* output.cc (Output_file::resize): Call map_no_anonymous rather
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"   // for unlink_if_ordinary()
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS  MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate.  Here we just set
50 // the file size and hope that there is enough disk space.  FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56   return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78   return Output_data::default_alignment_for_size(
79       parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87   if (size == 32)
88     return 4;
89   else if (size == 64)
90     return 8;
91   else
92     gold_unreachable();
93 }
94
95 // Output_section_header methods.  This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99     const Layout* layout,
100     const Layout::Segment_list* segment_list,
101     const Layout::Section_list* section_list,
102     const Layout::Section_list* unattached_section_list,
103     const Stringpool* secnamepool,
104     const Output_section* shstrtab_section)
105   : layout_(layout),
106     segment_list_(segment_list),
107     section_list_(section_list),
108     unattached_section_list_(unattached_section_list),
109     secnamepool_(secnamepool),
110     shstrtab_section_(shstrtab_section)
111 {
112   // Count all the sections.  Start with 1 for the null section.
113   off_t count = 1;
114   if (!parameters->options().relocatable())
115     {
116       for (Layout::Segment_list::const_iterator p = segment_list->begin();
117            p != segment_list->end();
118            ++p)
119         if ((*p)->type() == elfcpp::PT_LOAD)
120           count += (*p)->output_section_count();
121     }
122   else
123     {
124       for (Layout::Section_list::const_iterator p = section_list->begin();
125            p != section_list->end();
126            ++p)
127         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
128           ++count;
129     }
130   count += unattached_section_list->size();
131
132   const int size = parameters->target().get_size();
133   int shdr_size;
134   if (size == 32)
135     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
136   else if (size == 64)
137     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
138   else
139     gold_unreachable();
140
141   this->set_data_size(count * shdr_size);
142 }
143
144 // Write out the section headers.
145
146 void
147 Output_section_headers::do_write(Output_file* of)
148 {
149   switch (parameters->size_and_endianness())
150     {
151 #ifdef HAVE_TARGET_32_LITTLE
152     case Parameters::TARGET_32_LITTLE:
153       this->do_sized_write<32, false>(of);
154       break;
155 #endif
156 #ifdef HAVE_TARGET_32_BIG
157     case Parameters::TARGET_32_BIG:
158       this->do_sized_write<32, true>(of);
159       break;
160 #endif
161 #ifdef HAVE_TARGET_64_LITTLE
162     case Parameters::TARGET_64_LITTLE:
163       this->do_sized_write<64, false>(of);
164       break;
165 #endif
166 #ifdef HAVE_TARGET_64_BIG
167     case Parameters::TARGET_64_BIG:
168       this->do_sized_write<64, true>(of);
169       break;
170 #endif
171     default:
172       gold_unreachable();
173     }
174 }
175
176 template<int size, bool big_endian>
177 void
178 Output_section_headers::do_sized_write(Output_file* of)
179 {
180   off_t all_shdrs_size = this->data_size();
181   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
182
183   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
184   unsigned char* v = view;
185
186   {
187     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
188     oshdr.put_sh_name(0);
189     oshdr.put_sh_type(elfcpp::SHT_NULL);
190     oshdr.put_sh_flags(0);
191     oshdr.put_sh_addr(0);
192     oshdr.put_sh_offset(0);
193
194     size_t section_count = (this->data_size()
195                             / elfcpp::Elf_sizes<size>::shdr_size);
196     if (section_count < elfcpp::SHN_LORESERVE)
197       oshdr.put_sh_size(0);
198     else
199       oshdr.put_sh_size(section_count);
200
201     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
202     if (shstrndx < elfcpp::SHN_LORESERVE)
203       oshdr.put_sh_link(0);
204     else
205       oshdr.put_sh_link(shstrndx);
206
207     oshdr.put_sh_info(0);
208     oshdr.put_sh_addralign(0);
209     oshdr.put_sh_entsize(0);
210   }
211
212   v += shdr_size;
213
214   unsigned int shndx = 1;
215   if (!parameters->options().relocatable())
216     {
217       for (Layout::Segment_list::const_iterator p =
218              this->segment_list_->begin();
219            p != this->segment_list_->end();
220            ++p)
221         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
222                                                           this->secnamepool_,
223                                                           v,
224                                                           &shndx);
225     }
226   else
227     {
228       for (Layout::Section_list::const_iterator p =
229              this->section_list_->begin();
230            p != this->section_list_->end();
231            ++p)
232         {
233           // We do unallocated sections below, except that group
234           // sections have to come first.
235           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
236               && (*p)->type() != elfcpp::SHT_GROUP)
237             continue;
238           gold_assert(shndx == (*p)->out_shndx());
239           elfcpp::Shdr_write<size, big_endian> oshdr(v);
240           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
241           v += shdr_size;
242           ++shndx;
243         }
244     }
245
246   for (Layout::Section_list::const_iterator p =
247          this->unattached_section_list_->begin();
248        p != this->unattached_section_list_->end();
249        ++p)
250     {
251       // For a relocatable link, we did unallocated group sections
252       // above, since they have to come first.
253       if ((*p)->type() == elfcpp::SHT_GROUP
254           && parameters->options().relocatable())
255         continue;
256       gold_assert(shndx == (*p)->out_shndx());
257       elfcpp::Shdr_write<size, big_endian> oshdr(v);
258       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
259       v += shdr_size;
260       ++shndx;
261     }
262
263   of->write_output_view(this->offset(), all_shdrs_size, view);
264 }
265
266 // Output_segment_header methods.
267
268 Output_segment_headers::Output_segment_headers(
269     const Layout::Segment_list& segment_list)
270   : segment_list_(segment_list)
271 {
272   const int size = parameters->target().get_size();
273   int phdr_size;
274   if (size == 32)
275     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
276   else if (size == 64)
277     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
278   else
279     gold_unreachable();
280
281   this->set_data_size(segment_list.size() * phdr_size);
282 }
283
284 void
285 Output_segment_headers::do_write(Output_file* of)
286 {
287   switch (parameters->size_and_endianness())
288     {
289 #ifdef HAVE_TARGET_32_LITTLE
290     case Parameters::TARGET_32_LITTLE:
291       this->do_sized_write<32, false>(of);
292       break;
293 #endif
294 #ifdef HAVE_TARGET_32_BIG
295     case Parameters::TARGET_32_BIG:
296       this->do_sized_write<32, true>(of);
297       break;
298 #endif
299 #ifdef HAVE_TARGET_64_LITTLE
300     case Parameters::TARGET_64_LITTLE:
301       this->do_sized_write<64, false>(of);
302       break;
303 #endif
304 #ifdef HAVE_TARGET_64_BIG
305     case Parameters::TARGET_64_BIG:
306       this->do_sized_write<64, true>(of);
307       break;
308 #endif
309     default:
310       gold_unreachable();
311     }
312 }
313
314 template<int size, bool big_endian>
315 void
316 Output_segment_headers::do_sized_write(Output_file* of)
317 {
318   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
319   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
320   gold_assert(all_phdrs_size == this->data_size());
321   unsigned char* view = of->get_output_view(this->offset(),
322                                             all_phdrs_size);
323   unsigned char* v = view;
324   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
325        p != this->segment_list_.end();
326        ++p)
327     {
328       elfcpp::Phdr_write<size, big_endian> ophdr(v);
329       (*p)->write_header(&ophdr);
330       v += phdr_size;
331     }
332
333   gold_assert(v - view == all_phdrs_size);
334
335   of->write_output_view(this->offset(), all_phdrs_size, view);
336 }
337
338 // Output_file_header methods.
339
340 Output_file_header::Output_file_header(const Target* target,
341                                        const Symbol_table* symtab,
342                                        const Output_segment_headers* osh,
343                                        const char* entry)
344   : target_(target),
345     symtab_(symtab),
346     segment_header_(osh),
347     section_header_(NULL),
348     shstrtab_(NULL),
349     entry_(entry)
350 {
351   const int size = parameters->target().get_size();
352   int ehdr_size;
353   if (size == 32)
354     ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
355   else if (size == 64)
356     ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
357   else
358     gold_unreachable();
359
360   this->set_data_size(ehdr_size);
361 }
362
363 // Set the section table information for a file header.
364
365 void
366 Output_file_header::set_section_info(const Output_section_headers* shdrs,
367                                      const Output_section* shstrtab)
368 {
369   this->section_header_ = shdrs;
370   this->shstrtab_ = shstrtab;
371 }
372
373 // Write out the file header.
374
375 void
376 Output_file_header::do_write(Output_file* of)
377 {
378   gold_assert(this->offset() == 0);
379
380   switch (parameters->size_and_endianness())
381     {
382 #ifdef HAVE_TARGET_32_LITTLE
383     case Parameters::TARGET_32_LITTLE:
384       this->do_sized_write<32, false>(of);
385       break;
386 #endif
387 #ifdef HAVE_TARGET_32_BIG
388     case Parameters::TARGET_32_BIG:
389       this->do_sized_write<32, true>(of);
390       break;
391 #endif
392 #ifdef HAVE_TARGET_64_LITTLE
393     case Parameters::TARGET_64_LITTLE:
394       this->do_sized_write<64, false>(of);
395       break;
396 #endif
397 #ifdef HAVE_TARGET_64_BIG
398     case Parameters::TARGET_64_BIG:
399       this->do_sized_write<64, true>(of);
400       break;
401 #endif
402     default:
403       gold_unreachable();
404     }
405 }
406
407 // Write out the file header with appropriate size and endianess.
408
409 template<int size, bool big_endian>
410 void
411 Output_file_header::do_sized_write(Output_file* of)
412 {
413   gold_assert(this->offset() == 0);
414
415   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
416   unsigned char* view = of->get_output_view(0, ehdr_size);
417   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
418
419   unsigned char e_ident[elfcpp::EI_NIDENT];
420   memset(e_ident, 0, elfcpp::EI_NIDENT);
421   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
422   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
423   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
424   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
425   if (size == 32)
426     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
427   else if (size == 64)
428     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
429   else
430     gold_unreachable();
431   e_ident[elfcpp::EI_DATA] = (big_endian
432                               ? elfcpp::ELFDATA2MSB
433                               : elfcpp::ELFDATA2LSB);
434   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
435   oehdr.put_e_ident(e_ident);
436
437   elfcpp::ET e_type;
438   if (parameters->options().relocatable())
439     e_type = elfcpp::ET_REL;
440   else if (parameters->options().shared())
441     e_type = elfcpp::ET_DYN;
442   else
443     e_type = elfcpp::ET_EXEC;
444   oehdr.put_e_type(e_type);
445
446   oehdr.put_e_machine(this->target_->machine_code());
447   oehdr.put_e_version(elfcpp::EV_CURRENT);
448
449   oehdr.put_e_entry(this->entry<size>());
450
451   if (this->segment_header_ == NULL)
452     oehdr.put_e_phoff(0);
453   else
454     oehdr.put_e_phoff(this->segment_header_->offset());
455
456   oehdr.put_e_shoff(this->section_header_->offset());
457
458   // FIXME: The target needs to set the flags.
459   oehdr.put_e_flags(0);
460
461   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
462
463   if (this->segment_header_ == NULL)
464     {
465       oehdr.put_e_phentsize(0);
466       oehdr.put_e_phnum(0);
467     }
468   else
469     {
470       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
471       oehdr.put_e_phnum(this->segment_header_->data_size()
472                         / elfcpp::Elf_sizes<size>::phdr_size);
473     }
474
475   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
476   size_t section_count = (this->section_header_->data_size()
477                           / elfcpp::Elf_sizes<size>::shdr_size);
478
479   if (section_count < elfcpp::SHN_LORESERVE)
480     oehdr.put_e_shnum(this->section_header_->data_size()
481                       / elfcpp::Elf_sizes<size>::shdr_size);
482   else
483     oehdr.put_e_shnum(0);
484
485   unsigned int shstrndx = this->shstrtab_->out_shndx();
486   if (shstrndx < elfcpp::SHN_LORESERVE)
487     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
488   else
489     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
490
491   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
492   // the e_ident field.
493   parameters->target().adjust_elf_header(view, ehdr_size);
494
495   of->write_output_view(0, ehdr_size, view);
496 }
497
498 // Return the value to use for the entry address.  THIS->ENTRY_ is the
499 // symbol specified on the command line, if any.
500
501 template<int size>
502 typename elfcpp::Elf_types<size>::Elf_Addr
503 Output_file_header::entry()
504 {
505   const bool should_issue_warning = (this->entry_ != NULL
506                                      && !parameters->options().relocatable()
507                                      && !parameters->options().shared());
508
509   // FIXME: Need to support target specific entry symbol.
510   const char* entry = this->entry_;
511   if (entry == NULL)
512     entry = "_start";
513
514   Symbol* sym = this->symtab_->lookup(entry);
515
516   typename Sized_symbol<size>::Value_type v;
517   if (sym != NULL)
518     {
519       Sized_symbol<size>* ssym;
520       ssym = this->symtab_->get_sized_symbol<size>(sym);
521       if (!ssym->is_defined() && should_issue_warning)
522         gold_warning("entry symbol '%s' exists but is not defined", entry);
523       v = ssym->value();
524     }
525   else
526     {
527       // We couldn't find the entry symbol.  See if we can parse it as
528       // a number.  This supports, e.g., -e 0x1000.
529       char* endptr;
530       v = strtoull(entry, &endptr, 0);
531       if (*endptr != '\0')
532         {
533           if (should_issue_warning)
534             gold_warning("cannot find entry symbol '%s'", entry);
535           v = 0;
536         }
537     }
538
539   return v;
540 }
541
542 // Output_data_const methods.
543
544 void
545 Output_data_const::do_write(Output_file* of)
546 {
547   of->write(this->offset(), this->data_.data(), this->data_.size());
548 }
549
550 // Output_data_const_buffer methods.
551
552 void
553 Output_data_const_buffer::do_write(Output_file* of)
554 {
555   of->write(this->offset(), this->p_, this->data_size());
556 }
557
558 // Output_section_data methods.
559
560 // Record the output section, and set the entry size and such.
561
562 void
563 Output_section_data::set_output_section(Output_section* os)
564 {
565   gold_assert(this->output_section_ == NULL);
566   this->output_section_ = os;
567   this->do_adjust_output_section(os);
568 }
569
570 // Return the section index of the output section.
