel = NULL;
3537       bool is_pic = parameters->options().output_is_position_independent();
3538       if (is_pic)
3539         {
3540           // When PIC we can't fill in .branch_lt (like .plt it can be
3541           // a bss style section) but must initialise at runtime via
3542           // dynamic relocats.
3543           this->rela_dyn_section(layout);
3544           brlt_rel = new Reloc_section(false);
3545           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3546         }
3547       this->brlt_section_
3548         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3549       if (this->plt_ && is_pic)
3550         this->plt_->output_section()
3551           ->add_output_section_data(this->brlt_section_);
3552       else
3553         layout->add_output_section_data(".branch_lt",
3554                                         (is_pic ? elfcpp::SHT_NOBITS
3555                                          : elfcpp::SHT_PROGBITS),
3556                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3557                                         this->brlt_section_,
3558                                         (is_pic ? ORDER_SMALL_BSS
3559                                          : ORDER_SMALL_DATA),
3560                                         false);
3561     }
3562 }
3563
3564 // Write out .branch_lt when non-PIC.
3565
3566 template<int size, bool big_endian>
3567 void
3568 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3569 {
3570   if (size == 64 && !parameters->options().output_is_position_independent())
3571     {
3572       const section_size_type offset = this->offset();
3573       const section_size_type oview_size
3574         = convert_to_section_size_type(this->data_size());
3575       unsigned char* const oview = of->get_output_view(offset, oview_size);
3576
3577       this->targ_->write_branch_lookup_table(oview);
3578       of->write_output_view(offset, oview_size, oview);
3579     }
3580 }
3581
3582 static inline uint32_t
3583 l(uint32_t a)
3584 {
3585   return a & 0xffff;
3586 }
3587
3588 static inline uint32_t
3589 hi(uint32_t a)
3590 {
3591   return l(a >> 16);
3592 }
3593
3594 static inline uint32_t
3595 ha(uint32_t a)
3596 {
3597   return hi(a + 0x8000);
3598 }
3599
3600 template<int size>
3601 struct Eh_cie
3602 {
3603   static const unsigned char eh_frame_cie[12];
3604 };
3605
3606 template<int size>
3607 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3608 {
3609   1,                                    // CIE version.
3610   'z', 'R', 0,                          // Augmentation string.
3611   4,                                    // Code alignment.
3612   0x80 - size / 8 ,                     // Data alignment.
3613   65,                                   // RA reg.
3614   1,                                    // Augmentation size.
3615   (elfcpp::DW_EH_PE_pcrel
3616    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3617   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3618 };
3619
3620 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3621 static const unsigned char glink_eh_frame_fde_64v1[] =
3622 {
3623   0, 0, 0, 0,                           // Replaced with offset to .glink.
3624   0, 0, 0, 0,                           // Replaced with size of .glink.
3625   0,                                    // Augmentation size.
3626   elfcpp::DW_CFA_advance_loc + 1,
3627   elfcpp::DW_CFA_register, 65, 12,
3628   elfcpp::DW_CFA_advance_loc + 4,
3629   elfcpp::DW_CFA_restore_extended, 65
3630 };
3631
3632 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3633 static const unsigned char glink_eh_frame_fde_64v2[] =
3634 {
3635   0, 0, 0, 0,                           // Replaced with offset to .glink.
3636   0, 0, 0, 0,                           // Replaced with size of .glink.
3637   0,                                    // Augmentation size.
3638   elfcpp::DW_CFA_advance_loc + 1,
3639   elfcpp::DW_CFA_register, 65, 0,
3640   elfcpp::DW_CFA_advance_loc + 4,
3641   elfcpp::DW_CFA_restore_extended, 65
3642 };
3643
3644 // Describe __glink_PLTresolve use of LR, 32-bit version.
3645 static const unsigned char glink_eh_frame_fde_32[] =
3646 {
3647   0, 0, 0, 0,                           // Replaced with offset to .glink.
3648   0, 0, 0, 0,                           // Replaced with size of .glink.
3649   0,                                    // Augmentation size.
3650   elfcpp::DW_CFA_advance_loc + 2,
3651   elfcpp::DW_CFA_register, 65, 0,
3652   elfcpp::DW_CFA_advance_loc + 4,
3653   elfcpp::DW_CFA_restore_extended, 65
3654 };
3655
3656 static const unsigned char default_fde[] =
3657 {
3658   0, 0, 0, 0,                           // Replaced with offset to stubs.
3659   0, 0, 0, 0,                           // Replaced with size of stubs.
3660   0,                                    // Augmentation size.
3661   elfcpp::DW_CFA_nop,                   // Pad.
3662   elfcpp::DW_CFA_nop,
3663   elfcpp::DW_CFA_nop
3664 };
3665
3666 template<bool big_endian>
3667 static inline void
3668 write_insn(unsigned char* p, uint32_t v)
3669 {
3670   elfcpp::Swap<32, big_endian>::writeval(p, v);
3671 }
3672
3673 // Stub_table holds information about plt and long branch stubs.
3674 // Stubs are built in an area following some input section determined
3675 // by group_sections().  This input section is converted to a relaxed
3676 // input section allowing it to be resized to accommodate the stubs
3677
3678 template<int size, bool big_endian>
3679 class Stub_table : public Output_relaxed_input_section
3680 {
3681  public:
3682   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3683   static const Address invalid_address = static_cast<Address>(0) - 1;
3684
3685   Stub_table(Target_powerpc<size, big_endian>* targ,
3686              Output_section* output_section,
3687              const Output_section::Input_section* owner)
3688     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3689                                    owner->relobj()
3690                                    ->section_addralign(owner->shndx())),
3691       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3692       orig_data_size_(owner->current_data_size()),
3693       plt_size_(0), last_plt_size_(0),
3694       branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
3695       eh_frame_added_(false), need_save_res_(false)
3696   {
3697     this->set_output_section(output_section);
3698
3699     std::vector<Output_relaxed_input_section*> new_relaxed;
3700     new_relaxed.push_back(this);
3701     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3702   }
3703
3704   // Add a plt call stub.
3705   bool
3706   add_plt_call_entry(Address,
3707                      const Sized_relobj_file<size, big_endian>*,
3708                      const Symbol*,
3709                      unsigned int,
3710                      Address);
3711
3712   bool
3713   add_plt_call_entry(Address,
3714                      const Sized_relobj_file<size, big_endian>*,
3715                      unsigned int,
3716                      unsigned int,
3717                      Address);
3718
3719   // Find a given plt call stub.
3720   Address
3721   find_plt_call_entry(const Symbol*) const;
3722
3723   Address
3724   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3725                       unsigned int) const;
3726
3727   Address
3728   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3729                       const Symbol*,
3730                       unsigned int,
3731                       Address) const;
3732
3733   Address
3734   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3735                       unsigned int,
3736                       unsigned int,
3737                       Address) const;
3738
3739   // Add a long branch stub.
3740   bool
3741   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3742                         unsigned int, Address, Address, bool);
3743
3744   Address
3745   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3746                          Address) const;
3747
3748   bool
3749   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3750   {
3751     Address max_branch_offset = max_branch_delta(r_type);
3752     if (max_branch_offset == 0)
3753       return true;
3754     gold_assert(from != invalid_address);
3755     Address loc = off + this->stub_address();
3756     return loc - from + max_branch_offset < 2 * max_branch_offset;
3757   }
3758
3759   void
3760   clear_stubs(bool all)
3761   {
3762     this->plt_call_stubs_.clear();
3763     this->plt_size_ = 0;
3764     this->long_branch_stubs_.clear();
3765     this->branch_size_ = 0;
3766     this->need_save_res_ = false;
3767     if (all)
3768       {
3769         this->last_plt_size_ = 0;
3770         this->last_branch_size_ = 0;
3771       }
3772   }
3773
3774   Address
3775   set_address_and_size(const Output_section* os, Address off)
3776   {
3777     Address start_off = off;
3778     off += this->orig_data_size_;
3779     Address my_size = this->plt_size_ + this->branch_size_;
3780     if (this->need_save_res_)
3781       my_size += this->targ_->savres_section()->data_size();
3782     if (my_size != 0)
3783       off = align_address(off, this->stub_align());
3784     // Include original section size and alignment padding in size
3785     my_size += off - start_off;
3786     // Ensure new size is always larger than min size
3787     // threshold. Alignment requirement is included in "my_size", so
3788     // increase "my_size" does not invalidate alignment.
3789     if (my_size < this->min_size_threshold_)
3790       my_size = this->min_size_threshold_;
3791     this->reset_address_and_file_offset();
3792     this->set_current_data_size(my_size);
3793     this->set_address_and_file_offset(os->address() + start_off,
3794                                       os->offset() + start_off);
3795     return my_size;
3796   }
3797
3798   Address
3799   stub_address() const
3800   {
3801     return align_address(this->address() + this->orig_data_size_,
3802                          this->stub_align());
3803   }
3804
3805   Address
3806   stub_offset() const
3807   {
3808     return align_address(this->offset() + this->orig_data_size_,
3809                          this->stub_align());
3810   }
3811
3812   section_size_type
3813   plt_size() const
3814   { return this->plt_size_; }
3815
3816   void set_min_size_threshold(Address min_size)
3817   { this->min_size_threshold_ = min_size; }
3818
3819   bool
3820   size_update()
3821   {
3822     Output_section* os = this->output_section();
3823     if (os->addralign() < this->stub_align())
3824       {
3825         os->set_addralign(this->stub_align());
3826         // FIXME: get rid of the insane checkpointing.
3827         // We can't increase alignment of the input section to which
3828         // stubs are attached;  The input section may be .init which
3829         // is pasted together with other .init sections to form a
3830         // function.  Aligning might insert zero padding resulting in
3831         // sigill.  However we do need to increase alignment of the
3832         // output section so that the align_address() on offset in
3833         // set_address_and_size() adds the same padding as the
3834         // align_address() on address in stub_address().
3835         // What's more, we need this alignment for the layout done in
3836         // relaxation_loop_body() so that the output section starts at
3837         // a suitably aligned address.
3838         os->checkpoint_set_addralign(this->stub_align());
3839       }
3840     if (this->last_plt_size_ != this->plt_size_
3841         || this->last_branch_size_ != this->branch_size_)
3842       {
3843         this->last_plt_size_ = this->plt_size_;
3844         this->last_branch_size_ = this->branch_size_;
3845         return true;
3846       }
3847     return false;
3848   }
3849
3850   // Add .eh_frame info for this stub section.  Unlike other linker
3851   // generated .eh_frame this is added late in the link, because we
3852   // only want the .eh_frame info if this particular stub section is
3853   // non-empty.
3854   void
3855   add_eh_frame(Layout* layout)
3856   {
3857     if (!this->eh_frame_added_)
3858       {
3859         if (!parameters->options().ld_generated_unwind_info())
3860           return;
3861
3862         // Since we add stub .eh_frame info late, it must be placed
3863         // after all other linker generated .eh_frame info so that
3864         // merge mapping need not be updated for input sections.
3865         // There is no provision to use a different CIE to that used
3866         // by .glink.
3867         if (!this->targ_->has_glink())
3868           return;
3869
3870         layout->add_eh_frame_for_plt(this,
3871                                      Eh_cie<size>::eh_frame_cie,
3872                                      sizeof (Eh_cie<size>::eh_frame_cie),
3873                                      default_fde,
3874                                      sizeof (default_fde));
3875         this->eh_frame_added_ = true;
3876       }
3877   }
3878
3879   Target_powerpc<size, big_endian>*
3880   targ() const
3881   { return targ_; }
3882
3883  private:
3884   class Plt_stub_ent;
3885   class Plt_stub_ent_hash;
3886   typedef Unordered_map<Plt_stub_ent, unsigned int,
3887                         Plt_stub_ent_hash> Plt_stub_entries;
3888
3889   // Alignment of stub section.
3890   unsigned int
3891   stub_align() const
3892   {
3893     if (size == 32)
3894       return 16;
3895     unsigned int min_align = 32;
3896     unsigned int user_align = 1 << parameters->options().plt_align();
3897     return std::max(user_align, min_align);
3898   }
3899
3900   // Return the plt offset for the given call stub.
3901   Address
3902   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3903   {
3904     const Symbol* gsym = p->first.sym_;
3905     if (gsym != NULL)
3906       {
3907         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3908                     && gsym->can_use_relative_reloc(false));
3909         return gsym->plt_offset();
3910       }
3911     else
3912       {
3913         *is_iplt = true;
3914         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3915         unsigned int local_sym_index = p->first.locsym_;
3916         return relobj->local_plt_offset(local_sym_index);
3917       }
3918   }
3919
3920   // Size of a given plt call stub.
3921   unsigned int
3922   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3923   {
3924     if (size == 32)
3925       return 16;
3926
3927     bool is_iplt;
3928     Address plt_addr = this->plt_off(p, &is_iplt);
3929     if (is_iplt)
3930       plt_addr += this->targ_->iplt_section()->address();
3931     else
3932       plt_addr += this->targ_->plt_section()->address();
3933     Address got_addr = this->targ_->got_section()->output_section()->address();
3934     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3935       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3936     got_addr += ppcobj->toc_base_offset();
3937     Address off = plt_addr - got_addr;
3938     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3939     if (this->targ_->abiversion() < 2)
3940       {
3941         bool static_chain = parameters->options().plt_static_chain();
3942         bool thread_safe = this->targ_->plt_thread_safe();
3943         bytes += (4
3944                   + 4 * static_chain
3945                   + 8 * thread_safe
3946                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3947       }
3948     unsigned int align = 1 << parameters->options().plt_align();
3949     if (align > 1)
3950       bytes = (bytes + align - 1) & -align;
3951     return bytes;
3952   }
3953
3954   // Return long branch stub size.
3955   unsigned int
3956   branch_stub_size(Address to)
3957   {
3958     Address loc
3959       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3960     if (to - loc + (1 << 25) < 2 << 25)
3961       return 4;
3962     if (size == 64 || !parameters->options().output_is_position_independent())
3963       return 16;
3964     return 32;
3965   }
3966
3967   // Write out stubs.
3968   void
3969   do_write(Output_file*);
3970
3971   // Plt call stub keys.
3972   class Plt_stub_ent
3973   {
3974   public:
3975     Plt_stub_ent(const Symbol* sym)
3976       : sym_(sym), object_(0), addend_(0), locsym_(0)
3977     { }
3978
3979     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3980                  unsigned int locsym_index)
3981       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3982     { }
3983
3984     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3985                  const Symbol* sym,
3986                  unsigned int r_type,
3987                  Address addend)
3988       : sym_(sym), object_(0), addend_(0), locsym_(0)
3989     {
3990       if (size != 32)
3991         this->addend_ = addend;
3992       else if (parameters->options().output_is_position_independent()
3993                && r_type == elfcpp::R_PPC_PLTREL24)
3994         {
3995           this->addend_ = addend;
3996           if (this->addend_ >= 32768)
3997             this->object_ = object;
3998         }
3999     }
4000
4001     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
4002                  unsigned int locsym_index,
4003                  unsigned int r_type,
4004                  Address addend)
4005       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4006     {
4007       if (size != 32)
4008         this->addend_ = addend;
4009       else if (parameters->options().output_is_position_independent()
4010                && r_type == elfcpp::R_PPC_PLTREL24)
4011         this->addend_ = addend;
4012     }
4013
4014     bool operator==(const Plt_stub_ent& that) const
4015     {
4016       return (this->sym_ == that.sym_
4017               && this->object_ == that.object_
4018               && this->addend_ == that.addend_
4019               && this->locsym_ == that.locsym_);
4020     }
4021
4022     const Symbol* sym_;
4023     const Sized_relobj_file<size, big_endian>* object_;
4024     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4025     unsigned int locsym_;
4026   };
4027
4028   class Plt_stub_ent_hash
4029   {
4030   public:
4031     size_t operator()(const Plt_stub_ent& ent) const
4032     {
4033       return (reinterpret_cast<uintptr_t>(ent.sym_)
4034               ^ reinterpret_cast<uintptr_t>(ent.object_)
4035               ^ ent.addend_
4036               ^ ent.locsym_);
4037     }
4038   };
4039
4040   // Long branch stub keys.
4041   class Branch_stub_ent
4042   {
4043   public:
4044     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4045                     Address to, bool save_res)
4046       : dest_(to), toc_base_off_(0), save_res_(save_res)
4047     {
4048       if (size == 64)
4049         toc_base_off_ = obj->toc_base_offset();
4050     }
4051
4052     bool operator==(const Branch_stub_ent& that) const
4053     {
4054       return (this->dest_ == that.dest_
4055               && (size == 32
4056                   || this->toc_base_off_ == that.toc_base_off_));
4057     }
4058
4059     Address dest_;
4060     unsigned int toc_base_off_;
4061     bool save_res_;
4062   };
4063
4064   class Branch_stub_ent_hash
4065   {
4066   public:
4067     size_t operator()(const Branch_stub_ent& ent) const
4068     { return ent.dest_ ^ ent.toc_base_off_; }
4069   };
4070
4071   // In a sane world this would be a global.
4072   Target_powerpc<size, big_endian>* targ_;
4073   // Map sym/object/addend to stub offset.
4074   Plt_stub_entries plt_call_stubs_;
4075   // Map destination address to stub offset.
4076   typedef Unordered_map<Branch_stub_ent, unsigned int,
4077                         Branch_stub_ent_hash> Branch_stub_entries;
4078   Branch_stub_entries long_branch_stubs_;
4079   // size of input section
4080   section_size_type orig_data_size_;
4081   // size of stubs
4082   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4083   // Some rare cases cause (PR/20529) fluctuation in stub table
4084   // size, which leads to an endless relax loop. This is to be fixed
4085   // by, after the first few iterations, allowing only increase of
4086   // stub table size. This variable sets the minimal possible size of
4087   // a stub table, it is zero for the first few iterations, then
4088   // increases monotonically.
4089   Address min_size_threshold_;
4090   // Whether .eh_frame info has been created for this stub section.
4091   bool eh_frame_added_;
4092   // Set if this stub group needs a copy of out-of-line register
4093   // save/restore functions.
4094   bool need_save_res_;
4095 };
4096
4097 // Add a plt call stub, if we do not already have one for this
4098 // sym/object/addend combo.
4099
4100 template<int size, bool big_endian>
4101 bool
4102 Stub_table<size, big_endian>::add_plt_call_entry(
4103     Address from,
4104     const Sized_relobj_file<size, big_endian>* object,
4105     const Symbol* gsym,
4106     unsigned int r_type,
4107     Address addend)
4108 {
4109   Plt_stub_ent ent(object, gsym, r_type, addend);
4110   unsigned int off = this->plt_size_;
4111   std::pair<typename Plt_stub_entries::iterator, bool> p
4112     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4113   if (p.second)
4114     this->plt_size_ = off + this->plt_call_size(p.first);
4115   return this->can_reach_stub(from, off, r_type);
4116 }
4117
4118 template<int size, bool big_endian>
4119 bool
4120 Stub_table<size, big_endian>::add_plt_call_entry(
4121     Address from,
4122     const Sized_relobj_file<size, big_endian>* object,
4123     unsigned int locsym_index,
4124     unsigned int r_type,
4125     Address addend)
4126 {
4127   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4128   unsigned int off = this->plt_size_;
4129   std::pair<typename Plt_stub_entries::iterator, bool> p
4130     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4131   if (p.second)
4132     this->plt_size_ = off + this->plt_call_size(p.first);
4133   return this->can_reach_stub(from, off, r_type);
4134 }
4135
4136 // Find a plt call stub.
4137
4138 template<int size, bool big_endian>
4139 typename Stub_table<size, big_endian>::Address
4140 Stub_table<size, big_endian>::find_plt_call_entry(
4141     const Sized_relobj_file<size, big_endian>* object,
4142     const Symbol* gsym,
4143     unsigned int r_type,
4144     Address addend) const
4145 {
4146   Plt_stub_ent ent(object, gsym, r_type, addend);
4147   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4148   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4149 }
4150
4151 template<int size, bool big_endian>
4152 typename Stub_table<size, big_endian>::Address
4153 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4154 {
4155   Plt_stub_ent ent(gsym);
4156   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4157   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4158 }
4159
4160 template<int size, bool big_endian>
4161 typename Stub_table<size, big_endian>::Address
4162 Stub_table<size, big_endian>::find_plt_call_entry(
4163     const Sized_relobj_file<size, big_endian>* object,
4164     unsigned int locsym_index,
4165     unsigned int r_type,
4166     Address addend) const
4167 {
4168   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4169   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4170   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4171 }
4172
4173 template<int size, bool big_endian>
4174 typename Stub_table<size, big_endian>::Address
4175 Stub_table<size, big_endian>::find_plt_call_entry(
4176     const Sized_relobj_file<size, big_endian>* object,
4177     unsigned int locsym_index) const
4178 {
4179   Plt_stub_ent ent(object, locsym_index);
4180   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4181   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4182 }
4183
4184 // Add a long branch stub if we don't already have one to given
4185 // destination.
4186
4187 template<int size, bool big_endian>
4188 bool
4189 Stub_table<size, big_endian>::add_long_branch_entry(
4190     const Powerpc_relobj<size, big_endian>* object,
4191     unsigned int r_type,
4192     Address from,
4193     Address to,
4194     bool save_res)
4195 {
4196   Branch_stub_ent ent(object, to, save_res);
4197   Address off = this->branch_size_;
4198   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4199     {
4200       if (save_res)
4201         this->need_save_res_ = true;
4202       else
4203         {
4204           unsigned int stub_size = this->branch_stub_size(to);
4205           this->branch_size_ = off + stub_size;
4206           if (size == 64 && stub_size != 4)
4207             this->targ_->add_branch_lookup_table(to);
4208         }
4209     }
4210   return this->can_reach_stub(from, off, r_type);
4211 }
4212
4213 // Find long branch stub offset.
