* output.cc (posix_fallocate): Return 0 on success, errno on failure.
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 #  define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 #  define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 #  define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 #  define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 #  define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 #  define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80   errno = ENOSYS;
81   return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87   errno = ENOSYS;
88   return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94   errno = ENOSYS;
95   return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS  MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 #ifndef HAVE_POSIX_FALLOCATE
115 // A dummy, non general, version of posix_fallocate.  Here we just set
116 // the file size and hope that there is enough disk space.  FIXME: We
117 // could allocate disk space by walking block by block and writing a
118 // zero byte into each block.
119 static int
120 posix_fallocate(int o, off_t offset, off_t len)
121 {
122   if (ftruncate(o, offset + len) < 0)
123     return errno;
124   return 0;
125 }
126 #endif // !defined(HAVE_POSIX_FALLOCATE)
127
128 // Mingw does not have S_ISLNK.
129 #ifndef S_ISLNK
130 # define S_ISLNK(mode) 0
131 #endif
132
133 namespace gold
134 {
135
136 // Output_data variables.
137
138 bool Output_data::allocated_sizes_are_fixed;
139
140 // Output_data methods.
141
142 Output_data::~Output_data()
143 {
144 }
145
146 // Return the default alignment for the target size.
147
148 uint64_t
149 Output_data::default_alignment()
150 {
151   return Output_data::default_alignment_for_size(
152       parameters->target().get_size());
153 }
154
155 // Return the default alignment for a size--32 or 64.
156
157 uint64_t
158 Output_data::default_alignment_for_size(int size)
159 {
160   if (size == 32)
161     return 4;
162   else if (size == 64)
163     return 8;
164   else
165     gold_unreachable();
166 }
167
168 // Output_section_header methods.  This currently assumes that the
169 // segment and section lists are complete at construction time.
170
171 Output_section_headers::Output_section_headers(
172     const Layout* layout,
173     const Layout::Segment_list* segment_list,
174     const Layout::Section_list* section_list,
175     const Layout::Section_list* unattached_section_list,
176     const Stringpool* secnamepool,
177     const Output_section* shstrtab_section)
178   : layout_(layout),
179     segment_list_(segment_list),
180     section_list_(section_list),
181     unattached_section_list_(unattached_section_list),
182     secnamepool_(secnamepool),
183     shstrtab_section_(shstrtab_section)
184 {
185 }
186
187 // Compute the current data size.
188
189 off_t
190 Output_section_headers::do_size() const
191 {
192   // Count all the sections.  Start with 1 for the null section.
193   off_t count = 1;
194   if (!parameters->options().relocatable())
195     {
196       for (Layout::Segment_list::const_iterator p =
197              this->segment_list_->begin();
198            p != this->segment_list_->end();
199            ++p)
200         if ((*p)->type() == elfcpp::PT_LOAD)
201           count += (*p)->output_section_count();
202     }
203   else
204     {
205       for (Layout::Section_list::const_iterator p =
206              this->section_list_->begin();
207            p != this->section_list_->end();
208            ++p)
209         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
210           ++count;
211     }
212   count += this->unattached_section_list_->size();
213
214   const int size = parameters->target().get_size();
215   int shdr_size;
216   if (size == 32)
217     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
218   else if (size == 64)
219     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
220   else
221     gold_unreachable();
222
223   return count * shdr_size;
224 }
225
226 // Write out the section headers.
227
228 void
229 Output_section_headers::do_write(Output_file* of)
230 {
231   switch (parameters->size_and_endianness())
232     {
233 #ifdef HAVE_TARGET_32_LITTLE
234     case Parameters::TARGET_32_LITTLE:
235       this->do_sized_write<32, false>(of);
236       break;
237 #endif
238 #ifdef HAVE_TARGET_32_BIG
239     case Parameters::TARGET_32_BIG:
240       this->do_sized_write<32, true>(of);
241       break;
242 #endif
243 #ifdef HAVE_TARGET_64_LITTLE
244     case Parameters::TARGET_64_LITTLE:
245       this->do_sized_write<64, false>(of);
246       break;
247 #endif
248 #ifdef HAVE_TARGET_64_BIG
249     case Parameters::TARGET_64_BIG:
250       this->do_sized_write<64, true>(of);
251       break;
252 #endif
253     default:
254       gold_unreachable();
255     }
256 }
257
258 template<int size, bool big_endian>
259 void
260 Output_section_headers::do_sized_write(Output_file* of)
261 {
262   off_t all_shdrs_size = this->data_size();
263   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
264
265   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
266   unsigned char* v = view;
267
268   {
269     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
270     oshdr.put_sh_name(0);
271     oshdr.put_sh_type(elfcpp::SHT_NULL);
272     oshdr.put_sh_flags(0);
273     oshdr.put_sh_addr(0);
274     oshdr.put_sh_offset(0);
275
276     size_t section_count = (this->data_size()
277                             / elfcpp::Elf_sizes<size>::shdr_size);
278     if (section_count < elfcpp::SHN_LORESERVE)
279       oshdr.put_sh_size(0);
280     else
281       oshdr.put_sh_size(section_count);
282
283     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
284     if (shstrndx < elfcpp::SHN_LORESERVE)
285       oshdr.put_sh_link(0);
286     else
287       oshdr.put_sh_link(shstrndx);
288
289     size_t segment_count = this->segment_list_->size();
290     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
291
292     oshdr.put_sh_addralign(0);
293     oshdr.put_sh_entsize(0);
294   }
295
296   v += shdr_size;
297
298   unsigned int shndx = 1;
299   if (!parameters->options().relocatable())
300     {
301       for (Layout::Segment_list::const_iterator p =
302              this->segment_list_->begin();
303            p != this->segment_list_->end();
304            ++p)
305         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
306                                                           this->secnamepool_,
307                                                           v,
308                                                           &shndx);
309     }
310   else
311     {
312       for (Layout::Section_list::const_iterator p =
313              this->section_list_->begin();
314            p != this->section_list_->end();
315            ++p)
316         {
317           // We do unallocated sections below, except that group
318           // sections have to come first.
319           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
320               && (*p)->type() != elfcpp::SHT_GROUP)
321             continue;
322           gold_assert(shndx == (*p)->out_shndx());
323           elfcpp::Shdr_write<size, big_endian> oshdr(v);
324           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
325           v += shdr_size;
326           ++shndx;
327         }
328     }
329
330   for (Layout::Section_list::const_iterator p =
331          this->unattached_section_list_->begin();
332        p != this->unattached_section_list_->end();
333        ++p)
334     {
335       // For a relocatable link, we did unallocated group sections
336       // above, since they have to come first.
337       if ((*p)->type() == elfcpp::SHT_GROUP
338           && parameters->options().relocatable())
339         continue;
340       gold_assert(shndx == (*p)->out_shndx());
341       elfcpp::Shdr_write<size, big_endian> oshdr(v);
342       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
343       v += shdr_size;
344       ++shndx;
345     }
346
347   of->write_output_view(this->offset(), all_shdrs_size, view);
348 }
349
350 // Output_segment_header methods.
351
352 Output_segment_headers::Output_segment_headers(
353     const Layout::Segment_list& segment_list)
354   : segment_list_(segment_list)
355 {
356   this->set_current_data_size_for_child(this->do_size());
357 }
358
359 void
360 Output_segment_headers::do_write(Output_file* of)
361 {
362   switch (parameters->size_and_endianness())
363     {
364 #ifdef HAVE_TARGET_32_LITTLE
365     case Parameters::TARGET_32_LITTLE:
366       this->do_sized_write<32, false>(of);
367       break;
368 #endif
369 #ifdef HAVE_TARGET_32_BIG
370     case Parameters::TARGET_32_BIG:
371       this->do_sized_write<32, true>(of);
372       break;
373 #endif
374 #ifdef HAVE_TARGET_64_LITTLE
375     case Parameters::TARGET_64_LITTLE:
376       this->do_sized_write<64, false>(of);
377       break;
378 #endif
379 #ifdef HAVE_TARGET_64_BIG
380     case Parameters::TARGET_64_BIG:
381       this->do_sized_write<64, true>(of);
382       break;
383 #endif
384     default:
385       gold_unreachable();
386     }
387 }
388
389 template<int size, bool big_endian>
390 void
391 Output_segment_headers::do_sized_write(Output_file* of)
392 {
393   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
394   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
395   gold_assert(all_phdrs_size == this->data_size());
396   unsigned char* view = of->get_output_view(this->offset(),
397                                             all_phdrs_size);
398   unsigned char* v = view;
399   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
400        p != this->segment_list_.end();
401        ++p)
402     {
403       elfcpp::Phdr_write<size, big_endian> ophdr(v);
404       (*p)->write_header(&ophdr);
405       v += phdr_size;
406     }
407
408   gold_assert(v - view == all_phdrs_size);
409
410   of->write_output_view(this->offset(), all_phdrs_size, view);
411 }
412
413 off_t
414 Output_segment_headers::do_size() const
415 {
416   const int size = parameters->target().get_size();
417   int phdr_size;
418   if (size == 32)
419     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
420   else if (size == 64)
421     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
422   else
423     gold_unreachable();
424
425   return this->segment_list_.size() * phdr_size;
426 }
427
428 // Output_file_header methods.
429
430 Output_file_header::Output_file_header(const Target* target,
431                                        const Symbol_table* symtab,
432                                        const Output_segment_headers* osh)
433   : target_(target),
434     symtab_(symtab),
435     segment_header_(osh),
436     section_header_(NULL),
437     shstrtab_(NULL)
438 {
439   this->set_data_size(this->do_size());
440 }
441
442 // Set the section table information for a file header.
443
444 void
445 Output_file_header::set_section_info(const Output_section_headers* shdrs,
446                                      const Output_section* shstrtab)
447 {
448   this->section_header_ = shdrs;
449   this->shstrtab_ = shstrtab;
450 }
451
452 // Write out the file header.
453
454 void
455 Output_file_header::do_write(Output_file* of)
456 {
457   gold_assert(this->offset() == 0);
458
459   switch (parameters->size_and_endianness())
460     {
461 #ifdef HAVE_TARGET_32_LITTLE
462     case Parameters::TARGET_32_LITTLE:
463       this->do_sized_write<32, false>(of);
464       break;
465 #endif
466 #ifdef HAVE_TARGET_32_BIG
467     case Parameters::TARGET_32_BIG:
468       this->do_sized_write<32, true>(of);
469       break;
470 #endif
471 #ifdef HAVE_TARGET_64_LITTLE
472     case Parameters::TARGET_64_LITTLE:
473       this->do_sized_write<64, false>(of);
474       break;
475 #endif
476 #ifdef HAVE_TARGET_64_BIG
477     case Parameters::TARGET_64_BIG:
478       this->do_sized_write<64, true>(of);
479       break;
480 #endif
481     default:
482       gold_unreachable();
483     }
484 }
485
486 // Write out the file header with appropriate size and endianness.
487
488 template<int size, bool big_endian>
489 void
490 Output_file_header::do_sized_write(Output_file* of)
491 {
492   gold_assert(this->offset() == 0);
493
494   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
495   unsigned char* view = of->get_output_view(0, ehdr_size);
496   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
497
498   unsigned char e_ident[elfcpp::EI_NIDENT];
499   memset(e_ident, 0, elfcpp::EI_NIDENT);
500   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
501   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
502   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
503   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
504   if (size == 32)
505     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
506   else if (size == 64)
507     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
508   else
509     gold_unreachable();
510   e_ident[elfcpp::EI_DATA] = (big_endian
511                               ? elfcpp::ELFDATA2MSB
512                               : elfcpp::ELFDATA2LSB);
513   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
514   oehdr.put_e_ident(e_ident);
515
516   elfcpp::ET e_type;
517   if (parameters->options().relocatable())
518     e_type = elfcpp::ET_REL;
519   else if (parameters->options().output_is_position_independent())
520     e_type = elfcpp::ET_DYN;
521   else
522     e_type = elfcpp::ET_EXEC;
523   oehdr.put_e_type(e_type);
524
525   oehdr.put_e_machine(this->target_->machine_code());
526   oehdr.put_e_version(elfcpp::EV_CURRENT);
527
528   oehdr.put_e_entry(this->entry<size>());
529
530   if (this->segment_header_ == NULL)
531     oehdr.put_e_phoff(0);
532   else
533     oehdr.put_e_phoff(this->segment_header_->offset());
534
535   oehdr.put_e_shoff(this->section_header_->offset());
536   oehdr.put_e_flags(this->target_->processor_specific_flags());
537   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
538
539   if (this->segment_header_ == NULL)
540     {
541       oehdr.put_e_phentsize(0);
542       oehdr.put_e_phnum(0);
543     }
544   else
545     {
546       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
547       size_t phnum = (this->segment_header_->data_size()
548                       / elfcpp::Elf_sizes<size>::phdr_size);
549       if (phnum > elfcpp::PN_XNUM)
550         phnum = elfcpp::PN_XNUM;
551       oehdr.put_e_phnum(phnum);
552     }
553
554   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
555   size_t section_count = (this->section_header_->data_size()
556                           / elfcpp::Elf_sizes<size>::shdr_size);
557
558   if (section_count < elfcpp::SHN_LORESERVE)
559     oehdr.put_e_shnum(this->section_header_->data_size()
560                       / elfcpp::Elf_sizes<size>::shdr_size);
561   else
562     oehdr.put_e_shnum(0);
563
564   unsigned int shstrndx = this->shstrtab_->out_shndx();
565   if (shstrndx < elfcpp::SHN_LORESERVE)
566     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
567   else
568     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
569
570   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
571   // the e_ident field.
572   parameters->target().adjust_elf_header(view, ehdr_size);
573
574   of->write_output_view(0, ehdr_size, view);
575 }
576
577 // Return the value to use for the entry address.
578
579 template<int size>
580 typename elfcpp::Elf_types<size>::Elf_Addr
581 Output_file_header::entry()
582 {
583   const bool should_issue_warning = (parameters->options().entry() != NULL
584                                      && !parameters->options().relocatable()
585                                      && !parameters->options().shared());
586   const char* entry = parameters->entry();
587   Symbol* sym = this->symtab_->lookup(entry);
588
589   typename Sized_symbol<size>::Value_type v;
590   if (sym != NULL)
591     {
592       Sized_symbol<size>* ssym;
593       ssym = this->symtab_->get_sized_symbol<size>(sym);
594       if (!ssym->is_defined() && should_issue_warning)
595         gold_warning("entry symbol '%s' exists but is not defined", entry);
596       v = ssym->value();
597     }
598   else
599     {
600       // We couldn't find the entry symbol.  See if we can parse it as
601       // a number.  This supports, e.g., -e 0x1000.
602       char* endptr;
603       v = strtoull(entry, &endptr, 0);
604       if (*endptr != '\0')
605         {
606           if (should_issue_warning)
607             gold_warning("cannot find entry symbol '%s'", entry);
608           v = 0;
609         }
610     }
611
612   return v;
613 }
614
615 // Compute the current data size.
616
617 off_t
618 Output_file_header::do_size() const
619 {
620   const int size = parameters->target().get_size();
621   if (size == 32)
622     return elfcpp::Elf_sizes<32>::ehdr_size;
623   else if (size == 64)
624     return elfcpp::Elf_sizes<64>::ehdr_size;
625   else
626     gold_unreachable();
627 }
628
629 // Output_data_const methods.
630
631 void
632 Output_data_const::do_write(Output_file* of)
633 {
634   of->write(this->offset(), this->data_.data(), this->data_.size());
635 }
636
637 // Output_data_const_buffer methods.
638
639 void
640 Output_data_const_buffer::do_write(Output_file* of)
641 {
642   of->write(this->offset(), this->p_, this->data_size());
643 }
644
645 // Output_section_data methods.
646
647 // Record the output section, and set the entry size and such.
648
649 void
650 Output_section_data::set_output_section(Output_section* os)
651 {
652   gold_assert(this->output_section_ == NULL);
653   this->output_section_ = os;
654   this->do_adjust_output_section(os);
655 }
656
657 // Return the section index of the output section.
658
659 unsigned int
660 Output_section_data::do_out_shndx() const
661 {
662   gold_assert(this->output_section_ != NULL);
663   return this->output_section_->out_shndx();
664 }
665
666 // Set the alignment, which means we may need to update the alignment
667 // of the output section.
668
669 void
670 Output_section_data::set_addralign(uint64_t addralign)
671 {
672   this->addralign_ = addralign;
673   if (this->output_section_ != NULL
674       && this->output_section_->addralign() < addralign)
675     this->output_section_->set_addralign(addralign);
676 }
677
678 // Output_data_strtab methods.
679
680 // Set the final data size.
681
682 void
683 Output_data_strtab::set_final_data_size()
684 {
685   this->strtab_->set_string_offsets();
686   this->set_data_size(this->strtab_->get_strtab_size());
687 }
688
689 // Write out a string table.
690
691 void
692 Output_data_strtab::do_write(Output_file* of)
693 {
694   this->strtab_->write(of, this->offset());
695 }
696
697 // Output_reloc methods.
698
699 // A reloc against a global symbol.
700
701 template<bool dynamic, int size, bool big_endian>
702 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
703     Symbol* gsym,
704     unsigned int type,
705     Output_data* od,
706     Address address,
707     bool is_relative,
708     bool is_symbolless)
709   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
710     is_relative_(is_relative), is_symbolless_(is_symbolless),
711     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
712 {
713   // this->type_ is a bitfield; make sure TYPE fits.
714   gold_assert(this->type_ == type);
715   this->u1_.gsym = gsym;
716   this->u2_.od = od;
717   if (dynamic)
718     this->set_needs_dynsym_index();
719 }
720
721 template<bool dynamic, int size, bool big_endian>
722 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
723     Symbol* gsym,
724     unsigned int type,
725     Sized_relobj<size, big_endian>* relobj,
726     unsigned int shndx,
727     Address address,
728     bool is_relative,
729     bool is_symbolless)
730   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
731     is_relative_(is_relative), is_symbolless_(is_symbolless),
732     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
733 {
734   gold_assert(shndx != INVALID_CODE);
735   // this->type_ is a bitfield; make sure TYPE fits.
736   gold_assert(this->type_ == type);
737   this->u1_.gsym = gsym;
738   this->u2_.relobj = relobj;
739   if (dynamic)
740     this->set_needs_dynsym_index();
741 }
742
743 // A reloc against a local symbol.
744
745 template<bool dynamic, int size, bool big_endian>
746 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
747     Sized_relobj<size, big_endian>* relobj,
748     unsigned int local_sym_index,
749     unsigned int type,
750     Output_data* od,
751     Address address,
752     bool is_relative,
753     bool is_symbolless,
754     bool is_section_symbol,
755     bool use_plt_offset)
756   : address_(address), local_sym_index_(local_sym_index), type_(type),
757     is_relative_(is_relative), is_symbolless_(is_symbolless),
758     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
759     shndx_(INVALID_CODE)
760 {
761   gold_assert(local_sym_index != GSYM_CODE
762               && local_sym_index != INVALID_CODE);
763   // this->type_ is a bitfield; make sure TYPE fits.
764   gold_assert(this->type_ == type);
765   this->u1_.relobj = relobj;
766   this->u2_.od = od;
767   if (dynamic)
768     this->set_needs_dynsym_index();
769 }
770
771 template<bool dynamic, int size, bool big_endian>
772 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
773     Sized_relobj<size, big_endian>* relobj,
774     unsigned int local_sym_index,
775     unsigned int type,
776     unsigned int shndx,
777     Address address,
778     bool is_relative,
779     bool is_symbolless,
780     bool is_section_symbol,
781     bool use_plt_offset)
782   : address_(address), local_sym_index_(local_sym_index), type_(type),
783     is_relative_(is_relative), is_symbolless_(is_symbolless),
784     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
785     shndx_(shndx)
786 {
787   gold_assert(local_sym_index != GSYM_CODE
788               && local_sym_index != INVALID_CODE);
789   gold_assert(shndx != INVALID_CODE);
790   // this->type_ is a bitfield; make sure TYPE fits.
791   gold_assert(this->type_ == type);
792   this->u1_.relobj = relobj;
793   this->u2_.relobj = relobj;
794   if (dynamic)
795     this->set_needs_dynsym_index();
796 }
797
798 // A reloc against the STT_SECTION symbol of an output section.
799
800 template<bool dynamic, int size, bool big_endian>
801 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
802     Output_section* os,
803     unsigned int type,
804     Output_data* od,
805     Address address)
806   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
807     is_relative_(false), is_symbolless_(false),
808     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
809 {
810   // this->type_ is a bitfield; make sure TYPE fits.