571
572 unsigned int
573 Output_section_data::do_out_shndx() const
574 {
575   gold_assert(this->output_section_ != NULL);
576   return this->output_section_->out_shndx();
577 }
578
579 // Set the alignment, which means we may need to update the alignment
580 // of the output section.
581
582 void
583 Output_section_data::set_addralign(uint64_t addralign)
584 {
585   this->addralign_ = addralign;
586   if (this->output_section_ != NULL
587       && this->output_section_->addralign() < addralign)
588     this->output_section_->set_addralign(addralign);
589 }
590
591 // Output_data_strtab methods.
592
593 // Set the final data size.
594
595 void
596 Output_data_strtab::set_final_data_size()
597 {
598   this->strtab_->set_string_offsets();
599   this->set_data_size(this->strtab_->get_strtab_size());
600 }
601
602 // Write out a string table.
603
604 void
605 Output_data_strtab::do_write(Output_file* of)
606 {
607   this->strtab_->write(of, this->offset());
608 }
609
610 // Output_reloc methods.
611
612 // A reloc against a global symbol.
613
614 template<bool dynamic, int size, bool big_endian>
615 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
616     Symbol* gsym,
617     unsigned int type,
618     Output_data* od,
619     Address address,
620     bool is_relative)
621   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
622     is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
623 {
624   // this->type_ is a bitfield; make sure TYPE fits.
625   gold_assert(this->type_ == type);
626   this->u1_.gsym = gsym;
627   this->u2_.od = od;
628   if (dynamic)
629     this->set_needs_dynsym_index();
630 }
631
632 template<bool dynamic, int size, bool big_endian>
633 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
634     Symbol* gsym,
635     unsigned int type,
636     Sized_relobj<size, big_endian>* relobj,
637     unsigned int shndx,
638     Address address,
639     bool is_relative)
640   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
641     is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
642 {
643   gold_assert(shndx != INVALID_CODE);
644   // this->type_ is a bitfield; make sure TYPE fits.
645   gold_assert(this->type_ == type);
646   this->u1_.gsym = gsym;
647   this->u2_.relobj = relobj;
648   if (dynamic)
649     this->set_needs_dynsym_index();
650 }
651
652 // A reloc against a local symbol.
653
654 template<bool dynamic, int size, bool big_endian>
655 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
656     Sized_relobj<size, big_endian>* relobj,
657     unsigned int local_sym_index,
658     unsigned int type,
659     Output_data* od,
660     Address address,
661     bool is_relative,
662     bool is_section_symbol)
663   : address_(address), local_sym_index_(local_sym_index), type_(type),
664     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
665     shndx_(INVALID_CODE)
666 {
667   gold_assert(local_sym_index != GSYM_CODE
668               && local_sym_index != INVALID_CODE);
669   // this->type_ is a bitfield; make sure TYPE fits.
670   gold_assert(this->type_ == type);
671   this->u1_.relobj = relobj;
672   this->u2_.od = od;
673   if (dynamic)
674     this->set_needs_dynsym_index();
675 }
676
677 template<bool dynamic, int size, bool big_endian>
678 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
679     Sized_relobj<size, big_endian>* relobj,
680     unsigned int local_sym_index,
681     unsigned int type,
682     unsigned int shndx,
683     Address address,
684     bool is_relative,
685     bool is_section_symbol)
686   : address_(address), local_sym_index_(local_sym_index), type_(type),
687     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
688     shndx_(shndx)
689 {
690   gold_assert(local_sym_index != GSYM_CODE
691               && local_sym_index != INVALID_CODE);
692   gold_assert(shndx != INVALID_CODE);
693   // this->type_ is a bitfield; make sure TYPE fits.
694   gold_assert(this->type_ == type);
695   this->u1_.relobj = relobj;
696   this->u2_.relobj = relobj;
697   if (dynamic)
698     this->set_needs_dynsym_index();
699 }
700
701 // A reloc against the STT_SECTION symbol of an output section.
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705     Output_section* os,
706     unsigned int type,
707     Output_data* od,
708     Address address)
709   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
710     is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
711 {
712   // this->type_ is a bitfield; make sure TYPE fits.
713   gold_assert(this->type_ == type);
714   this->u1_.os = os;
715   this->u2_.od = od;
716   if (dynamic)
717     this->set_needs_dynsym_index();
718   else
719     os->set_needs_symtab_index();
720 }
721
722 template<bool dynamic, int size, bool big_endian>
723 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
724     Output_section* os,
725     unsigned int type,
726     Sized_relobj<size, big_endian>* relobj,
727     unsigned int shndx,
728     Address address)
729   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
730     is_relative_(false), is_section_symbol_(true), shndx_(shndx)
731 {
732   gold_assert(shndx != INVALID_CODE);
733   // this->type_ is a bitfield; make sure TYPE fits.
734   gold_assert(this->type_ == type);
735   this->u1_.os = os;
736   this->u2_.relobj = relobj;
737   if (dynamic)
738     this->set_needs_dynsym_index();
739   else
740     os->set_needs_symtab_index();
741 }
742
743 // Record that we need a dynamic symbol index for this relocation.
744
745 template<bool dynamic, int size, bool big_endian>
746 void
747 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
748 set_needs_dynsym_index()
749 {
750   if (this->is_relative_)
751     return;
752   switch (this->local_sym_index_)
753     {
754     case INVALID_CODE:
755       gold_unreachable();
756
757     case GSYM_CODE:
758       this->u1_.gsym->set_needs_dynsym_entry();
759       break;
760
761     case SECTION_CODE:
762       this->u1_.os->set_needs_dynsym_index();
763       break;
764
765     case 0:
766       break;
767
768     default:
769       {
770         const unsigned int lsi = this->local_sym_index_;
771         if (!this->is_section_symbol_)
772           this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
773         else
774           this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
775       }
776       break;
777     }
778 }
779
780 // Get the symbol index of a relocation.
781
782 template<bool dynamic, int size, bool big_endian>
783 unsigned int
784 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
785   const
786 {
787   unsigned int index;
788   switch (this->local_sym_index_)
789     {
790     case INVALID_CODE:
791       gold_unreachable();
792
793     case GSYM_CODE:
794       if (this->u1_.gsym == NULL)
795         index = 0;
796       else if (dynamic)
797         index = this->u1_.gsym->dynsym_index();
798       else
799         index = this->u1_.gsym->symtab_index();
800       break;
801
802     case SECTION_CODE:
803       if (dynamic)
804         index = this->u1_.os->dynsym_index();
805       else
806         index = this->u1_.os->symtab_index();
807       break;
808
809     case 0:
810       // Relocations without symbols use a symbol index of 0.
811       index = 0;
812       break;
813
814     default:
815       {
816         const unsigned int lsi = this->local_sym_index_;
817         if (!this->is_section_symbol_)
818           {
819             if (dynamic)
820               index = this->u1_.relobj->dynsym_index(lsi);
821             else
822               index = this->u1_.relobj->symtab_index(lsi);
823           }
824         else
825           {
826             Output_section* os = this->u1_.relobj->output_section(lsi);
827             gold_assert(os != NULL);
828             if (dynamic)
829               index = os->dynsym_index();
830             else
831               index = os->symtab_index();
832           }
833       }
834       break;
835     }
836   gold_assert(index != -1U);
837   return index;
838 }
839
840 // For a local section symbol, get the address of the offset ADDEND
841 // within the input section.
842
843 template<bool dynamic, int size, bool big_endian>
844 typename elfcpp::Elf_types<size>::Elf_Addr
845 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
846   local_section_offset(Addend addend) const
847 {
848   gold_assert(this->local_sym_index_ != GSYM_CODE
849               && this->local_sym_index_ != SECTION_CODE
850               && this->local_sym_index_ != INVALID_CODE
851               && this->is_section_symbol_);
852   const unsigned int lsi = this->local_sym_index_;
853   Output_section* os = this->u1_.relobj->output_section(lsi);
854   gold_assert(os != NULL);
855   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
856   if (offset != invalid_address)
857     return offset + addend;
858   // This is a merge section.
859   offset = os->output_address(this->u1_.relobj, lsi, addend);
860   gold_assert(offset != invalid_address);
861   return offset;
862 }
863
864 // Get the output address of a relocation.
865
866 template<bool dynamic, int size, bool big_endian>
867 typename elfcpp::Elf_types<size>::Elf_Addr
868 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
869 {
870   Address address = this->address_;
871   if (this->shndx_ != INVALID_CODE)
872     {
873       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
874       gold_assert(os != NULL);
875       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
876       if (off != invalid_address)
877         address += os->address() + off;
878       else
879         {
880           address = os->output_address(this->u2_.relobj, this->shndx_,
881                                        address);
882           gold_assert(address != invalid_address);
883         }
884     }
885   else if (this->u2_.od != NULL)
886     address += this->u2_.od->address();
887   return address;
888 }
889
890 // Write out the offset and info fields of a Rel or Rela relocation
891 // entry.
892
893 template<bool dynamic, int size, bool big_endian>
894 template<typename Write_rel>
895 void
896 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
897     Write_rel* wr) const
898 {
899   wr->put_r_offset(this->get_address());
900   unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
901   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
902 }
903
904 // Write out a Rel relocation.
905
906 template<bool dynamic, int size, bool big_endian>
907 void
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
909     unsigned char* pov) const
910 {
911   elfcpp::Rel_write<size, big_endian> orel(pov);
912   this->write_rel(&orel);
913 }
914
915 // Get the value of the symbol referred to by a Rel relocation.
916
917 template<bool dynamic, int size, bool big_endian>
918 typename elfcpp::Elf_types<size>::Elf_Addr
919 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
920     Addend addend) const
921 {
922   if (this->local_sym_index_ == GSYM_CODE)
923     {
924       const Sized_symbol<size>* sym;
925       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
926       return sym->value() + addend;
927     }
928   gold_assert(this->local_sym_index_ != SECTION_CODE
929               && this->local_sym_index_ != INVALID_CODE
930               && !this->is_section_symbol_);
931   const unsigned int lsi = this->local_sym_index_;
932   const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
933   return symval->value(this->u1_.relobj, addend);
934 }
935
936 // Reloc comparison.  This function sorts the dynamic relocs for the
937 // benefit of the dynamic linker.  First we sort all relative relocs
938 // to the front.  Among relative relocs, we sort by output address.
939 // Among non-relative relocs, we sort by symbol index, then by output
940 // address.
941
942 template<bool dynamic, int size, bool big_endian>
943 int
944 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
945   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
946     const
947 {
948   if (this->is_relative_)
949     {
950       if (!r2.is_relative_)
951         return -1;
952       // Otherwise sort by reloc address below.
953     }
954   else if (r2.is_relative_)
955     return 1;
956   else
957     {
958       unsigned int sym1 = this->get_symbol_index();
959       unsigned int sym2 = r2.get_symbol_index();
960       if (sym1 < sym2)
961         return -1;
962       else if (sym1 > sym2)
963         return 1;
964       // Otherwise sort by reloc address.
965     }
966
967   section_offset_type addr1 = this->get_address();
968   section_offset_type addr2 = r2.get_address();
969   if (addr1 < addr2)
970     return -1;
971   else if (addr1 > addr2)
972     return 1;
973
974   // Final tie breaker, in order to generate the same output on any
975   // host: reloc type.
976   unsigned int type1 = this->type_;
977   unsigned int type2 = r2.type_;
978   if (type1 < type2)
979     return -1;
980   else if (type1 > type2)
981     return 1;
982
983   // These relocs appear to be exactly the same.
984   return 0;
985 }
986
987 // Write out a Rela relocation.
988
989 template<bool dynamic, int size, bool big_endian>
990 void
991 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
992     unsigned char* pov) const
993 {
994   elfcpp::Rela_write<size, big_endian> orel(pov);
995   this->rel_.write_rel(&orel);
996   Addend addend = this->addend_;
997   if (this->rel_.is_relative())
998     addend = this->rel_.symbol_value(addend);
999   else if (this->rel_.is_local_section_symbol())
1000     addend = this->rel_.local_section_offset(addend);
1001   orel.put_r_addend(addend);
1002 }
1003
1004 // Output_data_reloc_base methods.
1005
1006 // Adjust the output section.
1007
1008 template<int sh_type, bool dynamic, int size, bool big_endian>
1009 void
1010 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1011     ::do_adjust_output_section(Output_section* os)
1012 {
1013   if (sh_type == elfcpp::SHT_REL)
1014     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1015   else if (sh_type == elfcpp::SHT_RELA)
1016     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1017   else
1018     gold_unreachable();
1019   if (dynamic)
1020     os->set_should_link_to_dynsym();
1021   else
1022     os->set_should_link_to_symtab();
1023 }
1024
1025 // Write out relocation data.
1026
1027 template<int sh_type, bool dynamic, int size, bool big_endian>
1028 void
1029 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1030     Output_file* of)
1031 {
1032   const off_t off = this->offset();
1033   const off_t oview_size = this->data_size();
1034   unsigned char* const oview = of->get_output_view(off, oview_size);
1035
1036   if (this->sort_relocs_)
1037     {
1038       gold_assert(dynamic);
1039       std::sort(this->relocs_.begin(), this->relocs_.end(),
1040                 Sort_relocs_comparison());
1041     }
1042
1043   unsigned char* pov = oview;
1044   for (typename Relocs::const_iterator p = this->relocs_.begin();
1045        p != this->relocs_.end();
1046        ++p)
1047     {
1048       p->write(pov);
1049       pov += reloc_size;
1050     }
1051
1052   gold_assert(pov - oview == oview_size);
1053
1054   of->write_output_view(off, oview_size, oview);
1055
1056   // We no longer need the relocation entries.
1057   this->relocs_.clear();
1058 }
1059
1060 // Class Output_relocatable_relocs.
1061
1062 template<int sh_type, int size, bool big_endian>
1063 void
1064 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1065 {
1066   this->set_data_size(this->rr_->output_reloc_count()
1067                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1068 }
1069
1070 // class Output_data_group.
1071
1072 template<int size, bool big_endian>
1073 Output_data_group<size, big_endian>::Output_data_group(
1074     Sized_relobj<size, big_endian>* relobj,
1075     section_size_type entry_count,
1076     elfcpp::Elf_Word flags,
1077     std::vector<unsigned int>* input_shndxes)
1078   : Output_section_data(entry_count * 4, 4),
1079     relobj_(relobj),
1080     flags_(flags)
1081 {
1082   this->input_shndxes_.swap(*input_shndxes);
1083 }
1084
1085 // Write out the section group, which means translating the section
1086 // indexes to apply to the output file.
