1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
7 // This file is part of gold.
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
34 #ifdef HAVE_SYS_MMAN_H
38 #include "libiberty.h"
41 #include "parameters.h"
46 #include "descriptors.h"
50 // For systems without mmap support.
52 # define mmap gold_mmap
53 # define munmap gold_munmap
54 # define mremap gold_mremap
56 # define MAP_FAILED (reinterpret_cast<void*>(-1))
65 # define MAP_PRIVATE 0
67 # ifndef MAP_ANONYMOUS
68 # define MAP_ANONYMOUS 0
75 # define ENOSYS EINVAL
79 gold_mmap(void *, size_t, int, int, int, off_t)
86 gold_munmap(void *, size_t)
93 gold_mremap(void *, size_t, size_t, int)
101 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
102 # define mremap gold_mremap
103 extern "C" void *gold_mremap(void *, size_t, size_t, int);
106 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
107 #ifndef MAP_ANONYMOUS
108 # define MAP_ANONYMOUS MAP_ANON
111 #ifndef MREMAP_MAYMOVE
112 # define MREMAP_MAYMOVE 1
115 // Mingw does not have S_ISLNK.
117 # define S_ISLNK(mode) 0
123 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
124 // or the --no-posix-fallocate option is set, we try the fallocate
125 // system call directly. If that fails, we use ftruncate to set
126 // the file size and hope that there is enough disk space.
129 gold_fallocate(int o, off_t offset, off_t len)
131 #ifdef HAVE_POSIX_FALLOCATE
132 if (parameters->options().posix_fallocate())
133 return ::posix_fallocate(o, offset, len);
134 #endif // defined(HAVE_POSIX_FALLOCATE)
135 #ifdef HAVE_FALLOCATE
136 if (::fallocate(o, 0, offset, len) == 0)
138 #endif // defined(HAVE_FALLOCATE)
139 if (::ftruncate(o, offset + len) < 0)
144 // Output_data variables.
146 bool Output_data::allocated_sizes_are_fixed;
148 // Output_data methods.
150 Output_data::~Output_data()
154 // Return the default alignment for the target size.
157 Output_data::default_alignment()
159 return Output_data::default_alignment_for_size(
160 parameters->target().get_size());
163 // Return the default alignment for a size--32 or 64.
166 Output_data::default_alignment_for_size(int size)
176 // Output_section_header methods. This currently assumes that the
177 // segment and section lists are complete at construction time.
179 Output_section_headers::Output_section_headers(
180 const Layout* layout,
181 const Layout::Segment_list* segment_list,
182 const Layout::Section_list* section_list,
183 const Layout::Section_list* unattached_section_list,
184 const Stringpool* secnamepool,
185 const Output_section* shstrtab_section)
187 segment_list_(segment_list),
188 section_list_(section_list),
189 unattached_section_list_(unattached_section_list),
190 secnamepool_(secnamepool),
191 shstrtab_section_(shstrtab_section)
195 // Compute the current data size.
198 Output_section_headers::do_size() const
200 // Count all the sections. Start with 1 for the null section.
202 if (!parameters->options().relocatable())
204 for (Layout::Segment_list::const_iterator p =
205 this->segment_list_->begin();
206 p != this->segment_list_->end();
208 if ((*p)->type() == elfcpp::PT_LOAD)
209 count += (*p)->output_section_count();
213 for (Layout::Section_list::const_iterator p =
214 this->section_list_->begin();
215 p != this->section_list_->end();
217 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
220 count += this->unattached_section_list_->size();
222 const int size = parameters->target().get_size();
225 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
227 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
231 return count * shdr_size;
234 // Write out the section headers.
237 Output_section_headers::do_write(Output_file* of)
239 switch (parameters->size_and_endianness())
241 #ifdef HAVE_TARGET_32_LITTLE
242 case Parameters::TARGET_32_LITTLE:
243 this->do_sized_write<32, false>(of);
246 #ifdef HAVE_TARGET_32_BIG
247 case Parameters::TARGET_32_BIG:
248 this->do_sized_write<32, true>(of);
251 #ifdef HAVE_TARGET_64_LITTLE
252 case Parameters::TARGET_64_LITTLE:
253 this->do_sized_write<64, false>(of);
256 #ifdef HAVE_TARGET_64_BIG
257 case Parameters::TARGET_64_BIG:
258 this->do_sized_write<64, true>(of);
266 template<int size, bool big_endian>
268 Output_section_headers::do_sized_write(Output_file* of)
270 off_t all_shdrs_size = this->data_size();
271 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
273 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
274 unsigned char* v = view;
277 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
278 oshdr.put_sh_name(0);
279 oshdr.put_sh_type(elfcpp::SHT_NULL);
280 oshdr.put_sh_flags(0);
281 oshdr.put_sh_addr(0);
282 oshdr.put_sh_offset(0);
284 size_t section_count = (this->data_size()
285 / elfcpp::Elf_sizes<size>::shdr_size);
286 if (section_count < elfcpp::SHN_LORESERVE)
287 oshdr.put_sh_size(0);
289 oshdr.put_sh_size(section_count);
291 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
292 if (shstrndx < elfcpp::SHN_LORESERVE)
293 oshdr.put_sh_link(0);
295 oshdr.put_sh_link(shstrndx);
297 size_t segment_count = this->segment_list_->size();
298 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
300 oshdr.put_sh_addralign(0);
301 oshdr.put_sh_entsize(0);
306 unsigned int shndx = 1;
307 if (!parameters->options().relocatable())
309 for (Layout::Segment_list::const_iterator p =
310 this->segment_list_->begin();
311 p != this->segment_list_->end();
313 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
320 for (Layout::Section_list::const_iterator p =
321 this->section_list_->begin();
322 p != this->section_list_->end();
325 // We do unallocated sections below, except that group
326 // sections have to come first.
327 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
328 && (*p)->type() != elfcpp::SHT_GROUP)
330 gold_assert(shndx == (*p)->out_shndx());
331 elfcpp::Shdr_write<size, big_endian> oshdr(v);
332 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
338 for (Layout::Section_list::const_iterator p =
339 this->unattached_section_list_->begin();
340 p != this->unattached_section_list_->end();
343 // For a relocatable link, we did unallocated group sections
344 // above, since they have to come first.
345 if ((*p)->type() == elfcpp::SHT_GROUP
346 && parameters->options().relocatable())
348 gold_assert(shndx == (*p)->out_shndx());
349 elfcpp::Shdr_write<size, big_endian> oshdr(v);
350 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
355 of->write_output_view(this->offset(), all_shdrs_size, view);
358 // Output_segment_header methods.
360 Output_segment_headers::Output_segment_headers(
361 const Layout::Segment_list& segment_list)
362 : segment_list_(segment_list)
364 this->set_current_data_size_for_child(this->do_size());
368 Output_segment_headers::do_write(Output_file* of)
370 switch (parameters->size_and_endianness())
372 #ifdef HAVE_TARGET_32_LITTLE
373 case Parameters::TARGET_32_LITTLE:
374 this->do_sized_write<32, false>(of);
377 #ifdef HAVE_TARGET_32_BIG
378 case Parameters::TARGET_32_BIG:
379 this->do_sized_write<32, true>(of);
382 #ifdef HAVE_TARGET_64_LITTLE
383 case Parameters::TARGET_64_LITTLE:
384 this->do_sized_write<64, false>(of);
387 #ifdef HAVE_TARGET_64_BIG
388 case Parameters::TARGET_64_BIG:
389 this->do_sized_write<64, true>(of);
397 template<int size, bool big_endian>
399 Output_segment_headers::do_sized_write(Output_file* of)
401 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
402 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
403 gold_assert(all_phdrs_size == this->data_size());
404 unsigned char* view = of->get_output_view(this->offset(),
406 unsigned char* v = view;
407 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
408 p != this->segment_list_.end();
411 elfcpp::Phdr_write<size, big_endian> ophdr(v);
412 (*p)->write_header(&ophdr);
416 gold_assert(v - view == all_phdrs_size);
418 of->write_output_view(this->offset(), all_phdrs_size, view);
422 Output_segment_headers::do_size() const
424 const int size = parameters->target().get_size();
427 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
429 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
433 return this->segment_list_.size() * phdr_size;
436 // Output_file_header methods.
438 Output_file_header::Output_file_header(const Target* target,
439 const Symbol_table* symtab,
440 const Output_segment_headers* osh)
443 segment_header_(osh),
444 section_header_(NULL),
447 this->set_data_size(this->do_size());
450 // Set the section table information for a file header.
453 Output_file_header::set_section_info(const Output_section_headers* shdrs,
454 const Output_section* shstrtab)
456 this->section_header_ = shdrs;
457 this->shstrtab_ = shstrtab;
460 // Write out the file header.
463 Output_file_header::do_write(Output_file* of)
465 gold_assert(this->offset() == 0);
467 switch (parameters->size_and_endianness())
469 #ifdef HAVE_TARGET_32_LITTLE
470 case Parameters::TARGET_32_LITTLE:
471 this->do_sized_write<32, false>(of);
474 #ifdef HAVE_TARGET_32_BIG
475 case Parameters::TARGET_32_BIG:
476 this->do_sized_write<32, true>(of);
479 #ifdef HAVE_TARGET_64_LITTLE
480 case Parameters::TARGET_64_LITTLE:
481 this->do_sized_write<64, false>(of);
484 #ifdef HAVE_TARGET_64_BIG
485 case Parameters::TARGET_64_BIG:
486 this->do_sized_write<64, true>(of);
494 // Write out the file header with appropriate size and endianness.
496 template<int size, bool big_endian>
498 Output_file_header::do_sized_write(Output_file* of)
500 gold_assert(this->offset() == 0);
502 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
503 unsigned char* view = of->get_output_view(0, ehdr_size);
504 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
506 unsigned char e_ident[elfcpp::EI_NIDENT];
507 memset(e_ident, 0, elfcpp::EI_NIDENT);
508 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
509 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
510 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
511 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
513 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
515 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
518 e_ident[elfcpp::EI_DATA] = (big_endian
519 ? elfcpp::ELFDATA2MSB
520 : elfcpp::ELFDATA2LSB);
521 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
522 oehdr.put_e_ident(e_ident);
525 if (parameters->options().relocatable())
526 e_type = elfcpp::ET_REL;
527 else if (parameters->options().output_is_position_independent())
528 e_type = elfcpp::ET_DYN;
530 e_type = elfcpp::ET_EXEC;
531 oehdr.put_e_type(e_type);
533 oehdr.put_e_machine(this->target_->machine_code());
534 oehdr.put_e_version(elfcpp::EV_CURRENT);
536 oehdr.put_e_entry(this->entry<size>());
538 if (this->segment_header_ == NULL)
539 oehdr.put_e_phoff(0);
541 oehdr.put_e_phoff(this->segment_header_->offset());
543 oehdr.put_e_shoff(this->section_header_->offset());
544 oehdr.put_e_flags(this->target_->processor_specific_flags());
545 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
547 if (this->segment_header_ == NULL)
549 oehdr.put_e_phentsize(0);
550 oehdr.put_e_phnum(0);
554 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
555 size_t phnum = (this->segment_header_->data_size()
556 / elfcpp::Elf_sizes<size>::phdr_size);
557 if (phnum > elfcpp::PN_XNUM)
558 phnum = elfcpp::PN_XNUM;
559 oehdr.put_e_phnum(phnum);
562 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
563 size_t section_count = (this->section_header_->data_size()
564 / elfcpp::Elf_sizes<size>::shdr_size);
566 if (section_count < elfcpp::SHN_LORESERVE)
567 oehdr.put_e_shnum(this->section_header_->data_size()
568 / elfcpp::Elf_sizes<size>::shdr_size);
570 oehdr.put_e_shnum(0);
572 unsigned int shstrndx = this->shstrtab_->out_shndx();
573 if (shstrndx < elfcpp::SHN_LORESERVE)
574 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
576 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
578 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
579 // the e_ident field.
580 parameters->target().adjust_elf_header(view, ehdr_size);
582 of->write_output_view(0, ehdr_size, view);
585 // Return the value to use for the entry address.
588 typename elfcpp::Elf_types<size>::Elf_Addr
589 Output_file_header::entry()
591 const bool should_issue_warning = (parameters->options().entry() != NULL
592 && !parameters->options().relocatable()
593 && !parameters->options().shared());
594 const char* entry = parameters->entry();
595 Symbol* sym = this->symtab_->lookup(entry);
597 typename Sized_symbol<size>::Value_type v;
600 Sized_symbol<size>* ssym;
601 ssym = this->symtab_->get_sized_symbol<size>(sym);
602 if (!ssym->is_defined() && should_issue_warning)
603 gold_warning("entry symbol '%s' exists but is not defined", entry);
608 // We couldn't find the entry symbol. See if we can parse it as
609 // a number. This supports, e.g., -e 0x1000.
611 v = strtoull(entry, &endptr, 0);
614 if (should_issue_warning)
615 gold_warning("cannot find entry symbol '%s'", entry);
623 // Compute the current data size.
626 Output_file_header::do_size() const
628 const int size = parameters->target().get_size();
630 return elfcpp::Elf_sizes<32>::ehdr_size;
632 return elfcpp::Elf_sizes<64>::ehdr_size;
637 // Output_data_const methods.
640 Output_data_const::do_write(Output_file* of)
642 of->write(this->offset(), this->data_.data(), this->data_.size());
645 // Output_data_const_buffer methods.
648 Output_data_const_buffer::do_write(Output_file* of)
650 of->write(this->offset(), this->p_, this->data_size());
653 // Output_section_data methods.
655 // Record the output section, and set the entry size and such.
658 Output_section_data::set_output_section(Output_section* os)
660 gold_assert(this->output_section_ == NULL);
661 this->output_section_ = os;
662 this->do_adjust_output_section(os);
665 // Return the section index of the output section.
668 Output_section_data::do_out_shndx() const
670 gold_assert(this->output_section_ != NULL);
671 return this->output_section_->out_shndx();
674 // Set the alignment, which means we may need to update the alignment
675 // of the output section.
678 Output_section_data::set_addralign(uint64_t addralign)
680 this->addralign_ = addralign;
681 if (this->output_section_ != NULL
682 && this->output_section_->addralign() < addralign)
683 this->output_section_->set_addralign(addralign);
686 // Output_data_strtab methods.
688 // Set the final data size.
691 Output_data_strtab::set_final_data_size()
693 this->strtab_->set_string_offsets();
694 this->set_data_size(this->strtab_->get_strtab_size());
697 // Write out a string table.
700 Output_data_strtab::do_write(Output_file* of)
702 this->strtab_->write(of, this->offset());
705 // Output_reloc methods.
707 // A reloc against a global symbol.
709 template<bool dynamic, int size, bool big_endian>
710 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
718 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
719 is_relative_(is_relative), is_symbolless_(is_symbolless),
720 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
722 // this->type_ is a bitfield; make sure TYPE fits.
723 gold_assert(this->type_ == type);
724 this->u1_.gsym = gsym;
727 this->set_needs_dynsym_index();
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
734 Sized_relobj<size, big_endian>* relobj,
740 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
741 is_relative_(is_relative), is_symbolless_(is_symbolless),
742 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
744 gold_assert(shndx != INVALID_CODE);
745 // this->type_ is a bitfield; make sure TYPE fits.
746 gold_assert(this->type_ == type);
747 this->u1_.gsym = gsym;
748 this->u2_.relobj = relobj;
750 this->set_needs_dynsym_index();
753 // A reloc against a local symbol.
755 template<bool dynamic, int size, bool big_endian>
756 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
757 Sized_relobj<size, big_endian>* relobj,
758 unsigned int local_sym_index,
764 bool is_section_symbol,
766 : address_(address), local_sym_index_(local_sym_index), type_(type),
767 is_relative_(is_relative), is_symbolless_(is_symbolless),
768 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
771 gold_assert(local_sym_index != GSYM_CODE
772 && local_sym_index != INVALID_CODE);
773 // this->type_ is a bitfield; make sure TYPE fits.
