Fix handling of RELA relative relocs against local symbols in merge
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 #include "libiberty.h"   // for unlink_if_ordinary()
33
34 #include "parameters.h"
35 #include "object.h"
36 #include "symtab.h"
37 #include "reloc.h"
38 #include "merge.h"
39 #include "output.h"
40
41 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
42 #ifndef MAP_ANONYMOUS
43 # define MAP_ANONYMOUS  MAP_ANON
44 #endif
45
46 namespace gold
47 {
48
49 // Output_data variables.
50
51 bool Output_data::allocated_sizes_are_fixed;
52
53 // Output_data methods.
54
55 Output_data::~Output_data()
56 {
57 }
58
59 // Return the default alignment for the target size.
60
61 uint64_t
62 Output_data::default_alignment()
63 {
64   return Output_data::default_alignment_for_size(
65       parameters->target().get_size());
66 }
67
68 // Return the default alignment for a size--32 or 64.
69
70 uint64_t
71 Output_data::default_alignment_for_size(int size)
72 {
73   if (size == 32)
74     return 4;
75   else if (size == 64)
76     return 8;
77   else
78     gold_unreachable();
79 }
80
81 // Output_section_header methods.  This currently assumes that the
82 // segment and section lists are complete at construction time.
83
84 Output_section_headers::Output_section_headers(
85     const Layout* layout,
86     const Layout::Segment_list* segment_list,
87     const Layout::Section_list* section_list,
88     const Layout::Section_list* unattached_section_list,
89     const Stringpool* secnamepool)
90   : layout_(layout),
91     segment_list_(segment_list),
92     section_list_(section_list),
93     unattached_section_list_(unattached_section_list),
94     secnamepool_(secnamepool)
95 {
96   // Count all the sections.  Start with 1 for the null section.
97   off_t count = 1;
98   if (!parameters->options().relocatable())
99     {
100       for (Layout::Segment_list::const_iterator p = segment_list->begin();
101            p != segment_list->end();
102            ++p)
103         if ((*p)->type() == elfcpp::PT_LOAD)
104           count += (*p)->output_section_count();
105     }
106   else
107     {
108       for (Layout::Section_list::const_iterator p = section_list->begin();
109            p != section_list->end();
110            ++p)
111         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
112           ++count;
113     }
114   count += unattached_section_list->size();
115
116   const int size = parameters->target().get_size();
117   int shdr_size;
118   if (size == 32)
119     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
120   else if (size == 64)
121     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
122   else
123     gold_unreachable();
124
125   this->set_data_size(count * shdr_size);
126 }
127
128 // Write out the section headers.
129
130 void
131 Output_section_headers::do_write(Output_file* of)
132 {
133   switch (parameters->size_and_endianness())
134     {
135 #ifdef HAVE_TARGET_32_LITTLE
136     case Parameters::TARGET_32_LITTLE:
137       this->do_sized_write<32, false>(of);
138       break;
139 #endif
140 #ifdef HAVE_TARGET_32_BIG
141     case Parameters::TARGET_32_BIG:
142       this->do_sized_write<32, true>(of);
143       break;
144 #endif
145 #ifdef HAVE_TARGET_64_LITTLE
146     case Parameters::TARGET_64_LITTLE:
147       this->do_sized_write<64, false>(of);
148       break;
149 #endif
150 #ifdef HAVE_TARGET_64_BIG
151     case Parameters::TARGET_64_BIG:
152       this->do_sized_write<64, true>(of);
153       break;
154 #endif
155     default:
156       gold_unreachable();
157     }
158 }
159
160 template<int size, bool big_endian>
161 void
162 Output_section_headers::do_sized_write(Output_file* of)
163 {
164   off_t all_shdrs_size = this->data_size();
165   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
166
167   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
168   unsigned char* v = view;
169
170   {
171     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
172     oshdr.put_sh_name(0);
173     oshdr.put_sh_type(elfcpp::SHT_NULL);
174     oshdr.put_sh_flags(0);
175     oshdr.put_sh_addr(0);
176     oshdr.put_sh_offset(0);
177     oshdr.put_sh_size(0);
178     oshdr.put_sh_link(0);
179     oshdr.put_sh_info(0);
180     oshdr.put_sh_addralign(0);
181     oshdr.put_sh_entsize(0);
182   }
183
184   v += shdr_size;
185
186   unsigned int shndx = 1;
187   if (!parameters->options().relocatable())
188     {
189       for (Layout::Segment_list::const_iterator p =
190              this->segment_list_->begin();
191            p != this->segment_list_->end();
192            ++p)
193         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
194                                                           this->secnamepool_,
195                                                           v,
196                                                           &shndx);
197     }
198   else
199     {
200       for (Layout::Section_list::const_iterator p =
201              this->section_list_->begin();
202            p != this->section_list_->end();
203            ++p)
204         {
205           // We do unallocated sections below, except that group
206           // sections have to come first.
207           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
208               && (*p)->type() != elfcpp::SHT_GROUP)
209             continue;
210           gold_assert(shndx == (*p)->out_shndx());
211           elfcpp::Shdr_write<size, big_endian> oshdr(v);
212           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
213           v += shdr_size;
214           ++shndx;
215         }
216     }
217
218   for (Layout::Section_list::const_iterator p =
219          this->unattached_section_list_->begin();
220        p != this->unattached_section_list_->end();
221        ++p)
222     {
223       // For a relocatable link, we did unallocated group sections
224       // above, since they have to come first.
225       if ((*p)->type() == elfcpp::SHT_GROUP
226           && parameters->options().relocatable())
227         continue;
228       gold_assert(shndx == (*p)->out_shndx());
229       elfcpp::Shdr_write<size, big_endian> oshdr(v);
230       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
231       v += shdr_size;
232       ++shndx;
233     }
234
235   of->write_output_view(this->offset(), all_shdrs_size, view);
236 }
237
238 // Output_segment_header methods.
239
240 Output_segment_headers::Output_segment_headers(
241     const Layout::Segment_list& segment_list)
242   : segment_list_(segment_list)
243 {
244   const int size = parameters->target().get_size();
245   int phdr_size;
246   if (size == 32)
247     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
248   else if (size == 64)
249     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
250   else
251     gold_unreachable();
252
253   this->set_data_size(segment_list.size() * phdr_size);
254 }
255
256 void
257 Output_segment_headers::do_write(Output_file* of)
258 {
259   switch (parameters->size_and_endianness())
260     {
261 #ifdef HAVE_TARGET_32_LITTLE
262     case Parameters::TARGET_32_LITTLE:
263       this->do_sized_write<32, false>(of);
264       break;
265 #endif
266 #ifdef HAVE_TARGET_32_BIG
267     case Parameters::TARGET_32_BIG:
268       this->do_sized_write<32, true>(of);
269       break;
270 #endif
271 #ifdef HAVE_TARGET_64_LITTLE
272     case Parameters::TARGET_64_LITTLE:
273       this->do_sized_write<64, false>(of);
274       break;
275 #endif
276 #ifdef HAVE_TARGET_64_BIG
277     case Parameters::TARGET_64_BIG:
278       this->do_sized_write<64, true>(of);
279       break;
280 #endif
281     default:
282       gold_unreachable();
283     }
284 }
285
286 template<int size, bool big_endian>
287 void
288 Output_segment_headers::do_sized_write(Output_file* of)
289 {
290   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
291   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
292   gold_assert(all_phdrs_size == this->data_size());
293   unsigned char* view = of->get_output_view(this->offset(),
294                                             all_phdrs_size);
295   unsigned char* v = view;
296   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
297        p != this->segment_list_.end();
298        ++p)
299     {
300       elfcpp::Phdr_write<size, big_endian> ophdr(v);
301       (*p)->write_header(&ophdr);
302       v += phdr_size;
303     }
304
305   gold_assert(v - view == all_phdrs_size);
306
307   of->write_output_view(this->offset(), all_phdrs_size, view);
308 }
309
310 // Output_file_header methods.
311
312 Output_file_header::Output_file_header(const Target* target,
313                                        const Symbol_table* symtab,
314                                        const Output_segment_headers* osh,
315                                        const char* entry)
316   : target_(target),
317     symtab_(symtab),
318     segment_header_(osh),
319     section_header_(NULL),
320     shstrtab_(NULL),
321     entry_(entry)
322 {
323   const int size = parameters->target().get_size();
324   int ehdr_size;
325   if (size == 32)
326     ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
327   else if (size == 64)
328     ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
329   else
330     gold_unreachable();
331
332   this->set_data_size(ehdr_size);
333 }
334
335 // Set the section table information for a file header.
336
337 void
338 Output_file_header::set_section_info(const Output_section_headers* shdrs,
339                                      const Output_section* shstrtab)
340 {
341   this->section_header_ = shdrs;
342   this->shstrtab_ = shstrtab;
343 }
344
345 // Write out the file header.
346
347 void
348 Output_file_header::do_write(Output_file* of)
349 {
350   gold_assert(this->offset() == 0);
351
352   switch (parameters->size_and_endianness())
353     {
354 #ifdef HAVE_TARGET_32_LITTLE
355     case Parameters::TARGET_32_LITTLE:
356       this->do_sized_write<32, false>(of);
357       break;
358 #endif
359 #ifdef HAVE_TARGET_32_BIG
360     case Parameters::TARGET_32_BIG:
361       this->do_sized_write<32, true>(of);
362       break;
363 #endif
364 #ifdef HAVE_TARGET_64_LITTLE
365     case Parameters::TARGET_64_LITTLE:
366       this->do_sized_write<64, false>(of);
367       break;
368 #endif
369 #ifdef HAVE_TARGET_64_BIG
370     case Parameters::TARGET_64_BIG:
371       this->do_sized_write<64, true>(of);
372       break;
373 #endif
374     default:
375       gold_unreachable();
376     }
377 }
378
379 // Write out the file header with appropriate size and endianess.
380
381 template<int size, bool big_endian>
382 void
383 Output_file_header::do_sized_write(Output_file* of)
384 {
385   gold_assert(this->offset() == 0);
386
387   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
388   unsigned char* view = of->get_output_view(0, ehdr_size);
389   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
390
391   unsigned char e_ident[elfcpp::EI_NIDENT];
392   memset(e_ident, 0, elfcpp::EI_NIDENT);
393   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
394   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
395   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
396   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
397   if (size == 32)
398     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
399   else if (size == 64)
400     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
401   else
402     gold_unreachable();
403   e_ident[elfcpp::EI_DATA] = (big_endian
404                               ? elfcpp::ELFDATA2MSB
405                               : elfcpp::ELFDATA2LSB);
406   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
407   // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
408   oehdr.put_e_ident(e_ident);
409
410   elfcpp::ET e_type;
411   if (parameters->options().relocatable())
412     e_type = elfcpp::ET_REL;
413   else if (parameters->options().shared())
414     e_type = elfcpp::ET_DYN;
415   else
416     e_type = elfcpp::ET_EXEC;
417   oehdr.put_e_type(e_type);
418
419   oehdr.put_e_machine(this->target_->machine_code());
420   oehdr.put_e_version(elfcpp::EV_CURRENT);
421
422   oehdr.put_e_entry(this->entry<size>());
423
424   if (this->segment_header_ == NULL)
425     oehdr.put_e_phoff(0);
426   else
427     oehdr.put_e_phoff(this->segment_header_->offset());
428
429   oehdr.put_e_shoff(this->section_header_->offset());
430
431   // FIXME: The target needs to set the flags.
432   oehdr.put_e_flags(0);
433
434   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
435
436   if (this->segment_header_ == NULL)
437     {
438       oehdr.put_e_phentsize(0);
439       oehdr.put_e_phnum(0);
440     }
441   else
442     {
443       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
444       oehdr.put_e_phnum(this->segment_header_->data_size()
445                         / elfcpp::Elf_sizes<size>::phdr_size);
446     }
447
448   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
449   oehdr.put_e_shnum(this->section_header_->data_size()
450                      / elfcpp::Elf_sizes<size>::shdr_size);
451   oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
452
453   of->write_output_view(0, ehdr_size, view);
454 }
455
456 // Return the value to use for the entry address.  THIS->ENTRY_ is the
457 // symbol specified on the command line, if any.