811   gold_assert(this->type_ == type);
812   this->u1_.os = os;
813   this->u2_.od = od;
814   if (dynamic)
815     this->set_needs_dynsym_index();
816   else
817     os->set_needs_symtab_index();
818 }
819
820 template<bool dynamic, int size, bool big_endian>
821 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
822     Output_section* os,
823     unsigned int type,
824     Sized_relobj<size, big_endian>* relobj,
825     unsigned int shndx,
826     Address address)
827   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
828     is_relative_(false), is_symbolless_(false),
829     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
830 {
831   gold_assert(shndx != INVALID_CODE);
832   // this->type_ is a bitfield; make sure TYPE fits.
833   gold_assert(this->type_ == type);
834   this->u1_.os = os;
835   this->u2_.relobj = relobj;
836   if (dynamic)
837     this->set_needs_dynsym_index();
838   else
839     os->set_needs_symtab_index();
840 }
841
842 // An absolute relocation.
843
844 template<bool dynamic, int size, bool big_endian>
845 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
846     unsigned int type,
847     Output_data* od,
848     Address address)
849   : address_(address), local_sym_index_(0), type_(type),
850     is_relative_(false), is_symbolless_(false),
851     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
852 {
853   // this->type_ is a bitfield; make sure TYPE fits.
854   gold_assert(this->type_ == type);
855   this->u1_.relobj = NULL;
856   this->u2_.od = od;
857 }
858
859 template<bool dynamic, int size, bool big_endian>
860 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
861     unsigned int type,
862     Sized_relobj<size, big_endian>* relobj,
863     unsigned int shndx,
864     Address address)
865   : address_(address), local_sym_index_(0), type_(type),
866     is_relative_(false), is_symbolless_(false),
867     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
868 {
869   gold_assert(shndx != INVALID_CODE);
870   // this->type_ is a bitfield; make sure TYPE fits.
871   gold_assert(this->type_ == type);
872   this->u1_.relobj = NULL;
873   this->u2_.relobj = relobj;
874 }
875
876 // A target specific relocation.
877
878 template<bool dynamic, int size, bool big_endian>
879 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
880     unsigned int type,
881     void* arg,
882     Output_data* od,
883     Address address)
884   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
885     is_relative_(false), is_symbolless_(false),
886     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
887 {
888   // this->type_ is a bitfield; make sure TYPE fits.
889   gold_assert(this->type_ == type);
890   this->u1_.arg = arg;
891   this->u2_.od = od;
892 }
893
894 template<bool dynamic, int size, bool big_endian>
895 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
896     unsigned int type,
897     void* arg,
898     Sized_relobj<size, big_endian>* relobj,
899     unsigned int shndx,
900     Address address)
901   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
902     is_relative_(false), is_symbolless_(false),
903     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
904 {
905   gold_assert(shndx != INVALID_CODE);
906   // this->type_ is a bitfield; make sure TYPE fits.
907   gold_assert(this->type_ == type);
908   this->u1_.arg = arg;
909   this->u2_.relobj = relobj;
910 }
911
912 // Record that we need a dynamic symbol index for this relocation.
913
914 template<bool dynamic, int size, bool big_endian>
915 void
916 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
917 set_needs_dynsym_index()
918 {
919   if (this->is_symbolless_)
920     return;
921   switch (this->local_sym_index_)
922     {
923     case INVALID_CODE:
924       gold_unreachable();
925
926     case GSYM_CODE:
927       this->u1_.gsym->set_needs_dynsym_entry();
928       break;
929
930     case SECTION_CODE:
931       this->u1_.os->set_needs_dynsym_index();
932       break;
933
934     case TARGET_CODE:
935       // The target must take care of this if necessary.
936       break;
937
938     case 0:
939       break;
940
941     default:
942       {
943         const unsigned int lsi = this->local_sym_index_;
944         Sized_relobj_file<size, big_endian>* relobj =
945             this->u1_.relobj->sized_relobj();
946         gold_assert(relobj != NULL);
947         if (!this->is_section_symbol_)
948           relobj->set_needs_output_dynsym_entry(lsi);
949         else
950           relobj->output_section(lsi)->set_needs_dynsym_index();
951       }
952       break;
953     }
954 }
955
956 // Get the symbol index of a relocation.
957
958 template<bool dynamic, int size, bool big_endian>
959 unsigned int
960 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
961   const
962 {
963   unsigned int index;
964   if (this->is_symbolless_)
965     return 0;
966   switch (this->local_sym_index_)
967     {
968     case INVALID_CODE:
969       gold_unreachable();
970
971     case GSYM_CODE:
972       if (this->u1_.gsym == NULL)
973         index = 0;
974       else if (dynamic)
975         index = this->u1_.gsym->dynsym_index();
976       else
977         index = this->u1_.gsym->symtab_index();
978       break;
979
980     case SECTION_CODE:
981       if (dynamic)
982         index = this->u1_.os->dynsym_index();
983       else
984         index = this->u1_.os->symtab_index();
985       break;
986
987     case TARGET_CODE:
988       index = parameters->target().reloc_symbol_index(this->u1_.arg,
989                                                       this->type_);
990       break;
991
992     case 0:
993       // Relocations without symbols use a symbol index of 0.
994       index = 0;
995       break;
996
997     default:
998       {
999         const unsigned int lsi = this->local_sym_index_;
1000         Sized_relobj_file<size, big_endian>* relobj =
1001             this->u1_.relobj->sized_relobj();
1002         gold_assert(relobj != NULL);
1003         if (!this->is_section_symbol_)
1004           {
1005             if (dynamic)
1006               index = relobj->dynsym_index(lsi);
1007             else
1008               index = relobj->symtab_index(lsi);
1009           }
1010         else
1011           {
1012             Output_section* os = relobj->output_section(lsi);
1013             gold_assert(os != NULL);
1014             if (dynamic)
1015               index = os->dynsym_index();
1016             else
1017               index = os->symtab_index();
1018           }
1019       }
1020       break;
1021     }
1022   gold_assert(index != -1U);
1023   return index;
1024 }
1025
1026 // For a local section symbol, get the address of the offset ADDEND
1027 // within the input section.
1028
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1032   local_section_offset(Addend addend) const
1033 {
1034   gold_assert(this->local_sym_index_ != GSYM_CODE
1035               && this->local_sym_index_ != SECTION_CODE
1036               && this->local_sym_index_ != TARGET_CODE
1037               && this->local_sym_index_ != INVALID_CODE
1038               && this->local_sym_index_ != 0
1039               && this->is_section_symbol_);
1040   const unsigned int lsi = this->local_sym_index_;
1041   Output_section* os = this->u1_.relobj->output_section(lsi);
1042   gold_assert(os != NULL);
1043   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1044   if (offset != invalid_address)
1045     return offset + addend;
1046   // This is a merge section.
1047   Sized_relobj_file<size, big_endian>* relobj =
1048       this->u1_.relobj->sized_relobj();
1049   gold_assert(relobj != NULL);
1050   offset = os->output_address(relobj, lsi, addend);
1051   gold_assert(offset != invalid_address);
1052   return offset;
1053 }
1054
1055 // Get the output address of a relocation.
1056
1057 template<bool dynamic, int size, bool big_endian>
1058 typename elfcpp::Elf_types<size>::Elf_Addr
1059 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1060 {
1061   Address address = this->address_;
1062   if (this->shndx_ != INVALID_CODE)
1063     {
1064       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1065       gold_assert(os != NULL);
1066       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1067       if (off != invalid_address)
1068         address += os->address() + off;
1069       else
1070         {
1071           Sized_relobj_file<size, big_endian>* relobj =
1072               this->u2_.relobj->sized_relobj();
1073           gold_assert(relobj != NULL);
1074           address = os->output_address(relobj, this->shndx_, address);
1075           gold_assert(address != invalid_address);
1076         }
1077     }
1078   else if (this->u2_.od != NULL)
1079     address += this->u2_.od->address();
1080   return address;
1081 }
1082
1083 // Write out the offset and info fields of a Rel or Rela relocation
1084 // entry.
1085
1086 template<bool dynamic, int size, bool big_endian>
1087 template<typename Write_rel>
1088 void
1089 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1090     Write_rel* wr) const
1091 {
1092   wr->put_r_offset(this->get_address());
1093   unsigned int sym_index = this->get_symbol_index();
1094   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1095 }
1096
1097 // Write out a Rel relocation.
1098
1099 template<bool dynamic, int size, bool big_endian>
1100 void
1101 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1102     unsigned char* pov) const
1103 {
1104   elfcpp::Rel_write<size, big_endian> orel(pov);
1105   this->write_rel(&orel);
1106 }
1107
1108 // Get the value of the symbol referred to by a Rel relocation.
1109
1110 template<bool dynamic, int size, bool big_endian>
1111 typename elfcpp::Elf_types<size>::Elf_Addr
1112 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1113     Addend addend) const
1114 {
1115   if (this->local_sym_index_ == GSYM_CODE)
1116     {
1117       const Sized_symbol<size>* sym;
1118       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1119       return sym->value() + addend;
1120     }
1121   gold_assert(this->local_sym_index_ != SECTION_CODE
1122               && this->local_sym_index_ != TARGET_CODE
1123               && this->local_sym_index_ != INVALID_CODE
1124               && this->local_sym_index_ != 0
1125               && !this->is_section_symbol_);
1126   const unsigned int lsi = this->local_sym_index_;
1127   Sized_relobj_file<size, big_endian>* relobj =
1128       this->u1_.relobj->sized_relobj();
1129   gold_assert(relobj != NULL);
1130   if (this->use_plt_offset_)
1131     {
1132       uint64_t plt_address =
1133           parameters->target().plt_address_for_local(relobj, lsi);
1134       return plt_address + relobj->local_plt_offset(lsi);
1135     }
1136   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1137   return symval->value(relobj, addend);
1138 }
1139
1140 // Reloc comparison.  This function sorts the dynamic relocs for the
1141 // benefit of the dynamic linker.  First we sort all relative relocs
1142 // to the front.  Among relative relocs, we sort by output address.
1143 // Among non-relative relocs, we sort by symbol index, then by output
1144 // address.
1145
1146 template<bool dynamic, int size, bool big_endian>
1147 int
1148 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1149   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1150     const
1151 {
1152   if (this->is_relative_)
1153     {
1154       if (!r2.is_relative_)
1155         return -1;
1156       // Otherwise sort by reloc address below.
1157     }
1158   else if (r2.is_relative_)
1159     return 1;
1160   else
1161     {
1162       unsigned int sym1 = this->get_symbol_index();
1163       unsigned int sym2 = r2.get_symbol_index();
1164       if (sym1 < sym2)
1165         return -1;
1166       else if (sym1 > sym2)
1167         return 1;
1168       // Otherwise sort by reloc address.
1169     }
1170
1171   section_offset_type addr1 = this->get_address();
1172   section_offset_type addr2 = r2.get_address();
1173   if (addr1 < addr2)
1174     return -1;
1175   else if (addr1 > addr2)
1176     return 1;
1177
1178   // Final tie breaker, in order to generate the same output on any
1179   // host: reloc type.
1180   unsigned int type1 = this->type_;
1181   unsigned int type2 = r2.type_;
1182   if (type1 < type2)
1183     return -1;
1184   else if (type1 > type2)
1185     return 1;
1186
1187   // These relocs appear to be exactly the same.
1188   return 0;
1189 }
1190
1191 // Write out a Rela relocation.
1192
1193 template<bool dynamic, int size, bool big_endian>
1194 void
1195 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1196     unsigned char* pov) const
1197 {
1198   elfcpp::Rela_write<size, big_endian> orel(pov);
1199   this->rel_.write_rel(&orel);
1200   Addend addend = this->addend_;
1201   if (this->rel_.is_target_specific())
1202     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1203                                                this->rel_.type(), addend);
1204   else if (this->rel_.is_symbolless())
1205     addend = this->rel_.symbol_value(addend);
1206   else if (this->rel_.is_local_section_symbol())
1207     addend = this->rel_.local_section_offset(addend);
1208   orel.put_r_addend(addend);
1209 }
1210
1211 // Output_data_reloc_base methods.
1212
1213 // Adjust the output section.
1214
1215 template<int sh_type, bool dynamic, int size, bool big_endian>
1216 void
1217 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1218     ::do_adjust_output_section(Output_section* os)
1219 {
1220   if (sh_type == elfcpp::SHT_REL)
1221     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1222   else if (sh_type == elfcpp::SHT_RELA)
1223     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1224   else
1225     gold_unreachable();
1226
1227   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1228   // static link.  The backends will generate a dynamic reloc section
1229   // to hold this.  In that case we don't want to link to the dynsym
1230   // section, because there isn't one.
1231   if (!dynamic)
1232     os->set_should_link_to_symtab();
1233   else if (parameters->doing_static_link())
1234     ;
1235   else
1236     os->set_should_link_to_dynsym();
1237 }
1238
1239 // Write out relocation data.
1240
1241 template<int sh_type, bool dynamic, int size, bool big_endian>
1242 void
1243 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1244     Output_file* of)
1245 {
1246   const off_t off = this->offset();
1247   const off_t oview_size = this->data_size();
1248   unsigned char* const oview = of->get_output_view(off, oview_size);
1249
1250   if (this->sort_relocs())
1251     {
1252       gold_assert(dynamic);
1253       std::sort(this->relocs_.begin(), this->relocs_.end(),
1254                 Sort_relocs_comparison());
1255     }
1256
1257   unsigned char* pov = oview;
1258   for (typename Relocs::const_iterator p = this->relocs_.begin();
1259        p != this->relocs_.end();
1260        ++p)
1261     {
1262       p->write(pov);
1263       pov += reloc_size;
1264     }
1265
1266   gold_assert(pov - oview == oview_size);
1267
1268   of->write_output_view(off, oview_size, oview);
1269
1270   // We no longer need the relocation entries.
1271   this->relocs_.clear();
1272 }
1273
1274 // Class Output_relocatable_relocs.
1275
1276 template<int sh_type, int size, bool big_endian>
1277 void
1278 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1279 {
1280   this->set_data_size(this->rr_->output_reloc_count()
1281                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1282 }
1283
1284 // class Output_data_group.
1285
1286 template<int size, bool big_endian>
1287 Output_data_group<size, big_endian>::Output_data_group(
1288     Sized_relobj_file<size, big_endian>* relobj,
1289     section_size_type entry_count,
1290     elfcpp::Elf_Word flags,
1291     std::vector<unsigned int>* input_shndxes)
1292   : Output_section_data(entry_count * 4, 4, false),
1293     relobj_(relobj),
1294     flags_(flags)
1295 {
1296   this->input_shndxes_.swap(*input_shndxes);
1297 }
1298
1299 // Write out the section group, which means translating the section
1300 // indexes to apply to the output file.
1301
1302 template<int size, bool big_endian>
1303 void
1304 Output_data_group<size, big_endian>::do_write(Output_file* of)
1305 {
1306   const off_t off = this->offset();
1307   const section_size_type oview_size =
1308     convert_to_section_size_type(this->data_size());
1309   unsigned char* const oview = of->get_output_view(off, oview_size);
1310
1311   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1312   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1313   ++contents;
1314
1315   for (std::vector<unsigned int>::const_iterator p =
1316          this->input_shndxes_.begin();
1317        p != this->input_shndxes_.end();
1318        ++p, ++contents)
1319     {
1320       Output_section* os = this->relobj_->output_section(*p);
1321
1322       unsigned int output_shndx;
1323       if (os != NULL)
1324         output_shndx = os->out_shndx();
1325       else
1326         {
1327           this->relobj_->error(_("section group retained but "
1328                                  "group element discarded"));
1329           output_shndx = 0;
1330         }
1331
1332       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1333     }
1334
1335   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1336   gold_assert(wrote == oview_size);
1337
1338   of->write_output_view(off, oview_size, oview);
1339
1340   // We no longer need this information.
1341   this->input_shndxes_.clear();
1342 }
1343
1344 // Output_data_got::Got_entry methods.
1345
1346 // Write out the entry.
1347
1348 template<int size, bool big_endian>
1349 void
1350 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1351 {
1352   Valtype val = 0;
1353
1354   switch (this->local_sym_index_)
1355     {
1356     case GSYM_CODE:
1357       {
1358         // If the symbol is resolved locally, we need to write out the
1359         // link-time value, which will be relocated dynamically by a
1360         // RELATIVE relocation.
1361         Symbol* gsym = this->u_.gsym;
1362         if (this->use_plt_offset_ && gsym->has_plt_offset())
1363           val = (parameters->target().plt_address_for_global(gsym)
1364                  + gsym->plt_offset());
1365         else
1366           {
1367             Sized_symbol<size>* sgsym;
1368             // This cast is a bit ugly.  We don't want to put a
1369             // virtual method in Symbol, because we want Symbol to be
1370             // as small as possible.
1371             sgsym = static_cast<Sized_symbol<size>*>(gsym);
1372             val = sgsym->value();
1373           }
1374       }
1375       break;
1376
1377     case CONSTANT_CODE:
1378       val = this->u_.constant;
1379       break;
1380
1381     case RESERVED_CODE:
1382       // If we're doing an incremental update, don't touch this GOT entry.
1383       if (parameters->incremental_update())
1384         return;
1385       val = this->u_.constant;
1386       break;
1387
1388     default:
1389       {
1390         const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1391         const unsigned int lsi = this->local_sym_index_;
1392         const Symbol_value<size>* symval = object->local_symbol(lsi);
1393         if (!this->use_plt_offset_)
1394           val = symval->value(this->u_.object, 0);
1395         else
1396           {
1397             uint64_t plt_address =
1398               parameters->target().plt_address_for_local(object, lsi);
1399             val = plt_address + object->local_plt_offset(lsi);
1400           }
1401       }
1402       break;
1403     }
1404
1405   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1406 }
1407
1408 // Output_data_got methods.
1409
1410 // Add an entry for a global symbol to the GOT.  This returns true if
1411 // this is a new GOT entry, false if the symbol already had a GOT
1412 // entry.
1413
1414 template<int size, bool big_endian>
1415 bool
1416 Output_data_got<size, big_endian>::add_global(
1417     Symbol* gsym,
1418     unsigned int got_type)
1419 {
1420   if (gsym->has_got_offset(got_type))
1421     return false;
1422
1423   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1424   gsym->set_got_offset(got_type, got_offset);
1425   return true;
1426 }
1427
1428 // Like add_global, but use the PLT offset.
1429
1430 template<int size, bool big_endian>
1431 bool
1432 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1433                                                   unsigned int got_type)
1434 {
1435   if (gsym->has_got_offset(got_type))
1436     return false;
1437
1438   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1439   gsym->set_got_offset(got_type, got_offset);
1440   return true;
1441 }
1442
1443 // Add an entry for a global symbol to the GOT, and add a dynamic
1444 // relocation of type R_TYPE for the GOT entry.
1445
1446 template<int size, bool big_endian>
1447 void
1448 Output_data_got<size, big_endian>::add_global_with_rel(
1449     Symbol* gsym,
1450     unsigned int got_type,
1451     Rel_dyn* rel_dyn,
1452     unsigned int r_type)
1453 {
1454   if (gsym->has_got_offset(got_type))
1455     return;
1456
1457   unsigned int got_offset = this->add_got_entry(Got_entry());
1458   gsym->set_got_offset(got_type, got_offset);
1459   rel_dyn->add_global(gsym, r_type, this, got_offset);
1460 }
1461
1462 template<int size, bool big_endian>
1463 void
1464 Output_data_got<size, big_endian>::add_global_with_rela(
1465     Symbol* gsym,
1466     unsigned int got_type,
1467     Rela_dyn* rela_dyn,
1468     unsigned int r_type)
1469 {
1470   if (gsym->has_got_offset(got_type))
1471     return;
1472
1473   unsigned int got_offset = this->add_got_entry(Got_entry());
1474   gsym->set_got_offset(got_type, got_offset);
1475   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1476 }
1477
1478 // Add a pair of entries for a global symbol to the GOT, and add
1479 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1480 // If R_TYPE_2 == 0, add the second entry with no relocation.