4214
4215 template<int size, bool big_endian>
4216 typename Stub_table<size, big_endian>::Address
4217 Stub_table<size, big_endian>::find_long_branch_entry(
4218     const Powerpc_relobj<size, big_endian>* object,
4219     Address to) const
4220 {
4221   Branch_stub_ent ent(object, to, false);
4222   typename Branch_stub_entries::const_iterator p
4223     = this->long_branch_stubs_.find(ent);
4224   if (p == this->long_branch_stubs_.end())
4225     return invalid_address;
4226   if (p->first.save_res_)
4227     return to - this->targ_->savres_section()->address() + this->branch_size_;
4228   return p->second;
4229 }
4230
4231 // A class to handle .glink.
4232
4233 template<int size, bool big_endian>
4234 class Output_data_glink : public Output_section_data
4235 {
4236  public:
4237   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4238   static const Address invalid_address = static_cast<Address>(0) - 1;
4239   static const int pltresolve_size = 16*4;
4240
4241   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4242     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4243       end_branch_table_(), ge_size_(0)
4244   { }
4245
4246   void
4247   add_eh_frame(Layout* layout);
4248
4249   void
4250   add_global_entry(const Symbol*);
4251
4252   Address
4253   find_global_entry(const Symbol*) const;
4254
4255   Address
4256   global_entry_address() const
4257   {
4258     gold_assert(this->is_data_size_valid());
4259     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4260     return this->address() + global_entry_off;
4261   }
4262
4263  protected:
4264   // Write to a map file.
4265   void
4266   do_print_to_mapfile(Mapfile* mapfile) const
4267   { mapfile->print_output_data(this, _("** glink")); }
4268
4269  private:
4270   void
4271   set_final_data_size();
4272
4273   // Write out .glink
4274   void
4275   do_write(Output_file*);
4276
4277   // Allows access to .got and .plt for do_write.
4278   Target_powerpc<size, big_endian>* targ_;
4279
4280   // Map sym to stub offset.
4281   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4282   Global_entry_stub_entries global_entry_stubs_;
4283
4284   unsigned int end_branch_table_, ge_size_;
4285 };
4286
4287 template<int size, bool big_endian>
4288 void
4289 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4290 {
4291   if (!parameters->options().ld_generated_unwind_info())
4292     return;
4293
4294   if (size == 64)
4295     {
4296       if (this->targ_->abiversion() < 2)
4297         layout->add_eh_frame_for_plt(this,
4298                                      Eh_cie<64>::eh_frame_cie,
4299                                      sizeof (Eh_cie<64>::eh_frame_cie),
4300                                      glink_eh_frame_fde_64v1,
4301                                      sizeof (glink_eh_frame_fde_64v1));
4302       else
4303         layout->add_eh_frame_for_plt(this,
4304                                      Eh_cie<64>::eh_frame_cie,
4305                                      sizeof (Eh_cie<64>::eh_frame_cie),
4306                                      glink_eh_frame_fde_64v2,
4307                                      sizeof (glink_eh_frame_fde_64v2));
4308     }
4309   else
4310     {
4311       // 32-bit .glink can use the default since the CIE return
4312       // address reg, LR, is valid.
4313       layout->add_eh_frame_for_plt(this,
4314                                    Eh_cie<32>::eh_frame_cie,
4315                                    sizeof (Eh_cie<32>::eh_frame_cie),
4316                                    default_fde,
4317                                    sizeof (default_fde));
4318       // Except where LR is used in a PIC __glink_PLTresolve.
4319       if (parameters->options().output_is_position_independent())
4320         layout->add_eh_frame_for_plt(this,
4321                                      Eh_cie<32>::eh_frame_cie,
4322                                      sizeof (Eh_cie<32>::eh_frame_cie),
4323                                      glink_eh_frame_fde_32,
4324                                      sizeof (glink_eh_frame_fde_32));
4325     }
4326 }
4327
4328 template<int size, bool big_endian>
4329 void
4330 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4331 {
4332   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4333     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4334   if (p.second)
4335     this->ge_size_ += 16;
4336 }
4337
4338 template<int size, bool big_endian>
4339 typename Output_data_glink<size, big_endian>::Address
4340 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4341 {
4342   typename Global_entry_stub_entries::const_iterator p
4343     = this->global_entry_stubs_.find(gsym);
4344   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4345 }
4346
4347 template<int size, bool big_endian>
4348 void
4349 Output_data_glink<size, big_endian>::set_final_data_size()
4350 {
4351   unsigned int count = this->targ_->plt_entry_count();
4352   section_size_type total = 0;
4353
4354   if (count != 0)
4355     {
4356       if (size == 32)
4357         {
4358           // space for branch table
4359           total += 4 * (count - 1);
4360
4361           total += -total & 15;
4362           total += this->pltresolve_size;
4363         }
4364       else
4365         {
4366           total += this->pltresolve_size;
4367
4368           // space for branch table
4369           total += 4 * count;
4370           if (this->targ_->abiversion() < 2)
4371             {
4372               total += 4 * count;
4373               if (count > 0x8000)
4374                 total += 4 * (count - 0x8000);
4375             }
4376         }
4377     }
4378   this->end_branch_table_ = total;
4379   total = (total + 15) & -16;
4380   total += this->ge_size_;
4381
4382   this->set_data_size(total);
4383 }
4384
4385 // Write out plt and long branch stub code.
4386
4387 template<int size, bool big_endian>
4388 void
4389 Stub_table<size, big_endian>::do_write(Output_file* of)
4390 {
4391   if (this->plt_call_stubs_.empty()
4392       && this->long_branch_stubs_.empty())
4393     return;
4394
4395   const section_size_type start_off = this->offset();
4396   const section_size_type off = this->stub_offset();
4397   const section_size_type oview_size =
4398     convert_to_section_size_type(this->data_size() - (off - start_off));
4399   unsigned char* const oview = of->get_output_view(off, oview_size);
4400   unsigned char* p;
4401
4402   if (size == 64)
4403     {
4404       const Output_data_got_powerpc<size, big_endian>* got
4405         = this->targ_->got_section();
4406       Address got_os_addr = got->output_section()->address();
4407
4408       if (!this->plt_call_stubs_.empty())
4409         {
4410           // The base address of the .plt section.
4411           Address plt_base = this->targ_->plt_section()->address();
4412           Address iplt_base = invalid_address;
4413
4414           // Write out plt call stubs.
4415           typename Plt_stub_entries::const_iterator cs;
4416           for (cs = this->plt_call_stubs_.begin();
4417                cs != this->plt_call_stubs_.end();
4418                ++cs)
4419             {
4420               bool is_iplt;
4421               Address pltoff = this->plt_off(cs, &is_iplt);
4422               Address plt_addr = pltoff;
4423               if (is_iplt)
4424                 {
4425                   if (iplt_base == invalid_address)
4426                     iplt_base = this->targ_->iplt_section()->address();
4427                   plt_addr += iplt_base;
4428                 }
4429               else
4430                 plt_addr += plt_base;
4431               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4432                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4433               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4434               Address off = plt_addr - got_addr;
4435
4436               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4437                 gold_error(_("%s: linkage table error against `%s'"),
4438                            cs->first.object_->name().c_str(),
4439                            cs->first.sym_->demangled_name().c_str());
4440
4441               bool plt_load_toc = this->targ_->abiversion() < 2;
4442               bool static_chain
4443                 = plt_load_toc && parameters->options().plt_static_chain();
4444               bool thread_safe
4445                 = plt_load_toc && this->targ_->plt_thread_safe();
4446               bool use_fake_dep = false;
4447               Address cmp_branch_off = 0;
4448               if (thread_safe)
4449                 {
4450                   unsigned int pltindex
4451                     = ((pltoff - this->targ_->first_plt_entry_offset())
4452                        / this->targ_->plt_entry_size());
4453                   Address glinkoff
4454                     = (this->targ_->glink_section()->pltresolve_size
4455                        + pltindex * 8);
4456                   if (pltindex > 32768)
4457                     glinkoff += (pltindex - 32768) * 4;
4458                   Address to
4459                     = this->targ_->glink_section()->address() + glinkoff;
4460                   Address from
4461                     = (this->stub_address() + cs->second + 24
4462                        + 4 * (ha(off) != 0)
4463                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4464                        + 4 * static_chain);
4465                   cmp_branch_off = to - from;
4466                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4467                 }
4468
4469               p = oview + cs->second;
4470               if (ha(off) != 0)
4471                 {
4472                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4473                   p += 4;
4474                   if (plt_load_toc)
4475                     {
4476                       write_insn<big_endian>(p, addis_11_2 + ha(off));
4477                       p += 4;
4478                       write_insn<big_endian>(p, ld_12_11 + l(off));
4479                       p += 4;
4480                     }
4481                   else
4482                     {
4483                       write_insn<big_endian>(p, addis_12_2 + ha(off));
4484                       p += 4;
4485                       write_insn<big_endian>(p, ld_12_12 + l(off));
4486                       p += 4;
4487                     }
4488                   if (plt_load_toc
4489                       && ha(off + 8 + 8 * static_chain) != ha(off))
4490                     {
4491                       write_insn<big_endian>(p, addi_11_11 + l(off));
4492                       p += 4;
4493                       off = 0;
4494                     }
4495                   write_insn<big_endian>(p, mtctr_12);
4496                   p += 4;
4497                   if (plt_load_toc)
4498                     {
4499                       if (use_fake_dep)
4500                         {
4501                           write_insn<big_endian>(p, xor_2_12_12);
4502                           p += 4;
4503                           write_insn<big_endian>(p, add_11_11_2);
4504                           p += 4;
4505                         }
4506                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4507                       p += 4;
4508                       if (static_chain)
4509                         {
4510                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4511                           p += 4;
4512                         }
4513                     }
4514                 }
4515               else
4516                 {
4517                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4518                   p += 4;
4519                   write_insn<big_endian>(p, ld_12_2 + l(off));
4520                   p += 4;
4521                   if (plt_load_toc
4522                       && ha(off + 8 + 8 * static_chain) != ha(off))
4523                     {
4524                       write_insn<big_endian>(p, addi_2_2 + l(off));
4525                       p += 4;
4526                       off = 0;
4527                     }
4528                   write_insn<big_endian>(p, mtctr_12);
4529                   p += 4;
4530                   if (plt_load_toc)
4531                     {
4532                       if (use_fake_dep)
4533                         {
4534                           write_insn<big_endian>(p, xor_11_12_12);
4535                           p += 4;
4536                           write_insn<big_endian>(p, add_2_2_11);
4537                           p += 4;
4538                         }
4539                       if (static_chain)
4540                         {
4541                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4542                           p += 4;
4543                         }
4544                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4545                       p += 4;
4546                     }
4547                 }
4548               if (thread_safe && !use_fake_dep)
4549                 {
4550                   write_insn<big_endian>(p, cmpldi_2_0);
4551                   p += 4;
4552                   write_insn<big_endian>(p, bnectr_p4);
4553                   p += 4;
4554                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4555                 }
4556               else
4557                 write_insn<big_endian>(p, bctr);
4558             }
4559         }
4560
4561       // Write out long branch stubs.
4562       typename Branch_stub_entries::const_iterator bs;
4563       for (bs = this->long_branch_stubs_.begin();
4564            bs != this->long_branch_stubs_.end();
4565            ++bs)
4566         {
4567           if (bs->first.save_res_)
4568             continue;
4569           p = oview + this->plt_size_ + bs->second;
4570           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4571           Address delta = bs->first.dest_ - loc;
4572           if (delta + (1 << 25) < 2 << 25)
4573             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4574           else
4575             {
4576               Address brlt_addr
4577                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4578               gold_assert(brlt_addr != invalid_address);
4579               brlt_addr += this->targ_->brlt_section()->address();
4580               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4581               Address brltoff = brlt_addr - got_addr;
4582               if (ha(brltoff) == 0)
4583                 {
4584                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4585                 }
4586               else
4587                 {
4588                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
4589                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
4590                 }
4591               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4592               write_insn<big_endian>(p, bctr);
4593             }
4594         }
4595     }
4596   else
4597     {
4598       if (!this->plt_call_stubs_.empty())
4599         {
4600           // The base address of the .plt section.
4601           Address plt_base = this->targ_->plt_section()->address();
4602           Address iplt_base = invalid_address;
4603           // The address of _GLOBAL_OFFSET_TABLE_.
4604           Address g_o_t = invalid_address;
4605
4606           // Write out plt call stubs.
4607           typename Plt_stub_entries::const_iterator cs;
4608           for (cs = this->plt_call_stubs_.begin();
4609                cs != this->plt_call_stubs_.end();
4610                ++cs)
4611             {
4612               bool is_iplt;
4613               Address plt_addr = this->plt_off(cs, &is_iplt);
4614               if (is_iplt)
4615                 {
4616                   if (iplt_base == invalid_address)
4617                     iplt_base = this->targ_->iplt_section()->address();
4618                   plt_addr += iplt_base;
4619                 }
4620               else
4621                 plt_addr += plt_base;
4622
4623               p = oview + cs->second;
4624               if (parameters->options().output_is_position_independent())
4625                 {
4626                   Address got_addr;
4627                   const Powerpc_relobj<size, big_endian>* ppcobj
4628                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4629                        (cs->first.object_));
4630                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4631                     {
4632                       unsigned int got2 = ppcobj->got2_shndx();
4633                       got_addr = ppcobj->get_output_section_offset(got2);
4634                       gold_assert(got_addr != invalid_address);
4635                       got_addr += (ppcobj->output_section(got2)->address()
4636                                    + cs->first.addend_);
4637                     }
4638                   else
4639                     {
4640                       if (g_o_t == invalid_address)
4641                         {
4642                           const Output_data_got_powerpc<size, big_endian>* got
4643                             = this->targ_->got_section();
4644                           g_o_t = got->address() + got->g_o_t();
4645                         }
4646                       got_addr = g_o_t;
4647                     }
4648
4649                   Address off = plt_addr - got_addr;
4650                   if (ha(off) == 0)
4651                     {
4652                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4653                       write_insn<big_endian>(p +  4, mtctr_11);
4654                       write_insn<big_endian>(p +  8, bctr);
4655                     }
4656                   else
4657                     {
4658                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4659                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4660                       write_insn<big_endian>(p +  8, mtctr_11);
4661                       write_insn<big_endian>(p + 12, bctr);
4662                     }
4663                 }
4664               else
4665                 {
4666                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4667                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4668                   write_insn<big_endian>(p +  8, mtctr_11);
4669                   write_insn<big_endian>(p + 12, bctr);
4670                 }
4671             }
4672         }
4673
4674       // Write out long branch stubs.
4675       typename Branch_stub_entries::const_iterator bs;
4676       for (bs = this->long_branch_stubs_.begin();
4677            bs != this->long_branch_stubs_.end();
4678            ++bs)
4679         {
4680           if (bs->first.save_res_)
4681             continue;
4682           p = oview + this->plt_size_ + bs->second;
4683           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4684           Address delta = bs->first.dest_ - loc;
4685           if (delta + (1 << 25) < 2 << 25)
4686             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4687           else if (!parameters->options().output_is_position_independent())
4688             {
4689               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4690               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4691               write_insn<big_endian>(p +  8, mtctr_12);
4692               write_insn<big_endian>(p + 12, bctr);
4693             }
4694           else
4695             {
4696               delta -= 8;
4697               write_insn<big_endian>(p +  0, mflr_0);
4698               write_insn<big_endian>(p +  4, bcl_20_31);
4699               write_insn<big_endian>(p +  8, mflr_12);
4700               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4701               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4702               write_insn<big_endian>(p + 20, mtlr_0);
4703               write_insn<big_endian>(p + 24, mtctr_12);
4704               write_insn<big_endian>(p + 28, bctr);
4705             }
4706         }
4707     }
4708   if (this->need_save_res_)
4709     {
4710       p = oview + this->plt_size_ + this->branch_size_;
4711       memcpy (p, this->targ_->savres_section()->contents(),
4712               this->targ_->savres_section()->data_size());
4713     }
4714 }
4715
4716 // Write out .glink.
4717
4718 template<int size, bool big_endian>
4719 void
4720 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4721 {
4722   const section_size_type off = this->offset();
4723   const section_size_type oview_size =
4724     convert_to_section_size_type(this->data_size());
4725   unsigned char* const oview = of->get_output_view(off, oview_size);
4726   unsigned char* p;
4727
4728   // The base address of the .plt section.
4729   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4730   Address plt_base = this->targ_->plt_section()->address();
4731
4732   if (size == 64)
4733     {
4734       if (this->end_branch_table_ != 0)
4735         {
4736           // Write pltresolve stub.
4737           p = oview;
4738           Address after_bcl = this->address() + 16;
4739           Address pltoff = plt_base - after_bcl;
4740
4741           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4742
4743           if (this->targ_->abiversion() < 2)
4744             {
4745               write_insn<big_endian>(p, mflr_12),               p += 4;
4746               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4747               write_insn<big_endian>(p, mflr_11),               p += 4;
4748               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4749               write_insn<big_endian>(p, mtlr_12),               p += 4;
4750               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4751               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4752               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4753               write_insn<big_endian>(p, mtctr_12),              p += 4;
4754               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4755             }
4756           else
4757             {
4758               write_insn<big_endian>(p, mflr_0),                p += 4;
4759               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4760               write_insn<big_endian>(p, mflr_11),               p += 4;
4761               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4762               write_insn<big_endian>(p, mtlr_0),                p += 4;
4763               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4764               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4765               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4766               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4767               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4768               write_insn<big_endian>(p, mtctr_12),              p += 4;
4769               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4770             }
4771           write_insn<big_endian>(p, bctr),                      p += 4;
4772           while (p < oview + this->pltresolve_size)
4773             write_insn<big_endian>(p, nop), p += 4;
4774
4775           // Write lazy link call stubs.
4776           uint32_t indx = 0;
4777           while (p < oview + this->end_branch_table_)
4778             {
4779               if (this->targ_->abiversion() < 2)
4780                 {
4781                   if (indx < 0x8000)
4782                     {
4783                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4784                     }
4785                   else
4786                     {
4787                       write_insn<big_endian>(p, lis_0 + hi(indx)),      p += 4;
4788                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4789                     }
4790                 }
4791               uint32_t branch_off = 8 - (p - oview);
4792               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4793               indx++;
4794             }
4795         }
4796
4797       Address plt_base = this->targ_->plt_section()->address();
4798       Address iplt_base = invalid_address;
4799       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4800       Address global_entry_base = this->address() + global_entry_off;
4801       typename Global_entry_stub_entries::const_iterator ge;
4802       for (ge = this->global_entry_stubs_.begin();
4803            ge != this->global_entry_stubs_.end();
4804            ++ge)
4805         {
4806           p = oview + global_entry_off + ge->second;
4807           Address plt_addr = ge->first->plt_offset();
4808           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4809               && ge->first->can_use_relative_reloc(false))
4810             {
4811               if (iplt_base == invalid_address)
4812                 iplt_base = this->targ_->iplt_section()->address();
4813               plt_addr += iplt_base;
4814             }
4815           else
4816             plt_addr += plt_base;
4817           Address my_addr = global_entry_base + ge->second;
4818           Address off = plt_addr - my_addr;
4819
4820           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4821             gold_error(_("%s: linkage table error against `%s'"),
4822                        ge->first->object()->name().c_str(),
4823                        ge->first->demangled_name().c_str());
4824
4825           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4826           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4827           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4828           write_insn<big_endian>(p, bctr);
4829         }
4830     }
4831   else
4832     {
4833       const Output_data_got_powerpc<size, big_endian>* got
4834         = this->targ_->got_section();
4835       // The address of _GLOBAL_OFFSET_TABLE_.
4836       Address g_o_t = got->address() + got->g_o_t();
4837
4838       // Write out pltresolve branch table.
4839       p = oview;
4840       unsigned int the_end = oview_size - this->pltresolve_size;
4841       unsigned char* end_p = oview + the_end;
4842       while (p < end_p - 8 * 4)
4843         write_insn<big_endian>(p, b + end_p - p), p += 4;
4844       while (p < end_p)
4845         write_insn<big_endian>(p, nop), p += 4;
4846
4847       // Write out pltresolve call stub.
4848       if (parameters->options().output_is_position_independent())
4849         {
4850           Address res0_off = 0;
4851           Address after_bcl_off = the_end + 12;
4852           Address bcl_res0 = after_bcl_off - res0_off;
4853
4854           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4855           write_insn<big_endian>(p +  4, mflr_0);
4856           write_insn<big_endian>(p +  8, bcl_20_31);
4857           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4858           write_insn<big_endian>(p + 16, mflr_12);
4859           write_insn<big_endian>(p + 20, mtlr_0);
4860           write_insn<big_endian>(p + 24, sub_11_11_12);
4861
4862           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4863
4864           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4865           if (ha(got_bcl) == ha(got_bcl + 4))
4866             {
4867               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4868               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4869             }
4870           else
4871             {
4872               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4873               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4874             }
4875           write_insn<big_endian>(p + 40, mtctr_0);
4876           write_insn<big_endian>(p + 44, add_0_11_11);
4877           write_insn<big_endian>(p + 48, add_11_0_11);
4878           write_insn<big_endian>(p + 52, bctr);
4879           write_insn<big_endian>(p + 56, nop);
4880           write_insn<big_endian>(p + 60, nop);
4881         }
4882       else
4883         {
4884           Address res0 = this->address();
4885
4886           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4887           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4888           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4889             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4890           else
4891             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4892           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4893           write_insn<big_endian>(p + 16, mtctr_0);
4894           write_insn<big_endian>(p + 20, add_0_11_11);
4895           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4896             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4897           else
4898             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4899           write_insn<big_endian>(p + 28, add_11_0_11);
4900           write_insn<big_endian>(p + 32, bctr);
4901           write_insn<big_endian>(p + 36, nop);
4902           write_insn<big_endian>(p + 40, nop);
4903           write_insn<big_endian>(p + 44, nop);
4904           write_insn<big_endian>(p + 48, nop);
4905           write_insn<big_endian>(p + 52, nop);
4906           write_insn<big_endian>(p + 56, nop);
4907           write_insn<big_endian>(p + 60, nop);
4908         }
4909       p += 64;
4910     }
4911
4912   of->write_output_view(off, oview_size, oview);
4913 }
4914
4915
4916 // A class to handle linker generated save/restore functions.