774 gold_assert(this->type_ == type);
775 this->u1_.relobj = relobj;
778 this->set_needs_dynsym_index();
781 template<bool dynamic, int size, bool big_endian>
782 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
783 Sized_relobj<size, big_endian>* relobj,
784 unsigned int local_sym_index,
790 bool is_section_symbol,
792 : address_(address), local_sym_index_(local_sym_index), type_(type),
793 is_relative_(is_relative), is_symbolless_(is_symbolless),
794 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
797 gold_assert(local_sym_index != GSYM_CODE
798 && local_sym_index != INVALID_CODE);
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = relobj;
803 this->u2_.relobj = relobj;
805 this->set_needs_dynsym_index();
808 // A reloc against the STT_SECTION symbol of an output section.
810 template<bool dynamic, int size, bool big_endian>
811 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
817 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
818 is_relative_(is_relative), is_symbolless_(is_relative),
819 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
821 // this->type_ is a bitfield; make sure TYPE fits.
822 gold_assert(this->type_ == type);
826 this->set_needs_dynsym_index();
828 os->set_needs_symtab_index();
831 template<bool dynamic, int size, bool big_endian>
832 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
835 Sized_relobj<size, big_endian>* relobj,
839 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
840 is_relative_(is_relative), is_symbolless_(is_relative),
841 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
843 gold_assert(shndx != INVALID_CODE);
844 // this->type_ is a bitfield; make sure TYPE fits.
845 gold_assert(this->type_ == type);
847 this->u2_.relobj = relobj;
849 this->set_needs_dynsym_index();
851 os->set_needs_symtab_index();
854 // An absolute or relative relocation.
856 template<bool dynamic, int size, bool big_endian>
857 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
862 : address_(address), local_sym_index_(0), type_(type),
863 is_relative_(is_relative), is_symbolless_(false),
864 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
866 // this->type_ is a bitfield; make sure TYPE fits.
867 gold_assert(this->type_ == type);
868 this->u1_.relobj = NULL;
872 template<bool dynamic, int size, bool big_endian>
873 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
875 Sized_relobj<size, big_endian>* relobj,
879 : address_(address), local_sym_index_(0), type_(type),
880 is_relative_(is_relative), is_symbolless_(false),
881 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
883 gold_assert(shndx != INVALID_CODE);
884 // this->type_ is a bitfield; make sure TYPE fits.
885 gold_assert(this->type_ == type);
886 this->u1_.relobj = NULL;
887 this->u2_.relobj = relobj;
890 // A target specific relocation.
892 template<bool dynamic, int size, bool big_endian>
893 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
898 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
899 is_relative_(false), is_symbolless_(false),
900 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
902 // this->type_ is a bitfield; make sure TYPE fits.
903 gold_assert(this->type_ == type);
908 template<bool dynamic, int size, bool big_endian>
909 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
912 Sized_relobj<size, big_endian>* relobj,
915 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
916 is_relative_(false), is_symbolless_(false),
917 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
919 gold_assert(shndx != INVALID_CODE);
920 // this->type_ is a bitfield; make sure TYPE fits.
921 gold_assert(this->type_ == type);
923 this->u2_.relobj = relobj;
926 // Record that we need a dynamic symbol index for this relocation.
928 template<bool dynamic, int size, bool big_endian>
930 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
931 set_needs_dynsym_index()
933 if (this->is_symbolless_)
935 switch (this->local_sym_index_)
941 this->u1_.gsym->set_needs_dynsym_entry();
945 this->u1_.os->set_needs_dynsym_index();
949 // The target must take care of this if necessary.
957 const unsigned int lsi = this->local_sym_index_;
958 Sized_relobj_file<size, big_endian>* relobj =
959 this->u1_.relobj->sized_relobj();
960 gold_assert(relobj != NULL);
961 if (!this->is_section_symbol_)
962 relobj->set_needs_output_dynsym_entry(lsi);
964 relobj->output_section(lsi)->set_needs_dynsym_index();
970 // Get the symbol index of a relocation.
972 template<bool dynamic, int size, bool big_endian>
974 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
978 if (this->is_symbolless_)
980 switch (this->local_sym_index_)
986 if (this->u1_.gsym == NULL)
989 index = this->u1_.gsym->dynsym_index();
991 index = this->u1_.gsym->symtab_index();
996 index = this->u1_.os->dynsym_index();
998 index = this->u1_.os->symtab_index();
1002 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1007 // Relocations without symbols use a symbol index of 0.
1013 const unsigned int lsi = this->local_sym_index_;
1014 Sized_relobj_file<size, big_endian>* relobj =
1015 this->u1_.relobj->sized_relobj();
1016 gold_assert(relobj != NULL);
1017 if (!this->is_section_symbol_)
1020 index = relobj->dynsym_index(lsi);
1022 index = relobj->symtab_index(lsi);
1026 Output_section* os = relobj->output_section(lsi);
1027 gold_assert(os != NULL);
1029 index = os->dynsym_index();
1031 index = os->symtab_index();
1036 gold_assert(index != -1U);
1040 // For a local section symbol, get the address of the offset ADDEND
1041 // within the input section.
1043 template<bool dynamic, int size, bool big_endian>
1044 typename elfcpp::Elf_types<size>::Elf_Addr
1045 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1046 local_section_offset(Addend addend) const
1048 gold_assert(this->local_sym_index_ != GSYM_CODE
1049 && this->local_sym_index_ != SECTION_CODE
1050 && this->local_sym_index_ != TARGET_CODE
1051 && this->local_sym_index_ != INVALID_CODE
1052 && this->local_sym_index_ != 0
1053 && this->is_section_symbol_);
1054 const unsigned int lsi = this->local_sym_index_;
1055 Output_section* os = this->u1_.relobj->output_section(lsi);
1056 gold_assert(os != NULL);
1057 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1058 if (offset != invalid_address)
1059 return offset + addend;
1060 // This is a merge section.
1061 Sized_relobj_file<size, big_endian>* relobj =
1062 this->u1_.relobj->sized_relobj();
1063 gold_assert(relobj != NULL);
1064 offset = os->output_address(relobj, lsi, addend);
1065 gold_assert(offset != invalid_address);
1069 // Get the output address of a relocation.
1071 template<bool dynamic, int size, bool big_endian>
1072 typename elfcpp::Elf_types<size>::Elf_Addr
1073 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1075 Address address = this->address_;
1076 if (this->shndx_ != INVALID_CODE)
1078 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1079 gold_assert(os != NULL);
1080 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1081 if (off != invalid_address)
1082 address += os->address() + off;
1085 Sized_relobj_file<size, big_endian>* relobj =
1086 this->u2_.relobj->sized_relobj();
1087 gold_assert(relobj != NULL);
1088 address = os->output_address(relobj, this->shndx_, address);
1089 gold_assert(address != invalid_address);
1092 else if (this->u2_.od != NULL)
1093 address += this->u2_.od->address();
1097 // Write out the offset and info fields of a Rel or Rela relocation
1100 template<bool dynamic, int size, bool big_endian>
1101 template<typename Write_rel>
1103 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1104 Write_rel* wr) const
1106 wr->put_r_offset(this->get_address());
1107 unsigned int sym_index = this->get_symbol_index();
1108 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1111 // Write out a Rel relocation.
1113 template<bool dynamic, int size, bool big_endian>
1115 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1116 unsigned char* pov) const
1118 elfcpp::Rel_write<size, big_endian> orel(pov);
1119 this->write_rel(&orel);
1122 // Get the value of the symbol referred to by a Rel relocation.
1124 template<bool dynamic, int size, bool big_endian>
1125 typename elfcpp::Elf_types<size>::Elf_Addr
1126 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1127 Addend addend) const
1129 if (this->local_sym_index_ == GSYM_CODE)
1131 const Sized_symbol<size>* sym;
1132 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1133 if (this->use_plt_offset_ && sym->has_plt_offset())
1134 return parameters->target().plt_address_for_global(sym);
1136 return sym->value() + addend;
1138 if (this->local_sym_index_ == SECTION_CODE)
1140 gold_assert(!this->use_plt_offset_);
1141 return this->u1_.os->address() + addend;
1143 gold_assert(this->local_sym_index_ != TARGET_CODE
1144 && this->local_sym_index_ != INVALID_CODE
1145 && this->local_sym_index_ != 0
1146 && !this->is_section_symbol_);
1147 const unsigned int lsi = this->local_sym_index_;
1148 Sized_relobj_file<size, big_endian>* relobj =
1149 this->u1_.relobj->sized_relobj();
1150 gold_assert(relobj != NULL);
1151 if (this->use_plt_offset_)
1152 return parameters->target().plt_address_for_local(relobj, lsi);
1153 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1154 return symval->value(relobj, addend);
1157 // Reloc comparison. This function sorts the dynamic relocs for the
1158 // benefit of the dynamic linker. First we sort all relative relocs
1159 // to the front. Among relative relocs, we sort by output address.
1160 // Among non-relative relocs, we sort by symbol index, then by output
1163 template<bool dynamic, int size, bool big_endian>
1165 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1166 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1169 if (this->is_relative_)
1171 if (!r2.is_relative_)
1173 // Otherwise sort by reloc address below.
1175 else if (r2.is_relative_)
1179 unsigned int sym1 = this->get_symbol_index();
1180 unsigned int sym2 = r2.get_symbol_index();
1183 else if (sym1 > sym2)
1185 // Otherwise sort by reloc address.
1188 section_offset_type addr1 = this->get_address();
1189 section_offset_type addr2 = r2.get_address();
1192 else if (addr1 > addr2)
1195 // Final tie breaker, in order to generate the same output on any
1196 // host: reloc type.
1197 unsigned int type1 = this->type_;
1198 unsigned int type2 = r2.type_;
1201 else if (type1 > type2)
1204 // These relocs appear to be exactly the same.
1208 // Write out a Rela relocation.
1210 template<bool dynamic, int size, bool big_endian>
1212 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1213 unsigned char* pov) const
1215 elfcpp::Rela_write<size, big_endian> orel(pov);
1216 this->rel_.write_rel(&orel);
1217 Addend addend = this->addend_;
1218 if (this->rel_.is_target_specific())
1219 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1220 this->rel_.type(), addend);
1221 else if (this->rel_.is_symbolless())
1222 addend = this->rel_.symbol_value(addend);
1223 else if (this->rel_.is_local_section_symbol())
1224 addend = this->rel_.local_section_offset(addend);
1225 orel.put_r_addend(addend);
1228 // Output_data_reloc_base methods.
1230 // Adjust the output section.
1232 template<int sh_type, bool dynamic, int size, bool big_endian>
1234 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1235 ::do_adjust_output_section(Output_section* os)
1237 if (sh_type == elfcpp::SHT_REL)
1238 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1239 else if (sh_type == elfcpp::SHT_RELA)
1240 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1244 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1245 // static link. The backends will generate a dynamic reloc section
1246 // to hold this. In that case we don't want to link to the dynsym
1247 // section, because there isn't one.
1249 os->set_should_link_to_symtab();
1250 else if (parameters->doing_static_link())
1253 os->set_should_link_to_dynsym();
1256 // Write out relocation data.
1258 template<int sh_type, bool dynamic, int size, bool big_endian>
1260 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1263 const off_t off = this->offset();
1264 const off_t oview_size = this->data_size();
1265 unsigned char* const oview = of->get_output_view(off, oview_size);
1267 if (this->sort_relocs())
1269 gold_assert(dynamic);
1270 std::sort(this->relocs_.begin(), this->relocs_.end(),
1271 Sort_relocs_comparison());
1274 unsigned char* pov = oview;
1275 for (typename Relocs::const_iterator p = this->relocs_.begin();
1276 p != this->relocs_.end();
1283 gold_assert(pov - oview == oview_size);
1285 of->write_output_view(off, oview_size, oview);
1287 // We no longer need the relocation entries.
1288 this->relocs_.clear();
1291 // Class Output_relocatable_relocs.
1293 template<int sh_type, int size, bool big_endian>
1295 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1297 this->set_data_size(this->rr_->output_reloc_count()
1298 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1301 // class Output_data_group.
1303 template<int size, bool big_endian>
1304 Output_data_group<size, big_endian>::Output_data_group(
1305 Sized_relobj_file<size, big_endian>* relobj,
1306 section_size_type entry_count,
1307 elfcpp::Elf_Word flags,
1308 std::vector<unsigned int>* input_shndxes)
1309 : Output_section_data(entry_count * 4, 4, false),
1313 this->input_shndxes_.swap(*input_shndxes);
1316 // Write out the section group, which means translating the section
1317 // indexes to apply to the output file.
1319 template<int size, bool big_endian>
1321 Output_data_group<size, big_endian>::do_write(Output_file* of)
1323 const off_t off = this->offset();
1324 const section_size_type oview_size =
1325 convert_to_section_size_type(this->data_size());
1326 unsigned char* const oview = of->get_output_view(off, oview_size);
1328 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1329 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1332 for (std::vector<unsigned int>::const_iterator p =
1333 this->input_shndxes_.begin();
1334 p != this->input_shndxes_.end();
1337 Output_section* os = this->relobj_->output_section(*p);
1339 unsigned int output_shndx;
1341 output_shndx = os->out_shndx();
1344 this->relobj_->error(_("section group retained but "
1345 "group element discarded"));
1349 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1352 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1353 gold_assert(wrote == oview_size);
1355 of->write_output_view(off, oview_size, oview);
1357 // We no longer need this information.
1358 this->input_shndxes_.clear();
1361 // Output_data_got::Got_entry methods.
1363 // Write out the entry.
1365 template<int got_size, bool big_endian>
1367 Output_data_got<got_size, big_endian>::Got_entry::write(
1368 unsigned int got_indx,
1369 unsigned char* pov) const
1373 switch (this->local_sym_index_)
1377 // If the symbol is resolved locally, we need to write out the
1378 // link-time value, which will be relocated dynamically by a
1379 // RELATIVE relocation.
1380 Symbol* gsym = this->u_.gsym;
1381 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1382 val = parameters->target().plt_address_for_global(gsym);
1385 switch (parameters->size_and_endianness())
1387 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1388 case Parameters::TARGET_32_LITTLE:
1389 case Parameters::TARGET_32_BIG:
1391 // This cast is ugly. We don't want to put a
1392 // virtual method in Symbol, because we want Symbol
1393 // to be as small as possible.
1394 Sized_symbol<32>::Value_type v;
1395 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1396 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1400 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1401 case Parameters::TARGET_64_LITTLE:
1402 case Parameters::TARGET_64_BIG:
1404 Sized_symbol<64>::Value_type v;
1405 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1406 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1413 if (this->use_plt_or_tls_offset_
1414 && gsym->type() == elfcpp::STT_TLS)
1415 val += parameters->target().tls_offset_for_global(gsym,
1422 val = this->u_.constant;
1426 // If we're doing an incremental update, don't touch this GOT entry.
1427 if (parameters->incremental_update())
1429 val = this->u_.constant;
1434 const Relobj* object = this->u_.object;
1435 const unsigned int lsi = this->local_sym_index_;
1436 bool is_tls = object->local_is_tls(lsi);
1437 if (this->use_plt_or_tls_offset_ && !is_tls)
1438 val = parameters->target().plt_address_for_local(object, lsi);
1441 uint64_t lval = object->local_symbol_value(lsi, 0);
1442 val = convert_types<Valtype, uint64_t>(lval);
1443 if (this->use_plt_or_tls_offset_ && is_tls)
1444 val += parameters->target().tls_offset_for_local(object, lsi,
1451 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1454 // Output_data_got methods.
1456 // Add an entry for a global symbol to the GOT. This returns true if
1457 // this is a new GOT entry, false if the symbol already had a GOT
1460 template<int got_size, bool big_endian>
1462 Output_data_got<got_size, big_endian>::add_global(
1464 unsigned int got_type)
1466 if (gsym->has_got_offset(got_type))
1469 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1470 gsym->set_got_offset(got_type, got_offset);
1474 // Like add_global, but use the PLT offset.
1476 template<int got_size, bool big_endian>
1478 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1479 unsigned int got_type)
1481 if (gsym->has_got_offset(got_type))
1484 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1485 gsym->set_got_offset(got_type, got_offset);
1489 // Add an entry for a global symbol to the GOT, and add a dynamic
1490 // relocation of type R_TYPE for the GOT entry.
