* common.cc (Symbol_table::do_allocate_commons_list): Call
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "parameters.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "reloc.h"
43 #include "merge.h"
44 #include "descriptors.h"
45 #include "output.h"
46
47 // For systems without mmap support.
48 #ifndef HAVE_MMAP
49 # define mmap gold_mmap
50 # define munmap gold_munmap
51 # define mremap gold_mremap
52 # ifndef MAP_FAILED
53 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
54 # endif
55 # ifndef PROT_READ
56 #  define PROT_READ 0
57 # endif
58 # ifndef PROT_WRITE
59 #  define PROT_WRITE 0
60 # endif
61 # ifndef MAP_PRIVATE
62 #  define MAP_PRIVATE 0
63 # endif
64 # ifndef MAP_ANONYMOUS
65 #  define MAP_ANONYMOUS 0
66 # endif
67 # ifndef MAP_SHARED
68 #  define MAP_SHARED 0
69 # endif
70
71 # ifndef ENOSYS
72 #  define ENOSYS EINVAL
73 # endif
74
75 static void *
76 gold_mmap(void *, size_t, int, int, int, off_t)
77 {
78   errno = ENOSYS;
79   return MAP_FAILED;
80 }
81
82 static int
83 gold_munmap(void *, size_t)
84 {
85   errno = ENOSYS;
86   return -1;
87 }
88
89 static void *
90 gold_mremap(void *, size_t, size_t, int)
91 {
92   errno = ENOSYS;
93   return MAP_FAILED;
94 }
95
96 #endif
97
98 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
99 # define mremap gold_mremap
100 extern "C" void *gold_mremap(void *, size_t, size_t, int);
101 #endif
102
103 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
104 #ifndef MAP_ANONYMOUS
105 # define MAP_ANONYMOUS  MAP_ANON
106 #endif
107
108 #ifndef MREMAP_MAYMOVE
109 # define MREMAP_MAYMOVE 1
110 #endif
111
112 #ifndef HAVE_POSIX_FALLOCATE
113 // A dummy, non general, version of posix_fallocate.  Here we just set
114 // the file size and hope that there is enough disk space.  FIXME: We
115 // could allocate disk space by walking block by block and writing a
116 // zero byte into each block.
117 static int
118 posix_fallocate(int o, off_t offset, off_t len)
119 {
120   return ftruncate(o, offset + len);
121 }
122 #endif // !defined(HAVE_POSIX_FALLOCATE)
123
124 // Mingw does not have S_ISLNK.
125 #ifndef S_ISLNK
126 # define S_ISLNK(mode) 0
127 #endif
128
129 namespace gold
130 {
131
132 // Output_data variables.
133
134 bool Output_data::allocated_sizes_are_fixed;
135
136 // Output_data methods.
137
138 Output_data::~Output_data()
139 {
140 }
141
142 // Return the default alignment for the target size.
143
144 uint64_t
145 Output_data::default_alignment()
146 {
147   return Output_data::default_alignment_for_size(
148       parameters->target().get_size());
149 }
150
151 // Return the default alignment for a size--32 or 64.
152
153 uint64_t
154 Output_data::default_alignment_for_size(int size)
155 {
156   if (size == 32)
157     return 4;
158   else if (size == 64)
159     return 8;
160   else
161     gold_unreachable();
162 }
163
164 // Output_section_header methods.  This currently assumes that the
165 // segment and section lists are complete at construction time.
166
167 Output_section_headers::Output_section_headers(
168     const Layout* layout,
169     const Layout::Segment_list* segment_list,
170     const Layout::Section_list* section_list,
171     const Layout::Section_list* unattached_section_list,
172     const Stringpool* secnamepool,
173     const Output_section* shstrtab_section)
174   : layout_(layout),
175     segment_list_(segment_list),
176     section_list_(section_list),
177     unattached_section_list_(unattached_section_list),
178     secnamepool_(secnamepool),
179     shstrtab_section_(shstrtab_section)
180 {
181 }
182
183 // Compute the current data size.
184
185 off_t
186 Output_section_headers::do_size() const
187 {
188   // Count all the sections.  Start with 1 for the null section.
189   off_t count = 1;
190   if (!parameters->options().relocatable())
191     {
192       for (Layout::Segment_list::const_iterator p =
193              this->segment_list_->begin();
194            p != this->segment_list_->end();
195            ++p)
196         if ((*p)->type() == elfcpp::PT_LOAD)
197           count += (*p)->output_section_count();
198     }
199   else
200     {
201       for (Layout::Section_list::const_iterator p =
202              this->section_list_->begin();
203            p != this->section_list_->end();
204            ++p)
205         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
206           ++count;
207     }
208   count += this->unattached_section_list_->size();
209
210   const int size = parameters->target().get_size();
211   int shdr_size;
212   if (size == 32)
213     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
214   else if (size == 64)
215     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
216   else
217     gold_unreachable();
218
219   return count * shdr_size;
220 }
221
222 // Write out the section headers.
223
224 void
225 Output_section_headers::do_write(Output_file* of)
226 {
227   switch (parameters->size_and_endianness())
228     {
229 #ifdef HAVE_TARGET_32_LITTLE
230     case Parameters::TARGET_32_LITTLE:
231       this->do_sized_write<32, false>(of);
232       break;
233 #endif
234 #ifdef HAVE_TARGET_32_BIG
235     case Parameters::TARGET_32_BIG:
236       this->do_sized_write<32, true>(of);
237       break;
238 #endif
239 #ifdef HAVE_TARGET_64_LITTLE
240     case Parameters::TARGET_64_LITTLE:
241       this->do_sized_write<64, false>(of);
242       break;
243 #endif
244 #ifdef HAVE_TARGET_64_BIG
245     case Parameters::TARGET_64_BIG:
246       this->do_sized_write<64, true>(of);
247       break;
248 #endif
249     default:
250       gold_unreachable();
251     }
252 }
253
254 template<int size, bool big_endian>
255 void
256 Output_section_headers::do_sized_write(Output_file* of)
257 {
258   off_t all_shdrs_size = this->data_size();
259   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
260
261   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
262   unsigned char* v = view;
263
264   {
265     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
266     oshdr.put_sh_name(0);
267     oshdr.put_sh_type(elfcpp::SHT_NULL);
268     oshdr.put_sh_flags(0);
269     oshdr.put_sh_addr(0);
270     oshdr.put_sh_offset(0);
271
272     size_t section_count = (this->data_size()
273                             / elfcpp::Elf_sizes<size>::shdr_size);
274     if (section_count < elfcpp::SHN_LORESERVE)
275       oshdr.put_sh_size(0);
276     else
277       oshdr.put_sh_size(section_count);
278
279     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
280     if (shstrndx < elfcpp::SHN_LORESERVE)
281       oshdr.put_sh_link(0);
282     else
283       oshdr.put_sh_link(shstrndx);
284
285     size_t segment_count = this->segment_list_->size();
286     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
287
288     oshdr.put_sh_addralign(0);
289     oshdr.put_sh_entsize(0);
290   }
291
292   v += shdr_size;
293
294   unsigned int shndx = 1;
295   if (!parameters->options().relocatable())
296     {
297       for (Layout::Segment_list::const_iterator p =
298              this->segment_list_->begin();
299            p != this->segment_list_->end();
300            ++p)
301         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
302                                                           this->secnamepool_,
303                                                           v,
304                                                           &shndx);
305     }
306   else
307     {
308       for (Layout::Section_list::const_iterator p =
309              this->section_list_->begin();
310            p != this->section_list_->end();
311            ++p)
312         {
313           // We do unallocated sections below, except that group
314           // sections have to come first.
315           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
316               && (*p)->type() != elfcpp::SHT_GROUP)
317             continue;
318           gold_assert(shndx == (*p)->out_shndx());
319           elfcpp::Shdr_write<size, big_endian> oshdr(v);
320           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
321           v += shdr_size;
322           ++shndx;
323         }
324     }
325
326   for (Layout::Section_list::const_iterator p =
327          this->unattached_section_list_->begin();
328        p != this->unattached_section_list_->end();
329        ++p)
330     {
331       // For a relocatable link, we did unallocated group sections
332       // above, since they have to come first.
333       if ((*p)->type() == elfcpp::SHT_GROUP
334           && parameters->options().relocatable())
335         continue;
336       gold_assert(shndx == (*p)->out_shndx());
337       elfcpp::Shdr_write<size, big_endian> oshdr(v);
338       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
339       v += shdr_size;
340       ++shndx;
341     }
342
343   of->write_output_view(this->offset(), all_shdrs_size, view);
344 }
345
346 // Output_segment_header methods.
347
348 Output_segment_headers::Output_segment_headers(
349     const Layout::Segment_list& segment_list)
350   : segment_list_(segment_list)
351 {
352   this->set_current_data_size_for_child(this->do_size());
353 }
354
355 void
356 Output_segment_headers::do_write(Output_file* of)
357 {
358   switch (parameters->size_and_endianness())
359     {
360 #ifdef HAVE_TARGET_32_LITTLE
361     case Parameters::TARGET_32_LITTLE:
362       this->do_sized_write<32, false>(of);
363       break;
364 #endif
365 #ifdef HAVE_TARGET_32_BIG
366     case Parameters::TARGET_32_BIG:
367       this->do_sized_write<32, true>(of);
368       break;
369 #endif
370 #ifdef HAVE_TARGET_64_LITTLE
371     case Parameters::TARGET_64_LITTLE:
372       this->do_sized_write<64, false>(of);
373       break;
374 #endif
375 #ifdef HAVE_TARGET_64_BIG
376     case Parameters::TARGET_64_BIG:
377       this->do_sized_write<64, true>(of);
378       break;
379 #endif
380     default:
381       gold_unreachable();
382     }
383 }
384
385 template<int size, bool big_endian>
386 void
387 Output_segment_headers::do_sized_write(Output_file* of)
388 {
389   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
390   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
391   gold_assert(all_phdrs_size == this->data_size());
392   unsigned char* view = of->get_output_view(this->offset(),
393                                             all_phdrs_size);
394   unsigned char* v = view;
395   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
396        p != this->segment_list_.end();
397        ++p)
398     {
399       elfcpp::Phdr_write<size, big_endian> ophdr(v);
400       (*p)->write_header(&ophdr);
401       v += phdr_size;
402     }
403
404   gold_assert(v - view == all_phdrs_size);
405
406   of->write_output_view(this->offset(), all_phdrs_size, view);
407 }
408
409 off_t
410 Output_segment_headers::do_size() const
411 {
412   const int size = parameters->target().get_size();
413   int phdr_size;
414   if (size == 32)
415     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
416   else if (size == 64)
417     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
418   else
419     gold_unreachable();
420
421   return this->segment_list_.size() * phdr_size;
422 }
423
424 // Output_file_header methods.
425
426 Output_file_header::Output_file_header(const Target* target,
427                                        const Symbol_table* symtab,
428                                        const Output_segment_headers* osh)
429   : target_(target),
430     symtab_(symtab),
431     segment_header_(osh),
432     section_header_(NULL),
433     shstrtab_(NULL)
434 {
435   this->set_data_size(this->do_size());
436 }
437
438 // Set the section table information for a file header.
439
440 void
441 Output_file_header::set_section_info(const Output_section_headers* shdrs,
442                                      const Output_section* shstrtab)
443 {
444   this->section_header_ = shdrs;
445   this->shstrtab_ = shstrtab;
446 }
447
448 // Write out the file header.
449
450 void
451 Output_file_header::do_write(Output_file* of)
452 {
453   gold_assert(this->offset() == 0);
454
455   switch (parameters->size_and_endianness())
456     {
457 #ifdef HAVE_TARGET_32_LITTLE
458     case Parameters::TARGET_32_LITTLE:
459       this->do_sized_write<32, false>(of);
460       break;
461 #endif
462 #ifdef HAVE_TARGET_32_BIG
463     case Parameters::TARGET_32_BIG:
464       this->do_sized_write<32, true>(of);
465       break;
466 #endif
467 #ifdef HAVE_TARGET_64_LITTLE
468     case Parameters::TARGET_64_LITTLE:
469       this->do_sized_write<64, false>(of);
470       break;
471 #endif
472 #ifdef HAVE_TARGET_64_BIG
473     case Parameters::TARGET_64_BIG:
474       this->do_sized_write<64, true>(of);
475       break;
476 #endif
477     default:
478       gold_unreachable();
479     }
480 }
481
482 // Write out the file header with appropriate size and endianness.
483
484 template<int size, bool big_endian>
485 void
486 Output_file_header::do_sized_write(Output_file* of)
487 {
488   gold_assert(this->offset() == 0);
489
490   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
491   unsigned char* view = of->get_output_view(0, ehdr_size);
492   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
493
494   unsigned char e_ident[elfcpp::EI_NIDENT];
495   memset(e_ident, 0, elfcpp::EI_NIDENT);
496   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
497   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
498   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
499   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
500   if (size == 32)
501     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
502   else if (size == 64)
503     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
504   else
505     gold_unreachable();
506   e_ident[elfcpp::EI_DATA] = (big_endian
507                               ? elfcpp::ELFDATA2MSB
508                               : elfcpp::ELFDATA2LSB);
509   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
510   oehdr.put_e_ident(e_ident);
511
512   elfcpp::ET e_type;
513   if (parameters->options().relocatable())
514     e_type = elfcpp::ET_REL;
515   else if (parameters->options().output_is_position_independent())
516     e_type = elfcpp::ET_DYN;
517   else
518     e_type = elfcpp::ET_EXEC;
519   oehdr.put_e_type(e_type);
520
521   oehdr.put_e_machine(this->target_->machine_code());
522   oehdr.put_e_version(elfcpp::EV_CURRENT);
523
524   oehdr.put_e_entry(this->entry<size>());
525
526   if (this->segment_header_ == NULL)
527     oehdr.put_e_phoff(0);
528   else
529     oehdr.put_e_phoff(this->segment_header_->offset());
530
531   oehdr.put_e_shoff(this->section_header_->offset());
532   oehdr.put_e_flags(this->target_->processor_specific_flags());
533   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
534
535   if (this->segment_header_ == NULL)
536     {
537       oehdr.put_e_phentsize(0);
538       oehdr.put_e_phnum(0);
539     }
540   else
541     {
542       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
543       size_t phnum = (this->segment_header_->data_size()
544                       / elfcpp::Elf_sizes<size>::phdr_size);
545       if (phnum > elfcpp::PN_XNUM)
546         phnum = elfcpp::PN_XNUM;
547       oehdr.put_e_phnum(phnum);
548     }
549
550   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
551   size_t section_count = (this->section_header_->data_size()
552                           / elfcpp::Elf_sizes<size>::shdr_size);
553
554   if (section_count < elfcpp::SHN_LORESERVE)
555     oehdr.put_e_shnum(this->section_header_->data_size()
556                       / elfcpp::Elf_sizes<size>::shdr_size);
557   else
558     oehdr.put_e_shnum(0);
559
560   unsigned int shstrndx = this->shstrtab_->out_shndx();
561   if (shstrndx < elfcpp::SHN_LORESERVE)
562     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
563   else
564     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
565
566   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
567   // the e_ident field.
568   parameters->target().adjust_elf_header(view, ehdr_size);
569
570   of->write_output_view(0, ehdr_size, view);
571 }
572
573 // Return the value to use for the entry address.
574
575 template<int size>
576 typename elfcpp::Elf_types<size>::Elf_Addr
577 Output_file_header::entry()
578 {
579   const bool should_issue_warning = (parameters->options().entry() != NULL
580                                      && !parameters->options().relocatable()
581                                      && !parameters->options().shared());
582   const char* entry = parameters->entry();
583   Symbol* sym = this->symtab_->lookup(entry);
584
585   typename Sized_symbol<size>::Value_type v;
586   if (sym != NULL)
587     {
588       Sized_symbol<size>* ssym;
589       ssym = this->symtab_->get_sized_symbol<size>(sym);
590       if (!ssym->is_defined() && should_issue_warning)
591         gold_warning("entry symbol '%s' exists but is not defined", entry);
592       v = ssym->value();
593     }
594   else
595     {
596       // We couldn't find the entry symbol.  See if we can parse it as
597       // a number.  This supports, e.g., -e 0x1000.
598       char* endptr;
599       v = strtoull(entry, &endptr, 0);
600       if (*endptr != '\0')
601         {
602           if (should_issue_warning)
603             gold_warning("cannot find entry symbol '%s'", entry);
604           v = 0;
605         }
606     }
607
608   return v;
609 }
610
611 // Compute the current data size.
612
613 off_t
614 Output_file_header::do_size() const
615 {
616   const int size = parameters->target().get_size();
617   if (size == 32)
618     return elfcpp::Elf_sizes<32>::ehdr_size;
619   else if (size == 64)
620     return elfcpp::Elf_sizes<64>::ehdr_size;
621   else
622     gold_unreachable();
623 }
624
625 // Output_data_const methods.
626
627 void
628 Output_data_const::do_write(Output_file* of)
629 {
630   of->write(this->offset(), this->data_.data(), this->data_.size());
631 }
632
633 // Output_data_const_buffer methods.
634
635 void
636 Output_data_const_buffer::do_write(Output_file* of)
637 {
638   of->write(this->offset(), this->p_, this->data_size());
639 }
640
641 // Output_section_data methods.
642
643 // Record the output section, and set the entry size and such.
644
645 void
646 Output_section_data::set_output_section(Output_section* os)
647 {
648   gold_assert(this->output_section_ == NULL);
649   this->output_section_ = os;
650   this->do_adjust_output_section(os);
651 }
652
653 // Return the section index of the output section.
654
655 unsigned int
656 Output_section_data::do_out_shndx() const
657 {
658   gold_assert(this->output_section_ != NULL);
659   return this->output_section_->out_shndx();
660 }
661
662 // Set the alignment, which means we may need to update the alignment
663 // of the output section.
664
665 void
666 Output_section_data::set_addralign(uint64_t addralign)
667 {
668   this->addralign_ = addralign;
669   if (this->output_section_ != NULL
670       && this->output_section_->addralign() < addralign)
671     this->output_section_->set_addralign(addralign);
672 }
673
674 // Output_data_strtab methods.
675
676 // Set the final data size.
677
678 void
679 Output_data_strtab::set_final_data_size()
680 {
681   this->strtab_->set_string_offsets();
682   this->set_data_size(this->strtab_->get_strtab_size());
683 }
684
685 // Write out a string table.
686
687 void
688 Output_data_strtab::do_write(Output_file* of)
689 {
690   this->strtab_->write(of, this->offset());
691 }
692
693 // Output_reloc methods.
694
695 // A reloc against a global symbol.
696
697 template<bool dynamic, int size, bool big_endian>
698 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
699     Symbol* gsym,
700     unsigned int type,
701     Output_data* od,
702     Address address,
703     bool is_relative,
704     bool is_symbolless)
705   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
706     is_relative_(is_relative), is_symbolless_(is_symbolless),
707     is_section_symbol_(false), shndx_(INVALID_CODE)
708 {
709   // this->type_ is a bitfield; make sure TYPE fits.
710   gold_assert(this->type_ == type);
711   this->u1_.gsym = gsym;
712   this->u2_.od = od;
713   if (dynamic)
714     this->set_needs_dynsym_index();
715 }
716
717 template<bool dynamic, int size, bool big_endian>
718 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
719     Symbol* gsym,
720     unsigned int type,
721     Sized_relobj<size, big_endian>* relobj,
722     unsigned int shndx,
723     Address address,
724     bool is_relative,
725     bool is_symbolless)
726   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
727     is_relative_(is_relative), is_symbolless_(is_symbolless),
728     is_section_symbol_(false), shndx_(shndx)
729 {
730   gold_assert(shndx != INVALID_CODE);
731   // this->type_ is a bitfield; make sure TYPE fits.
