PR 7091
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"   // for unlink_if_ordinary()
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS  MAP_ANON
46 #endif
47
48 namespace gold
49 {
50
51 // Output_data variables.
52
53 bool Output_data::allocated_sizes_are_fixed;
54
55 // Output_data methods.
56
57 Output_data::~Output_data()
58 {
59 }
60
61 // Return the default alignment for the target size.
62
63 uint64_t
64 Output_data::default_alignment()
65 {
66   return Output_data::default_alignment_for_size(
67       parameters->target().get_size());
68 }
69
70 // Return the default alignment for a size--32 or 64.
71
72 uint64_t
73 Output_data::default_alignment_for_size(int size)
74 {
75   if (size == 32)
76     return 4;
77   else if (size == 64)
78     return 8;
79   else
80     gold_unreachable();
81 }
82
83 // Output_section_header methods.  This currently assumes that the
84 // segment and section lists are complete at construction time.
85
86 Output_section_headers::Output_section_headers(
87     const Layout* layout,
88     const Layout::Segment_list* segment_list,
89     const Layout::Section_list* section_list,
90     const Layout::Section_list* unattached_section_list,
91     const Stringpool* secnamepool,
92     const Output_section* shstrtab_section)
93   : layout_(layout),
94     segment_list_(segment_list),
95     section_list_(section_list),
96     unattached_section_list_(unattached_section_list),
97     secnamepool_(secnamepool),
98     shstrtab_section_(shstrtab_section)
99 {
100   // Count all the sections.  Start with 1 for the null section.
101   off_t count = 1;
102   if (!parameters->options().relocatable())
103     {
104       for (Layout::Segment_list::const_iterator p = segment_list->begin();
105            p != segment_list->end();
106            ++p)
107         if ((*p)->type() == elfcpp::PT_LOAD)
108           count += (*p)->output_section_count();
109     }
110   else
111     {
112       for (Layout::Section_list::const_iterator p = section_list->begin();
113            p != section_list->end();
114            ++p)
115         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
116           ++count;
117     }
118   count += unattached_section_list->size();
119
120   const int size = parameters->target().get_size();
121   int shdr_size;
122   if (size == 32)
123     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
124   else if (size == 64)
125     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
126   else
127     gold_unreachable();
128
129   this->set_data_size(count * shdr_size);
130 }
131
132 // Write out the section headers.
133
134 void
135 Output_section_headers::do_write(Output_file* of)
136 {
137   switch (parameters->size_and_endianness())
138     {
139 #ifdef HAVE_TARGET_32_LITTLE
140     case Parameters::TARGET_32_LITTLE:
141       this->do_sized_write<32, false>(of);
142       break;
143 #endif
144 #ifdef HAVE_TARGET_32_BIG
145     case Parameters::TARGET_32_BIG:
146       this->do_sized_write<32, true>(of);
147       break;
148 #endif
149 #ifdef HAVE_TARGET_64_LITTLE
150     case Parameters::TARGET_64_LITTLE:
151       this->do_sized_write<64, false>(of);
152       break;
153 #endif
154 #ifdef HAVE_TARGET_64_BIG
155     case Parameters::TARGET_64_BIG:
156       this->do_sized_write<64, true>(of);
157       break;
158 #endif
159     default:
160       gold_unreachable();
161     }
162 }
163
164 template<int size, bool big_endian>
165 void
166 Output_section_headers::do_sized_write(Output_file* of)
167 {
168   off_t all_shdrs_size = this->data_size();
169   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
170
171   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
172   unsigned char* v = view;
173
174   {
175     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
176     oshdr.put_sh_name(0);
177     oshdr.put_sh_type(elfcpp::SHT_NULL);
178     oshdr.put_sh_flags(0);
179     oshdr.put_sh_addr(0);
180     oshdr.put_sh_offset(0);
181
182     size_t section_count = (this->data_size()
183                             / elfcpp::Elf_sizes<size>::shdr_size);
184     if (section_count < elfcpp::SHN_LORESERVE)
185       oshdr.put_sh_size(0);
186     else
187       oshdr.put_sh_size(section_count);
188
189     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
190     if (shstrndx < elfcpp::SHN_LORESERVE)
191       oshdr.put_sh_link(0);
192     else
193       oshdr.put_sh_link(shstrndx);
194
195     oshdr.put_sh_info(0);
196     oshdr.put_sh_addralign(0);
197     oshdr.put_sh_entsize(0);
198   }
199
200   v += shdr_size;
201
202   unsigned int shndx = 1;
203   if (!parameters->options().relocatable())
204     {
205       for (Layout::Segment_list::const_iterator p =
206              this->segment_list_->begin();
207            p != this->segment_list_->end();
208            ++p)
209         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
210                                                           this->secnamepool_,
211                                                           v,
212                                                           &shndx);
213     }
214   else
215     {
216       for (Layout::Section_list::const_iterator p =
217              this->section_list_->begin();
218            p != this->section_list_->end();
219            ++p)
220         {
221           // We do unallocated sections below, except that group
222           // sections have to come first.
223           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
224               && (*p)->type() != elfcpp::SHT_GROUP)
225             continue;
226           gold_assert(shndx == (*p)->out_shndx());
227           elfcpp::Shdr_write<size, big_endian> oshdr(v);
228           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
229           v += shdr_size;
230           ++shndx;
231         }
232     }
233
234   for (Layout::Section_list::const_iterator p =
235          this->unattached_section_list_->begin();
236        p != this->unattached_section_list_->end();
237        ++p)
238     {
239       // For a relocatable link, we did unallocated group sections
240       // above, since they have to come first.
241       if ((*p)->type() == elfcpp::SHT_GROUP
242           && parameters->options().relocatable())
243         continue;
244       gold_assert(shndx == (*p)->out_shndx());
245       elfcpp::Shdr_write<size, big_endian> oshdr(v);
246       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
247       v += shdr_size;
248       ++shndx;
249     }
250
251   of->write_output_view(this->offset(), all_shdrs_size, view);
252 }
253
254 // Output_segment_header methods.
255
256 Output_segment_headers::Output_segment_headers(
257     const Layout::Segment_list& segment_list)
258   : segment_list_(segment_list)
259 {
260   const int size = parameters->target().get_size();
261   int phdr_size;
262   if (size == 32)
263     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
264   else if (size == 64)
265     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
266   else
267     gold_unreachable();
268
269   this->set_data_size(segment_list.size() * phdr_size);
270 }
271
272 void
273 Output_segment_headers::do_write(Output_file* of)
274 {
275   switch (parameters->size_and_endianness())
276     {
277 #ifdef HAVE_TARGET_32_LITTLE
278     case Parameters::TARGET_32_LITTLE:
279       this->do_sized_write<32, false>(of);
280       break;
281 #endif
282 #ifdef HAVE_TARGET_32_BIG
283     case Parameters::TARGET_32_BIG:
284       this->do_sized_write<32, true>(of);
285       break;
286 #endif
287 #ifdef HAVE_TARGET_64_LITTLE
288     case Parameters::TARGET_64_LITTLE:
289       this->do_sized_write<64, false>(of);
290       break;
291 #endif
292 #ifdef HAVE_TARGET_64_BIG
293     case Parameters::TARGET_64_BIG:
294       this->do_sized_write<64, true>(of);
295       break;
296 #endif
297     default:
298       gold_unreachable();
299     }
300 }
301
302 template<int size, bool big_endian>
303 void
304 Output_segment_headers::do_sized_write(Output_file* of)
305 {
306   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
307   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
308   gold_assert(all_phdrs_size == this->data_size());
309   unsigned char* view = of->get_output_view(this->offset(),
310                                             all_phdrs_size);
311   unsigned char* v = view;
312   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
313        p != this->segment_list_.end();
314        ++p)
315     {
316       elfcpp::Phdr_write<size, big_endian> ophdr(v);
317       (*p)->write_header(&ophdr);
318       v += phdr_size;
319     }
320
321   gold_assert(v - view == all_phdrs_size);
322
323   of->write_output_view(this->offset(), all_phdrs_size, view);
324 }
325
326 // Output_file_header methods.
327
328 Output_file_header::Output_file_header(const Target* target,
329                                        const Symbol_table* symtab,
330                                        const Output_segment_headers* osh,
331                                        const char* entry)
332   : target_(target),
333     symtab_(symtab),
334     segment_header_(osh),
335     section_header_(NULL),
336     shstrtab_(NULL),
337     entry_(entry)
338 {
339   const int size = parameters->target().get_size();
340   int ehdr_size;
341   if (size == 32)
342     ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
343   else if (size == 64)
344     ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
345   else
346     gold_unreachable();
347
348   this->set_data_size(ehdr_size);
349 }
350
351 // Set the section table information for a file header.
352
353 void
354 Output_file_header::set_section_info(const Output_section_headers* shdrs,
355                                      const Output_section* shstrtab)
356 {
357   this->section_header_ = shdrs;
358   this->shstrtab_ = shstrtab;
359 }
360
361 // Write out the file header.
362
363 void
364 Output_file_header::do_write(Output_file* of)
365 {
366   gold_assert(this->offset() == 0);
367
368   switch (parameters->size_and_endianness())
369     {
370 #ifdef HAVE_TARGET_32_LITTLE
371     case Parameters::TARGET_32_LITTLE:
372       this->do_sized_write<32, false>(of);
373       break;
374 #endif
375 #ifdef HAVE_TARGET_32_BIG
376     case Parameters::TARGET_32_BIG:
377       this->do_sized_write<32, true>(of);
378       break;
379 #endif
380 #ifdef HAVE_TARGET_64_LITTLE
381     case Parameters::TARGET_64_LITTLE:
382       this->do_sized_write<64, false>(of);
383       break;
384 #endif
385 #ifdef HAVE_TARGET_64_BIG
386     case Parameters::TARGET_64_BIG:
387       this->do_sized_write<64, true>(of);
388       break;
389 #endif
390     default:
391       gold_unreachable();
392     }
393 }
394
395 // Write out the file header with appropriate size and endianess.
396
397 template<int size, bool big_endian>
398 void
399 Output_file_header::do_sized_write(Output_file* of)
400 {
401   gold_assert(this->offset() == 0);
402
403   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
404   unsigned char* view = of->get_output_view(0, ehdr_size);
405   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
406
407   unsigned char e_ident[elfcpp::EI_NIDENT];
408   memset(e_ident, 0, elfcpp::EI_NIDENT);
409   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
410   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
411   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
412   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
413   if (size == 32)
414     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
415   else if (size == 64)
416     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
417   else
418     gold_unreachable();
419   e_ident[elfcpp::EI_DATA] = (big_endian
420                               ? elfcpp::ELFDATA2MSB
421                               : elfcpp::ELFDATA2LSB);
422   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
423   // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
424   oehdr.put_e_ident(e_ident);
425
426   elfcpp::ET e_type;
427   if (parameters->options().relocatable())
428     e_type = elfcpp::ET_REL;
429   else if (parameters->options().shared())
430     e_type = elfcpp::ET_DYN;
431   else
432     e_type = elfcpp::ET_EXEC;
433   oehdr.put_e_type(e_type);
434
435   oehdr.put_e_machine(this->target_->machine_code());
436   oehdr.put_e_version(elfcpp::EV_CURRENT);
437
438   oehdr.put_e_entry(this->entry<size>());
439
440   if (this->segment_header_ == NULL)
441     oehdr.put_e_phoff(0);
442   else
443     oehdr.put_e_phoff(this->segment_header_->offset());
444
445   oehdr.put_e_shoff(this->section_header_->offset());
446
447   // FIXME: The target needs to set the flags.
448   oehdr.put_e_flags(0);
449
450   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
451
452   if (this->segment_header_ == NULL)
453     {
454       oehdr.put_e_phentsize(0);
455       oehdr.put_e_phnum(0);
456     }
457   else
458     {
459       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
460       oehdr.put_e_phnum(this->segment_header_->data_size()
461                         / elfcpp::Elf_sizes<size>::phdr_size);
462     }
463
464   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
465   size_t section_count = (this->section_header_->data_size()
466                           / elfcpp::Elf_sizes<size>::shdr_size);
467
468   if (section_count < elfcpp::SHN_LORESERVE)
469     oehdr.put_e_shnum(this->section_header_->data_size()
470                       / elfcpp::Elf_sizes<size>::shdr_size);
471   else
472     oehdr.put_e_shnum(0);
473
474   unsigned int shstrndx = this->shstrtab_->out_shndx();
475   if (shstrndx < elfcpp::SHN_LORESERVE)
476     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
477   else
478     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
479
480   of->write_output_view(0, ehdr_size, view);
481 }
482
483 // Return the value to use for the entry address.  THIS->ENTRY_ is the
484 // symbol specified on the command line, if any.
485
486 template<int size>
487 typename elfcpp::Elf_types<size>::Elf_Addr
488 Output_file_header::entry()
489 {
490   const bool should_issue_warning = (this->entry_ != NULL
491                                      && !parameters->options().relocatable()
492                                      && !parameters->options().shared());
493
494   // FIXME: Need to support target specific entry symbol.
495   const char* entry = this->entry_;
496   if (entry == NULL)
497     entry = "_start";
498
499   Symbol* sym = this->symtab_->lookup(entry);
500
501   typename Sized_symbol<size>::Value_type v;
502   if (sym != NULL)
503     {
504       Sized_symbol<size>* ssym;
505       ssym = this->symtab_->get_sized_symbol<size>(sym);
506       if (!ssym->is_defined() && should_issue_warning)
507         gold_warning("entry symbol '%s' exists but is not defined", entry);
508       v = ssym->value();
509     }
510   else
511     {
512       // We couldn't find the entry symbol.  See if we can parse it as
513       // a number.  This supports, e.g., -e 0x1000.