1087
1088 template<int size, bool big_endian>
1089 void
1090 Output_data_group<size, big_endian>::do_write(Output_file* of)
1091 {
1092   const off_t off = this->offset();
1093   const section_size_type oview_size =
1094     convert_to_section_size_type(this->data_size());
1095   unsigned char* const oview = of->get_output_view(off, oview_size);
1096
1097   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1098   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1099   ++contents;
1100
1101   for (std::vector<unsigned int>::const_iterator p =
1102          this->input_shndxes_.begin();
1103        p != this->input_shndxes_.end();
1104        ++p, ++contents)
1105     {
1106       Output_section* os = this->relobj_->output_section(*p);
1107
1108       unsigned int output_shndx;
1109       if (os != NULL)
1110         output_shndx = os->out_shndx();
1111       else
1112         {
1113           this->relobj_->error(_("section group retained but "
1114                                  "group element discarded"));
1115           output_shndx = 0;
1116         }
1117
1118       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1119     }
1120
1121   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1122   gold_assert(wrote == oview_size);
1123
1124   of->write_output_view(off, oview_size, oview);
1125
1126   // We no longer need this information.
1127   this->input_shndxes_.clear();
1128 }
1129
1130 // Output_data_got::Got_entry methods.
1131
1132 // Write out the entry.
1133
1134 template<int size, bool big_endian>
1135 void
1136 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1137 {
1138   Valtype val = 0;
1139
1140   switch (this->local_sym_index_)
1141     {
1142     case GSYM_CODE:
1143       {
1144         // If the symbol is resolved locally, we need to write out the
1145         // link-time value, which will be relocated dynamically by a
1146         // RELATIVE relocation.
1147         Symbol* gsym = this->u_.gsym;
1148         Sized_symbol<size>* sgsym;
1149         // This cast is a bit ugly.  We don't want to put a
1150         // virtual method in Symbol, because we want Symbol to be
1151         // as small as possible.
1152         sgsym = static_cast<Sized_symbol<size>*>(gsym);
1153         val = sgsym->value();
1154       }
1155       break;
1156
1157     case CONSTANT_CODE:
1158       val = this->u_.constant;
1159       break;
1160
1161     default:
1162       {
1163         const unsigned int lsi = this->local_sym_index_;
1164         const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1165         val = symval->value(this->u_.object, 0);
1166       }
1167       break;
1168     }
1169
1170   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1171 }
1172
1173 // Output_data_got methods.
1174
1175 // Add an entry for a global symbol to the GOT.  This returns true if
1176 // this is a new GOT entry, false if the symbol already had a GOT
1177 // entry.
1178
1179 template<int size, bool big_endian>
1180 bool
1181 Output_data_got<size, big_endian>::add_global(
1182     Symbol* gsym,
1183     unsigned int got_type)
1184 {
1185   if (gsym->has_got_offset(got_type))
1186     return false;
1187
1188   this->entries_.push_back(Got_entry(gsym));
1189   this->set_got_size();
1190   gsym->set_got_offset(got_type, this->last_got_offset());
1191   return true;
1192 }
1193
1194 // Add an entry for a global symbol to the GOT, and add a dynamic
1195 // relocation of type R_TYPE for the GOT entry.
1196 template<int size, bool big_endian>
1197 void
1198 Output_data_got<size, big_endian>::add_global_with_rel(
1199     Symbol* gsym,
1200     unsigned int got_type,
1201     Rel_dyn* rel_dyn,
1202     unsigned int r_type)
1203 {
1204   if (gsym->has_got_offset(got_type))
1205     return;
1206
1207   this->entries_.push_back(Got_entry());
1208   this->set_got_size();
1209   unsigned int got_offset = this->last_got_offset();
1210   gsym->set_got_offset(got_type, got_offset);
1211   rel_dyn->add_global(gsym, r_type, this, got_offset);
1212 }
1213
1214 template<int size, bool big_endian>
1215 void
1216 Output_data_got<size, big_endian>::add_global_with_rela(
1217     Symbol* gsym,
1218     unsigned int got_type,
1219     Rela_dyn* rela_dyn,
1220     unsigned int r_type)
1221 {
1222   if (gsym->has_got_offset(got_type))
1223     return;
1224
1225   this->entries_.push_back(Got_entry());
1226   this->set_got_size();
1227   unsigned int got_offset = this->last_got_offset();
1228   gsym->set_got_offset(got_type, got_offset);
1229   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1230 }
1231
1232 // Add a pair of entries for a global symbol to the GOT, and add
1233 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1234 // If R_TYPE_2 == 0, add the second entry with no relocation.
1235 template<int size, bool big_endian>
1236 void
1237 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1238     Symbol* gsym,
1239     unsigned int got_type,
1240     Rel_dyn* rel_dyn,
1241     unsigned int r_type_1,
1242     unsigned int r_type_2)
1243 {
1244   if (gsym->has_got_offset(got_type))
1245     return;
1246
1247   this->entries_.push_back(Got_entry());
1248   unsigned int got_offset = this->last_got_offset();
1249   gsym->set_got_offset(got_type, got_offset);
1250   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1251
1252   this->entries_.push_back(Got_entry());
1253   if (r_type_2 != 0)
1254     {
1255       got_offset = this->last_got_offset();
1256       rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1257     }
1258
1259   this->set_got_size();
1260 }
1261
1262 template<int size, bool big_endian>
1263 void
1264 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1265     Symbol* gsym,
1266     unsigned int got_type,
1267     Rela_dyn* rela_dyn,
1268     unsigned int r_type_1,
1269     unsigned int r_type_2)
1270 {
1271   if (gsym->has_got_offset(got_type))
1272     return;
1273
1274   this->entries_.push_back(Got_entry());
1275   unsigned int got_offset = this->last_got_offset();
1276   gsym->set_got_offset(got_type, got_offset);
1277   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1278
1279   this->entries_.push_back(Got_entry());
1280   if (r_type_2 != 0)
1281     {
1282       got_offset = this->last_got_offset();
1283       rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1284     }
1285
1286   this->set_got_size();
1287 }
1288
1289 // Add an entry for a local symbol to the GOT.  This returns true if
1290 // this is a new GOT entry, false if the symbol already has a GOT
1291 // entry.
1292
1293 template<int size, bool big_endian>
1294 bool
1295 Output_data_got<size, big_endian>::add_local(
1296     Sized_relobj<size, big_endian>* object,
1297     unsigned int symndx,
1298     unsigned int got_type)
1299 {
1300   if (object->local_has_got_offset(symndx, got_type))
1301     return false;
1302
1303   this->entries_.push_back(Got_entry(object, symndx));
1304   this->set_got_size();
1305   object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1306   return true;
1307 }
1308
1309 // Add an entry for a local symbol to the GOT, and add a dynamic
1310 // relocation of type R_TYPE for the GOT entry.
1311 template<int size, bool big_endian>
1312 void
1313 Output_data_got<size, big_endian>::add_local_with_rel(
1314     Sized_relobj<size, big_endian>* object,
1315     unsigned int symndx,
1316     unsigned int got_type,
1317     Rel_dyn* rel_dyn,
1318     unsigned int r_type)
1319 {
1320   if (object->local_has_got_offset(symndx, got_type))
1321     return;
1322
1323   this->entries_.push_back(Got_entry());
1324   this->set_got_size();
1325   unsigned int got_offset = this->last_got_offset();
1326   object->set_local_got_offset(symndx, got_type, got_offset);
1327   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1328 }
1329
1330 template<int size, bool big_endian>
1331 void
1332 Output_data_got<size, big_endian>::add_local_with_rela(
1333     Sized_relobj<size, big_endian>* object,
1334     unsigned int symndx,
1335     unsigned int got_type,
1336     Rela_dyn* rela_dyn,
1337     unsigned int r_type)
1338 {
1339   if (object->local_has_got_offset(symndx, got_type))
1340     return;
1341
1342   this->entries_.push_back(Got_entry());
1343   this->set_got_size();
1344   unsigned int got_offset = this->last_got_offset();
1345   object->set_local_got_offset(symndx, got_type, got_offset);
1346   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1347 }
1348
1349 // Add a pair of entries for a local symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size, bool big_endian>
1353 void
1354 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1355     Sized_relobj<size, big_endian>* object,
1356     unsigned int symndx,
1357     unsigned int shndx,
1358     unsigned int got_type,
1359     Rel_dyn* rel_dyn,
1360     unsigned int r_type_1,
1361     unsigned int r_type_2)
1362 {
1363   if (object->local_has_got_offset(symndx, got_type))
1364     return;
1365
1366   this->entries_.push_back(Got_entry());
1367   unsigned int got_offset = this->last_got_offset();
1368   object->set_local_got_offset(symndx, got_type, got_offset);
1369   Output_section* os = object->output_section(shndx);
1370   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1371
1372   this->entries_.push_back(Got_entry(object, symndx));
1373   if (r_type_2 != 0)
1374     {
1375       got_offset = this->last_got_offset();
1376       rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1377     }
1378
1379   this->set_got_size();
1380 }
1381
1382 template<int size, bool big_endian>
1383 void
1384 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1385     Sized_relobj<size, big_endian>* object,
1386     unsigned int symndx,
1387     unsigned int shndx,
1388     unsigned int got_type,
1389     Rela_dyn* rela_dyn,
1390     unsigned int r_type_1,
1391     unsigned int r_type_2)
1392 {
1393   if (object->local_has_got_offset(symndx, got_type))
1394     return;
1395
1396   this->entries_.push_back(Got_entry());
1397   unsigned int got_offset = this->last_got_offset();
1398   object->set_local_got_offset(symndx, got_type, got_offset);
1399   Output_section* os = object->output_section(shndx);
1400   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1401
1402   this->entries_.push_back(Got_entry(object, symndx));
1403   if (r_type_2 != 0)
1404     {
1405       got_offset = this->last_got_offset();
1406       rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1407     }
1408
1409   this->set_got_size();
1410 }
1411
1412 // Write out the GOT.
1413
1414 template<int size, bool big_endian>
1415 void
1416 Output_data_got<size, big_endian>::do_write(Output_file* of)
1417 {
1418   const int add = size / 8;
1419
1420   const off_t off = this->offset();
1421   const off_t oview_size = this->data_size();
1422   unsigned char* const oview = of->get_output_view(off, oview_size);
1423
1424   unsigned char* pov = oview;
1425   for (typename Got_entries::const_iterator p = this->entries_.begin();
1426        p != this->entries_.end();
1427        ++p)
1428     {
1429       p->write(pov);
1430       pov += add;
1431     }
1432
1433   gold_assert(pov - oview == oview_size);
1434
1435   of->write_output_view(off, oview_size, oview);
1436
1437   // We no longer need the GOT entries.
1438   this->entries_.clear();
1439 }
1440
1441 // Output_data_dynamic::Dynamic_entry methods.
1442
1443 // Write out the entry.
1444
1445 template<int size, bool big_endian>
1446 void
1447 Output_data_dynamic::Dynamic_entry::write(
1448     unsigned char* pov,
1449     const Stringpool* pool) const
1450 {
1451   typename elfcpp::Elf_types<size>::Elf_WXword val;
1452   switch (this->offset_)
1453     {
1454     case DYNAMIC_NUMBER:
1455       val = this->u_.val;
1456       break;
1457
1458     case DYNAMIC_SECTION_SIZE:
1459       val = this->u_.od->data_size();
1460       break;
1461
1462     case DYNAMIC_SYMBOL:
1463       {
1464         const Sized_symbol<size>* s =
1465           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1466         val = s->value();
1467       }
1468       break;
1469
1470     case DYNAMIC_STRING:
1471       val = pool->get_offset(this->u_.str);
1472       break;
1473
1474     default:
1475       val = this->u_.od->address() + this->offset_;
1476       break;
1477     }
1478
1479   elfcpp::Dyn_write<size, big_endian> dw(pov);
1480   dw.put_d_tag(this->tag_);
1481   dw.put_d_val(val);
1482 }
1483
1484 // Output_data_dynamic methods.
1485
1486 // Adjust the output section to set the entry size.
1487
1488 void
1489 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1490 {
1491   if (parameters->target().get_size() == 32)
1492     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1493   else if (parameters->target().get_size() == 64)
1494     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1495   else
1496     gold_unreachable();
1497 }
1498
1499 // Set the final data size.
1500
1501 void
1502 Output_data_dynamic::set_final_data_size()
1503 {
1504   // Add the terminating entry.
1505   this->add_constant(elfcpp::DT_NULL, 0);
1506
1507   int dyn_size;
1508   if (parameters->target().get_size() == 32)
1509     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1510   else if (parameters->target().get_size() == 64)
1511     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1512   else
1513     gold_unreachable();
1514   this->set_data_size(this->entries_.size() * dyn_size);
1515 }
1516
1517 // Write out the dynamic entries.
1518
1519 void
1520 Output_data_dynamic::do_write(Output_file* of)
1521 {
1522   switch (parameters->size_and_endianness())
1523     {
1524 #ifdef HAVE_TARGET_32_LITTLE
1525     case Parameters::TARGET_32_LITTLE:
1526       this->sized_write<32, false>(of);
1527       break;
1528 #endif
1529 #ifdef HAVE_TARGET_32_BIG
1530     case Parameters::TARGET_32_BIG:
1531       this->sized_write<32, true>(of);
1532       break;
1533 #endif
1534 #ifdef HAVE_TARGET_64_LITTLE
1535     case Parameters::TARGET_64_LITTLE:
1536       this->sized_write<64, false>(of);
1537       break;
1538 #endif
1539 #ifdef HAVE_TARGET_64_BIG
1540     case Parameters::TARGET_64_BIG:
1541       this->sized_write<64, true>(of);
1542       break;
1543 #endif
1544     default:
1545       gold_unreachable();
1546     }
1547 }
1548
1549 template<int size, bool big_endian>
1550 void
1551 Output_data_dynamic::sized_write(Output_file* of)
1552 {
1553   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1554
1555   const off_t offset = this->offset();
1556   const off_t oview_size = this->data_size();
1557   unsigned char* const oview = of->get_output_view(offset, oview_size);
1558
1559   unsigned char* pov = oview;
1560   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1561        p != this->entries_.end();
1562        ++p)
1563     {
1564       p->write<size, big_endian>(pov, this->pool_);
1565       pov += dyn_size;
1566     }
1567
1568   gold_assert(pov - oview == oview_size);
1569
1570   of->write_output_view(offset, oview_size, oview);
1571
1572   // We no longer need the dynamic entries.
