Support dynamic relocations against local section symbols.
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 #include "libiberty.h"   // for unlink_if_ordinary()
33
34 #include "parameters.h"
35 #include "object.h"
36 #include "symtab.h"
37 #include "reloc.h"
38 #include "merge.h"
39 #include "output.h"
40
41 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
42 #ifndef MAP_ANONYMOUS
43 # define MAP_ANONYMOUS  MAP_ANON
44 #endif
45
46 namespace gold
47 {
48
49 // Output_data variables.
50
51 bool Output_data::allocated_sizes_are_fixed;
52
53 // Output_data methods.
54
55 Output_data::~Output_data()
56 {
57 }
58
59 // Return the default alignment for the target size.
60
61 uint64_t
62 Output_data::default_alignment()
63 {
64   return Output_data::default_alignment_for_size(parameters->get_size());
65 }
66
67 // Return the default alignment for a size--32 or 64.
68
69 uint64_t
70 Output_data::default_alignment_for_size(int size)
71 {
72   if (size == 32)
73     return 4;
74   else if (size == 64)
75     return 8;
76   else
77     gold_unreachable();
78 }
79
80 // Output_section_header methods.  This currently assumes that the
81 // segment and section lists are complete at construction time.
82
83 Output_section_headers::Output_section_headers(
84     const Layout* layout,
85     const Layout::Segment_list* segment_list,
86     const Layout::Section_list* section_list,
87     const Layout::Section_list* unattached_section_list,
88     const Stringpool* secnamepool)
89   : layout_(layout),
90     segment_list_(segment_list),
91     section_list_(section_list),
92     unattached_section_list_(unattached_section_list),
93     secnamepool_(secnamepool)
94 {
95   // Count all the sections.  Start with 1 for the null section.
96   off_t count = 1;
97   if (!parameters->output_is_object())
98     {
99       for (Layout::Segment_list::const_iterator p = segment_list->begin();
100            p != segment_list->end();
101            ++p)
102         if ((*p)->type() == elfcpp::PT_LOAD)
103           count += (*p)->output_section_count();
104     }
105   else
106     {
107       for (Layout::Section_list::const_iterator p = section_list->begin();
108            p != section_list->end();
109            ++p)
110         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
111           ++count;
112     }
113   count += unattached_section_list->size();
114
115   const int size = parameters->get_size();
116   int shdr_size;
117   if (size == 32)
118     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
119   else if (size == 64)
120     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
121   else
122     gold_unreachable();
123
124   this->set_data_size(count * shdr_size);
125 }
126
127 // Write out the section headers.
128
129 void
130 Output_section_headers::do_write(Output_file* of)
131 {
132   if (parameters->get_size() == 32)
133     {
134       if (parameters->is_big_endian())
135         {
136 #ifdef HAVE_TARGET_32_BIG
137           this->do_sized_write<32, true>(of);
138 #else
139           gold_unreachable();
140 #endif
141         }
142       else
143         {
144 #ifdef HAVE_TARGET_32_LITTLE
145           this->do_sized_write<32, false>(of);
146 #else
147           gold_unreachable();
148 #endif
149         }
150     }
151   else if (parameters->get_size() == 64)
152     {
153       if (parameters->is_big_endian())
154         {
155 #ifdef HAVE_TARGET_64_BIG
156           this->do_sized_write<64, true>(of);
157 #else
158           gold_unreachable();
159 #endif
160         }
161       else
162         {
163 #ifdef HAVE_TARGET_64_LITTLE
164           this->do_sized_write<64, false>(of);
165 #else
166           gold_unreachable();
167 #endif
168         }
169     }
170   else
171     gold_unreachable();
172 }
173
174 template<int size, bool big_endian>
175 void
176 Output_section_headers::do_sized_write(Output_file* of)
177 {
178   off_t all_shdrs_size = this->data_size();
179   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
180
181   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
182   unsigned char* v = view;
183
184   {
185     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
186     oshdr.put_sh_name(0);
187     oshdr.put_sh_type(elfcpp::SHT_NULL);
188     oshdr.put_sh_flags(0);
189     oshdr.put_sh_addr(0);
190     oshdr.put_sh_offset(0);
191     oshdr.put_sh_size(0);
192     oshdr.put_sh_link(0);
193     oshdr.put_sh_info(0);
194     oshdr.put_sh_addralign(0);
195     oshdr.put_sh_entsize(0);
196   }
197
198   v += shdr_size;
199
200   unsigned int shndx = 1;
201   if (!parameters->output_is_object())
202     {
203       for (Layout::Segment_list::const_iterator p =
204              this->segment_list_->begin();
205            p != this->segment_list_->end();
206            ++p)
207         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
208                                                           this->secnamepool_,
209                                                           v,
210                                                           &shndx);
211     }
212   else
213     {
214       for (Layout::Section_list::const_iterator p =
215              this->section_list_->begin();
216            p != this->section_list_->end();
217            ++p)
218         {
219           // We do unallocated sections below, except that group
220           // sections have to come first.
221           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
222               && (*p)->type() != elfcpp::SHT_GROUP)
223             continue;
224           gold_assert(shndx == (*p)->out_shndx());
225           elfcpp::Shdr_write<size, big_endian> oshdr(v);
226           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
227           v += shdr_size;
228           ++shndx;
229         }
230     }
231
232   for (Layout::Section_list::const_iterator p =
233          this->unattached_section_list_->begin();
234        p != this->unattached_section_list_->end();
235        ++p)
236     {
237       // For a relocatable link, we did unallocated group sections
238       // above, since they have to come first.
239       if ((*p)->type() == elfcpp::SHT_GROUP
240           && parameters->output_is_object())
241         continue;
242       gold_assert(shndx == (*p)->out_shndx());
243       elfcpp::Shdr_write<size, big_endian> oshdr(v);
244       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
245       v += shdr_size;
246       ++shndx;
247     }
248
249   of->write_output_view(this->offset(), all_shdrs_size, view);
250 }
251
252 // Output_segment_header methods.
253
254 Output_segment_headers::Output_segment_headers(
255     const Layout::Segment_list& segment_list)
256   : segment_list_(segment_list)
257 {
258   const int size = parameters->get_size();
259   int phdr_size;
260   if (size == 32)
261     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
262   else if (size == 64)
263     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
264   else
265     gold_unreachable();
266
267   this->set_data_size(segment_list.size() * phdr_size);
268 }
269
270 void
271 Output_segment_headers::do_write(Output_file* of)
272 {
273   if (parameters->get_size() == 32)
274     {
275       if (parameters->is_big_endian())
276         {
277 #ifdef HAVE_TARGET_32_BIG
278           this->do_sized_write<32, true>(of);
279 #else
280           gold_unreachable();
281 #endif
282         }
283       else
284         {
285 #ifdef HAVE_TARGET_32_LITTLE
286         this->do_sized_write<32, false>(of);
287 #else
288         gold_unreachable();
289 #endif
290         }
291     }
292   else if (parameters->get_size() == 64)
293     {
294       if (parameters->is_big_endian())
295         {
296 #ifdef HAVE_TARGET_64_BIG
297           this->do_sized_write<64, true>(of);
298 #else
299           gold_unreachable();
300 #endif
301         }
302       else
303         {
304 #ifdef HAVE_TARGET_64_LITTLE
305           this->do_sized_write<64, false>(of);
306 #else
307           gold_unreachable();
308 #endif
309         }
310     }
311   else
312     gold_unreachable();
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321   gold_assert(all_phdrs_size == this->data_size());
322   unsigned char* view = of->get_output_view(this->offset(),
323                                             all_phdrs_size);
324   unsigned char* v = view;
325   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326        p != this->segment_list_.end();
327        ++p)
328     {
329       elfcpp::Phdr_write<size, big_endian> ophdr(v);
330       (*p)->write_header(&ophdr);
331       v += phdr_size;
332     }
333
334   gold_assert(v - view == all_phdrs_size);
335
336   of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 // Output_file_header methods.
340
341 Output_file_header::Output_file_header(const Target* target,
342                                        const Symbol_table* symtab,
343                                        const Output_segment_headers* osh,
344                                        const char* entry)
345   : target_(target),
346     symtab_(symtab),
347     segment_header_(osh),
348     section_header_(NULL),
349     shstrtab_(NULL),
350     entry_(entry)
351 {
352   const int size = parameters->get_size();
353   int ehdr_size;
354   if (size == 32)
355     ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
356   else if (size == 64)
357     ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
358   else
359     gold_unreachable();
360
361   this->set_data_size(ehdr_size);
362 }
363
364 // Set the section table information for a file header.
365
366 void
367 Output_file_header::set_section_info(const Output_section_headers* shdrs,
368                                      const Output_section* shstrtab)
369 {
370   this->section_header_ = shdrs;
371   this->shstrtab_ = shstrtab;
372 }
373
374 // Write out the file header.
375
376 void
377 Output_file_header::do_write(Output_file* of)
378 {
379   gold_assert(this->offset() == 0);
380
381   if (parameters->get_size() == 32)
382     {
383       if (parameters->is_big_endian())
384         {
385 #ifdef HAVE_TARGET_32_BIG
386           this->do_sized_write<32, true>(of);
387 #else
388           gold_unreachable();
389 #endif
390         }
391       else
392         {
393 #ifdef HAVE_TARGET_32_LITTLE
394           this->do_sized_write<32, false>(of);
395 #else
396           gold_unreachable();
397 #endif
398         }
399     }
400   else if (parameters->get_size() == 64)
401     {
402       if (parameters->is_big_endian())
403         {
404 #ifdef HAVE_TARGET_64_BIG
405           this->do_sized_write<64, true>(of);
406 #else
407           gold_unreachable();
408 #endif
409         }
410       else
411         {
412 #ifdef HAVE_TARGET_64_LITTLE
413           this->do_sized_write<64, false>(of);
414 #else
415           gold_unreachable();
416 #endif
417         }
418     }
419   else
420     gold_unreachable();
421 }
422
423 // Write out the file header with appropriate size and endianess.
424
425 template<int size, bool big_endian>
426 void
427 Output_file_header::do_sized_write(Output_file* of)
428 {
429   gold_assert(this->offset() == 0);
430
431   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
432   unsigned char* view = of->get_output_view(0, ehdr_size);
433   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
434
435   unsigned char e_ident[elfcpp::EI_NIDENT];
436   memset(e_ident, 0, elfcpp::EI_NIDENT);
437   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
438   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
439   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
440   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
441   if (size == 32)
442     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
443   else if (size == 64)
444     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
445   else
446     gold_unreachable();
447   e_ident[elfcpp::EI_DATA] = (big_endian
448                               ? elfcpp::ELFDATA2MSB
449                               : elfcpp::ELFDATA2LSB);
450   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
451   // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
452   oehdr.put_e_ident(e_ident);
453
454   elfcpp::ET e_type;
455   if (parameters->output_is_object())
456     e_type = elfcpp::ET_REL;
457   else if (parameters->output_is_shared())
458     e_type = elfcpp::ET_DYN;
459   else
460     e_type = elfcpp::ET_EXEC;
461   oehdr.put_e_type(e_type);
462
463   oehdr.put_e_machine(this->target_->machine_code());
464   oehdr.put_e_version(elfcpp::EV_CURRENT);
465
466   oehdr.put_e_entry(this->entry<size>());
467
468   if (this->segment_header_ == NULL)
469     oehdr.put_e_phoff(0);
470   else
471     oehdr.put_e_phoff(this->segment_header_->offset());
472
473   oehdr.put_e_shoff(this->section_header_->offset());
474
475   // FIXME: The target needs to set the flags.