458
459 template<int size>
460 typename elfcpp::Elf_types<size>::Elf_Addr
461 Output_file_header::entry()
462 {
463   const bool should_issue_warning = (this->entry_ != NULL
464                                      && !parameters->options().relocatable()
465                                      && !parameters->options().shared());
466
467   // FIXME: Need to support target specific entry symbol.
468   const char* entry = this->entry_;
469   if (entry == NULL)
470     entry = "_start";
471
472   Symbol* sym = this->symtab_->lookup(entry);
473
474   typename Sized_symbol<size>::Value_type v;
475   if (sym != NULL)
476     {
477       Sized_symbol<size>* ssym;
478       ssym = this->symtab_->get_sized_symbol<size>(sym);
479       if (!ssym->is_defined() && should_issue_warning)
480         gold_warning("entry symbol '%s' exists but is not defined", entry);
481       v = ssym->value();
482     }
483   else
484     {
485       // We couldn't find the entry symbol.  See if we can parse it as
486       // a number.  This supports, e.g., -e 0x1000.
487       char* endptr;
488       v = strtoull(entry, &endptr, 0);
489       if (*endptr != '\0')
490         {
491           if (should_issue_warning)
492             gold_warning("cannot find entry symbol '%s'", entry);
493           v = 0;
494         }
495     }
496
497   return v;
498 }
499
500 // Output_data_const methods.
501
502 void
503 Output_data_const::do_write(Output_file* of)
504 {
505   of->write(this->offset(), this->data_.data(), this->data_.size());
506 }
507
508 // Output_data_const_buffer methods.
509
510 void
511 Output_data_const_buffer::do_write(Output_file* of)
512 {
513   of->write(this->offset(), this->p_, this->data_size());
514 }
515
516 // Output_section_data methods.
517
518 // Record the output section, and set the entry size and such.
519
520 void
521 Output_section_data::set_output_section(Output_section* os)
522 {
523   gold_assert(this->output_section_ == NULL);
524   this->output_section_ = os;
525   this->do_adjust_output_section(os);
526 }
527
528 // Return the section index of the output section.
529
530 unsigned int
531 Output_section_data::do_out_shndx() const
532 {
533   gold_assert(this->output_section_ != NULL);
534   return this->output_section_->out_shndx();
535 }
536
537 // Output_data_strtab methods.
538
539 // Set the final data size.
540
541 void
542 Output_data_strtab::set_final_data_size()
543 {
544   this->strtab_->set_string_offsets();
545   this->set_data_size(this->strtab_->get_strtab_size());
546 }
547
548 // Write out a string table.
549
550 void
551 Output_data_strtab::do_write(Output_file* of)
552 {
553   this->strtab_->write(of, this->offset());
554 }
555
556 // Output_reloc methods.
557
558 // A reloc against a global symbol.
559
560 template<bool dynamic, int size, bool big_endian>
561 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
562     Symbol* gsym,
563     unsigned int type,
564     Output_data* od,
565     Address address,
566     bool is_relative)
567   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
568     is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
569 {
570   // this->type_ is a bitfield; make sure TYPE fits.
571   gold_assert(this->type_ == type);
572   this->u1_.gsym = gsym;
573   this->u2_.od = od;
574   if (dynamic)
575     this->set_needs_dynsym_index();
576 }
577
578 template<bool dynamic, int size, bool big_endian>
579 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
580     Symbol* gsym,
581     unsigned int type,
582     Relobj* relobj,
583     unsigned int shndx,
584     Address address,
585     bool is_relative)
586   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
587     is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
588 {
589   gold_assert(shndx != INVALID_CODE);
590   // this->type_ is a bitfield; make sure TYPE fits.
591   gold_assert(this->type_ == type);
592   this->u1_.gsym = gsym;
593   this->u2_.relobj = relobj;
594   if (dynamic)
595     this->set_needs_dynsym_index();
596 }
597
598 // A reloc against a local symbol.
599
600 template<bool dynamic, int size, bool big_endian>
601 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
602     Sized_relobj<size, big_endian>* relobj,
603     unsigned int local_sym_index,
604     unsigned int type,
605     Output_data* od,
606     Address address,
607     bool is_relative,
608     bool is_section_symbol)
609   : address_(address), local_sym_index_(local_sym_index), type_(type),
610     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
611     shndx_(INVALID_CODE)
612 {
613   gold_assert(local_sym_index != GSYM_CODE
614               && local_sym_index != INVALID_CODE);
615   // this->type_ is a bitfield; make sure TYPE fits.
616   gold_assert(this->type_ == type);
617   this->u1_.relobj = relobj;
618   this->u2_.od = od;
619   if (dynamic)
620     this->set_needs_dynsym_index();
621 }
622
623 template<bool dynamic, int size, bool big_endian>
624 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
625     Sized_relobj<size, big_endian>* relobj,
626     unsigned int local_sym_index,
627     unsigned int type,
628     unsigned int shndx,
629     Address address,
630     bool is_relative,
631     bool is_section_symbol)
632   : address_(address), local_sym_index_(local_sym_index), type_(type),
633     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
634     shndx_(shndx)
635 {
636   gold_assert(local_sym_index != GSYM_CODE
637               && local_sym_index != INVALID_CODE);
638   gold_assert(shndx != INVALID_CODE);
639   // this->type_ is a bitfield; make sure TYPE fits.
640   gold_assert(this->type_ == type);
641   this->u1_.relobj = relobj;
642   this->u2_.relobj = relobj;
643   if (dynamic)
644     this->set_needs_dynsym_index();
645 }
646
647 // A reloc against the STT_SECTION symbol of an output section.
648
649 template<bool dynamic, int size, bool big_endian>
650 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
651     Output_section* os,
652     unsigned int type,
653     Output_data* od,
654     Address address)
655   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
656     is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
657 {
658   // this->type_ is a bitfield; make sure TYPE fits.
659   gold_assert(this->type_ == type);
660   this->u1_.os = os;
661   this->u2_.od = od;
662   if (dynamic)
663     this->set_needs_dynsym_index();
664   else
665     os->set_needs_symtab_index();
666 }
667
668 template<bool dynamic, int size, bool big_endian>
669 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
670     Output_section* os,
671     unsigned int type,
672     Relobj* relobj,
673     unsigned int shndx,
674     Address address)
675   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
676     is_relative_(false), is_section_symbol_(true), shndx_(shndx)
677 {
678   gold_assert(shndx != INVALID_CODE);
679   // this->type_ is a bitfield; make sure TYPE fits.
680   gold_assert(this->type_ == type);
681   this->u1_.os = os;
682   this->u2_.relobj = relobj;
683   if (dynamic)
684     this->set_needs_dynsym_index();
685   else
686     os->set_needs_symtab_index();
687 }
688
689 // Record that we need a dynamic symbol index for this relocation.
690
691 template<bool dynamic, int size, bool big_endian>
692 void
693 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
694 set_needs_dynsym_index()
695 {
696   if (this->is_relative_)
697     return;
698   switch (this->local_sym_index_)
699     {
700     case INVALID_CODE:
701       gold_unreachable();
702
703     case GSYM_CODE:
704       this->u1_.gsym->set_needs_dynsym_entry();
705       break;
706
707     case SECTION_CODE:
708       this->u1_.os->set_needs_dynsym_index();
709       break;
710
711     case 0:
712       break;
713
714     default:
715       {
716         const unsigned int lsi = this->local_sym_index_;
717         if (!this->is_section_symbol_)
718           this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
719         else
720           {
721             section_offset_type dummy;
722             Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
723             gold_assert(os != NULL);
724             os->set_needs_dynsym_index();
725           }
726       }
727       break;
728     }
729 }
730
731 // Get the symbol index of a relocation.
732
733 template<bool dynamic, int size, bool big_endian>
734 unsigned int
735 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
736   const
737 {
738   unsigned int index;
739   switch (this->local_sym_index_)
740     {
741     case INVALID_CODE:
742       gold_unreachable();
743
744     case GSYM_CODE:
745       if (this->u1_.gsym == NULL)
746         index = 0;
747       else if (dynamic)
748         index = this->u1_.gsym->dynsym_index();
749       else
750         index = this->u1_.gsym->symtab_index();
751       break;
752
753     case SECTION_CODE:
754       if (dynamic)
755         index = this->u1_.os->dynsym_index();
756       else
757         index = this->u1_.os->symtab_index();
758       break;
759
760     case 0:
761       // Relocations without symbols use a symbol index of 0.
762       index = 0;
763       break;
764
765     default:
766       {
767         const unsigned int lsi = this->local_sym_index_;
768         if (!this->is_section_symbol_)
769           {
770             if (dynamic)
771               index = this->u1_.relobj->dynsym_index(lsi);
772             else
773               index = this->u1_.relobj->symtab_index(lsi);
774           }
775         else
776           {
777             section_offset_type dummy;
778             Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
779             gold_assert(os != NULL);
780             if (dynamic)
781               index = os->dynsym_index();
782             else
783               index = os->symtab_index();
784           }
785       }
786       break;
787     }
788   gold_assert(index != -1U);
789   return index;
790 }
791
792 // For a local section symbol, get the section offset of the input
793 // section within the output section.
794
795 template<bool dynamic, int size, bool big_endian>
796 section_offset_type
797 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
798   local_section_offset() const
799 {
800   const unsigned int lsi = this->local_sym_index_;
801   section_offset_type offset;
802   Output_section* os = this->u1_.relobj->output_section(lsi, &offset);
803   gold_assert(os != NULL && offset != -1);
804   return offset;
805 }
806
807 // Write out the offset and info fields of a Rel or Rela relocation
808 // entry.
809
810 template<bool dynamic, int size, bool big_endian>
811 template<typename Write_rel>
812 void
813 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
814     Write_rel* wr) const
815 {
816   Address address = this->address_;
817   if (this->shndx_ != INVALID_CODE)
818     {
819       section_offset_type off;
820       Output_section* os = this->u2_.relobj->output_section(this->shndx_,
821                                                             &off);
822       gold_assert(os != NULL);
823       if (off != -1)
824         address += os->address() + off;
825       else
826         {
827           address = os->output_address(this->u2_.relobj, this->shndx_,
828                                        address);
829           gold_assert(address != -1U);
830         }
831     }
832   else if (this->u2_.od != NULL)
833     address += this->u2_.od->address();
834   wr->put_r_offset(address);
835   unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
836   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
837 }
838
839 // Write out a Rel relocation.
840
841 template<bool dynamic, int size, bool big_endian>
842 void
843 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
844     unsigned char* pov) const
845 {
846   elfcpp::Rel_write<size, big_endian> orel(pov);
847   this->write_rel(&orel);
848 }
849
850 // Get the value of the symbol referred to by a Rel relocation.
851
852 template<bool dynamic, int size, bool big_endian>
853 typename elfcpp::Elf_types<size>::Elf_Addr
854 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
855     Address addend) const
856 {
857   if (this->local_sym_index_ == GSYM_CODE)
858     {
859       const Sized_symbol<size>* sym;
860       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
861       return sym->value() + addend;
862     }
863   gold_assert(this->local_sym_index_ != SECTION_CODE
864               && this->local_sym_index_ != INVALID_CODE
865               && !this->is_section_symbol_);
866   const unsigned int lsi = this->local_sym_index_;
867   const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
868   return symval->value(this->u1_.relobj, addend);
869 }
870
871 // Write out a Rela relocation.
