* layout.cc (Layout::set_segment_offsets): Don't adjust layout
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "parameters.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "reloc.h"
43 #include "merge.h"
44 #include "descriptors.h"
45 #include "output.h"
46
47 // For systems without mmap support.
48 #ifndef HAVE_MMAP
49 # define mmap gold_mmap
50 # define munmap gold_munmap
51 # define mremap gold_mremap
52 # ifndef MAP_FAILED
53 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
54 # endif
55 # ifndef PROT_READ
56 #  define PROT_READ 0
57 # endif
58 # ifndef PROT_WRITE
59 #  define PROT_WRITE 0
60 # endif
61 # ifndef MAP_PRIVATE
62 #  define MAP_PRIVATE 0
63 # endif
64 # ifndef MAP_ANONYMOUS
65 #  define MAP_ANONYMOUS 0
66 # endif
67 # ifndef MAP_SHARED
68 #  define MAP_SHARED 0
69 # endif
70
71 # ifndef ENOSYS
72 #  define ENOSYS EINVAL
73 # endif
74
75 static void *
76 gold_mmap(void *, size_t, int, int, int, off_t)
77 {
78   errno = ENOSYS;
79   return MAP_FAILED;
80 }
81
82 static int
83 gold_munmap(void *, size_t)
84 {
85   errno = ENOSYS;
86   return -1;
87 }
88
89 static void *
90 gold_mremap(void *, size_t, size_t, int)
91 {
92   errno = ENOSYS;
93   return MAP_FAILED;
94 }
95
96 #endif
97
98 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
99 # define mremap gold_mremap
100 extern "C" void *gold_mremap(void *, size_t, size_t, int);
101 #endif
102
103 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
104 #ifndef MAP_ANONYMOUS
105 # define MAP_ANONYMOUS  MAP_ANON
106 #endif
107
108 #ifndef MREMAP_MAYMOVE
109 # define MREMAP_MAYMOVE 1
110 #endif
111
112 #ifndef HAVE_POSIX_FALLOCATE
113 // A dummy, non general, version of posix_fallocate.  Here we just set
114 // the file size and hope that there is enough disk space.  FIXME: We
115 // could allocate disk space by walking block by block and writing a
116 // zero byte into each block.
117 static int
118 posix_fallocate(int o, off_t offset, off_t len)
119 {
120   return ftruncate(o, offset + len);
121 }
122 #endif // !defined(HAVE_POSIX_FALLOCATE)
123
124 // Mingw does not have S_ISLNK.
125 #ifndef S_ISLNK
126 # define S_ISLNK(mode) 0
127 #endif
128
129 namespace gold
130 {
131
132 // Output_data variables.
133
134 bool Output_data::allocated_sizes_are_fixed;
135
136 // Output_data methods.
137
138 Output_data::~Output_data()
139 {
140 }
141
142 // Return the default alignment for the target size.
143
144 uint64_t
145 Output_data::default_alignment()
146 {
147   return Output_data::default_alignment_for_size(
148       parameters->target().get_size());
149 }
150
151 // Return the default alignment for a size--32 or 64.
152
153 uint64_t
154 Output_data::default_alignment_for_size(int size)
155 {
156   if (size == 32)
157     return 4;
158   else if (size == 64)
159     return 8;
160   else
161     gold_unreachable();
162 }
163
164 // Output_section_header methods.  This currently assumes that the
165 // segment and section lists are complete at construction time.
166
167 Output_section_headers::Output_section_headers(
168     const Layout* layout,
169     const Layout::Segment_list* segment_list,
170     const Layout::Section_list* section_list,
171     const Layout::Section_list* unattached_section_list,
172     const Stringpool* secnamepool,
173     const Output_section* shstrtab_section)
174   : layout_(layout),
175     segment_list_(segment_list),
176     section_list_(section_list),
177     unattached_section_list_(unattached_section_list),
178     secnamepool_(secnamepool),
179     shstrtab_section_(shstrtab_section)
180 {
181 }
182
183 // Compute the current data size.
184
185 off_t
186 Output_section_headers::do_size() const
187 {
188   // Count all the sections.  Start with 1 for the null section.
189   off_t count = 1;
190   if (!parameters->options().relocatable())
191     {
192       for (Layout::Segment_list::const_iterator p =
193              this->segment_list_->begin();
194            p != this->segment_list_->end();
195            ++p)
196         if ((*p)->type() == elfcpp::PT_LOAD)
197           count += (*p)->output_section_count();
198     }
199   else
200     {
201       for (Layout::Section_list::const_iterator p =
202              this->section_list_->begin();
203            p != this->section_list_->end();
204            ++p)
205         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
206           ++count;
207     }
208   count += this->unattached_section_list_->size();
209
210   const int size = parameters->target().get_size();
211   int shdr_size;
212   if (size == 32)
213     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
214   else if (size == 64)
215     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
216   else
217     gold_unreachable();
218
219   return count * shdr_size;
220 }
221
222 // Write out the section headers.
223
224 void
225 Output_section_headers::do_write(Output_file* of)
226 {
227   switch (parameters->size_and_endianness())
228     {
229 #ifdef HAVE_TARGET_32_LITTLE
230     case Parameters::TARGET_32_LITTLE:
231       this->do_sized_write<32, false>(of);
232       break;
233 #endif
234 #ifdef HAVE_TARGET_32_BIG
235     case Parameters::TARGET_32_BIG:
236       this->do_sized_write<32, true>(of);
237       break;
238 #endif
239 #ifdef HAVE_TARGET_64_LITTLE
240     case Parameters::TARGET_64_LITTLE:
241       this->do_sized_write<64, false>(of);
242       break;
243 #endif
244 #ifdef HAVE_TARGET_64_BIG
245     case Parameters::TARGET_64_BIG:
246       this->do_sized_write<64, true>(of);
247       break;
248 #endif
249     default:
250       gold_unreachable();
251     }
252 }
253
254 template<int size, bool big_endian>
255 void
256 Output_section_headers::do_sized_write(Output_file* of)
257 {
258   off_t all_shdrs_size = this->data_size();
259   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
260
261   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
262   unsigned char* v = view;
263
264   {
265     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
266     oshdr.put_sh_name(0);
267     oshdr.put_sh_type(elfcpp::SHT_NULL);
268     oshdr.put_sh_flags(0);
269     oshdr.put_sh_addr(0);
270     oshdr.put_sh_offset(0);
271
272     size_t section_count = (this->data_size()
273                             / elfcpp::Elf_sizes<size>::shdr_size);
274     if (section_count < elfcpp::SHN_LORESERVE)
275       oshdr.put_sh_size(0);
276     else
277       oshdr.put_sh_size(section_count);
278
279     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
280     if (shstrndx < elfcpp::SHN_LORESERVE)
281       oshdr.put_sh_link(0);
282     else
283       oshdr.put_sh_link(shstrndx);
284
285     size_t segment_count = this->segment_list_->size();
286     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
287
288     oshdr.put_sh_addralign(0);
289     oshdr.put_sh_entsize(0);
290   }
291
292   v += shdr_size;
293
294   unsigned int shndx = 1;
295   if (!parameters->options().relocatable())
296     {
297       for (Layout::Segment_list::const_iterator p =
298              this->segment_list_->begin();
299            p != this->segment_list_->end();
300            ++p)
301         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
302                                                           this->secnamepool_,
303                                                           v,
304                                                           &shndx);
305     }
306   else
307     {
308       for (Layout::Section_list::const_iterator p =
309              this->section_list_->begin();
310            p != this->section_list_->end();
311            ++p)
312         {
313           // We do unallocated sections below, except that group
314           // sections have to come first.
315           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
316               && (*p)->type() != elfcpp::SHT_GROUP)
317             continue;
318           gold_assert(shndx == (*p)->out_shndx());
319           elfcpp::Shdr_write<size, big_endian> oshdr(v);
320           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
321           v += shdr_size;
322           ++shndx;
323         }
324     }
325
326   for (Layout::Section_list::const_iterator p =
327          this->unattached_section_list_->begin();
328        p != this->unattached_section_list_->end();
329        ++p)
330     {
331       // For a relocatable link, we did unallocated group sections
332       // above, since they have to come first.
333       if ((*p)->type() == elfcpp::SHT_GROUP
334           && parameters->options().relocatable())
335         continue;
336       gold_assert(shndx == (*p)->out_shndx());
337       elfcpp::Shdr_write<size, big_endian> oshdr(v);
338       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
339       v += shdr_size;
340       ++shndx;
341     }
342
343   of->write_output_view(this->offset(), all_shdrs_size, view);
344 }
345
346 // Output_segment_header methods.
347
348 Output_segment_headers::Output_segment_headers(
349     const Layout::Segment_list& segment_list)
350   : segment_list_(segment_list)
351 {
352   this->set_current_data_size_for_child(this->do_size());
353 }
354
355 void
356 Output_segment_headers::do_write(Output_file* of)
357 {
358   switch (parameters->size_and_endianness())
359     {
360 #ifdef HAVE_TARGET_32_LITTLE
361     case Parameters::TARGET_32_LITTLE:
362       this->do_sized_write<32, false>(of);
363       break;
364 #endif
365 #ifdef HAVE_TARGET_32_BIG
366     case Parameters::TARGET_32_BIG:
367       this->do_sized_write<32, true>(of);
368       break;
369 #endif
370 #ifdef HAVE_TARGET_64_LITTLE
371     case Parameters::TARGET_64_LITTLE:
372       this->do_sized_write<64, false>(of);
373       break;
374 #endif
375 #ifdef HAVE_TARGET_64_BIG
376     case Parameters::TARGET_64_BIG:
377       this->do_sized_write<64, true>(of);
378       break;
379 #endif
380     default:
381       gold_unreachable();
382     }
383 }
384
385 template<int size, bool big_endian>
386 void
387 Output_segment_headers::do_sized_write(Output_file* of)
388 {
389   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
390   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
391   gold_assert(all_phdrs_size == this->data_size());
392   unsigned char* view = of->get_output_view(this->offset(),
393                                             all_phdrs_size);
394   unsigned char* v = view;
395   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
396        p != this->segment_list_.end();
397        ++p)
398     {
399       elfcpp::Phdr_write<size, big_endian> ophdr(v);
400       (*p)->write_header(&ophdr);
401       v += phdr_size;
402     }
403
404   gold_assert(v - view == all_phdrs_size);
405
406   of->write_output_view(this->offset(), all_phdrs_size, view);
407 }
408
409 off_t
410 Output_segment_headers::do_size() const
411 {
412   const int size = parameters->target().get_size();
413   int phdr_size;
414   if (size == 32)
415     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
416   else if (size == 64)
417     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
418   else
419     gold_unreachable();
420
421   return this->segment_list_.size() * phdr_size;
422 }
423
424 // Output_file_header methods.
425
426 Output_file_header::Output_file_header(const Target* target,
427                                        const Symbol_table* symtab,
428                                        const Output_segment_headers* osh)
429   : target_(target),
430     symtab_(symtab),
431     segment_header_(osh),
432     section_header_(NULL),
433     shstrtab_(NULL)
434 {
435   this->set_data_size(this->do_size());
436 }
437
438 // Set the section table information for a file header.
439
440 void
441 Output_file_header::set_section_info(const Output_section_headers* shdrs,
442                                      const Output_section* shstrtab)
443 {
444   this->section_header_ = shdrs;
445   this->shstrtab_ = shstrtab;
446 }
447
448 // Write out the file header.
449
450 void
451 Output_file_header::do_write(Output_file* of)
452 {
453   gold_assert(this->offset() == 0);
454
455   switch (parameters->size_and_endianness())
456     {
457 #ifdef HAVE_TARGET_32_LITTLE
458     case Parameters::TARGET_32_LITTLE:
459       this->do_sized_write<32, false>(of);
460       break;
461 #endif
462 #ifdef HAVE_TARGET_32_BIG
463     case Parameters::TARGET_32_BIG:
464       this->do_sized_write<32, true>(of);
465       break;
466 #endif
467 #ifdef HAVE_TARGET_64_LITTLE
468     case Parameters::TARGET_64_LITTLE:
469       this->do_sized_write<64, false>(of);
470       break;
471 #endif
472 #ifdef HAVE_TARGET_64_BIG
473     case Parameters::TARGET_64_BIG:
474       this->do_sized_write<64, true>(of);
475       break;
476 #endif
477     default:
478       gold_unreachable();
479     }
480 }
481
482 // Write out the file header with appropriate size and endianness.
483
484 template<int size, bool big_endian>
485 void
486 Output_file_header::do_sized_write(Output_file* of)
487 {
488   gold_assert(this->offset() == 0);
489
490   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
491   unsigned char* view = of->get_output_view(0, ehdr_size);
492   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
493
494   unsigned char e_ident[elfcpp::EI_NIDENT];
495   memset(e_ident, 0, elfcpp::EI_NIDENT);
496   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
497   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
498   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
499   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
500   if (size == 32)
501     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
502   else if (size == 64)
503     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
504   else
505     gold_unreachable();
506   e_ident[elfcpp::EI_DATA] = (big_endian
507                               ? elfcpp::ELFDATA2MSB
508                               : elfcpp::ELFDATA2LSB);
509   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
510   oehdr.put_e_ident(e_ident);
511
512   elfcpp::ET e_type;
513   if (parameters->options().relocatable())
514     e_type = elfcpp::ET_REL;
515   else if (parameters->options().output_is_position_independent())
516     e_type = elfcpp::ET_DYN;
517   else
518     e_type = elfcpp::ET_EXEC;
519   oehdr.put_e_type(e_type);
520
521   oehdr.put_e_machine(this->target_->machine_code());
522   oehdr.put_e_version(elfcpp::EV_CURRENT);
523
524   oehdr.put_e_entry(this->entry<size>());
525
526   if (this->segment_header_ == NULL)
527     oehdr.put_e_phoff(0);
528   else
529     oehdr.put_e_phoff(this->segment_header_->offset());
530
531   oehdr.put_e_shoff(this->section_header_->offset());
532   oehdr.put_e_flags(this->target_->processor_specific_flags());
533   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
534
535   if (this->segment_header_ == NULL)
536     {
537       oehdr.put_e_phentsize(0);
538       oehdr.put_e_phnum(0);
539     }
540   else
541     {
542       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
543       size_t phnum = (this->segment_header_->data_size()
544                       / elfcpp::Elf_sizes<size>::phdr_size);
545       if (phnum > elfcpp::PN_XNUM)
546         phnum = elfcpp::PN_XNUM;
547       oehdr.put_e_phnum(phnum);
548     }
549
550   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
551   size_t section_count = (this->section_header_->data_size()
552                           / elfcpp::Elf_sizes<size>::shdr_size);
553
554   if (section_count < elfcpp::SHN_LORESERVE)
555     oehdr.put_e_shnum(this->section_header_->data_size()
556                       / elfcpp::Elf_sizes<size>::shdr_size);
557   else
558     oehdr.put_e_shnum(0);
559
560   unsigned int shstrndx = this->shstrtab_->out_shndx();
561   if (shstrndx < elfcpp::SHN_LORESERVE)
562     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
563   else
564     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
565
566   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
567   // the e_ident field.
568   parameters->target().adjust_elf_header(view, ehdr_size);
569
570   of->write_output_view(0, ehdr_size, view);
571 }
572
573 // Return the value to use for the entry address.
574
575 template<int size>
576 typename elfcpp::Elf_types<size>::Elf_Addr
577 Output_file_header::entry()
578 {
579   const bool should_issue_warning = (parameters->options().entry() != NULL
580                                      && !parameters->options().relocatable()
581                                      && !parameters->options().shared());
582   const char* entry = parameters->entry();
583   Symbol* sym = this->symtab_->lookup(entry);
584
585   typename Sized_symbol<size>::Value_type v;
586   if (sym != NULL)
587     {
588       Sized_symbol<size>* ssym;
589       ssym = this->symtab_->get_sized_symbol<size>(sym);
590       if (!ssym->is_defined() && should_issue_warning)
591         gold_warning("entry symbol '%s' exists but is not defined", entry);
592       v = ssym->value();
593     }
594   else
595     {
596       // We couldn't find the entry symbol.  See if we can parse it as
597       // a number.  This supports, e.g., -e 0x1000.
598       char* endptr;
599       v = strtoull(entry, &endptr, 0);
600       if (*endptr != '\0')
601         {
602           if (should_issue_warning)
603             gold_warning("cannot find entry symbol '%s'", entry);
604           v = 0;
605         }
606     }
607
608   return v;
609 }
610
611 // Compute the current data size.
612
613 off_t
614 Output_file_header::do_size() const
615 {
616   const int size = parameters->target().get_size();
617   if (size == 32)
618     return elfcpp::Elf_sizes<32>::ehdr_size;
619   else if (size == 64)
620     return elfcpp::Elf_sizes<64>::ehdr_size;
621   else
622     gold_unreachable();
623 }
624
625 // Output_data_const methods.
626
627 void
628 Output_data_const::do_write(Output_file* of)
629 {
630   of->write(this->offset(), this->data_.data(), this->data_.size());
631 }
632
633 // Output_data_const_buffer methods.
634
635 void
636 Output_data_const_buffer::do_write(Output_file* of)
637 {
638   of->write(this->offset(), this->p_, this->data_size());
639 }
640
641 // Output_section_data methods.
642
643 // Record the output section, and set the entry size and such.
644
645 void
646 Output_section_data::set_output_section(Output_section* os)
647 {
648   gold_assert(this->output_section_ == NULL);
649   this->output_section_ = os;
650   this->do_adjust_output_section(os);
651 }
652
653 // Return the section index of the output section.
654
655 unsigned int
656 Output_section_data::do_out_shndx() const
657 {
658   gold_assert(this->output_section_ != NULL);
659   return this->output_section_->out_shndx();
660 }
661
662 // Set the alignment, which means we may need to update the alignment
663 // of the output section.
664
665 void
666 Output_section_data::set_addralign(uint64_t addralign)
667 {
668   this->addralign_ = addralign;
669   if (this->output_section_ != NULL
670       && this->output_section_->addralign() < addralign)
671     this->output_section_->set_addralign(addralign);
672 }
673
674 // Output_data_strtab methods.
675
676 // Set the final data size.
677
678 void
679 Output_data_strtab::set_final_data_size()
680 {
681   this->strtab_->set_string_offsets();
682   this->set_data_size(this->strtab_->get_strtab_size());
683 }
684
685 // Write out a string table.
686
687 void
688 Output_data_strtab::do_write(Output_file* of)
689 {
690   this->strtab_->write(of, this->offset());
691 }
692
693 // Output_reloc methods.
694
695 // A reloc against a global symbol.
696
697 template<bool dynamic, int size, bool big_endian>
698 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
699     Symbol* gsym,
700     unsigned int type,
701     Output_data* od,
702     Address address,
703     bool is_relative,
704     bool is_symbolless)
705   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
706     is_relative_(is_relative), is_symbolless_(is_symbolless),
707     is_section_symbol_(false), shndx_(INVALID_CODE)
708 {
709   // this->type_ is a bitfield; make sure TYPE fits.
710   gold_assert(this->type_ == type);
711   this->u1_.gsym = gsym;
712   this->u2_.od = od;
713   if (dynamic)
714     this->set_needs_dynsym_index();
715 }
716
717 template<bool dynamic, int size, bool big_endian>
718 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
719     Symbol* gsym,
720     unsigned int type,
721     Sized_relobj<size, big_endian>* relobj,
722     unsigned int shndx,
723     Address address,
724     bool is_relative,
725     bool is_symbolless)
726   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
727     is_relative_(is_relative), is_symbolless_(is_symbolless),
728     is_section_symbol_(false), shndx_(shndx)
729 {
730   gold_assert(shndx != INVALID_CODE);
731   // this->type_ is a bitfield; make sure TYPE fits.
