2009-10-30 Doug Kwan <dougkwan@google.com>
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS  MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate.  Here we just set
50 // the file size and hope that there is enough disk space.  FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56   return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78   return Output_data::default_alignment_for_size(
79       parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87   if (size == 32)
88     return 4;
89   else if (size == 64)
90     return 8;
91   else
92     gold_unreachable();
93 }
94
95 // Output_section_header methods.  This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99     const Layout* layout,
100     const Layout::Segment_list* segment_list,
101     const Layout::Section_list* section_list,
102     const Layout::Section_list* unattached_section_list,
103     const Stringpool* secnamepool,
104     const Output_section* shstrtab_section)
105   : layout_(layout),
106     segment_list_(segment_list),
107     section_list_(section_list),
108     unattached_section_list_(unattached_section_list),
109     secnamepool_(secnamepool),
110     shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119   // Count all the sections.  Start with 1 for the null section.
120   off_t count = 1;
121   if (!parameters->options().relocatable())
122     {
123       for (Layout::Segment_list::const_iterator p =
124              this->segment_list_->begin();
125            p != this->segment_list_->end();
126            ++p)
127         if ((*p)->type() == elfcpp::PT_LOAD)
128           count += (*p)->output_section_count();
129     }
130   else
131     {
132       for (Layout::Section_list::const_iterator p =
133              this->section_list_->begin();
134            p != this->section_list_->end();
135            ++p)
136         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137           ++count;
138     }
139   count += this->unattached_section_list_->size();
140
141   const int size = parameters->target().get_size();
142   int shdr_size;
143   if (size == 32)
144     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145   else if (size == 64)
146     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147   else
148     gold_unreachable();
149
150   return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158   switch (parameters->size_and_endianness())
159     {
160 #ifdef HAVE_TARGET_32_LITTLE
161     case Parameters::TARGET_32_LITTLE:
162       this->do_sized_write<32, false>(of);
163       break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166     case Parameters::TARGET_32_BIG:
167       this->do_sized_write<32, true>(of);
168       break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171     case Parameters::TARGET_64_LITTLE:
172       this->do_sized_write<64, false>(of);
173       break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176     case Parameters::TARGET_64_BIG:
177       this->do_sized_write<64, true>(of);
178       break;
179 #endif
180     default:
181       gold_unreachable();
182     }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189   off_t all_shdrs_size = this->data_size();
190   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193   unsigned char* v = view;
194
195   {
196     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197     oshdr.put_sh_name(0);
198     oshdr.put_sh_type(elfcpp::SHT_NULL);
199     oshdr.put_sh_flags(0);
200     oshdr.put_sh_addr(0);
201     oshdr.put_sh_offset(0);
202
203     size_t section_count = (this->data_size()
204                             / elfcpp::Elf_sizes<size>::shdr_size);
205     if (section_count < elfcpp::SHN_LORESERVE)
206       oshdr.put_sh_size(0);
207     else
208       oshdr.put_sh_size(section_count);
209
210     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211     if (shstrndx < elfcpp::SHN_LORESERVE)
212       oshdr.put_sh_link(0);
213     else
214       oshdr.put_sh_link(shstrndx);
215
216     oshdr.put_sh_info(0);
217     oshdr.put_sh_addralign(0);
218     oshdr.put_sh_entsize(0);
219   }
220
221   v += shdr_size;
222
223   unsigned int shndx = 1;
224   if (!parameters->options().relocatable())
225     {
226       for (Layout::Segment_list::const_iterator p =
227              this->segment_list_->begin();
228            p != this->segment_list_->end();
229            ++p)
230         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
231                                                           this->secnamepool_,
232                                                           v,
233                                                           &shndx);
234     }
235   else
236     {
237       for (Layout::Section_list::const_iterator p =
238              this->section_list_->begin();
239            p != this->section_list_->end();
240            ++p)
241         {
242           // We do unallocated sections below, except that group
243           // sections have to come first.
244           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
245               && (*p)->type() != elfcpp::SHT_GROUP)
246             continue;
247           gold_assert(shndx == (*p)->out_shndx());
248           elfcpp::Shdr_write<size, big_endian> oshdr(v);
249           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
250           v += shdr_size;
251           ++shndx;
252         }
253     }
254
255   for (Layout::Section_list::const_iterator p =
256          this->unattached_section_list_->begin();
257        p != this->unattached_section_list_->end();
258        ++p)
259     {
260       // For a relocatable link, we did unallocated group sections
261       // above, since they have to come first.
262       if ((*p)->type() == elfcpp::SHT_GROUP
263           && parameters->options().relocatable())
264         continue;
265       gold_assert(shndx == (*p)->out_shndx());
266       elfcpp::Shdr_write<size, big_endian> oshdr(v);
267       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
268       v += shdr_size;
269       ++shndx;
270     }
271
272   of->write_output_view(this->offset(), all_shdrs_size, view);
273 }
274
275 // Output_segment_header methods.
276
277 Output_segment_headers::Output_segment_headers(
278     const Layout::Segment_list& segment_list)
279   : segment_list_(segment_list)
280 {
281 }
282
283 void
284 Output_segment_headers::do_write(Output_file* of)
285 {
286   switch (parameters->size_and_endianness())
287     {
288 #ifdef HAVE_TARGET_32_LITTLE
289     case Parameters::TARGET_32_LITTLE:
290       this->do_sized_write<32, false>(of);
291       break;
292 #endif
293 #ifdef HAVE_TARGET_32_BIG
294     case Parameters::TARGET_32_BIG:
295       this->do_sized_write<32, true>(of);
296       break;
297 #endif
298 #ifdef HAVE_TARGET_64_LITTLE
299     case Parameters::TARGET_64_LITTLE:
300       this->do_sized_write<64, false>(of);
301       break;
302 #endif
303 #ifdef HAVE_TARGET_64_BIG
304     case Parameters::TARGET_64_BIG:
305       this->do_sized_write<64, true>(of);
306       break;
307 #endif
308     default:
309       gold_unreachable();
310     }
311 }
312
313 template<int size, bool big_endian>
314 void
315 Output_segment_headers::do_sized_write(Output_file* of)
316 {
317   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
318   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
319   gold_assert(all_phdrs_size == this->data_size());
320   unsigned char* view = of->get_output_view(this->offset(),
321                                             all_phdrs_size);
322   unsigned char* v = view;
323   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
324        p != this->segment_list_.end();
325        ++p)
326     {
327       elfcpp::Phdr_write<size, big_endian> ophdr(v);
328       (*p)->write_header(&ophdr);
329       v += phdr_size;
330     }
331
332   gold_assert(v - view == all_phdrs_size);
333
334   of->write_output_view(this->offset(), all_phdrs_size, view);
335 }
336
337 off_t
338 Output_segment_headers::do_size() const
339 {
340   const int size = parameters->target().get_size();
341   int phdr_size;
342   if (size == 32)
343     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
344   else if (size == 64)
345     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
346   else
347     gold_unreachable();
348
349   return this->segment_list_.size() * phdr_size;
350 }
351
352 // Output_file_header methods.
353
354 Output_file_header::Output_file_header(const Target* target,
355                                        const Symbol_table* symtab,
356                                        const Output_segment_headers* osh,
357                                        const char* entry)
358   : target_(target),
359     symtab_(symtab),
360     segment_header_(osh),
361     section_header_(NULL),
362     shstrtab_(NULL),
363     entry_(entry)
364 {
365   this->set_data_size(this->do_size());
366 }
367
368 // Set the section table information for a file header.
369
370 void
371 Output_file_header::set_section_info(const Output_section_headers* shdrs,
372                                      const Output_section* shstrtab)
373 {
374   this->section_header_ = shdrs;
375   this->shstrtab_ = shstrtab;
376 }
377
378 // Write out the file header.
379
380 void
381 Output_file_header::do_write(Output_file* of)
382 {
383   gold_assert(this->offset() == 0);
384
385   switch (parameters->size_and_endianness())
386     {
387 #ifdef HAVE_TARGET_32_LITTLE
388     case Parameters::TARGET_32_LITTLE:
389       this->do_sized_write<32, false>(of);
390       break;
391 #endif
392 #ifdef HAVE_TARGET_32_BIG
393     case Parameters::TARGET_32_BIG:
394       this->do_sized_write<32, true>(of);
395       break;
396 #endif
397 #ifdef HAVE_TARGET_64_LITTLE
398     case Parameters::TARGET_64_LITTLE:
399       this->do_sized_write<64, false>(of);
400       break;
401 #endif
402 #ifdef HAVE_TARGET_64_BIG
403     case Parameters::TARGET_64_BIG:
404       this->do_sized_write<64, true>(of);
405       break;
406 #endif
407     default:
408       gold_unreachable();
409     }
410 }
411
412 // Write out the file header with appropriate size and endianess.
413
414 template<int size, bool big_endian>
415 void
416 Output_file_header::do_sized_write(Output_file* of)
417 {
418   gold_assert(this->offset() == 0);
419
420   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
421   unsigned char* view = of->get_output_view(0, ehdr_size);
422   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
423
424   unsigned char e_ident[elfcpp::EI_NIDENT];
425   memset(e_ident, 0, elfcpp::EI_NIDENT);
426   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
427   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
428   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
429   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
430   if (size == 32)
431     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
432   else if (size == 64)
433     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
434   else
435     gold_unreachable();
436   e_ident[elfcpp::EI_DATA] = (big_endian
437                               ? elfcpp::ELFDATA2MSB
438                               : elfcpp::ELFDATA2LSB);
439   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
440   oehdr.put_e_ident(e_ident);
441
442   elfcpp::ET e_type;
443   if (parameters->options().relocatable())
444     e_type = elfcpp::ET_REL;
445   else if (parameters->options().output_is_position_independent())
446     e_type = elfcpp::ET_DYN;
447   else
448     e_type = elfcpp::ET_EXEC;
449   oehdr.put_e_type(e_type);
450
451   oehdr.put_e_machine(this->target_->machine_code());
452   oehdr.put_e_version(elfcpp::EV_CURRENT);
453
454   oehdr.put_e_entry(this->entry<size>());
455
456   if (this->segment_header_ == NULL)
457     oehdr.put_e_phoff(0);
458   else
459     oehdr.put_e_phoff(this->segment_header_->offset());
460
461   oehdr.put_e_shoff(this->section_header_->offset());
462   oehdr.put_e_flags(this->target_->processor_specific_flags());
463   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
464
465   if (this->segment_header_ == NULL)
466     {
467       oehdr.put_e_phentsize(0);
468       oehdr.put_e_phnum(0);
469     }
470   else
471     {
472       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
473       oehdr.put_e_phnum(this->segment_header_->data_size()
474                         / elfcpp::Elf_sizes<size>::phdr_size);
475     }
476
477   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
478   size_t section_count = (this->section_header_->data_size()
479                           / elfcpp::Elf_sizes<size>::shdr_size);
480
481   if (section_count < elfcpp::SHN_LORESERVE)
482     oehdr.put_e_shnum(this->section_header_->data_size()
483                       / elfcpp::Elf_sizes<size>::shdr_size);
484   else
485     oehdr.put_e_shnum(0);
486
487   unsigned int shstrndx = this->shstrtab_->out_shndx();
488   if (shstrndx < elfcpp::SHN_LORESERVE)
489     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
490   else
491     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
492
493   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
494   // the e_ident field.
495   parameters->target().adjust_elf_header(view, ehdr_size);
496
497   of->write_output_view(0, ehdr_size, view);
498 }
499
500 // Return the value to use for the entry address.  THIS->ENTRY_ is the
501 // symbol specified on the command line, if any.
502
503 template<int size>
504 typename elfcpp::Elf_types<size>::Elf_Addr
505 Output_file_header::entry()
506 {
507   const bool should_issue_warning = (this->entry_ != NULL
508                                      && !parameters->options().relocatable()
509                                      && !parameters->options().shared());
510
511   // FIXME: Need to support target specific entry symbol.
512   const char* entry = this->entry_;
513   if (entry == NULL)
514     entry = "_start";
515
516   Symbol* sym = this->symtab_->lookup(entry);
517
518   typename Sized_symbol<size>::Value_type v;
519   if (sym != NULL)
520     {
521       Sized_symbol<size>* ssym;
522       ssym = this->symtab_->get_sized_symbol<size>(sym);
523       if (!ssym->is_defined() && should_issue_warning)
524         gold_warning("entry symbol '%s' exists but is not defined", entry);
525       v = ssym->value();
526     }
527   else
528     {
529       // We couldn't find the entry symbol.  See if we can parse it as
530       // a number.  This supports, e.g., -e 0x1000.
531       char* endptr;
532       v = strtoull(entry, &endptr, 0);
533       if (*endptr != '\0')
534         {
535           if (should_issue_warning)
536             gold_warning("cannot find entry symbol '%s'", entry);
537           v = 0;
538         }
539     }
540
541   return v;
542 }
543
544 // Compute the current data size.
545
546 off_t
547 Output_file_header::do_size() const
548 {
549   const int size = parameters->target().get_size();
550   if (size == 32)
551     return elfcpp::Elf_sizes<32>::ehdr_size;
552   else if (size == 64)
553     return elfcpp::Elf_sizes<64>::ehdr_size;
554   else
555     gold_unreachable();
556 }
557
558 // Output_data_const methods.
559
560 void
561 Output_data_const::do_write(Output_file* of)
562 {
563   of->write(this->offset(), this->data_.data(), this->data_.size());
564 }
565
566 // Output_data_const_buffer methods.
567
568 void
569 Output_data_const_buffer::do_write(Output_file* of)
570 {
571   of->write(this->offset(), this->p_, this->data_size());
572 }
573
574 // Output_section_data methods.
575
576 // Record the output section, and set the entry size and such.
577
578 void
579 Output_section_data::set_output_section(Output_section* os)
580 {
581   gold_assert(this->output_section_ == NULL);
582   this->output_section_ = os;
583   this->do_adjust_output_section(os);
584 }
585
586 // Return the section index of the output section.
587
588 unsigned int
589 Output_section_data::do_out_shndx() const
590 {
591   gold_assert(this->output_section_ != NULL);
592   return this->output_section_->out_shndx();
593 }
594
595 // Set the alignment, which means we may need to update the alignment
596 // of the output section.
597
598 void
599 Output_section_data::set_addralign(uint64_t addralign)
600 {
601   this->addralign_ = addralign;
602   if (this->output_section_ != NULL
603       && this->output_section_->addralign() < addralign)
604     this->output_section_->set_addralign(addralign);
605 }
606
607 // Output_data_strtab methods.
608
609 // Set the final data size.
610
611 void
612 Output_data_strtab::set_final_data_size()
613 {
614   this->strtab_->set_string_offsets();
615   this->set_data_size(this->strtab_->get_strtab_size());
616 }
617
618 // Write out a string table.
619
620 void
621 Output_data_strtab::do_write(Output_file* of)
622 {
623   this->strtab_->write(of, this->offset());
624 }
625
626 // Output_reloc methods.
627
628 // A reloc against a global symbol.
629
630 template<bool dynamic, int size, bool big_endian>
631 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
632     Symbol* gsym,
633     unsigned int type,
634     Output_data* od,
635     Address address,
636     bool is_relative)
637   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
638     is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
639 {
640   // this->type_ is a bitfield; make sure TYPE fits.
641   gold_assert(this->type_ == type);
642   this->u1_.gsym = gsym;
643   this->u2_.od = od;
644   if (dynamic)
645     this->set_needs_dynsym_index();
646 }
647
648 template<bool dynamic, int size, bool big_endian>
649 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
650     Symbol* gsym,
651     unsigned int type,
652     Sized_relobj<size, big_endian>* relobj,
653     unsigned int shndx,
654     Address address,
655     bool is_relative)
656   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
657     is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
658 {
659   gold_assert(shndx != INVALID_CODE);
660   // this->type_ is a bitfield; make sure TYPE fits.
661   gold_assert(this->type_ == type);
662   this->u1_.gsym = gsym;
663   this->u2_.relobj = relobj;
664   if (dynamic)
665     this->set_needs_dynsym_index();
666 }
667
668 // A reloc against a local symbol.