1481 template<int size, bool big_endian>
1482 void
1483 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1484     Symbol* gsym,
1485     unsigned int got_type,
1486     Rel_dyn* rel_dyn,
1487     unsigned int r_type_1,
1488     unsigned int r_type_2)
1489 {
1490   if (gsym->has_got_offset(got_type))
1491     return;
1492
1493   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1494   gsym->set_got_offset(got_type, got_offset);
1495   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1496
1497   if (r_type_2 != 0)
1498     rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1499 }
1500
1501 template<int size, bool big_endian>
1502 void
1503 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1504     Symbol* gsym,
1505     unsigned int got_type,
1506     Rela_dyn* rela_dyn,
1507     unsigned int r_type_1,
1508     unsigned int r_type_2)
1509 {
1510   if (gsym->has_got_offset(got_type))
1511     return;
1512
1513   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1514   gsym->set_got_offset(got_type, got_offset);
1515   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1516
1517   if (r_type_2 != 0)
1518     rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1519 }
1520
1521 // Add an entry for a local symbol to the GOT.  This returns true if
1522 // this is a new GOT entry, false if the symbol already has a GOT
1523 // entry.
1524
1525 template<int size, bool big_endian>
1526 bool
1527 Output_data_got<size, big_endian>::add_local(
1528     Sized_relobj_file<size, big_endian>* object,
1529     unsigned int symndx,
1530     unsigned int got_type)
1531 {
1532   if (object->local_has_got_offset(symndx, got_type))
1533     return false;
1534
1535   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1536                                                           false));
1537   object->set_local_got_offset(symndx, got_type, got_offset);
1538   return true;
1539 }
1540
1541 // Like add_local, but use the PLT offset.
1542
1543 template<int size, bool big_endian>
1544 bool
1545 Output_data_got<size, big_endian>::add_local_plt(
1546     Sized_relobj_file<size, big_endian>* object,
1547     unsigned int symndx,
1548     unsigned int got_type)
1549 {
1550   if (object->local_has_got_offset(symndx, got_type))
1551     return false;
1552
1553   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1554                                                           true));
1555   object->set_local_got_offset(symndx, got_type, got_offset);
1556   return true;
1557 }
1558
1559 // Add an entry for a local symbol to the GOT, and add a dynamic
1560 // relocation of type R_TYPE for the GOT entry.
1561
1562 template<int size, bool big_endian>
1563 void
1564 Output_data_got<size, big_endian>::add_local_with_rel(
1565     Sized_relobj_file<size, big_endian>* object,
1566     unsigned int symndx,
1567     unsigned int got_type,
1568     Rel_dyn* rel_dyn,
1569     unsigned int r_type)
1570 {
1571   if (object->local_has_got_offset(symndx, got_type))
1572     return;
1573
1574   unsigned int got_offset = this->add_got_entry(Got_entry());
1575   object->set_local_got_offset(symndx, got_type, got_offset);
1576   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1577 }
1578
1579 template<int size, bool big_endian>
1580 void
1581 Output_data_got<size, big_endian>::add_local_with_rela(
1582     Sized_relobj_file<size, big_endian>* object,
1583     unsigned int symndx,
1584     unsigned int got_type,
1585     Rela_dyn* rela_dyn,
1586     unsigned int r_type)
1587 {
1588   if (object->local_has_got_offset(symndx, got_type))
1589     return;
1590
1591   unsigned int got_offset = this->add_got_entry(Got_entry());
1592   object->set_local_got_offset(symndx, got_type, got_offset);
1593   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1594 }
1595
1596 // Add a pair of entries for a local symbol to the GOT, and add
1597 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1598 // If R_TYPE_2 == 0, add the second entry with no relocation.
1599 template<int size, bool big_endian>
1600 void
1601 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1602     Sized_relobj_file<size, big_endian>* object,
1603     unsigned int symndx,
1604     unsigned int shndx,
1605     unsigned int got_type,
1606     Rel_dyn* rel_dyn,
1607     unsigned int r_type_1,
1608     unsigned int r_type_2)
1609 {
1610   if (object->local_has_got_offset(symndx, got_type))
1611     return;
1612
1613   unsigned int got_offset =
1614       this->add_got_entry_pair(Got_entry(),
1615                                Got_entry(object, symndx, false));
1616   object->set_local_got_offset(symndx, got_type, got_offset);
1617   Output_section* os = object->output_section(shndx);
1618   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1619
1620   if (r_type_2 != 0)
1621     rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1622 }
1623
1624 template<int size, bool big_endian>
1625 void
1626 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1627     Sized_relobj_file<size, big_endian>* object,
1628     unsigned int symndx,
1629     unsigned int shndx,
1630     unsigned int got_type,
1631     Rela_dyn* rela_dyn,
1632     unsigned int r_type_1,
1633     unsigned int r_type_2)
1634 {
1635   if (object->local_has_got_offset(symndx, got_type))
1636     return;
1637
1638   unsigned int got_offset =
1639       this->add_got_entry_pair(Got_entry(),
1640                                Got_entry(object, symndx, false));
1641   object->set_local_got_offset(symndx, got_type, got_offset);
1642   Output_section* os = object->output_section(shndx);
1643   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1644
1645   if (r_type_2 != 0)
1646     rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1647 }
1648
1649 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1650
1651 template<int size, bool big_endian>
1652 void
1653 Output_data_got<size, big_endian>::reserve_local(
1654     unsigned int i,
1655     Sized_relobj<size, big_endian>* object,
1656     unsigned int sym_index,
1657     unsigned int got_type)
1658 {
1659   this->reserve_slot(i);
1660   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1661 }
1662
1663 // Reserve a slot in the GOT for a global symbol.
1664
1665 template<int size, bool big_endian>
1666 void
1667 Output_data_got<size, big_endian>::reserve_global(
1668     unsigned int i,
1669     Symbol* gsym,
1670     unsigned int got_type)
1671 {
1672   this->reserve_slot(i);
1673   gsym->set_got_offset(got_type, this->got_offset(i));
1674 }
1675
1676 // Write out the GOT.
1677
1678 template<int size, bool big_endian>
1679 void
1680 Output_data_got<size, big_endian>::do_write(Output_file* of)
1681 {
1682   const int add = size / 8;
1683
1684   const off_t off = this->offset();
1685   const off_t oview_size = this->data_size();
1686   unsigned char* const oview = of->get_output_view(off, oview_size);
1687
1688   unsigned char* pov = oview;
1689   for (typename Got_entries::const_iterator p = this->entries_.begin();
1690        p != this->entries_.end();
1691        ++p)
1692     {
1693       p->write(pov);
1694       pov += add;
1695     }
1696
1697   gold_assert(pov - oview == oview_size);
1698
1699   of->write_output_view(off, oview_size, oview);
1700
1701   // We no longer need the GOT entries.
1702   this->entries_.clear();
1703 }
1704
1705 // Create a new GOT entry and return its offset.
1706
1707 template<int size, bool big_endian>
1708 unsigned int
1709 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1710 {
1711   if (!this->is_data_size_valid())
1712     {
1713       this->entries_.push_back(got_entry);
1714       this->set_got_size();
1715       return this->last_got_offset();
1716     }
1717   else
1718     {
1719       // For an incremental update, find an available slot.
1720       off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1721       if (got_offset == -1)
1722         gold_fallback(_("out of patch space (GOT);"
1723                         " relink with --incremental-full"));
1724       unsigned int got_index = got_offset / (size / 8);
1725       gold_assert(got_index < this->entries_.size());
1726       this->entries_[got_index] = got_entry;
1727       return static_cast<unsigned int>(got_offset);
1728     }
1729 }
1730
1731 // Create a pair of new GOT entries and return the offset of the first.
1732
1733 template<int size, bool big_endian>
1734 unsigned int
1735 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1736                                                       Got_entry got_entry_2)
1737 {
1738   if (!this->is_data_size_valid())
1739     {
1740       unsigned int got_offset;
1741       this->entries_.push_back(got_entry_1);
1742       got_offset = this->last_got_offset();
1743       this->entries_.push_back(got_entry_2);
1744       this->set_got_size();
1745       return got_offset;
1746     }
1747   else
1748     {
1749       // For an incremental update, find an available pair of slots.
1750       off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1751       if (got_offset == -1)
1752         gold_fallback(_("out of patch space (GOT);"
1753                         " relink with --incremental-full"));
1754       unsigned int got_index = got_offset / (size / 8);
1755       gold_assert(got_index < this->entries_.size());
1756       this->entries_[got_index] = got_entry_1;
1757       this->entries_[got_index + 1] = got_entry_2;
1758       return static_cast<unsigned int>(got_offset);
1759     }
1760 }
1761
1762 // Output_data_dynamic::Dynamic_entry methods.
1763
1764 // Write out the entry.
1765
1766 template<int size, bool big_endian>
1767 void
1768 Output_data_dynamic::Dynamic_entry::write(
1769     unsigned char* pov,
1770     const Stringpool* pool) const
1771 {
1772   typename elfcpp::Elf_types<size>::Elf_WXword val;
1773   switch (this->offset_)
1774     {
1775     case DYNAMIC_NUMBER:
1776       val = this->u_.val;
1777       break;
1778
1779     case DYNAMIC_SECTION_SIZE:
1780       val = this->u_.od->data_size();
1781       if (this->od2 != NULL)
1782         val += this->od2->data_size();
1783       break;
1784
1785     case DYNAMIC_SYMBOL:
1786       {
1787         const Sized_symbol<size>* s =
1788           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1789         val = s->value();
1790       }
1791       break;
1792
1793     case DYNAMIC_STRING:
1794       val = pool->get_offset(this->u_.str);
1795       break;
1796
1797     default:
1798       val = this->u_.od->address() + this->offset_;
1799       break;
1800     }
1801
1802   elfcpp::Dyn_write<size, big_endian> dw(pov);
1803   dw.put_d_tag(this->tag_);
1804   dw.put_d_val(val);
1805 }
1806
1807 // Output_data_dynamic methods.
1808
1809 // Adjust the output section to set the entry size.
1810
1811 void
1812 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1813 {
1814   if (parameters->target().get_size() == 32)
1815     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1816   else if (parameters->target().get_size() == 64)
1817     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1818   else
1819     gold_unreachable();
1820 }
1821
1822 // Set the final data size.
1823
1824 void
1825 Output_data_dynamic::set_final_data_size()
1826 {
1827   // Add the terminating entry if it hasn't been added.
1828   // Because of relaxation, we can run this multiple times.
1829   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1830     {
1831       int extra = parameters->options().spare_dynamic_tags();
1832       for (int i = 0; i < extra; ++i)
1833         this->add_constant(elfcpp::DT_NULL, 0);
1834       this->add_constant(elfcpp::DT_NULL, 0);
1835     }
1836
1837   int dyn_size;
1838   if (parameters->target().get_size() == 32)
1839     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1840   else if (parameters->target().get_size() == 64)
1841     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1842   else
1843     gold_unreachable();
1844   this->set_data_size(this->entries_.size() * dyn_size);
1845 }
1846
1847 // Write out the dynamic entries.
1848
1849 void
1850 Output_data_dynamic::do_write(Output_file* of)
1851 {
1852   switch (parameters->size_and_endianness())
1853     {
1854 #ifdef HAVE_TARGET_32_LITTLE
1855     case Parameters::TARGET_32_LITTLE:
1856       this->sized_write<32, false>(of);
1857       break;
1858 #endif
1859 #ifdef HAVE_TARGET_32_BIG
1860     case Parameters::TARGET_32_BIG:
1861       this->sized_write<32, true>(of);
1862       break;
1863 #endif
1864 #ifdef HAVE_TARGET_64_LITTLE
1865     case Parameters::TARGET_64_LITTLE:
1866       this->sized_write<64, false>(of);
1867       break;
1868 #endif
1869 #ifdef HAVE_TARGET_64_BIG
1870     case Parameters::TARGET_64_BIG:
1871       this->sized_write<64, true>(of);
1872       break;
1873 #endif
1874     default:
1875       gold_unreachable();
1876     }
1877 }
1878
1879 template<int size, bool big_endian>
1880 void
1881 Output_data_dynamic::sized_write(Output_file* of)
1882 {
1883   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1884
1885   const off_t offset = this->offset();
1886   const off_t oview_size = this->data_size();
1887   unsigned char* const oview = of->get_output_view(offset, oview_size);
1888
1889   unsigned char* pov = oview;
1890   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1891        p != this->entries_.end();
1892        ++p)
1893     {
1894       p->write<size, big_endian>(pov, this->pool_);
1895       pov += dyn_size;
1896     }
1897
1898   gold_assert(pov - oview == oview_size);
1899
1900   of->write_output_view(offset, oview_size, oview);
1901
1902   // We no longer need the dynamic entries.
1903   this->entries_.clear();
1904 }
1905
1906 // Class Output_symtab_xindex.
1907
1908 void
1909 Output_symtab_xindex::do_write(Output_file* of)
1910 {
1911   const off_t offset = this->offset();
1912   const off_t oview_size = this->data_size();
1913   unsigned char* const oview = of->get_output_view(offset, oview_size);
1914
1915   memset(oview, 0, oview_size);
1916
1917   if (parameters->target().is_big_endian())
1918     this->endian_do_write<true>(oview);
1919   else
1920     this->endian_do_write<false>(oview);
1921
1922   of->write_output_view(offset, oview_size, oview);
1923
1924   // We no longer need the data.
1925   this->entries_.clear();
1926 }
1927
1928 template<bool big_endian>
1929 void
1930 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1931 {
1932   for (Xindex_entries::const_iterator p = this->entries_.begin();
1933        p != this->entries_.end();
1934        ++p)
1935     {
1936       unsigned int symndx = p->first;
1937       gold_assert(symndx * 4 < this->data_size());
1938       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1939     }
1940 }
1941
1942 // Output_fill_debug_info methods.
1943
1944 // Return the minimum size needed for a dummy compilation unit header.
1945
1946 size_t
1947 Output_fill_debug_info::do_minimum_hole_size() const
1948 {
1949   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1950   // address_size.
1951   const size_t len = 4 + 2 + 4 + 1;
1952   // For type units, add type_signature, type_offset.
1953   if (this->is_debug_types_)
1954     return len + 8 + 4;
1955   return len;
1956 }
1957
1958 // Write a dummy compilation unit header to fill a hole in the
1959 // .debug_info or .debug_types section.
1960
1961 void
1962 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1963 {
1964   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1965              static_cast<long>(off), static_cast<long>(len));
1966
1967   gold_assert(len >= this->do_minimum_hole_size());
1968
1969   unsigned char* const oview = of->get_output_view(off, len);
1970   unsigned char* pov = oview;
1971
1972   // Write header fields: unit_length, version, debug_abbrev_offset,
1973   // address_size.
1974   if (this->is_big_endian())
1975     {
1976       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1977       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1978       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1979     }
1980   else
1981     {
1982       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1983       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1984       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1985     }
1986   pov += 4 + 2 + 4;
1987   *pov++ = 4;
1988
1989   // For type units, the additional header fields -- type_signature,
1990   // type_offset -- can be filled with zeroes.
1991
1992   // Fill the remainder of the free space with zeroes.  The first
1993   // zero should tell the consumer there are no DIEs to read in this
1994   // compilation unit.
1995   if (pov < oview + len)
1996     memset(pov, 0, oview + len - pov);
1997
1998   of->write_output_view(off, len, oview);
1999 }
2000
2001 // Output_fill_debug_line methods.
2002
2003 // Return the minimum size needed for a dummy line number program header.
2004
2005 size_t
2006 Output_fill_debug_line::do_minimum_hole_size() const
2007 {
2008   // Line number program header fields: unit_length, version, header_length,
2009   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2010   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2011   const size_t len = 4 + 2 + 4 + this->header_length;
2012   return len;
2013 }
2014
2015 // Write a dummy line number program header to fill a hole in the
2016 // .debug_line section.
2017
2018 void
2019 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2020 {
2021   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2022              static_cast<long>(off), static_cast<long>(len));
2023
2024   gold_assert(len >= this->do_minimum_hole_size());
2025
2026   unsigned char* const oview = of->get_output_view(off, len);
2027   unsigned char* pov = oview;
2028
2029   // Write header fields: unit_length, version, header_length,
2030   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2031   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2032   // We set the header_length field to cover the entire hole, so the
2033   // line number program is empty.
2034   if (this->is_big_endian())
2035     {
2036       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2037       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2038       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2039     }
2040   else
2041     {
2042       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2043       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2044       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2045     }
2046   pov += 4 + 2 + 4;
2047   *pov++ = 1;   // minimum_instruction_length
2048   *pov++ = 0;   // default_is_stmt
2049   *pov++ = 0;   // line_base
2050   *pov++ = 5;   // line_range
2051   *pov++ = 13;  // opcode_base
2052   *pov++ = 0;   // standard_opcode_lengths[1]
2053   *pov++ = 1;   // standard_opcode_lengths[2]
2054   *pov++ = 1;   // standard_opcode_lengths[3]
2055   *pov++ = 1;   // standard_opcode_lengths[4]
2056   *pov++ = 1;   // standard_opcode_lengths[5]
2057   *pov++ = 0;   // standard_opcode_lengths[6]
2058   *pov++ = 0;   // standard_opcode_lengths[7]
2059   *pov++ = 0;   // standard_opcode_lengths[8]
2060   *pov++ = 1;   // standard_opcode_lengths[9]
2061   *pov++ = 0;   // standard_opcode_lengths[10]
2062   *pov++ = 0;   // standard_opcode_lengths[11]
2063   *pov++ = 1;   // standard_opcode_lengths[12]
2064   *pov++ = 0;   // include_directories (empty)
2065   *pov++ = 0;   // filenames (empty)
2066
2067   // Some consumers don't check the header_length field, and simply
2068   // start reading the line number program immediately following the
2069   // header.  For those consumers, we fill the remainder of the free
2070   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2071   // no-ops: the resulting line table program will not create any rows.
2072   if (pov < oview + len)
2073     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2074
2075   of->write_output_view(off, len, oview);
2076 }
2077
2078 // Output_section::Input_section methods.
2079
2080 // Return the current data size.  For an input section we store the size here.
2081 // For an Output_section_data, we have to ask it for the size.
2082
2083 off_t
2084 Output_section::Input_section::current_data_size() const
2085 {
2086   if (this->is_input_section())
2087     return this->u1_.data_size;
2088   else
2089     {
2090       this->u2_.posd->pre_finalize_data_size();
2091       return this->u2_.posd->current_data_size();
2092     }
2093 }
2094
2095 // Return the data size.  For an input section we store the size here.
2096 // For an Output_section_data, we have to ask it for the size.
2097
2098 off_t
2099 Output_section::Input_section::data_size() const
2100 {
2101   if (this->is_input_section())
2102     return this->u1_.data_size;
2103   else
2104     return this->u2_.posd->data_size();
2105 }
2106
2107 // Return the object for an input section.
2108
2109 Relobj*
2110 Output_section::Input_section::relobj() const
2111 {
2112   if (this->is_input_section())
2113     return this->u2_.object;
2114   else if (this->is_merge_section())
2115     {
2116       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2117       return this->u2_.pomb->first_relobj();
2118     }
2119   else if (this->is_relaxed_input_section())
2120     return this->u2_.poris->relobj();
2121   else
2122     gold_unreachable();
2123 }
2124
2125 // Return the input section index for an input section.
2126
2127 unsigned int
2128 Output_section::Input_section::shndx() const
2129 {
2130   if (this->is_input_section())
2131     return this->shndx_;
2132   else if (this->is_merge_section())
2133     {
2134       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2135       return this->u2_.pomb->first_shndx();
2136     }
2137   else if (this->is_relaxed_input_section())
2138     return this->u2_.poris->shndx();
2139   else
2140     gold_unreachable();
2141 }
2142
2143 // Set the address and file offset.
2144
2145 void
2146 Output_section::Input_section::set_address_and_file_offset(
2147     uint64_t address,
2148     off_t file_offset,
2149     off_t section_file_offset)
2150 {
2151   if (this->is_input_section())
2152     this->u2_.object->set_section_offset(this->shndx_,
2153                                          file_offset - section_file_offset);
2154   else
2155     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2156 }
2157
2158 // Reset the address and file offset.
2159
2160 void
2161 Output_section::Input_section::reset_address_and_file_offset()
2162 {
2163   if (!this->is_input_section())
2164     this->u2_.posd->reset_address_and_file_offset();
2165 }
2166
2167 // Finalize the data size.
2168
2169 void
2170 Output_section::Input_section::finalize_data_size()
2171 {
2172   if (!this->is_input_section())
2173     this->u2_.posd->finalize_data_size();
2174 }
2175
2176 // Try to turn an input offset into an output offset.  We want to
2177 // return the output offset relative to the start of this
2178 // Input_section in the output section.
