1 // output.h -- manage the output file for gold -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "reloc-types.h"
37 class General_options;
41 class Output_merge_base;
43 class Relocatable_relocs;
45 template<int size, bool big_endian>
47 template<int size, bool big_endian>
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
52 // An abtract class for data which has to go into the output file.
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
72 gold_assert(this->is_address_valid_);
73 return this->address_;
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
82 gold_assert(this->is_data_size_valid_);
83 return this->data_size_;
86 // Get the current data size.
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
91 // Return true if data size is fixed.
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_; }
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
102 gold_assert(this->is_offset_valid_);
103 return this->offset_;
106 // Reset the address, file offset and data size. This essentially
107 // disables the sanity testing about duplicate and unknown settings.
109 reset_address_and_file_offset()
111 this->is_address_valid_ = false;
112 this->is_offset_valid_ = false;
113 if (!this->is_data_size_fixed_)
114 this->is_data_size_valid_ = false;
115 this->do_reset_address_and_file_offset();
118 // As above, but just for data size.
122 if (!this->is_data_size_fixed_)
123 this->is_data_size_valid_ = false;
126 // Return true if address and file offset already have reset values. In
127 // other words, calling reset_address_and_file_offset will not change them.
129 address_and_file_offset_have_reset_values() const
130 { return this->do_address_and_file_offset_have_reset_values(); }
132 // Return the required alignment.
135 { return this->do_addralign(); }
137 // Return whether this has a load address.
139 has_load_address() const
140 { return this->do_has_load_address(); }
142 // Return the load address.
145 { return this->do_load_address(); }
147 // Return whether this is an Output_section.
150 { return this->do_is_section(); }
152 // Return whether this is an Output_section of the specified type.
154 is_section_type(elfcpp::Elf_Word stt) const
155 { return this->do_is_section_type(stt); }
157 // Return whether this is an Output_section with the specified flag
160 is_section_flag_set(elfcpp::Elf_Xword shf) const
161 { return this->do_is_section_flag_set(shf); }
163 // Return the output section that this goes in, if there is one.
166 { return this->do_output_section(); }
168 const Output_section*
169 output_section() const
170 { return this->do_output_section(); }
172 // Return the output section index, if there is an output section.
175 { return this->do_out_shndx(); }
177 // Set the output section index, if this is an output section.
179 set_out_shndx(unsigned int shndx)
180 { this->do_set_out_shndx(shndx); }
182 // Set the address and file offset of this data, and finalize the
183 // size of the data. This is called during Layout::finalize for
184 // allocated sections.
186 set_address_and_file_offset(uint64_t addr, off_t off)
188 this->set_address(addr);
189 this->set_file_offset(off);
190 this->finalize_data_size();
195 set_address(uint64_t addr)
197 gold_assert(!this->is_address_valid_);
198 this->address_ = addr;
199 this->is_address_valid_ = true;
202 // Set the file offset.
204 set_file_offset(off_t off)
206 gold_assert(!this->is_offset_valid_);
208 this->is_offset_valid_ = true;
211 // Update the data size without finalizing it.
213 pre_finalize_data_size()
215 if (!this->is_data_size_valid_)
217 // Tell the child class to update the data size.
218 this->update_data_size();
222 // Finalize the data size.
226 if (!this->is_data_size_valid_)
228 // Tell the child class to set the data size.
229 this->set_final_data_size();
230 gold_assert(this->is_data_size_valid_);
234 // Set the TLS offset. Called only for SHT_TLS sections.
236 set_tls_offset(uint64_t tls_base)
237 { this->do_set_tls_offset(tls_base); }
239 // Return the TLS offset, relative to the base of the TLS segment.
240 // Valid only for SHT_TLS sections.
243 { return this->do_tls_offset(); }
245 // Write the data to the output file. This is called after
246 // Layout::finalize is complete.
248 write(Output_file* file)
249 { this->do_write(file); }
251 // This is called by Layout::finalize to note that the sizes of
252 // allocated sections must now be fixed.
255 { Output_data::allocated_sizes_are_fixed = true; }
257 // Used to check that layout has been done.
260 { return Output_data::allocated_sizes_are_fixed; }
262 // Note that a dynamic reloc has been applied to this data.
265 { this->has_dynamic_reloc_ = true; }
267 // Return whether a dynamic reloc has been applied.
269 has_dynamic_reloc() const
270 { return this->has_dynamic_reloc_; }
272 // Whether the address is valid.
274 is_address_valid() const
275 { return this->is_address_valid_; }
277 // Whether the file offset is valid.
279 is_offset_valid() const
280 { return this->is_offset_valid_; }
282 // Whether the data size is valid.
284 is_data_size_valid() const
285 { return this->is_data_size_valid_; }
287 // Print information to the map file.
289 print_to_mapfile(Mapfile* mapfile) const
290 { return this->do_print_to_mapfile(mapfile); }
293 // Functions that child classes may or in some cases must implement.
295 // Write the data to the output file.
297 do_write(Output_file*) = 0;
299 // Return the required alignment.
301 do_addralign() const = 0;
303 // Return whether this has a load address.
305 do_has_load_address() const
308 // Return the load address.
310 do_load_address() const
311 { gold_unreachable(); }
313 // Return whether this is an Output_section.
315 do_is_section() const
318 // Return whether this is an Output_section of the specified type.
319 // This only needs to be implement by Output_section.
321 do_is_section_type(elfcpp::Elf_Word) const
324 // Return whether this is an Output_section with the specific flag
325 // set. This only needs to be implemented by Output_section.
327 do_is_section_flag_set(elfcpp::Elf_Xword) const
330 // Return the output section, if there is one.
331 virtual Output_section*
335 virtual const Output_section*
336 do_output_section() const
339 // Return the output section index, if there is an output section.
342 { gold_unreachable(); }
344 // Set the output section index, if this is an output section.
346 do_set_out_shndx(unsigned int)
347 { gold_unreachable(); }
349 // This is a hook for derived classes to set the preliminary data size.
350 // This is called by pre_finalize_data_size, normally called during
351 // Layout::finalize, before the section address is set, and is used
352 // during an incremental update, when we need to know the size of a
353 // section before allocating space in the output file. For classes
354 // where the current data size is up to date, this default version of
355 // the method can be inherited.
360 // This is a hook for derived classes to set the data size. This is
361 // called by finalize_data_size, normally called during
362 // Layout::finalize, when the section address is set.
364 set_final_data_size()
365 { gold_unreachable(); }
367 // A hook for resetting the address and file offset.
369 do_reset_address_and_file_offset()
372 // Return true if address and file offset already have reset values. In
373 // other words, calling reset_address_and_file_offset will not change them.
374 // A child class overriding do_reset_address_and_file_offset may need to
375 // also override this.
377 do_address_and_file_offset_have_reset_values() const
378 { return !this->is_address_valid_ && !this->is_offset_valid_; }
380 // Set the TLS offset. Called only for SHT_TLS sections.
382 do_set_tls_offset(uint64_t)
383 { gold_unreachable(); }
385 // Return the TLS offset, relative to the base of the TLS segment.
386 // Valid only for SHT_TLS sections.
388 do_tls_offset() const
389 { gold_unreachable(); }
391 // Print to the map file. This only needs to be implemented by
392 // classes which may appear in a PT_LOAD segment.
394 do_print_to_mapfile(Mapfile*) const
395 { gold_unreachable(); }
397 // Functions that child classes may call.
399 // Reset the address. The Output_section class needs this when an
400 // SHF_ALLOC input section is added to an output section which was
401 // formerly not SHF_ALLOC.
403 mark_address_invalid()
404 { this->is_address_valid_ = false; }
406 // Set the size of the data.
408 set_data_size(off_t data_size)
410 gold_assert(!this->is_data_size_valid_
411 && !this->is_data_size_fixed_);
412 this->data_size_ = data_size;
413 this->is_data_size_valid_ = true;
416 // Fix the data size. Once it is fixed, it cannot be changed
417 // and the data size remains always valid.
421 gold_assert(this->is_data_size_valid_);
422 this->is_data_size_fixed_ = true;
425 // Get the current data size--this is for the convenience of
426 // sections which build up their size over time.
428 current_data_size_for_child() const
429 { return this->data_size_; }
431 // Set the current data size--this is for the convenience of
432 // sections which build up their size over time.
434 set_current_data_size_for_child(off_t data_size)
436 gold_assert(!this->is_data_size_valid_);
437 this->data_size_ = data_size;
440 // Return default alignment for the target size.
444 // Return default alignment for a specified size--32 or 64.
446 default_alignment_for_size(int size);
449 Output_data(const Output_data&);
450 Output_data& operator=(const Output_data&);
452 // This is used for verification, to make sure that we don't try to
453 // change any sizes of allocated sections after we set the section
455 static bool allocated_sizes_are_fixed;
457 // Memory address in output file.
459 // Size of data in output file.
461 // File offset of contents in output file.
463 // Whether address_ is valid.
464 bool is_address_valid_ : 1;
465 // Whether data_size_ is valid.
466 bool is_data_size_valid_ : 1;
467 // Whether offset_ is valid.
468 bool is_offset_valid_ : 1;
469 // Whether data size is fixed.
470 bool is_data_size_fixed_ : 1;
471 // Whether any dynamic relocs have been applied to this section.
472 bool has_dynamic_reloc_ : 1;
475 // Output the section headers.
477 class Output_section_headers : public Output_data
480 Output_section_headers(const Layout*,
481 const Layout::Segment_list*,
482 const Layout::Section_list*,
483 const Layout::Section_list*,
485 const Output_section*);
488 // Write the data to the file.
490 do_write(Output_file*);
492 // Return the required alignment.
495 { return Output_data::default_alignment(); }
497 // Write to a map file.
499 do_print_to_mapfile(Mapfile* mapfile) const
500 { mapfile->print_output_data(this, _("** section headers")); }
502 // Update the data size.
505 { this->set_data_size(this->do_size()); }
507 // Set final data size.
509 set_final_data_size()
510 { this->set_data_size(this->do_size()); }
513 // Write the data to the file with the right size and endianness.
514 template<int size, bool big_endian>
516 do_sized_write(Output_file*);
518 // Compute data size.
522 const Layout* layout_;
523 const Layout::Segment_list* segment_list_;
524 const Layout::Section_list* section_list_;
525 const Layout::Section_list* unattached_section_list_;
526 const Stringpool* secnamepool_;
527 const Output_section* shstrtab_section_;
530 // Output the segment headers.
532 class Output_segment_headers : public Output_data
535 Output_segment_headers(const Layout::Segment_list& segment_list);
538 // Write the data to the file.
540 do_write(Output_file*);
542 // Return the required alignment.
545 { return Output_data::default_alignment(); }
547 // Write to a map file.
549 do_print_to_mapfile(Mapfile* mapfile) const
550 { mapfile->print_output_data(this, _("** segment headers")); }
552 // Set final data size.
554 set_final_data_size()
555 { this->set_data_size(this->do_size()); }
558 // Write the data to the file with the right size and endianness.
559 template<int size, bool big_endian>
561 do_sized_write(Output_file*);
563 // Compute the current size.
567 const Layout::Segment_list& segment_list_;
570 // Output the ELF file header.
572 class Output_file_header : public Output_data
575 Output_file_header(const Target*,
577 const Output_segment_headers*);
579 // Add information about the section headers. We lay out the ELF
580 // file header before we create the section headers.
581 void set_section_info(const Output_section_headers*,
582 const Output_section* shstrtab);
585 // Write the data to the file.
587 do_write(Output_file*);
589 // Return the required alignment.
592 { return Output_data::default_alignment(); }
594 // Write to a map file.
596 do_print_to_mapfile(Mapfile* mapfile) const
597 { mapfile->print_output_data(this, _("** file header")); }
599 // Set final data size.
601 set_final_data_size(void)
602 { this->set_data_size(this->do_size()); }
605 // Write the data to the file with the right size and endianness.
606 template<int size, bool big_endian>
608 do_sized_write(Output_file*);
610 // Return the value to use for the entry address.
612 typename elfcpp::Elf_types<size>::Elf_Addr
615 // Compute the current data size.
619 const Target* target_;
620 const Symbol_table* symtab_;
621 const Output_segment_headers* segment_header_;
622 const Output_section_headers* section_header_;
623 const Output_section* shstrtab_;
626 // Output sections are mainly comprised of input sections. However,
627 // there are cases where we have data to write out which is not in an
628 // input section. Output_section_data is used in such cases. This is
629 // an abstract base class.
631 class Output_section_data : public Output_data
634 Output_section_data(off_t data_size, uint64_t addralign,
635 bool is_data_size_fixed)
636 : Output_data(), output_section_(NULL), addralign_(addralign)
638 this->set_data_size(data_size);
639 if (is_data_size_fixed)
640 this->fix_data_size();
643 Output_section_data(uint64_t addralign)
644 : Output_data(), output_section_(NULL), addralign_(addralign)
647 // Return the output section.
650 { return this->output_section_; }
652 const Output_section*
653 output_section() const
654 { return this->output_section_; }
656 // Record the output section.
658 set_output_section(Output_section* os);
660 // Add an input section, for SHF_MERGE sections. This returns true
661 // if the section was handled.
663 add_input_section(Relobj* object, unsigned int shndx)
664 { return this->do_add_input_section(object, shndx); }
666 // Given an input OBJECT, an input section index SHNDX within that
667 // object, and an OFFSET relative to the start of that input
668 // section, return whether or not the corresponding offset within
669 // the output section is known. If this function returns true, it
670 // sets *POUTPUT to the output offset. The value -1 indicates that
671 // this input offset is being discarded.
673 output_offset(const Relobj* object, unsigned int shndx,
674 section_offset_type offset,
675 section_offset_type* poutput) const
676 { return this->do_output_offset(object, shndx, offset, poutput); }
678 // Return whether this is the merge section for the input section
679 // SHNDX in OBJECT. This should return true when output_offset
680 // would return true for some values of OFFSET.
682 is_merge_section_for(const Relobj* object, unsigned int shndx) const
683 { return this->do_is_merge_section_for(object, shndx); }
685 // Write the contents to a buffer. This is used for sections which
686 // require postprocessing, such as compression.
688 write_to_buffer(unsigned char* buffer)
689 { this->do_write_to_buffer(buffer); }
691 // Print merge stats to stderr. This should only be called for
692 // SHF_MERGE sections.
694 print_merge_stats(const char* section_name)
695 { this->do_print_merge_stats(section_name); }
698 // The child class must implement do_write.
700 // The child class may implement specific adjustments to the output
703 do_adjust_output_section(Output_section*)
706 // May be implemented by child class. Return true if the section
709 do_add_input_section(Relobj*, unsigned int)
710 { gold_unreachable(); }
712 // The child class may implement output_offset.
714 do_output_offset(const Relobj*, unsigned int, section_offset_type,
715 section_offset_type*) const
718 // The child class may implement is_merge_section_for.