514       char* endptr;
515       v = strtoull(entry, &endptr, 0);
516       if (*endptr != '\0')
517         {
518           if (should_issue_warning)
519             gold_warning("cannot find entry symbol '%s'", entry);
520           v = 0;
521         }
522     }
523
524   return v;
525 }
526
527 // Output_data_const methods.
528
529 void
530 Output_data_const::do_write(Output_file* of)
531 {
532   of->write(this->offset(), this->data_.data(), this->data_.size());
533 }
534
535 // Output_data_const_buffer methods.
536
537 void
538 Output_data_const_buffer::do_write(Output_file* of)
539 {
540   of->write(this->offset(), this->p_, this->data_size());
541 }
542
543 // Output_section_data methods.
544
545 // Record the output section, and set the entry size and such.
546
547 void
548 Output_section_data::set_output_section(Output_section* os)
549 {
550   gold_assert(this->output_section_ == NULL);
551   this->output_section_ = os;
552   this->do_adjust_output_section(os);
553 }
554
555 // Return the section index of the output section.
556
557 unsigned int
558 Output_section_data::do_out_shndx() const
559 {
560   gold_assert(this->output_section_ != NULL);
561   return this->output_section_->out_shndx();
562 }
563
564 // Set the alignment, which means we may need to update the alignment
565 // of the output section.
566
567 void
568 Output_section_data::set_addralign(uint64_t addralign)
569 {
570   this->addralign_ = addralign;
571   if (this->output_section_ != NULL
572       && this->output_section_->addralign() < addralign)
573     this->output_section_->set_addralign(addralign);
574 }
575
576 // Output_data_strtab methods.
577
578 // Set the final data size.
579
580 void
581 Output_data_strtab::set_final_data_size()
582 {
583   this->strtab_->set_string_offsets();
584   this->set_data_size(this->strtab_->get_strtab_size());
585 }
586
587 // Write out a string table.
588
589 void
590 Output_data_strtab::do_write(Output_file* of)
591 {
592   this->strtab_->write(of, this->offset());
593 }
594
595 // Output_reloc methods.
596
597 // A reloc against a global symbol.
598
599 template<bool dynamic, int size, bool big_endian>
600 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
601     Symbol* gsym,
602     unsigned int type,
603     Output_data* od,
604     Address address,
605     bool is_relative)
606   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
607     is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
608 {
609   // this->type_ is a bitfield; make sure TYPE fits.
610   gold_assert(this->type_ == type);
611   this->u1_.gsym = gsym;
612   this->u2_.od = od;
613   if (dynamic)
614     this->set_needs_dynsym_index();
615 }
616
617 template<bool dynamic, int size, bool big_endian>
618 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
619     Symbol* gsym,
620     unsigned int type,
621     Sized_relobj<size, big_endian>* relobj,
622     unsigned int shndx,
623     Address address,
624     bool is_relative)
625   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
626     is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
627 {
628   gold_assert(shndx != INVALID_CODE);
629   // this->type_ is a bitfield; make sure TYPE fits.
630   gold_assert(this->type_ == type);
631   this->u1_.gsym = gsym;
632   this->u2_.relobj = relobj;
633   if (dynamic)
634     this->set_needs_dynsym_index();
635 }
636
637 // A reloc against a local symbol.
638
639 template<bool dynamic, int size, bool big_endian>
640 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
641     Sized_relobj<size, big_endian>* relobj,
642     unsigned int local_sym_index,
643     unsigned int type,
644     Output_data* od,
645     Address address,
646     bool is_relative,
647     bool is_section_symbol)
648   : address_(address), local_sym_index_(local_sym_index), type_(type),
649     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
650     shndx_(INVALID_CODE)
651 {
652   gold_assert(local_sym_index != GSYM_CODE
653               && local_sym_index != INVALID_CODE);
654   // this->type_ is a bitfield; make sure TYPE fits.
655   gold_assert(this->type_ == type);
656   this->u1_.relobj = relobj;
657   this->u2_.od = od;
658   if (dynamic)
659     this->set_needs_dynsym_index();
660 }
661
662 template<bool dynamic, int size, bool big_endian>
663 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
664     Sized_relobj<size, big_endian>* relobj,
665     unsigned int local_sym_index,
666     unsigned int type,
667     unsigned int shndx,
668     Address address,
669     bool is_relative,
670     bool is_section_symbol)
671   : address_(address), local_sym_index_(local_sym_index), type_(type),
672     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
673     shndx_(shndx)
674 {
675   gold_assert(local_sym_index != GSYM_CODE
676               && local_sym_index != INVALID_CODE);
677   gold_assert(shndx != INVALID_CODE);
678   // this->type_ is a bitfield; make sure TYPE fits.
679   gold_assert(this->type_ == type);
680   this->u1_.relobj = relobj;
681   this->u2_.relobj = relobj;
682   if (dynamic)
683     this->set_needs_dynsym_index();
684 }
685
686 // A reloc against the STT_SECTION symbol of an output section.
687
688 template<bool dynamic, int size, bool big_endian>
689 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
690     Output_section* os,
691     unsigned int type,
692     Output_data* od,
693     Address address)
694   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
695     is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
696 {
697   // this->type_ is a bitfield; make sure TYPE fits.
698   gold_assert(this->type_ == type);
699   this->u1_.os = os;
700   this->u2_.od = od;
701   if (dynamic)
702     this->set_needs_dynsym_index();
703   else
704     os->set_needs_symtab_index();
705 }
706
707 template<bool dynamic, int size, bool big_endian>
708 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
709     Output_section* os,
710     unsigned int type,
711     Sized_relobj<size, big_endian>* relobj,
712     unsigned int shndx,
713     Address address)
714   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
715     is_relative_(false), is_section_symbol_(true), shndx_(shndx)
716 {
717   gold_assert(shndx != INVALID_CODE);
718   // this->type_ is a bitfield; make sure TYPE fits.
719   gold_assert(this->type_ == type);
720   this->u1_.os = os;
721   this->u2_.relobj = relobj;
722   if (dynamic)
723     this->set_needs_dynsym_index();
724   else
725     os->set_needs_symtab_index();
726 }
727
728 // Record that we need a dynamic symbol index for this relocation.
729
730 template<bool dynamic, int size, bool big_endian>
731 void
732 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
733 set_needs_dynsym_index()
734 {
735   if (this->is_relative_)
736     return;
737   switch (this->local_sym_index_)
738     {
739     case INVALID_CODE:
740       gold_unreachable();
741
742     case GSYM_CODE:
743       this->u1_.gsym->set_needs_dynsym_entry();
744       break;
745
746     case SECTION_CODE:
747       this->u1_.os->set_needs_dynsym_index();
748       break;
749
750     case 0:
751       break;
752
753     default:
754       {
755         const unsigned int lsi = this->local_sym_index_;
756         if (!this->is_section_symbol_)
757           this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
758         else
759           this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
760       }
761       break;
762     }
763 }
764
765 // Get the symbol index of a relocation.
766
767 template<bool dynamic, int size, bool big_endian>
768 unsigned int
769 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
770   const
771 {
772   unsigned int index;
773   switch (this->local_sym_index_)
774     {
775     case INVALID_CODE:
776       gold_unreachable();
777
778     case GSYM_CODE:
779       if (this->u1_.gsym == NULL)
780         index = 0;
781       else if (dynamic)
782         index = this->u1_.gsym->dynsym_index();
783       else
784         index = this->u1_.gsym->symtab_index();
785       break;
786
787     case SECTION_CODE:
788       if (dynamic)
789         index = this->u1_.os->dynsym_index();
790       else
791         index = this->u1_.os->symtab_index();
792       break;
793
794     case 0:
795       // Relocations without symbols use a symbol index of 0.
796       index = 0;
797       break;
798
799     default:
800       {
801         const unsigned int lsi = this->local_sym_index_;
802         if (!this->is_section_symbol_)
803           {
804             if (dynamic)
805               index = this->u1_.relobj->dynsym_index(lsi);
806             else
807               index = this->u1_.relobj->symtab_index(lsi);
808           }
809         else
810           {
811             Output_section* os = this->u1_.relobj->output_section(lsi);
812             gold_assert(os != NULL);
813             if (dynamic)
814               index = os->dynsym_index();
815             else
816               index = os->symtab_index();
817           }
818       }
819       break;
820     }
821   gold_assert(index != -1U);
822   return index;
823 }
824
825 // For a local section symbol, get the address of the offset ADDEND
826 // within the input section.
827
828 template<bool dynamic, int size, bool big_endian>
829 typename elfcpp::Elf_types<size>::Elf_Addr
830 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
831   local_section_offset(Addend addend) const
832 {
833   gold_assert(this->local_sym_index_ != GSYM_CODE
834               && this->local_sym_index_ != SECTION_CODE
835               && this->local_sym_index_ != INVALID_CODE
836               && this->is_section_symbol_);
837   const unsigned int lsi = this->local_sym_index_;
838   Output_section* os = this->u1_.relobj->output_section(lsi);
839   gold_assert(os != NULL);
840   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
841   if (offset != invalid_address)
842     return offset + addend;
843   // This is a merge section.
844   offset = os->output_address(this->u1_.relobj, lsi, addend);
845   gold_assert(offset != invalid_address);
846   return offset;
847 }
848
849 // Get the output address of a relocation.
850
851 template<bool dynamic, int size, bool big_endian>
852 typename elfcpp::Elf_types<size>::Elf_Addr
853 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
854 {
855   Address address = this->address_;
856   if (this->shndx_ != INVALID_CODE)
857     {
858       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
859       gold_assert(os != NULL);
860       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
861       if (off != invalid_address)
862         address += os->address() + off;
863       else
864         {
865           address = os->output_address(this->u2_.relobj, this->shndx_,
866                                        address);
867           gold_assert(address != invalid_address);
868         }
869     }
870   else if (this->u2_.od != NULL)
871     address += this->u2_.od->address();
872   return address;
873 }
874
875 // Write out the offset and info fields of a Rel or Rela relocation
876 // entry.
877
878 template<bool dynamic, int size, bool big_endian>
879 template<typename Write_rel>
880 void
881 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
882     Write_rel* wr) const
883 {
884   wr->put_r_offset(this->get_address());
885   unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
886   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
887 }
888
889 // Write out a Rel relocation.
890
891 template<bool dynamic, int size, bool big_endian>
892 void
893 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
894     unsigned char* pov) const
895 {
896   elfcpp::Rel_write<size, big_endian> orel(pov);
897   this->write_rel(&orel);
898 }
899
900 // Get the value of the symbol referred to by a Rel relocation.
901
902 template<bool dynamic, int size, bool big_endian>
903 typename elfcpp::Elf_types<size>::Elf_Addr
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
905     Addend addend) const
906 {
907   if (this->local_sym_index_ == GSYM_CODE)
908     {
909       const Sized_symbol<size>* sym;
910       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
911       return sym->value() + addend;
912     }
913   gold_assert(this->local_sym_index_ != SECTION_CODE
914               && this->local_sym_index_ != INVALID_CODE
915               && !this->is_section_symbol_);
916   const unsigned int lsi = this->local_sym_index_;
917   const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
918   return symval->value(this->u1_.relobj, addend);
919 }
920
921 // Reloc comparison.  This function sorts the dynamic relocs for the
922 // benefit of the dynamic linker.  First we sort all relative relocs
923 // to the front.  Among relative relocs, we sort by output address.
924 // Among non-relative relocs, we sort by symbol index, then by output
925 // address.
926
927 template<bool dynamic, int size, bool big_endian>
928 int
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
931     const
932 {
933   if (this->is_relative_)
934     {
935       if (!r2.is_relative_)
936         return -1;
937       // Otherwise sort by reloc address below.
938     }
939   else if (r2.is_relative_)
940     return 1;
941   else
942     {
943       unsigned int sym1 = this->get_symbol_index();
944       unsigned int sym2 = r2.get_symbol_index();
945       if (sym1 < sym2)
946         return -1;
947       else if (sym1 > sym2)
948         return 1;
949       // Otherwise sort by reloc address.
950     }
951
952   section_offset_type addr1 = this->get_address();
953   section_offset_type addr2 = r2.get_address();
954   if (addr1 < addr2)
955     return -1;
956   else if (addr1 > addr2)
957     return 1;
958
959   // Final tie breaker, in order to generate the same output on any
960   // host: reloc type.
961   unsigned int type1 = this->type_;
962   unsigned int type2 = r2.type_;
963   if (type1 < type2)
964     return -1;
965   else if (type1 > type2)
966     return 1;
967
968   // These relocs appear to be exactly the same.
969   return 0;
970 }
971
972 // Write out a Rela relocation.
973
974 template<bool dynamic, int size, bool big_endian>
975 void
976 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
977     unsigned char* pov) const
978 {
979   elfcpp::Rela_write<size, big_endian> orel(pov);
980   this->rel_.write_rel(&orel);
981   Addend addend = this->addend_;
982   if (this->rel_.is_relative())
983     addend = this->rel_.symbol_value(addend);
984   else if (this->rel_.is_local_section_symbol())
985     addend = this->rel_.local_section_offset(addend);
986   orel.put_r_addend(addend);
987 }
988
989 // Output_data_reloc_base methods.
990
991 // Adjust the output section.
992
993 template<int sh_type, bool dynamic, int size, bool big_endian>
994 void
995 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
996     ::do_adjust_output_section(Output_section* os)
997 {
998   if (sh_type == elfcpp::SHT_REL)
999     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1000   else if (sh_type == elfcpp::SHT_RELA)
1001     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1002   else
1003     gold_unreachable();
1004   if (dynamic)
1005     os->set_should_link_to_dynsym();
1006   else
1007     os->set_should_link_to_symtab();
1008 }
1009
1010 // Write out relocation data.