872
873 template<bool dynamic, int size, bool big_endian>
874 void
875 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
876     unsigned char* pov) const
877 {
878   elfcpp::Rela_write<size, big_endian> orel(pov);
879   this->rel_.write_rel(&orel);
880   Addend addend = this->addend_;
881   if (this->rel_.is_relative())
882     addend = this->rel_.symbol_value(addend);
883   else if (this->rel_.is_local_section_symbol())
884     addend += this->rel_.local_section_offset();
885   orel.put_r_addend(addend);
886 }
887
888 // Output_data_reloc_base methods.
889
890 // Adjust the output section.
891
892 template<int sh_type, bool dynamic, int size, bool big_endian>
893 void
894 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
895     ::do_adjust_output_section(Output_section* os)
896 {
897   if (sh_type == elfcpp::SHT_REL)
898     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
899   else if (sh_type == elfcpp::SHT_RELA)
900     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
901   else
902     gold_unreachable();
903   if (dynamic)
904     os->set_should_link_to_dynsym();
905   else
906     os->set_should_link_to_symtab();
907 }
908
909 // Write out relocation data.
910
911 template<int sh_type, bool dynamic, int size, bool big_endian>
912 void
913 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
914     Output_file* of)
915 {
916   const off_t off = this->offset();
917   const off_t oview_size = this->data_size();
918   unsigned char* const oview = of->get_output_view(off, oview_size);
919
920   unsigned char* pov = oview;
921   for (typename Relocs::const_iterator p = this->relocs_.begin();
922        p != this->relocs_.end();
923        ++p)
924     {
925       p->write(pov);
926       pov += reloc_size;
927     }
928
929   gold_assert(pov - oview == oview_size);
930
931   of->write_output_view(off, oview_size, oview);
932
933   // We no longer need the relocation entries.
934   this->relocs_.clear();
935 }
936
937 // Class Output_relocatable_relocs.
938
939 template<int sh_type, int size, bool big_endian>
940 void
941 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
942 {
943   this->set_data_size(this->rr_->output_reloc_count()
944                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
945 }
946
947 // class Output_data_group.
948
949 template<int size, bool big_endian>
950 Output_data_group<size, big_endian>::Output_data_group(
951     Sized_relobj<size, big_endian>* relobj,
952     section_size_type entry_count,
953     const elfcpp::Elf_Word* contents)
954   : Output_section_data(entry_count * 4, 4),
955     relobj_(relobj)
956 {
957   this->flags_ = elfcpp::Swap<32, big_endian>::readval(contents);
958   for (section_size_type i = 1; i < entry_count; ++i)
959     {
960       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
961       this->input_sections_.push_back(shndx);
962     }
963 }
964
965 // Write out the section group, which means translating the section
966 // indexes to apply to the output file.
967
968 template<int size, bool big_endian>
969 void
970 Output_data_group<size, big_endian>::do_write(Output_file* of)
971 {
972   const off_t off = this->offset();
973   const section_size_type oview_size =
974     convert_to_section_size_type(this->data_size());
975   unsigned char* const oview = of->get_output_view(off, oview_size);
976
977   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
978   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
979   ++contents;
980
981   for (std::vector<unsigned int>::const_iterator p =
982          this->input_sections_.begin();
983        p != this->input_sections_.end();
984        ++p, ++contents)
985     {
986       section_offset_type dummy;
987       Output_section* os = this->relobj_->output_section(*p, &dummy);
988
989       unsigned int output_shndx;
990       if (os != NULL)
991         output_shndx = os->out_shndx();
992       else
993         {
994           this->relobj_->error(_("section group retained but "
995                                  "group element discarded"));
996           output_shndx = 0;
997         }
998
999       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1000     }
1001
1002   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1003   gold_assert(wrote == oview_size);
1004
1005   of->write_output_view(off, oview_size, oview);
1006
1007   // We no longer need this information.
1008   this->input_sections_.clear();
1009 }
1010
1011 // Output_data_got::Got_entry methods.
1012
1013 // Write out the entry.
1014
1015 template<int size, bool big_endian>
1016 void
1017 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1018 {
1019   Valtype val = 0;
1020
1021   switch (this->local_sym_index_)
1022     {
1023     case GSYM_CODE:
1024       {
1025         // If the symbol is resolved locally, we need to write out the
1026         // link-time value, which will be relocated dynamically by a
1027         // RELATIVE relocation.
1028         Symbol* gsym = this->u_.gsym;
1029         Sized_symbol<size>* sgsym;
1030         // This cast is a bit ugly.  We don't want to put a
1031         // virtual method in Symbol, because we want Symbol to be
1032         // as small as possible.
1033         sgsym = static_cast<Sized_symbol<size>*>(gsym);
1034         val = sgsym->value();
1035       }
1036       break;
1037
1038     case CONSTANT_CODE:
1039       val = this->u_.constant;
1040       break;
1041
1042     default:
1043       {
1044         const unsigned int lsi = this->local_sym_index_;
1045         const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1046         val = symval->value(this->u_.object, 0);
1047       }
1048       break;
1049     }
1050
1051   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1052 }
1053
1054 // Output_data_got methods.
1055
1056 // Add an entry for a global symbol to the GOT.  This returns true if
1057 // this is a new GOT entry, false if the symbol already had a GOT
1058 // entry.
1059
1060 template<int size, bool big_endian>
1061 bool
1062 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
1063 {
1064   if (gsym->has_got_offset())
1065     return false;
1066
1067   this->entries_.push_back(Got_entry(gsym));
1068   this->set_got_size();
1069   gsym->set_got_offset(this->last_got_offset());
1070   return true;
1071 }
1072
1073 // Add an entry for a global symbol to the GOT, and add a dynamic
1074 // relocation of type R_TYPE for the GOT entry.
1075 template<int size, bool big_endian>
1076 void
1077 Output_data_got<size, big_endian>::add_global_with_rel(
1078     Symbol* gsym,
1079     Rel_dyn* rel_dyn,
1080     unsigned int r_type)
1081 {
1082   if (gsym->has_got_offset())
1083     return;
1084
1085   this->entries_.push_back(Got_entry());
1086   this->set_got_size();
1087   unsigned int got_offset = this->last_got_offset();
1088   gsym->set_got_offset(got_offset);
1089   rel_dyn->add_global(gsym, r_type, this, got_offset);
1090 }
1091
1092 template<int size, bool big_endian>
1093 void
1094 Output_data_got<size, big_endian>::add_global_with_rela(
1095     Symbol* gsym,
1096     Rela_dyn* rela_dyn,
1097     unsigned int r_type)
1098 {
1099   if (gsym->has_got_offset())
1100     return;
1101
1102   this->entries_.push_back(Got_entry());
1103   this->set_got_size();
1104   unsigned int got_offset = this->last_got_offset();
1105   gsym->set_got_offset(got_offset);
1106   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1107 }
1108
1109 // Add an entry for a local symbol to the GOT.  This returns true if
1110 // this is a new GOT entry, false if the symbol already has a GOT
1111 // entry.
1112
1113 template<int size, bool big_endian>
1114 bool
1115 Output_data_got<size, big_endian>::add_local(
1116     Sized_relobj<size, big_endian>* object,
1117     unsigned int symndx)
1118 {
1119   if (object->local_has_got_offset(symndx))
1120     return false;
1121
1122   this->entries_.push_back(Got_entry(object, symndx));
1123   this->set_got_size();
1124   object->set_local_got_offset(symndx, this->last_got_offset());
1125   return true;
1126 }
1127
1128 // Add an entry for a local symbol to the GOT, and add a dynamic
1129 // relocation of type R_TYPE for the GOT entry.
1130 template<int size, bool big_endian>
1131 void
1132 Output_data_got<size, big_endian>::add_local_with_rel(
1133     Sized_relobj<size, big_endian>* object,
1134     unsigned int symndx,
1135     Rel_dyn* rel_dyn,
1136     unsigned int r_type)
1137 {
1138   if (object->local_has_got_offset(symndx))
1139     return;
1140
1141   this->entries_.push_back(Got_entry());
1142   this->set_got_size();
1143   unsigned int got_offset = this->last_got_offset();
1144   object->set_local_got_offset(symndx, got_offset);
1145   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1146 }
1147
1148 template<int size, bool big_endian>
1149 void
1150 Output_data_got<size, big_endian>::add_local_with_rela(
1151     Sized_relobj<size, big_endian>* object,
1152     unsigned int symndx,
1153     Rela_dyn* rela_dyn,
1154     unsigned int r_type)
1155 {
1156   if (object->local_has_got_offset(symndx))
1157     return;
1158
1159   this->entries_.push_back(Got_entry());
1160   this->set_got_size();
1161   unsigned int got_offset = this->last_got_offset();
1162   object->set_local_got_offset(symndx, got_offset);
1163   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1164 }
1165
1166 // Add an entry (or a pair of entries) for a global TLS symbol to the GOT.
1167 // In a pair of entries, the first value in the pair will be used for the
1168 // module index, and the second value will be used for the dtv-relative
1169 // offset. This returns true if this is a new GOT entry, false if the symbol
1170 // already has a GOT entry.
1171
1172 template<int size, bool big_endian>
1173 bool
1174 Output_data_got<size, big_endian>::add_global_tls(Symbol* gsym, bool need_pair)
1175 {
1176   if (gsym->has_tls_got_offset(need_pair))
1177     return false;
1178
1179   this->entries_.push_back(Got_entry(gsym));
1180   gsym->set_tls_got_offset(this->last_got_offset(), need_pair);
1181   if (need_pair)
1182     this->entries_.push_back(Got_entry(gsym));
1183   this->set_got_size();
1184   return true;
1185 }
1186
1187 // Add an entry for a global TLS symbol to the GOT, and add a dynamic
1188 // relocation of type R_TYPE.
1189 template<int size, bool big_endian>
1190 void
1191 Output_data_got<size, big_endian>::add_global_tls_with_rel(
1192     Symbol* gsym,
1193     Rel_dyn* rel_dyn,
1194     unsigned int r_type)
1195 {
1196   if (gsym->has_tls_got_offset(false))
1197     return;
1198
1199   this->entries_.push_back(Got_entry());
1200   this->set_got_size();
1201   unsigned int got_offset = this->last_got_offset();
1202   gsym->set_tls_got_offset(got_offset, false);
1203   rel_dyn->add_global(gsym, r_type, this, got_offset);
1204 }
1205
1206 template<int size, bool big_endian>
1207 void
1208 Output_data_got<size, big_endian>::add_global_tls_with_rela(
1209     Symbol* gsym,
1210     Rela_dyn* rela_dyn,
1211     unsigned int r_type)
1212 {
1213   if (gsym->has_tls_got_offset(false))
1214     return;
1215
1216   this->entries_.push_back(Got_entry());
1217   this->set_got_size();
1218   unsigned int got_offset = this->last_got_offset();
1219   gsym->set_tls_got_offset(got_offset, false);
1220   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1221 }
1222
1223 // Add a pair of entries for a global TLS symbol to the GOT, and add
1224 // dynamic relocations of type MOD_R_TYPE and DTV_R_TYPE, respectively.
1225 template<int size, bool big_endian>
1226 void
1227 Output_data_got<size, big_endian>::add_global_tls_with_rel(
1228     Symbol* gsym,
1229     Rel_dyn* rel_dyn,
1230     unsigned int mod_r_type,
1231     unsigned int dtv_r_type)
1232 {
1233   if (gsym->has_tls_got_offset(true))
1234     return;
1235
1236   this->entries_.push_back(Got_entry());
1237   unsigned int got_offset = this->last_got_offset();
1238   gsym->set_tls_got_offset(got_offset, true);
1239   rel_dyn->add_global(gsym, mod_r_type, this, got_offset);
1240
1241   this->entries_.push_back(Got_entry());
1242   this->set_got_size();
1243   got_offset = this->last_got_offset();
1244   rel_dyn->add_global(gsym, dtv_r_type, this, got_offset);
1245 }
1246
1247 template<int size, bool big_endian>
1248 void
1249 Output_data_got<size, big_endian>::add_global_tls_with_rela(
1250     Symbol* gsym,
1251     Rela_dyn* rela_dyn,
1252     unsigned int mod_r_type,
1253     unsigned int dtv_r_type)
1254 {
1255   if (gsym->has_tls_got_offset(true))
1256     return;
1257
1258   this->entries_.push_back(Got_entry());
1259   unsigned int got_offset = this->last_got_offset();
1260   gsym->set_tls_got_offset(got_offset, true);
1261   rela_dyn->add_global(gsym, mod_r_type, this, got_offset, 0);
1262
1263   this->entries_.push_back(Got_entry());
1264   this->set_got_size();
1265   got_offset = this->last_got_offset();
1266   rela_dyn->add_global(gsym, dtv_r_type, this, got_offset, 0);
1267 }
1268
1269 // Add an entry (or a pair of entries) for a local TLS symbol to the GOT.