669
670 template<bool dynamic, int size, bool big_endian>
671 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
672     Sized_relobj<size, big_endian>* relobj,
673     unsigned int local_sym_index,
674     unsigned int type,
675     Output_data* od,
676     Address address,
677     bool is_relative,
678     bool is_section_symbol)
679   : address_(address), local_sym_index_(local_sym_index), type_(type),
680     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
681     shndx_(INVALID_CODE)
682 {
683   gold_assert(local_sym_index != GSYM_CODE
684               && local_sym_index != INVALID_CODE);
685   // this->type_ is a bitfield; make sure TYPE fits.
686   gold_assert(this->type_ == type);
687   this->u1_.relobj = relobj;
688   this->u2_.od = od;
689   if (dynamic)
690     this->set_needs_dynsym_index();
691 }
692
693 template<bool dynamic, int size, bool big_endian>
694 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
695     Sized_relobj<size, big_endian>* relobj,
696     unsigned int local_sym_index,
697     unsigned int type,
698     unsigned int shndx,
699     Address address,
700     bool is_relative,
701     bool is_section_symbol)
702   : address_(address), local_sym_index_(local_sym_index), type_(type),
703     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
704     shndx_(shndx)
705 {
706   gold_assert(local_sym_index != GSYM_CODE
707               && local_sym_index != INVALID_CODE);
708   gold_assert(shndx != INVALID_CODE);
709   // this->type_ is a bitfield; make sure TYPE fits.
710   gold_assert(this->type_ == type);
711   this->u1_.relobj = relobj;
712   this->u2_.relobj = relobj;
713   if (dynamic)
714     this->set_needs_dynsym_index();
715 }
716
717 // A reloc against the STT_SECTION symbol of an output section.
718
719 template<bool dynamic, int size, bool big_endian>
720 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
721     Output_section* os,
722     unsigned int type,
723     Output_data* od,
724     Address address)
725   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
726     is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
727 {
728   // this->type_ is a bitfield; make sure TYPE fits.
729   gold_assert(this->type_ == type);
730   this->u1_.os = os;
731   this->u2_.od = od;
732   if (dynamic)
733     this->set_needs_dynsym_index();
734   else
735     os->set_needs_symtab_index();
736 }
737
738 template<bool dynamic, int size, bool big_endian>
739 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
740     Output_section* os,
741     unsigned int type,
742     Sized_relobj<size, big_endian>* relobj,
743     unsigned int shndx,
744     Address address)
745   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
746     is_relative_(false), is_section_symbol_(true), shndx_(shndx)
747 {
748   gold_assert(shndx != INVALID_CODE);
749   // this->type_ is a bitfield; make sure TYPE fits.
750   gold_assert(this->type_ == type);
751   this->u1_.os = os;
752   this->u2_.relobj = relobj;
753   if (dynamic)
754     this->set_needs_dynsym_index();
755   else
756     os->set_needs_symtab_index();
757 }
758
759 // Record that we need a dynamic symbol index for this relocation.
760
761 template<bool dynamic, int size, bool big_endian>
762 void
763 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
764 set_needs_dynsym_index()
765 {
766   if (this->is_relative_)
767     return;
768   switch (this->local_sym_index_)
769     {
770     case INVALID_CODE:
771       gold_unreachable();
772
773     case GSYM_CODE:
774       this->u1_.gsym->set_needs_dynsym_entry();
775       break;
776
777     case SECTION_CODE:
778       this->u1_.os->set_needs_dynsym_index();
779       break;
780
781     case 0:
782       break;
783
784     default:
785       {
786         const unsigned int lsi = this->local_sym_index_;
787         if (!this->is_section_symbol_)
788           this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
789         else
790           this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
791       }
792       break;
793     }
794 }
795
796 // Get the symbol index of a relocation.
797
798 template<bool dynamic, int size, bool big_endian>
799 unsigned int
800 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
801   const
802 {
803   unsigned int index;
804   switch (this->local_sym_index_)
805     {
806     case INVALID_CODE:
807       gold_unreachable();
808
809     case GSYM_CODE:
810       if (this->u1_.gsym == NULL)
811         index = 0;
812       else if (dynamic)
813         index = this->u1_.gsym->dynsym_index();
814       else
815         index = this->u1_.gsym->symtab_index();
816       break;
817
818     case SECTION_CODE:
819       if (dynamic)
820         index = this->u1_.os->dynsym_index();
821       else
822         index = this->u1_.os->symtab_index();
823       break;
824
825     case 0:
826       // Relocations without symbols use a symbol index of 0.
827       index = 0;
828       break;
829
830     default:
831       {
832         const unsigned int lsi = this->local_sym_index_;
833         if (!this->is_section_symbol_)
834           {
835             if (dynamic)
836               index = this->u1_.relobj->dynsym_index(lsi);
837             else
838               index = this->u1_.relobj->symtab_index(lsi);
839           }
840         else
841           {
842             Output_section* os = this->u1_.relobj->output_section(lsi);
843             gold_assert(os != NULL);
844             if (dynamic)
845               index = os->dynsym_index();
846             else
847               index = os->symtab_index();
848           }
849       }
850       break;
851     }
852   gold_assert(index != -1U);
853   return index;
854 }
855
856 // For a local section symbol, get the address of the offset ADDEND
857 // within the input section.
858
859 template<bool dynamic, int size, bool big_endian>
860 typename elfcpp::Elf_types<size>::Elf_Addr
861 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
862   local_section_offset(Addend addend) const
863 {
864   gold_assert(this->local_sym_index_ != GSYM_CODE
865               && this->local_sym_index_ != SECTION_CODE
866               && this->local_sym_index_ != INVALID_CODE
867               && this->is_section_symbol_);
868   const unsigned int lsi = this->local_sym_index_;
869   Output_section* os = this->u1_.relobj->output_section(lsi);
870   gold_assert(os != NULL);
871   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
872   if (offset != invalid_address)
873     return offset + addend;
874   // This is a merge section.
875   offset = os->output_address(this->u1_.relobj, lsi, addend);
876   gold_assert(offset != invalid_address);
877   return offset;
878 }
879
880 // Get the output address of a relocation.
881
882 template<bool dynamic, int size, bool big_endian>
883 typename elfcpp::Elf_types<size>::Elf_Addr
884 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
885 {
886   Address address = this->address_;
887   if (this->shndx_ != INVALID_CODE)
888     {
889       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
890       gold_assert(os != NULL);
891       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
892       if (off != invalid_address)
893         address += os->address() + off;
894       else
895         {
896           address = os->output_address(this->u2_.relobj, this->shndx_,
897                                        address);
898           gold_assert(address != invalid_address);
899         }
900     }
901   else if (this->u2_.od != NULL)
902     address += this->u2_.od->address();
903   return address;
904 }
905
906 // Write out the offset and info fields of a Rel or Rela relocation
907 // entry.
908
909 template<bool dynamic, int size, bool big_endian>
910 template<typename Write_rel>
911 void
912 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
913     Write_rel* wr) const
914 {
915   wr->put_r_offset(this->get_address());
916   unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
917   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
918 }
919
920 // Write out a Rel relocation.
921
922 template<bool dynamic, int size, bool big_endian>
923 void
924 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
925     unsigned char* pov) const
926 {
927   elfcpp::Rel_write<size, big_endian> orel(pov);
928   this->write_rel(&orel);
929 }
930
931 // Get the value of the symbol referred to by a Rel relocation.
932
933 template<bool dynamic, int size, bool big_endian>
934 typename elfcpp::Elf_types<size>::Elf_Addr
935 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
936     Addend addend) const
937 {
938   if (this->local_sym_index_ == GSYM_CODE)
939     {
940       const Sized_symbol<size>* sym;
941       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
942       return sym->value() + addend;
943     }
944   gold_assert(this->local_sym_index_ != SECTION_CODE
945               && this->local_sym_index_ != INVALID_CODE
946               && !this->is_section_symbol_);
947   const unsigned int lsi = this->local_sym_index_;
948   const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
949   return symval->value(this->u1_.relobj, addend);
950 }
951
952 // Reloc comparison.  This function sorts the dynamic relocs for the
953 // benefit of the dynamic linker.  First we sort all relative relocs
954 // to the front.  Among relative relocs, we sort by output address.
955 // Among non-relative relocs, we sort by symbol index, then by output
956 // address.
957
958 template<bool dynamic, int size, bool big_endian>
959 int
960 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
961   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
962     const
963 {
964   if (this->is_relative_)
965     {
966       if (!r2.is_relative_)
967         return -1;
968       // Otherwise sort by reloc address below.
969     }
970   else if (r2.is_relative_)
971     return 1;
972   else
973     {
974       unsigned int sym1 = this->get_symbol_index();
975       unsigned int sym2 = r2.get_symbol_index();
976       if (sym1 < sym2)
977         return -1;
978       else if (sym1 > sym2)
979         return 1;
980       // Otherwise sort by reloc address.
981     }
982
983   section_offset_type addr1 = this->get_address();
984   section_offset_type addr2 = r2.get_address();
985   if (addr1 < addr2)
986     return -1;
987   else if (addr1 > addr2)
988     return 1;
989
990   // Final tie breaker, in order to generate the same output on any
991   // host: reloc type.
992   unsigned int type1 = this->type_;
993   unsigned int type2 = r2.type_;
994   if (type1 < type2)
995     return -1;
996   else if (type1 > type2)
997     return 1;
998
999   // These relocs appear to be exactly the same.
1000   return 0;
1001 }
1002
1003 // Write out a Rela relocation.
1004
1005 template<bool dynamic, int size, bool big_endian>
1006 void
1007 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1008     unsigned char* pov) const
1009 {
1010   elfcpp::Rela_write<size, big_endian> orel(pov);
1011   this->rel_.write_rel(&orel);
1012   Addend addend = this->addend_;
1013   if (this->rel_.is_relative())
1014     addend = this->rel_.symbol_value(addend);
1015   else if (this->rel_.is_local_section_symbol())
1016     addend = this->rel_.local_section_offset(addend);
1017   orel.put_r_addend(addend);
1018 }
1019
1020 // Output_data_reloc_base methods.
1021
1022 // Adjust the output section.
1023
1024 template<int sh_type, bool dynamic, int size, bool big_endian>
1025 void
1026 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1027     ::do_adjust_output_section(Output_section* os)
1028 {
1029   if (sh_type == elfcpp::SHT_REL)
1030     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1031   else if (sh_type == elfcpp::SHT_RELA)
1032     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1033   else
1034     gold_unreachable();
1035   if (dynamic)
1036     os->set_should_link_to_dynsym();
1037   else
1038     os->set_should_link_to_symtab();
1039 }
1040
1041 // Write out relocation data.
1042
1043 template<int sh_type, bool dynamic, int size, bool big_endian>
1044 void
1045 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1046     Output_file* of)
1047 {
1048   const off_t off = this->offset();
1049   const off_t oview_size = this->data_size();
1050   unsigned char* const oview = of->get_output_view(off, oview_size);
1051
1052   if (this->sort_relocs_)
1053     {
1054       gold_assert(dynamic);
1055       std::sort(this->relocs_.begin(), this->relocs_.end(),
1056                 Sort_relocs_comparison());
1057     }
1058
1059   unsigned char* pov = oview;
1060   for (typename Relocs::const_iterator p = this->relocs_.begin();
1061        p != this->relocs_.end();
1062        ++p)
1063     {
1064       p->write(pov);
1065       pov += reloc_size;
1066     }
1067
1068   gold_assert(pov - oview == oview_size);
1069
1070   of->write_output_view(off, oview_size, oview);
1071
1072   // We no longer need the relocation entries.
1073   this->relocs_.clear();
1074 }
1075
1076 // Class Output_relocatable_relocs.
1077
1078 template<int sh_type, int size, bool big_endian>
1079 void
1080 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1081 {
1082   this->set_data_size(this->rr_->output_reloc_count()
1083                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1084 }
1085
1086 // class Output_data_group.
1087
1088 template<int size, bool big_endian>
1089 Output_data_group<size, big_endian>::Output_data_group(
1090     Sized_relobj<size, big_endian>* relobj,
1091     section_size_type entry_count,
1092     elfcpp::Elf_Word flags,
1093     std::vector<unsigned int>* input_shndxes)
1094   : Output_section_data(entry_count * 4, 4, false),
1095     relobj_(relobj),
1096     flags_(flags)
1097 {
1098   this->input_shndxes_.swap(*input_shndxes);
1099 }
1100
1101 // Write out the section group, which means translating the section
1102 // indexes to apply to the output file.
1103
1104 template<int size, bool big_endian>
1105 void
1106 Output_data_group<size, big_endian>::do_write(Output_file* of)
1107 {
1108   const off_t off = this->offset();
1109   const section_size_type oview_size =
1110     convert_to_section_size_type(this->data_size());
1111   unsigned char* const oview = of->get_output_view(off, oview_size);
1112
1113   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1114   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1115   ++contents;
1116
1117   for (std::vector<unsigned int>::const_iterator p =
1118          this->input_shndxes_.begin();
1119        p != this->input_shndxes_.end();
1120        ++p, ++contents)
1121     {
1122       Output_section* os = this->relobj_->output_section(*p);
1123
1124       unsigned int output_shndx;
1125       if (os != NULL)
1126         output_shndx = os->out_shndx();
1127       else
1128         {
1129           this->relobj_->error(_("section group retained but "
1130                                  "group element discarded"));
1131           output_shndx = 0;
1132         }
1133
1134       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1135     }
1136
1137   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1138   gold_assert(wrote == oview_size);
1139
1140   of->write_output_view(off, oview_size, oview);
1141
1142   // We no longer need this information.
1143   this->input_shndxes_.clear();
1144 }
1145
1146 // Output_data_got::Got_entry methods.
1147
1148 // Write out the entry.
1149
1150 template<int size, bool big_endian>
1151 void
1152 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1153 {
1154   Valtype val = 0;
1155
1156   switch (this->local_sym_index_)
1157     {
1158     case GSYM_CODE:
1159       {
1160         // If the symbol is resolved locally, we need to write out the
1161         // link-time value, which will be relocated dynamically by a
1162         // RELATIVE relocation.
1163         Symbol* gsym = this->u_.gsym;
1164         Sized_symbol<size>* sgsym;
1165         // This cast is a bit ugly.  We don't want to put a
1166         // virtual method in Symbol, because we want Symbol to be
1167         // as small as possible.
1168         sgsym = static_cast<Sized_symbol<size>*>(gsym);
1169         val = sgsym->value();
1170       }
1171       break;
1172
1173     case CONSTANT_CODE:
1174       val = this->u_.constant;
1175       break;
1176
1177     default:
1178       {
1179         const unsigned int lsi = this->local_sym_index_;
1180         const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1181         val = symval->value(this->u_.object, 0);
1182       }
1183       break;
1184     }
1185
1186   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1187 }
1188
1189 // Output_data_got methods.
1190
1191 // Add an entry for a global symbol to the GOT.  This returns true if
1192 // this is a new GOT entry, false if the symbol already had a GOT
1193 // entry.
1194
1195 template<int size, bool big_endian>
1196 bool
1197 Output_data_got<size, big_endian>::add_global(
1198     Symbol* gsym,
1199     unsigned int got_type)
1200 {
1201   if (gsym->has_got_offset(got_type))
1202     return false;
1203
1204   this->entries_.push_back(Got_entry(gsym));
1205   this->set_got_size();
1206   gsym->set_got_offset(got_type, this->last_got_offset());
1207   return true;
1208 }
1209
1210 // Add an entry for a global symbol to the GOT, and add a dynamic
1211 // relocation of type R_TYPE for the GOT entry.