476   oehdr.put_e_flags(0);
477
478   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
479
480   if (this->segment_header_ == NULL)
481     {
482       oehdr.put_e_phentsize(0);
483       oehdr.put_e_phnum(0);
484     }
485   else
486     {
487       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
488       oehdr.put_e_phnum(this->segment_header_->data_size()
489                         / elfcpp::Elf_sizes<size>::phdr_size);
490     }
491
492   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
493   oehdr.put_e_shnum(this->section_header_->data_size()
494                      / elfcpp::Elf_sizes<size>::shdr_size);
495   oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
496
497   of->write_output_view(0, ehdr_size, view);
498 }
499
500 // Return the value to use for the entry address.  THIS->ENTRY_ is the
501 // symbol specified on the command line, if any.
502
503 template<int size>
504 typename elfcpp::Elf_types<size>::Elf_Addr
505 Output_file_header::entry()
506 {
507   const bool should_issue_warning = (this->entry_ != NULL
508                                      && parameters->output_is_executable());
509
510   // FIXME: Need to support target specific entry symbol.
511   const char* entry = this->entry_;
512   if (entry == NULL)
513     entry = "_start";
514
515   Symbol* sym = this->symtab_->lookup(entry);
516
517   typename Sized_symbol<size>::Value_type v;
518   if (sym != NULL)
519     {
520       Sized_symbol<size>* ssym;
521       ssym = this->symtab_->get_sized_symbol<size>(sym);
522       if (!ssym->is_defined() && should_issue_warning)
523         gold_warning("entry symbol '%s' exists but is not defined", entry);
524       v = ssym->value();
525     }
526   else
527     {
528       // We couldn't find the entry symbol.  See if we can parse it as
529       // a number.  This supports, e.g., -e 0x1000.
530       char* endptr;
531       v = strtoull(entry, &endptr, 0);
532       if (*endptr != '\0')
533         {
534           if (should_issue_warning)
535             gold_warning("cannot find entry symbol '%s'", entry);
536           v = 0;
537         }
538     }
539
540   return v;
541 }
542
543 // Output_data_const methods.
544
545 void
546 Output_data_const::do_write(Output_file* of)
547 {
548   of->write(this->offset(), this->data_.data(), this->data_.size());
549 }
550
551 // Output_data_const_buffer methods.
552
553 void
554 Output_data_const_buffer::do_write(Output_file* of)
555 {
556   of->write(this->offset(), this->p_, this->data_size());
557 }
558
559 // Output_section_data methods.
560
561 // Record the output section, and set the entry size and such.
562
563 void
564 Output_section_data::set_output_section(Output_section* os)
565 {
566   gold_assert(this->output_section_ == NULL);
567   this->output_section_ = os;
568   this->do_adjust_output_section(os);
569 }
570
571 // Return the section index of the output section.
572
573 unsigned int
574 Output_section_data::do_out_shndx() const
575 {
576   gold_assert(this->output_section_ != NULL);
577   return this->output_section_->out_shndx();
578 }
579
580 // Output_data_strtab methods.
581
582 // Set the final data size.
583
584 void
585 Output_data_strtab::set_final_data_size()
586 {
587   this->strtab_->set_string_offsets();
588   this->set_data_size(this->strtab_->get_strtab_size());
589 }
590
591 // Write out a string table.
592
593 void
594 Output_data_strtab::do_write(Output_file* of)
595 {
596   this->strtab_->write(of, this->offset());
597 }
598
599 // Output_reloc methods.
600
601 // A reloc against a global symbol.
602
603 template<bool dynamic, int size, bool big_endian>
604 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
605     Symbol* gsym,
606     unsigned int type,
607     Output_data* od,
608     Address address,
609     bool is_relative)
610   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
611     is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
612 {
613   // this->type_ is a bitfield; make sure TYPE fits.
614   gold_assert(this->type_ == type);
615   this->u1_.gsym = gsym;
616   this->u2_.od = od;
617   if (dynamic)
618     this->set_needs_dynsym_index();
619 }
620
621 template<bool dynamic, int size, bool big_endian>
622 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
623     Symbol* gsym,
624     unsigned int type,
625     Relobj* relobj,
626     unsigned int shndx,
627     Address address,
628     bool is_relative)
629   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
630     is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
631 {
632   gold_assert(shndx != INVALID_CODE);
633   // this->type_ is a bitfield; make sure TYPE fits.
634   gold_assert(this->type_ == type);
635   this->u1_.gsym = gsym;
636   this->u2_.relobj = relobj;
637   if (dynamic)
638     this->set_needs_dynsym_index();
639 }
640
641 // A reloc against a local symbol.
642
643 template<bool dynamic, int size, bool big_endian>
644 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
645     Sized_relobj<size, big_endian>* relobj,
646     unsigned int local_sym_index,
647     unsigned int type,
648     Output_data* od,
649     Address address,
650     bool is_relative,
651     bool is_section_symbol)
652   : address_(address), local_sym_index_(local_sym_index), type_(type),
653     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
654     shndx_(INVALID_CODE)
655 {
656   gold_assert(local_sym_index != GSYM_CODE
657               && local_sym_index != INVALID_CODE);
658   // this->type_ is a bitfield; make sure TYPE fits.
659   gold_assert(this->type_ == type);
660   this->u1_.relobj = relobj;
661   this->u2_.od = od;
662   if (dynamic)
663     this->set_needs_dynsym_index();
664 }
665
666 template<bool dynamic, int size, bool big_endian>
667 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
668     Sized_relobj<size, big_endian>* relobj,
669     unsigned int local_sym_index,
670     unsigned int type,
671     unsigned int shndx,
672     Address address,
673     bool is_relative,
674     bool is_section_symbol)
675   : address_(address), local_sym_index_(local_sym_index), type_(type),
676     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
677     shndx_(shndx)
678 {
679   gold_assert(local_sym_index != GSYM_CODE
680               && local_sym_index != INVALID_CODE);
681   gold_assert(shndx != INVALID_CODE);
682   // this->type_ is a bitfield; make sure TYPE fits.
683   gold_assert(this->type_ == type);
684   this->u1_.relobj = relobj;
685   this->u2_.relobj = relobj;
686   if (dynamic)
687     this->set_needs_dynsym_index();
688 }
689
690 // A reloc against the STT_SECTION symbol of an output section.
691
692 template<bool dynamic, int size, bool big_endian>
693 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
694     Output_section* os,
695     unsigned int type,
696     Output_data* od,
697     Address address)
698   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
699     is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
700 {
701   // this->type_ is a bitfield; make sure TYPE fits.
702   gold_assert(this->type_ == type);
703   this->u1_.os = os;
704   this->u2_.od = od;
705   if (dynamic)
706     this->set_needs_dynsym_index();
707   else
708     os->set_needs_symtab_index();
709 }
710
711 template<bool dynamic, int size, bool big_endian>
712 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
713     Output_section* os,
714     unsigned int type,
715     Relobj* relobj,
716     unsigned int shndx,
717     Address address)
718   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
719     is_relative_(false), is_section_symbol_(true), shndx_(shndx)
720 {
721   gold_assert(shndx != INVALID_CODE);
722   // this->type_ is a bitfield; make sure TYPE fits.
723   gold_assert(this->type_ == type);
724   this->u1_.os = os;
725   this->u2_.relobj = relobj;
726   if (dynamic)
727     this->set_needs_dynsym_index();
728   else
729     os->set_needs_symtab_index();
730 }
731
732 // Record that we need a dynamic symbol index for this relocation.
733
734 template<bool dynamic, int size, bool big_endian>
735 void
736 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
737 set_needs_dynsym_index()
738 {
739   if (this->is_relative_)
740     return;
741   switch (this->local_sym_index_)
742     {
743     case INVALID_CODE:
744       gold_unreachable();
745
746     case GSYM_CODE:
747       this->u1_.gsym->set_needs_dynsym_entry();
748       break;
749
750     case SECTION_CODE:
751       this->u1_.os->set_needs_dynsym_index();
752       break;
753
754     case 0:
755       break;
756
757     default:
758       {
759         const unsigned int lsi = this->local_sym_index_;
760         if (!this->is_section_symbol_)
761           this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
762         else
763           {
764             section_offset_type dummy;
765             Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
766             gold_assert(os != NULL);
767             os->set_needs_dynsym_index();
768           }
769       }
770       break;
771     }
772 }
773
774 // Get the symbol index of a relocation.
775
776 template<bool dynamic, int size, bool big_endian>
777 unsigned int
778 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
779   const
780 {
781   unsigned int index;
782   switch (this->local_sym_index_)
783     {
784     case INVALID_CODE:
785       gold_unreachable();
786
787     case GSYM_CODE:
788       if (this->u1_.gsym == NULL)
789         index = 0;
790       else if (dynamic)
791         index = this->u1_.gsym->dynsym_index();
792       else
793         index = this->u1_.gsym->symtab_index();
794       break;
795
796     case SECTION_CODE:
797       if (dynamic)
798         index = this->u1_.os->dynsym_index();
799       else
800         index = this->u1_.os->symtab_index();
801       break;
802
803     case 0:
804       // Relocations without symbols use a symbol index of 0.
805       index = 0;
806       break;
807
808     default:
809       {
810         const unsigned int lsi = this->local_sym_index_;
811         if (!this->is_section_symbol_)
812           {
813             if (dynamic)
814               index = this->u1_.relobj->dynsym_index(lsi);
815             else
816               index = this->u1_.relobj->symtab_index(lsi);
817           }
818         else
819           {
820             section_offset_type dummy;
821             Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
822             gold_assert(os != NULL);
823             if (dynamic)
824               index = os->dynsym_index();
825             else
826               index = os->symtab_index();
827           }
828       }
829       break;
830     }
831   gold_assert(index != -1U);
832   return index;
833 }
834
835 // For a local section symbol, get the section offset of the input
836 // section within the output section.
837
838 template<bool dynamic, int size, bool big_endian>
839 section_offset_type
840 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
841   local_section_offset() const
842 {
843   const unsigned int lsi = this->local_sym_index_;
844   section_offset_type offset;
845   Output_section* os = this->u1_.relobj->output_section(lsi, &offset);
846   gold_assert(os != NULL);
847   return offset;
848 }
849
850 // Write out the offset and info fields of a Rel or Rela relocation
851 // entry.
852
853 template<bool dynamic, int size, bool big_endian>
854 template<typename Write_rel>
855 void
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
857     Write_rel* wr) const
858 {
859   Address address = this->address_;
860   if (this->shndx_ != INVALID_CODE)
861     {
862       section_offset_type off;
863       Output_section* os = this->u2_.relobj->output_section(this->shndx_,
864                                                             &off);
865       gold_assert(os != NULL);
866       if (off != -1)
867         address += os->address() + off;
868       else
869         {
870           address = os->output_address(this->u2_.relobj, this->shndx_,
871                                        address);
872           gold_assert(address != -1U);
873         }
874     }
875   else if (this->u2_.od != NULL)
876     address += this->u2_.od->address();
877   wr->put_r_offset(address);
878   unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
879   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
880 }
881
882 // Write out a Rel relocation.
883
884 template<bool dynamic, int size, bool big_endian>
885 void
886 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
887     unsigned char* pov) const
888 {
889   elfcpp::Rel_write<size, big_endian> orel(pov);
890   this->write_rel(&orel);
891 }
892
893 // Get the value of the symbol referred to by a Rel relocation.
894
895 template<bool dynamic, int size, bool big_endian>
896 typename elfcpp::Elf_types<size>::Elf_Addr
897 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value() const
898 {
899   if (this->local_sym_index_ == GSYM_CODE)
900     {
901       const Sized_symbol<size>* sym;
902       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
903       return sym->value();
904     }
905   gold_assert(this->local_sym_index_ != SECTION_CODE
906               && this->local_sym_index_ != INVALID_CODE);
907   const Sized_relobj<size, big_endian>* relobj = this->u1_.relobj;
908   return relobj->local_symbol_value(this->local_sym_index_);
909 }
910
911 // Write out a Rela relocation.