1011
1012 template<int sh_type, bool dynamic, int size, bool big_endian>
1013 void
1014 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1015     Output_file* of)
1016 {
1017   const off_t off = this->offset();
1018   const off_t oview_size = this->data_size();
1019   unsigned char* const oview = of->get_output_view(off, oview_size);
1020
1021   if (this->sort_relocs_)
1022     {
1023       gold_assert(dynamic);
1024       std::sort(this->relocs_.begin(), this->relocs_.end(),
1025                 Sort_relocs_comparison());
1026     }
1027
1028   unsigned char* pov = oview;
1029   for (typename Relocs::const_iterator p = this->relocs_.begin();
1030        p != this->relocs_.end();
1031        ++p)
1032     {
1033       p->write(pov);
1034       pov += reloc_size;
1035     }
1036
1037   gold_assert(pov - oview == oview_size);
1038
1039   of->write_output_view(off, oview_size, oview);
1040
1041   // We no longer need the relocation entries.
1042   this->relocs_.clear();
1043 }
1044
1045 // Class Output_relocatable_relocs.
1046
1047 template<int sh_type, int size, bool big_endian>
1048 void
1049 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1050 {
1051   this->set_data_size(this->rr_->output_reloc_count()
1052                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1053 }
1054
1055 // class Output_data_group.
1056
1057 template<int size, bool big_endian>
1058 Output_data_group<size, big_endian>::Output_data_group(
1059     Sized_relobj<size, big_endian>* relobj,
1060     section_size_type entry_count,
1061     elfcpp::Elf_Word flags,
1062     std::vector<unsigned int>* input_shndxes)
1063   : Output_section_data(entry_count * 4, 4),
1064     relobj_(relobj),
1065     flags_(flags)
1066 {
1067   this->input_shndxes_.swap(*input_shndxes);
1068 }
1069
1070 // Write out the section group, which means translating the section
1071 // indexes to apply to the output file.
1072
1073 template<int size, bool big_endian>
1074 void
1075 Output_data_group<size, big_endian>::do_write(Output_file* of)
1076 {
1077   const off_t off = this->offset();
1078   const section_size_type oview_size =
1079     convert_to_section_size_type(this->data_size());
1080   unsigned char* const oview = of->get_output_view(off, oview_size);
1081
1082   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1083   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1084   ++contents;
1085
1086   for (std::vector<unsigned int>::const_iterator p =
1087          this->input_shndxes_.begin();
1088        p != this->input_shndxes_.end();
1089        ++p, ++contents)
1090     {
1091       Output_section* os = this->relobj_->output_section(*p);
1092
1093       unsigned int output_shndx;
1094       if (os != NULL)
1095         output_shndx = os->out_shndx();
1096       else
1097         {
1098           this->relobj_->error(_("section group retained but "
1099                                  "group element discarded"));
1100           output_shndx = 0;
1101         }
1102
1103       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1104     }
1105
1106   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1107   gold_assert(wrote == oview_size);
1108
1109   of->write_output_view(off, oview_size, oview);
1110
1111   // We no longer need this information.
1112   this->input_shndxes_.clear();
1113 }
1114
1115 // Output_data_got::Got_entry methods.
1116
1117 // Write out the entry.
1118
1119 template<int size, bool big_endian>
1120 void
1121 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1122 {
1123   Valtype val = 0;
1124
1125   switch (this->local_sym_index_)
1126     {
1127     case GSYM_CODE:
1128       {
1129         // If the symbol is resolved locally, we need to write out the
1130         // link-time value, which will be relocated dynamically by a
1131         // RELATIVE relocation.
1132         Symbol* gsym = this->u_.gsym;
1133         Sized_symbol<size>* sgsym;
1134         // This cast is a bit ugly.  We don't want to put a
1135         // virtual method in Symbol, because we want Symbol to be
1136         // as small as possible.
1137         sgsym = static_cast<Sized_symbol<size>*>(gsym);
1138         val = sgsym->value();
1139       }
1140       break;
1141
1142     case CONSTANT_CODE:
1143       val = this->u_.constant;
1144       break;
1145
1146     default:
1147       {
1148         const unsigned int lsi = this->local_sym_index_;
1149         const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1150         val = symval->value(this->u_.object, 0);
1151       }
1152       break;
1153     }
1154
1155   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1156 }
1157
1158 // Output_data_got methods.
1159
1160 // Add an entry for a global symbol to the GOT.  This returns true if
1161 // this is a new GOT entry, false if the symbol already had a GOT
1162 // entry.
1163
1164 template<int size, bool big_endian>
1165 bool
1166 Output_data_got<size, big_endian>::add_global(
1167     Symbol* gsym,
1168     unsigned int got_type)
1169 {
1170   if (gsym->has_got_offset(got_type))
1171     return false;
1172
1173   this->entries_.push_back(Got_entry(gsym));
1174   this->set_got_size();
1175   gsym->set_got_offset(got_type, this->last_got_offset());
1176   return true;
1177 }
1178
1179 // Add an entry for a global symbol to the GOT, and add a dynamic
1180 // relocation of type R_TYPE for the GOT entry.
1181 template<int size, bool big_endian>
1182 void
1183 Output_data_got<size, big_endian>::add_global_with_rel(
1184     Symbol* gsym,
1185     unsigned int got_type,
1186     Rel_dyn* rel_dyn,
1187     unsigned int r_type)
1188 {
1189   if (gsym->has_got_offset(got_type))
1190     return;
1191
1192   this->entries_.push_back(Got_entry());
1193   this->set_got_size();
1194   unsigned int got_offset = this->last_got_offset();
1195   gsym->set_got_offset(got_type, got_offset);
1196   rel_dyn->add_global(gsym, r_type, this, got_offset);
1197 }
1198
1199 template<int size, bool big_endian>
1200 void
1201 Output_data_got<size, big_endian>::add_global_with_rela(
1202     Symbol* gsym,
1203     unsigned int got_type,
1204     Rela_dyn* rela_dyn,
1205     unsigned int r_type)
1206 {
1207   if (gsym->has_got_offset(got_type))
1208     return;
1209
1210   this->entries_.push_back(Got_entry());
1211   this->set_got_size();
1212   unsigned int got_offset = this->last_got_offset();
1213   gsym->set_got_offset(got_type, got_offset);
1214   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1215 }
1216
1217 // Add a pair of entries for a global symbol to the GOT, and add
1218 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1219 // If R_TYPE_2 == 0, add the second entry with no relocation.
1220 template<int size, bool big_endian>
1221 void
1222 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1223     Symbol* gsym,
1224     unsigned int got_type,
1225     Rel_dyn* rel_dyn,
1226     unsigned int r_type_1,
1227     unsigned int r_type_2)
1228 {
1229   if (gsym->has_got_offset(got_type))
1230     return;
1231
1232   this->entries_.push_back(Got_entry());
1233   unsigned int got_offset = this->last_got_offset();
1234   gsym->set_got_offset(got_type, got_offset);
1235   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1236
1237   this->entries_.push_back(Got_entry());
1238   if (r_type_2 != 0)
1239     {
1240       got_offset = this->last_got_offset();
1241       rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1242     }
1243
1244   this->set_got_size();
1245 }
1246
1247 template<int size, bool big_endian>
1248 void
1249 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1250     Symbol* gsym,
1251     unsigned int got_type,
1252     Rela_dyn* rela_dyn,
1253     unsigned int r_type_1,
1254     unsigned int r_type_2)
1255 {
1256   if (gsym->has_got_offset(got_type))
1257     return;
1258
1259   this->entries_.push_back(Got_entry());
1260   unsigned int got_offset = this->last_got_offset();
1261   gsym->set_got_offset(got_type, got_offset);
1262   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1263
1264   this->entries_.push_back(Got_entry());
1265   if (r_type_2 != 0)
1266     {
1267       got_offset = this->last_got_offset();
1268       rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1269     }
1270
1271   this->set_got_size();
1272 }
1273
1274 // Add an entry for a local symbol to the GOT.  This returns true if
1275 // this is a new GOT entry, false if the symbol already has a GOT
1276 // entry.
1277
1278 template<int size, bool big_endian>
1279 bool
1280 Output_data_got<size, big_endian>::add_local(
1281     Sized_relobj<size, big_endian>* object,
1282     unsigned int symndx,
1283     unsigned int got_type)
1284 {
1285   if (object->local_has_got_offset(symndx, got_type))
1286     return false;
1287
1288   this->entries_.push_back(Got_entry(object, symndx));
1289   this->set_got_size();
1290   object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1291   return true;
1292 }
1293
1294 // Add an entry for a local symbol to the GOT, and add a dynamic
1295 // relocation of type R_TYPE for the GOT entry.
1296 template<int size, bool big_endian>
1297 void
1298 Output_data_got<size, big_endian>::add_local_with_rel(
1299     Sized_relobj<size, big_endian>* object,
1300     unsigned int symndx,
1301     unsigned int got_type,
1302     Rel_dyn* rel_dyn,
1303     unsigned int r_type)
1304 {
1305   if (object->local_has_got_offset(symndx, got_type))
1306     return;
1307
1308   this->entries_.push_back(Got_entry());
1309   this->set_got_size();
1310   unsigned int got_offset = this->last_got_offset();
1311   object->set_local_got_offset(symndx, got_type, got_offset);
1312   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1313 }
1314
1315 template<int size, bool big_endian>
1316 void
1317 Output_data_got<size, big_endian>::add_local_with_rela(
1318     Sized_relobj<size, big_endian>* object,
1319     unsigned int symndx,
1320     unsigned int got_type,
1321     Rela_dyn* rela_dyn,
1322     unsigned int r_type)
1323 {
1324   if (object->local_has_got_offset(symndx, got_type))
1325     return;
1326
1327   this->entries_.push_back(Got_entry());
1328   this->set_got_size();
1329   unsigned int got_offset = this->last_got_offset();
1330   object->set_local_got_offset(symndx, got_type, got_offset);
1331   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1332 }
1333
1334 // Add a pair of entries for a local symbol to the GOT, and add
1335 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1336 // If R_TYPE_2 == 0, add the second entry with no relocation.
1337 template<int size, bool big_endian>
1338 void
1339 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1340     Sized_relobj<size, big_endian>* object,
1341     unsigned int symndx,
1342     unsigned int shndx,
1343     unsigned int got_type,
1344     Rel_dyn* rel_dyn,
1345     unsigned int r_type_1,
1346     unsigned int r_type_2)
1347 {
1348   if (object->local_has_got_offset(symndx, got_type))
1349     return;
1350
1351   this->entries_.push_back(Got_entry());
1352   unsigned int got_offset = this->last_got_offset();
1353   object->set_local_got_offset(symndx, got_type, got_offset);
1354   Output_section* os = object->output_section(shndx);
1355   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1356
1357   this->entries_.push_back(Got_entry(object, symndx));
1358   if (r_type_2 != 0)
1359     {
1360       got_offset = this->last_got_offset();
1361       rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1362     }
1363
1364   this->set_got_size();
1365 }
1366
1367 template<int size, bool big_endian>
1368 void
1369 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1370     Sized_relobj<size, big_endian>* object,
1371     unsigned int symndx,
1372     unsigned int shndx,
1373     unsigned int got_type,
1374     Rela_dyn* rela_dyn,
1375     unsigned int r_type_1,
1376     unsigned int r_type_2)
1377 {
1378   if (object->local_has_got_offset(symndx, got_type))
1379     return;
1380
1381   this->entries_.push_back(Got_entry());
1382   unsigned int got_offset = this->last_got_offset();
1383   object->set_local_got_offset(symndx, got_type, got_offset);
1384   Output_section* os = object->output_section(shndx);
1385   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1386
1387   this->entries_.push_back(Got_entry(object, symndx));
1388   if (r_type_2 != 0)
1389     {
1390       got_offset = this->last_got_offset();
1391       rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1392     }
1393
1394   this->set_got_size();
1395 }
1396
1397 // Write out the GOT.
1398
1399 template<int size, bool big_endian>
1400 void
1401 Output_data_got<size, big_endian>::do_write(Output_file* of)
1402 {
1403   const int add = size / 8;
1404
1405   const off_t off = this->offset();
1406   const off_t oview_size = this->data_size();
1407   unsigned char* const oview = of->get_output_view(off, oview_size);
1408
1409   unsigned char* pov = oview;
1410   for (typename Got_entries::const_iterator p = this->entries_.begin();
1411        p != this->entries_.end();
1412        ++p)
1413     {
1414       p->write(pov);
1415       pov += add;
1416     }
1417
1418   gold_assert(pov - oview == oview_size);
1419
1420   of->write_output_view(off, oview_size, oview);
1421
1422   // We no longer need the GOT entries.
1423   this->entries_.clear();
1424 }
1425
1426 // Output_data_dynamic::Dynamic_entry methods.
1427
1428 // Write out the entry.
1429
1430 template<int size, bool big_endian>
1431 void
1432 Output_data_dynamic::Dynamic_entry::write(
1433     unsigned char* pov,
1434     const Stringpool* pool) const
1435 {
1436   typename elfcpp::Elf_types<size>::Elf_WXword val;
1437   switch (this->offset_)
1438     {
1439     case DYNAMIC_NUMBER:
1440       val = this->u_.val;
1441       break;
1442
1443     case DYNAMIC_SECTION_SIZE:
1444       val = this->u_.od->data_size();
1445       break;
1446
1447     case DYNAMIC_SYMBOL:
1448       {
1449         const Sized_symbol<size>* s =
1450           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1451         val = s->value();
1452       }
1453       break;
1454
1455     case DYNAMIC_STRING:
1456       val = pool->get_offset(this->u_.str);
1457       break;
1458
1459     default:
1460       val = this->u_.od->address() + this->offset_;
1461       break;
1462     }
1463
1464   elfcpp::Dyn_write<size, big_endian> dw(pov);
1465   dw.put_d_tag(this->tag_);
1466   dw.put_d_val(val);
1467 }
1468
1469 // Output_data_dynamic methods.