732   gold_assert(this->type_ == type);
733   this->u1_.gsym = gsym;
734   this->u2_.relobj = relobj;
735   if (dynamic)
736     this->set_needs_dynsym_index();
737 }
738
739 // A reloc against a local symbol.
740
741 template<bool dynamic, int size, bool big_endian>
742 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
743     Sized_relobj<size, big_endian>* relobj,
744     unsigned int local_sym_index,
745     unsigned int type,
746     Output_data* od,
747     Address address,
748     bool is_relative,
749     bool is_symbolless,
750     bool is_section_symbol)
751   : address_(address), local_sym_index_(local_sym_index), type_(type),
752     is_relative_(is_relative), is_symbolless_(is_symbolless),
753     is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
754 {
755   gold_assert(local_sym_index != GSYM_CODE
756               && local_sym_index != INVALID_CODE);
757   // this->type_ is a bitfield; make sure TYPE fits.
758   gold_assert(this->type_ == type);
759   this->u1_.relobj = relobj;
760   this->u2_.od = od;
761   if (dynamic)
762     this->set_needs_dynsym_index();
763 }
764
765 template<bool dynamic, int size, bool big_endian>
766 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
767     Sized_relobj<size, big_endian>* relobj,
768     unsigned int local_sym_index,
769     unsigned int type,
770     unsigned int shndx,
771     Address address,
772     bool is_relative,
773     bool is_symbolless,
774     bool is_section_symbol)
775   : address_(address), local_sym_index_(local_sym_index), type_(type),
776     is_relative_(is_relative), is_symbolless_(is_symbolless),
777     is_section_symbol_(is_section_symbol), shndx_(shndx)
778 {
779   gold_assert(local_sym_index != GSYM_CODE
780               && local_sym_index != INVALID_CODE);
781   gold_assert(shndx != INVALID_CODE);
782   // this->type_ is a bitfield; make sure TYPE fits.
783   gold_assert(this->type_ == type);
784   this->u1_.relobj = relobj;
785   this->u2_.relobj = relobj;
786   if (dynamic)
787     this->set_needs_dynsym_index();
788 }
789
790 // A reloc against the STT_SECTION symbol of an output section.
791
792 template<bool dynamic, int size, bool big_endian>
793 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
794     Output_section* os,
795     unsigned int type,
796     Output_data* od,
797     Address address)
798   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
799     is_relative_(false), is_symbolless_(false),
800     is_section_symbol_(true), shndx_(INVALID_CODE)
801 {
802   // this->type_ is a bitfield; make sure TYPE fits.
803   gold_assert(this->type_ == type);
804   this->u1_.os = os;
805   this->u2_.od = od;
806   if (dynamic)
807     this->set_needs_dynsym_index();
808   else
809     os->set_needs_symtab_index();
810 }
811
812 template<bool dynamic, int size, bool big_endian>
813 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
814     Output_section* os,
815     unsigned int type,
816     Sized_relobj<size, big_endian>* relobj,
817     unsigned int shndx,
818     Address address)
819   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
820     is_relative_(false), is_symbolless_(false),
821     is_section_symbol_(true), shndx_(shndx)
822 {
823   gold_assert(shndx != INVALID_CODE);
824   // this->type_ is a bitfield; make sure TYPE fits.
825   gold_assert(this->type_ == type);
826   this->u1_.os = os;
827   this->u2_.relobj = relobj;
828   if (dynamic)
829     this->set_needs_dynsym_index();
830   else
831     os->set_needs_symtab_index();
832 }
833
834 // An absolute relocation.
835
836 template<bool dynamic, int size, bool big_endian>
837 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
838     unsigned int type,
839     Output_data* od,
840     Address address)
841   : address_(address), local_sym_index_(0), type_(type),
842     is_relative_(false), is_symbolless_(false),
843     is_section_symbol_(false), shndx_(INVALID_CODE)
844 {
845   // this->type_ is a bitfield; make sure TYPE fits.
846   gold_assert(this->type_ == type);
847   this->u1_.relobj = NULL;
848   this->u2_.od = od;
849 }
850
851 template<bool dynamic, int size, bool big_endian>
852 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
853     unsigned int type,
854     Sized_relobj<size, big_endian>* relobj,
855     unsigned int shndx,
856     Address address)
857   : address_(address), local_sym_index_(0), type_(type),
858     is_relative_(false), is_symbolless_(false),
859     is_section_symbol_(false), shndx_(shndx)
860 {
861   gold_assert(shndx != INVALID_CODE);
862   // this->type_ is a bitfield; make sure TYPE fits.
863   gold_assert(this->type_ == type);
864   this->u1_.relobj = NULL;
865   this->u2_.relobj = relobj;
866 }
867
868 // A target specific relocation.
869
870 template<bool dynamic, int size, bool big_endian>
871 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
872     unsigned int type,
873     void* arg,
874     Output_data* od,
875     Address address)
876   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
877     is_relative_(false), is_symbolless_(false),
878     is_section_symbol_(false), shndx_(INVALID_CODE)
879 {
880   // this->type_ is a bitfield; make sure TYPE fits.
881   gold_assert(this->type_ == type);
882   this->u1_.arg = arg;
883   this->u2_.od = od;
884 }
885
886 template<bool dynamic, int size, bool big_endian>
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
888     unsigned int type,
889     void* arg,
890     Sized_relobj<size, big_endian>* relobj,
891     unsigned int shndx,
892     Address address)
893   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
894     is_relative_(false), is_symbolless_(false),
895     is_section_symbol_(false), shndx_(shndx)
896 {
897   gold_assert(shndx != INVALID_CODE);
898   // this->type_ is a bitfield; make sure TYPE fits.
899   gold_assert(this->type_ == type);
900   this->u1_.arg = arg;
901   this->u2_.relobj = relobj;
902 }
903
904 // Record that we need a dynamic symbol index for this relocation.
905
906 template<bool dynamic, int size, bool big_endian>
907 void
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
909 set_needs_dynsym_index()
910 {
911   if (this->is_symbolless_)
912     return;
913   switch (this->local_sym_index_)
914     {
915     case INVALID_CODE:
916       gold_unreachable();
917
918     case GSYM_CODE:
919       this->u1_.gsym->set_needs_dynsym_entry();
920       break;
921
922     case SECTION_CODE:
923       this->u1_.os->set_needs_dynsym_index();
924       break;
925
926     case TARGET_CODE:
927       // The target must take care of this if necessary.
928       break;
929
930     case 0:
931       break;
932
933     default:
934       {
935         const unsigned int lsi = this->local_sym_index_;
936         Sized_relobj_file<size, big_endian>* relobj =
937             this->u1_.relobj->sized_relobj();
938         gold_assert(relobj != NULL);
939         if (!this->is_section_symbol_)
940           relobj->set_needs_output_dynsym_entry(lsi);
941         else
942           relobj->output_section(lsi)->set_needs_dynsym_index();
943       }
944       break;
945     }
946 }
947
948 // Get the symbol index of a relocation.
949
950 template<bool dynamic, int size, bool big_endian>
951 unsigned int
952 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
953   const
954 {
955   unsigned int index;
956   if (this->is_symbolless_)
957     return 0;
958   switch (this->local_sym_index_)
959     {
960     case INVALID_CODE:
961       gold_unreachable();
962
963     case GSYM_CODE:
964       if (this->u1_.gsym == NULL)
965         index = 0;
966       else if (dynamic)
967         index = this->u1_.gsym->dynsym_index();
968       else
969         index = this->u1_.gsym->symtab_index();
970       break;
971
972     case SECTION_CODE:
973       if (dynamic)
974         index = this->u1_.os->dynsym_index();
975       else
976         index = this->u1_.os->symtab_index();
977       break;
978
979     case TARGET_CODE:
980       index = parameters->target().reloc_symbol_index(this->u1_.arg,
981                                                       this->type_);
982       break;
983
984     case 0:
985       // Relocations without symbols use a symbol index of 0.
986       index = 0;
987       break;
988
989     default:
990       {
991         const unsigned int lsi = this->local_sym_index_;
992         Sized_relobj_file<size, big_endian>* relobj =
993             this->u1_.relobj->sized_relobj();
994         gold_assert(relobj != NULL);
995         if (!this->is_section_symbol_)
996           {
997             if (dynamic)
998               index = relobj->dynsym_index(lsi);
999             else
1000               index = relobj->symtab_index(lsi);
1001           }
1002         else
1003           {
1004             Output_section* os = relobj->output_section(lsi);
1005             gold_assert(os != NULL);
1006             if (dynamic)
1007               index = os->dynsym_index();
1008             else
1009               index = os->symtab_index();
1010           }
1011       }
1012       break;
1013     }
1014   gold_assert(index != -1U);
1015   return index;
1016 }
1017
1018 // For a local section symbol, get the address of the offset ADDEND
1019 // within the input section.
1020
1021 template<bool dynamic, int size, bool big_endian>
1022 typename elfcpp::Elf_types<size>::Elf_Addr
1023 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1024   local_section_offset(Addend addend) const
1025 {
1026   gold_assert(this->local_sym_index_ != GSYM_CODE
1027               && this->local_sym_index_ != SECTION_CODE
1028               && this->local_sym_index_ != TARGET_CODE
1029               && this->local_sym_index_ != INVALID_CODE
1030               && this->local_sym_index_ != 0
1031               && this->is_section_symbol_);
1032   const unsigned int lsi = this->local_sym_index_;
1033   Output_section* os = this->u1_.relobj->output_section(lsi);
1034   gold_assert(os != NULL);
1035   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1036   if (offset != invalid_address)
1037     return offset + addend;
1038   // This is a merge section.
1039   Sized_relobj_file<size, big_endian>* relobj =
1040       this->u1_.relobj->sized_relobj();
1041   gold_assert(relobj != NULL);
1042   offset = os->output_address(relobj, lsi, addend);
1043   gold_assert(offset != invalid_address);
1044   return offset;
1045 }
1046
1047 // Get the output address of a relocation.
1048
1049 template<bool dynamic, int size, bool big_endian>
1050 typename elfcpp::Elf_types<size>::Elf_Addr
1051 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1052 {
1053   Address address = this->address_;
1054   if (this->shndx_ != INVALID_CODE)
1055     {
1056       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1057       gold_assert(os != NULL);
1058       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1059       if (off != invalid_address)
1060         address += os->address() + off;
1061       else
1062         {
1063           Sized_relobj_file<size, big_endian>* relobj =
1064               this->u2_.relobj->sized_relobj();
1065           gold_assert(relobj != NULL);
1066           address = os->output_address(relobj, this->shndx_, address);
1067           gold_assert(address != invalid_address);
1068         }
1069     }
1070   else if (this->u2_.od != NULL)
1071     address += this->u2_.od->address();
1072   return address;
1073 }
1074
1075 // Write out the offset and info fields of a Rel or Rela relocation
1076 // entry.
1077
1078 template<bool dynamic, int size, bool big_endian>
1079 template<typename Write_rel>
1080 void
1081 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1082     Write_rel* wr) const
1083 {
1084   wr->put_r_offset(this->get_address());
1085   unsigned int sym_index = this->get_symbol_index();
1086   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1087 }
1088
1089 // Write out a Rel relocation.
1090
1091 template<bool dynamic, int size, bool big_endian>
1092 void
1093 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1094     unsigned char* pov) const
1095 {
1096   elfcpp::Rel_write<size, big_endian> orel(pov);
1097   this->write_rel(&orel);
1098 }
1099
1100 // Get the value of the symbol referred to by a Rel relocation.
1101
1102 template<bool dynamic, int size, bool big_endian>
1103 typename elfcpp::Elf_types<size>::Elf_Addr
1104 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1105     Addend addend) const
1106 {
1107   if (this->local_sym_index_ == GSYM_CODE)
1108     {
1109       const Sized_symbol<size>* sym;
1110       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1111       return sym->value() + addend;
1112     }
1113   gold_assert(this->local_sym_index_ != SECTION_CODE
1114               && this->local_sym_index_ != TARGET_CODE
1115               && this->local_sym_index_ != INVALID_CODE
1116               && this->local_sym_index_ != 0
1117               && !this->is_section_symbol_);
1118   const unsigned int lsi = this->local_sym_index_;
1119   Sized_relobj_file<size, big_endian>* relobj =
1120       this->u1_.relobj->sized_relobj();
1121   gold_assert(relobj != NULL);
1122   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1123   return symval->value(relobj, addend);
1124 }
1125
1126 // Reloc comparison.  This function sorts the dynamic relocs for the
1127 // benefit of the dynamic linker.  First we sort all relative relocs
1128 // to the front.  Among relative relocs, we sort by output address.
1129 // Among non-relative relocs, we sort by symbol index, then by output
1130 // address.
1131
1132 template<bool dynamic, int size, bool big_endian>
1133 int
1134 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1135   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1136     const
1137 {
1138   if (this->is_relative_)
1139     {
1140       if (!r2.is_relative_)
1141         return -1;
1142       // Otherwise sort by reloc address below.
1143     }
1144   else if (r2.is_relative_)
1145     return 1;
1146   else
1147     {
1148       unsigned int sym1 = this->get_symbol_index();
1149       unsigned int sym2 = r2.get_symbol_index();
1150       if (sym1 < sym2)
1151         return -1;
1152       else if (sym1 > sym2)
1153         return 1;
1154       // Otherwise sort by reloc address.
1155     }
1156
1157   section_offset_type addr1 = this->get_address();
1158   section_offset_type addr2 = r2.get_address();
1159   if (addr1 < addr2)
1160     return -1;
1161   else if (addr1 > addr2)
1162     return 1;
1163
1164   // Final tie breaker, in order to generate the same output on any
1165   // host: reloc type.
1166   unsigned int type1 = this->type_;
1167   unsigned int type2 = r2.type_;
1168   if (type1 < type2)
1169     return -1;
1170   else if (type1 > type2)
1171     return 1;
1172
1173   // These relocs appear to be exactly the same.
1174   return 0;
1175 }
1176
1177 // Write out a Rela relocation.
1178
1179 template<bool dynamic, int size, bool big_endian>
1180 void
1181 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1182     unsigned char* pov) const
1183 {
1184   elfcpp::Rela_write<size, big_endian> orel(pov);
1185   this->rel_.write_rel(&orel);
1186   Addend addend = this->addend_;
1187   if (this->rel_.is_target_specific())
1188     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1189                                                this->rel_.type(), addend);
1190   else if (this->rel_.is_symbolless())
1191     addend = this->rel_.symbol_value(addend);
1192   else if (this->rel_.is_local_section_symbol())
1193     addend = this->rel_.local_section_offset(addend);
1194   orel.put_r_addend(addend);
1195 }
1196
1197 // Output_data_reloc_base methods.
1198
1199 // Adjust the output section.
1200
1201 template<int sh_type, bool dynamic, int size, bool big_endian>
1202 void
1203 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1204     ::do_adjust_output_section(Output_section* os)
1205 {
1206   if (sh_type == elfcpp::SHT_REL)
1207     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1208   else if (sh_type == elfcpp::SHT_RELA)
1209     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1210   else
1211     gold_unreachable();
1212
1213   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1214   // static link.  The backends will generate a dynamic reloc section
1215   // to hold this.  In that case we don't want to link to the dynsym
1216   // section, because there isn't one.
1217   if (!dynamic)
1218     os->set_should_link_to_symtab();
1219   else if (parameters->doing_static_link())
1220     ;
1221   else
1222     os->set_should_link_to_dynsym();
1223 }
1224
1225 // Write out relocation data.
1226
1227 template<int sh_type, bool dynamic, int size, bool big_endian>
1228 void
1229 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1230     Output_file* of)
1231 {
1232   const off_t off = this->offset();
1233   const off_t oview_size = this->data_size();
1234   unsigned char* const oview = of->get_output_view(off, oview_size);
1235
1236   if (this->sort_relocs())
1237     {
1238       gold_assert(dynamic);
1239       std::sort(this->relocs_.begin(), this->relocs_.end(),
1240                 Sort_relocs_comparison());
1241     }
1242
1243   unsigned char* pov = oview;
1244   for (typename Relocs::const_iterator p = this->relocs_.begin();
1245        p != this->relocs_.end();
1246        ++p)
1247     {
1248       p->write(pov);
1249       pov += reloc_size;
1250     }
1251
1252   gold_assert(pov - oview == oview_size);
1253
1254   of->write_output_view(off, oview_size, oview);
1255
1256   // We no longer need the relocation entries.
1257   this->relocs_.clear();
1258 }
1259
1260 // Class Output_relocatable_relocs.
1261
1262 template<int sh_type, int size, bool big_endian>
1263 void
1264 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1265 {
1266   this->set_data_size(this->rr_->output_reloc_count()
1267                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1268 }
1269
1270 // class Output_data_group.
1271
1272 template<int size, bool big_endian>
1273 Output_data_group<size, big_endian>::Output_data_group(
1274     Sized_relobj_file<size, big_endian>* relobj,
1275     section_size_type entry_count,
1276     elfcpp::Elf_Word flags,
1277     std::vector<unsigned int>* input_shndxes)
1278   : Output_section_data(entry_count * 4, 4, false),
1279     relobj_(relobj),
1280     flags_(flags)
1281 {
1282   this->input_shndxes_.swap(*input_shndxes);
1283 }
1284
1285 // Write out the section group, which means translating the section
1286 // indexes to apply to the output file.
1287
1288 template<int size, bool big_endian>
1289 void
1290 Output_data_group<size, big_endian>::do_write(Output_file* of)
1291 {
1292   const off_t off = this->offset();
1293   const section_size_type oview_size =
1294     convert_to_section_size_type(this->data_size());
1295   unsigned char* const oview = of->get_output_view(off, oview_size);
1296
1297   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1298   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1299   ++contents;
1300
1301   for (std::vector<unsigned int>::const_iterator p =
1302          this->input_shndxes_.begin();
1303        p != this->input_shndxes_.end();
1304        ++p, ++contents)
1305     {
1306       Output_section* os = this->relobj_->output_section(*p);
1307
1308       unsigned int output_shndx;
1309       if (os != NULL)
1310         output_shndx = os->out_shndx();
1311       else
1312         {
1313           this->relobj_->error(_("section group retained but "
1314                                  "group element discarded"));
1315           output_shndx = 0;
1316         }
1317
1318       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1319     }
1320
1321   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1322   gold_assert(wrote == oview_size);
1323
1324   of->write_output_view(off, oview_size, oview);
1325
1326   // We no longer need this information.
1327   this->input_shndxes_.clear();
1328 }
1329
1330 // Output_data_got::Got_entry methods.
1331
1332 // Write out the entry.
1333
1334 template<int size, bool big_endian>
1335 void
1336 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1337 {
1338   Valtype val = 0;
1339
1340   switch (this->local_sym_index_)
1341     {
1342     case GSYM_CODE:
1343       {
1344         // If the symbol is resolved locally, we need to write out the
1345         // link-time value, which will be relocated dynamically by a
1346         // RELATIVE relocation.
1347         Symbol* gsym = this->u_.gsym;
1348         if (this->use_plt_offset_ && gsym->has_plt_offset())
1349           val = (parameters->target().plt_section_for_global(gsym)->address()
1350                  + gsym->plt_offset());
1351         else
1352           {
1353             Sized_symbol<size>* sgsym;
1354             // This cast is a bit ugly.  We don't want to put a
1355             // virtual method in Symbol, because we want Symbol to be
1356             // as small as possible.
1357             sgsym = static_cast<Sized_symbol<size>*>(gsym);
1358             val = sgsym->value();
1359           }
1360       }
1361       break;
1362
1363     case CONSTANT_CODE:
1364       val = this->u_.constant;
1365       break;
1366
1367     case RESERVED_CODE:
1368       // If we're doing an incremental update, don't touch this GOT entry.