4917
4918 template<int size, bool big_endian>
4919 class Output_data_save_res : public Output_section_data_build
4920 {
4921  public:
4922   Output_data_save_res(Symbol_table* symtab);
4923
4924   const unsigned char*
4925   contents() const
4926   {
4927     return contents_;
4928   }
4929
4930  protected:
4931   // Write to a map file.
4932   void
4933   do_print_to_mapfile(Mapfile* mapfile) const
4934   { mapfile->print_output_data(this, _("** save/restore")); }
4935
4936   void
4937   do_write(Output_file*);
4938
4939  private:
4940   // The maximum size of save/restore contents.
4941   static const unsigned int savres_max = 218*4;
4942
4943   void
4944   savres_define(Symbol_table* symtab,
4945                 const char *name,
4946                 unsigned int lo, unsigned int hi,
4947                 unsigned char* write_ent(unsigned char*, int),
4948                 unsigned char* write_tail(unsigned char*, int));
4949
4950   unsigned char *contents_;
4951 };
4952
4953 template<bool big_endian>
4954 static unsigned char*
4955 savegpr0(unsigned char* p, int r)
4956 {
4957   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4958   write_insn<big_endian>(p, insn);
4959   return p + 4;
4960 }
4961
4962 template<bool big_endian>
4963 static unsigned char*
4964 savegpr0_tail(unsigned char* p, int r)
4965 {
4966   p = savegpr0<big_endian>(p, r);
4967   uint32_t insn = std_0_1 + 16;
4968   write_insn<big_endian>(p, insn);
4969   p = p + 4;
4970   write_insn<big_endian>(p, blr);
4971   return p + 4;
4972 }
4973
4974 template<bool big_endian>
4975 static unsigned char*
4976 restgpr0(unsigned char* p, int r)
4977 {
4978   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4979   write_insn<big_endian>(p, insn);
4980   return p + 4;
4981 }
4982
4983 template<bool big_endian>
4984 static unsigned char*
4985 restgpr0_tail(unsigned char* p, int r)
4986 {
4987   uint32_t insn = ld_0_1 + 16;
4988   write_insn<big_endian>(p, insn);
4989   p = p + 4;
4990   p = restgpr0<big_endian>(p, r);
4991   write_insn<big_endian>(p, mtlr_0);
4992   p = p + 4;
4993   if (r == 29)
4994     {
4995       p = restgpr0<big_endian>(p, 30);
4996       p = restgpr0<big_endian>(p, 31);
4997     }
4998   write_insn<big_endian>(p, blr);
4999   return p + 4;
5000 }
5001
5002 template<bool big_endian>
5003 static unsigned char*
5004 savegpr1(unsigned char* p, int r)
5005 {
5006   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5007   write_insn<big_endian>(p, insn);
5008   return p + 4;
5009 }
5010
5011 template<bool big_endian>
5012 static unsigned char*
5013 savegpr1_tail(unsigned char* p, int r)
5014 {
5015   p = savegpr1<big_endian>(p, r);
5016   write_insn<big_endian>(p, blr);
5017   return p + 4;
5018 }
5019
5020 template<bool big_endian>
5021 static unsigned char*
5022 restgpr1(unsigned char* p, int r)
5023 {
5024   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5025   write_insn<big_endian>(p, insn);
5026   return p + 4;
5027 }
5028
5029 template<bool big_endian>
5030 static unsigned char*
5031 restgpr1_tail(unsigned char* p, int r)
5032 {
5033   p = restgpr1<big_endian>(p, r);
5034   write_insn<big_endian>(p, blr);
5035   return p + 4;
5036 }
5037
5038 template<bool big_endian>
5039 static unsigned char*
5040 savefpr(unsigned char* p, int r)
5041 {
5042   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5043   write_insn<big_endian>(p, insn);
5044   return p + 4;
5045 }
5046
5047 template<bool big_endian>
5048 static unsigned char*
5049 savefpr0_tail(unsigned char* p, int r)
5050 {
5051   p = savefpr<big_endian>(p, r);
5052   write_insn<big_endian>(p, std_0_1 + 16);
5053   p = p + 4;
5054   write_insn<big_endian>(p, blr);
5055   return p + 4;
5056 }
5057
5058 template<bool big_endian>
5059 static unsigned char*
5060 restfpr(unsigned char* p, int r)
5061 {
5062   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5063   write_insn<big_endian>(p, insn);
5064   return p + 4;
5065 }
5066
5067 template<bool big_endian>
5068 static unsigned char*
5069 restfpr0_tail(unsigned char* p, int r)
5070 {
5071   write_insn<big_endian>(p, ld_0_1 + 16);
5072   p = p + 4;
5073   p = restfpr<big_endian>(p, r);
5074   write_insn<big_endian>(p, mtlr_0);
5075   p = p + 4;
5076   if (r == 29)
5077     {
5078       p = restfpr<big_endian>(p, 30);
5079       p = restfpr<big_endian>(p, 31);
5080     }
5081   write_insn<big_endian>(p, blr);
5082   return p + 4;
5083 }
5084
5085 template<bool big_endian>
5086 static unsigned char*
5087 savefpr1_tail(unsigned char* p, int r)
5088 {
5089   p = savefpr<big_endian>(p, r);
5090   write_insn<big_endian>(p, blr);
5091   return p + 4;
5092 }
5093
5094 template<bool big_endian>
5095 static unsigned char*
5096 restfpr1_tail(unsigned char* p, int r)
5097 {
5098   p = restfpr<big_endian>(p, r);
5099   write_insn<big_endian>(p, blr);
5100   return p + 4;
5101 }
5102
5103 template<bool big_endian>
5104 static unsigned char*
5105 savevr(unsigned char* p, int r)
5106 {
5107   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5108   write_insn<big_endian>(p, insn);
5109   p = p + 4;
5110   insn = stvx_0_12_0 + (r << 21);
5111   write_insn<big_endian>(p, insn);
5112   return p + 4;
5113 }
5114
5115 template<bool big_endian>
5116 static unsigned char*
5117 savevr_tail(unsigned char* p, int r)
5118 {
5119   p = savevr<big_endian>(p, r);
5120   write_insn<big_endian>(p, blr);
5121   return p + 4;
5122 }
5123
5124 template<bool big_endian>
5125 static unsigned char*
5126 restvr(unsigned char* p, int r)
5127 {
5128   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5129   write_insn<big_endian>(p, insn);
5130   p = p + 4;
5131   insn = lvx_0_12_0 + (r << 21);
5132   write_insn<big_endian>(p, insn);
5133   return p + 4;
5134 }
5135
5136 template<bool big_endian>
5137 static unsigned char*
5138 restvr_tail(unsigned char* p, int r)
5139 {
5140   p = restvr<big_endian>(p, r);
5141   write_insn<big_endian>(p, blr);
5142   return p + 4;
5143 }
5144
5145
5146 template<int size, bool big_endian>
5147 Output_data_save_res<size, big_endian>::Output_data_save_res(
5148     Symbol_table* symtab)
5149   : Output_section_data_build(4),
5150     contents_(NULL)
5151 {
5152   this->savres_define(symtab,
5153                       "_savegpr0_", 14, 31,
5154                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
5155   this->savres_define(symtab,
5156                       "_restgpr0_", 14, 29,
5157                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5158   this->savres_define(symtab,
5159                       "_restgpr0_", 30, 31,
5160                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
5161   this->savres_define(symtab,
5162                       "_savegpr1_", 14, 31,
5163                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
5164   this->savres_define(symtab,
5165                       "_restgpr1_", 14, 31,
5166                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
5167   this->savres_define(symtab,
5168                       "_savefpr_", 14, 31,
5169                       savefpr<big_endian>, savefpr0_tail<big_endian>);
5170   this->savres_define(symtab,
5171                       "_restfpr_", 14, 29,
5172                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5173   this->savres_define(symtab,
5174                       "_restfpr_", 30, 31,
5175                       restfpr<big_endian>, restfpr0_tail<big_endian>);
5176   this->savres_define(symtab,
5177                       "._savef", 14, 31,
5178                       savefpr<big_endian>, savefpr1_tail<big_endian>);
5179   this->savres_define(symtab,
5180                       "._restf", 14, 31,
5181                       restfpr<big_endian>, restfpr1_tail<big_endian>);
5182   this->savres_define(symtab,
5183                       "_savevr_", 20, 31,
5184                       savevr<big_endian>, savevr_tail<big_endian>);
5185   this->savres_define(symtab,
5186                       "_restvr_", 20, 31,
5187                       restvr<big_endian>, restvr_tail<big_endian>);
5188 }
5189
5190 template<int size, bool big_endian>
5191 void
5192 Output_data_save_res<size, big_endian>::savres_define(
5193     Symbol_table* symtab,
5194     const char *name,
5195     unsigned int lo, unsigned int hi,
5196     unsigned char* write_ent(unsigned char*, int),
5197     unsigned char* write_tail(unsigned char*, int))
5198 {
5199   size_t len = strlen(name);
5200   bool writing = false;
5201   char sym[16];
5202
5203   memcpy(sym, name, len);
5204   sym[len + 2] = 0;
5205
5206   for (unsigned int i = lo; i <= hi; i++)
5207     {
5208       sym[len + 0] = i / 10 + '0';
5209       sym[len + 1] = i % 10 + '0';
5210       Symbol* gsym = symtab->lookup(sym);
5211       bool refd = gsym != NULL && gsym->is_undefined();
5212       writing = writing || refd;
5213       if (writing)
5214         {
5215           if (this->contents_ == NULL)
5216             this->contents_ = new unsigned char[this->savres_max];
5217
5218           section_size_type value = this->current_data_size();
5219           unsigned char* p = this->contents_ + value;
5220           if (i != hi)
5221             p = write_ent(p, i);
5222           else
5223             p = write_tail(p, i);
5224           section_size_type cur_size = p - this->contents_;
5225           this->set_current_data_size(cur_size);
5226           if (refd)
5227             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5228                                           this, value, cur_size - value,
5229                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5230                                           elfcpp::STV_HIDDEN, 0, false, false);
5231         }
5232     }
5233 }
5234
5235 // Write out save/restore.
5236
5237 template<int size, bool big_endian>
5238 void
5239 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5240 {
5241   const section_size_type off = this->offset();
5242   const section_size_type oview_size =
5243     convert_to_section_size_type(this->data_size());
5244   unsigned char* const oview = of->get_output_view(off, oview_size);
5245   memcpy(oview, this->contents_, oview_size);
5246   of->write_output_view(off, oview_size, oview);
5247 }
5248
5249
5250 // Create the glink section.
5251
5252 template<int size, bool big_endian>
5253 void
5254 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5255 {
5256   if (this->glink_ == NULL)
5257     {
5258       this->glink_ = new Output_data_glink<size, big_endian>(this);
5259       this->glink_->add_eh_frame(layout);
5260       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5261                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5262                                       this->glink_, ORDER_TEXT, false);
5263     }
5264 }
5265
5266 // Create a PLT entry for a global symbol.
5267
5268 template<int size, bool big_endian>
5269 void
5270 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5271                                                  Layout* layout,
5272                                                  Symbol* gsym)
5273 {
5274   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5275       && gsym->can_use_relative_reloc(false))
5276     {
5277       if (this->iplt_ == NULL)
5278         this->make_iplt_section(symtab, layout);
5279       this->iplt_->add_ifunc_entry(gsym);
5280     }
5281   else
5282     {
5283       if (this->plt_ == NULL)
5284         this->make_plt_section(symtab, layout);
5285       this->plt_->add_entry(gsym);
5286     }
5287 }
5288
5289 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5290
5291 template<int size, bool big_endian>
5292 void
5293 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5294     Symbol_table* symtab,
5295     Layout* layout,
5296     Sized_relobj_file<size, big_endian>* relobj,
5297     unsigned int r_sym)
5298 {
5299   if (this->iplt_ == NULL)
5300     this->make_iplt_section(symtab, layout);
5301   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5302 }
5303
5304 // Return the number of entries in the PLT.
5305
5306 template<int size, bool big_endian>
5307 unsigned int
5308 Target_powerpc<size, big_endian>::plt_entry_count() const
5309 {
5310   if (this->plt_ == NULL)
5311     return 0;
5312   return this->plt_->entry_count();
5313 }
5314
5315 // Create a GOT entry for local dynamic __tls_get_addr calls.
5316
5317 template<int size, bool big_endian>
5318 unsigned int
5319 Target_powerpc<size, big_endian>::tlsld_got_offset(
5320     Symbol_table* symtab,
5321     Layout* layout,
5322     Sized_relobj_file<size, big_endian>* object)
5323 {
5324   if (this->tlsld_got_offset_ == -1U)
5325     {
5326       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5327       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5328       Output_data_got_powerpc<size, big_endian>* got
5329         = this->got_section(symtab, layout);
5330       unsigned int got_offset = got->add_constant_pair(0, 0);
5331       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5332                           got_offset, 0);
5333       this->tlsld_got_offset_ = got_offset;
5334     }
5335   return this->tlsld_got_offset_;
5336 }
5337
5338 // Get the Reference_flags for a particular relocation.
5339
5340 template<int size, bool big_endian>
5341 int
5342 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5343     unsigned int r_type,
5344     const Target_powerpc* target)
5345 {
5346   int ref = 0;
5347
5348   switch (r_type)
5349     {
5350     case elfcpp::R_POWERPC_NONE:
5351     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5352     case elfcpp::R_POWERPC_GNU_VTENTRY:
5353     case elfcpp::R_PPC64_TOC:
5354       // No symbol reference.
5355       break;
5356
5357     case elfcpp::R_PPC64_ADDR64:
5358     case elfcpp::R_PPC64_UADDR64:
5359     case elfcpp::R_POWERPC_ADDR32:
5360     case elfcpp::R_POWERPC_UADDR32:
5361     case elfcpp::R_POWERPC_ADDR16:
5362     case elfcpp::R_POWERPC_UADDR16:
5363     case elfcpp::R_POWERPC_ADDR16_LO:
5364     case elfcpp::R_POWERPC_ADDR16_HI:
5365     case elfcpp::R_POWERPC_ADDR16_HA:
5366       ref = Symbol::ABSOLUTE_REF;
5367       break;
5368
5369     case elfcpp::R_POWERPC_ADDR24:
5370     case elfcpp::R_POWERPC_ADDR14:
5371     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5372     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5373       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5374       break;
5375
5376     case elfcpp::R_PPC64_REL64:
5377     case elfcpp::R_POWERPC_REL32:
5378     case elfcpp::R_PPC_LOCAL24PC:
5379     case elfcpp::R_POWERPC_REL16:
5380     case elfcpp::R_POWERPC_REL16_LO:
5381     case elfcpp::R_POWERPC_REL16_HI:
5382     case elfcpp::R_POWERPC_REL16_HA:
5383       ref = Symbol::RELATIVE_REF;
5384       break;
5385
5386     case elfcpp::R_POWERPC_REL24:
5387     case elfcpp::R_PPC_PLTREL24:
5388     case elfcpp::R_POWERPC_REL14:
5389     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5390     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5391       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5392       break;
5393
5394     case elfcpp::R_POWERPC_GOT16:
5395     case elfcpp::R_POWERPC_GOT16_LO:
5396     case elfcpp::R_POWERPC_GOT16_HI:
5397     case elfcpp::R_POWERPC_GOT16_HA:
5398     case elfcpp::R_PPC64_GOT16_DS:
5399     case elfcpp::R_PPC64_GOT16_LO_DS:
5400     case elfcpp::R_PPC64_TOC16:
5401     case elfcpp::R_PPC64_TOC16_LO:
5402     case elfcpp::R_PPC64_TOC16_HI:
5403     case elfcpp::R_PPC64_TOC16_HA:
5404     case elfcpp::R_PPC64_TOC16_DS:
5405     case elfcpp::R_PPC64_TOC16_LO_DS:
5406       ref = Symbol::RELATIVE_REF;
5407       break;
5408
5409     case elfcpp::R_POWERPC_GOT_TPREL16:
5410     case elfcpp::R_POWERPC_TLS:
5411       ref = Symbol::TLS_REF;
5412       break;
5413
5414     case elfcpp::R_POWERPC_COPY:
5415     case elfcpp::R_POWERPC_GLOB_DAT:
5416     case elfcpp::R_POWERPC_JMP_SLOT:
5417     case elfcpp::R_POWERPC_RELATIVE:
5418     case elfcpp::R_POWERPC_DTPMOD:
5419     default:
5420       // Not expected.  We will give an error later.
5421       break;
5422     }
5423
5424   if (size == 64 && target->abiversion() < 2)
5425     ref |= Symbol::FUNC_DESC_ABI;
5426   return ref;
5427 }
5428
5429 // Report an unsupported relocation against a local symbol.
5430
5431 template<int size, bool big_endian>
5432 void
5433 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5434     Sized_relobj_file<size, big_endian>* object,
5435     unsigned int r_type)
5436 {
5437   gold_error(_("%s: unsupported reloc %u against local symbol"),
5438              object->name().c_str(), r_type);
5439 }
5440
5441 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5442 // dynamic linker does not support it, issue an error.
5443
5444 template<int size, bool big_endian>
5445 void
5446 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5447                                                       unsigned int r_type)
5448 {
5449   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5450
5451   // These are the relocation types supported by glibc for both 32-bit
5452   // and 64-bit powerpc.
5453   switch (r_type)
5454     {
5455     case elfcpp::R_POWERPC_NONE:
5456     case elfcpp::R_POWERPC_RELATIVE:
5457     case elfcpp::R_POWERPC_GLOB_DAT:
5458     case elfcpp::R_POWERPC_DTPMOD:
5459     case elfcpp::R_POWERPC_DTPREL:
5460     case elfcpp::R_POWERPC_TPREL:
5461     case elfcpp::R_POWERPC_JMP_SLOT:
5462     case elfcpp::R_POWERPC_COPY:
5463     case elfcpp::R_POWERPC_IRELATIVE:
5464     case elfcpp::R_POWERPC_ADDR32:
5465     case elfcpp::R_POWERPC_UADDR32:
5466     case elfcpp::R_POWERPC_ADDR24:
5467     case elfcpp::R_POWERPC_ADDR16:
5468     case elfcpp::R_POWERPC_UADDR16:
5469     case elfcpp::R_POWERPC_ADDR16_LO:
5470     case elfcpp::R_POWERPC_ADDR16_HI:
5471     case elfcpp::R_POWERPC_ADDR16_HA:
5472     case elfcpp::R_POWERPC_ADDR14:
5473     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5474     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5475     case elfcpp::R_POWERPC_REL32:
5476     case elfcpp::R_POWERPC_REL24:
5477     case elfcpp::R_POWERPC_TPREL16:
5478     case elfcpp::R_POWERPC_TPREL16_LO:
5479     case elfcpp::R_POWERPC_TPREL16_HI:
5480     case elfcpp::R_POWERPC_TPREL16_HA:
5481       return;
5482
5483     default:
5484       break;
5485     }
5486
5487   if (size == 64)
5488     {
5489       switch (r_type)
5490         {
5491           // These are the relocation types supported only on 64-bit.
5492         case elfcpp::R_PPC64_ADDR64:
5493         case elfcpp::R_PPC64_UADDR64:
5494         case elfcpp::R_PPC64_JMP_IREL:
5495         case elfcpp::R_PPC64_ADDR16_DS:
5496         case elfcpp::R_PPC64_ADDR16_LO_DS:
5497         case elfcpp::R_PPC64_ADDR16_HIGH:
5498         case elfcpp::R_PPC64_ADDR16_HIGHA:
5499         case elfcpp::R_PPC64_ADDR16_HIGHER:
5500         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5501         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5502         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5503         case elfcpp::R_PPC64_REL64:
5504         case elfcpp::R_POWERPC_ADDR30:
5505         case elfcpp::R_PPC64_TPREL16_DS:
5506         case elfcpp::R_PPC64_TPREL16_LO_DS:
5507         case elfcpp::R_PPC64_TPREL16_HIGH:
5508         case elfcpp::R_PPC64_TPREL16_HIGHA:
5509         case elfcpp::R_PPC64_TPREL16_HIGHER:
5510         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5511         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5512         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5513           return;
5514
5515         default:
5516           break;
5517         }
5518     }
5519   else
5520     {
5521       switch (r_type)
5522         {
5523           // These are the relocation types supported only on 32-bit.
5524           // ??? glibc ld.so doesn't need to support these.
5525         case elfcpp::R_POWERPC_DTPREL16:
5526         case elfcpp::R_POWERPC_DTPREL16_LO:
5527         case elfcpp::R_POWERPC_DTPREL16_HI:
5528         case elfcpp::R_POWERPC_DTPREL16_HA:
5529           return;
5530
5531         default:
5532           break;
5533         }
5534     }
5535
5536   // This prevents us from issuing more than one error per reloc
5537   // section.  But we can still wind up issuing more than one
5538   // error per object file.
5539   if (this->issued_non_pic_error_)
5540     return;
5541   gold_assert(parameters->options().output_is_position_independent());
5542   object->error(_("requires unsupported dynamic reloc; "
5543                   "recompile with -fPIC"));
5544   this->issued_non_pic_error_ = true;
5545   return;
5546 }
5547
5548 // Return whether we need to make a PLT entry for a relocation of the
5549 // given type against a STT_GNU_IFUNC symbol.