1470
1471 // Adjust the output section to set the entry size.
1472
1473 void
1474 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1475 {
1476   if (parameters->target().get_size() == 32)
1477     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1478   else if (parameters->target().get_size() == 64)
1479     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1480   else
1481     gold_unreachable();
1482 }
1483
1484 // Set the final data size.
1485
1486 void
1487 Output_data_dynamic::set_final_data_size()
1488 {
1489   // Add the terminating entry.
1490   this->add_constant(elfcpp::DT_NULL, 0);
1491
1492   int dyn_size;
1493   if (parameters->target().get_size() == 32)
1494     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1495   else if (parameters->target().get_size() == 64)
1496     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1497   else
1498     gold_unreachable();
1499   this->set_data_size(this->entries_.size() * dyn_size);
1500 }
1501
1502 // Write out the dynamic entries.
1503
1504 void
1505 Output_data_dynamic::do_write(Output_file* of)
1506 {
1507   switch (parameters->size_and_endianness())
1508     {
1509 #ifdef HAVE_TARGET_32_LITTLE
1510     case Parameters::TARGET_32_LITTLE:
1511       this->sized_write<32, false>(of);
1512       break;
1513 #endif
1514 #ifdef HAVE_TARGET_32_BIG
1515     case Parameters::TARGET_32_BIG:
1516       this->sized_write<32, true>(of);
1517       break;
1518 #endif
1519 #ifdef HAVE_TARGET_64_LITTLE
1520     case Parameters::TARGET_64_LITTLE:
1521       this->sized_write<64, false>(of);
1522       break;
1523 #endif
1524 #ifdef HAVE_TARGET_64_BIG
1525     case Parameters::TARGET_64_BIG:
1526       this->sized_write<64, true>(of);
1527       break;
1528 #endif
1529     default:
1530       gold_unreachable();
1531     }
1532 }
1533
1534 template<int size, bool big_endian>
1535 void
1536 Output_data_dynamic::sized_write(Output_file* of)
1537 {
1538   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1539
1540   const off_t offset = this->offset();
1541   const off_t oview_size = this->data_size();
1542   unsigned char* const oview = of->get_output_view(offset, oview_size);
1543
1544   unsigned char* pov = oview;
1545   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1546        p != this->entries_.end();
1547        ++p)
1548     {
1549       p->write<size, big_endian>(pov, this->pool_);
1550       pov += dyn_size;
1551     }
1552
1553   gold_assert(pov - oview == oview_size);
1554
1555   of->write_output_view(offset, oview_size, oview);
1556
1557   // We no longer need the dynamic entries.
1558   this->entries_.clear();
1559 }
1560
1561 // Class Output_symtab_xindex.
1562
1563 void
1564 Output_symtab_xindex::do_write(Output_file* of)
1565 {
1566   const off_t offset = this->offset();
1567   const off_t oview_size = this->data_size();
1568   unsigned char* const oview = of->get_output_view(offset, oview_size);
1569
1570   memset(oview, 0, oview_size);
1571
1572   if (parameters->target().is_big_endian())
1573     this->endian_do_write<true>(oview);
1574   else
1575     this->endian_do_write<false>(oview);
1576
1577   of->write_output_view(offset, oview_size, oview);
1578
1579   // We no longer need the data.
1580   this->entries_.clear();
1581 }
1582
1583 template<bool big_endian>
1584 void
1585 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1586 {
1587   for (Xindex_entries::const_iterator p = this->entries_.begin();
1588        p != this->entries_.end();
1589        ++p)
1590     elfcpp::Swap<32, big_endian>::writeval(oview + p->first * 4, p->second);
1591 }
1592
1593 // Output_section::Input_section methods.
1594
1595 // Return the data size.  For an input section we store the size here.
1596 // For an Output_section_data, we have to ask it for the size.
1597
1598 off_t
1599 Output_section::Input_section::data_size() const
1600 {
1601   if (this->is_input_section())
1602     return this->u1_.data_size;
1603   else
1604     return this->u2_.posd->data_size();
1605 }
1606
1607 // Set the address and file offset.
1608
1609 void
1610 Output_section::Input_section::set_address_and_file_offset(
1611     uint64_t address,
1612     off_t file_offset,
1613     off_t section_file_offset)
1614 {
1615   if (this->is_input_section())
1616     this->u2_.object->set_section_offset(this->shndx_,
1617                                          file_offset - section_file_offset);
1618   else
1619     this->u2_.posd->set_address_and_file_offset(address, file_offset);
1620 }
1621
1622 // Reset the address and file offset.
1623
1624 void
1625 Output_section::Input_section::reset_address_and_file_offset()
1626 {
1627   if (!this->is_input_section())
1628     this->u2_.posd->reset_address_and_file_offset();
1629 }
1630
1631 // Finalize the data size.
1632
1633 void
1634 Output_section::Input_section::finalize_data_size()
1635 {
1636   if (!this->is_input_section())
1637     this->u2_.posd->finalize_data_size();
1638 }
1639
1640 // Try to turn an input offset into an output offset.  We want to
1641 // return the output offset relative to the start of this
1642 // Input_section in the output section.
1643
1644 inline bool
1645 Output_section::Input_section::output_offset(
1646     const Relobj* object,
1647     unsigned int shndx,
1648     section_offset_type offset,
1649     section_offset_type *poutput) const
1650 {
1651   if (!this->is_input_section())
1652     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1653   else
1654     {
1655       if (this->shndx_ != shndx || this->u2_.object != object)
1656         return false;
1657       *poutput = offset;
1658       return true;
1659     }
1660 }
1661
1662 // Return whether this is the merge section for the input section
1663 // SHNDX in OBJECT.
1664
1665 inline bool
1666 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1667                                                     unsigned int shndx) const
1668 {
1669   if (this->is_input_section())
1670     return false;
1671   return this->u2_.posd->is_merge_section_for(object, shndx);
1672 }
1673
1674 // Write out the data.  We don't have to do anything for an input
1675 // section--they are handled via Object::relocate--but this is where
1676 // we write out the data for an Output_section_data.
1677
1678 void
1679 Output_section::Input_section::write(Output_file* of)
1680 {
1681   if (!this->is_input_section())
1682     this->u2_.posd->write(of);
1683 }
1684
1685 // Write the data to a buffer.  As for write(), we don't have to do
1686 // anything for an input section.
1687
1688 void
1689 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1690 {
1691   if (!this->is_input_section())
1692     this->u2_.posd->write_to_buffer(buffer);
1693 }
1694
1695 // Print to a map file.
1696
1697 void
1698 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1699 {
1700   switch (this->shndx_)
1701     {
1702     case OUTPUT_SECTION_CODE:
1703     case MERGE_DATA_SECTION_CODE:
1704     case MERGE_STRING_SECTION_CODE:
1705       this->u2_.posd->print_to_mapfile(mapfile);
1706       break;
1707
1708     default:
1709       mapfile->print_input_section(this->u2_.object, this->shndx_);
1710       break;
1711     }
1712 }
1713
1714 // Output_section methods.
1715
1716 // Construct an Output_section.  NAME will point into a Stringpool.
1717
1718 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1719                                elfcpp::Elf_Xword flags)
1720   : name_(name),
1721     addralign_(0),
1722     entsize_(0),
1723     load_address_(0),
1724     link_section_(NULL),
1725     link_(0),
1726     info_section_(NULL),
1727     info_symndx_(NULL),
1728     info_(0),
1729     type_(type),
1730     flags_(flags),
1731     out_shndx_(-1U),
1732     symtab_index_(0),
1733     dynsym_index_(0),
1734     input_sections_(),
1735     first_input_offset_(0),
1736     fills_(),
1737     postprocessing_buffer_(NULL),
1738     needs_symtab_index_(false),
1739     needs_dynsym_index_(false),
1740     should_link_to_symtab_(false),
1741     should_link_to_dynsym_(false),
1742     after_input_sections_(false),
1743     requires_postprocessing_(false),
1744     found_in_sections_clause_(false),
1745     has_load_address_(false),
1746     info_uses_section_index_(false),
1747     may_sort_attached_input_sections_(false),
1748     must_sort_attached_input_sections_(false),
1749     attached_input_sections_are_sorted_(false),
1750     is_relro_(false),
1751     is_relro_local_(false),
1752     tls_offset_(0)
1753 {
1754   // An unallocated section has no address.  Forcing this means that
1755   // we don't need special treatment for symbols defined in debug
1756   // sections.
1757   if ((flags & elfcpp::SHF_ALLOC) == 0)
1758     this->set_address(0);
1759 }
1760
1761 Output_section::~Output_section()
1762 {
1763 }
1764
1765 // Set the entry size.
1766
1767 void
1768 Output_section::set_entsize(uint64_t v)
1769 {
1770   if (this->entsize_ == 0)
1771     this->entsize_ = v;
1772   else
1773     gold_assert(this->entsize_ == v);
1774 }
1775
1776 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1777 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
1778 // relocation section which applies to this section, or 0 if none, or
1779 // -1U if more than one.  Return the offset of the input section
1780 // within the output section.  Return -1 if the input section will
1781 // receive special handling.  In the normal case we don't always keep
1782 // track of input sections for an Output_section.  Instead, each
1783 // Object keeps track of the Output_section for each of its input
1784 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1785 // track of input sections here; this is used when SECTIONS appears in
1786 // a linker script.
1787
1788 template<int size, bool big_endian>
1789 off_t
1790 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1791                                   unsigned int shndx,
1792                                   const char* secname,
1793                                   const elfcpp::Shdr<size, big_endian>& shdr,
1794                                   unsigned int reloc_shndx,
1795                                   bool have_sections_script)
1796 {
1797   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1798   if ((addralign & (addralign - 1)) != 0)
1799     {
1800       object->error(_("invalid alignment %lu for section \"%s\""),
1801                     static_cast<unsigned long>(addralign), secname);
1802       addralign = 1;
1803     }
1804
1805   if (addralign > this->addralign_)
1806     this->addralign_ = addralign;
1807
1808   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1809   this->update_flags_for_input_section(sh_flags);
1810
1811   uint64_t entsize = shdr.get_sh_entsize();
1812
1813   // .debug_str is a mergeable string section, but is not always so
1814   // marked by compilers.  Mark manually here so we can optimize.
1815   if (strcmp(secname, ".debug_str") == 0)
1816     {
1817       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1818       entsize = 1;
1819     }
1820
1821   // If this is a SHF_MERGE section, we pass all the input sections to
1822   // a Output_data_merge.  We don't try to handle relocations for such
1823   // a section.  We don't try to handle empty merge sections--they
1824   // mess up the mappings, and are useless anyhow.
1825   if ((sh_flags & elfcpp::SHF_MERGE) != 0
1826       && reloc_shndx == 0
1827       && shdr.get_sh_size() > 0)
1828     {
1829       if (this->add_merge_input_section(object, shndx, sh_flags,
1830                                         entsize, addralign))
1831         {
1832           // Tell the relocation routines that they need to call the
1833           // output_offset method to determine the final address.
1834           return -1;
1835         }
1836     }
1837
1838   off_t offset_in_section = this->current_data_size_for_child();
1839   off_t aligned_offset_in_section = align_address(offset_in_section,
1840                                                   addralign);
1841
1842   if (aligned_offset_in_section > offset_in_section
1843       && !have_sections_script
1844       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1845       && object->target()->has_code_fill())
1846     {
1847       // We need to add some fill data.  Using fill_list_ when
1848       // possible is an optimization, since we will often have fill
1849       // sections without input sections.
1850       off_t fill_len = aligned_offset_in_section - offset_in_section;
1851       if (this->input_sections_.empty())
1852         this->fills_.push_back(Fill(offset_in_section, fill_len));
1853       else
1854         {
1855           // FIXME: When relaxing, the size needs to adjust to
1856           // maintain a constant alignment.
1857           std::string fill_data(object->target()->code_fill(fill_len));
1858           Output_data_const* odc = new Output_data_const(fill_data, 1);
1859           this->input_sections_.push_back(Input_section(odc));
1860         }
1861     }
1862
1863   this->set_current_data_size_for_child(aligned_offset_in_section
1864                                         + shdr.get_sh_size());
1865
1866   // We need to keep track of this section if we are already keeping
1867   // track of sections, or if we are relaxing.  Also, if this is a
1868   // section which requires sorting, or which may require sorting in
1869   // the future, we keep track of the sections.  FIXME: Add test for
1870   // relaxing.
1871   if (have_sections_script
1872       || !this->input_sections_.empty()
1873       || this->may_sort_attached_input_sections()
1874       || this->must_sort_attached_input_sections()
1875       || parameters->options().user_set_Map())
1876     this->input_sections_.push_back(Input_section(object, shndx,
1877                                                   shdr.get_sh_size(),
1878                                                   addralign));
1879
1880   return aligned_offset_in_section;
1881 }
1882
1883 // Add arbitrary data to an output section.
1884
1885 void
1886 Output_section::add_output_section_data(Output_section_data* posd)
1887 {
1888   Input_section inp(posd);
1889   this->add_output_section_data(&inp);
1890
1891   if (posd->is_data_size_valid())
1892     {
1893       off_t offset_in_section = this->current_data_size_for_child();
1894       off_t aligned_offset_in_section = align_address(offset_in_section,
1895                                                       posd->addralign());
1896       this->set_current_data_size_for_child(aligned_offset_in_section
1897                                             + posd->data_size());
1898     }
1899 }
1900
1901 // Add arbitrary data to an output section by Input_section.