1212 template<int size, bool big_endian>
1213 void
1214 Output_data_got<size, big_endian>::add_global_with_rel(
1215     Symbol* gsym,
1216     unsigned int got_type,
1217     Rel_dyn* rel_dyn,
1218     unsigned int r_type)
1219 {
1220   if (gsym->has_got_offset(got_type))
1221     return;
1222
1223   this->entries_.push_back(Got_entry());
1224   this->set_got_size();
1225   unsigned int got_offset = this->last_got_offset();
1226   gsym->set_got_offset(got_type, got_offset);
1227   rel_dyn->add_global(gsym, r_type, this, got_offset);
1228 }
1229
1230 template<int size, bool big_endian>
1231 void
1232 Output_data_got<size, big_endian>::add_global_with_rela(
1233     Symbol* gsym,
1234     unsigned int got_type,
1235     Rela_dyn* rela_dyn,
1236     unsigned int r_type)
1237 {
1238   if (gsym->has_got_offset(got_type))
1239     return;
1240
1241   this->entries_.push_back(Got_entry());
1242   this->set_got_size();
1243   unsigned int got_offset = this->last_got_offset();
1244   gsym->set_got_offset(got_type, got_offset);
1245   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1246 }
1247
1248 // Add a pair of entries for a global symbol to the GOT, and add
1249 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1250 // If R_TYPE_2 == 0, add the second entry with no relocation.
1251 template<int size, bool big_endian>
1252 void
1253 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1254     Symbol* gsym,
1255     unsigned int got_type,
1256     Rel_dyn* rel_dyn,
1257     unsigned int r_type_1,
1258     unsigned int r_type_2)
1259 {
1260   if (gsym->has_got_offset(got_type))
1261     return;
1262
1263   this->entries_.push_back(Got_entry());
1264   unsigned int got_offset = this->last_got_offset();
1265   gsym->set_got_offset(got_type, got_offset);
1266   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1267
1268   this->entries_.push_back(Got_entry());
1269   if (r_type_2 != 0)
1270     {
1271       got_offset = this->last_got_offset();
1272       rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1273     }
1274
1275   this->set_got_size();
1276 }
1277
1278 template<int size, bool big_endian>
1279 void
1280 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1281     Symbol* gsym,
1282     unsigned int got_type,
1283     Rela_dyn* rela_dyn,
1284     unsigned int r_type_1,
1285     unsigned int r_type_2)
1286 {
1287   if (gsym->has_got_offset(got_type))
1288     return;
1289
1290   this->entries_.push_back(Got_entry());
1291   unsigned int got_offset = this->last_got_offset();
1292   gsym->set_got_offset(got_type, got_offset);
1293   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1294
1295   this->entries_.push_back(Got_entry());
1296   if (r_type_2 != 0)
1297     {
1298       got_offset = this->last_got_offset();
1299       rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1300     }
1301
1302   this->set_got_size();
1303 }
1304
1305 // Add an entry for a local symbol to the GOT.  This returns true if
1306 // this is a new GOT entry, false if the symbol already has a GOT
1307 // entry.
1308
1309 template<int size, bool big_endian>
1310 bool
1311 Output_data_got<size, big_endian>::add_local(
1312     Sized_relobj<size, big_endian>* object,
1313     unsigned int symndx,
1314     unsigned int got_type)
1315 {
1316   if (object->local_has_got_offset(symndx, got_type))
1317     return false;
1318
1319   this->entries_.push_back(Got_entry(object, symndx));
1320   this->set_got_size();
1321   object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1322   return true;
1323 }
1324
1325 // Add an entry for a local symbol to the GOT, and add a dynamic
1326 // relocation of type R_TYPE for the GOT entry.
1327 template<int size, bool big_endian>
1328 void
1329 Output_data_got<size, big_endian>::add_local_with_rel(
1330     Sized_relobj<size, big_endian>* object,
1331     unsigned int symndx,
1332     unsigned int got_type,
1333     Rel_dyn* rel_dyn,
1334     unsigned int r_type)
1335 {
1336   if (object->local_has_got_offset(symndx, got_type))
1337     return;
1338
1339   this->entries_.push_back(Got_entry());
1340   this->set_got_size();
1341   unsigned int got_offset = this->last_got_offset();
1342   object->set_local_got_offset(symndx, got_type, got_offset);
1343   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1344 }
1345
1346 template<int size, bool big_endian>
1347 void
1348 Output_data_got<size, big_endian>::add_local_with_rela(
1349     Sized_relobj<size, big_endian>* object,
1350     unsigned int symndx,
1351     unsigned int got_type,
1352     Rela_dyn* rela_dyn,
1353     unsigned int r_type)
1354 {
1355   if (object->local_has_got_offset(symndx, got_type))
1356     return;
1357
1358   this->entries_.push_back(Got_entry());
1359   this->set_got_size();
1360   unsigned int got_offset = this->last_got_offset();
1361   object->set_local_got_offset(symndx, got_type, got_offset);
1362   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1363 }
1364
1365 // Add a pair of entries for a local symbol to the GOT, and add
1366 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1367 // If R_TYPE_2 == 0, add the second entry with no relocation.
1368 template<int size, bool big_endian>
1369 void
1370 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1371     Sized_relobj<size, big_endian>* object,
1372     unsigned int symndx,
1373     unsigned int shndx,
1374     unsigned int got_type,
1375     Rel_dyn* rel_dyn,
1376     unsigned int r_type_1,
1377     unsigned int r_type_2)
1378 {
1379   if (object->local_has_got_offset(symndx, got_type))
1380     return;
1381
1382   this->entries_.push_back(Got_entry());
1383   unsigned int got_offset = this->last_got_offset();
1384   object->set_local_got_offset(symndx, got_type, got_offset);
1385   Output_section* os = object->output_section(shndx);
1386   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1387
1388   this->entries_.push_back(Got_entry(object, symndx));
1389   if (r_type_2 != 0)
1390     {
1391       got_offset = this->last_got_offset();
1392       rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1393     }
1394
1395   this->set_got_size();
1396 }
1397
1398 template<int size, bool big_endian>
1399 void
1400 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1401     Sized_relobj<size, big_endian>* object,
1402     unsigned int symndx,
1403     unsigned int shndx,
1404     unsigned int got_type,
1405     Rela_dyn* rela_dyn,
1406     unsigned int r_type_1,
1407     unsigned int r_type_2)
1408 {
1409   if (object->local_has_got_offset(symndx, got_type))
1410     return;
1411
1412   this->entries_.push_back(Got_entry());
1413   unsigned int got_offset = this->last_got_offset();
1414   object->set_local_got_offset(symndx, got_type, got_offset);
1415   Output_section* os = object->output_section(shndx);
1416   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1417
1418   this->entries_.push_back(Got_entry(object, symndx));
1419   if (r_type_2 != 0)
1420     {
1421       got_offset = this->last_got_offset();
1422       rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1423     }
1424
1425   this->set_got_size();
1426 }
1427
1428 // Write out the GOT.
1429
1430 template<int size, bool big_endian>
1431 void
1432 Output_data_got<size, big_endian>::do_write(Output_file* of)
1433 {
1434   const int add = size / 8;
1435
1436   const off_t off = this->offset();
1437   const off_t oview_size = this->data_size();
1438   unsigned char* const oview = of->get_output_view(off, oview_size);
1439
1440   unsigned char* pov = oview;
1441   for (typename Got_entries::const_iterator p = this->entries_.begin();
1442        p != this->entries_.end();
1443        ++p)
1444     {
1445       p->write(pov);
1446       pov += add;
1447     }
1448
1449   gold_assert(pov - oview == oview_size);
1450
1451   of->write_output_view(off, oview_size, oview);
1452
1453   // We no longer need the GOT entries.
1454   this->entries_.clear();
1455 }
1456
1457 // Output_data_dynamic::Dynamic_entry methods.
1458
1459 // Write out the entry.
1460
1461 template<int size, bool big_endian>
1462 void
1463 Output_data_dynamic::Dynamic_entry::write(
1464     unsigned char* pov,
1465     const Stringpool* pool) const
1466 {
1467   typename elfcpp::Elf_types<size>::Elf_WXword val;
1468   switch (this->offset_)
1469     {
1470     case DYNAMIC_NUMBER:
1471       val = this->u_.val;
1472       break;
1473
1474     case DYNAMIC_SECTION_SIZE:
1475       val = this->u_.od->data_size();
1476       break;
1477
1478     case DYNAMIC_SYMBOL:
1479       {
1480         const Sized_symbol<size>* s =
1481           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1482         val = s->value();
1483       }
1484       break;
1485
1486     case DYNAMIC_STRING:
1487       val = pool->get_offset(this->u_.str);
1488       break;
1489
1490     default:
1491       val = this->u_.od->address() + this->offset_;
1492       break;
1493     }
1494
1495   elfcpp::Dyn_write<size, big_endian> dw(pov);
1496   dw.put_d_tag(this->tag_);
1497   dw.put_d_val(val);
1498 }
1499
1500 // Output_data_dynamic methods.
1501
1502 // Adjust the output section to set the entry size.
1503
1504 void
1505 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1506 {
1507   if (parameters->target().get_size() == 32)
1508     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1509   else if (parameters->target().get_size() == 64)
1510     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1511   else
1512     gold_unreachable();
1513 }
1514
1515 // Set the final data size.
1516
1517 void
1518 Output_data_dynamic::set_final_data_size()
1519 {
1520   // Add the terminating entry if it hasn't been added.
1521   // Because of relaxation, we can run this multiple times.
1522   if (this->entries_.empty()
1523       || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1524     this->add_constant(elfcpp::DT_NULL, 0);
1525
1526   int dyn_size;
1527   if (parameters->target().get_size() == 32)
1528     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1529   else if (parameters->target().get_size() == 64)
1530     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1531   else
1532     gold_unreachable();
1533   this->set_data_size(this->entries_.size() * dyn_size);
1534 }
1535
1536 // Write out the dynamic entries.
1537
1538 void
1539 Output_data_dynamic::do_write(Output_file* of)
1540 {
1541   switch (parameters->size_and_endianness())
1542     {
1543 #ifdef HAVE_TARGET_32_LITTLE
1544     case Parameters::TARGET_32_LITTLE:
1545       this->sized_write<32, false>(of);
1546       break;
1547 #endif
1548 #ifdef HAVE_TARGET_32_BIG
1549     case Parameters::TARGET_32_BIG:
1550       this->sized_write<32, true>(of);
1551       break;
1552 #endif
1553 #ifdef HAVE_TARGET_64_LITTLE
1554     case Parameters::TARGET_64_LITTLE:
1555       this->sized_write<64, false>(of);
1556       break;
1557 #endif
1558 #ifdef HAVE_TARGET_64_BIG
1559     case Parameters::TARGET_64_BIG:
1560       this->sized_write<64, true>(of);
1561       break;
1562 #endif
1563     default:
1564       gold_unreachable();
1565     }
1566 }
1567
1568 template<int size, bool big_endian>
1569 void
1570 Output_data_dynamic::sized_write(Output_file* of)
1571 {
1572   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1573
1574   const off_t offset = this->offset();
1575   const off_t oview_size = this->data_size();
1576   unsigned char* const oview = of->get_output_view(offset, oview_size);
1577
1578   unsigned char* pov = oview;
1579   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1580        p != this->entries_.end();
1581        ++p)
1582     {
1583       p->write<size, big_endian>(pov, this->pool_);
1584       pov += dyn_size;
1585     }
1586
1587   gold_assert(pov - oview == oview_size);
1588
1589   of->write_output_view(offset, oview_size, oview);
1590
1591   // We no longer need the dynamic entries.
1592   this->entries_.clear();
1593 }
1594
1595 // Class Output_symtab_xindex.
1596
1597 void
1598 Output_symtab_xindex::do_write(Output_file* of)
1599 {
1600   const off_t offset = this->offset();
1601   const off_t oview_size = this->data_size();
1602   unsigned char* const oview = of->get_output_view(offset, oview_size);
1603
1604   memset(oview, 0, oview_size);
1605
1606   if (parameters->target().is_big_endian())
1607     this->endian_do_write<true>(oview);
1608   else
1609     this->endian_do_write<false>(oview);
1610
1611   of->write_output_view(offset, oview_size, oview);
1612
1613   // We no longer need the data.
1614   this->entries_.clear();
1615 }
1616
1617 template<bool big_endian>
1618 void
1619 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1620 {
1621   for (Xindex_entries::const_iterator p = this->entries_.begin();
1622        p != this->entries_.end();
1623        ++p)
1624     {
1625       unsigned int symndx = p->first;
1626       gold_assert(symndx * 4 < this->data_size());
1627       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1628     }
1629 }
1630
1631 // Output_section::Input_section methods.
1632
1633 // Return the data size.  For an input section we store the size here.
1634 // For an Output_section_data, we have to ask it for the size.
1635
1636 off_t
1637 Output_section::Input_section::data_size() const
1638 {
1639   if (this->is_input_section())
1640     return this->u1_.data_size;
1641   else
1642     return this->u2_.posd->data_size();
1643 }
1644
1645 // Set the address and file offset.
1646
1647 void
1648 Output_section::Input_section::set_address_and_file_offset(
1649     uint64_t address,
1650     off_t file_offset,
1651     off_t section_file_offset)
1652 {
1653   if (this->is_input_section())
1654     this->u2_.object->set_section_offset(this->shndx_,
1655                                          file_offset - section_file_offset);
1656   else
1657     this->u2_.posd->set_address_and_file_offset(address, file_offset);
1658 }
1659
1660 // Reset the address and file offset.
1661
1662 void
1663 Output_section::Input_section::reset_address_and_file_offset()
1664 {
1665   if (!this->is_input_section())
1666     this->u2_.posd->reset_address_and_file_offset();
1667 }
1668
1669 // Finalize the data size.
1670
1671 void
1672 Output_section::Input_section::finalize_data_size()
1673 {
1674   if (!this->is_input_section())
1675     this->u2_.posd->finalize_data_size();
1676 }
1677
1678 // Try to turn an input offset into an output offset.  We want to
1679 // return the output offset relative to the start of this
1680 // Input_section in the output section.
1681
1682 inline bool
1683 Output_section::Input_section::output_offset(
1684     const Relobj* object,
1685     unsigned int shndx,
1686     section_offset_type offset,
1687     section_offset_type *poutput) const
1688 {
1689   if (!this->is_input_section())
1690     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1691   else
1692     {
1693       if (this->shndx_ != shndx || this->u2_.object != object)
1694         return false;
1695       *poutput = offset;
1696       return true;
1697     }
1698 }
1699
1700 // Return whether this is the merge section for the input section
1701 // SHNDX in OBJECT.
1702
1703 inline bool
1704 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1705                                                     unsigned int shndx) const
1706 {
1707   if (this->is_input_section())
1708     return false;
1709   return this->u2_.posd->is_merge_section_for(object, shndx);
1710 }
1711
1712 // Write out the data.  We don't have to do anything for an input
1713 // section--they are handled via Object::relocate--but this is where
1714 // we write out the data for an Output_section_data.
1715
1716 void
1717 Output_section::Input_section::write(Output_file* of)
1718 {
1719   if (!this->is_input_section())
1720     this->u2_.posd->write(of);
1721 }
1722
1723 // Write the data to a buffer.  As for write(), we don't have to do
1724 // anything for an input section.
1725
1726 void
1727 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1728 {
1729   if (!this->is_input_section())
1730     this->u2_.posd->write_to_buffer(buffer);
1731 }
1732
1733 // Print to a map file.
1734
1735 void
1736 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1737 {
1738   switch (this->shndx_)
1739     {
1740     case OUTPUT_SECTION_CODE:
1741     case MERGE_DATA_SECTION_CODE:
1742     case MERGE_STRING_SECTION_CODE:
1743       this->u2_.posd->print_to_mapfile(mapfile);
1744       break;
1745
1746     case RELAXED_INPUT_SECTION_CODE:
1747       {
1748         Output_relaxed_input_section* relaxed_section =
1749           this->relaxed_input_section();
1750         mapfile->print_input_section(relaxed_section->relobj(),
1751                                      relaxed_section->shndx());
1752       }
1753       break;
1754     default:
1755       mapfile->print_input_section(this->u2_.object, this->shndx_);
1756       break;
1757     }
1758 }
1759
1760 // Output_section methods.
1761
1762 // Construct an Output_section.  NAME will point into a Stringpool.