732   gold_assert(this->type_ == type);
733   this->u1_.gsym = gsym;
734   this->u2_.relobj = relobj;
735   if (dynamic)
736     this->set_needs_dynsym_index();
737 }
738
739 // A reloc against a local symbol.
740
741 template<bool dynamic, int size, bool big_endian>
742 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
743     Sized_relobj<size, big_endian>* relobj,
744     unsigned int local_sym_index,
745     unsigned int type,
746     Output_data* od,
747     Address address,
748     bool is_relative,
749     bool is_symbolless,
750     bool is_section_symbol)
751   : address_(address), local_sym_index_(local_sym_index), type_(type),
752     is_relative_(is_relative), is_symbolless_(is_symbolless),
753     is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
754 {
755   gold_assert(local_sym_index != GSYM_CODE
756               && local_sym_index != INVALID_CODE);
757   // this->type_ is a bitfield; make sure TYPE fits.
758   gold_assert(this->type_ == type);
759   this->u1_.relobj = relobj;
760   this->u2_.od = od;
761   if (dynamic)
762     this->set_needs_dynsym_index();
763 }
764
765 template<bool dynamic, int size, bool big_endian>
766 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
767     Sized_relobj<size, big_endian>* relobj,
768     unsigned int local_sym_index,
769     unsigned int type,
770     unsigned int shndx,
771     Address address,
772     bool is_relative,
773     bool is_symbolless,
774     bool is_section_symbol)
775   : address_(address), local_sym_index_(local_sym_index), type_(type),
776     is_relative_(is_relative), is_symbolless_(is_symbolless),
777     is_section_symbol_(is_section_symbol), shndx_(shndx)
778 {
779   gold_assert(local_sym_index != GSYM_CODE
780               && local_sym_index != INVALID_CODE);
781   gold_assert(shndx != INVALID_CODE);
782   // this->type_ is a bitfield; make sure TYPE fits.
783   gold_assert(this->type_ == type);
784   this->u1_.relobj = relobj;
785   this->u2_.relobj = relobj;
786   if (dynamic)
787     this->set_needs_dynsym_index();
788 }
789
790 // A reloc against the STT_SECTION symbol of an output section.
791
792 template<bool dynamic, int size, bool big_endian>
793 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
794     Output_section* os,
795     unsigned int type,
796     Output_data* od,
797     Address address)
798   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
799     is_relative_(false), is_symbolless_(false),
800     is_section_symbol_(true), shndx_(INVALID_CODE)
801 {
802   // this->type_ is a bitfield; make sure TYPE fits.
803   gold_assert(this->type_ == type);
804   this->u1_.os = os;
805   this->u2_.od = od;
806   if (dynamic)
807     this->set_needs_dynsym_index();
808   else
809     os->set_needs_symtab_index();
810 }
811
812 template<bool dynamic, int size, bool big_endian>
813 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
814     Output_section* os,
815     unsigned int type,
816     Sized_relobj<size, big_endian>* relobj,
817     unsigned int shndx,
818     Address address)
819   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
820     is_relative_(false), is_symbolless_(false),
821     is_section_symbol_(true), shndx_(shndx)
822 {
823   gold_assert(shndx != INVALID_CODE);
824   // this->type_ is a bitfield; make sure TYPE fits.
825   gold_assert(this->type_ == type);
826   this->u1_.os = os;
827   this->u2_.relobj = relobj;
828   if (dynamic)
829     this->set_needs_dynsym_index();
830   else
831     os->set_needs_symtab_index();
832 }
833
834 // An absolute relocation.
835
836 template<bool dynamic, int size, bool big_endian>
837 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
838     unsigned int type,
839     Output_data* od,
840     Address address)
841   : address_(address), local_sym_index_(0), type_(type),
842     is_relative_(false), is_symbolless_(false),
843     is_section_symbol_(false), shndx_(INVALID_CODE)
844 {
845   // this->type_ is a bitfield; make sure TYPE fits.
846   gold_assert(this->type_ == type);
847   this->u1_.relobj = NULL;
848   this->u2_.od = od;
849 }
850
851 template<bool dynamic, int size, bool big_endian>
852 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
853     unsigned int type,
854     Sized_relobj<size, big_endian>* relobj,
855     unsigned int shndx,
856     Address address)
857   : address_(address), local_sym_index_(0), type_(type),
858     is_relative_(false), is_symbolless_(false),
859     is_section_symbol_(false), shndx_(shndx)
860 {
861   gold_assert(shndx != INVALID_CODE);
862   // this->type_ is a bitfield; make sure TYPE fits.
863   gold_assert(this->type_ == type);
864   this->u1_.relobj = NULL;
865   this->u2_.relobj = relobj;
866 }
867
868 // A target specific relocation.
869
870 template<bool dynamic, int size, bool big_endian>
871 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
872     unsigned int type,
873     void* arg,
874     Output_data* od,
875     Address address)
876   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
877     is_relative_(false), is_symbolless_(false),
878     is_section_symbol_(false), shndx_(INVALID_CODE)
879 {
880   // this->type_ is a bitfield; make sure TYPE fits.
881   gold_assert(this->type_ == type);
882   this->u1_.arg = arg;
883   this->u2_.od = od;
884 }
885
886 template<bool dynamic, int size, bool big_endian>
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
888     unsigned int type,
889     void* arg,
890     Sized_relobj<size, big_endian>* relobj,
891     unsigned int shndx,
892     Address address)
893   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
894     is_relative_(false), is_symbolless_(false),
895     is_section_symbol_(false), shndx_(shndx)
896 {
897   gold_assert(shndx != INVALID_CODE);
898   // this->type_ is a bitfield; make sure TYPE fits.
899   gold_assert(this->type_ == type);
900   this->u1_.arg = arg;
901   this->u2_.relobj = relobj;
902 }
903
904 // Record that we need a dynamic symbol index for this relocation.
905
906 template<bool dynamic, int size, bool big_endian>
907 void
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
909 set_needs_dynsym_index()
910 {
911   if (this->is_symbolless_)
912     return;
913   switch (this->local_sym_index_)
914     {
915     case INVALID_CODE:
916       gold_unreachable();
917
918     case GSYM_CODE:
919       this->u1_.gsym->set_needs_dynsym_entry();
920       break;
921
922     case SECTION_CODE:
923       this->u1_.os->set_needs_dynsym_index();
924       break;
925
926     case TARGET_CODE:
927       // The target must take care of this if necessary.
928       break;
929
930     case 0:
931       break;
932
933     default:
934       {
935         const unsigned int lsi = this->local_sym_index_;
936         Sized_relobj_file<size, big_endian>* relobj =
937             this->u1_.relobj->sized_relobj();
938         gold_assert(relobj != NULL);
939         if (!this->is_section_symbol_)
940           relobj->set_needs_output_dynsym_entry(lsi);
941         else
942           relobj->output_section(lsi)->set_needs_dynsym_index();
943       }
944       break;
945     }
946 }
947
948 // Get the symbol index of a relocation.
949
950 template<bool dynamic, int size, bool big_endian>
951 unsigned int
952 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
953   const
954 {
955   unsigned int index;
956   if (this->is_symbolless_)
957     return 0;
958   switch (this->local_sym_index_)
959     {
960     case INVALID_CODE:
961       gold_unreachable();
962
963     case GSYM_CODE:
964       if (this->u1_.gsym == NULL)
965         index = 0;
966       else if (dynamic)
967         index = this->u1_.gsym->dynsym_index();
968       else
969         index = this->u1_.gsym->symtab_index();
970       break;
971
972     case SECTION_CODE:
973       if (dynamic)
974         index = this->u1_.os->dynsym_index();
975       else
976         index = this->u1_.os->symtab_index();
977       break;
978
979     case TARGET_CODE:
980       index = parameters->target().reloc_symbol_index(this->u1_.arg,
981                                                       this->type_);
982       break;
983
984     case 0:
985       // Relocations without symbols use a symbol index of 0.
986       index = 0;
987       break;
988
989     default:
990       {
991         const unsigned int lsi = this->local_sym_index_;
992         Sized_relobj_file<size, big_endian>* relobj =
993             this->u1_.relobj->sized_relobj();
994         gold_assert(relobj != NULL);
995         if (!this->is_section_symbol_)
996           {
997             if (dynamic)
998               index = relobj->dynsym_index(lsi);
999             else
1000               index = relobj->symtab_index(lsi);
1001           }
1002         else
1003           {
1004             Output_section* os = relobj->output_section(lsi);
1005             gold_assert(os != NULL);
1006             if (dynamic)
1007               index = os->dynsym_index();
1008             else
1009               index = os->symtab_index();
1010           }
1011       }
1012       break;
1013     }
1014   gold_assert(index != -1U);
1015   return index;
1016 }
1017
1018 // For a local section symbol, get the address of the offset ADDEND
1019 // within the input section.
1020
1021 template<bool dynamic, int size, bool big_endian>
1022 typename elfcpp::Elf_types<size>::Elf_Addr
1023 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1024   local_section_offset(Addend addend) const
1025 {
1026   gold_assert(this->local_sym_index_ != GSYM_CODE
1027               && this->local_sym_index_ != SECTION_CODE
1028               && this->local_sym_index_ != TARGET_CODE
1029               && this->local_sym_index_ != INVALID_CODE
1030               && this->local_sym_index_ != 0
1031               && this->is_section_symbol_);
1032   const unsigned int lsi = this->local_sym_index_;
1033   Output_section* os = this->u1_.relobj->output_section(lsi);
1034   gold_assert(os != NULL);
1035   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1036   if (offset != invalid_address)
1037     return offset + addend;
1038   // This is a merge section.
1039   Sized_relobj_file<size, big_endian>* relobj =
1040       this->u1_.relobj->sized_relobj();
1041   gold_assert(relobj != NULL);
1042   offset = os->output_address(relobj, lsi, addend);
1043   gold_assert(offset != invalid_address);
1044   return offset;
1045 }
1046
1047 // Get the output address of a relocation.
1048
1049 template<bool dynamic, int size, bool big_endian>
1050 typename elfcpp::Elf_types<size>::Elf_Addr
1051 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1052 {
1053   Address address = this->address_;
1054   if (this->shndx_ != INVALID_CODE)
1055     {
1056       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1057       gold_assert(os != NULL);
1058       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1059       if (off != invalid_address)
1060         address += os->address() + off;
1061       else
1062         {
1063           Sized_relobj_file<size, big_endian>* relobj =
1064               this->u2_.relobj->sized_relobj();
1065           gold_assert(relobj != NULL);
1066           address = os->output_address(relobj, this->shndx_, address);
1067           gold_assert(address != invalid_address);
1068         }
1069     }
1070   else if (this->u2_.od != NULL)
1071     address += this->u2_.od->address();
1072   return address;
1073 }
1074
1075 // Write out the offset and info fields of a Rel or Rela relocation
1076 // entry.
1077
1078 template<bool dynamic, int size, bool big_endian>
1079 template<typename Write_rel>
1080 void
1081 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1082     Write_rel* wr) const
1083 {
1084   wr->put_r_offset(this->get_address());
1085   unsigned int sym_index = this->get_symbol_index();
1086   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1087 }
1088
1089 // Write out a Rel relocation.
1090
1091 template<bool dynamic, int size, bool big_endian>
1092 void
1093 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1094     unsigned char* pov) const
1095 {
1096   elfcpp::Rel_write<size, big_endian> orel(pov);
1097   this->write_rel(&orel);
1098 }
1099
1100 // Get the value of the symbol referred to by a Rel relocation.
1101
1102 template<bool dynamic, int size, bool big_endian>
1103 typename elfcpp::Elf_types<size>::Elf_Addr
1104 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1105     Addend addend) const
1106 {
1107   if (this->local_sym_index_ == GSYM_CODE)
1108     {
1109       const Sized_symbol<size>* sym;
1110       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1111       return sym->value() + addend;
1112     }
1113   gold_assert(this->local_sym_index_ != SECTION_CODE
1114               && this->local_sym_index_ != TARGET_CODE
1115               && this->local_sym_index_ != INVALID_CODE
1116               && this->local_sym_index_ != 0
1117               && !this->is_section_symbol_);
1118   const unsigned int lsi = this->local_sym_index_;
1119   Sized_relobj_file<size, big_endian>* relobj =
1120       this->u1_.relobj->sized_relobj();
1121   gold_assert(relobj != NULL);
1122   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1123   return symval->value(relobj, addend);
1124 }
1125
1126 // Reloc comparison.  This function sorts the dynamic relocs for the
1127 // benefit of the dynamic linker.  First we sort all relative relocs
1128 // to the front.  Among relative relocs, we sort by output address.
1129 // Among non-relative relocs, we sort by symbol index, then by output
1130 // address.
1131
1132 template<bool dynamic, int size, bool big_endian>
1133 int
1134 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1135   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1136     const
1137 {
1138   if (this->is_relative_)
1139     {
1140       if (!r2.is_relative_)
1141         return -1;
1142       // Otherwise sort by reloc address below.
1143     }
1144   else if (r2.is_relative_)
1145     return 1;
1146   else
1147     {
1148       unsigned int sym1 = this->get_symbol_index();
1149       unsigned int sym2 = r2.get_symbol_index();
1150       if (sym1 < sym2)
1151         return -1;
1152       else if (sym1 > sym2)
1153         return 1;
1154       // Otherwise sort by reloc address.
1155     }
1156
1157   section_offset_type addr1 = this->get_address();
1158   section_offset_type addr2 = r2.get_address();
1159   if (addr1 < addr2)
1160     return -1;
1161   else if (addr1 > addr2)
1162     return 1;
1163
1164   // Final tie breaker, in order to generate the same output on any
1165   // host: reloc type.
1166   unsigned int type1 = this->type_;
1167   unsigned int type2 = r2.type_;
1168   if (type1 < type2)
1169     return -1;
1170   else if (type1 > type2)
1171     return 1;
1172
1173   // These relocs appear to be exactly the same.
1174   return 0;
1175 }
1176
1177 // Write out a Rela relocation.
1178
1179 template<bool dynamic, int size, bool big_endian>
1180 void
1181 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1182     unsigned char* pov) const
1183 {
1184   elfcpp::Rela_write<size, big_endian> orel(pov);
1185   this->rel_.write_rel(&orel);
1186   Addend addend = this->addend_;
1187   if (this->rel_.is_target_specific())
1188     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1189                                                this->rel_.type(), addend);
1190   else if (this->rel_.is_symbolless())
1191     addend = this->rel_.symbol_value(addend);
1192   else if (this->rel_.is_local_section_symbol())
1193     addend = this->rel_.local_section_offset(addend);
1194   orel.put_r_addend(addend);
1195 }
1196
1197 // Output_data_reloc_base methods.
1198
1199 // Adjust the output section.
1200
1201 template<int sh_type, bool dynamic, int size, bool big_endian>
1202 void
1203 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1204     ::do_adjust_output_section(Output_section* os)
1205 {
1206   if (sh_type == elfcpp::SHT_REL)
1207     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1208   else if (sh_type == elfcpp::SHT_RELA)
1209     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1210   else
1211     gold_unreachable();
1212
1213   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1214   // static link.  The backends will generate a dynamic reloc section
1215   // to hold this.  In that case we don't want to link to the dynsym
1216   // section, because there isn't one.
1217   if (!dynamic)
1218     os->set_should_link_to_symtab();
1219   else if (parameters->doing_static_link())
1220     ;
1221   else
1222     os->set_should_link_to_dynsym();
1223 }
1224
1225 // Write out relocation data.
1226
1227 template<int sh_type, bool dynamic, int size, bool big_endian>
1228 void
1229 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1230     Output_file* of)
1231 {
1232   const off_t off = this->offset();
1233   const off_t oview_size = this->data_size();
1234   unsigned char* const oview = of->get_output_view(off, oview_size);
1235
1236   if (this->sort_relocs())
1237     {
1238       gold_assert(dynamic);
1239       std::sort(this->relocs_.begin(), this->relocs_.end(),
1240                 Sort_relocs_comparison());
1241     }
1242
1243   unsigned char* pov = oview;
1244   for (typename Relocs::const_iterator p = this->relocs_.begin();
1245        p != this->relocs_.end();
1246        ++p)
1247     {
1248       p->write(pov);
1249       pov += reloc_size;
1250     }
1251
1252   gold_assert(pov - oview == oview_size);
1253
1254   of->write_output_view(off, oview_size, oview);
1255
1256   // We no longer need the relocation entries.
1257   this->relocs_.clear();
1258 }
1259
1260 // Class Output_relocatable_relocs.
1261
1262 template<int sh_type, int size, bool big_endian>
1263 void
1264 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1265 {
1266   this->set_data_size(this->rr_->output_reloc_count()
1267                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1268 }
1269
1270 // class Output_data_group.
1271
1272 template<int size, bool big_endian>
1273 Output_data_group<size, big_endian>::Output_data_group(
1274     Sized_relobj_file<size, big_endian>* relobj,
1275     section_size_type entry_count,
1276     elfcpp::Elf_Word flags,
1277     std::vector<unsigned int>* input_shndxes)
1278   : Output_section_data(entry_count * 4, 4, false),
1279     relobj_(relobj),
1280     flags_(flags)
1281 {
1282   this->input_shndxes_.swap(*input_shndxes);
1283 }
1284
1285 // Write out the section group, which means translating the section
1286 // indexes to apply to the output file.
1287
1288 template<int size, bool big_endian>
1289 void
1290 Output_data_group<size, big_endian>::do_write(Output_file* of)
1291 {
1292   const off_t off = this->offset();
1293   const section_size_type oview_size =
1294     convert_to_section_size_type(this->data_size());
1295   unsigned char* const oview = of->get_output_view(off, oview_size);
1296
1297   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1298   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1299   ++contents;
1300
1301   for (std::vector<unsigned int>::const_iterator p =
1302          this->input_shndxes_.begin();
1303        p != this->input_shndxes_.end();
1304        ++p, ++contents)
1305     {
1306       Output_section* os = this->relobj_->output_section(*p);
1307
1308       unsigned int output_shndx;
1309       if (os != NULL)
1310         output_shndx = os->out_shndx();
1311       else
1312         {
1313           this->relobj_->error(_("section group retained but "
1314                                  "group element discarded"));
1315           output_shndx = 0;
1316         }
1317
1318       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1319     }
1320
1321   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1322   gold_assert(wrote == oview_size);
1323
1324   of->write_output_view(off, oview_size, oview);
1325
1326   // We no longer need this information.
1327   this->input_shndxes_.clear();
1328 }
1329
1330 // Output_data_got::Got_entry methods.
1331
1332 // Write out the entry.
1333
1334 template<int size, bool big_endian>
1335 void
1336 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1337 {
1338   Valtype val = 0;
1339
1340   switch (this->local_sym_index_)
1341     {
1342     case GSYM_CODE:
1343       {
1344         // If the symbol is resolved locally, we need to write out the
1345         // link-time value, which will be relocated dynamically by a
1346         // RELATIVE relocation.
1347         Symbol* gsym = this->u_.gsym;
1348         if (this->use_plt_offset_ && gsym->has_plt_offset())
1349           val = (parameters->target().plt_section_for_global(gsym)->address()
1350                  + gsym->plt_offset());
1351         else
1352           {
1353             Sized_symbol<size>* sgsym;
1354             // This cast is a bit ugly.  We don't want to put a
1355             // virtual method in Symbol, because we want Symbol to be
1356             // as small as possible.
1357             sgsym = static_cast<Sized_symbol<size>*>(gsym);
1358             val = sgsym->value();
1359           }
1360       }
1361       break;
1362
1363     case CONSTANT_CODE:
1364       val = this->u_.constant;
1365       break;
1366
1367     case RESERVED_CODE:
1368       // If we're doing an incremental update, don't touch this GOT entry.