2179
2180 inline bool
2181 Output_section::Input_section::output_offset(
2182     const Relobj* object,
2183     unsigned int shndx,
2184     section_offset_type offset,
2185     section_offset_type* poutput) const
2186 {
2187   if (!this->is_input_section())
2188     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2189   else
2190     {
2191       if (this->shndx_ != shndx || this->u2_.object != object)
2192         return false;
2193       *poutput = offset;
2194       return true;
2195     }
2196 }
2197
2198 // Return whether this is the merge section for the input section
2199 // SHNDX in OBJECT.
2200
2201 inline bool
2202 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2203                                                     unsigned int shndx) const
2204 {
2205   if (this->is_input_section())
2206     return false;
2207   return this->u2_.posd->is_merge_section_for(object, shndx);
2208 }
2209
2210 // Write out the data.  We don't have to do anything for an input
2211 // section--they are handled via Object::relocate--but this is where
2212 // we write out the data for an Output_section_data.
2213
2214 void
2215 Output_section::Input_section::write(Output_file* of)
2216 {
2217   if (!this->is_input_section())
2218     this->u2_.posd->write(of);
2219 }
2220
2221 // Write the data to a buffer.  As for write(), we don't have to do
2222 // anything for an input section.
2223
2224 void
2225 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2226 {
2227   if (!this->is_input_section())
2228     this->u2_.posd->write_to_buffer(buffer);
2229 }
2230
2231 // Print to a map file.
2232
2233 void
2234 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2235 {
2236   switch (this->shndx_)
2237     {
2238     case OUTPUT_SECTION_CODE:
2239     case MERGE_DATA_SECTION_CODE:
2240     case MERGE_STRING_SECTION_CODE:
2241       this->u2_.posd->print_to_mapfile(mapfile);
2242       break;
2243
2244     case RELAXED_INPUT_SECTION_CODE:
2245       {
2246         Output_relaxed_input_section* relaxed_section =
2247           this->relaxed_input_section();
2248         mapfile->print_input_section(relaxed_section->relobj(),
2249                                      relaxed_section->shndx());
2250       }
2251       break;
2252     default:
2253       mapfile->print_input_section(this->u2_.object, this->shndx_);
2254       break;
2255     }
2256 }
2257
2258 // Output_section methods.
2259
2260 // Construct an Output_section.  NAME will point into a Stringpool.
2261
2262 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2263                                elfcpp::Elf_Xword flags)
2264   : name_(name),
2265     addralign_(0),
2266     entsize_(0),
2267     load_address_(0),
2268     link_section_(NULL),
2269     link_(0),
2270     info_section_(NULL),
2271     info_symndx_(NULL),
2272     info_(0),
2273     type_(type),
2274     flags_(flags),
2275     order_(ORDER_INVALID),
2276     out_shndx_(-1U),
2277     symtab_index_(0),
2278     dynsym_index_(0),
2279     input_sections_(),
2280     first_input_offset_(0),
2281     fills_(),
2282     postprocessing_buffer_(NULL),
2283     needs_symtab_index_(false),
2284     needs_dynsym_index_(false),
2285     should_link_to_symtab_(false),
2286     should_link_to_dynsym_(false),
2287     after_input_sections_(false),
2288     requires_postprocessing_(false),
2289     found_in_sections_clause_(false),
2290     has_load_address_(false),
2291     info_uses_section_index_(false),
2292     input_section_order_specified_(false),
2293     may_sort_attached_input_sections_(false),
2294     must_sort_attached_input_sections_(false),
2295     attached_input_sections_are_sorted_(false),
2296     is_relro_(false),
2297     is_small_section_(false),
2298     is_large_section_(false),
2299     generate_code_fills_at_write_(false),
2300     is_entsize_zero_(false),
2301     section_offsets_need_adjustment_(false),
2302     is_noload_(false),
2303     always_keeps_input_sections_(false),
2304     has_fixed_layout_(false),
2305     is_patch_space_allowed_(false),
2306     tls_offset_(0),
2307     checkpoint_(NULL),
2308     lookup_maps_(new Output_section_lookup_maps),
2309     free_list_(),
2310     free_space_fill_(NULL),
2311     patch_space_(0)
2312 {
2313   // An unallocated section has no address.  Forcing this means that
2314   // we don't need special treatment for symbols defined in debug
2315   // sections.
2316   if ((flags & elfcpp::SHF_ALLOC) == 0)
2317     this->set_address(0);
2318 }
2319
2320 Output_section::~Output_section()
2321 {
2322   delete this->checkpoint_;
2323 }
2324
2325 // Set the entry size.
2326
2327 void
2328 Output_section::set_entsize(uint64_t v)
2329 {
2330   if (this->is_entsize_zero_)
2331     ;
2332   else if (this->entsize_ == 0)
2333     this->entsize_ = v;
2334   else if (this->entsize_ != v)
2335     {
2336       this->entsize_ = 0;
2337       this->is_entsize_zero_ = 1;
2338     }
2339 }
2340
2341 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2342 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2343 // relocation section which applies to this section, or 0 if none, or
2344 // -1U if more than one.  Return the offset of the input section
2345 // within the output section.  Return -1 if the input section will
2346 // receive special handling.  In the normal case we don't always keep
2347 // track of input sections for an Output_section.  Instead, each
2348 // Object keeps track of the Output_section for each of its input
2349 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2350 // track of input sections here; this is used when SECTIONS appears in
2351 // a linker script.
2352
2353 template<int size, bool big_endian>
2354 off_t
2355 Output_section::add_input_section(Layout* layout,
2356                                   Sized_relobj_file<size, big_endian>* object,
2357                                   unsigned int shndx,
2358                                   const char* secname,
2359                                   const elfcpp::Shdr<size, big_endian>& shdr,
2360                                   unsigned int reloc_shndx,
2361                                   bool have_sections_script)
2362 {
2363   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2364   if ((addralign & (addralign - 1)) != 0)
2365     {
2366       object->error(_("invalid alignment %lu for section \"%s\""),
2367                     static_cast<unsigned long>(addralign), secname);
2368       addralign = 1;
2369     }
2370
2371   if (addralign > this->addralign_)
2372     this->addralign_ = addralign;
2373
2374   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2375   uint64_t entsize = shdr.get_sh_entsize();
2376
2377   // .debug_str is a mergeable string section, but is not always so
2378   // marked by compilers.  Mark manually here so we can optimize.
2379   if (strcmp(secname, ".debug_str") == 0)
2380     {
2381       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2382       entsize = 1;
2383     }
2384
2385   this->update_flags_for_input_section(sh_flags);
2386   this->set_entsize(entsize);
2387
2388   // If this is a SHF_MERGE section, we pass all the input sections to
2389   // a Output_data_merge.  We don't try to handle relocations for such
2390   // a section.  We don't try to handle empty merge sections--they
2391   // mess up the mappings, and are useless anyhow.
2392   // FIXME: Need to handle merge sections during incremental update.
2393   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2394       && reloc_shndx == 0
2395       && shdr.get_sh_size() > 0
2396       && !parameters->incremental())
2397     {
2398       // Keep information about merged input sections for rebuilding fast
2399       // lookup maps if we have sections-script or we do relaxation.
2400       bool keeps_input_sections = (this->always_keeps_input_sections_
2401                                    || have_sections_script
2402                                    || parameters->target().may_relax());
2403
2404       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2405                                         addralign, keeps_input_sections))
2406         {
2407           // Tell the relocation routines that they need to call the
2408           // output_offset method to determine the final address.
2409           return -1;
2410         }
2411     }
2412
2413   section_size_type input_section_size = shdr.get_sh_size();
2414   section_size_type uncompressed_size;
2415   if (object->section_is_compressed(shndx, &uncompressed_size))
2416     input_section_size = uncompressed_size;
2417
2418   off_t offset_in_section;
2419   off_t aligned_offset_in_section;
2420   if (this->has_fixed_layout())
2421     {
2422       // For incremental updates, find a chunk of unused space in the section.
2423       offset_in_section = this->free_list_.allocate(input_section_size,
2424                                                     addralign, 0);
2425       if (offset_in_section == -1)
2426         gold_fallback(_("out of patch space in section %s; "
2427                         "relink with --incremental-full"),
2428                       this->name());
2429       aligned_offset_in_section = offset_in_section;
2430     }
2431   else
2432     {
2433       offset_in_section = this->current_data_size_for_child();
2434       aligned_offset_in_section = align_address(offset_in_section,
2435                                                 addralign);
2436       this->set_current_data_size_for_child(aligned_offset_in_section
2437                                             + input_section_size);
2438     }
2439
2440   // Determine if we want to delay code-fill generation until the output
2441   // section is written.  When the target is relaxing, we want to delay fill
2442   // generating to avoid adjusting them during relaxation.  Also, if we are
2443   // sorting input sections we must delay fill generation.
2444   if (!this->generate_code_fills_at_write_
2445       && !have_sections_script
2446       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2447       && parameters->target().has_code_fill()
2448       && (parameters->target().may_relax()
2449           || layout->is_section_ordering_specified()))
2450     {
2451       gold_assert(this->fills_.empty());
2452       this->generate_code_fills_at_write_ = true;
2453     }
2454
2455   if (aligned_offset_in_section > offset_in_section
2456       && !this->generate_code_fills_at_write_
2457       && !have_sections_script
2458       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2459       && parameters->target().has_code_fill())
2460     {
2461       // We need to add some fill data.  Using fill_list_ when
2462       // possible is an optimization, since we will often have fill
2463       // sections without input sections.
2464       off_t fill_len = aligned_offset_in_section - offset_in_section;
2465       if (this->input_sections_.empty())
2466         this->fills_.push_back(Fill(offset_in_section, fill_len));
2467       else
2468         {
2469           std::string fill_data(parameters->target().code_fill(fill_len));
2470           Output_data_const* odc = new Output_data_const(fill_data, 1);
2471           this->input_sections_.push_back(Input_section(odc));
2472         }
2473     }
2474
2475   // We need to keep track of this section if we are already keeping
2476   // track of sections, or if we are relaxing.  Also, if this is a
2477   // section which requires sorting, or which may require sorting in
2478   // the future, we keep track of the sections.  If the
2479   // --section-ordering-file option is used to specify the order of
2480   // sections, we need to keep track of sections.
2481   if (this->always_keeps_input_sections_
2482       || have_sections_script
2483       || !this->input_sections_.empty()
2484       || this->may_sort_attached_input_sections()
2485       || this->must_sort_attached_input_sections()
2486       || parameters->options().user_set_Map()
2487       || parameters->target().may_relax()
2488       || layout->is_section_ordering_specified())
2489     {
2490       Input_section isecn(object, shndx, input_section_size, addralign);
2491       /* If section ordering is requested by specifying a ordering file,
2492          using --section-ordering-file, match the section name with
2493          a pattern.  */
2494       if (parameters->options().section_ordering_file())
2495         {
2496           unsigned int section_order_index =
2497             layout->find_section_order_index(std::string(secname));
2498           if (section_order_index != 0)
2499             {
2500               isecn.set_section_order_index(section_order_index);
2501               this->set_input_section_order_specified();
2502             }
2503         }
2504       if (this->has_fixed_layout())
2505         {
2506           // For incremental updates, finalize the address and offset now.
2507           uint64_t addr = this->address();
2508           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2509                                             aligned_offset_in_section,
2510                                             this->offset());
2511         }
2512       this->input_sections_.push_back(isecn);
2513     }
2514
2515   return aligned_offset_in_section;
2516 }
2517
2518 // Add arbitrary data to an output section.
2519
2520 void
2521 Output_section::add_output_section_data(Output_section_data* posd)
2522 {
2523   Input_section inp(posd);
2524   this->add_output_section_data(&inp);
2525
2526   if (posd->is_data_size_valid())
2527     {
2528       off_t offset_in_section;
2529       if (this->has_fixed_layout())
2530         {
2531           // For incremental updates, find a chunk of unused space.
2532           offset_in_section = this->free_list_.allocate(posd->data_size(),
2533                                                         posd->addralign(), 0);
2534           if (offset_in_section == -1)
2535             gold_fallback(_("out of patch space in section %s; "
2536                             "relink with --incremental-full"),
2537                           this->name());
2538           // Finalize the address and offset now.
2539           uint64_t addr = this->address();
2540           off_t offset = this->offset();
2541           posd->set_address_and_file_offset(addr + offset_in_section,
2542                                             offset + offset_in_section);
2543         }
2544       else
2545         {
2546           offset_in_section = this->current_data_size_for_child();
2547           off_t aligned_offset_in_section = align_address(offset_in_section,
2548                                                           posd->addralign());
2549           this->set_current_data_size_for_child(aligned_offset_in_section
2550                                                 + posd->data_size());
2551         }
2552     }
2553   else if (this->has_fixed_layout())
2554     {
2555       // For incremental updates, arrange for the data to have a fixed layout.
2556       // This will mean that additions to the data must be allocated from
2557       // free space within the containing output section.
2558       uint64_t addr = this->address();
2559       posd->set_address(addr);
2560       posd->set_file_offset(0);
2561       // FIXME: This should eventually be unreachable.
2562       // gold_unreachable();
2563     }
2564 }
2565
2566 // Add a relaxed input section.
2567
2568 void
2569 Output_section::add_relaxed_input_section(Layout* layout,
2570                                           Output_relaxed_input_section* poris,
2571                                           const std::string& name)
2572 {
2573   Input_section inp(poris);
2574
2575   // If the --section-ordering-file option is used to specify the order of
2576   // sections, we need to keep track of sections.
2577   if (layout->is_section_ordering_specified())
2578     {
2579       unsigned int section_order_index =
2580         layout->find_section_order_index(name);
2581       if (section_order_index != 0)
2582         {
2583           inp.set_section_order_index(section_order_index);
2584           this->set_input_section_order_specified();
2585         }
2586     }
2587
2588   this->add_output_section_data(&inp);
2589   if (this->lookup_maps_->is_valid())
2590     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2591                                                   poris->shndx(), poris);
2592
2593   // For a relaxed section, we use the current data size.  Linker scripts
2594   // get all the input sections, including relaxed one from an output
2595   // section and add them back to them same output section to compute the
2596   // output section size.  If we do not account for sizes of relaxed input
2597   // sections,  an output section would be incorrectly sized.
2598   off_t offset_in_section = this->current_data_size_for_child();
2599   off_t aligned_offset_in_section = align_address(offset_in_section,
2600                                                   poris->addralign());
2601   this->set_current_data_size_for_child(aligned_offset_in_section
2602                                         + poris->current_data_size());
2603 }
2604
2605 // Add arbitrary data to an output section by Input_section.
2606
2607 void
2608 Output_section::add_output_section_data(Input_section* inp)
2609 {
2610   if (this->input_sections_.empty())
2611     this->first_input_offset_ = this->current_data_size_for_child();
2612
2613   this->input_sections_.push_back(*inp);
2614
2615   uint64_t addralign = inp->addralign();
2616   if (addralign > this->addralign_)
2617     this->addralign_ = addralign;
2618
2619   inp->set_output_section(this);
2620 }
2621
2622 // Add a merge section to an output section.
2623
2624 void
2625 Output_section::add_output_merge_section(Output_section_data* posd,
2626                                          bool is_string, uint64_t entsize)
2627 {
2628   Input_section inp(posd, is_string, entsize);
2629   this->add_output_section_data(&inp);
2630 }
2631
2632 // Add an input section to a SHF_MERGE section.
2633
2634 bool
2635 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2636                                         uint64_t flags, uint64_t entsize,
2637                                         uint64_t addralign,
2638                                         bool keeps_input_sections)
2639 {
2640   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2641
2642   // We only merge strings if the alignment is not more than the
2643   // character size.  This could be handled, but it's unusual.
2644   if (is_string && addralign > entsize)
2645     return false;
2646
2647   // We cannot restore merged input section states.
2648   gold_assert(this->checkpoint_ == NULL);
2649
2650   // Look up merge sections by required properties.
2651   // Currently, we only invalidate the lookup maps in script processing
2652   // and relaxation.  We should not have done either when we reach here.
2653   // So we assume that the lookup maps are valid to simply code.
2654   gold_assert(this->lookup_maps_->is_valid());
2655   Merge_section_properties msp(is_string, entsize, addralign);
2656   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2657   bool is_new = false;
2658   if (pomb != NULL)
2659     {
2660       gold_assert(pomb->is_string() == is_string
2661                   && pomb->entsize() == entsize
2662                   && pomb->addralign() == addralign);
2663     }
2664   else
2665     {
2666       // Create a new Output_merge_data or Output_merge_string_data.
2667       if (!is_string)
2668         pomb = new Output_merge_data(entsize, addralign);
2669       else
2670         {
2671           switch (entsize)
2672             {
2673             case 1:
2674               pomb = new Output_merge_string<char>(addralign);
2675               break;
2676             case 2:
2677               pomb = new Output_merge_string<uint16_t>(addralign);
2678               break;
2679             case 4:
2680               pomb = new Output_merge_string<uint32_t>(addralign);
2681               break;
2682             default:
2683               return false;
2684             }
2685         }
2686       // If we need to do script processing or relaxation, we need to keep
2687       // the original input sections to rebuild the fast lookup maps.
2688       if (keeps_input_sections)
2689         pomb->set_keeps_input_sections();
2690       is_new = true;
2691     }
2692
2693   if (pomb->add_input_section(object, shndx))
2694     {
2695       // Add new merge section to this output section and link merge
2696       // section properties to new merge section in map.
2697       if (is_new)
2698         {
2699           this->add_output_merge_section(pomb, is_string, entsize);
2700           this->lookup_maps_->add_merge_section(msp, pomb);
2701         }
2702
2703       // Add input section to new merge section and link input section to new
2704       // merge section in map.
2705       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2706       return true;
2707     }
2708   else
2709     {
2710       // If add_input_section failed, delete new merge section to avoid
2711       // exporting empty merge sections in Output_section::get_input_section.
2712       if (is_new)
2713         delete pomb;
2714       return false;
2715     }
2716 }
2717
2718 // Build a relaxation map to speed up relaxation of existing input sections.
2719 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2720
2721 void
2722 Output_section::build_relaxation_map(
2723   const Input_section_list& input_sections,
2724   size_t limit,
2725   Relaxation_map* relaxation_map) const
2726 {
2727   for (size_t i = 0; i < limit; ++i)
2728     {
2729       const Input_section& is(input_sections[i]);
2730       if (is.is_input_section() || is.is_relaxed_input_section())
2731         {
2732           Section_id sid(is.relobj(), is.shndx());
2733           (*relaxation_map)[sid] = i;
2734         }
2735     }
2736 }
2737
2738 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2739 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2740 // indices of INPUT_SECTIONS.
2741
2742 void
2743 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2744   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2745   const Relaxation_map& map,
2746   Input_section_list* input_sections)
2747 {
2748   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2749     {
2750       Output_relaxed_input_section* poris = relaxed_sections[i];
2751       Section_id sid(poris->relobj(), poris->shndx());
2752       Relaxation_map::const_iterator p = map.find(sid);
2753       gold_assert(p != map.end());
2754       gold_assert((*input_sections)[p->second].is_input_section());
2755
2756       // Remember section order index of original input section
2757       // if it is set.  Copy it to the relaxed input section.
2758       unsigned int soi =
2759         (*input_sections)[p->second].section_order_index();
2760       (*input_sections)[p->second] = Input_section(poris);
2761       (*input_sections)[p->second].set_section_order_index(soi);
2762     }
2763 }
2764   
2765 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2766 // is a vector of pointers to Output_relaxed_input_section or its derived
2767 // classes.  The relaxed sections must correspond to existing input sections.
2768
2769 void
2770 Output_section::convert_input_sections_to_relaxed_sections(
2771   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2772 {
2773   gold_assert(parameters->target().may_relax());
2774
2775   // We want to make sure that restore_states does not undo the effect of
2776   // this.  If there is no checkpoint active, just search the current
2777   // input section list and replace the sections there.  If there is
2778   // a checkpoint, also replace the sections there.
2779   
2780   // By default, we look at the whole list.
2781   size_t limit = this->input_sections_.size();
2782
2783   if (this->checkpoint_ != NULL)
2784     {
2785       // Replace input sections with relaxed input section in the saved
2786       // copy of the input section list.
2787       if (this->checkpoint_->input_sections_saved())
2788         {
2789           Relaxation_map map;
2790           this->build_relaxation_map(
2791                     *(this->checkpoint_->input_sections()),
2792                     this->checkpoint_->input_sections()->size(),
2793                     &map);
2794           this->convert_input_sections_in_list_to_relaxed_sections(
2795                     relaxed_sections,
2796                     map,
2797                     this->checkpoint_->input_sections());
2798         }
2799       else
2800         {
2801           // We have not copied the input section list yet.  Instead, just
2802           // look at the portion that would be saved.