5550
5551 template<int size, bool big_endian>
5552 bool
5553 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5554      Target_powerpc<size, big_endian>* target,
5555      Sized_relobj_file<size, big_endian>* object,
5556      unsigned int r_type,
5557      bool report_err)
5558 {
5559   // In non-pic code any reference will resolve to the plt call stub
5560   // for the ifunc symbol.
5561   if ((size == 32 || target->abiversion() >= 2)
5562       && !parameters->options().output_is_position_independent())
5563     return true;
5564
5565   switch (r_type)
5566     {
5567     // Word size refs from data sections are OK, but don't need a PLT entry.
5568     case elfcpp::R_POWERPC_ADDR32:
5569     case elfcpp::R_POWERPC_UADDR32:
5570       if (size == 32)
5571         return false;
5572       break;
5573
5574     case elfcpp::R_PPC64_ADDR64:
5575     case elfcpp::R_PPC64_UADDR64:
5576       if (size == 64)
5577         return false;
5578       break;
5579
5580     // GOT refs are good, but also don't need a PLT entry.
5581     case elfcpp::R_POWERPC_GOT16:
5582     case elfcpp::R_POWERPC_GOT16_LO:
5583     case elfcpp::R_POWERPC_GOT16_HI:
5584     case elfcpp::R_POWERPC_GOT16_HA:
5585     case elfcpp::R_PPC64_GOT16_DS:
5586     case elfcpp::R_PPC64_GOT16_LO_DS:
5587       return false;
5588
5589     // Function calls are good, and these do need a PLT entry.
5590     case elfcpp::R_POWERPC_ADDR24:
5591     case elfcpp::R_POWERPC_ADDR14:
5592     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5593     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5594     case elfcpp::R_POWERPC_REL24:
5595     case elfcpp::R_PPC_PLTREL24:
5596     case elfcpp::R_POWERPC_REL14:
5597     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5598     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5599       return true;
5600
5601     default:
5602       break;
5603     }
5604
5605   // Anything else is a problem.
5606   // If we are building a static executable, the libc startup function
5607   // responsible for applying indirect function relocations is going
5608   // to complain about the reloc type.
5609   // If we are building a dynamic executable, we will have a text
5610   // relocation.  The dynamic loader will set the text segment
5611   // writable and non-executable to apply text relocations.  So we'll
5612   // segfault when trying to run the indirection function to resolve
5613   // the reloc.
5614   if (report_err)
5615     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5616                object->name().c_str(), r_type);
5617   return false;
5618 }
5619
5620 // Scan a relocation for a local symbol.
5621
5622 template<int size, bool big_endian>
5623 inline void
5624 Target_powerpc<size, big_endian>::Scan::local(
5625     Symbol_table* symtab,
5626     Layout* layout,
5627     Target_powerpc<size, big_endian>* target,
5628     Sized_relobj_file<size, big_endian>* object,
5629     unsigned int data_shndx,
5630     Output_section* output_section,
5631     const elfcpp::Rela<size, big_endian>& reloc,
5632     unsigned int r_type,
5633     const elfcpp::Sym<size, big_endian>& lsym,
5634     bool is_discarded)
5635 {
5636   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5637
5638   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5639       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5640     {
5641       this->expect_tls_get_addr_call();
5642       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5643       if (tls_type != tls::TLSOPT_NONE)
5644         this->skip_next_tls_get_addr_call();
5645     }
5646   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5647            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5648     {
5649       this->expect_tls_get_addr_call();
5650       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5651       if (tls_type != tls::TLSOPT_NONE)
5652         this->skip_next_tls_get_addr_call();
5653     }
5654
5655   Powerpc_relobj<size, big_endian>* ppc_object
5656     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5657
5658   if (is_discarded)
5659     {
5660       if (size == 64
5661           && data_shndx == ppc_object->opd_shndx()
5662           && r_type == elfcpp::R_PPC64_ADDR64)
5663         ppc_object->set_opd_discard(reloc.get_r_offset());
5664       return;
5665     }
5666
5667   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5668   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5669   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5670     {
5671       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5672       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5673                           r_type, r_sym, reloc.get_r_addend());
5674       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5675     }
5676
5677   switch (r_type)
5678     {
5679     case elfcpp::R_POWERPC_NONE:
5680     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5681     case elfcpp::R_POWERPC_GNU_VTENTRY:
5682     case elfcpp::R_PPC64_TOCSAVE:
5683     case elfcpp::R_POWERPC_TLS:
5684     case elfcpp::R_PPC64_ENTRY:
5685       break;
5686
5687     case elfcpp::R_PPC64_TOC:
5688       {
5689         Output_data_got_powerpc<size, big_endian>* got
5690           = target->got_section(symtab, layout);
5691         if (parameters->options().output_is_position_independent())
5692           {
5693             Address off = reloc.get_r_offset();
5694             if (size == 64
5695                 && target->abiversion() < 2
5696                 && data_shndx == ppc_object->opd_shndx()
5697                 && ppc_object->get_opd_discard(off - 8))
5698               break;
5699
5700             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5701             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5702             rela_dyn->add_output_section_relative(got->output_section(),
5703                                                   elfcpp::R_POWERPC_RELATIVE,
5704                                                   output_section,
5705                                                   object, data_shndx, off,
5706                                                   symobj->toc_base_offset());
5707           }
5708       }
5709       break;
5710
5711     case elfcpp::R_PPC64_ADDR64:
5712     case elfcpp::R_PPC64_UADDR64:
5713     case elfcpp::R_POWERPC_ADDR32:
5714     case elfcpp::R_POWERPC_UADDR32:
5715     case elfcpp::R_POWERPC_ADDR24:
5716     case elfcpp::R_POWERPC_ADDR16:
5717     case elfcpp::R_POWERPC_ADDR16_LO:
5718     case elfcpp::R_POWERPC_ADDR16_HI:
5719     case elfcpp::R_POWERPC_ADDR16_HA:
5720     case elfcpp::R_POWERPC_UADDR16:
5721     case elfcpp::R_PPC64_ADDR16_HIGH:
5722     case elfcpp::R_PPC64_ADDR16_HIGHA:
5723     case elfcpp::R_PPC64_ADDR16_HIGHER:
5724     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5725     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5726     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5727     case elfcpp::R_PPC64_ADDR16_DS:
5728     case elfcpp::R_PPC64_ADDR16_LO_DS:
5729     case elfcpp::R_POWERPC_ADDR14:
5730     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5731     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5732       // If building a shared library (or a position-independent
5733       // executable), we need to create a dynamic relocation for
5734       // this location.
5735       if (parameters->options().output_is_position_independent()
5736           || (size == 64 && is_ifunc && target->abiversion() < 2))
5737         {
5738           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5739                                                              is_ifunc);
5740           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5741           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5742               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5743             {
5744               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5745                                      : elfcpp::R_POWERPC_RELATIVE);
5746               rela_dyn->add_local_relative(object, r_sym, dynrel,
5747                                            output_section, data_shndx,
5748                                            reloc.get_r_offset(),
5749                                            reloc.get_r_addend(), false);
5750             }
5751           else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5752             {
5753               check_non_pic(object, r_type);
5754               rela_dyn->add_local(object, r_sym, r_type, output_section,
5755                                   data_shndx, reloc.get_r_offset(),
5756                                   reloc.get_r_addend());
5757             }
5758           else
5759             {
5760               gold_assert(lsym.get_st_value() == 0);
5761               unsigned int shndx = lsym.get_st_shndx();
5762               bool is_ordinary;
5763               shndx = object->adjust_sym_shndx(r_sym, shndx,
5764                                                &is_ordinary);
5765               if (!is_ordinary)
5766                 object->error(_("section symbol %u has bad shndx %u"),
5767                               r_sym, shndx);
5768               else
5769                 rela_dyn->add_local_section(object, shndx, r_type,
5770                                             output_section, data_shndx,
5771                                             reloc.get_r_offset());
5772             }
5773         }
5774       break;
5775
5776     case elfcpp::R_POWERPC_REL24:
5777     case elfcpp::R_PPC_PLTREL24:
5778     case elfcpp::R_PPC_LOCAL24PC:
5779     case elfcpp::R_POWERPC_REL14:
5780     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5781     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5782       if (!is_ifunc)
5783         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5784                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5785                             reloc.get_r_addend());
5786       break;
5787
5788     case elfcpp::R_PPC64_REL64:
5789     case elfcpp::R_POWERPC_REL32:
5790     case elfcpp::R_POWERPC_REL16:
5791     case elfcpp::R_POWERPC_REL16_LO:
5792     case elfcpp::R_POWERPC_REL16_HI:
5793     case elfcpp::R_POWERPC_REL16_HA:
5794     case elfcpp::R_POWERPC_REL16DX_HA:
5795     case elfcpp::R_POWERPC_SECTOFF:
5796     case elfcpp::R_POWERPC_SECTOFF_LO:
5797     case elfcpp::R_POWERPC_SECTOFF_HI:
5798     case elfcpp::R_POWERPC_SECTOFF_HA:
5799     case elfcpp::R_PPC64_SECTOFF_DS:
5800     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5801     case elfcpp::R_POWERPC_TPREL16:
5802     case elfcpp::R_POWERPC_TPREL16_LO:
5803     case elfcpp::R_POWERPC_TPREL16_HI:
5804     case elfcpp::R_POWERPC_TPREL16_HA:
5805     case elfcpp::R_PPC64_TPREL16_DS:
5806     case elfcpp::R_PPC64_TPREL16_LO_DS:
5807     case elfcpp::R_PPC64_TPREL16_HIGH:
5808     case elfcpp::R_PPC64_TPREL16_HIGHA:
5809     case elfcpp::R_PPC64_TPREL16_HIGHER:
5810     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5811     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5812     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5813     case elfcpp::R_POWERPC_DTPREL16:
5814     case elfcpp::R_POWERPC_DTPREL16_LO:
5815     case elfcpp::R_POWERPC_DTPREL16_HI:
5816     case elfcpp::R_POWERPC_DTPREL16_HA:
5817     case elfcpp::R_PPC64_DTPREL16_DS:
5818     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5819     case elfcpp::R_PPC64_DTPREL16_HIGH:
5820     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5821     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5822     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5823     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5824     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5825     case elfcpp::R_PPC64_TLSGD:
5826     case elfcpp::R_PPC64_TLSLD:
5827     case elfcpp::R_PPC64_ADDR64_LOCAL:
5828       break;
5829
5830     case elfcpp::R_POWERPC_GOT16:
5831     case elfcpp::R_POWERPC_GOT16_LO:
5832     case elfcpp::R_POWERPC_GOT16_HI:
5833     case elfcpp::R_POWERPC_GOT16_HA:
5834     case elfcpp::R_PPC64_GOT16_DS:
5835     case elfcpp::R_PPC64_GOT16_LO_DS:
5836       {
5837         // The symbol requires a GOT entry.
5838         Output_data_got_powerpc<size, big_endian>* got
5839           = target->got_section(symtab, layout);
5840         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5841
5842         if (!parameters->options().output_is_position_independent())
5843           {
5844             if (is_ifunc
5845                 && (size == 32 || target->abiversion() >= 2))
5846               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5847             else
5848               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5849           }
5850         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5851           {
5852             // If we are generating a shared object or a pie, this
5853             // symbol's GOT entry will be set by a dynamic relocation.
5854             unsigned int off;
5855             off = got->add_constant(0);
5856             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5857
5858             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5859                                                                is_ifunc);
5860             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5861                                    : elfcpp::R_POWERPC_RELATIVE);
5862             rela_dyn->add_local_relative(object, r_sym, dynrel,
5863                                          got, off, 0, false);
5864           }
5865       }
5866       break;
5867
5868     case elfcpp::R_PPC64_TOC16:
5869     case elfcpp::R_PPC64_TOC16_LO:
5870     case elfcpp::R_PPC64_TOC16_HI:
5871     case elfcpp::R_PPC64_TOC16_HA:
5872     case elfcpp::R_PPC64_TOC16_DS:
5873     case elfcpp::R_PPC64_TOC16_LO_DS:
5874       // We need a GOT section.
5875       target->got_section(symtab, layout);
5876       break;
5877
5878     case elfcpp::R_POWERPC_GOT_TLSGD16:
5879     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5880     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5881     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5882       {
5883         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5884         if (tls_type == tls::TLSOPT_NONE)
5885           {
5886             Output_data_got_powerpc<size, big_endian>* got
5887               = target->got_section(symtab, layout);
5888             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5889             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5890             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5891                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5892           }
5893         else if (tls_type == tls::TLSOPT_TO_LE)
5894           {
5895             // no GOT relocs needed for Local Exec.
5896           }
5897         else
5898           gold_unreachable();
5899       }
5900       break;
5901
5902     case elfcpp::R_POWERPC_GOT_TLSLD16:
5903     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5904     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5905     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5906       {
5907         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5908         if (tls_type == tls::TLSOPT_NONE)
5909           target->tlsld_got_offset(symtab, layout, object);
5910         else if (tls_type == tls::TLSOPT_TO_LE)
5911           {
5912             // no GOT relocs needed for Local Exec.
5913             if (parameters->options().emit_relocs())
5914               {
5915                 Output_section* os = layout->tls_segment()->first_section();
5916                 gold_assert(os != NULL);
5917                 os->set_needs_symtab_index();
5918               }
5919           }
5920         else
5921           gold_unreachable();
5922       }
5923       break;
5924
5925     case elfcpp::R_POWERPC_GOT_DTPREL16:
5926     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5927     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5928     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5929       {
5930         Output_data_got_powerpc<size, big_endian>* got
5931           = target->got_section(symtab, layout);
5932         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5933         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5934       }
5935       break;
5936
5937     case elfcpp::R_POWERPC_GOT_TPREL16:
5938     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5939     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5940     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5941       {
5942         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5943         if (tls_type == tls::TLSOPT_NONE)
5944           {
5945             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5946             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5947               {
5948                 Output_data_got_powerpc<size, big_endian>* got
5949                   = target->got_section(symtab, layout);
5950                 unsigned int off = got->add_constant(0);
5951                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5952
5953                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5954                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5955                                                       elfcpp::R_POWERPC_TPREL,
5956                                                       got, off, 0);
5957               }
5958           }
5959         else if (tls_type == tls::TLSOPT_TO_LE)
5960           {
5961             // no GOT relocs needed for Local Exec.
5962           }
5963         else
5964           gold_unreachable();
5965       }
5966       break;
5967
5968     default:
5969       unsupported_reloc_local(object, r_type);
5970       break;
5971     }
5972
5973   switch (r_type)
5974     {
5975     case elfcpp::R_POWERPC_GOT_TLSLD16:
5976     case elfcpp::R_POWERPC_GOT_TLSGD16:
5977     case elfcpp::R_POWERPC_GOT_TPREL16:
5978     case elfcpp::R_POWERPC_GOT_DTPREL16:
5979     case elfcpp::R_POWERPC_GOT16:
5980     case elfcpp::R_PPC64_GOT16_DS:
5981     case elfcpp::R_PPC64_TOC16:
5982     case elfcpp::R_PPC64_TOC16_DS:
5983       ppc_object->set_has_small_toc_reloc();
5984     default:
5985       break;
5986     }
5987 }
5988
5989 // Report an unsupported relocation against a global symbol.
5990
5991 template<int size, bool big_endian>
5992 void
5993 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5994     Sized_relobj_file<size, big_endian>* object,
5995     unsigned int r_type,
5996     Symbol* gsym)
5997 {
5998   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5999              object->name().c_str(), r_type, gsym->demangled_name().c_str());
6000 }
6001
6002 // Scan a relocation for a global symbol.
6003
6004 template<int size, bool big_endian>
6005 inline void
6006 Target_powerpc<size, big_endian>::Scan::global(
6007     Symbol_table* symtab,
6008     Layout* layout,
6009     Target_powerpc<size, big_endian>* target,
6010     Sized_relobj_file<size, big_endian>* object,
6011     unsigned int data_shndx,
6012     Output_section* output_section,
6013     const elfcpp::Rela<size, big_endian>& reloc,
6014     unsigned int r_type,
6015     Symbol* gsym)
6016 {
6017   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
6018     return;
6019
6020   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6021       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6022     {
6023       this->expect_tls_get_addr_call();
6024       const bool final = gsym->final_value_is_known();
6025       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6026       if (tls_type != tls::TLSOPT_NONE)
6027         this->skip_next_tls_get_addr_call();
6028     }
6029   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6030            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6031     {
6032       this->expect_tls_get_addr_call();
6033       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6034       if (tls_type != tls::TLSOPT_NONE)
6035         this->skip_next_tls_get_addr_call();
6036     }
6037
6038   Powerpc_relobj<size, big_endian>* ppc_object
6039     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6040
6041   // A STT_GNU_IFUNC symbol may require a PLT entry.
6042   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
6043   bool pushed_ifunc = false;
6044   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6045     {
6046       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6047                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6048                           reloc.get_r_addend());
6049       target->make_plt_entry(symtab, layout, gsym);
6050       pushed_ifunc = true;
6051     }
6052
6053   switch (r_type)
6054     {
6055     case elfcpp::R_POWERPC_NONE:
6056     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6057     case elfcpp::R_POWERPC_GNU_VTENTRY:
6058     case elfcpp::R_PPC_LOCAL24PC:
6059     case elfcpp::R_POWERPC_TLS:
6060     case elfcpp::R_PPC64_ENTRY:
6061       break;
6062
6063     case elfcpp::R_PPC64_TOC:
6064       {
6065         Output_data_got_powerpc<size, big_endian>* got
6066           = target->got_section(symtab, layout);
6067         if (parameters->options().output_is_position_independent())
6068           {
6069             Address off = reloc.get_r_offset();
6070             if (size == 64
6071                 && data_shndx == ppc_object->opd_shndx()
6072                 && ppc_object->get_opd_discard(off - 8))
6073               break;
6074
6075             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6076             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6077             if (data_shndx != ppc_object->opd_shndx())
6078               symobj = static_cast
6079                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6080             rela_dyn->add_output_section_relative(got->output_section(),
6081                                                   elfcpp::R_POWERPC_RELATIVE,
6082                                                   output_section,
6083                                                   object, data_shndx, off,
6084                                                   symobj->toc_base_offset());
6085           }
6086       }
6087       break;
6088
6089     case elfcpp::R_PPC64_ADDR64:
6090       if (size == 64
6091           && target->abiversion() < 2
6092           && data_shndx == ppc_object->opd_shndx()
6093           && (gsym->is_defined_in_discarded_section()
6094               || gsym->object() != object))
6095         {
6096           ppc_object->set_opd_discard(reloc.get_r_offset());
6097           break;
6098         }
6099       // Fall through.
6100     case elfcpp::R_PPC64_UADDR64:
6101     case elfcpp::R_POWERPC_ADDR32:
6102     case elfcpp::R_POWERPC_UADDR32:
6103     case elfcpp::R_POWERPC_ADDR24:
6104     case elfcpp::R_POWERPC_ADDR16:
6105     case elfcpp::R_POWERPC_ADDR16_LO:
6106     case elfcpp::R_POWERPC_ADDR16_HI:
6107     case elfcpp::R_POWERPC_ADDR16_HA:
6108     case elfcpp::R_POWERPC_UADDR16:
6109     case elfcpp::R_PPC64_ADDR16_HIGH:
6110     case elfcpp::R_PPC64_ADDR16_HIGHA:
6111     case elfcpp::R_PPC64_ADDR16_HIGHER:
6112     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6113     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6114     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6115     case elfcpp::R_PPC64_ADDR16_DS:
6116     case elfcpp::R_PPC64_ADDR16_LO_DS:
6117     case elfcpp::R_POWERPC_ADDR14:
6118     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6119     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6120       {
6121         // Make a PLT entry if necessary.
6122         if (gsym->needs_plt_entry())
6123           {
6124             // Since this is not a PC-relative relocation, we may be
6125             // taking the address of a function. In that case we need to
6126             // set the entry in the dynamic symbol table to the address of
6127             // the PLT call stub.
6128             bool need_ifunc_plt = false;
6129             if ((size == 32 || target->abiversion() >= 2)
6130                 && gsym->is_from_dynobj()
6131                 && !parameters->options().output_is_position_independent())
6132               {
6133                 gsym->set_needs_dynsym_value();
6134                 need_ifunc_plt = true;
6135               }
6136             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6137               {
6138                 target->push_branch(ppc_object, data_shndx,
6139                                     reloc.get_r_offset(), r_type,
6140                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6141                                     reloc.get_r_addend());
6142                 target->make_plt_entry(symtab, layout, gsym);
6143               }
6144           }
6145         // Make a dynamic relocation if necessary.
6146         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6147             || (size == 64 && is_ifunc && target->abiversion() < 2))
6148           {
6149             if (!parameters->options().output_is_position_independent()
6150                 && gsym->may_need_copy_reloc())
6151               {
6152                 target->copy_reloc(symtab, layout, object,
6153                                    data_shndx, output_section, gsym, reloc);
6154               }
6155             else if ((((size == 32
6156                         && r_type == elfcpp::R_POWERPC_ADDR32)
6157                        || (size == 64
6158                            && r_type == elfcpp::R_PPC64_ADDR64
6159                            && target->abiversion() >= 2))
6160                       && gsym->can_use_relative_reloc(false)
6161                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
6162                            && parameters->options().shared()))
6163                      || (size == 64
6164                          && r_type == elfcpp::R_PPC64_ADDR64
6165                          && target->abiversion() < 2
6166                          && (gsym->can_use_relative_reloc(false)
6167                              || data_shndx == ppc_object->opd_shndx())))
6168               {
6169                 Reloc_section* rela_dyn
6170                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6171                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6172                                        : elfcpp::R_POWERPC_RELATIVE);
6173                 rela_dyn->add_symbolless_global_addend(
6174                     gsym, dynrel, output_section, object, data_shndx,
6175                     reloc.get_r_offset(), reloc.get_r_addend());
6176               }
6177             else
6178               {
6179                 Reloc_section* rela_dyn
6180                   = target->rela_dyn_section(symtab, layout, is_ifunc);
6181                 check_non_pic(object, r_type);
6182                 rela_dyn->add_global(gsym, r_type, output_section,
6183                                      object, data_shndx,
6184                                      reloc.get_r_offset(),
6185                                      reloc.get_r_addend());
6186               }
6187           }
6188       }
6189       break;
6190
6191     case elfcpp::R_PPC_PLTREL24:
6192     case elfcpp::R_POWERPC_REL24:
6193       if (!is_ifunc)
6194         {
6195           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6196                               r_type,
6197                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6198                               reloc.get_r_addend());
6199           if (gsym->needs_plt_entry()
6200               || (!gsym->final_value_is_known()
6201                   && (gsym->is_undefined()
6202                       || gsym->is_from_dynobj()
6203                       || gsym->is_preemptible())))
6204             target->make_plt_entry(symtab, layout, gsym);
6205         }
6206       // Fall through.