1492 template<int got_size, bool big_endian>
1494 Output_data_got<got_size, big_endian>::add_global_with_rel(
1496 unsigned int got_type,
1497 Output_data_reloc_generic* rel_dyn,
1498 unsigned int r_type)
1500 if (gsym->has_got_offset(got_type))
1503 unsigned int got_offset = this->add_got_entry(Got_entry());
1504 gsym->set_got_offset(got_type, got_offset);
1505 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1508 // Add a pair of entries for a global symbol to the GOT, and add
1509 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1510 // If R_TYPE_2 == 0, add the second entry with no relocation.
1511 template<int got_size, bool big_endian>
1513 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1515 unsigned int got_type,
1516 Output_data_reloc_generic* rel_dyn,
1517 unsigned int r_type_1,
1518 unsigned int r_type_2)
1520 if (gsym->has_got_offset(got_type))
1523 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1524 gsym->set_got_offset(got_type, got_offset);
1525 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1528 rel_dyn->add_global_generic(gsym, r_type_2, this,
1529 got_offset + got_size / 8, 0);
1532 // Add an entry for a local symbol to the GOT. This returns true if
1533 // this is a new GOT entry, false if the symbol already has a GOT
1536 template<int got_size, bool big_endian>
1538 Output_data_got<got_size, big_endian>::add_local(
1540 unsigned int symndx,
1541 unsigned int got_type)
1543 if (object->local_has_got_offset(symndx, got_type))
1546 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1548 object->set_local_got_offset(symndx, got_type, got_offset);
1552 // Like add_local, but use the PLT offset.
1554 template<int got_size, bool big_endian>
1556 Output_data_got<got_size, big_endian>::add_local_plt(
1558 unsigned int symndx,
1559 unsigned int got_type)
1561 if (object->local_has_got_offset(symndx, got_type))
1564 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1566 object->set_local_got_offset(symndx, got_type, got_offset);
1570 // Add an entry for a local symbol to the GOT, and add a dynamic
1571 // relocation of type R_TYPE for the GOT entry.
1573 template<int got_size, bool big_endian>
1575 Output_data_got<got_size, big_endian>::add_local_with_rel(
1577 unsigned int symndx,
1578 unsigned int got_type,
1579 Output_data_reloc_generic* rel_dyn,
1580 unsigned int r_type)
1582 if (object->local_has_got_offset(symndx, got_type))
1585 unsigned int got_offset = this->add_got_entry(Got_entry());
1586 object->set_local_got_offset(symndx, got_type, got_offset);
1587 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1590 // Add a pair of entries for a local symbol to the GOT, and add
1591 // a dynamic relocation of type R_TYPE using the section symbol of
1592 // the output section to which input section SHNDX maps, on the first.
1593 // The first got entry will have a value of zero, the second the
1594 // value of the local symbol.
1595 template<int got_size, bool big_endian>
1597 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1599 unsigned int symndx,
1601 unsigned int got_type,
1602 Output_data_reloc_generic* rel_dyn,
1603 unsigned int r_type)
1605 if (object->local_has_got_offset(symndx, got_type))
1608 unsigned int got_offset =
1609 this->add_got_entry_pair(Got_entry(),
1610 Got_entry(object, symndx, false));
1611 object->set_local_got_offset(symndx, got_type, got_offset);
1612 Output_section* os = object->output_section(shndx);
1613 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1616 // Add a pair of entries for a local symbol to the GOT, and add
1617 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1618 // The first got entry will have a value of zero, the second the
1619 // value of the local symbol offset by Target::tls_offset_for_local.
1620 template<int got_size, bool big_endian>
1622 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1624 unsigned int symndx,
1625 unsigned int got_type,
1626 Output_data_reloc_generic* rel_dyn,
1627 unsigned int r_type)
1629 if (object->local_has_got_offset(symndx, got_type))
1632 unsigned int got_offset
1633 = this->add_got_entry_pair(Got_entry(),
1634 Got_entry(object, symndx, true));
1635 object->set_local_got_offset(symndx, got_type, got_offset);
1636 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1639 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1641 template<int got_size, bool big_endian>
1643 Output_data_got<got_size, big_endian>::reserve_local(
1646 unsigned int sym_index,
1647 unsigned int got_type)
1649 this->do_reserve_slot(i);
1650 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1653 // Reserve a slot in the GOT for a global symbol.
1655 template<int got_size, bool big_endian>
1657 Output_data_got<got_size, big_endian>::reserve_global(
1660 unsigned int got_type)
1662 this->do_reserve_slot(i);
1663 gsym->set_got_offset(got_type, this->got_offset(i));
1666 // Write out the GOT.
1668 template<int got_size, bool big_endian>
1670 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1672 const int add = got_size / 8;
1674 const off_t off = this->offset();
1675 const off_t oview_size = this->data_size();
1676 unsigned char* const oview = of->get_output_view(off, oview_size);
1678 unsigned char* pov = oview;
1679 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1681 this->entries_[i].write(i, pov);
1685 gold_assert(pov - oview == oview_size);
1687 of->write_output_view(off, oview_size, oview);
1689 // We no longer need the GOT entries.
1690 this->entries_.clear();
1693 // Create a new GOT entry and return its offset.
1695 template<int got_size, bool big_endian>
1697 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1699 if (!this->is_data_size_valid())
1701 this->entries_.push_back(got_entry);
1702 this->set_got_size();
1703 return this->last_got_offset();
1707 // For an incremental update, find an available slot.
1708 off_t got_offset = this->free_list_.allocate(got_size / 8,
1710 if (got_offset == -1)
1711 gold_fallback(_("out of patch space (GOT);"
1712 " relink with --incremental-full"));
1713 unsigned int got_index = got_offset / (got_size / 8);
1714 gold_assert(got_index < this->entries_.size());
1715 this->entries_[got_index] = got_entry;
1716 return static_cast<unsigned int>(got_offset);
1720 // Create a pair of new GOT entries and return the offset of the first.
1722 template<int got_size, bool big_endian>
1724 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1725 Got_entry got_entry_1,
1726 Got_entry got_entry_2)
1728 if (!this->is_data_size_valid())
1730 unsigned int got_offset;
1731 this->entries_.push_back(got_entry_1);
1732 got_offset = this->last_got_offset();
1733 this->entries_.push_back(got_entry_2);
1734 this->set_got_size();
1739 // For an incremental update, find an available pair of slots.
1740 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1742 if (got_offset == -1)
1743 gold_fallback(_("out of patch space (GOT);"
1744 " relink with --incremental-full"));
1745 unsigned int got_index = got_offset / (got_size / 8);
1746 gold_assert(got_index < this->entries_.size());
1747 this->entries_[got_index] = got_entry_1;
1748 this->entries_[got_index + 1] = got_entry_2;
1749 return static_cast<unsigned int>(got_offset);
1753 // Replace GOT entry I with a new value.
1755 template<int got_size, bool big_endian>
1757 Output_data_got<got_size, big_endian>::replace_got_entry(
1759 Got_entry got_entry)
1761 gold_assert(i < this->entries_.size());
1762 this->entries_[i] = got_entry;
1765 // Output_data_dynamic::Dynamic_entry methods.
1767 // Write out the entry.
1769 template<int size, bool big_endian>
1771 Output_data_dynamic::Dynamic_entry::write(
1773 const Stringpool* pool) const
1775 typename elfcpp::Elf_types<size>::Elf_WXword val;
1776 switch (this->offset_)
1778 case DYNAMIC_NUMBER:
1782 case DYNAMIC_SECTION_SIZE:
1783 val = this->u_.od->data_size();
1784 if (this->od2 != NULL)
1785 val += this->od2->data_size();
1788 case DYNAMIC_SYMBOL:
1790 const Sized_symbol<size>* s =
1791 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1796 case DYNAMIC_STRING:
1797 val = pool->get_offset(this->u_.str);
1801 val = this->u_.od->address() + this->offset_;
1805 elfcpp::Dyn_write<size, big_endian> dw(pov);
1806 dw.put_d_tag(this->tag_);
1810 // Output_data_dynamic methods.
1812 // Adjust the output section to set the entry size.
1815 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1817 if (parameters->target().get_size() == 32)
1818 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1819 else if (parameters->target().get_size() == 64)
1820 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1825 // Set the final data size.
1828 Output_data_dynamic::set_final_data_size()
1830 // Add the terminating entry if it hasn't been added.
1831 // Because of relaxation, we can run this multiple times.
1832 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1834 int extra = parameters->options().spare_dynamic_tags();
1835 for (int i = 0; i < extra; ++i)
1836 this->add_constant(elfcpp::DT_NULL, 0);
1837 this->add_constant(elfcpp::DT_NULL, 0);
1841 if (parameters->target().get_size() == 32)
1842 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1843 else if (parameters->target().get_size() == 64)
1844 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1847 this->set_data_size(this->entries_.size() * dyn_size);
1850 // Write out the dynamic entries.
1853 Output_data_dynamic::do_write(Output_file* of)
1855 switch (parameters->size_and_endianness())
1857 #ifdef HAVE_TARGET_32_LITTLE
1858 case Parameters::TARGET_32_LITTLE:
1859 this->sized_write<32, false>(of);
1862 #ifdef HAVE_TARGET_32_BIG
1863 case Parameters::TARGET_32_BIG:
1864 this->sized_write<32, true>(of);
1867 #ifdef HAVE_TARGET_64_LITTLE
1868 case Parameters::TARGET_64_LITTLE:
1869 this->sized_write<64, false>(of);
1872 #ifdef HAVE_TARGET_64_BIG
1873 case Parameters::TARGET_64_BIG:
1874 this->sized_write<64, true>(of);
1882 template<int size, bool big_endian>
1884 Output_data_dynamic::sized_write(Output_file* of)
1886 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1888 const off_t offset = this->offset();
1889 const off_t oview_size = this->data_size();
1890 unsigned char* const oview = of->get_output_view(offset, oview_size);
1892 unsigned char* pov = oview;
1893 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1894 p != this->entries_.end();
1897 p->write<size, big_endian>(pov, this->pool_);
1901 gold_assert(pov - oview == oview_size);
1903 of->write_output_view(offset, oview_size, oview);
1905 // We no longer need the dynamic entries.
1906 this->entries_.clear();
1909 // Class Output_symtab_xindex.
1912 Output_symtab_xindex::do_write(Output_file* of)
1914 const off_t offset = this->offset();
1915 const off_t oview_size = this->data_size();
1916 unsigned char* const oview = of->get_output_view(offset, oview_size);
1918 memset(oview, 0, oview_size);
1920 if (parameters->target().is_big_endian())
1921 this->endian_do_write<true>(oview);
1923 this->endian_do_write<false>(oview);
1925 of->write_output_view(offset, oview_size, oview);
1927 // We no longer need the data.
1928 this->entries_.clear();
1931 template<bool big_endian>
1933 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1935 for (Xindex_entries::const_iterator p = this->entries_.begin();
1936 p != this->entries_.end();
1939 unsigned int symndx = p->first;
1940 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
1941 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1945 // Output_fill_debug_info methods.
1947 // Return the minimum size needed for a dummy compilation unit header.
1950 Output_fill_debug_info::do_minimum_hole_size() const
1952 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1954 const size_t len = 4 + 2 + 4 + 1;
1955 // For type units, add type_signature, type_offset.
1956 if (this->is_debug_types_)
1961 // Write a dummy compilation unit header to fill a hole in the
1962 // .debug_info or .debug_types section.
1965 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1967 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1968 static_cast<long>(off), static_cast<long>(len));
1970 gold_assert(len >= this->do_minimum_hole_size());
1972 unsigned char* const oview = of->get_output_view(off, len);
1973 unsigned char* pov = oview;
1975 // Write header fields: unit_length, version, debug_abbrev_offset,
1977 if (this->is_big_endian())
1979 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1980 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1981 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1985 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1986 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1987 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1992 // For type units, the additional header fields -- type_signature,
1993 // type_offset -- can be filled with zeroes.
1995 // Fill the remainder of the free space with zeroes. The first
1996 // zero should tell the consumer there are no DIEs to read in this
1997 // compilation unit.
1998 if (pov < oview + len)
1999 memset(pov, 0, oview + len - pov);
2001 of->write_output_view(off, len, oview);
2004 // Output_fill_debug_line methods.
2006 // Return the minimum size needed for a dummy line number program header.
2009 Output_fill_debug_line::do_minimum_hole_size() const
2011 // Line number program header fields: unit_length, version, header_length,
2012 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2013 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2014 const size_t len = 4 + 2 + 4 + this->header_length;
2018 // Write a dummy line number program header to fill a hole in the
2019 // .debug_line section.
2022 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2024 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2025 static_cast<long>(off), static_cast<long>(len));
2027 gold_assert(len >= this->do_minimum_hole_size());
2029 unsigned char* const oview = of->get_output_view(off, len);
2030 unsigned char* pov = oview;
2032 // Write header fields: unit_length, version, header_length,
2033 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2034 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2035 // We set the header_length field to cover the entire hole, so the
2036 // line number program is empty.
2037 if (this->is_big_endian())
2039 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2040 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2041 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2045 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2046 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2047 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2050 *pov++ = 1; // minimum_instruction_length
2051 *pov++ = 0; // default_is_stmt
2052 *pov++ = 0; // line_base
2053 *pov++ = 5; // line_range
2054 *pov++ = 13; // opcode_base
2055 *pov++ = 0; // standard_opcode_lengths[1]
2056 *pov++ = 1; // standard_opcode_lengths[2]
2057 *pov++ = 1; // standard_opcode_lengths[3]
2058 *pov++ = 1; // standard_opcode_lengths[4]
2059 *pov++ = 1; // standard_opcode_lengths[5]
2060 *pov++ = 0; // standard_opcode_lengths[6]
2061 *pov++ = 0; // standard_opcode_lengths[7]
2062 *pov++ = 0; // standard_opcode_lengths[8]
2063 *pov++ = 1; // standard_opcode_lengths[9]
2064 *pov++ = 0; // standard_opcode_lengths[10]
2065 *pov++ = 0; // standard_opcode_lengths[11]
2066 *pov++ = 1; // standard_opcode_lengths[12]
2067 *pov++ = 0; // include_directories (empty)
2068 *pov++ = 0; // filenames (empty)
2070 // Some consumers don't check the header_length field, and simply
2071 // start reading the line number program immediately following the
2072 // header. For those consumers, we fill the remainder of the free
2073 // space with DW_LNS_set_basic_block opcodes. These are effectively
2074 // no-ops: the resulting line table program will not create any rows.
2075 if (pov < oview + len)
2076 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2078 of->write_output_view(off, len, oview);
2081 // Output_section::Input_section methods.
2083 // Return the current data size. For an input section we store the size here.
2084 // For an Output_section_data, we have to ask it for the size.
2087 Output_section::Input_section::current_data_size() const
2089 if (this->is_input_section())
2090 return this->u1_.data_size;
2093 this->u2_.posd->pre_finalize_data_size();
2094 return this->u2_.posd->current_data_size();
2098 // Return the data size. For an input section we store the size here.
2099 // For an Output_section_data, we have to ask it for the size.
2102 Output_section::Input_section::data_size() const
2104 if (this->is_input_section())
2105 return this->u1_.data_size;
2107 return this->u2_.posd->data_size();
2110 // Return the object for an input section.
2113 Output_section::Input_section::relobj() const
2115 if (this->is_input_section())
2116 return this->u2_.object;
2117 else if (this->is_merge_section())
2119 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2120 return this->u2_.pomb->first_relobj();
2122 else if (this->is_relaxed_input_section())
2123 return this->u2_.poris->relobj();
2128 // Return the input section index for an input section.
2131 Output_section::Input_section::shndx() const
2133 if (this->is_input_section())
2134 return this->shndx_;
2135 else if (this->is_merge_section())
2137 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2138 return this->u2_.pomb->first_shndx();
2140 else if (this->is_relaxed_input_section())
2141 return this->u2_.poris->shndx();
2146 // Set the address and file offset.