1902
1903 void
1904 Output_section::add_output_section_data(Input_section* inp)
1905 {
1906   if (this->input_sections_.empty())
1907     this->first_input_offset_ = this->current_data_size_for_child();
1908
1909   this->input_sections_.push_back(*inp);
1910
1911   uint64_t addralign = inp->addralign();
1912   if (addralign > this->addralign_)
1913     this->addralign_ = addralign;
1914
1915   inp->set_output_section(this);
1916 }
1917
1918 // Add a merge section to an output section.
1919
1920 void
1921 Output_section::add_output_merge_section(Output_section_data* posd,
1922                                          bool is_string, uint64_t entsize)
1923 {
1924   Input_section inp(posd, is_string, entsize);
1925   this->add_output_section_data(&inp);
1926 }
1927
1928 // Add an input section to a SHF_MERGE section.
1929
1930 bool
1931 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1932                                         uint64_t flags, uint64_t entsize,
1933                                         uint64_t addralign)
1934 {
1935   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1936
1937   // We only merge strings if the alignment is not more than the
1938   // character size.  This could be handled, but it's unusual.
1939   if (is_string && addralign > entsize)
1940     return false;
1941
1942   Input_section_list::iterator p;
1943   for (p = this->input_sections_.begin();
1944        p != this->input_sections_.end();
1945        ++p)
1946     if (p->is_merge_section(is_string, entsize, addralign))
1947       {
1948         p->add_input_section(object, shndx);
1949         return true;
1950       }
1951
1952   // We handle the actual constant merging in Output_merge_data or
1953   // Output_merge_string_data.
1954   Output_section_data* posd;
1955   if (!is_string)
1956     posd = new Output_merge_data(entsize, addralign);
1957   else
1958     {
1959       switch (entsize)
1960         {
1961         case 1:
1962           posd = new Output_merge_string<char>(addralign);
1963           break;
1964         case 2:
1965           posd = new Output_merge_string<uint16_t>(addralign);
1966           break;
1967         case 4:
1968           posd = new Output_merge_string<uint32_t>(addralign);
1969           break;
1970         default:
1971           return false;
1972         }
1973     }
1974
1975   this->add_output_merge_section(posd, is_string, entsize);
1976   posd->add_input_section(object, shndx);
1977
1978   return true;
1979 }
1980
1981 // Given an address OFFSET relative to the start of input section
1982 // SHNDX in OBJECT, return whether this address is being included in
1983 // the final link.  This should only be called if SHNDX in OBJECT has
1984 // a special mapping.
1985
1986 bool
1987 Output_section::is_input_address_mapped(const Relobj* object,
1988                                         unsigned int shndx,
1989                                         off_t offset) const
1990 {
1991   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1992        p != this->input_sections_.end();
1993        ++p)
1994     {
1995       section_offset_type output_offset;
1996       if (p->output_offset(object, shndx, offset, &output_offset))
1997         return output_offset != -1;
1998     }
1999
2000   // By default we assume that the address is mapped.  This should
2001   // only be called after we have passed all sections to Layout.  At
2002   // that point we should know what we are discarding.
2003   return true;
2004 }
2005
2006 // Given an address OFFSET relative to the start of input section
2007 // SHNDX in object OBJECT, return the output offset relative to the
2008 // start of the input section in the output section.  This should only
2009 // be called if SHNDX in OBJECT has a special mapping.
2010
2011 section_offset_type
2012 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2013                               section_offset_type offset) const
2014 {
2015   // This can only be called meaningfully when layout is complete.
2016   gold_assert(Output_data::is_layout_complete());
2017
2018   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2019        p != this->input_sections_.end();
2020        ++p)
2021     {
2022       section_offset_type output_offset;
2023       if (p->output_offset(object, shndx, offset, &output_offset))
2024         return output_offset;
2025     }
2026   gold_unreachable();
2027 }
2028
2029 // Return the output virtual address of OFFSET relative to the start
2030 // of input section SHNDX in object OBJECT.
2031
2032 uint64_t
2033 Output_section::output_address(const Relobj* object, unsigned int shndx,
2034                                off_t offset) const
2035 {
2036   uint64_t addr = this->address() + this->first_input_offset_;
2037   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2038        p != this->input_sections_.end();
2039        ++p)
2040     {
2041       addr = align_address(addr, p->addralign());
2042       section_offset_type output_offset;
2043       if (p->output_offset(object, shndx, offset, &output_offset))
2044         {
2045           if (output_offset == -1)
2046             return -1ULL;
2047           return addr + output_offset;
2048         }
2049       addr += p->data_size();
2050     }
2051
2052   // If we get here, it means that we don't know the mapping for this
2053   // input section.  This might happen in principle if
2054   // add_input_section were called before add_output_section_data.
2055   // But it should never actually happen.
2056
2057   gold_unreachable();
2058 }
2059
2060 // Find the output address of the start of the merged section for
2061 // input section SHNDX in object OBJECT.
2062
2063 bool
2064 Output_section::find_starting_output_address(const Relobj* object,
2065                                              unsigned int shndx,
2066                                              uint64_t* paddr) const
2067 {
2068   uint64_t addr = this->address() + this->first_input_offset_;
2069   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2070        p != this->input_sections_.end();
2071        ++p)
2072     {
2073       addr = align_address(addr, p->addralign());
2074
2075       // It would be nice if we could use the existing output_offset
2076       // method to get the output offset of input offset 0.
2077       // Unfortunately we don't know for sure that input offset 0 is
2078       // mapped at all.
2079       if (p->is_merge_section_for(object, shndx))
2080         {
2081           *paddr = addr;
2082           return true;
2083         }
2084
2085       addr += p->data_size();
2086     }
2087
2088   // We couldn't find a merge output section for this input section.
2089   return false;
2090 }
2091
2092 // Set the data size of an Output_section.  This is where we handle
2093 // setting the addresses of any Output_section_data objects.
2094
2095 void
2096 Output_section::set_final_data_size()
2097 {
2098   if (this->input_sections_.empty())
2099     {
2100       this->set_data_size(this->current_data_size_for_child());
2101       return;
2102     }
2103
2104   if (this->must_sort_attached_input_sections())
2105     this->sort_attached_input_sections();
2106
2107   uint64_t address = this->address();
2108   off_t startoff = this->offset();
2109   off_t off = startoff + this->first_input_offset_;
2110   for (Input_section_list::iterator p = this->input_sections_.begin();
2111        p != this->input_sections_.end();
2112        ++p)
2113     {
2114       off = align_address(off, p->addralign());
2115       p->set_address_and_file_offset(address + (off - startoff), off,
2116                                      startoff);
2117       off += p->data_size();
2118     }
2119
2120   this->set_data_size(off - startoff);
2121 }
2122
2123 // Reset the address and file offset.
2124
2125 void
2126 Output_section::do_reset_address_and_file_offset()
2127 {
2128   for (Input_section_list::iterator p = this->input_sections_.begin();
2129        p != this->input_sections_.end();
2130        ++p)
2131     p->reset_address_and_file_offset();
2132 }
2133
2134 // Set the TLS offset.  Called only for SHT_TLS sections.
2135
2136 void
2137 Output_section::do_set_tls_offset(uint64_t tls_base)
2138 {
2139   this->tls_offset_ = this->address() - tls_base;
2140 }
2141
2142 // In a few cases we need to sort the input sections attached to an
2143 // output section.  This is used to implement the type of constructor
2144 // priority ordering implemented by the GNU linker, in which the
2145 // priority becomes part of the section name and the sections are
2146 // sorted by name.  We only do this for an output section if we see an
2147 // attached input section matching ".ctor.*", ".dtor.*",
2148 // ".init_array.*" or ".fini_array.*".
2149
2150 class Output_section::Input_section_sort_entry
2151 {
2152  public:
2153   Input_section_sort_entry()
2154     : input_section_(), index_(-1U), section_has_name_(false),
2155       section_name_()
2156   { }
2157
2158   Input_section_sort_entry(const Input_section& input_section,
2159                            unsigned int index)
2160     : input_section_(input_section), index_(index),
2161       section_has_name_(input_section.is_input_section())
2162   {
2163     if (this->section_has_name_)
2164       {
2165         // This is only called single-threaded from Layout::finalize,
2166         // so it is OK to lock.  Unfortunately we have no way to pass
2167         // in a Task token.
2168         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2169         Object* obj = input_section.relobj();
2170         Task_lock_obj<Object> tl(dummy_task, obj);
2171
2172         // This is a slow operation, which should be cached in
2173         // Layout::layout if this becomes a speed problem.
2174         this->section_name_ = obj->section_name(input_section.shndx());
2175       }
2176   }
2177
2178   // Return the Input_section.
2179   const Input_section&
2180   input_section() const
2181   {
2182     gold_assert(this->index_ != -1U);
2183     return this->input_section_;
2184   }
2185
2186   // The index of this entry in the original list.  This is used to
2187   // make the sort stable.
2188   unsigned int
2189   index() const
2190   {
2191     gold_assert(this->index_ != -1U);
2192     return this->index_;
2193   }
2194
2195   // Whether there is a section name.
2196   bool
2197   section_has_name() const
2198   { return this->section_has_name_; }
2199
2200   // The section name.
2201   const std::string&
2202   section_name() const
2203   {
2204     gold_assert(this->section_has_name_);
2205     return this->section_name_;
2206   }
2207
2208   // Return true if the section name has a priority.  This is assumed
2209   // to be true if it has a dot after the initial dot.
2210   bool
2211   has_priority() const
2212   {
2213     gold_assert(this->section_has_name_);
2214     return this->section_name_.find('.', 1);
2215   }
2216
2217   // Return true if this an input file whose base name matches
2218   // FILE_NAME.  The base name must have an extension of ".o", and
2219   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2220   // This is to match crtbegin.o as well as crtbeginS.o without
2221   // getting confused by other possibilities.  Overall matching the
2222   // file name this way is a dreadful hack, but the GNU linker does it
2223   // in order to better support gcc, and we need to be compatible.
2224   bool
2225   match_file_name(const char* match_file_name) const
2226   {
2227     const std::string& file_name(this->input_section_.relobj()->name());
2228     const char* base_name = lbasename(file_name.c_str());
2229     size_t match_len = strlen(match_file_name);
2230     if (strncmp(base_name, match_file_name, match_len) != 0)
2231       return false;
2232     size_t base_len = strlen(base_name);
2233     if (base_len != match_len + 2 && base_len != match_len + 3)
2234       return false;
2235     return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2236   }
2237
2238  private:
2239   // The Input_section we are sorting.
2240   Input_section input_section_;
2241   // The index of this Input_section in the original list.
2242   unsigned int index_;
2243   // Whether this Input_section has a section name--it won't if this
2244   // is some random Output_section_data.
2245   bool section_has_name_;
2246   // The section name if there is one.
2247   std::string section_name_;
2248 };
2249
2250 // Return true if S1 should come before S2 in the output section.
2251
2252 bool
2253 Output_section::Input_section_sort_compare::operator()(
2254     const Output_section::Input_section_sort_entry& s1,
2255     const Output_section::Input_section_sort_entry& s2) const
2256 {
2257   // crtbegin.o must come first.
2258   bool s1_begin = s1.match_file_name("crtbegin");
2259   bool s2_begin = s2.match_file_name("crtbegin");
2260   if (s1_begin || s2_begin)
2261     {
2262       if (!s1_begin)
2263         return false;
2264       if (!s2_begin)
2265         return true;
2266       return s1.index() < s2.index();
2267     }
2268
2269   // crtend.o must come last.
2270   bool s1_end = s1.match_file_name("crtend");
2271   bool s2_end = s2.match_file_name("crtend");
2272   if (s1_end || s2_end)
2273     {
2274       if (!s1_end)
2275         return true;
2276       if (!s2_end)
2277         return false;
2278       return s1.index() < s2.index();
2279     }
2280
2281   // We sort all the sections with no names to the end.
2282   if (!s1.section_has_name() || !s2.section_has_name())
2283     {
2284       if (s1.section_has_name())
2285         return true;
2286       if (s2.section_has_name())
2287         return false;
2288       return s1.index() < s2.index();
2289     }
2290
2291   // A section with a priority follows a section without a priority.
2292   // The GNU linker does this for all but .init_array sections; until
2293   // further notice we'll assume that that is an mistake.
2294   bool s1_has_priority = s1.has_priority();
2295   bool s2_has_priority = s2.has_priority();
2296   if (s1_has_priority && !s2_has_priority)
2297     return false;
2298   if (!s1_has_priority && s2_has_priority)
2299     return true;
2300
2301   // Otherwise we sort by name.
2302   int compare = s1.section_name().compare(s2.section_name());
2303   if (compare != 0)
2304     return compare < 0;
2305
2306   // Otherwise we keep the input order.
2307   return s1.index() < s2.index();
2308 }
2309
2310 // Sort the input sections attached to an output section.
2311
2312 void
2313 Output_section::sort_attached_input_sections()
2314 {
2315   if (this->attached_input_sections_are_sorted_)
2316     return;
2317
2318   // The only thing we know about an input section is the object and
2319   // the section index.  We need the section name.  Recomputing this
2320   // is slow but this is an unusual case.  If this becomes a speed
2321   // problem we can cache the names as required in Layout::layout.
2322
2323   // We start by building a larger vector holding a copy of each
2324   // Input_section, plus its current index in the list and its name.
2325   std::vector<Input_section_sort_entry> sort_list;
2326
2327   unsigned int i = 0;
2328   for (Input_section_list::iterator p = this->input_sections_.begin();
2329        p != this->input_sections_.end();
2330        ++p, ++i)
2331     sort_list.push_back(Input_section_sort_entry(*p, i));
2332
2333   // Sort the input sections.