6207
6208     case elfcpp::R_PPC64_REL64:
6209     case elfcpp::R_POWERPC_REL32:
6210       // Make a dynamic relocation if necessary.
6211       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6212         {
6213           if (!parameters->options().output_is_position_independent()
6214               && gsym->may_need_copy_reloc())
6215             {
6216               target->copy_reloc(symtab, layout, object,
6217                                  data_shndx, output_section, gsym,
6218                                  reloc);
6219             }
6220           else
6221             {
6222               Reloc_section* rela_dyn
6223                 = target->rela_dyn_section(symtab, layout, is_ifunc);
6224               check_non_pic(object, r_type);
6225               rela_dyn->add_global(gsym, r_type, output_section, object,
6226                                    data_shndx, reloc.get_r_offset(),
6227                                    reloc.get_r_addend());
6228             }
6229         }
6230       break;
6231
6232     case elfcpp::R_POWERPC_REL14:
6233     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6234     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6235       if (!is_ifunc)
6236         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6237                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6238                             reloc.get_r_addend());
6239       break;
6240
6241     case elfcpp::R_POWERPC_REL16:
6242     case elfcpp::R_POWERPC_REL16_LO:
6243     case elfcpp::R_POWERPC_REL16_HI:
6244     case elfcpp::R_POWERPC_REL16_HA:
6245     case elfcpp::R_POWERPC_REL16DX_HA:
6246     case elfcpp::R_POWERPC_SECTOFF:
6247     case elfcpp::R_POWERPC_SECTOFF_LO:
6248     case elfcpp::R_POWERPC_SECTOFF_HI:
6249     case elfcpp::R_POWERPC_SECTOFF_HA:
6250     case elfcpp::R_PPC64_SECTOFF_DS:
6251     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6252     case elfcpp::R_POWERPC_TPREL16:
6253     case elfcpp::R_POWERPC_TPREL16_LO:
6254     case elfcpp::R_POWERPC_TPREL16_HI:
6255     case elfcpp::R_POWERPC_TPREL16_HA:
6256     case elfcpp::R_PPC64_TPREL16_DS:
6257     case elfcpp::R_PPC64_TPREL16_LO_DS:
6258     case elfcpp::R_PPC64_TPREL16_HIGH:
6259     case elfcpp::R_PPC64_TPREL16_HIGHA:
6260     case elfcpp::R_PPC64_TPREL16_HIGHER:
6261     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6262     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6263     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6264     case elfcpp::R_POWERPC_DTPREL16:
6265     case elfcpp::R_POWERPC_DTPREL16_LO:
6266     case elfcpp::R_POWERPC_DTPREL16_HI:
6267     case elfcpp::R_POWERPC_DTPREL16_HA:
6268     case elfcpp::R_PPC64_DTPREL16_DS:
6269     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6270     case elfcpp::R_PPC64_DTPREL16_HIGH:
6271     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6272     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6273     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6274     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6275     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6276     case elfcpp::R_PPC64_TLSGD:
6277     case elfcpp::R_PPC64_TLSLD:
6278     case elfcpp::R_PPC64_ADDR64_LOCAL:
6279       break;
6280
6281     case elfcpp::R_POWERPC_GOT16:
6282     case elfcpp::R_POWERPC_GOT16_LO:
6283     case elfcpp::R_POWERPC_GOT16_HI:
6284     case elfcpp::R_POWERPC_GOT16_HA:
6285     case elfcpp::R_PPC64_GOT16_DS:
6286     case elfcpp::R_PPC64_GOT16_LO_DS:
6287       {
6288         // The symbol requires a GOT entry.
6289         Output_data_got_powerpc<size, big_endian>* got;
6290
6291         got = target->got_section(symtab, layout);
6292         if (gsym->final_value_is_known())
6293           {
6294             if (is_ifunc
6295                 && (size == 32 || target->abiversion() >= 2))
6296               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6297             else
6298               got->add_global(gsym, GOT_TYPE_STANDARD);
6299           }
6300         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6301           {
6302             // If we are generating a shared object or a pie, this
6303             // symbol's GOT entry will be set by a dynamic relocation.
6304             unsigned int off = got->add_constant(0);
6305             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6306
6307             Reloc_section* rela_dyn
6308               = target->rela_dyn_section(symtab, layout, is_ifunc);
6309
6310             if (gsym->can_use_relative_reloc(false)
6311                 && !((size == 32
6312                       || target->abiversion() >= 2)
6313                      && gsym->visibility() == elfcpp::STV_PROTECTED
6314                      && parameters->options().shared()))
6315               {
6316                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6317                                        : elfcpp::R_POWERPC_RELATIVE);
6318                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6319               }
6320             else
6321               {
6322                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6323                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6324               }
6325           }
6326       }
6327       break;
6328
6329     case elfcpp::R_PPC64_TOC16:
6330     case elfcpp::R_PPC64_TOC16_LO:
6331     case elfcpp::R_PPC64_TOC16_HI:
6332     case elfcpp::R_PPC64_TOC16_HA:
6333     case elfcpp::R_PPC64_TOC16_DS:
6334     case elfcpp::R_PPC64_TOC16_LO_DS:
6335       // We need a GOT section.
6336       target->got_section(symtab, layout);
6337       break;
6338
6339     case elfcpp::R_POWERPC_GOT_TLSGD16:
6340     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6341     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6342     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6343       {
6344         const bool final = gsym->final_value_is_known();
6345         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6346         if (tls_type == tls::TLSOPT_NONE)
6347           {
6348             Output_data_got_powerpc<size, big_endian>* got
6349               = target->got_section(symtab, layout);
6350             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6351             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6352                                           elfcpp::R_POWERPC_DTPMOD,
6353                                           elfcpp::R_POWERPC_DTPREL);
6354           }
6355         else if (tls_type == tls::TLSOPT_TO_IE)
6356           {
6357             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6358               {
6359                 Output_data_got_powerpc<size, big_endian>* got
6360                   = target->got_section(symtab, layout);
6361                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6362                 if (gsym->is_undefined()
6363                     || gsym->is_from_dynobj())
6364                   {
6365                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6366                                              elfcpp::R_POWERPC_TPREL);
6367                   }
6368                 else
6369                   {
6370                     unsigned int off = got->add_constant(0);
6371                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6372                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6373                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6374                                                            got, off, 0);
6375                   }
6376               }
6377           }
6378         else if (tls_type == tls::TLSOPT_TO_LE)
6379           {
6380             // no GOT relocs needed for Local Exec.
6381           }
6382         else
6383           gold_unreachable();
6384       }
6385       break;
6386
6387     case elfcpp::R_POWERPC_GOT_TLSLD16:
6388     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6389     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6390     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6391       {
6392         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6393         if (tls_type == tls::TLSOPT_NONE)
6394           target->tlsld_got_offset(symtab, layout, object);
6395         else if (tls_type == tls::TLSOPT_TO_LE)
6396           {
6397             // no GOT relocs needed for Local Exec.
6398             if (parameters->options().emit_relocs())
6399               {
6400                 Output_section* os = layout->tls_segment()->first_section();
6401                 gold_assert(os != NULL);
6402                 os->set_needs_symtab_index();
6403               }
6404           }
6405         else
6406           gold_unreachable();
6407       }
6408       break;
6409
6410     case elfcpp::R_POWERPC_GOT_DTPREL16:
6411     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6412     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6413     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6414       {
6415         Output_data_got_powerpc<size, big_endian>* got
6416           = target->got_section(symtab, layout);
6417         if (!gsym->final_value_is_known()
6418             && (gsym->is_from_dynobj()
6419                 || gsym->is_undefined()
6420                 || gsym->is_preemptible()))
6421           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6422                                    target->rela_dyn_section(layout),
6423                                    elfcpp::R_POWERPC_DTPREL);
6424         else
6425           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6426       }
6427       break;
6428
6429     case elfcpp::R_POWERPC_GOT_TPREL16:
6430     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6431     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6432     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6433       {
6434         const bool final = gsym->final_value_is_known();
6435         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6436         if (tls_type == tls::TLSOPT_NONE)
6437           {
6438             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6439               {
6440                 Output_data_got_powerpc<size, big_endian>* got
6441                   = target->got_section(symtab, layout);
6442                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6443                 if (gsym->is_undefined()
6444                     || gsym->is_from_dynobj())
6445                   {
6446                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6447                                              elfcpp::R_POWERPC_TPREL);
6448                   }
6449                 else
6450                   {
6451                     unsigned int off = got->add_constant(0);
6452                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6453                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6454                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6455                                                            got, off, 0);
6456                   }
6457               }
6458           }
6459         else if (tls_type == tls::TLSOPT_TO_LE)
6460           {
6461             // no GOT relocs needed for Local Exec.
6462           }
6463         else
6464           gold_unreachable();
6465       }
6466       break;
6467
6468     default:
6469       unsupported_reloc_global(object, r_type, gsym);
6470       break;
6471     }
6472
6473   switch (r_type)
6474     {
6475     case elfcpp::R_POWERPC_GOT_TLSLD16:
6476     case elfcpp::R_POWERPC_GOT_TLSGD16:
6477     case elfcpp::R_POWERPC_GOT_TPREL16:
6478     case elfcpp::R_POWERPC_GOT_DTPREL16:
6479     case elfcpp::R_POWERPC_GOT16:
6480     case elfcpp::R_PPC64_GOT16_DS:
6481     case elfcpp::R_PPC64_TOC16:
6482     case elfcpp::R_PPC64_TOC16_DS:
6483       ppc_object->set_has_small_toc_reloc();
6484     default:
6485       break;
6486     }
6487 }
6488
6489 // Process relocations for gc.
6490
6491 template<int size, bool big_endian>
6492 void
6493 Target_powerpc<size, big_endian>::gc_process_relocs(
6494     Symbol_table* symtab,
6495     Layout* layout,
6496     Sized_relobj_file<size, big_endian>* object,
6497     unsigned int data_shndx,
6498     unsigned int,
6499     const unsigned char* prelocs,
6500     size_t reloc_count,
6501     Output_section* output_section,
6502     bool needs_special_offset_handling,
6503     size_t local_symbol_count,
6504     const unsigned char* plocal_symbols)
6505 {
6506   typedef Target_powerpc<size, big_endian> Powerpc;
6507   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6508       Classify_reloc;
6509
6510   Powerpc_relobj<size, big_endian>* ppc_object
6511     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6512   if (size == 64)
6513     ppc_object->set_opd_valid();
6514   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6515     {
6516       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6517       for (p = ppc_object->access_from_map()->begin();
6518            p != ppc_object->access_from_map()->end();
6519            ++p)
6520         {
6521           Address dst_off = p->first;
6522           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6523           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6524           for (s = p->second.begin(); s != p->second.end(); ++s)
6525             {
6526               Relobj* src_obj = s->first;
6527               unsigned int src_indx = s->second;
6528               symtab->gc()->add_reference(src_obj, src_indx,
6529                                           ppc_object, dst_indx);
6530             }
6531           p->second.clear();
6532         }
6533       ppc_object->access_from_map()->clear();
6534       ppc_object->process_gc_mark(symtab);
6535       // Don't look at .opd relocs as .opd will reference everything.
6536       return;
6537     }
6538
6539   gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6540     symtab,
6541     layout,
6542     this,
6543     object,
6544     data_shndx,
6545     prelocs,
6546     reloc_count,
6547     output_section,
6548     needs_special_offset_handling,
6549     local_symbol_count,
6550     plocal_symbols);
6551 }
6552
6553 // Handle target specific gc actions when adding a gc reference from
6554 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6555 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6556 // section of a function descriptor.
6557
6558 template<int size, bool big_endian>
6559 void
6560 Target_powerpc<size, big_endian>::do_gc_add_reference(
6561     Symbol_table* symtab,
6562     Relobj* src_obj,
6563     unsigned int src_shndx,
6564     Relobj* dst_obj,
6565     unsigned int dst_shndx,
6566     Address dst_off) const
6567 {
6568   if (size != 64 || dst_obj->is_dynamic())
6569     return;
6570
6571   Powerpc_relobj<size, big_endian>* ppc_object
6572     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6573   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6574     {
6575       if (ppc_object->opd_valid())
6576         {
6577           dst_shndx = ppc_object->get_opd_ent(dst_off);
6578           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6579         }
6580       else
6581         {
6582           // If we haven't run scan_opd_relocs, we must delay
6583           // processing this function descriptor reference.
6584           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6585         }
6586     }
6587 }
6588
6589 // Add any special sections for this symbol to the gc work list.
6590 // For powerpc64, this adds the code section of a function
6591 // descriptor.
6592
6593 template<int size, bool big_endian>
6594 void
6595 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6596     Symbol_table* symtab,
6597     Symbol* sym) const
6598 {
6599   if (size == 64)
6600     {
6601       Powerpc_relobj<size, big_endian>* ppc_object
6602         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6603       bool is_ordinary;
6604       unsigned int shndx = sym->shndx(&is_ordinary);
6605       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6606         {
6607           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6608           Address dst_off = gsym->value();
6609           if (ppc_object->opd_valid())
6610             {
6611               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6612               symtab->gc()->worklist().push_back(Section_id(ppc_object,
6613                                                             dst_indx));
6614             }
6615           else
6616             ppc_object->add_gc_mark(dst_off);
6617         }
6618     }
6619 }
6620
6621 // For a symbol location in .opd, set LOC to the location of the
6622 // function entry.
6623
6624 template<int size, bool big_endian>
6625 void
6626 Target_powerpc<size, big_endian>::do_function_location(
6627     Symbol_location* loc) const
6628 {
6629   if (size == 64 && loc->shndx != 0)
6630     {
6631       if (loc->object->is_dynamic())
6632         {
6633           Powerpc_dynobj<size, big_endian>* ppc_object
6634             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6635           if (loc->shndx == ppc_object->opd_shndx())
6636             {
6637               Address dest_off;
6638               Address off = loc->offset - ppc_object->opd_address();
6639               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6640               loc->offset = dest_off;
6641             }
6642         }
6643       else
6644         {
6645           const Powerpc_relobj<size, big_endian>* ppc_object
6646             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6647           if (loc->shndx == ppc_object->opd_shndx())
6648             {
6649               Address dest_off;
6650               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6651               loc->offset = dest_off;
6652             }
6653         }
6654     }
6655 }
6656
6657 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6658 // compiled with -fsplit-stack.  The function calls non-split-stack
6659 // code.  Change the function to ensure it has enough stack space to
6660 // call some random function.
6661
6662 template<int size, bool big_endian>
6663 void
6664 Target_powerpc<size, big_endian>::do_calls_non_split(
6665     Relobj* object,
6666     unsigned int shndx,
6667     section_offset_type fnoffset,
6668     section_size_type fnsize,
6669     const unsigned char* prelocs,
6670     size_t reloc_count,
6671     unsigned char* view,
6672     section_size_type view_size,
6673     std::string* from,
6674     std::string* to) const
6675 {
6676   // 32-bit not supported.
6677   if (size == 32)
6678     {
6679       // warn
6680       Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6681                                  prelocs, reloc_count, view, view_size,
6682                                  from, to);
6683       return;
6684     }
6685
6686   // The function always starts with
6687   //    ld %r0,-0x7000-64(%r13)  # tcbhead_t.__private_ss
6688   //    addis %r12,%r1,-allocate@ha
6689   //    addi %r12,%r12,-allocate@l
6690   //    cmpld %r12,%r0
6691   // but note that the addis or addi may be replaced with a nop
6692
6693   unsigned char *entry = view + fnoffset;
6694   uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6695
6696   if ((insn & 0xffff0000) == addis_2_12)
6697     {
6698       /* Skip ELFv2 global entry code.  */
6699       entry += 8;
6700       insn = elfcpp::Swap<32, big_endian>::readval(entry);
6701     }
6702
6703   unsigned char *pinsn = entry;
6704   bool ok = false;
6705   const uint32_t ld_private_ss = 0xe80d8fc0;
6706   if (insn == ld_private_ss)
6707     {
6708       int32_t allocate = 0;
6709       while (1)
6710         {
6711           pinsn += 4;
6712           insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6713           if ((insn & 0xffff0000) == addis_12_1)
6714             allocate += (insn & 0xffff) << 16;
6715           else if ((insn & 0xffff0000) == addi_12_1
6716                    || (insn & 0xffff0000) == addi_12_12)
6717             allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6718           else if (insn != nop)
6719             break;
6720         }
6721       if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6722         {
6723           int extra = parameters->options().split_stack_adjust_size();
6724           allocate -= extra;
6725           if (allocate >= 0 || extra < 0)
6726             {
6727               object->error(_("split-stack stack size overflow at "
6728                               "section %u offset %0zx"),
6729                             shndx, static_cast<size_t>(fnoffset));
6730               return;
6731             }
6732           pinsn = entry + 4;
6733           insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6734           if (insn != addis_12_1)
6735             {
6736               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6737               pinsn += 4;
6738               insn = addi_12_12 | (allocate & 0xffff);
6739               if (insn != addi_12_12)
6740                 {
6741                   elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6742                   pinsn += 4;
6743                 }
6744             }
6745           else
6746             {
6747               insn = addi_12_1 | (allocate & 0xffff);
6748               elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6749               pinsn += 4;
6750             }
6751           if (pinsn != entry + 12)
6752             elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6753
6754           ok = true;
6755         }
6756     }
6757
6758   if (!ok)
6759     {
6760       if (!object->has_no_split_stack())
6761         object->error(_("failed to match split-stack sequence at "
6762                         "section %u offset %0zx"),
6763                       shndx, static_cast<size_t>(fnoffset));
6764     }
6765 }
6766
6767 // Scan relocations for a section.
6768
6769 template<int size, bool big_endian>
6770 void
6771 Target_powerpc<size, big_endian>::scan_relocs(
6772     Symbol_table* symtab,
6773     Layout* layout,
6774     Sized_relobj_file<size, big_endian>* object,
6775     unsigned int data_shndx,
6776     unsigned int sh_type,
6777     const unsigned char* prelocs,
6778     size_t reloc_count,
6779     Output_section* output_section,
6780     bool needs_special_offset_handling,
6781     size_t local_symbol_count,
6782     const unsigned char* plocal_symbols)
6783 {
6784   typedef Target_powerpc<size, big_endian> Powerpc;
6785   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6786       Classify_reloc;
6787
6788   if (sh_type == elfcpp::SHT_REL)
6789     {
6790       gold_error(_("%s: unsupported REL reloc section"),
6791                  object->name().c_str());
6792       return;
6793     }
6794
6795   gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6796     symtab,
6797     layout,
6798     this,
6799     object,
6800     data_shndx,
6801     prelocs,
6802     reloc_count,
6803     output_section,
6804     needs_special_offset_handling,
6805     local_symbol_count,
6806     plocal_symbols);
6807 }
6808
6809 // Functor class for processing the global symbol table.
6810 // Removes symbols defined on discarded opd entries.
6811
6812 template<bool big_endian>
6813 class Global_symbol_visitor_opd
6814 {
6815  public:
6816   Global_symbol_visitor_opd()
6817   { }
6818
6819   void
6820   operator()(Sized_symbol<64>* sym)
6821   {
6822     if (sym->has_symtab_index()
6823         || sym->source() != Symbol::FROM_OBJECT
6824         || !sym->in_real_elf())
6825       return;
6826
6827     if (sym->object()->is_dynamic())
6828       return;
6829
6830     Powerpc_relobj<64, big_endian>* symobj
6831       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6832     if (symobj->opd_shndx() == 0)
6833       return;
6834
6835     bool is_ordinary;
6836     unsigned int shndx = sym->shndx(&is_ordinary);
6837     if (shndx == symobj->opd_shndx()
6838         && symobj->get_opd_discard(sym->value()))
6839       {
6840         sym->set_undefined();
6841         sym->set_visibility(elfcpp::STV_DEFAULT);
6842         sym->set_is_defined_in_discarded_section();
6843         sym->set_symtab_index(-1U);
6844       }
6845   }
6846 };
6847
6848 template<int size, bool big_endian>
6849 void
6850 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6851     Layout* layout,
6852     Symbol_table* symtab)
6853 {
6854   if (size == 64)
6855     {
6856       Output_data_save_res<size, big_endian>* savres
6857         = new Output_data_save_res<size, big_endian>(symtab);
6858       this->savres_section_ = savres;
6859       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6860                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6861                                       savres, ORDER_TEXT, false);
6862     }
6863 }
6864
6865 // Sort linker created .got section first (for the header), then input
6866 // sections belonging to files using small model code.