912
913 template<bool dynamic, int size, bool big_endian>
914 void
915 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
916     unsigned char* pov) const
917 {
918   elfcpp::Rela_write<size, big_endian> orel(pov);
919   this->rel_.write_rel(&orel);
920   Addend addend = this->addend_;
921   if (this->rel_.is_relative())
922     addend += this->rel_.symbol_value();
923   if (this->rel_.is_local_section_symbol())
924     addend += this->rel_.local_section_offset();
925   orel.put_r_addend(addend);
926 }
927
928 // Output_data_reloc_base methods.
929
930 // Adjust the output section.
931
932 template<int sh_type, bool dynamic, int size, bool big_endian>
933 void
934 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
935     ::do_adjust_output_section(Output_section* os)
936 {
937   if (sh_type == elfcpp::SHT_REL)
938     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
939   else if (sh_type == elfcpp::SHT_RELA)
940     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
941   else
942     gold_unreachable();
943   if (dynamic)
944     os->set_should_link_to_dynsym();
945   else
946     os->set_should_link_to_symtab();
947 }
948
949 // Write out relocation data.
950
951 template<int sh_type, bool dynamic, int size, bool big_endian>
952 void
953 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
954     Output_file* of)
955 {
956   const off_t off = this->offset();
957   const off_t oview_size = this->data_size();
958   unsigned char* const oview = of->get_output_view(off, oview_size);
959
960   unsigned char* pov = oview;
961   for (typename Relocs::const_iterator p = this->relocs_.begin();
962        p != this->relocs_.end();
963        ++p)
964     {
965       p->write(pov);
966       pov += reloc_size;
967     }
968
969   gold_assert(pov - oview == oview_size);
970
971   of->write_output_view(off, oview_size, oview);
972
973   // We no longer need the relocation entries.
974   this->relocs_.clear();
975 }
976
977 // Class Output_relocatable_relocs.
978
979 template<int sh_type, int size, bool big_endian>
980 void
981 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
982 {
983   this->set_data_size(this->rr_->output_reloc_count()
984                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
985 }
986
987 // class Output_data_group.
988
989 template<int size, bool big_endian>
990 Output_data_group<size, big_endian>::Output_data_group(
991     Sized_relobj<size, big_endian>* relobj,
992     section_size_type entry_count,
993     const elfcpp::Elf_Word* contents)
994   : Output_section_data(entry_count * 4, 4),
995     relobj_(relobj)
996 {
997   this->flags_ = elfcpp::Swap<32, big_endian>::readval(contents);
998   for (section_size_type i = 1; i < entry_count; ++i)
999     {
1000       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
1001       this->input_sections_.push_back(shndx);
1002     }
1003 }
1004
1005 // Write out the section group, which means translating the section
1006 // indexes to apply to the output file.
1007
1008 template<int size, bool big_endian>
1009 void
1010 Output_data_group<size, big_endian>::do_write(Output_file* of)
1011 {
1012   const off_t off = this->offset();
1013   const section_size_type oview_size =
1014     convert_to_section_size_type(this->data_size());
1015   unsigned char* const oview = of->get_output_view(off, oview_size);
1016
1017   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1018   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1019   ++contents;
1020
1021   for (std::vector<unsigned int>::const_iterator p =
1022          this->input_sections_.begin();
1023        p != this->input_sections_.end();
1024        ++p, ++contents)
1025     {
1026       section_offset_type dummy;
1027       Output_section* os = this->relobj_->output_section(*p, &dummy);
1028
1029       unsigned int output_shndx;
1030       if (os != NULL)
1031         output_shndx = os->out_shndx();
1032       else
1033         {
1034           this->relobj_->error(_("section group retained but "
1035                                  "group element discarded"));
1036           output_shndx = 0;
1037         }
1038
1039       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1040     }
1041
1042   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1043   gold_assert(wrote == oview_size);
1044
1045   of->write_output_view(off, oview_size, oview);
1046
1047   // We no longer need this information.
1048   this->input_sections_.clear();
1049 }
1050
1051 // Output_data_got::Got_entry methods.
1052
1053 // Write out the entry.
1054
1055 template<int size, bool big_endian>
1056 void
1057 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1058 {
1059   Valtype val = 0;
1060
1061   switch (this->local_sym_index_)
1062     {
1063     case GSYM_CODE:
1064       {
1065         // If the symbol is resolved locally, we need to write out the
1066         // link-time value, which will be relocated dynamically by a
1067         // RELATIVE relocation.
1068         Symbol* gsym = this->u_.gsym;
1069         Sized_symbol<size>* sgsym;
1070         // This cast is a bit ugly.  We don't want to put a
1071         // virtual method in Symbol, because we want Symbol to be
1072         // as small as possible.
1073         sgsym = static_cast<Sized_symbol<size>*>(gsym);
1074         val = sgsym->value();
1075       }
1076       break;
1077
1078     case CONSTANT_CODE:
1079       val = this->u_.constant;
1080       break;
1081
1082     default:
1083       val = this->u_.object->local_symbol_value(this->local_sym_index_);
1084       break;
1085     }
1086
1087   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1088 }
1089
1090 // Output_data_got methods.
1091
1092 // Add an entry for a global symbol to the GOT.  This returns true if
1093 // this is a new GOT entry, false if the symbol already had a GOT
1094 // entry.
1095
1096 template<int size, bool big_endian>
1097 bool
1098 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
1099 {
1100   if (gsym->has_got_offset())
1101     return false;
1102
1103   this->entries_.push_back(Got_entry(gsym));
1104   this->set_got_size();
1105   gsym->set_got_offset(this->last_got_offset());
1106   return true;
1107 }
1108
1109 // Add an entry for a global symbol to the GOT, and add a dynamic
1110 // relocation of type R_TYPE for the GOT entry.
1111 template<int size, bool big_endian>
1112 void
1113 Output_data_got<size, big_endian>::add_global_with_rel(
1114     Symbol* gsym,
1115     Rel_dyn* rel_dyn,
1116     unsigned int r_type)
1117 {
1118   if (gsym->has_got_offset())
1119     return;
1120
1121   this->entries_.push_back(Got_entry());
1122   this->set_got_size();
1123   unsigned int got_offset = this->last_got_offset();
1124   gsym->set_got_offset(got_offset);
1125   rel_dyn->add_global(gsym, r_type, this, got_offset);
1126 }
1127
1128 template<int size, bool big_endian>
1129 void
1130 Output_data_got<size, big_endian>::add_global_with_rela(
1131     Symbol* gsym,
1132     Rela_dyn* rela_dyn,
1133     unsigned int r_type)
1134 {
1135   if (gsym->has_got_offset())
1136     return;
1137
1138   this->entries_.push_back(Got_entry());
1139   this->set_got_size();
1140   unsigned int got_offset = this->last_got_offset();
1141   gsym->set_got_offset(got_offset);
1142   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1143 }
1144
1145 // Add an entry for a local symbol to the GOT.  This returns true if
1146 // this is a new GOT entry, false if the symbol already has a GOT
1147 // entry.
1148
1149 template<int size, bool big_endian>
1150 bool
1151 Output_data_got<size, big_endian>::add_local(
1152     Sized_relobj<size, big_endian>* object,
1153     unsigned int symndx)
1154 {
1155   if (object->local_has_got_offset(symndx))
1156     return false;
1157
1158   this->entries_.push_back(Got_entry(object, symndx));
1159   this->set_got_size();
1160   object->set_local_got_offset(symndx, this->last_got_offset());
1161   return true;
1162 }
1163
1164 // Add an entry for a local symbol to the GOT, and add a dynamic
1165 // relocation of type R_TYPE for the GOT entry.
1166 template<int size, bool big_endian>
1167 void
1168 Output_data_got<size, big_endian>::add_local_with_rel(
1169     Sized_relobj<size, big_endian>* object,
1170     unsigned int symndx,
1171     Rel_dyn* rel_dyn,
1172     unsigned int r_type)
1173 {
1174   if (object->local_has_got_offset(symndx))
1175     return;
1176
1177   this->entries_.push_back(Got_entry());
1178   this->set_got_size();
1179   unsigned int got_offset = this->last_got_offset();
1180   object->set_local_got_offset(symndx, got_offset);
1181   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1182 }
1183
1184 template<int size, bool big_endian>
1185 void
1186 Output_data_got<size, big_endian>::add_local_with_rela(
1187     Sized_relobj<size, big_endian>* object,
1188     unsigned int symndx,
1189     Rela_dyn* rela_dyn,
1190     unsigned int r_type)
1191 {
1192   if (object->local_has_got_offset(symndx))
1193     return;
1194
1195   this->entries_.push_back(Got_entry());
1196   this->set_got_size();
1197   unsigned int got_offset = this->last_got_offset();
1198   object->set_local_got_offset(symndx, got_offset);
1199   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1200 }
1201
1202 // Add an entry (or a pair of entries) for a global TLS symbol to the GOT.
1203 // In a pair of entries, the first value in the pair will be used for the
1204 // module index, and the second value will be used for the dtv-relative
1205 // offset. This returns true if this is a new GOT entry, false if the symbol
1206 // already has a GOT entry.
1207
1208 template<int size, bool big_endian>
1209 bool
1210 Output_data_got<size, big_endian>::add_global_tls(Symbol* gsym, bool need_pair)
1211 {
1212   if (gsym->has_tls_got_offset(need_pair))
1213     return false;
1214
1215   this->entries_.push_back(Got_entry(gsym));
1216   gsym->set_tls_got_offset(this->last_got_offset(), need_pair);
1217   if (need_pair)
1218     this->entries_.push_back(Got_entry(gsym));
1219   this->set_got_size();
1220   return true;
1221 }
1222
1223 // Add an entry for a global TLS symbol to the GOT, and add a dynamic
1224 // relocation of type R_TYPE.
1225 template<int size, bool big_endian>
1226 void
1227 Output_data_got<size, big_endian>::add_global_tls_with_rel(
1228     Symbol* gsym,
1229     Rel_dyn* rel_dyn,
1230     unsigned int r_type)
1231 {
1232   if (gsym->has_tls_got_offset(false))
1233     return;
1234
1235   this->entries_.push_back(Got_entry());
1236   this->set_got_size();
1237   unsigned int got_offset = this->last_got_offset();
1238   gsym->set_tls_got_offset(got_offset, false);
1239   rel_dyn->add_global(gsym, r_type, this, got_offset);
1240 }
1241
1242 template<int size, bool big_endian>
1243 void
1244 Output_data_got<size, big_endian>::add_global_tls_with_rela(
1245     Symbol* gsym,
1246     Rela_dyn* rela_dyn,
1247     unsigned int r_type)
1248 {
1249   if (gsym->has_tls_got_offset(false))
1250     return;
1251
1252   this->entries_.push_back(Got_entry());
1253   this->set_got_size();
1254   unsigned int got_offset = this->last_got_offset();
1255   gsym->set_tls_got_offset(got_offset, false);
1256   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1257 }
1258
1259 // Add a pair of entries for a global TLS symbol to the GOT, and add
1260 // dynamic relocations of type MOD_R_TYPE and DTV_R_TYPE, respectively.
1261 template<int size, bool big_endian>
1262 void
1263 Output_data_got<size, big_endian>::add_global_tls_with_rel(
1264     Symbol* gsym,
1265     Rel_dyn* rel_dyn,
1266     unsigned int mod_r_type,
1267     unsigned int dtv_r_type)
1268 {
1269   if (gsym->has_tls_got_offset(true))
1270     return;
1271
1272   this->entries_.push_back(Got_entry());
1273   unsigned int got_offset = this->last_got_offset();
1274   gsym->set_tls_got_offset(got_offset, true);
1275   rel_dyn->add_global(gsym, mod_r_type, this, got_offset);
1276
1277   this->entries_.push_back(Got_entry());
1278   this->set_got_size();
1279   got_offset = this->last_got_offset();
1280   rel_dyn->add_global(gsym, dtv_r_type, this, got_offset);
1281 }
1282
1283 template<int size, bool big_endian>
1284 void
1285 Output_data_got<size, big_endian>::add_global_tls_with_rela(
1286     Symbol* gsym,
1287     Rela_dyn* rela_dyn,
1288     unsigned int mod_r_type,
1289     unsigned int dtv_r_type)
1290 {
1291   if (gsym->has_tls_got_offset(true))
1292     return;
1293
1294   this->entries_.push_back(Got_entry());
1295   unsigned int got_offset = this->last_got_offset();
1296   gsym->set_tls_got_offset(got_offset, true);
1297   rela_dyn->add_global(gsym, mod_r_type, this, got_offset, 0);
1298
1299   this->entries_.push_back(Got_entry());
1300   this->set_got_size();
1301   got_offset = this->last_got_offset();
1302   rela_dyn->add_global(gsym, dtv_r_type, this, got_offset, 0);
1303 }
1304
1305 // Add an entry (or a pair of entries) for a local TLS symbol to the GOT.