2149 Output_section::Input_section::set_address_and_file_offset(
2152 off_t section_file_offset)
2154 if (this->is_input_section())
2155 this->u2_.object->set_section_offset(this->shndx_,
2156 file_offset - section_file_offset);
2158 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2161 // Reset the address and file offset.
2164 Output_section::Input_section::reset_address_and_file_offset()
2166 if (!this->is_input_section())
2167 this->u2_.posd->reset_address_and_file_offset();
2170 // Finalize the data size.
2173 Output_section::Input_section::finalize_data_size()
2175 if (!this->is_input_section())
2176 this->u2_.posd->finalize_data_size();
2179 // Try to turn an input offset into an output offset. We want to
2180 // return the output offset relative to the start of this
2181 // Input_section in the output section.
2184 Output_section::Input_section::output_offset(
2185 const Relobj* object,
2187 section_offset_type offset,
2188 section_offset_type* poutput) const
2190 if (!this->is_input_section())
2191 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2194 if (this->shndx_ != shndx || this->u2_.object != object)
2201 // Return whether this is the merge section for the input section
2205 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2206 unsigned int shndx) const
2208 if (this->is_input_section())
2210 return this->u2_.posd->is_merge_section_for(object, shndx);
2213 // Write out the data. We don't have to do anything for an input
2214 // section--they are handled via Object::relocate--but this is where
2215 // we write out the data for an Output_section_data.
2218 Output_section::Input_section::write(Output_file* of)
2220 if (!this->is_input_section())
2221 this->u2_.posd->write(of);
2224 // Write the data to a buffer. As for write(), we don't have to do
2225 // anything for an input section.
2228 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2230 if (!this->is_input_section())
2231 this->u2_.posd->write_to_buffer(buffer);
2234 // Print to a map file.
2237 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2239 switch (this->shndx_)
2241 case OUTPUT_SECTION_CODE:
2242 case MERGE_DATA_SECTION_CODE:
2243 case MERGE_STRING_SECTION_CODE:
2244 this->u2_.posd->print_to_mapfile(mapfile);
2247 case RELAXED_INPUT_SECTION_CODE:
2249 Output_relaxed_input_section* relaxed_section =
2250 this->relaxed_input_section();
2251 mapfile->print_input_section(relaxed_section->relobj(),
2252 relaxed_section->shndx());
2256 mapfile->print_input_section(this->u2_.object, this->shndx_);
2261 // Output_section methods.
2263 // Construct an Output_section. NAME will point into a Stringpool.
2265 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2266 elfcpp::Elf_Xword flags)
2271 link_section_(NULL),
2273 info_section_(NULL),
2278 order_(ORDER_INVALID),
2283 first_input_offset_(0),
2285 postprocessing_buffer_(NULL),
2286 needs_symtab_index_(false),
2287 needs_dynsym_index_(false),
2288 should_link_to_symtab_(false),
2289 should_link_to_dynsym_(false),
2290 after_input_sections_(false),
2291 requires_postprocessing_(false),
2292 found_in_sections_clause_(false),
2293 has_load_address_(false),
2294 info_uses_section_index_(false),
2295 input_section_order_specified_(false),
2296 may_sort_attached_input_sections_(false),
2297 must_sort_attached_input_sections_(false),
2298 attached_input_sections_are_sorted_(false),
2300 is_small_section_(false),
2301 is_large_section_(false),
2302 generate_code_fills_at_write_(false),
2303 is_entsize_zero_(false),
2304 section_offsets_need_adjustment_(false),
2306 always_keeps_input_sections_(false),
2307 has_fixed_layout_(false),
2308 is_patch_space_allowed_(false),
2309 is_unique_segment_(false),
2311 extra_segment_flags_(0),
2312 segment_alignment_(0),
2314 lookup_maps_(new Output_section_lookup_maps),
2316 free_space_fill_(NULL),
2319 // An unallocated section has no address. Forcing this means that
2320 // we don't need special treatment for symbols defined in debug
2322 if ((flags & elfcpp::SHF_ALLOC) == 0)
2323 this->set_address(0);
2326 Output_section::~Output_section()
2328 delete this->checkpoint_;
2331 // Set the entry size.
2334 Output_section::set_entsize(uint64_t v)
2336 if (this->is_entsize_zero_)
2338 else if (this->entsize_ == 0)
2340 else if (this->entsize_ != v)
2343 this->is_entsize_zero_ = 1;
2347 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2348 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2349 // relocation section which applies to this section, or 0 if none, or
2350 // -1U if more than one. Return the offset of the input section
2351 // within the output section. Return -1 if the input section will
2352 // receive special handling. In the normal case we don't always keep
2353 // track of input sections for an Output_section. Instead, each
2354 // Object keeps track of the Output_section for each of its input
2355 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2356 // track of input sections here; this is used when SECTIONS appears in
2359 template<int size, bool big_endian>
2361 Output_section::add_input_section(Layout* layout,
2362 Sized_relobj_file<size, big_endian>* object,
2364 const char* secname,
2365 const elfcpp::Shdr<size, big_endian>& shdr,
2366 unsigned int reloc_shndx,
2367 bool have_sections_script)
2369 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2370 if ((addralign & (addralign - 1)) != 0)
2372 object->error(_("invalid alignment %lu for section \"%s\""),
2373 static_cast<unsigned long>(addralign), secname);
2377 if (addralign > this->addralign_)
2378 this->addralign_ = addralign;
2380 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2381 uint64_t entsize = shdr.get_sh_entsize();
2383 // .debug_str is a mergeable string section, but is not always so
2384 // marked by compilers. Mark manually here so we can optimize.
2385 if (strcmp(secname, ".debug_str") == 0)
2387 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2391 this->update_flags_for_input_section(sh_flags);
2392 this->set_entsize(entsize);
2394 // If this is a SHF_MERGE section, we pass all the input sections to
2395 // a Output_data_merge. We don't try to handle relocations for such
2396 // a section. We don't try to handle empty merge sections--they
2397 // mess up the mappings, and are useless anyhow.
2398 // FIXME: Need to handle merge sections during incremental update.
2399 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2401 && shdr.get_sh_size() > 0
2402 && !parameters->incremental())
2404 // Keep information about merged input sections for rebuilding fast
2405 // lookup maps if we have sections-script or we do relaxation.
2406 bool keeps_input_sections = (this->always_keeps_input_sections_
2407 || have_sections_script
2408 || parameters->target().may_relax());
2410 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2411 addralign, keeps_input_sections))
2413 // Tell the relocation routines that they need to call the
2414 // output_offset method to determine the final address.
2419 section_size_type input_section_size = shdr.get_sh_size();
2420 section_size_type uncompressed_size;
2421 if (object->section_is_compressed(shndx, &uncompressed_size))
2422 input_section_size = uncompressed_size;
2424 off_t offset_in_section;
2425 off_t aligned_offset_in_section;
2426 if (this->has_fixed_layout())
2428 // For incremental updates, find a chunk of unused space in the section.
2429 offset_in_section = this->free_list_.allocate(input_section_size,
2431 if (offset_in_section == -1)
2432 gold_fallback(_("out of patch space in section %s; "
2433 "relink with --incremental-full"),
2435 aligned_offset_in_section = offset_in_section;
2439 offset_in_section = this->current_data_size_for_child();
2440 aligned_offset_in_section = align_address(offset_in_section,
2442 this->set_current_data_size_for_child(aligned_offset_in_section
2443 + input_section_size);
2446 // Determine if we want to delay code-fill generation until the output
2447 // section is written. When the target is relaxing, we want to delay fill
2448 // generating to avoid adjusting them during relaxation. Also, if we are
2449 // sorting input sections we must delay fill generation.
2450 if (!this->generate_code_fills_at_write_
2451 && !have_sections_script
2452 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2453 && parameters->target().has_code_fill()
2454 && (parameters->target().may_relax()
2455 || layout->is_section_ordering_specified()))
2457 gold_assert(this->fills_.empty());
2458 this->generate_code_fills_at_write_ = true;
2461 if (aligned_offset_in_section > offset_in_section
2462 && !this->generate_code_fills_at_write_
2463 && !have_sections_script
2464 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2465 && parameters->target().has_code_fill())
2467 // We need to add some fill data. Using fill_list_ when
2468 // possible is an optimization, since we will often have fill
2469 // sections without input sections.
2470 off_t fill_len = aligned_offset_in_section - offset_in_section;
2471 if (this->input_sections_.empty())
2472 this->fills_.push_back(Fill(offset_in_section, fill_len));
2475 std::string fill_data(parameters->target().code_fill(fill_len));
2476 Output_data_const* odc = new Output_data_const(fill_data, 1);
2477 this->input_sections_.push_back(Input_section(odc));
2481 // We need to keep track of this section if we are already keeping
2482 // track of sections, or if we are relaxing. Also, if this is a
2483 // section which requires sorting, or which may require sorting in
2484 // the future, we keep track of the sections. If the
2485 // --section-ordering-file option is used to specify the order of
2486 // sections, we need to keep track of sections.
2487 if (this->always_keeps_input_sections_
2488 || have_sections_script
2489 || !this->input_sections_.empty()
2490 || this->may_sort_attached_input_sections()
2491 || this->must_sort_attached_input_sections()
2492 || parameters->options().user_set_Map()
2493 || parameters->target().may_relax()
2494 || layout->is_section_ordering_specified())
2496 Input_section isecn(object, shndx, input_section_size, addralign);
2497 /* If section ordering is requested by specifying a ordering file,
2498 using --section-ordering-file, match the section name with
2500 if (parameters->options().section_ordering_file())
2502 unsigned int section_order_index =
2503 layout->find_section_order_index(std::string(secname));
2504 if (section_order_index != 0)
2506 isecn.set_section_order_index(section_order_index);
2507 this->set_input_section_order_specified();
2510 if (this->has_fixed_layout())
2512 // For incremental updates, finalize the address and offset now.
2513 uint64_t addr = this->address();
2514 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2515 aligned_offset_in_section,
2518 this->input_sections_.push_back(isecn);
2521 return aligned_offset_in_section;
2524 // Add arbitrary data to an output section.
2527 Output_section::add_output_section_data(Output_section_data* posd)
2529 Input_section inp(posd);
2530 this->add_output_section_data(&inp);
2532 if (posd->is_data_size_valid())
2534 off_t offset_in_section;
2535 if (this->has_fixed_layout())
2537 // For incremental updates, find a chunk of unused space.
2538 offset_in_section = this->free_list_.allocate(posd->data_size(),
2539 posd->addralign(), 0);
2540 if (offset_in_section == -1)
2541 gold_fallback(_("out of patch space in section %s; "
2542 "relink with --incremental-full"),
2544 // Finalize the address and offset now.
2545 uint64_t addr = this->address();
2546 off_t offset = this->offset();
2547 posd->set_address_and_file_offset(addr + offset_in_section,
2548 offset + offset_in_section);
2552 offset_in_section = this->current_data_size_for_child();
2553 off_t aligned_offset_in_section = align_address(offset_in_section,
2555 this->set_current_data_size_for_child(aligned_offset_in_section
2556 + posd->data_size());
2559 else if (this->has_fixed_layout())
2561 // For incremental updates, arrange for the data to have a fixed layout.
2562 // This will mean that additions to the data must be allocated from
2563 // free space within the containing output section.
2564 uint64_t addr = this->address();
2565 posd->set_address(addr);
2566 posd->set_file_offset(0);
2567 // FIXME: This should eventually be unreachable.
2568 // gold_unreachable();
2572 // Add a relaxed input section.
2575 Output_section::add_relaxed_input_section(Layout* layout,
2576 Output_relaxed_input_section* poris,
2577 const std::string& name)
2579 Input_section inp(poris);
2581 // If the --section-ordering-file option is used to specify the order of
2582 // sections, we need to keep track of sections.
2583 if (layout->is_section_ordering_specified())
2585 unsigned int section_order_index =
2586 layout->find_section_order_index(name);
2587 if (section_order_index != 0)
2589 inp.set_section_order_index(section_order_index);
2590 this->set_input_section_order_specified();
2594 this->add_output_section_data(&inp);
2595 if (this->lookup_maps_->is_valid())
2596 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2597 poris->shndx(), poris);
2599 // For a relaxed section, we use the current data size. Linker scripts
2600 // get all the input sections, including relaxed one from an output
2601 // section and add them back to the same output section to compute the
2602 // output section size. If we do not account for sizes of relaxed input
2603 // sections, an output section would be incorrectly sized.
2604 off_t offset_in_section = this->current_data_size_for_child();
2605 off_t aligned_offset_in_section = align_address(offset_in_section,
2606 poris->addralign());
2607 this->set_current_data_size_for_child(aligned_offset_in_section
2608 + poris->current_data_size());
2611 // Add arbitrary data to an output section by Input_section.
2614 Output_section::add_output_section_data(Input_section* inp)
2616 if (this->input_sections_.empty())
2617 this->first_input_offset_ = this->current_data_size_for_child();
2619 this->input_sections_.push_back(*inp);
2621 uint64_t addralign = inp->addralign();
2622 if (addralign > this->addralign_)
2623 this->addralign_ = addralign;
2625 inp->set_output_section(this);
2628 // Add a merge section to an output section.
2631 Output_section::add_output_merge_section(Output_section_data* posd,
2632 bool is_string, uint64_t entsize)
2634 Input_section inp(posd, is_string, entsize);
2635 this->add_output_section_data(&inp);
2638 // Add an input section to a SHF_MERGE section.
2641 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2642 uint64_t flags, uint64_t entsize,
2644 bool keeps_input_sections)
2646 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2648 // We only merge strings if the alignment is not more than the
2649 // character size. This could be handled, but it's unusual.
2650 if (is_string && addralign > entsize)
2653 // We cannot restore merged input section states.
2654 gold_assert(this->checkpoint_ == NULL);
2656 // Look up merge sections by required properties.
2657 // Currently, we only invalidate the lookup maps in script processing
2658 // and relaxation. We should not have done either when we reach here.
2659 // So we assume that the lookup maps are valid to simply code.
2660 gold_assert(this->lookup_maps_->is_valid());
2661 Merge_section_properties msp(is_string, entsize, addralign);
2662 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2663 bool is_new = false;
2666 gold_assert(pomb->is_string() == is_string
2667 && pomb->entsize() == entsize
2668 && pomb->addralign() == addralign);
2672 // Create a new Output_merge_data or Output_merge_string_data.
2674 pomb = new Output_merge_data(entsize, addralign);
2680 pomb = new Output_merge_string<char>(addralign);
2683 pomb = new Output_merge_string<uint16_t>(addralign);
2686 pomb = new Output_merge_string<uint32_t>(addralign);
2692 // If we need to do script processing or relaxation, we need to keep
2693 // the original input sections to rebuild the fast lookup maps.
2694 if (keeps_input_sections)
2695 pomb->set_keeps_input_sections();
2699 if (pomb->add_input_section(object, shndx))
2701 // Add new merge section to this output section and link merge
2702 // section properties to new merge section in map.
2705 this->add_output_merge_section(pomb, is_string, entsize);
2706 this->lookup_maps_->add_merge_section(msp, pomb);
2709 // Add input section to new merge section and link input section to new
2710 // merge section in map.
2711 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2716 // If add_input_section failed, delete new merge section to avoid
2717 // exporting empty merge sections in Output_section::get_input_section.
2724 // Build a relaxation map to speed up relaxation of existing input sections.
2725 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2728 Output_section::build_relaxation_map(
2729 const Input_section_list& input_sections,
2731 Relaxation_map* relaxation_map) const
2733 for (size_t i = 0; i < limit; ++i)
2735 const Input_section& is(input_sections[i]);
2736 if (is.is_input_section() || is.is_relaxed_input_section())
2738 Section_id sid(is.relobj(), is.shndx());
2739 (*relaxation_map)[sid] = i;
2744 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2745 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2746 // indices of INPUT_SECTIONS.
