* gold.cc (queue_initial_tasks): Pass incremental base filename
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "parameters.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "reloc.h"
43 #include "merge.h"
44 #include "descriptors.h"
45 #include "output.h"
46
47 // For systems without mmap support.
48 #ifndef HAVE_MMAP
49 # define mmap gold_mmap
50 # define munmap gold_munmap
51 # define mremap gold_mremap
52 # ifndef MAP_FAILED
53 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
54 # endif
55 # ifndef PROT_READ
56 #  define PROT_READ 0
57 # endif
58 # ifndef PROT_WRITE
59 #  define PROT_WRITE 0
60 # endif
61 # ifndef MAP_PRIVATE
62 #  define MAP_PRIVATE 0
63 # endif
64 # ifndef MAP_ANONYMOUS
65 #  define MAP_ANONYMOUS 0
66 # endif
67 # ifndef MAP_SHARED
68 #  define MAP_SHARED 0
69 # endif
70
71 # ifndef ENOSYS
72 #  define ENOSYS EINVAL
73 # endif
74
75 static void *
76 gold_mmap(void *, size_t, int, int, int, off_t)
77 {
78   errno = ENOSYS;
79   return MAP_FAILED;
80 }
81
82 static int
83 gold_munmap(void *, size_t)
84 {
85   errno = ENOSYS;
86   return -1;
87 }
88
89 static void *
90 gold_mremap(void *, size_t, size_t, int)
91 {
92   errno = ENOSYS;
93   return MAP_FAILED;
94 }
95
96 #endif
97
98 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
99 # define mremap gold_mremap
100 extern "C" void *gold_mremap(void *, size_t, size_t, int);
101 #endif
102
103 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
104 #ifndef MAP_ANONYMOUS
105 # define MAP_ANONYMOUS  MAP_ANON
106 #endif
107
108 #ifndef MREMAP_MAYMOVE
109 # define MREMAP_MAYMOVE 1
110 #endif
111
112 #ifndef HAVE_POSIX_FALLOCATE
113 // A dummy, non general, version of posix_fallocate.  Here we just set
114 // the file size and hope that there is enough disk space.  FIXME: We
115 // could allocate disk space by walking block by block and writing a
116 // zero byte into each block.
117 static int
118 posix_fallocate(int o, off_t offset, off_t len)
119 {
120   return ftruncate(o, offset + len);
121 }
122 #endif // !defined(HAVE_POSIX_FALLOCATE)
123
124 // Mingw does not have S_ISLNK.
125 #ifndef S_ISLNK
126 # define S_ISLNK(mode) 0
127 #endif
128
129 namespace gold
130 {
131
132 // Output_data variables.
133
134 bool Output_data::allocated_sizes_are_fixed;
135
136 // Output_data methods.
137
138 Output_data::~Output_data()
139 {
140 }
141
142 // Return the default alignment for the target size.
143
144 uint64_t
145 Output_data::default_alignment()
146 {
147   return Output_data::default_alignment_for_size(
148       parameters->target().get_size());
149 }
150
151 // Return the default alignment for a size--32 or 64.
152
153 uint64_t
154 Output_data::default_alignment_for_size(int size)
155 {
156   if (size == 32)
157     return 4;
158   else if (size == 64)
159     return 8;
160   else
161     gold_unreachable();
162 }
163
164 // Output_section_header methods.  This currently assumes that the
165 // segment and section lists are complete at construction time.
166
167 Output_section_headers::Output_section_headers(
168     const Layout* layout,
169     const Layout::Segment_list* segment_list,
170     const Layout::Section_list* section_list,
171     const Layout::Section_list* unattached_section_list,
172     const Stringpool* secnamepool,
173     const Output_section* shstrtab_section)
174   : layout_(layout),
175     segment_list_(segment_list),
176     section_list_(section_list),
177     unattached_section_list_(unattached_section_list),
178     secnamepool_(secnamepool),
179     shstrtab_section_(shstrtab_section)
180 {
181 }
182
183 // Compute the current data size.
184
185 off_t
186 Output_section_headers::do_size() const
187 {
188   // Count all the sections.  Start with 1 for the null section.
189   off_t count = 1;
190   if (!parameters->options().relocatable())
191     {
192       for (Layout::Segment_list::const_iterator p =
193              this->segment_list_->begin();
194            p != this->segment_list_->end();
195            ++p)
196         if ((*p)->type() == elfcpp::PT_LOAD)
197           count += (*p)->output_section_count();
198     }
199   else
200     {
201       for (Layout::Section_list::const_iterator p =
202              this->section_list_->begin();
203            p != this->section_list_->end();
204            ++p)
205         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
206           ++count;
207     }
208   count += this->unattached_section_list_->size();
209
210   const int size = parameters->target().get_size();
211   int shdr_size;
212   if (size == 32)
213     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
214   else if (size == 64)
215     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
216   else
217     gold_unreachable();
218
219   return count * shdr_size;
220 }
221
222 // Write out the section headers.