1763
1764 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1765                                elfcpp::Elf_Xword flags)
1766   : name_(name),
1767     addralign_(0),
1768     entsize_(0),
1769     load_address_(0),
1770     link_section_(NULL),
1771     link_(0),
1772     info_section_(NULL),
1773     info_symndx_(NULL),
1774     info_(0),
1775     type_(type),
1776     flags_(flags),
1777     out_shndx_(-1U),
1778     symtab_index_(0),
1779     dynsym_index_(0),
1780     input_sections_(),
1781     first_input_offset_(0),
1782     fills_(),
1783     postprocessing_buffer_(NULL),
1784     needs_symtab_index_(false),
1785     needs_dynsym_index_(false),
1786     should_link_to_symtab_(false),
1787     should_link_to_dynsym_(false),
1788     after_input_sections_(false),
1789     requires_postprocessing_(false),
1790     found_in_sections_clause_(false),
1791     has_load_address_(false),
1792     info_uses_section_index_(false),
1793     may_sort_attached_input_sections_(false),
1794     must_sort_attached_input_sections_(false),
1795     attached_input_sections_are_sorted_(false),
1796     is_relro_(false),
1797     is_relro_local_(false),
1798     is_small_section_(false),
1799     is_large_section_(false),
1800     tls_offset_(0),
1801     checkpoint_(NULL),
1802     merge_section_map_(),
1803     merge_section_by_properties_map_(),
1804     relaxed_input_section_map_(),
1805     is_relaxed_input_section_map_valid_(true),
1806     generate_code_fills_at_write_(false)
1807 {
1808   // An unallocated section has no address.  Forcing this means that
1809   // we don't need special treatment for symbols defined in debug
1810   // sections.
1811   if ((flags & elfcpp::SHF_ALLOC) == 0)
1812     this->set_address(0);
1813 }
1814
1815 Output_section::~Output_section()
1816 {
1817   delete this->checkpoint_;
1818 }
1819
1820 // Set the entry size.
1821
1822 void
1823 Output_section::set_entsize(uint64_t v)
1824 {
1825   if (this->entsize_ == 0)
1826     this->entsize_ = v;
1827   else
1828     gold_assert(this->entsize_ == v);
1829 }
1830
1831 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1832 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
1833 // relocation section which applies to this section, or 0 if none, or
1834 // -1U if more than one.  Return the offset of the input section
1835 // within the output section.  Return -1 if the input section will
1836 // receive special handling.  In the normal case we don't always keep
1837 // track of input sections for an Output_section.  Instead, each
1838 // Object keeps track of the Output_section for each of its input
1839 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1840 // track of input sections here; this is used when SECTIONS appears in
1841 // a linker script.
1842
1843 template<int size, bool big_endian>
1844 off_t
1845 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1846                                   unsigned int shndx,
1847                                   const char* secname,
1848                                   const elfcpp::Shdr<size, big_endian>& shdr,
1849                                   unsigned int reloc_shndx,
1850                                   bool have_sections_script)
1851 {
1852   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1853   if ((addralign & (addralign - 1)) != 0)
1854     {
1855       object->error(_("invalid alignment %lu for section \"%s\""),
1856                     static_cast<unsigned long>(addralign), secname);
1857       addralign = 1;
1858     }
1859
1860   if (addralign > this->addralign_)
1861     this->addralign_ = addralign;
1862
1863   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1864   this->update_flags_for_input_section(sh_flags);
1865
1866   uint64_t entsize = shdr.get_sh_entsize();
1867
1868   // .debug_str is a mergeable string section, but is not always so
1869   // marked by compilers.  Mark manually here so we can optimize.
1870   if (strcmp(secname, ".debug_str") == 0)
1871     {
1872       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1873       entsize = 1;
1874     }
1875
1876   // If this is a SHF_MERGE section, we pass all the input sections to
1877   // a Output_data_merge.  We don't try to handle relocations for such
1878   // a section.  We don't try to handle empty merge sections--they
1879   // mess up the mappings, and are useless anyhow.
1880   if ((sh_flags & elfcpp::SHF_MERGE) != 0
1881       && reloc_shndx == 0
1882       && shdr.get_sh_size() > 0)
1883     {
1884       if (this->add_merge_input_section(object, shndx, sh_flags,
1885                                         entsize, addralign))
1886         {
1887           // Tell the relocation routines that they need to call the
1888           // output_offset method to determine the final address.
1889           return -1;
1890         }
1891     }
1892
1893   off_t offset_in_section = this->current_data_size_for_child();
1894   off_t aligned_offset_in_section = align_address(offset_in_section,
1895                                                   addralign);
1896
1897   // Determine if we want to delay code-fill generation until the output
1898   // section is written.  When the target is relaxing, we want to delay fill
1899   // generating to avoid adjusting them during relaxation.
1900   if (!this->generate_code_fills_at_write_
1901       && !have_sections_script
1902       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1903       && parameters->target().has_code_fill()
1904       && parameters->target().may_relax())
1905     {
1906       gold_assert(this->fills_.empty());
1907       this->generate_code_fills_at_write_ = true;
1908     }
1909
1910   if (aligned_offset_in_section > offset_in_section
1911       && !this->generate_code_fills_at_write_
1912       && !have_sections_script
1913       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1914       && parameters->target().has_code_fill())
1915     {
1916       // We need to add some fill data.  Using fill_list_ when
1917       // possible is an optimization, since we will often have fill
1918       // sections without input sections.
1919       off_t fill_len = aligned_offset_in_section - offset_in_section;
1920       if (this->input_sections_.empty())
1921         this->fills_.push_back(Fill(offset_in_section, fill_len));
1922       else
1923         {
1924           std::string fill_data(parameters->target().code_fill(fill_len));
1925           Output_data_const* odc = new Output_data_const(fill_data, 1);
1926           this->input_sections_.push_back(Input_section(odc));
1927         }
1928     }
1929
1930   this->set_current_data_size_for_child(aligned_offset_in_section
1931                                         + shdr.get_sh_size());
1932
1933   // We need to keep track of this section if we are already keeping
1934   // track of sections, or if we are relaxing.  Also, if this is a
1935   // section which requires sorting, or which may require sorting in
1936   // the future, we keep track of the sections.
1937   if (have_sections_script
1938       || !this->input_sections_.empty()
1939       || this->may_sort_attached_input_sections()
1940       || this->must_sort_attached_input_sections()
1941       || parameters->options().user_set_Map()
1942       || parameters->target().may_relax())
1943     this->input_sections_.push_back(Input_section(object, shndx,
1944                                                   shdr.get_sh_size(),
1945                                                   addralign));
1946
1947   return aligned_offset_in_section;
1948 }
1949
1950 // Add arbitrary data to an output section.
1951
1952 void
1953 Output_section::add_output_section_data(Output_section_data* posd)
1954 {
1955   Input_section inp(posd);
1956   this->add_output_section_data(&inp);
1957
1958   if (posd->is_data_size_valid())
1959     {
1960       off_t offset_in_section = this->current_data_size_for_child();
1961       off_t aligned_offset_in_section = align_address(offset_in_section,
1962                                                       posd->addralign());
1963       this->set_current_data_size_for_child(aligned_offset_in_section
1964                                             + posd->data_size());
1965     }
1966 }
1967
1968 // Add a relaxed input section.
1969
1970 void
1971 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
1972 {
1973   Input_section inp(poris);
1974   this->add_output_section_data(&inp);
1975   if (this->is_relaxed_input_section_map_valid_)
1976     {
1977       Input_section_specifier iss(poris->relobj(), poris->shndx());
1978       this->relaxed_input_section_map_[iss] = poris;
1979     }
1980
1981   // For a relaxed section, we use the current data size.  Linker scripts
1982   // get all the input sections, including relaxed one from an output
1983   // section and add them back to them same output section to compute the
1984   // output section size.  If we do not account for sizes of relaxed input
1985   // sections,  an output section would be incorrectly sized.
1986   off_t offset_in_section = this->current_data_size_for_child();
1987   off_t aligned_offset_in_section = align_address(offset_in_section,
1988                                                   poris->addralign());
1989   this->set_current_data_size_for_child(aligned_offset_in_section
1990                                         + poris->current_data_size());
1991 }
1992
1993 // Add arbitrary data to an output section by Input_section.
1994
1995 void
1996 Output_section::add_output_section_data(Input_section* inp)
1997 {
1998   if (this->input_sections_.empty())
1999     this->first_input_offset_ = this->current_data_size_for_child();
2000
2001   this->input_sections_.push_back(*inp);
2002
2003   uint64_t addralign = inp->addralign();
2004   if (addralign > this->addralign_)
2005     this->addralign_ = addralign;
2006
2007   inp->set_output_section(this);
2008 }
2009
2010 // Add a merge section to an output section.
2011
2012 void
2013 Output_section::add_output_merge_section(Output_section_data* posd,
2014                                          bool is_string, uint64_t entsize)
2015 {
2016   Input_section inp(posd, is_string, entsize);
2017   this->add_output_section_data(&inp);
2018 }
2019
2020 // Add an input section to a SHF_MERGE section.
2021
2022 bool
2023 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2024                                         uint64_t flags, uint64_t entsize,
2025                                         uint64_t addralign)
2026 {
2027   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2028
2029   // We only merge strings if the alignment is not more than the
2030   // character size.  This could be handled, but it's unusual.
2031   if (is_string && addralign > entsize)
2032     return false;
2033
2034   // We cannot restore merged input section states.
2035   gold_assert(this->checkpoint_ == NULL);
2036
2037   // Look up merge sections by required properties.
2038   Merge_section_properties msp(is_string, entsize, addralign);
2039   Merge_section_by_properties_map::const_iterator p =
2040     this->merge_section_by_properties_map_.find(msp);
2041   if (p != this->merge_section_by_properties_map_.end())
2042     {
2043       Output_merge_base* merge_section = p->second;
2044       merge_section->add_input_section(object, shndx);
2045       gold_assert(merge_section->is_string() == is_string
2046                   && merge_section->entsize() == entsize
2047                   && merge_section->addralign() == addralign);
2048
2049       // Link input section to found merge section.
2050       Input_section_specifier iss(object, shndx);
2051       this->merge_section_map_[iss] = merge_section;
2052       return true;
2053     }
2054
2055   // We handle the actual constant merging in Output_merge_data or
2056   // Output_merge_string_data.
2057   Output_merge_base* pomb;
2058   if (!is_string)
2059     pomb = new Output_merge_data(entsize, addralign);
2060   else
2061     {
2062       switch (entsize)
2063         {
2064         case 1:
2065           pomb = new Output_merge_string<char>(addralign);
2066           break;
2067         case 2:
2068           pomb = new Output_merge_string<uint16_t>(addralign);
2069           break;
2070         case 4:
2071           pomb = new Output_merge_string<uint32_t>(addralign);
2072           break;
2073         default:
2074           return false;
2075         }
2076     }
2077
2078   // Add new merge section to this output section and link merge section
2079   // properties to new merge section in map.
2080   this->add_output_merge_section(pomb, is_string, entsize);
2081   this->merge_section_by_properties_map_[msp] = pomb;
2082
2083   // Add input section to new merge section and link input section to new
2084   // merge section in map.
2085   pomb->add_input_section(object, shndx);
2086   Input_section_specifier iss(object, shndx);
2087   this->merge_section_map_[iss] = pomb;
2088
2089   return true;
2090 }
2091
2092 // Build a relaxation map to speed up relaxation of existing input sections.
2093 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2094
2095 void
2096 Output_section::build_relaxation_map(
2097   const Input_section_list& input_sections,
2098   size_t limit,
2099   Relaxation_map* relaxation_map) const
2100 {
2101   for (size_t i = 0; i < limit; ++i)
2102     {
2103       const Input_section& is(input_sections[i]);
2104       if (is.is_input_section() || is.is_relaxed_input_section())
2105         {
2106           Input_section_specifier iss(is.relobj(), is.shndx());
2107           (*relaxation_map)[iss] = i;
2108         }
2109     }
2110 }
2111
2112 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2113 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from input section
2114 // specifier to indices of INPUT_SECTIONS.
2115
2116 void
2117 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2118   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2119   const Relaxation_map& map,
2120   Input_section_list* input_sections)
2121 {
2122   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2123     {
2124       Output_relaxed_input_section* poris = relaxed_sections[i];
2125       Input_section_specifier iss(poris->relobj(), poris->shndx());
2126       Relaxation_map::const_iterator p = map.find(iss);
2127       gold_assert(p != map.end());
2128       gold_assert((*input_sections)[p->second].is_input_section());
2129       (*input_sections)[p->second] = Input_section(poris);
2130     }
2131 }
2132   
2133 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2134 // is a vector of pointers to Output_relaxed_input_section or its derived
2135 // classes.  The relaxed sections must correspond to existing input sections.
2136
2137 void
2138 Output_section::convert_input_sections_to_relaxed_sections(
2139   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2140 {
2141   gold_assert(parameters->target().may_relax());
2142
2143   // We want to make sure that restore_states does not undo the effect of
2144   // this.  If there is no checkpoint active, just search the current
2145   // input section list and replace the sections there.  If there is
2146   // a checkpoint, also replace the sections there.
2147   
2148   // By default, we look at the whole list.
2149   size_t limit = this->input_sections_.size();
2150
2151   if (this->checkpoint_ != NULL)
2152     {
2153       // Replace input sections with relaxed input section in the saved
2154       // copy of the input section list.
2155       if (this->checkpoint_->input_sections_saved())
2156         {
2157           Relaxation_map map;
2158           this->build_relaxation_map(
2159                     *(this->checkpoint_->input_sections()),
2160                     this->checkpoint_->input_sections()->size(),
2161                     &map);
2162           this->convert_input_sections_in_list_to_relaxed_sections(
2163                     relaxed_sections,
2164                     map,
2165                     this->checkpoint_->input_sections());
2166         }
2167       else
2168         {
2169           // We have not copied the input section list yet.  Instead, just
2170           // look at the portion that would be saved.
2171           limit = this->checkpoint_->input_sections_size();
2172         }
2173     }
2174
2175   // Convert input sections in input_section_list.
2176   Relaxation_map map;
2177   this->build_relaxation_map(this->input_sections_, limit, &map);
2178   this->convert_input_sections_in_list_to_relaxed_sections(
2179             relaxed_sections,
2180             map,
2181             &this->input_sections_);
2182 }
2183
2184 // Update the output section flags based on input section flags.
2185
2186 void
2187 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2188 {
2189   // If we created the section with SHF_ALLOC clear, we set the
2190   // address.  If we are now setting the SHF_ALLOC flag, we need to
2191   // undo that.
2192   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2193       && (flags & elfcpp::SHF_ALLOC) != 0)
2194     this->mark_address_invalid();
2195
2196   this->flags_ |= (flags
2197                    & (elfcpp::SHF_WRITE
2198                       | elfcpp::SHF_ALLOC
2199                       | elfcpp::SHF_EXECINSTR));
2200 }
2201
2202 // Find the merge section into which an input section with index SHNDX in
2203 // OBJECT has been added.  Return NULL if none found.
2204
2205 Output_section_data*
2206 Output_section::find_merge_section(const Relobj* object,
2207                                    unsigned int shndx) const
2208 {
2209   Input_section_specifier iss(object, shndx);
2210   Output_section_data_by_input_section_map::const_iterator p =
2211     this->merge_section_map_.find(iss);
2212   if (p != this->merge_section_map_.end())
2213     {
2214       Output_section_data* posd = p->second;
2215       gold_assert(posd->is_merge_section_for(object, shndx));
2216       return posd;
2217     }
2218   else
2219     return NULL;
2220 }
2221
2222 // Find an relaxed input section corresponding to an input section
2223 // in OBJECT with index SHNDX.
2224
2225 const Output_section_data*
2226 Output_section::find_relaxed_input_section(const Relobj* object,
2227                                            unsigned int shndx) const
2228 {
2229   // Be careful that the map may not be valid due to input section export
2230   // to scripts or a check-point restore.
2231   if (!this->is_relaxed_input_section_map_valid_)
2232     {
2233       // Rebuild the map as needed.