1306 // In a pair of entries, the first value in the pair will be used for the
1307 // module index, and the second value will be used for the dtv-relative
1308 // offset. This returns true if this is a new GOT entry, false if the symbol
1309 // already has a GOT entry.
1310
1311 template<int size, bool big_endian>
1312 bool
1313 Output_data_got<size, big_endian>::add_local_tls(
1314     Sized_relobj<size, big_endian>* object,
1315     unsigned int symndx,
1316     bool need_pair)
1317 {
1318   if (object->local_has_tls_got_offset(symndx, need_pair))
1319     return false;
1320
1321   this->entries_.push_back(Got_entry(object, symndx));
1322   object->set_local_tls_got_offset(symndx, this->last_got_offset(), need_pair);
1323   if (need_pair)
1324     this->entries_.push_back(Got_entry(object, symndx));
1325   this->set_got_size();
1326   return true;
1327 }
1328
1329 // Add an entry (or pair of entries) for a local TLS symbol to the GOT,
1330 // and add a dynamic relocation of type R_TYPE for the first GOT entry.
1331 // Because this is a local symbol, the first GOT entry can be relocated
1332 // relative to a section symbol, and the second GOT entry will have an
1333 // dtv-relative value that can be computed at link time.
1334 template<int size, bool big_endian>
1335 void
1336 Output_data_got<size, big_endian>::add_local_tls_with_rel(
1337     Sized_relobj<size, big_endian>* object,
1338     unsigned int symndx,
1339     unsigned int shndx,
1340     bool need_pair,
1341     Rel_dyn* rel_dyn,
1342     unsigned int r_type)
1343 {
1344   if (object->local_has_tls_got_offset(symndx, need_pair))
1345     return;
1346
1347   this->entries_.push_back(Got_entry());
1348   unsigned int got_offset = this->last_got_offset();
1349   object->set_local_tls_got_offset(symndx, got_offset, need_pair);
1350   section_offset_type off;
1351   Output_section* os = object->output_section(shndx, &off);
1352   rel_dyn->add_output_section(os, r_type, this, got_offset);
1353
1354   // The second entry of the pair will be statically initialized
1355   // with the TLS offset of the symbol.
1356   if (need_pair)
1357     this->entries_.push_back(Got_entry(object, symndx));
1358
1359   this->set_got_size();
1360 }
1361
1362 template<int size, bool big_endian>
1363 void
1364 Output_data_got<size, big_endian>::add_local_tls_with_rela(
1365     Sized_relobj<size, big_endian>* object,
1366     unsigned int symndx,
1367     unsigned int shndx,
1368     bool need_pair,
1369     Rela_dyn* rela_dyn,
1370     unsigned int r_type)
1371 {
1372   if (object->local_has_tls_got_offset(symndx, need_pair))
1373     return;
1374
1375   this->entries_.push_back(Got_entry());
1376   unsigned int got_offset = this->last_got_offset();
1377   object->set_local_tls_got_offset(symndx, got_offset, need_pair);
1378   section_offset_type off;
1379   Output_section* os = object->output_section(shndx, &off);
1380   rela_dyn->add_output_section(os, r_type, this, got_offset, 0);
1381
1382   // The second entry of the pair will be statically initialized
1383   // with the TLS offset of the symbol.
1384   if (need_pair)
1385     this->entries_.push_back(Got_entry(object, symndx));
1386
1387   this->set_got_size();
1388 }
1389
1390 // Write out the GOT.
1391
1392 template<int size, bool big_endian>
1393 void
1394 Output_data_got<size, big_endian>::do_write(Output_file* of)
1395 {
1396   const int add = size / 8;
1397
1398   const off_t off = this->offset();
1399   const off_t oview_size = this->data_size();
1400   unsigned char* const oview = of->get_output_view(off, oview_size);
1401
1402   unsigned char* pov = oview;
1403   for (typename Got_entries::const_iterator p = this->entries_.begin();
1404        p != this->entries_.end();
1405        ++p)
1406     {
1407       p->write(pov);
1408       pov += add;
1409     }
1410
1411   gold_assert(pov - oview == oview_size);
1412
1413   of->write_output_view(off, oview_size, oview);
1414
1415   // We no longer need the GOT entries.
1416   this->entries_.clear();
1417 }
1418
1419 // Output_data_dynamic::Dynamic_entry methods.
1420
1421 // Write out the entry.
1422
1423 template<int size, bool big_endian>
1424 void
1425 Output_data_dynamic::Dynamic_entry::write(
1426     unsigned char* pov,
1427     const Stringpool* pool
1428     ACCEPT_SIZE_ENDIAN) const
1429 {
1430   typename elfcpp::Elf_types<size>::Elf_WXword val;
1431   switch (this->classification_)
1432     {
1433     case DYNAMIC_NUMBER:
1434       val = this->u_.val;
1435       break;
1436
1437     case DYNAMIC_SECTION_ADDRESS:
1438       val = this->u_.od->address();
1439       break;
1440
1441     case DYNAMIC_SECTION_SIZE:
1442       val = this->u_.od->data_size();
1443       break;
1444
1445     case DYNAMIC_SYMBOL:
1446       {
1447         const Sized_symbol<size>* s =
1448           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1449         val = s->value();
1450       }
1451       break;
1452
1453     case DYNAMIC_STRING:
1454       val = pool->get_offset(this->u_.str);
1455       break;
1456
1457     default:
1458       gold_unreachable();
1459     }
1460
1461   elfcpp::Dyn_write<size, big_endian> dw(pov);
1462   dw.put_d_tag(this->tag_);
1463   dw.put_d_val(val);
1464 }
1465
1466 // Output_data_dynamic methods.
1467
1468 // Adjust the output section to set the entry size.
1469
1470 void
1471 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1472 {
1473   if (parameters->get_size() == 32)
1474     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1475   else if (parameters->get_size() == 64)
1476     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1477   else
1478     gold_unreachable();
1479 }
1480
1481 // Set the final data size.
1482
1483 void
1484 Output_data_dynamic::set_final_data_size()
1485 {
1486   // Add the terminating entry.
1487   this->add_constant(elfcpp::DT_NULL, 0);
1488
1489   int dyn_size;
1490   if (parameters->get_size() == 32)
1491     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1492   else if (parameters->get_size() == 64)
1493     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1494   else
1495     gold_unreachable();
1496   this->set_data_size(this->entries_.size() * dyn_size);
1497 }
1498
1499 // Write out the dynamic entries.
1500
1501 void
1502 Output_data_dynamic::do_write(Output_file* of)
1503 {
1504   if (parameters->get_size() == 32)
1505     {
1506       if (parameters->is_big_endian())
1507         {
1508 #ifdef HAVE_TARGET_32_BIG
1509           this->sized_write<32, true>(of);
1510 #else
1511           gold_unreachable();
1512 #endif
1513         }
1514       else
1515         {
1516 #ifdef HAVE_TARGET_32_LITTLE
1517           this->sized_write<32, false>(of);
1518 #else
1519           gold_unreachable();
1520 #endif
1521         }
1522     }
1523   else if (parameters->get_size() == 64)
1524     {
1525       if (parameters->is_big_endian())
1526         {
1527 #ifdef HAVE_TARGET_64_BIG
1528           this->sized_write<64, true>(of);
1529 #else
1530           gold_unreachable();
1531 #endif
1532         }
1533       else
1534         {
1535 #ifdef HAVE_TARGET_64_LITTLE
1536           this->sized_write<64, false>(of);
1537 #else
1538           gold_unreachable();
1539 #endif
1540         }
1541     }
1542   else
1543     gold_unreachable();
1544 }
1545
1546 template<int size, bool big_endian>
1547 void
1548 Output_data_dynamic::sized_write(Output_file* of)
1549 {
1550   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1551
1552   const off_t offset = this->offset();
1553   const off_t oview_size = this->data_size();
1554   unsigned char* const oview = of->get_output_view(offset, oview_size);
1555
1556   unsigned char* pov = oview;
1557   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1558        p != this->entries_.end();
1559        ++p)
1560     {
1561       p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1562           pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
1563       pov += dyn_size;
1564     }
1565
1566   gold_assert(pov - oview == oview_size);
1567
1568   of->write_output_view(offset, oview_size, oview);
1569
1570   // We no longer need the dynamic entries.
1571   this->entries_.clear();
1572 }
1573
1574 // Output_section::Input_section methods.
1575
1576 // Return the data size.  For an input section we store the size here.
1577 // For an Output_section_data, we have to ask it for the size.
1578
1579 off_t
1580 Output_section::Input_section::data_size() const
1581 {
1582   if (this->is_input_section())
1583     return this->u1_.data_size;
1584   else
1585     return this->u2_.posd->data_size();
1586 }
1587
1588 // Set the address and file offset.
1589
1590 void
1591 Output_section::Input_section::set_address_and_file_offset(
1592     uint64_t address,
1593     off_t file_offset,
1594     off_t section_file_offset)
1595 {
1596   if (this->is_input_section())
1597     this->u2_.object->set_section_offset(this->shndx_,
1598                                          file_offset - section_file_offset);
1599   else
1600     this->u2_.posd->set_address_and_file_offset(address, file_offset);
1601 }
1602
1603 // Reset the address and file offset.
1604
1605 void
1606 Output_section::Input_section::reset_address_and_file_offset()
1607 {
1608   if (!this->is_input_section())
1609     this->u2_.posd->reset_address_and_file_offset();
1610 }
1611
1612 // Finalize the data size.
1613
1614 void
1615 Output_section::Input_section::finalize_data_size()
1616 {
1617   if (!this->is_input_section())
1618     this->u2_.posd->finalize_data_size();
1619 }
1620
1621 // Try to turn an input offset into an output offset.  We want to
1622 // return the output offset relative to the start of this
1623 // Input_section in the output section.
1624
1625 inline bool
1626 Output_section::Input_section::output_offset(
1627     const Relobj* object,
1628     unsigned int shndx,
1629     section_offset_type offset,
1630     section_offset_type *poutput) const
1631 {
1632   if (!this->is_input_section())
1633     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1634   else
1635     {
1636       if (this->shndx_ != shndx || this->u2_.object != object)
1637         return false;
1638       *poutput = offset;
1639       return true;
1640     }
1641 }
1642
1643 // Return whether this is the merge section for the input section
1644 // SHNDX in OBJECT.
1645
1646 inline bool
1647 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1648                                                     unsigned int shndx) const
1649 {
1650   if (this->is_input_section())
1651     return false;
1652   return this->u2_.posd->is_merge_section_for(object, shndx);
1653 }
1654
1655 // Write out the data.  We don't have to do anything for an input
1656 // section--they are handled via Object::relocate--but this is where
1657 // we write out the data for an Output_section_data.
1658
1659 void
1660 Output_section::Input_section::write(Output_file* of)
1661 {
1662   if (!this->is_input_section())
1663     this->u2_.posd->write(of);
1664 }
1665
1666 // Write the data to a buffer.  As for write(), we don't have to do
1667 // anything for an input section.