1369       if (parameters->incremental_update())
1370         return;
1371       val = this->u_.constant;
1372       break;
1373
1374     default:
1375       {
1376         const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1377         const unsigned int lsi = this->local_sym_index_;
1378         const Symbol_value<size>* symval = object->local_symbol(lsi);
1379         if (!this->use_plt_offset_)
1380           val = symval->value(this->u_.object, 0);
1381         else
1382           {
1383             const Output_data* plt =
1384               parameters->target().plt_section_for_local(object, lsi);
1385             val = plt->address() + object->local_plt_offset(lsi);
1386           }
1387       }
1388       break;
1389     }
1390
1391   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1392 }
1393
1394 // Output_data_got methods.
1395
1396 // Add an entry for a global symbol to the GOT.  This returns true if
1397 // this is a new GOT entry, false if the symbol already had a GOT
1398 // entry.
1399
1400 template<int size, bool big_endian>
1401 bool
1402 Output_data_got<size, big_endian>::add_global(
1403     Symbol* gsym,
1404     unsigned int got_type)
1405 {
1406   if (gsym->has_got_offset(got_type))
1407     return false;
1408
1409   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1410   gsym->set_got_offset(got_type, got_offset);
1411   return true;
1412 }
1413
1414 // Like add_global, but use the PLT offset.
1415
1416 template<int size, bool big_endian>
1417 bool
1418 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1419                                                   unsigned int got_type)
1420 {
1421   if (gsym->has_got_offset(got_type))
1422     return false;
1423
1424   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1425   gsym->set_got_offset(got_type, got_offset);
1426   return true;
1427 }
1428
1429 // Add an entry for a global symbol to the GOT, and add a dynamic
1430 // relocation of type R_TYPE for the GOT entry.
1431
1432 template<int size, bool big_endian>
1433 void
1434 Output_data_got<size, big_endian>::add_global_with_rel(
1435     Symbol* gsym,
1436     unsigned int got_type,
1437     Rel_dyn* rel_dyn,
1438     unsigned int r_type)
1439 {
1440   if (gsym->has_got_offset(got_type))
1441     return;
1442
1443   unsigned int got_offset = this->add_got_entry(Got_entry());
1444   gsym->set_got_offset(got_type, got_offset);
1445   rel_dyn->add_global(gsym, r_type, this, got_offset);
1446 }
1447
1448 template<int size, bool big_endian>
1449 void
1450 Output_data_got<size, big_endian>::add_global_with_rela(
1451     Symbol* gsym,
1452     unsigned int got_type,
1453     Rela_dyn* rela_dyn,
1454     unsigned int r_type)
1455 {
1456   if (gsym->has_got_offset(got_type))
1457     return;
1458
1459   unsigned int got_offset = this->add_got_entry(Got_entry());
1460   gsym->set_got_offset(got_type, got_offset);
1461   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1462 }
1463
1464 // Add a pair of entries for a global symbol to the GOT, and add
1465 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1466 // If R_TYPE_2 == 0, add the second entry with no relocation.
1467 template<int size, bool big_endian>
1468 void
1469 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1470     Symbol* gsym,
1471     unsigned int got_type,
1472     Rel_dyn* rel_dyn,
1473     unsigned int r_type_1,
1474     unsigned int r_type_2)
1475 {
1476   if (gsym->has_got_offset(got_type))
1477     return;
1478
1479   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1480   gsym->set_got_offset(got_type, got_offset);
1481   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1482
1483   if (r_type_2 != 0)
1484     rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1485 }
1486
1487 template<int size, bool big_endian>
1488 void
1489 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1490     Symbol* gsym,
1491     unsigned int got_type,
1492     Rela_dyn* rela_dyn,
1493     unsigned int r_type_1,
1494     unsigned int r_type_2)
1495 {
1496   if (gsym->has_got_offset(got_type))
1497     return;
1498
1499   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1500   gsym->set_got_offset(got_type, got_offset);
1501   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1502
1503   if (r_type_2 != 0)
1504     rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1505 }
1506
1507 // Add an entry for a local symbol to the GOT.  This returns true if
1508 // this is a new GOT entry, false if the symbol already has a GOT
1509 // entry.
1510
1511 template<int size, bool big_endian>
1512 bool
1513 Output_data_got<size, big_endian>::add_local(
1514     Sized_relobj_file<size, big_endian>* object,
1515     unsigned int symndx,
1516     unsigned int got_type)
1517 {
1518   if (object->local_has_got_offset(symndx, got_type))
1519     return false;
1520
1521   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1522                                                           false));
1523   object->set_local_got_offset(symndx, got_type, got_offset);
1524   return true;
1525 }
1526
1527 // Like add_local, but use the PLT offset.
1528
1529 template<int size, bool big_endian>
1530 bool
1531 Output_data_got<size, big_endian>::add_local_plt(
1532     Sized_relobj_file<size, big_endian>* object,
1533     unsigned int symndx,
1534     unsigned int got_type)
1535 {
1536   if (object->local_has_got_offset(symndx, got_type))
1537     return false;
1538
1539   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1540                                                           true));
1541   object->set_local_got_offset(symndx, got_type, got_offset);
1542   return true;
1543 }
1544
1545 // Add an entry for a local symbol to the GOT, and add a dynamic
1546 // relocation of type R_TYPE for the GOT entry.
1547
1548 template<int size, bool big_endian>
1549 void
1550 Output_data_got<size, big_endian>::add_local_with_rel(
1551     Sized_relobj_file<size, big_endian>* object,
1552     unsigned int symndx,
1553     unsigned int got_type,
1554     Rel_dyn* rel_dyn,
1555     unsigned int r_type)
1556 {
1557   if (object->local_has_got_offset(symndx, got_type))
1558     return;
1559
1560   unsigned int got_offset = this->add_got_entry(Got_entry());
1561   object->set_local_got_offset(symndx, got_type, got_offset);
1562   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1563 }
1564
1565 template<int size, bool big_endian>
1566 void
1567 Output_data_got<size, big_endian>::add_local_with_rela(
1568     Sized_relobj_file<size, big_endian>* object,
1569     unsigned int symndx,
1570     unsigned int got_type,
1571     Rela_dyn* rela_dyn,
1572     unsigned int r_type)
1573 {
1574   if (object->local_has_got_offset(symndx, got_type))
1575     return;
1576
1577   unsigned int got_offset = this->add_got_entry(Got_entry());
1578   object->set_local_got_offset(symndx, got_type, got_offset);
1579   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1580 }
1581
1582 // Add a pair of entries for a local symbol to the GOT, and add
1583 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1584 // If R_TYPE_2 == 0, add the second entry with no relocation.
1585 template<int size, bool big_endian>
1586 void
1587 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1588     Sized_relobj_file<size, big_endian>* object,
1589     unsigned int symndx,
1590     unsigned int shndx,
1591     unsigned int got_type,
1592     Rel_dyn* rel_dyn,
1593     unsigned int r_type_1,
1594     unsigned int r_type_2)
1595 {
1596   if (object->local_has_got_offset(symndx, got_type))
1597     return;
1598
1599   unsigned int got_offset =
1600       this->add_got_entry_pair(Got_entry(),
1601                                Got_entry(object, symndx, false));
1602   object->set_local_got_offset(symndx, got_type, got_offset);
1603   Output_section* os = object->output_section(shndx);
1604   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1605
1606   if (r_type_2 != 0)
1607     rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1608 }
1609
1610 template<int size, bool big_endian>
1611 void
1612 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1613     Sized_relobj_file<size, big_endian>* object,
1614     unsigned int symndx,
1615     unsigned int shndx,
1616     unsigned int got_type,
1617     Rela_dyn* rela_dyn,
1618     unsigned int r_type_1,
1619     unsigned int r_type_2)
1620 {
1621   if (object->local_has_got_offset(symndx, got_type))
1622     return;
1623
1624   unsigned int got_offset =
1625       this->add_got_entry_pair(Got_entry(),
1626                                Got_entry(object, symndx, false));
1627   object->set_local_got_offset(symndx, got_type, got_offset);
1628   Output_section* os = object->output_section(shndx);
1629   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1630
1631   if (r_type_2 != 0)
1632     rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1633 }
1634
1635 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1636
1637 template<int size, bool big_endian>
1638 void
1639 Output_data_got<size, big_endian>::reserve_local(
1640     unsigned int i,
1641     Sized_relobj<size, big_endian>* object,
1642     unsigned int sym_index,
1643     unsigned int got_type)
1644 {
1645   this->reserve_slot(i);
1646   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1647 }
1648
1649 // Reserve a slot in the GOT for a global symbol.
1650
1651 template<int size, bool big_endian>
1652 void
1653 Output_data_got<size, big_endian>::reserve_global(
1654     unsigned int i,
1655     Symbol* gsym,
1656     unsigned int got_type)
1657 {
1658   this->reserve_slot(i);
1659   gsym->set_got_offset(got_type, this->got_offset(i));
1660 }
1661
1662 // Write out the GOT.
1663
1664 template<int size, bool big_endian>
1665 void
1666 Output_data_got<size, big_endian>::do_write(Output_file* of)
1667 {
1668   const int add = size / 8;
1669
1670   const off_t off = this->offset();
1671   const off_t oview_size = this->data_size();
1672   unsigned char* const oview = of->get_output_view(off, oview_size);
1673
1674   unsigned char* pov = oview;
1675   for (typename Got_entries::const_iterator p = this->entries_.begin();
1676        p != this->entries_.end();
1677        ++p)
1678     {
1679       p->write(pov);
1680       pov += add;
1681     }
1682
1683   gold_assert(pov - oview == oview_size);
1684
1685   of->write_output_view(off, oview_size, oview);
1686
1687   // We no longer need the GOT entries.
1688   this->entries_.clear();
1689 }
1690
1691 // Create a new GOT entry and return its offset.
1692
1693 template<int size, bool big_endian>
1694 unsigned int
1695 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1696 {
1697   if (!this->is_data_size_valid())
1698     {
1699       this->entries_.push_back(got_entry);
1700       this->set_got_size();
1701       return this->last_got_offset();
1702     }
1703   else
1704     {
1705       // For an incremental update, find an available slot.
1706       off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1707       if (got_offset == -1)
1708         gold_fallback(_("out of patch space (GOT);"
1709                         " relink with --incremental-full"));
1710       unsigned int got_index = got_offset / (size / 8);
1711       gold_assert(got_index < this->entries_.size());
1712       this->entries_[got_index] = got_entry;
1713       return static_cast<unsigned int>(got_offset);
1714     }
1715 }
1716
1717 // Create a pair of new GOT entries and return the offset of the first.
1718
1719 template<int size, bool big_endian>
1720 unsigned int
1721 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1722                                                       Got_entry got_entry_2)
1723 {
1724   if (!this->is_data_size_valid())
1725     {
1726       unsigned int got_offset;
1727       this->entries_.push_back(got_entry_1);
1728       got_offset = this->last_got_offset();
1729       this->entries_.push_back(got_entry_2);
1730       this->set_got_size();
1731       return got_offset;
1732     }
1733   else
1734     {
1735       // For an incremental update, find an available pair of slots.
1736       off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1737       if (got_offset == -1)
1738         gold_fallback(_("out of patch space (GOT);"
1739                         " relink with --incremental-full"));
1740       unsigned int got_index = got_offset / (size / 8);
1741       gold_assert(got_index < this->entries_.size());
1742       this->entries_[got_index] = got_entry_1;
1743       this->entries_[got_index + 1] = got_entry_2;
1744       return static_cast<unsigned int>(got_offset);
1745     }
1746 }
1747
1748 // Output_data_dynamic::Dynamic_entry methods.
1749
1750 // Write out the entry.
1751
1752 template<int size, bool big_endian>
1753 void
1754 Output_data_dynamic::Dynamic_entry::write(
1755     unsigned char* pov,
1756     const Stringpool* pool) const
1757 {
1758   typename elfcpp::Elf_types<size>::Elf_WXword val;
1759   switch (this->offset_)
1760     {
1761     case DYNAMIC_NUMBER:
1762       val = this->u_.val;
1763       break;
1764
1765     case DYNAMIC_SECTION_SIZE:
1766       val = this->u_.od->data_size();
1767       if (this->od2 != NULL)
1768         val += this->od2->data_size();
1769       break;
1770
1771     case DYNAMIC_SYMBOL:
1772       {
1773         const Sized_symbol<size>* s =
1774           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1775         val = s->value();
1776       }
1777       break;
1778
1779     case DYNAMIC_STRING:
1780       val = pool->get_offset(this->u_.str);
1781       break;
1782
1783     default:
1784       val = this->u_.od->address() + this->offset_;
1785       break;
1786     }
1787
1788   elfcpp::Dyn_write<size, big_endian> dw(pov);
1789   dw.put_d_tag(this->tag_);
1790   dw.put_d_val(val);
1791 }
1792
1793 // Output_data_dynamic methods.
1794
1795 // Adjust the output section to set the entry size.
1796
1797 void
1798 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1799 {
1800   if (parameters->target().get_size() == 32)
1801     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1802   else if (parameters->target().get_size() == 64)
1803     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1804   else
1805     gold_unreachable();
1806 }
1807
1808 // Set the final data size.
1809
1810 void
1811 Output_data_dynamic::set_final_data_size()
1812 {
1813   // Add the terminating entry if it hasn't been added.
1814   // Because of relaxation, we can run this multiple times.
1815   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1816     {
1817       int extra = parameters->options().spare_dynamic_tags();
1818       for (int i = 0; i < extra; ++i)
1819         this->add_constant(elfcpp::DT_NULL, 0);
1820       this->add_constant(elfcpp::DT_NULL, 0);
1821     }
1822
1823   int dyn_size;
1824   if (parameters->target().get_size() == 32)
1825     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1826   else if (parameters->target().get_size() == 64)
1827     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1828   else
1829     gold_unreachable();
1830   this->set_data_size(this->entries_.size() * dyn_size);
1831 }
1832
1833 // Write out the dynamic entries.
1834
1835 void
1836 Output_data_dynamic::do_write(Output_file* of)
1837 {
1838   switch (parameters->size_and_endianness())
1839     {
1840 #ifdef HAVE_TARGET_32_LITTLE
1841     case Parameters::TARGET_32_LITTLE:
1842       this->sized_write<32, false>(of);
1843       break;
1844 #endif
1845 #ifdef HAVE_TARGET_32_BIG
1846     case Parameters::TARGET_32_BIG:
1847       this->sized_write<32, true>(of);
1848       break;
1849 #endif
1850 #ifdef HAVE_TARGET_64_LITTLE
1851     case Parameters::TARGET_64_LITTLE:
1852       this->sized_write<64, false>(of);
1853       break;
1854 #endif
1855 #ifdef HAVE_TARGET_64_BIG
1856     case Parameters::TARGET_64_BIG:
1857       this->sized_write<64, true>(of);
1858       break;
1859 #endif
1860     default:
1861       gold_unreachable();
1862     }
1863 }
1864
1865 template<int size, bool big_endian>
1866 void
1867 Output_data_dynamic::sized_write(Output_file* of)
1868 {
1869   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1870
1871   const off_t offset = this->offset();
1872   const off_t oview_size = this->data_size();
1873   unsigned char* const oview = of->get_output_view(offset, oview_size);
1874
1875   unsigned char* pov = oview;
1876   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1877        p != this->entries_.end();
1878        ++p)
1879     {
1880       p->write<size, big_endian>(pov, this->pool_);
1881       pov += dyn_size;
1882     }
1883
1884   gold_assert(pov - oview == oview_size);
1885
1886   of->write_output_view(offset, oview_size, oview);
1887
1888   // We no longer need the dynamic entries.
1889   this->entries_.clear();
1890 }
1891
1892 // Class Output_symtab_xindex.
1893
1894 void
1895 Output_symtab_xindex::do_write(Output_file* of)
1896 {
1897   const off_t offset = this->offset();
1898   const off_t oview_size = this->data_size();
1899   unsigned char* const oview = of->get_output_view(offset, oview_size);
1900
1901   memset(oview, 0, oview_size);
1902
1903   if (parameters->target().is_big_endian())
1904     this->endian_do_write<true>(oview);
1905   else
1906     this->endian_do_write<false>(oview);
1907
1908   of->write_output_view(offset, oview_size, oview);
1909
1910   // We no longer need the data.
1911   this->entries_.clear();
1912 }
1913
1914 template<bool big_endian>
1915 void
1916 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1917 {
1918   for (Xindex_entries::const_iterator p = this->entries_.begin();
1919        p != this->entries_.end();
1920        ++p)
1921     {
1922       unsigned int symndx = p->first;
1923       gold_assert(symndx * 4 < this->data_size());
1924       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1925     }
1926 }
1927
1928 // Output_section::Input_section methods.
1929
1930 // Return the current data size.  For an input section we store the size here.
1931 // For an Output_section_data, we have to ask it for the size.
1932
1933 off_t
1934 Output_section::Input_section::current_data_size() const
1935 {
1936   if (this->is_input_section())
1937     return this->u1_.data_size;
1938   else
1939     {
1940       this->u2_.posd->pre_finalize_data_size();
1941       return this->u2_.posd->current_data_size();
1942     }
1943 }
1944
1945 // Return the data size.  For an input section we store the size here.
1946 // For an Output_section_data, we have to ask it for the size.
1947
1948 off_t
1949 Output_section::Input_section::data_size() const
1950 {
1951   if (this->is_input_section())
1952     return this->u1_.data_size;
1953   else
1954     return this->u2_.posd->data_size();
1955 }
1956
1957 // Return the object for an input section.
1958
1959 Relobj*
1960 Output_section::Input_section::relobj() const
1961 {
1962   if (this->is_input_section())
1963     return this->u2_.object;
1964   else if (this->is_merge_section())
1965     {
1966       gold_assert(this->u2_.pomb->first_relobj() != NULL);
1967       return this->u2_.pomb->first_relobj();
1968     }
1969   else if (this->is_relaxed_input_section())
1970     return this->u2_.poris->relobj();
1971   else
1972     gold_unreachable();
1973 }
1974
1975 // Return the input section index for an input section.
1976
1977 unsigned int
1978 Output_section::Input_section::shndx() const
1979 {
1980   if (this->is_input_section())
1981     return this->shndx_;
1982   else if (this->is_merge_section())
1983     {
1984       gold_assert(this->u2_.pomb->first_relobj() != NULL);
1985       return this->u2_.pomb->first_shndx();
1986     }
1987   else if (this->is_relaxed_input_section())
1988     return this->u2_.poris->shndx();
1989   else
1990     gold_unreachable();
1991 }
1992
1993 // Set the address and file offset.
1994
1995 void
1996 Output_section::Input_section::set_address_and_file_offset(
1997     uint64_t address,
1998     off_t file_offset,
1999     off_t section_file_offset)
2000 {
2001   if (this->is_input_section())
2002     this->u2_.object->set_section_offset(this->shndx_,
2003                                          file_offset - section_file_offset);
2004   else
2005     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2006 }
2007
2008 // Reset the address and file offset.
2009
2010 void
2011 Output_section::Input_section::reset_address_and_file_offset()
2012 {
2013   if (!this->is_input_section())
2014     this->u2_.posd->reset_address_and_file_offset();
2015 }
2016
2017 // Finalize the data size.
2018
2019 void
2020 Output_section::Input_section::finalize_data_size()
2021 {
2022   if (!this->is_input_section())
2023     this->u2_.posd->finalize_data_size();
2024 }
2025
2026 // Try to turn an input offset into an output offset.  We want to
2027 // return the output offset relative to the start of this
2028 // Input_section in the output section.