1270 // In a pair of entries, the first value in the pair will be used for the
1271 // module index, and the second value will be used for the dtv-relative
1272 // offset. This returns true if this is a new GOT entry, false if the symbol
1273 // already has a GOT entry.
1274
1275 template<int size, bool big_endian>
1276 bool
1277 Output_data_got<size, big_endian>::add_local_tls(
1278     Sized_relobj<size, big_endian>* object,
1279     unsigned int symndx,
1280     bool need_pair)
1281 {
1282   if (object->local_has_tls_got_offset(symndx, need_pair))
1283     return false;
1284
1285   this->entries_.push_back(Got_entry(object, symndx));
1286   object->set_local_tls_got_offset(symndx, this->last_got_offset(), need_pair);
1287   if (need_pair)
1288     this->entries_.push_back(Got_entry(object, symndx));
1289   this->set_got_size();
1290   return true;
1291 }
1292
1293 // Add an entry (or pair of entries) for a local TLS symbol to the GOT,
1294 // and add a dynamic relocation of type R_TYPE for the first GOT entry.
1295 // Because this is a local symbol, the first GOT entry can be relocated
1296 // relative to a section symbol, and the second GOT entry will have an
1297 // dtv-relative value that can be computed at link time.
1298 template<int size, bool big_endian>
1299 void
1300 Output_data_got<size, big_endian>::add_local_tls_with_rel(
1301     Sized_relobj<size, big_endian>* object,
1302     unsigned int symndx,
1303     unsigned int shndx,
1304     bool need_pair,
1305     Rel_dyn* rel_dyn,
1306     unsigned int r_type)
1307 {
1308   if (object->local_has_tls_got_offset(symndx, need_pair))
1309     return;
1310
1311   this->entries_.push_back(Got_entry());
1312   unsigned int got_offset = this->last_got_offset();
1313   object->set_local_tls_got_offset(symndx, got_offset, need_pair);
1314   section_offset_type off;
1315   Output_section* os = object->output_section(shndx, &off);
1316   rel_dyn->add_output_section(os, r_type, this, got_offset);
1317
1318   // The second entry of the pair will be statically initialized
1319   // with the TLS offset of the symbol.
1320   if (need_pair)
1321     this->entries_.push_back(Got_entry(object, symndx));
1322
1323   this->set_got_size();
1324 }
1325
1326 template<int size, bool big_endian>
1327 void
1328 Output_data_got<size, big_endian>::add_local_tls_with_rela(
1329     Sized_relobj<size, big_endian>* object,
1330     unsigned int symndx,
1331     unsigned int shndx,
1332     bool need_pair,
1333     Rela_dyn* rela_dyn,
1334     unsigned int r_type)
1335 {
1336   if (object->local_has_tls_got_offset(symndx, need_pair))
1337     return;
1338
1339   this->entries_.push_back(Got_entry());
1340   unsigned int got_offset = this->last_got_offset();
1341   object->set_local_tls_got_offset(symndx, got_offset, need_pair);
1342   section_offset_type off;
1343   Output_section* os = object->output_section(shndx, &off);
1344   rela_dyn->add_output_section(os, r_type, this, got_offset, 0);
1345
1346   // The second entry of the pair will be statically initialized
1347   // with the TLS offset of the symbol.
1348   if (need_pair)
1349     this->entries_.push_back(Got_entry(object, symndx));
1350
1351   this->set_got_size();
1352 }
1353
1354 // Write out the GOT.
1355
1356 template<int size, bool big_endian>
1357 void
1358 Output_data_got<size, big_endian>::do_write(Output_file* of)
1359 {
1360   const int add = size / 8;
1361
1362   const off_t off = this->offset();
1363   const off_t oview_size = this->data_size();
1364   unsigned char* const oview = of->get_output_view(off, oview_size);
1365
1366   unsigned char* pov = oview;
1367   for (typename Got_entries::const_iterator p = this->entries_.begin();
1368        p != this->entries_.end();
1369        ++p)
1370     {
1371       p->write(pov);
1372       pov += add;
1373     }
1374
1375   gold_assert(pov - oview == oview_size);
1376
1377   of->write_output_view(off, oview_size, oview);
1378
1379   // We no longer need the GOT entries.
1380   this->entries_.clear();
1381 }
1382
1383 // Output_data_dynamic::Dynamic_entry methods.
1384
1385 // Write out the entry.
1386
1387 template<int size, bool big_endian>
1388 void
1389 Output_data_dynamic::Dynamic_entry::write(
1390     unsigned char* pov,
1391     const Stringpool* pool) const
1392 {
1393   typename elfcpp::Elf_types<size>::Elf_WXword val;
1394   switch (this->classification_)
1395     {
1396     case DYNAMIC_NUMBER:
1397       val = this->u_.val;
1398       break;
1399
1400     case DYNAMIC_SECTION_ADDRESS:
1401       val = this->u_.od->address();
1402       break;
1403
1404     case DYNAMIC_SECTION_SIZE:
1405       val = this->u_.od->data_size();
1406       break;
1407
1408     case DYNAMIC_SYMBOL:
1409       {
1410         const Sized_symbol<size>* s =
1411           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1412         val = s->value();
1413       }
1414       break;
1415
1416     case DYNAMIC_STRING:
1417       val = pool->get_offset(this->u_.str);
1418       break;
1419
1420     default:
1421       gold_unreachable();
1422     }
1423
1424   elfcpp::Dyn_write<size, big_endian> dw(pov);
1425   dw.put_d_tag(this->tag_);
1426   dw.put_d_val(val);
1427 }
1428
1429 // Output_data_dynamic methods.
1430
1431 // Adjust the output section to set the entry size.
1432
1433 void
1434 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1435 {
1436   if (parameters->target().get_size() == 32)
1437     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1438   else if (parameters->target().get_size() == 64)
1439     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1440   else
1441     gold_unreachable();
1442 }
1443
1444 // Set the final data size.
1445
1446 void
1447 Output_data_dynamic::set_final_data_size()
1448 {
1449   // Add the terminating entry.
1450   this->add_constant(elfcpp::DT_NULL, 0);
1451
1452   int dyn_size;
1453   if (parameters->target().get_size() == 32)
1454     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1455   else if (parameters->target().get_size() == 64)
1456     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1457   else
1458     gold_unreachable();
1459   this->set_data_size(this->entries_.size() * dyn_size);
1460 }
1461
1462 // Write out the dynamic entries.
1463
1464 void
1465 Output_data_dynamic::do_write(Output_file* of)
1466 {
1467   switch (parameters->size_and_endianness())
1468     {
1469 #ifdef HAVE_TARGET_32_LITTLE
1470     case Parameters::TARGET_32_LITTLE:
1471       this->sized_write<32, false>(of);
1472       break;
1473 #endif
1474 #ifdef HAVE_TARGET_32_BIG
1475     case Parameters::TARGET_32_BIG:
1476       this->sized_write<32, true>(of);
1477       break;
1478 #endif
1479 #ifdef HAVE_TARGET_64_LITTLE
1480     case Parameters::TARGET_64_LITTLE:
1481       this->sized_write<64, false>(of);
1482       break;
1483 #endif
1484 #ifdef HAVE_TARGET_64_BIG
1485     case Parameters::TARGET_64_BIG:
1486       this->sized_write<64, true>(of);
1487       break;
1488 #endif
1489     default:
1490       gold_unreachable();
1491     }
1492 }
1493
1494 template<int size, bool big_endian>
1495 void
1496 Output_data_dynamic::sized_write(Output_file* of)
1497 {
1498   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1499
1500   const off_t offset = this->offset();
1501   const off_t oview_size = this->data_size();
1502   unsigned char* const oview = of->get_output_view(offset, oview_size);
1503
1504   unsigned char* pov = oview;
1505   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1506        p != this->entries_.end();
1507        ++p)
1508     {
1509       p->write<size, big_endian>(pov, this->pool_);
1510       pov += dyn_size;
1511     }
1512
1513   gold_assert(pov - oview == oview_size);
1514
1515   of->write_output_view(offset, oview_size, oview);
1516
1517   // We no longer need the dynamic entries.
1518   this->entries_.clear();
1519 }
1520
1521 // Output_section::Input_section methods.
1522
1523 // Return the data size.  For an input section we store the size here.
1524 // For an Output_section_data, we have to ask it for the size.
1525
1526 off_t
1527 Output_section::Input_section::data_size() const
1528 {
1529   if (this->is_input_section())
1530     return this->u1_.data_size;
1531   else
1532     return this->u2_.posd->data_size();
1533 }
1534
1535 // Set the address and file offset.
1536
1537 void
1538 Output_section::Input_section::set_address_and_file_offset(
1539     uint64_t address,
1540     off_t file_offset,
1541     off_t section_file_offset)
1542 {
1543   if (this->is_input_section())
1544     this->u2_.object->set_section_offset(this->shndx_,
1545                                          file_offset - section_file_offset);
1546   else
1547     this->u2_.posd->set_address_and_file_offset(address, file_offset);
1548 }
1549
1550 // Reset the address and file offset.
1551
1552 void
1553 Output_section::Input_section::reset_address_and_file_offset()
1554 {
1555   if (!this->is_input_section())
1556     this->u2_.posd->reset_address_and_file_offset();
1557 }
1558
1559 // Finalize the data size.
1560
1561 void
1562 Output_section::Input_section::finalize_data_size()
1563 {
1564   if (!this->is_input_section())
1565     this->u2_.posd->finalize_data_size();
1566 }
1567
1568 // Try to turn an input offset into an output offset.  We want to
1569 // return the output offset relative to the start of this
1570 // Input_section in the output section.
1571
1572 inline bool
1573 Output_section::Input_section::output_offset(
1574     const Relobj* object,
1575     unsigned int shndx,
1576     section_offset_type offset,
1577     section_offset_type *poutput) const
1578 {
1579   if (!this->is_input_section())
1580     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1581   else
1582     {
1583       if (this->shndx_ != shndx || this->u2_.object != object)
1584         return false;
1585       *poutput = offset;
1586       return true;
1587     }
1588 }
1589
1590 // Return whether this is the merge section for the input section
1591 // SHNDX in OBJECT.
1592
1593 inline bool
1594 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1595                                                     unsigned int shndx) const
1596 {
1597   if (this->is_input_section())
1598     return false;
1599   return this->u2_.posd->is_merge_section_for(object, shndx);
1600 }
1601
1602 // Write out the data.  We don't have to do anything for an input
1603 // section--they are handled via Object::relocate--but this is where
1604 // we write out the data for an Output_section_data.
1605
1606 void
1607 Output_section::Input_section::write(Output_file* of)
1608 {
1609   if (!this->is_input_section())
1610     this->u2_.posd->write(of);
1611 }
1612
1613 // Write the data to a buffer.  As for write(), we don't have to do
1614 // anything for an input section.
1615
1616 void
1617 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1618 {
1619   if (!this->is_input_section())
1620     this->u2_.posd->write_to_buffer(buffer);
1621 }
1622
1623 // Output_section methods.