1668
1669 void
1670 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1671 {
1672   if (!this->is_input_section())
1673     this->u2_.posd->write_to_buffer(buffer);
1674 }
1675
1676 // Output_section methods.
1677
1678 // Construct an Output_section.  NAME will point into a Stringpool.
1679
1680 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1681                                elfcpp::Elf_Xword flags)
1682   : name_(name),
1683     addralign_(0),
1684     entsize_(0),
1685     load_address_(0),
1686     link_section_(NULL),
1687     link_(0),
1688     info_section_(NULL),
1689     info_symndx_(NULL),
1690     info_(0),
1691     type_(type),
1692     flags_(flags),
1693     out_shndx_(-1U),
1694     symtab_index_(0),
1695     dynsym_index_(0),
1696     input_sections_(),
1697     first_input_offset_(0),
1698     fills_(),
1699     postprocessing_buffer_(NULL),
1700     needs_symtab_index_(false),
1701     needs_dynsym_index_(false),
1702     should_link_to_symtab_(false),
1703     should_link_to_dynsym_(false),
1704     after_input_sections_(false),
1705     requires_postprocessing_(false),
1706     found_in_sections_clause_(false),
1707     has_load_address_(false),
1708     info_uses_section_index_(false),
1709     tls_offset_(0)
1710 {
1711   // An unallocated section has no address.  Forcing this means that
1712   // we don't need special treatment for symbols defined in debug
1713   // sections.
1714   if ((flags & elfcpp::SHF_ALLOC) == 0)
1715     this->set_address(0);
1716 }
1717
1718 Output_section::~Output_section()
1719 {
1720 }
1721
1722 // Set the entry size.
1723
1724 void
1725 Output_section::set_entsize(uint64_t v)
1726 {
1727   if (this->entsize_ == 0)
1728     this->entsize_ = v;
1729   else
1730     gold_assert(this->entsize_ == v);
1731 }
1732
1733 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1734 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
1735 // relocation section which applies to this section, or 0 if none, or
1736 // -1U if more than one.  Return the offset of the input section
1737 // within the output section.  Return -1 if the input section will
1738 // receive special handling.  In the normal case we don't always keep
1739 // track of input sections for an Output_section.  Instead, each
1740 // Object keeps track of the Output_section for each of its input
1741 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1742 // track of input sections here; this is used when SECTIONS appears in
1743 // a linker script.
1744
1745 template<int size, bool big_endian>
1746 off_t
1747 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1748                                   unsigned int shndx,
1749                                   const char* secname,
1750                                   const elfcpp::Shdr<size, big_endian>& shdr,
1751                                   unsigned int reloc_shndx,
1752                                   bool have_sections_script)
1753 {
1754   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1755   if ((addralign & (addralign - 1)) != 0)
1756     {
1757       object->error(_("invalid alignment %lu for section \"%s\""),
1758                     static_cast<unsigned long>(addralign), secname);
1759       addralign = 1;
1760     }
1761
1762   if (addralign > this->addralign_)
1763     this->addralign_ = addralign;
1764
1765   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1766   this->flags_ |= (sh_flags
1767                    & (elfcpp::SHF_WRITE
1768                       | elfcpp::SHF_ALLOC
1769                       | elfcpp::SHF_EXECINSTR));
1770
1771   uint64_t entsize = shdr.get_sh_entsize();
1772
1773   // .debug_str is a mergeable string section, but is not always so
1774   // marked by compilers.  Mark manually here so we can optimize.
1775   if (strcmp(secname, ".debug_str") == 0)
1776     {
1777       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1778       entsize = 1;
1779     }
1780
1781   // If this is a SHF_MERGE section, we pass all the input sections to
1782   // a Output_data_merge.  We don't try to handle relocations for such
1783   // a section.
1784   if ((sh_flags & elfcpp::SHF_MERGE) != 0
1785       && reloc_shndx == 0)
1786     {
1787       if (this->add_merge_input_section(object, shndx, sh_flags,
1788                                         entsize, addralign))
1789         {
1790           // Tell the relocation routines that they need to call the
1791           // output_offset method to determine the final address.
1792           return -1;
1793         }
1794     }
1795
1796   off_t offset_in_section = this->current_data_size_for_child();
1797   off_t aligned_offset_in_section = align_address(offset_in_section,
1798                                                   addralign);
1799
1800   if (aligned_offset_in_section > offset_in_section
1801       && !have_sections_script
1802       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1803       && object->target()->has_code_fill())
1804     {
1805       // We need to add some fill data.  Using fill_list_ when
1806       // possible is an optimization, since we will often have fill
1807       // sections without input sections.
1808       off_t fill_len = aligned_offset_in_section - offset_in_section;
1809       if (this->input_sections_.empty())
1810         this->fills_.push_back(Fill(offset_in_section, fill_len));
1811       else
1812         {
1813           // FIXME: When relaxing, the size needs to adjust to
1814           // maintain a constant alignment.
1815           std::string fill_data(object->target()->code_fill(fill_len));
1816           Output_data_const* odc = new Output_data_const(fill_data, 1);
1817           this->input_sections_.push_back(Input_section(odc));
1818         }
1819     }
1820
1821   this->set_current_data_size_for_child(aligned_offset_in_section
1822                                         + shdr.get_sh_size());
1823
1824   // We need to keep track of this section if we are already keeping
1825   // track of sections, or if we are relaxing.  FIXME: Add test for
1826   // relaxing.
1827   if (have_sections_script || !this->input_sections_.empty())
1828     this->input_sections_.push_back(Input_section(object, shndx,
1829                                                   shdr.get_sh_size(),
1830                                                   addralign));
1831
1832   return aligned_offset_in_section;
1833 }
1834
1835 // Add arbitrary data to an output section.
1836
1837 void
1838 Output_section::add_output_section_data(Output_section_data* posd)
1839 {
1840   Input_section inp(posd);
1841   this->add_output_section_data(&inp);
1842
1843   if (posd->is_data_size_valid())
1844     {
1845       off_t offset_in_section = this->current_data_size_for_child();
1846       off_t aligned_offset_in_section = align_address(offset_in_section,
1847                                                       posd->addralign());
1848       this->set_current_data_size_for_child(aligned_offset_in_section
1849                                             + posd->data_size());
1850     }
1851 }
1852
1853 // Add arbitrary data to an output section by Input_section.
1854
1855 void
1856 Output_section::add_output_section_data(Input_section* inp)
1857 {
1858   if (this->input_sections_.empty())
1859     this->first_input_offset_ = this->current_data_size_for_child();
1860
1861   this->input_sections_.push_back(*inp);
1862
1863   uint64_t addralign = inp->addralign();
1864   if (addralign > this->addralign_)
1865     this->addralign_ = addralign;
1866
1867   inp->set_output_section(this);
1868 }
1869
1870 // Add a merge section to an output section.
1871
1872 void
1873 Output_section::add_output_merge_section(Output_section_data* posd,
1874                                          bool is_string, uint64_t entsize)
1875 {
1876   Input_section inp(posd, is_string, entsize);
1877   this->add_output_section_data(&inp);
1878 }
1879
1880 // Add an input section to a SHF_MERGE section.
1881
1882 bool
1883 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1884                                         uint64_t flags, uint64_t entsize,
1885                                         uint64_t addralign)
1886 {
1887   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1888
1889   // We only merge strings if the alignment is not more than the
1890   // character size.  This could be handled, but it's unusual.
1891   if (is_string && addralign > entsize)
1892     return false;
1893
1894   Input_section_list::iterator p;
1895   for (p = this->input_sections_.begin();
1896        p != this->input_sections_.end();
1897        ++p)
1898     if (p->is_merge_section(is_string, entsize, addralign))
1899       {
1900         p->add_input_section(object, shndx);
1901         return true;
1902       }
1903
1904   // We handle the actual constant merging in Output_merge_data or
1905   // Output_merge_string_data.
1906   Output_section_data* posd;
1907   if (!is_string)
1908     posd = new Output_merge_data(entsize, addralign);
1909   else
1910     {
1911       switch (entsize)
1912         {
1913         case 1:
1914           posd = new Output_merge_string<char>(addralign);
1915           break;
1916         case 2:
1917           posd = new Output_merge_string<uint16_t>(addralign);
1918           break;
1919         case 4:
1920           posd = new Output_merge_string<uint32_t>(addralign);
1921           break;
1922         default:
1923           return false;
1924         }
1925     }
1926
1927   this->add_output_merge_section(posd, is_string, entsize);
1928   posd->add_input_section(object, shndx);
1929
1930   return true;
1931 }
1932
1933 // Given an address OFFSET relative to the start of input section
1934 // SHNDX in OBJECT, return whether this address is being included in
1935 // the final link.  This should only be called if SHNDX in OBJECT has
1936 // a special mapping.
1937
1938 bool
1939 Output_section::is_input_address_mapped(const Relobj* object,
1940                                         unsigned int shndx,
1941                                         off_t offset) const
1942 {
1943   gold_assert(object->is_section_specially_mapped(shndx));
1944
1945   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1946        p != this->input_sections_.end();
1947        ++p)
1948     {
1949       section_offset_type output_offset;
1950       if (p->output_offset(object, shndx, offset, &output_offset))
1951         return output_offset != -1;
1952     }
1953
1954   // By default we assume that the address is mapped.  This should
1955   // only be called after we have passed all sections to Layout.  At
1956   // that point we should know what we are discarding.
1957   return true;
1958 }
1959
1960 // Given an address OFFSET relative to the start of input section
1961 // SHNDX in object OBJECT, return the output offset relative to the
1962 // start of the input section in the output section.  This should only
1963 // be called if SHNDX in OBJECT has a special mapping.
1964
1965 section_offset_type
1966 Output_section::output_offset(const Relobj* object, unsigned int shndx,
1967                               section_offset_type offset) const
1968 {
1969   gold_assert(object->is_section_specially_mapped(shndx));
1970   // This can only be called meaningfully when layout is complete.
1971   gold_assert(Output_data::is_layout_complete());
1972
1973   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1974        p != this->input_sections_.end();
1975        ++p)
1976     {
1977       section_offset_type output_offset;
1978       if (p->output_offset(object, shndx, offset, &output_offset))
1979         return output_offset;
1980     }
1981   gold_unreachable();
1982 }
1983
1984 // Return the output virtual address of OFFSET relative to the start
1985 // of input section SHNDX in object OBJECT.
1986
1987 uint64_t
1988 Output_section::output_address(const Relobj* object, unsigned int shndx,
1989                                off_t offset) const
1990 {
1991   gold_assert(object->is_section_specially_mapped(shndx));
1992
1993   uint64_t addr = this->address() + this->first_input_offset_;
1994   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1995        p != this->input_sections_.end();
1996        ++p)
1997     {
1998       addr = align_address(addr, p->addralign());
1999       section_offset_type output_offset;
2000       if (p->output_offset(object, shndx, offset, &output_offset))
2001         {
2002           if (output_offset == -1)
2003             return -1U;
2004           return addr + output_offset;
2005         }
2006       addr += p->data_size();
2007     }
2008
2009   // If we get here, it means that we don't know the mapping for this
2010   // input section.  This might happen in principle if
2011   // add_input_section were called before add_output_section_data.
2012   // But it should never actually happen.
2013
2014   gold_unreachable();
2015 }
2016
2017 // Return the output address of the start of the merged section for
2018 // input section SHNDX in object OBJECT.
2019
2020 uint64_t
2021 Output_section::starting_output_address(const Relobj* object,
2022                                         unsigned int shndx) const
2023 {
2024   gold_assert(object->is_section_specially_mapped(shndx));
2025
2026   uint64_t addr = this->address() + this->first_input_offset_;
2027   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2028        p != this->input_sections_.end();
2029        ++p)
2030     {
2031       addr = align_address(addr, p->addralign());
2032
2033       // It would be nice if we could use the existing output_offset
2034       // method to get the output offset of input offset 0.