223
224 void
225 Output_section_headers::do_write(Output_file* of)
226 {
227   switch (parameters->size_and_endianness())
228     {
229 #ifdef HAVE_TARGET_32_LITTLE
230     case Parameters::TARGET_32_LITTLE:
231       this->do_sized_write<32, false>(of);
232       break;
233 #endif
234 #ifdef HAVE_TARGET_32_BIG
235     case Parameters::TARGET_32_BIG:
236       this->do_sized_write<32, true>(of);
237       break;
238 #endif
239 #ifdef HAVE_TARGET_64_LITTLE
240     case Parameters::TARGET_64_LITTLE:
241       this->do_sized_write<64, false>(of);
242       break;
243 #endif
244 #ifdef HAVE_TARGET_64_BIG
245     case Parameters::TARGET_64_BIG:
246       this->do_sized_write<64, true>(of);
247       break;
248 #endif
249     default:
250       gold_unreachable();
251     }
252 }
253
254 template<int size, bool big_endian>
255 void
256 Output_section_headers::do_sized_write(Output_file* of)
257 {
258   off_t all_shdrs_size = this->data_size();
259   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
260
261   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
262   unsigned char* v = view;
263
264   {
265     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
266     oshdr.put_sh_name(0);
267     oshdr.put_sh_type(elfcpp::SHT_NULL);
268     oshdr.put_sh_flags(0);
269     oshdr.put_sh_addr(0);
270     oshdr.put_sh_offset(0);
271
272     size_t section_count = (this->data_size()
273                             / elfcpp::Elf_sizes<size>::shdr_size);
274     if (section_count < elfcpp::SHN_LORESERVE)
275       oshdr.put_sh_size(0);
276     else
277       oshdr.put_sh_size(section_count);
278
279     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
280     if (shstrndx < elfcpp::SHN_LORESERVE)
281       oshdr.put_sh_link(0);
282     else
283       oshdr.put_sh_link(shstrndx);
284
285     size_t segment_count = this->segment_list_->size();
286     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
287
288     oshdr.put_sh_addralign(0);
289     oshdr.put_sh_entsize(0);
290   }
291
292   v += shdr_size;
293
294   unsigned int shndx = 1;
295   if (!parameters->options().relocatable())
296     {
297       for (Layout::Segment_list::const_iterator p =
298              this->segment_list_->begin();
299            p != this->segment_list_->end();
300            ++p)
301         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
302                                                           this->secnamepool_,
303                                                           v,
304                                                           &shndx);
305     }
306   else
307     {
308       for (Layout::Section_list::const_iterator p =
309              this->section_list_->begin();
310            p != this->section_list_->end();
311            ++p)
312         {
313           // We do unallocated sections below, except that group
314           // sections have to come first.
315           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
316               && (*p)->type() != elfcpp::SHT_GROUP)
317             continue;
318           gold_assert(shndx == (*p)->out_shndx());
319           elfcpp::Shdr_write<size, big_endian> oshdr(v);
320           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
321           v += shdr_size;
322           ++shndx;
323         }
324     }
325
326   for (Layout::Section_list::const_iterator p =
327          this->unattached_section_list_->begin();
328        p != this->unattached_section_list_->end();
329        ++p)
330     {
331       // For a relocatable link, we did unallocated group sections
332       // above, since they have to come first.
333       if ((*p)->type() == elfcpp::SHT_GROUP
334           && parameters->options().relocatable())
335         continue;
336       gold_assert(shndx == (*p)->out_shndx());
337       elfcpp::Shdr_write<size, big_endian> oshdr(v);
338       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
339       v += shdr_size;
340       ++shndx;
341     }
342
343   of->write_output_view(this->offset(), all_shdrs_size, view);
344 }
345
346 // Output_segment_header methods.