720 do_is_merge_section_for(const Relobj*, unsigned int) const
723 // The child class may implement write_to_buffer. Most child
724 // classes can not appear in a compressed section, and they do not
727 do_write_to_buffer(unsigned char*)
728 { gold_unreachable(); }
730 // Print merge statistics.
732 do_print_merge_stats(const char*)
733 { gold_unreachable(); }
735 // Return the required alignment.
738 { return this->addralign_; }
740 // Return the output section.
743 { return this->output_section_; }
745 const Output_section*
746 do_output_section() const
747 { return this->output_section_; }
749 // Return the section index of the output section.
751 do_out_shndx() const;
753 // Set the alignment.
755 set_addralign(uint64_t addralign);
758 // The output section for this section.
759 Output_section* output_section_;
760 // The required alignment.
764 // Some Output_section_data classes build up their data step by step,
765 // rather than all at once. This class provides an interface for
768 class Output_section_data_build : public Output_section_data
771 Output_section_data_build(uint64_t addralign)
772 : Output_section_data(addralign)
775 Output_section_data_build(off_t data_size, uint64_t addralign)
776 : Output_section_data(data_size, addralign, false)
779 // Set the current data size.
781 set_current_data_size(off_t data_size)
782 { this->set_current_data_size_for_child(data_size); }
785 // Set the final data size.
787 set_final_data_size()
788 { this->set_data_size(this->current_data_size_for_child()); }
791 // A simple case of Output_data in which we have constant data to
794 class Output_data_const : public Output_section_data
797 Output_data_const(const std::string& data, uint64_t addralign)
798 : Output_section_data(data.size(), addralign, true), data_(data)
801 Output_data_const(const char* p, off_t len, uint64_t addralign)
802 : Output_section_data(len, addralign, true), data_(p, len)
805 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
806 : Output_section_data(len, addralign, true),
807 data_(reinterpret_cast<const char*>(p), len)
811 // Write the data to the output file.
813 do_write(Output_file*);
815 // Write the data to a buffer.
817 do_write_to_buffer(unsigned char* buffer)
818 { memcpy(buffer, this->data_.data(), this->data_.size()); }
820 // Write to a map file.
822 do_print_to_mapfile(Mapfile* mapfile) const
823 { mapfile->print_output_data(this, _("** fill")); }
829 // Another version of Output_data with constant data, in which the
830 // buffer is allocated by the caller.
832 class Output_data_const_buffer : public Output_section_data
835 Output_data_const_buffer(const unsigned char* p, off_t len,
836 uint64_t addralign, const char* map_name)
837 : Output_section_data(len, addralign, true),
838 p_(p), map_name_(map_name)
842 // Write the data the output file.
844 do_write(Output_file*);
846 // Write the data to a buffer.
848 do_write_to_buffer(unsigned char* buffer)
849 { memcpy(buffer, this->p_, this->data_size()); }
851 // Write to a map file.
853 do_print_to_mapfile(Mapfile* mapfile) const
854 { mapfile->print_output_data(this, _(this->map_name_)); }
857 // The data to output.
858 const unsigned char* p_;
859 // Name to use in a map file. Maps are a rarely used feature, but
860 // the space usage is minor as aren't very many of these objects.
861 const char* map_name_;
864 // A place holder for a fixed amount of data written out via some
867 class Output_data_fixed_space : public Output_section_data
870 Output_data_fixed_space(off_t data_size, uint64_t addralign,
871 const char* map_name)
872 : Output_section_data(data_size, addralign, true),
877 // Write out the data--the actual data must be written out
880 do_write(Output_file*)
883 // Write to a map file.
885 do_print_to_mapfile(Mapfile* mapfile) const
886 { mapfile->print_output_data(this, _(this->map_name_)); }
889 // Name to use in a map file. Maps are a rarely used feature, but
890 // the space usage is minor as aren't very many of these objects.
891 const char* map_name_;
894 // A place holder for variable sized data written out via some other
897 class Output_data_space : public Output_section_data_build
900 explicit Output_data_space(uint64_t addralign, const char* map_name)
901 : Output_section_data_build(addralign),
905 explicit Output_data_space(off_t data_size, uint64_t addralign,
906 const char* map_name)
907 : Output_section_data_build(data_size, addralign),
911 // Set the alignment.
913 set_space_alignment(uint64_t align)
914 { this->set_addralign(align); }
917 // Write out the data--the actual data must be written out
920 do_write(Output_file*)
923 // Write to a map file.
925 do_print_to_mapfile(Mapfile* mapfile) const
926 { mapfile->print_output_data(this, _(this->map_name_)); }
929 // Name to use in a map file. Maps are a rarely used feature, but
930 // the space usage is minor as aren't very many of these objects.
931 const char* map_name_;
934 // Fill fixed space with zeroes. This is just like
935 // Output_data_fixed_space, except that the map name is known.
937 class Output_data_zero_fill : public Output_section_data
940 Output_data_zero_fill(off_t data_size, uint64_t addralign)
941 : Output_section_data(data_size, addralign, true)
945 // There is no data to write out.
947 do_write(Output_file*)
950 // Write to a map file.
952 do_print_to_mapfile(Mapfile* mapfile) const
953 { mapfile->print_output_data(this, "** zero fill"); }
956 // A string table which goes into an output section.
958 class Output_data_strtab : public Output_section_data
961 Output_data_strtab(Stringpool* strtab)
962 : Output_section_data(1), strtab_(strtab)
966 // This is called to update the section size prior to assigning
967 // the address and file offset.
970 { this->set_final_data_size(); }
972 // This is called to set the address and file offset. Here we make
973 // sure that the Stringpool is finalized.
975 set_final_data_size();
977 // Write out the data.
979 do_write(Output_file*);
981 // Write the data to a buffer.
983 do_write_to_buffer(unsigned char* buffer)
984 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
986 // Write to a map file.
988 do_print_to_mapfile(Mapfile* mapfile) const
989 { mapfile->print_output_data(this, _("** string table")); }
995 // This POD class is used to represent a single reloc in the output
996 // file. This could be a private class within Output_data_reloc, but
997 // the templatization is complex enough that I broke it out into a
998 // separate class. The class is templatized on either elfcpp::SHT_REL
999 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
1000 // relocation or an ordinary relocation.
1002 // A relocation can be against a global symbol, a local symbol, a
1003 // local section symbol, an output section, or the undefined symbol at
1004 // index 0. We represent the latter by using a NULL global symbol.
1006 template<int sh_type, bool dynamic, int size, bool big_endian>
1009 template<bool dynamic, int size, bool big_endian>
1010 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1013 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1014 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1016 static const Address invalid_address = static_cast<Address>(0) - 1;
1018 // An uninitialized entry. We need this because we want to put
1019 // instances of this class into an STL container.
1021 : local_sym_index_(INVALID_CODE)
1024 // We have a bunch of different constructors. They come in pairs
1025 // depending on how the address of the relocation is specified. It
1026 // can either be an offset in an Output_data or an offset in an
1029 // A reloc against a global symbol.
1031 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1032 Address address, bool is_relative, bool is_symbolless,
1033 bool use_plt_offset);
1035 Output_reloc(Symbol* gsym, unsigned int type,
1036 Sized_relobj<size, big_endian>* relobj,
1037 unsigned int shndx, Address address, bool is_relative,
1038 bool is_symbolless, bool use_plt_offset);
1040 // A reloc against a local symbol or local section symbol.
1042 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1043 unsigned int local_sym_index, unsigned int type,
1044 Output_data* od, Address address, bool is_relative,
1045 bool is_symbolless, bool is_section_symbol,
1046 bool use_plt_offset);
1048 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1049 unsigned int local_sym_index, unsigned int type,
1050 unsigned int shndx, Address address, bool is_relative,
1051 bool is_symbolless, bool is_section_symbol,
1052 bool use_plt_offset);
1054 // A reloc against the STT_SECTION symbol of an output section.
1056 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1057 Address address, bool is_relative);
1059 Output_reloc(Output_section* os, unsigned int type,
1060 Sized_relobj<size, big_endian>* relobj, unsigned int shndx,
1061 Address address, bool is_relative);
1063 // An absolute or relative relocation with no symbol.
1065 Output_reloc(unsigned int type, Output_data* od, Address address,
1068 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1069 unsigned int shndx, Address address, bool is_relative);
1071 // A target specific relocation. The target will be called to get
1072 // the symbol index, passing ARG. The type and offset will be set
1073 // as for other relocation types.
1075 Output_reloc(unsigned int type, void* arg, Output_data* od,
1078 Output_reloc(unsigned int type, void* arg,
1079 Sized_relobj<size, big_endian>* relobj,
1080 unsigned int shndx, Address address);
1082 // Return the reloc type.
1085 { return this->type_; }
1087 // Return whether this is a RELATIVE relocation.
1090 { return this->is_relative_; }
1092 // Return whether this is a relocation which should not use
1093 // a symbol, but which obtains its addend from a symbol.
1095 is_symbolless() const
1096 { return this->is_symbolless_; }
1098 // Return whether this is against a local section symbol.
1100 is_local_section_symbol() const
1102 return (this->local_sym_index_ != GSYM_CODE
1103 && this->local_sym_index_ != SECTION_CODE
1104 && this->local_sym_index_ != INVALID_CODE
1105 && this->local_sym_index_ != TARGET_CODE
1106 && this->is_section_symbol_);
1109 // Return whether this is a target specific relocation.
1111 is_target_specific() const
1112 { return this->local_sym_index_ == TARGET_CODE; }
1114 // Return the argument to pass to the target for a target specific
1119 gold_assert(this->local_sym_index_ == TARGET_CODE);
1120 return this->u1_.arg;
1123 // For a local section symbol, return the offset of the input
1124 // section within the output section. ADDEND is the addend being
1125 // applied to the input section.
1127 local_section_offset(Addend addend) const;
1129 // Get the value of the symbol referred to by a Rel relocation when
1130 // we are adding the given ADDEND.
1132 symbol_value(Addend addend) const;
1134 // If this relocation is against an input section, return the
1135 // relocatable object containing the input section.
1136 Sized_relobj<size, big_endian>*
1139 if (this->shndx_ == INVALID_CODE)
1141 return this->u2_.relobj;
1144 // Write the reloc entry to an output view.
1146 write(unsigned char* pov) const;
1148 // Write the offset and info fields to Write_rel.
1149 template<typename Write_rel>
1150 void write_rel(Write_rel*) const;
1152 // This is used when sorting dynamic relocs. Return -1 to sort this
1153 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1155 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1158 // Return whether this reloc should be sorted before the argument
1159 // when sorting dynamic relocs.
1161 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1163 { return this->compare(r2) < 0; }
1166 // Record that we need a dynamic symbol index.
1168 set_needs_dynsym_index();
1170 // Return the symbol index.
1172 get_symbol_index() const;
1174 // Return the output address.
1176 get_address() const;
1178 // Codes for local_sym_index_.
1187 // Invalid uninitialized entry.
1193 // For a local symbol or local section symbol
1194 // (this->local_sym_index_ >= 0), the object. We will never
1195 // generate a relocation against a local symbol in a dynamic
1196 // object; that doesn't make sense. And our callers will always
1197 // be templatized, so we use Sized_relobj here.
1198 Sized_relobj<size, big_endian>* relobj;
1199 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1200 // symbol. If this is NULL, it indicates a relocation against the
1201 // undefined 0 symbol.
1203 // For a relocation against an output section
1204 // (this->local_sym_index_ == SECTION_CODE), the output section.
1206 // For a target specific relocation, an argument to pass to the
1212 // If this->shndx_ is not INVALID CODE, the object which holds the
1213 // input section being used to specify the reloc address.
1214 Sized_relobj<size, big_endian>* relobj;
1215 // If this->shndx_ is INVALID_CODE, the output data being used to
1216 // specify the reloc address. This may be NULL if the reloc
1217 // address is absolute.
1220 // The address offset within the input section or the Output_data.
1222 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1223 // relocation against an output section, or TARGET_CODE for a target
1224 // specific relocation, or INVALID_CODE for an uninitialized value.
1225 // Otherwise, for a local symbol (this->is_section_symbol_ is
1226 // false), the local symbol index. For a local section symbol
1227 // (this->is_section_symbol_ is true), the section index in the
1229 unsigned int local_sym_index_;
1230 // The reloc type--a processor specific code.
1231 unsigned int type_ : 28;
1232 // True if the relocation is a RELATIVE relocation.
1233 bool is_relative_ : 1;
1234 // True if the relocation is one which should not use
1235 // a symbol, but which obtains its addend from a symbol.
1236 bool is_symbolless_ : 1;
1237 // True if the relocation is against a section symbol.
1238 bool is_section_symbol_ : 1;
1239 // True if the addend should be the PLT offset.
1240 // (Used only for RELA, but stored here for space.)
1241 bool use_plt_offset_ : 1;
1242 // If the reloc address is an input section in an object, the
1243 // section index. This is INVALID_CODE if the reloc address is
1244 // specified in some other way.
1245 unsigned int shndx_;
1248 // The SHT_RELA version of Output_reloc<>. This is just derived from
1249 // the SHT_REL version of Output_reloc, but it adds an addend.
1251 template<bool dynamic, int size, bool big_endian>
1252 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1255 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1256 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1258 // An uninitialized entry.
1263 // A reloc against a global symbol.
1265 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1266 Address address, Addend addend, bool is_relative,
1267 bool is_symbolless, bool use_plt_offset)
1268 : rel_(gsym, type, od, address, is_relative, is_symbolless,
1273 Output_reloc(Symbol* gsym, unsigned int type,
1274 Sized_relobj<size, big_endian>* relobj,
1275 unsigned int shndx, Address address, Addend addend,
1276 bool is_relative, bool is_symbolless, bool use_plt_offset)
1277 : rel_(gsym, type, relobj, shndx, address, is_relative,
1278 is_symbolless, use_plt_offset), addend_(addend)
1281 // A reloc against a local symbol.
1283 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1284 unsigned int local_sym_index, unsigned int type,
1285 Output_data* od, Address address,
1286 Addend addend, bool is_relative,
1287 bool is_symbolless, bool is_section_symbol,
1288 bool use_plt_offset)
1289 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1290 is_symbolless, is_section_symbol, use_plt_offset),
1294 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1295 unsigned int local_sym_index, unsigned int type,
1296 unsigned int shndx, Address address,
1297 Addend addend, bool is_relative,
1298 bool is_symbolless, bool is_section_symbol,
1299 bool use_plt_offset)
1300 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1301 is_symbolless, is_section_symbol, use_plt_offset),
1305 // A reloc against the STT_SECTION symbol of an output section.