2035       // Unfortunately we don't know for sure that input offset 0 is
2036       // mapped at all.
2037       if (p->is_merge_section_for(object, shndx))
2038         return addr;
2039
2040       addr += p->data_size();
2041     }
2042   gold_unreachable();
2043 }
2044
2045 // Set the data size of an Output_section.  This is where we handle
2046 // setting the addresses of any Output_section_data objects.
2047
2048 void
2049 Output_section::set_final_data_size()
2050 {
2051   if (this->input_sections_.empty())
2052     {
2053       this->set_data_size(this->current_data_size_for_child());
2054       return;
2055     }
2056
2057   uint64_t address = this->address();
2058   off_t startoff = this->offset();
2059   off_t off = startoff + this->first_input_offset_;
2060   for (Input_section_list::iterator p = this->input_sections_.begin();
2061        p != this->input_sections_.end();
2062        ++p)
2063     {
2064       off = align_address(off, p->addralign());
2065       p->set_address_and_file_offset(address + (off - startoff), off,
2066                                      startoff);
2067       off += p->data_size();
2068     }
2069
2070   this->set_data_size(off - startoff);
2071 }
2072
2073 // Reset the address and file offset.
2074
2075 void
2076 Output_section::do_reset_address_and_file_offset()
2077 {
2078   for (Input_section_list::iterator p = this->input_sections_.begin();
2079        p != this->input_sections_.end();
2080        ++p)
2081     p->reset_address_and_file_offset();
2082 }
2083
2084 // Set the TLS offset.  Called only for SHT_TLS sections.
2085
2086 void
2087 Output_section::do_set_tls_offset(uint64_t tls_base)
2088 {
2089   this->tls_offset_ = this->address() - tls_base;
2090 }
2091
2092 // Write the section header to *OSHDR.
2093
2094 template<int size, bool big_endian>
2095 void
2096 Output_section::write_header(const Layout* layout,
2097                              const Stringpool* secnamepool,
2098                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
2099 {
2100   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2101   oshdr->put_sh_type(this->type_);
2102
2103   elfcpp::Elf_Xword flags = this->flags_;
2104   if (this->info_section_ != NULL && this->info_uses_section_index_)
2105     flags |= elfcpp::SHF_INFO_LINK;
2106   oshdr->put_sh_flags(flags);
2107
2108   oshdr->put_sh_addr(this->address());
2109   oshdr->put_sh_offset(this->offset());
2110   oshdr->put_sh_size(this->data_size());
2111   if (this->link_section_ != NULL)
2112     oshdr->put_sh_link(this->link_section_->out_shndx());
2113   else if (this->should_link_to_symtab_)
2114     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2115   else if (this->should_link_to_dynsym_)
2116     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2117   else
2118     oshdr->put_sh_link(this->link_);
2119
2120   elfcpp::Elf_Word info;
2121   if (this->info_section_ != NULL)
2122     {
2123       if (this->info_uses_section_index_)
2124         info = this->info_section_->out_shndx();
2125       else
2126         info = this->info_section_->symtab_index();
2127     }
2128   else if (this->info_symndx_ != NULL)
2129     info = this->info_symndx_->symtab_index();
2130   else
2131     info = this->info_;
2132   oshdr->put_sh_info(info);
2133
2134   oshdr->put_sh_addralign(this->addralign_);
2135   oshdr->put_sh_entsize(this->entsize_);
2136 }
2137
2138 // Write out the data.  For input sections the data is written out by
2139 // Object::relocate, but we have to handle Output_section_data objects
2140 // here.
2141
2142 void
2143 Output_section::do_write(Output_file* of)
2144 {
2145   gold_assert(!this->requires_postprocessing());
2146
2147   off_t output_section_file_offset = this->offset();
2148   for (Fill_list::iterator p = this->fills_.begin();
2149        p != this->fills_.end();
2150        ++p)
2151     {
2152       std::string fill_data(parameters->target()->code_fill(p->length()));
2153       of->write(output_section_file_offset + p->section_offset(),
2154                 fill_data.data(), fill_data.size());
2155     }
2156
2157   for (Input_section_list::iterator p = this->input_sections_.begin();
2158        p != this->input_sections_.end();
2159        ++p)
2160     p->write(of);
2161 }
2162
2163 // If a section requires postprocessing, create the buffer to use.
2164
2165 void
2166 Output_section::create_postprocessing_buffer()
2167 {
2168   gold_assert(this->requires_postprocessing());
2169
2170   if (this->postprocessing_buffer_ != NULL)
2171     return;
2172
2173   if (!this->input_sections_.empty())
2174     {
2175       off_t off = this->first_input_offset_;
2176       for (Input_section_list::iterator p = this->input_sections_.begin();
2177            p != this->input_sections_.end();
2178            ++p)
2179         {
2180           off = align_address(off, p->addralign());
2181           p->finalize_data_size();
2182           off += p->data_size();
2183         }
2184       this->set_current_data_size_for_child(off);
2185     }
2186
2187   off_t buffer_size = this->current_data_size_for_child();
2188   this->postprocessing_buffer_ = new unsigned char[buffer_size];
2189 }
2190
2191 // Write all the data of an Output_section into the postprocessing
2192 // buffer.  This is used for sections which require postprocessing,
2193 // such as compression.  Input sections are handled by
2194 // Object::Relocate.
2195
2196 void
2197 Output_section::write_to_postprocessing_buffer()
2198 {
2199   gold_assert(this->requires_postprocessing());
2200
2201   Target* target = parameters->target();
2202   unsigned char* buffer = this->postprocessing_buffer();
2203   for (Fill_list::iterator p = this->fills_.begin();
2204        p != this->fills_.end();
2205        ++p)
2206     {
2207       std::string fill_data(target->code_fill(p->length()));
2208       memcpy(buffer + p->section_offset(), fill_data.data(),
2209              fill_data.size());
2210     }
2211
2212   off_t off = this->first_input_offset_;
2213   for (Input_section_list::iterator p = this->input_sections_.begin();
2214        p != this->input_sections_.end();
2215        ++p)
2216     {
2217       off = align_address(off, p->addralign());
2218       p->write_to_buffer(buffer + off);
2219       off += p->data_size();
2220     }
2221 }
2222
2223 // Get the input sections for linker script processing.  We leave
2224 // behind the Output_section_data entries.  Note that this may be
2225 // slightly incorrect for merge sections.  We will leave them behind,
2226 // but it is possible that the script says that they should follow
2227 // some other input sections, as in:
2228 //    .rodata { *(.rodata) *(.rodata.cst*) }
2229 // For that matter, we don't handle this correctly:
2230 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2231 // With luck this will never matter.
2232
2233 uint64_t
2234 Output_section::get_input_sections(
2235     uint64_t address,
2236     const std::string& fill,
2237     std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2238 {
2239   uint64_t orig_address = address;
2240
2241   address = align_address(address, this->addralign());
2242
2243   Input_section_list remaining;
2244   for (Input_section_list::iterator p = this->input_sections_.begin();
2245        p != this->input_sections_.end();
2246        ++p)
2247     {
2248       if (p->is_input_section())
2249         input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2250       else
2251         {
2252           uint64_t aligned_address = align_address(address, p->addralign());
2253           if (aligned_address != address && !fill.empty())
2254             {
2255               section_size_type length =
2256                 convert_to_section_size_type(aligned_address - address);
2257               std::string this_fill;
2258               this_fill.reserve(length);
2259               while (this_fill.length() + fill.length() <= length)
2260                 this_fill += fill;
2261               if (this_fill.length() < length)
2262                 this_fill.append(fill, 0, length - this_fill.length());
2263
2264               Output_section_data* posd = new Output_data_const(this_fill, 0);
2265               remaining.push_back(Input_section(posd));
2266             }
2267           address = aligned_address;
2268
2269           remaining.push_back(*p);
2270
2271           p->finalize_data_size();
2272           address += p->data_size();
2273         }
2274     }
2275
2276   this->input_sections_.swap(remaining);
2277   this->first_input_offset_ = 0;
2278
2279   uint64_t data_size = address - orig_address;
2280   this->set_current_data_size_for_child(data_size);
2281   return data_size;
2282 }
2283
2284 // Add an input section from a script.
2285
2286 void
2287 Output_section::add_input_section_for_script(Relobj* object,
2288                                              unsigned int shndx,
2289                                              off_t data_size,
2290                                              uint64_t addralign)
2291 {
2292   if (addralign > this->addralign_)
2293     this->addralign_ = addralign;
2294
2295   off_t offset_in_section = this->current_data_size_for_child();
2296   off_t aligned_offset_in_section = align_address(offset_in_section,
2297                                                   addralign);
2298
2299   this->set_current_data_size_for_child(aligned_offset_in_section
2300                                         + data_size);
2301
2302   this->input_sections_.push_back(Input_section(object, shndx,
2303                                                 data_size, addralign));
2304 }
2305
2306 // Print stats for merge sections to stderr.
2307
2308 void
2309 Output_section::print_merge_stats()
2310 {
2311   Input_section_list::iterator p;
2312   for (p = this->input_sections_.begin();
2313        p != this->input_sections_.end();
2314        ++p)
2315     p->print_merge_stats(this->name_);
2316 }
2317
2318 // Output segment methods.
2319
2320 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2321   : output_data_(),
2322     output_bss_(),
2323     vaddr_(0),
2324     paddr_(0),
2325     memsz_(0),
2326     max_align_(0),
2327     min_p_align_(0),
2328     offset_(0),
2329     filesz_(0),
2330     type_(type),
2331     flags_(flags),
2332     is_max_align_known_(false),
2333     are_addresses_set_(false)
2334 {
2335 }
2336
2337 // Add an Output_section to an Output_segment.
2338
2339 void
2340 Output_segment::add_output_section(Output_section* os,
2341                                    elfcpp::Elf_Word seg_flags,
2342                                    bool front)
2343 {
2344   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2345   gold_assert(!this->is_max_align_known_);
2346
2347   // Update the segment flags.
2348   this->flags_ |= seg_flags;
2349
2350   Output_segment::Output_data_list* pdl;
2351   if (os->type() == elfcpp::SHT_NOBITS)
2352     pdl = &this->output_bss_;
2353   else
2354     pdl = &this->output_data_;
2355
2356   // So that PT_NOTE segments will work correctly, we need to ensure
2357   // that all SHT_NOTE sections are adjacent.  This will normally
2358   // happen automatically, because all the SHT_NOTE input sections
2359   // will wind up in the same output section.  However, it is possible
2360   // for multiple SHT_NOTE input sections to have different section
2361   // flags, and thus be in different output sections, but for the
2362   // different section flags to map into the same segment flags and
2363   // thus the same output segment.
2364
2365   // Note that while there may be many input sections in an output
2366   // section, there are normally only a few output sections in an
2367   // output segment.  This loop is expected to be fast.
2368
2369   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2370     {
2371       Output_segment::Output_data_list::iterator p = pdl->end();
2372       do
2373         {
2374           --p;
2375           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2376             {
2377               // We don't worry about the FRONT parameter.
2378               ++p;
2379               pdl->insert(p, os);
2380               return;
2381             }
2382         }
2383       while (p != pdl->begin());
2384     }
2385
2386   // Similarly, so that PT_TLS segments will work, we need to group
2387   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
2388   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2389   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
2390   // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
2391   // and the PT_TLS segment -- we do this grouping only for the
2392   // PT_LOAD segment.
2393   if (this->type_ != elfcpp::PT_TLS
2394       && (os->flags() & elfcpp::SHF_TLS) != 0
2395       && !this->output_data_.empty())
2396     {
2397       pdl = &this->output_data_;
2398       bool nobits = os->type() == elfcpp::SHT_NOBITS;
2399       bool sawtls = false;
2400       Output_segment::Output_data_list::iterator p = pdl->end();
2401       do
2402         {
2403           --p;
2404           bool insert;
2405           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2406             {
2407               sawtls = true;
2408               // Put a NOBITS section after the first TLS section.