2029
2030 inline bool
2031 Output_section::Input_section::output_offset(
2032     const Relobj* object,
2033     unsigned int shndx,
2034     section_offset_type offset,
2035     section_offset_type* poutput) const
2036 {
2037   if (!this->is_input_section())
2038     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2039   else
2040     {
2041       if (this->shndx_ != shndx || this->u2_.object != object)
2042         return false;
2043       *poutput = offset;
2044       return true;
2045     }
2046 }
2047
2048 // Return whether this is the merge section for the input section
2049 // SHNDX in OBJECT.
2050
2051 inline bool
2052 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2053                                                     unsigned int shndx) const
2054 {
2055   if (this->is_input_section())
2056     return false;
2057   return this->u2_.posd->is_merge_section_for(object, shndx);
2058 }
2059
2060 // Write out the data.  We don't have to do anything for an input
2061 // section--they are handled via Object::relocate--but this is where
2062 // we write out the data for an Output_section_data.
2063
2064 void
2065 Output_section::Input_section::write(Output_file* of)
2066 {
2067   if (!this->is_input_section())
2068     this->u2_.posd->write(of);
2069 }
2070
2071 // Write the data to a buffer.  As for write(), we don't have to do
2072 // anything for an input section.
2073
2074 void
2075 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2076 {
2077   if (!this->is_input_section())
2078     this->u2_.posd->write_to_buffer(buffer);
2079 }
2080
2081 // Print to a map file.
2082
2083 void
2084 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2085 {
2086   switch (this->shndx_)
2087     {
2088     case OUTPUT_SECTION_CODE:
2089     case MERGE_DATA_SECTION_CODE:
2090     case MERGE_STRING_SECTION_CODE:
2091       this->u2_.posd->print_to_mapfile(mapfile);
2092       break;
2093
2094     case RELAXED_INPUT_SECTION_CODE:
2095       {
2096         Output_relaxed_input_section* relaxed_section =
2097           this->relaxed_input_section();
2098         mapfile->print_input_section(relaxed_section->relobj(),
2099                                      relaxed_section->shndx());
2100       }
2101       break;
2102     default:
2103       mapfile->print_input_section(this->u2_.object, this->shndx_);
2104       break;
2105     }
2106 }
2107
2108 // Output_section methods.
2109
2110 // Construct an Output_section.  NAME will point into a Stringpool.
2111
2112 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2113                                elfcpp::Elf_Xword flags)
2114   : name_(name),
2115     addralign_(0),
2116     entsize_(0),
2117     load_address_(0),
2118     link_section_(NULL),
2119     link_(0),
2120     info_section_(NULL),
2121     info_symndx_(NULL),
2122     info_(0),
2123     type_(type),
2124     flags_(flags),
2125     order_(ORDER_INVALID),
2126     out_shndx_(-1U),
2127     symtab_index_(0),
2128     dynsym_index_(0),
2129     input_sections_(),
2130     first_input_offset_(0),
2131     fills_(),
2132     postprocessing_buffer_(NULL),
2133     needs_symtab_index_(false),
2134     needs_dynsym_index_(false),
2135     should_link_to_symtab_(false),
2136     should_link_to_dynsym_(false),
2137     after_input_sections_(false),
2138     requires_postprocessing_(false),
2139     found_in_sections_clause_(false),
2140     has_load_address_(false),
2141     info_uses_section_index_(false),
2142     input_section_order_specified_(false),
2143     may_sort_attached_input_sections_(false),
2144     must_sort_attached_input_sections_(false),
2145     attached_input_sections_are_sorted_(false),
2146     is_relro_(false),
2147     is_small_section_(false),
2148     is_large_section_(false),
2149     generate_code_fills_at_write_(false),
2150     is_entsize_zero_(false),
2151     section_offsets_need_adjustment_(false),
2152     is_noload_(false),
2153     always_keeps_input_sections_(false),
2154     has_fixed_layout_(false),
2155     tls_offset_(0),
2156     checkpoint_(NULL),
2157     lookup_maps_(new Output_section_lookup_maps),
2158     free_list_()
2159 {
2160   // An unallocated section has no address.  Forcing this means that
2161   // we don't need special treatment for symbols defined in debug
2162   // sections.
2163   if ((flags & elfcpp::SHF_ALLOC) == 0)
2164     this->set_address(0);
2165 }
2166
2167 Output_section::~Output_section()
2168 {
2169   delete this->checkpoint_;
2170 }
2171
2172 // Set the entry size.
2173
2174 void
2175 Output_section::set_entsize(uint64_t v)
2176 {
2177   if (this->is_entsize_zero_)
2178     ;
2179   else if (this->entsize_ == 0)
2180     this->entsize_ = v;
2181   else if (this->entsize_ != v)
2182     {
2183       this->entsize_ = 0;
2184       this->is_entsize_zero_ = 1;
2185     }
2186 }
2187
2188 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2189 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2190 // relocation section which applies to this section, or 0 if none, or
2191 // -1U if more than one.  Return the offset of the input section
2192 // within the output section.  Return -1 if the input section will
2193 // receive special handling.  In the normal case we don't always keep
2194 // track of input sections for an Output_section.  Instead, each
2195 // Object keeps track of the Output_section for each of its input
2196 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2197 // track of input sections here; this is used when SECTIONS appears in
2198 // a linker script.
2199
2200 template<int size, bool big_endian>
2201 off_t
2202 Output_section::add_input_section(Layout* layout,
2203                                   Sized_relobj_file<size, big_endian>* object,
2204                                   unsigned int shndx,
2205                                   const char* secname,
2206                                   const elfcpp::Shdr<size, big_endian>& shdr,
2207                                   unsigned int reloc_shndx,
2208                                   bool have_sections_script)
2209 {
2210   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2211   if ((addralign & (addralign - 1)) != 0)
2212     {
2213       object->error(_("invalid alignment %lu for section \"%s\""),
2214                     static_cast<unsigned long>(addralign), secname);
2215       addralign = 1;
2216     }
2217
2218   if (addralign > this->addralign_)
2219     this->addralign_ = addralign;
2220
2221   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2222   uint64_t entsize = shdr.get_sh_entsize();
2223
2224   // .debug_str is a mergeable string section, but is not always so
2225   // marked by compilers.  Mark manually here so we can optimize.
2226   if (strcmp(secname, ".debug_str") == 0)
2227     {
2228       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2229       entsize = 1;
2230     }
2231
2232   this->update_flags_for_input_section(sh_flags);
2233   this->set_entsize(entsize);
2234
2235   // If this is a SHF_MERGE section, we pass all the input sections to
2236   // a Output_data_merge.  We don't try to handle relocations for such
2237   // a section.  We don't try to handle empty merge sections--they
2238   // mess up the mappings, and are useless anyhow.
2239   // FIXME: Need to handle merge sections during incremental update.
2240   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2241       && reloc_shndx == 0
2242       && shdr.get_sh_size() > 0
2243       && !parameters->incremental())
2244     {
2245       // Keep information about merged input sections for rebuilding fast
2246       // lookup maps if we have sections-script or we do relaxation.
2247       bool keeps_input_sections = (this->always_keeps_input_sections_
2248                                    || have_sections_script
2249                                    || parameters->target().may_relax());
2250
2251       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2252                                         addralign, keeps_input_sections))
2253         {
2254           // Tell the relocation routines that they need to call the
2255           // output_offset method to determine the final address.
2256           return -1;
2257         }
2258     }
2259
2260   section_size_type input_section_size = shdr.get_sh_size();
2261   section_size_type uncompressed_size;
2262   if (object->section_is_compressed(shndx, &uncompressed_size))
2263     input_section_size = uncompressed_size;
2264
2265   off_t offset_in_section;
2266   off_t aligned_offset_in_section;
2267   if (this->has_fixed_layout())
2268     {
2269       // For incremental updates, find a chunk of unused space in the section.
2270       offset_in_section = this->free_list_.allocate(input_section_size,
2271                                                     addralign, 0);
2272       if (offset_in_section == -1)
2273         gold_fallback(_("out of patch space; relink with --incremental-full"));
2274       aligned_offset_in_section = offset_in_section;
2275     }
2276   else
2277     {
2278       offset_in_section = this->current_data_size_for_child();
2279       aligned_offset_in_section = align_address(offset_in_section,
2280                                                 addralign);
2281       this->set_current_data_size_for_child(aligned_offset_in_section
2282                                             + input_section_size);
2283     }
2284
2285   // Determine if we want to delay code-fill generation until the output
2286   // section is written.  When the target is relaxing, we want to delay fill
2287   // generating to avoid adjusting them during relaxation.  Also, if we are
2288   // sorting input sections we must delay fill generation.
2289   if (!this->generate_code_fills_at_write_
2290       && !have_sections_script
2291       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2292       && parameters->target().has_code_fill()
2293       && (parameters->target().may_relax()
2294           || parameters->options().section_ordering_file()))
2295     {
2296       gold_assert(this->fills_.empty());
2297       this->generate_code_fills_at_write_ = true;
2298     }
2299
2300   if (aligned_offset_in_section > offset_in_section
2301       && !this->generate_code_fills_at_write_
2302       && !have_sections_script
2303       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2304       && parameters->target().has_code_fill())
2305     {
2306       // We need to add some fill data.  Using fill_list_ when
2307       // possible is an optimization, since we will often have fill
2308       // sections without input sections.
2309       off_t fill_len = aligned_offset_in_section - offset_in_section;
2310       if (this->input_sections_.empty())
2311         this->fills_.push_back(Fill(offset_in_section, fill_len));
2312       else
2313         {
2314           std::string fill_data(parameters->target().code_fill(fill_len));
2315           Output_data_const* odc = new Output_data_const(fill_data, 1);
2316           this->input_sections_.push_back(Input_section(odc));
2317         }
2318     }
2319
2320   // We need to keep track of this section if we are already keeping
2321   // track of sections, or if we are relaxing.  Also, if this is a
2322   // section which requires sorting, or which may require sorting in
2323   // the future, we keep track of the sections.  If the
2324   // --section-ordering-file option is used to specify the order of
2325   // sections, we need to keep track of sections.
2326   if (this->always_keeps_input_sections_
2327       || have_sections_script
2328       || !this->input_sections_.empty()
2329       || this->may_sort_attached_input_sections()
2330       || this->must_sort_attached_input_sections()
2331       || parameters->options().user_set_Map()
2332       || parameters->target().may_relax()
2333       || parameters->options().section_ordering_file())
2334     {
2335       Input_section isecn(object, shndx, input_section_size, addralign);
2336       if (parameters->options().section_ordering_file())
2337         {
2338           unsigned int section_order_index =
2339             layout->find_section_order_index(std::string(secname));
2340           if (section_order_index != 0)
2341             {
2342               isecn.set_section_order_index(section_order_index);
2343               this->set_input_section_order_specified();
2344             }
2345         }
2346       if (this->has_fixed_layout())
2347         {
2348           // For incremental updates, finalize the address and offset now.
2349           uint64_t addr = this->address();
2350           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2351                                             aligned_offset_in_section,
2352                                             this->offset());
2353         }
2354       this->input_sections_.push_back(isecn);
2355     }
2356
2357   return aligned_offset_in_section;
2358 }
2359
2360 // Add arbitrary data to an output section.
2361
2362 void
2363 Output_section::add_output_section_data(Output_section_data* posd)
2364 {
2365   Input_section inp(posd);
2366   this->add_output_section_data(&inp);
2367
2368   if (posd->is_data_size_valid())
2369     {
2370       off_t offset_in_section;
2371       if (this->has_fixed_layout())
2372         {
2373           // For incremental updates, find a chunk of unused space.
2374           offset_in_section = this->free_list_.allocate(posd->data_size(),
2375                                                         posd->addralign(), 0);
2376           if (offset_in_section == -1)
2377             gold_fallback(_("out of patch space; "
2378                             "relink with --incremental-full"));
2379           // Finalize the address and offset now.
2380           uint64_t addr = this->address();
2381           off_t offset = this->offset();
2382           posd->set_address_and_file_offset(addr + offset_in_section,
2383                                             offset + offset_in_section);
2384         }
2385       else
2386         {
2387           offset_in_section = this->current_data_size_for_child();
2388           off_t aligned_offset_in_section = align_address(offset_in_section,
2389                                                           posd->addralign());
2390           this->set_current_data_size_for_child(aligned_offset_in_section
2391                                                 + posd->data_size());
2392         }
2393     }
2394   else if (this->has_fixed_layout())
2395     {
2396       // For incremental updates, arrange for the data to have a fixed layout.
2397       // This will mean that additions to the data must be allocated from
2398       // free space within the containing output section.
2399       uint64_t addr = this->address();
2400       posd->set_address(addr);
2401       posd->set_file_offset(0);
2402       // FIXME: This should eventually be unreachable.
2403       // gold_unreachable();
2404     }
2405 }
2406
2407 // Add a relaxed input section.
2408
2409 void
2410 Output_section::add_relaxed_input_section(Layout* layout,
2411                                           Output_relaxed_input_section* poris,
2412                                           const std::string& name)
2413 {
2414   Input_section inp(poris);
2415
2416   // If the --section-ordering-file option is used to specify the order of
2417   // sections, we need to keep track of sections.
2418   if (parameters->options().section_ordering_file())
2419     {
2420       unsigned int section_order_index =
2421         layout->find_section_order_index(name);
2422       if (section_order_index != 0)
2423         {
2424           inp.set_section_order_index(section_order_index);
2425           this->set_input_section_order_specified();
2426         }
2427     }
2428
2429   this->add_output_section_data(&inp);
2430   if (this->lookup_maps_->is_valid())
2431     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2432                                                   poris->shndx(), poris);
2433
2434   // For a relaxed section, we use the current data size.  Linker scripts
2435   // get all the input sections, including relaxed one from an output
2436   // section and add them back to them same output section to compute the
2437   // output section size.  If we do not account for sizes of relaxed input
2438   // sections,  an output section would be incorrectly sized.
2439   off_t offset_in_section = this->current_data_size_for_child();
2440   off_t aligned_offset_in_section = align_address(offset_in_section,
2441                                                   poris->addralign());
2442   this->set_current_data_size_for_child(aligned_offset_in_section
2443                                         + poris->current_data_size());
2444 }
2445
2446 // Add arbitrary data to an output section by Input_section.
2447
2448 void
2449 Output_section::add_output_section_data(Input_section* inp)
2450 {
2451   if (this->input_sections_.empty())
2452     this->first_input_offset_ = this->current_data_size_for_child();
2453
2454   this->input_sections_.push_back(*inp);
2455
2456   uint64_t addralign = inp->addralign();
2457   if (addralign > this->addralign_)
2458     this->addralign_ = addralign;
2459
2460   inp->set_output_section(this);
2461 }
2462
2463 // Add a merge section to an output section.
2464
2465 void
2466 Output_section::add_output_merge_section(Output_section_data* posd,
2467                                          bool is_string, uint64_t entsize)
2468 {
2469   Input_section inp(posd, is_string, entsize);
2470   this->add_output_section_data(&inp);
2471 }
2472
2473 // Add an input section to a SHF_MERGE section.
2474
2475 bool
2476 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2477                                         uint64_t flags, uint64_t entsize,
2478                                         uint64_t addralign,
2479                                         bool keeps_input_sections)
2480 {
2481   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2482
2483   // We only merge strings if the alignment is not more than the
2484   // character size.  This could be handled, but it's unusual.
2485   if (is_string && addralign > entsize)
2486     return false;
2487
2488   // We cannot restore merged input section states.
2489   gold_assert(this->checkpoint_ == NULL);
2490
2491   // Look up merge sections by required properties.
2492   // Currently, we only invalidate the lookup maps in script processing
2493   // and relaxation.  We should not have done either when we reach here.
2494   // So we assume that the lookup maps are valid to simply code.
2495   gold_assert(this->lookup_maps_->is_valid());
2496   Merge_section_properties msp(is_string, entsize, addralign);
2497   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2498   bool is_new = false;
2499   if (pomb != NULL)
2500     {
2501       gold_assert(pomb->is_string() == is_string
2502                   && pomb->entsize() == entsize
2503                   && pomb->addralign() == addralign);
2504     }
2505   else
2506     {
2507       // Create a new Output_merge_data or Output_merge_string_data.
2508       if (!is_string)
2509         pomb = new Output_merge_data(entsize, addralign);
2510       else
2511         {
2512           switch (entsize)
2513             {
2514             case 1:
2515               pomb = new Output_merge_string<char>(addralign);
2516               break;
2517             case 2:
2518               pomb = new Output_merge_string<uint16_t>(addralign);
2519               break;
2520             case 4:
2521               pomb = new Output_merge_string<uint32_t>(addralign);
2522               break;
2523             default:
2524               return false;
2525             }
2526         }
2527       // If we need to do script processing or relaxation, we need to keep
2528       // the original input sections to rebuild the fast lookup maps.
2529       if (keeps_input_sections)
2530         pomb->set_keeps_input_sections();
2531       is_new = true;
2532     }
2533
2534   if (pomb->add_input_section(object, shndx))
2535     {
2536       // Add new merge section to this output section and link merge
2537       // section properties to new merge section in map.
2538       if (is_new)
2539         {
2540           this->add_output_merge_section(pomb, is_string, entsize);
2541           this->lookup_maps_->add_merge_section(msp, pomb);
2542         }
2543
2544       // Add input section to new merge section and link input section to new
2545       // merge section in map.
2546       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2547       return true;
2548     }
2549   else
2550     {
2551       // If add_input_section failed, delete new merge section to avoid
2552       // exporting empty merge sections in Output_section::get_input_section.
2553       if (is_new)
2554         delete pomb;
2555       return false;
2556     }
2557 }
2558
2559 // Build a relaxation map to speed up relaxation of existing input sections.
2560 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2561
2562 void
2563 Output_section::build_relaxation_map(
2564   const Input_section_list& input_sections,
2565   size_t limit,
2566   Relaxation_map* relaxation_map) const
2567 {
2568   for (size_t i = 0; i < limit; ++i)
2569     {
2570       const Input_section& is(input_sections[i]);
2571       if (is.is_input_section() || is.is_relaxed_input_section())
2572         {
2573           Section_id sid(is.relobj(), is.shndx());
2574           (*relaxation_map)[sid] = i;
2575         }
2576     }
2577 }
2578
2579 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2580 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2581 // indices of INPUT_SECTIONS.
2582
2583 void
2584 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2585   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2586   const Relaxation_map& map,
2587   Input_section_list* input_sections)
2588 {
2589   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2590     {
2591       Output_relaxed_input_section* poris = relaxed_sections[i];
2592       Section_id sid(poris->relobj(), poris->shndx());
2593       Relaxation_map::const_iterator p = map.find(sid);
2594       gold_assert(p != map.end());
2595       gold_assert((*input_sections)[p->second].is_input_section());
2596
2597       // Remember section order index of original input section
2598       // if it is set.  Copy it to the relaxed input section.
2599       unsigned int soi =
2600         (*input_sections)[p->second].section_order_index();
2601       (*input_sections)[p->second] = Input_section(poris);
2602       (*input_sections)[p->second].set_section_order_index(soi);
2603     }
2604 }
2605   
2606 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2607 // is a vector of pointers to Output_relaxed_input_section or its derived
2608 // classes.  The relaxed sections must correspond to existing input sections.
2609
2610 void
2611 Output_section::convert_input_sections_to_relaxed_sections(
2612   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2613 {
2614   gold_assert(parameters->target().may_relax());
2615
2616   // We want to make sure that restore_states does not undo the effect of
2617   // this.  If there is no checkpoint active, just search the current
2618   // input section list and replace the sections there.  If there is
2619   // a checkpoint, also replace the sections there.