1624
1625 // Construct an Output_section.  NAME will point into a Stringpool.
1626
1627 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1628                                elfcpp::Elf_Xword flags)
1629   : name_(name),
1630     addralign_(0),
1631     entsize_(0),
1632     load_address_(0),
1633     link_section_(NULL),
1634     link_(0),
1635     info_section_(NULL),
1636     info_symndx_(NULL),
1637     info_(0),
1638     type_(type),
1639     flags_(flags),
1640     out_shndx_(-1U),
1641     symtab_index_(0),
1642     dynsym_index_(0),
1643     input_sections_(),
1644     first_input_offset_(0),
1645     fills_(),
1646     postprocessing_buffer_(NULL),
1647     needs_symtab_index_(false),
1648     needs_dynsym_index_(false),
1649     should_link_to_symtab_(false),
1650     should_link_to_dynsym_(false),
1651     after_input_sections_(false),
1652     requires_postprocessing_(false),
1653     found_in_sections_clause_(false),
1654     has_load_address_(false),
1655     info_uses_section_index_(false),
1656     tls_offset_(0)
1657 {
1658   // An unallocated section has no address.  Forcing this means that
1659   // we don't need special treatment for symbols defined in debug
1660   // sections.
1661   if ((flags & elfcpp::SHF_ALLOC) == 0)
1662     this->set_address(0);
1663 }
1664
1665 Output_section::~Output_section()
1666 {
1667 }
1668
1669 // Set the entry size.
1670
1671 void
1672 Output_section::set_entsize(uint64_t v)
1673 {
1674   if (this->entsize_ == 0)
1675     this->entsize_ = v;
1676   else
1677     gold_assert(this->entsize_ == v);
1678 }
1679
1680 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1681 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
1682 // relocation section which applies to this section, or 0 if none, or
1683 // -1U if more than one.  Return the offset of the input section
1684 // within the output section.  Return -1 if the input section will
1685 // receive special handling.  In the normal case we don't always keep
1686 // track of input sections for an Output_section.  Instead, each
1687 // Object keeps track of the Output_section for each of its input
1688 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1689 // track of input sections here; this is used when SECTIONS appears in
1690 // a linker script.
1691
1692 template<int size, bool big_endian>
1693 off_t
1694 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1695                                   unsigned int shndx,
1696                                   const char* secname,
1697                                   const elfcpp::Shdr<size, big_endian>& shdr,
1698                                   unsigned int reloc_shndx,
1699                                   bool have_sections_script)
1700 {
1701   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1702   if ((addralign & (addralign - 1)) != 0)
1703     {
1704       object->error(_("invalid alignment %lu for section \"%s\""),
1705                     static_cast<unsigned long>(addralign), secname);
1706       addralign = 1;
1707     }
1708
1709   if (addralign > this->addralign_)
1710     this->addralign_ = addralign;
1711
1712   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1713   this->flags_ |= (sh_flags
1714                    & (elfcpp::SHF_WRITE
1715                       | elfcpp::SHF_ALLOC
1716                       | elfcpp::SHF_EXECINSTR));
1717
1718   uint64_t entsize = shdr.get_sh_entsize();
1719
1720   // .debug_str is a mergeable string section, but is not always so
1721   // marked by compilers.  Mark manually here so we can optimize.
1722   if (strcmp(secname, ".debug_str") == 0)
1723     {
1724       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1725       entsize = 1;
1726     }
1727
1728   // If this is a SHF_MERGE section, we pass all the input sections to
1729   // a Output_data_merge.  We don't try to handle relocations for such
1730   // a section.
1731   if ((sh_flags & elfcpp::SHF_MERGE) != 0
1732       && reloc_shndx == 0)
1733     {
1734       if (this->add_merge_input_section(object, shndx, sh_flags,
1735                                         entsize, addralign))
1736         {
1737           // Tell the relocation routines that they need to call the
1738           // output_offset method to determine the final address.
1739           return -1;
1740         }
1741     }
1742
1743   off_t offset_in_section = this->current_data_size_for_child();
1744   off_t aligned_offset_in_section = align_address(offset_in_section,
1745                                                   addralign);
1746
1747   if (aligned_offset_in_section > offset_in_section
1748       && !have_sections_script
1749       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1750       && object->target()->has_code_fill())
1751     {
1752       // We need to add some fill data.  Using fill_list_ when
1753       // possible is an optimization, since we will often have fill
1754       // sections without input sections.
1755       off_t fill_len = aligned_offset_in_section - offset_in_section;
1756       if (this->input_sections_.empty())
1757         this->fills_.push_back(Fill(offset_in_section, fill_len));
1758       else
1759         {
1760           // FIXME: When relaxing, the size needs to adjust to
1761           // maintain a constant alignment.
1762           std::string fill_data(object->target()->code_fill(fill_len));
1763           Output_data_const* odc = new Output_data_const(fill_data, 1);
1764           this->input_sections_.push_back(Input_section(odc));
1765         }
1766     }
1767
1768   this->set_current_data_size_for_child(aligned_offset_in_section
1769                                         + shdr.get_sh_size());
1770
1771   // We need to keep track of this section if we are already keeping
1772   // track of sections, or if we are relaxing.  FIXME: Add test for
1773   // relaxing.
1774   if (have_sections_script || !this->input_sections_.empty())
1775     this->input_sections_.push_back(Input_section(object, shndx,
1776                                                   shdr.get_sh_size(),
1777                                                   addralign));
1778
1779   return aligned_offset_in_section;
1780 }
1781
1782 // Add arbitrary data to an output section.
1783
1784 void
1785 Output_section::add_output_section_data(Output_section_data* posd)
1786 {
1787   Input_section inp(posd);
1788   this->add_output_section_data(&inp);
1789
1790   if (posd->is_data_size_valid())
1791     {
1792       off_t offset_in_section = this->current_data_size_for_child();
1793       off_t aligned_offset_in_section = align_address(offset_in_section,
1794                                                       posd->addralign());
1795       this->set_current_data_size_for_child(aligned_offset_in_section
1796                                             + posd->data_size());
1797     }
1798 }
1799
1800 // Add arbitrary data to an output section by Input_section.
1801
1802 void
1803 Output_section::add_output_section_data(Input_section* inp)
1804 {
1805   if (this->input_sections_.empty())
1806     this->first_input_offset_ = this->current_data_size_for_child();
1807
1808   this->input_sections_.push_back(*inp);
1809
1810   uint64_t addralign = inp->addralign();
1811   if (addralign > this->addralign_)
1812     this->addralign_ = addralign;
1813
1814   inp->set_output_section(this);
1815 }
1816
1817 // Add a merge section to an output section.
1818
1819 void
1820 Output_section::add_output_merge_section(Output_section_data* posd,
1821                                          bool is_string, uint64_t entsize)
1822 {
1823   Input_section inp(posd, is_string, entsize);
1824   this->add_output_section_data(&inp);
1825 }
1826
1827 // Add an input section to a SHF_MERGE section.
1828
1829 bool
1830 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1831                                         uint64_t flags, uint64_t entsize,
1832                                         uint64_t addralign)
1833 {
1834   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1835
1836   // We only merge strings if the alignment is not more than the
1837   // character size.  This could be handled, but it's unusual.
1838   if (is_string && addralign > entsize)
1839     return false;
1840
1841   Input_section_list::iterator p;
1842   for (p = this->input_sections_.begin();
1843        p != this->input_sections_.end();
1844        ++p)
1845     if (p->is_merge_section(is_string, entsize, addralign))
1846       {
1847         p->add_input_section(object, shndx);
1848         return true;
1849       }
1850
1851   // We handle the actual constant merging in Output_merge_data or
1852   // Output_merge_string_data.
1853   Output_section_data* posd;
1854   if (!is_string)
1855     posd = new Output_merge_data(entsize, addralign);
1856   else
1857     {
1858       switch (entsize)
1859         {
1860         case 1:
1861           posd = new Output_merge_string<char>(addralign);
1862           break;
1863         case 2:
1864           posd = new Output_merge_string<uint16_t>(addralign);
1865           break;
1866         case 4:
1867           posd = new Output_merge_string<uint32_t>(addralign);
1868           break;
1869         default:
1870           return false;
1871         }
1872     }
1873
1874   this->add_output_merge_section(posd, is_string, entsize);
1875   posd->add_input_section(object, shndx);
1876
1877   return true;
1878 }
1879
1880 // Given an address OFFSET relative to the start of input section
1881 // SHNDX in OBJECT, return whether this address is being included in
1882 // the final link.  This should only be called if SHNDX in OBJECT has
1883 // a special mapping.
1884
1885 bool
1886 Output_section::is_input_address_mapped(const Relobj* object,
1887                                         unsigned int shndx,
1888                                         off_t offset) const
1889 {
1890   gold_assert(object->is_section_specially_mapped(shndx));
1891
1892   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1893        p != this->input_sections_.end();
1894        ++p)
1895     {
1896       section_offset_type output_offset;
1897       if (p->output_offset(object, shndx, offset, &output_offset))
1898         return output_offset != -1;
1899     }
1900
1901   // By default we assume that the address is mapped.  This should
1902   // only be called after we have passed all sections to Layout.  At
1903   // that point we should know what we are discarding.
1904   return true;
1905 }
1906
1907 // Given an address OFFSET relative to the start of input section
1908 // SHNDX in object OBJECT, return the output offset relative to the
1909 // start of the input section in the output section.  This should only
1910 // be called if SHNDX in OBJECT has a special mapping.
1911
1912 section_offset_type
1913 Output_section::output_offset(const Relobj* object, unsigned int shndx,
1914                               section_offset_type offset) const
1915 {
1916   gold_assert(object->is_section_specially_mapped(shndx));
1917   // This can only be called meaningfully when layout is complete.
1918   gold_assert(Output_data::is_layout_complete());
1919
1920   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1921        p != this->input_sections_.end();
1922        ++p)
1923     {
1924       section_offset_type output_offset;
1925       if (p->output_offset(object, shndx, offset, &output_offset))
1926         return output_offset;
1927     }
1928   gold_unreachable();
1929 }
1930
1931 // Return the output virtual address of OFFSET relative to the start
1932 // of input section SHNDX in object OBJECT.
1933
1934 uint64_t
1935 Output_section::output_address(const Relobj* object, unsigned int shndx,
1936                                off_t offset) const
1937 {
1938   gold_assert(object->is_section_specially_mapped(shndx));
1939
1940   uint64_t addr = this->address() + this->first_input_offset_;
1941   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1942        p != this->input_sections_.end();
1943        ++p)
1944     {
1945       addr = align_address(addr, p->addralign());
1946       section_offset_type output_offset;
1947       if (p->output_offset(object, shndx, offset, &output_offset))
1948         {
1949           if (output_offset == -1)
1950             return -1U;
1951           return addr + output_offset;
1952         }
1953       addr += p->data_size();
1954     }
1955
1956   // If we get here, it means that we don't know the mapping for this
1957   // input section.  This might happen in principle if
1958   // add_input_section were called before add_output_section_data.
1959   // But it should never actually happen.
1960
1961   gold_unreachable();
1962 }
1963
1964 // Return the output address of the start of the merged section for
1965 // input section SHNDX in object OBJECT.
1966
1967 uint64_t
1968 Output_section::starting_output_address(const Relobj* object,
1969                                         unsigned int shndx) const
1970 {
1971   gold_assert(object->is_section_specially_mapped(shndx));
1972
1973   uint64_t addr = this->address() + this->first_input_offset_;
1974   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1975        p != this->input_sections_.end();
1976        ++p)
1977     {
1978       addr = align_address(addr, p->addralign());
1979
1980       // It would be nice if we could use the existing output_offset
1981       // method to get the output offset of input offset 0.
1982       // Unfortunately we don't know for sure that input offset 0 is
1983       // mapped at all.