1369       if (parameters->incremental_update())
1370         return;
1371       val = this->u_.constant;
1372       break;
1373
1374     default:
1375       {
1376         const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1377         const unsigned int lsi = this->local_sym_index_;
1378         const Symbol_value<size>* symval = object->local_symbol(lsi);
1379         if (!this->use_plt_offset_)
1380           val = symval->value(this->u_.object, 0);
1381         else
1382           {
1383             const Output_data* plt =
1384               parameters->target().plt_section_for_local(object, lsi);
1385             val = plt->address() + object->local_plt_offset(lsi);
1386           }
1387       }
1388       break;
1389     }
1390
1391   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1392 }
1393
1394 // Output_data_got methods.
1395
1396 // Add an entry for a global symbol to the GOT.  This returns true if
1397 // this is a new GOT entry, false if the symbol already had a GOT
1398 // entry.
1399
1400 template<int size, bool big_endian>
1401 bool
1402 Output_data_got<size, big_endian>::add_global(
1403     Symbol* gsym,
1404     unsigned int got_type)
1405 {
1406   if (gsym->has_got_offset(got_type))
1407     return false;
1408
1409   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1410   gsym->set_got_offset(got_type, got_offset);
1411   return true;
1412 }
1413
1414 // Like add_global, but use the PLT offset.
1415
1416 template<int size, bool big_endian>
1417 bool
1418 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1419                                                   unsigned int got_type)
1420 {
1421   if (gsym->has_got_offset(got_type))
1422     return false;
1423
1424   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1425   gsym->set_got_offset(got_type, got_offset);
1426   return true;
1427 }
1428
1429 // Add an entry for a global symbol to the GOT, and add a dynamic
1430 // relocation of type R_TYPE for the GOT entry.
1431
1432 template<int size, bool big_endian>
1433 void
1434 Output_data_got<size, big_endian>::add_global_with_rel(
1435     Symbol* gsym,
1436     unsigned int got_type,
1437     Rel_dyn* rel_dyn,
1438     unsigned int r_type)
1439 {
1440   if (gsym->has_got_offset(got_type))
1441     return;
1442
1443   unsigned int got_offset = this->add_got_entry(Got_entry());
1444   gsym->set_got_offset(got_type, got_offset);
1445   rel_dyn->add_global(gsym, r_type, this, got_offset);
1446 }
1447
1448 template<int size, bool big_endian>
1449 void
1450 Output_data_got<size, big_endian>::add_global_with_rela(
1451     Symbol* gsym,
1452     unsigned int got_type,
1453     Rela_dyn* rela_dyn,
1454     unsigned int r_type)
1455 {
1456   if (gsym->has_got_offset(got_type))
1457     return;
1458
1459   unsigned int got_offset = this->add_got_entry(Got_entry());
1460   gsym->set_got_offset(got_type, got_offset);
1461   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1462 }
1463
1464 // Add a pair of entries for a global symbol to the GOT, and add
1465 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1466 // If R_TYPE_2 == 0, add the second entry with no relocation.
1467 template<int size, bool big_endian>
1468 void
1469 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1470     Symbol* gsym,
1471     unsigned int got_type,
1472     Rel_dyn* rel_dyn,
1473     unsigned int r_type_1,
1474     unsigned int r_type_2)
1475 {
1476   if (gsym->has_got_offset(got_type))
1477     return;
1478
1479   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1480   gsym->set_got_offset(got_type, got_offset);
1481   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1482
1483   if (r_type_2 != 0)
1484     rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1485 }
1486
1487 template<int size, bool big_endian>
1488 void
1489 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1490     Symbol* gsym,
1491     unsigned int got_type,
1492     Rela_dyn* rela_dyn,
1493     unsigned int r_type_1,
1494     unsigned int r_type_2)
1495 {
1496   if (gsym->has_got_offset(got_type))
1497     return;
1498
1499   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1500   gsym->set_got_offset(got_type, got_offset);
1501   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1502
1503   if (r_type_2 != 0)
1504     rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1505 }
1506
1507 // Add an entry for a local symbol to the GOT.  This returns true if
1508 // this is a new GOT entry, false if the symbol already has a GOT
1509 // entry.
1510
1511 template<int size, bool big_endian>
1512 bool
1513 Output_data_got<size, big_endian>::add_local(
1514     Sized_relobj_file<size, big_endian>* object,
1515     unsigned int symndx,
1516     unsigned int got_type)
1517 {
1518   if (object->local_has_got_offset(symndx, got_type))
1519     return false;
1520
1521   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1522                                                           false));
1523   object->set_local_got_offset(symndx, got_type, got_offset);
1524   return true;
1525 }
1526
1527 // Like add_local, but use the PLT offset.
1528
1529 template<int size, bool big_endian>
1530 bool
1531 Output_data_got<size, big_endian>::add_local_plt(
1532     Sized_relobj_file<size, big_endian>* object,
1533     unsigned int symndx,
1534     unsigned int got_type)
1535 {
1536   if (object->local_has_got_offset(symndx, got_type))
1537     return false;
1538
1539   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1540                                                           true));
1541   object->set_local_got_offset(symndx, got_type, got_offset);
1542   return true;
1543 }
1544
1545 // Add an entry for a local symbol to the GOT, and add a dynamic
1546 // relocation of type R_TYPE for the GOT entry.
1547
1548 template<int size, bool big_endian>
1549 void
1550 Output_data_got<size, big_endian>::add_local_with_rel(
1551     Sized_relobj_file<size, big_endian>* object,
1552     unsigned int symndx,
1553     unsigned int got_type,
1554     Rel_dyn* rel_dyn,
1555     unsigned int r_type)
1556 {
1557   if (object->local_has_got_offset(symndx, got_type))
1558     return;
1559
1560   unsigned int got_offset = this->add_got_entry(Got_entry());
1561   object->set_local_got_offset(symndx, got_type, got_offset);
1562   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1563 }
1564
1565 template<int size, bool big_endian>
1566 void
1567 Output_data_got<size, big_endian>::add_local_with_rela(
1568     Sized_relobj_file<size, big_endian>* object,
1569     unsigned int symndx,
1570     unsigned int got_type,
1571     Rela_dyn* rela_dyn,
1572     unsigned int r_type)
1573 {
1574   if (object->local_has_got_offset(symndx, got_type))
1575     return;
1576
1577   unsigned int got_offset = this->add_got_entry(Got_entry());
1578   object->set_local_got_offset(symndx, got_type, got_offset);
1579   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1580 }
1581
1582 // Add a pair of entries for a local symbol to the GOT, and add
1583 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1584 // If R_TYPE_2 == 0, add the second entry with no relocation.
1585 template<int size, bool big_endian>
1586 void
1587 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1588     Sized_relobj_file<size, big_endian>* object,
1589     unsigned int symndx,
1590     unsigned int shndx,
1591     unsigned int got_type,
1592     Rel_dyn* rel_dyn,
1593     unsigned int r_type_1,
1594     unsigned int r_type_2)
1595 {
1596   if (object->local_has_got_offset(symndx, got_type))
1597     return;
1598
1599   unsigned int got_offset =
1600       this->add_got_entry_pair(Got_entry(),
1601                                Got_entry(object, symndx, false));
1602   object->set_local_got_offset(symndx, got_type, got_offset);
1603   Output_section* os = object->output_section(shndx);
1604   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1605
1606   if (r_type_2 != 0)
1607     rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1608 }
1609
1610 template<int size, bool big_endian>
1611 void
1612 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1613     Sized_relobj_file<size, big_endian>* object,
1614     unsigned int symndx,
1615     unsigned int shndx,
1616     unsigned int got_type,
1617     Rela_dyn* rela_dyn,
1618     unsigned int r_type_1,
1619     unsigned int r_type_2)
1620 {
1621   if (object->local_has_got_offset(symndx, got_type))
1622     return;
1623
1624   unsigned int got_offset =
1625       this->add_got_entry_pair(Got_entry(),
1626                                Got_entry(object, symndx, false));
1627   object->set_local_got_offset(symndx, got_type, got_offset);
1628   Output_section* os = object->output_section(shndx);
1629   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1630
1631   if (r_type_2 != 0)
1632     rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1633 }
1634
1635 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1636
1637 template<int size, bool big_endian>
1638 void
1639 Output_data_got<size, big_endian>::reserve_local(
1640     unsigned int i,
1641     Sized_relobj<size, big_endian>* object,
1642     unsigned int sym_index,
1643     unsigned int got_type)
1644 {
1645   this->reserve_slot(i);
1646   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1647 }
1648
1649 // Reserve a slot in the GOT for a global symbol.
1650
1651 template<int size, bool big_endian>
1652 void
1653 Output_data_got<size, big_endian>::reserve_global(
1654     unsigned int i,
1655     Symbol* gsym,
1656     unsigned int got_type)
1657 {
1658   this->reserve_slot(i);
1659   gsym->set_got_offset(got_type, this->got_offset(i));
1660 }
1661
1662 // Write out the GOT.
1663
1664 template<int size, bool big_endian>
1665 void
1666 Output_data_got<size, big_endian>::do_write(Output_file* of)
1667 {
1668   const int add = size / 8;
1669
1670   const off_t off = this->offset();
1671   const off_t oview_size = this->data_size();
1672   unsigned char* const oview = of->get_output_view(off, oview_size);
1673
1674   unsigned char* pov = oview;
1675   for (typename Got_entries::const_iterator p = this->entries_.begin();
1676        p != this->entries_.end();
1677        ++p)
1678     {
1679       p->write(pov);
1680       pov += add;
1681     }
1682
1683   gold_assert(pov - oview == oview_size);
1684
1685   of->write_output_view(off, oview_size, oview);
1686
1687   // We no longer need the GOT entries.
1688   this->entries_.clear();
1689 }
1690
1691 // Create a new GOT entry and return its offset.
1692
1693 template<int size, bool big_endian>
1694 unsigned int
1695 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1696 {
1697   if (!this->is_data_size_valid())
1698     {
1699       this->entries_.push_back(got_entry);
1700       this->set_got_size();
1701       return this->last_got_offset();
1702     }
1703   else
1704     {
1705       // For an incremental update, find an available slot.
1706       off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1707       if (got_offset == -1)
1708         gold_fatal(_("out of patch space (GOT);"
1709                      " relink with --incremental-full"));
1710       unsigned int got_index = got_offset / (size / 8);
1711       gold_assert(got_index < this->entries_.size());
1712       this->entries_[got_index] = got_entry;
1713       return static_cast<unsigned int>(got_offset);
1714     }
1715 }
1716
1717 // Create a pair of new GOT entries and return the offset of the first.
1718
1719 template<int size, bool big_endian>
1720 unsigned int
1721 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1722                                                       Got_entry got_entry_2)
1723 {
1724   if (!this->is_data_size_valid())
1725     {
1726       unsigned int got_offset;
1727       this->entries_.push_back(got_entry_1);
1728       got_offset = this->last_got_offset();
1729       this->entries_.push_back(got_entry_2);
1730       this->set_got_size();
1731       return got_offset;
1732     }
1733   else
1734     {
1735       // For an incremental update, find an available pair of slots.
1736       off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1737       if (got_offset == -1)
1738         gold_fatal(_("out of patch space (GOT);"
1739                      " relink with --incremental-full"));
1740       unsigned int got_index = got_offset / (size / 8);
1741       gold_assert(got_index < this->entries_.size());
1742       this->entries_[got_index] = got_entry_1;
1743       this->entries_[got_index + 1] = got_entry_2;
1744       return static_cast<unsigned int>(got_offset);
1745     }
1746 }
1747
1748 // Output_data_dynamic::Dynamic_entry methods.
1749
1750 // Write out the entry.
1751
1752 template<int size, bool big_endian>
1753 void
1754 Output_data_dynamic::Dynamic_entry::write(
1755     unsigned char* pov,
1756     const Stringpool* pool) const
1757 {
1758   typename elfcpp::Elf_types<size>::Elf_WXword val;
1759   switch (this->offset_)
1760     {
1761     case DYNAMIC_NUMBER:
1762       val = this->u_.val;
1763       break;
1764
1765     case DYNAMIC_SECTION_SIZE:
1766       val = this->u_.od->data_size();
1767       if (this->od2 != NULL)
1768         val += this->od2->data_size();
1769       break;
1770
1771     case DYNAMIC_SYMBOL:
1772       {
1773         const Sized_symbol<size>* s =
1774           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1775         val = s->value();
1776       }
1777       break;
1778
1779     case DYNAMIC_STRING:
1780       val = pool->get_offset(this->u_.str);
1781       break;
1782
1783     default:
1784       val = this->u_.od->address() + this->offset_;
1785       break;
1786     }
1787
1788   elfcpp::Dyn_write<size, big_endian> dw(pov);
1789   dw.put_d_tag(this->tag_);
1790   dw.put_d_val(val);
1791 }
1792
1793 // Output_data_dynamic methods.
1794
1795 // Adjust the output section to set the entry size.
1796
1797 void
1798 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1799 {
1800   if (parameters->target().get_size() == 32)
1801     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1802   else if (parameters->target().get_size() == 64)
1803     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1804   else
1805     gold_unreachable();
1806 }
1807
1808 // Set the final data size.
1809
1810 void
1811 Output_data_dynamic::set_final_data_size()
1812 {
1813   // Add the terminating entry if it hasn't been added.
1814   // Because of relaxation, we can run this multiple times.
1815   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1816     {
1817       int extra = parameters->options().spare_dynamic_tags();
1818       for (int i = 0; i < extra; ++i)
1819         this->add_constant(elfcpp::DT_NULL, 0);
1820       this->add_constant(elfcpp::DT_NULL, 0);
1821     }
1822
1823   int dyn_size;
1824   if (parameters->target().get_size() == 32)
1825     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1826   else if (parameters->target().get_size() == 64)
1827     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1828   else
1829     gold_unreachable();
1830   this->set_data_size(this->entries_.size() * dyn_size);
1831 }
1832
1833 // Write out the dynamic entries.
1834
1835 void
1836 Output_data_dynamic::do_write(Output_file* of)
1837 {
1838   switch (parameters->size_and_endianness())
1839     {
1840 #ifdef HAVE_TARGET_32_LITTLE
1841     case Parameters::TARGET_32_LITTLE:
1842       this->sized_write<32, false>(of);
1843       break;
1844 #endif
1845 #ifdef HAVE_TARGET_32_BIG
1846     case Parameters::TARGET_32_BIG:
1847       this->sized_write<32, true>(of);
1848       break;
1849 #endif
1850 #ifdef HAVE_TARGET_64_LITTLE
1851     case Parameters::TARGET_64_LITTLE:
1852       this->sized_write<64, false>(of);
1853       break;
1854 #endif
1855 #ifdef HAVE_TARGET_64_BIG
1856     case Parameters::TARGET_64_BIG:
1857       this->sized_write<64, true>(of);
1858       break;
1859 #endif
1860     default:
1861       gold_unreachable();
1862     }
1863 }
1864
1865 template<int size, bool big_endian>
1866 void
1867 Output_data_dynamic::sized_write(Output_file* of)
1868 {
1869   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1870
1871   const off_t offset = this->offset();
1872   const off_t oview_size = this->data_size();
1873   unsigned char* const oview = of->get_output_view(offset, oview_size);
1874
1875   unsigned char* pov = oview;
1876   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1877        p != this->entries_.end();
1878        ++p)
1879     {
1880       p->write<size, big_endian>(pov, this->pool_);
1881       pov += dyn_size;
1882     }
1883
1884   gold_assert(pov - oview == oview_size);
1885
1886   of->write_output_view(offset, oview_size, oview);
1887
1888   // We no longer need the dynamic entries.
1889   this->entries_.clear();
1890 }
1891
1892 // Class Output_symtab_xindex.
1893
1894 void
1895 Output_symtab_xindex::do_write(Output_file* of)
1896 {
1897   const off_t offset = this->offset();
1898   const off_t oview_size = this->data_size();
1899   unsigned char* const oview = of->get_output_view(offset, oview_size);
1900
1901   memset(oview, 0, oview_size);
1902
1903   if (parameters->target().is_big_endian())
1904     this->endian_do_write<true>(oview);
1905   else
1906     this->endian_do_write<false>(oview);
1907
1908   of->write_output_view(offset, oview_size, oview);
1909
1910   // We no longer need the data.
1911   this->entries_.clear();
1912 }
1913
1914 template<bool big_endian>
1915 void
1916 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1917 {
1918   for (Xindex_entries::const_iterator p = this->entries_.begin();
1919        p != this->entries_.end();
1920        ++p)
1921     {
1922       unsigned int symndx = p->first;
1923       gold_assert(symndx * 4 < this->data_size());
1924       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1925     }
1926 }
1927
1928 // Output_section::Input_section methods.
1929
1930 // Return the current data size.  For an input section we store the size here.
1931 // For an Output_section_data, we have to ask it for the size.
1932
1933 off_t
1934 Output_section::Input_section::current_data_size() const
1935 {
1936   if (this->is_input_section())
1937     return this->u1_.data_size;
1938   else
1939     {
1940       this->u2_.posd->pre_finalize_data_size();
1941       return this->u2_.posd->current_data_size();
1942     }
1943 }
1944
1945 // Return the data size.  For an input section we store the size here.
1946 // For an Output_section_data, we have to ask it for the size.
1947
1948 off_t
1949 Output_section::Input_section::data_size() const
1950 {
1951   if (this->is_input_section())
1952     return this->u1_.data_size;
1953   else
1954     return this->u2_.posd->data_size();
1955 }
1956
1957 // Return the object for an input section.
1958
1959 Relobj*
1960 Output_section::Input_section::relobj() const
1961 {
1962   if (this->is_input_section())
1963     return this->u2_.object;
1964   else if (this->is_merge_section())
1965     {
1966       gold_assert(this->u2_.pomb->first_relobj() != NULL);
1967       return this->u2_.pomb->first_relobj();
1968     }
1969   else if (this->is_relaxed_input_section())
1970     return this->u2_.poris->relobj();
1971   else
1972     gold_unreachable();
1973 }
1974
1975 // Return the input section index for an input section.
1976
1977 unsigned int
1978 Output_section::Input_section::shndx() const
1979 {
1980   if (this->is_input_section())
1981     return this->shndx_;
1982   else if (this->is_merge_section())
1983     {
1984       gold_assert(this->u2_.pomb->first_relobj() != NULL);
1985       return this->u2_.pomb->first_shndx();
1986     }
1987   else if (this->is_relaxed_input_section())
1988     return this->u2_.poris->shndx();
1989   else
1990     gold_unreachable();
1991 }
1992
1993 // Set the address and file offset.
1994
1995 void
1996 Output_section::Input_section::set_address_and_file_offset(
1997     uint64_t address,
1998     off_t file_offset,
1999     off_t section_file_offset)
2000 {
2001   if (this->is_input_section())
2002     this->u2_.object->set_section_offset(this->shndx_,
2003                                          file_offset - section_file_offset);
2004   else
2005     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2006 }
2007
2008 // Reset the address and file offset.
2009
2010 void
2011 Output_section::Input_section::reset_address_and_file_offset()
2012 {
2013   if (!this->is_input_section())
2014     this->u2_.posd->reset_address_and_file_offset();
2015 }
2016
2017 // Finalize the data size.
2018
2019 void
2020 Output_section::Input_section::finalize_data_size()
2021 {
2022   if (!this->is_input_section())
2023     this->u2_.posd->finalize_data_size();
2024 }
2025
2026 // Try to turn an input offset into an output offset.  We want to
2027 // return the output offset relative to the start of this
2028 // Input_section in the output section.