2620   
2621   // By default, we look at the whole list.
2622   size_t limit = this->input_sections_.size();
2623
2624   if (this->checkpoint_ != NULL)
2625     {
2626       // Replace input sections with relaxed input section in the saved
2627       // copy of the input section list.
2628       if (this->checkpoint_->input_sections_saved())
2629         {
2630           Relaxation_map map;
2631           this->build_relaxation_map(
2632                     *(this->checkpoint_->input_sections()),
2633                     this->checkpoint_->input_sections()->size(),
2634                     &map);
2635           this->convert_input_sections_in_list_to_relaxed_sections(
2636                     relaxed_sections,
2637                     map,
2638                     this->checkpoint_->input_sections());
2639         }
2640       else
2641         {
2642           // We have not copied the input section list yet.  Instead, just
2643           // look at the portion that would be saved.
2644           limit = this->checkpoint_->input_sections_size();
2645         }
2646     }
2647
2648   // Convert input sections in input_section_list.
2649   Relaxation_map map;
2650   this->build_relaxation_map(this->input_sections_, limit, &map);
2651   this->convert_input_sections_in_list_to_relaxed_sections(
2652             relaxed_sections,
2653             map,
2654             &this->input_sections_);
2655
2656   // Update fast look-up map.
2657   if (this->lookup_maps_->is_valid())
2658     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2659       {
2660         Output_relaxed_input_section* poris = relaxed_sections[i];
2661         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2662                                                       poris->shndx(), poris);
2663       }
2664 }
2665
2666 // Update the output section flags based on input section flags.
2667
2668 void
2669 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2670 {
2671   // If we created the section with SHF_ALLOC clear, we set the
2672   // address.  If we are now setting the SHF_ALLOC flag, we need to
2673   // undo that.
2674   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2675       && (flags & elfcpp::SHF_ALLOC) != 0)
2676     this->mark_address_invalid();
2677
2678   this->flags_ |= (flags
2679                    & (elfcpp::SHF_WRITE
2680                       | elfcpp::SHF_ALLOC
2681                       | elfcpp::SHF_EXECINSTR));
2682
2683   if ((flags & elfcpp::SHF_MERGE) == 0)
2684     this->flags_ &=~ elfcpp::SHF_MERGE;
2685   else
2686     {
2687       if (this->current_data_size_for_child() == 0)
2688         this->flags_ |= elfcpp::SHF_MERGE;
2689     }
2690
2691   if ((flags & elfcpp::SHF_STRINGS) == 0)
2692     this->flags_ &=~ elfcpp::SHF_STRINGS;
2693   else
2694     {
2695       if (this->current_data_size_for_child() == 0)
2696         this->flags_ |= elfcpp::SHF_STRINGS;
2697     }
2698 }
2699
2700 // Find the merge section into which an input section with index SHNDX in
2701 // OBJECT has been added.  Return NULL if none found.
2702
2703 Output_section_data*
2704 Output_section::find_merge_section(const Relobj* object,
2705                                    unsigned int shndx) const
2706 {
2707   if (!this->lookup_maps_->is_valid())
2708     this->build_lookup_maps();
2709   return this->lookup_maps_->find_merge_section(object, shndx);
2710 }
2711
2712 // Build the lookup maps for merge and relaxed sections.  This is needs
2713 // to be declared as a const methods so that it is callable with a const
2714 // Output_section pointer.  The method only updates states of the maps.
2715
2716 void
2717 Output_section::build_lookup_maps() const
2718 {
2719   this->lookup_maps_->clear();
2720   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2721        p != this->input_sections_.end();
2722        ++p)
2723     {
2724       if (p->is_merge_section())
2725         {
2726           Output_merge_base* pomb = p->output_merge_base();
2727           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2728                                        pomb->addralign());
2729           this->lookup_maps_->add_merge_section(msp, pomb);
2730           for (Output_merge_base::Input_sections::const_iterator is =
2731                  pomb->input_sections_begin();
2732                is != pomb->input_sections_end();
2733                ++is) 
2734             {
2735               const Const_section_id& csid = *is;
2736             this->lookup_maps_->add_merge_input_section(csid.first,
2737                                                         csid.second, pomb);
2738             }
2739             
2740         }
2741       else if (p->is_relaxed_input_section())
2742         {
2743           Output_relaxed_input_section* poris = p->relaxed_input_section();
2744           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2745                                                         poris->shndx(), poris);
2746         }
2747     }
2748 }
2749
2750 // Find an relaxed input section corresponding to an input section
2751 // in OBJECT with index SHNDX.
2752
2753 const Output_relaxed_input_section*
2754 Output_section::find_relaxed_input_section(const Relobj* object,
2755                                            unsigned int shndx) const
2756 {
2757   if (!this->lookup_maps_->is_valid())
2758     this->build_lookup_maps();
2759   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2760 }
2761
2762 // Given an address OFFSET relative to the start of input section
2763 // SHNDX in OBJECT, return whether this address is being included in
2764 // the final link.  This should only be called if SHNDX in OBJECT has
2765 // a special mapping.
2766
2767 bool
2768 Output_section::is_input_address_mapped(const Relobj* object,
2769                                         unsigned int shndx,
2770                                         off_t offset) const
2771 {
2772   // Look at the Output_section_data_maps first.
2773   const Output_section_data* posd = this->find_merge_section(object, shndx);
2774   if (posd == NULL)
2775     posd = this->find_relaxed_input_section(object, shndx);
2776
2777   if (posd != NULL)
2778     {
2779       section_offset_type output_offset;
2780       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2781       gold_assert(found);   
2782       return output_offset != -1;
2783     }
2784
2785   // Fall back to the slow look-up.
2786   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2787        p != this->input_sections_.end();
2788        ++p)
2789     {
2790       section_offset_type output_offset;
2791       if (p->output_offset(object, shndx, offset, &output_offset))
2792         return output_offset != -1;
2793     }
2794
2795   // By default we assume that the address is mapped.  This should
2796   // only be called after we have passed all sections to Layout.  At
2797   // that point we should know what we are discarding.
2798   return true;
2799 }
2800
2801 // Given an address OFFSET relative to the start of input section
2802 // SHNDX in object OBJECT, return the output offset relative to the
2803 // start of the input section in the output section.  This should only
2804 // be called if SHNDX in OBJECT has a special mapping.
2805
2806 section_offset_type
2807 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2808                               section_offset_type offset) const
2809 {
2810   // This can only be called meaningfully when we know the data size
2811   // of this.
2812   gold_assert(this->is_data_size_valid());
2813
2814   // Look at the Output_section_data_maps first.
2815   const Output_section_data* posd = this->find_merge_section(object, shndx);
2816   if (posd == NULL) 
2817     posd = this->find_relaxed_input_section(object, shndx);
2818   if (posd != NULL)
2819     {
2820       section_offset_type output_offset;
2821       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2822       gold_assert(found);   
2823       return output_offset;
2824     }
2825
2826   // Fall back to the slow look-up.
2827   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2828        p != this->input_sections_.end();
2829        ++p)
2830     {
2831       section_offset_type output_offset;
2832       if (p->output_offset(object, shndx, offset, &output_offset))
2833         return output_offset;
2834     }
2835   gold_unreachable();
2836 }
2837
2838 // Return the output virtual address of OFFSET relative to the start
2839 // of input section SHNDX in object OBJECT.
2840
2841 uint64_t
2842 Output_section::output_address(const Relobj* object, unsigned int shndx,
2843                                off_t offset) const
2844 {
2845   uint64_t addr = this->address() + this->first_input_offset_;
2846
2847   // Look at the Output_section_data_maps first.
2848   const Output_section_data* posd = this->find_merge_section(object, shndx);
2849   if (posd == NULL) 
2850     posd = this->find_relaxed_input_section(object, shndx);
2851   if (posd != NULL && posd->is_address_valid())
2852     {
2853       section_offset_type output_offset;
2854       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2855       gold_assert(found);
2856       return posd->address() + output_offset;
2857     }
2858
2859   // Fall back to the slow look-up.
2860   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2861        p != this->input_sections_.end();
2862        ++p)
2863     {
2864       addr = align_address(addr, p->addralign());
2865       section_offset_type output_offset;
2866       if (p->output_offset(object, shndx, offset, &output_offset))
2867         {
2868           if (output_offset == -1)
2869             return -1ULL;
2870           return addr + output_offset;
2871         }
2872       addr += p->data_size();
2873     }
2874
2875   // If we get here, it means that we don't know the mapping for this
2876   // input section.  This might happen in principle if
2877   // add_input_section were called before add_output_section_data.
2878   // But it should never actually happen.
2879
2880   gold_unreachable();
2881 }
2882
2883 // Find the output address of the start of the merged section for
2884 // input section SHNDX in object OBJECT.
2885
2886 bool
2887 Output_section::find_starting_output_address(const Relobj* object,
2888                                              unsigned int shndx,
2889                                              uint64_t* paddr) const
2890 {
2891   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2892   // Looking up the merge section map does not always work as we sometimes
2893   // find a merge section without its address set.
2894   uint64_t addr = this->address() + this->first_input_offset_;
2895   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2896        p != this->input_sections_.end();
2897        ++p)
2898     {
2899       addr = align_address(addr, p->addralign());
2900
2901       // It would be nice if we could use the existing output_offset
2902       // method to get the output offset of input offset 0.
2903       // Unfortunately we don't know for sure that input offset 0 is
2904       // mapped at all.
2905       if (p->is_merge_section_for(object, shndx))
2906         {
2907           *paddr = addr;
2908           return true;
2909         }
2910
2911       addr += p->data_size();
2912     }
2913
2914   // We couldn't find a merge output section for this input section.
2915   return false;
2916 }
2917
2918 // Update the data size of an Output_section.
2919
2920 void
2921 Output_section::update_data_size()
2922 {
2923   if (this->input_sections_.empty())
2924       return;
2925
2926   if (this->must_sort_attached_input_sections()
2927       || this->input_section_order_specified())
2928     this->sort_attached_input_sections();
2929
2930   off_t off = this->first_input_offset_;
2931   for (Input_section_list::iterator p = this->input_sections_.begin();
2932        p != this->input_sections_.end();
2933        ++p)
2934     {
2935       off = align_address(off, p->addralign());
2936       off += p->current_data_size();
2937     }
2938
2939   this->set_current_data_size_for_child(off);
2940 }
2941
2942 // Set the data size of an Output_section.  This is where we handle
2943 // setting the addresses of any Output_section_data objects.
2944
2945 void
2946 Output_section::set_final_data_size()
2947 {
2948   if (this->input_sections_.empty())
2949     {
2950       this->set_data_size(this->current_data_size_for_child());
2951       return;
2952     }
2953
2954   if (this->must_sort_attached_input_sections()
2955       || this->input_section_order_specified())
2956     this->sort_attached_input_sections();
2957
2958   uint64_t address = this->address();
2959   off_t startoff = this->offset();
2960   off_t off = startoff + this->first_input_offset_;
2961   for (Input_section_list::iterator p = this->input_sections_.begin();
2962        p != this->input_sections_.end();
2963        ++p)
2964     {
2965       off = align_address(off, p->addralign());
2966       p->set_address_and_file_offset(address + (off - startoff), off,
2967                                      startoff);
2968       off += p->data_size();
2969     }
2970
2971   this->set_data_size(off - startoff);
2972 }
2973
2974 // Reset the address and file offset.
2975
2976 void
2977 Output_section::do_reset_address_and_file_offset()
2978 {
2979   // An unallocated section has no address.  Forcing this means that
2980   // we don't need special treatment for symbols defined in debug
2981   // sections.  We do the same in the constructor.  This does not
2982   // apply to NOLOAD sections though.
2983   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
2984      this->set_address(0);
2985
2986   for (Input_section_list::iterator p = this->input_sections_.begin();
2987        p != this->input_sections_.end();
2988        ++p)
2989     p->reset_address_and_file_offset();
2990 }
2991   
2992 // Return true if address and file offset have the values after reset.
2993
2994 bool
2995 Output_section::do_address_and_file_offset_have_reset_values() const
2996 {
2997   if (this->is_offset_valid())
2998     return false;
2999
3000   // An unallocated section has address 0 after its construction or a reset.
3001   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3002     return this->is_address_valid() && this->address() == 0;
3003   else
3004     return !this->is_address_valid();
3005 }
3006
3007 // Set the TLS offset.  Called only for SHT_TLS sections.
3008
3009 void
3010 Output_section::do_set_tls_offset(uint64_t tls_base)
3011 {
3012   this->tls_offset_ = this->address() - tls_base;
3013 }
3014
3015 // In a few cases we need to sort the input sections attached to an
3016 // output section.  This is used to implement the type of constructor
3017 // priority ordering implemented by the GNU linker, in which the
3018 // priority becomes part of the section name and the sections are
3019 // sorted by name.  We only do this for an output section if we see an
3020 // attached input section matching ".ctor.*", ".dtor.*",
3021 // ".init_array.*" or ".fini_array.*".
3022
3023 class Output_section::Input_section_sort_entry
3024 {
3025  public:
3026   Input_section_sort_entry()
3027     : input_section_(), index_(-1U), section_has_name_(false),
3028       section_name_()
3029   { }
3030
3031   Input_section_sort_entry(const Input_section& input_section,
3032                            unsigned int index,
3033                            bool must_sort_attached_input_sections)
3034     : input_section_(input_section), index_(index),
3035       section_has_name_(input_section.is_input_section()
3036                         || input_section.is_relaxed_input_section())
3037   {
3038     if (this->section_has_name_
3039         && must_sort_attached_input_sections)
3040       {
3041         // This is only called single-threaded from Layout::finalize,
3042         // so it is OK to lock.  Unfortunately we have no way to pass
3043         // in a Task token.
3044         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3045         Object* obj = (input_section.is_input_section()
3046                        ? input_section.relobj()
3047                        : input_section.relaxed_input_section()->relobj());
3048         Task_lock_obj<Object> tl(dummy_task, obj);
3049
3050         // This is a slow operation, which should be cached in
3051         // Layout::layout if this becomes a speed problem.
3052         this->section_name_ = obj->section_name(input_section.shndx());
3053       }
3054   }
3055
3056   // Return the Input_section.
3057   const Input_section&
3058   input_section() const
3059   {
3060     gold_assert(this->index_ != -1U);
3061     return this->input_section_;
3062   }
3063
3064   // The index of this entry in the original list.  This is used to
3065   // make the sort stable.
3066   unsigned int
3067   index() const
3068   {
3069     gold_assert(this->index_ != -1U);
3070     return this->index_;
3071   }
3072
3073   // Whether there is a section name.
3074   bool
3075   section_has_name() const
3076   { return this->section_has_name_; }
3077
3078   // The section name.
3079   const std::string&
3080   section_name() const
3081   {
3082     gold_assert(this->section_has_name_);
3083     return this->section_name_;
3084   }
3085
3086   // Return true if the section name has a priority.  This is assumed
3087   // to be true if it has a dot after the initial dot.
3088   bool
3089   has_priority() const
3090   {
3091     gold_assert(this->section_has_name_);
3092     return this->section_name_.find('.', 1) != std::string::npos;
3093   }
3094
3095   // Return true if this an input file whose base name matches
3096   // FILE_NAME.  The base name must have an extension of ".o", and
3097   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3098   // This is to match crtbegin.o as well as crtbeginS.o without
3099   // getting confused by other possibilities.  Overall matching the
3100   // file name this way is a dreadful hack, but the GNU linker does it
3101   // in order to better support gcc, and we need to be compatible.
3102   bool
3103   match_file_name(const char* match_file_name) const
3104   {
3105     const std::string& file_name(this->input_section_.relobj()->name());
3106     const char* base_name = lbasename(file_name.c_str());
3107     size_t match_len = strlen(match_file_name);
3108     if (strncmp(base_name, match_file_name, match_len) != 0)
3109       return false;
3110     size_t base_len = strlen(base_name);
3111     if (base_len != match_len + 2 && base_len != match_len + 3)
3112       return false;
3113     return memcmp(base_name + base_len - 2, ".o", 2) == 0;
3114   }
3115
3116   // Returns 1 if THIS should appear before S in section order, -1 if S
3117   // appears before THIS and 0 if they are not comparable.
3118   int
3119   compare_section_ordering(const Input_section_sort_entry& s) const
3120   {
3121     unsigned int this_secn_index = this->input_section_.section_order_index();
3122     unsigned int s_secn_index = s.input_section().section_order_index();
3123     if (this_secn_index > 0 && s_secn_index > 0)
3124       {
3125         if (this_secn_index < s_secn_index)
3126           return 1;
3127         else if (this_secn_index > s_secn_index)
3128           return -1;
3129       }
3130     return 0;
3131   }
3132
3133  private:
3134   // The Input_section we are sorting.
3135   Input_section input_section_;
3136   // The index of this Input_section in the original list.
3137   unsigned int index_;
3138   // Whether this Input_section has a section name--it won't if this
3139   // is some random Output_section_data.
3140   bool section_has_name_;
3141   // The section name if there is one.
3142   std::string section_name_;
3143 };
3144
3145 // Return true if S1 should come before S2 in the output section.
3146
3147 bool
3148 Output_section::Input_section_sort_compare::operator()(
3149     const Output_section::Input_section_sort_entry& s1,
3150     const Output_section::Input_section_sort_entry& s2) const
3151 {
3152   // crtbegin.o must come first.
3153   bool s1_begin = s1.match_file_name("crtbegin");
3154   bool s2_begin = s2.match_file_name("crtbegin");
3155   if (s1_begin || s2_begin)
3156     {
3157       if (!s1_begin)
3158         return false;
3159       if (!s2_begin)
3160         return true;
3161       return s1.index() < s2.index();
3162     }
3163
3164   // crtend.o must come last.
3165   bool s1_end = s1.match_file_name("crtend");
3166   bool s2_end = s2.match_file_name("crtend");
3167   if (s1_end || s2_end)
3168     {
3169       if (!s1_end)
3170         return true;
3171       if (!s2_end)
3172         return false;
3173       return s1.index() < s2.index();
3174     }
3175
3176   // We sort all the sections with no names to the end.
3177   if (!s1.section_has_name() || !s2.section_has_name())
3178     {
3179       if (s1.section_has_name())
3180         return true;
3181       if (s2.section_has_name())
3182         return false;
3183       return s1.index() < s2.index();
3184     }
3185
3186   // A section with a priority follows a section without a priority.
3187   bool s1_has_priority = s1.has_priority();
3188   bool s2_has_priority = s2.has_priority();
3189   if (s1_has_priority && !s2_has_priority)
3190     return false;
3191   if (!s1_has_priority && s2_has_priority)
3192     return true;
3193
3194   // Check if a section order exists for these sections through a section
3195   // ordering file.  If sequence_num is 0, an order does not exist.
3196   int sequence_num = s1.compare_section_ordering(s2);
3197   if (sequence_num != 0)
3198     return sequence_num == 1;
3199
3200   // Otherwise we sort by name.
3201   int compare = s1.section_name().compare(s2.section_name());
3202   if (compare != 0)
3203     return compare < 0;
3204
3205   // Otherwise we keep the input order.
3206   return s1.index() < s2.index();
3207 }
3208
3209 // Return true if S1 should come before S2 in an .init_array or .fini_array
3210 // output section.
3211
3212 bool
3213 Output_section::Input_section_sort_init_fini_compare::operator()(
3214     const Output_section::Input_section_sort_entry& s1,
3215     const Output_section::Input_section_sort_entry& s2) const
3216 {
3217   // We sort all the sections with no names to the end.
3218   if (!s1.section_has_name() || !s2.section_has_name())
3219     {
3220       if (s1.section_has_name())
3221         return true;
3222       if (s2.section_has_name())
3223         return false;
3224       return s1.index() < s2.index();
3225     }
3226
3227   // A section without a priority follows a section with a priority.