2803           limit = this->checkpoint_->input_sections_size();
2804         }
2805     }
2806
2807   // Convert input sections in input_section_list.
2808   Relaxation_map map;
2809   this->build_relaxation_map(this->input_sections_, limit, &map);
2810   this->convert_input_sections_in_list_to_relaxed_sections(
2811             relaxed_sections,
2812             map,
2813             &this->input_sections_);
2814
2815   // Update fast look-up map.
2816   if (this->lookup_maps_->is_valid())
2817     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2818       {
2819         Output_relaxed_input_section* poris = relaxed_sections[i];
2820         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2821                                                       poris->shndx(), poris);
2822       }
2823 }
2824
2825 // Update the output section flags based on input section flags.
2826
2827 void
2828 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2829 {
2830   // If we created the section with SHF_ALLOC clear, we set the
2831   // address.  If we are now setting the SHF_ALLOC flag, we need to
2832   // undo that.
2833   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2834       && (flags & elfcpp::SHF_ALLOC) != 0)
2835     this->mark_address_invalid();
2836
2837   this->flags_ |= (flags
2838                    & (elfcpp::SHF_WRITE
2839                       | elfcpp::SHF_ALLOC
2840                       | elfcpp::SHF_EXECINSTR));
2841
2842   if ((flags & elfcpp::SHF_MERGE) == 0)
2843     this->flags_ &=~ elfcpp::SHF_MERGE;
2844   else
2845     {
2846       if (this->current_data_size_for_child() == 0)
2847         this->flags_ |= elfcpp::SHF_MERGE;
2848     }
2849
2850   if ((flags & elfcpp::SHF_STRINGS) == 0)
2851     this->flags_ &=~ elfcpp::SHF_STRINGS;
2852   else
2853     {
2854       if (this->current_data_size_for_child() == 0)
2855         this->flags_ |= elfcpp::SHF_STRINGS;
2856     }
2857 }
2858
2859 // Find the merge section into which an input section with index SHNDX in
2860 // OBJECT has been added.  Return NULL if none found.
2861
2862 Output_section_data*
2863 Output_section::find_merge_section(const Relobj* object,
2864                                    unsigned int shndx) const
2865 {
2866   if (!this->lookup_maps_->is_valid())
2867     this->build_lookup_maps();
2868   return this->lookup_maps_->find_merge_section(object, shndx);
2869 }
2870
2871 // Build the lookup maps for merge and relaxed sections.  This is needs
2872 // to be declared as a const methods so that it is callable with a const
2873 // Output_section pointer.  The method only updates states of the maps.
2874
2875 void
2876 Output_section::build_lookup_maps() const
2877 {
2878   this->lookup_maps_->clear();
2879   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2880        p != this->input_sections_.end();
2881        ++p)
2882     {
2883       if (p->is_merge_section())
2884         {
2885           Output_merge_base* pomb = p->output_merge_base();
2886           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2887                                        pomb->addralign());
2888           this->lookup_maps_->add_merge_section(msp, pomb);
2889           for (Output_merge_base::Input_sections::const_iterator is =
2890                  pomb->input_sections_begin();
2891                is != pomb->input_sections_end();
2892                ++is) 
2893             {
2894               const Const_section_id& csid = *is;
2895             this->lookup_maps_->add_merge_input_section(csid.first,
2896                                                         csid.second, pomb);
2897             }
2898             
2899         }
2900       else if (p->is_relaxed_input_section())
2901         {
2902           Output_relaxed_input_section* poris = p->relaxed_input_section();
2903           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2904                                                         poris->shndx(), poris);
2905         }
2906     }
2907 }
2908
2909 // Find an relaxed input section corresponding to an input section
2910 // in OBJECT with index SHNDX.
2911
2912 const Output_relaxed_input_section*
2913 Output_section::find_relaxed_input_section(const Relobj* object,
2914                                            unsigned int shndx) const
2915 {
2916   if (!this->lookup_maps_->is_valid())
2917     this->build_lookup_maps();
2918   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2919 }
2920
2921 // Given an address OFFSET relative to the start of input section
2922 // SHNDX in OBJECT, return whether this address is being included in
2923 // the final link.  This should only be called if SHNDX in OBJECT has
2924 // a special mapping.
2925
2926 bool
2927 Output_section::is_input_address_mapped(const Relobj* object,
2928                                         unsigned int shndx,
2929                                         off_t offset) const
2930 {
2931   // Look at the Output_section_data_maps first.
2932   const Output_section_data* posd = this->find_merge_section(object, shndx);
2933   if (posd == NULL)
2934     posd = this->find_relaxed_input_section(object, shndx);
2935
2936   if (posd != NULL)
2937     {
2938       section_offset_type output_offset;
2939       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2940       gold_assert(found);   
2941       return output_offset != -1;
2942     }
2943
2944   // Fall back to the slow look-up.
2945   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2946        p != this->input_sections_.end();
2947        ++p)
2948     {
2949       section_offset_type output_offset;
2950       if (p->output_offset(object, shndx, offset, &output_offset))
2951         return output_offset != -1;
2952     }
2953
2954   // By default we assume that the address is mapped.  This should
2955   // only be called after we have passed all sections to Layout.  At
2956   // that point we should know what we are discarding.
2957   return true;
2958 }
2959
2960 // Given an address OFFSET relative to the start of input section
2961 // SHNDX in object OBJECT, return the output offset relative to the
2962 // start of the input section in the output section.  This should only
2963 // be called if SHNDX in OBJECT has a special mapping.
2964
2965 section_offset_type
2966 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2967                               section_offset_type offset) const
2968 {
2969   // This can only be called meaningfully when we know the data size
2970   // of this.
2971   gold_assert(this->is_data_size_valid());
2972
2973   // Look at the Output_section_data_maps first.
2974   const Output_section_data* posd = this->find_merge_section(object, shndx);
2975   if (posd == NULL) 
2976     posd = this->find_relaxed_input_section(object, shndx);
2977   if (posd != NULL)
2978     {
2979       section_offset_type output_offset;
2980       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2981       gold_assert(found);   
2982       return output_offset;
2983     }
2984
2985   // Fall back to the slow look-up.
2986   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2987        p != this->input_sections_.end();
2988        ++p)
2989     {
2990       section_offset_type output_offset;
2991       if (p->output_offset(object, shndx, offset, &output_offset))
2992         return output_offset;
2993     }
2994   gold_unreachable();
2995 }
2996
2997 // Return the output virtual address of OFFSET relative to the start
2998 // of input section SHNDX in object OBJECT.
2999
3000 uint64_t
3001 Output_section::output_address(const Relobj* object, unsigned int shndx,
3002                                off_t offset) const
3003 {
3004   uint64_t addr = this->address() + this->first_input_offset_;
3005
3006   // Look at the Output_section_data_maps first.
3007   const Output_section_data* posd = this->find_merge_section(object, shndx);
3008   if (posd == NULL) 
3009     posd = this->find_relaxed_input_section(object, shndx);
3010   if (posd != NULL && posd->is_address_valid())
3011     {
3012       section_offset_type output_offset;
3013       bool found = posd->output_offset(object, shndx, offset, &output_offset);
3014       gold_assert(found);
3015       return posd->address() + output_offset;
3016     }
3017
3018   // Fall back to the slow look-up.
3019   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3020        p != this->input_sections_.end();
3021        ++p)
3022     {
3023       addr = align_address(addr, p->addralign());
3024       section_offset_type output_offset;
3025       if (p->output_offset(object, shndx, offset, &output_offset))
3026         {
3027           if (output_offset == -1)
3028             return -1ULL;
3029           return addr + output_offset;
3030         }
3031       addr += p->data_size();
3032     }
3033
3034   // If we get here, it means that we don't know the mapping for this
3035   // input section.  This might happen in principle if
3036   // add_input_section were called before add_output_section_data.
3037   // But it should never actually happen.
3038
3039   gold_unreachable();
3040 }
3041
3042 // Find the output address of the start of the merged section for
3043 // input section SHNDX in object OBJECT.
3044
3045 bool
3046 Output_section::find_starting_output_address(const Relobj* object,
3047                                              unsigned int shndx,
3048                                              uint64_t* paddr) const
3049 {
3050   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3051   // Looking up the merge section map does not always work as we sometimes
3052   // find a merge section without its address set.
3053   uint64_t addr = this->address() + this->first_input_offset_;
3054   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3055        p != this->input_sections_.end();
3056        ++p)
3057     {
3058       addr = align_address(addr, p->addralign());
3059
3060       // It would be nice if we could use the existing output_offset
3061       // method to get the output offset of input offset 0.
3062       // Unfortunately we don't know for sure that input offset 0 is
3063       // mapped at all.
3064       if (p->is_merge_section_for(object, shndx))
3065         {
3066           *paddr = addr;
3067           return true;
3068         }
3069
3070       addr += p->data_size();
3071     }
3072
3073   // We couldn't find a merge output section for this input section.
3074   return false;
3075 }
3076
3077 // Update the data size of an Output_section.
3078
3079 void
3080 Output_section::update_data_size()
3081 {
3082   if (this->input_sections_.empty())
3083       return;
3084
3085   if (this->must_sort_attached_input_sections()
3086       || this->input_section_order_specified())
3087     this->sort_attached_input_sections();
3088
3089   off_t off = this->first_input_offset_;
3090   for (Input_section_list::iterator p = this->input_sections_.begin();
3091        p != this->input_sections_.end();
3092        ++p)
3093     {
3094       off = align_address(off, p->addralign());
3095       off += p->current_data_size();
3096     }
3097
3098   this->set_current_data_size_for_child(off);
3099 }
3100
3101 // Set the data size of an Output_section.  This is where we handle
3102 // setting the addresses of any Output_section_data objects.
3103
3104 void
3105 Output_section::set_final_data_size()
3106 {
3107   off_t data_size;
3108
3109   if (this->input_sections_.empty())
3110     data_size = this->current_data_size_for_child();
3111   else
3112     {
3113       if (this->must_sort_attached_input_sections()
3114           || this->input_section_order_specified())
3115         this->sort_attached_input_sections();
3116
3117       uint64_t address = this->address();
3118       off_t startoff = this->offset();
3119       off_t off = startoff + this->first_input_offset_;
3120       for (Input_section_list::iterator p = this->input_sections_.begin();
3121            p != this->input_sections_.end();
3122            ++p)
3123         {
3124           off = align_address(off, p->addralign());
3125           p->set_address_and_file_offset(address + (off - startoff), off,
3126                                          startoff);
3127           off += p->data_size();
3128         }
3129       data_size = off - startoff;
3130     }
3131
3132   // For full incremental links, we want to allocate some patch space
3133   // in most sections for subsequent incremental updates.
3134   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3135     {
3136       double pct = parameters->options().incremental_patch();
3137       size_t extra = static_cast<size_t>(data_size * pct);
3138       if (this->free_space_fill_ != NULL
3139           && this->free_space_fill_->minimum_hole_size() > extra)
3140         extra = this->free_space_fill_->minimum_hole_size();
3141       off_t new_size = align_address(data_size + extra, this->addralign());
3142       this->patch_space_ = new_size - data_size;
3143       gold_debug(DEBUG_INCREMENTAL,
3144                  "set_final_data_size: %08lx + %08lx: section %s",
3145                  static_cast<long>(data_size),
3146                  static_cast<long>(this->patch_space_),
3147                  this->name());
3148       data_size = new_size;
3149     }
3150
3151   this->set_data_size(data_size);
3152 }
3153
3154 // Reset the address and file offset.
3155
3156 void
3157 Output_section::do_reset_address_and_file_offset()
3158 {
3159   // An unallocated section has no address.  Forcing this means that
3160   // we don't need special treatment for symbols defined in debug
3161   // sections.  We do the same in the constructor.  This does not
3162   // apply to NOLOAD sections though.
3163   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3164      this->set_address(0);
3165
3166   for (Input_section_list::iterator p = this->input_sections_.begin();
3167        p != this->input_sections_.end();
3168        ++p)
3169     p->reset_address_and_file_offset();
3170
3171   // Remove any patch space that was added in set_final_data_size.
3172   if (this->patch_space_ > 0)
3173     {
3174       this->set_current_data_size_for_child(this->current_data_size_for_child()
3175                                             - this->patch_space_);
3176       this->patch_space_ = 0;
3177     }
3178 }
3179
3180 // Return true if address and file offset have the values after reset.
3181
3182 bool
3183 Output_section::do_address_and_file_offset_have_reset_values() const
3184 {
3185   if (this->is_offset_valid())
3186     return false;
3187
3188   // An unallocated section has address 0 after its construction or a reset.
3189   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3190     return this->is_address_valid() && this->address() == 0;
3191   else
3192     return !this->is_address_valid();
3193 }
3194
3195 // Set the TLS offset.  Called only for SHT_TLS sections.
3196
3197 void
3198 Output_section::do_set_tls_offset(uint64_t tls_base)
3199 {
3200   this->tls_offset_ = this->address() - tls_base;
3201 }
3202
3203 // In a few cases we need to sort the input sections attached to an
3204 // output section.  This is used to implement the type of constructor
3205 // priority ordering implemented by the GNU linker, in which the
3206 // priority becomes part of the section name and the sections are
3207 // sorted by name.  We only do this for an output section if we see an
3208 // attached input section matching ".ctors.*", ".dtors.*",
3209 // ".init_array.*" or ".fini_array.*".
3210
3211 class Output_section::Input_section_sort_entry
3212 {
3213  public:
3214   Input_section_sort_entry()
3215     : input_section_(), index_(-1U), section_has_name_(false),
3216       section_name_()
3217   { }
3218
3219   Input_section_sort_entry(const Input_section& input_section,
3220                            unsigned int index,
3221                            bool must_sort_attached_input_sections)
3222     : input_section_(input_section), index_(index),
3223       section_has_name_(input_section.is_input_section()
3224                         || input_section.is_relaxed_input_section())
3225   {
3226     if (this->section_has_name_
3227         && must_sort_attached_input_sections)
3228       {
3229         // This is only called single-threaded from Layout::finalize,
3230         // so it is OK to lock.  Unfortunately we have no way to pass
3231         // in a Task token.
3232         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3233         Object* obj = (input_section.is_input_section()
3234                        ? input_section.relobj()
3235                        : input_section.relaxed_input_section()->relobj());
3236         Task_lock_obj<Object> tl(dummy_task, obj);
3237
3238         // This is a slow operation, which should be cached in
3239         // Layout::layout if this becomes a speed problem.
3240         this->section_name_ = obj->section_name(input_section.shndx());
3241       }
3242   }
3243
3244   // Return the Input_section.
3245   const Input_section&
3246   input_section() const
3247   {
3248     gold_assert(this->index_ != -1U);
3249     return this->input_section_;
3250   }
3251
3252   // The index of this entry in the original list.  This is used to
3253   // make the sort stable.
3254   unsigned int
3255   index() const
3256   {
3257     gold_assert(this->index_ != -1U);
3258     return this->index_;
3259   }
3260
3261   // Whether there is a section name.
3262   bool
3263   section_has_name() const
3264   { return this->section_has_name_; }
3265
3266   // The section name.
3267   const std::string&
3268   section_name() const
3269   {
3270     gold_assert(this->section_has_name_);
3271     return this->section_name_;
3272   }
3273
3274   // Return true if the section name has a priority.  This is assumed
3275   // to be true if it has a dot after the initial dot.
3276   bool
3277   has_priority() const
3278   {
3279     gold_assert(this->section_has_name_);
3280     return this->section_name_.find('.', 1) != std::string::npos;
3281   }
3282
3283   // Return the priority.  Believe it or not, gcc encodes the priority
3284   // differently for .ctors/.dtors and .init_array/.fini_array
3285   // sections.
3286   unsigned int
3287   get_priority() const
3288   {
3289     gold_assert(this->section_has_name_);
3290     bool is_ctors;
3291     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3292         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3293       is_ctors = true;
3294     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3295              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3296       is_ctors = false;
3297     else
3298       return 0;
3299     char* end;
3300     unsigned long prio = strtoul((this->section_name_.c_str()
3301                                   + (is_ctors ? 7 : 12)),
3302                                  &end, 10);
3303     if (*end != '\0')
3304       return 0;
3305     else if (is_ctors)
3306       return 65535 - prio;
3307     else
3308       return prio;
3309   }
3310
3311   // Return true if this an input file whose base name matches
3312   // FILE_NAME.  The base name must have an extension of ".o", and
3313   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3314   // This is to match crtbegin.o as well as crtbeginS.o without
3315   // getting confused by other possibilities.  Overall matching the
3316   // file name this way is a dreadful hack, but the GNU linker does it
3317   // in order to better support gcc, and we need to be compatible.
3318   bool
3319   match_file_name(const char* file_name) const
3320   { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3321
3322   // Returns 1 if THIS should appear before S in section order, -1 if S
3323   // appears before THIS and 0 if they are not comparable.
3324   int
3325   compare_section_ordering(const Input_section_sort_entry& s) const
3326   {
3327     unsigned int this_secn_index = this->input_section_.section_order_index();
3328     unsigned int s_secn_index = s.input_section().section_order_index();
3329     if (this_secn_index > 0 && s_secn_index > 0)
3330       {
3331         if (this_secn_index < s_secn_index)
3332           return 1;
3333         else if (this_secn_index > s_secn_index)
3334           return -1;
3335       }
3336     return 0;
3337   }
3338
3339  private:
3340   // The Input_section we are sorting.
3341   Input_section input_section_;
3342   // The index of this Input_section in the original list.
3343   unsigned int index_;
3344   // Whether this Input_section has a section name--it won't if this
3345   // is some random Output_section_data.
3346   bool section_has_name_;
3347   // The section name if there is one.
3348   std::string section_name_;
3349 };
3350
3351 // Return true if S1 should come before S2 in the output section.
3352
3353 bool
3354 Output_section::Input_section_sort_compare::operator()(
3355     const Output_section::Input_section_sort_entry& s1,
3356     const Output_section::Input_section_sort_entry& s2) const
3357 {
3358   // crtbegin.o must come first.
3359   bool s1_begin = s1.match_file_name("crtbegin");
3360   bool s2_begin = s2.match_file_name("crtbegin");
3361   if (s1_begin || s2_begin)
3362     {
3363       if (!s1_begin)
3364         return false;
3365       if (!s2_begin)
3366         return true;
3367       return s1.index() < s2.index();
3368     }
3369
3370   // crtend.o must come last.
3371   bool s1_end = s1.match_file_name("crtend");
3372   bool s2_end = s2.match_file_name("crtend");
3373   if (s1_end || s2_end)
3374     {
3375       if (!s1_end)
3376         return true;
3377       if (!s2_end)
3378         return false;
3379       return s1.index() < s2.index();
3380     }
3381
3382   // We sort all the sections with no names to the end.
3383   if (!s1.section_has_name() || !s2.section_has_name())
3384     {
3385       if (s1.section_has_name())
3386         return true;
3387       if (s2.section_has_name())
3388         return false;
3389       return s1.index() < s2.index();
3390     }
3391
3392   // A section with a priority follows a section without a priority.
3393   bool s1_has_priority = s1.has_priority();
3394   bool s2_has_priority = s2.has_priority();
3395   if (s1_has_priority && !s2_has_priority)
3396     return false;
3397   if (!s1_has_priority && s2_has_priority)
3398     return true;
3399
3400   // Check if a section order exists for these sections through a section
3401   // ordering file.  If sequence_num is 0, an order does not exist.
3402   int sequence_num = s1.compare_section_ordering(s2);
3403   if (sequence_num != 0)
3404     return sequence_num == 1;
3405
3406   // Otherwise we sort by name.
3407   int compare = s1.section_name().compare(s2.section_name());
3408   if (compare != 0)
3409     return compare < 0;
3410
3411   // Otherwise we keep the input order.
3412   return s1.index() < s2.index();
3413 }
3414
3415 // Return true if S1 should come before S2 in an .init_array or .fini_array
3416 // output section.
3417
3418 bool
3419 Output_section::Input_section_sort_init_fini_compare::operator()(
3420     const Output_section::Input_section_sort_entry& s1,
3421     const Output_section::Input_section_sort_entry& s2) const
3422 {
3423   // We sort all the sections with no names to the end.
3424   if (!s1.section_has_name() || !s2.section_has_name())
3425     {
3426       if (s1.section_has_name())
3427         return true;
3428       if (s2.section_has_name())
3429         return false;
3430       return s1.index() < s2.index();
3431     }
3432
3433   // A section without a priority follows a section with a priority.
3434   // This is the reverse of .ctors and .dtors sections.