2029
2030 inline bool
2031 Output_section::Input_section::output_offset(
2032     const Relobj* object,
2033     unsigned int shndx,
2034     section_offset_type offset,
2035     section_offset_type* poutput) const
2036 {
2037   if (!this->is_input_section())
2038     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2039   else
2040     {
2041       if (this->shndx_ != shndx || this->u2_.object != object)
2042         return false;
2043       *poutput = offset;
2044       return true;
2045     }
2046 }
2047
2048 // Return whether this is the merge section for the input section
2049 // SHNDX in OBJECT.
2050
2051 inline bool
2052 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2053                                                     unsigned int shndx) const
2054 {
2055   if (this->is_input_section())
2056     return false;
2057   return this->u2_.posd->is_merge_section_for(object, shndx);
2058 }
2059
2060 // Write out the data.  We don't have to do anything for an input
2061 // section--they are handled via Object::relocate--but this is where
2062 // we write out the data for an Output_section_data.
2063
2064 void
2065 Output_section::Input_section::write(Output_file* of)
2066 {
2067   if (!this->is_input_section())
2068     this->u2_.posd->write(of);
2069 }
2070
2071 // Write the data to a buffer.  As for write(), we don't have to do
2072 // anything for an input section.
2073
2074 void
2075 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2076 {
2077   if (!this->is_input_section())
2078     this->u2_.posd->write_to_buffer(buffer);
2079 }
2080
2081 // Print to a map file.
2082
2083 void
2084 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2085 {
2086   switch (this->shndx_)
2087     {
2088     case OUTPUT_SECTION_CODE:
2089     case MERGE_DATA_SECTION_CODE:
2090     case MERGE_STRING_SECTION_CODE:
2091       this->u2_.posd->print_to_mapfile(mapfile);
2092       break;
2093
2094     case RELAXED_INPUT_SECTION_CODE:
2095       {
2096         Output_relaxed_input_section* relaxed_section =
2097           this->relaxed_input_section();
2098         mapfile->print_input_section(relaxed_section->relobj(),
2099                                      relaxed_section->shndx());
2100       }
2101       break;
2102     default:
2103       mapfile->print_input_section(this->u2_.object, this->shndx_);
2104       break;
2105     }
2106 }
2107
2108 // Output_section methods.
2109
2110 // Construct an Output_section.  NAME will point into a Stringpool.
2111
2112 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2113                                elfcpp::Elf_Xword flags)
2114   : name_(name),
2115     addralign_(0),
2116     entsize_(0),
2117     load_address_(0),
2118     link_section_(NULL),
2119     link_(0),
2120     info_section_(NULL),
2121     info_symndx_(NULL),
2122     info_(0),
2123     type_(type),
2124     flags_(flags),
2125     order_(ORDER_INVALID),
2126     out_shndx_(-1U),
2127     symtab_index_(0),
2128     dynsym_index_(0),
2129     input_sections_(),
2130     first_input_offset_(0),
2131     fills_(),
2132     postprocessing_buffer_(NULL),
2133     needs_symtab_index_(false),
2134     needs_dynsym_index_(false),
2135     should_link_to_symtab_(false),
2136     should_link_to_dynsym_(false),
2137     after_input_sections_(false),
2138     requires_postprocessing_(false),
2139     found_in_sections_clause_(false),
2140     has_load_address_(false),
2141     info_uses_section_index_(false),
2142     input_section_order_specified_(false),
2143     may_sort_attached_input_sections_(false),
2144     must_sort_attached_input_sections_(false),
2145     attached_input_sections_are_sorted_(false),
2146     is_relro_(false),
2147     is_small_section_(false),
2148     is_large_section_(false),
2149     generate_code_fills_at_write_(false),
2150     is_entsize_zero_(false),
2151     section_offsets_need_adjustment_(false),
2152     is_noload_(false),
2153     always_keeps_input_sections_(false),
2154     has_fixed_layout_(false),
2155     tls_offset_(0),
2156     checkpoint_(NULL),
2157     lookup_maps_(new Output_section_lookup_maps),
2158     free_list_()
2159 {
2160   // An unallocated section has no address.  Forcing this means that
2161   // we don't need special treatment for symbols defined in debug
2162   // sections.
2163   if ((flags & elfcpp::SHF_ALLOC) == 0)
2164     this->set_address(0);
2165 }
2166
2167 Output_section::~Output_section()
2168 {
2169   delete this->checkpoint_;
2170 }
2171
2172 // Set the entry size.
2173
2174 void
2175 Output_section::set_entsize(uint64_t v)
2176 {
2177   if (this->is_entsize_zero_)
2178     ;
2179   else if (this->entsize_ == 0)
2180     this->entsize_ = v;
2181   else if (this->entsize_ != v)
2182     {
2183       this->entsize_ = 0;
2184       this->is_entsize_zero_ = 1;
2185     }
2186 }
2187
2188 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2189 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2190 // relocation section which applies to this section, or 0 if none, or
2191 // -1U if more than one.  Return the offset of the input section
2192 // within the output section.  Return -1 if the input section will
2193 // receive special handling.  In the normal case we don't always keep
2194 // track of input sections for an Output_section.  Instead, each
2195 // Object keeps track of the Output_section for each of its input
2196 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2197 // track of input sections here; this is used when SECTIONS appears in
2198 // a linker script.
2199
2200 template<int size, bool big_endian>
2201 off_t
2202 Output_section::add_input_section(Layout* layout,
2203                                   Sized_relobj_file<size, big_endian>* object,
2204                                   unsigned int shndx,
2205                                   const char* secname,
2206                                   const elfcpp::Shdr<size, big_endian>& shdr,
2207                                   unsigned int reloc_shndx,
2208                                   bool have_sections_script)
2209 {
2210   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2211   if ((addralign & (addralign - 1)) != 0)
2212     {
2213       object->error(_("invalid alignment %lu for section \"%s\""),
2214                     static_cast<unsigned long>(addralign), secname);
2215       addralign = 1;
2216     }
2217
2218   if (addralign > this->addralign_)
2219     this->addralign_ = addralign;
2220
2221   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2222   uint64_t entsize = shdr.get_sh_entsize();
2223
2224   // .debug_str is a mergeable string section, but is not always so
2225   // marked by compilers.  Mark manually here so we can optimize.
2226   if (strcmp(secname, ".debug_str") == 0)
2227     {
2228       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2229       entsize = 1;
2230     }
2231
2232   this->update_flags_for_input_section(sh_flags);
2233   this->set_entsize(entsize);
2234
2235   // If this is a SHF_MERGE section, we pass all the input sections to
2236   // a Output_data_merge.  We don't try to handle relocations for such
2237   // a section.  We don't try to handle empty merge sections--they
2238   // mess up the mappings, and are useless anyhow.
2239   // FIXME: Need to handle merge sections during incremental update.
2240   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2241       && reloc_shndx == 0
2242       && shdr.get_sh_size() > 0
2243       && !parameters->incremental())
2244     {
2245       // Keep information about merged input sections for rebuilding fast
2246       // lookup maps if we have sections-script or we do relaxation.
2247       bool keeps_input_sections = (this->always_keeps_input_sections_
2248                                    || have_sections_script
2249                                    || parameters->target().may_relax());
2250
2251       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2252                                         addralign, keeps_input_sections))
2253         {
2254           // Tell the relocation routines that they need to call the
2255           // output_offset method to determine the final address.
2256           return -1;
2257         }
2258     }
2259
2260   section_size_type input_section_size = shdr.get_sh_size();
2261   section_size_type uncompressed_size;
2262   if (object->section_is_compressed(shndx, &uncompressed_size))
2263     input_section_size = uncompressed_size;
2264
2265   off_t offset_in_section;
2266   off_t aligned_offset_in_section;
2267   if (this->has_fixed_layout())
2268     {
2269       // For incremental updates, find a chunk of unused space in the section.
2270       offset_in_section = this->free_list_.allocate(input_section_size,
2271                                                     addralign, 0);
2272       if (offset_in_section == -1)
2273         gold_fatal(_("out of patch space; relink with --incremental-full"));
2274       aligned_offset_in_section = offset_in_section;
2275     }
2276   else
2277     {
2278       offset_in_section = this->current_data_size_for_child();
2279       aligned_offset_in_section = align_address(offset_in_section,
2280                                                 addralign);
2281       this->set_current_data_size_for_child(aligned_offset_in_section
2282                                             + input_section_size);
2283     }
2284
2285   // Determine if we want to delay code-fill generation until the output
2286   // section is written.  When the target is relaxing, we want to delay fill
2287   // generating to avoid adjusting them during relaxation.  Also, if we are
2288   // sorting input sections we must delay fill generation.
2289   if (!this->generate_code_fills_at_write_
2290       && !have_sections_script
2291       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2292       && parameters->target().has_code_fill()
2293       && (parameters->target().may_relax()
2294           || parameters->options().section_ordering_file()))
2295     {
2296       gold_assert(this->fills_.empty());
2297       this->generate_code_fills_at_write_ = true;
2298     }
2299
2300   if (aligned_offset_in_section > offset_in_section
2301       && !this->generate_code_fills_at_write_
2302       && !have_sections_script
2303       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2304       && parameters->target().has_code_fill())
2305     {
2306       // We need to add some fill data.  Using fill_list_ when
2307       // possible is an optimization, since we will often have fill
2308       // sections without input sections.
2309       off_t fill_len = aligned_offset_in_section - offset_in_section;
2310       if (this->input_sections_.empty())
2311         this->fills_.push_back(Fill(offset_in_section, fill_len));
2312       else
2313         {
2314           std::string fill_data(parameters->target().code_fill(fill_len));
2315           Output_data_const* odc = new Output_data_const(fill_data, 1);
2316           this->input_sections_.push_back(Input_section(odc));
2317         }
2318     }
2319
2320   // We need to keep track of this section if we are already keeping
2321   // track of sections, or if we are relaxing.  Also, if this is a
2322   // section which requires sorting, or which may require sorting in
2323   // the future, we keep track of the sections.  If the
2324   // --section-ordering-file option is used to specify the order of
2325   // sections, we need to keep track of sections.
2326   if (this->always_keeps_input_sections_
2327       || have_sections_script
2328       || !this->input_sections_.empty()
2329       || this->may_sort_attached_input_sections()
2330       || this->must_sort_attached_input_sections()
2331       || parameters->options().user_set_Map()
2332       || parameters->target().may_relax()
2333       || parameters->options().section_ordering_file())
2334     {
2335       Input_section isecn(object, shndx, input_section_size, addralign);
2336       if (parameters->options().section_ordering_file())
2337         {
2338           unsigned int section_order_index =
2339             layout->find_section_order_index(std::string(secname));
2340           if (section_order_index != 0)
2341             {
2342               isecn.set_section_order_index(section_order_index);
2343               this->set_input_section_order_specified();
2344             }
2345         }
2346       if (this->has_fixed_layout())
2347         {
2348           // For incremental updates, finalize the address and offset now.
2349           uint64_t addr = this->address();
2350           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2351                                             aligned_offset_in_section,
2352                                             this->offset());
2353         }
2354       this->input_sections_.push_back(isecn);
2355     }
2356
2357   return aligned_offset_in_section;
2358 }
2359
2360 // Add arbitrary data to an output section.
2361
2362 void
2363 Output_section::add_output_section_data(Output_section_data* posd)
2364 {
2365   Input_section inp(posd);
2366   this->add_output_section_data(&inp);
2367
2368   if (posd->is_data_size_valid())
2369     {
2370       off_t offset_in_section;
2371       if (this->has_fixed_layout())
2372         {
2373           // For incremental updates, find a chunk of unused space.
2374           offset_in_section = this->free_list_.allocate(posd->data_size(),
2375                                                         posd->addralign(), 0);
2376           if (offset_in_section == -1)
2377             gold_fatal(_("out of patch space; relink with --incremental-full"));
2378           // Finalize the address and offset now.
2379           uint64_t addr = this->address();
2380           off_t offset = this->offset();
2381           posd->set_address_and_file_offset(addr + offset_in_section,
2382                                             offset + offset_in_section);
2383         }
2384       else
2385         {
2386           offset_in_section = this->current_data_size_for_child();
2387           off_t aligned_offset_in_section = align_address(offset_in_section,
2388                                                           posd->addralign());
2389           this->set_current_data_size_for_child(aligned_offset_in_section
2390                                                 + posd->data_size());
2391         }
2392     }
2393   else if (this->has_fixed_layout())
2394     {
2395       // For incremental updates, arrange for the data to have a fixed layout.
2396       // This will mean that additions to the data must be allocated from
2397       // free space within the containing output section.
2398       uint64_t addr = this->address();
2399       posd->set_address(addr);
2400       posd->set_file_offset(0);
2401       // FIXME: This should eventually be unreachable.
2402       // gold_unreachable();
2403     }
2404 }
2405
2406 // Add a relaxed input section.
2407
2408 void
2409 Output_section::add_relaxed_input_section(Layout* layout,
2410                                           Output_relaxed_input_section* poris,
2411                                           const std::string& name)
2412 {
2413   Input_section inp(poris);
2414
2415   // If the --section-ordering-file option is used to specify the order of
2416   // sections, we need to keep track of sections.
2417   if (parameters->options().section_ordering_file())
2418     {
2419       unsigned int section_order_index =
2420         layout->find_section_order_index(name);
2421       if (section_order_index != 0)
2422         {
2423           inp.set_section_order_index(section_order_index);
2424           this->set_input_section_order_specified();
2425         }
2426     }
2427
2428   this->add_output_section_data(&inp);
2429   if (this->lookup_maps_->is_valid())
2430     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2431                                                   poris->shndx(), poris);
2432
2433   // For a relaxed section, we use the current data size.  Linker scripts
2434   // get all the input sections, including relaxed one from an output
2435   // section and add them back to them same output section to compute the
2436   // output section size.  If we do not account for sizes of relaxed input
2437   // sections,  an output section would be incorrectly sized.
2438   off_t offset_in_section = this->current_data_size_for_child();
2439   off_t aligned_offset_in_section = align_address(offset_in_section,
2440                                                   poris->addralign());
2441   this->set_current_data_size_for_child(aligned_offset_in_section
2442                                         + poris->current_data_size());
2443 }
2444
2445 // Add arbitrary data to an output section by Input_section.
2446
2447 void
2448 Output_section::add_output_section_data(Input_section* inp)
2449 {
2450   if (this->input_sections_.empty())
2451     this->first_input_offset_ = this->current_data_size_for_child();
2452
2453   this->input_sections_.push_back(*inp);
2454
2455   uint64_t addralign = inp->addralign();
2456   if (addralign > this->addralign_)
2457     this->addralign_ = addralign;
2458
2459   inp->set_output_section(this);
2460 }
2461
2462 // Add a merge section to an output section.
2463
2464 void
2465 Output_section::add_output_merge_section(Output_section_data* posd,
2466                                          bool is_string, uint64_t entsize)
2467 {
2468   Input_section inp(posd, is_string, entsize);
2469   this->add_output_section_data(&inp);
2470 }
2471
2472 // Add an input section to a SHF_MERGE section.
2473
2474 bool
2475 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2476                                         uint64_t flags, uint64_t entsize,
2477                                         uint64_t addralign,
2478                                         bool keeps_input_sections)
2479 {
2480   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2481
2482   // We only merge strings if the alignment is not more than the
2483   // character size.  This could be handled, but it's unusual.
2484   if (is_string && addralign > entsize)
2485     return false;
2486
2487   // We cannot restore merged input section states.
2488   gold_assert(this->checkpoint_ == NULL);
2489
2490   // Look up merge sections by required properties.
2491   // Currently, we only invalidate the lookup maps in script processing
2492   // and relaxation.  We should not have done either when we reach here.
2493   // So we assume that the lookup maps are valid to simply code.
2494   gold_assert(this->lookup_maps_->is_valid());
2495   Merge_section_properties msp(is_string, entsize, addralign);
2496   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2497   bool is_new = false;
2498   if (pomb != NULL)
2499     {
2500       gold_assert(pomb->is_string() == is_string
2501                   && pomb->entsize() == entsize
2502                   && pomb->addralign() == addralign);
2503     }
2504   else
2505     {
2506       // Create a new Output_merge_data or Output_merge_string_data.
2507       if (!is_string)
2508         pomb = new Output_merge_data(entsize, addralign);
2509       else
2510         {
2511           switch (entsize)
2512             {
2513             case 1:
2514               pomb = new Output_merge_string<char>(addralign);
2515               break;
2516             case 2:
2517               pomb = new Output_merge_string<uint16_t>(addralign);
2518               break;
2519             case 4:
2520               pomb = new Output_merge_string<uint32_t>(addralign);
2521               break;
2522             default:
2523               return false;
2524             }
2525         }
2526       // If we need to do script processing or relaxation, we need to keep
2527       // the original input sections to rebuild the fast lookup maps.
2528       if (keeps_input_sections)
2529         pomb->set_keeps_input_sections();
2530       is_new = true;
2531     }
2532
2533   if (pomb->add_input_section(object, shndx))
2534     {
2535       // Add new merge section to this output section and link merge
2536       // section properties to new merge section in map.
2537       if (is_new)
2538         {
2539           this->add_output_merge_section(pomb, is_string, entsize);
2540           this->lookup_maps_->add_merge_section(msp, pomb);
2541         }
2542
2543       // Add input section to new merge section and link input section to new
2544       // merge section in map.
2545       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2546       return true;
2547     }
2548   else
2549     {
2550       // If add_input_section failed, delete new merge section to avoid
2551       // exporting empty merge sections in Output_section::get_input_section.
2552       if (is_new)
2553         delete pomb;
2554       return false;
2555     }
2556 }
2557
2558 // Build a relaxation map to speed up relaxation of existing input sections.
2559 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2560
2561 void
2562 Output_section::build_relaxation_map(
2563   const Input_section_list& input_sections,
2564   size_t limit,
2565   Relaxation_map* relaxation_map) const
2566 {
2567   for (size_t i = 0; i < limit; ++i)
2568     {
2569       const Input_section& is(input_sections[i]);
2570       if (is.is_input_section() || is.is_relaxed_input_section())
2571         {
2572           Section_id sid(is.relobj(), is.shndx());
2573           (*relaxation_map)[sid] = i;
2574         }
2575     }
2576 }
2577
2578 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2579 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2580 // indices of INPUT_SECTIONS.
2581
2582 void
2583 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2584   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2585   const Relaxation_map& map,
2586   Input_section_list* input_sections)
2587 {
2588   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2589     {
2590       Output_relaxed_input_section* poris = relaxed_sections[i];
2591       Section_id sid(poris->relobj(), poris->shndx());
2592       Relaxation_map::const_iterator p = map.find(sid);
2593       gold_assert(p != map.end());
2594       gold_assert((*input_sections)[p->second].is_input_section());
2595
2596       // Remember section order index of original input section
2597       // if it is set.  Copy it to the relaxed input section.
2598       unsigned int soi =
2599         (*input_sections)[p->second].section_order_index();
2600       (*input_sections)[p->second] = Input_section(poris);
2601       (*input_sections)[p->second].set_section_order_index(soi);
2602     }
2603 }
2604   
2605 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2606 // is a vector of pointers to Output_relaxed_input_section or its derived
2607 // classes.  The relaxed sections must correspond to existing input sections.
2608
2609 void
2610 Output_section::convert_input_sections_to_relaxed_sections(
2611   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2612 {
2613   gold_assert(parameters->target().may_relax());
2614
2615   // We want to make sure that restore_states does not undo the effect of
2616   // this.  If there is no checkpoint active, just search the current
2617   // input section list and replace the sections there.  If there is
2618   // a checkpoint, also replace the sections there.