3228   // This is the reverse of .ctors and .dtors sections.
3229   bool s1_has_priority = s1.has_priority();
3230   bool s2_has_priority = s2.has_priority();
3231   if (s1_has_priority && !s2_has_priority)
3232     return true;
3233   if (!s1_has_priority && s2_has_priority)
3234     return false;
3235
3236   // Check if a section order exists for these sections through a section
3237   // ordering file.  If sequence_num is 0, an order does not exist.
3238   int sequence_num = s1.compare_section_ordering(s2);
3239   if (sequence_num != 0)
3240     return sequence_num == 1;
3241
3242   // Otherwise we sort by name.
3243   int compare = s1.section_name().compare(s2.section_name());
3244   if (compare != 0)
3245     return compare < 0;
3246
3247   // Otherwise we keep the input order.
3248   return s1.index() < s2.index();
3249 }
3250
3251 // Return true if S1 should come before S2.  Sections that do not match
3252 // any pattern in the section ordering file are placed ahead of the sections
3253 // that match some pattern.
3254
3255 bool
3256 Output_section::Input_section_sort_section_order_index_compare::operator()(
3257     const Output_section::Input_section_sort_entry& s1,
3258     const Output_section::Input_section_sort_entry& s2) const
3259 {
3260   unsigned int s1_secn_index = s1.input_section().section_order_index();
3261   unsigned int s2_secn_index = s2.input_section().section_order_index();
3262
3263   // Keep input order if section ordering cannot determine order.
3264   if (s1_secn_index == s2_secn_index)
3265     return s1.index() < s2.index();
3266   
3267   return s1_secn_index < s2_secn_index;
3268 }
3269
3270 // Sort the input sections attached to an output section.
3271
3272 void
3273 Output_section::sort_attached_input_sections()
3274 {
3275   if (this->attached_input_sections_are_sorted_)
3276     return;
3277
3278   if (this->checkpoint_ != NULL
3279       && !this->checkpoint_->input_sections_saved())
3280     this->checkpoint_->save_input_sections();
3281
3282   // The only thing we know about an input section is the object and
3283   // the section index.  We need the section name.  Recomputing this
3284   // is slow but this is an unusual case.  If this becomes a speed
3285   // problem we can cache the names as required in Layout::layout.
3286
3287   // We start by building a larger vector holding a copy of each
3288   // Input_section, plus its current index in the list and its name.
3289   std::vector<Input_section_sort_entry> sort_list;
3290
3291   unsigned int i = 0;
3292   for (Input_section_list::iterator p = this->input_sections_.begin();
3293        p != this->input_sections_.end();
3294        ++p, ++i)
3295       sort_list.push_back(Input_section_sort_entry(*p, i,
3296                             this->must_sort_attached_input_sections()));
3297
3298   // Sort the input sections.
3299   if (this->must_sort_attached_input_sections())
3300     {
3301       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3302           || this->type() == elfcpp::SHT_INIT_ARRAY
3303           || this->type() == elfcpp::SHT_FINI_ARRAY)
3304         std::sort(sort_list.begin(), sort_list.end(),
3305                   Input_section_sort_init_fini_compare());
3306       else
3307         std::sort(sort_list.begin(), sort_list.end(),
3308                   Input_section_sort_compare());
3309     }
3310   else
3311     {
3312       gold_assert(parameters->options().section_ordering_file());
3313       std::sort(sort_list.begin(), sort_list.end(),
3314                 Input_section_sort_section_order_index_compare());
3315     }
3316
3317   // Copy the sorted input sections back to our list.
3318   this->input_sections_.clear();
3319   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3320        p != sort_list.end();
3321        ++p)
3322     this->input_sections_.push_back(p->input_section());
3323   sort_list.clear();
3324
3325   // Remember that we sorted the input sections, since we might get
3326   // called again.
3327   this->attached_input_sections_are_sorted_ = true;
3328 }
3329
3330 // Write the section header to *OSHDR.
3331
3332 template<int size, bool big_endian>
3333 void
3334 Output_section::write_header(const Layout* layout,
3335                              const Stringpool* secnamepool,
3336                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3337 {
3338   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3339   oshdr->put_sh_type(this->type_);
3340
3341   elfcpp::Elf_Xword flags = this->flags_;
3342   if (this->info_section_ != NULL && this->info_uses_section_index_)
3343     flags |= elfcpp::SHF_INFO_LINK;
3344   oshdr->put_sh_flags(flags);
3345
3346   oshdr->put_sh_addr(this->address());
3347   oshdr->put_sh_offset(this->offset());
3348   oshdr->put_sh_size(this->data_size());
3349   if (this->link_section_ != NULL)
3350     oshdr->put_sh_link(this->link_section_->out_shndx());
3351   else if (this->should_link_to_symtab_)
3352     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3353   else if (this->should_link_to_dynsym_)
3354     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3355   else
3356     oshdr->put_sh_link(this->link_);
3357
3358   elfcpp::Elf_Word info;
3359   if (this->info_section_ != NULL)
3360     {
3361       if (this->info_uses_section_index_)
3362         info = this->info_section_->out_shndx();
3363       else
3364         info = this->info_section_->symtab_index();
3365     }
3366   else if (this->info_symndx_ != NULL)
3367     info = this->info_symndx_->symtab_index();
3368   else
3369     info = this->info_;
3370   oshdr->put_sh_info(info);
3371
3372   oshdr->put_sh_addralign(this->addralign_);
3373   oshdr->put_sh_entsize(this->entsize_);
3374 }
3375
3376 // Write out the data.  For input sections the data is written out by
3377 // Object::relocate, but we have to handle Output_section_data objects
3378 // here.
3379
3380 void
3381 Output_section::do_write(Output_file* of)
3382 {
3383   gold_assert(!this->requires_postprocessing());
3384
3385   // If the target performs relaxation, we delay filler generation until now.
3386   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3387
3388   off_t output_section_file_offset = this->offset();
3389   for (Fill_list::iterator p = this->fills_.begin();
3390        p != this->fills_.end();
3391        ++p)
3392     {
3393       std::string fill_data(parameters->target().code_fill(p->length()));
3394       of->write(output_section_file_offset + p->section_offset(),
3395                 fill_data.data(), fill_data.size());
3396     }
3397
3398   off_t off = this->offset() + this->first_input_offset_;
3399   for (Input_section_list::iterator p = this->input_sections_.begin();
3400        p != this->input_sections_.end();
3401        ++p)
3402     {
3403       off_t aligned_off = align_address(off, p->addralign());
3404       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3405         {
3406           size_t fill_len = aligned_off - off;
3407           std::string fill_data(parameters->target().code_fill(fill_len));
3408           of->write(off, fill_data.data(), fill_data.size());
3409         }
3410
3411       p->write(of);
3412       off = aligned_off + p->data_size();
3413     }
3414 }
3415
3416 // If a section requires postprocessing, create the buffer to use.
3417
3418 void
3419 Output_section::create_postprocessing_buffer()
3420 {
3421   gold_assert(this->requires_postprocessing());
3422
3423   if (this->postprocessing_buffer_ != NULL)
3424     return;
3425
3426   if (!this->input_sections_.empty())
3427     {
3428       off_t off = this->first_input_offset_;
3429       for (Input_section_list::iterator p = this->input_sections_.begin();
3430            p != this->input_sections_.end();
3431            ++p)
3432         {
3433           off = align_address(off, p->addralign());
3434           p->finalize_data_size();
3435           off += p->data_size();
3436         }
3437       this->set_current_data_size_for_child(off);
3438     }
3439
3440   off_t buffer_size = this->current_data_size_for_child();
3441   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3442 }
3443
3444 // Write all the data of an Output_section into the postprocessing
3445 // buffer.  This is used for sections which require postprocessing,
3446 // such as compression.  Input sections are handled by
3447 // Object::Relocate.
3448
3449 void
3450 Output_section::write_to_postprocessing_buffer()
3451 {
3452   gold_assert(this->requires_postprocessing());
3453
3454   // If the target performs relaxation, we delay filler generation until now.
3455   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3456
3457   unsigned char* buffer = this->postprocessing_buffer();
3458   for (Fill_list::iterator p = this->fills_.begin();
3459        p != this->fills_.end();
3460        ++p)
3461     {
3462       std::string fill_data(parameters->target().code_fill(p->length()));
3463       memcpy(buffer + p->section_offset(), fill_data.data(),
3464              fill_data.size());
3465     }
3466
3467   off_t off = this->first_input_offset_;
3468   for (Input_section_list::iterator p = this->input_sections_.begin();
3469        p != this->input_sections_.end();
3470        ++p)
3471     {
3472       off_t aligned_off = align_address(off, p->addralign());
3473       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3474         {
3475           size_t fill_len = aligned_off - off;
3476           std::string fill_data(parameters->target().code_fill(fill_len));
3477           memcpy(buffer + off, fill_data.data(), fill_data.size());
3478         }
3479
3480       p->write_to_buffer(buffer + aligned_off);
3481       off = aligned_off + p->data_size();
3482     }
3483 }
3484
3485 // Get the input sections for linker script processing.  We leave
3486 // behind the Output_section_data entries.  Note that this may be
3487 // slightly incorrect for merge sections.  We will leave them behind,
3488 // but it is possible that the script says that they should follow
3489 // some other input sections, as in:
3490 //    .rodata { *(.rodata) *(.rodata.cst*) }
3491 // For that matter, we don't handle this correctly:
3492 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3493 // With luck this will never matter.
3494
3495 uint64_t
3496 Output_section::get_input_sections(
3497     uint64_t address,
3498     const std::string& fill,
3499     std::list<Input_section>* input_sections)
3500 {
3501   if (this->checkpoint_ != NULL
3502       && !this->checkpoint_->input_sections_saved())
3503     this->checkpoint_->save_input_sections();
3504
3505   // Invalidate fast look-up maps.
3506   this->lookup_maps_->invalidate();
3507
3508   uint64_t orig_address = address;
3509
3510   address = align_address(address, this->addralign());
3511
3512   Input_section_list remaining;
3513   for (Input_section_list::iterator p = this->input_sections_.begin();
3514        p != this->input_sections_.end();
3515        ++p)
3516     {
3517       if (p->is_input_section()
3518           || p->is_relaxed_input_section()
3519           || p->is_merge_section())
3520         input_sections->push_back(*p);
3521       else
3522         {
3523           uint64_t aligned_address = align_address(address, p->addralign());
3524           if (aligned_address != address && !fill.empty())
3525             {
3526               section_size_type length =
3527                 convert_to_section_size_type(aligned_address - address);
3528               std::string this_fill;
3529               this_fill.reserve(length);
3530               while (this_fill.length() + fill.length() <= length)
3531                 this_fill += fill;
3532               if (this_fill.length() < length)
3533                 this_fill.append(fill, 0, length - this_fill.length());
3534
3535               Output_section_data* posd = new Output_data_const(this_fill, 0);
3536               remaining.push_back(Input_section(posd));
3537             }
3538           address = aligned_address;
3539
3540           remaining.push_back(*p);
3541
3542           p->finalize_data_size();
3543           address += p->data_size();
3544         }
3545     }
3546
3547   this->input_sections_.swap(remaining);
3548   this->first_input_offset_ = 0;
3549
3550   uint64_t data_size = address - orig_address;
3551   this->set_current_data_size_for_child(data_size);
3552   return data_size;
3553 }
3554
3555 // Add a script input section.  SIS is an Output_section::Input_section,
3556 // which can be either a plain input section or a special input section like
3557 // a relaxed input section.  For a special input section, its size must be
3558 // finalized.
3559
3560 void
3561 Output_section::add_script_input_section(const Input_section& sis)
3562 {
3563   uint64_t data_size = sis.data_size();
3564   uint64_t addralign = sis.addralign();
3565   if (addralign > this->addralign_)
3566     this->addralign_ = addralign;
3567
3568   off_t offset_in_section = this->current_data_size_for_child();
3569   off_t aligned_offset_in_section = align_address(offset_in_section,
3570                                                   addralign);
3571
3572   this->set_current_data_size_for_child(aligned_offset_in_section
3573                                         + data_size);
3574
3575   this->input_sections_.push_back(sis);
3576
3577   // Update fast lookup maps if necessary. 
3578   if (this->lookup_maps_->is_valid())
3579     {
3580       if (sis.is_merge_section())
3581         {
3582           Output_merge_base* pomb = sis.output_merge_base();
3583           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3584                                        pomb->addralign());
3585           this->lookup_maps_->add_merge_section(msp, pomb);
3586           for (Output_merge_base::Input_sections::const_iterator p =
3587                  pomb->input_sections_begin();
3588                p != pomb->input_sections_end();
3589                ++p)
3590             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3591                                                         pomb);
3592         }
3593       else if (sis.is_relaxed_input_section())
3594         {
3595           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3596           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3597                                                         poris->shndx(), poris);
3598         }
3599     }
3600 }
3601
3602 // Save states for relaxation.
3603
3604 void
3605 Output_section::save_states()
3606 {
3607   gold_assert(this->checkpoint_ == NULL);
3608   Checkpoint_output_section* checkpoint =
3609     new Checkpoint_output_section(this->addralign_, this->flags_,
3610                                   this->input_sections_,
3611                                   this->first_input_offset_,
3612                                   this->attached_input_sections_are_sorted_);
3613   this->checkpoint_ = checkpoint;
3614   gold_assert(this->fills_.empty());
3615 }
3616
3617 void
3618 Output_section::discard_states()
3619 {
3620   gold_assert(this->checkpoint_ != NULL);
3621   delete this->checkpoint_;
3622   this->checkpoint_ = NULL;
3623   gold_assert(this->fills_.empty());
3624
3625   // Simply invalidate the fast lookup maps since we do not keep
3626   // track of them.
3627   this->lookup_maps_->invalidate();
3628 }
3629
3630 void
3631 Output_section::restore_states()
3632 {
3633   gold_assert(this->checkpoint_ != NULL);
3634   Checkpoint_output_section* checkpoint = this->checkpoint_;
3635
3636   this->addralign_ = checkpoint->addralign();
3637   this->flags_ = checkpoint->flags();
3638   this->first_input_offset_ = checkpoint->first_input_offset();
3639
3640   if (!checkpoint->input_sections_saved())
3641     {
3642       // If we have not copied the input sections, just resize it.
3643       size_t old_size = checkpoint->input_sections_size();
3644       gold_assert(this->input_sections_.size() >= old_size);
3645       this->input_sections_.resize(old_size);
3646     }
3647   else
3648     {
3649       // We need to copy the whole list.  This is not efficient for
3650       // extremely large output with hundreads of thousands of input
3651       // objects.  We may need to re-think how we should pass sections
3652       // to scripts.
3653       this->input_sections_ = *checkpoint->input_sections();
3654     }
3655
3656   this->attached_input_sections_are_sorted_ =
3657     checkpoint->attached_input_sections_are_sorted();
3658
3659   // Simply invalidate the fast lookup maps since we do not keep
3660   // track of them.
3661   this->lookup_maps_->invalidate();
3662 }
3663
3664 // Update the section offsets of input sections in this.  This is required if
3665 // relaxation causes some input sections to change sizes.
3666
3667 void
3668 Output_section::adjust_section_offsets()
3669 {
3670   if (!this->section_offsets_need_adjustment_)
3671     return;
3672
3673   off_t off = 0;
3674   for (Input_section_list::iterator p = this->input_sections_.begin();
3675        p != this->input_sections_.end();
3676        ++p)
3677     {
3678       off = align_address(off, p->addralign());
3679       if (p->is_input_section())
3680         p->relobj()->set_section_offset(p->shndx(), off);
3681       off += p->data_size();
3682     }
3683
3684   this->section_offsets_need_adjustment_ = false;
3685 }
3686
3687 // Print to the map file.
3688
3689 void
3690 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3691 {
3692   mapfile->print_output_section(this);
3693
3694   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3695        p != this->input_sections_.end();
3696        ++p)
3697     p->print_to_mapfile(mapfile);
3698 }
3699
3700 // Print stats for merge sections to stderr.
3701
3702 void
3703 Output_section::print_merge_stats()
3704 {
3705   Input_section_list::iterator p;
3706   for (p = this->input_sections_.begin();
3707        p != this->input_sections_.end();
3708        ++p)
3709     p->print_merge_stats(this->name_);
3710 }
3711
3712 // Set a fixed layout for the section.  Used for incremental update links.
3713
3714 void
3715 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3716                                  off_t sh_size, uint64_t sh_addralign)
3717 {
3718   this->addralign_ = sh_addralign;
3719   this->set_current_data_size(sh_size);
3720   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3721     this->set_address(sh_addr);
3722   this->set_file_offset(sh_offset);
3723   this->finalize_data_size();
3724   this->free_list_.init(sh_size, false);
3725   this->has_fixed_layout_ = true;
3726 }
3727
3728 // Reserve space within the fixed layout for the section.  Used for
3729 // incremental update links.
3730
3731 void
3732 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3733 {
3734   this->free_list_.remove(sh_offset, sh_offset + sh_size);
3735 }
3736
3737 // Allocate space from the free list for the section.  Used for
3738 // incremental update links.
3739
3740 off_t
3741 Output_section::allocate(off_t len, uint64_t addralign)
3742 {
3743   return this->free_list_.allocate(len, addralign, 0);
3744 }
3745
3746 // Output segment methods.
3747
3748 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3749   : vaddr_(0),
3750     paddr_(0),
3751     memsz_(0),
3752     max_align_(0),
3753     min_p_align_(0),
3754     offset_(0),
3755     filesz_(0),
3756     type_(type),
3757     flags_(flags),
3758     is_max_align_known_(false),
3759     are_addresses_set_(false),
3760     is_large_data_segment_(false)
3761 {
3762   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3763   // the flags.
3764   if (type == elfcpp::PT_TLS)
3765     this->flags_ = elfcpp::PF_R;
3766 }
3767
3768 // Add an Output_section to a PT_LOAD Output_segment.
3769
3770 void
3771 Output_segment::add_output_section_to_load(Layout* layout,
3772                                            Output_section* os,
3773                                            elfcpp::Elf_Word seg_flags)
3774 {
3775   gold_assert(this->type() == elfcpp::PT_LOAD);
3776   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3777   gold_assert(!this->is_max_align_known_);
3778   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3779
3780   this->update_flags_for_output_section(seg_flags);
3781
3782   // We don't want to change the ordering if we have a linker script
3783   // with a SECTIONS clause.
3784   Output_section_order order = os->order();
3785   if (layout->script_options()->saw_sections_clause())
3786     order = static_cast<Output_section_order>(0);
3787   else
3788     gold_assert(order != ORDER_INVALID);
3789
3790   this->output_lists_[order].push_back(os);
3791 }
3792
3793 // Add an Output_section to a non-PT_LOAD Output_segment.
3794
3795 void
3796 Output_segment::add_output_section_to_nonload(Output_section* os,
3797                                               elfcpp::Elf_Word seg_flags)
3798 {
3799   gold_assert(this->type() != elfcpp::PT_LOAD);
3800   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3801   gold_assert(!this->is_max_align_known_);
3802
3803   this->update_flags_for_output_section(seg_flags);
3804
3805   this->output_lists_[0].push_back(os);
3806 }
3807
3808 // Remove an Output_section from this segment.  It is an error if it
3809 // is not present.
3810
3811 void
3812 Output_segment::remove_output_section(Output_section* os)
3813 {
3814   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3815     {
3816       Output_data_list* pdl = &this->output_lists_[i];
3817       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
3818         {
3819           if (*p == os)
3820             {
3821               pdl->erase(p);
3822               return;
3823             }
3824         }
3825     }
3826   gold_unreachable();
3827 }
3828
3829 // Add an Output_data (which need not be an Output_section) to the
3830 // start of a segment.