6867
6868 template<bool big_endian>
6869 class Sort_toc_sections
6870 {
6871  public:
6872   bool
6873   operator()(const Output_section::Input_section& is1,
6874              const Output_section::Input_section& is2) const
6875   {
6876     if (!is1.is_input_section() && is2.is_input_section())
6877       return true;
6878     bool small1
6879       = (is1.is_input_section()
6880          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6881              ->has_small_toc_reloc()));
6882     bool small2
6883       = (is2.is_input_section()
6884          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6885              ->has_small_toc_reloc()));
6886     return small1 && !small2;
6887   }
6888 };
6889
6890 // Finalize the sections.
6891
6892 template<int size, bool big_endian>
6893 void
6894 Target_powerpc<size, big_endian>::do_finalize_sections(
6895     Layout* layout,
6896     const Input_objects*,
6897     Symbol_table* symtab)
6898 {
6899   if (parameters->doing_static_link())
6900     {
6901       // At least some versions of glibc elf-init.o have a strong
6902       // reference to __rela_iplt marker syms.  A weak ref would be
6903       // better..
6904       if (this->iplt_ != NULL)
6905         {
6906           Reloc_section* rel = this->iplt_->rel_plt();
6907           symtab->define_in_output_data("__rela_iplt_start", NULL,
6908                                         Symbol_table::PREDEFINED, rel, 0, 0,
6909                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6910                                         elfcpp::STV_HIDDEN, 0, false, true);
6911           symtab->define_in_output_data("__rela_iplt_end", NULL,
6912                                         Symbol_table::PREDEFINED, rel, 0, 0,
6913                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6914                                         elfcpp::STV_HIDDEN, 0, true, true);
6915         }
6916       else
6917         {
6918           symtab->define_as_constant("__rela_iplt_start", NULL,
6919                                      Symbol_table::PREDEFINED, 0, 0,
6920                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6921                                      elfcpp::STV_HIDDEN, 0, true, false);
6922           symtab->define_as_constant("__rela_iplt_end", NULL,
6923                                      Symbol_table::PREDEFINED, 0, 0,
6924                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6925                                      elfcpp::STV_HIDDEN, 0, true, false);
6926         }
6927     }
6928
6929   if (size == 64)
6930     {
6931       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6932       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6933
6934       if (!parameters->options().relocatable())
6935         {
6936           this->define_save_restore_funcs(layout, symtab);
6937
6938           // Annoyingly, we need to make these sections now whether or
6939           // not we need them.  If we delay until do_relax then we
6940           // need to mess with the relaxation machinery checkpointing.
6941           this->got_section(symtab, layout);
6942           this->make_brlt_section(layout);
6943
6944           if (parameters->options().toc_sort())
6945             {
6946               Output_section* os = this->got_->output_section();
6947               if (os != NULL && os->input_sections().size() > 1)
6948                 std::stable_sort(os->input_sections().begin(),
6949                                  os->input_sections().end(),
6950                                  Sort_toc_sections<big_endian>());
6951             }
6952         }
6953     }
6954
6955   // Fill in some more dynamic tags.
6956   Output_data_dynamic* odyn = layout->dynamic_data();
6957   if (odyn != NULL)
6958     {
6959       const Reloc_section* rel_plt = (this->plt_ == NULL
6960                                       ? NULL
6961                                       : this->plt_->rel_plt());
6962       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6963                                       this->rela_dyn_, true, size == 32);
6964
6965       if (size == 32)
6966         {
6967           if (this->got_ != NULL)
6968             {
6969               this->got_->finalize_data_size();
6970               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6971                                             this->got_, this->got_->g_o_t());
6972             }
6973         }
6974       else
6975         {
6976           if (this->glink_ != NULL)
6977             {
6978               this->glink_->finalize_data_size();
6979               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6980                                             this->glink_,
6981                                             (this->glink_->pltresolve_size
6982                                              - 32));
6983             }
6984         }
6985     }
6986
6987   // Emit any relocs we saved in an attempt to avoid generating COPY
6988   // relocs.
6989   if (this->copy_relocs_.any_saved_relocs())
6990     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6991 }
6992
6993 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6994 // reloc.
6995
6996 static bool
6997 ok_lo_toc_insn(uint32_t insn)
6998 {
6999   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
7000           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
7001           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
7002           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
7003           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
7004           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
7005           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
7006           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
7007           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
7008           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
7009           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
7010           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
7011           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
7012           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
7013           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
7014               && (insn & 3) != 1)
7015           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
7016               && ((insn & 3) == 0 || (insn & 3) == 3))
7017           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
7018 }
7019
7020 // Return the value to use for a branch relocation.
7021
7022 template<int size, bool big_endian>
7023 bool
7024 Target_powerpc<size, big_endian>::symval_for_branch(
7025     const Symbol_table* symtab,
7026     const Sized_symbol<size>* gsym,
7027     Powerpc_relobj<size, big_endian>* object,
7028     Address *value,
7029     unsigned int *dest_shndx)
7030 {
7031   if (size == 32 || this->abiversion() >= 2)
7032     gold_unreachable();
7033   *dest_shndx = 0;
7034
7035   // If the symbol is defined in an opd section, ie. is a function
7036   // descriptor, use the function descriptor code entry address
7037   Powerpc_relobj<size, big_endian>* symobj = object;
7038   if (gsym != NULL
7039       && gsym->source() != Symbol::FROM_OBJECT)
7040     return true;
7041   if (gsym != NULL)
7042     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7043   unsigned int shndx = symobj->opd_shndx();
7044   if (shndx == 0)
7045     return true;
7046   Address opd_addr = symobj->get_output_section_offset(shndx);
7047   if (opd_addr == invalid_address)
7048     return true;
7049   opd_addr += symobj->output_section_address(shndx);
7050   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
7051     {
7052       Address sec_off;
7053       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
7054       if (symtab->is_section_folded(symobj, *dest_shndx))
7055         {
7056           Section_id folded
7057             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
7058           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
7059           *dest_shndx = folded.second;
7060         }
7061       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
7062       if (sec_addr == invalid_address)
7063         return false;
7064
7065       sec_addr += symobj->output_section(*dest_shndx)->address();
7066       *value = sec_addr + sec_off;
7067     }
7068   return true;
7069 }
7070
7071 // Perform a relocation.
7072
7073 template<int size, bool big_endian>
7074 inline bool
7075 Target_powerpc<size, big_endian>::Relocate::relocate(
7076     const Relocate_info<size, big_endian>* relinfo,
7077     unsigned int,
7078     Target_powerpc* target,
7079     Output_section* os,
7080     size_t relnum,
7081     const unsigned char* preloc,
7082     const Sized_symbol<size>* gsym,
7083     const Symbol_value<size>* psymval,
7084     unsigned char* view,
7085     Address address,
7086     section_size_type view_size)
7087 {
7088   if (view == NULL)
7089     return true;
7090
7091   const elfcpp::Rela<size, big_endian> rela(preloc);
7092   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7093   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7094     {
7095     case Track_tls::NOT_EXPECTED:
7096       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7097                              _("__tls_get_addr call lacks marker reloc"));
7098       break;
7099     case Track_tls::EXPECTED:
7100       // We have already complained.
7101       break;
7102     case Track_tls::SKIP:
7103       return true;
7104     case Track_tls::NORMAL:
7105       break;
7106     }
7107
7108   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7109   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7110   typedef typename Reloc_types<elfcpp::SHT_RELA,
7111                                size, big_endian>::Reloc Reltype;
7112   // Offset from start of insn to d-field reloc.
7113   const int d_offset = big_endian ? 2 : 0;
7114
7115   Powerpc_relobj<size, big_endian>* const object
7116     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7117   Address value = 0;
7118   bool has_stub_value = false;
7119   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7120   if ((gsym != NULL
7121        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7122        : object->local_has_plt_offset(r_sym))
7123       && (!psymval->is_ifunc_symbol()
7124           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7125     {
7126       if (size == 64
7127           && gsym != NULL
7128           && target->abiversion() >= 2
7129           && !parameters->options().output_is_position_independent()
7130           && !is_branch_reloc(r_type))
7131         {
7132           Address off = target->glink_section()->find_global_entry(gsym);
7133           if (off != invalid_address)
7134             {
7135               value = target->glink_section()->global_entry_address() + off;
7136               has_stub_value = true;
7137             }
7138         }
7139       else
7140         {
7141           Stub_table<size, big_endian>* stub_table
7142             = object->stub_table(relinfo->data_shndx);
7143           if (stub_table == NULL)
7144             {
7145               // This is a ref from a data section to an ifunc symbol.
7146               if (target->stub_tables().size() != 0)
7147                 stub_table = target->stub_tables()[0];
7148             }
7149           if (stub_table != NULL)
7150             {
7151               Address off;
7152               if (gsym != NULL)
7153                 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7154                                                       rela.get_r_addend());
7155               else
7156                 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7157                                                       rela.get_r_addend());
7158               if (off != invalid_address)
7159                 {
7160                   value = stub_table->stub_address() + off;
7161                   has_stub_value = true;
7162                 }
7163             }
7164         }
7165       // We don't care too much about bogus debug references to
7166       // non-local functions, but otherwise there had better be a plt
7167       // call stub or global entry stub as appropriate.
7168       gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7169     }
7170
7171   if (r_type == elfcpp::R_POWERPC_GOT16
7172       || r_type == elfcpp::R_POWERPC_GOT16_LO
7173       || r_type == elfcpp::R_POWERPC_GOT16_HI
7174       || r_type == elfcpp::R_POWERPC_GOT16_HA
7175       || r_type == elfcpp::R_PPC64_GOT16_DS
7176       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7177     {
7178       if (gsym != NULL)
7179         {
7180           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7181           value = gsym->got_offset(GOT_TYPE_STANDARD);
7182         }
7183       else
7184         {
7185           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7186           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7187           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7188         }
7189       value -= target->got_section()->got_base_offset(object);
7190     }
7191   else if (r_type == elfcpp::R_PPC64_TOC)
7192     {
7193       value = (target->got_section()->output_section()->address()
7194                + object->toc_base_offset());
7195     }
7196   else if (gsym != NULL
7197            && (r_type == elfcpp::R_POWERPC_REL24
7198                || r_type == elfcpp::R_PPC_PLTREL24)
7199            && has_stub_value)
7200     {
7201       if (size == 64)
7202         {
7203           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7204           Valtype* wv = reinterpret_cast<Valtype*>(view);
7205           bool can_plt_call = false;
7206           if (rela.get_r_offset() + 8 <= view_size)
7207             {
7208               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7209               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7210               if ((insn & 1) != 0
7211                   && (insn2 == nop
7212                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7213                 {
7214                   elfcpp::Swap<32, big_endian>::
7215                     writeval(wv + 1, ld_2_1 + target->stk_toc());
7216                   can_plt_call = true;
7217                 }
7218             }
7219           if (!can_plt_call)
7220             {
7221               // If we don't have a branch and link followed by a nop,
7222               // we can't go via the plt because there is no place to
7223               // put a toc restoring instruction.
7224               // Unless we know we won't be returning.
7225               if (strcmp(gsym->name(), "__libc_start_main") == 0)
7226                 can_plt_call = true;
7227             }
7228           if (!can_plt_call)
7229             {
7230               // g++ as of 20130507 emits self-calls without a
7231               // following nop.  This is arguably wrong since we have
7232               // conflicting information.  On the one hand a global
7233               // symbol and on the other a local call sequence, but
7234               // don't error for this special case.
7235               // It isn't possible to cheaply verify we have exactly
7236               // such a call.  Allow all calls to the same section.
7237               bool ok = false;
7238               Address code = value;
7239               if (gsym->source() == Symbol::FROM_OBJECT
7240                   && gsym->object() == object)
7241                 {
7242                   unsigned int dest_shndx = 0;
7243                   if (target->abiversion() < 2)
7244                     {
7245                       Address addend = rela.get_r_addend();
7246                       code = psymval->value(object, addend);
7247                       target->symval_for_branch(relinfo->symtab, gsym, object,
7248                                                 &code, &dest_shndx);
7249                     }
7250                   bool is_ordinary;
7251                   if (dest_shndx == 0)
7252                     dest_shndx = gsym->shndx(&is_ordinary);
7253                   ok = dest_shndx == relinfo->data_shndx;
7254                 }
7255               if (!ok)
7256                 {
7257                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7258                                          _("call lacks nop, can't restore toc; "
7259                                            "recompile with -fPIC"));
7260                   value = code;
7261                 }
7262             }
7263         }
7264     }
7265   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7266            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7267            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7268            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7269     {
7270       // First instruction of a global dynamic sequence, arg setup insn.
7271       const bool final = gsym == NULL || gsym->final_value_is_known();
7272       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7273       enum Got_type got_type = GOT_TYPE_STANDARD;
7274       if (tls_type == tls::TLSOPT_NONE)
7275         got_type = GOT_TYPE_TLSGD;
7276       else if (tls_type == tls::TLSOPT_TO_IE)
7277         got_type = GOT_TYPE_TPREL;
7278       if (got_type != GOT_TYPE_STANDARD)
7279         {
7280           if (gsym != NULL)
7281             {
7282               gold_assert(gsym->has_got_offset(got_type));
7283               value = gsym->got_offset(got_type);
7284             }
7285           else
7286             {
7287               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7288               gold_assert(object->local_has_got_offset(r_sym, got_type));
7289               value = object->local_got_offset(r_sym, got_type);
7290             }
7291           value -= target->got_section()->got_base_offset(object);
7292         }
7293       if (tls_type == tls::TLSOPT_TO_IE)
7294         {
7295           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7296               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7297             {
7298               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7299               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7300               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7301               if (size == 32)
7302                 insn |= 32 << 26; // lwz
7303               else
7304                 insn |= 58 << 26; // ld
7305               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7306             }
7307           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7308                      - elfcpp::R_POWERPC_GOT_TLSGD16);
7309         }
7310       else if (tls_type == tls::TLSOPT_TO_LE)
7311         {
7312           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7313               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7314             {
7315               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7316               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7317               insn &= (1 << 26) - (1 << 21); // extract rt
7318               if (size == 32)
7319                 insn |= addis_0_2;
7320               else
7321                 insn |= addis_0_13;
7322               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7323               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7324               value = psymval->value(object, rela.get_r_addend());
7325             }
7326           else
7327             {
7328               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7329               Insn insn = nop;
7330               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7331               r_type = elfcpp::R_POWERPC_NONE;
7332             }
7333         }
7334     }
7335   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7336            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7337            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7338            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7339     {
7340       // First instruction of a local dynamic sequence, arg setup insn.
7341       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7342       if (tls_type == tls::TLSOPT_NONE)
7343         {
7344           value = target->tlsld_got_offset();
7345           value -= target->got_section()->got_base_offset(object);
7346         }
7347       else
7348         {
7349           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7350           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7351               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7352             {
7353               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7354               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7355               insn &= (1 << 26) - (1 << 21); // extract rt
7356               if (size == 32)
7357                 insn |= addis_0_2;
7358               else
7359                 insn |= addis_0_13;
7360               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7361               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7362               value = dtp_offset;
7363             }
7364           else
7365             {
7366               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7367               Insn insn = nop;
7368               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7369               r_type = elfcpp::R_POWERPC_NONE;
7370             }
7371         }
7372     }
7373   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7374            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7375            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7376            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7377     {
7378       // Accesses relative to a local dynamic sequence address,
7379       // no optimisation here.
7380       if (gsym != NULL)
7381         {
7382           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7383           value = gsym->got_offset(GOT_TYPE_DTPREL);
7384         }
7385       else
7386         {
7387           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7388           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7389           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7390         }
7391       value -= target->got_section()->got_base_offset(object);
7392     }
7393   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7394            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7395            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7396            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7397     {
7398       // First instruction of initial exec sequence.
7399       const bool final = gsym == NULL || gsym->final_value_is_known();
7400       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7401       if (tls_type == tls::TLSOPT_NONE)
7402         {
7403           if (gsym != NULL)
7404             {
7405               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7406               value = gsym->got_offset(GOT_TYPE_TPREL);
7407             }
7408           else
7409             {
7410               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7411               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7412               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7413             }
7414           value -= target->got_section()->got_base_offset(object);
7415         }
7416       else
7417         {
7418           gold_assert(tls_type == tls::TLSOPT_TO_LE);
7419           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7420               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7421             {
7422               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7423               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7424               insn &= (1 << 26) - (1 << 21); // extract rt from ld
7425               if (size == 32)
7426                 insn |= addis_0_2;
7427               else
7428                 insn |= addis_0_13;
7429               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7430               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7431               value = psymval->value(object, rela.get_r_addend());
7432             }
7433           else
7434             {
7435               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7436               Insn insn = nop;
7437               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7438               r_type = elfcpp::R_POWERPC_NONE;
7439             }
7440         }
7441     }
7442   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7443            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7444     {
7445       // Second instruction of a global dynamic sequence,
7446       // the __tls_get_addr call
7447       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7448       const bool final = gsym == NULL || gsym->final_value_is_known();
7449       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7450       if (tls_type != tls::TLSOPT_NONE)
7451         {
7452           if (tls_type == tls::TLSOPT_TO_IE)
7453             {
7454               Insn* iview = reinterpret_cast<Insn*>(view);
7455               Insn insn = add_3_3_13;
7456               if (size == 32)
7457                 insn = add_3_3_2;
7458               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7459               r_type = elfcpp::R_POWERPC_NONE;
7460             }
7461           else
7462             {
7463               Insn* iview = reinterpret_cast<Insn*>(view);
7464               Insn insn = addi_3_3;
7465               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7466               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7467               view += d_offset;
7468               value = psymval->value(object, rela.get_r_addend());
7469             }
7470           this->skip_next_tls_get_addr_call();
7471         }
7472     }
7473   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7474            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7475     {
7476       // Second instruction of a local dynamic sequence,
7477       // the __tls_get_addr call
7478       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7479       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7480       if (tls_type == tls::TLSOPT_TO_LE)
7481         {
7482           Insn* iview = reinterpret_cast<Insn*>(view);
7483           Insn insn = addi_3_3;
7484           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7485           this->skip_next_tls_get_addr_call();
7486           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7487           view += d_offset;
7488           value = dtp_offset;
7489         }
7490     }
7491   else if (r_type == elfcpp::R_POWERPC_TLS)
7492     {
7493       // Second instruction of an initial exec sequence
7494       const bool final = gsym == NULL || gsym->final_value_is_known();
7495       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7496       if (tls_type == tls::TLSOPT_TO_LE)
7497         {
7498           Insn* iview = reinterpret_cast<Insn*>(view);
7499           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7500           unsigned int reg = size == 32 ? 2 : 13;
7501           insn = at_tls_transform(insn, reg);
7502           gold_assert(insn != 0);
7503           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7504           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7505           view += d_offset;
7506           value = psymval->value(object, rela.get_r_addend());
7507         }
7508     }
7509   else if (!has_stub_value)
7510     {
7511       Address addend = 0;
7512       if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7513         addend = rela.get_r_addend();
7514       value = psymval->value(object, addend);
7515       if (size == 64 && is_branch_reloc(r_type))
7516         {
7517           if (target->abiversion() >= 2)
7518             {
7519               if (gsym != NULL)
7520                 value += object->ppc64_local_entry_offset(gsym);
7521               else
7522                 value += object->ppc64_local_entry_offset(r_sym);
7523             }
7524           else
7525             {
7526               unsigned int dest_shndx;
7527               target->symval_for_branch(relinfo->symtab, gsym, object,
7528                                         &value, &dest_shndx);
7529             }
7530         }
7531       Address max_branch_offset = max_branch_delta(r_type);
7532       if (max_branch_offset != 0
7533           && value - address + max_branch_offset >= 2 * max_branch_offset)
7534         {
7535           Stub_table<size, big_endian>* stub_table
7536             = object->stub_table(relinfo->data_shndx);
7537           if (stub_table != NULL)
7538             {
7539               Address off = stub_table->find_long_branch_entry(object, value);
7540               if (off != invalid_address)
7541                 {
7542                   value = (stub_table->stub_address() + stub_table->plt_size()
7543                            + off);
7544                   has_stub_value = true;
7545                 }
7546             }
7547         }
7548     }
7549
7550   switch (r_type)
7551     {
7552     case elfcpp::R_PPC64_REL64:
7553     case elfcpp::R_POWERPC_REL32:
7554     case elfcpp::R_POWERPC_REL24:
7555     case elfcpp::R_PPC_PLTREL24:
7556     case elfcpp::R_PPC_LOCAL24PC:
7557     case elfcpp::R_POWERPC_REL16:
7558     case elfcpp::R_POWERPC_REL16_LO:
7559     case elfcpp::R_POWERPC_REL16_HI:
7560     case elfcpp::R_POWERPC_REL16_HA:
7561     case elfcpp::R_POWERPC_REL16DX_HA:
7562     case elfcpp::R_POWERPC_REL14:
7563     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7564     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7565       value -= address;
7566       break;
7567
7568     case elfcpp::R_PPC64_TOC16:
7569     case elfcpp::R_PPC64_TOC16_LO:
7570     case elfcpp::R_PPC64_TOC16_HI:
7571     case elfcpp::R_PPC64_TOC16_HA:
7572     case elfcpp::R_PPC64_TOC16_DS:
7573     case elfcpp::R_PPC64_TOC16_LO_DS:
7574       // Subtract the TOC base address.
7575       value -= (target->got_section()->output_section()->address()
7576                 + object->toc_base_offset());
7577       break;
7578
7579     case elfcpp::R_POWERPC_SECTOFF:
7580     case elfcpp::R_POWERPC_SECTOFF_LO:
7581     case elfcpp::R_POWERPC_SECTOFF_HI:
7582     case elfcpp::R_POWERPC_SECTOFF_HA:
7583     case elfcpp::R_PPC64_SECTOFF_DS:
7584     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7585       if (os != NULL)
7586         value -= os->address();
7587       break;
7588
7589     case elfcpp::R_PPC64_TPREL16_DS:
7590     case elfcpp::R_PPC64_TPREL16_LO_DS:
7591     case elfcpp::R_PPC64_TPREL16_HIGH:
7592     case elfcpp::R_PPC64_TPREL16_HIGHA:
7593       if (size != 64)
7594         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7595         break;
7596       // Fall through.