1573   this->entries_.clear();
1574 }
1575
1576 // Class Output_symtab_xindex.
1577
1578 void
1579 Output_symtab_xindex::do_write(Output_file* of)
1580 {
1581   const off_t offset = this->offset();
1582   const off_t oview_size = this->data_size();
1583   unsigned char* const oview = of->get_output_view(offset, oview_size);
1584
1585   memset(oview, 0, oview_size);
1586
1587   if (parameters->target().is_big_endian())
1588     this->endian_do_write<true>(oview);
1589   else
1590     this->endian_do_write<false>(oview);
1591
1592   of->write_output_view(offset, oview_size, oview);
1593
1594   // We no longer need the data.
1595   this->entries_.clear();
1596 }
1597
1598 template<bool big_endian>
1599 void
1600 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1601 {
1602   for (Xindex_entries::const_iterator p = this->entries_.begin();
1603        p != this->entries_.end();
1604        ++p)
1605     elfcpp::Swap<32, big_endian>::writeval(oview + p->first * 4, p->second);
1606 }
1607
1608 // Output_section::Input_section methods.
1609
1610 // Return the data size.  For an input section we store the size here.
1611 // For an Output_section_data, we have to ask it for the size.
1612
1613 off_t
1614 Output_section::Input_section::data_size() const
1615 {
1616   if (this->is_input_section())
1617     return this->u1_.data_size;
1618   else
1619     return this->u2_.posd->data_size();
1620 }
1621
1622 // Set the address and file offset.
1623
1624 void
1625 Output_section::Input_section::set_address_and_file_offset(
1626     uint64_t address,
1627     off_t file_offset,
1628     off_t section_file_offset)
1629 {
1630   if (this->is_input_section())
1631     this->u2_.object->set_section_offset(this->shndx_,
1632                                          file_offset - section_file_offset);
1633   else
1634     this->u2_.posd->set_address_and_file_offset(address, file_offset);
1635 }
1636
1637 // Reset the address and file offset.
1638
1639 void
1640 Output_section::Input_section::reset_address_and_file_offset()
1641 {
1642   if (!this->is_input_section())
1643     this->u2_.posd->reset_address_and_file_offset();
1644 }
1645
1646 // Finalize the data size.
1647
1648 void
1649 Output_section::Input_section::finalize_data_size()
1650 {
1651   if (!this->is_input_section())
1652     this->u2_.posd->finalize_data_size();
1653 }
1654
1655 // Try to turn an input offset into an output offset.  We want to
1656 // return the output offset relative to the start of this
1657 // Input_section in the output section.
1658
1659 inline bool
1660 Output_section::Input_section::output_offset(
1661     const Relobj* object,
1662     unsigned int shndx,
1663     section_offset_type offset,
1664     section_offset_type *poutput) const
1665 {
1666   if (!this->is_input_section())
1667     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1668   else
1669     {
1670       if (this->shndx_ != shndx || this->u2_.object != object)
1671         return false;
1672       *poutput = offset;
1673       return true;
1674     }
1675 }
1676
1677 // Return whether this is the merge section for the input section
1678 // SHNDX in OBJECT.
1679
1680 inline bool
1681 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1682                                                     unsigned int shndx) const
1683 {
1684   if (this->is_input_section())
1685     return false;
1686   return this->u2_.posd->is_merge_section_for(object, shndx);
1687 }
1688
1689 // Write out the data.  We don't have to do anything for an input
1690 // section--they are handled via Object::relocate--but this is where
1691 // we write out the data for an Output_section_data.
1692
1693 void
1694 Output_section::Input_section::write(Output_file* of)
1695 {
1696   if (!this->is_input_section())
1697     this->u2_.posd->write(of);
1698 }
1699
1700 // Write the data to a buffer.  As for write(), we don't have to do
1701 // anything for an input section.
1702
1703 void
1704 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1705 {
1706   if (!this->is_input_section())
1707     this->u2_.posd->write_to_buffer(buffer);
1708 }
1709
1710 // Print to a map file.
1711
1712 void
1713 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1714 {
1715   switch (this->shndx_)
1716     {
1717     case OUTPUT_SECTION_CODE:
1718     case MERGE_DATA_SECTION_CODE:
1719     case MERGE_STRING_SECTION_CODE:
1720       this->u2_.posd->print_to_mapfile(mapfile);
1721       break;
1722
1723     default:
1724       mapfile->print_input_section(this->u2_.object, this->shndx_);
1725       break;
1726     }
1727 }
1728
1729 // Output_section methods.
1730
1731 // Construct an Output_section.  NAME will point into a Stringpool.
1732
1733 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1734                                elfcpp::Elf_Xword flags)
1735   : name_(name),
1736     addralign_(0),
1737     entsize_(0),
1738     load_address_(0),
1739     link_section_(NULL),
1740     link_(0),
1741     info_section_(NULL),
1742     info_symndx_(NULL),
1743     info_(0),
1744     type_(type),
1745     flags_(flags),
1746     out_shndx_(-1U),
1747     symtab_index_(0),
1748     dynsym_index_(0),
1749     input_sections_(),
1750     first_input_offset_(0),
1751     fills_(),
1752     postprocessing_buffer_(NULL),
1753     needs_symtab_index_(false),
1754     needs_dynsym_index_(false),
1755     should_link_to_symtab_(false),
1756     should_link_to_dynsym_(false),
1757     after_input_sections_(false),
1758     requires_postprocessing_(false),
1759     found_in_sections_clause_(false),
1760     has_load_address_(false),
1761     info_uses_section_index_(false),
1762     may_sort_attached_input_sections_(false),
1763     must_sort_attached_input_sections_(false),
1764     attached_input_sections_are_sorted_(false),
1765     is_relro_(false),
1766     is_relro_local_(false),
1767     is_small_section_(false),
1768     is_large_section_(false),
1769     tls_offset_(0)
1770 {
1771   // An unallocated section has no address.  Forcing this means that
1772   // we don't need special treatment for symbols defined in debug
1773   // sections.
1774   if ((flags & elfcpp::SHF_ALLOC) == 0)
1775     this->set_address(0);
1776 }
1777
1778 Output_section::~Output_section()
1779 {
1780 }
1781
1782 // Set the entry size.
1783
1784 void
1785 Output_section::set_entsize(uint64_t v)
1786 {
1787   if (this->entsize_ == 0)
1788     this->entsize_ = v;
1789   else
1790     gold_assert(this->entsize_ == v);
1791 }
1792
1793 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1794 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
1795 // relocation section which applies to this section, or 0 if none, or
1796 // -1U if more than one.  Return the offset of the input section
1797 // within the output section.  Return -1 if the input section will
1798 // receive special handling.  In the normal case we don't always keep
1799 // track of input sections for an Output_section.  Instead, each
1800 // Object keeps track of the Output_section for each of its input
1801 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1802 // track of input sections here; this is used when SECTIONS appears in
1803 // a linker script.
1804
1805 template<int size, bool big_endian>
1806 off_t
1807 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1808                                   unsigned int shndx,
1809                                   const char* secname,
1810                                   const elfcpp::Shdr<size, big_endian>& shdr,
1811                                   unsigned int reloc_shndx,
1812                                   bool have_sections_script)
1813 {
1814   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1815   if ((addralign & (addralign - 1)) != 0)
1816     {
1817       object->error(_("invalid alignment %lu for section \"%s\""),
1818                     static_cast<unsigned long>(addralign), secname);
1819       addralign = 1;
1820     }
1821
1822   if (addralign > this->addralign_)
1823     this->addralign_ = addralign;
1824
1825   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1826   this->update_flags_for_input_section(sh_flags);
1827
1828   uint64_t entsize = shdr.get_sh_entsize();
1829
1830   // .debug_str is a mergeable string section, but is not always so
1831   // marked by compilers.  Mark manually here so we can optimize.
1832   if (strcmp(secname, ".debug_str") == 0)
1833     {
1834       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1835       entsize = 1;
1836     }
1837
1838   // If this is a SHF_MERGE section, we pass all the input sections to
1839   // a Output_data_merge.  We don't try to handle relocations for such
1840   // a section.  We don't try to handle empty merge sections--they
1841   // mess up the mappings, and are useless anyhow.
1842   if ((sh_flags & elfcpp::SHF_MERGE) != 0
1843       && reloc_shndx == 0
1844       && shdr.get_sh_size() > 0)
1845     {
1846       if (this->add_merge_input_section(object, shndx, sh_flags,
1847                                         entsize, addralign))
1848         {
1849           // Tell the relocation routines that they need to call the
1850           // output_offset method to determine the final address.
1851           return -1;
1852         }
1853     }
1854
1855   off_t offset_in_section = this->current_data_size_for_child();
1856   off_t aligned_offset_in_section = align_address(offset_in_section,
1857                                                   addralign);
1858
1859   if (aligned_offset_in_section > offset_in_section
1860       && !have_sections_script
1861       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1862       && object->target()->has_code_fill())
1863     {
1864       // We need to add some fill data.  Using fill_list_ when
1865       // possible is an optimization, since we will often have fill
1866       // sections without input sections.
1867       off_t fill_len = aligned_offset_in_section - offset_in_section;
1868       if (this->input_sections_.empty())
1869         this->fills_.push_back(Fill(offset_in_section, fill_len));
1870       else
1871         {
1872           // FIXME: When relaxing, the size needs to adjust to
1873           // maintain a constant alignment.
1874           std::string fill_data(object->target()->code_fill(fill_len));
1875           Output_data_const* odc = new Output_data_const(fill_data, 1);
1876           this->input_sections_.push_back(Input_section(odc));
1877         }
1878     }
1879
1880   this->set_current_data_size_for_child(aligned_offset_in_section
1881                                         + shdr.get_sh_size());
1882
1883   // We need to keep track of this section if we are already keeping
1884   // track of sections, or if we are relaxing.  Also, if this is a
1885   // section which requires sorting, or which may require sorting in
1886   // the future, we keep track of the sections.  FIXME: Add test for
1887   // relaxing.
1888   if (have_sections_script
1889       || !this->input_sections_.empty()
1890       || this->may_sort_attached_input_sections()
1891       || this->must_sort_attached_input_sections()
1892       || parameters->options().user_set_Map())
1893     this->input_sections_.push_back(Input_section(object, shndx,
1894                                                   shdr.get_sh_size(),
1895                                                   addralign));
1896
1897   return aligned_offset_in_section;
1898 }
1899
1900 // Add arbitrary data to an output section.
1901
1902 void
1903 Output_section::add_output_section_data(Output_section_data* posd)
1904 {
1905   Input_section inp(posd);
1906   this->add_output_section_data(&inp);
1907
1908   if (posd->is_data_size_valid())
1909     {
1910       off_t offset_in_section = this->current_data_size_for_child();
1911       off_t aligned_offset_in_section = align_address(offset_in_section,
1912                                                       posd->addralign());
1913       this->set_current_data_size_for_child(aligned_offset_in_section
1914                                             + posd->data_size());
1915     }
1916 }
1917
1918 // Add arbitrary data to an output section by Input_section.
1919
1920 void
1921 Output_section::add_output_section_data(Input_section* inp)
1922 {
1923   if (this->input_sections_.empty())
1924     this->first_input_offset_ = this->current_data_size_for_child();
1925
1926   this->input_sections_.push_back(*inp);
1927
1928   uint64_t addralign = inp->addralign();
1929   if (addralign > this->addralign_)
1930     this->addralign_ = addralign;
1931
1932   inp->set_output_section(this);
1933 }
1934
1935 // Add a merge section to an output section.
1936
1937 void
1938 Output_section::add_output_merge_section(Output_section_data* posd,
1939                                          bool is_string, uint64_t entsize)
1940 {
1941   Input_section inp(posd, is_string, entsize);
1942   this->add_output_section_data(&inp);
1943 }
1944
1945 // Add an input section to a SHF_MERGE section.
1946
1947 bool
1948 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1949                                         uint64_t flags, uint64_t entsize,
1950                                         uint64_t addralign)
1951 {
1952   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1953
1954   // We only merge strings if the alignment is not more than the
1955   // character size.  This could be handled, but it's unusual.
1956   if (is_string && addralign > entsize)
1957     return false;
1958
1959   Input_section_list::iterator p;
1960   for (p = this->input_sections_.begin();
1961        p != this->input_sections_.end();
1962        ++p)
1963     if (p->is_merge_section(is_string, entsize, addralign))
1964       {
1965         p->add_input_section(object, shndx);
1966         return true;
1967       }
1968
1969   // We handle the actual constant merging in Output_merge_data or
1970   // Output_merge_string_data.
1971   Output_section_data* posd;
1972   if (!is_string)
1973     posd = new Output_merge_data(entsize, addralign);
1974   else
1975     {
1976       switch (entsize)
1977         {
1978         case 1:
1979           posd = new Output_merge_string<char>(addralign);
1980           break;
1981         case 2:
1982           posd = new Output_merge_string<uint16_t>(addralign);
1983           break;
1984         case 4:
1985           posd = new Output_merge_string<uint32_t>(addralign);
1986           break;
1987         default:
1988           return false;
1989         }
1990     }
1991
1992   this->add_output_merge_section(posd, is_string, entsize);
1993   posd->add_input_section(object, shndx);
1994
1995   return true;
1996 }
1997
1998 // Update the output section flags based on input section flags.
1999
2000 void
2001 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2002 {
2003   // If we created the section with SHF_ALLOC clear, we set the
2004   // address.  If we are now setting the SHF_ALLOC flag, we need to
2005   // undo that.
2006   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2007       && (flags & elfcpp::SHF_ALLOC) != 0)
2008     this->mark_address_invalid();
2009
2010   this->flags_ |= (flags
2011                    & (elfcpp::SHF_WRITE
2012                       | elfcpp::SHF_ALLOC
2013                       | elfcpp::SHF_EXECINSTR));
2014 }
2015
2016 // Given an address OFFSET relative to the start of input section
2017 // SHNDX in OBJECT, return whether this address is being included in
2018 // the final link.  This should only be called if SHNDX in OBJECT has
2019 // a special mapping.