2409               // But a PROGBITS section after the first TLS/PROGBITS
2410               // section.
2411               insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2412             }
2413           else
2414             {
2415               // If we've gone past the TLS sections, but we've seen a
2416               // TLS section, then we need to insert this section now.
2417               insert = sawtls;
2418             }
2419
2420           if (insert)
2421             {
2422               // We don't worry about the FRONT parameter.
2423               ++p;
2424               pdl->insert(p, os);
2425               return;
2426             }
2427         }
2428       while (p != pdl->begin());
2429
2430       // There are no TLS sections yet; put this one at the requested
2431       // location in the section list.
2432     }
2433
2434   if (front)
2435     pdl->push_front(os);
2436   else
2437     pdl->push_back(os);
2438 }
2439
2440 // Add an Output_data (which is not an Output_section) to the start of
2441 // a segment.
2442
2443 void
2444 Output_segment::add_initial_output_data(Output_data* od)
2445 {
2446   gold_assert(!this->is_max_align_known_);
2447   this->output_data_.push_front(od);
2448 }
2449
2450 // Return the maximum alignment of the Output_data in Output_segment.
2451
2452 uint64_t
2453 Output_segment::maximum_alignment()
2454 {
2455   if (!this->is_max_align_known_)
2456     {
2457       uint64_t addralign;
2458
2459       addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2460       if (addralign > this->max_align_)
2461         this->max_align_ = addralign;
2462
2463       addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2464       if (addralign > this->max_align_)
2465         this->max_align_ = addralign;
2466
2467       this->is_max_align_known_ = true;
2468     }
2469
2470   return this->max_align_;
2471 }
2472
2473 // Return the maximum alignment of a list of Output_data.
2474
2475 uint64_t
2476 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2477 {
2478   uint64_t ret = 0;
2479   for (Output_data_list::const_iterator p = pdl->begin();
2480        p != pdl->end();
2481        ++p)
2482     {
2483       uint64_t addralign = (*p)->addralign();
2484       if (addralign > ret)
2485         ret = addralign;
2486     }
2487   return ret;
2488 }
2489
2490 // Return the number of dynamic relocs applied to this segment.
2491
2492 unsigned int
2493 Output_segment::dynamic_reloc_count() const
2494 {
2495   return (this->dynamic_reloc_count_list(&this->output_data_)
2496           + this->dynamic_reloc_count_list(&this->output_bss_));
2497 }
2498
2499 // Return the number of dynamic relocs applied to an Output_data_list.
2500
2501 unsigned int
2502 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2503 {
2504   unsigned int count = 0;
2505   for (Output_data_list::const_iterator p = pdl->begin();
2506        p != pdl->end();
2507        ++p)
2508     count += (*p)->dynamic_reloc_count();
2509   return count;
2510 }
2511
2512 // Set the section addresses for an Output_segment.  If RESET is true,
2513 // reset the addresses first.  ADDR is the address and *POFF is the
2514 // file offset.  Set the section indexes starting with *PSHNDX.
2515 // Return the address of the immediately following segment.  Update
2516 // *POFF and *PSHNDX.
2517
2518 uint64_t
2519 Output_segment::set_section_addresses(bool reset, uint64_t addr, off_t* poff,
2520                                       unsigned int* pshndx)
2521 {
2522   gold_assert(this->type_ == elfcpp::PT_LOAD);
2523
2524   if (!reset && this->are_addresses_set_)
2525     {
2526       gold_assert(this->paddr_ == addr);
2527       addr = this->vaddr_;
2528     }
2529   else
2530     {
2531       this->vaddr_ = addr;
2532       this->paddr_ = addr;
2533       this->are_addresses_set_ = true;
2534     }
2535
2536   off_t orig_off = *poff;
2537   this->offset_ = orig_off;
2538
2539   addr = this->set_section_list_addresses(reset, &this->output_data_,
2540                                           addr, poff, pshndx);
2541   this->filesz_ = *poff - orig_off;
2542
2543   off_t off = *poff;
2544
2545   uint64_t ret = this->set_section_list_addresses(reset, &this->output_bss_,
2546                                                   addr, poff, pshndx);
2547   this->memsz_ = *poff - orig_off;
2548
2549   // Ignore the file offset adjustments made by the BSS Output_data
2550   // objects.
2551   *poff = off;
2552
2553   return ret;
2554 }
2555
2556 // Set the addresses and file offsets in a list of Output_data
2557 // structures.
2558
2559 uint64_t
2560 Output_segment::set_section_list_addresses(bool reset, Output_data_list* pdl,
2561                                            uint64_t addr, off_t* poff,
2562                                            unsigned int* pshndx)
2563 {
2564   off_t startoff = *poff;
2565
2566   off_t off = startoff;
2567   for (Output_data_list::iterator p = pdl->begin();
2568        p != pdl->end();
2569        ++p)
2570     {
2571       if (reset)
2572         (*p)->reset_address_and_file_offset();
2573
2574       // When using a linker script the section will most likely
2575       // already have an address.
2576       if (!(*p)->is_address_valid())
2577         {
2578           off = align_address(off, (*p)->addralign());
2579           (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2580         }
2581       else
2582         {
2583           // The script may have inserted a skip forward, but it
2584           // better not have moved backward.
2585           gold_assert((*p)->address() >= addr + (off - startoff));
2586           off += (*p)->address() - (addr + (off - startoff));
2587           (*p)->set_file_offset(off);
2588           (*p)->finalize_data_size();
2589         }
2590
2591       // Unless this is a PT_TLS segment, we want to ignore the size
2592       // of a SHF_TLS/SHT_NOBITS section.  Such a section does not
2593       // affect the size of a PT_LOAD segment.
2594       if (this->type_ == elfcpp::PT_TLS
2595           || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2596           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2597         off += (*p)->data_size();
2598
2599       if ((*p)->is_section())
2600         {
2601           (*p)->set_out_shndx(*pshndx);
2602           ++*pshndx;
2603         }
2604     }
2605
2606   *poff = off;
2607   return addr + (off - startoff);
2608 }
2609
2610 // For a non-PT_LOAD segment, set the offset from the sections, if
2611 // any.
2612
2613 void
2614 Output_segment::set_offset()
2615 {
2616   gold_assert(this->type_ != elfcpp::PT_LOAD);
2617
2618   gold_assert(!this->are_addresses_set_);
2619
2620   if (this->output_data_.empty() && this->output_bss_.empty())
2621     {
2622       this->vaddr_ = 0;
2623       this->paddr_ = 0;
2624       this->are_addresses_set_ = true;
2625       this->memsz_ = 0;
2626       this->min_p_align_ = 0;
2627       this->offset_ = 0;
2628       this->filesz_ = 0;
2629       return;
2630     }
2631
2632   const Output_data* first;
2633   if (this->output_data_.empty())
2634     first = this->output_bss_.front();
2635   else
2636     first = this->output_data_.front();
2637   this->vaddr_ = first->address();
2638   this->paddr_ = (first->has_load_address()
2639                   ? first->load_address()
2640                   : this->vaddr_);
2641   this->are_addresses_set_ = true;
2642   this->offset_ = first->offset();
2643
2644   if (this->output_data_.empty())
2645     this->filesz_ = 0;
2646   else
2647     {
2648       const Output_data* last_data = this->output_data_.back();
2649       this->filesz_ = (last_data->address()
2650                        + last_data->data_size()
2651                        - this->vaddr_);
2652     }
2653
2654   const Output_data* last;
2655   if (this->output_bss_.empty())
2656     last = this->output_data_.back();
2657   else
2658     last = this->output_bss_.back();
2659   this->memsz_ = (last->address()
2660                   + last->data_size()
2661                   - this->vaddr_);
2662 }
2663
2664 // Set the TLS offsets of the sections in the PT_TLS segment.
2665
2666 void
2667 Output_segment::set_tls_offsets()
2668 {
2669   gold_assert(this->type_ == elfcpp::PT_TLS);
2670
2671   for (Output_data_list::iterator p = this->output_data_.begin();
2672        p != this->output_data_.end();
2673        ++p)
2674     (*p)->set_tls_offset(this->vaddr_);
2675
2676   for (Output_data_list::iterator p = this->output_bss_.begin();
2677        p != this->output_bss_.end();
2678        ++p)
2679     (*p)->set_tls_offset(this->vaddr_);
2680 }
2681
2682 // Return the address of the first section.
2683
2684 uint64_t
2685 Output_segment::first_section_load_address() const
2686 {
2687   for (Output_data_list::const_iterator p = this->output_data_.begin();
2688        p != this->output_data_.end();
2689        ++p)
2690     if ((*p)->is_section())
2691       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2692
2693   for (Output_data_list::const_iterator p = this->output_bss_.begin();
2694        p != this->output_bss_.end();
2695        ++p)
2696     if ((*p)->is_section())
2697       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2698
2699   gold_unreachable();
2700 }
2701
2702 // Return the number of Output_sections in an Output_segment.
2703
2704 unsigned int
2705 Output_segment::output_section_count() const
2706 {
2707   return (this->output_section_count_list(&this->output_data_)
2708           + this->output_section_count_list(&this->output_bss_));
2709 }
2710
2711 // Return the number of Output_sections in an Output_data_list.
2712
2713 unsigned int
2714 Output_segment::output_section_count_list(const Output_data_list* pdl) const
2715 {
2716   unsigned int count = 0;
2717   for (Output_data_list::const_iterator p = pdl->begin();
2718        p != pdl->end();
2719        ++p)
2720     {
2721       if ((*p)->is_section())
2722         ++count;
2723     }
2724   return count;
2725 }
2726
2727 // Return the section attached to the list segment with the lowest
2728 // load address.  This is used when handling a PHDRS clause in a
2729 // linker script.
2730
2731 Output_section*
2732 Output_segment::section_with_lowest_load_address() const
2733 {
2734   Output_section* found = NULL;
2735   uint64_t found_lma = 0;
2736   this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
2737
2738   Output_section* found_data = found;
2739   this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
2740   if (found != found_data && found_data != NULL)
2741     {
2742       gold_error(_("nobits section %s may not precede progbits section %s "
2743                    "in same segment"),
2744                  found->name(), found_data->name());
2745       return NULL;
2746     }
2747
2748   return found;
2749 }
2750
2751 // Look through a list for a section with a lower load address.
2752
2753 void
2754 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
2755                                             Output_section** found,
2756                                             uint64_t* found_lma) const
2757 {
2758   for (Output_data_list::const_iterator p = pdl->begin();
2759        p != pdl->end();
2760        ++p)
2761     {
2762       if (!(*p)->is_section())
2763         continue;
2764       Output_section* os = static_cast<Output_section*>(*p);
2765       uint64_t lma = (os->has_load_address()
2766                       ? os->load_address()
2767                       : os->address());
2768       if (*found == NULL || lma < *found_lma)
2769         {
2770           *found = os;
2771           *found_lma = lma;
2772         }
2773     }
2774 }
2775
2776 // Write the segment data into *OPHDR.
2777
2778 template<int size, bool big_endian>
2779 void
2780 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
2781 {
2782   ophdr->put_p_type(this->type_);
2783   ophdr->put_p_offset(this->offset_);
2784   ophdr->put_p_vaddr(this->vaddr_);
2785   ophdr->put_p_paddr(this->paddr_);
2786   ophdr->put_p_filesz(this->filesz_);
2787   ophdr->put_p_memsz(this->memsz_);
2788   ophdr->put_p_flags(this->flags_);
2789   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
2790 }
2791
2792 // Write the section headers into V.
2793
2794 template<int size, bool big_endian>
2795 unsigned char*
2796 Output_segment::write_section_headers(const Layout* layout,
2797                                       const Stringpool* secnamepool,
2798                                       unsigned char* v,
2799                                       unsigned int *pshndx
2800                                       ACCEPT_SIZE_ENDIAN) const
2801 {
2802   // Every section that is attached to a segment must be attached to a
2803   // PT_LOAD segment, so we only write out section headers for PT_LOAD
2804   // segments.