1307 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1308 Address address, Addend addend, bool is_relative)
1309 : rel_(os, type, od, address, is_relative), addend_(addend)
1312 Output_reloc(Output_section* os, unsigned int type,
1313 Sized_relobj<size, big_endian>* relobj,
1314 unsigned int shndx, Address address, Addend addend,
1316 : rel_(os, type, relobj, shndx, address, is_relative), addend_(addend)
1319 // An absolute or relative relocation with no symbol.
1321 Output_reloc(unsigned int type, Output_data* od, Address address,
1322 Addend addend, bool is_relative)
1323 : rel_(type, od, address, is_relative), addend_(addend)
1326 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1327 unsigned int shndx, Address address, Addend addend,
1329 : rel_(type, relobj, shndx, address, is_relative), addend_(addend)
1332 // A target specific relocation. The target will be called to get
1333 // the symbol index and the addend, passing ARG. The type and
1334 // offset will be set as for other relocation types.
1336 Output_reloc(unsigned int type, void* arg, Output_data* od,
1337 Address address, Addend addend)
1338 : rel_(type, arg, od, address), addend_(addend)
1341 Output_reloc(unsigned int type, void* arg,
1342 Sized_relobj<size, big_endian>* relobj,
1343 unsigned int shndx, Address address, Addend addend)
1344 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1347 // Return whether this is a RELATIVE relocation.
1350 { return this->rel_.is_relative(); }
1352 // Return whether this is a relocation which should not use
1353 // a symbol, but which obtains its addend from a symbol.
1355 is_symbolless() const
1356 { return this->rel_.is_symbolless(); }
1358 // If this relocation is against an input section, return the
1359 // relocatable object containing the input section.
1360 Sized_relobj<size, big_endian>*
1362 { return this->rel_.get_relobj(); }
1364 // Write the reloc entry to an output view.
1366 write(unsigned char* pov) const;
1368 // Return whether this reloc should be sorted before the argument
1369 // when sorting dynamic relocs.
1371 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1374 int i = this->rel_.compare(r2.rel_);
1380 return this->addend_ < r2.addend_;
1385 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1390 // Output_data_reloc_generic is a non-template base class for
1391 // Output_data_reloc_base. This gives the generic code a way to hold
1392 // a pointer to a reloc section.
1394 class Output_data_reloc_generic : public Output_section_data_build
1397 Output_data_reloc_generic(int size, bool sort_relocs)
1398 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1399 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1402 // Return the number of relative relocs in this section.
1404 relative_reloc_count() const
1405 { return this->relative_reloc_count_; }
1407 // Whether we should sort the relocs.
1410 { return this->sort_relocs_; }
1412 // Add a reloc of type TYPE against the global symbol GSYM. The
1413 // relocation applies to the data at offset ADDRESS within OD.
1415 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1416 uint64_t address, uint64_t addend) = 0;
1418 // Add a reloc of type TYPE against the global symbol GSYM. The
1419 // relocation applies to data at offset ADDRESS within section SHNDX
1420 // of object file RELOBJ. OD is the associated output section.
1422 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1423 Relobj* relobj, unsigned int shndx, uint64_t address,
1424 uint64_t addend) = 0;
1426 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1427 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1430 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1431 unsigned int type, Output_data* od, uint64_t address,
1432 uint64_t addend) = 0;
1434 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1435 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1436 // within section SHNDX of RELOBJ. OD is the associated output
1439 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1440 unsigned int type, Output_data* od, unsigned int shndx,
1441 uint64_t address, uint64_t addend) = 0;
1443 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1444 // output section OS. The relocation applies to the data at offset
1445 // ADDRESS within OD.
1447 add_output_section_generic(Output_section *os, unsigned int type,
1448 Output_data* od, uint64_t address,
1449 uint64_t addend) = 0;
1451 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1452 // output section OS. The relocation applies to the data at offset
1453 // ADDRESS within section SHNDX of RELOBJ. OD is the associated
1456 add_output_section_generic(Output_section* os, unsigned int type,
1457 Output_data* od, Relobj* relobj,
1458 unsigned int shndx, uint64_t address,
1459 uint64_t addend) = 0;
1462 // Note that we've added another relative reloc.
1464 bump_relative_reloc_count()
1465 { ++this->relative_reloc_count_; }
1468 // The number of relative relocs added to this section. This is to
1469 // support DT_RELCOUNT.
1470 size_t relative_reloc_count_;
1471 // Whether to sort the relocations when writing them out, to make
1472 // the dynamic linker more efficient.
1476 // Output_data_reloc is used to manage a section containing relocs.
1477 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1478 // indicates whether this is a dynamic relocation or a normal
1479 // relocation. Output_data_reloc_base is a base class.
1480 // Output_data_reloc is the real class, which we specialize based on
1483 template<int sh_type, bool dynamic, int size, bool big_endian>
1484 class Output_data_reloc_base : public Output_data_reloc_generic
1487 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1488 typedef typename Output_reloc_type::Address Address;
1489 static const int reloc_size =
1490 Reloc_types<sh_type, size, big_endian>::reloc_size;
1492 // Construct the section.
1493 Output_data_reloc_base(bool sort_relocs)
1494 : Output_data_reloc_generic(size, sort_relocs)
1498 // Write out the data.
1500 do_write(Output_file*);
1502 // Set the entry size and the link.
1504 do_adjust_output_section(Output_section* os);
1506 // Write to a map file.
1508 do_print_to_mapfile(Mapfile* mapfile) const
1510 mapfile->print_output_data(this,
1512 ? _("** dynamic relocs")
1516 // Add a relocation entry.
1518 add(Output_data* od, const Output_reloc_type& reloc)
1520 this->relocs_.push_back(reloc);
1521 this->set_current_data_size(this->relocs_.size() * reloc_size);
1523 od->add_dynamic_reloc();
1524 if (reloc.is_relative())
1525 this->bump_relative_reloc_count();
1526 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1528 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1532 typedef std::vector<Output_reloc_type> Relocs;
1534 // The class used to sort the relocations.
1535 struct Sort_relocs_comparison
1538 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1539 { return r1.sort_before(r2); }
1542 // The relocations in this section.
1546 // The class which callers actually create.
1548 template<int sh_type, bool dynamic, int size, bool big_endian>
1549 class Output_data_reloc;
1551 // The SHT_REL version of Output_data_reloc.
1553 template<bool dynamic, int size, bool big_endian>
1554 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1555 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1558 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1562 typedef typename Base::Output_reloc_type Output_reloc_type;
1563 typedef typename Output_reloc_type::Address Address;
1565 Output_data_reloc(bool sr)
1566 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1569 // Add a reloc against a global symbol.
1572 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1574 this->add(od, Output_reloc_type(gsym, type, od, address,
1575 false, false, false));
1579 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1580 Sized_relobj<size, big_endian>* relobj,
1581 unsigned int shndx, Address address)
1583 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1584 false, false, false));
1588 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1589 uint64_t address, uint64_t addend)
1591 gold_assert(addend == 0);
1592 this->add(od, Output_reloc_type(gsym, type, od,
1593 convert_types<Address, uint64_t>(address),
1594 false, false, false));
1598 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1599 Relobj* relobj, unsigned int shndx, uint64_t address,
1602 gold_assert(addend == 0);
1603 Sized_relobj<size, big_endian>* sized_relobj =
1604 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1605 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1606 convert_types<Address, uint64_t>(address),
1607 false, false, false));
1610 // Add a RELATIVE reloc against a global symbol. The final relocation
1611 // will not reference the symbol.
1614 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1617 this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
1622 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1623 Sized_relobj<size, big_endian>* relobj,
1624 unsigned int shndx, Address address)
1626 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1627 true, true, false));
1630 // Add a global relocation which does not use a symbol for the relocation,
1631 // but which gets its addend from a symbol.
1634 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1635 Output_data* od, Address address)
1637 this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
1642 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1644 Sized_relobj<size, big_endian>* relobj,
1645 unsigned int shndx, Address address)
1647 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1648 false, true, false));
1651 // Add a reloc against a local symbol.
1654 add_local(Sized_relobj<size, big_endian>* relobj,
1655 unsigned int local_sym_index, unsigned int type,
1656 Output_data* od, Address address)
1658 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1659 address, false, false, false, false));
1663 add_local(Sized_relobj<size, big_endian>* relobj,
1664 unsigned int local_sym_index, unsigned int type,
1665 Output_data* od, unsigned int shndx, Address address)
1667 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1668 address, false, false, false, false));
1672 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1673 unsigned int type, Output_data* od, uint64_t address,
1676 gold_assert(addend == 0);
1677 Sized_relobj<size, big_endian>* sized_relobj =
1678 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1679 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1680 convert_types<Address, uint64_t>(address),
1681 false, false, false, false));
1685 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1686 unsigned int type, Output_data* od, unsigned int shndx,
1687 uint64_t address, uint64_t addend)
1689 gold_assert(addend == 0);
1690 Sized_relobj<size, big_endian>* sized_relobj =
1691 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1692 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1693 convert_types<Address, uint64_t>(address),
1694 false, false, false, false));
1697 // Add a RELATIVE reloc against a local symbol.
1700 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1701 unsigned int local_sym_index, unsigned int type,
1702 Output_data* od, Address address)
1704 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1705 address, true, true, false, false));
1709 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1710 unsigned int local_sym_index, unsigned int type,
1711 Output_data* od, unsigned int shndx, Address address)
1713 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1714 address, true, true, false, false));
1717 // Add a local relocation which does not use a symbol for the relocation,
1718 // but which gets its addend from a symbol.
1721 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1722 unsigned int local_sym_index, unsigned int type,
1723 Output_data* od, Address address)
1725 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1726 address, false, true, false, false));
1730 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1731 unsigned int local_sym_index, unsigned int type,
1732 Output_data* od, unsigned int shndx,
1735 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1736 address, false, true, false, false));
1739 // Add a reloc against a local section symbol. This will be
1740 // converted into a reloc against the STT_SECTION symbol of the
1744 add_local_section(Sized_relobj<size, big_endian>* relobj,
1745 unsigned int input_shndx, unsigned int type,
1746 Output_data* od, Address address)
1748 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1749 address, false, false, true, false));
1753 add_local_section(Sized_relobj<size, big_endian>* relobj,
1754 unsigned int input_shndx, unsigned int type,
1755 Output_data* od, unsigned int shndx, Address address)
1757 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1758 address, false, false, true, false));
1761 // A reloc against the STT_SECTION symbol of an output section.
1762 // OS is the Output_section that the relocation refers to; OD is
1763 // the Output_data object being relocated.
1766 add_output_section(Output_section* os, unsigned int type,
1767 Output_data* od, Address address)
1768 { this->add(od, Output_reloc_type(os, type, od, address, false)); }
1771 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1772 Sized_relobj<size, big_endian>* relobj,
1773 unsigned int shndx, Address address)
1774 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); }
1777 add_output_section_generic(Output_section* os, unsigned int type,
1778 Output_data* od, uint64_t address,
1781 gold_assert(addend == 0);
1782 this->add(od, Output_reloc_type(os, type, od,
1783 convert_types<Address, uint64_t>(address),
1788 add_output_section_generic(Output_section* os, unsigned int type,
1789 Output_data* od, Relobj* relobj,
1790 unsigned int shndx, uint64_t address,
1793 gold_assert(addend == 0);
1794 Sized_relobj<size, big_endian>* sized_relobj =
1795 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1796 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
1797 convert_types<Address, uint64_t>(address),
1801 // As above, but the reloc TYPE is relative
1804 add_output_section_relative(Output_section* os, unsigned int type,
1805 Output_data* od, Address address)
1806 { this->add(od, Output_reloc_type(os, type, od, address, true)); }
1809 add_output_section_relative(Output_section* os, unsigned int type,
1811 Sized_relobj<size, big_endian>* relobj,
1812 unsigned int shndx, Address address)
1813 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); }
1815 // Add an absolute relocation.
1818 add_absolute(unsigned int type, Output_data* od, Address address)
1819 { this->add(od, Output_reloc_type(type, od, address, false)); }
1822 add_absolute(unsigned int type, Output_data* od,
1823 Sized_relobj<size, big_endian>* relobj,
1824 unsigned int shndx, Address address)
1825 { this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); }
1827 // Add a relative relocation
1830 add_relative(unsigned int type, Output_data* od, Address address)
1831 { this->add(od, Output_reloc_type(type, od, address, true)); }
1834 add_relative(unsigned int type, Output_data* od,
1835 Sized_relobj<size, big_endian>* relobj,
1836 unsigned int shndx, Address address)
1837 { this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); }
1839 // Add a target specific relocation. A target which calls this must
1840 // define the reloc_symbol_index and reloc_addend virtual functions.
1843 add_target_specific(unsigned int type, void* arg, Output_data* od,
1845 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1848 add_target_specific(unsigned int type, void* arg, Output_data* od,
1849 Sized_relobj<size, big_endian>* relobj,
1850 unsigned int shndx, Address address)
1851 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1854 // The SHT_RELA version of Output_data_reloc.
1856 template<bool dynamic, int size, bool big_endian>
1857 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1858 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1861 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1865 typedef typename Base::Output_reloc_type Output_reloc_type;
1866 typedef typename Output_reloc_type::Address Address;
1867 typedef typename Output_reloc_type::Addend Addend;
1869 Output_data_reloc(bool sr)
1870 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1873 // Add a reloc against a global symbol.
1876 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1877 Address address, Addend addend)
1879 this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1880 false, false, false));
1884 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1885 Sized_relobj<size, big_endian>* relobj,
1886 unsigned int shndx, Address address,
1889 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1890 addend, false, false, false));
1894 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1895 uint64_t address, uint64_t addend)
1897 this->add(od, Output_reloc_type(gsym, type, od,
1898 convert_types<Address, uint64_t>(address),
1899 convert_types<Addend, uint64_t>(addend),
1900 false, false, false));
1904 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1905 Relobj* relobj, unsigned int shndx, uint64_t address,
1908 Sized_relobj<size, big_endian>* sized_relobj =
1909 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1910 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1911 convert_types<Address, uint64_t>(address),
1912 convert_types<Addend, uint64_t>(addend),
1913 false, false, false));
1916 // Add a RELATIVE reloc against a global symbol. The final output
1917 // relocation will not reference the symbol, but we must keep the symbol
1918 // information long enough to set the addend of the relocation correctly
1919 // when it is written.
1922 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1923 Address address, Addend addend, bool use_plt_offset)
1925 this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1926 true, use_plt_offset));
1930 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1931 Sized_relobj<size, big_endian>* relobj,
1932 unsigned int shndx, Address address, Addend addend,
1933 bool use_plt_offset)
1935 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1936 addend, true, true, use_plt_offset));
1939 // Add a global relocation which does not use a symbol for the relocation,
1940 // but which gets its addend from a symbol.
1943 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1944 Address address, Addend addend)
1946 this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1947 false, true, false));
1951 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1953 Sized_relobj<size, big_endian>* relobj,
1954 unsigned int shndx, Address address,
1957 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1958 addend, false, true, false));
1961 // Add a reloc against a local symbol.