2020
2021 bool
2022 Output_section::is_input_address_mapped(const Relobj* object,
2023                                         unsigned int shndx,
2024                                         off_t offset) const
2025 {
2026   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2027        p != this->input_sections_.end();
2028        ++p)
2029     {
2030       section_offset_type output_offset;
2031       if (p->output_offset(object, shndx, offset, &output_offset))
2032         return output_offset != -1;
2033     }
2034
2035   // By default we assume that the address is mapped.  This should
2036   // only be called after we have passed all sections to Layout.  At
2037   // that point we should know what we are discarding.
2038   return true;
2039 }
2040
2041 // Given an address OFFSET relative to the start of input section
2042 // SHNDX in object OBJECT, return the output offset relative to the
2043 // start of the input section in the output section.  This should only
2044 // be called if SHNDX in OBJECT has a special mapping.
2045
2046 section_offset_type
2047 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2048                               section_offset_type offset) const
2049 {
2050   // This can only be called meaningfully when layout is complete.
2051   gold_assert(Output_data::is_layout_complete());
2052
2053   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2054        p != this->input_sections_.end();
2055        ++p)
2056     {
2057       section_offset_type output_offset;
2058       if (p->output_offset(object, shndx, offset, &output_offset))
2059         return output_offset;
2060     }
2061   gold_unreachable();
2062 }
2063
2064 // Return the output virtual address of OFFSET relative to the start
2065 // of input section SHNDX in object OBJECT.
2066
2067 uint64_t
2068 Output_section::output_address(const Relobj* object, unsigned int shndx,
2069                                off_t offset) const
2070 {
2071   uint64_t addr = this->address() + this->first_input_offset_;
2072   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2073        p != this->input_sections_.end();
2074        ++p)
2075     {
2076       addr = align_address(addr, p->addralign());
2077       section_offset_type output_offset;
2078       if (p->output_offset(object, shndx, offset, &output_offset))
2079         {
2080           if (output_offset == -1)
2081             return -1ULL;
2082           return addr + output_offset;
2083         }
2084       addr += p->data_size();
2085     }
2086
2087   // If we get here, it means that we don't know the mapping for this
2088   // input section.  This might happen in principle if
2089   // add_input_section were called before add_output_section_data.
2090   // But it should never actually happen.
2091
2092   gold_unreachable();
2093 }
2094
2095 // Find the output address of the start of the merged section for
2096 // input section SHNDX in object OBJECT.
2097
2098 bool
2099 Output_section::find_starting_output_address(const Relobj* object,
2100                                              unsigned int shndx,
2101                                              uint64_t* paddr) const
2102 {
2103   uint64_t addr = this->address() + this->first_input_offset_;
2104   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2105        p != this->input_sections_.end();
2106        ++p)
2107     {
2108       addr = align_address(addr, p->addralign());
2109
2110       // It would be nice if we could use the existing output_offset
2111       // method to get the output offset of input offset 0.
2112       // Unfortunately we don't know for sure that input offset 0 is
2113       // mapped at all.
2114       if (p->is_merge_section_for(object, shndx))
2115         {
2116           *paddr = addr;
2117           return true;
2118         }
2119
2120       addr += p->data_size();
2121     }
2122
2123   // We couldn't find a merge output section for this input section.
2124   return false;
2125 }
2126
2127 // Set the data size of an Output_section.  This is where we handle
2128 // setting the addresses of any Output_section_data objects.
2129
2130 void
2131 Output_section::set_final_data_size()
2132 {
2133   if (this->input_sections_.empty())
2134     {
2135       this->set_data_size(this->current_data_size_for_child());
2136       return;
2137     }
2138
2139   if (this->must_sort_attached_input_sections())
2140     this->sort_attached_input_sections();
2141
2142   uint64_t address = this->address();
2143   off_t startoff = this->offset();
2144   off_t off = startoff + this->first_input_offset_;
2145   for (Input_section_list::iterator p = this->input_sections_.begin();
2146        p != this->input_sections_.end();
2147        ++p)
2148     {
2149       off = align_address(off, p->addralign());
2150       p->set_address_and_file_offset(address + (off - startoff), off,
2151                                      startoff);
2152       off += p->data_size();
2153     }
2154
2155   this->set_data_size(off - startoff);
2156 }
2157
2158 // Reset the address and file offset.
2159
2160 void
2161 Output_section::do_reset_address_and_file_offset()
2162 {
2163   for (Input_section_list::iterator p = this->input_sections_.begin();
2164        p != this->input_sections_.end();
2165        ++p)
2166     p->reset_address_and_file_offset();
2167 }
2168
2169 // Set the TLS offset.  Called only for SHT_TLS sections.
2170
2171 void
2172 Output_section::do_set_tls_offset(uint64_t tls_base)
2173 {
2174   this->tls_offset_ = this->address() - tls_base;
2175 }
2176
2177 // In a few cases we need to sort the input sections attached to an
2178 // output section.  This is used to implement the type of constructor
2179 // priority ordering implemented by the GNU linker, in which the
2180 // priority becomes part of the section name and the sections are
2181 // sorted by name.  We only do this for an output section if we see an
2182 // attached input section matching ".ctor.*", ".dtor.*",
2183 // ".init_array.*" or ".fini_array.*".
2184
2185 class Output_section::Input_section_sort_entry
2186 {
2187  public:
2188   Input_section_sort_entry()
2189     : input_section_(), index_(-1U), section_has_name_(false),
2190       section_name_()
2191   { }
2192
2193   Input_section_sort_entry(const Input_section& input_section,
2194                            unsigned int index)
2195     : input_section_(input_section), index_(index),
2196       section_has_name_(input_section.is_input_section())
2197   {
2198     if (this->section_has_name_)
2199       {
2200         // This is only called single-threaded from Layout::finalize,
2201         // so it is OK to lock.  Unfortunately we have no way to pass
2202         // in a Task token.
2203         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2204         Object* obj = input_section.relobj();
2205         Task_lock_obj<Object> tl(dummy_task, obj);
2206
2207         // This is a slow operation, which should be cached in
2208         // Layout::layout if this becomes a speed problem.
2209         this->section_name_ = obj->section_name(input_section.shndx());
2210       }
2211   }
2212
2213   // Return the Input_section.
2214   const Input_section&
2215   input_section() const
2216   {
2217     gold_assert(this->index_ != -1U);
2218     return this->input_section_;
2219   }
2220
2221   // The index of this entry in the original list.  This is used to
2222   // make the sort stable.
2223   unsigned int
2224   index() const
2225   {
2226     gold_assert(this->index_ != -1U);
2227     return this->index_;
2228   }
2229
2230   // Whether there is a section name.
2231   bool
2232   section_has_name() const
2233   { return this->section_has_name_; }
2234
2235   // The section name.
2236   const std::string&
2237   section_name() const
2238   {
2239     gold_assert(this->section_has_name_);
2240     return this->section_name_;
2241   }
2242
2243   // Return true if the section name has a priority.  This is assumed
2244   // to be true if it has a dot after the initial dot.
2245   bool
2246   has_priority() const
2247   {
2248     gold_assert(this->section_has_name_);
2249     return this->section_name_.find('.', 1);
2250   }
2251
2252   // Return true if this an input file whose base name matches
2253   // FILE_NAME.  The base name must have an extension of ".o", and
2254   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2255   // This is to match crtbegin.o as well as crtbeginS.o without
2256   // getting confused by other possibilities.  Overall matching the
2257   // file name this way is a dreadful hack, but the GNU linker does it
2258   // in order to better support gcc, and we need to be compatible.
2259   bool
2260   match_file_name(const char* match_file_name) const
2261   {
2262     const std::string& file_name(this->input_section_.relobj()->name());
2263     const char* base_name = lbasename(file_name.c_str());
2264     size_t match_len = strlen(match_file_name);
2265     if (strncmp(base_name, match_file_name, match_len) != 0)
2266       return false;
2267     size_t base_len = strlen(base_name);
2268     if (base_len != match_len + 2 && base_len != match_len + 3)
2269       return false;
2270     return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2271   }
2272
2273  private:
2274   // The Input_section we are sorting.
2275   Input_section input_section_;
2276   // The index of this Input_section in the original list.
2277   unsigned int index_;
2278   // Whether this Input_section has a section name--it won't if this
2279   // is some random Output_section_data.
2280   bool section_has_name_;
2281   // The section name if there is one.
2282   std::string section_name_;
2283 };
2284
2285 // Return true if S1 should come before S2 in the output section.
2286
2287 bool
2288 Output_section::Input_section_sort_compare::operator()(
2289     const Output_section::Input_section_sort_entry& s1,
2290     const Output_section::Input_section_sort_entry& s2) const
2291 {
2292   // crtbegin.o must come first.
2293   bool s1_begin = s1.match_file_name("crtbegin");
2294   bool s2_begin = s2.match_file_name("crtbegin");
2295   if (s1_begin || s2_begin)
2296     {
2297       if (!s1_begin)
2298         return false;
2299       if (!s2_begin)
2300         return true;
2301       return s1.index() < s2.index();
2302     }
2303
2304   // crtend.o must come last.
2305   bool s1_end = s1.match_file_name("crtend");
2306   bool s2_end = s2.match_file_name("crtend");
2307   if (s1_end || s2_end)
2308     {
2309       if (!s1_end)
2310         return true;
2311       if (!s2_end)
2312         return false;
2313       return s1.index() < s2.index();
2314     }
2315
2316   // We sort all the sections with no names to the end.
2317   if (!s1.section_has_name() || !s2.section_has_name())
2318     {
2319       if (s1.section_has_name())
2320         return true;
2321       if (s2.section_has_name())
2322         return false;
2323       return s1.index() < s2.index();
2324     }
2325
2326   // A section with a priority follows a section without a priority.
2327   // The GNU linker does this for all but .init_array sections; until
2328   // further notice we'll assume that that is an mistake.
2329   bool s1_has_priority = s1.has_priority();
2330   bool s2_has_priority = s2.has_priority();
2331   if (s1_has_priority && !s2_has_priority)
2332     return false;
2333   if (!s1_has_priority && s2_has_priority)
2334     return true;
2335
2336   // Otherwise we sort by name.
2337   int compare = s1.section_name().compare(s2.section_name());
2338   if (compare != 0)
2339     return compare < 0;
2340
2341   // Otherwise we keep the input order.
2342   return s1.index() < s2.index();
2343 }
2344
2345 // Sort the input sections attached to an output section.
2346
2347 void
2348 Output_section::sort_attached_input_sections()
2349 {
2350   if (this->attached_input_sections_are_sorted_)
2351     return;
2352
2353   // The only thing we know about an input section is the object and
2354   // the section index.  We need the section name.  Recomputing this
2355   // is slow but this is an unusual case.  If this becomes a speed
2356   // problem we can cache the names as required in Layout::layout.
2357
2358   // We start by building a larger vector holding a copy of each
2359   // Input_section, plus its current index in the list and its name.
2360   std::vector<Input_section_sort_entry> sort_list;
2361
2362   unsigned int i = 0;
2363   for (Input_section_list::iterator p = this->input_sections_.begin();
2364        p != this->input_sections_.end();
2365        ++p, ++i)
2366     sort_list.push_back(Input_section_sort_entry(*p, i));
2367
2368   // Sort the input sections.
2369   std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2370
2371   // Copy the sorted input sections back to our list.
2372   this->input_sections_.clear();
2373   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2374        p != sort_list.end();
2375        ++p)
2376     this->input_sections_.push_back(p->input_section());
2377
2378   // Remember that we sorted the input sections, since we might get
2379   // called again.
2380   this->attached_input_sections_are_sorted_ = true;
2381 }
2382
2383 // Write the section header to *OSHDR.
2384
2385 template<int size, bool big_endian>
2386 void
2387 Output_section::write_header(const Layout* layout,
2388                              const Stringpool* secnamepool,
2389                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
2390 {
2391   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2392   oshdr->put_sh_type(this->type_);
2393
2394   elfcpp::Elf_Xword flags = this->flags_;
2395   if (this->info_section_ != NULL && this->info_uses_section_index_)
2396     flags |= elfcpp::SHF_INFO_LINK;
2397   oshdr->put_sh_flags(flags);
2398
2399   oshdr->put_sh_addr(this->address());
2400   oshdr->put_sh_offset(this->offset());
2401   oshdr->put_sh_size(this->data_size());
2402   if (this->link_section_ != NULL)
2403     oshdr->put_sh_link(this->link_section_->out_shndx());
2404   else if (this->should_link_to_symtab_)
2405     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2406   else if (this->should_link_to_dynsym_)
2407     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2408   else
2409     oshdr->put_sh_link(this->link_);
2410
2411   elfcpp::Elf_Word info;
2412   if (this->info_section_ != NULL)
2413     {
2414       if (this->info_uses_section_index_)
2415         info = this->info_section_->out_shndx();
2416       else
2417         info = this->info_section_->symtab_index();
2418     }
2419   else if (this->info_symndx_ != NULL)
2420     info = this->info_symndx_->symtab_index();
2421   else
2422     info = this->info_;
2423   oshdr->put_sh_info(info);
2424
2425   oshdr->put_sh_addralign(this->addralign_);
2426   oshdr->put_sh_entsize(this->entsize_);
2427 }
2428
2429 // Write out the data.  For input sections the data is written out by
2430 // Object::relocate, but we have to handle Output_section_data objects
2431 // here.
2432
2433 void
2434 Output_section::do_write(Output_file* of)
2435 {
2436   gold_assert(!this->requires_postprocessing());
2437
2438   off_t output_section_file_offset = this->offset();
2439   for (Fill_list::iterator p = this->fills_.begin();
2440        p != this->fills_.end();
2441        ++p)
2442     {
2443       std::string fill_data(parameters->target().code_fill(p->length()));
2444       of->write(output_section_file_offset + p->section_offset(),
2445                 fill_data.data(), fill_data.size());
2446     }
2447
2448   for (Input_section_list::iterator p = this->input_sections_.begin();
2449        p != this->input_sections_.end();
2450        ++p)
2451     p->write(of);
2452 }
2453
2454 // If a section requires postprocessing, create the buffer to use.