2334   std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2335
2336   // Copy the sorted input sections back to our list.
2337   this->input_sections_.clear();
2338   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2339        p != sort_list.end();
2340        ++p)
2341     this->input_sections_.push_back(p->input_section());
2342
2343   // Remember that we sorted the input sections, since we might get
2344   // called again.
2345   this->attached_input_sections_are_sorted_ = true;
2346 }
2347
2348 // Write the section header to *OSHDR.
2349
2350 template<int size, bool big_endian>
2351 void
2352 Output_section::write_header(const Layout* layout,
2353                              const Stringpool* secnamepool,
2354                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
2355 {
2356   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2357   oshdr->put_sh_type(this->type_);
2358
2359   elfcpp::Elf_Xword flags = this->flags_;
2360   if (this->info_section_ != NULL && this->info_uses_section_index_)
2361     flags |= elfcpp::SHF_INFO_LINK;
2362   oshdr->put_sh_flags(flags);
2363
2364   oshdr->put_sh_addr(this->address());
2365   oshdr->put_sh_offset(this->offset());
2366   oshdr->put_sh_size(this->data_size());
2367   if (this->link_section_ != NULL)
2368     oshdr->put_sh_link(this->link_section_->out_shndx());
2369   else if (this->should_link_to_symtab_)
2370     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2371   else if (this->should_link_to_dynsym_)
2372     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2373   else
2374     oshdr->put_sh_link(this->link_);
2375
2376   elfcpp::Elf_Word info;
2377   if (this->info_section_ != NULL)
2378     {
2379       if (this->info_uses_section_index_)
2380         info = this->info_section_->out_shndx();
2381       else
2382         info = this->info_section_->symtab_index();
2383     }
2384   else if (this->info_symndx_ != NULL)
2385     info = this->info_symndx_->symtab_index();
2386   else
2387     info = this->info_;
2388   oshdr->put_sh_info(info);
2389
2390   oshdr->put_sh_addralign(this->addralign_);
2391   oshdr->put_sh_entsize(this->entsize_);
2392 }
2393
2394 // Write out the data.  For input sections the data is written out by
2395 // Object::relocate, but we have to handle Output_section_data objects
2396 // here.
2397
2398 void
2399 Output_section::do_write(Output_file* of)
2400 {
2401   gold_assert(!this->requires_postprocessing());
2402
2403   off_t output_section_file_offset = this->offset();
2404   for (Fill_list::iterator p = this->fills_.begin();
2405        p != this->fills_.end();
2406        ++p)
2407     {
2408       std::string fill_data(parameters->target().code_fill(p->length()));
2409       of->write(output_section_file_offset + p->section_offset(),
2410                 fill_data.data(), fill_data.size());
2411     }
2412
2413   for (Input_section_list::iterator p = this->input_sections_.begin();
2414        p != this->input_sections_.end();
2415        ++p)
2416     p->write(of);
2417 }
2418
2419 // If a section requires postprocessing, create the buffer to use.
2420
2421 void
2422 Output_section::create_postprocessing_buffer()
2423 {
2424   gold_assert(this->requires_postprocessing());
2425
2426   if (this->postprocessing_buffer_ != NULL)
2427     return;
2428
2429   if (!this->input_sections_.empty())
2430     {
2431       off_t off = this->first_input_offset_;
2432       for (Input_section_list::iterator p = this->input_sections_.begin();
2433            p != this->input_sections_.end();
2434            ++p)
2435         {
2436           off = align_address(off, p->addralign());
2437           p->finalize_data_size();
2438           off += p->data_size();
2439         }
2440       this->set_current_data_size_for_child(off);
2441     }
2442
2443   off_t buffer_size = this->current_data_size_for_child();
2444   this->postprocessing_buffer_ = new unsigned char[buffer_size];
2445 }
2446
2447 // Write all the data of an Output_section into the postprocessing
2448 // buffer.  This is used for sections which require postprocessing,
2449 // such as compression.  Input sections are handled by
2450 // Object::Relocate.
2451
2452 void
2453 Output_section::write_to_postprocessing_buffer()
2454 {
2455   gold_assert(this->requires_postprocessing());
2456
2457   unsigned char* buffer = this->postprocessing_buffer();
2458   for (Fill_list::iterator p = this->fills_.begin();
2459        p != this->fills_.end();
2460        ++p)
2461     {
2462       std::string fill_data(parameters->target().code_fill(p->length()));
2463       memcpy(buffer + p->section_offset(), fill_data.data(),
2464              fill_data.size());
2465     }
2466
2467   off_t off = this->first_input_offset_;
2468   for (Input_section_list::iterator p = this->input_sections_.begin();
2469        p != this->input_sections_.end();
2470        ++p)
2471     {
2472       off = align_address(off, p->addralign());
2473       p->write_to_buffer(buffer + off);
2474       off += p->data_size();
2475     }
2476 }
2477
2478 // Get the input sections for linker script processing.  We leave
2479 // behind the Output_section_data entries.  Note that this may be
2480 // slightly incorrect for merge sections.  We will leave them behind,
2481 // but it is possible that the script says that they should follow
2482 // some other input sections, as in:
2483 //    .rodata { *(.rodata) *(.rodata.cst*) }
2484 // For that matter, we don't handle this correctly:
2485 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2486 // With luck this will never matter.
2487
2488 uint64_t
2489 Output_section::get_input_sections(
2490     uint64_t address,
2491     const std::string& fill,
2492     std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2493 {
2494   uint64_t orig_address = address;
2495
2496   address = align_address(address, this->addralign());
2497
2498   Input_section_list remaining;
2499   for (Input_section_list::iterator p = this->input_sections_.begin();
2500        p != this->input_sections_.end();
2501        ++p)
2502     {
2503       if (p->is_input_section())
2504         input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2505       else
2506         {
2507           uint64_t aligned_address = align_address(address, p->addralign());
2508           if (aligned_address != address && !fill.empty())
2509             {
2510               section_size_type length =
2511                 convert_to_section_size_type(aligned_address - address);
2512               std::string this_fill;
2513               this_fill.reserve(length);
2514               while (this_fill.length() + fill.length() <= length)
2515                 this_fill += fill;
2516               if (this_fill.length() < length)
2517                 this_fill.append(fill, 0, length - this_fill.length());
2518
2519               Output_section_data* posd = new Output_data_const(this_fill, 0);
2520               remaining.push_back(Input_section(posd));
2521             }
2522           address = aligned_address;
2523
2524           remaining.push_back(*p);
2525
2526           p->finalize_data_size();
2527           address += p->data_size();
2528         }
2529     }
2530
2531   this->input_sections_.swap(remaining);
2532   this->first_input_offset_ = 0;
2533
2534   uint64_t data_size = address - orig_address;
2535   this->set_current_data_size_for_child(data_size);
2536   return data_size;
2537 }
2538
2539 // Add an input section from a script.
2540
2541 void
2542 Output_section::add_input_section_for_script(Relobj* object,
2543                                              unsigned int shndx,
2544                                              off_t data_size,
2545                                              uint64_t addralign)
2546 {
2547   if (addralign > this->addralign_)
2548     this->addralign_ = addralign;
2549
2550   off_t offset_in_section = this->current_data_size_for_child();
2551   off_t aligned_offset_in_section = align_address(offset_in_section,
2552                                                   addralign);
2553
2554   this->set_current_data_size_for_child(aligned_offset_in_section
2555                                         + data_size);
2556
2557   this->input_sections_.push_back(Input_section(object, shndx,
2558                                                 data_size, addralign));
2559 }
2560
2561 // Print to the map file.
2562
2563 void
2564 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
2565 {
2566   mapfile->print_output_section(this);
2567
2568   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2569        p != this->input_sections_.end();
2570        ++p)
2571     p->print_to_mapfile(mapfile);
2572 }
2573
2574 // Print stats for merge sections to stderr.
2575
2576 void
2577 Output_section::print_merge_stats()
2578 {
2579   Input_section_list::iterator p;
2580   for (p = this->input_sections_.begin();
2581        p != this->input_sections_.end();
2582        ++p)
2583     p->print_merge_stats(this->name_);
2584 }
2585
2586 // Output segment methods.
2587
2588 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2589   : output_data_(),
2590     output_bss_(),
2591     vaddr_(0),
2592     paddr_(0),
2593     memsz_(0),
2594     max_align_(0),
2595     min_p_align_(0),
2596     offset_(0),
2597     filesz_(0),
2598     type_(type),
2599     flags_(flags),
2600     is_max_align_known_(false),
2601     are_addresses_set_(false)
2602 {
2603 }
2604
2605 // Add an Output_section to an Output_segment.
2606
2607 void
2608 Output_segment::add_output_section(Output_section* os,
2609                                    elfcpp::Elf_Word seg_flags)
2610 {
2611   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2612   gold_assert(!this->is_max_align_known_);
2613
2614   // Update the segment flags.
2615   this->flags_ |= seg_flags;
2616
2617   Output_segment::Output_data_list* pdl;
2618   if (os->type() == elfcpp::SHT_NOBITS)
2619     pdl = &this->output_bss_;
2620   else
2621     pdl = &this->output_data_;
2622
2623   // So that PT_NOTE segments will work correctly, we need to ensure
2624   // that all SHT_NOTE sections are adjacent.  This will normally
2625   // happen automatically, because all the SHT_NOTE input sections
2626   // will wind up in the same output section.  However, it is possible
2627   // for multiple SHT_NOTE input sections to have different section
2628   // flags, and thus be in different output sections, but for the
2629   // different section flags to map into the same segment flags and
2630   // thus the same output segment.
2631
2632   // Note that while there may be many input sections in an output
2633   // section, there are normally only a few output sections in an
2634   // output segment.  This loop is expected to be fast.
2635
2636   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2637     {
2638       Output_segment::Output_data_list::iterator p = pdl->end();
2639       do
2640         {
2641           --p;
2642           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2643             {
2644               ++p;
2645               pdl->insert(p, os);
2646               return;
2647             }
2648         }
2649       while (p != pdl->begin());
2650     }
2651
2652   // Similarly, so that PT_TLS segments will work, we need to group
2653   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
2654   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2655   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
2656   // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
2657   // and the PT_TLS segment -- we do this grouping only for the
2658   // PT_LOAD segment.
2659   if (this->type_ != elfcpp::PT_TLS
2660       && (os->flags() & elfcpp::SHF_TLS) != 0)
2661     {
2662       pdl = &this->output_data_;
2663       bool nobits = os->type() == elfcpp::SHT_NOBITS;
2664       bool sawtls = false;
2665       Output_segment::Output_data_list::iterator p = pdl->end();
2666       do
2667         {
2668           --p;
2669           bool insert;
2670           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2671             {
2672               sawtls = true;
2673               // Put a NOBITS section after the first TLS section.
2674               // Put a PROGBITS section after the first TLS/PROGBITS
2675               // section.
2676               insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2677             }
2678           else
2679             {
2680               // If we've gone past the TLS sections, but we've seen a
2681               // TLS section, then we need to insert this section now.
2682               insert = sawtls;
2683             }
2684
2685           if (insert)
2686             {
2687               ++p;
2688               pdl->insert(p, os);
2689               return;
2690             }
2691         }
2692       while (p != pdl->begin());
2693
2694       // There are no TLS sections yet; put this one at the requested
2695       // location in the section list.
2696     }
2697
2698   // For the PT_GNU_RELRO segment, we need to group relro sections,
2699   // and we need to put them before any non-relro sections.  Also,
2700   // relro local sections go before relro non-local sections.
2701   if (parameters->options().relro() && os->is_relro())
2702     {
2703       gold_assert(pdl == &this->output_data_);
2704       Output_segment::Output_data_list::iterator p;
2705       for (p = pdl->begin(); p != pdl->end(); ++p)
2706         {
2707           if (!(*p)->is_section())
2708             break;
2709
2710           Output_section* pos = (*p)->output_section();
2711           if (!pos->is_relro()
2712               || (os->is_relro_local() && !pos->is_relro_local()))
2713             break;
2714         }
2715
2716       pdl->insert(p, os);
2717       return;
2718     }
2719
2720   pdl->push_back(os);
2721 }
2722
2723 // Remove an Output_section from this segment.  It is an error if it
2724 // is not present.
2725
2726 void
2727 Output_segment::remove_output_section(Output_section* os)
2728 {
2729   // We only need this for SHT_PROGBITS.
2730   gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2731   for (Output_data_list::iterator p = this->output_data_.begin();
2732        p != this->output_data_.end();
2733        ++p)
2734    {
2735      if (*p == os)
2736        {
2737          this->output_data_.erase(p);
2738          return;
2739        }
2740    }
2741   gold_unreachable();
2742 }
2743
2744 // Add an Output_data (which is not an Output_section) to the start of
2745 // a segment.
2746
2747 void
2748 Output_segment::add_initial_output_data(Output_data* od)
2749 {
2750   gold_assert(!this->is_max_align_known_);
2751   this->output_data_.push_front(od);
2752 }
2753
2754 // Return whether the first data section is a relro section.
2755
2756 bool
2757 Output_segment::is_first_section_relro() const
2758 {
2759   return (!this->output_data_.empty()
2760           && this->output_data_.front()->is_section()
2761           && this->output_data_.front()->output_section()->is_relro());
2762 }
2763
2764 // Return the maximum alignment of the Output_data in Output_segment.