1964 add_local(Sized_relobj<size, big_endian>* relobj,
1965 unsigned int local_sym_index, unsigned int type,
1966 Output_data* od, Address address, Addend addend)
1968 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1969 addend, false, false, false, false));
1973 add_local(Sized_relobj<size, big_endian>* relobj,
1974 unsigned int local_sym_index, unsigned int type,
1975 Output_data* od, unsigned int shndx, Address address,
1978 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1979 address, addend, false, false, false,
1984 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1985 unsigned int type, Output_data* od, uint64_t address,
1988 Sized_relobj<size, big_endian>* sized_relobj =
1989 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1990 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1991 convert_types<Address, uint64_t>(address),
1992 convert_types<Addend, uint64_t>(addend),
1993 false, false, false, false));
1997 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1998 unsigned int type, Output_data* od, unsigned int shndx,
1999 uint64_t address, uint64_t addend)
2001 Sized_relobj<size, big_endian>* sized_relobj =
2002 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2003 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
2004 convert_types<Address, uint64_t>(address),
2005 convert_types<Addend, uint64_t>(addend),
2006 false, false, false, false));
2009 // Add a RELATIVE reloc against a local symbol.
2012 add_local_relative(Sized_relobj<size, big_endian>* relobj,
2013 unsigned int local_sym_index, unsigned int type,
2014 Output_data* od, Address address, Addend addend,
2015 bool use_plt_offset)
2017 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2018 addend, true, true, false,
2023 add_local_relative(Sized_relobj<size, big_endian>* relobj,
2024 unsigned int local_sym_index, unsigned int type,
2025 Output_data* od, unsigned int shndx, Address address,
2026 Addend addend, bool use_plt_offset)
2028 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2029 address, addend, true, true, false,
2033 // Add a local relocation which does not use a symbol for the relocation,
2034 // but which gets it's addend from a symbol.
2037 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2038 unsigned int local_sym_index, unsigned int type,
2039 Output_data* od, Address address, Addend addend)
2041 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2042 addend, false, true, false, false));
2046 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2047 unsigned int local_sym_index, unsigned int type,
2048 Output_data* od, unsigned int shndx,
2049 Address address, Addend addend)
2051 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2052 address, addend, false, true, false,
2056 // Add a reloc against a local section symbol. This will be
2057 // converted into a reloc against the STT_SECTION symbol of the
2061 add_local_section(Sized_relobj<size, big_endian>* relobj,
2062 unsigned int input_shndx, unsigned int type,
2063 Output_data* od, Address address, Addend addend)
2065 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
2066 addend, false, false, true, false));
2070 add_local_section(Sized_relobj<size, big_endian>* relobj,
2071 unsigned int input_shndx, unsigned int type,
2072 Output_data* od, unsigned int shndx, Address address,
2075 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
2076 address, addend, false, false, true,
2080 // A reloc against the STT_SECTION symbol of an output section.
2083 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2084 Address address, Addend addend)
2085 { this->add(od, Output_reloc_type(os, type, od, address, addend, false)); }
2088 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2089 Sized_relobj<size, big_endian>* relobj,
2090 unsigned int shndx, Address address, Addend addend)
2092 this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
2097 add_output_section_generic(Output_section* os, unsigned int type,
2098 Output_data* od, uint64_t address,
2101 this->add(od, Output_reloc_type(os, type, od,
2102 convert_types<Address, uint64_t>(address),
2103 convert_types<Addend, uint64_t>(addend),
2108 add_output_section_generic(Output_section* os, unsigned int type,
2109 Output_data* od, Relobj* relobj,
2110 unsigned int shndx, uint64_t address,
2113 Sized_relobj<size, big_endian>* sized_relobj =
2114 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2115 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
2116 convert_types<Address, uint64_t>(address),
2117 convert_types<Addend, uint64_t>(addend),
2121 // As above, but the reloc TYPE is relative
2124 add_output_section_relative(Output_section* os, unsigned int type,
2125 Output_data* od, Address address, Addend addend)
2126 { this->add(od, Output_reloc_type(os, type, od, address, addend, true)); }
2129 add_output_section_relative(Output_section* os, unsigned int type,
2131 Sized_relobj<size, big_endian>* relobj,
2132 unsigned int shndx, Address address,
2135 this->add(od, Output_reloc_type(os, type, relobj, shndx,
2136 address, addend, true));
2139 // Add an absolute relocation.
2142 add_absolute(unsigned int type, Output_data* od, Address address,
2144 { this->add(od, Output_reloc_type(type, od, address, addend, false)); }
2147 add_absolute(unsigned int type, Output_data* od,
2148 Sized_relobj<size, big_endian>* relobj,
2149 unsigned int shndx, Address address, Addend addend)
2151 this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2155 // Add a relative relocation
2158 add_relative(unsigned int type, Output_data* od, Address address,
2160 { this->add(od, Output_reloc_type(type, od, address, addend, true)); }
2163 add_relative(unsigned int type, Output_data* od,
2164 Sized_relobj<size, big_endian>* relobj,
2165 unsigned int shndx, Address address, Addend addend)
2167 this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2171 // Add a target specific relocation. A target which calls this must
2172 // define the reloc_symbol_index and reloc_addend virtual functions.
2175 add_target_specific(unsigned int type, void* arg, Output_data* od,
2176 Address address, Addend addend)
2177 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
2180 add_target_specific(unsigned int type, void* arg, Output_data* od,
2181 Sized_relobj<size, big_endian>* relobj,
2182 unsigned int shndx, Address address, Addend addend)
2184 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
2189 // Output_relocatable_relocs represents a relocation section in a
2190 // relocatable link. The actual data is written out in the target
2191 // hook relocate_relocs. This just saves space for it.
2193 template<int sh_type, int size, bool big_endian>
2194 class Output_relocatable_relocs : public Output_section_data
2197 Output_relocatable_relocs(Relocatable_relocs* rr)
2198 : Output_section_data(Output_data::default_alignment_for_size(size)),
2203 set_final_data_size();
2205 // Write out the data. There is nothing to do here.
2207 do_write(Output_file*)
2210 // Write to a map file.
2212 do_print_to_mapfile(Mapfile* mapfile) const
2213 { mapfile->print_output_data(this, _("** relocs")); }
2216 // The relocs associated with this input section.
2217 Relocatable_relocs* rr_;
2220 // Handle a GROUP section.
2222 template<int size, bool big_endian>
2223 class Output_data_group : public Output_section_data
2226 // The constructor clears *INPUT_SHNDXES.
2227 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
2228 section_size_type entry_count,
2229 elfcpp::Elf_Word flags,
2230 std::vector<unsigned int>* input_shndxes);
2233 do_write(Output_file*);
2235 // Write to a map file.
2237 do_print_to_mapfile(Mapfile* mapfile) const
2238 { mapfile->print_output_data(this, _("** group")); }
2240 // Set final data size.
2242 set_final_data_size()
2243 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
2246 // The input object.
2247 Sized_relobj_file<size, big_endian>* relobj_;
2248 // The group flag word.
2249 elfcpp::Elf_Word flags_;
2250 // The section indexes of the input sections in this group.
2251 std::vector<unsigned int> input_shndxes_;
2254 // Output_data_got is used to manage a GOT. Each entry in the GOT is
2255 // for one symbol--either a global symbol or a local symbol in an
2256 // object. The target specific code adds entries to the GOT as
2257 // needed. The GOT_SIZE template parameter is the size in bits of a
2258 // GOT entry, typically 32 or 64.
2260 class Output_data_got_base : public Output_section_data_build
2263 Output_data_got_base(uint64_t align)
2264 : Output_section_data_build(align)
2267 Output_data_got_base(off_t data_size, uint64_t align)
2268 : Output_section_data_build(data_size, align)
2271 // Reserve the slot at index I in the GOT.
2273 reserve_slot(unsigned int i)
2274 { this->do_reserve_slot(i); }
2277 // Reserve the slot at index I in the GOT.
2279 do_reserve_slot(unsigned int i) = 0;
2282 template<int got_size, bool big_endian>
2283 class Output_data_got : public Output_data_got_base
2286 typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
2289 : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
2290 entries_(), free_list_()
2293 Output_data_got(off_t data_size)
2294 : Output_data_got_base(data_size,
2295 Output_data::default_alignment_for_size(got_size)),
2296 entries_(), free_list_()
2298 // For an incremental update, we have an existing GOT section.
2299 // Initialize the list of entries and the free list.
2300 this->entries_.resize(data_size / (got_size / 8));
2301 this->free_list_.init(data_size, false);
2304 // Add an entry for a global symbol to the GOT. Return true if this
2305 // is a new GOT entry, false if the symbol was already in the GOT.
2307 add_global(Symbol* gsym, unsigned int got_type);
2309 // Like add_global, but use the PLT offset of the global symbol if
2312 add_global_plt(Symbol* gsym, unsigned int got_type);
2314 // Like add_global, but for a TLS symbol where the value will be
2315 // offset using Target::tls_offset_for_global.
2317 add_global_tls(Symbol* gsym, unsigned int got_type)
2318 { return add_global_plt(gsym, got_type); }
2320 // Add an entry for a global symbol to the GOT, and add a dynamic
2321 // relocation of type R_TYPE for the GOT entry.
2323 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2324 Output_data_reloc_generic* rel_dyn, unsigned int r_type);
2326 // Add a pair of entries for a global symbol to the GOT, and add
2327 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2329 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2330 Output_data_reloc_generic* rel_dyn,
2331 unsigned int r_type_1, unsigned int r_type_2);
2333 // Add an entry for a local symbol to the GOT. This returns true if
2334 // this is a new GOT entry, false if the symbol already has a GOT
2337 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
2339 // Like add_local, but use the PLT offset of the local symbol if it
2342 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
2344 // Like add_local, but for a TLS symbol where the value will be
2345 // offset using Target::tls_offset_for_local.
2347 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2348 { return add_local_plt(object, sym_index, got_type); }
2350 // Add an entry for a local symbol to the GOT, and add a dynamic
2351 // relocation of type R_TYPE for the GOT entry.
2353 add_local_with_rel(Relobj* object, unsigned int sym_index,
2354 unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2355 unsigned int r_type);
2357 // Add a pair of entries for a local symbol to the GOT, and add
2358 // a dynamic relocation of type R_TYPE using the section symbol of
2359 // the output section to which input section SHNDX maps, on the first.
2360 // The first got entry will have a value of zero, the second the
2361 // value of the local symbol.
2363 add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2364 unsigned int shndx, unsigned int got_type,
2365 Output_data_reloc_generic* rel_dyn,
2366 unsigned int r_type);
2368 // Add a pair of entries for a local symbol to the GOT, and add
2369 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
2370 // The first got entry will have a value of zero, the second the
2371 // value of the local symbol offset by Target::tls_offset_for_local.
2373 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2374 unsigned int got_type,
2375 Output_data_reloc_generic* rel_dyn,
2376 unsigned int r_type);
2378 // Add a constant to the GOT. This returns the offset of the new
2379 // entry from the start of the GOT.
2381 add_constant(Valtype constant)
2383 unsigned int got_offset = this->add_got_entry(Got_entry(constant));
2387 // Replace GOT entry I with a new constant.
2389 replace_constant(unsigned int i, Valtype constant)
2391 this->replace_got_entry(i, Got_entry(constant));
2394 // Reserve a slot in the GOT for a local symbol.
2396 reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
2397 unsigned int got_type);
2399 // Reserve a slot in the GOT for a global symbol.
2401 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2404 // Write out the GOT table.
2406 do_write(Output_file*);
2408 // Write to a map file.
2410 do_print_to_mapfile(Mapfile* mapfile) const
2411 { mapfile->print_output_data(this, _("** GOT")); }
2413 // Reserve the slot at index I in the GOT.
2415 do_reserve_slot(unsigned int i)
2416 { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
2418 // Return the number of words in the GOT.
2420 num_entries () const
2421 { return this->entries_.size(); }
2423 // Return the offset into the GOT of GOT entry I.
2425 got_offset(unsigned int i) const
2426 { return i * (got_size / 8); }
2429 // This POD class holds a single GOT entry.
2433 // Create a zero entry.
2435 : local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false)
2436 { this->u_.constant = 0; }
2438 // Create a global symbol entry.
2439 Got_entry(Symbol* gsym, bool use_plt_or_tls_offset)
2440 : local_sym_index_(GSYM_CODE),
2441 use_plt_or_tls_offset_(use_plt_or_tls_offset)
2442 { this->u_.gsym = gsym; }
2444 // Create a local symbol entry.
2445 Got_entry(Relobj* object, unsigned int local_sym_index,
2446 bool use_plt_or_tls_offset)
2447 : local_sym_index_(local_sym_index),
2448 use_plt_or_tls_offset_(use_plt_or_tls_offset)
2450 gold_assert(local_sym_index != GSYM_CODE
2451 && local_sym_index != CONSTANT_CODE
2452 && local_sym_index != RESERVED_CODE
2453 && local_sym_index == this->local_sym_index_);
2454 this->u_.object = object;
2457 // Create a constant entry. The constant is a host value--it will
2458 // be swapped, if necessary, when it is written out.
2459 explicit Got_entry(Valtype constant)
2460 : local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false)
2461 { this->u_.constant = constant; }
2463 // Write the GOT entry to an output view.
2465 write(unsigned int got_indx, unsigned char* pov) const;
2470 GSYM_CODE = 0x7fffffff,
2471 CONSTANT_CODE = 0x7ffffffe,
2472 RESERVED_CODE = 0x7ffffffd
2477 // For a local symbol, the object.
2479 // For a global symbol, the symbol.
2481 // For a constant, the constant.
2484 // For a local symbol, the local symbol index. This is GSYM_CODE
2485 // for a global symbol, or CONSTANT_CODE for a constant.
2486 unsigned int local_sym_index_ : 31;
2487 // Whether to use the PLT offset of the symbol if it has one.
2488 // For TLS symbols, whether to offset the symbol value.
2489 bool use_plt_or_tls_offset_ : 1;
2492 typedef std::vector<Got_entry> Got_entries;
2494 // Create a new GOT entry and return its offset.
2496 add_got_entry(Got_entry got_entry);
2498 // Create a pair of new GOT entries and return the offset of the first.
2500 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2502 // Replace GOT entry I with a new value.
2504 replace_got_entry(unsigned int i, Got_entry got_entry);
2506 // Return the offset into the GOT of the last entry added.
2508 last_got_offset() const
2509 { return this->got_offset(this->num_entries() - 1); }
2511 // Set the size of the section.
2514 { this->set_current_data_size(this->got_offset(this->num_entries())); }
2516 // The list of GOT entries.