2455
2456 void
2457 Output_section::create_postprocessing_buffer()
2458 {
2459   gold_assert(this->requires_postprocessing());
2460
2461   if (this->postprocessing_buffer_ != NULL)
2462     return;
2463
2464   if (!this->input_sections_.empty())
2465     {
2466       off_t off = this->first_input_offset_;
2467       for (Input_section_list::iterator p = this->input_sections_.begin();
2468            p != this->input_sections_.end();
2469            ++p)
2470         {
2471           off = align_address(off, p->addralign());
2472           p->finalize_data_size();
2473           off += p->data_size();
2474         }
2475       this->set_current_data_size_for_child(off);
2476     }
2477
2478   off_t buffer_size = this->current_data_size_for_child();
2479   this->postprocessing_buffer_ = new unsigned char[buffer_size];
2480 }
2481
2482 // Write all the data of an Output_section into the postprocessing
2483 // buffer.  This is used for sections which require postprocessing,
2484 // such as compression.  Input sections are handled by
2485 // Object::Relocate.
2486
2487 void
2488 Output_section::write_to_postprocessing_buffer()
2489 {
2490   gold_assert(this->requires_postprocessing());
2491
2492   unsigned char* buffer = this->postprocessing_buffer();
2493   for (Fill_list::iterator p = this->fills_.begin();
2494        p != this->fills_.end();
2495        ++p)
2496     {
2497       std::string fill_data(parameters->target().code_fill(p->length()));
2498       memcpy(buffer + p->section_offset(), fill_data.data(),
2499              fill_data.size());
2500     }
2501
2502   off_t off = this->first_input_offset_;
2503   for (Input_section_list::iterator p = this->input_sections_.begin();
2504        p != this->input_sections_.end();
2505        ++p)
2506     {
2507       off = align_address(off, p->addralign());
2508       p->write_to_buffer(buffer + off);
2509       off += p->data_size();
2510     }
2511 }
2512
2513 // Get the input sections for linker script processing.  We leave
2514 // behind the Output_section_data entries.  Note that this may be
2515 // slightly incorrect for merge sections.  We will leave them behind,
2516 // but it is possible that the script says that they should follow
2517 // some other input sections, as in:
2518 //    .rodata { *(.rodata) *(.rodata.cst*) }
2519 // For that matter, we don't handle this correctly:
2520 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2521 // With luck this will never matter.
2522
2523 uint64_t
2524 Output_section::get_input_sections(
2525     uint64_t address,
2526     const std::string& fill,
2527     std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2528 {
2529   uint64_t orig_address = address;
2530
2531   address = align_address(address, this->addralign());
2532
2533   Input_section_list remaining;
2534   for (Input_section_list::iterator p = this->input_sections_.begin();
2535        p != this->input_sections_.end();
2536        ++p)
2537     {
2538       if (p->is_input_section())
2539         input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2540       else
2541         {
2542           uint64_t aligned_address = align_address(address, p->addralign());
2543           if (aligned_address != address && !fill.empty())
2544             {
2545               section_size_type length =
2546                 convert_to_section_size_type(aligned_address - address);
2547               std::string this_fill;
2548               this_fill.reserve(length);
2549               while (this_fill.length() + fill.length() <= length)
2550                 this_fill += fill;
2551               if (this_fill.length() < length)
2552                 this_fill.append(fill, 0, length - this_fill.length());
2553
2554               Output_section_data* posd = new Output_data_const(this_fill, 0);
2555               remaining.push_back(Input_section(posd));
2556             }
2557           address = aligned_address;
2558
2559           remaining.push_back(*p);
2560
2561           p->finalize_data_size();
2562           address += p->data_size();
2563         }
2564     }
2565
2566   this->input_sections_.swap(remaining);
2567   this->first_input_offset_ = 0;
2568
2569   uint64_t data_size = address - orig_address;
2570   this->set_current_data_size_for_child(data_size);
2571   return data_size;
2572 }
2573
2574 // Add an input section from a script.
2575
2576 void
2577 Output_section::add_input_section_for_script(Relobj* object,
2578                                              unsigned int shndx,
2579                                              off_t data_size,
2580                                              uint64_t addralign)
2581 {
2582   if (addralign > this->addralign_)
2583     this->addralign_ = addralign;
2584
2585   off_t offset_in_section = this->current_data_size_for_child();
2586   off_t aligned_offset_in_section = align_address(offset_in_section,
2587                                                   addralign);
2588
2589   this->set_current_data_size_for_child(aligned_offset_in_section
2590                                         + data_size);
2591
2592   this->input_sections_.push_back(Input_section(object, shndx,
2593                                                 data_size, addralign));
2594 }
2595
2596 // Print to the map file.
2597
2598 void
2599 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
2600 {
2601   mapfile->print_output_section(this);
2602
2603   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2604        p != this->input_sections_.end();
2605        ++p)
2606     p->print_to_mapfile(mapfile);
2607 }
2608
2609 // Print stats for merge sections to stderr.
2610
2611 void
2612 Output_section::print_merge_stats()
2613 {
2614   Input_section_list::iterator p;
2615   for (p = this->input_sections_.begin();
2616        p != this->input_sections_.end();
2617        ++p)
2618     p->print_merge_stats(this->name_);
2619 }
2620
2621 // Output segment methods.
2622
2623 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2624   : output_data_(),
2625     output_bss_(),
2626     vaddr_(0),
2627     paddr_(0),
2628     memsz_(0),
2629     max_align_(0),
2630     min_p_align_(0),
2631     offset_(0),
2632     filesz_(0),
2633     type_(type),
2634     flags_(flags),
2635     is_max_align_known_(false),
2636     are_addresses_set_(false),
2637     is_large_data_segment_(false)
2638 {
2639 }
2640
2641 // Add an Output_section to an Output_segment.
2642
2643 void
2644 Output_segment::add_output_section(Output_section* os,
2645                                    elfcpp::Elf_Word seg_flags)
2646 {
2647   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2648   gold_assert(!this->is_max_align_known_);
2649   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
2650
2651   // Update the segment flags.
2652   this->flags_ |= seg_flags;
2653
2654   Output_segment::Output_data_list* pdl;
2655   if (os->type() == elfcpp::SHT_NOBITS)
2656     pdl = &this->output_bss_;
2657   else
2658     pdl = &this->output_data_;
2659
2660   // So that PT_NOTE segments will work correctly, we need to ensure
2661   // that all SHT_NOTE sections are adjacent.  This will normally
2662   // happen automatically, because all the SHT_NOTE input sections
2663   // will wind up in the same output section.  However, it is possible
2664   // for multiple SHT_NOTE input sections to have different section
2665   // flags, and thus be in different output sections, but for the
2666   // different section flags to map into the same segment flags and
2667   // thus the same output segment.
2668
2669   // Note that while there may be many input sections in an output
2670   // section, there are normally only a few output sections in an
2671   // output segment.  This loop is expected to be fast.
2672
2673   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2674     {
2675       Output_segment::Output_data_list::iterator p = pdl->end();
2676       do
2677         {
2678           --p;
2679           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2680             {
2681               ++p;
2682               pdl->insert(p, os);
2683               return;
2684             }
2685         }
2686       while (p != pdl->begin());
2687     }
2688
2689   // Similarly, so that PT_TLS segments will work, we need to group
2690   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
2691   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2692   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
2693   // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
2694   // and the PT_TLS segment -- we do this grouping only for the
2695   // PT_LOAD segment.
2696   if (this->type_ != elfcpp::PT_TLS
2697       && (os->flags() & elfcpp::SHF_TLS) != 0)
2698     {
2699       pdl = &this->output_data_;
2700       bool nobits = os->type() == elfcpp::SHT_NOBITS;
2701       bool sawtls = false;
2702       Output_segment::Output_data_list::iterator p = pdl->end();
2703       do
2704         {
2705           --p;
2706           bool insert;
2707           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2708             {
2709               sawtls = true;
2710               // Put a NOBITS section after the first TLS section.
2711               // Put a PROGBITS section after the first TLS/PROGBITS
2712               // section.
2713               insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2714             }
2715           else
2716             {
2717               // If we've gone past the TLS sections, but we've seen a
2718               // TLS section, then we need to insert this section now.
2719               insert = sawtls;
2720             }
2721
2722           if (insert)
2723             {
2724               ++p;
2725               pdl->insert(p, os);
2726               return;
2727             }
2728         }
2729       while (p != pdl->begin());
2730
2731       // There are no TLS sections yet; put this one at the requested
2732       // location in the section list.
2733     }
2734
2735   // For the PT_GNU_RELRO segment, we need to group relro sections,
2736   // and we need to put them before any non-relro sections.  Also,
2737   // relro local sections go before relro non-local sections.
2738   if (parameters->options().relro() && os->is_relro())
2739     {
2740       gold_assert(pdl == &this->output_data_);
2741       Output_segment::Output_data_list::iterator p;
2742       for (p = pdl->begin(); p != pdl->end(); ++p)
2743         {
2744           if (!(*p)->is_section())
2745             break;
2746
2747           Output_section* pos = (*p)->output_section();
2748           if (!pos->is_relro()
2749               || (os->is_relro_local() && !pos->is_relro_local()))
2750             break;
2751         }
2752
2753       pdl->insert(p, os);
2754       return;
2755     }
2756
2757   // Small data sections go at the end of the list of data sections.
2758   // If OS is not small, and there are small sections, we have to
2759   // insert it before the first small section.
2760   if (os->type() != elfcpp::SHT_NOBITS
2761       && !os->is_small_section()
2762       && !pdl->empty()
2763       && pdl->back()->is_section()
2764       && pdl->back()->output_section()->is_small_section())
2765     {
2766       for (Output_segment::Output_data_list::iterator p = pdl->begin();
2767            p != pdl->end();
2768            ++p)
2769         {
2770           if ((*p)->is_section()
2771               && (*p)->output_section()->is_small_section())
2772             {
2773               pdl->insert(p, os);
2774               return;
2775             }
2776         }
2777       gold_unreachable();
2778     }
2779
2780   // A small BSS section goes at the start of the BSS sections, after
2781   // other small BSS sections.
2782   if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
2783     {
2784       for (Output_segment::Output_data_list::iterator p = pdl->begin();
2785            p != pdl->end();
2786            ++p)
2787         {
2788           if (!(*p)->is_section()
2789               || !(*p)->output_section()->is_small_section())
2790             {
2791               pdl->insert(p, os);
2792               return;
2793             }
2794         }
2795     }
2796
2797   // A large BSS section goes at the end of the BSS sections, which
2798   // means that one that is not large must come before the first large
2799   // one.
2800   if (os->type() == elfcpp::SHT_NOBITS
2801       && !os->is_large_section()
2802       && !pdl->empty()
2803       && pdl->back()->is_section()
2804       && pdl->back()->output_section()->is_large_section())
2805     {
2806       for (Output_segment::Output_data_list::iterator p = pdl->begin();
2807            p != pdl->end();
2808            ++p)
2809         {
2810           if ((*p)->is_section()
2811               && (*p)->output_section()->is_large_section())
2812             {
2813               pdl->insert(p, os);
2814               return;
2815             }
2816         }
2817       gold_unreachable();
2818     }
2819
2820   pdl->push_back(os);
2821 }
2822
2823 // Remove an Output_section from this segment.  It is an error if it
2824 // is not present.
2825
2826 void
2827 Output_segment::remove_output_section(Output_section* os)
2828 {
2829   // We only need this for SHT_PROGBITS.
2830   gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2831   for (Output_data_list::iterator p = this->output_data_.begin();
2832        p != this->output_data_.end();
2833        ++p)
2834    {
2835      if (*p == os)
2836        {
2837          this->output_data_.erase(p);
2838          return;
2839        }
2840    }
2841   gold_unreachable();
2842 }
2843
2844 // Add an Output_data (which is not an Output_section) to the start of
2845 // a segment.
2846
2847 void
2848 Output_segment::add_initial_output_data(Output_data* od)
2849 {
2850   gold_assert(!this->is_max_align_known_);
2851   this->output_data_.push_front(od);
2852 }
2853
2854 // Return whether the first data section is a relro section.
2855
2856 bool
2857 Output_segment::is_first_section_relro() const
2858 {
2859   return (!this->output_data_.empty()
2860           && this->output_data_.front()->is_section()
2861           && this->output_data_.front()->output_section()->is_relro());
2862 }
2863
2864 // Return the maximum alignment of the Output_data in Output_segment.
2865
2866 uint64_t
2867 Output_segment::maximum_alignment()
2868 {
2869   if (!this->is_max_align_known_)
2870     {
2871       uint64_t addralign;
2872
2873       addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2874       if (addralign > this->max_align_)
2875         this->max_align_ = addralign;
2876
2877       addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2878       if (addralign > this->max_align_)
2879         this->max_align_ = addralign;
2880
2881       // If -z relro is in effect, and the first section in this
2882       // segment is a relro section, then the segment must be aligned
2883       // to at least the common page size.  This ensures that the
2884       // PT_GNU_RELRO segment will start at a page boundary.
2885       if (this->type_ == elfcpp::PT_LOAD
2886           && parameters->options().relro()
2887           && this->is_first_section_relro())
2888         {
2889           addralign = parameters->target().common_pagesize();
2890           if (addralign > this->max_align_)
2891             this->max_align_ = addralign;
2892         }
2893
2894       this->is_max_align_known_ = true;
2895     }
2896
2897   return this->max_align_;
2898 }
2899
2900 // Return the maximum alignment of a list of Output_data.
2901
2902 uint64_t
2903 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2904 {
2905   uint64_t ret = 0;
2906   for (Output_data_list::const_iterator p = pdl->begin();
2907        p != pdl->end();
2908        ++p)
2909     {
2910       uint64_t addralign = (*p)->addralign();
2911       if (addralign > ret)
2912         ret = addralign;
2913     }
2914   return ret;
2915 }
2916
2917 // Return the number of dynamic relocs applied to this segment.
2918
2919 unsigned int
2920 Output_segment::dynamic_reloc_count() const
2921 {
2922   return (this->dynamic_reloc_count_list(&this->output_data_)
2923           + this->dynamic_reloc_count_list(&this->output_bss_));
2924 }
2925
2926 // Return the number of dynamic relocs applied to an Output_data_list.