2619   
2620   // By default, we look at the whole list.
2621   size_t limit = this->input_sections_.size();
2622
2623   if (this->checkpoint_ != NULL)
2624     {
2625       // Replace input sections with relaxed input section in the saved
2626       // copy of the input section list.
2627       if (this->checkpoint_->input_sections_saved())
2628         {
2629           Relaxation_map map;
2630           this->build_relaxation_map(
2631                     *(this->checkpoint_->input_sections()),
2632                     this->checkpoint_->input_sections()->size(),
2633                     &map);
2634           this->convert_input_sections_in_list_to_relaxed_sections(
2635                     relaxed_sections,
2636                     map,
2637                     this->checkpoint_->input_sections());
2638         }
2639       else
2640         {
2641           // We have not copied the input section list yet.  Instead, just
2642           // look at the portion that would be saved.
2643           limit = this->checkpoint_->input_sections_size();
2644         }
2645     }
2646
2647   // Convert input sections in input_section_list.
2648   Relaxation_map map;
2649   this->build_relaxation_map(this->input_sections_, limit, &map);
2650   this->convert_input_sections_in_list_to_relaxed_sections(
2651             relaxed_sections,
2652             map,
2653             &this->input_sections_);
2654
2655   // Update fast look-up map.
2656   if (this->lookup_maps_->is_valid())
2657     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2658       {
2659         Output_relaxed_input_section* poris = relaxed_sections[i];
2660         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2661                                                       poris->shndx(), poris);
2662       }
2663 }
2664
2665 // Update the output section flags based on input section flags.
2666
2667 void
2668 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2669 {
2670   // If we created the section with SHF_ALLOC clear, we set the
2671   // address.  If we are now setting the SHF_ALLOC flag, we need to
2672   // undo that.
2673   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2674       && (flags & elfcpp::SHF_ALLOC) != 0)
2675     this->mark_address_invalid();
2676
2677   this->flags_ |= (flags
2678                    & (elfcpp::SHF_WRITE
2679                       | elfcpp::SHF_ALLOC
2680                       | elfcpp::SHF_EXECINSTR));
2681
2682   if ((flags & elfcpp::SHF_MERGE) == 0)
2683     this->flags_ &=~ elfcpp::SHF_MERGE;
2684   else
2685     {
2686       if (this->current_data_size_for_child() == 0)
2687         this->flags_ |= elfcpp::SHF_MERGE;
2688     }
2689
2690   if ((flags & elfcpp::SHF_STRINGS) == 0)
2691     this->flags_ &=~ elfcpp::SHF_STRINGS;
2692   else
2693     {
2694       if (this->current_data_size_for_child() == 0)
2695         this->flags_ |= elfcpp::SHF_STRINGS;
2696     }
2697 }
2698
2699 // Find the merge section into which an input section with index SHNDX in
2700 // OBJECT has been added.  Return NULL if none found.
2701
2702 Output_section_data*
2703 Output_section::find_merge_section(const Relobj* object,
2704                                    unsigned int shndx) const
2705 {
2706   if (!this->lookup_maps_->is_valid())
2707     this->build_lookup_maps();
2708   return this->lookup_maps_->find_merge_section(object, shndx);
2709 }
2710
2711 // Build the lookup maps for merge and relaxed sections.  This is needs
2712 // to be declared as a const methods so that it is callable with a const
2713 // Output_section pointer.  The method only updates states of the maps.
2714
2715 void
2716 Output_section::build_lookup_maps() const
2717 {
2718   this->lookup_maps_->clear();
2719   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2720        p != this->input_sections_.end();
2721        ++p)
2722     {
2723       if (p->is_merge_section())
2724         {
2725           Output_merge_base* pomb = p->output_merge_base();
2726           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2727                                        pomb->addralign());
2728           this->lookup_maps_->add_merge_section(msp, pomb);
2729           for (Output_merge_base::Input_sections::const_iterator is =
2730                  pomb->input_sections_begin();
2731                is != pomb->input_sections_end();
2732                ++is) 
2733             {
2734               const Const_section_id& csid = *is;
2735             this->lookup_maps_->add_merge_input_section(csid.first,
2736                                                         csid.second, pomb);
2737             }
2738             
2739         }
2740       else if (p->is_relaxed_input_section())
2741         {
2742           Output_relaxed_input_section* poris = p->relaxed_input_section();
2743           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2744                                                         poris->shndx(), poris);
2745         }
2746     }
2747 }
2748
2749 // Find an relaxed input section corresponding to an input section
2750 // in OBJECT with index SHNDX.
2751
2752 const Output_relaxed_input_section*
2753 Output_section::find_relaxed_input_section(const Relobj* object,
2754                                            unsigned int shndx) const
2755 {
2756   if (!this->lookup_maps_->is_valid())
2757     this->build_lookup_maps();
2758   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2759 }
2760
2761 // Given an address OFFSET relative to the start of input section
2762 // SHNDX in OBJECT, return whether this address is being included in
2763 // the final link.  This should only be called if SHNDX in OBJECT has
2764 // a special mapping.
2765
2766 bool
2767 Output_section::is_input_address_mapped(const Relobj* object,
2768                                         unsigned int shndx,
2769                                         off_t offset) const
2770 {
2771   // Look at the Output_section_data_maps first.
2772   const Output_section_data* posd = this->find_merge_section(object, shndx);
2773   if (posd == NULL)
2774     posd = this->find_relaxed_input_section(object, shndx);
2775
2776   if (posd != NULL)
2777     {
2778       section_offset_type output_offset;
2779       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2780       gold_assert(found);   
2781       return output_offset != -1;
2782     }
2783
2784   // Fall back to the slow look-up.
2785   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2786        p != this->input_sections_.end();
2787        ++p)
2788     {
2789       section_offset_type output_offset;
2790       if (p->output_offset(object, shndx, offset, &output_offset))
2791         return output_offset != -1;
2792     }
2793
2794   // By default we assume that the address is mapped.  This should
2795   // only be called after we have passed all sections to Layout.  At
2796   // that point we should know what we are discarding.
2797   return true;
2798 }
2799
2800 // Given an address OFFSET relative to the start of input section
2801 // SHNDX in object OBJECT, return the output offset relative to the
2802 // start of the input section in the output section.  This should only
2803 // be called if SHNDX in OBJECT has a special mapping.
2804
2805 section_offset_type
2806 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2807                               section_offset_type offset) const
2808 {
2809   // This can only be called meaningfully when we know the data size
2810   // of this.
2811   gold_assert(this->is_data_size_valid());
2812
2813   // Look at the Output_section_data_maps first.
2814   const Output_section_data* posd = this->find_merge_section(object, shndx);
2815   if (posd == NULL) 
2816     posd = this->find_relaxed_input_section(object, shndx);
2817   if (posd != NULL)
2818     {
2819       section_offset_type output_offset;
2820       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2821       gold_assert(found);   
2822       return output_offset;
2823     }
2824
2825   // Fall back to the slow look-up.
2826   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2827        p != this->input_sections_.end();
2828        ++p)
2829     {
2830       section_offset_type output_offset;
2831       if (p->output_offset(object, shndx, offset, &output_offset))
2832         return output_offset;
2833     }
2834   gold_unreachable();
2835 }
2836
2837 // Return the output virtual address of OFFSET relative to the start
2838 // of input section SHNDX in object OBJECT.
2839
2840 uint64_t
2841 Output_section::output_address(const Relobj* object, unsigned int shndx,
2842                                off_t offset) const
2843 {
2844   uint64_t addr = this->address() + this->first_input_offset_;
2845
2846   // Look at the Output_section_data_maps first.
2847   const Output_section_data* posd = this->find_merge_section(object, shndx);
2848   if (posd == NULL) 
2849     posd = this->find_relaxed_input_section(object, shndx);
2850   if (posd != NULL && posd->is_address_valid())
2851     {
2852       section_offset_type output_offset;
2853       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2854       gold_assert(found);
2855       return posd->address() + output_offset;
2856     }
2857
2858   // Fall back to the slow look-up.
2859   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2860        p != this->input_sections_.end();
2861        ++p)
2862     {
2863       addr = align_address(addr, p->addralign());
2864       section_offset_type output_offset;
2865       if (p->output_offset(object, shndx, offset, &output_offset))
2866         {
2867           if (output_offset == -1)
2868             return -1ULL;
2869           return addr + output_offset;
2870         }
2871       addr += p->data_size();
2872     }
2873
2874   // If we get here, it means that we don't know the mapping for this
2875   // input section.  This might happen in principle if
2876   // add_input_section were called before add_output_section_data.
2877   // But it should never actually happen.
2878
2879   gold_unreachable();
2880 }
2881
2882 // Find the output address of the start of the merged section for
2883 // input section SHNDX in object OBJECT.
2884
2885 bool
2886 Output_section::find_starting_output_address(const Relobj* object,
2887                                              unsigned int shndx,
2888                                              uint64_t* paddr) const
2889 {
2890   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2891   // Looking up the merge section map does not always work as we sometimes
2892   // find a merge section without its address set.
2893   uint64_t addr = this->address() + this->first_input_offset_;
2894   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2895        p != this->input_sections_.end();
2896        ++p)
2897     {
2898       addr = align_address(addr, p->addralign());
2899
2900       // It would be nice if we could use the existing output_offset
2901       // method to get the output offset of input offset 0.
2902       // Unfortunately we don't know for sure that input offset 0 is
2903       // mapped at all.
2904       if (p->is_merge_section_for(object, shndx))
2905         {
2906           *paddr = addr;
2907           return true;
2908         }
2909
2910       addr += p->data_size();
2911     }
2912
2913   // We couldn't find a merge output section for this input section.
2914   return false;
2915 }
2916
2917 // Update the data size of an Output_section.
2918
2919 void
2920 Output_section::update_data_size()
2921 {
2922   if (this->input_sections_.empty())
2923       return;
2924
2925   if (this->must_sort_attached_input_sections()
2926       || this->input_section_order_specified())
2927     this->sort_attached_input_sections();
2928
2929   off_t off = this->first_input_offset_;
2930   for (Input_section_list::iterator p = this->input_sections_.begin();
2931        p != this->input_sections_.end();
2932        ++p)
2933     {
2934       off = align_address(off, p->addralign());
2935       off += p->current_data_size();
2936     }
2937
2938   this->set_current_data_size_for_child(off);
2939 }
2940
2941 // Set the data size of an Output_section.  This is where we handle
2942 // setting the addresses of any Output_section_data objects.
2943
2944 void
2945 Output_section::set_final_data_size()
2946 {
2947   if (this->input_sections_.empty())
2948     {
2949       this->set_data_size(this->current_data_size_for_child());
2950       return;
2951     }
2952
2953   if (this->must_sort_attached_input_sections()
2954       || this->input_section_order_specified())
2955     this->sort_attached_input_sections();
2956
2957   uint64_t address = this->address();
2958   off_t startoff = this->offset();
2959   off_t off = startoff + this->first_input_offset_;
2960   for (Input_section_list::iterator p = this->input_sections_.begin();
2961        p != this->input_sections_.end();
2962        ++p)
2963     {
2964       off = align_address(off, p->addralign());
2965       p->set_address_and_file_offset(address + (off - startoff), off,
2966                                      startoff);
2967       off += p->data_size();
2968     }
2969
2970   this->set_data_size(off - startoff);
2971 }
2972
2973 // Reset the address and file offset.
2974
2975 void
2976 Output_section::do_reset_address_and_file_offset()
2977 {
2978   // An unallocated section has no address.  Forcing this means that
2979   // we don't need special treatment for symbols defined in debug
2980   // sections.  We do the same in the constructor.  This does not
2981   // apply to NOLOAD sections though.
2982   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
2983      this->set_address(0);
2984
2985   for (Input_section_list::iterator p = this->input_sections_.begin();
2986        p != this->input_sections_.end();
2987        ++p)
2988     p->reset_address_and_file_offset();
2989 }
2990   
2991 // Return true if address and file offset have the values after reset.
2992
2993 bool
2994 Output_section::do_address_and_file_offset_have_reset_values() const
2995 {
2996   if (this->is_offset_valid())
2997     return false;
2998
2999   // An unallocated section has address 0 after its construction or a reset.
3000   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3001     return this->is_address_valid() && this->address() == 0;
3002   else
3003     return !this->is_address_valid();
3004 }
3005
3006 // Set the TLS offset.  Called only for SHT_TLS sections.
3007
3008 void
3009 Output_section::do_set_tls_offset(uint64_t tls_base)
3010 {
3011   this->tls_offset_ = this->address() - tls_base;
3012 }
3013
3014 // In a few cases we need to sort the input sections attached to an
3015 // output section.  This is used to implement the type of constructor
3016 // priority ordering implemented by the GNU linker, in which the
3017 // priority becomes part of the section name and the sections are
3018 // sorted by name.  We only do this for an output section if we see an
3019 // attached input section matching ".ctor.*", ".dtor.*",
3020 // ".init_array.*" or ".fini_array.*".
3021
3022 class Output_section::Input_section_sort_entry
3023 {
3024  public:
3025   Input_section_sort_entry()
3026     : input_section_(), index_(-1U), section_has_name_(false),
3027       section_name_()
3028   { }
3029
3030   Input_section_sort_entry(const Input_section& input_section,
3031                            unsigned int index,
3032                            bool must_sort_attached_input_sections)
3033     : input_section_(input_section), index_(index),
3034       section_has_name_(input_section.is_input_section()
3035                         || input_section.is_relaxed_input_section())
3036   {
3037     if (this->section_has_name_
3038         && must_sort_attached_input_sections)
3039       {
3040         // This is only called single-threaded from Layout::finalize,
3041         // so it is OK to lock.  Unfortunately we have no way to pass
3042         // in a Task token.
3043         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3044         Object* obj = (input_section.is_input_section()
3045                        ? input_section.relobj()
3046                        : input_section.relaxed_input_section()->relobj());
3047         Task_lock_obj<Object> tl(dummy_task, obj);
3048
3049         // This is a slow operation, which should be cached in
3050         // Layout::layout if this becomes a speed problem.
3051         this->section_name_ = obj->section_name(input_section.shndx());
3052       }
3053   }
3054
3055   // Return the Input_section.
3056   const Input_section&
3057   input_section() const
3058   {
3059     gold_assert(this->index_ != -1U);
3060     return this->input_section_;
3061   }
3062
3063   // The index of this entry in the original list.  This is used to
3064   // make the sort stable.
3065   unsigned int
3066   index() const
3067   {
3068     gold_assert(this->index_ != -1U);
3069     return this->index_;
3070   }
3071
3072   // Whether there is a section name.
3073   bool
3074   section_has_name() const
3075   { return this->section_has_name_; }
3076
3077   // The section name.
3078   const std::string&
3079   section_name() const
3080   {
3081     gold_assert(this->section_has_name_);
3082     return this->section_name_;
3083   }
3084
3085   // Return true if the section name has a priority.  This is assumed
3086   // to be true if it has a dot after the initial dot.
3087   bool
3088   has_priority() const
3089   {
3090     gold_assert(this->section_has_name_);
3091     return this->section_name_.find('.', 1) != std::string::npos;
3092   }
3093
3094   // Return true if this an input file whose base name matches
3095   // FILE_NAME.  The base name must have an extension of ".o", and
3096   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3097   // This is to match crtbegin.o as well as crtbeginS.o without
3098   // getting confused by other possibilities.  Overall matching the
3099   // file name this way is a dreadful hack, but the GNU linker does it
3100   // in order to better support gcc, and we need to be compatible.
3101   bool
3102   match_file_name(const char* match_file_name) const
3103   {
3104     const std::string& file_name(this->input_section_.relobj()->name());
3105     const char* base_name = lbasename(file_name.c_str());
3106     size_t match_len = strlen(match_file_name);
3107     if (strncmp(base_name, match_file_name, match_len) != 0)
3108       return false;
3109     size_t base_len = strlen(base_name);
3110     if (base_len != match_len + 2 && base_len != match_len + 3)
3111       return false;
3112     return memcmp(base_name + base_len - 2, ".o", 2) == 0;
3113   }
3114
3115   // Returns 1 if THIS should appear before S in section order, -1 if S
3116   // appears before THIS and 0 if they are not comparable.
3117   int
3118   compare_section_ordering(const Input_section_sort_entry& s) const
3119   {
3120     unsigned int this_secn_index = this->input_section_.section_order_index();
3121     unsigned int s_secn_index = s.input_section().section_order_index();
3122     if (this_secn_index > 0 && s_secn_index > 0)
3123       {
3124         if (this_secn_index < s_secn_index)
3125           return 1;
3126         else if (this_secn_index > s_secn_index)
3127           return -1;
3128       }
3129     return 0;
3130   }
3131
3132  private:
3133   // The Input_section we are sorting.
3134   Input_section input_section_;
3135   // The index of this Input_section in the original list.
3136   unsigned int index_;
3137   // Whether this Input_section has a section name--it won't if this
3138   // is some random Output_section_data.
3139   bool section_has_name_;
3140   // The section name if there is one.
3141   std::string section_name_;
3142 };
3143
3144 // Return true if S1 should come before S2 in the output section.
3145
3146 bool
3147 Output_section::Input_section_sort_compare::operator()(
3148     const Output_section::Input_section_sort_entry& s1,
3149     const Output_section::Input_section_sort_entry& s2) const
3150 {
3151   // crtbegin.o must come first.
3152   bool s1_begin = s1.match_file_name("crtbegin");
3153   bool s2_begin = s2.match_file_name("crtbegin");
3154   if (s1_begin || s2_begin)
3155     {
3156       if (!s1_begin)
3157         return false;
3158       if (!s2_begin)
3159         return true;
3160       return s1.index() < s2.index();
3161     }
3162
3163   // crtend.o must come last.
3164   bool s1_end = s1.match_file_name("crtend");
3165   bool s2_end = s2.match_file_name("crtend");
3166   if (s1_end || s2_end)
3167     {
3168       if (!s1_end)
3169         return true;
3170       if (!s2_end)
3171         return false;
3172       return s1.index() < s2.index();
3173     }
3174
3175   // We sort all the sections with no names to the end.
3176   if (!s1.section_has_name() || !s2.section_has_name())
3177     {
3178       if (s1.section_has_name())
3179         return true;
3180       if (s2.section_has_name())
3181         return false;
3182       return s1.index() < s2.index();
3183     }
3184
3185   // A section with a priority follows a section without a priority.
3186   bool s1_has_priority = s1.has_priority();
3187   bool s2_has_priority = s2.has_priority();
3188   if (s1_has_priority && !s2_has_priority)
3189     return false;
3190   if (!s1_has_priority && s2_has_priority)
3191     return true;
3192
3193   // Check if a section order exists for these sections through a section
3194   // ordering file.  If sequence_num is 0, an order does not exist.
3195   int sequence_num = s1.compare_section_ordering(s2);
3196   if (sequence_num != 0)
3197     return sequence_num == 1;
3198
3199   // Otherwise we sort by name.
3200   int compare = s1.section_name().compare(s2.section_name());
3201   if (compare != 0)
3202     return compare < 0;
3203
3204   // Otherwise we keep the input order.
3205   return s1.index() < s2.index();
3206 }
3207
3208 // Return true if S1 should come before S2 in an .init_array or .fini_array
3209 // output section.
3210
3211 bool
3212 Output_section::Input_section_sort_init_fini_compare::operator()(
3213     const Output_section::Input_section_sort_entry& s1,
3214     const Output_section::Input_section_sort_entry& s2) const
3215 {
3216   // We sort all the sections with no names to the end.
3217   if (!s1.section_has_name() || !s2.section_has_name())
3218     {
3219       if (s1.section_has_name())
3220         return true;
3221       if (s2.section_has_name())
3222         return false;
3223       return s1.index() < s2.index();
3224     }
3225
3226   // A section without a priority follows a section with a priority.