2765
2766 uint64_t
2767 Output_segment::maximum_alignment()
2768 {
2769   if (!this->is_max_align_known_)
2770     {
2771       uint64_t addralign;
2772
2773       addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2774       if (addralign > this->max_align_)
2775         this->max_align_ = addralign;
2776
2777       addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2778       if (addralign > this->max_align_)
2779         this->max_align_ = addralign;
2780
2781       // If -z relro is in effect, and the first section in this
2782       // segment is a relro section, then the segment must be aligned
2783       // to at least the common page size.  This ensures that the
2784       // PT_GNU_RELRO segment will start at a page boundary.
2785       if (this->type_ == elfcpp::PT_LOAD
2786           && parameters->options().relro()
2787           && this->is_first_section_relro())
2788         {
2789           addralign = parameters->target().common_pagesize();
2790           if (addralign > this->max_align_)
2791             this->max_align_ = addralign;
2792         }
2793
2794       this->is_max_align_known_ = true;
2795     }
2796
2797   return this->max_align_;
2798 }
2799
2800 // Return the maximum alignment of a list of Output_data.
2801
2802 uint64_t
2803 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2804 {
2805   uint64_t ret = 0;
2806   for (Output_data_list::const_iterator p = pdl->begin();
2807        p != pdl->end();
2808        ++p)
2809     {
2810       uint64_t addralign = (*p)->addralign();
2811       if (addralign > ret)
2812         ret = addralign;
2813     }
2814   return ret;
2815 }
2816
2817 // Return the number of dynamic relocs applied to this segment.
2818
2819 unsigned int
2820 Output_segment::dynamic_reloc_count() const
2821 {
2822   return (this->dynamic_reloc_count_list(&this->output_data_)
2823           + this->dynamic_reloc_count_list(&this->output_bss_));
2824 }
2825
2826 // Return the number of dynamic relocs applied to an Output_data_list.
2827
2828 unsigned int
2829 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2830 {
2831   unsigned int count = 0;
2832   for (Output_data_list::const_iterator p = pdl->begin();
2833        p != pdl->end();
2834        ++p)
2835     count += (*p)->dynamic_reloc_count();
2836   return count;
2837 }
2838
2839 // Set the section addresses for an Output_segment.  If RESET is true,
2840 // reset the addresses first.  ADDR is the address and *POFF is the
2841 // file offset.  Set the section indexes starting with *PSHNDX.
2842 // Return the address of the immediately following segment.  Update
2843 // *POFF and *PSHNDX.
2844
2845 uint64_t
2846 Output_segment::set_section_addresses(const Layout* layout, bool reset,
2847                                       uint64_t addr, off_t* poff,
2848                                       unsigned int* pshndx)
2849 {
2850   gold_assert(this->type_ == elfcpp::PT_LOAD);
2851
2852   if (!reset && this->are_addresses_set_)
2853     {
2854       gold_assert(this->paddr_ == addr);
2855       addr = this->vaddr_;
2856     }
2857   else
2858     {
2859       this->vaddr_ = addr;
2860       this->paddr_ = addr;
2861       this->are_addresses_set_ = true;
2862     }
2863
2864   bool in_tls = false;
2865
2866   bool in_relro = (parameters->options().relro()
2867                    && this->is_first_section_relro());
2868
2869   off_t orig_off = *poff;
2870   this->offset_ = orig_off;
2871
2872   addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2873                                           addr, poff, pshndx, &in_tls,
2874                                           &in_relro);
2875   this->filesz_ = *poff - orig_off;
2876
2877   off_t off = *poff;
2878
2879   uint64_t ret = this->set_section_list_addresses(layout, reset,
2880                                                   &this->output_bss_,
2881                                                   addr, poff, pshndx,
2882                                                   &in_tls, &in_relro);
2883
2884   // If the last section was a TLS section, align upward to the
2885   // alignment of the TLS segment, so that the overall size of the TLS
2886   // segment is aligned.
2887   if (in_tls)
2888     {
2889       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2890       *poff = align_address(*poff, segment_align);
2891     }
2892
2893   // If all the sections were relro sections, align upward to the
2894   // common page size.
2895   if (in_relro)
2896     {
2897       uint64_t page_align = parameters->target().common_pagesize();
2898       *poff = align_address(*poff, page_align);
2899     }
2900
2901   this->memsz_ = *poff - orig_off;
2902
2903   // Ignore the file offset adjustments made by the BSS Output_data
2904   // objects.
2905   *poff = off;
2906
2907   return ret;
2908 }
2909
2910 // Set the addresses and file offsets in a list of Output_data
2911 // structures.
2912
2913 uint64_t
2914 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2915                                            Output_data_list* pdl,
2916                                            uint64_t addr, off_t* poff,
2917                                            unsigned int* pshndx,
2918                                            bool* in_tls, bool* in_relro)
2919 {
2920   off_t startoff = *poff;
2921
2922   off_t off = startoff;
2923   for (Output_data_list::iterator p = pdl->begin();
2924        p != pdl->end();
2925        ++p)
2926     {
2927       if (reset)
2928         (*p)->reset_address_and_file_offset();
2929
2930       // When using a linker script the section will most likely
2931       // already have an address.
2932       if (!(*p)->is_address_valid())
2933         {
2934           uint64_t align = (*p)->addralign();
2935
2936           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2937             {
2938               // Give the first TLS section the alignment of the
2939               // entire TLS segment.  Otherwise the TLS segment as a
2940               // whole may be misaligned.
2941               if (!*in_tls)
2942                 {
2943                   Output_segment* tls_segment = layout->tls_segment();
2944                   gold_assert(tls_segment != NULL);
2945                   uint64_t segment_align = tls_segment->maximum_alignment();
2946                   gold_assert(segment_align >= align);
2947                   align = segment_align;
2948
2949                   *in_tls = true;
2950                 }
2951             }
2952           else
2953             {
2954               // If this is the first section after the TLS segment,
2955               // align it to at least the alignment of the TLS
2956               // segment, so that the size of the overall TLS segment
2957               // is aligned.
2958               if (*in_tls)
2959                 {
2960                   uint64_t segment_align =
2961                       layout->tls_segment()->maximum_alignment();
2962                   if (segment_align > align)
2963                     align = segment_align;
2964
2965                   *in_tls = false;
2966                 }
2967             }
2968
2969           // If this is a non-relro section after a relro section,
2970           // align it to a common page boundary so that the dynamic
2971           // linker has a page to mark as read-only.
2972           if (*in_relro
2973               && (!(*p)->is_section()
2974                   || !(*p)->output_section()->is_relro()))
2975             {
2976               uint64_t page_align = parameters->target().common_pagesize();
2977               if (page_align > align)
2978                 align = page_align;
2979               *in_relro = false;
2980             }
2981
2982           off = align_address(off, align);
2983           (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2984         }
2985       else
2986         {
2987           // The script may have inserted a skip forward, but it
2988           // better not have moved backward.
2989           gold_assert((*p)->address() >= addr + (off - startoff));
2990           off += (*p)->address() - (addr + (off - startoff));
2991           (*p)->set_file_offset(off);
2992           (*p)->finalize_data_size();
2993         }
2994
2995       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2996       // section.  Such a section does not affect the size of a
2997       // PT_LOAD segment.
2998       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2999           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3000         off += (*p)->data_size();
3001
3002       if ((*p)->is_section())
3003         {
3004           (*p)->set_out_shndx(*pshndx);
3005           ++*pshndx;
3006         }
3007     }
3008
3009   *poff = off;
3010   return addr + (off - startoff);
3011 }
3012
3013 // For a non-PT_LOAD segment, set the offset from the sections, if
3014 // any.
3015
3016 void
3017 Output_segment::set_offset()
3018 {
3019   gold_assert(this->type_ != elfcpp::PT_LOAD);
3020
3021   gold_assert(!this->are_addresses_set_);
3022
3023   if (this->output_data_.empty() && this->output_bss_.empty())
3024     {
3025       this->vaddr_ = 0;
3026       this->paddr_ = 0;
3027       this->are_addresses_set_ = true;
3028       this->memsz_ = 0;
3029       this->min_p_align_ = 0;
3030       this->offset_ = 0;
3031       this->filesz_ = 0;
3032       return;
3033     }
3034
3035   const Output_data* first;
3036   if (this->output_data_.empty())
3037     first = this->output_bss_.front();
3038   else
3039     first = this->output_data_.front();
3040   this->vaddr_ = first->address();
3041   this->paddr_ = (first->has_load_address()
3042                   ? first->load_address()
3043                   : this->vaddr_);
3044   this->are_addresses_set_ = true;
3045   this->offset_ = first->offset();
3046
3047   if (this->output_data_.empty())
3048     this->filesz_ = 0;
3049   else
3050     {
3051       const Output_data* last_data = this->output_data_.back();
3052       this->filesz_ = (last_data->address()
3053                        + last_data->data_size()
3054                        - this->vaddr_);
3055     }
3056
3057   const Output_data* last;
3058   if (this->output_bss_.empty())
3059     last = this->output_data_.back();
3060   else
3061     last = this->output_bss_.back();
3062   this->memsz_ = (last->address()
3063                   + last->data_size()
3064                   - this->vaddr_);
3065
3066   // If this is a TLS segment, align the memory size.  The code in
3067   // set_section_list ensures that the section after the TLS segment
3068   // is aligned to give us room.
3069   if (this->type_ == elfcpp::PT_TLS)
3070     {
3071       uint64_t segment_align = this->maximum_alignment();
3072       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3073       this->memsz_ = align_address(this->memsz_, segment_align);
3074     }
3075
3076   // If this is a RELRO segment, align the memory size.  The code in
3077   // set_section_list ensures that the section after the RELRO segment
3078   // is aligned to give us room.
3079   if (this->type_ == elfcpp::PT_GNU_RELRO)
3080     {
3081       uint64_t page_align = parameters->target().common_pagesize();
3082       gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3083       this->memsz_ = align_address(this->memsz_, page_align);
3084     }
3085 }
3086
3087 // Set the TLS offsets of the sections in the PT_TLS segment.
3088
3089 void
3090 Output_segment::set_tls_offsets()
3091 {
3092   gold_assert(this->type_ == elfcpp::PT_TLS);
3093
3094   for (Output_data_list::iterator p = this->output_data_.begin();
3095        p != this->output_data_.end();
3096        ++p)
3097     (*p)->set_tls_offset(this->vaddr_);
3098
3099   for (Output_data_list::iterator p = this->output_bss_.begin();
3100        p != this->output_bss_.end();
3101        ++p)
3102     (*p)->set_tls_offset(this->vaddr_);
3103 }
3104
3105 // Return the address of the first section.
3106
3107 uint64_t
3108 Output_segment::first_section_load_address() const
3109 {
3110   for (Output_data_list::const_iterator p = this->output_data_.begin();
3111        p != this->output_data_.end();
3112        ++p)
3113     if ((*p)->is_section())
3114       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3115
3116   for (Output_data_list::const_iterator p = this->output_bss_.begin();
3117        p != this->output_bss_.end();
3118        ++p)
3119     if ((*p)->is_section())
3120       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3121
3122   gold_unreachable();
3123 }
3124
3125 // Return the number of Output_sections in an Output_segment.
3126
3127 unsigned int
3128 Output_segment::output_section_count() const
3129 {
3130   return (this->output_section_count_list(&this->output_data_)
3131           + this->output_section_count_list(&this->output_bss_));
3132 }
3133
3134 // Return the number of Output_sections in an Output_data_list.
3135
3136 unsigned int
3137 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3138 {
3139   unsigned int count = 0;
3140   for (Output_data_list::const_iterator p = pdl->begin();
3141        p != pdl->end();
3142        ++p)
3143     {
3144       if ((*p)->is_section())
3145         ++count;
3146     }
3147   return count;
3148 }
3149
3150 // Return the section attached to the list segment with the lowest
3151 // load address.  This is used when handling a PHDRS clause in a
3152 // linker script.
3153
3154 Output_section*
3155 Output_segment::section_with_lowest_load_address() const
3156 {
3157   Output_section* found = NULL;
3158   uint64_t found_lma = 0;
3159   this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3160
3161   Output_section* found_data = found;
3162   this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3163   if (found != found_data && found_data != NULL)
3164     {
3165       gold_error(_("nobits section %s may not precede progbits section %s "
3166                    "in same segment"),
3167                  found->name(), found_data->name());
3168       return NULL;
3169     }
3170
3171   return found;
3172 }
3173
3174 // Look through a list for a section with a lower load address.
3175
3176 void
3177 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3178                                             Output_section** found,
3179                                             uint64_t* found_lma) const
3180 {
3181   for (Output_data_list::const_iterator p = pdl->begin();
3182        p != pdl->end();
3183        ++p)
3184     {
3185       if (!(*p)->is_section())
3186         continue;
3187       Output_section* os = static_cast<Output_section*>(*p);
3188       uint64_t lma = (os->has_load_address()
3189                       ? os->load_address()
3190                       : os->address());
3191       if (*found == NULL || lma < *found_lma)
3192         {
3193           *found = os;
3194           *found_lma = lma;
3195         }
3196     }
3197 }
3198
3199 // Write the segment data into *OPHDR.
3200
3201 template<int size, bool big_endian>
3202 void
3203 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3204 {
3205   ophdr->put_p_type(this->type_);
3206   ophdr->put_p_offset(this->offset_);
3207   ophdr->put_p_vaddr(this->vaddr_);
3208   ophdr->put_p_paddr(this->paddr_);
3209   ophdr->put_p_filesz(this->filesz_);
3210   ophdr->put_p_memsz(this->memsz_);
3211   ophdr->put_p_flags(this->flags_);
3212   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3213 }
3214
3215 // Write the section headers into V.
3216
3217 template<int size, bool big_endian>
3218 unsigned char*
3219 Output_segment::write_section_headers(const Layout* layout,
3220                                       const Stringpool* secnamepool,
3221                                       unsigned char* v,
3222                                       unsigned int *pshndx) const
3223 {
3224   // Every section that is attached to a segment must be attached to a
3225   // PT_LOAD segment, so we only write out section headers for PT_LOAD
3226   // segments.