3831
3832 void
3833 Output_segment::add_initial_output_data(Output_data* od)
3834 {
3835   gold_assert(!this->is_max_align_known_);
3836   Output_data_list::iterator p = this->output_lists_[0].begin();
3837   this->output_lists_[0].insert(p, od);
3838 }
3839
3840 // Return true if this segment has any sections which hold actual
3841 // data, rather than being a BSS section.
3842
3843 bool
3844 Output_segment::has_any_data_sections() const
3845 {
3846   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3847     {
3848       const Output_data_list* pdl = &this->output_lists_[i];
3849       for (Output_data_list::const_iterator p = pdl->begin();
3850            p != pdl->end();
3851            ++p)
3852         {
3853           if (!(*p)->is_section())
3854             return true;
3855           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
3856             return true;
3857         }
3858     }
3859   return false;
3860 }
3861
3862 // Return whether the first data section (not counting TLS sections)
3863 // is a relro section.
3864
3865 bool
3866 Output_segment::is_first_section_relro() const
3867 {
3868   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3869     {
3870       if (i == static_cast<int>(ORDER_TLS_DATA)
3871           || i == static_cast<int>(ORDER_TLS_BSS))
3872         continue;
3873       const Output_data_list* pdl = &this->output_lists_[i];
3874       if (!pdl->empty())
3875         {
3876           Output_data* p = pdl->front();
3877           return p->is_section() && p->output_section()->is_relro();
3878         }
3879     }
3880   return false;
3881 }
3882
3883 // Return the maximum alignment of the Output_data in Output_segment.
3884
3885 uint64_t
3886 Output_segment::maximum_alignment()
3887 {
3888   if (!this->is_max_align_known_)
3889     {
3890       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3891         {       
3892           const Output_data_list* pdl = &this->output_lists_[i];
3893           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
3894           if (addralign > this->max_align_)
3895             this->max_align_ = addralign;
3896         }
3897       this->is_max_align_known_ = true;
3898     }
3899
3900   return this->max_align_;
3901 }
3902
3903 // Return the maximum alignment of a list of Output_data.
3904
3905 uint64_t
3906 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3907 {
3908   uint64_t ret = 0;
3909   for (Output_data_list::const_iterator p = pdl->begin();
3910        p != pdl->end();
3911        ++p)
3912     {
3913       uint64_t addralign = (*p)->addralign();
3914       if (addralign > ret)
3915         ret = addralign;
3916     }
3917   return ret;
3918 }
3919
3920 // Return whether this segment has any dynamic relocs.
3921
3922 bool
3923 Output_segment::has_dynamic_reloc() const
3924 {
3925   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3926     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
3927       return true;
3928   return false;
3929 }
3930
3931 // Return whether this Output_data_list has any dynamic relocs.
3932
3933 bool
3934 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
3935 {
3936   for (Output_data_list::const_iterator p = pdl->begin();
3937        p != pdl->end();
3938        ++p)
3939     if ((*p)->has_dynamic_reloc())
3940       return true;
3941   return false;
3942 }
3943
3944 // Set the section addresses for an Output_segment.  If RESET is true,
3945 // reset the addresses first.  ADDR is the address and *POFF is the
3946 // file offset.  Set the section indexes starting with *PSHNDX.
3947 // INCREASE_RELRO is the size of the portion of the first non-relro
3948 // section that should be included in the PT_GNU_RELRO segment.
3949 // If this segment has relro sections, and has been aligned for
3950 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
3951 // the immediately following segment.  Update *HAS_RELRO, *POFF,
3952 // and *PSHNDX.
3953
3954 uint64_t
3955 Output_segment::set_section_addresses(Layout* layout, bool reset,
3956                                       uint64_t addr,
3957                                       unsigned int* increase_relro,
3958                                       bool* has_relro,
3959                                       off_t* poff,
3960                                       unsigned int* pshndx)
3961 {
3962   gold_assert(this->type_ == elfcpp::PT_LOAD);
3963
3964   uint64_t last_relro_pad = 0;
3965   off_t orig_off = *poff;
3966
3967   bool in_tls = false;
3968
3969   // If we have relro sections, we need to pad forward now so that the
3970   // relro sections plus INCREASE_RELRO end on a common page boundary.
3971   if (parameters->options().relro()
3972       && this->is_first_section_relro()
3973       && (!this->are_addresses_set_ || reset))
3974     {
3975       uint64_t relro_size = 0;
3976       off_t off = *poff;
3977       uint64_t max_align = 0;
3978       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
3979         {
3980           Output_data_list* pdl = &this->output_lists_[i];
3981           Output_data_list::iterator p;
3982           for (p = pdl->begin(); p != pdl->end(); ++p)
3983             {
3984               if (!(*p)->is_section())
3985                 break;
3986               uint64_t align = (*p)->addralign();
3987               if (align > max_align)
3988                 max_align = align;
3989               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3990                 in_tls = true;
3991               else if (in_tls)
3992                 {
3993                   // Align the first non-TLS section to the alignment
3994                   // of the TLS segment.
3995                   align = max_align;
3996                   in_tls = false;
3997                 }
3998               relro_size = align_address(relro_size, align);
3999               // Ignore the size of the .tbss section.
4000               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4001                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4002                 continue;
4003               if ((*p)->is_address_valid())
4004                 relro_size += (*p)->data_size();
4005               else
4006                 {
4007                   // FIXME: This could be faster.
4008                   (*p)->set_address_and_file_offset(addr + relro_size,
4009                                                     off + relro_size);
4010                   relro_size += (*p)->data_size();
4011                   (*p)->reset_address_and_file_offset();
4012                 }
4013             }
4014           if (p != pdl->end())
4015             break;
4016         }
4017       relro_size += *increase_relro;
4018       // Pad the total relro size to a multiple of the maximum
4019       // section alignment seen.
4020       uint64_t aligned_size = align_address(relro_size, max_align);
4021       // Note the amount of padding added after the last relro section.
4022       last_relro_pad = aligned_size - relro_size;
4023       *has_relro = true;
4024
4025       uint64_t page_align = parameters->target().common_pagesize();
4026
4027       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4028       uint64_t desired_align = page_align - (aligned_size % page_align);
4029       if (desired_align < *poff % page_align)
4030         *poff += page_align - *poff % page_align;
4031       *poff += desired_align - *poff % page_align;
4032       addr += *poff - orig_off;
4033       orig_off = *poff;
4034     }
4035
4036   if (!reset && this->are_addresses_set_)
4037     {
4038       gold_assert(this->paddr_ == addr);
4039       addr = this->vaddr_;
4040     }
4041   else
4042     {
4043       this->vaddr_ = addr;
4044       this->paddr_ = addr;
4045       this->are_addresses_set_ = true;
4046     }
4047
4048   in_tls = false;
4049
4050   this->offset_ = orig_off;
4051
4052   off_t off = 0;
4053   uint64_t ret;
4054   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4055     {
4056       if (i == static_cast<int>(ORDER_RELRO_LAST))
4057         {
4058           *poff += last_relro_pad;
4059           addr += last_relro_pad;
4060           if (this->output_lists_[i].empty())
4061             {
4062               // If there is nothing in the ORDER_RELRO_LAST list,
4063               // the padding will occur at the end of the relro
4064               // segment, and we need to add it to *INCREASE_RELRO.
4065               *increase_relro += last_relro_pad;
4066             }
4067         }
4068       addr = this->set_section_list_addresses(layout, reset,
4069                                               &this->output_lists_[i],
4070                                               addr, poff, pshndx, &in_tls);
4071       if (i < static_cast<int>(ORDER_SMALL_BSS))
4072         {
4073           this->filesz_ = *poff - orig_off;
4074           off = *poff;
4075         }
4076
4077       ret = addr;
4078     }
4079
4080   // If the last section was a TLS section, align upward to the
4081   // alignment of the TLS segment, so that the overall size of the TLS
4082   // segment is aligned.
4083   if (in_tls)
4084     {
4085       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4086       *poff = align_address(*poff, segment_align);
4087     }
4088
4089   this->memsz_ = *poff - orig_off;
4090
4091   // Ignore the file offset adjustments made by the BSS Output_data
4092   // objects.
4093   *poff = off;
4094
4095   return ret;
4096 }
4097
4098 // Set the addresses and file offsets in a list of Output_data
4099 // structures.
4100
4101 uint64_t
4102 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4103                                            Output_data_list* pdl,
4104                                            uint64_t addr, off_t* poff,
4105                                            unsigned int* pshndx,
4106                                            bool* in_tls)
4107 {
4108   off_t startoff = *poff;
4109   // For incremental updates, we may allocate non-fixed sections from
4110   // free space in the file.  This keeps track of the high-water mark.
4111   off_t maxoff = startoff;
4112
4113   off_t off = startoff;
4114   for (Output_data_list::iterator p = pdl->begin();
4115        p != pdl->end();
4116        ++p)
4117     {
4118       if (reset)
4119         (*p)->reset_address_and_file_offset();
4120
4121       // When doing an incremental update or when using a linker script,
4122       // the section will most likely already have an address.
4123       if (!(*p)->is_address_valid())
4124         {
4125           uint64_t align = (*p)->addralign();
4126
4127           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4128             {
4129               // Give the first TLS section the alignment of the
4130               // entire TLS segment.  Otherwise the TLS segment as a
4131               // whole may be misaligned.
4132               if (!*in_tls)
4133                 {
4134                   Output_segment* tls_segment = layout->tls_segment();
4135                   gold_assert(tls_segment != NULL);
4136                   uint64_t segment_align = tls_segment->maximum_alignment();
4137                   gold_assert(segment_align >= align);
4138                   align = segment_align;
4139
4140                   *in_tls = true;
4141                 }
4142             }
4143           else
4144             {
4145               // If this is the first section after the TLS segment,
4146               // align it to at least the alignment of the TLS
4147               // segment, so that the size of the overall TLS segment
4148               // is aligned.
4149               if (*in_tls)
4150                 {
4151                   uint64_t segment_align =
4152                       layout->tls_segment()->maximum_alignment();
4153                   if (segment_align > align)
4154                     align = segment_align;
4155
4156                   *in_tls = false;
4157                 }
4158             }
4159
4160           if (!parameters->incremental_update())
4161             {
4162               off = align_address(off, align);
4163               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4164             }
4165           else
4166             {
4167               // Incremental update: allocate file space from free list.
4168               (*p)->pre_finalize_data_size();
4169               off_t current_size = (*p)->current_data_size();
4170               off = layout->allocate(current_size, align, startoff);
4171               if (off == -1)
4172                 {
4173                   gold_assert((*p)->output_section() != NULL);
4174                   gold_fallback(_("out of patch space for section %s; "
4175                                   "relink with --incremental-full"),
4176                                 (*p)->output_section()->name());
4177                 }
4178               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4179               if ((*p)->data_size() > current_size)
4180                 {
4181                   gold_assert((*p)->output_section() != NULL);
4182                   gold_fallback(_("%s: section changed size; "
4183                                   "relink with --incremental-full"),
4184                                 (*p)->output_section()->name());
4185                 }
4186             }
4187         }
4188       else if (parameters->incremental_update())
4189         {
4190           // For incremental updates, use the fixed offset for the
4191           // high-water mark computation.
4192           off = (*p)->offset();
4193         }
4194       else
4195         {
4196           // The script may have inserted a skip forward, but it
4197           // better not have moved backward.
4198           if ((*p)->address() >= addr + (off - startoff))
4199             off += (*p)->address() - (addr + (off - startoff));
4200           else
4201             {
4202               if (!layout->script_options()->saw_sections_clause())
4203                 gold_unreachable();
4204               else
4205                 {
4206                   Output_section* os = (*p)->output_section();
4207
4208                   // Cast to unsigned long long to avoid format warnings.
4209                   unsigned long long previous_dot =
4210                     static_cast<unsigned long long>(addr + (off - startoff));
4211                   unsigned long long dot =
4212                     static_cast<unsigned long long>((*p)->address());
4213
4214                   if (os == NULL)
4215                     gold_error(_("dot moves backward in linker script "
4216                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4217                   else
4218                     gold_error(_("address of section '%s' moves backward "
4219                                  "from 0x%llx to 0x%llx"),
4220                                os->name(), previous_dot, dot);
4221                 }
4222             }
4223           (*p)->set_file_offset(off);
4224           (*p)->finalize_data_size();
4225         }
4226
4227       gold_debug(DEBUG_INCREMENTAL,
4228                  "set_section_list_addresses: %08lx %08lx %s",
4229                  static_cast<long>(off),
4230                  static_cast<long>((*p)->data_size()),
4231                  ((*p)->output_section() != NULL
4232                   ? (*p)->output_section()->name() : "(special)"));
4233
4234       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
4235       // section.  Such a section does not affect the size of a
4236       // PT_LOAD segment.
4237       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4238           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4239         off += (*p)->data_size();
4240
4241       if (off > maxoff)
4242         maxoff = off;
4243
4244       if ((*p)->is_section())
4245         {
4246           (*p)->set_out_shndx(*pshndx);
4247           ++*pshndx;
4248         }
4249     }
4250
4251   *poff = maxoff;
4252   return addr + (maxoff - startoff);
4253 }
4254
4255 // For a non-PT_LOAD segment, set the offset from the sections, if
4256 // any.  Add INCREASE to the file size and the memory size.
4257
4258 void
4259 Output_segment::set_offset(unsigned int increase)
4260 {
4261   gold_assert(this->type_ != elfcpp::PT_LOAD);
4262
4263   gold_assert(!this->are_addresses_set_);
4264
4265   // A non-load section only uses output_lists_[0].
4266
4267   Output_data_list* pdl = &this->output_lists_[0];
4268
4269   if (pdl->empty())
4270     {
4271       gold_assert(increase == 0);
4272       this->vaddr_ = 0;
4273       this->paddr_ = 0;
4274       this->are_addresses_set_ = true;
4275       this->memsz_ = 0;
4276       this->min_p_align_ = 0;
4277       this->offset_ = 0;
4278       this->filesz_ = 0;
4279       return;
4280     }
4281
4282   // Find the first and last section by address.
4283   const Output_data* first = NULL;
4284   const Output_data* last_data = NULL;
4285   const Output_data* last_bss = NULL;
4286   for (Output_data_list::const_iterator p = pdl->begin();
4287        p != pdl->end();
4288        ++p)
4289     {
4290       if (first == NULL
4291           || (*p)->address() < first->address()
4292           || ((*p)->address() == first->address()
4293               && (*p)->data_size() < first->data_size()))
4294         first = *p;
4295       const Output_data** plast;
4296       if ((*p)->is_section()
4297           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4298         plast = &last_bss;
4299       else
4300         plast = &last_data;
4301       if (*plast == NULL
4302           || (*p)->address() > (*plast)->address()
4303           || ((*p)->address() == (*plast)->address()
4304               && (*p)->data_size() > (*plast)->data_size()))
4305         *plast = *p;
4306     }
4307
4308   this->vaddr_ = first->address();
4309   this->paddr_ = (first->has_load_address()
4310                   ? first->load_address()
4311                   : this->vaddr_);
4312   this->are_addresses_set_ = true;
4313   this->offset_ = first->offset();
4314
4315   if (last_data == NULL)
4316     this->filesz_ = 0;
4317   else
4318     this->filesz_ = (last_data->address()
4319                      + last_data->data_size()
4320                      - this->vaddr_);
4321
4322   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4323   this->memsz_ = (last->address()
4324                   + last->data_size()
4325                   - this->vaddr_);
4326
4327   this->filesz_ += increase;
4328   this->memsz_ += increase;
4329
4330   // If this is a RELRO segment, verify that the segment ends at a
4331   // page boundary.
4332   if (this->type_ == elfcpp::PT_GNU_RELRO)
4333     {
4334       uint64_t page_align = parameters->target().common_pagesize();
4335       uint64_t segment_end = this->vaddr_ + this->memsz_;
4336       if (parameters->incremental_update())
4337         {
4338           // The INCREASE_RELRO calculation is bypassed for an incremental
4339           // update, so we need to adjust the segment size manually here.
4340           segment_end = align_address(segment_end, page_align);
4341           this->memsz_ = segment_end - this->vaddr_;
4342         }
4343       else
4344         gold_assert(segment_end == align_address(segment_end, page_align));
4345     }
4346
4347   // If this is a TLS segment, align the memory size.  The code in
4348   // set_section_list ensures that the section after the TLS segment
4349   // is aligned to give us room.
4350   if (this->type_ == elfcpp::PT_TLS)
4351     {
4352       uint64_t segment_align = this->maximum_alignment();
4353       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4354       this->memsz_ = align_address(this->memsz_, segment_align);
4355     }
4356 }
4357
4358 // Set the TLS offsets of the sections in the PT_TLS segment.
4359
4360 void
4361 Output_segment::set_tls_offsets()
4362 {
4363   gold_assert(this->type_ == elfcpp::PT_TLS);
4364
4365   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4366        p != this->output_lists_[0].end();
4367        ++p)
4368     (*p)->set_tls_offset(this->vaddr_);
4369 }
4370
4371 // Return the load address of the first section.
4372
4373 uint64_t
4374 Output_segment::first_section_load_address() const
4375 {
4376   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4377     {
4378       const Output_data_list* pdl = &this->output_lists_[i];
4379       for (Output_data_list::const_iterator p = pdl->begin();
4380            p != pdl->end();
4381            ++p)
4382         {
4383           if ((*p)->is_section())
4384             return ((*p)->has_load_address()
4385                     ? (*p)->load_address()
4386                     : (*p)->address());
4387         }
4388     }
4389   gold_unreachable();
4390 }
4391
4392 // Return the number of Output_sections in an Output_segment.
4393
4394 unsigned int
4395 Output_segment::output_section_count() const
4396 {
4397   unsigned int ret = 0;
4398   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4399     ret += this->output_section_count_list(&this->output_lists_[i]);
4400   return ret;
4401 }
4402
4403 // Return the number of Output_sections in an Output_data_list.
4404
4405 unsigned int
4406 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4407 {
4408   unsigned int count = 0;
4409   for (Output_data_list::const_iterator p = pdl->begin();
4410        p != pdl->end();
4411        ++p)
4412     {
4413       if ((*p)->is_section())
4414         ++count;
4415     }
4416   return count;
4417 }
4418
4419 // Return the section attached to the list segment with the lowest
4420 // load address.  This is used when handling a PHDRS clause in a
4421 // linker script.
4422
4423 Output_section*
4424 Output_segment::section_with_lowest_load_address() const
4425 {
4426   Output_section* found = NULL;
4427   uint64_t found_lma = 0;
4428   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4429     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4430                                       &found_lma);
4431   return found;
4432 }
4433
4434 // Look through a list for a section with a lower load address.
4435
4436 void
4437 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4438                                             Output_section** found,
4439                                             uint64_t* found_lma) const
4440 {
4441   for (Output_data_list::const_iterator p = pdl->begin();
4442        p != pdl->end();
4443        ++p)
4444     {
4445       if (!(*p)->is_section())
4446         continue;
4447       Output_section* os = static_cast<Output_section*>(*p);
4448       uint64_t lma = (os->has_load_address()
4449                       ? os->load_address()
4450                       : os->address());
4451       if (*found == NULL || lma < *found_lma)
4452         {
4453           *found = os;
4454           *found_lma = lma;
4455         }
4456     }
4457 }
4458
4459 // Write the segment data into *OPHDR.