2517 Got_entries entries_;
2519 // List of available regions within the section, for incremental
2521 Free_list free_list_;
2524 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2527 class Output_data_dynamic : public Output_section_data
2530 Output_data_dynamic(Stringpool* pool)
2531 : Output_section_data(Output_data::default_alignment()),
2532 entries_(), pool_(pool)
2535 // Add a new dynamic entry with a fixed numeric value.
2537 add_constant(elfcpp::DT tag, unsigned int val)
2538 { this->add_entry(Dynamic_entry(tag, val)); }
2540 // Add a new dynamic entry with the address of output data.
2542 add_section_address(elfcpp::DT tag, const Output_data* od)
2543 { this->add_entry(Dynamic_entry(tag, od, false)); }
2545 // Add a new dynamic entry with the address of output data
2546 // plus a constant offset.
2548 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2549 unsigned int offset)
2550 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2552 // Add a new dynamic entry with the size of output data.
2554 add_section_size(elfcpp::DT tag, const Output_data* od)
2555 { this->add_entry(Dynamic_entry(tag, od, true)); }
2557 // Add a new dynamic entry with the total size of two output datas.
2559 add_section_size(elfcpp::DT tag, const Output_data* od,
2560 const Output_data* od2)
2561 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2563 // Add a new dynamic entry with the address of a symbol.
2565 add_symbol(elfcpp::DT tag, const Symbol* sym)
2566 { this->add_entry(Dynamic_entry(tag, sym)); }
2568 // Add a new dynamic entry with a string.
2570 add_string(elfcpp::DT tag, const char* str)
2571 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2574 add_string(elfcpp::DT tag, const std::string& str)
2575 { this->add_string(tag, str.c_str()); }
2578 // Adjust the output section to set the entry size.
2580 do_adjust_output_section(Output_section*);
2582 // Set the final data size.
2584 set_final_data_size();
2586 // Write out the dynamic entries.
2588 do_write(Output_file*);
2590 // Write to a map file.
2592 do_print_to_mapfile(Mapfile* mapfile) const
2593 { mapfile->print_output_data(this, _("** dynamic")); }
2596 // This POD class holds a single dynamic entry.
2600 // Create an entry with a fixed numeric value.
2601 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2602 : tag_(tag), offset_(DYNAMIC_NUMBER)
2603 { this->u_.val = val; }
2605 // Create an entry with the size or address of a section.
2606 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2608 offset_(section_size
2609 ? DYNAMIC_SECTION_SIZE
2610 : DYNAMIC_SECTION_ADDRESS)
2616 // Create an entry with the size of two sections.
2617 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2619 offset_(DYNAMIC_SECTION_SIZE)
2625 // Create an entry with the address of a section plus a constant offset.
2626 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2629 { this->u_.od = od; }
2631 // Create an entry with the address of a symbol.
2632 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2633 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2634 { this->u_.sym = sym; }
2636 // Create an entry with a string.
2637 Dynamic_entry(elfcpp::DT tag, const char* str)
2638 : tag_(tag), offset_(DYNAMIC_STRING)
2639 { this->u_.str = str; }
2641 // Return the tag of this entry.
2644 { return this->tag_; }
2646 // Write the dynamic entry to an output view.
2647 template<int size, bool big_endian>
2649 write(unsigned char* pov, const Stringpool*) const;
2652 // Classification is encoded in the OFFSET field.
2656 DYNAMIC_SECTION_ADDRESS = 0,
2658 DYNAMIC_NUMBER = -1U,
2660 DYNAMIC_SECTION_SIZE = -2U,
2662 DYNAMIC_SYMBOL = -3U,
2664 DYNAMIC_STRING = -4U
2665 // Any other value indicates a section address plus OFFSET.
2670 // For DYNAMIC_NUMBER.
2672 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2673 const Output_data* od;
2674 // For DYNAMIC_SYMBOL.
2676 // For DYNAMIC_STRING.
2679 // For DYNAMIC_SYMBOL with two sections.
2680 const Output_data* od2;
2683 // The type of entry (Classification) or offset within a section.
2684 unsigned int offset_;
2687 // Add an entry to the list.
2689 add_entry(const Dynamic_entry& entry)
2690 { this->entries_.push_back(entry); }
2692 // Sized version of write function.
2693 template<int size, bool big_endian>
2695 sized_write(Output_file* of);
2697 // The type of the list of entries.
2698 typedef std::vector<Dynamic_entry> Dynamic_entries;
2701 Dynamic_entries entries_;
2702 // The pool used for strings.
2706 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2707 // which may be required if the object file has more than
2708 // SHN_LORESERVE sections.
2710 class Output_symtab_xindex : public Output_section_data
2713 Output_symtab_xindex(size_t symcount)
2714 : Output_section_data(symcount * 4, 4, true),
2718 // Add an entry: symbol number SYMNDX has section SHNDX.
2720 add(unsigned int symndx, unsigned int shndx)
2721 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2725 do_write(Output_file*);
2727 // Write to a map file.
2729 do_print_to_mapfile(Mapfile* mapfile) const
2730 { mapfile->print_output_data(this, _("** symtab xindex")); }
2733 template<bool big_endian>
2735 endian_do_write(unsigned char*);
2737 // It is likely that most symbols will not require entries. Rather
2738 // than keep a vector for all symbols, we keep pairs of symbol index
2739 // and section index.
2740 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2742 // The entries we need.
2743 Xindex_entries entries_;
2746 // A relaxed input section.
2747 class Output_relaxed_input_section : public Output_section_data_build
2750 // We would like to call relobj->section_addralign(shndx) to get the
2751 // alignment but we do not want the constructor to fail. So callers
2752 // are repsonsible for ensuring that.
2753 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2755 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2758 // Return the Relobj of this relaxed input section.
2761 { return this->relobj_; }
2763 // Return the section index of this relaxed input section.
2766 { return this->shndx_; }
2770 set_relobj(Relobj* relobj)
2771 { this->relobj_ = relobj; }
2774 set_shndx(unsigned int shndx)
2775 { this->shndx_ = shndx; }
2779 unsigned int shndx_;
2782 // This class describes properties of merge data sections. It is used
2783 // as a key type for maps.
2784 class Merge_section_properties
2787 Merge_section_properties(bool is_string, uint64_t entsize,
2789 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2792 // Whether this equals to another Merge_section_properties MSP.
2794 eq(const Merge_section_properties& msp) const
2796 return ((this->is_string_ == msp.is_string_)
2797 && (this->entsize_ == msp.entsize_)
2798 && (this->addralign_ == msp.addralign_));
2801 // Compute a hash value for this using 64-bit FNV-1a hash.
2805 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2806 uint64_t prime = 1099511628211ULL;
2807 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2808 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2809 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2813 // Functors for associative containers.
2817 operator()(const Merge_section_properties& msp1,
2818 const Merge_section_properties& msp2) const
2819 { return msp1.eq(msp2); }
2825 operator()(const Merge_section_properties& msp) const
2826 { return msp.hash_value(); }
2830 // Whether this merge data section is for strings.
2832 // Entsize of this merge data section.
2834 // Address alignment.
2835 uint64_t addralign_;
2838 // This class is used to speed up look up of special input sections in an
2841 class Output_section_lookup_maps
2844 Output_section_lookup_maps()
2845 : is_valid_(true), merge_sections_by_properties_(),
2846 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2849 // Whether the maps are valid.
2852 { return this->is_valid_; }
2854 // Invalidate the maps.
2857 { this->is_valid_ = false; }
2863 this->merge_sections_by_properties_.clear();
2864 this->merge_sections_by_id_.clear();
2865 this->relaxed_input_sections_by_id_.clear();
2866 // A cleared map is valid.
2867 this->is_valid_ = true;
2870 // Find a merge section by merge section properties. Return NULL if none
2873 find_merge_section(const Merge_section_properties& msp) const
2875 gold_assert(this->is_valid_);
2876 Merge_sections_by_properties::const_iterator p =
2877 this->merge_sections_by_properties_.find(msp);
2878 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2881 // Find a merge section by section ID of a merge input section. Return NULL
2882 // if none is found.
2884 find_merge_section(const Object* object, unsigned int shndx) const
2886 gold_assert(this->is_valid_);
2887 Merge_sections_by_id::const_iterator p =
2888 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2889 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2892 // Add a merge section pointed by POMB with properties MSP.
2894 add_merge_section(const Merge_section_properties& msp,
2895 Output_merge_base* pomb)
2897 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2898 std::pair<Merge_sections_by_properties::iterator, bool> result =
2899 this->merge_sections_by_properties_.insert(value);
2900 gold_assert(result.second);
2903 // Add a mapping from a merged input section in OBJECT with index SHNDX
2904 // to a merge output section pointed by POMB.
2906 add_merge_input_section(const Object* object, unsigned int shndx,
2907 Output_merge_base* pomb)
2909 Const_section_id csid(object, shndx);
2910 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2911 std::pair<Merge_sections_by_id::iterator, bool> result =
2912 this->merge_sections_by_id_.insert(value);
2913 gold_assert(result.second);
2916 // Find a relaxed input section of OBJECT with index SHNDX.
2917 Output_relaxed_input_section*
2918 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2920 gold_assert(this->is_valid_);
2921 Relaxed_input_sections_by_id::const_iterator p =
2922 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2923 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2926 // Add a relaxed input section pointed by POMB and whose original input
2927 // section is in OBJECT with index SHNDX.
2929 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2930 Output_relaxed_input_section* poris)
2932 Const_section_id csid(relobj, shndx);
2933 std::pair<Const_section_id, Output_relaxed_input_section*>
2935 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2936 this->relaxed_input_sections_by_id_.insert(value);
2937 gold_assert(result.second);
2941 typedef Unordered_map<Const_section_id, Output_merge_base*,
2942 Const_section_id_hash>
2943 Merge_sections_by_id;
2945 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2946 Merge_section_properties::hash,
2947 Merge_section_properties::equal_to>
2948 Merge_sections_by_properties;
2950 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2951 Const_section_id_hash>
2952 Relaxed_input_sections_by_id;
2954 // Whether this is valid
2956 // Merge sections by merge section properties.
2957 Merge_sections_by_properties merge_sections_by_properties_;
2958 // Merge sections by section IDs.
2959 Merge_sections_by_id merge_sections_by_id_;
2960 // Relaxed sections by section IDs.
2961 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2964 // This abstract base class defines the interface for the
2965 // types of methods used to fill free space left in an output
2966 // section during an incremental link. These methods are used
2967 // to insert dummy compilation units into debug info so that
2968 // debug info consumers can scan the debug info serially.
2974 : is_big_endian_(parameters->target().is_big_endian())
2981 // Return the smallest size chunk of free space that can be
2982 // filled with a dummy compilation unit.
2984 minimum_hole_size() const
2985 { return this->do_minimum_hole_size(); }
2987 // Write a fill pattern of length LEN at offset OFF in the file.
2989 write(Output_file* of, off_t off, size_t len) const
2990 { this->do_write(of, off, len); }
2994 do_minimum_hole_size() const = 0;
2997 do_write(Output_file* of, off_t off, size_t len) const = 0;
3000 is_big_endian() const
3001 { return this->is_big_endian_; }
3004 bool is_big_endian_;
3007 // Fill method that introduces a dummy compilation unit in
3008 // a .debug_info or .debug_types section.
3010 class Output_fill_debug_info : public Output_fill
3013 Output_fill_debug_info(bool is_debug_types)
3014 : is_debug_types_(is_debug_types)
3019 do_minimum_hole_size() const;
3022 do_write(Output_file* of, off_t off, size_t len) const;
3025 // Version of the header.
3026 static const int version = 4;
3027 // True if this is a .debug_types section.
3028 bool is_debug_types_;
3031 // Fill method that introduces a dummy compilation unit in
3032 // a .debug_line section.
3034 class Output_fill_debug_line : public Output_fill
3037 Output_fill_debug_line()
3042 do_minimum_hole_size() const;
3045 do_write(Output_file* of, off_t off, size_t len) const;
3048 // Version of the header. We write a DWARF-3 header because it's smaller
3049 // and many tools have not yet been updated to understand the DWARF-4 header.
3050 static const int version = 3;
3051 // Length of the portion of the header that follows the header_length
3052 // field. This includes the following fields:
3053 // minimum_instruction_length, default_is_stmt, line_base, line_range,
3054 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
3055 // The standard_opcode_lengths array is 12 bytes long, and the
3056 // include_directories and filenames fields each contain only a single
3058 static const size_t header_length = 19;
3061 // An output section. We don't expect to have too many output
3062 // sections, so we don't bother to do a template on the size.
3064 class Output_section : public Output_data
3067 // Create an output section, giving the name, type, and flags.
3068 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
3069 virtual ~Output_section();
3071 // Add a new input section SHNDX, named NAME, with header SHDR, from
3072 // object OBJECT. RELOC_SHNDX is the index of a relocation section
3073 // which applies to this section, or 0 if none, or -1 if more than
3074 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
3075 // in a linker script; in that case we need to keep track of input
3076 // sections associated with an output section. Return the offset
3077 // within the output section.
3078 template<int size, bool big_endian>
3080 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
3081 unsigned int shndx, const char* name,
3082 const elfcpp::Shdr<size, big_endian>& shdr,
3083 unsigned int reloc_shndx, bool have_sections_script);
3085 // Add generated data POSD to this output section.
3087 add_output_section_data(Output_section_data* posd);
3089 // Add a relaxed input section PORIS called NAME to this output section
3092 add_relaxed_input_section(Layout* layout,
3093 Output_relaxed_input_section* poris,
3094 const std::string& name);
3096 // Return the section name.
3099 { return this->name_; }
3101 // Return the section type.
3104 { return this->type_; }
3106 // Return the section flags.
3109 { return this->flags_; }
3111 typedef std::map<Section_id, unsigned int> Section_layout_order;
3114 update_section_layout(const Section_layout_order* order_map);
3116 // Update the output section flags based on input section flags.
3118 update_flags_for_input_section(elfcpp::Elf_Xword flags);
3120 // Return the entsize field.
3123 { return this->entsize_; }
3125 // Set the entsize field.
3127 set_entsize(uint64_t v);
3129 // Set the load address.
3131 set_load_address(uint64_t load_address)
3133 this->load_address_ = load_address;
3134 this->has_load_address_ = true;
3137 // Set the link field to the output section index of a section.
3139 set_link_section(const Output_data* od)
3141 gold_assert(this->link_ == 0
3142 && !this->should_link_to_symtab_
3143 && !this->should_link_to_dynsym_);
3144 this->link_section_ = od;
3147 // Set the link field to a constant.
3149 set_link(unsigned int v)
3151 gold_assert(this->link_section_ == NULL
3152 && !this->should_link_to_symtab_
3153 && !this->should_link_to_dynsym_);
3157 // Record that this section should link to the normal symbol table.
3159 set_should_link_to_symtab()
3161 gold_assert(this->link_section_ == NULL
3163 && !this->should_link_to_dynsym_);
3164 this->should_link_to_symtab_ = true;
3167 // Record that this section should link to the dynamic symbol table.