3227   // This is the reverse of .ctors and .dtors sections.
3228   bool s1_has_priority = s1.has_priority();
3229   bool s2_has_priority = s2.has_priority();
3230   if (s1_has_priority && !s2_has_priority)
3231     return true;
3232   if (!s1_has_priority && s2_has_priority)
3233     return false;
3234
3235   // Check if a section order exists for these sections through a section
3236   // ordering file.  If sequence_num is 0, an order does not exist.
3237   int sequence_num = s1.compare_section_ordering(s2);
3238   if (sequence_num != 0)
3239     return sequence_num == 1;
3240
3241   // Otherwise we sort by name.
3242   int compare = s1.section_name().compare(s2.section_name());
3243   if (compare != 0)
3244     return compare < 0;
3245
3246   // Otherwise we keep the input order.
3247   return s1.index() < s2.index();
3248 }
3249
3250 // Return true if S1 should come before S2.  Sections that do not match
3251 // any pattern in the section ordering file are placed ahead of the sections
3252 // that match some pattern.
3253
3254 bool
3255 Output_section::Input_section_sort_section_order_index_compare::operator()(
3256     const Output_section::Input_section_sort_entry& s1,
3257     const Output_section::Input_section_sort_entry& s2) const
3258 {
3259   unsigned int s1_secn_index = s1.input_section().section_order_index();
3260   unsigned int s2_secn_index = s2.input_section().section_order_index();
3261
3262   // Keep input order if section ordering cannot determine order.
3263   if (s1_secn_index == s2_secn_index)
3264     return s1.index() < s2.index();
3265   
3266   return s1_secn_index < s2_secn_index;
3267 }
3268
3269 // Sort the input sections attached to an output section.
3270
3271 void
3272 Output_section::sort_attached_input_sections()
3273 {
3274   if (this->attached_input_sections_are_sorted_)
3275     return;
3276
3277   if (this->checkpoint_ != NULL
3278       && !this->checkpoint_->input_sections_saved())
3279     this->checkpoint_->save_input_sections();
3280
3281   // The only thing we know about an input section is the object and
3282   // the section index.  We need the section name.  Recomputing this
3283   // is slow but this is an unusual case.  If this becomes a speed
3284   // problem we can cache the names as required in Layout::layout.
3285
3286   // We start by building a larger vector holding a copy of each
3287   // Input_section, plus its current index in the list and its name.
3288   std::vector<Input_section_sort_entry> sort_list;
3289
3290   unsigned int i = 0;
3291   for (Input_section_list::iterator p = this->input_sections_.begin();
3292        p != this->input_sections_.end();
3293        ++p, ++i)
3294       sort_list.push_back(Input_section_sort_entry(*p, i,
3295                             this->must_sort_attached_input_sections()));
3296
3297   // Sort the input sections.
3298   if (this->must_sort_attached_input_sections())
3299     {
3300       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3301           || this->type() == elfcpp::SHT_INIT_ARRAY
3302           || this->type() == elfcpp::SHT_FINI_ARRAY)
3303         std::sort(sort_list.begin(), sort_list.end(),
3304                   Input_section_sort_init_fini_compare());
3305       else
3306         std::sort(sort_list.begin(), sort_list.end(),
3307                   Input_section_sort_compare());
3308     }
3309   else
3310     {
3311       gold_assert(parameters->options().section_ordering_file());
3312       std::sort(sort_list.begin(), sort_list.end(),
3313                 Input_section_sort_section_order_index_compare());
3314     }
3315
3316   // Copy the sorted input sections back to our list.
3317   this->input_sections_.clear();
3318   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3319        p != sort_list.end();
3320        ++p)
3321     this->input_sections_.push_back(p->input_section());
3322   sort_list.clear();
3323
3324   // Remember that we sorted the input sections, since we might get
3325   // called again.
3326   this->attached_input_sections_are_sorted_ = true;
3327 }
3328
3329 // Write the section header to *OSHDR.
3330
3331 template<int size, bool big_endian>
3332 void
3333 Output_section::write_header(const Layout* layout,
3334                              const Stringpool* secnamepool,
3335                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3336 {
3337   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3338   oshdr->put_sh_type(this->type_);
3339
3340   elfcpp::Elf_Xword flags = this->flags_;
3341   if (this->info_section_ != NULL && this->info_uses_section_index_)
3342     flags |= elfcpp::SHF_INFO_LINK;
3343   oshdr->put_sh_flags(flags);
3344
3345   oshdr->put_sh_addr(this->address());
3346   oshdr->put_sh_offset(this->offset());
3347   oshdr->put_sh_size(this->data_size());
3348   if (this->link_section_ != NULL)
3349     oshdr->put_sh_link(this->link_section_->out_shndx());
3350   else if (this->should_link_to_symtab_)
3351     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3352   else if (this->should_link_to_dynsym_)
3353     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3354   else
3355     oshdr->put_sh_link(this->link_);
3356
3357   elfcpp::Elf_Word info;
3358   if (this->info_section_ != NULL)
3359     {
3360       if (this->info_uses_section_index_)
3361         info = this->info_section_->out_shndx();
3362       else
3363         info = this->info_section_->symtab_index();
3364     }
3365   else if (this->info_symndx_ != NULL)
3366     info = this->info_symndx_->symtab_index();
3367   else
3368     info = this->info_;
3369   oshdr->put_sh_info(info);
3370
3371   oshdr->put_sh_addralign(this->addralign_);
3372   oshdr->put_sh_entsize(this->entsize_);
3373 }
3374
3375 // Write out the data.  For input sections the data is written out by
3376 // Object::relocate, but we have to handle Output_section_data objects
3377 // here.
3378
3379 void
3380 Output_section::do_write(Output_file* of)
3381 {
3382   gold_assert(!this->requires_postprocessing());
3383
3384   // If the target performs relaxation, we delay filler generation until now.
3385   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3386
3387   off_t output_section_file_offset = this->offset();
3388   for (Fill_list::iterator p = this->fills_.begin();
3389        p != this->fills_.end();
3390        ++p)
3391     {
3392       std::string fill_data(parameters->target().code_fill(p->length()));
3393       of->write(output_section_file_offset + p->section_offset(),
3394                 fill_data.data(), fill_data.size());
3395     }
3396
3397   off_t off = this->offset() + this->first_input_offset_;
3398   for (Input_section_list::iterator p = this->input_sections_.begin();
3399        p != this->input_sections_.end();
3400        ++p)
3401     {
3402       off_t aligned_off = align_address(off, p->addralign());
3403       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3404         {
3405           size_t fill_len = aligned_off - off;
3406           std::string fill_data(parameters->target().code_fill(fill_len));
3407           of->write(off, fill_data.data(), fill_data.size());
3408         }
3409
3410       p->write(of);
3411       off = aligned_off + p->data_size();
3412     }
3413 }
3414
3415 // If a section requires postprocessing, create the buffer to use.
3416
3417 void
3418 Output_section::create_postprocessing_buffer()
3419 {
3420   gold_assert(this->requires_postprocessing());
3421
3422   if (this->postprocessing_buffer_ != NULL)
3423     return;
3424
3425   if (!this->input_sections_.empty())
3426     {
3427       off_t off = this->first_input_offset_;
3428       for (Input_section_list::iterator p = this->input_sections_.begin();
3429            p != this->input_sections_.end();
3430            ++p)
3431         {
3432           off = align_address(off, p->addralign());
3433           p->finalize_data_size();
3434           off += p->data_size();
3435         }
3436       this->set_current_data_size_for_child(off);
3437     }
3438
3439   off_t buffer_size = this->current_data_size_for_child();
3440   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3441 }
3442
3443 // Write all the data of an Output_section into the postprocessing
3444 // buffer.  This is used for sections which require postprocessing,
3445 // such as compression.  Input sections are handled by
3446 // Object::Relocate.
3447
3448 void
3449 Output_section::write_to_postprocessing_buffer()
3450 {
3451   gold_assert(this->requires_postprocessing());
3452
3453   // If the target performs relaxation, we delay filler generation until now.
3454   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3455
3456   unsigned char* buffer = this->postprocessing_buffer();
3457   for (Fill_list::iterator p = this->fills_.begin();
3458        p != this->fills_.end();
3459        ++p)
3460     {
3461       std::string fill_data(parameters->target().code_fill(p->length()));
3462       memcpy(buffer + p->section_offset(), fill_data.data(),
3463              fill_data.size());
3464     }
3465
3466   off_t off = this->first_input_offset_;
3467   for (Input_section_list::iterator p = this->input_sections_.begin();
3468        p != this->input_sections_.end();
3469        ++p)
3470     {
3471       off_t aligned_off = align_address(off, p->addralign());
3472       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3473         {
3474           size_t fill_len = aligned_off - off;
3475           std::string fill_data(parameters->target().code_fill(fill_len));
3476           memcpy(buffer + off, fill_data.data(), fill_data.size());
3477         }
3478
3479       p->write_to_buffer(buffer + aligned_off);
3480       off = aligned_off + p->data_size();
3481     }
3482 }
3483
3484 // Get the input sections for linker script processing.  We leave
3485 // behind the Output_section_data entries.  Note that this may be
3486 // slightly incorrect for merge sections.  We will leave them behind,
3487 // but it is possible that the script says that they should follow
3488 // some other input sections, as in:
3489 //    .rodata { *(.rodata) *(.rodata.cst*) }
3490 // For that matter, we don't handle this correctly:
3491 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3492 // With luck this will never matter.
3493
3494 uint64_t
3495 Output_section::get_input_sections(
3496     uint64_t address,
3497     const std::string& fill,
3498     std::list<Input_section>* input_sections)
3499 {
3500   if (this->checkpoint_ != NULL
3501       && !this->checkpoint_->input_sections_saved())
3502     this->checkpoint_->save_input_sections();
3503
3504   // Invalidate fast look-up maps.
3505   this->lookup_maps_->invalidate();
3506
3507   uint64_t orig_address = address;
3508
3509   address = align_address(address, this->addralign());
3510
3511   Input_section_list remaining;
3512   for (Input_section_list::iterator p = this->input_sections_.begin();
3513        p != this->input_sections_.end();
3514        ++p)
3515     {
3516       if (p->is_input_section()
3517           || p->is_relaxed_input_section()
3518           || p->is_merge_section())
3519         input_sections->push_back(*p);
3520       else
3521         {
3522           uint64_t aligned_address = align_address(address, p->addralign());
3523           if (aligned_address != address && !fill.empty())
3524             {
3525               section_size_type length =
3526                 convert_to_section_size_type(aligned_address - address);
3527               std::string this_fill;
3528               this_fill.reserve(length);
3529               while (this_fill.length() + fill.length() <= length)
3530                 this_fill += fill;
3531               if (this_fill.length() < length)
3532                 this_fill.append(fill, 0, length - this_fill.length());
3533
3534               Output_section_data* posd = new Output_data_const(this_fill, 0);
3535               remaining.push_back(Input_section(posd));
3536             }
3537           address = aligned_address;
3538
3539           remaining.push_back(*p);
3540
3541           p->finalize_data_size();
3542           address += p->data_size();
3543         }
3544     }
3545
3546   this->input_sections_.swap(remaining);
3547   this->first_input_offset_ = 0;
3548
3549   uint64_t data_size = address - orig_address;
3550   this->set_current_data_size_for_child(data_size);
3551   return data_size;
3552 }
3553
3554 // Add a script input section.  SIS is an Output_section::Input_section,
3555 // which can be either a plain input section or a special input section like
3556 // a relaxed input section.  For a special input section, its size must be
3557 // finalized.
3558
3559 void
3560 Output_section::add_script_input_section(const Input_section& sis)
3561 {
3562   uint64_t data_size = sis.data_size();
3563   uint64_t addralign = sis.addralign();
3564   if (addralign > this->addralign_)
3565     this->addralign_ = addralign;
3566
3567   off_t offset_in_section = this->current_data_size_for_child();
3568   off_t aligned_offset_in_section = align_address(offset_in_section,
3569                                                   addralign);
3570
3571   this->set_current_data_size_for_child(aligned_offset_in_section
3572                                         + data_size);
3573
3574   this->input_sections_.push_back(sis);
3575
3576   // Update fast lookup maps if necessary. 
3577   if (this->lookup_maps_->is_valid())
3578     {
3579       if (sis.is_merge_section())
3580         {
3581           Output_merge_base* pomb = sis.output_merge_base();
3582           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3583                                        pomb->addralign());
3584           this->lookup_maps_->add_merge_section(msp, pomb);
3585           for (Output_merge_base::Input_sections::const_iterator p =
3586                  pomb->input_sections_begin();
3587                p != pomb->input_sections_end();
3588                ++p)
3589             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3590                                                         pomb);
3591         }
3592       else if (sis.is_relaxed_input_section())
3593         {
3594           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3595           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3596                                                         poris->shndx(), poris);
3597         }
3598     }
3599 }
3600
3601 // Save states for relaxation.
3602
3603 void
3604 Output_section::save_states()
3605 {
3606   gold_assert(this->checkpoint_ == NULL);
3607   Checkpoint_output_section* checkpoint =
3608     new Checkpoint_output_section(this->addralign_, this->flags_,
3609                                   this->input_sections_,
3610                                   this->first_input_offset_,
3611                                   this->attached_input_sections_are_sorted_);
3612   this->checkpoint_ = checkpoint;
3613   gold_assert(this->fills_.empty());
3614 }
3615
3616 void
3617 Output_section::discard_states()
3618 {
3619   gold_assert(this->checkpoint_ != NULL);
3620   delete this->checkpoint_;
3621   this->checkpoint_ = NULL;
3622   gold_assert(this->fills_.empty());
3623
3624   // Simply invalidate the fast lookup maps since we do not keep
3625   // track of them.
3626   this->lookup_maps_->invalidate();
3627 }
3628
3629 void
3630 Output_section::restore_states()
3631 {
3632   gold_assert(this->checkpoint_ != NULL);
3633   Checkpoint_output_section* checkpoint = this->checkpoint_;
3634
3635   this->addralign_ = checkpoint->addralign();
3636   this->flags_ = checkpoint->flags();
3637   this->first_input_offset_ = checkpoint->first_input_offset();
3638
3639   if (!checkpoint->input_sections_saved())
3640     {
3641       // If we have not copied the input sections, just resize it.
3642       size_t old_size = checkpoint->input_sections_size();
3643       gold_assert(this->input_sections_.size() >= old_size);
3644       this->input_sections_.resize(old_size);
3645     }
3646   else
3647     {
3648       // We need to copy the whole list.  This is not efficient for
3649       // extremely large output with hundreads of thousands of input
3650       // objects.  We may need to re-think how we should pass sections
3651       // to scripts.
3652       this->input_sections_ = *checkpoint->input_sections();
3653     }
3654
3655   this->attached_input_sections_are_sorted_ =
3656     checkpoint->attached_input_sections_are_sorted();
3657
3658   // Simply invalidate the fast lookup maps since we do not keep
3659   // track of them.
3660   this->lookup_maps_->invalidate();
3661 }
3662
3663 // Update the section offsets of input sections in this.  This is required if
3664 // relaxation causes some input sections to change sizes.
3665
3666 void
3667 Output_section::adjust_section_offsets()
3668 {
3669   if (!this->section_offsets_need_adjustment_)
3670     return;
3671
3672   off_t off = 0;
3673   for (Input_section_list::iterator p = this->input_sections_.begin();
3674        p != this->input_sections_.end();
3675        ++p)
3676     {
3677       off = align_address(off, p->addralign());
3678       if (p->is_input_section())
3679         p->relobj()->set_section_offset(p->shndx(), off);
3680       off += p->data_size();
3681     }
3682
3683   this->section_offsets_need_adjustment_ = false;
3684 }
3685
3686 // Print to the map file.
3687
3688 void
3689 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3690 {
3691   mapfile->print_output_section(this);
3692
3693   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3694        p != this->input_sections_.end();
3695        ++p)
3696     p->print_to_mapfile(mapfile);
3697 }
3698
3699 // Print stats for merge sections to stderr.
3700
3701 void
3702 Output_section::print_merge_stats()
3703 {
3704   Input_section_list::iterator p;
3705   for (p = this->input_sections_.begin();
3706        p != this->input_sections_.end();
3707        ++p)
3708     p->print_merge_stats(this->name_);
3709 }
3710
3711 // Set a fixed layout for the section.  Used for incremental update links.
3712
3713 void
3714 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3715                                  off_t sh_size, uint64_t sh_addralign)
3716 {
3717   this->addralign_ = sh_addralign;
3718   this->set_current_data_size(sh_size);
3719   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3720     this->set_address(sh_addr);
3721   this->set_file_offset(sh_offset);
3722   this->finalize_data_size();
3723   this->free_list_.init(sh_size, false);
3724   this->has_fixed_layout_ = true;
3725 }
3726
3727 // Reserve space within the fixed layout for the section.  Used for
3728 // incremental update links.
3729
3730 void
3731 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3732 {
3733   this->free_list_.remove(sh_offset, sh_offset + sh_size);
3734 }
3735
3736 // Allocate space from the free list for the section.  Used for
3737 // incremental update links.
3738
3739 off_t
3740 Output_section::allocate(off_t len, uint64_t addralign)
3741 {
3742   return this->free_list_.allocate(len, addralign, 0);
3743 }
3744
3745 // Output segment methods.
3746
3747 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3748   : vaddr_(0),
3749     paddr_(0),
3750     memsz_(0),
3751     max_align_(0),
3752     min_p_align_(0),
3753     offset_(0),
3754     filesz_(0),
3755     type_(type),
3756     flags_(flags),
3757     is_max_align_known_(false),
3758     are_addresses_set_(false),
3759     is_large_data_segment_(false)
3760 {
3761   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3762   // the flags.
3763   if (type == elfcpp::PT_TLS)
3764     this->flags_ = elfcpp::PF_R;
3765 }
3766
3767 // Add an Output_section to a PT_LOAD Output_segment.
3768
3769 void
3770 Output_segment::add_output_section_to_load(Layout* layout,
3771                                            Output_section* os,
3772                                            elfcpp::Elf_Word seg_flags)
3773 {
3774   gold_assert(this->type() == elfcpp::PT_LOAD);
3775   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3776   gold_assert(!this->is_max_align_known_);
3777   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3778
3779   this->update_flags_for_output_section(seg_flags);
3780
3781   // We don't want to change the ordering if we have a linker script
3782   // with a SECTIONS clause.
3783   Output_section_order order = os->order();
3784   if (layout->script_options()->saw_sections_clause())
3785     order = static_cast<Output_section_order>(0);
3786   else
3787     gold_assert(order != ORDER_INVALID);
3788
3789   this->output_lists_[order].push_back(os);
3790 }
3791
3792 // Add an Output_section to a non-PT_LOAD Output_segment.
3793
3794 void
3795 Output_segment::add_output_section_to_nonload(Output_section* os,
3796                                               elfcpp::Elf_Word seg_flags)
3797 {
3798   gold_assert(this->type() != elfcpp::PT_LOAD);
3799   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3800   gold_assert(!this->is_max_align_known_);
3801
3802   this->update_flags_for_output_section(seg_flags);
3803
3804   this->output_lists_[0].push_back(os);
3805 }
3806
3807 // Remove an Output_section from this segment.  It is an error if it
3808 // is not present.
3809
3810 void
3811 Output_segment::remove_output_section(Output_section* os)
3812 {
3813   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3814     {
3815       Output_data_list* pdl = &this->output_lists_[i];
3816       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
3817         {
3818           if (*p == os)
3819             {
3820               pdl->erase(p);
3821               return;
3822             }
3823         }
3824     }
3825   gold_unreachable();
3826 }
3827
3828 // Add an Output_data (which need not be an Output_section) to the
3829 // start of a segment.