2805   if (this->type_ != elfcpp::PT_LOAD)
2806     return v;
2807
2808   v = this->write_section_headers_list
2809       SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
2810           layout, secnamepool, &this->output_data_, v, pshndx
2811           SELECT_SIZE_ENDIAN(size, big_endian));
2812   v = this->write_section_headers_list
2813       SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
2814           layout, secnamepool, &this->output_bss_, v, pshndx
2815           SELECT_SIZE_ENDIAN(size, big_endian));
2816   return v;
2817 }
2818
2819 template<int size, bool big_endian>
2820 unsigned char*
2821 Output_segment::write_section_headers_list(const Layout* layout,
2822                                            const Stringpool* secnamepool,
2823                                            const Output_data_list* pdl,
2824                                            unsigned char* v,
2825                                            unsigned int* pshndx
2826                                            ACCEPT_SIZE_ENDIAN) const
2827 {
2828   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2829   for (Output_data_list::const_iterator p = pdl->begin();
2830        p != pdl->end();
2831        ++p)
2832     {
2833       if ((*p)->is_section())
2834         {
2835           const Output_section* ps = static_cast<const Output_section*>(*p);
2836           gold_assert(*pshndx == ps->out_shndx());
2837           elfcpp::Shdr_write<size, big_endian> oshdr(v);
2838           ps->write_header(layout, secnamepool, &oshdr);
2839           v += shdr_size;
2840           ++*pshndx;
2841         }
2842     }
2843   return v;
2844 }
2845
2846 // Output_file methods.
2847
2848 Output_file::Output_file(const char* name)
2849   : name_(name),
2850     o_(-1),
2851     file_size_(0),
2852     base_(NULL),
2853     map_is_anonymous_(false),
2854     is_temporary_(false)
2855 {
2856 }
2857
2858 // Open the output file.
2859
2860 void
2861 Output_file::open(off_t file_size)
2862 {
2863   this->file_size_ = file_size;
2864
2865   // Unlink the file first; otherwise the open() may fail if the file
2866   // is busy (e.g. it's an executable that's currently being executed).
2867   //
2868   // However, the linker may be part of a system where a zero-length
2869   // file is created for it to write to, with tight permissions (gcc
2870   // 2.95 did something like this).  Unlinking the file would work
2871   // around those permission controls, so we only unlink if the file
2872   // has a non-zero size.  We also unlink only regular files to avoid
2873   // trouble with directories/etc.
2874   //
2875   // If we fail, continue; this command is merely a best-effort attempt
2876   // to improve the odds for open().
2877
2878   // We let the name "-" mean "stdout"
2879   if (!this->is_temporary_)
2880     {
2881       if (strcmp(this->name_, "-") == 0)
2882         this->o_ = STDOUT_FILENO;
2883       else
2884         {
2885           struct stat s;
2886           if (::stat(this->name_, &s) == 0 && s.st_size != 0)
2887             unlink_if_ordinary(this->name_);
2888
2889           int mode = parameters->output_is_object() ? 0666 : 0777;
2890           int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
2891           if (o < 0)
2892             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
2893           this->o_ = o;
2894         }
2895     }
2896
2897   this->map();
2898 }
2899
2900 // Resize the output file.
2901
2902 void
2903 Output_file::resize(off_t file_size)
2904 {
2905   // If the mmap is mapping an anonymous memory buffer, this is easy:
2906   // just mremap to the new size.  If it's mapping to a file, we want
2907   // to unmap to flush to the file, then remap after growing the file.
2908   if (this->map_is_anonymous_)
2909     {
2910       void* base = ::mremap(this->base_, this->file_size_, file_size,
2911                             MREMAP_MAYMOVE);
2912       if (base == MAP_FAILED)
2913         gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
2914       this->base_ = static_cast<unsigned char*>(base);
2915       this->file_size_ = file_size;
2916     }
2917   else
2918     {
2919       this->unmap();
2920       this->file_size_ = file_size;
2921       this->map();
2922     }
2923 }
2924
2925 // Map the file into memory.
2926
2927 void
2928 Output_file::map()
2929 {
2930   const int o = this->o_;
2931
2932   // If the output file is not a regular file, don't try to mmap it;
2933   // instead, we'll mmap a block of memory (an anonymous buffer), and
2934   // then later write the buffer to the file.
2935   void* base;
2936   struct stat statbuf;
2937   if (o == STDOUT_FILENO || o == STDERR_FILENO
2938       || ::fstat(o, &statbuf) != 0
2939       || !S_ISREG(statbuf.st_mode)
2940       || this->is_temporary_)
2941     {
2942       this->map_is_anonymous_ = true;
2943       base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2944                     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2945     }
2946   else
2947     {
2948       // Write out one byte to make the file the right size.
2949       if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
2950         gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
2951       char b = 0;
2952       if (::write(o, &b, 1) != 1)
2953         gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
2954
2955       // Map the file into memory.
2956       this->map_is_anonymous_ = false;
2957       base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2958                     MAP_SHARED, o, 0);
2959     }
2960   if (base == MAP_FAILED)
2961     gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
2962   this->base_ = static_cast<unsigned char*>(base);
2963 }
2964
2965 // Unmap the file from memory.
2966
2967 void
2968 Output_file::unmap()
2969 {
2970   if (::munmap(this->base_, this->file_size_) < 0)
2971     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
2972   this->base_ = NULL;
2973 }
2974
2975 // Close the output file.
2976
2977 void
2978 Output_file::close()
2979 {
2980   // If the map isn't file-backed, we need to write it now.
2981   if (this->map_is_anonymous_ && !this->is_temporary_)
2982     {
2983       size_t bytes_to_write = this->file_size_;
2984       while (bytes_to_write > 0)
2985         {
2986           ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
2987           if (bytes_written == 0)
2988             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
2989           else if (bytes_written < 0)
2990             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
2991           else
2992             bytes_to_write -= bytes_written;
2993         }
2994     }
2995   this->unmap();
2996
2997   // We don't close stdout or stderr
2998   if (this->o_ != STDOUT_FILENO
2999       && this->o_ != STDERR_FILENO
3000       && !this->is_temporary_)
3001     if (::close(this->o_) < 0)
3002       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3003   this->o_ = -1;
3004 }
3005
3006 // Instantiate the templates we need.  We could use the configure
3007 // script to restrict this to only the ones for implemented targets.
3008
3009 #ifdef HAVE_TARGET_32_LITTLE
3010 template
3011 off_t
3012 Output_section::add_input_section<32, false>(
3013     Sized_relobj<32, false>* object,
3014     unsigned int shndx,
3015     const char* secname,
3016     const elfcpp::Shdr<32, false>& shdr,
3017     unsigned int reloc_shndx,
3018     bool have_sections_script);
3019 #endif
3020
3021 #ifdef HAVE_TARGET_32_BIG
3022 template
3023 off_t
3024 Output_section::add_input_section<32, true>(
3025     Sized_relobj<32, true>* object,
3026     unsigned int shndx,
3027     const char* secname,
3028     const elfcpp::Shdr<32, true>& shdr,
3029     unsigned int reloc_shndx,
3030     bool have_sections_script);
3031 #endif
3032
3033 #ifdef HAVE_TARGET_64_LITTLE
3034 template
3035 off_t
3036 Output_section::add_input_section<64, false>(
3037     Sized_relobj<64, false>* object,
3038     unsigned int shndx,
3039     const char* secname,
3040     const elfcpp::Shdr<64, false>& shdr,
3041     unsigned int reloc_shndx,
3042     bool have_sections_script);
3043 #endif
3044
3045 #ifdef HAVE_TARGET_64_BIG
3046 template
3047 off_t
3048 Output_section::add_input_section<64, true>(
3049     Sized_relobj<64, true>* object,
3050     unsigned int shndx,
3051     const char* secname,
3052     const elfcpp::Shdr<64, true>& shdr,
3053     unsigned int reloc_shndx,
3054     bool have_sections_script);
3055 #endif
3056
3057 #ifdef HAVE_TARGET_32_LITTLE
3058 template
3059 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3060 #endif
3061
3062 #ifdef HAVE_TARGET_32_BIG
3063 template
3064 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3065 #endif
3066
3067 #ifdef HAVE_TARGET_64_LITTLE
3068 template
3069 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3070 #endif
3071
3072 #ifdef HAVE_TARGET_64_BIG
3073 template
3074 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3075 #endif
3076
3077 #ifdef HAVE_TARGET_32_LITTLE
3078 template
3079 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3080 #endif
3081
3082 #ifdef HAVE_TARGET_32_BIG
3083 template
3084 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3085 #endif
3086
3087 #ifdef HAVE_TARGET_64_LITTLE
3088 template
3089 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3090 #endif
3091
3092 #ifdef HAVE_TARGET_64_BIG
3093 template
3094 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3095 #endif
3096
3097 #ifdef HAVE_TARGET_32_LITTLE
3098 template
3099 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3100 #endif
3101
3102 #ifdef HAVE_TARGET_32_BIG
3103 template
3104 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3105 #endif
3106
3107 #ifdef HAVE_TARGET_64_LITTLE
3108 template
3109 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3110 #endif
3111
3112 #ifdef HAVE_TARGET_64_BIG
3113 template
3114 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3115 #endif
3116
3117 #ifdef HAVE_TARGET_32_LITTLE
3118 template
3119 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3120 #endif
3121
3122 #ifdef HAVE_TARGET_32_BIG
3123 template
3124 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3125 #endif
3126
3127 #ifdef HAVE_TARGET_64_LITTLE
3128 template
3129 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3130 #endif
3131
3132 #ifdef HAVE_TARGET_64_BIG
3133 template
3134 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3135 #endif
3136
3137 #ifdef HAVE_TARGET_32_LITTLE
3138 template
3139 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3140 #endif
3141
3142 #ifdef HAVE_TARGET_32_BIG
3143 template
3144 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3145 #endif
3146
3147 #ifdef HAVE_TARGET_64_LITTLE
3148 template
3149 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3150 #endif
3151
3152 #ifdef HAVE_TARGET_64_BIG
3153 template
3154 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3155 #endif
3156
3157 #ifdef HAVE_TARGET_32_LITTLE
3158 template
3159 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3160 #endif
3161
3162 #ifdef HAVE_TARGET_32_BIG
3163 template
3164 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3165 #endif
3166
3167 #ifdef HAVE_TARGET_64_LITTLE
3168 template
3169 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3170 #endif
3171
3172 #ifdef HAVE_TARGET_64_BIG
3173 template
3174 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3175 #endif
3176
3177 #ifdef HAVE_TARGET_32_LITTLE
3178 template
3179 class Output_data_group<32, false>;
3180 #endif
3181
3182 #ifdef HAVE_TARGET_32_BIG
3183 template
3184 class Output_data_group<32, true>;
3185 #endif
3186
3187 #ifdef HAVE_TARGET_64_LITTLE
3188 template
3189 class Output_data_group<64, false>;
3190 #endif
3191
3192 #ifdef HAVE_TARGET_64_BIG
3193 template
3194 class Output_data_group<64, true>;
3195 #endif
3196
3197 #ifdef HAVE_TARGET_32_LITTLE
3198 template
3199 class Output_data_got<32, false>;
3200 #endif
3201
3202 #ifdef HAVE_TARGET_32_BIG
3203 template
3204 class Output_data_got<32, true>;
3205 #endif
3206
3207 #ifdef HAVE_TARGET_64_LITTLE
3208 template
3209 class Output_data_got<64, false>;
3210 #endif
3211
3212 #ifdef HAVE_TARGET_64_BIG
3213 template
3214 class Output_data_got<64, true>;
3215 #endif
3216
3217 } // End namespace gold.