2749 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2750 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2751 const Relaxation_map& map,
2752 Input_section_list* input_sections)
2754 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2756 Output_relaxed_input_section* poris = relaxed_sections[i];
2757 Section_id sid(poris->relobj(), poris->shndx());
2758 Relaxation_map::const_iterator p = map.find(sid);
2759 gold_assert(p != map.end());
2760 gold_assert((*input_sections)[p->second].is_input_section());
2762 // Remember section order index of original input section
2763 // if it is set. Copy it to the relaxed input section.
2765 (*input_sections)[p->second].section_order_index();
2766 (*input_sections)[p->second] = Input_section(poris);
2767 (*input_sections)[p->second].set_section_order_index(soi);
2771 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2772 // is a vector of pointers to Output_relaxed_input_section or its derived
2773 // classes. The relaxed sections must correspond to existing input sections.
2776 Output_section::convert_input_sections_to_relaxed_sections(
2777 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2779 gold_assert(parameters->target().may_relax());
2781 // We want to make sure that restore_states does not undo the effect of
2782 // this. If there is no checkpoint active, just search the current
2783 // input section list and replace the sections there. If there is
2784 // a checkpoint, also replace the sections there.
2786 // By default, we look at the whole list.
2787 size_t limit = this->input_sections_.size();
2789 if (this->checkpoint_ != NULL)
2791 // Replace input sections with relaxed input section in the saved
2792 // copy of the input section list.
2793 if (this->checkpoint_->input_sections_saved())
2796 this->build_relaxation_map(
2797 *(this->checkpoint_->input_sections()),
2798 this->checkpoint_->input_sections()->size(),
2800 this->convert_input_sections_in_list_to_relaxed_sections(
2803 this->checkpoint_->input_sections());
2807 // We have not copied the input section list yet. Instead, just
2808 // look at the portion that would be saved.
2809 limit = this->checkpoint_->input_sections_size();
2813 // Convert input sections in input_section_list.
2815 this->build_relaxation_map(this->input_sections_, limit, &map);
2816 this->convert_input_sections_in_list_to_relaxed_sections(
2819 &this->input_sections_);
2821 // Update fast look-up map.
2822 if (this->lookup_maps_->is_valid())
2823 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2825 Output_relaxed_input_section* poris = relaxed_sections[i];
2826 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2827 poris->shndx(), poris);
2831 // Update the output section flags based on input section flags.
2834 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2836 // If we created the section with SHF_ALLOC clear, we set the
2837 // address. If we are now setting the SHF_ALLOC flag, we need to
2839 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2840 && (flags & elfcpp::SHF_ALLOC) != 0)
2841 this->mark_address_invalid();
2843 this->flags_ |= (flags
2844 & (elfcpp::SHF_WRITE
2846 | elfcpp::SHF_EXECINSTR));
2848 if ((flags & elfcpp::SHF_MERGE) == 0)
2849 this->flags_ &=~ elfcpp::SHF_MERGE;
2852 if (this->current_data_size_for_child() == 0)
2853 this->flags_ |= elfcpp::SHF_MERGE;
2856 if ((flags & elfcpp::SHF_STRINGS) == 0)
2857 this->flags_ &=~ elfcpp::SHF_STRINGS;
2860 if (this->current_data_size_for_child() == 0)
2861 this->flags_ |= elfcpp::SHF_STRINGS;
2865 // Find the merge section into which an input section with index SHNDX in
2866 // OBJECT has been added. Return NULL if none found.
2868 Output_section_data*
2869 Output_section::find_merge_section(const Relobj* object,
2870 unsigned int shndx) const
2872 if (!this->lookup_maps_->is_valid())
2873 this->build_lookup_maps();
2874 return this->lookup_maps_->find_merge_section(object, shndx);
2877 // Build the lookup maps for merge and relaxed sections. This is needs
2878 // to be declared as a const methods so that it is callable with a const
2879 // Output_section pointer. The method only updates states of the maps.
2882 Output_section::build_lookup_maps() const
2884 this->lookup_maps_->clear();
2885 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2886 p != this->input_sections_.end();
2889 if (p->is_merge_section())
2891 Output_merge_base* pomb = p->output_merge_base();
2892 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2894 this->lookup_maps_->add_merge_section(msp, pomb);
2895 for (Output_merge_base::Input_sections::const_iterator is =
2896 pomb->input_sections_begin();
2897 is != pomb->input_sections_end();
2900 const Const_section_id& csid = *is;
2901 this->lookup_maps_->add_merge_input_section(csid.first,
2906 else if (p->is_relaxed_input_section())
2908 Output_relaxed_input_section* poris = p->relaxed_input_section();
2909 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2910 poris->shndx(), poris);
2915 // Find an relaxed input section corresponding to an input section
2916 // in OBJECT with index SHNDX.
2918 const Output_relaxed_input_section*
2919 Output_section::find_relaxed_input_section(const Relobj* object,
2920 unsigned int shndx) const
2922 if (!this->lookup_maps_->is_valid())
2923 this->build_lookup_maps();
2924 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2927 // Given an address OFFSET relative to the start of input section
2928 // SHNDX in OBJECT, return whether this address is being included in
2929 // the final link. This should only be called if SHNDX in OBJECT has
2930 // a special mapping.
2933 Output_section::is_input_address_mapped(const Relobj* object,
2937 // Look at the Output_section_data_maps first.
2938 const Output_section_data* posd = this->find_merge_section(object, shndx);
2940 posd = this->find_relaxed_input_section(object, shndx);
2944 section_offset_type output_offset;
2945 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2947 return output_offset != -1;
2950 // Fall back to the slow look-up.
2951 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2952 p != this->input_sections_.end();
2955 section_offset_type output_offset;
2956 if (p->output_offset(object, shndx, offset, &output_offset))
2957 return output_offset != -1;
2960 // By default we assume that the address is mapped. This should
2961 // only be called after we have passed all sections to Layout. At
2962 // that point we should know what we are discarding.
2966 // Given an address OFFSET relative to the start of input section
2967 // SHNDX in object OBJECT, return the output offset relative to the
2968 // start of the input section in the output section. This should only
2969 // be called if SHNDX in OBJECT has a special mapping.
2972 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2973 section_offset_type offset) const
2975 // This can only be called meaningfully when we know the data size
2977 gold_assert(this->is_data_size_valid());
2979 // Look at the Output_section_data_maps first.
2980 const Output_section_data* posd = this->find_merge_section(object, shndx);
2982 posd = this->find_relaxed_input_section(object, shndx);
2985 section_offset_type output_offset;
2986 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2988 return output_offset;
2991 // Fall back to the slow look-up.
2992 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2993 p != this->input_sections_.end();
2996 section_offset_type output_offset;
2997 if (p->output_offset(object, shndx, offset, &output_offset))
2998 return output_offset;
3003 // Return the output virtual address of OFFSET relative to the start
3004 // of input section SHNDX in object OBJECT.
3007 Output_section::output_address(const Relobj* object, unsigned int shndx,
3010 uint64_t addr = this->address() + this->first_input_offset_;
3012 // Look at the Output_section_data_maps first.
3013 const Output_section_data* posd = this->find_merge_section(object, shndx);
3015 posd = this->find_relaxed_input_section(object, shndx);
3016 if (posd != NULL && posd->is_address_valid())
3018 section_offset_type output_offset;
3019 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3021 return posd->address() + output_offset;
3024 // Fall back to the slow look-up.
3025 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3026 p != this->input_sections_.end();
3029 addr = align_address(addr, p->addralign());
3030 section_offset_type output_offset;
3031 if (p->output_offset(object, shndx, offset, &output_offset))
3033 if (output_offset == -1)
3035 return addr + output_offset;
3037 addr += p->data_size();
3040 // If we get here, it means that we don't know the mapping for this
3041 // input section. This might happen in principle if
3042 // add_input_section were called before add_output_section_data.
3043 // But it should never actually happen.
3048 // Find the output address of the start of the merged section for
3049 // input section SHNDX in object OBJECT.
3052 Output_section::find_starting_output_address(const Relobj* object,
3054 uint64_t* paddr) const
3056 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3057 // Looking up the merge section map does not always work as we sometimes
3058 // find a merge section without its address set.
3059 uint64_t addr = this->address() + this->first_input_offset_;
3060 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3061 p != this->input_sections_.end();
3064 addr = align_address(addr, p->addralign());
3066 // It would be nice if we could use the existing output_offset
3067 // method to get the output offset of input offset 0.
3068 // Unfortunately we don't know for sure that input offset 0 is
3070 if (p->is_merge_section_for(object, shndx))
3076 addr += p->data_size();
3079 // We couldn't find a merge output section for this input section.
3083 // Update the data size of an Output_section.
3086 Output_section::update_data_size()
3088 if (this->input_sections_.empty())
3091 if (this->must_sort_attached_input_sections()
3092 || this->input_section_order_specified())
3093 this->sort_attached_input_sections();
3095 off_t off = this->first_input_offset_;
3096 for (Input_section_list::iterator p = this->input_sections_.begin();
3097 p != this->input_sections_.end();
3100 off = align_address(off, p->addralign());
3101 off += p->current_data_size();
3104 this->set_current_data_size_for_child(off);
3107 // Set the data size of an Output_section. This is where we handle
3108 // setting the addresses of any Output_section_data objects.
3111 Output_section::set_final_data_size()
3115 if (this->input_sections_.empty())
3116 data_size = this->current_data_size_for_child();
3119 if (this->must_sort_attached_input_sections()
3120 || this->input_section_order_specified())
3121 this->sort_attached_input_sections();
3123 uint64_t address = this->address();
3124 off_t startoff = this->offset();
3125 off_t off = startoff + this->first_input_offset_;
3126 for (Input_section_list::iterator p = this->input_sections_.begin();
3127 p != this->input_sections_.end();
3130 off = align_address(off, p->addralign());
3131 p->set_address_and_file_offset(address + (off - startoff), off,
3133 off += p->data_size();
3135 data_size = off - startoff;
3138 // For full incremental links, we want to allocate some patch space
3139 // in most sections for subsequent incremental updates.
3140 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3142 double pct = parameters->options().incremental_patch();
3143 size_t extra = static_cast<size_t>(data_size * pct);
3144 if (this->free_space_fill_ != NULL
3145 && this->free_space_fill_->minimum_hole_size() > extra)
3146 extra = this->free_space_fill_->minimum_hole_size();
3147 off_t new_size = align_address(data_size + extra, this->addralign());
3148 this->patch_space_ = new_size - data_size;
3149 gold_debug(DEBUG_INCREMENTAL,
3150 "set_final_data_size: %08lx + %08lx: section %s",
3151 static_cast<long>(data_size),
3152 static_cast<long>(this->patch_space_),
3154 data_size = new_size;
3157 this->set_data_size(data_size);
3160 // Reset the address and file offset.
3163 Output_section::do_reset_address_and_file_offset()
3165 // An unallocated section has no address. Forcing this means that
3166 // we don't need special treatment for symbols defined in debug
3167 // sections. We do the same in the constructor. This does not
3168 // apply to NOLOAD sections though.
3169 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3170 this->set_address(0);
3172 for (Input_section_list::iterator p = this->input_sections_.begin();
3173 p != this->input_sections_.end();
3175 p->reset_address_and_file_offset();
3177 // Remove any patch space that was added in set_final_data_size.
3178 if (this->patch_space_ > 0)
3180 this->set_current_data_size_for_child(this->current_data_size_for_child()
3181 - this->patch_space_);
3182 this->patch_space_ = 0;
3186 // Return true if address and file offset have the values after reset.
3189 Output_section::do_address_and_file_offset_have_reset_values() const
3191 if (this->is_offset_valid())
3194 // An unallocated section has address 0 after its construction or a reset.
3195 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3196 return this->is_address_valid() && this->address() == 0;
3198 return !this->is_address_valid();
3201 // Set the TLS offset. Called only for SHT_TLS sections.
3204 Output_section::do_set_tls_offset(uint64_t tls_base)
3206 this->tls_offset_ = this->address() - tls_base;
3209 // In a few cases we need to sort the input sections attached to an
3210 // output section. This is used to implement the type of constructor
3211 // priority ordering implemented by the GNU linker, in which the
3212 // priority becomes part of the section name and the sections are
3213 // sorted by name. We only do this for an output section if we see an
3214 // attached input section matching ".ctors.*", ".dtors.*",
3215 // ".init_array.*" or ".fini_array.*".
3217 class Output_section::Input_section_sort_entry
3220 Input_section_sort_entry()
3221 : input_section_(), index_(-1U), section_has_name_(false),
3225 Input_section_sort_entry(const Input_section& input_section,
3227 bool must_sort_attached_input_sections)
3228 : input_section_(input_section), index_(index),
3229 section_has_name_(input_section.is_input_section()
3230 || input_section.is_relaxed_input_section())
3232 if (this->section_has_name_
3233 && must_sort_attached_input_sections)
3235 // This is only called single-threaded from Layout::finalize,
3236 // so it is OK to lock. Unfortunately we have no way to pass
3238 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3239 Object* obj = (input_section.is_input_section()
3240 ? input_section.relobj()
3241 : input_section.relaxed_input_section()->relobj());
3242 Task_lock_obj<Object> tl(dummy_task, obj);
3244 // This is a slow operation, which should be cached in
3245 // Layout::layout if this becomes a speed problem.
3246 this->section_name_ = obj->section_name(input_section.shndx());
3250 // Return the Input_section.
3251 const Input_section&
3252 input_section() const
3254 gold_assert(this->index_ != -1U);
3255 return this->input_section_;
3258 // The index of this entry in the original list. This is used to
3259 // make the sort stable.
3263 gold_assert(this->index_ != -1U);
3264 return this->index_;
3267 // Whether there is a section name.
3269 section_has_name() const
3270 { return this->section_has_name_; }
3272 // The section name.
3274 section_name() const
3276 gold_assert(this->section_has_name_);
3277 return this->section_name_;
3280 // Return true if the section name has a priority. This is assumed
3281 // to be true if it has a dot after the initial dot.
3283 has_priority() const
3285 gold_assert(this->section_has_name_);
3286 return this->section_name_.find('.', 1) != std::string::npos;
3289 // Return the priority. Believe it or not, gcc encodes the priority
3290 // differently for .ctors/.dtors and .init_array/.fini_array
3293 get_priority() const
3295 gold_assert(this->section_has_name_);
3297 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3298 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3300 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3301 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3306 unsigned long prio = strtoul((this->section_name_.c_str()
3307 + (is_ctors ? 7 : 12)),
3312 return 65535 - prio;
3317 // Return true if this an input file whose base name matches
3318 // FILE_NAME. The base name must have an extension of ".o", and
3319 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3320 // This is to match crtbegin.o as well as crtbeginS.o without
3321 // getting confused by other possibilities. Overall matching the
3322 // file name this way is a dreadful hack, but the GNU linker does it
3323 // in order to better support gcc, and we need to be compatible.
3325 match_file_name(const char* file_name) const
3326 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3328 // Returns 1 if THIS should appear before S in section order, -1 if S
3329 // appears before THIS and 0 if they are not comparable.
3331 compare_section_ordering(const Input_section_sort_entry& s) const
3333 unsigned int this_secn_index = this->input_section_.section_order_index();
3334 unsigned int s_secn_index = s.input_section().section_order_index();
3335 if (this_secn_index > 0 && s_secn_index > 0)
3337 if (this_secn_index < s_secn_index)
3339 else if (this_secn_index > s_secn_index)
3346 // The Input_section we are sorting.
3347 Input_section input_section_;
3348 // The index of this Input_section in the original list.
3349 unsigned int index_;
3350 // Whether this Input_section has a section name--it won't if this
3351 // is some random Output_section_data.
3352 bool section_has_name_;
3353 // The section name if there is one.
3354 std::string section_name_;
3357 // Return true if S1 should come before S2 in the output section.
3360 Output_section::Input_section_sort_compare::operator()(
3361 const Output_section::Input_section_sort_entry& s1,
3362 const Output_section::Input_section_sort_entry& s2) const
3364 // crtbegin.o must come first.
3365 bool s1_begin = s1.match_file_name("crtbegin");
3366 bool s2_begin = s2.match_file_name("crtbegin");
3367 if (s1_begin || s2_begin)
3373 return s1.index() < s2.index();
3376 // crtend.o must come last.