3169 set_should_link_to_dynsym()
3171 gold_assert(this->link_section_ == NULL
3173 && !this->should_link_to_symtab_);
3174 this->should_link_to_dynsym_ = true;
3177 // Return the info field.
3181 gold_assert(this->info_section_ == NULL
3182 && this->info_symndx_ == NULL);
3186 // Set the info field to the output section index of a section.
3188 set_info_section(const Output_section* os)
3190 gold_assert((this->info_section_ == NULL
3191 || (this->info_section_ == os
3192 && this->info_uses_section_index_))
3193 && this->info_symndx_ == NULL
3194 && this->info_ == 0);
3195 this->info_section_ = os;
3196 this->info_uses_section_index_= true;
3199 // Set the info field to the symbol table index of a symbol.
3201 set_info_symndx(const Symbol* sym)
3203 gold_assert(this->info_section_ == NULL
3204 && (this->info_symndx_ == NULL
3205 || this->info_symndx_ == sym)
3206 && this->info_ == 0);
3207 this->info_symndx_ = sym;
3210 // Set the info field to the symbol table index of a section symbol.
3212 set_info_section_symndx(const Output_section* os)
3214 gold_assert((this->info_section_ == NULL
3215 || (this->info_section_ == os
3216 && !this->info_uses_section_index_))
3217 && this->info_symndx_ == NULL
3218 && this->info_ == 0);
3219 this->info_section_ = os;
3220 this->info_uses_section_index_ = false;
3223 // Set the info field to a constant.
3225 set_info(unsigned int v)
3227 gold_assert(this->info_section_ == NULL
3228 && this->info_symndx_ == NULL
3229 && (this->info_ == 0
3230 || this->info_ == v));
3234 // Set the addralign field.
3236 set_addralign(uint64_t v)
3237 { this->addralign_ = v; }
3240 checkpoint_set_addralign(uint64_t val)
3242 if (this->checkpoint_ != NULL)
3243 this->checkpoint_->set_addralign(val);
3246 // Whether the output section index has been set.
3248 has_out_shndx() const
3249 { return this->out_shndx_ != -1U; }
3251 // Indicate that we need a symtab index.
3253 set_needs_symtab_index()
3254 { this->needs_symtab_index_ = true; }
3256 // Return whether we need a symtab index.
3258 needs_symtab_index() const
3259 { return this->needs_symtab_index_; }
3261 // Get the symtab index.
3263 symtab_index() const
3265 gold_assert(this->symtab_index_ != 0);
3266 return this->symtab_index_;
3269 // Set the symtab index.
3271 set_symtab_index(unsigned int index)
3273 gold_assert(index != 0);
3274 this->symtab_index_ = index;
3277 // Indicate that we need a dynsym index.
3279 set_needs_dynsym_index()
3280 { this->needs_dynsym_index_ = true; }
3282 // Return whether we need a dynsym index.
3284 needs_dynsym_index() const
3285 { return this->needs_dynsym_index_; }
3287 // Get the dynsym index.
3289 dynsym_index() const
3291 gold_assert(this->dynsym_index_ != 0);
3292 return this->dynsym_index_;
3295 // Set the dynsym index.
3297 set_dynsym_index(unsigned int index)
3299 gold_assert(index != 0);
3300 this->dynsym_index_ = index;
3303 // Sort the attached input sections.
3305 sort_attached_input_sections();
3307 // Return whether the input sections sections attachd to this output
3308 // section may require sorting. This is used to handle constructor
3309 // priorities compatibly with GNU ld.
3311 may_sort_attached_input_sections() const
3312 { return this->may_sort_attached_input_sections_; }
3314 // Record that the input sections attached to this output section
3315 // may require sorting.
3317 set_may_sort_attached_input_sections()
3318 { this->may_sort_attached_input_sections_ = true; }
3320 // Returns true if input sections must be sorted according to the
3321 // order in which their name appear in the --section-ordering-file.
3323 input_section_order_specified()
3324 { return this->input_section_order_specified_; }
3326 // Record that input sections must be sorted as some of their names
3327 // match the patterns specified through --section-ordering-file.
3329 set_input_section_order_specified()
3330 { this->input_section_order_specified_ = true; }
3332 // Return whether the input sections attached to this output section
3333 // require sorting. This is used to handle constructor priorities
3334 // compatibly with GNU ld.
3336 must_sort_attached_input_sections() const
3337 { return this->must_sort_attached_input_sections_; }
3339 // Record that the input sections attached to this output section
3342 set_must_sort_attached_input_sections()
3343 { this->must_sort_attached_input_sections_ = true; }
3345 // Get the order in which this section appears in the PT_LOAD output
3347 Output_section_order
3349 { return this->order_; }
3351 // Set the order for this section.
3353 set_order(Output_section_order order)
3354 { this->order_ = order; }
3356 // Return whether this section holds relro data--data which has
3357 // dynamic relocations but which may be marked read-only after the
3358 // dynamic relocations have been completed.
3361 { return this->is_relro_; }
3363 // Record that this section holds relro data.
3366 { this->is_relro_ = true; }
3368 // Record that this section does not hold relro data.
3371 { this->is_relro_ = false; }
3373 // True if this is a small section: a section which holds small
3376 is_small_section() const
3377 { return this->is_small_section_; }
3379 // Record that this is a small section.
3381 set_is_small_section()
3382 { this->is_small_section_ = true; }
3384 // True if this is a large section: a section which holds large
3387 is_large_section() const
3388 { return this->is_large_section_; }
3390 // Record that this is a large section.
3392 set_is_large_section()
3393 { this->is_large_section_ = true; }
3395 // True if this is a large data (not BSS) section.
3397 is_large_data_section()
3398 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3400 // Return whether this section should be written after all the input
3401 // sections are complete.
3403 after_input_sections() const
3404 { return this->after_input_sections_; }
3406 // Record that this section should be written after all the input
3407 // sections are complete.
3409 set_after_input_sections()
3410 { this->after_input_sections_ = true; }
3412 // Return whether this section requires postprocessing after all
3413 // relocations have been applied.
3415 requires_postprocessing() const
3416 { return this->requires_postprocessing_; }
3419 is_unique_segment() const
3420 { return this->is_unique_segment_; }
3423 set_is_unique_segment()
3424 { this->is_unique_segment_ = true; }
3426 uint64_t extra_segment_flags() const
3427 { return this->extra_segment_flags_; }
3430 set_extra_segment_flags(uint64_t flags)
3431 { this->extra_segment_flags_ = flags; }
3433 uint64_t segment_alignment() const
3434 { return this->segment_alignment_; }
3437 set_segment_alignment(uint64_t align)
3438 { this->segment_alignment_ = align; }
3440 // If a section requires postprocessing, return the buffer to use.
3442 postprocessing_buffer() const
3444 gold_assert(this->postprocessing_buffer_ != NULL);
3445 return this->postprocessing_buffer_;
3448 // If a section requires postprocessing, create the buffer to use.
3450 create_postprocessing_buffer();
3452 // If a section requires postprocessing, this is the size of the
3453 // buffer to which relocations should be applied.
3455 postprocessing_buffer_size() const
3456 { return this->current_data_size_for_child(); }
3458 // Modify the section name. This is only permitted for an
3459 // unallocated section, and only before the size has been finalized.
3460 // Otherwise the name will not get into Layout::namepool_.
3462 set_name(const char* newname)
3464 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3465 gold_assert(!this->is_data_size_valid());
3466 this->name_ = newname;
3469 // Return whether the offset OFFSET in the input section SHNDX in
3470 // object OBJECT is being included in the link.
3472 is_input_address_mapped(const Relobj* object, unsigned int shndx,
3473 off_t offset) const;
3475 // Return the offset within the output section of OFFSET relative to
3476 // the start of input section SHNDX in object OBJECT.
3478 output_offset(const Relobj* object, unsigned int shndx,
3479 section_offset_type offset) const;
3481 // Return the output virtual address of OFFSET relative to the start
3482 // of input section SHNDX in object OBJECT.
3484 output_address(const Relobj* object, unsigned int shndx,
3485 off_t offset) const;
3487 // Look for the merged section for input section SHNDX in object
3488 // OBJECT. If found, return true, and set *ADDR to the address of
3489 // the start of the merged section. This is not necessary the
3490 // output offset corresponding to input offset 0 in the section,
3491 // since the section may be mapped arbitrarily.
3493 find_starting_output_address(const Relobj* object, unsigned int shndx,
3494 uint64_t* addr) const;
3496 // Record that this output section was found in the SECTIONS clause
3497 // of a linker script.
3499 set_found_in_sections_clause()
3500 { this->found_in_sections_clause_ = true; }
3502 // Return whether this output section was found in the SECTIONS
3503 // clause of a linker script.
3505 found_in_sections_clause() const
3506 { return this->found_in_sections_clause_; }
3508 // Write the section header into *OPHDR.
3509 template<int size, bool big_endian>
3511 write_header(const Layout*, const Stringpool*,
3512 elfcpp::Shdr_write<size, big_endian>*) const;
3514 // The next few calls are for linker script support.
3516 // In some cases we need to keep a list of the input sections
3517 // associated with this output section. We only need the list if we
3518 // might have to change the offsets of the input section within the
3519 // output section after we add the input section. The ordinary
3520 // input sections will be written out when we process the object
3521 // file, and as such we don't need to track them here. We do need
3522 // to track Output_section_data objects here. We store instances of
3523 // this structure in a std::vector, so it must be a POD. There can
3524 // be many instances of this structure, so we use a union to save
3530 : shndx_(0), p2align_(0)
3532 this->u1_.data_size = 0;
3533 this->u2_.object = NULL;
3536 // For an ordinary input section.
3537 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3540 p2align_(ffsll(static_cast<long long>(addralign))),
3541 section_order_index_(0)
3543 gold_assert(shndx != OUTPUT_SECTION_CODE
3544 && shndx != MERGE_DATA_SECTION_CODE
3545 && shndx != MERGE_STRING_SECTION_CODE
3546 && shndx != RELAXED_INPUT_SECTION_CODE);
3547 this->u1_.data_size = data_size;
3548 this->u2_.object = object;
3551 // For a non-merge output section.
3552 Input_section(Output_section_data* posd)
3553 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3554 section_order_index_(0)
3556 this->u1_.data_size = 0;
3557 this->u2_.posd = posd;
3560 // For a merge section.
3561 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3563 ? MERGE_STRING_SECTION_CODE
3564 : MERGE_DATA_SECTION_CODE),
3566 section_order_index_(0)
3568 this->u1_.entsize = entsize;
3569 this->u2_.posd = posd;
3572 // For a relaxed input section.
3573 Input_section(Output_relaxed_input_section* psection)
3574 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3575 section_order_index_(0)
3577 this->u1_.data_size = 0;
3578 this->u2_.poris = psection;
3582 section_order_index() const
3584 return this->section_order_index_;
3588 set_section_order_index(unsigned int number)
3590 this->section_order_index_ = number;
3593 // The required alignment.
3597 if (this->p2align_ != 0)
3598 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3599 else if (!this->is_input_section())
3600 return this->u2_.posd->addralign();
3605 // Set the required alignment, which must be either 0 or a power of 2.
3606 // For input sections that are sub-classes of Output_section_data, a
3607 // alignment of zero means asking the underlying object for alignment.
3609 set_addralign(uint64_t addralign)
3615 gold_assert((addralign & (addralign - 1)) == 0);
3616 this->p2align_ = ffsll(static_cast<long long>(addralign));
3620 // Return the current required size, without finalization.
3622 current_data_size() const;
3624 // Return the required size.
3628 // Whether this is an input section.
3630 is_input_section() const
3632 return (this->shndx_ != OUTPUT_SECTION_CODE
3633 && this->shndx_ != MERGE_DATA_SECTION_CODE
3634 && this->shndx_ != MERGE_STRING_SECTION_CODE
3635 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3638 // Return whether this is a merge section which matches the
3641 is_merge_section(bool is_string, uint64_t entsize,
3642 uint64_t addralign) const
3644 return (this->shndx_ == (is_string
3645 ? MERGE_STRING_SECTION_CODE
3646 : MERGE_DATA_SECTION_CODE)
3647 && this->u1_.entsize == entsize
3648 && this->addralign() == addralign);
3651 // Return whether this is a merge section for some input section.
3653 is_merge_section() const
3655 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3656 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3659 // Return whether this is a relaxed input section.
3661 is_relaxed_input_section() const
3662 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3664 // Return whether this is a generic Output_section_data.
3666 is_output_section_data() const
3668 return this->shndx_ == OUTPUT_SECTION_CODE;
3671 // Return the object for an input section.
3675 // Return the input section index for an input section.
3679 // For non-input-sections, return the associated Output_section_data
3681 Output_section_data*
3682 output_section_data() const
3684 gold_assert(!this->is_input_section());
3685 return this->u2_.posd;
3688 // For a merge section, return the Output_merge_base pointer.
3690 output_merge_base() const
3692 gold_assert(this->is_merge_section());
3693 return this->u2_.pomb;
3696 // Return the Output_relaxed_input_section object.
3697 Output_relaxed_input_section*
3698 relaxed_input_section() const
3700 gold_assert(this->is_relaxed_input_section());
3701 return this->u2_.poris;
3704 // Set the output section.
3706 set_output_section(Output_section* os)
3708 gold_assert(!this->is_input_section());
3709 Output_section_data* posd =
3710 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3711 posd->set_output_section(os);
3714 // Set the address and file offset. This is called during
3715 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3716 // the enclosing section.
3718 set_address_and_file_offset(uint64_t address, off_t file_offset,
3719 off_t section_file_offset);
3721 // Reset the address and file offset.
3723 reset_address_and_file_offset();
3725 // Finalize the data size.
3727 finalize_data_size();
3729 // Add an input section, for SHF_MERGE sections.
3731 add_input_section(Relobj* object, unsigned int shndx)
3733 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3734 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3735 return this->u2_.posd->add_input_section(object, shndx);
3738 // Given an input OBJECT, an input section index SHNDX within that
3739 // object, and an OFFSET relative to the start of that input
3740 // section, return whether or not the output offset is known. If
3741 // this function returns true, it sets *POUTPUT to the offset in
3742 // the output section, relative to the start of the input section
3743 // in the output section. *POUTPUT may be different from OFFSET
3744 // for a merged section.
3746 output_offset(const Relobj* object, unsigned int shndx,
3747 section_offset_type offset,
3748 section_offset_type* poutput) const;
3750 // Return whether this is the merge section for the input section
3753 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3755 // Write out the data. This does nothing for an input section.
3757 write(Output_file*);
3759 // Write the data to a buffer. This does nothing for an input
3762 write_to_buffer(unsigned char*);
3764 // Print to a map file.