1984       if (p->is_merge_section_for(object, shndx))
1985         return addr;
1986
1987       addr += p->data_size();
1988     }
1989   gold_unreachable();
1990 }
1991
1992 // Set the data size of an Output_section.  This is where we handle
1993 // setting the addresses of any Output_section_data objects.
1994
1995 void
1996 Output_section::set_final_data_size()
1997 {
1998   if (this->input_sections_.empty())
1999     {
2000       this->set_data_size(this->current_data_size_for_child());
2001       return;
2002     }
2003
2004   uint64_t address = this->address();
2005   off_t startoff = this->offset();
2006   off_t off = startoff + this->first_input_offset_;
2007   for (Input_section_list::iterator p = this->input_sections_.begin();
2008        p != this->input_sections_.end();
2009        ++p)
2010     {
2011       off = align_address(off, p->addralign());
2012       p->set_address_and_file_offset(address + (off - startoff), off,
2013                                      startoff);
2014       off += p->data_size();
2015     }
2016
2017   this->set_data_size(off - startoff);
2018 }
2019
2020 // Reset the address and file offset.
2021
2022 void
2023 Output_section::do_reset_address_and_file_offset()
2024 {
2025   for (Input_section_list::iterator p = this->input_sections_.begin();
2026        p != this->input_sections_.end();
2027        ++p)
2028     p->reset_address_and_file_offset();
2029 }
2030
2031 // Set the TLS offset.  Called only for SHT_TLS sections.
2032
2033 void
2034 Output_section::do_set_tls_offset(uint64_t tls_base)
2035 {
2036   this->tls_offset_ = this->address() - tls_base;
2037 }
2038
2039 // Write the section header to *OSHDR.
2040
2041 template<int size, bool big_endian>
2042 void
2043 Output_section::write_header(const Layout* layout,
2044                              const Stringpool* secnamepool,
2045                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
2046 {
2047   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2048   oshdr->put_sh_type(this->type_);
2049
2050   elfcpp::Elf_Xword flags = this->flags_;
2051   if (this->info_section_ != NULL && this->info_uses_section_index_)
2052     flags |= elfcpp::SHF_INFO_LINK;
2053   oshdr->put_sh_flags(flags);
2054
2055   oshdr->put_sh_addr(this->address());
2056   oshdr->put_sh_offset(this->offset());
2057   oshdr->put_sh_size(this->data_size());
2058   if (this->link_section_ != NULL)
2059     oshdr->put_sh_link(this->link_section_->out_shndx());
2060   else if (this->should_link_to_symtab_)
2061     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2062   else if (this->should_link_to_dynsym_)
2063     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2064   else
2065     oshdr->put_sh_link(this->link_);
2066
2067   elfcpp::Elf_Word info;
2068   if (this->info_section_ != NULL)
2069     {
2070       if (this->info_uses_section_index_)
2071         info = this->info_section_->out_shndx();
2072       else
2073         info = this->info_section_->symtab_index();
2074     }
2075   else if (this->info_symndx_ != NULL)
2076     info = this->info_symndx_->symtab_index();
2077   else
2078     info = this->info_;
2079   oshdr->put_sh_info(info);
2080
2081   oshdr->put_sh_addralign(this->addralign_);
2082   oshdr->put_sh_entsize(this->entsize_);
2083 }
2084
2085 // Write out the data.  For input sections the data is written out by
2086 // Object::relocate, but we have to handle Output_section_data objects
2087 // here.
2088
2089 void
2090 Output_section::do_write(Output_file* of)
2091 {
2092   gold_assert(!this->requires_postprocessing());
2093
2094   off_t output_section_file_offset = this->offset();
2095   for (Fill_list::iterator p = this->fills_.begin();
2096        p != this->fills_.end();
2097        ++p)
2098     {
2099       std::string fill_data(parameters->target().code_fill(p->length()));
2100       of->write(output_section_file_offset + p->section_offset(),
2101                 fill_data.data(), fill_data.size());
2102     }
2103
2104   for (Input_section_list::iterator p = this->input_sections_.begin();
2105        p != this->input_sections_.end();
2106        ++p)
2107     p->write(of);
2108 }
2109
2110 // If a section requires postprocessing, create the buffer to use.
2111
2112 void
2113 Output_section::create_postprocessing_buffer()
2114 {
2115   gold_assert(this->requires_postprocessing());
2116
2117   if (this->postprocessing_buffer_ != NULL)
2118     return;
2119
2120   if (!this->input_sections_.empty())
2121     {
2122       off_t off = this->first_input_offset_;
2123       for (Input_section_list::iterator p = this->input_sections_.begin();
2124            p != this->input_sections_.end();
2125            ++p)
2126         {
2127           off = align_address(off, p->addralign());
2128           p->finalize_data_size();
2129           off += p->data_size();
2130         }
2131       this->set_current_data_size_for_child(off);
2132     }
2133
2134   off_t buffer_size = this->current_data_size_for_child();
2135   this->postprocessing_buffer_ = new unsigned char[buffer_size];
2136 }
2137
2138 // Write all the data of an Output_section into the postprocessing
2139 // buffer.  This is used for sections which require postprocessing,
2140 // such as compression.  Input sections are handled by
2141 // Object::Relocate.
2142
2143 void
2144 Output_section::write_to_postprocessing_buffer()
2145 {
2146   gold_assert(this->requires_postprocessing());
2147
2148   unsigned char* buffer = this->postprocessing_buffer();
2149   for (Fill_list::iterator p = this->fills_.begin();
2150        p != this->fills_.end();
2151        ++p)
2152     {
2153       std::string fill_data(parameters->target().code_fill(p->length()));
2154       memcpy(buffer + p->section_offset(), fill_data.data(),
2155              fill_data.size());
2156     }
2157
2158   off_t off = this->first_input_offset_;
2159   for (Input_section_list::iterator p = this->input_sections_.begin();
2160        p != this->input_sections_.end();
2161        ++p)
2162     {
2163       off = align_address(off, p->addralign());
2164       p->write_to_buffer(buffer + off);
2165       off += p->data_size();
2166     }
2167 }
2168
2169 // Get the input sections for linker script processing.  We leave
2170 // behind the Output_section_data entries.  Note that this may be
2171 // slightly incorrect for merge sections.  We will leave them behind,
2172 // but it is possible that the script says that they should follow
2173 // some other input sections, as in:
2174 //    .rodata { *(.rodata) *(.rodata.cst*) }
2175 // For that matter, we don't handle this correctly:
2176 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2177 // With luck this will never matter.
2178
2179 uint64_t
2180 Output_section::get_input_sections(
2181     uint64_t address,
2182     const std::string& fill,
2183     std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2184 {
2185   uint64_t orig_address = address;
2186
2187   address = align_address(address, this->addralign());
2188
2189   Input_section_list remaining;
2190   for (Input_section_list::iterator p = this->input_sections_.begin();
2191        p != this->input_sections_.end();
2192        ++p)
2193     {
2194       if (p->is_input_section())
2195         input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2196       else
2197         {
2198           uint64_t aligned_address = align_address(address, p->addralign());
2199           if (aligned_address != address && !fill.empty())
2200             {
2201               section_size_type length =
2202                 convert_to_section_size_type(aligned_address - address);
2203               std::string this_fill;
2204               this_fill.reserve(length);
2205               while (this_fill.length() + fill.length() <= length)
2206                 this_fill += fill;
2207               if (this_fill.length() < length)
2208                 this_fill.append(fill, 0, length - this_fill.length());
2209
2210               Output_section_data* posd = new Output_data_const(this_fill, 0);
2211               remaining.push_back(Input_section(posd));
2212             }
2213           address = aligned_address;
2214
2215           remaining.push_back(*p);
2216
2217           p->finalize_data_size();
2218           address += p->data_size();
2219         }
2220     }
2221
2222   this->input_sections_.swap(remaining);
2223   this->first_input_offset_ = 0;
2224
2225   uint64_t data_size = address - orig_address;
2226   this->set_current_data_size_for_child(data_size);
2227   return data_size;
2228 }
2229
2230 // Add an input section from a script.
2231
2232 void
2233 Output_section::add_input_section_for_script(Relobj* object,
2234                                              unsigned int shndx,
2235                                              off_t data_size,
2236                                              uint64_t addralign)
2237 {
2238   if (addralign > this->addralign_)
2239     this->addralign_ = addralign;
2240
2241   off_t offset_in_section = this->current_data_size_for_child();
2242   off_t aligned_offset_in_section = align_address(offset_in_section,
2243                                                   addralign);
2244
2245   this->set_current_data_size_for_child(aligned_offset_in_section
2246                                         + data_size);
2247
2248   this->input_sections_.push_back(Input_section(object, shndx,
2249                                                 data_size, addralign));
2250 }
2251
2252 // Print stats for merge sections to stderr.
2253
2254 void
2255 Output_section::print_merge_stats()
2256 {
2257   Input_section_list::iterator p;
2258   for (p = this->input_sections_.begin();
2259        p != this->input_sections_.end();
2260        ++p)
2261     p->print_merge_stats(this->name_);
2262 }
2263
2264 // Output segment methods.
2265
2266 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2267   : output_data_(),
2268     output_bss_(),
2269     vaddr_(0),
2270     paddr_(0),
2271     memsz_(0),
2272     max_align_(0),
2273     min_p_align_(0),
2274     offset_(0),
2275     filesz_(0),
2276     type_(type),
2277     flags_(flags),
2278     is_max_align_known_(false),
2279     are_addresses_set_(false)
2280 {
2281 }
2282
2283 // Add an Output_section to an Output_segment.
2284
2285 void
2286 Output_segment::add_output_section(Output_section* os,
2287                                    elfcpp::Elf_Word seg_flags,
2288                                    bool front)
2289 {
2290   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2291   gold_assert(!this->is_max_align_known_);
2292
2293   // Update the segment flags.
2294   this->flags_ |= seg_flags;
2295
2296   Output_segment::Output_data_list* pdl;
2297   if (os->type() == elfcpp::SHT_NOBITS)
2298     pdl = &this->output_bss_;
2299   else
2300     pdl = &this->output_data_;
2301
2302   // So that PT_NOTE segments will work correctly, we need to ensure
2303   // that all SHT_NOTE sections are adjacent.  This will normally
2304   // happen automatically, because all the SHT_NOTE input sections
2305   // will wind up in the same output section.  However, it is possible
2306   // for multiple SHT_NOTE input sections to have different section
2307   // flags, and thus be in different output sections, but for the
2308   // different section flags to map into the same segment flags and
2309   // thus the same output segment.
2310
2311   // Note that while there may be many input sections in an output
2312   // section, there are normally only a few output sections in an
2313   // output segment.  This loop is expected to be fast.
2314
2315   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2316     {
2317       Output_segment::Output_data_list::iterator p = pdl->end();
2318       do
2319         {
2320           --p;
2321           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2322             {
2323               // We don't worry about the FRONT parameter.
2324               ++p;
2325               pdl->insert(p, os);
2326               return;
2327             }
2328         }
2329       while (p != pdl->begin());
2330     }
2331
2332   // Similarly, so that PT_TLS segments will work, we need to group
2333   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
2334   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2335   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
2336   // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
2337   // and the PT_TLS segment -- we do this grouping only for the
2338   // PT_LOAD segment.
2339   if (this->type_ != elfcpp::PT_TLS
2340       && (os->flags() & elfcpp::SHF_TLS) != 0
2341       && !this->output_data_.empty())
2342     {
2343       pdl = &this->output_data_;
2344       bool nobits = os->type() == elfcpp::SHT_NOBITS;
2345       bool sawtls = false;
2346       Output_segment::Output_data_list::iterator p = pdl->end();
2347       do
2348         {
2349           --p;
2350           bool insert;
2351           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2352             {
2353               sawtls = true;
2354               // Put a NOBITS section after the first TLS section.
2355               // But a PROGBITS section after the first TLS/PROGBITS
2356               // section.