3377 bool s1_end = s1.match_file_name("crtend");
3378 bool s2_end = s2.match_file_name("crtend");
3379 if (s1_end || s2_end)
3385 return s1.index() < s2.index();
3388 // We sort all the sections with no names to the end.
3389 if (!s1.section_has_name() || !s2.section_has_name())
3391 if (s1.section_has_name())
3393 if (s2.section_has_name())
3395 return s1.index() < s2.index();
3398 // A section with a priority follows a section without a priority.
3399 bool s1_has_priority = s1.has_priority();
3400 bool s2_has_priority = s2.has_priority();
3401 if (s1_has_priority && !s2_has_priority)
3403 if (!s1_has_priority && s2_has_priority)
3406 // Check if a section order exists for these sections through a section
3407 // ordering file. If sequence_num is 0, an order does not exist.
3408 int sequence_num = s1.compare_section_ordering(s2);
3409 if (sequence_num != 0)
3410 return sequence_num == 1;
3412 // Otherwise we sort by name.
3413 int compare = s1.section_name().compare(s2.section_name());
3417 // Otherwise we keep the input order.
3418 return s1.index() < s2.index();
3421 // Return true if S1 should come before S2 in an .init_array or .fini_array
3425 Output_section::Input_section_sort_init_fini_compare::operator()(
3426 const Output_section::Input_section_sort_entry& s1,
3427 const Output_section::Input_section_sort_entry& s2) const
3429 // We sort all the sections with no names to the end.
3430 if (!s1.section_has_name() || !s2.section_has_name())
3432 if (s1.section_has_name())
3434 if (s2.section_has_name())
3436 return s1.index() < s2.index();
3439 // A section without a priority follows a section with a priority.
3440 // This is the reverse of .ctors and .dtors sections.
3441 bool s1_has_priority = s1.has_priority();
3442 bool s2_has_priority = s2.has_priority();
3443 if (s1_has_priority && !s2_has_priority)
3445 if (!s1_has_priority && s2_has_priority)
3448 // .ctors and .dtors sections without priority come after
3449 // .init_array and .fini_array sections without priority.
3450 if (!s1_has_priority
3451 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3452 && s1.section_name() != s2.section_name())
3454 if (!s2_has_priority
3455 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3456 && s2.section_name() != s1.section_name())
3459 // Sort by priority if we can.
3460 if (s1_has_priority)
3462 unsigned int s1_prio = s1.get_priority();
3463 unsigned int s2_prio = s2.get_priority();
3464 if (s1_prio < s2_prio)
3466 else if (s1_prio > s2_prio)
3470 // Check if a section order exists for these sections through a section
3471 // ordering file. If sequence_num is 0, an order does not exist.
3472 int sequence_num = s1.compare_section_ordering(s2);
3473 if (sequence_num != 0)
3474 return sequence_num == 1;
3476 // Otherwise we sort by name.
3477 int compare = s1.section_name().compare(s2.section_name());
3481 // Otherwise we keep the input order.
3482 return s1.index() < s2.index();
3485 // Return true if S1 should come before S2. Sections that do not match
3486 // any pattern in the section ordering file are placed ahead of the sections
3487 // that match some pattern.
3490 Output_section::Input_section_sort_section_order_index_compare::operator()(
3491 const Output_section::Input_section_sort_entry& s1,
3492 const Output_section::Input_section_sort_entry& s2) const
3494 unsigned int s1_secn_index = s1.input_section().section_order_index();
3495 unsigned int s2_secn_index = s2.input_section().section_order_index();
3497 // Keep input order if section ordering cannot determine order.
3498 if (s1_secn_index == s2_secn_index)
3499 return s1.index() < s2.index();
3501 return s1_secn_index < s2_secn_index;
3504 // This updates the section order index of input sections according to the
3505 // the order specified in the mapping from Section id to order index.
3508 Output_section::update_section_layout(
3509 const Section_layout_order* order_map)
3511 for (Input_section_list::iterator p = this->input_sections_.begin();
3512 p != this->input_sections_.end();
3515 if (p->is_input_section()
3516 || p->is_relaxed_input_section())
3518 Object* obj = (p->is_input_section()
3520 : p->relaxed_input_section()->relobj());
3521 unsigned int shndx = p->shndx();
3522 Section_layout_order::const_iterator it
3523 = order_map->find(Section_id(obj, shndx));
3524 if (it == order_map->end())
3526 unsigned int section_order_index = it->second;
3527 if (section_order_index != 0)
3529 p->set_section_order_index(section_order_index);
3530 this->set_input_section_order_specified();
3536 // Sort the input sections attached to an output section.
3539 Output_section::sort_attached_input_sections()
3541 if (this->attached_input_sections_are_sorted_)
3544 if (this->checkpoint_ != NULL
3545 && !this->checkpoint_->input_sections_saved())
3546 this->checkpoint_->save_input_sections();
3548 // The only thing we know about an input section is the object and
3549 // the section index. We need the section name. Recomputing this
3550 // is slow but this is an unusual case. If this becomes a speed
3551 // problem we can cache the names as required in Layout::layout.
3553 // We start by building a larger vector holding a copy of each
3554 // Input_section, plus its current index in the list and its name.
3555 std::vector<Input_section_sort_entry> sort_list;
3558 for (Input_section_list::iterator p = this->input_sections_.begin();
3559 p != this->input_sections_.end();
3561 sort_list.push_back(Input_section_sort_entry(*p, i,
3562 this->must_sort_attached_input_sections()));
3564 // Sort the input sections.
3565 if (this->must_sort_attached_input_sections())
3567 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3568 || this->type() == elfcpp::SHT_INIT_ARRAY
3569 || this->type() == elfcpp::SHT_FINI_ARRAY)
3570 std::sort(sort_list.begin(), sort_list.end(),
3571 Input_section_sort_init_fini_compare());
3573 std::sort(sort_list.begin(), sort_list.end(),
3574 Input_section_sort_compare());
3578 gold_assert(this->input_section_order_specified());
3579 std::sort(sort_list.begin(), sort_list.end(),
3580 Input_section_sort_section_order_index_compare());
3583 // Copy the sorted input sections back to our list.
3584 this->input_sections_.clear();
3585 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3586 p != sort_list.end();
3588 this->input_sections_.push_back(p->input_section());
3591 // Remember that we sorted the input sections, since we might get
3593 this->attached_input_sections_are_sorted_ = true;
3596 // Write the section header to *OSHDR.
3598 template<int size, bool big_endian>
3600 Output_section::write_header(const Layout* layout,
3601 const Stringpool* secnamepool,
3602 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3604 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3605 oshdr->put_sh_type(this->type_);
3607 elfcpp::Elf_Xword flags = this->flags_;
3608 if (this->info_section_ != NULL && this->info_uses_section_index_)
3609 flags |= elfcpp::SHF_INFO_LINK;
3610 oshdr->put_sh_flags(flags);
3612 oshdr->put_sh_addr(this->address());
3613 oshdr->put_sh_offset(this->offset());
3614 oshdr->put_sh_size(this->data_size());
3615 if (this->link_section_ != NULL)
3616 oshdr->put_sh_link(this->link_section_->out_shndx());
3617 else if (this->should_link_to_symtab_)
3618 oshdr->put_sh_link(layout->symtab_section_shndx());
3619 else if (this->should_link_to_dynsym_)
3620 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3622 oshdr->put_sh_link(this->link_);
3624 elfcpp::Elf_Word info;
3625 if (this->info_section_ != NULL)
3627 if (this->info_uses_section_index_)
3628 info = this->info_section_->out_shndx();
3630 info = this->info_section_->symtab_index();
3632 else if (this->info_symndx_ != NULL)
3633 info = this->info_symndx_->symtab_index();
3636 oshdr->put_sh_info(info);
3638 oshdr->put_sh_addralign(this->addralign_);
3639 oshdr->put_sh_entsize(this->entsize_);
3642 // Write out the data. For input sections the data is written out by
3643 // Object::relocate, but we have to handle Output_section_data objects
3647 Output_section::do_write(Output_file* of)
3649 gold_assert(!this->requires_postprocessing());
3651 // If the target performs relaxation, we delay filler generation until now.
3652 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3654 off_t output_section_file_offset = this->offset();
3655 for (Fill_list::iterator p = this->fills_.begin();
3656 p != this->fills_.end();
3659 std::string fill_data(parameters->target().code_fill(p->length()));
3660 of->write(output_section_file_offset + p->section_offset(),
3661 fill_data.data(), fill_data.size());
3664 off_t off = this->offset() + this->first_input_offset_;
3665 for (Input_section_list::iterator p = this->input_sections_.begin();
3666 p != this->input_sections_.end();
3669 off_t aligned_off = align_address(off, p->addralign());
3670 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3672 size_t fill_len = aligned_off - off;
3673 std::string fill_data(parameters->target().code_fill(fill_len));
3674 of->write(off, fill_data.data(), fill_data.size());
3678 off = aligned_off + p->data_size();
3681 // For incremental links, fill in unused chunks in debug sections
3682 // with dummy compilation unit headers.
3683 if (this->free_space_fill_ != NULL)
3685 for (Free_list::Const_iterator p = this->free_list_.begin();
3686 p != this->free_list_.end();
3689 off_t off = p->start_;
3690 size_t len = p->end_ - off;
3691 this->free_space_fill_->write(of, this->offset() + off, len);
3693 if (this->patch_space_ > 0)
3695 off_t off = this->current_data_size_for_child() - this->patch_space_;
3696 this->free_space_fill_->write(of, this->offset() + off,
3697 this->patch_space_);
3702 // If a section requires postprocessing, create the buffer to use.
3705 Output_section::create_postprocessing_buffer()
3707 gold_assert(this->requires_postprocessing());
3709 if (this->postprocessing_buffer_ != NULL)
3712 if (!this->input_sections_.empty())
3714 off_t off = this->first_input_offset_;
3715 for (Input_section_list::iterator p = this->input_sections_.begin();
3716 p != this->input_sections_.end();
3719 off = align_address(off, p->addralign());
3720 p->finalize_data_size();
3721 off += p->data_size();
3723 this->set_current_data_size_for_child(off);
3726 off_t buffer_size = this->current_data_size_for_child();
3727 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3730 // Write all the data of an Output_section into the postprocessing
3731 // buffer. This is used for sections which require postprocessing,
3732 // such as compression. Input sections are handled by
3733 // Object::Relocate.
3736 Output_section::write_to_postprocessing_buffer()
3738 gold_assert(this->requires_postprocessing());
3740 // If the target performs relaxation, we delay filler generation until now.
3741 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3743 unsigned char* buffer = this->postprocessing_buffer();
3744 for (Fill_list::iterator p = this->fills_.begin();
3745 p != this->fills_.end();
3748 std::string fill_data(parameters->target().code_fill(p->length()));
3749 memcpy(buffer + p->section_offset(), fill_data.data(),
3753 off_t off = this->first_input_offset_;
3754 for (Input_section_list::iterator p = this->input_sections_.begin();
3755 p != this->input_sections_.end();
3758 off_t aligned_off = align_address(off, p->addralign());
3759 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3761 size_t fill_len = aligned_off - off;
3762 std::string fill_data(parameters->target().code_fill(fill_len));
3763 memcpy(buffer + off, fill_data.data(), fill_data.size());
3766 p->write_to_buffer(buffer + aligned_off);
3767 off = aligned_off + p->data_size();
3771 // Get the input sections for linker script processing. We leave
3772 // behind the Output_section_data entries. Note that this may be
3773 // slightly incorrect for merge sections. We will leave them behind,
3774 // but it is possible that the script says that they should follow
3775 // some other input sections, as in:
3776 // .rodata { *(.rodata) *(.rodata.cst*) }
3777 // For that matter, we don't handle this correctly:
3778 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3779 // With luck this will never matter.
3782 Output_section::get_input_sections(
3784 const std::string& fill,
3785 std::list<Input_section>* input_sections)
3787 if (this->checkpoint_ != NULL
3788 && !this->checkpoint_->input_sections_saved())
3789 this->checkpoint_->save_input_sections();
3791 // Invalidate fast look-up maps.
3792 this->lookup_maps_->invalidate();
3794 uint64_t orig_address = address;
3796 address = align_address(address, this->addralign());
3798 Input_section_list remaining;
3799 for (Input_section_list::iterator p = this->input_sections_.begin();
3800 p != this->input_sections_.end();
3803 if (p->is_input_section()
3804 || p->is_relaxed_input_section()
3805 || p->is_merge_section())
3806 input_sections->push_back(*p);
3809 uint64_t aligned_address = align_address(address, p->addralign());
3810 if (aligned_address != address && !fill.empty())
3812 section_size_type length =
3813 convert_to_section_size_type(aligned_address - address);
3814 std::string this_fill;
3815 this_fill.reserve(length);
3816 while (this_fill.length() + fill.length() <= length)
3818 if (this_fill.length() < length)
3819 this_fill.append(fill, 0, length - this_fill.length());
3821 Output_section_data* posd = new Output_data_const(this_fill, 0);
3822 remaining.push_back(Input_section(posd));
3824 address = aligned_address;
3826 remaining.push_back(*p);
3828 p->finalize_data_size();
3829 address += p->data_size();
3833 this->input_sections_.swap(remaining);
3834 this->first_input_offset_ = 0;
3836 uint64_t data_size = address - orig_address;
3837 this->set_current_data_size_for_child(data_size);
3841 // Add a script input section. SIS is an Output_section::Input_section,
3842 // which can be either a plain input section or a special input section like
3843 // a relaxed input section. For a special input section, its size must be
3847 Output_section::add_script_input_section(const Input_section& sis)
3849 uint64_t data_size = sis.data_size();
3850 uint64_t addralign = sis.addralign();
3851 if (addralign > this->addralign_)
3852 this->addralign_ = addralign;
3854 off_t offset_in_section = this->current_data_size_for_child();
3855 off_t aligned_offset_in_section = align_address(offset_in_section,
3858 this->set_current_data_size_for_child(aligned_offset_in_section
3861 this->input_sections_.push_back(sis);
3863 // Update fast lookup maps if necessary.
3864 if (this->lookup_maps_->is_valid())
3866 if (sis.is_merge_section())
3868 Output_merge_base* pomb = sis.output_merge_base();
3869 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3871 this->lookup_maps_->add_merge_section(msp, pomb);
3872 for (Output_merge_base::Input_sections::const_iterator p =
3873 pomb->input_sections_begin();
3874 p != pomb->input_sections_end();
3876 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3879 else if (sis.is_relaxed_input_section())
3881 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3882 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3883 poris->shndx(), poris);
3888 // Save states for relaxation.
3891 Output_section::save_states()
3893 gold_assert(this->checkpoint_ == NULL);
3894 Checkpoint_output_section* checkpoint =
3895 new Checkpoint_output_section(this->addralign_, this->flags_,
3896 this->input_sections_,
3897 this->first_input_offset_,
3898 this->attached_input_sections_are_sorted_);
3899 this->checkpoint_ = checkpoint;
3900 gold_assert(this->fills_.empty());
3904 Output_section::discard_states()
3906 gold_assert(this->checkpoint_ != NULL);
3907 delete this->checkpoint_;
3908 this->checkpoint_ = NULL;
3909 gold_assert(this->fills_.empty());
3911 // Simply invalidate the fast lookup maps since we do not keep
3913 this->lookup_maps_->invalidate();
3917 Output_section::restore_states()
3919 gold_assert(this->checkpoint_ != NULL);
3920 Checkpoint_output_section* checkpoint = this->checkpoint_;
3922 this->addralign_ = checkpoint->addralign();
3923 this->flags_ = checkpoint->flags();
3924 this->first_input_offset_ = checkpoint->first_input_offset();
3926 if (!checkpoint->input_sections_saved())
3928 // If we have not copied the input sections, just resize it.