3830
3831 void
3832 Output_segment::add_initial_output_data(Output_data* od)
3833 {
3834   gold_assert(!this->is_max_align_known_);
3835   Output_data_list::iterator p = this->output_lists_[0].begin();
3836   this->output_lists_[0].insert(p, od);
3837 }
3838
3839 // Return true if this segment has any sections which hold actual
3840 // data, rather than being a BSS section.
3841
3842 bool
3843 Output_segment::has_any_data_sections() const
3844 {
3845   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3846     {
3847       const Output_data_list* pdl = &this->output_lists_[i];
3848       for (Output_data_list::const_iterator p = pdl->begin();
3849            p != pdl->end();
3850            ++p)
3851         {
3852           if (!(*p)->is_section())
3853             return true;
3854           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
3855             return true;
3856         }
3857     }
3858   return false;
3859 }
3860
3861 // Return whether the first data section (not counting TLS sections)
3862 // is a relro section.
3863
3864 bool
3865 Output_segment::is_first_section_relro() const
3866 {
3867   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3868     {
3869       if (i == static_cast<int>(ORDER_TLS_DATA)
3870           || i == static_cast<int>(ORDER_TLS_BSS))
3871         continue;
3872       const Output_data_list* pdl = &this->output_lists_[i];
3873       if (!pdl->empty())
3874         {
3875           Output_data* p = pdl->front();
3876           return p->is_section() && p->output_section()->is_relro();
3877         }
3878     }
3879   return false;
3880 }
3881
3882 // Return the maximum alignment of the Output_data in Output_segment.
3883
3884 uint64_t
3885 Output_segment::maximum_alignment()
3886 {
3887   if (!this->is_max_align_known_)
3888     {
3889       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3890         {       
3891           const Output_data_list* pdl = &this->output_lists_[i];
3892           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
3893           if (addralign > this->max_align_)
3894             this->max_align_ = addralign;
3895         }
3896       this->is_max_align_known_ = true;
3897     }
3898
3899   return this->max_align_;
3900 }
3901
3902 // Return the maximum alignment of a list of Output_data.
3903
3904 uint64_t
3905 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3906 {
3907   uint64_t ret = 0;
3908   for (Output_data_list::const_iterator p = pdl->begin();
3909        p != pdl->end();
3910        ++p)
3911     {
3912       uint64_t addralign = (*p)->addralign();
3913       if (addralign > ret)
3914         ret = addralign;
3915     }
3916   return ret;
3917 }
3918
3919 // Return whether this segment has any dynamic relocs.
3920
3921 bool
3922 Output_segment::has_dynamic_reloc() const
3923 {
3924   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3925     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
3926       return true;
3927   return false;
3928 }
3929
3930 // Return whether this Output_data_list has any dynamic relocs.
3931
3932 bool
3933 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
3934 {
3935   for (Output_data_list::const_iterator p = pdl->begin();
3936        p != pdl->end();
3937        ++p)
3938     if ((*p)->has_dynamic_reloc())
3939       return true;
3940   return false;
3941 }
3942
3943 // Set the section addresses for an Output_segment.  If RESET is true,
3944 // reset the addresses first.  ADDR is the address and *POFF is the
3945 // file offset.  Set the section indexes starting with *PSHNDX.
3946 // INCREASE_RELRO is the size of the portion of the first non-relro
3947 // section that should be included in the PT_GNU_RELRO segment.
3948 // If this segment has relro sections, and has been aligned for
3949 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
3950 // the immediately following segment.  Update *HAS_RELRO, *POFF,
3951 // and *PSHNDX.
3952
3953 uint64_t
3954 Output_segment::set_section_addresses(Layout* layout, bool reset,
3955                                       uint64_t addr,
3956                                       unsigned int* increase_relro,
3957                                       bool* has_relro,
3958                                       off_t* poff,
3959                                       unsigned int* pshndx)
3960 {
3961   gold_assert(this->type_ == elfcpp::PT_LOAD);
3962
3963   uint64_t last_relro_pad = 0;
3964   off_t orig_off = *poff;
3965
3966   bool in_tls = false;
3967
3968   // If we have relro sections, we need to pad forward now so that the
3969   // relro sections plus INCREASE_RELRO end on a common page boundary.
3970   if (parameters->options().relro()
3971       && this->is_first_section_relro()
3972       && (!this->are_addresses_set_ || reset))
3973     {
3974       uint64_t relro_size = 0;
3975       off_t off = *poff;
3976       uint64_t max_align = 0;
3977       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
3978         {
3979           Output_data_list* pdl = &this->output_lists_[i];
3980           Output_data_list::iterator p;
3981           for (p = pdl->begin(); p != pdl->end(); ++p)
3982             {
3983               if (!(*p)->is_section())
3984                 break;
3985               uint64_t align = (*p)->addralign();
3986               if (align > max_align)
3987                 max_align = align;
3988               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3989                 in_tls = true;
3990               else if (in_tls)
3991                 {
3992                   // Align the first non-TLS section to the alignment
3993                   // of the TLS segment.
3994                   align = max_align;
3995                   in_tls = false;
3996                 }
3997               relro_size = align_address(relro_size, align);
3998               // Ignore the size of the .tbss section.
3999               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4000                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4001                 continue;
4002               if ((*p)->is_address_valid())
4003                 relro_size += (*p)->data_size();
4004               else
4005                 {
4006                   // FIXME: This could be faster.
4007                   (*p)->set_address_and_file_offset(addr + relro_size,
4008                                                     off + relro_size);
4009                   relro_size += (*p)->data_size();
4010                   (*p)->reset_address_and_file_offset();
4011                 }
4012             }
4013           if (p != pdl->end())
4014             break;
4015         }
4016       relro_size += *increase_relro;
4017       // Pad the total relro size to a multiple of the maximum
4018       // section alignment seen.
4019       uint64_t aligned_size = align_address(relro_size, max_align);
4020       // Note the amount of padding added after the last relro section.
4021       last_relro_pad = aligned_size - relro_size;
4022       *has_relro = true;
4023
4024       uint64_t page_align = parameters->target().common_pagesize();
4025
4026       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4027       uint64_t desired_align = page_align - (aligned_size % page_align);
4028       if (desired_align < *poff % page_align)
4029         *poff += page_align - *poff % page_align;
4030       *poff += desired_align - *poff % page_align;
4031       addr += *poff - orig_off;
4032       orig_off = *poff;
4033     }
4034
4035   if (!reset && this->are_addresses_set_)
4036     {
4037       gold_assert(this->paddr_ == addr);
4038       addr = this->vaddr_;
4039     }
4040   else
4041     {
4042       this->vaddr_ = addr;
4043       this->paddr_ = addr;
4044       this->are_addresses_set_ = true;
4045     }
4046
4047   in_tls = false;
4048
4049   this->offset_ = orig_off;
4050
4051   off_t off = 0;
4052   uint64_t ret;
4053   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4054     {
4055       if (i == static_cast<int>(ORDER_RELRO_LAST))
4056         {
4057           *poff += last_relro_pad;
4058           addr += last_relro_pad;
4059           if (this->output_lists_[i].empty())
4060             {
4061               // If there is nothing in the ORDER_RELRO_LAST list,
4062               // the padding will occur at the end of the relro
4063               // segment, and we need to add it to *INCREASE_RELRO.
4064               *increase_relro += last_relro_pad;
4065             }
4066         }
4067       addr = this->set_section_list_addresses(layout, reset,
4068                                               &this->output_lists_[i],
4069                                               addr, poff, pshndx, &in_tls);
4070       if (i < static_cast<int>(ORDER_SMALL_BSS))
4071         {
4072           this->filesz_ = *poff - orig_off;
4073           off = *poff;
4074         }
4075
4076       ret = addr;
4077     }
4078
4079   // If the last section was a TLS section, align upward to the
4080   // alignment of the TLS segment, so that the overall size of the TLS
4081   // segment is aligned.
4082   if (in_tls)
4083     {
4084       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4085       *poff = align_address(*poff, segment_align);
4086     }
4087
4088   this->memsz_ = *poff - orig_off;
4089
4090   // Ignore the file offset adjustments made by the BSS Output_data
4091   // objects.
4092   *poff = off;
4093
4094   return ret;
4095 }
4096
4097 // Set the addresses and file offsets in a list of Output_data
4098 // structures.
4099
4100 uint64_t
4101 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4102                                            Output_data_list* pdl,
4103                                            uint64_t addr, off_t* poff,
4104                                            unsigned int* pshndx,
4105                                            bool* in_tls)
4106 {
4107   off_t startoff = *poff;
4108   // For incremental updates, we may allocate non-fixed sections from
4109   // free space in the file.  This keeps track of the high-water mark.
4110   off_t maxoff = startoff;
4111
4112   off_t off = startoff;
4113   for (Output_data_list::iterator p = pdl->begin();
4114        p != pdl->end();
4115        ++p)
4116     {
4117       if (reset)
4118         (*p)->reset_address_and_file_offset();
4119
4120       // When doing an incremental update or when using a linker script,
4121       // the section will most likely already have an address.
4122       if (!(*p)->is_address_valid())
4123         {
4124           uint64_t align = (*p)->addralign();
4125
4126           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4127             {
4128               // Give the first TLS section the alignment of the
4129               // entire TLS segment.  Otherwise the TLS segment as a
4130               // whole may be misaligned.
4131               if (!*in_tls)
4132                 {
4133                   Output_segment* tls_segment = layout->tls_segment();
4134                   gold_assert(tls_segment != NULL);
4135                   uint64_t segment_align = tls_segment->maximum_alignment();
4136                   gold_assert(segment_align >= align);
4137                   align = segment_align;
4138
4139                   *in_tls = true;
4140                 }
4141             }
4142           else
4143             {
4144               // If this is the first section after the TLS segment,
4145               // align it to at least the alignment of the TLS
4146               // segment, so that the size of the overall TLS segment
4147               // is aligned.
4148               if (*in_tls)
4149                 {
4150                   uint64_t segment_align =
4151                       layout->tls_segment()->maximum_alignment();
4152                   if (segment_align > align)
4153                     align = segment_align;
4154
4155                   *in_tls = false;
4156                 }
4157             }
4158
4159           if (!parameters->incremental_update())
4160             {
4161               off = align_address(off, align);
4162               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4163             }
4164           else
4165             {
4166               // Incremental update: allocate file space from free list.
4167               (*p)->pre_finalize_data_size();
4168               off_t current_size = (*p)->current_data_size();
4169               off = layout->allocate(current_size, align, startoff);
4170               if (off == -1)
4171                 {
4172                   gold_assert((*p)->output_section() != NULL);
4173                   gold_fatal(_("out of patch space for section %s; "
4174                                "relink with --incremental-full"),
4175                              (*p)->output_section()->name());
4176                 }
4177               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4178               if ((*p)->data_size() > current_size)
4179                 {
4180                   gold_assert((*p)->output_section() != NULL);
4181                   gold_fatal(_("%s: section changed size; "
4182                                "relink with --incremental-full"),
4183                              (*p)->output_section()->name());
4184                 }
4185             }
4186         }
4187       else if (parameters->incremental_update())
4188         {
4189           // For incremental updates, use the fixed offset for the
4190           // high-water mark computation.
4191           off = (*p)->offset();
4192         }
4193       else
4194         {
4195           // The script may have inserted a skip forward, but it
4196           // better not have moved backward.
4197           if ((*p)->address() >= addr + (off - startoff))
4198             off += (*p)->address() - (addr + (off - startoff));
4199           else
4200             {
4201               if (!layout->script_options()->saw_sections_clause())
4202                 gold_unreachable();
4203               else
4204                 {
4205                   Output_section* os = (*p)->output_section();
4206
4207                   // Cast to unsigned long long to avoid format warnings.
4208                   unsigned long long previous_dot =
4209                     static_cast<unsigned long long>(addr + (off - startoff));
4210                   unsigned long long dot =
4211                     static_cast<unsigned long long>((*p)->address());
4212
4213                   if (os == NULL)
4214                     gold_error(_("dot moves backward in linker script "
4215                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4216                   else
4217                     gold_error(_("address of section '%s' moves backward "
4218                                  "from 0x%llx to 0x%llx"),
4219                                os->name(), previous_dot, dot);
4220                 }
4221             }
4222           (*p)->set_file_offset(off);
4223           (*p)->finalize_data_size();
4224         }
4225
4226       gold_debug(DEBUG_INCREMENTAL,
4227                  "set_section_list_addresses: %08lx %08lx %s",
4228                  static_cast<long>(off),
4229                  static_cast<long>((*p)->data_size()),
4230                  ((*p)->output_section() != NULL
4231                   ? (*p)->output_section()->name() : "(special)"));
4232
4233       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
4234       // section.  Such a section does not affect the size of a
4235       // PT_LOAD segment.
4236       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4237           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4238         off += (*p)->data_size();
4239
4240       if (off > maxoff)
4241         maxoff = off;
4242
4243       if ((*p)->is_section())
4244         {
4245           (*p)->set_out_shndx(*pshndx);
4246           ++*pshndx;
4247         }
4248     }
4249
4250   *poff = maxoff;
4251   return addr + (maxoff - startoff);
4252 }
4253
4254 // For a non-PT_LOAD segment, set the offset from the sections, if
4255 // any.  Add INCREASE to the file size and the memory size.
4256
4257 void
4258 Output_segment::set_offset(unsigned int increase)
4259 {
4260   gold_assert(this->type_ != elfcpp::PT_LOAD);
4261
4262   gold_assert(!this->are_addresses_set_);
4263
4264   // A non-load section only uses output_lists_[0].
4265
4266   Output_data_list* pdl = &this->output_lists_[0];
4267
4268   if (pdl->empty())
4269     {
4270       gold_assert(increase == 0);
4271       this->vaddr_ = 0;
4272       this->paddr_ = 0;
4273       this->are_addresses_set_ = true;
4274       this->memsz_ = 0;
4275       this->min_p_align_ = 0;
4276       this->offset_ = 0;
4277       this->filesz_ = 0;
4278       return;
4279     }
4280
4281   // Find the first and last section by address.
4282   const Output_data* first = NULL;
4283   const Output_data* last_data = NULL;
4284   const Output_data* last_bss = NULL;
4285   for (Output_data_list::const_iterator p = pdl->begin();
4286        p != pdl->end();
4287        ++p)
4288     {
4289       if (first == NULL
4290           || (*p)->address() < first->address()
4291           || ((*p)->address() == first->address()
4292               && (*p)->data_size() < first->data_size()))
4293         first = *p;
4294       const Output_data** plast;
4295       if ((*p)->is_section()
4296           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4297         plast = &last_bss;
4298       else
4299         plast = &last_data;
4300       if (*plast == NULL
4301           || (*p)->address() > (*plast)->address()
4302           || ((*p)->address() == (*plast)->address()
4303               && (*p)->data_size() > (*plast)->data_size()))
4304         *plast = *p;
4305     }
4306
4307   this->vaddr_ = first->address();
4308   this->paddr_ = (first->has_load_address()
4309                   ? first->load_address()
4310                   : this->vaddr_);
4311   this->are_addresses_set_ = true;
4312   this->offset_ = first->offset();
4313
4314   if (last_data == NULL)
4315     this->filesz_ = 0;
4316   else
4317     this->filesz_ = (last_data->address()
4318                      + last_data->data_size()
4319                      - this->vaddr_);
4320
4321   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4322   this->memsz_ = (last->address()
4323                   + last->data_size()
4324                   - this->vaddr_);
4325
4326   this->filesz_ += increase;
4327   this->memsz_ += increase;
4328
4329   // If this is a RELRO segment, verify that the segment ends at a
4330   // page boundary.
4331   if (this->type_ == elfcpp::PT_GNU_RELRO)
4332     {
4333       uint64_t page_align = parameters->target().common_pagesize();
4334       uint64_t segment_end = this->vaddr_ + this->memsz_;
4335       if (parameters->incremental_update())
4336         {
4337           // The INCREASE_RELRO calculation is bypassed for an incremental
4338           // update, so we need to adjust the segment size manually here.
4339           segment_end = align_address(segment_end, page_align);
4340           this->memsz_ = segment_end - this->vaddr_;
4341         }
4342       else
4343         gold_assert(segment_end == align_address(segment_end, page_align));
4344     }
4345
4346   // If this is a TLS segment, align the memory size.  The code in
4347   // set_section_list ensures that the section after the TLS segment
4348   // is aligned to give us room.
4349   if (this->type_ == elfcpp::PT_TLS)
4350     {
4351       uint64_t segment_align = this->maximum_alignment();
4352       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4353       this->memsz_ = align_address(this->memsz_, segment_align);
4354     }
4355 }
4356
4357 // Set the TLS offsets of the sections in the PT_TLS segment.
4358
4359 void
4360 Output_segment::set_tls_offsets()
4361 {
4362   gold_assert(this->type_ == elfcpp::PT_TLS);
4363
4364   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4365        p != this->output_lists_[0].end();
4366        ++p)
4367     (*p)->set_tls_offset(this->vaddr_);
4368 }
4369
4370 // Return the load address of the first section.
4371
4372 uint64_t
4373 Output_segment::first_section_load_address() const
4374 {
4375   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4376     {
4377       const Output_data_list* pdl = &this->output_lists_[i];
4378       for (Output_data_list::const_iterator p = pdl->begin();
4379            p != pdl->end();
4380            ++p)
4381         {
4382           if ((*p)->is_section())
4383             return ((*p)->has_load_address()
4384                     ? (*p)->load_address()
4385                     : (*p)->address());
4386         }
4387     }
4388   gold_unreachable();
4389 }
4390
4391 // Return the number of Output_sections in an Output_segment.
4392
4393 unsigned int
4394 Output_segment::output_section_count() const
4395 {
4396   unsigned int ret = 0;
4397   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4398     ret += this->output_section_count_list(&this->output_lists_[i]);
4399   return ret;
4400 }
4401
4402 // Return the number of Output_sections in an Output_data_list.
4403
4404 unsigned int
4405 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4406 {
4407   unsigned int count = 0;
4408   for (Output_data_list::const_iterator p = pdl->begin();
4409        p != pdl->end();
4410        ++p)
4411     {
4412       if ((*p)->is_section())
4413         ++count;
4414     }
4415   return count;
4416 }
4417
4418 // Return the section attached to the list segment with the lowest
4419 // load address.  This is used when handling a PHDRS clause in a
4420 // linker script.
4421
4422 Output_section*
4423 Output_segment::section_with_lowest_load_address() const
4424 {
4425   Output_section* found = NULL;
4426   uint64_t found_lma = 0;
4427   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4428     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4429                                       &found_lma);
4430   return found;
4431 }
4432
4433 // Look through a list for a section with a lower load address.
4434
4435 void
4436 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4437                                             Output_section** found,
4438                                             uint64_t* found_lma) const
4439 {
4440   for (Output_data_list::const_iterator p = pdl->begin();
4441        p != pdl->end();
4442        ++p)
4443     {
4444       if (!(*p)->is_section())
4445         continue;
4446       Output_section* os = static_cast<Output_section*>(*p);
4447       uint64_t lma = (os->has_load_address()
4448                       ? os->load_address()
4449                       : os->address());
4450       if (*found == NULL || lma < *found_lma)
4451         {
4452           *found = os;
4453           *found_lma = lma;
4454         }
4455     }
4456 }
4457
4458 // Write the segment data into *OPHDR.