2357               insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2358             }
2359           else
2360             {
2361               // If we've gone past the TLS sections, but we've seen a
2362               // TLS section, then we need to insert this section now.
2363               insert = sawtls;
2364             }
2365
2366           if (insert)
2367             {
2368               // We don't worry about the FRONT parameter.
2369               ++p;
2370               pdl->insert(p, os);
2371               return;
2372             }
2373         }
2374       while (p != pdl->begin());
2375
2376       // There are no TLS sections yet; put this one at the requested
2377       // location in the section list.
2378     }
2379
2380   if (front)
2381     pdl->push_front(os);
2382   else
2383     pdl->push_back(os);
2384 }
2385
2386 // Remove an Output_section from this segment.  It is an error if it
2387 // is not present.
2388
2389 void
2390 Output_segment::remove_output_section(Output_section* os)
2391 {
2392   // We only need this for SHT_PROGBITS.
2393   gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2394   for (Output_data_list::iterator p = this->output_data_.begin();
2395        p != this->output_data_.end();
2396        ++p)
2397    {
2398      if (*p == os)
2399        {
2400          this->output_data_.erase(p);
2401          return;
2402        }
2403    }
2404   gold_unreachable();
2405 }
2406
2407 // Add an Output_data (which is not an Output_section) to the start of
2408 // a segment.
2409
2410 void
2411 Output_segment::add_initial_output_data(Output_data* od)
2412 {
2413   gold_assert(!this->is_max_align_known_);
2414   this->output_data_.push_front(od);
2415 }
2416
2417 // Return the maximum alignment of the Output_data in Output_segment.
2418
2419 uint64_t
2420 Output_segment::maximum_alignment()
2421 {
2422   if (!this->is_max_align_known_)
2423     {
2424       uint64_t addralign;
2425
2426       addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2427       if (addralign > this->max_align_)
2428         this->max_align_ = addralign;
2429
2430       addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2431       if (addralign > this->max_align_)
2432         this->max_align_ = addralign;
2433
2434       this->is_max_align_known_ = true;
2435     }
2436
2437   return this->max_align_;
2438 }
2439
2440 // Return the maximum alignment of a list of Output_data.
2441
2442 uint64_t
2443 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2444 {
2445   uint64_t ret = 0;
2446   for (Output_data_list::const_iterator p = pdl->begin();
2447        p != pdl->end();
2448        ++p)
2449     {
2450       uint64_t addralign = (*p)->addralign();
2451       if (addralign > ret)
2452         ret = addralign;
2453     }
2454   return ret;
2455 }
2456
2457 // Return the number of dynamic relocs applied to this segment.
2458
2459 unsigned int
2460 Output_segment::dynamic_reloc_count() const
2461 {
2462   return (this->dynamic_reloc_count_list(&this->output_data_)
2463           + this->dynamic_reloc_count_list(&this->output_bss_));
2464 }
2465
2466 // Return the number of dynamic relocs applied to an Output_data_list.
2467
2468 unsigned int
2469 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2470 {
2471   unsigned int count = 0;
2472   for (Output_data_list::const_iterator p = pdl->begin();
2473        p != pdl->end();
2474        ++p)
2475     count += (*p)->dynamic_reloc_count();
2476   return count;
2477 }
2478
2479 // Set the section addresses for an Output_segment.  If RESET is true,
2480 // reset the addresses first.  ADDR is the address and *POFF is the
2481 // file offset.  Set the section indexes starting with *PSHNDX.
2482 // Return the address of the immediately following segment.  Update
2483 // *POFF and *PSHNDX.
2484
2485 uint64_t
2486 Output_segment::set_section_addresses(bool reset, uint64_t addr, off_t* poff,
2487                                       unsigned int* pshndx)
2488 {
2489   gold_assert(this->type_ == elfcpp::PT_LOAD);
2490
2491   if (!reset && this->are_addresses_set_)
2492     {
2493       gold_assert(this->paddr_ == addr);
2494       addr = this->vaddr_;
2495     }
2496   else
2497     {
2498       this->vaddr_ = addr;
2499       this->paddr_ = addr;
2500       this->are_addresses_set_ = true;
2501     }
2502
2503   off_t orig_off = *poff;
2504   this->offset_ = orig_off;
2505
2506   addr = this->set_section_list_addresses(reset, &this->output_data_,
2507                                           addr, poff, pshndx);
2508   this->filesz_ = *poff - orig_off;
2509
2510   off_t off = *poff;
2511
2512   uint64_t ret = this->set_section_list_addresses(reset, &this->output_bss_,
2513                                                   addr, poff, pshndx);
2514   this->memsz_ = *poff - orig_off;
2515
2516   // Ignore the file offset adjustments made by the BSS Output_data
2517   // objects.
2518   *poff = off;
2519
2520   return ret;
2521 }
2522
2523 // Set the addresses and file offsets in a list of Output_data
2524 // structures.
2525
2526 uint64_t
2527 Output_segment::set_section_list_addresses(bool reset, Output_data_list* pdl,
2528                                            uint64_t addr, off_t* poff,
2529                                            unsigned int* pshndx)
2530 {
2531   off_t startoff = *poff;
2532
2533   off_t off = startoff;
2534   for (Output_data_list::iterator p = pdl->begin();
2535        p != pdl->end();
2536        ++p)
2537     {
2538       if (reset)
2539         (*p)->reset_address_and_file_offset();
2540
2541       // When using a linker script the section will most likely
2542       // already have an address.
2543       if (!(*p)->is_address_valid())
2544         {
2545           off = align_address(off, (*p)->addralign());
2546           (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2547         }
2548       else
2549         {
2550           // The script may have inserted a skip forward, but it
2551           // better not have moved backward.
2552           gold_assert((*p)->address() >= addr + (off - startoff));
2553           off += (*p)->address() - (addr + (off - startoff));
2554           (*p)->set_file_offset(off);
2555           (*p)->finalize_data_size();
2556         }
2557
2558       // Unless this is a PT_TLS segment, we want to ignore the size
2559       // of a SHF_TLS/SHT_NOBITS section.  Such a section does not
2560       // affect the size of a PT_LOAD segment.
2561       if (this->type_ == elfcpp::PT_TLS
2562           || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2563           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2564         off += (*p)->data_size();
2565
2566       if ((*p)->is_section())
2567         {
2568           (*p)->set_out_shndx(*pshndx);
2569           ++*pshndx;
2570         }
2571     }
2572
2573   *poff = off;
2574   return addr + (off - startoff);
2575 }
2576
2577 // For a non-PT_LOAD segment, set the offset from the sections, if
2578 // any.
2579
2580 void
2581 Output_segment::set_offset()
2582 {
2583   gold_assert(this->type_ != elfcpp::PT_LOAD);
2584
2585   gold_assert(!this->are_addresses_set_);
2586
2587   if (this->output_data_.empty() && this->output_bss_.empty())
2588     {
2589       this->vaddr_ = 0;
2590       this->paddr_ = 0;
2591       this->are_addresses_set_ = true;
2592       this->memsz_ = 0;
2593       this->min_p_align_ = 0;
2594       this->offset_ = 0;
2595       this->filesz_ = 0;
2596       return;
2597     }
2598
2599   const Output_data* first;
2600   if (this->output_data_.empty())
2601     first = this->output_bss_.front();
2602   else
2603     first = this->output_data_.front();
2604   this->vaddr_ = first->address();
2605   this->paddr_ = (first->has_load_address()
2606                   ? first->load_address()
2607                   : this->vaddr_);
2608   this->are_addresses_set_ = true;
2609   this->offset_ = first->offset();
2610
2611   if (this->output_data_.empty())
2612     this->filesz_ = 0;
2613   else
2614     {
2615       const Output_data* last_data = this->output_data_.back();
2616       this->filesz_ = (last_data->address()
2617                        + last_data->data_size()
2618                        - this->vaddr_);
2619     }
2620
2621   const Output_data* last;
2622   if (this->output_bss_.empty())
2623     last = this->output_data_.back();
2624   else
2625     last = this->output_bss_.back();
2626   this->memsz_ = (last->address()
2627                   + last->data_size()
2628                   - this->vaddr_);
2629 }
2630
2631 // Set the TLS offsets of the sections in the PT_TLS segment.
2632
2633 void
2634 Output_segment::set_tls_offsets()
2635 {
2636   gold_assert(this->type_ == elfcpp::PT_TLS);
2637
2638   for (Output_data_list::iterator p = this->output_data_.begin();
2639        p != this->output_data_.end();
2640        ++p)
2641     (*p)->set_tls_offset(this->vaddr_);
2642
2643   for (Output_data_list::iterator p = this->output_bss_.begin();
2644        p != this->output_bss_.end();
2645        ++p)
2646     (*p)->set_tls_offset(this->vaddr_);
2647 }
2648
2649 // Return the address of the first section.
2650
2651 uint64_t
2652 Output_segment::first_section_load_address() const
2653 {
2654   for (Output_data_list::const_iterator p = this->output_data_.begin();
2655        p != this->output_data_.end();
2656        ++p)
2657     if ((*p)->is_section())
2658       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2659
2660   for (Output_data_list::const_iterator p = this->output_bss_.begin();
2661        p != this->output_bss_.end();
2662        ++p)
2663     if ((*p)->is_section())
2664       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2665
2666   gold_unreachable();
2667 }
2668
2669 // Return the number of Output_sections in an Output_segment.
2670
2671 unsigned int
2672 Output_segment::output_section_count() const
2673 {
2674   return (this->output_section_count_list(&this->output_data_)
2675           + this->output_section_count_list(&this->output_bss_));
2676 }
2677
2678 // Return the number of Output_sections in an Output_data_list.
2679
2680 unsigned int
2681 Output_segment::output_section_count_list(const Output_data_list* pdl) const
2682 {
2683   unsigned int count = 0;
2684   for (Output_data_list::const_iterator p = pdl->begin();
2685        p != pdl->end();
2686        ++p)
2687     {
2688       if ((*p)->is_section())
2689         ++count;
2690     }
2691   return count;
2692 }
2693
2694 // Return the section attached to the list segment with the lowest
2695 // load address.  This is used when handling a PHDRS clause in a
2696 // linker script.
2697
2698 Output_section*
2699 Output_segment::section_with_lowest_load_address() const
2700 {
2701   Output_section* found = NULL;
2702   uint64_t found_lma = 0;
2703   this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
2704
2705   Output_section* found_data = found;
2706   this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
2707   if (found != found_data && found_data != NULL)
2708     {
2709       gold_error(_("nobits section %s may not precede progbits section %s "
2710                    "in same segment"),
2711                  found->name(), found_data->name());
2712       return NULL;
2713     }
2714
2715   return found;
2716 }
2717
2718 // Look through a list for a section with a lower load address.
2719
2720 void
2721 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
2722                                             Output_section** found,
2723                                             uint64_t* found_lma) const
2724 {
2725   for (Output_data_list::const_iterator p = pdl->begin();
2726        p != pdl->end();
2727        ++p)
2728     {
2729       if (!(*p)->is_section())
2730         continue;
2731       Output_section* os = static_cast<Output_section*>(*p);
2732       uint64_t lma = (os->has_load_address()
2733                       ? os->load_address()
2734                       : os->address());
2735       if (*found == NULL || lma < *found_lma)
2736         {
2737           *found = os;
2738           *found_lma = lma;
2739         }
2740     }
2741 }
2742
2743 // Write the segment data into *OPHDR.
2744
2745 template<int size, bool big_endian>
2746 void
2747 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
2748 {
2749   ophdr->put_p_type(this->type_);
2750   ophdr->put_p_offset(this->offset_);
2751   ophdr->put_p_vaddr(this->vaddr_);
2752   ophdr->put_p_paddr(this->paddr_);
2753   ophdr->put_p_filesz(this->filesz_);
2754   ophdr->put_p_memsz(this->memsz_);
2755   ophdr->put_p_flags(this->flags_);
2756   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
2757 }
2758
2759 // Write the section headers into V.