3929 size_t old_size = checkpoint->input_sections_size();
3930 gold_assert(this->input_sections_.size() >= old_size);
3931 this->input_sections_.resize(old_size);
3935 // We need to copy the whole list. This is not efficient for
3936 // extremely large output with hundreads of thousands of input
3937 // objects. We may need to re-think how we should pass sections
3939 this->input_sections_ = *checkpoint->input_sections();
3942 this->attached_input_sections_are_sorted_ =
3943 checkpoint->attached_input_sections_are_sorted();
3945 // Simply invalidate the fast lookup maps since we do not keep
3947 this->lookup_maps_->invalidate();
3950 // Update the section offsets of input sections in this. This is required if
3951 // relaxation causes some input sections to change sizes.
3954 Output_section::adjust_section_offsets()
3956 if (!this->section_offsets_need_adjustment_)
3960 for (Input_section_list::iterator p = this->input_sections_.begin();
3961 p != this->input_sections_.end();
3964 off = align_address(off, p->addralign());
3965 if (p->is_input_section())
3966 p->relobj()->set_section_offset(p->shndx(), off);
3967 off += p->data_size();
3970 this->section_offsets_need_adjustment_ = false;
3973 // Print to the map file.
3976 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3978 mapfile->print_output_section(this);
3980 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3981 p != this->input_sections_.end();
3983 p->print_to_mapfile(mapfile);
3986 // Print stats for merge sections to stderr.
3989 Output_section::print_merge_stats()
3991 Input_section_list::iterator p;
3992 for (p = this->input_sections_.begin();
3993 p != this->input_sections_.end();
3995 p->print_merge_stats(this->name_);
3998 // Set a fixed layout for the section. Used for incremental update links.
4001 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4002 off_t sh_size, uint64_t sh_addralign)
4004 this->addralign_ = sh_addralign;
4005 this->set_current_data_size(sh_size);
4006 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4007 this->set_address(sh_addr);
4008 this->set_file_offset(sh_offset);
4009 this->finalize_data_size();
4010 this->free_list_.init(sh_size, false);
4011 this->has_fixed_layout_ = true;
4014 // Reserve space within the fixed layout for the section. Used for
4015 // incremental update links.
4018 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4020 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4023 // Allocate space from the free list for the section. Used for
4024 // incremental update links.
4027 Output_section::allocate(off_t len, uint64_t addralign)
4029 return this->free_list_.allocate(len, addralign, 0);
4032 // Output segment methods.
4034 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4044 is_max_align_known_(false),
4045 are_addresses_set_(false),
4046 is_large_data_segment_(false),
4047 is_unique_segment_(false)
4049 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4051 if (type == elfcpp::PT_TLS)
4052 this->flags_ = elfcpp::PF_R;
4055 // Add an Output_section to a PT_LOAD Output_segment.
4058 Output_segment::add_output_section_to_load(Layout* layout,
4060 elfcpp::Elf_Word seg_flags)
4062 gold_assert(this->type() == elfcpp::PT_LOAD);
4063 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4064 gold_assert(!this->is_max_align_known_);
4065 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4067 this->update_flags_for_output_section(seg_flags);
4069 // We don't want to change the ordering if we have a linker script
4070 // with a SECTIONS clause.
4071 Output_section_order order = os->order();
4072 if (layout->script_options()->saw_sections_clause())
4073 order = static_cast<Output_section_order>(0);
4075 gold_assert(order != ORDER_INVALID);
4077 this->output_lists_[order].push_back(os);
4080 // Add an Output_section to a non-PT_LOAD Output_segment.
4083 Output_segment::add_output_section_to_nonload(Output_section* os,
4084 elfcpp::Elf_Word seg_flags)
4086 gold_assert(this->type() != elfcpp::PT_LOAD);
4087 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4088 gold_assert(!this->is_max_align_known_);
4090 this->update_flags_for_output_section(seg_flags);
4092 this->output_lists_[0].push_back(os);
4095 // Remove an Output_section from this segment. It is an error if it
4099 Output_segment::remove_output_section(Output_section* os)
4101 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4103 Output_data_list* pdl = &this->output_lists_[i];
4104 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4116 // Add an Output_data (which need not be an Output_section) to the
4117 // start of a segment.
4120 Output_segment::add_initial_output_data(Output_data* od)
4122 gold_assert(!this->is_max_align_known_);
4123 Output_data_list::iterator p = this->output_lists_[0].begin();
4124 this->output_lists_[0].insert(p, od);
4127 // Return true if this segment has any sections which hold actual
4128 // data, rather than being a BSS section.
4131 Output_segment::has_any_data_sections() const
4133 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4135 const Output_data_list* pdl = &this->output_lists_[i];
4136 for (Output_data_list::const_iterator p = pdl->begin();
4140 if (!(*p)->is_section())
4142 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4149 // Return whether the first data section (not counting TLS sections)
4150 // is a relro section.
4153 Output_segment::is_first_section_relro() const
4155 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4157 if (i == static_cast<int>(ORDER_TLS_DATA)
4158 || i == static_cast<int>(ORDER_TLS_BSS))
4160 const Output_data_list* pdl = &this->output_lists_[i];
4163 Output_data* p = pdl->front();
4164 return p->is_section() && p->output_section()->is_relro();
4170 // Return the maximum alignment of the Output_data in Output_segment.
4173 Output_segment::maximum_alignment()
4175 if (!this->is_max_align_known_)
4177 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4179 const Output_data_list* pdl = &this->output_lists_[i];
4180 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4181 if (addralign > this->max_align_)
4182 this->max_align_ = addralign;
4184 this->is_max_align_known_ = true;
4187 return this->max_align_;
4190 // Return the maximum alignment of a list of Output_data.
4193 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4196 for (Output_data_list::const_iterator p = pdl->begin();
4200 uint64_t addralign = (*p)->addralign();
4201 if (addralign > ret)
4207 // Return whether this segment has any dynamic relocs.
4210 Output_segment::has_dynamic_reloc() const
4212 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4213 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4218 // Return whether this Output_data_list has any dynamic relocs.
4221 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4223 for (Output_data_list::const_iterator p = pdl->begin();
4226 if ((*p)->has_dynamic_reloc())
4231 // Set the section addresses for an Output_segment. If RESET is true,
4232 // reset the addresses first. ADDR is the address and *POFF is the
4233 // file offset. Set the section indexes starting with *PSHNDX.
4234 // INCREASE_RELRO is the size of the portion of the first non-relro
4235 // section that should be included in the PT_GNU_RELRO segment.
4236 // If this segment has relro sections, and has been aligned for
4237 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4238 // the immediately following segment. Update *HAS_RELRO, *POFF,
4242 Output_segment::set_section_addresses(Layout* layout, bool reset,
4244 unsigned int* increase_relro,
4247 unsigned int* pshndx)
4249 gold_assert(this->type_ == elfcpp::PT_LOAD);
4251 uint64_t last_relro_pad = 0;
4252 off_t orig_off = *poff;
4254 bool in_tls = false;
4256 // If we have relro sections, we need to pad forward now so that the
4257 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4258 if (parameters->options().relro()
4259 && this->is_first_section_relro()
4260 && (!this->are_addresses_set_ || reset))
4262 uint64_t relro_size = 0;
4264 uint64_t max_align = 0;
4265 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4267 Output_data_list* pdl = &this->output_lists_[i];
4268 Output_data_list::iterator p;
4269 for (p = pdl->begin(); p != pdl->end(); ++p)
4271 if (!(*p)->is_section())
4273 uint64_t align = (*p)->addralign();
4274 if (align > max_align)
4276 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4280 // Align the first non-TLS section to the alignment
4281 // of the TLS segment.
4285 relro_size = align_address(relro_size, align);
4286 // Ignore the size of the .tbss section.
4287 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4288 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4290 if ((*p)->is_address_valid())
4291 relro_size += (*p)->data_size();
4294 // FIXME: This could be faster.
4295 (*p)->set_address_and_file_offset(addr + relro_size,
4297 relro_size += (*p)->data_size();
4298 (*p)->reset_address_and_file_offset();
4301 if (p != pdl->end())
4304 relro_size += *increase_relro;
4305 // Pad the total relro size to a multiple of the maximum
4306 // section alignment seen.
4307 uint64_t aligned_size = align_address(relro_size, max_align);
4308 // Note the amount of padding added after the last relro section.
4309 last_relro_pad = aligned_size - relro_size;
4312 uint64_t page_align = parameters->target().abi_pagesize();
4314 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4315 uint64_t desired_align = page_align - (aligned_size % page_align);
4316 if (desired_align < *poff % page_align)
4317 *poff += page_align - *poff % page_align;
4318 *poff += desired_align - *poff % page_align;
4319 addr += *poff - orig_off;
4323 if (!reset && this->are_addresses_set_)
4325 gold_assert(this->paddr_ == addr);
4326 addr = this->vaddr_;
4330 this->vaddr_ = addr;
4331 this->paddr_ = addr;
4332 this->are_addresses_set_ = true;
4337 this->offset_ = orig_off;
4341 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4343 if (i == static_cast<int>(ORDER_RELRO_LAST))
4345 *poff += last_relro_pad;
4346 addr += last_relro_pad;
4347 if (this->output_lists_[i].empty())
4349 // If there is nothing in the ORDER_RELRO_LAST list,
4350 // the padding will occur at the end of the relro
4351 // segment, and we need to add it to *INCREASE_RELRO.
4352 *increase_relro += last_relro_pad;
4355 addr = this->set_section_list_addresses(layout, reset,
4356 &this->output_lists_[i],
4357 addr, poff, pshndx, &in_tls);
4358 if (i < static_cast<int>(ORDER_SMALL_BSS))
4360 this->filesz_ = *poff - orig_off;
4367 // If the last section was a TLS section, align upward to the
4368 // alignment of the TLS segment, so that the overall size of the TLS
4369 // segment is aligned.
4372 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4373 *poff = align_address(*poff, segment_align);
4376 this->memsz_ = *poff - orig_off;
4378 // Ignore the file offset adjustments made by the BSS Output_data
4385 // Set the addresses and file offsets in a list of Output_data
4389 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4390 Output_data_list* pdl,
4391 uint64_t addr, off_t* poff,
4392 unsigned int* pshndx,
4395 off_t startoff = *poff;
4396 // For incremental updates, we may allocate non-fixed sections from
4397 // free space in the file. This keeps track of the high-water mark.
4398 off_t maxoff = startoff;
4400 off_t off = startoff;
4401 for (Output_data_list::iterator p = pdl->begin();
4406 (*p)->reset_address_and_file_offset();
4408 // When doing an incremental update or when using a linker script,
4409 // the section will most likely already have an address.
4410 if (!(*p)->is_address_valid())
4412 uint64_t align = (*p)->addralign();
4414 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4416 // Give the first TLS section the alignment of the
4417 // entire TLS segment. Otherwise the TLS segment as a
4418 // whole may be misaligned.
4421 Output_segment* tls_segment = layout->tls_segment();
4422 gold_assert(tls_segment != NULL);
4423 uint64_t segment_align = tls_segment->maximum_alignment();
4424 gold_assert(segment_align >= align);
4425 align = segment_align;
4432 // If this is the first section after the TLS segment,
4433 // align it to at least the alignment of the TLS
4434 // segment, so that the size of the overall TLS segment
4438 uint64_t segment_align =
4439 layout->tls_segment()->maximum_alignment();
4440 if (segment_align > align)
4441 align = segment_align;
4447 if (!parameters->incremental_update())
4449 off = align_address(off, align);
4450 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4454 // Incremental update: allocate file space from free list.
4455 (*p)->pre_finalize_data_size();
4456 off_t current_size = (*p)->current_data_size();
4457 off = layout->allocate(current_size, align, startoff);
4460 gold_assert((*p)->output_section() != NULL);
4461 gold_fallback(_("out of patch space for section %s; "
4462 "relink with --incremental-full"),
4463 (*p)->output_section()->name());
4465 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4466 if ((*p)->data_size() > current_size)
4468 gold_assert((*p)->output_section() != NULL);
4469 gold_fallback(_("%s: section changed size; "
4470 "relink with --incremental-full"),
4471 (*p)->output_section()->name());
4475 else if (parameters->incremental_update())
4477 // For incremental updates, use the fixed offset for the
4478 // high-water mark computation.
4479 off = (*p)->offset();
4483 // The script may have inserted a skip forward, but it
4484 // better not have moved backward.
4485 if ((*p)->address() >= addr + (off - startoff))
4486 off += (*p)->address() - (addr + (off - startoff));
4489 if (!layout->script_options()->saw_sections_clause())
4493 Output_section* os = (*p)->output_section();
4495 // Cast to unsigned long long to avoid format warnings.
4496 unsigned long long previous_dot =
4497 static_cast<unsigned long long>(addr + (off - startoff));
4498 unsigned long long dot =
4499 static_cast<unsigned long long>((*p)->address());
4502 gold_error(_("dot moves backward in linker script "
4503 "from 0x%llx to 0x%llx"), previous_dot, dot);
4505 gold_error(_("address of section '%s' moves backward "
4506 "from 0x%llx to 0x%llx"),
4507 os->name(), previous_dot, dot);
4510 (*p)->set_file_offset(off);
4511 (*p)->finalize_data_size();
4514 if (parameters->incremental_update())
4515 gold_debug(DEBUG_INCREMENTAL,
4516 "set_section_list_addresses: %08lx %08lx %s",
4517 static_cast<long>(off),
4518 static_cast<long>((*p)->data_size()),
4519 ((*p)->output_section() != NULL
4520 ? (*p)->output_section()->name() : "(special)"));
4522 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4523 // section. Such a section does not affect the size of a
4525 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4526 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4527 off += (*p)->data_size();
4532 if ((*p)->is_section())
4534 (*p)->set_out_shndx(*pshndx);
4540 return addr + (maxoff - startoff);
4543 // For a non-PT_LOAD segment, set the offset from the sections, if
4544 // any. Add INCREASE to the file size and the memory size.
4547 Output_segment::set_offset(unsigned int increase)
4549 gold_assert(this->type_ != elfcpp::PT_LOAD);
4551 gold_assert(!this->are_addresses_set_);
4553 // A non-load section only uses output_lists_[0].
4555 Output_data_list* pdl = &this->output_lists_[0];
4559 gold_assert(increase == 0);
4562 this->are_addresses_set_ = true;
4564 this->min_p_align_ = 0;
4570 // Find the first and last section by address.
4571 const Output_data* first = NULL;
4572 const Output_data* last_data = NULL;
4573 const Output_data* last_bss = NULL;
4574 for (Output_data_list::const_iterator p = pdl->begin();
4579 || (*p)->address() < first->address()
4580 || ((*p)->address() == first->address()
4581 && (*p)->data_size() < first->data_size()))
4583 const Output_data** plast;
4584 if ((*p)->is_section()
4585 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4590 || (*p)->address() > (*plast)->address()
4591 || ((*p)->address() == (*plast)->address()
4592 && (*p)->data_size() > (*plast)->data_size()))
4596 this->vaddr_ = first->address();
4597 this->paddr_ = (first->has_load_address()
4598 ? first->load_address()
4600 this->are_addresses_set_ = true;
4601 this->offset_ = first->offset();
4603 if (last_data == NULL)
4606 this->filesz_ = (last_data->address()
4607 + last_data->data_size()
4610 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4611 this->memsz_ = (last->address()
4615 this->filesz_ += increase;
4616 this->memsz_ += increase;
4618 // If this is a RELRO segment, verify that the segment ends at a
4620 if (this->type_ == elfcpp::PT_GNU_RELRO)
4622 uint64_t page_align = parameters->target().abi_pagesize();
4623 uint64_t segment_end = this->vaddr_ + this->memsz_;
4624 if (parameters->incremental_update())
4626 // The INCREASE_RELRO calculation is bypassed for an incremental
4627 // update, so we need to adjust the segment size manually here.
4628 segment_end = align_address(segment_end, page_align);
4629 this->memsz_ = segment_end - this->vaddr_;
4632 gold_assert(segment_end == align_address(segment_end, page_align));
4635 // If this is a TLS segment, align the memory size. The code in
4636 // set_section_list ensures that the section after the TLS segment
4637 // is aligned to give us room.
4638 if (this->type_ == elfcpp::PT_TLS)
4640 uint64_t segment_align = this->maximum_alignment();
4641 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4642 this->memsz_ = align_address(this->memsz_, segment_align);
4646 // Set the TLS offsets of the sections in the PT_TLS segment.