3766 print_to_mapfile(Mapfile*) const;
3768 // Print statistics about merge sections to stderr.
3770 print_merge_stats(const char* section_name)
3772 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3773 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3774 this->u2_.posd->print_merge_stats(section_name);
3778 // Code values which appear in shndx_. If the value is not one of
3779 // these codes, it is the input section index in the object file.
3782 // An Output_section_data.
3783 OUTPUT_SECTION_CODE = -1U,
3784 // An Output_section_data for an SHF_MERGE section with
3785 // SHF_STRINGS not set.
3786 MERGE_DATA_SECTION_CODE = -2U,
3787 // An Output_section_data for an SHF_MERGE section with
3789 MERGE_STRING_SECTION_CODE = -3U,
3790 // An Output_section_data for a relaxed input section.
3791 RELAXED_INPUT_SECTION_CODE = -4U
3794 // For an ordinary input section, this is the section index in the
3795 // input file. For an Output_section_data, this is
3796 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3797 // MERGE_STRING_SECTION_CODE.
3798 unsigned int shndx_;
3799 // The required alignment, stored as a power of 2.
3800 unsigned int p2align_;
3803 // For an ordinary input section, the section size.
3805 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3806 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3812 // For an ordinary input section, the object which holds the
3815 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3816 // MERGE_STRING_SECTION_CODE, the data.
3817 Output_section_data* posd;
3818 Output_merge_base* pomb;
3819 // For RELAXED_INPUT_SECTION_CODE, the data.
3820 Output_relaxed_input_section* poris;
3822 // The line number of the pattern it matches in the --section-ordering-file
3823 // file. It is 0 if does not match any pattern.
3824 unsigned int section_order_index_;
3827 // Store the list of input sections for this Output_section into the
3828 // list passed in. This removes the input sections, leaving only
3829 // any Output_section_data elements. This returns the size of those
3830 // Output_section_data elements. ADDRESS is the address of this
3831 // output section. FILL is the fill value to use, in case there are
3832 // any spaces between the remaining Output_section_data elements.
3834 get_input_sections(uint64_t address, const std::string& fill,
3835 std::list<Input_section>*);
3837 // Add a script input section. A script input section can either be
3838 // a plain input section or a sub-class of Output_section_data.
3840 add_script_input_section(const Input_section& input_section);
3842 // Set the current size of the output section.
3844 set_current_data_size(off_t size)
3845 { this->set_current_data_size_for_child(size); }
3847 // End of linker script support.
3849 // Save states before doing section layout.
3850 // This is used for relaxation.
3854 // Restore states prior to section layout.
3862 // Convert existing input sections to relaxed input sections.
3864 convert_input_sections_to_relaxed_sections(
3865 const std::vector<Output_relaxed_input_section*>& sections);
3867 // Find a relaxed input section to an input section in OBJECT
3868 // with index SHNDX. Return NULL if none is found.
3869 const Output_relaxed_input_section*
3870 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3872 // Whether section offsets need adjustment due to relaxation.
3874 section_offsets_need_adjustment() const
3875 { return this->section_offsets_need_adjustment_; }
3877 // Set section_offsets_need_adjustment to be true.
3879 set_section_offsets_need_adjustment()
3880 { this->section_offsets_need_adjustment_ = true; }
3882 // Set section_offsets_need_adjustment to be false.
3884 clear_section_offsets_need_adjustment()
3885 { this->section_offsets_need_adjustment_ = false; }
3887 // Adjust section offsets of input sections in this. This is
3888 // requires if relaxation caused some input sections to change sizes.
3890 adjust_section_offsets();
3892 // Whether this is a NOLOAD section.
3895 { return this->is_noload_; }
3900 { this->is_noload_ = true; }
3902 // Print merge statistics to stderr.
3904 print_merge_stats();
3906 // Set a fixed layout for the section. Used for incremental update links.
3908 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3909 uint64_t sh_addralign);
3911 // Return TRUE if the section has a fixed layout.
3913 has_fixed_layout() const
3914 { return this->has_fixed_layout_; }
3916 // Set flag to allow patch space for this section. Used for full
3917 // incremental links.
3919 set_is_patch_space_allowed()
3920 { this->is_patch_space_allowed_ = true; }
3922 // Set a fill method to use for free space left in the output section
3923 // during incremental links.
3925 set_free_space_fill(Output_fill* free_space_fill)
3927 this->free_space_fill_ = free_space_fill;
3928 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3931 // Reserve space within the fixed layout for the section. Used for
3932 // incremental update links.
3934 reserve(uint64_t sh_offset, uint64_t sh_size);
3936 // Allocate space from the free list for the section. Used for
3937 // incremental update links.
3939 allocate(off_t len, uint64_t addralign);
3941 typedef std::vector<Input_section> Input_section_list;
3943 // Allow access to the input sections.
3944 const Input_section_list&
3945 input_sections() const
3946 { return this->input_sections_; }
3950 { return this->input_sections_; }
3953 // Return the output section--i.e., the object itself.
3958 const Output_section*
3959 do_output_section() const
3962 // Return the section index in the output file.
3964 do_out_shndx() const
3966 gold_assert(this->out_shndx_ != -1U);
3967 return this->out_shndx_;
3970 // Set the output section index.
3972 do_set_out_shndx(unsigned int shndx)
3974 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3975 this->out_shndx_ = shndx;
3978 // Update the data size of the Output_section. For a typical
3979 // Output_section, there is nothing to do, but if there are any
3980 // Output_section_data objects we need to do a trial layout
3985 // Set the final data size of the Output_section. For a typical
3986 // Output_section, there is nothing to do, but if there are any
3987 // Output_section_data objects we need to set their final addresses
3990 set_final_data_size();
3992 // Reset the address and file offset.
3994 do_reset_address_and_file_offset();
3996 // Return true if address and file offset already have reset values. In
3997 // other words, calling reset_address_and_file_offset will not change them.
3999 do_address_and_file_offset_have_reset_values() const;
4001 // Write the data to the file. For a typical Output_section, this
4002 // does nothing: the data is written out by calling Object::Relocate
4003 // on each input object. But if there are any Output_section_data
4004 // objects we do need to write them out here.
4006 do_write(Output_file*);
4008 // Return the address alignment--function required by parent class.
4010 do_addralign() const
4011 { return this->addralign_; }
4013 // Return whether there is a load address.
4015 do_has_load_address() const
4016 { return this->has_load_address_; }
4018 // Return the load address.
4020 do_load_address() const
4022 gold_assert(this->has_load_address_);
4023 return this->load_address_;
4026 // Return whether this is an Output_section.
4028 do_is_section() const
4031 // Return whether this is a section of the specified type.
4033 do_is_section_type(elfcpp::Elf_Word type) const
4034 { return this->type_ == type; }
4036 // Return whether the specified section flag is set.
4038 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
4039 { return (this->flags_ & flag) != 0; }
4041 // Set the TLS offset. Called only for SHT_TLS sections.
4043 do_set_tls_offset(uint64_t tls_base);
4045 // Return the TLS offset, relative to the base of the TLS segment.
4046 // Valid only for SHT_TLS sections.
4048 do_tls_offset() const
4049 { return this->tls_offset_; }
4051 // This may be implemented by a child class.
4053 do_finalize_name(Layout*)
4056 // Print to the map file.
4058 do_print_to_mapfile(Mapfile*) const;
4060 // Record that this section requires postprocessing after all
4061 // relocations have been applied. This is called by a child class.
4063 set_requires_postprocessing()
4065 this->requires_postprocessing_ = true;
4066 this->after_input_sections_ = true;
4069 // Write all the data of an Output_section into the postprocessing
4072 write_to_postprocessing_buffer();
4074 // Whether this always keeps an input section list
4076 always_keeps_input_sections() const
4077 { return this->always_keeps_input_sections_; }
4079 // Always keep an input section list.
4081 set_always_keeps_input_sections()
4083 gold_assert(this->current_data_size_for_child() == 0);
4084 this->always_keeps_input_sections_ = true;
4088 // We only save enough information to undo the effects of section layout.
4089 class Checkpoint_output_section
4092 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
4093 const Input_section_list& input_sections,
4094 off_t first_input_offset,
4095 bool attached_input_sections_are_sorted)
4096 : addralign_(addralign), flags_(flags),
4097 input_sections_(input_sections),
4098 input_sections_size_(input_sections_.size()),
4099 input_sections_copy_(), first_input_offset_(first_input_offset),
4100 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
4104 ~Checkpoint_output_section()
4107 // Return the address alignment.
4110 { return this->addralign_; }
4113 set_addralign(uint64_t val)
4114 { this->addralign_ = val; }
4116 // Return the section flags.
4119 { return this->flags_; }
4121 // Return a reference to the input section list copy.
4124 { return &this->input_sections_copy_; }
4126 // Return the size of input_sections at the time when checkpoint is
4129 input_sections_size() const
4130 { return this->input_sections_size_; }
4132 // Whether input sections are copied.
4134 input_sections_saved() const
4135 { return this->input_sections_copy_.size() == this->input_sections_size_; }
4138 first_input_offset() const
4139 { return this->first_input_offset_; }
4142 attached_input_sections_are_sorted() const
4143 { return this->attached_input_sections_are_sorted_; }
4145 // Save input sections.
4147 save_input_sections()
4149 this->input_sections_copy_.reserve(this->input_sections_size_);
4150 this->input_sections_copy_.clear();
4151 Input_section_list::const_iterator p = this->input_sections_.begin();
4152 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
4153 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
4154 this->input_sections_copy_.push_back(*p);
4158 // The section alignment.
4159 uint64_t addralign_;
4160 // The section flags.
4161 elfcpp::Elf_Xword flags_;
4162 // Reference to the input sections to be checkpointed.
4163 const Input_section_list& input_sections_;
4164 // Size of the checkpointed portion of input_sections_;
4165 size_t input_sections_size_;
4166 // Copy of input sections.
4167 Input_section_list input_sections_copy_;
4168 // The offset of the first entry in input_sections_.
4169 off_t first_input_offset_;
4170 // True if the input sections attached to this output section have
4171 // already been sorted.
4172 bool attached_input_sections_are_sorted_;
4175 // This class is used to sort the input sections.
4176 class Input_section_sort_entry;
4178 // This is the sort comparison function for ctors and dtors.
4179 struct Input_section_sort_compare
4182 operator()(const Input_section_sort_entry&,
4183 const Input_section_sort_entry&) const;
4186 // This is the sort comparison function for .init_array and .fini_array.
4187 struct Input_section_sort_init_fini_compare
4190 operator()(const Input_section_sort_entry&,
4191 const Input_section_sort_entry&) const;
4194 // This is the sort comparison function when a section order is specified
4195 // from an input file.
4196 struct Input_section_sort_section_order_index_compare
4199 operator()(const Input_section_sort_entry&,
4200 const Input_section_sort_entry&) const;
4203 // This is the sort comparison function for .text to sort sections with
4204 // prefixes .text.{unlikely,exit,startup,hot} before other sections.
4205 struct Input_section_sort_section_name_special_ordering_compare
4208 operator()(const Input_section_sort_entry&,
4209 const Input_section_sort_entry&) const;
4212 // Fill data. This is used to fill in data between input sections.
4213 // It is also used for data statements (BYTE, WORD, etc.) in linker
4214 // scripts. When we have to keep track of the input sections, we
4215 // can use an Output_data_const, but we don't want to have to keep
4216 // track of input sections just to implement fills.
4220 Fill(off_t section_offset, off_t length)
4221 : section_offset_(section_offset),
4222 length_(convert_to_section_size_type(length))
4225 // Return section offset.
4227 section_offset() const
4228 { return this->section_offset_; }
4230 // Return fill length.
4233 { return this->length_; }
4236 // The offset within the output section.
4237 off_t section_offset_;
4238 // The length of the space to fill.
4239 section_size_type length_;
4242 typedef std::vector<Fill> Fill_list;
4244 // Map used during relaxation of existing sections. This map
4245 // a section id an input section list index. We assume that
4246 // Input_section_list is a vector.
4247 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
4249 // Add a new output section by Input_section.
4251 add_output_section_data(Input_section*);
4253 // Add an SHF_MERGE input section. Returns true if the section was
4254 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
4255 // stores information about the merged input sections.
4257 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
4258 uint64_t entsize, uint64_t addralign,
4259 bool keeps_input_sections);
4261 // Add an output SHF_MERGE section POSD to this output section.
4262 // IS_STRING indicates whether it is a SHF_STRINGS section, and
4263 // ENTSIZE is the entity size. This returns the entry added to
4266 add_output_merge_section(Output_section_data* posd, bool is_string,
4269 // Find the merge section into which an input section with index SHNDX in
4270 // OBJECT has been added. Return NULL if none found.
4271 Output_section_data*
4272 find_merge_section(const Relobj* object, unsigned int shndx) const;
4274 // Build a relaxation map.
4276 build_relaxation_map(
4277 const Input_section_list& input_sections,
4279 Relaxation_map* map) const;
4281 // Convert input sections in an input section list into relaxed sections.
4283 convert_input_sections_in_list_to_relaxed_sections(
4284 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
4285 const Relaxation_map& map,
4286 Input_section_list* input_sections);
4288 // Build the lookup maps for merge and relaxed input sections.
4290 build_lookup_maps() const;
4292 // Most of these fields are only valid after layout.
4294 // The name of the section. This will point into a Stringpool.
4296 // The section address is in the parent class.
4297 // The section alignment.
4298 uint64_t addralign_;
4299 // The section entry size.
4301 // The load address. This is only used when using a linker script
4302 // with a SECTIONS clause. The has_load_address_ field indicates
4303 // whether this field is valid.
4304 uint64_t load_address_;
4305 // The file offset is in the parent class.
4306 // Set the section link field to the index of this section.
4307 const Output_data* link_section_;
4308 // If link_section_ is NULL, this is the link field.
4310 // Set the section info field to the index of this section.
4311 const Output_section* info_section_;
4312 // If info_section_ is NULL, set the info field to the symbol table
4313 // index of this symbol.
4314 const Symbol* info_symndx_;
4315 // If info_section_ and info_symndx_ are NULL, this is the section
4318 // The section type.
4319 const elfcpp::Elf_Word type_;
4320 // The section flags.
4321 elfcpp::Elf_Xword flags_;
4322 // The order of this section in the output segment.
4323 Output_section_order order_;
4324 // The section index.
4325 unsigned int out_shndx_;
4326 // If there is a STT_SECTION for this output section in the normal
4327 // symbol table, this is the symbol index. This starts out as zero.
4328 // It is initialized in Layout::finalize() to be the index, or -1U
4329 // if there isn't one.
4330 unsigned int symtab_index_;
4331 // If there is a STT_SECTION for this output section in the dynamic
4332 // symbol table, this is the symbol index. This starts out as zero.
4333 // It is initialized in Layout::finalize() to be the index, or -1U
4334 // if there isn't one.