2760
2761 template<int size, bool big_endian>
2762 unsigned char*
2763 Output_segment::write_section_headers(const Layout* layout,
2764                                       const Stringpool* secnamepool,
2765                                       unsigned char* v,
2766                                       unsigned int *pshndx) const
2767 {
2768   // Every section that is attached to a segment must be attached to a
2769   // PT_LOAD segment, so we only write out section headers for PT_LOAD
2770   // segments.
2771   if (this->type_ != elfcpp::PT_LOAD)
2772     return v;
2773
2774   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
2775                                                          &this->output_data_,
2776                                                          v, pshndx);
2777   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
2778                                                          &this->output_bss_,
2779                                                          v, pshndx);
2780   return v;
2781 }
2782
2783 template<int size, bool big_endian>
2784 unsigned char*
2785 Output_segment::write_section_headers_list(const Layout* layout,
2786                                            const Stringpool* secnamepool,
2787                                            const Output_data_list* pdl,
2788                                            unsigned char* v,
2789                                            unsigned int* pshndx) const
2790 {
2791   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2792   for (Output_data_list::const_iterator p = pdl->begin();
2793        p != pdl->end();
2794        ++p)
2795     {
2796       if ((*p)->is_section())
2797         {
2798           const Output_section* ps = static_cast<const Output_section*>(*p);
2799           gold_assert(*pshndx == ps->out_shndx());
2800           elfcpp::Shdr_write<size, big_endian> oshdr(v);
2801           ps->write_header(layout, secnamepool, &oshdr);
2802           v += shdr_size;
2803           ++*pshndx;
2804         }
2805     }
2806   return v;
2807 }
2808
2809 // Output_file methods.
2810
2811 Output_file::Output_file(const char* name)
2812   : name_(name),
2813     o_(-1),
2814     file_size_(0),
2815     base_(NULL),
2816     map_is_anonymous_(false),
2817     is_temporary_(false)
2818 {
2819 }
2820
2821 // Open the output file.
2822
2823 void
2824 Output_file::open(off_t file_size)
2825 {
2826   this->file_size_ = file_size;
2827
2828   // Unlink the file first; otherwise the open() may fail if the file
2829   // is busy (e.g. it's an executable that's currently being executed).
2830   //
2831   // However, the linker may be part of a system where a zero-length
2832   // file is created for it to write to, with tight permissions (gcc
2833   // 2.95 did something like this).  Unlinking the file would work
2834   // around those permission controls, so we only unlink if the file
2835   // has a non-zero size.  We also unlink only regular files to avoid
2836   // trouble with directories/etc.
2837   //
2838   // If we fail, continue; this command is merely a best-effort attempt
2839   // to improve the odds for open().
2840
2841   // We let the name "-" mean "stdout"
2842   if (!this->is_temporary_)
2843     {
2844       if (strcmp(this->name_, "-") == 0)
2845         this->o_ = STDOUT_FILENO;
2846       else
2847         {
2848           struct stat s;
2849           if (::stat(this->name_, &s) == 0 && s.st_size != 0)
2850             unlink_if_ordinary(this->name_);
2851
2852           int mode = parameters->options().relocatable() ? 0666 : 0777;
2853           int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
2854           if (o < 0)
2855             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
2856           this->o_ = o;
2857         }
2858     }
2859
2860   this->map();
2861 }
2862
2863 // Resize the output file.
2864
2865 void
2866 Output_file::resize(off_t file_size)
2867 {
2868   // If the mmap is mapping an anonymous memory buffer, this is easy:
2869   // just mremap to the new size.  If it's mapping to a file, we want
2870   // to unmap to flush to the file, then remap after growing the file.
2871   if (this->map_is_anonymous_)
2872     {
2873       void* base = ::mremap(this->base_, this->file_size_, file_size,
2874                             MREMAP_MAYMOVE);
2875       if (base == MAP_FAILED)
2876         gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
2877       this->base_ = static_cast<unsigned char*>(base);
2878       this->file_size_ = file_size;
2879     }
2880   else
2881     {
2882       this->unmap();
2883       this->file_size_ = file_size;
2884       this->map();
2885     }
2886 }
2887
2888 // Map the file into memory.
2889
2890 void
2891 Output_file::map()
2892 {
2893   const int o = this->o_;
2894
2895   // If the output file is not a regular file, don't try to mmap it;
2896   // instead, we'll mmap a block of memory (an anonymous buffer), and
2897   // then later write the buffer to the file.
2898   void* base;
2899   struct stat statbuf;
2900   if (o == STDOUT_FILENO || o == STDERR_FILENO
2901       || ::fstat(o, &statbuf) != 0
2902       || !S_ISREG(statbuf.st_mode)
2903       || this->is_temporary_)
2904     {
2905       this->map_is_anonymous_ = true;
2906       base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2907                     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2908     }
2909   else
2910     {
2911       // Write out one byte to make the file the right size.
2912       if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
2913         gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
2914       char b = 0;
2915       if (::write(o, &b, 1) != 1)
2916         gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
2917
2918       // Map the file into memory.
2919       this->map_is_anonymous_ = false;
2920       base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2921                     MAP_SHARED, o, 0);
2922     }
2923   if (base == MAP_FAILED)
2924     gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
2925   this->base_ = static_cast<unsigned char*>(base);
2926 }
2927
2928 // Unmap the file from memory.
2929
2930 void
2931 Output_file::unmap()
2932 {
2933   if (::munmap(this->base_, this->file_size_) < 0)
2934     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
2935   this->base_ = NULL;
2936 }
2937
2938 // Close the output file.
2939
2940 void
2941 Output_file::close()
2942 {
2943   // If the map isn't file-backed, we need to write it now.
2944   if (this->map_is_anonymous_ && !this->is_temporary_)
2945     {
2946       size_t bytes_to_write = this->file_size_;
2947       while (bytes_to_write > 0)
2948         {
2949           ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
2950           if (bytes_written == 0)
2951             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
2952           else if (bytes_written < 0)
2953             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
2954           else
2955             bytes_to_write -= bytes_written;
2956         }
2957     }
2958   this->unmap();
2959
2960   // We don't close stdout or stderr
2961   if (this->o_ != STDOUT_FILENO
2962       && this->o_ != STDERR_FILENO
2963       && !this->is_temporary_)
2964     if (::close(this->o_) < 0)
2965       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
2966   this->o_ = -1;
2967 }
2968
2969 // Instantiate the templates we need.  We could use the configure
2970 // script to restrict this to only the ones for implemented targets.
2971
2972 #ifdef HAVE_TARGET_32_LITTLE
2973 template
2974 off_t
2975 Output_section::add_input_section<32, false>(
2976     Sized_relobj<32, false>* object,
2977     unsigned int shndx,
2978     const char* secname,
2979     const elfcpp::Shdr<32, false>& shdr,
2980     unsigned int reloc_shndx,
2981     bool have_sections_script);
2982 #endif
2983
2984 #ifdef HAVE_TARGET_32_BIG
2985 template
2986 off_t
2987 Output_section::add_input_section<32, true>(
2988     Sized_relobj<32, true>* object,
2989     unsigned int shndx,
2990     const char* secname,
2991     const elfcpp::Shdr<32, true>& shdr,
2992     unsigned int reloc_shndx,
2993     bool have_sections_script);
2994 #endif
2995
2996 #ifdef HAVE_TARGET_64_LITTLE
2997 template
2998 off_t
2999 Output_section::add_input_section<64, false>(
3000     Sized_relobj<64, false>* object,
3001     unsigned int shndx,
3002     const char* secname,
3003     const elfcpp::Shdr<64, false>& shdr,
3004     unsigned int reloc_shndx,
3005     bool have_sections_script);
3006 #endif
3007
3008 #ifdef HAVE_TARGET_64_BIG
3009 template
3010 off_t
3011 Output_section::add_input_section<64, true>(
3012     Sized_relobj<64, true>* object,
3013     unsigned int shndx,
3014     const char* secname,
3015     const elfcpp::Shdr<64, true>& shdr,
3016     unsigned int reloc_shndx,
3017     bool have_sections_script);
3018 #endif
3019
3020 #ifdef HAVE_TARGET_32_LITTLE
3021 template
3022 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3023 #endif
3024
3025 #ifdef HAVE_TARGET_32_BIG
3026 template
3027 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3028 #endif
3029
3030 #ifdef HAVE_TARGET_64_LITTLE
3031 template
3032 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3033 #endif
3034
3035 #ifdef HAVE_TARGET_64_BIG
3036 template
3037 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3038 #endif
3039
3040 #ifdef HAVE_TARGET_32_LITTLE
3041 template
3042 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3043 #endif
3044
3045 #ifdef HAVE_TARGET_32_BIG
3046 template
3047 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3048 #endif
3049
3050 #ifdef HAVE_TARGET_64_LITTLE
3051 template
3052 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3053 #endif
3054
3055 #ifdef HAVE_TARGET_64_BIG
3056 template
3057 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3058 #endif
3059
3060 #ifdef HAVE_TARGET_32_LITTLE
3061 template
3062 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3063 #endif
3064
3065 #ifdef HAVE_TARGET_32_BIG
3066 template
3067 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3068 #endif
3069
3070 #ifdef HAVE_TARGET_64_LITTLE
3071 template
3072 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3073 #endif
3074
3075 #ifdef HAVE_TARGET_64_BIG
3076 template
3077 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3078 #endif
3079
3080 #ifdef HAVE_TARGET_32_LITTLE
3081 template
3082 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3083 #endif
3084
3085 #ifdef HAVE_TARGET_32_BIG
3086 template
3087 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3088 #endif
3089
3090 #ifdef HAVE_TARGET_64_LITTLE
3091 template
3092 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3093 #endif
3094
3095 #ifdef HAVE_TARGET_64_BIG
3096 template
3097 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3098 #endif
3099
3100 #ifdef HAVE_TARGET_32_LITTLE
3101 template
3102 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3103 #endif
3104
3105 #ifdef HAVE_TARGET_32_BIG
3106 template
3107 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3108 #endif
3109
3110 #ifdef HAVE_TARGET_64_LITTLE
3111 template
3112 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3113 #endif
3114
3115 #ifdef HAVE_TARGET_64_BIG
3116 template
3117 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3118 #endif
3119
3120 #ifdef HAVE_TARGET_32_LITTLE
3121 template
3122 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3123 #endif
3124
3125 #ifdef HAVE_TARGET_32_BIG
3126 template
3127 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3128 #endif
3129
3130 #ifdef HAVE_TARGET_64_LITTLE
3131 template
3132 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3133 #endif
3134
3135 #ifdef HAVE_TARGET_64_BIG
3136 template
3137 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3138 #endif
3139
3140 #ifdef HAVE_TARGET_32_LITTLE
3141 template
3142 class Output_data_group<32, false>;
3143 #endif
3144
3145 #ifdef HAVE_TARGET_32_BIG
3146 template
3147 class Output_data_group<32, true>;
3148 #endif
3149
3150 #ifdef HAVE_TARGET_64_LITTLE
3151 template
3152 class Output_data_group<64, false>;
3153 #endif
3154
3155 #ifdef HAVE_TARGET_64_BIG
3156 template
3157 class Output_data_group<64, true>;
3158 #endif
3159
3160 #ifdef HAVE_TARGET_32_LITTLE
3161 template
3162 class Output_data_got<32, false>;
3163 #endif
3164
3165 #ifdef HAVE_TARGET_32_BIG
3166 template
3167 class Output_data_got<32, true>;
3168 #endif
3169
3170 #ifdef HAVE_TARGET_64_LITTLE
3171 template
3172 class Output_data_got<64, false>;
3173 #endif
3174
3175 #ifdef HAVE_TARGET_64_BIG
3176 template
3177 class Output_data_got<64, true>;
3178 #endif
3179
3180 } // End namespace gold.