2927
2928 unsigned int
2929 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2930 {
2931   unsigned int count = 0;
2932   for (Output_data_list::const_iterator p = pdl->begin();
2933        p != pdl->end();
2934        ++p)
2935     count += (*p)->dynamic_reloc_count();
2936   return count;
2937 }
2938
2939 // Set the section addresses for an Output_segment.  If RESET is true,
2940 // reset the addresses first.  ADDR is the address and *POFF is the
2941 // file offset.  Set the section indexes starting with *PSHNDX.
2942 // Return the address of the immediately following segment.  Update
2943 // *POFF and *PSHNDX.
2944
2945 uint64_t
2946 Output_segment::set_section_addresses(const Layout* layout, bool reset,
2947                                       uint64_t addr, off_t* poff,
2948                                       unsigned int* pshndx)
2949 {
2950   gold_assert(this->type_ == elfcpp::PT_LOAD);
2951
2952   if (!reset && this->are_addresses_set_)
2953     {
2954       gold_assert(this->paddr_ == addr);
2955       addr = this->vaddr_;
2956     }
2957   else
2958     {
2959       this->vaddr_ = addr;
2960       this->paddr_ = addr;
2961       this->are_addresses_set_ = true;
2962     }
2963
2964   bool in_tls = false;
2965
2966   bool in_relro = (parameters->options().relro()
2967                    && this->is_first_section_relro());
2968
2969   off_t orig_off = *poff;
2970   this->offset_ = orig_off;
2971
2972   addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2973                                           addr, poff, pshndx, &in_tls,
2974                                           &in_relro);
2975   this->filesz_ = *poff - orig_off;
2976
2977   off_t off = *poff;
2978
2979   uint64_t ret = this->set_section_list_addresses(layout, reset,
2980                                                   &this->output_bss_,
2981                                                   addr, poff, pshndx,
2982                                                   &in_tls, &in_relro);
2983
2984   // If the last section was a TLS section, align upward to the
2985   // alignment of the TLS segment, so that the overall size of the TLS
2986   // segment is aligned.
2987   if (in_tls)
2988     {
2989       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2990       *poff = align_address(*poff, segment_align);
2991     }
2992
2993   // If all the sections were relro sections, align upward to the
2994   // common page size.
2995   if (in_relro)
2996     {
2997       uint64_t page_align = parameters->target().common_pagesize();
2998       *poff = align_address(*poff, page_align);
2999     }
3000
3001   this->memsz_ = *poff - orig_off;
3002
3003   // Ignore the file offset adjustments made by the BSS Output_data
3004   // objects.
3005   *poff = off;
3006
3007   return ret;
3008 }
3009
3010 // Set the addresses and file offsets in a list of Output_data
3011 // structures.
3012
3013 uint64_t
3014 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3015                                            Output_data_list* pdl,
3016                                            uint64_t addr, off_t* poff,
3017                                            unsigned int* pshndx,
3018                                            bool* in_tls, bool* in_relro)
3019 {
3020   off_t startoff = *poff;
3021
3022   off_t off = startoff;
3023   for (Output_data_list::iterator p = pdl->begin();
3024        p != pdl->end();
3025        ++p)
3026     {
3027       if (reset)
3028         (*p)->reset_address_and_file_offset();
3029
3030       // When using a linker script the section will most likely
3031       // already have an address.
3032       if (!(*p)->is_address_valid())
3033         {
3034           uint64_t align = (*p)->addralign();
3035
3036           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3037             {
3038               // Give the first TLS section the alignment of the
3039               // entire TLS segment.  Otherwise the TLS segment as a
3040               // whole may be misaligned.
3041               if (!*in_tls)
3042                 {
3043                   Output_segment* tls_segment = layout->tls_segment();
3044                   gold_assert(tls_segment != NULL);
3045                   uint64_t segment_align = tls_segment->maximum_alignment();
3046                   gold_assert(segment_align >= align);
3047                   align = segment_align;
3048
3049                   *in_tls = true;
3050                 }
3051             }
3052           else
3053             {
3054               // If this is the first section after the TLS segment,
3055               // align it to at least the alignment of the TLS
3056               // segment, so that the size of the overall TLS segment
3057               // is aligned.
3058               if (*in_tls)
3059                 {
3060                   uint64_t segment_align =
3061                       layout->tls_segment()->maximum_alignment();
3062                   if (segment_align > align)
3063                     align = segment_align;
3064
3065                   *in_tls = false;
3066                 }
3067             }
3068
3069           // If this is a non-relro section after a relro section,
3070           // align it to a common page boundary so that the dynamic
3071           // linker has a page to mark as read-only.
3072           if (*in_relro
3073               && (!(*p)->is_section()
3074                   || !(*p)->output_section()->is_relro()))
3075             {
3076               uint64_t page_align = parameters->target().common_pagesize();
3077               if (page_align > align)
3078                 align = page_align;
3079               *in_relro = false;
3080             }
3081
3082           off = align_address(off, align);
3083           (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3084         }
3085       else
3086         {
3087           // The script may have inserted a skip forward, but it
3088           // better not have moved backward.
3089           gold_assert((*p)->address() >= addr + (off - startoff));
3090           off += (*p)->address() - (addr + (off - startoff));
3091           (*p)->set_file_offset(off);
3092           (*p)->finalize_data_size();
3093         }
3094
3095       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3096       // section.  Such a section does not affect the size of a
3097       // PT_LOAD segment.
3098       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3099           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3100         off += (*p)->data_size();
3101
3102       if ((*p)->is_section())
3103         {
3104           (*p)->set_out_shndx(*pshndx);
3105           ++*pshndx;
3106         }
3107     }
3108
3109   *poff = off;
3110   return addr + (off - startoff);
3111 }
3112
3113 // For a non-PT_LOAD segment, set the offset from the sections, if
3114 // any.
3115
3116 void
3117 Output_segment::set_offset()
3118 {
3119   gold_assert(this->type_ != elfcpp::PT_LOAD);
3120
3121   gold_assert(!this->are_addresses_set_);
3122
3123   if (this->output_data_.empty() && this->output_bss_.empty())
3124     {
3125       this->vaddr_ = 0;
3126       this->paddr_ = 0;
3127       this->are_addresses_set_ = true;
3128       this->memsz_ = 0;
3129       this->min_p_align_ = 0;
3130       this->offset_ = 0;
3131       this->filesz_ = 0;
3132       return;
3133     }
3134
3135   const Output_data* first;
3136   if (this->output_data_.empty())
3137     first = this->output_bss_.front();
3138   else
3139     first = this->output_data_.front();
3140   this->vaddr_ = first->address();
3141   this->paddr_ = (first->has_load_address()
3142                   ? first->load_address()
3143                   : this->vaddr_);
3144   this->are_addresses_set_ = true;
3145   this->offset_ = first->offset();
3146
3147   if (this->output_data_.empty())
3148     this->filesz_ = 0;
3149   else
3150     {
3151       const Output_data* last_data = this->output_data_.back();
3152       this->filesz_ = (last_data->address()
3153                        + last_data->data_size()
3154                        - this->vaddr_);
3155     }
3156
3157   const Output_data* last;
3158   if (this->output_bss_.empty())
3159     last = this->output_data_.back();
3160   else
3161     last = this->output_bss_.back();
3162   this->memsz_ = (last->address()
3163                   + last->data_size()
3164                   - this->vaddr_);
3165
3166   // If this is a TLS segment, align the memory size.  The code in
3167   // set_section_list ensures that the section after the TLS segment
3168   // is aligned to give us room.
3169   if (this->type_ == elfcpp::PT_TLS)
3170     {
3171       uint64_t segment_align = this->maximum_alignment();
3172       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3173       this->memsz_ = align_address(this->memsz_, segment_align);
3174     }
3175
3176   // If this is a RELRO segment, align the memory size.  The code in
3177   // set_section_list ensures that the section after the RELRO segment
3178   // is aligned to give us room.
3179   if (this->type_ == elfcpp::PT_GNU_RELRO)
3180     {
3181       uint64_t page_align = parameters->target().common_pagesize();
3182       gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3183       this->memsz_ = align_address(this->memsz_, page_align);
3184     }
3185 }
3186
3187 // Set the TLS offsets of the sections in the PT_TLS segment.
3188
3189 void
3190 Output_segment::set_tls_offsets()
3191 {
3192   gold_assert(this->type_ == elfcpp::PT_TLS);
3193
3194   for (Output_data_list::iterator p = this->output_data_.begin();
3195        p != this->output_data_.end();
3196        ++p)
3197     (*p)->set_tls_offset(this->vaddr_);
3198
3199   for (Output_data_list::iterator p = this->output_bss_.begin();
3200        p != this->output_bss_.end();
3201        ++p)
3202     (*p)->set_tls_offset(this->vaddr_);
3203 }
3204
3205 // Return the address of the first section.
3206
3207 uint64_t
3208 Output_segment::first_section_load_address() const
3209 {
3210   for (Output_data_list::const_iterator p = this->output_data_.begin();
3211        p != this->output_data_.end();
3212        ++p)
3213     if ((*p)->is_section())
3214       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3215
3216   for (Output_data_list::const_iterator p = this->output_bss_.begin();
3217        p != this->output_bss_.end();
3218        ++p)
3219     if ((*p)->is_section())
3220       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3221
3222   gold_unreachable();
3223 }
3224
3225 // Return the number of Output_sections in an Output_segment.
3226
3227 unsigned int
3228 Output_segment::output_section_count() const
3229 {
3230   return (this->output_section_count_list(&this->output_data_)
3231           + this->output_section_count_list(&this->output_bss_));
3232 }
3233
3234 // Return the number of Output_sections in an Output_data_list.
3235
3236 unsigned int
3237 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3238 {
3239   unsigned int count = 0;
3240   for (Output_data_list::const_iterator p = pdl->begin();
3241        p != pdl->end();
3242        ++p)
3243     {
3244       if ((*p)->is_section())
3245         ++count;
3246     }
3247   return count;
3248 }
3249
3250 // Return the section attached to the list segment with the lowest
3251 // load address.  This is used when handling a PHDRS clause in a
3252 // linker script.
3253
3254 Output_section*
3255 Output_segment::section_with_lowest_load_address() const
3256 {
3257   Output_section* found = NULL;
3258   uint64_t found_lma = 0;
3259   this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3260
3261   Output_section* found_data = found;
3262   this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3263   if (found != found_data && found_data != NULL)
3264     {
3265       gold_error(_("nobits section %s may not precede progbits section %s "
3266                    "in same segment"),
3267                  found->name(), found_data->name());
3268       return NULL;
3269     }
3270
3271   return found;
3272 }
3273
3274 // Look through a list for a section with a lower load address.
3275
3276 void
3277 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3278                                             Output_section** found,
3279                                             uint64_t* found_lma) const
3280 {
3281   for (Output_data_list::const_iterator p = pdl->begin();
3282        p != pdl->end();
3283        ++p)
3284     {
3285       if (!(*p)->is_section())
3286         continue;
3287       Output_section* os = static_cast<Output_section*>(*p);
3288       uint64_t lma = (os->has_load_address()
3289                       ? os->load_address()
3290                       : os->address());
3291       if (*found == NULL || lma < *found_lma)
3292         {
3293           *found = os;
3294           *found_lma = lma;
3295         }
3296     }
3297 }
3298
3299 // Write the segment data into *OPHDR.
3300
3301 template<int size, bool big_endian>
3302 void
3303 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3304 {
3305   ophdr->put_p_type(this->type_);
3306   ophdr->put_p_offset(this->offset_);
3307   ophdr->put_p_vaddr(this->vaddr_);
3308   ophdr->put_p_paddr(this->paddr_);
3309   ophdr->put_p_filesz(this->filesz_);
3310   ophdr->put_p_memsz(this->memsz_);
3311   ophdr->put_p_flags(this->flags_);
3312   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3313 }
3314
3315 // Write the section headers into V.
3316
3317 template<int size, bool big_endian>
3318 unsigned char*
3319 Output_segment::write_section_headers(const Layout* layout,
3320                                       const Stringpool* secnamepool,
3321                                       unsigned char* v,
3322                                       unsigned int *pshndx) const
3323 {
3324   // Every section that is attached to a segment must be attached to a
3325   // PT_LOAD segment, so we only write out section headers for PT_LOAD
3326   // segments.
3327   if (this->type_ != elfcpp::PT_LOAD)
3328     return v;
3329
3330   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3331                                                          &this->output_data_,
3332                                                          v, pshndx);
3333   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3334                                                          &this->output_bss_,
3335                                                          v, pshndx);
3336   return v;
3337 }
3338
3339 template<int size, bool big_endian>
3340 unsigned char*
3341 Output_segment::write_section_headers_list(const Layout* layout,
3342                                            const Stringpool* secnamepool,
3343                                            const Output_data_list* pdl,
3344                                            unsigned char* v,
3345                                            unsigned int* pshndx) const
3346 {
3347   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3348   for (Output_data_list::const_iterator p = pdl->begin();
3349        p != pdl->end();
3350        ++p)
3351     {
3352       if ((*p)->is_section())
3353         {
3354           const Output_section* ps = static_cast<const Output_section*>(*p);
3355           gold_assert(*pshndx == ps->out_shndx());
3356           elfcpp::Shdr_write<size, big_endian> oshdr(v);
3357           ps->write_header(layout, secnamepool, &oshdr);
3358           v += shdr_size;
3359           ++*pshndx;
3360         }
3361     }
3362   return v;
3363 }
3364
3365 // Print the output sections to the map file.
3366
3367 void
3368 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3369 {
3370   if (this->type() != elfcpp::PT_LOAD)
3371     return;
3372   this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3373   this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3374 }
3375
3376 // Print an output section list to the map file.
3377
3378 void
3379 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3380                                               const Output_data_list* pdl) const
3381 {
3382   for (Output_data_list::const_iterator p = pdl->begin();
3383        p != pdl->end();
3384        ++p)
3385     (*p)->print_to_mapfile(mapfile);
3386 }
3387
3388 // Output_file methods.
3389
3390 Output_file::Output_file(const char* name)
3391   : name_(name),
3392     o_(-1),
3393     file_size_(0),
3394     base_(NULL),
3395     map_is_anonymous_(false),
3396     is_temporary_(false)
3397 {
3398 }
3399
3400 // Try to open an existing file.  Returns false if the file doesn't
3401 // exist, has a size of 0 or can't be mmapped.