2234       this->relaxed_input_section_map_.clear();
2235       for (Input_section_list::const_iterator p = this->input_sections_.begin();
2236            p != this->input_sections_.end();
2237            ++p)
2238         if (p->is_relaxed_input_section())
2239           {
2240             Input_section_specifier iss(p->relobj(), p->shndx());
2241             this->relaxed_input_section_map_[iss] =
2242               p->relaxed_input_section();
2243           }
2244       this->is_relaxed_input_section_map_valid_ = true;
2245     }
2246
2247   Input_section_specifier iss(object, shndx);
2248   Output_section_data_by_input_section_map::const_iterator p =
2249     this->relaxed_input_section_map_.find(iss);
2250   if (p != this->relaxed_input_section_map_.end())
2251     return p->second;
2252   else
2253     return NULL;
2254 }
2255
2256 // Given an address OFFSET relative to the start of input section
2257 // SHNDX in OBJECT, return whether this address is being included in
2258 // the final link.  This should only be called if SHNDX in OBJECT has
2259 // a special mapping.
2260
2261 bool
2262 Output_section::is_input_address_mapped(const Relobj* object,
2263                                         unsigned int shndx,
2264                                         off_t offset) const
2265 {
2266   // Look at the Output_section_data_maps first.
2267   const Output_section_data* posd = this->find_merge_section(object, shndx);
2268   if (posd == NULL)
2269     posd = this->find_relaxed_input_section(object, shndx);
2270
2271   if (posd != NULL)
2272     {
2273       section_offset_type output_offset;
2274       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2275       gold_assert(found);   
2276       return output_offset != -1;
2277     }
2278
2279   // Fall back to the slow look-up.
2280   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2281        p != this->input_sections_.end();
2282        ++p)
2283     {
2284       section_offset_type output_offset;
2285       if (p->output_offset(object, shndx, offset, &output_offset))
2286         return output_offset != -1;
2287     }
2288
2289   // By default we assume that the address is mapped.  This should
2290   // only be called after we have passed all sections to Layout.  At
2291   // that point we should know what we are discarding.
2292   return true;
2293 }
2294
2295 // Given an address OFFSET relative to the start of input section
2296 // SHNDX in object OBJECT, return the output offset relative to the
2297 // start of the input section in the output section.  This should only
2298 // be called if SHNDX in OBJECT has a special mapping.
2299
2300 section_offset_type
2301 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2302                               section_offset_type offset) const
2303 {
2304   // This can only be called meaningfully when we know the data size
2305   // of this.
2306   gold_assert(this->is_data_size_valid());
2307
2308   // Look at the Output_section_data_maps first.
2309   const Output_section_data* posd = this->find_merge_section(object, shndx);
2310   if (posd == NULL) 
2311     posd = this->find_relaxed_input_section(object, shndx);
2312   if (posd != NULL)
2313     {
2314       section_offset_type output_offset;
2315       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2316       gold_assert(found);   
2317       return output_offset;
2318     }
2319
2320   // Fall back to the slow look-up.
2321   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2322        p != this->input_sections_.end();
2323        ++p)
2324     {
2325       section_offset_type output_offset;
2326       if (p->output_offset(object, shndx, offset, &output_offset))
2327         return output_offset;
2328     }
2329   gold_unreachable();
2330 }
2331
2332 // Return the output virtual address of OFFSET relative to the start
2333 // of input section SHNDX in object OBJECT.
2334
2335 uint64_t
2336 Output_section::output_address(const Relobj* object, unsigned int shndx,
2337                                off_t offset) const
2338 {
2339   uint64_t addr = this->address() + this->first_input_offset_;
2340
2341   // Look at the Output_section_data_maps first.
2342   const Output_section_data* posd = this->find_merge_section(object, shndx);
2343   if (posd == NULL) 
2344     posd = this->find_relaxed_input_section(object, shndx);
2345   if (posd != NULL && posd->is_address_valid())
2346     {
2347       section_offset_type output_offset;
2348       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2349       gold_assert(found);
2350       return posd->address() + output_offset;
2351     }
2352
2353   // Fall back to the slow look-up.
2354   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2355        p != this->input_sections_.end();
2356        ++p)
2357     {
2358       addr = align_address(addr, p->addralign());
2359       section_offset_type output_offset;
2360       if (p->output_offset(object, shndx, offset, &output_offset))
2361         {
2362           if (output_offset == -1)
2363             return -1ULL;
2364           return addr + output_offset;
2365         }
2366       addr += p->data_size();
2367     }
2368
2369   // If we get here, it means that we don't know the mapping for this
2370   // input section.  This might happen in principle if
2371   // add_input_section were called before add_output_section_data.
2372   // But it should never actually happen.
2373
2374   gold_unreachable();
2375 }
2376
2377 // Find the output address of the start of the merged section for
2378 // input section SHNDX in object OBJECT.
2379
2380 bool
2381 Output_section::find_starting_output_address(const Relobj* object,
2382                                              unsigned int shndx,
2383                                              uint64_t* paddr) const
2384 {
2385   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2386   // Looking up the merge section map does not always work as we sometimes
2387   // find a merge section without its address set.
2388   uint64_t addr = this->address() + this->first_input_offset_;
2389   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2390        p != this->input_sections_.end();
2391        ++p)
2392     {
2393       addr = align_address(addr, p->addralign());
2394
2395       // It would be nice if we could use the existing output_offset
2396       // method to get the output offset of input offset 0.
2397       // Unfortunately we don't know for sure that input offset 0 is
2398       // mapped at all.
2399       if (p->is_merge_section_for(object, shndx))
2400         {
2401           *paddr = addr;
2402           return true;
2403         }
2404
2405       addr += p->data_size();
2406     }
2407
2408   // We couldn't find a merge output section for this input section.
2409   return false;
2410 }
2411
2412 // Set the data size of an Output_section.  This is where we handle
2413 // setting the addresses of any Output_section_data objects.
2414
2415 void
2416 Output_section::set_final_data_size()
2417 {
2418   if (this->input_sections_.empty())
2419     {
2420       this->set_data_size(this->current_data_size_for_child());
2421       return;
2422     }
2423
2424   if (this->must_sort_attached_input_sections())
2425     this->sort_attached_input_sections();
2426
2427   uint64_t address = this->address();
2428   off_t startoff = this->offset();
2429   off_t off = startoff + this->first_input_offset_;
2430   for (Input_section_list::iterator p = this->input_sections_.begin();
2431        p != this->input_sections_.end();
2432        ++p)
2433     {
2434       off = align_address(off, p->addralign());
2435       p->set_address_and_file_offset(address + (off - startoff), off,
2436                                      startoff);
2437       off += p->data_size();
2438     }
2439
2440   this->set_data_size(off - startoff);
2441 }
2442
2443 // Reset the address and file offset.
2444
2445 void
2446 Output_section::do_reset_address_and_file_offset()
2447 {
2448   // An unallocated section has no address.  Forcing this means that
2449   // we don't need special treatment for symbols defined in debug
2450   // sections.  We do the same in the constructor.
2451   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2452      this->set_address(0);
2453
2454   for (Input_section_list::iterator p = this->input_sections_.begin();
2455        p != this->input_sections_.end();
2456        ++p)
2457     p->reset_address_and_file_offset();
2458 }
2459   
2460 // Return true if address and file offset have the values after reset.
2461
2462 bool
2463 Output_section::do_address_and_file_offset_have_reset_values() const
2464 {
2465   if (this->is_offset_valid())
2466     return false;
2467
2468   // An unallocated section has address 0 after its construction or a reset.
2469   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2470     return this->is_address_valid() && this->address() == 0;
2471   else
2472     return !this->is_address_valid();
2473 }
2474
2475 // Set the TLS offset.  Called only for SHT_TLS sections.
2476
2477 void
2478 Output_section::do_set_tls_offset(uint64_t tls_base)
2479 {
2480   this->tls_offset_ = this->address() - tls_base;
2481 }
2482
2483 // In a few cases we need to sort the input sections attached to an
2484 // output section.  This is used to implement the type of constructor
2485 // priority ordering implemented by the GNU linker, in which the
2486 // priority becomes part of the section name and the sections are
2487 // sorted by name.  We only do this for an output section if we see an
2488 // attached input section matching ".ctor.*", ".dtor.*",
2489 // ".init_array.*" or ".fini_array.*".
2490
2491 class Output_section::Input_section_sort_entry
2492 {
2493  public:
2494   Input_section_sort_entry()
2495     : input_section_(), index_(-1U), section_has_name_(false),
2496       section_name_()
2497   { }
2498
2499   Input_section_sort_entry(const Input_section& input_section,
2500                            unsigned int index)
2501     : input_section_(input_section), index_(index),
2502       section_has_name_(input_section.is_input_section()
2503                         || input_section.is_relaxed_input_section())
2504   {
2505     if (this->section_has_name_)
2506       {
2507         // This is only called single-threaded from Layout::finalize,
2508         // so it is OK to lock.  Unfortunately we have no way to pass
2509         // in a Task token.
2510         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2511         Object* obj = (input_section.is_input_section()
2512                        ? input_section.relobj()
2513                        : input_section.relaxed_input_section()->relobj());
2514         Task_lock_obj<Object> tl(dummy_task, obj);
2515
2516         // This is a slow operation, which should be cached in
2517         // Layout::layout if this becomes a speed problem.
2518         this->section_name_ = obj->section_name(input_section.shndx());
2519       }
2520   }
2521
2522   // Return the Input_section.
2523   const Input_section&
2524   input_section() const
2525   {
2526     gold_assert(this->index_ != -1U);
2527     return this->input_section_;
2528   }
2529
2530   // The index of this entry in the original list.  This is used to
2531   // make the sort stable.
2532   unsigned int
2533   index() const
2534   {
2535     gold_assert(this->index_ != -1U);
2536     return this->index_;
2537   }
2538
2539   // Whether there is a section name.
2540   bool
2541   section_has_name() const
2542   { return this->section_has_name_; }
2543
2544   // The section name.
2545   const std::string&
2546   section_name() const
2547   {
2548     gold_assert(this->section_has_name_);
2549     return this->section_name_;
2550   }
2551
2552   // Return true if the section name has a priority.  This is assumed
2553   // to be true if it has a dot after the initial dot.
2554   bool
2555   has_priority() const
2556   {
2557     gold_assert(this->section_has_name_);
2558     return this->section_name_.find('.', 1);
2559   }
2560
2561   // Return true if this an input file whose base name matches
2562   // FILE_NAME.  The base name must have an extension of ".o", and
2563   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2564   // This is to match crtbegin.o as well as crtbeginS.o without
2565   // getting confused by other possibilities.  Overall matching the
2566   // file name this way is a dreadful hack, but the GNU linker does it
2567   // in order to better support gcc, and we need to be compatible.
2568   bool
2569   match_file_name(const char* match_file_name) const
2570   {
2571     const std::string& file_name(this->input_section_.relobj()->name());
2572     const char* base_name = lbasename(file_name.c_str());
2573     size_t match_len = strlen(match_file_name);
2574     if (strncmp(base_name, match_file_name, match_len) != 0)
2575       return false;
2576     size_t base_len = strlen(base_name);
2577     if (base_len != match_len + 2 && base_len != match_len + 3)
2578       return false;
2579     return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2580   }
2581
2582  private:
2583   // The Input_section we are sorting.
2584   Input_section input_section_;
2585   // The index of this Input_section in the original list.
2586   unsigned int index_;
2587   // Whether this Input_section has a section name--it won't if this
2588   // is some random Output_section_data.
2589   bool section_has_name_;
2590   // The section name if there is one.
2591   std::string section_name_;
2592 };
2593
2594 // Return true if S1 should come before S2 in the output section.
2595
2596 bool
2597 Output_section::Input_section_sort_compare::operator()(
2598     const Output_section::Input_section_sort_entry& s1,
2599     const Output_section::Input_section_sort_entry& s2) const
2600 {
2601   // crtbegin.o must come first.
2602   bool s1_begin = s1.match_file_name("crtbegin");
2603   bool s2_begin = s2.match_file_name("crtbegin");
2604   if (s1_begin || s2_begin)
2605     {
2606       if (!s1_begin)
2607         return false;
2608       if (!s2_begin)
2609         return true;
2610       return s1.index() < s2.index();
2611     }
2612
2613   // crtend.o must come last.
2614   bool s1_end = s1.match_file_name("crtend");
2615   bool s2_end = s2.match_file_name("crtend");
2616   if (s1_end || s2_end)
2617     {
2618       if (!s1_end)
2619         return true;
2620       if (!s2_end)
2621         return false;
2622       return s1.index() < s2.index();
2623     }
2624
2625   // We sort all the sections with no names to the end.
2626   if (!s1.section_has_name() || !s2.section_has_name())
2627     {
2628       if (s1.section_has_name())
2629         return true;
2630       if (s2.section_has_name())
2631         return false;
2632       return s1.index() < s2.index();
2633     }
2634
2635   // A section with a priority follows a section without a priority.
2636   // The GNU linker does this for all but .init_array sections; until
2637   // further notice we'll assume that that is an mistake.
2638   bool s1_has_priority = s1.has_priority();
2639   bool s2_has_priority = s2.has_priority();
2640   if (s1_has_priority && !s2_has_priority)
2641     return false;
2642   if (!s1_has_priority && s2_has_priority)
2643     return true;
2644
2645   // Otherwise we sort by name.
2646   int compare = s1.section_name().compare(s2.section_name());
2647   if (compare != 0)
2648     return compare < 0;
2649
2650   // Otherwise we keep the input order.
2651   return s1.index() < s2.index();
2652 }
2653
2654 // Sort the input sections attached to an output section.
2655
2656 void
2657 Output_section::sort_attached_input_sections()
2658 {
2659   if (this->attached_input_sections_are_sorted_)
2660     return;
2661
2662   if (this->checkpoint_ != NULL
2663       && !this->checkpoint_->input_sections_saved())
2664     this->checkpoint_->save_input_sections();
2665
2666   // The only thing we know about an input section is the object and
2667   // the section index.  We need the section name.  Recomputing this
2668   // is slow but this is an unusual case.  If this becomes a speed
2669   // problem we can cache the names as required in Layout::layout.
2670
2671   // We start by building a larger vector holding a copy of each
2672   // Input_section, plus its current index in the list and its name.
2673   std::vector<Input_section_sort_entry> sort_list;
2674
2675   unsigned int i = 0;
2676   for (Input_section_list::iterator p = this->input_sections_.begin();
2677        p != this->input_sections_.end();
2678        ++p, ++i)
2679     sort_list.push_back(Input_section_sort_entry(*p, i));
2680
2681   // Sort the input sections.
2682   std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2683
2684   // Copy the sorted input sections back to our list.
2685   this->input_sections_.clear();
2686   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2687        p != sort_list.end();
2688        ++p)
2689     this->input_sections_.push_back(p->input_section());
2690
2691   // Remember that we sorted the input sections, since we might get
2692   // called again.
2693   this->attached_input_sections_are_sorted_ = true;
2694 }
2695
2696 // Write the section header to *OSHDR.
2697
2698 template<int size, bool big_endian>
2699 void
2700 Output_section::write_header(const Layout* layout,
2701                              const Stringpool* secnamepool,
2702                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
2703 {
2704   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2705   oshdr->put_sh_type(this->type_);
2706
2707   elfcpp::Elf_Xword flags = this->flags_;
2708   if (this->info_section_ != NULL && this->info_uses_section_index_)
2709     flags |= elfcpp::SHF_INFO_LINK;
2710   oshdr->put_sh_flags(flags);
2711
2712   oshdr->put_sh_addr(this->address());
2713   oshdr->put_sh_offset(this->offset());
2714   oshdr->put_sh_size(this->data_size());
2715   if (this->link_section_ != NULL)
2716     oshdr->put_sh_link(this->link_section_->out_shndx());
2717   else if (this->should_link_to_symtab_)
2718     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2719   else if (this->should_link_to_dynsym_)
2720     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2721   else
2722     oshdr->put_sh_link(this->link_);
2723
2724   elfcpp::Elf_Word info;
2725   if (this->info_section_ != NULL)
2726     {
2727       if (this->info_uses_section_index_)
2728         info = this->info_section_->out_shndx();
2729       else
2730         info = this->info_section_->symtab_index();
2731     }
2732   else if (this->info_symndx_ != NULL)
2733     info = this->info_symndx_->symtab_index();
2734   else
2735     info = this->info_;
2736   oshdr->put_sh_info(info);
2737
2738   oshdr->put_sh_addralign(this->addralign_);
2739   oshdr->put_sh_entsize(this->entsize_);
2740 }
2741
2742 // Write out the data.  For input sections the data is written out by
2743 // Object::relocate, but we have to handle Output_section_data objects
2744 // here.