7597     case elfcpp::R_POWERPC_TPREL16:
7598     case elfcpp::R_POWERPC_TPREL16_LO:
7599     case elfcpp::R_POWERPC_TPREL16_HI:
7600     case elfcpp::R_POWERPC_TPREL16_HA:
7601     case elfcpp::R_POWERPC_TPREL:
7602     case elfcpp::R_PPC64_TPREL16_HIGHER:
7603     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7604     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7605     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7606       // tls symbol values are relative to tls_segment()->vaddr()
7607       value -= tp_offset;
7608       break;
7609
7610     case elfcpp::R_PPC64_DTPREL16_DS:
7611     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7612     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7613     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7614     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7615     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7616       if (size != 64)
7617         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7618         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7619         break;
7620       // Fall through.
7621     case elfcpp::R_POWERPC_DTPREL16:
7622     case elfcpp::R_POWERPC_DTPREL16_LO:
7623     case elfcpp::R_POWERPC_DTPREL16_HI:
7624     case elfcpp::R_POWERPC_DTPREL16_HA:
7625     case elfcpp::R_POWERPC_DTPREL:
7626     case elfcpp::R_PPC64_DTPREL16_HIGH:
7627     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7628       // tls symbol values are relative to tls_segment()->vaddr()
7629       value -= dtp_offset;
7630       break;
7631
7632     case elfcpp::R_PPC64_ADDR64_LOCAL:
7633       if (gsym != NULL)
7634         value += object->ppc64_local_entry_offset(gsym);
7635       else
7636         value += object->ppc64_local_entry_offset(r_sym);
7637       break;
7638
7639     default:
7640       break;
7641     }
7642
7643   Insn branch_bit = 0;
7644   switch (r_type)
7645     {
7646     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7647     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7648       branch_bit = 1 << 21;
7649       // Fall through.
7650     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7651     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7652       {
7653         Insn* iview = reinterpret_cast<Insn*>(view);
7654         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7655         insn &= ~(1 << 21);
7656         insn |= branch_bit;
7657         if (this->is_isa_v2)
7658           {
7659             // Set 'a' bit.  This is 0b00010 in BO field for branch
7660             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7661             // for branch on CTR insns (BO == 1a00t or 1a01t).
7662             if ((insn & (0x14 << 21)) == (0x04 << 21))
7663               insn |= 0x02 << 21;
7664             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7665               insn |= 0x08 << 21;
7666             else
7667               break;
7668           }
7669         else
7670           {
7671             // Invert 'y' bit if not the default.
7672             if (static_cast<Signed_address>(value) < 0)
7673               insn ^= 1 << 21;
7674           }
7675         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7676       }
7677       break;
7678
7679     default:
7680       break;
7681     }
7682
7683   if (size == 64)
7684     {
7685       // Multi-instruction sequences that access the TOC can be
7686       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7687       // to             nop;           addi rb,r2,x;
7688       switch (r_type)
7689         {
7690         default:
7691           break;
7692
7693         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7694         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7695         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7696         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7697         case elfcpp::R_POWERPC_GOT16_HA:
7698         case elfcpp::R_PPC64_TOC16_HA:
7699           if (parameters->options().toc_optimize())
7700             {
7701               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7702               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7703               if ((insn & ((0x3f << 26) | 0x1f << 16))
7704                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7705                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7706                                        _("toc optimization is not supported "
7707                                          "for %#08x instruction"), insn);
7708               else if (value + 0x8000 < 0x10000)
7709                 {
7710                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7711                   return true;
7712                 }
7713             }
7714           break;
7715
7716         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7717         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7718         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7719         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7720         case elfcpp::R_POWERPC_GOT16_LO:
7721         case elfcpp::R_PPC64_GOT16_LO_DS:
7722         case elfcpp::R_PPC64_TOC16_LO:
7723         case elfcpp::R_PPC64_TOC16_LO_DS:
7724           if (parameters->options().toc_optimize())
7725             {
7726               Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7727               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7728               if (!ok_lo_toc_insn(insn))
7729                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7730                                        _("toc optimization is not supported "
7731                                          "for %#08x instruction"), insn);
7732               else if (value + 0x8000 < 0x10000)
7733                 {
7734                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7735                     {
7736                       // Transform addic to addi when we change reg.
7737                       insn &= ~((0x3f << 26) | (0x1f << 16));
7738                       insn |= (14u << 26) | (2 << 16);
7739                     }
7740                   else
7741                     {
7742                       insn &= ~(0x1f << 16);
7743                       insn |= 2 << 16;
7744                     }
7745                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7746                 }
7747             }
7748           break;
7749
7750         case elfcpp::R_PPC64_ENTRY:
7751           value = (target->got_section()->output_section()->address()
7752                    + object->toc_base_offset());
7753           if (value + 0x80008000 <= 0xffffffff
7754               && !parameters->options().output_is_position_independent())
7755             {
7756               Insn* iview = reinterpret_cast<Insn*>(view);
7757               Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7758               Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7759
7760               if ((insn1 & ~0xfffc) == ld_2_12
7761                   && insn2 == add_2_2_12)
7762                 {
7763                   insn1 = lis_2 + ha(value);
7764                   elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7765                   insn2 = addi_2_2 + l(value);
7766                   elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7767                   return true;
7768                 }
7769             }
7770           else
7771             {
7772               value -= address;
7773               if (value + 0x80008000 <= 0xffffffff)
7774                 {
7775                   Insn* iview = reinterpret_cast<Insn*>(view);
7776                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7777                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7778
7779                   if ((insn1 & ~0xfffc) == ld_2_12
7780                       && insn2 == add_2_2_12)
7781                     {
7782                       insn1 = addis_2_12 + ha(value);
7783                       elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7784                       insn2 = addi_2_2 + l(value);
7785                       elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7786                       return true;
7787                     }
7788                 }
7789             }
7790           break;
7791
7792         case elfcpp::R_POWERPC_REL16_LO:
7793           // If we are generating a non-PIC executable, edit
7794           //    0:      addis 2,12,.TOC.-0b@ha
7795           //            addi 2,2,.TOC.-0b@l
7796           // used by ELFv2 global entry points to set up r2, to
7797           //            lis 2,.TOC.@ha
7798           //            addi 2,2,.TOC.@l
7799           // if .TOC. is in range.  */
7800           if (value + address - 4 + 0x80008000 <= 0xffffffff
7801               && relnum != 0
7802               && preloc != NULL
7803               && target->abiversion() >= 2
7804               && !parameters->options().output_is_position_independent()
7805               && rela.get_r_addend() == d_offset + 4
7806               && gsym != NULL
7807               && strcmp(gsym->name(), ".TOC.") == 0)
7808             {
7809               const int reloc_size
7810                 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7811               Reltype prev_rela(preloc - reloc_size);
7812               if ((prev_rela.get_r_info()
7813                    == elfcpp::elf_r_info<size>(r_sym,
7814                                                elfcpp::R_POWERPC_REL16_HA))
7815                   && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
7816                   && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
7817                 {
7818                   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7819                   Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
7820                   Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
7821
7822                   if ((insn1 & 0xffff0000) == addis_2_12
7823                       && (insn2 & 0xffff0000) == addi_2_2)
7824                     {
7825                       insn1 = lis_2 + ha(value + address - 4);
7826                       elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
7827                       insn2 = addi_2_2 + l(value + address - 4);
7828                       elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
7829                       if (relinfo->rr)
7830                         {
7831                           relinfo->rr->set_strategy(relnum - 1,
7832                                                     Relocatable_relocs::RELOC_SPECIAL);
7833                           relinfo->rr->set_strategy(relnum,
7834                                                     Relocatable_relocs::RELOC_SPECIAL);
7835                         }
7836                       return true;
7837                     }
7838                 }
7839             }
7840           break;
7841         }
7842     }
7843
7844   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7845   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7846   switch (r_type)
7847     {
7848     case elfcpp::R_POWERPC_ADDR32:
7849     case elfcpp::R_POWERPC_UADDR32:
7850       if (size == 64)
7851         overflow = Reloc::CHECK_BITFIELD;
7852       break;
7853
7854     case elfcpp::R_POWERPC_REL32:
7855     case elfcpp::R_POWERPC_REL16DX_HA:
7856       if (size == 64)
7857         overflow = Reloc::CHECK_SIGNED;
7858       break;
7859
7860     case elfcpp::R_POWERPC_UADDR16:
7861       overflow = Reloc::CHECK_BITFIELD;
7862       break;
7863
7864     case elfcpp::R_POWERPC_ADDR16:
7865       // We really should have three separate relocations,
7866       // one for 16-bit data, one for insns with 16-bit signed fields,
7867       // and one for insns with 16-bit unsigned fields.
7868       overflow = Reloc::CHECK_BITFIELD;
7869       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7870         overflow = Reloc::CHECK_LOW_INSN;
7871       break;
7872
7873     case elfcpp::R_POWERPC_ADDR16_HI:
7874     case elfcpp::R_POWERPC_ADDR16_HA:
7875     case elfcpp::R_POWERPC_GOT16_HI:
7876     case elfcpp::R_POWERPC_GOT16_HA:
7877     case elfcpp::R_POWERPC_PLT16_HI:
7878     case elfcpp::R_POWERPC_PLT16_HA:
7879     case elfcpp::R_POWERPC_SECTOFF_HI:
7880     case elfcpp::R_POWERPC_SECTOFF_HA:
7881     case elfcpp::R_PPC64_TOC16_HI:
7882     case elfcpp::R_PPC64_TOC16_HA:
7883     case elfcpp::R_PPC64_PLTGOT16_HI:
7884     case elfcpp::R_PPC64_PLTGOT16_HA:
7885     case elfcpp::R_POWERPC_TPREL16_HI:
7886     case elfcpp::R_POWERPC_TPREL16_HA:
7887     case elfcpp::R_POWERPC_DTPREL16_HI:
7888     case elfcpp::R_POWERPC_DTPREL16_HA:
7889     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7890     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7891     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7892     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7893     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7894     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7895     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7896     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7897     case elfcpp::R_POWERPC_REL16_HI:
7898     case elfcpp::R_POWERPC_REL16_HA:
7899       if (size != 32)
7900         overflow = Reloc::CHECK_HIGH_INSN;
7901       break;
7902
7903     case elfcpp::R_POWERPC_REL16:
7904     case elfcpp::R_PPC64_TOC16:
7905     case elfcpp::R_POWERPC_GOT16:
7906     case elfcpp::R_POWERPC_SECTOFF:
7907     case elfcpp::R_POWERPC_TPREL16:
7908     case elfcpp::R_POWERPC_DTPREL16:
7909     case elfcpp::R_POWERPC_GOT_TLSGD16:
7910     case elfcpp::R_POWERPC_GOT_TLSLD16:
7911     case elfcpp::R_POWERPC_GOT_TPREL16:
7912     case elfcpp::R_POWERPC_GOT_DTPREL16:
7913       overflow = Reloc::CHECK_LOW_INSN;
7914       break;
7915
7916     case elfcpp::R_POWERPC_ADDR24:
7917     case elfcpp::R_POWERPC_ADDR14:
7918     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7919     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7920     case elfcpp::R_PPC64_ADDR16_DS:
7921     case elfcpp::R_POWERPC_REL24:
7922     case elfcpp::R_PPC_PLTREL24:
7923     case elfcpp::R_PPC_LOCAL24PC:
7924     case elfcpp::R_PPC64_TPREL16_DS:
7925     case elfcpp::R_PPC64_DTPREL16_DS:
7926     case elfcpp::R_PPC64_TOC16_DS:
7927     case elfcpp::R_PPC64_GOT16_DS:
7928     case elfcpp::R_PPC64_SECTOFF_DS:
7929     case elfcpp::R_POWERPC_REL14:
7930     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7931     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7932       overflow = Reloc::CHECK_SIGNED;
7933       break;
7934     }
7935
7936   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7937   Insn insn = 0;
7938
7939   if (overflow == Reloc::CHECK_LOW_INSN
7940       || overflow == Reloc::CHECK_HIGH_INSN)
7941     {
7942       insn = elfcpp::Swap<32, big_endian>::readval(iview);
7943
7944       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7945         overflow = Reloc::CHECK_BITFIELD;
7946       else if (overflow == Reloc::CHECK_LOW_INSN
7947                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7948                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7949                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7950                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7951                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7952                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7953         overflow = Reloc::CHECK_UNSIGNED;
7954       else
7955         overflow = Reloc::CHECK_SIGNED;
7956     }
7957
7958   bool maybe_dq_reloc = false;
7959   typename Powerpc_relocate_functions<size, big_endian>::Status status
7960     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7961   switch (r_type)
7962     {
7963     case elfcpp::R_POWERPC_NONE:
7964     case elfcpp::R_POWERPC_TLS:
7965     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7966     case elfcpp::R_POWERPC_GNU_VTENTRY:
7967       break;
7968
7969     case elfcpp::R_PPC64_ADDR64:
7970     case elfcpp::R_PPC64_REL64:
7971     case elfcpp::R_PPC64_TOC:
7972     case elfcpp::R_PPC64_ADDR64_LOCAL:
7973       Reloc::addr64(view, value);
7974       break;
7975
7976     case elfcpp::R_POWERPC_TPREL:
7977     case elfcpp::R_POWERPC_DTPREL:
7978       if (size == 64)
7979         Reloc::addr64(view, value);
7980       else
7981         status = Reloc::addr32(view, value, overflow);
7982       break;
7983
7984     case elfcpp::R_PPC64_UADDR64:
7985       Reloc::addr64_u(view, value);
7986       break;
7987
7988     case elfcpp::R_POWERPC_ADDR32:
7989       status = Reloc::addr32(view, value, overflow);
7990       break;
7991
7992     case elfcpp::R_POWERPC_REL32:
7993     case elfcpp::R_POWERPC_UADDR32:
7994       status = Reloc::addr32_u(view, value, overflow);
7995       break;
7996
7997     case elfcpp::R_POWERPC_ADDR24:
7998     case elfcpp::R_POWERPC_REL24:
7999     case elfcpp::R_PPC_PLTREL24:
8000     case elfcpp::R_PPC_LOCAL24PC:
8001       status = Reloc::addr24(view, value, overflow);
8002       break;
8003
8004     case elfcpp::R_POWERPC_GOT_DTPREL16:
8005     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8006     case elfcpp::R_POWERPC_GOT_TPREL16:
8007     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8008       if (size == 64)
8009         {
8010           // On ppc64 these are all ds form
8011           maybe_dq_reloc = true;
8012           break;
8013         }
8014       // Fall through.
8015     case elfcpp::R_POWERPC_ADDR16:
8016     case elfcpp::R_POWERPC_REL16:
8017     case elfcpp::R_PPC64_TOC16:
8018     case elfcpp::R_POWERPC_GOT16:
8019     case elfcpp::R_POWERPC_SECTOFF:
8020     case elfcpp::R_POWERPC_TPREL16:
8021     case elfcpp::R_POWERPC_DTPREL16:
8022     case elfcpp::R_POWERPC_GOT_TLSGD16:
8023     case elfcpp::R_POWERPC_GOT_TLSLD16:
8024     case elfcpp::R_POWERPC_ADDR16_LO:
8025     case elfcpp::R_POWERPC_REL16_LO:
8026     case elfcpp::R_PPC64_TOC16_LO:
8027     case elfcpp::R_POWERPC_GOT16_LO:
8028     case elfcpp::R_POWERPC_SECTOFF_LO:
8029     case elfcpp::R_POWERPC_TPREL16_LO:
8030     case elfcpp::R_POWERPC_DTPREL16_LO:
8031     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8032     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8033       if (size == 64)
8034         status = Reloc::addr16(view, value, overflow);
8035       else
8036         maybe_dq_reloc = true;
8037       break;
8038
8039     case elfcpp::R_POWERPC_UADDR16:
8040       status = Reloc::addr16_u(view, value, overflow);
8041       break;
8042
8043     case elfcpp::R_PPC64_ADDR16_HIGH:
8044     case elfcpp::R_PPC64_TPREL16_HIGH:
8045     case elfcpp::R_PPC64_DTPREL16_HIGH:
8046       if (size == 32)
8047         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
8048         goto unsupp;
8049       // Fall through.
8050     case elfcpp::R_POWERPC_ADDR16_HI:
8051     case elfcpp::R_POWERPC_REL16_HI:
8052     case elfcpp::R_PPC64_TOC16_HI:
8053     case elfcpp::R_POWERPC_GOT16_HI:
8054     case elfcpp::R_POWERPC_SECTOFF_HI:
8055     case elfcpp::R_POWERPC_TPREL16_HI:
8056     case elfcpp::R_POWERPC_DTPREL16_HI:
8057     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8058     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8059     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8060     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8061       Reloc::addr16_hi(view, value);
8062       break;
8063
8064     case elfcpp::R_PPC64_ADDR16_HIGHA:
8065     case elfcpp::R_PPC64_TPREL16_HIGHA:
8066     case elfcpp::R_PPC64_DTPREL16_HIGHA:
8067       if (size == 32)
8068         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
8069         goto unsupp;
8070       // Fall through.
8071     case elfcpp::R_POWERPC_ADDR16_HA:
8072     case elfcpp::R_POWERPC_REL16_HA:
8073     case elfcpp::R_PPC64_TOC16_HA:
8074     case elfcpp::R_POWERPC_GOT16_HA:
8075     case elfcpp::R_POWERPC_SECTOFF_HA:
8076     case elfcpp::R_POWERPC_TPREL16_HA:
8077     case elfcpp::R_POWERPC_DTPREL16_HA:
8078     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8079     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8080     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8081     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8082       Reloc::addr16_ha(view, value);
8083       break;
8084
8085     case elfcpp::R_POWERPC_REL16DX_HA:
8086       status = Reloc::addr16dx_ha(view, value, overflow);
8087       break;
8088
8089     case elfcpp::R_PPC64_DTPREL16_HIGHER:
8090       if (size == 32)
8091         // R_PPC_EMB_NADDR16_LO
8092         goto unsupp;
8093       // Fall through.
8094     case elfcpp::R_PPC64_ADDR16_HIGHER:
8095     case elfcpp::R_PPC64_TPREL16_HIGHER:
8096       Reloc::addr16_hi2(view, value);
8097       break;
8098
8099     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8100       if (size == 32)
8101         // R_PPC_EMB_NADDR16_HI
8102         goto unsupp;
8103       // Fall through.
8104     case elfcpp::R_PPC64_ADDR16_HIGHERA:
8105     case elfcpp::R_PPC64_TPREL16_HIGHERA:
8106       Reloc::addr16_ha2(view, value);
8107       break;
8108
8109     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8110       if (size == 32)
8111         // R_PPC_EMB_NADDR16_HA
8112         goto unsupp;
8113       // Fall through.
8114     case elfcpp::R_PPC64_ADDR16_HIGHEST:
8115     case elfcpp::R_PPC64_TPREL16_HIGHEST:
8116       Reloc::addr16_hi3(view, value);
8117       break;
8118
8119     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8120       if (size == 32)
8121         // R_PPC_EMB_SDAI16
8122         goto unsupp;
8123       // Fall through.
8124     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8125     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8126       Reloc::addr16_ha3(view, value);
8127       break;
8128
8129     case elfcpp::R_PPC64_DTPREL16_DS:
8130     case elfcpp::R_PPC64_DTPREL16_LO_DS:
8131       if (size == 32)
8132         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
8133         goto unsupp;
8134       // Fall through.
8135     case elfcpp::R_PPC64_TPREL16_DS:
8136     case elfcpp::R_PPC64_TPREL16_LO_DS:
8137       if (size == 32)
8138         // R_PPC_TLSGD, R_PPC_TLSLD
8139         break;
8140       // Fall through.
8141     case elfcpp::R_PPC64_ADDR16_DS:
8142     case elfcpp::R_PPC64_ADDR16_LO_DS:
8143     case elfcpp::R_PPC64_TOC16_DS:
8144     case elfcpp::R_PPC64_TOC16_LO_DS:
8145     case elfcpp::R_PPC64_GOT16_DS:
8146     case elfcpp::R_PPC64_GOT16_LO_DS:
8147     case elfcpp::R_PPC64_SECTOFF_DS:
8148     case elfcpp::R_PPC64_SECTOFF_LO_DS:
8149       maybe_dq_reloc = true;
8150       break;
8151
8152     case elfcpp::R_POWERPC_ADDR14:
8153     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8154     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8155     case elfcpp::R_POWERPC_REL14:
8156     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8157     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8158       status = Reloc::addr14(view, value, overflow);
8159       break;
8160
8161     case elfcpp::R_POWERPC_COPY:
8162     case elfcpp::R_POWERPC_GLOB_DAT:
8163     case elfcpp::R_POWERPC_JMP_SLOT:
8164     case elfcpp::R_POWERPC_RELATIVE:
8165     case elfcpp::R_POWERPC_DTPMOD:
8166     case elfcpp::R_PPC64_JMP_IREL:
8167     case elfcpp::R_POWERPC_IRELATIVE:
8168       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8169                              _("unexpected reloc %u in object file"),
8170                              r_type);
8171       break;
8172
8173     case elfcpp::R_PPC_EMB_SDA21:
8174       if (size == 32)
8175         goto unsupp;
8176       else
8177         {
8178           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
8179         }
8180       break;
8181
8182     case elfcpp::R_PPC_EMB_SDA2I16:
8183     case elfcpp::R_PPC_EMB_SDA2REL:
8184       if (size == 32)
8185         goto unsupp;
8186       // R_PPC64_TLSGD, R_PPC64_TLSLD
8187       break;
8188
8189     case elfcpp::R_POWERPC_PLT32:
8190     case elfcpp::R_POWERPC_PLTREL32:
8191     case elfcpp::R_POWERPC_PLT16_LO:
8192     case elfcpp::R_POWERPC_PLT16_HI:
8193     case elfcpp::R_POWERPC_PLT16_HA:
8194     case elfcpp::R_PPC_SDAREL16:
8195     case elfcpp::R_POWERPC_ADDR30:
8196     case elfcpp::R_PPC64_PLT64:
8197     case elfcpp::R_PPC64_PLTREL64:
8198     case elfcpp::R_PPC64_PLTGOT16:
8199     case elfcpp::R_PPC64_PLTGOT16_LO:
8200     case elfcpp::R_PPC64_PLTGOT16_HI:
8201     case elfcpp::R_PPC64_PLTGOT16_HA:
8202     case elfcpp::R_PPC64_PLT16_LO_DS:
8203     case elfcpp::R_PPC64_PLTGOT16_DS:
8204     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8205     case elfcpp::R_PPC_EMB_RELSDA:
8206     case elfcpp::R_PPC_TOC16:
8207     default:
8208     unsupp:
8209       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8210                              _("unsupported reloc %u"),
8211                              r_type);
8212       break;
8213     }
8214
8215   if (maybe_dq_reloc)
8216     {
8217       if (insn == 0)
8218         insn = elfcpp::Swap<32, big_endian>::readval(iview);
8219
8220       if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8221           || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8222               && (insn & 3) == 1))
8223         status = Reloc::addr16_dq(view, value, overflow);
8224       else if (size == 64
8225                || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8226                || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8227                || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8228                || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8229         status = Reloc::addr16_ds(view, value, overflow);
8230       else
8231         status = Reloc::addr16(view, value, overflow);
8232     }
8233
8234   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8235       && (has_stub_value
8236           || !(gsym != NULL
8237                && gsym->is_undefined()
8238                && is_branch_reloc(r_type))))
8239     {
8240       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8241                              _("relocation overflow"));
8242       if (has_stub_value)
8243         gold_info(_("try relinking with a smaller --stub-group-size"));
8244     }
8245
8246   return true;
8247 }
8248
8249 // Relocate section data.