4649 Output_segment::set_tls_offsets()
4651 gold_assert(this->type_ == elfcpp::PT_TLS);
4653 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4654 p != this->output_lists_[0].end();
4656 (*p)->set_tls_offset(this->vaddr_);
4659 // Return the first section.
4662 Output_segment::first_section() const
4664 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4666 const Output_data_list* pdl = &this->output_lists_[i];
4667 for (Output_data_list::const_iterator p = pdl->begin();
4671 if ((*p)->is_section())
4672 return (*p)->output_section();
4678 // Return the number of Output_sections in an Output_segment.
4681 Output_segment::output_section_count() const
4683 unsigned int ret = 0;
4684 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4685 ret += this->output_section_count_list(&this->output_lists_[i]);
4689 // Return the number of Output_sections in an Output_data_list.
4692 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4694 unsigned int count = 0;
4695 for (Output_data_list::const_iterator p = pdl->begin();
4699 if ((*p)->is_section())
4705 // Return the section attached to the list segment with the lowest
4706 // load address. This is used when handling a PHDRS clause in a
4710 Output_segment::section_with_lowest_load_address() const
4712 Output_section* found = NULL;
4713 uint64_t found_lma = 0;
4714 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4715 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4720 // Look through a list for a section with a lower load address.
4723 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4724 Output_section** found,
4725 uint64_t* found_lma) const
4727 for (Output_data_list::const_iterator p = pdl->begin();
4731 if (!(*p)->is_section())
4733 Output_section* os = static_cast<Output_section*>(*p);
4734 uint64_t lma = (os->has_load_address()
4735 ? os->load_address()
4737 if (*found == NULL || lma < *found_lma)
4745 // Write the segment data into *OPHDR.
4747 template<int size, bool big_endian>
4749 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4751 ophdr->put_p_type(this->type_);
4752 ophdr->put_p_offset(this->offset_);
4753 ophdr->put_p_vaddr(this->vaddr_);
4754 ophdr->put_p_paddr(this->paddr_);
4755 ophdr->put_p_filesz(this->filesz_);
4756 ophdr->put_p_memsz(this->memsz_);
4757 ophdr->put_p_flags(this->flags_);
4758 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4761 // Write the section headers into V.
4763 template<int size, bool big_endian>
4765 Output_segment::write_section_headers(const Layout* layout,
4766 const Stringpool* secnamepool,
4768 unsigned int* pshndx) const
4770 // Every section that is attached to a segment must be attached to a
4771 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4773 if (this->type_ != elfcpp::PT_LOAD)
4776 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4778 const Output_data_list* pdl = &this->output_lists_[i];
4779 v = this->write_section_headers_list<size, big_endian>(layout,
4788 template<int size, bool big_endian>
4790 Output_segment::write_section_headers_list(const Layout* layout,
4791 const Stringpool* secnamepool,
4792 const Output_data_list* pdl,
4794 unsigned int* pshndx) const
4796 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4797 for (Output_data_list::const_iterator p = pdl->begin();
4801 if ((*p)->is_section())
4803 const Output_section* ps = static_cast<const Output_section*>(*p);
4804 gold_assert(*pshndx == ps->out_shndx());
4805 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4806 ps->write_header(layout, secnamepool, &oshdr);
4814 // Print the output sections to the map file.
4817 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4819 if (this->type() != elfcpp::PT_LOAD)
4821 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4822 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4825 // Print an output section list to the map file.
4828 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4829 const Output_data_list* pdl) const
4831 for (Output_data_list::const_iterator p = pdl->begin();
4834 (*p)->print_to_mapfile(mapfile);
4837 // Output_file methods.
4839 Output_file::Output_file(const char* name)
4844 map_is_anonymous_(false),
4845 map_is_allocated_(false),
4846 is_temporary_(false)
4850 // Try to open an existing file. Returns false if the file doesn't
4851 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4852 // NULL, open that file as the base for incremental linking, and
4853 // copy its contents to the new output file. This routine can
4854 // be called for incremental updates, in which case WRITABLE should
4855 // be true, or by the incremental-dump utility, in which case
4856 // WRITABLE should be false.
4859 Output_file::open_base_file(const char* base_name, bool writable)
4861 // The name "-" means "stdout".
4862 if (strcmp(this->name_, "-") == 0)
4865 bool use_base_file = base_name != NULL;
4867 base_name = this->name_;
4868 else if (strcmp(base_name, this->name_) == 0)
4869 gold_fatal(_("%s: incremental base and output file name are the same"),
4872 // Don't bother opening files with a size of zero.
4874 if (::stat(base_name, &s) != 0)
4876 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4881 gold_info(_("%s: incremental base file is empty"), base_name);
4885 // If we're using a base file, we want to open it read-only.
4889 int oflags = writable ? O_RDWR : O_RDONLY;
4890 int o = open_descriptor(-1, base_name, oflags, 0);
4893 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4897 // If the base file and the output file are different, open a
4898 // new output file and read the contents from the base file into
4899 // the newly-mapped region.
4902 this->open(s.st_size);
4903 ssize_t bytes_to_read = s.st_size;
4904 unsigned char* p = this->base_;
4905 while (bytes_to_read > 0)
4907 ssize_t len = ::read(o, p, bytes_to_read);
4910 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4915 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4917 static_cast<long long>(s.st_size - bytes_to_read),
4918 static_cast<long long>(s.st_size));
4922 bytes_to_read -= len;
4929 this->file_size_ = s.st_size;
4931 if (!this->map_no_anonymous(writable))
4933 release_descriptor(o, true);
4935 this->file_size_ = 0;
4942 // Open the output file.
4945 Output_file::open(off_t file_size)
4947 this->file_size_ = file_size;
4949 // Unlink the file first; otherwise the open() may fail if the file
4950 // is busy (e.g. it's an executable that's currently being executed).
4952 // However, the linker may be part of a system where a zero-length
4953 // file is created for it to write to, with tight permissions (gcc
4954 // 2.95 did something like this). Unlinking the file would work
4955 // around those permission controls, so we only unlink if the file
4956 // has a non-zero size. We also unlink only regular files to avoid
4957 // trouble with directories/etc.
4959 // If we fail, continue; this command is merely a best-effort attempt
4960 // to improve the odds for open().
4962 // We let the name "-" mean "stdout"
4963 if (!this->is_temporary_)
4965 if (strcmp(this->name_, "-") == 0)
4966 this->o_ = STDOUT_FILENO;
4970 if (::stat(this->name_, &s) == 0
4971 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4974 ::unlink(this->name_);
4975 else if (!parameters->options().relocatable())
4977 // If we don't unlink the existing file, add execute
4978 // permission where read permissions already exist
4979 // and where the umask permits.
4980 int mask = ::umask(0);
4982 s.st_mode |= (s.st_mode & 0444) >> 2;
4983 ::chmod(this->name_, s.st_mode & ~mask);
4987 int mode = parameters->options().relocatable() ? 0666 : 0777;
4988 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4991 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4999 // Resize the output file.
5002 Output_file::resize(off_t file_size)
5004 // If the mmap is mapping an anonymous memory buffer, this is easy:
5005 // just mremap to the new size. If it's mapping to a file, we want
5006 // to unmap to flush to the file, then remap after growing the file.
5007 if (this->map_is_anonymous_)
5010 if (!this->map_is_allocated_)
5012 base = ::mremap(this->base_, this->file_size_, file_size,
5014 if (base == MAP_FAILED)
5015 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5019 base = realloc(this->base_, file_size);
5022 if (file_size > this->file_size_)
5023 memset(static_cast<char*>(base) + this->file_size_, 0,
5024 file_size - this->file_size_);
5026 this->base_ = static_cast<unsigned char*>(base);
5027 this->file_size_ = file_size;
5032 this->file_size_ = file_size;
5033 if (!this->map_no_anonymous(true))
5034 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5038 // Map an anonymous block of memory which will later be written to the
5039 // file. Return whether the map succeeded.
5042 Output_file::map_anonymous()
5044 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5045 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5046 if (base == MAP_FAILED)
5048 base = malloc(this->file_size_);
5051 memset(base, 0, this->file_size_);
5052 this->map_is_allocated_ = true;
5054 this->base_ = static_cast<unsigned char*>(base);
5055 this->map_is_anonymous_ = true;
5059 // Map the file into memory. Return whether the mapping succeeded.
5060 // If WRITABLE is true, map with write access.
5063 Output_file::map_no_anonymous(bool writable)
5065 const int o = this->o_;
5067 // If the output file is not a regular file, don't try to mmap it;
5068 // instead, we'll mmap a block of memory (an anonymous buffer), and
5069 // then later write the buffer to the file.
5071 struct stat statbuf;
5072 if (o == STDOUT_FILENO || o == STDERR_FILENO
5073 || ::fstat(o, &statbuf) != 0
5074 || !S_ISREG(statbuf.st_mode)
5075 || this->is_temporary_)
5078 // Ensure that we have disk space available for the file. If we
5079 // don't do this, it is possible that we will call munmap, close,
5080 // and exit with dirty buffers still in the cache with no assigned
5081 // disk blocks. If the disk is out of space at that point, the
5082 // output file will wind up incomplete, but we will have already
5083 // exited. The alternative to fallocate would be to use fdatasync,
5084 // but that would be a more significant performance hit.
5087 int err = gold_fallocate(o, 0, this->file_size_);
5089 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5092 // Map the file into memory.
5093 int prot = PROT_READ;
5096 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5098 // The mmap call might fail because of file system issues: the file
5099 // system might not support mmap at all, or it might not support
5100 // mmap with PROT_WRITE.
5101 if (base == MAP_FAILED)
5104 this->map_is_anonymous_ = false;
5105 this->base_ = static_cast<unsigned char*>(base);
5109 // Map the file into memory.
5114 if (parameters->options().mmap_output_file()
5115 && this->map_no_anonymous(true))
5118 // The mmap call might fail because of file system issues: the file
5119 // system might not support mmap at all, or it might not support
5120 // mmap with PROT_WRITE. I'm not sure which errno values we will
5121 // see in all cases, so if the mmap fails for any reason and we
5122 // don't care about file contents, try for an anonymous map.
5123 if (this->map_anonymous())
5126 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5127 this->name_, static_cast<unsigned long>(this->file_size_),
5131 // Unmap the file from memory.
5134 Output_file::unmap()
5136 if (this->map_is_anonymous_)
5138 // We've already written out the data, so there is no reason to
5139 // waste time unmapping or freeing the memory.
5143 if (::munmap(this->base_, this->file_size_) < 0)
5144 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5149 // Close the output file.
5152 Output_file::close()
5154 // If the map isn't file-backed, we need to write it now.
5155 if (this->map_is_anonymous_ && !this->is_temporary_)
5157 size_t bytes_to_write = this->file_size_;
5159 while (bytes_to_write > 0)
5161 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5163 if (bytes_written == 0)
5164 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5165 else if (bytes_written < 0)
5166 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5169 bytes_to_write -= bytes_written;
5170 offset += bytes_written;
5176 // We don't close stdout or stderr
5177 if (this->o_ != STDOUT_FILENO
5178 && this->o_ != STDERR_FILENO
5179 && !this->is_temporary_)
5180 if (::close(this->o_) < 0)
5181 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5185 // Instantiate the templates we need. We could use the configure
5186 // script to restrict this to only the ones for implemented targets.
5188 #ifdef HAVE_TARGET_32_LITTLE
5191 Output_section::add_input_section<32, false>(
5193 Sized_relobj_file<32, false>* object,
5195 const char* secname,
5196 const elfcpp::Shdr<32, false>& shdr,
5197 unsigned int reloc_shndx,
5198 bool have_sections_script);
5201 #ifdef HAVE_TARGET_32_BIG
5204 Output_section::add_input_section<32, true>(
5206 Sized_relobj_file<32, true>* object,
5208 const char* secname,
5209 const elfcpp::Shdr<32, true>& shdr,
5210 unsigned int reloc_shndx,
5211 bool have_sections_script);
5214 #ifdef HAVE_TARGET_64_LITTLE
5217 Output_section::add_input_section<64, false>(
5219 Sized_relobj_file<64, false>* object,
5221 const char* secname,
5222 const elfcpp::Shdr<64, false>& shdr,
5223 unsigned int reloc_shndx,
5224 bool have_sections_script);
5227 #ifdef HAVE_TARGET_64_BIG
5230 Output_section::add_input_section<64, true>(
5232 Sized_relobj_file<64, true>* object,
5234 const char* secname,
5235 const elfcpp::Shdr<64, true>& shdr,
5236 unsigned int reloc_shndx,
5237 bool have_sections_script);
5240 #ifdef HAVE_TARGET_32_LITTLE
5242 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5245 #ifdef HAVE_TARGET_32_BIG
5247 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5250 #ifdef HAVE_TARGET_64_LITTLE
5252 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5255 #ifdef HAVE_TARGET_64_BIG
5257 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5260 #ifdef HAVE_TARGET_32_LITTLE
5262 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5265 #ifdef HAVE_TARGET_32_BIG
5267 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5270 #ifdef HAVE_TARGET_64_LITTLE
5272 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5275 #ifdef HAVE_TARGET_64_BIG
5277 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5280 #ifdef HAVE_TARGET_32_LITTLE
5282 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5285 #ifdef HAVE_TARGET_32_BIG
5287 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5290 #ifdef HAVE_TARGET_64_LITTLE
5292 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5295 #ifdef HAVE_TARGET_64_BIG
5297 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5300 #ifdef HAVE_TARGET_32_LITTLE
5302 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5305 #ifdef HAVE_TARGET_32_BIG
5307 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5310 #ifdef HAVE_TARGET_64_LITTLE
5312 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5315 #ifdef HAVE_TARGET_64_BIG
5317 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5320 #ifdef HAVE_TARGET_32_LITTLE
5322 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5325 #ifdef HAVE_TARGET_32_BIG
5327 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5330 #ifdef HAVE_TARGET_64_LITTLE
5332 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5335 #ifdef HAVE_TARGET_64_BIG
5337 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5340 #ifdef HAVE_TARGET_32_LITTLE
5342 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5345 #ifdef HAVE_TARGET_32_BIG
5347 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5350 #ifdef HAVE_TARGET_64_LITTLE
5352 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5355 #ifdef HAVE_TARGET_64_BIG
5357 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5360 #ifdef HAVE_TARGET_32_LITTLE
5362 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5365 #ifdef HAVE_TARGET_32_BIG
5367 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5370 #ifdef HAVE_TARGET_64_LITTLE
5372 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5375 #ifdef HAVE_TARGET_64_BIG
5377 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5380 #ifdef HAVE_TARGET_32_LITTLE
5382 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5385 #ifdef HAVE_TARGET_32_BIG
5387 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5390 #ifdef HAVE_TARGET_64_LITTLE
5392 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5395 #ifdef HAVE_TARGET_64_BIG
5397 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5400 #ifdef HAVE_TARGET_32_LITTLE
5402 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5405 #ifdef HAVE_TARGET_32_BIG
5407 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5410 #ifdef HAVE_TARGET_64_LITTLE
5412 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5415 #ifdef HAVE_TARGET_64_BIG
5417 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5420 #ifdef HAVE_TARGET_32_LITTLE
5422 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5425 #ifdef HAVE_TARGET_32_BIG
5427 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5430 #ifdef HAVE_TARGET_64_LITTLE
5432 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5435 #ifdef HAVE_TARGET_64_BIG
5437 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5440 #ifdef HAVE_TARGET_32_LITTLE
5442 class Output_data_group<32, false>;
5445 #ifdef HAVE_TARGET_32_BIG
5447 class Output_data_group<32, true>;
5450 #ifdef HAVE_TARGET_64_LITTLE
5452 class Output_data_group<64, false>;
5455 #ifdef HAVE_TARGET_64_BIG
5457 class Output_data_group<64, true>;
5461 class Output_data_got<32, false>;
5464 class Output_data_got<32, true>;
5467 class Output_data_got<64, false>;
5470 class Output_data_got<64, true>;
5472 } // End namespace gold.