2745
2746 void
2747 Output_section::do_write(Output_file* of)
2748 {
2749   gold_assert(!this->requires_postprocessing());
2750
2751   // If the target performs relaxation, we delay filler generation until now.
2752   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2753
2754   off_t output_section_file_offset = this->offset();
2755   for (Fill_list::iterator p = this->fills_.begin();
2756        p != this->fills_.end();
2757        ++p)
2758     {
2759       std::string fill_data(parameters->target().code_fill(p->length()));
2760       of->write(output_section_file_offset + p->section_offset(),
2761                 fill_data.data(), fill_data.size());
2762     }
2763
2764   off_t off = this->offset() + this->first_input_offset_;
2765   for (Input_section_list::iterator p = this->input_sections_.begin();
2766        p != this->input_sections_.end();
2767        ++p)
2768     {
2769       off_t aligned_off = align_address(off, p->addralign());
2770       if (this->generate_code_fills_at_write_ && (off != aligned_off))
2771         {
2772           size_t fill_len = aligned_off - off;
2773           std::string fill_data(parameters->target().code_fill(fill_len));
2774           of->write(off, fill_data.data(), fill_data.size());
2775         }
2776
2777       p->write(of);
2778       off = aligned_off + p->data_size();
2779     }
2780 }
2781
2782 // If a section requires postprocessing, create the buffer to use.
2783
2784 void
2785 Output_section::create_postprocessing_buffer()
2786 {
2787   gold_assert(this->requires_postprocessing());
2788
2789   if (this->postprocessing_buffer_ != NULL)
2790     return;
2791
2792   if (!this->input_sections_.empty())
2793     {
2794       off_t off = this->first_input_offset_;
2795       for (Input_section_list::iterator p = this->input_sections_.begin();
2796            p != this->input_sections_.end();
2797            ++p)
2798         {
2799           off = align_address(off, p->addralign());
2800           p->finalize_data_size();
2801           off += p->data_size();
2802         }
2803       this->set_current_data_size_for_child(off);
2804     }
2805
2806   off_t buffer_size = this->current_data_size_for_child();
2807   this->postprocessing_buffer_ = new unsigned char[buffer_size];
2808 }
2809
2810 // Write all the data of an Output_section into the postprocessing
2811 // buffer.  This is used for sections which require postprocessing,
2812 // such as compression.  Input sections are handled by
2813 // Object::Relocate.
2814
2815 void
2816 Output_section::write_to_postprocessing_buffer()
2817 {
2818   gold_assert(this->requires_postprocessing());
2819
2820   // If the target performs relaxation, we delay filler generation until now.
2821   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2822
2823   unsigned char* buffer = this->postprocessing_buffer();
2824   for (Fill_list::iterator p = this->fills_.begin();
2825        p != this->fills_.end();
2826        ++p)
2827     {
2828       std::string fill_data(parameters->target().code_fill(p->length()));
2829       memcpy(buffer + p->section_offset(), fill_data.data(),
2830              fill_data.size());
2831     }
2832
2833   off_t off = this->first_input_offset_;
2834   for (Input_section_list::iterator p = this->input_sections_.begin();
2835        p != this->input_sections_.end();
2836        ++p)
2837     {
2838       off_t aligned_off = align_address(off, p->addralign());
2839       if (this->generate_code_fills_at_write_ && (off != aligned_off))
2840         {
2841           size_t fill_len = aligned_off - off;
2842           std::string fill_data(parameters->target().code_fill(fill_len));
2843           memcpy(buffer + off, fill_data.data(), fill_data.size());
2844         }
2845
2846       p->write_to_buffer(buffer + aligned_off);
2847       off = aligned_off + p->data_size();
2848     }
2849 }
2850
2851 // Get the input sections for linker script processing.  We leave
2852 // behind the Output_section_data entries.  Note that this may be
2853 // slightly incorrect for merge sections.  We will leave them behind,
2854 // but it is possible that the script says that they should follow
2855 // some other input sections, as in:
2856 //    .rodata { *(.rodata) *(.rodata.cst*) }
2857 // For that matter, we don't handle this correctly:
2858 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2859 // With luck this will never matter.
2860
2861 uint64_t
2862 Output_section::get_input_sections(
2863     uint64_t address,
2864     const std::string& fill,
2865     std::list<Simple_input_section>* input_sections)
2866 {
2867   if (this->checkpoint_ != NULL
2868       && !this->checkpoint_->input_sections_saved())
2869     this->checkpoint_->save_input_sections();
2870
2871   // Invalidate the relaxed input section map.
2872   this->is_relaxed_input_section_map_valid_ = false;
2873
2874   uint64_t orig_address = address;
2875
2876   address = align_address(address, this->addralign());
2877
2878   Input_section_list remaining;
2879   for (Input_section_list::iterator p = this->input_sections_.begin();
2880        p != this->input_sections_.end();
2881        ++p)
2882     {
2883       if (p->is_input_section())
2884         input_sections->push_back(Simple_input_section(p->relobj(),
2885                                                        p->shndx()));
2886       else if (p->is_relaxed_input_section())
2887         input_sections->push_back(
2888             Simple_input_section(p->relaxed_input_section()));
2889       else
2890         {
2891           uint64_t aligned_address = align_address(address, p->addralign());
2892           if (aligned_address != address && !fill.empty())
2893             {
2894               section_size_type length =
2895                 convert_to_section_size_type(aligned_address - address);
2896               std::string this_fill;
2897               this_fill.reserve(length);
2898               while (this_fill.length() + fill.length() <= length)
2899                 this_fill += fill;
2900               if (this_fill.length() < length)
2901                 this_fill.append(fill, 0, length - this_fill.length());
2902
2903               Output_section_data* posd = new Output_data_const(this_fill, 0);
2904               remaining.push_back(Input_section(posd));
2905             }
2906           address = aligned_address;
2907
2908           remaining.push_back(*p);
2909
2910           p->finalize_data_size();
2911           address += p->data_size();
2912         }
2913     }
2914
2915   this->input_sections_.swap(remaining);
2916   this->first_input_offset_ = 0;
2917
2918   uint64_t data_size = address - orig_address;
2919   this->set_current_data_size_for_child(data_size);
2920   return data_size;
2921 }
2922
2923 // Add an input section from a script.
2924
2925 void
2926 Output_section::add_input_section_for_script(const Simple_input_section& sis,
2927                                              off_t data_size,
2928                                              uint64_t addralign)
2929 {
2930   if (addralign > this->addralign_)
2931     this->addralign_ = addralign;
2932
2933   off_t offset_in_section = this->current_data_size_for_child();
2934   off_t aligned_offset_in_section = align_address(offset_in_section,
2935                                                   addralign);
2936
2937   this->set_current_data_size_for_child(aligned_offset_in_section
2938                                         + data_size);
2939
2940   Input_section is =
2941     (sis.is_relaxed_input_section()
2942      ? Input_section(sis.relaxed_input_section())
2943      : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
2944   this->input_sections_.push_back(is);
2945 }
2946
2947 //
2948
2949 void
2950 Output_section::save_states()
2951 {
2952   gold_assert(this->checkpoint_ == NULL);
2953   Checkpoint_output_section* checkpoint =
2954     new Checkpoint_output_section(this->addralign_, this->flags_,
2955                                   this->input_sections_,
2956                                   this->first_input_offset_,
2957                                   this->attached_input_sections_are_sorted_);
2958   this->checkpoint_ = checkpoint;
2959   gold_assert(this->fills_.empty());
2960 }
2961
2962 void
2963 Output_section::restore_states()
2964 {
2965   gold_assert(this->checkpoint_ != NULL);
2966   Checkpoint_output_section* checkpoint = this->checkpoint_;
2967
2968   this->addralign_ = checkpoint->addralign();
2969   this->flags_ = checkpoint->flags();
2970   this->first_input_offset_ = checkpoint->first_input_offset();
2971
2972   if (!checkpoint->input_sections_saved())
2973     {
2974       // If we have not copied the input sections, just resize it.
2975       size_t old_size = checkpoint->input_sections_size();
2976       gold_assert(this->input_sections_.size() >= old_size);
2977       this->input_sections_.resize(old_size);
2978     }
2979   else
2980     {
2981       // We need to copy the whole list.  This is not efficient for
2982       // extremely large output with hundreads of thousands of input
2983       // objects.  We may need to re-think how we should pass sections
2984       // to scripts.
2985       this->input_sections_ = *checkpoint->input_sections();
2986     }
2987
2988   this->attached_input_sections_are_sorted_ =
2989     checkpoint->attached_input_sections_are_sorted();
2990
2991   // Simply invalidate the relaxed input section map since we do not keep
2992   // track of it.
2993   this->is_relaxed_input_section_map_valid_ = false;
2994 }
2995
2996 // Print to the map file.
2997
2998 void
2999 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3000 {
3001   mapfile->print_output_section(this);
3002
3003   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3004        p != this->input_sections_.end();
3005        ++p)
3006     p->print_to_mapfile(mapfile);
3007 }
3008
3009 // Print stats for merge sections to stderr.
3010
3011 void
3012 Output_section::print_merge_stats()
3013 {
3014   Input_section_list::iterator p;
3015   for (p = this->input_sections_.begin();
3016        p != this->input_sections_.end();
3017        ++p)
3018     p->print_merge_stats(this->name_);
3019 }
3020
3021 // Output segment methods.
3022
3023 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3024   : output_data_(),
3025     output_bss_(),
3026     vaddr_(0),
3027     paddr_(0),
3028     memsz_(0),
3029     max_align_(0),
3030     min_p_align_(0),
3031     offset_(0),
3032     filesz_(0),
3033     type_(type),
3034     flags_(flags),
3035     is_max_align_known_(false),
3036     are_addresses_set_(false),
3037     is_large_data_segment_(false)
3038 {
3039 }
3040
3041 // Add an Output_section to an Output_segment.
3042
3043 void
3044 Output_segment::add_output_section(Output_section* os,
3045                                    elfcpp::Elf_Word seg_flags)
3046 {
3047   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3048   gold_assert(!this->is_max_align_known_);
3049   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3050
3051   // Update the segment flags.
3052   this->flags_ |= seg_flags;
3053
3054   Output_segment::Output_data_list* pdl;
3055   if (os->type() == elfcpp::SHT_NOBITS)
3056     pdl = &this->output_bss_;
3057   else
3058     pdl = &this->output_data_;
3059
3060   // So that PT_NOTE segments will work correctly, we need to ensure
3061   // that all SHT_NOTE sections are adjacent.  This will normally
3062   // happen automatically, because all the SHT_NOTE input sections
3063   // will wind up in the same output section.  However, it is possible
3064   // for multiple SHT_NOTE input sections to have different section
3065   // flags, and thus be in different output sections, but for the
3066   // different section flags to map into the same segment flags and
3067   // thus the same output segment.
3068
3069   // Note that while there may be many input sections in an output
3070   // section, there are normally only a few output sections in an
3071   // output segment.  This loop is expected to be fast.
3072
3073   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3074     {
3075       Output_segment::Output_data_list::iterator p = pdl->end();
3076       do
3077         {
3078           --p;
3079           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3080             {
3081               ++p;
3082               pdl->insert(p, os);
3083               return;
3084             }
3085         }
3086       while (p != pdl->begin());
3087     }
3088
3089   // Similarly, so that PT_TLS segments will work, we need to group
3090   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
3091   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3092   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
3093   // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
3094   // and the PT_TLS segment -- we do this grouping only for the
3095   // PT_LOAD segment.
3096   if (this->type_ != elfcpp::PT_TLS
3097       && (os->flags() & elfcpp::SHF_TLS) != 0)
3098     {
3099       pdl = &this->output_data_;
3100       if (!pdl->empty())
3101         {
3102           bool nobits = os->type() == elfcpp::SHT_NOBITS;
3103           bool sawtls = false;
3104           Output_segment::Output_data_list::iterator p = pdl->end();
3105           gold_assert(p != pdl->begin());
3106           do
3107             {
3108               --p;
3109               bool insert;
3110               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3111                 {
3112                   sawtls = true;
3113                   // Put a NOBITS section after the first TLS section.
3114                   // Put a PROGBITS section after the first
3115                   // TLS/PROGBITS section.
3116                   insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3117                 }
3118               else
3119                 {
3120                   // If we've gone past the TLS sections, but we've
3121                   // seen a TLS section, then we need to insert this
3122                   // section now.
3123                   insert = sawtls;
3124                 }
3125
3126               if (insert)
3127                 {
3128                   ++p;
3129                   pdl->insert(p, os);
3130                   return;
3131                 }
3132             }
3133           while (p != pdl->begin());
3134         }
3135
3136       // There are no TLS sections yet; put this one at the requested
3137       // location in the section list.
3138     }
3139
3140   // For the PT_GNU_RELRO segment, we need to group relro sections,
3141   // and we need to put them before any non-relro sections.  Also,
3142   // relro local sections go before relro non-local sections.
3143   if (parameters->options().relro() && os->is_relro())
3144     {
3145       gold_assert(pdl == &this->output_data_);
3146       Output_segment::Output_data_list::iterator p;
3147       for (p = pdl->begin(); p != pdl->end(); ++p)
3148         {
3149           if (!(*p)->is_section())
3150             break;
3151
3152           Output_section* pos = (*p)->output_section();
3153           if (!pos->is_relro()
3154               || (os->is_relro_local() && !pos->is_relro_local()))
3155             break;
3156         }
3157
3158       pdl->insert(p, os);
3159       return;
3160     }
3161
3162   // Small data sections go at the end of the list of data sections.
3163   // If OS is not small, and there are small sections, we have to
3164   // insert it before the first small section.
3165   if (os->type() != elfcpp::SHT_NOBITS
3166       && !os->is_small_section()
3167       && !pdl->empty()
3168       && pdl->back()->is_section()
3169       && pdl->back()->output_section()->is_small_section())
3170     {
3171       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3172            p != pdl->end();
3173            ++p)
3174         {
3175           if ((*p)->is_section()
3176               && (*p)->output_section()->is_small_section())
3177             {
3178               pdl->insert(p, os);
3179               return;
3180             }
3181         }
3182       gold_unreachable();
3183     }
3184
3185   // A small BSS section goes at the start of the BSS sections, after
3186   // other small BSS sections.
3187   if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3188     {
3189       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3190            p != pdl->end();
3191            ++p)
3192         {
3193           if (!(*p)->is_section()
3194               || !(*p)->output_section()->is_small_section())
3195             {
3196               pdl->insert(p, os);
3197               return;
3198             }
3199         }
3200     }
3201
3202   // A large BSS section goes at the end of the BSS sections, which
3203   // means that one that is not large must come before the first large
3204   // one.
3205   if (os->type() == elfcpp::SHT_NOBITS
3206       && !os->is_large_section()
3207       && !pdl->empty()
3208       && pdl->back()->is_section()
3209       && pdl->back()->output_section()->is_large_section())
3210     {
3211       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3212            p != pdl->end();
3213            ++p)
3214         {
3215           if ((*p)->is_section()
3216               && (*p)->output_section()->is_large_section())
3217             {
3218               pdl->insert(p, os);
3219               return;
3220             }
3221         }
3222       gold_unreachable();
3223     }
3224
3225   pdl->push_back(os);
3226 }
3227
3228 // Remove an Output_section from this segment.  It is an error if it
3229 // is not present.
3230
3231 void
3232 Output_segment::remove_output_section(Output_section* os)
3233 {
3234   // We only need this for SHT_PROGBITS.
3235   gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3236   for (Output_data_list::iterator p = this->output_data_.begin();
3237        p != this->output_data_.end();
3238        ++p)
3239    {
3240      if (*p == os)
3241        {
3242          this->output_data_.erase(p);
3243          return;
3244        }
3245    }
3246   gold_unreachable();
3247 }
3248
3249 // Add an Output_data (which is not an Output_section) to the start of
3250 // a segment.