3435   bool s1_has_priority = s1.has_priority();
3436   bool s2_has_priority = s2.has_priority();
3437   if (s1_has_priority && !s2_has_priority)
3438     return true;
3439   if (!s1_has_priority && s2_has_priority)
3440     return false;
3441
3442   // .ctors and .dtors sections without priority come after
3443   // .init_array and .fini_array sections without priority.
3444   if (!s1_has_priority
3445       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3446       && s1.section_name() != s2.section_name())
3447     return false;
3448   if (!s2_has_priority
3449       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3450       && s2.section_name() != s1.section_name())
3451     return true;
3452
3453   // Sort by priority if we can.
3454   if (s1_has_priority)
3455     {
3456       unsigned int s1_prio = s1.get_priority();
3457       unsigned int s2_prio = s2.get_priority();
3458       if (s1_prio < s2_prio)
3459         return true;
3460       else if (s1_prio > s2_prio)
3461         return false;
3462     }
3463
3464   // Check if a section order exists for these sections through a section
3465   // ordering file.  If sequence_num is 0, an order does not exist.
3466   int sequence_num = s1.compare_section_ordering(s2);
3467   if (sequence_num != 0)
3468     return sequence_num == 1;
3469
3470   // Otherwise we sort by name.
3471   int compare = s1.section_name().compare(s2.section_name());
3472   if (compare != 0)
3473     return compare < 0;
3474
3475   // Otherwise we keep the input order.
3476   return s1.index() < s2.index();
3477 }
3478
3479 // Return true if S1 should come before S2.  Sections that do not match
3480 // any pattern in the section ordering file are placed ahead of the sections
3481 // that match some pattern.
3482
3483 bool
3484 Output_section::Input_section_sort_section_order_index_compare::operator()(
3485     const Output_section::Input_section_sort_entry& s1,
3486     const Output_section::Input_section_sort_entry& s2) const
3487 {
3488   unsigned int s1_secn_index = s1.input_section().section_order_index();
3489   unsigned int s2_secn_index = s2.input_section().section_order_index();
3490
3491   // Keep input order if section ordering cannot determine order.
3492   if (s1_secn_index == s2_secn_index)
3493     return s1.index() < s2.index();
3494   
3495   return s1_secn_index < s2_secn_index;
3496 }
3497
3498 // This updates the section order index of input sections according to the
3499 // the order specified in the mapping from Section id to order index.
3500
3501 void
3502 Output_section::update_section_layout(
3503   const Section_layout_order* order_map)
3504 {
3505   for (Input_section_list::iterator p = this->input_sections_.begin();
3506        p != this->input_sections_.end();
3507        ++p)
3508     {
3509       if (p->is_input_section()
3510           || p->is_relaxed_input_section())
3511         {
3512           Object* obj = (p->is_input_section()
3513                          ? p->relobj()
3514                          : p->relaxed_input_section()->relobj());
3515           unsigned int shndx = p->shndx();
3516           Section_layout_order::const_iterator it
3517             = order_map->find(Section_id(obj, shndx));
3518           if (it == order_map->end())
3519             continue;
3520           unsigned int section_order_index = it->second;
3521           if (section_order_index != 0)
3522             {
3523               p->set_section_order_index(section_order_index);
3524               this->set_input_section_order_specified();
3525             }
3526         }
3527     }
3528 }
3529
3530 // Sort the input sections attached to an output section.
3531
3532 void
3533 Output_section::sort_attached_input_sections()
3534 {
3535   if (this->attached_input_sections_are_sorted_)
3536     return;
3537
3538   if (this->checkpoint_ != NULL
3539       && !this->checkpoint_->input_sections_saved())
3540     this->checkpoint_->save_input_sections();
3541
3542   // The only thing we know about an input section is the object and
3543   // the section index.  We need the section name.  Recomputing this
3544   // is slow but this is an unusual case.  If this becomes a speed
3545   // problem we can cache the names as required in Layout::layout.
3546
3547   // We start by building a larger vector holding a copy of each
3548   // Input_section, plus its current index in the list and its name.
3549   std::vector<Input_section_sort_entry> sort_list;
3550
3551   unsigned int i = 0;
3552   for (Input_section_list::iterator p = this->input_sections_.begin();
3553        p != this->input_sections_.end();
3554        ++p, ++i)
3555       sort_list.push_back(Input_section_sort_entry(*p, i,
3556                             this->must_sort_attached_input_sections()));
3557
3558   // Sort the input sections.
3559   if (this->must_sort_attached_input_sections())
3560     {
3561       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3562           || this->type() == elfcpp::SHT_INIT_ARRAY
3563           || this->type() == elfcpp::SHT_FINI_ARRAY)
3564         std::sort(sort_list.begin(), sort_list.end(),
3565                   Input_section_sort_init_fini_compare());
3566       else
3567         std::sort(sort_list.begin(), sort_list.end(),
3568                   Input_section_sort_compare());
3569     }
3570   else
3571     {
3572       gold_assert(this->input_section_order_specified());
3573       std::sort(sort_list.begin(), sort_list.end(),
3574                 Input_section_sort_section_order_index_compare());
3575     }
3576
3577   // Copy the sorted input sections back to our list.
3578   this->input_sections_.clear();
3579   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3580        p != sort_list.end();
3581        ++p)
3582     this->input_sections_.push_back(p->input_section());
3583   sort_list.clear();
3584
3585   // Remember that we sorted the input sections, since we might get
3586   // called again.
3587   this->attached_input_sections_are_sorted_ = true;
3588 }
3589
3590 // Write the section header to *OSHDR.
3591
3592 template<int size, bool big_endian>
3593 void
3594 Output_section::write_header(const Layout* layout,
3595                              const Stringpool* secnamepool,
3596                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3597 {
3598   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3599   oshdr->put_sh_type(this->type_);
3600
3601   elfcpp::Elf_Xword flags = this->flags_;
3602   if (this->info_section_ != NULL && this->info_uses_section_index_)
3603     flags |= elfcpp::SHF_INFO_LINK;
3604   oshdr->put_sh_flags(flags);
3605
3606   oshdr->put_sh_addr(this->address());
3607   oshdr->put_sh_offset(this->offset());
3608   oshdr->put_sh_size(this->data_size());
3609   if (this->link_section_ != NULL)
3610     oshdr->put_sh_link(this->link_section_->out_shndx());
3611   else if (this->should_link_to_symtab_)
3612     oshdr->put_sh_link(layout->symtab_section_shndx());
3613   else if (this->should_link_to_dynsym_)
3614     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3615   else
3616     oshdr->put_sh_link(this->link_);
3617
3618   elfcpp::Elf_Word info;
3619   if (this->info_section_ != NULL)
3620     {
3621       if (this->info_uses_section_index_)
3622         info = this->info_section_->out_shndx();
3623       else
3624         info = this->info_section_->symtab_index();
3625     }
3626   else if (this->info_symndx_ != NULL)
3627     info = this->info_symndx_->symtab_index();
3628   else
3629     info = this->info_;
3630   oshdr->put_sh_info(info);
3631
3632   oshdr->put_sh_addralign(this->addralign_);
3633   oshdr->put_sh_entsize(this->entsize_);
3634 }
3635
3636 // Write out the data.  For input sections the data is written out by
3637 // Object::relocate, but we have to handle Output_section_data objects
3638 // here.
3639
3640 void
3641 Output_section::do_write(Output_file* of)
3642 {
3643   gold_assert(!this->requires_postprocessing());
3644
3645   // If the target performs relaxation, we delay filler generation until now.
3646   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3647
3648   off_t output_section_file_offset = this->offset();
3649   for (Fill_list::iterator p = this->fills_.begin();
3650        p != this->fills_.end();
3651        ++p)
3652     {
3653       std::string fill_data(parameters->target().code_fill(p->length()));
3654       of->write(output_section_file_offset + p->section_offset(),
3655                 fill_data.data(), fill_data.size());
3656     }
3657
3658   off_t off = this->offset() + this->first_input_offset_;
3659   for (Input_section_list::iterator p = this->input_sections_.begin();
3660        p != this->input_sections_.end();
3661        ++p)
3662     {
3663       off_t aligned_off = align_address(off, p->addralign());
3664       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3665         {
3666           size_t fill_len = aligned_off - off;
3667           std::string fill_data(parameters->target().code_fill(fill_len));
3668           of->write(off, fill_data.data(), fill_data.size());
3669         }
3670
3671       p->write(of);
3672       off = aligned_off + p->data_size();
3673     }
3674
3675   // For incremental links, fill in unused chunks in debug sections
3676   // with dummy compilation unit headers.
3677   if (this->free_space_fill_ != NULL)
3678     {
3679       for (Free_list::Const_iterator p = this->free_list_.begin();
3680            p != this->free_list_.end();
3681            ++p)
3682         {
3683           off_t off = p->start_;
3684           size_t len = p->end_ - off;
3685           this->free_space_fill_->write(of, this->offset() + off, len);
3686         }
3687       if (this->patch_space_ > 0)
3688         {
3689           off_t off = this->current_data_size_for_child() - this->patch_space_;
3690           this->free_space_fill_->write(of, this->offset() + off,
3691                                         this->patch_space_);
3692         }
3693     }
3694 }
3695
3696 // If a section requires postprocessing, create the buffer to use.
3697
3698 void
3699 Output_section::create_postprocessing_buffer()
3700 {
3701   gold_assert(this->requires_postprocessing());
3702
3703   if (this->postprocessing_buffer_ != NULL)
3704     return;
3705
3706   if (!this->input_sections_.empty())
3707     {
3708       off_t off = this->first_input_offset_;
3709       for (Input_section_list::iterator p = this->input_sections_.begin();
3710            p != this->input_sections_.end();
3711            ++p)
3712         {
3713           off = align_address(off, p->addralign());
3714           p->finalize_data_size();
3715           off += p->data_size();
3716         }
3717       this->set_current_data_size_for_child(off);
3718     }
3719
3720   off_t buffer_size = this->current_data_size_for_child();
3721   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3722 }
3723
3724 // Write all the data of an Output_section into the postprocessing
3725 // buffer.  This is used for sections which require postprocessing,
3726 // such as compression.  Input sections are handled by
3727 // Object::Relocate.
3728
3729 void
3730 Output_section::write_to_postprocessing_buffer()
3731 {
3732   gold_assert(this->requires_postprocessing());
3733
3734   // If the target performs relaxation, we delay filler generation until now.
3735   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3736
3737   unsigned char* buffer = this->postprocessing_buffer();
3738   for (Fill_list::iterator p = this->fills_.begin();
3739        p != this->fills_.end();
3740        ++p)
3741     {
3742       std::string fill_data(parameters->target().code_fill(p->length()));
3743       memcpy(buffer + p->section_offset(), fill_data.data(),
3744              fill_data.size());
3745     }
3746
3747   off_t off = this->first_input_offset_;
3748   for (Input_section_list::iterator p = this->input_sections_.begin();
3749        p != this->input_sections_.end();
3750        ++p)
3751     {
3752       off_t aligned_off = align_address(off, p->addralign());
3753       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3754         {
3755           size_t fill_len = aligned_off - off;
3756           std::string fill_data(parameters->target().code_fill(fill_len));
3757           memcpy(buffer + off, fill_data.data(), fill_data.size());
3758         }
3759
3760       p->write_to_buffer(buffer + aligned_off);
3761       off = aligned_off + p->data_size();
3762     }
3763 }
3764
3765 // Get the input sections for linker script processing.  We leave
3766 // behind the Output_section_data entries.  Note that this may be
3767 // slightly incorrect for merge sections.  We will leave them behind,
3768 // but it is possible that the script says that they should follow
3769 // some other input sections, as in:
3770 //    .rodata { *(.rodata) *(.rodata.cst*) }
3771 // For that matter, we don't handle this correctly:
3772 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3773 // With luck this will never matter.
3774
3775 uint64_t
3776 Output_section::get_input_sections(
3777     uint64_t address,
3778     const std::string& fill,
3779     std::list<Input_section>* input_sections)
3780 {
3781   if (this->checkpoint_ != NULL
3782       && !this->checkpoint_->input_sections_saved())
3783     this->checkpoint_->save_input_sections();
3784
3785   // Invalidate fast look-up maps.
3786   this->lookup_maps_->invalidate();
3787
3788   uint64_t orig_address = address;
3789
3790   address = align_address(address, this->addralign());
3791
3792   Input_section_list remaining;
3793   for (Input_section_list::iterator p = this->input_sections_.begin();
3794        p != this->input_sections_.end();
3795        ++p)
3796     {
3797       if (p->is_input_section()
3798           || p->is_relaxed_input_section()
3799           || p->is_merge_section())
3800         input_sections->push_back(*p);
3801       else
3802         {
3803           uint64_t aligned_address = align_address(address, p->addralign());
3804           if (aligned_address != address && !fill.empty())
3805             {
3806               section_size_type length =
3807                 convert_to_section_size_type(aligned_address - address);
3808               std::string this_fill;
3809               this_fill.reserve(length);
3810               while (this_fill.length() + fill.length() <= length)
3811                 this_fill += fill;
3812               if (this_fill.length() < length)
3813                 this_fill.append(fill, 0, length - this_fill.length());
3814
3815               Output_section_data* posd = new Output_data_const(this_fill, 0);
3816               remaining.push_back(Input_section(posd));
3817             }
3818           address = aligned_address;
3819
3820           remaining.push_back(*p);
3821
3822           p->finalize_data_size();
3823           address += p->data_size();
3824         }
3825     }
3826
3827   this->input_sections_.swap(remaining);
3828   this->first_input_offset_ = 0;
3829
3830   uint64_t data_size = address - orig_address;
3831   this->set_current_data_size_for_child(data_size);
3832   return data_size;
3833 }
3834
3835 // Add a script input section.  SIS is an Output_section::Input_section,
3836 // which can be either a plain input section or a special input section like
3837 // a relaxed input section.  For a special input section, its size must be
3838 // finalized.
3839
3840 void
3841 Output_section::add_script_input_section(const Input_section& sis)
3842 {
3843   uint64_t data_size = sis.data_size();
3844   uint64_t addralign = sis.addralign();
3845   if (addralign > this->addralign_)
3846     this->addralign_ = addralign;
3847
3848   off_t offset_in_section = this->current_data_size_for_child();
3849   off_t aligned_offset_in_section = align_address(offset_in_section,
3850                                                   addralign);
3851
3852   this->set_current_data_size_for_child(aligned_offset_in_section
3853                                         + data_size);
3854
3855   this->input_sections_.push_back(sis);
3856
3857   // Update fast lookup maps if necessary. 
3858   if (this->lookup_maps_->is_valid())
3859     {
3860       if (sis.is_merge_section())
3861         {
3862           Output_merge_base* pomb = sis.output_merge_base();
3863           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3864                                        pomb->addralign());
3865           this->lookup_maps_->add_merge_section(msp, pomb);
3866           for (Output_merge_base::Input_sections::const_iterator p =
3867                  pomb->input_sections_begin();
3868                p != pomb->input_sections_end();
3869                ++p)
3870             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3871                                                         pomb);
3872         }
3873       else if (sis.is_relaxed_input_section())
3874         {
3875           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3876           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3877                                                         poris->shndx(), poris);
3878         }
3879     }
3880 }
3881
3882 // Save states for relaxation.
3883
3884 void
3885 Output_section::save_states()
3886 {
3887   gold_assert(this->checkpoint_ == NULL);
3888   Checkpoint_output_section* checkpoint =
3889     new Checkpoint_output_section(this->addralign_, this->flags_,
3890                                   this->input_sections_,
3891                                   this->first_input_offset_,
3892                                   this->attached_input_sections_are_sorted_);
3893   this->checkpoint_ = checkpoint;
3894   gold_assert(this->fills_.empty());
3895 }
3896
3897 void
3898 Output_section::discard_states()
3899 {
3900   gold_assert(this->checkpoint_ != NULL);
3901   delete this->checkpoint_;
3902   this->checkpoint_ = NULL;
3903   gold_assert(this->fills_.empty());
3904
3905   // Simply invalidate the fast lookup maps since we do not keep
3906   // track of them.
3907   this->lookup_maps_->invalidate();
3908 }
3909
3910 void
3911 Output_section::restore_states()
3912 {
3913   gold_assert(this->checkpoint_ != NULL);
3914   Checkpoint_output_section* checkpoint = this->checkpoint_;
3915
3916   this->addralign_ = checkpoint->addralign();
3917   this->flags_ = checkpoint->flags();
3918   this->first_input_offset_ = checkpoint->first_input_offset();
3919
3920   if (!checkpoint->input_sections_saved())
3921     {
3922       // If we have not copied the input sections, just resize it.
3923       size_t old_size = checkpoint->input_sections_size();
3924       gold_assert(this->input_sections_.size() >= old_size);
3925       this->input_sections_.resize(old_size);
3926     }
3927   else
3928     {
3929       // We need to copy the whole list.  This is not efficient for
3930       // extremely large output with hundreads of thousands of input
3931       // objects.  We may need to re-think how we should pass sections
3932       // to scripts.
3933       this->input_sections_ = *checkpoint->input_sections();
3934     }
3935
3936   this->attached_input_sections_are_sorted_ =
3937     checkpoint->attached_input_sections_are_sorted();
3938
3939   // Simply invalidate the fast lookup maps since we do not keep
3940   // track of them.
3941   this->lookup_maps_->invalidate();
3942 }
3943
3944 // Update the section offsets of input sections in this.  This is required if
3945 // relaxation causes some input sections to change sizes.
3946
3947 void
3948 Output_section::adjust_section_offsets()
3949 {
3950   if (!this->section_offsets_need_adjustment_)
3951     return;
3952
3953   off_t off = 0;
3954   for (Input_section_list::iterator p = this->input_sections_.begin();
3955        p != this->input_sections_.end();
3956        ++p)
3957     {
3958       off = align_address(off, p->addralign());
3959       if (p->is_input_section())
3960         p->relobj()->set_section_offset(p->shndx(), off);
3961       off += p->data_size();
3962     }
3963
3964   this->section_offsets_need_adjustment_ = false;
3965 }
3966
3967 // Print to the map file.
3968
3969 void
3970 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3971 {
3972   mapfile->print_output_section(this);
3973
3974   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3975        p != this->input_sections_.end();
3976        ++p)
3977     p->print_to_mapfile(mapfile);
3978 }
3979
3980 // Print stats for merge sections to stderr.
3981
3982 void
3983 Output_section::print_merge_stats()
3984 {
3985   Input_section_list::iterator p;
3986   for (p = this->input_sections_.begin();
3987        p != this->input_sections_.end();
3988        ++p)
3989     p->print_merge_stats(this->name_);
3990 }
3991
3992 // Set a fixed layout for the section.  Used for incremental update links.
3993
3994 void
3995 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3996                                  off_t sh_size, uint64_t sh_addralign)
3997 {
3998   this->addralign_ = sh_addralign;
3999   this->set_current_data_size(sh_size);
4000   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4001     this->set_address(sh_addr);
4002   this->set_file_offset(sh_offset);
4003   this->finalize_data_size();
4004   this->free_list_.init(sh_size, false);
4005   this->has_fixed_layout_ = true;
4006 }
4007
4008 // Reserve space within the fixed layout for the section.  Used for
4009 // incremental update links.
4010
4011 void
4012 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4013 {
4014   this->free_list_.remove(sh_offset, sh_offset + sh_size);
4015 }
4016
4017 // Allocate space from the free list for the section.  Used for
4018 // incremental update links.
4019
4020 off_t
4021 Output_section::allocate(off_t len, uint64_t addralign)
4022 {
4023   return this->free_list_.allocate(len, addralign, 0);
4024 }
4025
4026 // Output segment methods.
4027
4028 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4029   : vaddr_(0),
4030     paddr_(0),
4031     memsz_(0),
4032     max_align_(0),
4033     min_p_align_(0),
4034     offset_(0),
4035     filesz_(0),
4036     type_(type),
4037     flags_(flags),
4038     is_max_align_known_(false),
4039     are_addresses_set_(false),
4040     is_large_data_segment_(false)
4041 {
4042   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4043   // the flags.
4044   if (type == elfcpp::PT_TLS)
4045     this->flags_ = elfcpp::PF_R;
4046 }
4047
4048 // Add an Output_section to a PT_LOAD Output_segment.
4049
4050 void
4051 Output_segment::add_output_section_to_load(Layout* layout,
4052                                            Output_section* os,
4053                                            elfcpp::Elf_Word seg_flags)
4054 {
4055   gold_assert(this->type() == elfcpp::PT_LOAD);
4056   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4057   gold_assert(!this->is_max_align_known_);
4058   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4059
4060   this->update_flags_for_output_section(seg_flags);
4061
4062   // We don't want to change the ordering if we have a linker script
4063   // with a SECTIONS clause.