8250
8251 template<int size, bool big_endian>
8252 void
8253 Target_powerpc<size, big_endian>::relocate_section(
8254     const Relocate_info<size, big_endian>* relinfo,
8255     unsigned int sh_type,
8256     const unsigned char* prelocs,
8257     size_t reloc_count,
8258     Output_section* output_section,
8259     bool needs_special_offset_handling,
8260     unsigned char* view,
8261     Address address,
8262     section_size_type view_size,
8263     const Reloc_symbol_changes* reloc_symbol_changes)
8264 {
8265   typedef Target_powerpc<size, big_endian> Powerpc;
8266   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8267   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8268     Powerpc_comdat_behavior;
8269   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8270       Classify_reloc;
8271
8272   gold_assert(sh_type == elfcpp::SHT_RELA);
8273
8274   gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
8275                          Powerpc_comdat_behavior, Classify_reloc>(
8276     relinfo,
8277     this,
8278     prelocs,
8279     reloc_count,
8280     output_section,
8281     needs_special_offset_handling,
8282     view,
8283     address,
8284     view_size,
8285     reloc_symbol_changes);
8286 }
8287
8288 template<int size, bool big_endian>
8289 class Powerpc_scan_relocatable_reloc
8290 {
8291 public:
8292   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8293       Reltype;
8294   static const int reloc_size =
8295       Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8296   static const int sh_type = elfcpp::SHT_RELA;
8297
8298   // Return the symbol referred to by the relocation.
8299   static inline unsigned int
8300   get_r_sym(const Reltype* reloc)
8301   { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
8302
8303   // Return the type of the relocation.
8304   static inline unsigned int
8305   get_r_type(const Reltype* reloc)
8306   { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
8307
8308   // Return the strategy to use for a local symbol which is not a
8309   // section symbol, given the relocation type.
8310   inline Relocatable_relocs::Reloc_strategy
8311   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8312   {
8313     if (r_type == 0 && r_sym == 0)
8314       return Relocatable_relocs::RELOC_DISCARD;
8315     return Relocatable_relocs::RELOC_COPY;
8316   }
8317
8318   // Return the strategy to use for a local symbol which is a section
8319   // symbol, given the relocation type.
8320   inline Relocatable_relocs::Reloc_strategy
8321   local_section_strategy(unsigned int, Relobj*)
8322   {
8323     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8324   }
8325
8326   // Return the strategy to use for a global symbol, given the
8327   // relocation type, the object, and the symbol index.
8328   inline Relocatable_relocs::Reloc_strategy
8329   global_strategy(unsigned int r_type, Relobj*, unsigned int)
8330   {
8331     if (r_type == elfcpp::R_PPC_PLTREL24)
8332       return Relocatable_relocs::RELOC_SPECIAL;
8333     return Relocatable_relocs::RELOC_COPY;
8334   }
8335 };
8336
8337 // Scan the relocs during a relocatable link.
8338
8339 template<int size, bool big_endian>
8340 void
8341 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8342     Symbol_table* symtab,
8343     Layout* layout,
8344     Sized_relobj_file<size, big_endian>* object,
8345     unsigned int data_shndx,
8346     unsigned int sh_type,
8347     const unsigned char* prelocs,
8348     size_t reloc_count,
8349     Output_section* output_section,
8350     bool needs_special_offset_handling,
8351     size_t local_symbol_count,
8352     const unsigned char* plocal_symbols,
8353     Relocatable_relocs* rr)
8354 {
8355   typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
8356
8357   gold_assert(sh_type == elfcpp::SHT_RELA);
8358
8359   gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
8360     symtab,
8361     layout,
8362     object,
8363     data_shndx,
8364     prelocs,
8365     reloc_count,
8366     output_section,
8367     needs_special_offset_handling,
8368     local_symbol_count,
8369     plocal_symbols,
8370     rr);
8371 }
8372
8373 // Scan the relocs for --emit-relocs.
8374
8375 template<int size, bool big_endian>
8376 void
8377 Target_powerpc<size, big_endian>::emit_relocs_scan(
8378     Symbol_table* symtab,
8379     Layout* layout,
8380     Sized_relobj_file<size, big_endian>* object,
8381     unsigned int data_shndx,
8382     unsigned int sh_type,
8383     const unsigned char* prelocs,
8384     size_t reloc_count,
8385     Output_section* output_section,
8386     bool needs_special_offset_handling,
8387     size_t local_symbol_count,
8388     const unsigned char* plocal_syms,
8389     Relocatable_relocs* rr)
8390 {
8391   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8392       Classify_reloc;
8393   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8394       Emit_relocs_strategy;
8395
8396   gold_assert(sh_type == elfcpp::SHT_RELA);
8397
8398   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8399     symtab,
8400     layout,
8401     object,
8402     data_shndx,
8403     prelocs,
8404     reloc_count,
8405     output_section,
8406     needs_special_offset_handling,
8407     local_symbol_count,
8408     plocal_syms,
8409     rr);
8410 }
8411
8412 // Emit relocations for a section.
8413 // This is a modified version of the function by the same name in
8414 // target-reloc.h.  Using relocate_special_relocatable for
8415 // R_PPC_PLTREL24 would require duplication of the entire body of the
8416 // loop, so we may as well duplicate the whole thing.
8417
8418 template<int size, bool big_endian>
8419 void
8420 Target_powerpc<size, big_endian>::relocate_relocs(
8421     const Relocate_info<size, big_endian>* relinfo,
8422     unsigned int sh_type,
8423     const unsigned char* prelocs,
8424     size_t reloc_count,
8425     Output_section* output_section,
8426     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8427     unsigned char*,
8428     Address view_address,
8429     section_size_type,
8430     unsigned char* reloc_view,
8431     section_size_type reloc_view_size)
8432 {
8433   gold_assert(sh_type == elfcpp::SHT_RELA);
8434
8435   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8436     Reltype;
8437   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8438     Reltype_write;
8439   const int reloc_size
8440     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8441   // Offset from start of insn to d-field reloc.
8442   const int d_offset = big_endian ? 2 : 0;
8443
8444   Powerpc_relobj<size, big_endian>* const object
8445     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8446   const unsigned int local_count = object->local_symbol_count();
8447   unsigned int got2_shndx = object->got2_shndx();
8448   Address got2_addend = 0;
8449   if (got2_shndx != 0)
8450     {
8451       got2_addend = object->get_output_section_offset(got2_shndx);
8452       gold_assert(got2_addend != invalid_address);
8453     }
8454
8455   unsigned char* pwrite = reloc_view;
8456   bool zap_next = false;
8457   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8458     {
8459       Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
8460       if (strategy == Relocatable_relocs::RELOC_DISCARD)
8461         continue;
8462
8463       Reltype reloc(prelocs);
8464       Reltype_write reloc_write(pwrite);
8465
8466       Address offset = reloc.get_r_offset();
8467       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8468       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8469       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8470       const unsigned int orig_r_sym = r_sym;
8471       typename elfcpp::Elf_types<size>::Elf_Swxword addend
8472         = reloc.get_r_addend();
8473       const Symbol* gsym = NULL;
8474
8475       if (zap_next)
8476         {
8477           // We could arrange to discard these and other relocs for
8478           // tls optimised sequences in the strategy methods, but for
8479           // now do as BFD ld does.
8480           r_type = elfcpp::R_POWERPC_NONE;
8481           zap_next = false;
8482         }
8483
8484       // Get the new symbol index.
8485       Output_section* os = NULL;
8486       if (r_sym < local_count)
8487         {
8488           switch (strategy)
8489             {
8490             case Relocatable_relocs::RELOC_COPY:
8491             case Relocatable_relocs::RELOC_SPECIAL:
8492               if (r_sym != 0)
8493                 {
8494                   r_sym = object->symtab_index(r_sym);
8495                   gold_assert(r_sym != -1U);
8496                 }
8497               break;
8498
8499             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8500               {
8501                 // We are adjusting a section symbol.  We need to find
8502                 // the symbol table index of the section symbol for
8503                 // the output section corresponding to input section
8504                 // in which this symbol is defined.
8505                 gold_assert(r_sym < local_count);
8506                 bool is_ordinary;
8507                 unsigned int shndx =
8508                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
8509                 gold_assert(is_ordinary);
8510                 os = object->output_section(shndx);
8511                 gold_assert(os != NULL);
8512                 gold_assert(os->needs_symtab_index());
8513                 r_sym = os->symtab_index();
8514               }
8515               break;
8516
8517             default:
8518               gold_unreachable();
8519             }
8520         }
8521       else
8522         {
8523           gsym = object->global_symbol(r_sym);
8524           gold_assert(gsym != NULL);
8525           if (gsym->is_forwarder())
8526             gsym = relinfo->symtab->resolve_forwards(gsym);
8527
8528           gold_assert(gsym->has_symtab_index());
8529           r_sym = gsym->symtab_index();
8530         }
8531
8532       // Get the new offset--the location in the output section where
8533       // this relocation should be applied.
8534       if (static_cast<Address>(offset_in_output_section) != invalid_address)
8535         offset += offset_in_output_section;
8536       else
8537         {
8538           section_offset_type sot_offset =
8539             convert_types<section_offset_type, Address>(offset);
8540           section_offset_type new_sot_offset =
8541             output_section->output_offset(object, relinfo->data_shndx,
8542                                           sot_offset);
8543           gold_assert(new_sot_offset != -1);
8544           offset = new_sot_offset;
8545         }
8546
8547       // In an object file, r_offset is an offset within the section.
8548       // In an executable or dynamic object, generated by
8549       // --emit-relocs, r_offset is an absolute address.
8550       if (!parameters->options().relocatable())
8551         {
8552           offset += view_address;
8553           if (static_cast<Address>(offset_in_output_section) != invalid_address)
8554             offset -= offset_in_output_section;
8555         }
8556
8557       // Handle the reloc addend based on the strategy.
8558       if (strategy == Relocatable_relocs::RELOC_COPY)
8559         ;
8560       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8561         {
8562           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8563           gold_assert(os != NULL);
8564           addend = psymval->value(object, addend) - os->address();
8565         }
8566       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8567         {
8568           if (size == 32)
8569             {
8570               if (addend >= 32768)
8571                 addend += got2_addend;
8572             }
8573           else if (r_type == elfcpp::R_POWERPC_REL16_HA)
8574             {
8575               r_type = elfcpp::R_POWERPC_ADDR16_HA;
8576               addend -= d_offset;
8577             }
8578           else if (r_type == elfcpp::R_POWERPC_REL16_LO)
8579             {
8580               r_type = elfcpp::R_POWERPC_ADDR16_LO;
8581               addend -= d_offset + 4;
8582             }
8583         }
8584       else
8585         gold_unreachable();
8586
8587       if (!parameters->options().relocatable())
8588         {
8589           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8590               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8591               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8592               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8593             {
8594               // First instruction of a global dynamic sequence,
8595               // arg setup insn.
8596               const bool final = gsym == NULL || gsym->final_value_is_known();
8597               switch (this->optimize_tls_gd(final))
8598                 {
8599                 case tls::TLSOPT_TO_IE:
8600                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8601                              - elfcpp::R_POWERPC_GOT_TLSGD16);
8602                   break;
8603                 case tls::TLSOPT_TO_LE:
8604                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8605                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8606                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8607                   else
8608                     {
8609                       r_type = elfcpp::R_POWERPC_NONE;
8610                       offset -= d_offset;
8611                     }
8612                   break;
8613                 default:
8614                   break;
8615                 }
8616             }
8617           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8618                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8619                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8620                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8621             {
8622               // First instruction of a local dynamic sequence,
8623               // arg setup insn.
8624               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8625                 {
8626                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8627                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8628                     {
8629                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
8630                       const Output_section* os = relinfo->layout->tls_segment()
8631                         ->first_section();
8632                       gold_assert(os != NULL);
8633                       gold_assert(os->needs_symtab_index());
8634                       r_sym = os->symtab_index();
8635                       addend = dtp_offset;
8636                     }
8637                   else
8638                     {
8639                       r_type = elfcpp::R_POWERPC_NONE;
8640                       offset -= d_offset;
8641                     }
8642                 }
8643             }
8644           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8645                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8646                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8647                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8648             {
8649               // First instruction of initial exec sequence.
8650               const bool final = gsym == NULL || gsym->final_value_is_known();
8651               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8652                 {
8653                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8654                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8655                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8656                   else
8657                     {
8658                       r_type = elfcpp::R_POWERPC_NONE;
8659                       offset -= d_offset;
8660                     }
8661                 }
8662             }
8663           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8664                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8665             {
8666               // Second instruction of a global dynamic sequence,
8667               // the __tls_get_addr call
8668               const bool final = gsym == NULL || gsym->final_value_is_known();
8669               switch (this->optimize_tls_gd(final))
8670                 {
8671                 case tls::TLSOPT_TO_IE:
8672                   r_type = elfcpp::R_POWERPC_NONE;
8673                   zap_next = true;
8674                   break;
8675                 case tls::TLSOPT_TO_LE:
8676                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8677                   offset += d_offset;
8678                   zap_next = true;
8679                   break;
8680                 default:
8681                   break;
8682                 }
8683             }
8684           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8685                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8686             {
8687               // Second instruction of a local dynamic sequence,
8688               // the __tls_get_addr call
8689               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8690                 {
8691                   const Output_section* os = relinfo->layout->tls_segment()
8692                     ->first_section();
8693                   gold_assert(os != NULL);
8694                   gold_assert(os->needs_symtab_index());
8695                   r_sym = os->symtab_index();
8696                   addend = dtp_offset;
8697                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8698                   offset += d_offset;
8699                   zap_next = true;
8700                 }
8701             }
8702           else if (r_type == elfcpp::R_POWERPC_TLS)
8703             {
8704               // Second instruction of an initial exec sequence
8705               const bool final = gsym == NULL || gsym->final_value_is_known();
8706               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8707                 {
8708                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8709                   offset += d_offset;
8710                 }
8711             }
8712         }
8713
8714       reloc_write.put_r_offset(offset);
8715       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8716       reloc_write.put_r_addend(addend);
8717
8718       pwrite += reloc_size;
8719     }
8720
8721   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8722               == reloc_view_size);
8723 }
8724
8725 // Return the value to use for a dynamic symbol which requires special
8726 // treatment.  This is how we support equality comparisons of function
8727 // pointers across shared library boundaries, as described in the
8728 // processor specific ABI supplement.
8729
8730 template<int size, bool big_endian>
8731 uint64_t
8732 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8733 {
8734   if (size == 32)
8735     {
8736       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8737       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8738            p != this->stub_tables_.end();
8739            ++p)
8740         {
8741           Address off = (*p)->find_plt_call_entry(gsym);
8742           if (off != invalid_address)
8743             return (*p)->stub_address() + off;
8744         }
8745     }
8746   else if (this->abiversion() >= 2)
8747     {
8748       Address off = this->glink_section()->find_global_entry(gsym);
8749       if (off != invalid_address)
8750         return this->glink_section()->global_entry_address() + off;
8751     }
8752   gold_unreachable();
8753 }
8754
8755 // Return the PLT address to use for a local symbol.
8756 template<int size, bool big_endian>
8757 uint64_t
8758 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8759     const Relobj* object,
8760     unsigned int symndx) const
8761 {
8762   if (size == 32)
8763     {
8764       const Sized_relobj<size, big_endian>* relobj
8765         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8766       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8767            p != this->stub_tables_.end();
8768            ++p)
8769         {
8770           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8771                                                   symndx);
8772           if (off != invalid_address)
8773             return (*p)->stub_address() + off;
8774         }
8775     }
8776   gold_unreachable();
8777 }
8778
8779 // Return the PLT address to use for a global symbol.
8780 template<int size, bool big_endian>
8781 uint64_t
8782 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8783     const Symbol* gsym) const
8784 {
8785   if (size == 32)
8786     {
8787       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8788            p != this->stub_tables_.end();
8789            ++p)
8790         {
8791           Address off = (*p)->find_plt_call_entry(gsym);
8792           if (off != invalid_address)
8793             return (*p)->stub_address() + off;
8794         }
8795     }
8796   else if (this->abiversion() >= 2)
8797     {
8798       Address off = this->glink_section()->find_global_entry(gsym);
8799       if (off != invalid_address)
8800         return this->glink_section()->global_entry_address() + off;
8801     }
8802   gold_unreachable();
8803 }
8804
8805 // Return the offset to use for the GOT_INDX'th got entry which is
8806 // for a local tls symbol specified by OBJECT, SYMNDX.
8807 template<int size, bool big_endian>
8808 int64_t
8809 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8810     const Relobj* object,
8811     unsigned int symndx,
8812     unsigned int got_indx) const
8813 {
8814   const Powerpc_relobj<size, big_endian>* ppc_object
8815     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8816   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8817     {
8818       for (Got_type got_type = GOT_TYPE_TLSGD;
8819            got_type <= GOT_TYPE_TPREL;
8820            got_type = Got_type(got_type + 1))
8821         if (ppc_object->local_has_got_offset(symndx, got_type))
8822           {
8823             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8824             if (got_type == GOT_TYPE_TLSGD)
8825               off += size / 8;
8826             if (off == got_indx * (size / 8))
8827               {
8828                 if (got_type == GOT_TYPE_TPREL)
8829                   return -tp_offset;
8830                 else
8831                   return -dtp_offset;
8832               }
8833           }
8834     }
8835   gold_unreachable();
8836 }
8837
8838 // Return the offset to use for the GOT_INDX'th got entry which is
8839 // for global tls symbol GSYM.
8840 template<int size, bool big_endian>
8841 int64_t
8842 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8843     Symbol* gsym,
8844     unsigned int got_indx) const
8845 {
8846   if (gsym->type() == elfcpp::STT_TLS)
8847     {
8848       for (Got_type got_type = GOT_TYPE_TLSGD;
8849            got_type <= GOT_TYPE_TPREL;
8850            got_type = Got_type(got_type + 1))
8851         if (gsym->has_got_offset(got_type))
8852           {
8853             unsigned int off = gsym->got_offset(got_type);
8854             if (got_type == GOT_TYPE_TLSGD)
8855               off += size / 8;
8856             if (off == got_indx * (size / 8))
8857               {
8858                 if (got_type == GOT_TYPE_TPREL)
8859                   return -tp_offset;
8860                 else
8861                   return -dtp_offset;
8862               }
8863           }
8864     }
8865   gold_unreachable();
8866 }
8867
8868 // The selector for powerpc object files.
8869
8870 template<int size, bool big_endian>
8871 class Target_selector_powerpc : public Target_selector
8872 {
8873 public:
8874   Target_selector_powerpc()
8875     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8876                       size, big_endian,
8877                       (size == 64
8878                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8879                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8880                       (size == 64
8881                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8882                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8883   { }
8884
8885   virtual Target*
8886   do_instantiate_target()
8887   { return new Target_powerpc<size, big_endian>(); }
8888 };
8889
8890 Target_selector_powerpc<32, true> target_selector_ppc32;
8891 Target_selector_powerpc<32, false> target_selector_ppc32le;
8892 Target_selector_powerpc<64, true> target_selector_ppc64;
8893 Target_selector_powerpc<64, false> target_selector_ppc64le;
8894
8895 // Instantiate these constants for -O0
8896 template<int size, bool big_endian>
8897 const int Output_data_glink<size, big_endian>::pltresolve_size;
8898 template<int size, bool big_endian>
8899 const typename Output_data_glink<size, big_endian>::Address
8900   Output_data_glink<size, big_endian>::invalid_address;
8901 template<int size, bool big_endian>
8902 const typename Stub_table<size, big_endian>::Address
8903   Stub_table<size, big_endian>::invalid_address;
8904 template<int size, bool big_endian>
8905 const typename Target_powerpc<size, big_endian>::Address
8906   Target_powerpc<size, big_endian>::invalid_address;
8907
8908 } // End anonymous namespace.