4460
4461 template<int size, bool big_endian>
4462 void
4463 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4464 {
4465   ophdr->put_p_type(this->type_);
4466   ophdr->put_p_offset(this->offset_);
4467   ophdr->put_p_vaddr(this->vaddr_);
4468   ophdr->put_p_paddr(this->paddr_);
4469   ophdr->put_p_filesz(this->filesz_);
4470   ophdr->put_p_memsz(this->memsz_);
4471   ophdr->put_p_flags(this->flags_);
4472   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4473 }
4474
4475 // Write the section headers into V.
4476
4477 template<int size, bool big_endian>
4478 unsigned char*
4479 Output_segment::write_section_headers(const Layout* layout,
4480                                       const Stringpool* secnamepool,
4481                                       unsigned char* v,
4482                                       unsigned int* pshndx) const
4483 {
4484   // Every section that is attached to a segment must be attached to a
4485   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4486   // segments.
4487   if (this->type_ != elfcpp::PT_LOAD)
4488     return v;
4489
4490   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4491     {
4492       const Output_data_list* pdl = &this->output_lists_[i];
4493       v = this->write_section_headers_list<size, big_endian>(layout,
4494                                                              secnamepool,
4495                                                              pdl,
4496                                                              v, pshndx);
4497     }
4498
4499   return v;
4500 }
4501
4502 template<int size, bool big_endian>
4503 unsigned char*
4504 Output_segment::write_section_headers_list(const Layout* layout,
4505                                            const Stringpool* secnamepool,
4506                                            const Output_data_list* pdl,
4507                                            unsigned char* v,
4508                                            unsigned int* pshndx) const
4509 {
4510   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4511   for (Output_data_list::const_iterator p = pdl->begin();
4512        p != pdl->end();
4513        ++p)
4514     {
4515       if ((*p)->is_section())
4516         {
4517           const Output_section* ps = static_cast<const Output_section*>(*p);
4518           gold_assert(*pshndx == ps->out_shndx());
4519           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4520           ps->write_header(layout, secnamepool, &oshdr);
4521           v += shdr_size;
4522           ++*pshndx;
4523         }
4524     }
4525   return v;
4526 }
4527
4528 // Print the output sections to the map file.
4529
4530 void
4531 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4532 {
4533   if (this->type() != elfcpp::PT_LOAD)
4534     return;
4535   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4536     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4537 }
4538
4539 // Print an output section list to the map file.
4540
4541 void
4542 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4543                                               const Output_data_list* pdl) const
4544 {
4545   for (Output_data_list::const_iterator p = pdl->begin();
4546        p != pdl->end();
4547        ++p)
4548     (*p)->print_to_mapfile(mapfile);
4549 }
4550
4551 // Output_file methods.
4552
4553 Output_file::Output_file(const char* name)
4554   : name_(name),
4555     o_(-1),
4556     file_size_(0),
4557     base_(NULL),
4558     map_is_anonymous_(false),
4559     map_is_allocated_(false),
4560     is_temporary_(false)
4561 {
4562 }
4563
4564 // Try to open an existing file.  Returns false if the file doesn't
4565 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4566 // NULL, open that file as the base for incremental linking, and
4567 // copy its contents to the new output file.  This routine can
4568 // be called for incremental updates, in which case WRITABLE should
4569 // be true, or by the incremental-dump utility, in which case
4570 // WRITABLE should be false.
4571
4572 bool
4573 Output_file::open_base_file(const char* base_name, bool writable)
4574 {
4575   // The name "-" means "stdout".
4576   if (strcmp(this->name_, "-") == 0)
4577     return false;
4578
4579   bool use_base_file = base_name != NULL;
4580   if (!use_base_file)
4581     base_name = this->name_;
4582   else if (strcmp(base_name, this->name_) == 0)
4583     gold_fatal(_("%s: incremental base and output file name are the same"),
4584                base_name);
4585
4586   // Don't bother opening files with a size of zero.
4587   struct stat s;
4588   if (::stat(base_name, &s) != 0)
4589     {
4590       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4591       return false;
4592     }
4593   if (s.st_size == 0)
4594     {
4595       gold_info(_("%s: incremental base file is empty"), base_name);
4596       return false;
4597     }
4598
4599   // If we're using a base file, we want to open it read-only.
4600   if (use_base_file)
4601     writable = false;
4602
4603   int oflags = writable ? O_RDWR : O_RDONLY;
4604   int o = open_descriptor(-1, base_name, oflags, 0);
4605   if (o < 0)
4606     {
4607       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4608       return false;
4609     }
4610
4611   // If the base file and the output file are different, open a
4612   // new output file and read the contents from the base file into
4613   // the newly-mapped region.
4614   if (use_base_file)
4615     {
4616       this->open(s.st_size);
4617       ssize_t len = ::read(o, this->base_, s.st_size);
4618       if (len < 0)
4619         {
4620           gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4621           return false;
4622         }
4623       if (len < s.st_size)
4624         {
4625           gold_info(_("%s: file too short"), base_name);
4626           return false;
4627         }
4628       ::close(o);
4629       return true;
4630     }
4631
4632   this->o_ = o;
4633   this->file_size_ = s.st_size;
4634
4635   if (!this->map_no_anonymous(writable))
4636     {
4637       release_descriptor(o, true);
4638       this->o_ = -1;
4639       this->file_size_ = 0;
4640       return false;
4641     }
4642
4643   return true;
4644 }
4645
4646 // Open the output file.
4647
4648 void
4649 Output_file::open(off_t file_size)
4650 {
4651   this->file_size_ = file_size;
4652
4653   // Unlink the file first; otherwise the open() may fail if the file
4654   // is busy (e.g. it's an executable that's currently being executed).
4655   //
4656   // However, the linker may be part of a system where a zero-length
4657   // file is created for it to write to, with tight permissions (gcc
4658   // 2.95 did something like this).  Unlinking the file would work
4659   // around those permission controls, so we only unlink if the file
4660   // has a non-zero size.  We also unlink only regular files to avoid
4661   // trouble with directories/etc.
4662   //
4663   // If we fail, continue; this command is merely a best-effort attempt
4664   // to improve the odds for open().
4665
4666   // We let the name "-" mean "stdout"
4667   if (!this->is_temporary_)
4668     {
4669       if (strcmp(this->name_, "-") == 0)
4670         this->o_ = STDOUT_FILENO;
4671       else
4672         {
4673           struct stat s;
4674           if (::stat(this->name_, &s) == 0
4675               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4676             {
4677               if (s.st_size != 0)
4678                 ::unlink(this->name_);
4679               else if (!parameters->options().relocatable())
4680                 {
4681                   // If we don't unlink the existing file, add execute
4682                   // permission where read permissions already exist
4683                   // and where the umask permits.
4684                   int mask = ::umask(0);
4685                   ::umask(mask);
4686                   s.st_mode |= (s.st_mode & 0444) >> 2;
4687                   ::chmod(this->name_, s.st_mode & ~mask);
4688                 }
4689             }
4690
4691           int mode = parameters->options().relocatable() ? 0666 : 0777;
4692           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4693                                   mode);
4694           if (o < 0)
4695             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4696           this->o_ = o;
4697         }
4698     }
4699
4700   this->map();
4701 }
4702
4703 // Resize the output file.
4704
4705 void
4706 Output_file::resize(off_t file_size)
4707 {
4708   // If the mmap is mapping an anonymous memory buffer, this is easy:
4709   // just mremap to the new size.  If it's mapping to a file, we want
4710   // to unmap to flush to the file, then remap after growing the file.
4711   if (this->map_is_anonymous_)
4712     {
4713       void* base;
4714       if (!this->map_is_allocated_)
4715         {
4716           base = ::mremap(this->base_, this->file_size_, file_size,
4717                           MREMAP_MAYMOVE);
4718           if (base == MAP_FAILED)
4719             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4720         }
4721       else
4722         {
4723           base = realloc(this->base_, file_size);
4724           if (base == NULL)
4725             gold_nomem();
4726           if (file_size > this->file_size_)
4727             memset(static_cast<char*>(base) + this->file_size_, 0,
4728                    file_size - this->file_size_);
4729         }
4730       this->base_ = static_cast<unsigned char*>(base);
4731       this->file_size_ = file_size;
4732     }
4733   else
4734     {
4735       this->unmap();
4736       this->file_size_ = file_size;
4737       if (!this->map_no_anonymous(true))
4738         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4739     }
4740 }
4741
4742 // Map an anonymous block of memory which will later be written to the
4743 // file.  Return whether the map succeeded.
4744
4745 bool
4746 Output_file::map_anonymous()
4747 {
4748   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4749                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4750   if (base == MAP_FAILED)
4751     {
4752       base = malloc(this->file_size_);
4753       if (base == NULL)
4754         return false;
4755       memset(base, 0, this->file_size_);
4756       this->map_is_allocated_ = true;
4757     }
4758   this->base_ = static_cast<unsigned char*>(base);
4759   this->map_is_anonymous_ = true;
4760   return true;
4761 }
4762
4763 // Map the file into memory.  Return whether the mapping succeeded.
4764 // If WRITABLE is true, map with write access.
4765
4766 bool
4767 Output_file::map_no_anonymous(bool writable)
4768 {
4769   const int o = this->o_;
4770
4771   // If the output file is not a regular file, don't try to mmap it;
4772   // instead, we'll mmap a block of memory (an anonymous buffer), and
4773   // then later write the buffer to the file.
4774   void* base;
4775   struct stat statbuf;
4776   if (o == STDOUT_FILENO || o == STDERR_FILENO
4777       || ::fstat(o, &statbuf) != 0
4778       || !S_ISREG(statbuf.st_mode)
4779       || this->is_temporary_)
4780     return false;
4781
4782   // Ensure that we have disk space available for the file.  If we
4783   // don't do this, it is possible that we will call munmap, close,
4784   // and exit with dirty buffers still in the cache with no assigned
4785   // disk blocks.  If the disk is out of space at that point, the
4786   // output file will wind up incomplete, but we will have already
4787   // exited.  The alternative to fallocate would be to use fdatasync,
4788   // but that would be a more significant performance hit.
4789   if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
4790     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4791
4792   // Map the file into memory.
4793   int prot = PROT_READ;
4794   if (writable)
4795     prot |= PROT_WRITE;
4796   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
4797
4798   // The mmap call might fail because of file system issues: the file
4799   // system might not support mmap at all, or it might not support
4800   // mmap with PROT_WRITE.
4801   if (base == MAP_FAILED)
4802     return false;
4803
4804   this->map_is_anonymous_ = false;
4805   this->base_ = static_cast<unsigned char*>(base);
4806   return true;
4807 }
4808
4809 // Map the file into memory.
4810
4811 void
4812 Output_file::map()
4813 {
4814   if (this->map_no_anonymous(true))
4815     return;
4816
4817   // The mmap call might fail because of file system issues: the file
4818   // system might not support mmap at all, or it might not support
4819   // mmap with PROT_WRITE.  I'm not sure which errno values we will
4820   // see in all cases, so if the mmap fails for any reason and we
4821   // don't care about file contents, try for an anonymous map.
4822   if (this->map_anonymous())
4823     return;
4824
4825   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4826              this->name_, static_cast<unsigned long>(this->file_size_),
4827              strerror(errno));
4828 }
4829
4830 // Unmap the file from memory.
4831
4832 void
4833 Output_file::unmap()
4834 {
4835   if (this->map_is_anonymous_)
4836     {
4837       // We've already written out the data, so there is no reason to
4838       // waste time unmapping or freeing the memory.
4839     }
4840   else
4841     {
4842       if (::munmap(this->base_, this->file_size_) < 0)
4843         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4844     }
4845   this->base_ = NULL;
4846 }
4847
4848 // Close the output file.
4849
4850 void
4851 Output_file::close()
4852 {
4853   // If the map isn't file-backed, we need to write it now.
4854   if (this->map_is_anonymous_ && !this->is_temporary_)
4855     {
4856       size_t bytes_to_write = this->file_size_;
4857       size_t offset = 0;
4858       while (bytes_to_write > 0)
4859         {
4860           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4861                                           bytes_to_write);
4862           if (bytes_written == 0)
4863             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4864           else if (bytes_written < 0)
4865             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4866           else
4867             {
4868               bytes_to_write -= bytes_written;
4869               offset += bytes_written;
4870             }
4871         }
4872     }
4873   this->unmap();
4874
4875   // We don't close stdout or stderr
4876   if (this->o_ != STDOUT_FILENO
4877       && this->o_ != STDERR_FILENO
4878       && !this->is_temporary_)
4879     if (::close(this->o_) < 0)
4880       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4881   this->o_ = -1;
4882 }
4883
4884 // Instantiate the templates we need.  We could use the configure
4885 // script to restrict this to only the ones for implemented targets.
4886
4887 #ifdef HAVE_TARGET_32_LITTLE
4888 template
4889 off_t
4890 Output_section::add_input_section<32, false>(
4891     Layout* layout,
4892     Sized_relobj_file<32, false>* object,
4893     unsigned int shndx,
4894     const char* secname,
4895     const elfcpp::Shdr<32, false>& shdr,
4896     unsigned int reloc_shndx,
4897     bool have_sections_script);
4898 #endif
4899
4900 #ifdef HAVE_TARGET_32_BIG
4901 template
4902 off_t
4903 Output_section::add_input_section<32, true>(
4904     Layout* layout,
4905     Sized_relobj_file<32, true>* object,
4906     unsigned int shndx,
4907     const char* secname,
4908     const elfcpp::Shdr<32, true>& shdr,
4909     unsigned int reloc_shndx,
4910     bool have_sections_script);
4911 #endif
4912
4913 #ifdef HAVE_TARGET_64_LITTLE
4914 template
4915 off_t
4916 Output_section::add_input_section<64, false>(
4917     Layout* layout,
4918     Sized_relobj_file<64, false>* object,
4919     unsigned int shndx,
4920     const char* secname,
4921     const elfcpp::Shdr<64, false>& shdr,
4922     unsigned int reloc_shndx,
4923     bool have_sections_script);
4924 #endif
4925
4926 #ifdef HAVE_TARGET_64_BIG
4927 template
4928 off_t
4929 Output_section::add_input_section<64, true>(
4930     Layout* layout,
4931     Sized_relobj_file<64, true>* object,
4932     unsigned int shndx,
4933     const char* secname,
4934     const elfcpp::Shdr<64, true>& shdr,
4935     unsigned int reloc_shndx,
4936     bool have_sections_script);
4937 #endif
4938
4939 #ifdef HAVE_TARGET_32_LITTLE
4940 template
4941 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4942 #endif
4943
4944 #ifdef HAVE_TARGET_32_BIG
4945 template
4946 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4947 #endif
4948
4949 #ifdef HAVE_TARGET_64_LITTLE
4950 template
4951 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4952 #endif
4953
4954 #ifdef HAVE_TARGET_64_BIG
4955 template
4956 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4957 #endif
4958
4959 #ifdef HAVE_TARGET_32_LITTLE
4960 template
4961 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4962 #endif
4963
4964 #ifdef HAVE_TARGET_32_BIG
4965 template
4966 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4967 #endif
4968
4969 #ifdef HAVE_TARGET_64_LITTLE
4970 template
4971 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4972 #endif
4973
4974 #ifdef HAVE_TARGET_64_BIG
4975 template
4976 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4977 #endif
4978
4979 #ifdef HAVE_TARGET_32_LITTLE
4980 template
4981 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4982 #endif
4983
4984 #ifdef HAVE_TARGET_32_BIG
4985 template
4986 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4987 #endif
4988
4989 #ifdef HAVE_TARGET_64_LITTLE
4990 template
4991 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4992 #endif
4993
4994 #ifdef HAVE_TARGET_64_BIG
4995 template
4996 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4997 #endif
4998
4999 #ifdef HAVE_TARGET_32_LITTLE
5000 template
5001 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5002 #endif
5003
5004 #ifdef HAVE_TARGET_32_BIG
5005 template
5006 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5007 #endif
5008
5009 #ifdef HAVE_TARGET_64_LITTLE
5010 template
5011 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5012 #endif
5013
5014 #ifdef HAVE_TARGET_64_BIG
5015 template
5016 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5017 #endif
5018
5019 #ifdef HAVE_TARGET_32_LITTLE
5020 template
5021 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5022 #endif
5023
5024 #ifdef HAVE_TARGET_32_BIG
5025 template
5026 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5027 #endif
5028
5029 #ifdef HAVE_TARGET_64_LITTLE
5030 template
5031 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5032 #endif
5033
5034 #ifdef HAVE_TARGET_64_BIG
5035 template
5036 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5037 #endif
5038
5039 #ifdef HAVE_TARGET_32_LITTLE
5040 template
5041 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5042 #endif
5043
5044 #ifdef HAVE_TARGET_32_BIG
5045 template
5046 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5047 #endif
5048
5049 #ifdef HAVE_TARGET_64_LITTLE
5050 template
5051 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5052 #endif
5053
5054 #ifdef HAVE_TARGET_64_BIG
5055 template
5056 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5057 #endif
5058
5059 #ifdef HAVE_TARGET_32_LITTLE
5060 template
5061 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5062 #endif
5063
5064 #ifdef HAVE_TARGET_32_BIG
5065 template
5066 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5067 #endif
5068
5069 #ifdef HAVE_TARGET_64_LITTLE
5070 template
5071 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5072 #endif
5073
5074 #ifdef HAVE_TARGET_64_BIG
5075 template
5076 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5077 #endif
5078
5079 #ifdef HAVE_TARGET_32_LITTLE
5080 template
5081 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5082 #endif
5083
5084 #ifdef HAVE_TARGET_32_BIG
5085 template
5086 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5087 #endif
5088
5089 #ifdef HAVE_TARGET_64_LITTLE
5090 template
5091 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5092 #endif
5093
5094 #ifdef HAVE_TARGET_64_BIG
5095 template
5096 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5097 #endif
5098
5099 #ifdef HAVE_TARGET_32_LITTLE
5100 template
5101 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5102 #endif
5103
5104 #ifdef HAVE_TARGET_32_BIG
5105 template
5106 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5107 #endif
5108
5109 #ifdef HAVE_TARGET_64_LITTLE
5110 template
5111 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5112 #endif
5113
5114 #ifdef HAVE_TARGET_64_BIG
5115 template
5116 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5117 #endif
5118
5119 #ifdef HAVE_TARGET_32_LITTLE
5120 template
5121 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5122 #endif
5123
5124 #ifdef HAVE_TARGET_32_BIG
5125 template
5126 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5127 #endif
5128
5129 #ifdef HAVE_TARGET_64_LITTLE
5130 template
5131 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5132 #endif
5133
5134 #ifdef HAVE_TARGET_64_BIG
5135 template
5136 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5137 #endif
5138
5139 #ifdef HAVE_TARGET_32_LITTLE
5140 template
5141 class Output_data_group<32, false>;
5142 #endif
5143
5144 #ifdef HAVE_TARGET_32_BIG
5145 template
5146 class Output_data_group<32, true>;
5147 #endif
5148
5149 #ifdef HAVE_TARGET_64_LITTLE
5150 template
5151 class Output_data_group<64, false>;
5152 #endif
5153
5154 #ifdef HAVE_TARGET_64_BIG
5155 template
5156 class Output_data_group<64, true>;
5157 #endif
5158
5159 #ifdef HAVE_TARGET_32_LITTLE
5160 template
5161 class Output_data_got<32, false>;
5162 #endif
5163
5164 #ifdef HAVE_TARGET_32_BIG
5165 template
5166 class Output_data_got<32, true>;
5167 #endif
5168
5169 #ifdef HAVE_TARGET_64_LITTLE
5170 template
5171 class Output_data_got<64, false>;
5172 #endif
5173
5174 #ifdef HAVE_TARGET_64_BIG
5175 template
5176 class Output_data_got<64, true>;
5177 #endif
5178
5179 } // End namespace gold.