4064   Output_section_order order = os->order();
4065   if (layout->script_options()->saw_sections_clause())
4066     order = static_cast<Output_section_order>(0);
4067   else
4068     gold_assert(order != ORDER_INVALID);
4069
4070   this->output_lists_[order].push_back(os);
4071 }
4072
4073 // Add an Output_section to a non-PT_LOAD Output_segment.
4074
4075 void
4076 Output_segment::add_output_section_to_nonload(Output_section* os,
4077                                               elfcpp::Elf_Word seg_flags)
4078 {
4079   gold_assert(this->type() != elfcpp::PT_LOAD);
4080   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4081   gold_assert(!this->is_max_align_known_);
4082
4083   this->update_flags_for_output_section(seg_flags);
4084
4085   this->output_lists_[0].push_back(os);
4086 }
4087
4088 // Remove an Output_section from this segment.  It is an error if it
4089 // is not present.
4090
4091 void
4092 Output_segment::remove_output_section(Output_section* os)
4093 {
4094   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4095     {
4096       Output_data_list* pdl = &this->output_lists_[i];
4097       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4098         {
4099           if (*p == os)
4100             {
4101               pdl->erase(p);
4102               return;
4103             }
4104         }
4105     }
4106   gold_unreachable();
4107 }
4108
4109 // Add an Output_data (which need not be an Output_section) to the
4110 // start of a segment.
4111
4112 void
4113 Output_segment::add_initial_output_data(Output_data* od)
4114 {
4115   gold_assert(!this->is_max_align_known_);
4116   Output_data_list::iterator p = this->output_lists_[0].begin();
4117   this->output_lists_[0].insert(p, od);
4118 }
4119
4120 // Return true if this segment has any sections which hold actual
4121 // data, rather than being a BSS section.
4122
4123 bool
4124 Output_segment::has_any_data_sections() const
4125 {
4126   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4127     {
4128       const Output_data_list* pdl = &this->output_lists_[i];
4129       for (Output_data_list::const_iterator p = pdl->begin();
4130            p != pdl->end();
4131            ++p)
4132         {
4133           if (!(*p)->is_section())
4134             return true;
4135           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4136             return true;
4137         }
4138     }
4139   return false;
4140 }
4141
4142 // Return whether the first data section (not counting TLS sections)
4143 // is a relro section.
4144
4145 bool
4146 Output_segment::is_first_section_relro() const
4147 {
4148   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4149     {
4150       if (i == static_cast<int>(ORDER_TLS_DATA)
4151           || i == static_cast<int>(ORDER_TLS_BSS))
4152         continue;
4153       const Output_data_list* pdl = &this->output_lists_[i];
4154       if (!pdl->empty())
4155         {
4156           Output_data* p = pdl->front();
4157           return p->is_section() && p->output_section()->is_relro();
4158         }
4159     }
4160   return false;
4161 }
4162
4163 // Return the maximum alignment of the Output_data in Output_segment.
4164
4165 uint64_t
4166 Output_segment::maximum_alignment()
4167 {
4168   if (!this->is_max_align_known_)
4169     {
4170       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4171         {       
4172           const Output_data_list* pdl = &this->output_lists_[i];
4173           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4174           if (addralign > this->max_align_)
4175             this->max_align_ = addralign;
4176         }
4177       this->is_max_align_known_ = true;
4178     }
4179
4180   return this->max_align_;
4181 }
4182
4183 // Return the maximum alignment of a list of Output_data.
4184
4185 uint64_t
4186 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4187 {
4188   uint64_t ret = 0;
4189   for (Output_data_list::const_iterator p = pdl->begin();
4190        p != pdl->end();
4191        ++p)
4192     {
4193       uint64_t addralign = (*p)->addralign();
4194       if (addralign > ret)
4195         ret = addralign;
4196     }
4197   return ret;
4198 }
4199
4200 // Return whether this segment has any dynamic relocs.
4201
4202 bool
4203 Output_segment::has_dynamic_reloc() const
4204 {
4205   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4206     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4207       return true;
4208   return false;
4209 }
4210
4211 // Return whether this Output_data_list has any dynamic relocs.
4212
4213 bool
4214 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4215 {
4216   for (Output_data_list::const_iterator p = pdl->begin();
4217        p != pdl->end();
4218        ++p)
4219     if ((*p)->has_dynamic_reloc())
4220       return true;
4221   return false;
4222 }
4223
4224 // Set the section addresses for an Output_segment.  If RESET is true,
4225 // reset the addresses first.  ADDR is the address and *POFF is the
4226 // file offset.  Set the section indexes starting with *PSHNDX.
4227 // INCREASE_RELRO is the size of the portion of the first non-relro
4228 // section that should be included in the PT_GNU_RELRO segment.
4229 // If this segment has relro sections, and has been aligned for
4230 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4231 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4232 // and *PSHNDX.
4233
4234 uint64_t
4235 Output_segment::set_section_addresses(Layout* layout, bool reset,
4236                                       uint64_t addr,
4237                                       unsigned int* increase_relro,
4238                                       bool* has_relro,
4239                                       off_t* poff,
4240                                       unsigned int* pshndx)
4241 {
4242   gold_assert(this->type_ == elfcpp::PT_LOAD);
4243
4244   uint64_t last_relro_pad = 0;
4245   off_t orig_off = *poff;
4246
4247   bool in_tls = false;
4248
4249   // If we have relro sections, we need to pad forward now so that the
4250   // relro sections plus INCREASE_RELRO end on a common page boundary.
4251   if (parameters->options().relro()
4252       && this->is_first_section_relro()
4253       && (!this->are_addresses_set_ || reset))
4254     {
4255       uint64_t relro_size = 0;
4256       off_t off = *poff;
4257       uint64_t max_align = 0;
4258       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4259         {
4260           Output_data_list* pdl = &this->output_lists_[i];
4261           Output_data_list::iterator p;
4262           for (p = pdl->begin(); p != pdl->end(); ++p)
4263             {
4264               if (!(*p)->is_section())
4265                 break;
4266               uint64_t align = (*p)->addralign();
4267               if (align > max_align)
4268                 max_align = align;
4269               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4270                 in_tls = true;
4271               else if (in_tls)
4272                 {
4273                   // Align the first non-TLS section to the alignment
4274                   // of the TLS segment.
4275                   align = max_align;
4276                   in_tls = false;
4277                 }
4278               relro_size = align_address(relro_size, align);
4279               // Ignore the size of the .tbss section.
4280               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4281                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4282                 continue;
4283               if ((*p)->is_address_valid())
4284                 relro_size += (*p)->data_size();
4285               else
4286                 {
4287                   // FIXME: This could be faster.
4288                   (*p)->set_address_and_file_offset(addr + relro_size,
4289                                                     off + relro_size);
4290                   relro_size += (*p)->data_size();
4291                   (*p)->reset_address_and_file_offset();
4292                 }
4293             }
4294           if (p != pdl->end())
4295             break;
4296         }
4297       relro_size += *increase_relro;
4298       // Pad the total relro size to a multiple of the maximum
4299       // section alignment seen.
4300       uint64_t aligned_size = align_address(relro_size, max_align);
4301       // Note the amount of padding added after the last relro section.
4302       last_relro_pad = aligned_size - relro_size;
4303       *has_relro = true;
4304
4305       uint64_t page_align = parameters->target().common_pagesize();
4306
4307       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4308       uint64_t desired_align = page_align - (aligned_size % page_align);
4309       if (desired_align < *poff % page_align)
4310         *poff += page_align - *poff % page_align;
4311       *poff += desired_align - *poff % page_align;
4312       addr += *poff - orig_off;
4313       orig_off = *poff;
4314     }
4315
4316   if (!reset && this->are_addresses_set_)
4317     {
4318       gold_assert(this->paddr_ == addr);
4319       addr = this->vaddr_;
4320     }
4321   else
4322     {
4323       this->vaddr_ = addr;
4324       this->paddr_ = addr;
4325       this->are_addresses_set_ = true;
4326     }
4327
4328   in_tls = false;
4329
4330   this->offset_ = orig_off;
4331
4332   off_t off = 0;
4333   uint64_t ret;
4334   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4335     {
4336       if (i == static_cast<int>(ORDER_RELRO_LAST))
4337         {
4338           *poff += last_relro_pad;
4339           addr += last_relro_pad;
4340           if (this->output_lists_[i].empty())
4341             {
4342               // If there is nothing in the ORDER_RELRO_LAST list,
4343               // the padding will occur at the end of the relro
4344               // segment, and we need to add it to *INCREASE_RELRO.
4345               *increase_relro += last_relro_pad;
4346             }
4347         }
4348       addr = this->set_section_list_addresses(layout, reset,
4349                                               &this->output_lists_[i],
4350                                               addr, poff, pshndx, &in_tls);
4351       if (i < static_cast<int>(ORDER_SMALL_BSS))
4352         {
4353           this->filesz_ = *poff - orig_off;
4354           off = *poff;
4355         }
4356
4357       ret = addr;
4358     }
4359
4360   // If the last section was a TLS section, align upward to the
4361   // alignment of the TLS segment, so that the overall size of the TLS
4362   // segment is aligned.
4363   if (in_tls)
4364     {
4365       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4366       *poff = align_address(*poff, segment_align);
4367     }
4368
4369   this->memsz_ = *poff - orig_off;
4370
4371   // Ignore the file offset adjustments made by the BSS Output_data
4372   // objects.
4373   *poff = off;
4374
4375   return ret;
4376 }
4377
4378 // Set the addresses and file offsets in a list of Output_data
4379 // structures.
4380
4381 uint64_t
4382 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4383                                            Output_data_list* pdl,
4384                                            uint64_t addr, off_t* poff,
4385                                            unsigned int* pshndx,
4386                                            bool* in_tls)
4387 {
4388   off_t startoff = *poff;
4389   // For incremental updates, we may allocate non-fixed sections from
4390   // free space in the file.  This keeps track of the high-water mark.
4391   off_t maxoff = startoff;
4392
4393   off_t off = startoff;
4394   for (Output_data_list::iterator p = pdl->begin();
4395        p != pdl->end();
4396        ++p)
4397     {
4398       if (reset)
4399         (*p)->reset_address_and_file_offset();
4400
4401       // When doing an incremental update or when using a linker script,
4402       // the section will most likely already have an address.
4403       if (!(*p)->is_address_valid())
4404         {
4405           uint64_t align = (*p)->addralign();
4406
4407           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4408             {
4409               // Give the first TLS section the alignment of the
4410               // entire TLS segment.  Otherwise the TLS segment as a
4411               // whole may be misaligned.
4412               if (!*in_tls)
4413                 {
4414                   Output_segment* tls_segment = layout->tls_segment();
4415                   gold_assert(tls_segment != NULL);
4416                   uint64_t segment_align = tls_segment->maximum_alignment();
4417                   gold_assert(segment_align >= align);
4418                   align = segment_align;
4419
4420                   *in_tls = true;
4421                 }
4422             }
4423           else
4424             {
4425               // If this is the first section after the TLS segment,
4426               // align it to at least the alignment of the TLS
4427               // segment, so that the size of the overall TLS segment
4428               // is aligned.
4429               if (*in_tls)
4430                 {
4431                   uint64_t segment_align =
4432                       layout->tls_segment()->maximum_alignment();
4433                   if (segment_align > align)
4434                     align = segment_align;
4435
4436                   *in_tls = false;
4437                 }
4438             }
4439
4440           if (!parameters->incremental_update())
4441             {
4442               off = align_address(off, align);
4443               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4444             }
4445           else
4446             {
4447               // Incremental update: allocate file space from free list.
4448               (*p)->pre_finalize_data_size();
4449               off_t current_size = (*p)->current_data_size();
4450               off = layout->allocate(current_size, align, startoff);
4451               if (off == -1)
4452                 {
4453                   gold_assert((*p)->output_section() != NULL);
4454                   gold_fallback(_("out of patch space for section %s; "
4455                                   "relink with --incremental-full"),
4456                                 (*p)->output_section()->name());
4457                 }
4458               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4459               if ((*p)->data_size() > current_size)
4460                 {
4461                   gold_assert((*p)->output_section() != NULL);
4462                   gold_fallback(_("%s: section changed size; "
4463                                   "relink with --incremental-full"),
4464                                 (*p)->output_section()->name());
4465                 }
4466             }
4467         }
4468       else if (parameters->incremental_update())
4469         {
4470           // For incremental updates, use the fixed offset for the
4471           // high-water mark computation.
4472           off = (*p)->offset();
4473         }
4474       else
4475         {
4476           // The script may have inserted a skip forward, but it
4477           // better not have moved backward.
4478           if ((*p)->address() >= addr + (off - startoff))
4479             off += (*p)->address() - (addr + (off - startoff));
4480           else
4481             {
4482               if (!layout->script_options()->saw_sections_clause())
4483                 gold_unreachable();
4484               else
4485                 {
4486                   Output_section* os = (*p)->output_section();
4487
4488                   // Cast to unsigned long long to avoid format warnings.
4489                   unsigned long long previous_dot =
4490                     static_cast<unsigned long long>(addr + (off - startoff));
4491                   unsigned long long dot =
4492                     static_cast<unsigned long long>((*p)->address());
4493
4494                   if (os == NULL)
4495                     gold_error(_("dot moves backward in linker script "
4496                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4497                   else
4498                     gold_error(_("address of section '%s' moves backward "
4499                                  "from 0x%llx to 0x%llx"),
4500                                os->name(), previous_dot, dot);
4501                 }
4502             }
4503           (*p)->set_file_offset(off);
4504           (*p)->finalize_data_size();
4505         }
4506
4507       if (parameters->incremental_update())
4508         gold_debug(DEBUG_INCREMENTAL,
4509                    "set_section_list_addresses: %08lx %08lx %s",
4510                    static_cast<long>(off),
4511                    static_cast<long>((*p)->data_size()),
4512                    ((*p)->output_section() != NULL
4513                     ? (*p)->output_section()->name() : "(special)"));
4514
4515       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4516       // section.  Such a section does not affect the size of a
4517       // PT_LOAD segment.
4518       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4519           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4520         off += (*p)->data_size();
4521
4522       if (off > maxoff)
4523         maxoff = off;
4524
4525       if ((*p)->is_section())
4526         {
4527           (*p)->set_out_shndx(*pshndx);
4528           ++*pshndx;
4529         }
4530     }
4531
4532   *poff = maxoff;
4533   return addr + (maxoff - startoff);
4534 }
4535
4536 // For a non-PT_LOAD segment, set the offset from the sections, if
4537 // any.  Add INCREASE to the file size and the memory size.
4538
4539 void
4540 Output_segment::set_offset(unsigned int increase)
4541 {
4542   gold_assert(this->type_ != elfcpp::PT_LOAD);
4543
4544   gold_assert(!this->are_addresses_set_);
4545
4546   // A non-load section only uses output_lists_[0].
4547
4548   Output_data_list* pdl = &this->output_lists_[0];
4549
4550   if (pdl->empty())
4551     {
4552       gold_assert(increase == 0);
4553       this->vaddr_ = 0;
4554       this->paddr_ = 0;
4555       this->are_addresses_set_ = true;
4556       this->memsz_ = 0;
4557       this->min_p_align_ = 0;
4558       this->offset_ = 0;
4559       this->filesz_ = 0;
4560       return;
4561     }
4562
4563   // Find the first and last section by address.
4564   const Output_data* first = NULL;
4565   const Output_data* last_data = NULL;
4566   const Output_data* last_bss = NULL;
4567   for (Output_data_list::const_iterator p = pdl->begin();
4568        p != pdl->end();
4569        ++p)
4570     {
4571       if (first == NULL
4572           || (*p)->address() < first->address()
4573           || ((*p)->address() == first->address()
4574               && (*p)->data_size() < first->data_size()))
4575         first = *p;
4576       const Output_data** plast;
4577       if ((*p)->is_section()
4578           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4579         plast = &last_bss;
4580       else
4581         plast = &last_data;
4582       if (*plast == NULL
4583           || (*p)->address() > (*plast)->address()
4584           || ((*p)->address() == (*plast)->address()
4585               && (*p)->data_size() > (*plast)->data_size()))
4586         *plast = *p;
4587     }
4588
4589   this->vaddr_ = first->address();
4590   this->paddr_ = (first->has_load_address()
4591                   ? first->load_address()
4592                   : this->vaddr_);
4593   this->are_addresses_set_ = true;
4594   this->offset_ = first->offset();
4595
4596   if (last_data == NULL)
4597     this->filesz_ = 0;
4598   else
4599     this->filesz_ = (last_data->address()
4600                      + last_data->data_size()
4601                      - this->vaddr_);
4602
4603   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4604   this->memsz_ = (last->address()
4605                   + last->data_size()
4606                   - this->vaddr_);
4607
4608   this->filesz_ += increase;
4609   this->memsz_ += increase;
4610
4611   // If this is a RELRO segment, verify that the segment ends at a
4612   // page boundary.
4613   if (this->type_ == elfcpp::PT_GNU_RELRO)
4614     {
4615       uint64_t page_align = parameters->target().common_pagesize();
4616       uint64_t segment_end = this->vaddr_ + this->memsz_;
4617       if (parameters->incremental_update())
4618         {
4619           // The INCREASE_RELRO calculation is bypassed for an incremental
4620           // update, so we need to adjust the segment size manually here.
4621           segment_end = align_address(segment_end, page_align);
4622           this->memsz_ = segment_end - this->vaddr_;
4623         }
4624       else
4625         gold_assert(segment_end == align_address(segment_end, page_align));
4626     }
4627
4628   // If this is a TLS segment, align the memory size.  The code in
4629   // set_section_list ensures that the section after the TLS segment
4630   // is aligned to give us room.
4631   if (this->type_ == elfcpp::PT_TLS)
4632     {
4633       uint64_t segment_align = this->maximum_alignment();
4634       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4635       this->memsz_ = align_address(this->memsz_, segment_align);
4636     }
4637 }
4638
4639 // Set the TLS offsets of the sections in the PT_TLS segment.
4640
4641 void
4642 Output_segment::set_tls_offsets()
4643 {
4644   gold_assert(this->type_ == elfcpp::PT_TLS);
4645
4646   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4647        p != this->output_lists_[0].end();
4648        ++p)
4649     (*p)->set_tls_offset(this->vaddr_);
4650 }
4651
4652 // Return the load address of the first section.
4653
4654 uint64_t
4655 Output_segment::first_section_load_address() const
4656 {
4657   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4658     {
4659       const Output_data_list* pdl = &this->output_lists_[i];
4660       for (Output_data_list::const_iterator p = pdl->begin();
4661            p != pdl->end();
4662            ++p)
4663         {
4664           if ((*p)->is_section())
4665             return ((*p)->has_load_address()
4666                     ? (*p)->load_address()
4667                     : (*p)->address());
4668         }
4669     }
4670   gold_unreachable();
4671 }
4672
4673 // Return the number of Output_sections in an Output_segment.
4674
4675 unsigned int
4676 Output_segment::output_section_count() const
4677 {
4678   unsigned int ret = 0;
4679   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4680     ret += this->output_section_count_list(&this->output_lists_[i]);
4681   return ret;
4682 }
4683
4684 // Return the number of Output_sections in an Output_data_list.
4685
4686 unsigned int
4687 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4688 {
4689   unsigned int count = 0;
4690   for (Output_data_list::const_iterator p = pdl->begin();
4691        p != pdl->end();
4692        ++p)
4693     {
4694       if ((*p)->is_section())
4695         ++count;
4696     }
4697   return count;
4698 }
4699
4700 // Return the section attached to the list segment with the lowest
4701 // load address.  This is used when handling a PHDRS clause in a
4702 // linker script.
4703
4704 Output_section*
4705 Output_segment::section_with_lowest_load_address() const
4706 {
4707   Output_section* found = NULL;
4708   uint64_t found_lma = 0;
4709   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4710     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4711                                       &found_lma);
4712   return found;
4713 }
4714
4715 // Look through a list for a section with a lower load address.
4716
4717 void
4718 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4719                                             Output_section** found,
4720                                             uint64_t* found_lma) const
4721 {
4722   for (Output_data_list::const_iterator p = pdl->begin();
4723        p != pdl->end();
4724        ++p)
4725     {
4726       if (!(*p)->is_section())
4727         continue;
4728       Output_section* os = static_cast<Output_section*>(*p);
4729       uint64_t lma = (os->has_load_address()
4730                       ? os->load_address()
4731                       : os->address());
4732       if (*found == NULL || lma < *found_lma)
4733         {
4734           *found = os;
4735           *found_lma = lma;
4736         }
4737     }
4738 }
4739
4740 // Write the segment data into *OPHDR.