347
348 Output_segment_headers::Output_segment_headers(
349     const Layout::Segment_list& segment_list)
350   : segment_list_(segment_list)
351 {
352   this->set_current_data_size_for_child(this->do_size());
353 }
354
355 void
356 Output_segment_headers::do_write(Output_file* of)
357 {
358   switch (parameters->size_and_endianness())
359     {
360 #ifdef HAVE_TARGET_32_LITTLE
361     case Parameters::TARGET_32_LITTLE:
362       this->do_sized_write<32, false>(of);
363       break;
364 #endif
365 #ifdef HAVE_TARGET_32_BIG
366     case Parameters::TARGET_32_BIG:
367       this->do_sized_write<32, true>(of);
368       break;
369 #endif
370 #ifdef HAVE_TARGET_64_LITTLE
371     case Parameters::TARGET_64_LITTLE:
372       this->do_sized_write<64, false>(of);
373       break;
374 #endif
375 #ifdef HAVE_TARGET_64_BIG
376     case Parameters::TARGET_64_BIG:
377       this->do_sized_write<64, true>(of);
378       break;
379 #endif
380     default:
381       gold_unreachable();
382     }
383 }
384
385 template<int size, bool big_endian>
386 void
387 Output_segment_headers::do_sized_write(Output_file* of)
388 {
389   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
390   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
391   gold_assert(all_phdrs_size == this->data_size());
392   unsigned char* view = of->get_output_view(this->offset(),
393                                             all_phdrs_size);
394   unsigned char* v = view;
395   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
396        p != this->segment_list_.end();
397        ++p)
398     {
399       elfcpp::Phdr_write<size, big_endian> ophdr(v);
400       (*p)->write_header(&ophdr);
401       v += phdr_size;
402     }
403
404   gold_assert(v - view == all_phdrs_size);
405
406   of->write_output_view(this->offset(), all_phdrs_size, view);
407 }
408
409 off_t
410 Output_segment_headers::do_size() const
411 {
412   const int size = parameters->target().get_size();
413   int phdr_size;
414   if (size == 32)
415     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
416   else if (size == 64)
417     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
418   else
419     gold_unreachable();
420
421   return this->segment_list_.size() * phdr_size;
422 }
423
424 // Output_file_header methods.
425
426 Output_file_header::Output_file_header(const Target* target,
427                                        const Symbol_table* symtab,
428                                        const Output_segment_headers* osh,
429                                        const char* entry)
430   : target_(target),
431     symtab_(symtab),
432     segment_header_(osh),
433     section_header_(NULL),
434     shstrtab_(NULL),
435     entry_(entry)
436 {
437   this->set_data_size(this->do_size());
438 }
439
440 // Set the section table information for a file header.
441
442 void
443 Output_file_header::set_section_info(const Output_section_headers* shdrs,
444                                      const Output_section* shstrtab)
445 {
446   this->section_header_ = shdrs;
447   this->shstrtab_ = shstrtab;
448 }
449
450 // Write out the file header.
451
452 void
453 Output_file_header::do_write(Output_file* of)
454 {
455   gold_assert(this->offset() == 0);
456
457   switch (parameters->size_and_endianness())
458     {
459 #ifdef HAVE_TARGET_32_LITTLE
460     case Parameters::TARGET_32_LITTLE:
461       this->do_sized_write<32, false>(of);
462       break;
463 #endif
464 #ifdef HAVE_TARGET_32_BIG
465     case Parameters::TARGET_32_BIG:
466       this->do_sized_write<32, true>(of);
467       break;
468 #endif
469 #ifdef HAVE_TARGET_64_LITTLE
470     case Parameters::TARGET_64_LITTLE:
471       this->do_sized_write<64, false>(of);
472       break;
473 #endif
474 #ifdef HAVE_TARGET_64_BIG
475     case Parameters::TARGET_64_BIG:
476       this->do_sized_write<64, true>(of);
477       break;
478 #endif
479     default:
480       gold_unreachable();
481     }
482 }
483
484 // Write out the file header with appropriate size and endianess.