3227   if (this->type_ != elfcpp::PT_LOAD)
3228     return v;
3229
3230   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3231                                                          &this->output_data_,
3232                                                          v, pshndx);
3233   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3234                                                          &this->output_bss_,
3235                                                          v, pshndx);
3236   return v;
3237 }
3238
3239 template<int size, bool big_endian>
3240 unsigned char*
3241 Output_segment::write_section_headers_list(const Layout* layout,
3242                                            const Stringpool* secnamepool,
3243                                            const Output_data_list* pdl,
3244                                            unsigned char* v,
3245                                            unsigned int* pshndx) const
3246 {
3247   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3248   for (Output_data_list::const_iterator p = pdl->begin();
3249        p != pdl->end();
3250        ++p)
3251     {
3252       if ((*p)->is_section())
3253         {
3254           const Output_section* ps = static_cast<const Output_section*>(*p);
3255           gold_assert(*pshndx == ps->out_shndx());
3256           elfcpp::Shdr_write<size, big_endian> oshdr(v);
3257           ps->write_header(layout, secnamepool, &oshdr);
3258           v += shdr_size;
3259           ++*pshndx;
3260         }
3261     }
3262   return v;
3263 }
3264
3265 // Print the output sections to the map file.
3266
3267 void
3268 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3269 {
3270   if (this->type() != elfcpp::PT_LOAD)
3271     return;
3272   this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3273   this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3274 }
3275
3276 // Print an output section list to the map file.
3277
3278 void
3279 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3280                                               const Output_data_list* pdl) const
3281 {
3282   for (Output_data_list::const_iterator p = pdl->begin();
3283        p != pdl->end();
3284        ++p)
3285     (*p)->print_to_mapfile(mapfile);
3286 }
3287
3288 // Output_file methods.
3289
3290 Output_file::Output_file(const char* name)
3291   : name_(name),
3292     o_(-1),
3293     file_size_(0),
3294     base_(NULL),
3295     map_is_anonymous_(false),
3296     is_temporary_(false)
3297 {
3298 }
3299
3300 // Open the output file.
3301
3302 void
3303 Output_file::open(off_t file_size)
3304 {
3305   this->file_size_ = file_size;
3306
3307   // Unlink the file first; otherwise the open() may fail if the file
3308   // is busy (e.g. it's an executable that's currently being executed).
3309   //
3310   // However, the linker may be part of a system where a zero-length
3311   // file is created for it to write to, with tight permissions (gcc
3312   // 2.95 did something like this).  Unlinking the file would work
3313   // around those permission controls, so we only unlink if the file
3314   // has a non-zero size.  We also unlink only regular files to avoid
3315   // trouble with directories/etc.
3316   //
3317   // If we fail, continue; this command is merely a best-effort attempt
3318   // to improve the odds for open().
3319
3320   // We let the name "-" mean "stdout"
3321   if (!this->is_temporary_)
3322     {
3323       if (strcmp(this->name_, "-") == 0)
3324         this->o_ = STDOUT_FILENO;
3325       else
3326         {
3327           struct stat s;
3328           if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3329             unlink_if_ordinary(this->name_);
3330
3331           int mode = parameters->options().relocatable() ? 0666 : 0777;
3332           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3333                                   mode);
3334           if (o < 0)
3335             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3336           this->o_ = o;
3337         }
3338     }
3339
3340   this->map();
3341 }
3342
3343 // Resize the output file.
3344
3345 void
3346 Output_file::resize(off_t file_size)
3347 {
3348   // If the mmap is mapping an anonymous memory buffer, this is easy:
3349   // just mremap to the new size.  If it's mapping to a file, we want
3350   // to unmap to flush to the file, then remap after growing the file.
3351   if (this->map_is_anonymous_)
3352     {
3353       void* base = ::mremap(this->base_, this->file_size_, file_size,
3354                             MREMAP_MAYMOVE);
3355       if (base == MAP_FAILED)
3356         gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3357       this->base_ = static_cast<unsigned char*>(base);
3358       this->file_size_ = file_size;
3359     }
3360   else
3361     {
3362       this->unmap();
3363       this->file_size_ = file_size;
3364       this->map();
3365     }
3366 }
3367
3368 // Map the file into memory.
3369
3370 void
3371 Output_file::map()
3372 {
3373   const int o = this->o_;
3374
3375   // If the output file is not a regular file, don't try to mmap it;
3376   // instead, we'll mmap a block of memory (an anonymous buffer), and
3377   // then later write the buffer to the file.
3378   void* base;
3379   struct stat statbuf;
3380   if (o == STDOUT_FILENO || o == STDERR_FILENO
3381       || ::fstat(o, &statbuf) != 0
3382       || !S_ISREG(statbuf.st_mode)
3383       || this->is_temporary_)
3384     {
3385       this->map_is_anonymous_ = true;
3386       base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3387                     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3388     }
3389   else
3390     {
3391       // Write out one byte to make the file the right size.
3392       if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
3393         gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
3394       char b = 0;
3395       if (::write(o, &b, 1) != 1)
3396         gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
3397
3398       // Map the file into memory.
3399       this->map_is_anonymous_ = false;
3400       base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3401                     MAP_SHARED, o, 0);
3402     }
3403   if (base == MAP_FAILED)
3404     gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
3405   this->base_ = static_cast<unsigned char*>(base);
3406 }
3407
3408 // Unmap the file from memory.
3409
3410 void
3411 Output_file::unmap()
3412 {
3413   if (::munmap(this->base_, this->file_size_) < 0)
3414     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
3415   this->base_ = NULL;
3416 }
3417
3418 // Close the output file.
3419
3420 void
3421 Output_file::close()
3422 {
3423   // If the map isn't file-backed, we need to write it now.
3424   if (this->map_is_anonymous_ && !this->is_temporary_)
3425     {
3426       size_t bytes_to_write = this->file_size_;
3427       while (bytes_to_write > 0)
3428         {
3429           ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
3430           if (bytes_written == 0)
3431             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3432           else if (bytes_written < 0)
3433             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3434           else
3435             bytes_to_write -= bytes_written;
3436         }
3437     }
3438   this->unmap();
3439
3440   // We don't close stdout or stderr
3441   if (this->o_ != STDOUT_FILENO
3442       && this->o_ != STDERR_FILENO
3443       && !this->is_temporary_)
3444     if (::close(this->o_) < 0)
3445       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3446   this->o_ = -1;
3447 }
3448
3449 // Instantiate the templates we need.  We could use the configure
3450 // script to restrict this to only the ones for implemented targets.
3451
3452 #ifdef HAVE_TARGET_32_LITTLE
3453 template
3454 off_t
3455 Output_section::add_input_section<32, false>(
3456     Sized_relobj<32, false>* object,
3457     unsigned int shndx,
3458     const char* secname,
3459     const elfcpp::Shdr<32, false>& shdr,
3460     unsigned int reloc_shndx,
3461     bool have_sections_script);
3462 #endif
3463
3464 #ifdef HAVE_TARGET_32_BIG
3465 template
3466 off_t
3467 Output_section::add_input_section<32, true>(
3468     Sized_relobj<32, true>* object,
3469     unsigned int shndx,
3470     const char* secname,
3471     const elfcpp::Shdr<32, true>& shdr,
3472     unsigned int reloc_shndx,
3473     bool have_sections_script);
3474 #endif
3475
3476 #ifdef HAVE_TARGET_64_LITTLE
3477 template
3478 off_t
3479 Output_section::add_input_section<64, false>(
3480     Sized_relobj<64, false>* object,
3481     unsigned int shndx,
3482     const char* secname,
3483     const elfcpp::Shdr<64, false>& shdr,
3484     unsigned int reloc_shndx,
3485     bool have_sections_script);
3486 #endif
3487
3488 #ifdef HAVE_TARGET_64_BIG
3489 template
3490 off_t
3491 Output_section::add_input_section<64, true>(
3492     Sized_relobj<64, true>* object,
3493     unsigned int shndx,
3494     const char* secname,
3495     const elfcpp::Shdr<64, true>& shdr,
3496     unsigned int reloc_shndx,
3497     bool have_sections_script);
3498 #endif
3499
3500 #ifdef HAVE_TARGET_32_LITTLE
3501 template
3502 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
3503 #endif
3504
3505 #ifdef HAVE_TARGET_32_BIG
3506 template
3507 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
3508 #endif
3509
3510 #ifdef HAVE_TARGET_64_LITTLE
3511 template
3512 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
3513 #endif
3514
3515 #ifdef HAVE_TARGET_64_BIG
3516 template
3517 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
3518 #endif
3519
3520 #ifdef HAVE_TARGET_32_LITTLE
3521 template
3522 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
3523 #endif
3524
3525 #ifdef HAVE_TARGET_32_BIG
3526 template
3527 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
3528 #endif
3529
3530 #ifdef HAVE_TARGET_64_LITTLE
3531 template
3532 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
3533 #endif
3534
3535 #ifdef HAVE_TARGET_64_BIG
3536 template
3537 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
3538 #endif
3539
3540 #ifdef HAVE_TARGET_32_LITTLE
3541 template
3542 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
3543 #endif
3544
3545 #ifdef HAVE_TARGET_32_BIG
3546 template
3547 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
3548 #endif
3549
3550 #ifdef HAVE_TARGET_64_LITTLE
3551 template
3552 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
3553 #endif
3554
3555 #ifdef HAVE_TARGET_64_BIG
3556 template
3557 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
3558 #endif
3559
3560 #ifdef HAVE_TARGET_32_LITTLE
3561 template
3562 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
3563 #endif
3564
3565 #ifdef HAVE_TARGET_32_BIG
3566 template
3567 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
3568 #endif
3569
3570 #ifdef HAVE_TARGET_64_LITTLE
3571 template
3572 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
3573 #endif
3574
3575 #ifdef HAVE_TARGET_64_BIG
3576 template
3577 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
3578 #endif
3579
3580 #ifdef HAVE_TARGET_32_LITTLE
3581 template
3582 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3583 #endif
3584
3585 #ifdef HAVE_TARGET_32_BIG
3586 template
3587 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3588 #endif
3589
3590 #ifdef HAVE_TARGET_64_LITTLE
3591 template
3592 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3593 #endif
3594
3595 #ifdef HAVE_TARGET_64_BIG
3596 template
3597 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3598 #endif
3599
3600 #ifdef HAVE_TARGET_32_LITTLE
3601 template
3602 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3603 #endif
3604
3605 #ifdef HAVE_TARGET_32_BIG
3606 template
3607 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3608 #endif
3609
3610 #ifdef HAVE_TARGET_64_LITTLE
3611 template
3612 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3613 #endif
3614
3615 #ifdef HAVE_TARGET_64_BIG
3616 template
3617 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3618 #endif
3619
3620 #ifdef HAVE_TARGET_32_LITTLE
3621 template
3622 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3623 #endif
3624
3625 #ifdef HAVE_TARGET_32_BIG
3626 template
3627 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3628 #endif
3629
3630 #ifdef HAVE_TARGET_64_LITTLE
3631 template
3632 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3633 #endif
3634
3635 #ifdef HAVE_TARGET_64_BIG
3636 template
3637 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3638 #endif
3639
3640 #ifdef HAVE_TARGET_32_LITTLE
3641 template
3642 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3643 #endif
3644
3645 #ifdef HAVE_TARGET_32_BIG
3646 template
3647 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3648 #endif
3649
3650 #ifdef HAVE_TARGET_64_LITTLE
3651 template
3652 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3653 #endif
3654
3655 #ifdef HAVE_TARGET_64_BIG
3656 template
3657 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3658 #endif
3659
3660 #ifdef HAVE_TARGET_32_LITTLE
3661 template
3662 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3663 #endif
3664
3665 #ifdef HAVE_TARGET_32_BIG
3666 template
3667 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3668 #endif
3669
3670 #ifdef HAVE_TARGET_64_LITTLE
3671 template
3672 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3673 #endif
3674
3675 #ifdef HAVE_TARGET_64_BIG
3676 template
3677 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3678 #endif
3679
3680 #ifdef HAVE_TARGET_32_LITTLE
3681 template
3682 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3683 #endif
3684
3685 #ifdef HAVE_TARGET_32_BIG
3686 template
3687 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3688 #endif
3689
3690 #ifdef HAVE_TARGET_64_LITTLE
3691 template
3692 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3693 #endif
3694
3695 #ifdef HAVE_TARGET_64_BIG
3696 template
3697 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3698 #endif
3699
3700 #ifdef HAVE_TARGET_32_LITTLE
3701 template
3702 class Output_data_group<32, false>;
3703 #endif
3704
3705 #ifdef HAVE_TARGET_32_BIG
3706 template
3707 class Output_data_group<32, true>;
3708 #endif
3709
3710 #ifdef HAVE_TARGET_64_LITTLE
3711 template
3712 class Output_data_group<64, false>;
3713 #endif
3714
3715 #ifdef HAVE_TARGET_64_BIG
3716 template
3717 class Output_data_group<64, true>;
3718 #endif
3719
3720 #ifdef HAVE_TARGET_32_LITTLE
3721 template
3722 class Output_data_got<32, false>;
3723 #endif
3724
3725 #ifdef HAVE_TARGET_32_BIG
3726 template
3727 class Output_data_got<32, true>;
3728 #endif
3729
3730 #ifdef HAVE_TARGET_64_LITTLE
3731 template
3732 class Output_data_got<64, false>;
3733 #endif
3734
3735 #ifdef HAVE_TARGET_64_BIG
3736 template
3737 class Output_data_got<64, true>;
3738 #endif
3739
3740 } // End namespace gold.