4741
4742 template<int size, bool big_endian>
4743 void
4744 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4745 {
4746   ophdr->put_p_type(this->type_);
4747   ophdr->put_p_offset(this->offset_);
4748   ophdr->put_p_vaddr(this->vaddr_);
4749   ophdr->put_p_paddr(this->paddr_);
4750   ophdr->put_p_filesz(this->filesz_);
4751   ophdr->put_p_memsz(this->memsz_);
4752   ophdr->put_p_flags(this->flags_);
4753   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4754 }
4755
4756 // Write the section headers into V.
4757
4758 template<int size, bool big_endian>
4759 unsigned char*
4760 Output_segment::write_section_headers(const Layout* layout,
4761                                       const Stringpool* secnamepool,
4762                                       unsigned char* v,
4763                                       unsigned int* pshndx) const
4764 {
4765   // Every section that is attached to a segment must be attached to a
4766   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4767   // segments.
4768   if (this->type_ != elfcpp::PT_LOAD)
4769     return v;
4770
4771   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4772     {
4773       const Output_data_list* pdl = &this->output_lists_[i];
4774       v = this->write_section_headers_list<size, big_endian>(layout,
4775                                                              secnamepool,
4776                                                              pdl,
4777                                                              v, pshndx);
4778     }
4779
4780   return v;
4781 }
4782
4783 template<int size, bool big_endian>
4784 unsigned char*
4785 Output_segment::write_section_headers_list(const Layout* layout,
4786                                            const Stringpool* secnamepool,
4787                                            const Output_data_list* pdl,
4788                                            unsigned char* v,
4789                                            unsigned int* pshndx) const
4790 {
4791   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4792   for (Output_data_list::const_iterator p = pdl->begin();
4793        p != pdl->end();
4794        ++p)
4795     {
4796       if ((*p)->is_section())
4797         {
4798           const Output_section* ps = static_cast<const Output_section*>(*p);
4799           gold_assert(*pshndx == ps->out_shndx());
4800           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4801           ps->write_header(layout, secnamepool, &oshdr);
4802           v += shdr_size;
4803           ++*pshndx;
4804         }
4805     }
4806   return v;
4807 }
4808
4809 // Print the output sections to the map file.
4810
4811 void
4812 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4813 {
4814   if (this->type() != elfcpp::PT_LOAD)
4815     return;
4816   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4817     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4818 }
4819
4820 // Print an output section list to the map file.
4821
4822 void
4823 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4824                                               const Output_data_list* pdl) const
4825 {
4826   for (Output_data_list::const_iterator p = pdl->begin();
4827        p != pdl->end();
4828        ++p)
4829     (*p)->print_to_mapfile(mapfile);
4830 }
4831
4832 // Output_file methods.
4833
4834 Output_file::Output_file(const char* name)
4835   : name_(name),
4836     o_(-1),
4837     file_size_(0),
4838     base_(NULL),
4839     map_is_anonymous_(false),
4840     map_is_allocated_(false),
4841     is_temporary_(false)
4842 {
4843 }
4844
4845 // Try to open an existing file.  Returns false if the file doesn't
4846 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4847 // NULL, open that file as the base for incremental linking, and
4848 // copy its contents to the new output file.  This routine can
4849 // be called for incremental updates, in which case WRITABLE should
4850 // be true, or by the incremental-dump utility, in which case
4851 // WRITABLE should be false.
4852
4853 bool
4854 Output_file::open_base_file(const char* base_name, bool writable)
4855 {
4856   // The name "-" means "stdout".
4857   if (strcmp(this->name_, "-") == 0)
4858     return false;
4859
4860   bool use_base_file = base_name != NULL;
4861   if (!use_base_file)
4862     base_name = this->name_;
4863   else if (strcmp(base_name, this->name_) == 0)
4864     gold_fatal(_("%s: incremental base and output file name are the same"),
4865                base_name);
4866
4867   // Don't bother opening files with a size of zero.
4868   struct stat s;
4869   if (::stat(base_name, &s) != 0)
4870     {
4871       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4872       return false;
4873     }
4874   if (s.st_size == 0)
4875     {
4876       gold_info(_("%s: incremental base file is empty"), base_name);
4877       return false;
4878     }
4879
4880   // If we're using a base file, we want to open it read-only.
4881   if (use_base_file)
4882     writable = false;
4883
4884   int oflags = writable ? O_RDWR : O_RDONLY;
4885   int o = open_descriptor(-1, base_name, oflags, 0);
4886   if (o < 0)
4887     {
4888       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4889       return false;
4890     }
4891
4892   // If the base file and the output file are different, open a
4893   // new output file and read the contents from the base file into
4894   // the newly-mapped region.
4895   if (use_base_file)
4896     {
4897       this->open(s.st_size);
4898       ssize_t bytes_to_read = s.st_size;
4899       unsigned char* p = this->base_;
4900       while (bytes_to_read > 0)
4901         {
4902           ssize_t len = ::read(o, p, bytes_to_read);
4903           if (len < 0)
4904             {
4905               gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4906               return false;
4907             }
4908           if (len == 0)
4909             {
4910               gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4911                         base_name,
4912                         static_cast<long long>(s.st_size - bytes_to_read),
4913                         static_cast<long long>(s.st_size));
4914               return false;
4915             }
4916           p += len;
4917           bytes_to_read -= len;
4918         }
4919       ::close(o);
4920       return true;
4921     }
4922
4923   this->o_ = o;
4924   this->file_size_ = s.st_size;
4925
4926   if (!this->map_no_anonymous(writable))
4927     {
4928       release_descriptor(o, true);
4929       this->o_ = -1;
4930       this->file_size_ = 0;
4931       return false;
4932     }
4933
4934   return true;
4935 }
4936
4937 // Open the output file.
4938
4939 void
4940 Output_file::open(off_t file_size)
4941 {
4942   this->file_size_ = file_size;
4943
4944   // Unlink the file first; otherwise the open() may fail if the file
4945   // is busy (e.g. it's an executable that's currently being executed).
4946   //
4947   // However, the linker may be part of a system where a zero-length
4948   // file is created for it to write to, with tight permissions (gcc
4949   // 2.95 did something like this).  Unlinking the file would work
4950   // around those permission controls, so we only unlink if the file
4951   // has a non-zero size.  We also unlink only regular files to avoid
4952   // trouble with directories/etc.
4953   //
4954   // If we fail, continue; this command is merely a best-effort attempt
4955   // to improve the odds for open().
4956
4957   // We let the name "-" mean "stdout"
4958   if (!this->is_temporary_)
4959     {
4960       if (strcmp(this->name_, "-") == 0)
4961         this->o_ = STDOUT_FILENO;
4962       else
4963         {
4964           struct stat s;
4965           if (::stat(this->name_, &s) == 0
4966               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4967             {
4968               if (s.st_size != 0)
4969                 ::unlink(this->name_);
4970               else if (!parameters->options().relocatable())
4971                 {
4972                   // If we don't unlink the existing file, add execute
4973                   // permission where read permissions already exist
4974                   // and where the umask permits.
4975                   int mask = ::umask(0);
4976                   ::umask(mask);
4977                   s.st_mode |= (s.st_mode & 0444) >> 2;
4978                   ::chmod(this->name_, s.st_mode & ~mask);
4979                 }
4980             }
4981
4982           int mode = parameters->options().relocatable() ? 0666 : 0777;
4983           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4984                                   mode);
4985           if (o < 0)
4986             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4987           this->o_ = o;
4988         }
4989     }
4990
4991   this->map();
4992 }
4993
4994 // Resize the output file.
4995
4996 void
4997 Output_file::resize(off_t file_size)
4998 {
4999   // If the mmap is mapping an anonymous memory buffer, this is easy:
5000   // just mremap to the new size.  If it's mapping to a file, we want
5001   // to unmap to flush to the file, then remap after growing the file.
5002   if (this->map_is_anonymous_)
5003     {
5004       void* base;
5005       if (!this->map_is_allocated_)
5006         {
5007           base = ::mremap(this->base_, this->file_size_, file_size,
5008                           MREMAP_MAYMOVE);
5009           if (base == MAP_FAILED)
5010             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5011         }
5012       else
5013         {
5014           base = realloc(this->base_, file_size);
5015           if (base == NULL)
5016             gold_nomem();
5017           if (file_size > this->file_size_)
5018             memset(static_cast<char*>(base) + this->file_size_, 0,
5019                    file_size - this->file_size_);
5020         }
5021       this->base_ = static_cast<unsigned char*>(base);
5022       this->file_size_ = file_size;
5023     }
5024   else
5025     {
5026       this->unmap();
5027       this->file_size_ = file_size;
5028       if (!this->map_no_anonymous(true))
5029         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5030     }
5031 }
5032
5033 // Map an anonymous block of memory which will later be written to the
5034 // file.  Return whether the map succeeded.
5035
5036 bool
5037 Output_file::map_anonymous()
5038 {
5039   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5040                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5041   if (base == MAP_FAILED)
5042     {
5043       base = malloc(this->file_size_);
5044       if (base == NULL)
5045         return false;
5046       memset(base, 0, this->file_size_);
5047       this->map_is_allocated_ = true;
5048     }
5049   this->base_ = static_cast<unsigned char*>(base);
5050   this->map_is_anonymous_ = true;
5051   return true;
5052 }
5053
5054 // Map the file into memory.  Return whether the mapping succeeded.
5055 // If WRITABLE is true, map with write access.
5056
5057 bool
5058 Output_file::map_no_anonymous(bool writable)
5059 {
5060   const int o = this->o_;
5061
5062   // If the output file is not a regular file, don't try to mmap it;
5063   // instead, we'll mmap a block of memory (an anonymous buffer), and
5064   // then later write the buffer to the file.
5065   void* base;
5066   struct stat statbuf;
5067   if (o == STDOUT_FILENO || o == STDERR_FILENO
5068       || ::fstat(o, &statbuf) != 0
5069       || !S_ISREG(statbuf.st_mode)
5070       || this->is_temporary_)
5071     return false;
5072
5073   // Ensure that we have disk space available for the file.  If we
5074   // don't do this, it is possible that we will call munmap, close,
5075   // and exit with dirty buffers still in the cache with no assigned
5076   // disk blocks.  If the disk is out of space at that point, the
5077   // output file will wind up incomplete, but we will have already
5078   // exited.  The alternative to fallocate would be to use fdatasync,
5079   // but that would be a more significant performance hit.
5080   if (writable)
5081     {
5082       int err = ::posix_fallocate(o, 0, this->file_size_);
5083       if (err != 0)
5084        gold_fatal(_("%s: %s"), this->name_, strerror(err));
5085     }
5086
5087   // Map the file into memory.
5088   int prot = PROT_READ;
5089   if (writable)
5090     prot |= PROT_WRITE;
5091   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5092
5093   // The mmap call might fail because of file system issues: the file
5094   // system might not support mmap at all, or it might not support
5095   // mmap with PROT_WRITE.
5096   if (base == MAP_FAILED)
5097     return false;
5098
5099   this->map_is_anonymous_ = false;
5100   this->base_ = static_cast<unsigned char*>(base);
5101   return true;
5102 }
5103
5104 // Map the file into memory.
5105
5106 void
5107 Output_file::map()
5108 {
5109   if (this->map_no_anonymous(true))
5110     return;
5111
5112   // The mmap call might fail because of file system issues: the file
5113   // system might not support mmap at all, or it might not support
5114   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5115   // see in all cases, so if the mmap fails for any reason and we
5116   // don't care about file contents, try for an anonymous map.
5117   if (this->map_anonymous())
5118     return;
5119
5120   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5121              this->name_, static_cast<unsigned long>(this->file_size_),
5122              strerror(errno));
5123 }
5124
5125 // Unmap the file from memory.
5126
5127 void
5128 Output_file::unmap()
5129 {
5130   if (this->map_is_anonymous_)
5131     {
5132       // We've already written out the data, so there is no reason to
5133       // waste time unmapping or freeing the memory.
5134     }
5135   else
5136     {
5137       if (::munmap(this->base_, this->file_size_) < 0)
5138         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5139     }
5140   this->base_ = NULL;
5141 }
5142
5143 // Close the output file.
5144
5145 void
5146 Output_file::close()
5147 {
5148   // If the map isn't file-backed, we need to write it now.
5149   if (this->map_is_anonymous_ && !this->is_temporary_)
5150     {
5151       size_t bytes_to_write = this->file_size_;
5152       size_t offset = 0;
5153       while (bytes_to_write > 0)
5154         {
5155           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5156                                           bytes_to_write);
5157           if (bytes_written == 0)
5158             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5159           else if (bytes_written < 0)
5160             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5161           else
5162             {
5163               bytes_to_write -= bytes_written;
5164               offset += bytes_written;
5165             }
5166         }
5167     }
5168   this->unmap();
5169
5170   // We don't close stdout or stderr
5171   if (this->o_ != STDOUT_FILENO
5172       && this->o_ != STDERR_FILENO
5173       && !this->is_temporary_)
5174     if (::close(this->o_) < 0)
5175       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5176   this->o_ = -1;
5177 }
5178
5179 // Instantiate the templates we need.  We could use the configure
5180 // script to restrict this to only the ones for implemented targets.
5181
5182 #ifdef HAVE_TARGET_32_LITTLE
5183 template
5184 off_t
5185 Output_section::add_input_section<32, false>(
5186     Layout* layout,
5187     Sized_relobj_file<32, false>* object,
5188     unsigned int shndx,
5189     const char* secname,
5190     const elfcpp::Shdr<32, false>& shdr,
5191     unsigned int reloc_shndx,
5192     bool have_sections_script);
5193 #endif
5194
5195 #ifdef HAVE_TARGET_32_BIG
5196 template
5197 off_t
5198 Output_section::add_input_section<32, true>(
5199     Layout* layout,
5200     Sized_relobj_file<32, true>* object,
5201     unsigned int shndx,
5202     const char* secname,
5203     const elfcpp::Shdr<32, true>& shdr,
5204     unsigned int reloc_shndx,
5205     bool have_sections_script);
5206 #endif
5207
5208 #ifdef HAVE_TARGET_64_LITTLE
5209 template
5210 off_t
5211 Output_section::add_input_section<64, false>(
5212     Layout* layout,
5213     Sized_relobj_file<64, false>* object,
5214     unsigned int shndx,
5215     const char* secname,
5216     const elfcpp::Shdr<64, false>& shdr,
5217     unsigned int reloc_shndx,
5218     bool have_sections_script);
5219 #endif
5220
5221 #ifdef HAVE_TARGET_64_BIG
5222 template
5223 off_t
5224 Output_section::add_input_section<64, true>(
5225     Layout* layout,
5226     Sized_relobj_file<64, true>* object,
5227     unsigned int shndx,
5228     const char* secname,
5229     const elfcpp::Shdr<64, true>& shdr,
5230     unsigned int reloc_shndx,
5231     bool have_sections_script);
5232 #endif
5233
5234 #ifdef HAVE_TARGET_32_LITTLE
5235 template
5236 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5237 #endif
5238
5239 #ifdef HAVE_TARGET_32_BIG
5240 template
5241 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5242 #endif
5243
5244 #ifdef HAVE_TARGET_64_LITTLE
5245 template
5246 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5247 #endif
5248
5249 #ifdef HAVE_TARGET_64_BIG
5250 template
5251 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5252 #endif
5253
5254 #ifdef HAVE_TARGET_32_LITTLE
5255 template
5256 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5257 #endif
5258
5259 #ifdef HAVE_TARGET_32_BIG
5260 template
5261 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5262 #endif
5263
5264 #ifdef HAVE_TARGET_64_LITTLE
5265 template
5266 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5267 #endif
5268
5269 #ifdef HAVE_TARGET_64_BIG
5270 template
5271 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5272 #endif
5273
5274 #ifdef HAVE_TARGET_32_LITTLE
5275 template
5276 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5277 #endif
5278
5279 #ifdef HAVE_TARGET_32_BIG
5280 template
5281 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5282 #endif
5283
5284 #ifdef HAVE_TARGET_64_LITTLE
5285 template
5286 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5287 #endif
5288
5289 #ifdef HAVE_TARGET_64_BIG
5290 template
5291 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5292 #endif
5293
5294 #ifdef HAVE_TARGET_32_LITTLE
5295 template
5296 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5297 #endif
5298
5299 #ifdef HAVE_TARGET_32_BIG
5300 template
5301 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5302 #endif
5303
5304 #ifdef HAVE_TARGET_64_LITTLE
5305 template
5306 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5307 #endif
5308
5309 #ifdef HAVE_TARGET_64_BIG
5310 template
5311 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5312 #endif
5313
5314 #ifdef HAVE_TARGET_32_LITTLE
5315 template
5316 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5317 #endif
5318
5319 #ifdef HAVE_TARGET_32_BIG
5320 template
5321 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5322 #endif
5323
5324 #ifdef HAVE_TARGET_64_LITTLE
5325 template
5326 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5327 #endif
5328
5329 #ifdef HAVE_TARGET_64_BIG
5330 template
5331 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5332 #endif
5333
5334 #ifdef HAVE_TARGET_32_LITTLE
5335 template
5336 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5337 #endif
5338
5339 #ifdef HAVE_TARGET_32_BIG
5340 template
5341 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5342 #endif
5343
5344 #ifdef HAVE_TARGET_64_LITTLE
5345 template
5346 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5347 #endif
5348
5349 #ifdef HAVE_TARGET_64_BIG
5350 template
5351 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5352 #endif
5353
5354 #ifdef HAVE_TARGET_32_LITTLE
5355 template
5356 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5357 #endif
5358
5359 #ifdef HAVE_TARGET_32_BIG
5360 template
5361 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5362 #endif
5363
5364 #ifdef HAVE_TARGET_64_LITTLE
5365 template
5366 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5367 #endif
5368
5369 #ifdef HAVE_TARGET_64_BIG
5370 template
5371 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5372 #endif
5373
5374 #ifdef HAVE_TARGET_32_LITTLE
5375 template
5376 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5377 #endif
5378
5379 #ifdef HAVE_TARGET_32_BIG
5380 template
5381 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5382 #endif
5383
5384 #ifdef HAVE_TARGET_64_LITTLE
5385 template
5386 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5387 #endif
5388
5389 #ifdef HAVE_TARGET_64_BIG
5390 template
5391 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5392 #endif
5393
5394 #ifdef HAVE_TARGET_32_LITTLE
5395 template
5396 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5397 #endif
5398
5399 #ifdef HAVE_TARGET_32_BIG
5400 template
5401 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5402 #endif
5403
5404 #ifdef HAVE_TARGET_64_LITTLE
5405 template
5406 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5407 #endif
5408
5409 #ifdef HAVE_TARGET_64_BIG
5410 template
5411 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5412 #endif
5413
5414 #ifdef HAVE_TARGET_32_LITTLE
5415 template
5416 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5417 #endif
5418
5419 #ifdef HAVE_TARGET_32_BIG
5420 template
5421 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5422 #endif
5423
5424 #ifdef HAVE_TARGET_64_LITTLE
5425 template
5426 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5427 #endif
5428
5429 #ifdef HAVE_TARGET_64_BIG
5430 template
5431 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5432 #endif
5433
5434 #ifdef HAVE_TARGET_32_LITTLE
5435 template
5436 class Output_data_group<32, false>;
5437 #endif
5438
5439 #ifdef HAVE_TARGET_32_BIG
5440 template
5441 class Output_data_group<32, true>;
5442 #endif
5443
5444 #ifdef HAVE_TARGET_64_LITTLE
5445 template
5446 class Output_data_group<64, false>;
5447 #endif
5448
5449 #ifdef HAVE_TARGET_64_BIG
5450 template
5451 class Output_data_group<64, true>;
5452 #endif
5453
5454 #ifdef HAVE_TARGET_32_LITTLE
5455 template
5456 class Output_data_got<32, false>;
5457 #endif
5458
5459 #ifdef HAVE_TARGET_32_BIG
5460 template
5461 class Output_data_got<32, true>;
5462 #endif
5463
5464 #ifdef HAVE_TARGET_64_LITTLE
5465 template
5466 class Output_data_got<64, false>;
5467 #endif
5468
5469 #ifdef HAVE_TARGET_64_BIG
5470 template
5471 class Output_data_got<64, true>;
5472 #endif
5473
5474 } // End namespace gold.