4335 unsigned int dynsym_index_;
4336 // The input sections. This will be empty in cases where we don't
4337 // need to keep track of them.
4338 Input_section_list input_sections_;
4339 // The offset of the first entry in input_sections_.
4340 off_t first_input_offset_;
4341 // The fill data. This is separate from input_sections_ because we
4342 // often will need fill sections without needing to keep track of
4345 // If the section requires postprocessing, this buffer holds the
4346 // section contents during relocation.
4347 unsigned char* postprocessing_buffer_;
4348 // Whether this output section needs a STT_SECTION symbol in the
4349 // normal symbol table. This will be true if there is a relocation
4351 bool needs_symtab_index_ : 1;
4352 // Whether this output section needs a STT_SECTION symbol in the
4353 // dynamic symbol table. This will be true if there is a dynamic
4354 // relocation which needs it.
4355 bool needs_dynsym_index_ : 1;
4356 // Whether the link field of this output section should point to the
4357 // normal symbol table.
4358 bool should_link_to_symtab_ : 1;
4359 // Whether the link field of this output section should point to the
4360 // dynamic symbol table.
4361 bool should_link_to_dynsym_ : 1;
4362 // Whether this section should be written after all the input
4363 // sections are complete.
4364 bool after_input_sections_ : 1;
4365 // Whether this section requires post processing after all
4366 // relocations have been applied.
4367 bool requires_postprocessing_ : 1;
4368 // Whether an input section was mapped to this output section
4369 // because of a SECTIONS clause in a linker script.
4370 bool found_in_sections_clause_ : 1;
4371 // Whether this section has an explicitly specified load address.
4372 bool has_load_address_ : 1;
4373 // True if the info_section_ field means the section index of the
4374 // section, false if it means the symbol index of the corresponding
4376 bool info_uses_section_index_ : 1;
4377 // True if input sections attached to this output section have to be
4378 // sorted according to a specified order.
4379 bool input_section_order_specified_ : 1;
4380 // True if the input sections attached to this output section may
4382 bool may_sort_attached_input_sections_ : 1;
4383 // True if the input sections attached to this output section must
4385 bool must_sort_attached_input_sections_ : 1;
4386 // True if the input sections attached to this output section have
4387 // already been sorted.
4388 bool attached_input_sections_are_sorted_ : 1;
4389 // True if this section holds relro data.
4391 // True if this is a small section.
4392 bool is_small_section_ : 1;
4393 // True if this is a large section.
4394 bool is_large_section_ : 1;
4395 // Whether code-fills are generated at write.
4396 bool generate_code_fills_at_write_ : 1;
4397 // Whether the entry size field should be zero.
4398 bool is_entsize_zero_ : 1;
4399 // Whether section offsets need adjustment due to relaxation.
4400 bool section_offsets_need_adjustment_ : 1;
4401 // Whether this is a NOLOAD section.
4402 bool is_noload_ : 1;
4403 // Whether this always keeps input section.
4404 bool always_keeps_input_sections_ : 1;
4405 // Whether this section has a fixed layout, for incremental update links.
4406 bool has_fixed_layout_ : 1;
4407 // True if we can add patch space to this section.
4408 bool is_patch_space_allowed_ : 1;
4409 // True if this output section goes into a unique segment.
4410 bool is_unique_segment_ : 1;
4411 // For SHT_TLS sections, the offset of this section relative to the base
4412 // of the TLS segment.
4413 uint64_t tls_offset_;
4414 // Additional segment flags, specified via linker plugin, when mapping some
4415 // input sections to unique segments.
4416 uint64_t extra_segment_flags_;
4417 // Segment alignment specified via linker plugin, when mapping some
4418 // input sections to unique segments.
4419 uint64_t segment_alignment_;
4420 // Saved checkpoint.
4421 Checkpoint_output_section* checkpoint_;
4422 // Fast lookup maps for merged and relaxed input sections.
4423 Output_section_lookup_maps* lookup_maps_;
4424 // List of available regions within the section, for incremental
4426 Free_list free_list_;
4427 // Method for filling chunks of free space.
4428 Output_fill* free_space_fill_;
4429 // Amount added as patch space for incremental linking.
4433 // An output segment. PT_LOAD segments are built from collections of
4434 // output sections. Other segments typically point within PT_LOAD
4435 // segments, and are built directly as needed.
4437 // NOTE: We want to use the copy constructor for this class. During
4438 // relaxation, we may try built the segments multiple times. We do
4439 // that by copying the original segment list before lay-out, doing
4440 // a trial lay-out and roll-back to the saved copied if we need to
4441 // to the lay-out again.
4443 class Output_segment
4446 // Create an output segment, specifying the type and flags.
4447 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4449 // Return the virtual address.
4452 { return this->vaddr_; }
4454 // Return the physical address.
4457 { return this->paddr_; }
4459 // Return the segment type.
4462 { return this->type_; }
4464 // Return the segment flags.
4467 { return this->flags_; }
4469 // Return the memory size.
4472 { return this->memsz_; }
4474 // Return the file size.
4477 { return this->filesz_; }
4479 // Return the file offset.
4482 { return this->offset_; }
4484 // Whether this is a segment created to hold large data sections.
4486 is_large_data_segment() const
4487 { return this->is_large_data_segment_; }
4489 // Record that this is a segment created to hold large data
4492 set_is_large_data_segment()
4493 { this->is_large_data_segment_ = true; }
4496 is_unique_segment() const
4497 { return this->is_unique_segment_; }
4499 // Mark segment as unique, happens when linker plugins request that
4500 // certain input sections be mapped to unique segments.
4502 set_is_unique_segment()
4503 { this->is_unique_segment_ = true; }
4505 // Return the maximum alignment of the Output_data.
4507 maximum_alignment();
4509 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4510 // the segment flags to use.
4512 add_output_section_to_load(Layout* layout, Output_section* os,
4513 elfcpp::Elf_Word seg_flags);
4515 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4516 // is the segment flags to use.
4518 add_output_section_to_nonload(Output_section* os,
4519 elfcpp::Elf_Word seg_flags);
4521 // Remove an Output_section from this segment. It is an error if it
4524 remove_output_section(Output_section* os);
4526 // Add an Output_data (which need not be an Output_section) to the
4527 // start of this segment.
4529 add_initial_output_data(Output_data*);
4531 // Return true if this segment has any sections which hold actual
4532 // data, rather than being a BSS section.
4534 has_any_data_sections() const;
4536 // Whether this segment has a dynamic relocs.
4538 has_dynamic_reloc() const;
4540 // Return the first section.
4542 first_section() const;
4544 // Return the address of the first section.
4546 first_section_load_address() const
4548 const Output_section* os = this->first_section();
4549 return os->has_load_address() ? os->load_address() : os->address();
4552 // Return whether the addresses have been set already.
4554 are_addresses_set() const
4555 { return this->are_addresses_set_; }
4557 // Set the addresses.
4559 set_addresses(uint64_t vaddr, uint64_t paddr)
4561 this->vaddr_ = vaddr;
4562 this->paddr_ = paddr;
4563 this->are_addresses_set_ = true;
4566 // Update the flags for the flags of an output section added to this
4569 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4571 // The ELF ABI specifies that a PT_TLS segment should always have
4572 // PF_R as the flags.
4573 if (this->type() != elfcpp::PT_TLS)
4574 this->flags_ |= flags;
4577 // Set the segment flags. This is only used if we have a PHDRS
4578 // clause which explicitly specifies the flags.
4580 set_flags(elfcpp::Elf_Word flags)
4581 { this->flags_ = flags; }
4583 // Set the address of the segment to ADDR and the offset to *POFF
4584 // and set the addresses and offsets of all contained output
4585 // sections accordingly. Set the section indexes of all contained
4586 // output sections starting with *PSHNDX. If RESET is true, first
4587 // reset the addresses of the contained sections. Return the
4588 // address of the immediately following segment. Update *POFF and
4589 // *PSHNDX. This should only be called for a PT_LOAD segment.
4591 set_section_addresses(Layout*, bool reset, uint64_t addr,
4592 unsigned int* increase_relro, bool* has_relro,
4593 off_t* poff, unsigned int* pshndx);
4595 // Set the minimum alignment of this segment. This may be adjusted
4596 // upward based on the section alignments.
4598 set_minimum_p_align(uint64_t align)
4600 if (align > this->min_p_align_)
4601 this->min_p_align_ = align;
4604 // Set the offset of this segment based on the section. This should
4605 // only be called for a non-PT_LOAD segment.
4607 set_offset(unsigned int increase);
4609 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4613 // Return the number of output sections.
4615 output_section_count() const;
4617 // Return the section attached to the list segment with the lowest
4618 // load address. This is used when handling a PHDRS clause in a
4621 section_with_lowest_load_address() const;
4623 // Write the segment header into *OPHDR.
4624 template<int size, bool big_endian>
4626 write_header(elfcpp::Phdr_write<size, big_endian>*);
4628 // Write the section headers of associated sections into V.
4629 template<int size, bool big_endian>
4631 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4632 unsigned int* pshndx) const;
4634 // Print the output sections in the map file.
4636 print_sections_to_mapfile(Mapfile*) const;
4639 typedef std::vector<Output_data*> Output_data_list;
4641 // Find the maximum alignment in an Output_data_list.
4643 maximum_alignment_list(const Output_data_list*);
4645 // Return whether the first data section is a relro section.
4647 is_first_section_relro() const;
4649 // Set the section addresses in an Output_data_list.
4651 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4652 uint64_t addr, off_t* poff, unsigned int* pshndx,
4655 // Return the number of Output_sections in an Output_data_list.
4657 output_section_count_list(const Output_data_list*) const;
4659 // Return whether an Output_data_list has a dynamic reloc.
4661 has_dynamic_reloc_list(const Output_data_list*) const;
4663 // Find the section with the lowest load address in an
4664 // Output_data_list.
4666 lowest_load_address_in_list(const Output_data_list* pdl,
4667 Output_section** found,
4668 uint64_t* found_lma) const;
4670 // Find the first and last entries by address.
4672 find_first_and_last_list(const Output_data_list* pdl,
4673 const Output_data** pfirst,
4674 const Output_data** plast) const;
4676 // Write the section headers in the list into V.
4677 template<int size, bool big_endian>
4679 write_section_headers_list(const Layout*, const Stringpool*,
4680 const Output_data_list*, unsigned char* v,
4681 unsigned int* pshdx) const;
4683 // Print a section list to the mapfile.
4685 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4687 // NOTE: We want to use the copy constructor. Currently, shallow copy
4688 // works for us so we do not need to write our own copy constructor.
4690 // The list of output data attached to this segment.
4691 Output_data_list output_lists_[ORDER_MAX];
4692 // The segment virtual address.
4694 // The segment physical address.
4696 // The size of the segment in memory.
4698 // The maximum section alignment. The is_max_align_known_ field
4699 // indicates whether this has been finalized.
4700 uint64_t max_align_;
4701 // The required minimum value for the p_align field. This is used
4702 // for PT_LOAD segments. Note that this does not mean that
4703 // addresses should be aligned to this value; it means the p_paddr
4704 // and p_vaddr fields must be congruent modulo this value. For
4705 // non-PT_LOAD segments, the dynamic linker works more efficiently
4706 // if the p_align field has the more conventional value, although it
4707 // can align as needed.
4708 uint64_t min_p_align_;
4709 // The offset of the segment data within the file.
4711 // The size of the segment data in the file.
4713 // The segment type;
4714 elfcpp::Elf_Word type_;
4715 // The segment flags.
4716 elfcpp::Elf_Word flags_;
4717 // Whether we have finalized max_align_.
4718 bool is_max_align_known_ : 1;
4719 // Whether vaddr and paddr were set by a linker script.
4720 bool are_addresses_set_ : 1;
4721 // Whether this segment holds large data sections.
4722 bool is_large_data_segment_ : 1;
4723 // Whether this was marked as a unique segment via a linker plugin.
4724 bool is_unique_segment_ : 1;
4727 // This class represents the output file.
4732 Output_file(const char* name);
4734 // Indicate that this is a temporary file which should not be
4738 { this->is_temporary_ = true; }
4740 // Try to open an existing file. Returns false if the file doesn't
4741 // exist, has a size of 0 or can't be mmaped. This method is
4742 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4743 // that file as the base for incremental linking.
4745 open_base_file(const char* base_name, bool writable);
4747 // Open the output file. FILE_SIZE is the final size of the file.
4748 // If the file already exists, it is deleted/truncated. This method
4749 // is thread-unsafe.
4751 open(off_t file_size);
4753 // Resize the output file. This method is thread-unsafe.
4755 resize(off_t file_size);
4757 // Close the output file (flushing all buffered data) and make sure
4758 // there are no errors. This method is thread-unsafe.
4762 // Return the size of this file.
4765 { return this->file_size_; }
4767 // Return the name of this file.
4770 { return this->name_; }
4772 // We currently always use mmap which makes the view handling quite
4773 // simple. In the future we may support other approaches.
4775 // Write data to the output file.
4777 write(off_t offset, const void* data, size_t len)
4778 { memcpy(this->base_ + offset, data, len); }
4780 // Get a buffer to use to write to the file, given the offset into
4781 // the file and the size.
4783 get_output_view(off_t start, size_t size)
4785 gold_assert(start >= 0
4786 && start + static_cast<off_t>(size) <= this->file_size_);
4787 return this->base_ + start;
4790 // VIEW must have been returned by get_output_view. Write the
4791 // buffer to the file, passing in the offset and the size.
4793 write_output_view(off_t, size_t, unsigned char*)
4796 // Get a read/write buffer. This is used when we want to write part
4797 // of the file, read it in, and write it again.
4799 get_input_output_view(off_t start, size_t size)
4800 { return this->get_output_view(start, size); }
4802 // Write a read/write buffer back to the file.
4804 write_input_output_view(off_t, size_t, unsigned char*)
4807 // Get a read buffer. This is used when we just want to read part
4808 // of the file back it in.
4809 const unsigned char*
4810 get_input_view(off_t start, size_t size)
4811 { return this->get_output_view(start, size); }
4813 // Release a read bfufer.
4815 free_input_view(off_t, size_t, const unsigned char*)
4819 // Map the file into memory or, if that fails, allocate anonymous
4824 // Allocate anonymous memory for the file.
4828 // Map the file into memory.
4830 map_no_anonymous(bool);
4832 // Unmap the file from memory (and flush to disk buffers).
4842 // Base of file mapped into memory.
4843 unsigned char* base_;
4844 // True iff base_ points to a memory buffer rather than an output file.
4845 bool map_is_anonymous_;
4846 // True if base_ was allocated using new rather than mmap.
4847 bool map_is_allocated_;
4848 // True if this is a temporary file which should not be output.
4852 } // End namespace gold.
4854 #endif // !defined(GOLD_OUTPUT_H)