3402
3403 bool
3404 Output_file::open_for_modification()
3405 {
3406   // The name "-" means "stdout".
3407   if (strcmp(this->name_, "-") == 0)
3408     return false;
3409
3410   // Don't bother opening files with a size of zero.
3411   struct stat s;
3412   if (::stat(this->name_, &s) != 0 || s.st_size == 0)
3413     return false;
3414
3415   int o = open_descriptor(-1, this->name_, O_RDWR, 0);
3416   if (o < 0)
3417     gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3418   this->o_ = o;
3419   this->file_size_ = s.st_size;
3420
3421   // If the file can't be mmapped, copying the content to an anonymous
3422   // map will probably negate the performance benefits of incremental
3423   // linking.  This could be helped by using views and loading only
3424   // the necessary parts, but this is not supported as of now.
3425   if (!this->map_no_anonymous())
3426     {
3427       release_descriptor(o, true);
3428       this->o_ = -1;
3429       this->file_size_ = 0;
3430       return false;
3431     }
3432
3433   return true;
3434 }
3435
3436 // Open the output file.
3437
3438 void
3439 Output_file::open(off_t file_size)
3440 {
3441   this->file_size_ = file_size;
3442
3443   // Unlink the file first; otherwise the open() may fail if the file
3444   // is busy (e.g. it's an executable that's currently being executed).
3445   //
3446   // However, the linker may be part of a system where a zero-length
3447   // file is created for it to write to, with tight permissions (gcc
3448   // 2.95 did something like this).  Unlinking the file would work
3449   // around those permission controls, so we only unlink if the file
3450   // has a non-zero size.  We also unlink only regular files to avoid
3451   // trouble with directories/etc.
3452   //
3453   // If we fail, continue; this command is merely a best-effort attempt
3454   // to improve the odds for open().
3455
3456   // We let the name "-" mean "stdout"
3457   if (!this->is_temporary_)
3458     {
3459       if (strcmp(this->name_, "-") == 0)
3460         this->o_ = STDOUT_FILENO;
3461       else
3462         {
3463           struct stat s;
3464           if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3465             unlink_if_ordinary(this->name_);
3466
3467           int mode = parameters->options().relocatable() ? 0666 : 0777;
3468           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3469                                   mode);
3470           if (o < 0)
3471             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3472           this->o_ = o;
3473         }
3474     }
3475
3476   this->map();
3477 }
3478
3479 // Resize the output file.
3480
3481 void
3482 Output_file::resize(off_t file_size)
3483 {
3484   // If the mmap is mapping an anonymous memory buffer, this is easy:
3485   // just mremap to the new size.  If it's mapping to a file, we want
3486   // to unmap to flush to the file, then remap after growing the file.
3487   if (this->map_is_anonymous_)
3488     {
3489       void* base = ::mremap(this->base_, this->file_size_, file_size,
3490                             MREMAP_MAYMOVE);
3491       if (base == MAP_FAILED)
3492         gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3493       this->base_ = static_cast<unsigned char*>(base);
3494       this->file_size_ = file_size;
3495     }
3496   else
3497     {
3498       this->unmap();
3499       this->file_size_ = file_size;
3500       if (!this->map_no_anonymous())
3501         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
3502     }
3503 }
3504
3505 // Map an anonymous block of memory which will later be written to the
3506 // file.  Return whether the map succeeded.
3507
3508 bool
3509 Output_file::map_anonymous()
3510 {
3511   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3512                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3513   if (base != MAP_FAILED)
3514     {
3515       this->map_is_anonymous_ = true;
3516       this->base_ = static_cast<unsigned char*>(base);
3517       return true;
3518     }
3519   return false;
3520 }
3521
3522 // Map the file into memory.  Return whether the mapping succeeded.
3523
3524 bool
3525 Output_file::map_no_anonymous()
3526 {
3527   const int o = this->o_;
3528
3529   // If the output file is not a regular file, don't try to mmap it;
3530   // instead, we'll mmap a block of memory (an anonymous buffer), and
3531   // then later write the buffer to the file.
3532   void* base;
3533   struct stat statbuf;
3534   if (o == STDOUT_FILENO || o == STDERR_FILENO
3535       || ::fstat(o, &statbuf) != 0
3536       || !S_ISREG(statbuf.st_mode)
3537       || this->is_temporary_)
3538     return false;
3539
3540   // Ensure that we have disk space available for the file.  If we
3541   // don't do this, it is possible that we will call munmap, close,
3542   // and exit with dirty buffers still in the cache with no assigned
3543   // disk blocks.  If the disk is out of space at that point, the
3544   // output file will wind up incomplete, but we will have already
3545   // exited.  The alternative to fallocate would be to use fdatasync,
3546   // but that would be a more significant performance hit.
3547   if (::posix_fallocate(o, 0, this->file_size_) < 0)
3548     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
3549
3550   // Map the file into memory.
3551   base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3552                 MAP_SHARED, o, 0);
3553
3554   // The mmap call might fail because of file system issues: the file
3555   // system might not support mmap at all, or it might not support
3556   // mmap with PROT_WRITE.
3557   if (base == MAP_FAILED)
3558     return false;
3559
3560   this->map_is_anonymous_ = false;
3561   this->base_ = static_cast<unsigned char*>(base);
3562   return true;
3563 }
3564
3565 // Map the file into memory.
3566
3567 void
3568 Output_file::map()
3569 {
3570   if (this->map_no_anonymous())
3571     return;
3572
3573   // The mmap call might fail because of file system issues: the file
3574   // system might not support mmap at all, or it might not support
3575   // mmap with PROT_WRITE.  I'm not sure which errno values we will
3576   // see in all cases, so if the mmap fails for any reason and we
3577   // don't care about file contents, try for an anonymous map.
3578   if (this->map_anonymous())
3579     return;
3580
3581   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
3582              this->name_, static_cast<unsigned long>(this->file_size_),
3583              strerror(errno));
3584 }
3585
3586 // Unmap the file from memory.
3587
3588 void
3589 Output_file::unmap()
3590 {
3591   if (::munmap(this->base_, this->file_size_) < 0)
3592     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
3593   this->base_ = NULL;
3594 }
3595
3596 // Close the output file.
3597
3598 void
3599 Output_file::close()
3600 {
3601   // If the map isn't file-backed, we need to write it now.
3602   if (this->map_is_anonymous_ && !this->is_temporary_)
3603     {
3604       size_t bytes_to_write = this->file_size_;
3605       size_t offset = 0;
3606       while (bytes_to_write > 0)
3607         {
3608           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
3609                                           bytes_to_write);
3610           if (bytes_written == 0)
3611             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3612           else if (bytes_written < 0)
3613             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3614           else
3615             {
3616               bytes_to_write -= bytes_written;
3617               offset += bytes_written;
3618             }
3619         }
3620     }
3621   this->unmap();
3622
3623   // We don't close stdout or stderr
3624   if (this->o_ != STDOUT_FILENO
3625       && this->o_ != STDERR_FILENO
3626       && !this->is_temporary_)
3627     if (::close(this->o_) < 0)
3628       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3629   this->o_ = -1;
3630 }
3631
3632 // Instantiate the templates we need.  We could use the configure
3633 // script to restrict this to only the ones for implemented targets.
3634
3635 #ifdef HAVE_TARGET_32_LITTLE
3636 template
3637 off_t
3638 Output_section::add_input_section<32, false>(
3639     Sized_relobj<32, false>* object,
3640     unsigned int shndx,
3641     const char* secname,
3642     const elfcpp::Shdr<32, false>& shdr,
3643     unsigned int reloc_shndx,
3644     bool have_sections_script);
3645 #endif
3646
3647 #ifdef HAVE_TARGET_32_BIG
3648 template
3649 off_t
3650 Output_section::add_input_section<32, true>(
3651     Sized_relobj<32, true>* object,
3652     unsigned int shndx,
3653     const char* secname,
3654     const elfcpp::Shdr<32, true>& shdr,
3655     unsigned int reloc_shndx,
3656     bool have_sections_script);
3657 #endif
3658
3659 #ifdef HAVE_TARGET_64_LITTLE
3660 template
3661 off_t
3662 Output_section::add_input_section<64, false>(
3663     Sized_relobj<64, false>* object,
3664     unsigned int shndx,
3665     const char* secname,
3666     const elfcpp::Shdr<64, false>& shdr,
3667     unsigned int reloc_shndx,
3668     bool have_sections_script);
3669 #endif
3670
3671 #ifdef HAVE_TARGET_64_BIG
3672 template
3673 off_t
3674 Output_section::add_input_section<64, true>(
3675     Sized_relobj<64, true>* object,
3676     unsigned int shndx,
3677     const char* secname,
3678     const elfcpp::Shdr<64, true>& shdr,
3679     unsigned int reloc_shndx,
3680     bool have_sections_script);
3681 #endif
3682
3683 #ifdef HAVE_TARGET_32_LITTLE
3684 template
3685 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
3686 #endif
3687
3688 #ifdef HAVE_TARGET_32_BIG
3689 template
3690 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
3691 #endif
3692
3693 #ifdef HAVE_TARGET_64_LITTLE
3694 template
3695 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
3696 #endif
3697
3698 #ifdef HAVE_TARGET_64_BIG
3699 template
3700 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
3701 #endif
3702
3703 #ifdef HAVE_TARGET_32_LITTLE
3704 template
3705 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
3706 #endif
3707
3708 #ifdef HAVE_TARGET_32_BIG
3709 template
3710 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
3711 #endif
3712
3713 #ifdef HAVE_TARGET_64_LITTLE
3714 template
3715 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
3716 #endif
3717
3718 #ifdef HAVE_TARGET_64_BIG
3719 template
3720 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
3721 #endif
3722
3723 #ifdef HAVE_TARGET_32_LITTLE
3724 template
3725 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
3726 #endif
3727
3728 #ifdef HAVE_TARGET_32_BIG
3729 template
3730 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
3731 #endif
3732
3733 #ifdef HAVE_TARGET_64_LITTLE
3734 template
3735 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
3736 #endif
3737
3738 #ifdef HAVE_TARGET_64_BIG
3739 template
3740 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
3741 #endif
3742
3743 #ifdef HAVE_TARGET_32_LITTLE
3744 template
3745 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
3746 #endif
3747
3748 #ifdef HAVE_TARGET_32_BIG
3749 template
3750 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
3751 #endif
3752
3753 #ifdef HAVE_TARGET_64_LITTLE
3754 template
3755 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
3756 #endif
3757
3758 #ifdef HAVE_TARGET_64_BIG
3759 template
3760 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
3761 #endif
3762
3763 #ifdef HAVE_TARGET_32_LITTLE
3764 template
3765 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3766 #endif
3767
3768 #ifdef HAVE_TARGET_32_BIG
3769 template
3770 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3771 #endif
3772
3773 #ifdef HAVE_TARGET_64_LITTLE
3774 template
3775 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3776 #endif
3777
3778 #ifdef HAVE_TARGET_64_BIG
3779 template
3780 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3781 #endif
3782
3783 #ifdef HAVE_TARGET_32_LITTLE
3784 template
3785 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3786 #endif
3787
3788 #ifdef HAVE_TARGET_32_BIG
3789 template
3790 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3791 #endif
3792
3793 #ifdef HAVE_TARGET_64_LITTLE
3794 template
3795 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3796 #endif
3797
3798 #ifdef HAVE_TARGET_64_BIG
3799 template
3800 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3801 #endif
3802
3803 #ifdef HAVE_TARGET_32_LITTLE
3804 template
3805 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3806 #endif
3807
3808 #ifdef HAVE_TARGET_32_BIG
3809 template
3810 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3811 #endif
3812
3813 #ifdef HAVE_TARGET_64_LITTLE
3814 template
3815 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3816 #endif
3817
3818 #ifdef HAVE_TARGET_64_BIG
3819 template
3820 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3821 #endif
3822
3823 #ifdef HAVE_TARGET_32_LITTLE
3824 template
3825 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3826 #endif
3827
3828 #ifdef HAVE_TARGET_32_BIG
3829 template
3830 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3831 #endif
3832
3833 #ifdef HAVE_TARGET_64_LITTLE
3834 template
3835 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3836 #endif
3837
3838 #ifdef HAVE_TARGET_64_BIG
3839 template
3840 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3841 #endif
3842
3843 #ifdef HAVE_TARGET_32_LITTLE
3844 template
3845 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3846 #endif
3847
3848 #ifdef HAVE_TARGET_32_BIG
3849 template
3850 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3851 #endif
3852
3853 #ifdef HAVE_TARGET_64_LITTLE
3854 template
3855 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3856 #endif
3857
3858 #ifdef HAVE_TARGET_64_BIG
3859 template
3860 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3861 #endif
3862
3863 #ifdef HAVE_TARGET_32_LITTLE
3864 template
3865 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3866 #endif
3867
3868 #ifdef HAVE_TARGET_32_BIG
3869 template
3870 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3871 #endif
3872
3873 #ifdef HAVE_TARGET_64_LITTLE
3874 template
3875 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3876 #endif
3877
3878 #ifdef HAVE_TARGET_64_BIG
3879 template
3880 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3881 #endif
3882
3883 #ifdef HAVE_TARGET_32_LITTLE
3884 template
3885 class Output_data_group<32, false>;
3886 #endif
3887
3888 #ifdef HAVE_TARGET_32_BIG
3889 template
3890 class Output_data_group<32, true>;
3891 #endif
3892
3893 #ifdef HAVE_TARGET_64_LITTLE
3894 template
3895 class Output_data_group<64, false>;
3896 #endif
3897
3898 #ifdef HAVE_TARGET_64_BIG
3899 template
3900 class Output_data_group<64, true>;
3901 #endif
3902
3903 #ifdef HAVE_TARGET_32_LITTLE
3904 template
3905 class Output_data_got<32, false>;
3906 #endif
3907
3908 #ifdef HAVE_TARGET_32_BIG
3909 template
3910 class Output_data_got<32, true>;
3911 #endif
3912
3913 #ifdef HAVE_TARGET_64_LITTLE
3914 template
3915 class Output_data_got<64, false>;
3916 #endif
3917
3918 #ifdef HAVE_TARGET_64_BIG
3919 template
3920 class Output_data_got<64, true>;
3921 #endif
3922
3923 } // End namespace gold.