4459
4460 template<int size, bool big_endian>
4461 void
4462 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4463 {
4464   ophdr->put_p_type(this->type_);
4465   ophdr->put_p_offset(this->offset_);
4466   ophdr->put_p_vaddr(this->vaddr_);
4467   ophdr->put_p_paddr(this->paddr_);
4468   ophdr->put_p_filesz(this->filesz_);
4469   ophdr->put_p_memsz(this->memsz_);
4470   ophdr->put_p_flags(this->flags_);
4471   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4472 }
4473
4474 // Write the section headers into V.
4475
4476 template<int size, bool big_endian>
4477 unsigned char*
4478 Output_segment::write_section_headers(const Layout* layout,
4479                                       const Stringpool* secnamepool,
4480                                       unsigned char* v,
4481                                       unsigned int* pshndx) const
4482 {
4483   // Every section that is attached to a segment must be attached to a
4484   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4485   // segments.
4486   if (this->type_ != elfcpp::PT_LOAD)
4487     return v;
4488
4489   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4490     {
4491       const Output_data_list* pdl = &this->output_lists_[i];
4492       v = this->write_section_headers_list<size, big_endian>(layout,
4493                                                              secnamepool,
4494                                                              pdl,
4495                                                              v, pshndx);
4496     }
4497
4498   return v;
4499 }
4500
4501 template<int size, bool big_endian>
4502 unsigned char*
4503 Output_segment::write_section_headers_list(const Layout* layout,
4504                                            const Stringpool* secnamepool,
4505                                            const Output_data_list* pdl,
4506                                            unsigned char* v,
4507                                            unsigned int* pshndx) const
4508 {
4509   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4510   for (Output_data_list::const_iterator p = pdl->begin();
4511        p != pdl->end();
4512        ++p)
4513     {
4514       if ((*p)->is_section())
4515         {
4516           const Output_section* ps = static_cast<const Output_section*>(*p);
4517           gold_assert(*pshndx == ps->out_shndx());
4518           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4519           ps->write_header(layout, secnamepool, &oshdr);
4520           v += shdr_size;
4521           ++*pshndx;
4522         }
4523     }
4524   return v;
4525 }
4526
4527 // Print the output sections to the map file.
4528
4529 void
4530 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4531 {
4532   if (this->type() != elfcpp::PT_LOAD)
4533     return;
4534   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4535     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4536 }
4537
4538 // Print an output section list to the map file.
4539
4540 void
4541 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4542                                               const Output_data_list* pdl) const
4543 {
4544   for (Output_data_list::const_iterator p = pdl->begin();
4545        p != pdl->end();
4546        ++p)
4547     (*p)->print_to_mapfile(mapfile);
4548 }
4549
4550 // Output_file methods.
4551
4552 Output_file::Output_file(const char* name)
4553   : name_(name),
4554     o_(-1),
4555     file_size_(0),
4556     base_(NULL),
4557     map_is_anonymous_(false),
4558     map_is_allocated_(false),
4559     is_temporary_(false)
4560 {
4561 }
4562
4563 // Try to open an existing file.  Returns false if the file doesn't
4564 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4565 // NULL, open that file as the base for incremental linking, and
4566 // copy its contents to the new output file.  This routine can
4567 // be called for incremental updates, in which case WRITABLE should
4568 // be true, or by the incremental-dump utility, in which case
4569 // WRITABLE should be false.
4570
4571 bool
4572 Output_file::open_base_file(const char* base_name, bool writable)
4573 {
4574   // The name "-" means "stdout".
4575   if (strcmp(this->name_, "-") == 0)
4576     return false;
4577
4578   bool use_base_file = base_name != NULL;
4579   if (!use_base_file)
4580     base_name = this->name_;
4581   else if (strcmp(base_name, this->name_) == 0)
4582     gold_fatal(_("%s: incremental base and output file name are the same"),
4583                base_name);
4584
4585   // Don't bother opening files with a size of zero.
4586   struct stat s;
4587   if (::stat(base_name, &s) != 0)
4588     {
4589       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4590       return false;
4591     }
4592   if (s.st_size == 0)
4593     {
4594       gold_info(_("%s: incremental base file is empty"), base_name);
4595       return false;
4596     }
4597
4598   // If we're using a base file, we want to open it read-only.
4599   if (use_base_file)
4600     writable = false;
4601
4602   int oflags = writable ? O_RDWR : O_RDONLY;
4603   int o = open_descriptor(-1, base_name, oflags, 0);
4604   if (o < 0)
4605     {
4606       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4607       return false;
4608     }
4609
4610   // If the base file and the output file are different, open a
4611   // new output file and read the contents from the base file into
4612   // the newly-mapped region.
4613   if (use_base_file)
4614     {
4615       this->open(s.st_size);
4616       ssize_t len = ::read(o, this->base_, s.st_size);
4617       if (len < 0)
4618         {
4619           gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4620           return false;
4621         }
4622       if (len < s.st_size)
4623         {
4624           gold_info(_("%s: file too short"), base_name);
4625           return false;
4626         }
4627       ::close(o);
4628       return true;
4629     }
4630
4631   this->o_ = o;
4632   this->file_size_ = s.st_size;
4633
4634   if (!this->map_no_anonymous(writable))
4635     {
4636       release_descriptor(o, true);
4637       this->o_ = -1;
4638       this->file_size_ = 0;
4639       return false;
4640     }
4641
4642   return true;
4643 }
4644
4645 // Open the output file.
4646
4647 void
4648 Output_file::open(off_t file_size)
4649 {
4650   this->file_size_ = file_size;
4651
4652   // Unlink the file first; otherwise the open() may fail if the file
4653   // is busy (e.g. it's an executable that's currently being executed).
4654   //
4655   // However, the linker may be part of a system where a zero-length
4656   // file is created for it to write to, with tight permissions (gcc
4657   // 2.95 did something like this).  Unlinking the file would work
4658   // around those permission controls, so we only unlink if the file
4659   // has a non-zero size.  We also unlink only regular files to avoid
4660   // trouble with directories/etc.
4661   //
4662   // If we fail, continue; this command is merely a best-effort attempt
4663   // to improve the odds for open().
4664
4665   // We let the name "-" mean "stdout"
4666   if (!this->is_temporary_)
4667     {
4668       if (strcmp(this->name_, "-") == 0)
4669         this->o_ = STDOUT_FILENO;
4670       else
4671         {
4672           struct stat s;
4673           if (::stat(this->name_, &s) == 0
4674               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4675             {
4676               if (s.st_size != 0)
4677                 ::unlink(this->name_);
4678               else if (!parameters->options().relocatable())
4679                 {
4680                   // If we don't unlink the existing file, add execute
4681                   // permission where read permissions already exist
4682                   // and where the umask permits.
4683                   int mask = ::umask(0);
4684                   ::umask(mask);
4685                   s.st_mode |= (s.st_mode & 0444) >> 2;
4686                   ::chmod(this->name_, s.st_mode & ~mask);
4687                 }
4688             }
4689
4690           int mode = parameters->options().relocatable() ? 0666 : 0777;
4691           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4692                                   mode);
4693           if (o < 0)
4694             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4695           this->o_ = o;
4696         }
4697     }
4698
4699   this->map();
4700 }
4701
4702 // Resize the output file.
4703
4704 void
4705 Output_file::resize(off_t file_size)
4706 {
4707   // If the mmap is mapping an anonymous memory buffer, this is easy:
4708   // just mremap to the new size.  If it's mapping to a file, we want
4709   // to unmap to flush to the file, then remap after growing the file.
4710   if (this->map_is_anonymous_)
4711     {
4712       void* base;
4713       if (!this->map_is_allocated_)
4714         {
4715           base = ::mremap(this->base_, this->file_size_, file_size,
4716                           MREMAP_MAYMOVE);
4717           if (base == MAP_FAILED)
4718             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4719         }
4720       else
4721         {
4722           base = realloc(this->base_, file_size);
4723           if (base == NULL)
4724             gold_nomem();
4725           if (file_size > this->file_size_)
4726             memset(static_cast<char*>(base) + this->file_size_, 0,
4727                    file_size - this->file_size_);
4728         }
4729       this->base_ = static_cast<unsigned char*>(base);
4730       this->file_size_ = file_size;
4731     }
4732   else
4733     {
4734       this->unmap();
4735       this->file_size_ = file_size;
4736       if (!this->map_no_anonymous(true))
4737         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4738     }
4739 }
4740
4741 // Map an anonymous block of memory which will later be written to the
4742 // file.  Return whether the map succeeded.
4743
4744 bool
4745 Output_file::map_anonymous()
4746 {
4747   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4748                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4749   if (base == MAP_FAILED)
4750     {
4751       base = malloc(this->file_size_);
4752       if (base == NULL)
4753         return false;
4754       memset(base, 0, this->file_size_);
4755       this->map_is_allocated_ = true;
4756     }
4757   this->base_ = static_cast<unsigned char*>(base);
4758   this->map_is_anonymous_ = true;
4759   return true;
4760 }
4761
4762 // Map the file into memory.  Return whether the mapping succeeded.
4763 // If WRITABLE is true, map with write access.
4764
4765 bool
4766 Output_file::map_no_anonymous(bool writable)
4767 {
4768   const int o = this->o_;
4769
4770   // If the output file is not a regular file, don't try to mmap it;
4771   // instead, we'll mmap a block of memory (an anonymous buffer), and
4772   // then later write the buffer to the file.
4773   void* base;
4774   struct stat statbuf;
4775   if (o == STDOUT_FILENO || o == STDERR_FILENO
4776       || ::fstat(o, &statbuf) != 0
4777       || !S_ISREG(statbuf.st_mode)
4778       || this->is_temporary_)
4779     return false;
4780
4781   // Ensure that we have disk space available for the file.  If we
4782   // don't do this, it is possible that we will call munmap, close,
4783   // and exit with dirty buffers still in the cache with no assigned
4784   // disk blocks.  If the disk is out of space at that point, the
4785   // output file will wind up incomplete, but we will have already
4786   // exited.  The alternative to fallocate would be to use fdatasync,
4787   // but that would be a more significant performance hit.
4788   if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
4789     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4790
4791   // Map the file into memory.
4792   int prot = PROT_READ;
4793   if (writable)
4794     prot |= PROT_WRITE;
4795   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
4796
4797   // The mmap call might fail because of file system issues: the file
4798   // system might not support mmap at all, or it might not support
4799   // mmap with PROT_WRITE.
4800   if (base == MAP_FAILED)
4801     return false;
4802
4803   this->map_is_anonymous_ = false;
4804   this->base_ = static_cast<unsigned char*>(base);
4805   return true;
4806 }
4807
4808 // Map the file into memory.
4809
4810 void
4811 Output_file::map()
4812 {
4813   if (this->map_no_anonymous(true))
4814     return;
4815
4816   // The mmap call might fail because of file system issues: the file
4817   // system might not support mmap at all, or it might not support
4818   // mmap with PROT_WRITE.  I'm not sure which errno values we will
4819   // see in all cases, so if the mmap fails for any reason and we
4820   // don't care about file contents, try for an anonymous map.
4821   if (this->map_anonymous())
4822     return;
4823
4824   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4825              this->name_, static_cast<unsigned long>(this->file_size_),
4826              strerror(errno));
4827 }
4828
4829 // Unmap the file from memory.
4830
4831 void
4832 Output_file::unmap()
4833 {
4834   if (this->map_is_anonymous_)
4835     {
4836       // We've already written out the data, so there is no reason to
4837       // waste time unmapping or freeing the memory.
4838     }
4839   else
4840     {
4841       if (::munmap(this->base_, this->file_size_) < 0)
4842         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4843     }
4844   this->base_ = NULL;
4845 }
4846
4847 // Close the output file.
4848
4849 void
4850 Output_file::close()
4851 {
4852   // If the map isn't file-backed, we need to write it now.
4853   if (this->map_is_anonymous_ && !this->is_temporary_)
4854     {
4855       size_t bytes_to_write = this->file_size_;
4856       size_t offset = 0;
4857       while (bytes_to_write > 0)
4858         {
4859           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4860                                           bytes_to_write);
4861           if (bytes_written == 0)
4862             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4863           else if (bytes_written < 0)
4864             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4865           else
4866             {
4867               bytes_to_write -= bytes_written;
4868               offset += bytes_written;
4869             }
4870         }
4871     }
4872   this->unmap();
4873
4874   // We don't close stdout or stderr
4875   if (this->o_ != STDOUT_FILENO
4876       && this->o_ != STDERR_FILENO
4877       && !this->is_temporary_)
4878     if (::close(this->o_) < 0)
4879       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4880   this->o_ = -1;
4881 }
4882
4883 // Instantiate the templates we need.  We could use the configure
4884 // script to restrict this to only the ones for implemented targets.
4885
4886 #ifdef HAVE_TARGET_32_LITTLE
4887 template
4888 off_t
4889 Output_section::add_input_section<32, false>(
4890     Layout* layout,
4891     Sized_relobj_file<32, false>* object,
4892     unsigned int shndx,
4893     const char* secname,
4894     const elfcpp::Shdr<32, false>& shdr,
4895     unsigned int reloc_shndx,
4896     bool have_sections_script);
4897 #endif
4898
4899 #ifdef HAVE_TARGET_32_BIG
4900 template
4901 off_t
4902 Output_section::add_input_section<32, true>(
4903     Layout* layout,
4904     Sized_relobj_file<32, true>* object,
4905     unsigned int shndx,
4906     const char* secname,
4907     const elfcpp::Shdr<32, true>& shdr,
4908     unsigned int reloc_shndx,
4909     bool have_sections_script);
4910 #endif
4911
4912 #ifdef HAVE_TARGET_64_LITTLE
4913 template
4914 off_t
4915 Output_section::add_input_section<64, false>(
4916     Layout* layout,
4917     Sized_relobj_file<64, false>* object,
4918     unsigned int shndx,
4919     const char* secname,
4920     const elfcpp::Shdr<64, false>& shdr,
4921     unsigned int reloc_shndx,
4922     bool have_sections_script);
4923 #endif
4924
4925 #ifdef HAVE_TARGET_64_BIG
4926 template
4927 off_t
4928 Output_section::add_input_section<64, true>(
4929     Layout* layout,
4930     Sized_relobj_file<64, true>* object,
4931     unsigned int shndx,
4932     const char* secname,
4933     const elfcpp::Shdr<64, true>& shdr,
4934     unsigned int reloc_shndx,
4935     bool have_sections_script);
4936 #endif
4937
4938 #ifdef HAVE_TARGET_32_LITTLE
4939 template
4940 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4941 #endif
4942
4943 #ifdef HAVE_TARGET_32_BIG
4944 template
4945 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4946 #endif
4947
4948 #ifdef HAVE_TARGET_64_LITTLE
4949 template
4950 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4951 #endif
4952
4953 #ifdef HAVE_TARGET_64_BIG
4954 template
4955 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4956 #endif
4957
4958 #ifdef HAVE_TARGET_32_LITTLE
4959 template
4960 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4961 #endif
4962
4963 #ifdef HAVE_TARGET_32_BIG
4964 template
4965 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4966 #endif
4967
4968 #ifdef HAVE_TARGET_64_LITTLE
4969 template
4970 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4971 #endif
4972
4973 #ifdef HAVE_TARGET_64_BIG
4974 template
4975 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4976 #endif
4977
4978 #ifdef HAVE_TARGET_32_LITTLE
4979 template
4980 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4981 #endif
4982
4983 #ifdef HAVE_TARGET_32_BIG
4984 template
4985 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4986 #endif
4987
4988 #ifdef HAVE_TARGET_64_LITTLE
4989 template
4990 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4991 #endif
4992
4993 #ifdef HAVE_TARGET_64_BIG
4994 template
4995 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4996 #endif
4997
4998 #ifdef HAVE_TARGET_32_LITTLE
4999 template
5000 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5001 #endif
5002
5003 #ifdef HAVE_TARGET_32_BIG
5004 template
5005 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5006 #endif
5007
5008 #ifdef HAVE_TARGET_64_LITTLE
5009 template
5010 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5011 #endif
5012
5013 #ifdef HAVE_TARGET_64_BIG
5014 template
5015 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5016 #endif
5017
5018 #ifdef HAVE_TARGET_32_LITTLE
5019 template
5020 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5021 #endif
5022
5023 #ifdef HAVE_TARGET_32_BIG
5024 template
5025 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5026 #endif
5027
5028 #ifdef HAVE_TARGET_64_LITTLE
5029 template
5030 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5031 #endif
5032
5033 #ifdef HAVE_TARGET_64_BIG
5034 template
5035 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5036 #endif
5037
5038 #ifdef HAVE_TARGET_32_LITTLE
5039 template
5040 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5041 #endif
5042
5043 #ifdef HAVE_TARGET_32_BIG
5044 template
5045 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5046 #endif
5047
5048 #ifdef HAVE_TARGET_64_LITTLE
5049 template
5050 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5051 #endif
5052
5053 #ifdef HAVE_TARGET_64_BIG
5054 template
5055 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5056 #endif
5057
5058 #ifdef HAVE_TARGET_32_LITTLE
5059 template
5060 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5061 #endif
5062
5063 #ifdef HAVE_TARGET_32_BIG
5064 template
5065 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5066 #endif
5067
5068 #ifdef HAVE_TARGET_64_LITTLE
5069 template
5070 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5071 #endif
5072
5073 #ifdef HAVE_TARGET_64_BIG
5074 template
5075 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5076 #endif
5077
5078 #ifdef HAVE_TARGET_32_LITTLE
5079 template
5080 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5081 #endif
5082
5083 #ifdef HAVE_TARGET_32_BIG
5084 template
5085 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5086 #endif
5087
5088 #ifdef HAVE_TARGET_64_LITTLE
5089 template
5090 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5091 #endif
5092
5093 #ifdef HAVE_TARGET_64_BIG
5094 template
5095 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5096 #endif
5097
5098 #ifdef HAVE_TARGET_32_LITTLE
5099 template
5100 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5101 #endif
5102
5103 #ifdef HAVE_TARGET_32_BIG
5104 template
5105 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5106 #endif
5107
5108 #ifdef HAVE_TARGET_64_LITTLE
5109 template
5110 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5111 #endif
5112
5113 #ifdef HAVE_TARGET_64_BIG
5114 template
5115 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5116 #endif
5117
5118 #ifdef HAVE_TARGET_32_LITTLE
5119 template
5120 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5121 #endif
5122
5123 #ifdef HAVE_TARGET_32_BIG
5124 template
5125 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5126 #endif
5127
5128 #ifdef HAVE_TARGET_64_LITTLE
5129 template
5130 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5131 #endif
5132
5133 #ifdef HAVE_TARGET_64_BIG
5134 template
5135 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5136 #endif
5137
5138 #ifdef HAVE_TARGET_32_LITTLE
5139 template
5140 class Output_data_group<32, false>;
5141 #endif
5142
5143 #ifdef HAVE_TARGET_32_BIG
5144 template
5145 class Output_data_group<32, true>;
5146 #endif
5147
5148 #ifdef HAVE_TARGET_64_LITTLE
5149 template
5150 class Output_data_group<64, false>;
5151 #endif
5152
5153 #ifdef HAVE_TARGET_64_BIG
5154 template
5155 class Output_data_group<64, true>;
5156 #endif
5157
5158 #ifdef HAVE_TARGET_32_LITTLE
5159 template
5160 class Output_data_got<32, false>;
5161 #endif
5162
5163 #ifdef HAVE_TARGET_32_BIG
5164 template
5165 class Output_data_got<32, true>;
5166 #endif
5167
5168 #ifdef HAVE_TARGET_64_LITTLE
5169 template
5170 class Output_data_got<64, false>;
5171 #endif
5172
5173 #ifdef HAVE_TARGET_64_BIG
5174 template
5175 class Output_data_got<64, true>;
5176 #endif
5177
5178 } // End namespace gold.