3251
3252 void
3253 Output_segment::add_initial_output_data(Output_data* od)
3254 {
3255   gold_assert(!this->is_max_align_known_);
3256   this->output_data_.push_front(od);
3257 }
3258
3259 // Return whether the first data section is a relro section.
3260
3261 bool
3262 Output_segment::is_first_section_relro() const
3263 {
3264   return (!this->output_data_.empty()
3265           && this->output_data_.front()->is_section()
3266           && this->output_data_.front()->output_section()->is_relro());
3267 }
3268
3269 // Return the maximum alignment of the Output_data in Output_segment.
3270
3271 uint64_t
3272 Output_segment::maximum_alignment()
3273 {
3274   if (!this->is_max_align_known_)
3275     {
3276       uint64_t addralign;
3277
3278       addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3279       if (addralign > this->max_align_)
3280         this->max_align_ = addralign;
3281
3282       addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3283       if (addralign > this->max_align_)
3284         this->max_align_ = addralign;
3285
3286       // If -z relro is in effect, and the first section in this
3287       // segment is a relro section, then the segment must be aligned
3288       // to at least the common page size.  This ensures that the
3289       // PT_GNU_RELRO segment will start at a page boundary.
3290       if (this->type_ == elfcpp::PT_LOAD
3291           && parameters->options().relro()
3292           && this->is_first_section_relro())
3293         {
3294           addralign = parameters->target().common_pagesize();
3295           if (addralign > this->max_align_)
3296             this->max_align_ = addralign;
3297         }
3298
3299       this->is_max_align_known_ = true;
3300     }
3301
3302   return this->max_align_;
3303 }
3304
3305 // Return the maximum alignment of a list of Output_data.
3306
3307 uint64_t
3308 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3309 {
3310   uint64_t ret = 0;
3311   for (Output_data_list::const_iterator p = pdl->begin();
3312        p != pdl->end();
3313        ++p)
3314     {
3315       uint64_t addralign = (*p)->addralign();
3316       if (addralign > ret)
3317         ret = addralign;
3318     }
3319   return ret;
3320 }
3321
3322 // Return the number of dynamic relocs applied to this segment.
3323
3324 unsigned int
3325 Output_segment::dynamic_reloc_count() const
3326 {
3327   return (this->dynamic_reloc_count_list(&this->output_data_)
3328           + this->dynamic_reloc_count_list(&this->output_bss_));
3329 }
3330
3331 // Return the number of dynamic relocs applied to an Output_data_list.
3332
3333 unsigned int
3334 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3335 {
3336   unsigned int count = 0;
3337   for (Output_data_list::const_iterator p = pdl->begin();
3338        p != pdl->end();
3339        ++p)
3340     count += (*p)->dynamic_reloc_count();
3341   return count;
3342 }
3343
3344 // Set the section addresses for an Output_segment.  If RESET is true,
3345 // reset the addresses first.  ADDR is the address and *POFF is the
3346 // file offset.  Set the section indexes starting with *PSHNDX.
3347 // Return the address of the immediately following segment.  Update
3348 // *POFF and *PSHNDX.
3349
3350 uint64_t
3351 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3352                                       uint64_t addr, off_t* poff,
3353                                       unsigned int* pshndx)
3354 {
3355   gold_assert(this->type_ == elfcpp::PT_LOAD);
3356
3357   if (!reset && this->are_addresses_set_)
3358     {
3359       gold_assert(this->paddr_ == addr);
3360       addr = this->vaddr_;
3361     }
3362   else
3363     {
3364       this->vaddr_ = addr;
3365       this->paddr_ = addr;
3366       this->are_addresses_set_ = true;
3367     }
3368
3369   bool in_tls = false;
3370
3371   bool in_relro = (parameters->options().relro()
3372                    && this->is_first_section_relro());
3373
3374   off_t orig_off = *poff;
3375   this->offset_ = orig_off;
3376
3377   addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3378                                           addr, poff, pshndx, &in_tls,
3379                                           &in_relro);
3380   this->filesz_ = *poff - orig_off;
3381
3382   off_t off = *poff;
3383
3384   uint64_t ret = this->set_section_list_addresses(layout, reset,
3385                                                   &this->output_bss_,
3386                                                   addr, poff, pshndx,
3387                                                   &in_tls, &in_relro);
3388
3389   // If the last section was a TLS section, align upward to the
3390   // alignment of the TLS segment, so that the overall size of the TLS
3391   // segment is aligned.
3392   if (in_tls)
3393     {
3394       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3395       *poff = align_address(*poff, segment_align);
3396     }
3397
3398   // If all the sections were relro sections, align upward to the
3399   // common page size.
3400   if (in_relro)
3401     {
3402       uint64_t page_align = parameters->target().common_pagesize();
3403       *poff = align_address(*poff, page_align);
3404     }
3405
3406   this->memsz_ = *poff - orig_off;
3407
3408   // Ignore the file offset adjustments made by the BSS Output_data
3409   // objects.
3410   *poff = off;
3411
3412   return ret;
3413 }
3414
3415 // Set the addresses and file offsets in a list of Output_data
3416 // structures.
3417
3418 uint64_t
3419 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3420                                            Output_data_list* pdl,
3421                                            uint64_t addr, off_t* poff,
3422                                            unsigned int* pshndx,
3423                                            bool* in_tls, bool* in_relro)
3424 {
3425   off_t startoff = *poff;
3426
3427   off_t off = startoff;
3428   for (Output_data_list::iterator p = pdl->begin();
3429        p != pdl->end();
3430        ++p)
3431     {
3432       if (reset)
3433         (*p)->reset_address_and_file_offset();
3434
3435       // When using a linker script the section will most likely
3436       // already have an address.
3437       if (!(*p)->is_address_valid())
3438         {
3439           uint64_t align = (*p)->addralign();
3440
3441           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3442             {
3443               // Give the first TLS section the alignment of the
3444               // entire TLS segment.  Otherwise the TLS segment as a
3445               // whole may be misaligned.
3446               if (!*in_tls)
3447                 {
3448                   Output_segment* tls_segment = layout->tls_segment();
3449                   gold_assert(tls_segment != NULL);
3450                   uint64_t segment_align = tls_segment->maximum_alignment();
3451                   gold_assert(segment_align >= align);
3452                   align = segment_align;
3453
3454                   *in_tls = true;
3455                 }
3456             }
3457           else
3458             {
3459               // If this is the first section after the TLS segment,
3460               // align it to at least the alignment of the TLS
3461               // segment, so that the size of the overall TLS segment
3462               // is aligned.
3463               if (*in_tls)
3464                 {
3465                   uint64_t segment_align =
3466                       layout->tls_segment()->maximum_alignment();
3467                   if (segment_align > align)
3468                     align = segment_align;
3469
3470                   *in_tls = false;
3471                 }
3472             }
3473
3474           // If this is a non-relro section after a relro section,
3475           // align it to a common page boundary so that the dynamic
3476           // linker has a page to mark as read-only.
3477           if (*in_relro
3478               && (!(*p)->is_section()
3479                   || !(*p)->output_section()->is_relro()))
3480             {
3481               uint64_t page_align = parameters->target().common_pagesize();
3482               if (page_align > align)
3483                 align = page_align;
3484               *in_relro = false;
3485             }
3486
3487           off = align_address(off, align);
3488           (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3489         }
3490       else
3491         {
3492           // The script may have inserted a skip forward, but it
3493           // better not have moved backward.
3494           if ((*p)->address() >= addr + (off - startoff))
3495             off += (*p)->address() - (addr + (off - startoff));
3496           else
3497             {
3498               if (!layout->script_options()->saw_sections_clause())
3499                 gold_unreachable();
3500               else
3501                 {
3502                   Output_section* os = (*p)->output_section();
3503
3504                   // Cast to unsigned long long to avoid format warnings.
3505                   unsigned long long previous_dot =
3506                     static_cast<unsigned long long>(addr + (off - startoff));
3507                   unsigned long long dot =
3508                     static_cast<unsigned long long>((*p)->address());
3509
3510                   if (os == NULL)
3511                     gold_error(_("dot moves backward in linker script "
3512                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
3513                   else
3514                     gold_error(_("address of section '%s' moves backward "
3515                                  "from 0x%llx to 0x%llx"),
3516                                os->name(), previous_dot, dot);
3517                 }
3518             }
3519           (*p)->set_file_offset(off);
3520           (*p)->finalize_data_size();
3521         }
3522
3523       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3524       // section.  Such a section does not affect the size of a
3525       // PT_LOAD segment.
3526       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3527           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3528         off += (*p)->data_size();
3529
3530       if ((*p)->is_section())
3531         {
3532           (*p)->set_out_shndx(*pshndx);
3533           ++*pshndx;
3534         }
3535     }
3536
3537   *poff = off;
3538   return addr + (off - startoff);
3539 }
3540
3541 // For a non-PT_LOAD segment, set the offset from the sections, if
3542 // any.
3543
3544 void
3545 Output_segment::set_offset()
3546 {
3547   gold_assert(this->type_ != elfcpp::PT_LOAD);
3548
3549   gold_assert(!this->are_addresses_set_);
3550
3551   if (this->output_data_.empty() && this->output_bss_.empty())
3552     {
3553       this->vaddr_ = 0;
3554       this->paddr_ = 0;
3555       this->are_addresses_set_ = true;
3556       this->memsz_ = 0;
3557       this->min_p_align_ = 0;
3558       this->offset_ = 0;
3559       this->filesz_ = 0;
3560       return;
3561     }
3562
3563   const Output_data* first;
3564   if (this->output_data_.empty())
3565     first = this->output_bss_.front();
3566   else
3567     first = this->output_data_.front();
3568   this->vaddr_ = first->address();
3569   this->paddr_ = (first->has_load_address()
3570                   ? first->load_address()
3571                   : this->vaddr_);
3572   this->are_addresses_set_ = true;
3573   this->offset_ = first->offset();
3574
3575   if (this->output_data_.empty())
3576     this->filesz_ = 0;
3577   else
3578     {
3579       const Output_data* last_data = this->output_data_.back();
3580       this->filesz_ = (last_data->address()
3581                        + last_data->data_size()
3582                        - this->vaddr_);
3583     }
3584
3585   const Output_data* last;
3586   if (this->output_bss_.empty())
3587     last = this->output_data_.back();
3588   else
3589     last = this->output_bss_.back();
3590   this->memsz_ = (last->address()
3591                   + last->data_size()
3592                   - this->vaddr_);
3593
3594   // If this is a TLS segment, align the memory size.  The code in
3595   // set_section_list ensures that the section after the TLS segment
3596   // is aligned to give us room.
3597   if (this->type_ == elfcpp::PT_TLS)
3598     {
3599       uint64_t segment_align = this->maximum_alignment();
3600       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3601       this->memsz_ = align_address(this->memsz_, segment_align);
3602     }
3603
3604   // If this is a RELRO segment, align the memory size.  The code in
3605   // set_section_list ensures that the section after the RELRO segment
3606   // is aligned to give us room.
3607   if (this->type_ == elfcpp::PT_GNU_RELRO)
3608     {
3609       uint64_t page_align = parameters->target().common_pagesize();
3610       gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3611       this->memsz_ = align_address(this->memsz_, page_align);
3612     }
3613 }
3614
3615 // Set the TLS offsets of the sections in the PT_TLS segment.
3616
3617 void
3618 Output_segment::set_tls_offsets()
3619 {
3620   gold_assert(this->type_ == elfcpp::PT_TLS);
3621
3622   for (Output_data_list::iterator p = this->output_data_.begin();
3623        p != this->output_data_.end();
3624        ++p)
3625     (*p)->set_tls_offset(this->vaddr_);
3626
3627   for (Output_data_list::iterator p = this->output_bss_.begin();
3628        p != this->output_bss_.end();
3629        ++p)
3630     (*p)->set_tls_offset(this->vaddr_);
3631 }
3632
3633 // Return the address of the first section.
3634
3635 uint64_t
3636 Output_segment::first_section_load_address() const
3637 {
3638   for (Output_data_list::const_iterator p = this->output_data_.begin();
3639        p != this->output_data_.end();
3640        ++p)
3641     if ((*p)->is_section())
3642       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3643
3644   for (Output_data_list::const_iterator p = this->output_bss_.begin();
3645        p != this->output_bss_.end();
3646        ++p)
3647     if ((*p)->is_section())
3648       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3649
3650   gold_unreachable();
3651 }
3652
3653 // Return the number of Output_sections in an Output_segment.
3654
3655 unsigned int
3656 Output_segment::output_section_count() const
3657 {
3658   return (this->output_section_count_list(&this->output_data_)
3659           + this->output_section_count_list(&this->output_bss_));
3660 }
3661
3662 // Return the number of Output_sections in an Output_data_list.
3663
3664 unsigned int
3665 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3666 {
3667   unsigned int count = 0;
3668   for (Output_data_list::const_iterator p = pdl->begin();
3669        p != pdl->end();
3670        ++p)
3671     {
3672       if ((*p)->is_section())
3673         ++count;
3674     }
3675   return count;
3676 }
3677
3678 // Return the section attached to the list segment with the lowest
3679 // load address.  This is used when handling a PHDRS clause in a
3680 // linker script.
3681
3682 Output_section*
3683 Output_segment::section_with_lowest_load_address() const
3684 {
3685   Output_section* found = NULL;
3686   uint64_t found_lma = 0;
3687   this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3688
3689   Output_section* found_data = found;
3690   this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3691   if (found != found_data && found_data != NULL)
3692     {
3693       gold_error(_("nobits section %s may not precede progbits section %s "
3694                    "in same segment"),
3695                  found->name(), found_data->name());
3696       return NULL;
3697     }
3698
3699   return found;
3700 }
3701
3702 // Look through a list for a section with a lower load address.
3703
3704 void
3705 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3706                                             Output_section** found,
3707                                             uint64_t* found_lma) const
3708 {
3709   for (Output_data_list::const_iterator p = pdl->begin();
3710        p != pdl->end();
3711        ++p)
3712     {
3713       if (!(*p)->is_section())
3714         continue;
3715       Output_section* os = static_cast<Output_section*>(*p);
3716       uint64_t lma = (os->has_load_address()
3717                       ? os->load_address()
3718                       : os->address());
3719       if (*found == NULL || lma < *found_lma)
3720         {
3721           *found = os;
3722           *found_lma = lma;
3723         }
3724     }
3725 }
3726
3727 // Write the segment data into *OPHDR.
3728
3729 template<int size, bool big_endian>
3730 void
3731 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3732 {
3733   ophdr->put_p_type(this->type_);
3734   ophdr->put_p_offset(this->offset_);
3735   ophdr->put_p_vaddr(this->vaddr_);
3736   ophdr->put_p_paddr(this->paddr_);
3737   ophdr->put_p_filesz(this->filesz_);
3738   ophdr->put_p_memsz(this->memsz_);
3739   ophdr->put_p_flags(this->flags_);
3740   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3741 }
3742
3743 // Write the section headers into V.
3744
3745 template<int size, bool big_endian>
3746 unsigned char*
3747 Output_segment::write_section_headers(const Layout* layout,
3748                                       const Stringpool* secnamepool,
3749                                       unsigned char* v,
3750                                       unsigned int *pshndx) const
3751 {
3752   // Every section that is attached to a segment must be attached to a
3753   // PT_LOAD segment, so we only write out section headers for PT_LOAD
3754   // segments.
3755   if (this->type_ != elfcpp::PT_LOAD)
3756     return v;
3757
3758   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3759                                                          &this->output_data_,
3760                                                          v, pshndx);
3761   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3762                                                          &this->output_bss_,
3763                                                          v, pshndx);
3764   return v;
3765 }
3766
3767 template<int size, bool big_endian>
3768 unsigned char*
3769 Output_segment::write_section_headers_list(const Layout* layout,
3770                                            const Stringpool* secnamepool,
3771                                            const Output_data_list* pdl,
3772                                            unsigned char* v,
3773                                            unsigned int* pshndx) const
3774 {
3775   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3776   for (Output_data_list::const_iterator p = pdl->begin();
3777        p != pdl->end();
3778        ++p)
3779     {
3780       if ((*p)->is_section())
3781         {
3782           const Output_section* ps = static_cast<const Output_section*>(*p);
3783           gold_assert(*pshndx == ps->out_shndx());
3784           elfcpp::Shdr_write<size, big_endian> oshdr(v);
3785           ps->write_header(layout, secnamepool, &oshdr);
3786           v += shdr_size;
3787           ++*pshndx;
3788         }
3789     }
3790   return v;
3791 }
3792
3793 // Print the output sections to the map file.
3794
3795 void
3796 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3797 {
3798   if (this->type() != elfcpp::PT_LOAD)
3799     return;
3800   this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3801   this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3802 }
3803
3804 // Print an output section list to the map file.
3805
3806 void
3807 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3808                                               const Output_data_list* pdl) const
3809 {
3810   for (Output_data_list::const_iterator p = pdl->begin();
3811        p != pdl->end();
3812        ++p)
3813     (*p)->print_to_mapfile(mapfile);
3814 }
3815
3816 // Output_file methods.
3817
3818 Output_file::Output_file(const char* name)
3819   : name_(name),
3820     o_(-1),
3821     file_size_(0),
3822     base_(NULL),
3823     map_is_anonymous_(false),
3824     is_temporary_(false)
3825 {
3826 }
3827
3828 // Try to open an existing file.  Returns false if the file doesn't
3829 // exist, has a size of 0 or can't be mmapped.
3830
3831 bool
3832 Output_file::open_for_modification()
3833 {
3834   // The name "-" means "stdout".
3835   if (strcmp(this->name_, "-") == 0)
3836     return false;
3837
3838   // Don't bother opening files with a size of zero.
3839   struct stat s;
3840   if (::stat(this->name_, &s) != 0 || s.st_size == 0)
3841     return false;
3842
3843   int o = open_descriptor(-1, this->name_, O_RDWR, 0);
3844   if (o < 0)
3845     gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3846   this->o_ = o;
3847   this->file_size_ = s.st_size;
3848
3849   // If the file can't be mmapped, copying the content to an anonymous
3850   // map will probably negate the performance benefits of incremental
3851   // linking.  This could be helped by using views and loading only
3852   // the necessary parts, but this is not supported as of now.
3853   if (!this->map_no_anonymous())
3854     {
3855       release_descriptor(o, true);
3856       this->o_ = -1;
3857       this->file_size_ = 0;
3858       return false;
3859     }
3860
3861   return true;
3862 }
3863
3864 // Open the output file.
3865
3866 void
3867 Output_file::open(off_t file_size)
3868 {
3869   this->file_size_ = file_size;
3870
3871   // Unlink the file first; otherwise the open() may fail if the file
3872   // is busy (e.g. it's an executable that's currently being executed).
3873   //
3874   // However, the linker may be part of a system where a zero-length
3875   // file is created for it to write to, with tight permissions (gcc
3876   // 2.95 did something like this).  Unlinking the file would work
3877   // around those permission controls, so we only unlink if the file
3878   // has a non-zero size.  We also unlink only regular files to avoid
3879   // trouble with directories/etc.
3880   //
3881   // If we fail, continue; this command is merely a best-effort attempt
3882   // to improve the odds for open().
3883
3884   // We let the name "-" mean "stdout"
3885   if (!this->is_temporary_)
3886     {
3887       if (strcmp(this->name_, "-") == 0)
3888         this->o_ = STDOUT_FILENO;
3889       else
3890         {
3891           struct stat s;
3892           if (::stat(this->name_, &s) == 0
3893               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
3894             {
3895               if (s.st_size != 0)
3896                 ::unlink(this->name_);
3897               else if (!parameters->options().relocatable())
3898                 {
3899                   // If we don't unlink the existing file, add execute
3900                   // permission where read permissions already exist
3901                   // and where the umask permits.
3902                   int mask = ::umask(0);
3903                   ::umask(mask);
3904                   s.st_mode |= (s.st_mode & 0444) >> 2;
3905                   ::chmod(this->name_, s.st_mode & ~mask);
3906                 }
3907             }
3908
3909           int mode = parameters->options().relocatable() ? 0666 : 0777;
3910           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3911                                   mode);
3912           if (o < 0)
3913             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3914           this->o_ = o;
3915         }
3916     }
3917
3918   this->map();
3919 }
3920
3921 // Resize the output file.
3922
3923 void
3924 Output_file::resize(off_t file_size)
3925 {
3926   // If the mmap is mapping an anonymous memory buffer, this is easy:
3927   // just mremap to the new size.  If it's mapping to a file, we want
3928   // to unmap to flush to the file, then remap after growing the file.
3929   if (this->map_is_anonymous_)
3930     {
3931       void* base = ::mremap(this->base_, this->file_size_, file_size,
3932                             MREMAP_MAYMOVE);
3933       if (base == MAP_FAILED)
3934         gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3935       this->base_ = static_cast<unsigned char*>(base);
3936       this->file_size_ = file_size;
3937     }
3938   else
3939     {
3940       this->unmap();
3941       this->file_size_ = file_size;
3942       if (!this->map_no_anonymous())
3943         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
3944     }
3945 }
3946
3947 // Map an anonymous block of memory which will later be written to the
3948 // file.  Return whether the map succeeded.
3949
3950 bool
3951 Output_file::map_anonymous()
3952 {
3953   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3954                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3955   if (base != MAP_FAILED)
3956     {
3957       this->map_is_anonymous_ = true;
3958       this->base_ = static_cast<unsigned char*>(base);
3959       return true;
3960     }
3961   return false;
3962 }
3963
3964 // Map the file into memory.  Return whether the mapping succeeded.
3965
3966 bool
3967 Output_file::map_no_anonymous()
3968 {
3969   const int o = this->o_;
3970
3971   // If the output file is not a regular file, don't try to mmap it;
3972   // instead, we'll mmap a block of memory (an anonymous buffer), and
3973   // then later write the buffer to the file.
3974   void* base;
3975   struct stat statbuf;
3976   if (o == STDOUT_FILENO || o == STDERR_FILENO
3977       || ::fstat(o, &statbuf) != 0
3978       || !S_ISREG(statbuf.st_mode)
3979       || this->is_temporary_)
3980     return false;
3981
3982   // Ensure that we have disk space available for the file.  If we
3983   // don't do this, it is possible that we will call munmap, close,
3984   // and exit with dirty buffers still in the cache with no assigned
3985   // disk blocks.  If the disk is out of space at that point, the
3986   // output file will wind up incomplete, but we will have already
3987   // exited.  The alternative to fallocate would be to use fdatasync,
3988   // but that would be a more significant performance hit.
3989   if (::posix_fallocate(o, 0, this->file_size_) < 0)
3990     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
3991
3992   // Map the file into memory.
3993   base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3994                 MAP_SHARED, o, 0);
3995
3996   // The mmap call might fail because of file system issues: the file
3997   // system might not support mmap at all, or it might not support
3998   // mmap with PROT_WRITE.
3999   if (base == MAP_FAILED)
4000     return false;
4001
4002   this->map_is_anonymous_ = false;
4003   this->base_ = static_cast<unsigned char*>(base);
4004   return true;
4005 }
4006
4007 // Map the file into memory.
4008
4009 void
4010 Output_file::map()
4011 {
4012   if (this->map_no_anonymous())
4013     return;
4014
4015   // The mmap call might fail because of file system issues: the file
4016   // system might not support mmap at all, or it might not support
4017   // mmap with PROT_WRITE.  I'm not sure which errno values we will
4018   // see in all cases, so if the mmap fails for any reason and we
4019   // don't care about file contents, try for an anonymous map.
4020   if (this->map_anonymous())
4021     return;
4022
4023   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4024              this->name_, static_cast<unsigned long>(this->file_size_),
4025              strerror(errno));
4026 }
4027
4028 // Unmap the file from memory.
4029
4030 void
4031 Output_file::unmap()
4032 {
4033   if (::munmap(this->base_, this->file_size_) < 0)
4034     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4035   this->base_ = NULL;
4036 }
4037
4038 // Close the output file.
4039
4040 void
4041 Output_file::close()
4042 {
4043   // If the map isn't file-backed, we need to write it now.
4044   if (this->map_is_anonymous_ && !this->is_temporary_)
4045     {
4046       size_t bytes_to_write = this->file_size_;
4047       size_t offset = 0;
4048       while (bytes_to_write > 0)
4049         {
4050           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4051                                           bytes_to_write);
4052           if (bytes_written == 0)
4053             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4054           else if (bytes_written < 0)
4055             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4056           else
4057             {
4058               bytes_to_write -= bytes_written;
4059               offset += bytes_written;
4060             }
4061         }
4062     }
4063   this->unmap();
4064
4065   // We don't close stdout or stderr
4066   if (this->o_ != STDOUT_FILENO
4067       && this->o_ != STDERR_FILENO
4068       && !this->is_temporary_)
4069     if (::close(this->o_) < 0)
4070       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4071   this->o_ = -1;
4072 }
4073
4074 // Instantiate the templates we need.  We could use the configure
4075 // script to restrict this to only the ones for implemented targets.
4076
4077 #ifdef HAVE_TARGET_32_LITTLE
4078 template
4079 off_t
4080 Output_section::add_input_section<32, false>(
4081     Sized_relobj<32, false>* object,
4082     unsigned int shndx,
4083     const char* secname,
4084     const elfcpp::Shdr<32, false>& shdr,
4085     unsigned int reloc_shndx,
4086     bool have_sections_script);
4087 #endif
4088
4089 #ifdef HAVE_TARGET_32_BIG
4090 template
4091 off_t
4092 Output_section::add_input_section<32, true>(
4093     Sized_relobj<32, true>* object,
4094     unsigned int shndx,
4095     const char* secname,
4096     const elfcpp::Shdr<32, true>& shdr,
4097     unsigned int reloc_shndx,
4098     bool have_sections_script);
4099 #endif
4100
4101 #ifdef HAVE_TARGET_64_LITTLE
4102 template
4103 off_t
4104 Output_section::add_input_section<64, false>(
4105     Sized_relobj<64, false>* object,
4106     unsigned int shndx,
4107     const char* secname,
4108     const elfcpp::Shdr<64, false>& shdr,
4109     unsigned int reloc_shndx,
4110     bool have_sections_script);
4111 #endif
4112
4113 #ifdef HAVE_TARGET_64_BIG
4114 template
4115 off_t
4116 Output_section::add_input_section<64, true>(
4117     Sized_relobj<64, true>* object,
4118     unsigned int shndx,
4119     const char* secname,
4120     const elfcpp::Shdr<64, true>& shdr,
4121     unsigned int reloc_shndx,
4122     bool have_sections_script);
4123 #endif
4124
4125 #ifdef HAVE_TARGET_32_LITTLE
4126 template
4127 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4128 #endif
4129
4130 #ifdef HAVE_TARGET_32_BIG
4131 template
4132 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4133 #endif
4134
4135 #ifdef HAVE_TARGET_64_LITTLE
4136 template
4137 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4138 #endif
4139
4140 #ifdef HAVE_TARGET_64_BIG
4141 template
4142 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4143 #endif
4144
4145 #ifdef HAVE_TARGET_32_LITTLE
4146 template
4147 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4148 #endif
4149
4150 #ifdef HAVE_TARGET_32_BIG
4151 template
4152 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4153 #endif
4154
4155 #ifdef HAVE_TARGET_64_LITTLE
4156 template
4157 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4158 #endif
4159
4160 #ifdef HAVE_TARGET_64_BIG
4161 template
4162 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4163 #endif
4164
4165 #ifdef HAVE_TARGET_32_LITTLE
4166 template
4167 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4168 #endif
4169
4170 #ifdef HAVE_TARGET_32_BIG
4171 template
4172 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4173 #endif
4174
4175 #ifdef HAVE_TARGET_64_LITTLE
4176 template
4177 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4178 #endif
4179
4180 #ifdef HAVE_TARGET_64_BIG
4181 template
4182 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4183 #endif
4184
4185 #ifdef HAVE_TARGET_32_LITTLE
4186 template
4187 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4188 #endif
4189
4190 #ifdef HAVE_TARGET_32_BIG
4191 template
4192 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4193 #endif
4194
4195 #ifdef HAVE_TARGET_64_LITTLE
4196 template
4197 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4198 #endif
4199
4200 #ifdef HAVE_TARGET_64_BIG
4201 template
4202 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4203 #endif
4204
4205 #ifdef HAVE_TARGET_32_LITTLE
4206 template
4207 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4208 #endif
4209
4210 #ifdef HAVE_TARGET_32_BIG
4211 template
4212 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4213 #endif
4214
4215 #ifdef HAVE_TARGET_64_LITTLE
4216 template
4217 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4218 #endif
4219
4220 #ifdef HAVE_TARGET_64_BIG
4221 template
4222 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4223 #endif
4224
4225 #ifdef HAVE_TARGET_32_LITTLE
4226 template
4227 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4228 #endif
4229
4230 #ifdef HAVE_TARGET_32_BIG
4231 template
4232 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4233 #endif
4234
4235 #ifdef HAVE_TARGET_64_LITTLE
4236 template
4237 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4238 #endif
4239
4240 #ifdef HAVE_TARGET_64_BIG
4241 template
4242 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4243 #endif
4244
4245 #ifdef HAVE_TARGET_32_LITTLE
4246 template
4247 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4248 #endif
4249
4250 #ifdef HAVE_TARGET_32_BIG
4251 template
4252 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4253 #endif
4254
4255 #ifdef HAVE_TARGET_64_LITTLE
4256 template
4257 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4258 #endif
4259
4260 #ifdef HAVE_TARGET_64_BIG
4261 template
4262 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4263 #endif
4264
4265 #ifdef HAVE_TARGET_32_LITTLE
4266 template
4267 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4268 #endif
4269
4270 #ifdef HAVE_TARGET_32_BIG
4271 template
4272 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4273 #endif
4274
4275 #ifdef HAVE_TARGET_64_LITTLE
4276 template
4277 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4278 #endif
4279
4280 #ifdef HAVE_TARGET_64_BIG
4281 template
4282 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4283 #endif
4284
4285 #ifdef HAVE_TARGET_32_LITTLE
4286 template
4287 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4288 #endif
4289
4290 #ifdef HAVE_TARGET_32_BIG
4291 template
4292 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4293 #endif
4294
4295 #ifdef HAVE_TARGET_64_LITTLE
4296 template
4297 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4298 #endif
4299
4300 #ifdef HAVE_TARGET_64_BIG
4301 template
4302 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4303 #endif
4304
4305 #ifdef HAVE_TARGET_32_LITTLE
4306 template
4307 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4308 #endif
4309
4310 #ifdef HAVE_TARGET_32_BIG
4311 template
4312 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4313 #endif
4314
4315 #ifdef HAVE_TARGET_64_LITTLE
4316 template
4317 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4318 #endif
4319
4320 #ifdef HAVE_TARGET_64_BIG
4321 template
4322 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4323 #endif
4324
4325 #ifdef HAVE_TARGET_32_LITTLE
4326 template
4327 class Output_data_group<32, false>;
4328 #endif
4329
4330 #ifdef HAVE_TARGET_32_BIG
4331 template
4332 class Output_data_group<32, true>;
4333 #endif
4334
4335 #ifdef HAVE_TARGET_64_LITTLE
4336 template
4337 class Output_data_group<64, false>;
4338 #endif
4339
4340 #ifdef HAVE_TARGET_64_BIG
4341 template
4342 class Output_data_group<64, true>;
4343 #endif
4344
4345 #ifdef HAVE_TARGET_32_LITTLE
4346 template
4347 class Output_data_got<32, false>;
4348 #endif
4349
4350 #ifdef HAVE_TARGET_32_BIG
4351 template
4352 class Output_data_got<32, true>;
4353 #endif
4354
4355 #ifdef HAVE_TARGET_64_LITTLE
4356 template
4357 class Output_data_got<64, false>;
4358 #endif
4359
4360 #ifdef HAVE_TARGET_64_BIG
4361 template
4362 class Output_data_got<64, true>;
4363 #endif
4364
4365 } // End namespace gold.