485
486 template<int size, bool big_endian>
487 void
488 Output_file_header::do_sized_write(Output_file* of)
489 {
490   gold_assert(this->offset() == 0);
491
492   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
493   unsigned char* view = of->get_output_view(0, ehdr_size);
494   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
495
496   unsigned char e_ident[elfcpp::EI_NIDENT];
497   memset(e_ident, 0, elfcpp::EI_NIDENT);
498   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
499   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
500   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
501   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
502   if (size == 32)
503     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
504   else if (size == 64)
505     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
506   else
507     gold_unreachable();
508   e_ident[elfcpp::EI_DATA] = (big_endian
509                               ? elfcpp::ELFDATA2MSB
510                               : elfcpp::ELFDATA2LSB);
511   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
512   oehdr.put_e_ident(e_ident);
513
514   elfcpp::ET e_type;
515   if (parameters->options().relocatable())
516     e_type = elfcpp::ET_REL;
517   else if (parameters->options().output_is_position_independent())
518     e_type = elfcpp::ET_DYN;
519   else
520     e_type = elfcpp::ET_EXEC;
521   oehdr.put_e_type(e_type);
522
523   oehdr.put_e_machine(this->target_->machine_code());
524   oehdr.put_e_version(elfcpp::EV_CURRENT);
525
526   oehdr.put_e_entry(this->entry<size>());
527
528   if (this->segment_header_ == NULL)
529     oehdr.put_e_phoff(0);
530   else
531     oehdr.put_e_phoff(this->segment_header_->offset());
532
533   oehdr.put_e_shoff(this->section_header_->offset());
534   oehdr.put_e_flags(this->target_->processor_specific_flags());
535   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
536
537   if (this->segment_header_ == NULL)
538     {
539       oehdr.put_e_phentsize(0);
540       oehdr.put_e_phnum(0);
541     }
542   else
543     {
544       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
545       size_t phnum = (this->segment_header_->data_size()
546                       / elfcpp::Elf_sizes<size>::phdr_size);
547       if (phnum > elfcpp::PN_XNUM)
548         phnum = elfcpp::PN_XNUM;
549       oehdr.put_e_phnum(phnum);
550     }
551
552   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
553   size_t section_count = (this->section_header_->data_size()
554                           / elfcpp::Elf_sizes<size>::shdr_size);
555
556   if (section_count < elfcpp::SHN_LORESERVE)
557     oehdr.put_e_shnum(this->section_header_->data_size()
558                       / elfcpp::Elf_sizes<size>::shdr_size);
559   else
560     oehdr.put_e_shnum(0);
561
562   unsigned int shstrndx = this->shstrtab_->out_shndx();
563   if (shstrndx < elfcpp::SHN_LORESERVE)
564     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
565   else
566     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
567
568   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
569   // the e_ident field.
570   parameters->target().adjust_elf_header(view, ehdr_size);
571
572   of->write_output_view(0, ehdr_size, view);
573 }
574
575 // Return the value to use for the entry address.  THIS->ENTRY_ is the
576 // symbol specified on the command line, if any.
577
578 template<int size>
579 typename elfcpp::Elf_types<size>::Elf_Addr
580 Output_file_header::entry()
581 {
582   const bool should_issue_warning = (this->entry_ != NULL
583                                      && !parameters->options().relocatable()
584                                      && !parameters->options().shared());
585
586   // FIXME: Need to support target specific entry symbol.
587   const char* entry = this->entry_;
588   if (entry == NULL)
589     entry = "_start";
590
591   Symbol* sym = this->symtab_->lookup(entry);
592
593   typename Sized_symbol<size>::Value_type v;
594   if (sym != NULL)
595     {
596       Sized_symbol<size>* ssym;
597       ssym = this->symtab_->get_sized_symbol<size>(sym);
598       if (!ssym->is_defined() && should_issue_warning)
599         gold_warning("entry symbol '%s' exists but is not defined", entry);
600       v = ssym->value();
601     }
602   else
603     {
604       // We couldn't find the entry symbol.  See if we can parse it as
605       // a number.  This supports, e.g., -e 0x1000.
606       char* endptr;
607       v = strtoull(entry, &endptr, 0);
608       if (*endptr != '\0')
609         {
610           if (should_issue_warning)
611             gold_warning("cannot find entry symbol '%s'", entry);
612           v = 0;
613         }
614     }
615
616   return v;
617 }
618
619 // Compute the current data size.
620
621 off_t
622 Output_file_header::do_size() const
623 {
624   const int size = parameters->target().get_size();
625   if (size == 32)
626     return elfcpp::Elf_sizes<32>::ehdr_size;
627   else if (size == 64)
628     return elfcpp::Elf_sizes<64>::ehdr_size;
629   else
630     gold_unreachable();
631 }
632
633 // Output_data_const methods.
634
635 void
636 Output_data_const::do_write(Output_file* of)
637 {
638   of->write(this->offset(), this->data_.data(), this->data_.size());
639 }
640
641 // Output_data_const_buffer methods.
642
643 void
644 Output_data_const_buffer::do_write(Output_file* of)
645 {
646   of->write(this->offset(), this->p_, this->data_size());
647 }
648
649 // Output_section_data methods.
650
651 // Record the output section, and set the entry size and such.
652
653 void
654 Output_section_data::set_output_section(Output_section* os)
655 {
656   gold_assert(this->output_section_ == NULL);
657   this->output_section_ = os;
658   this->do_adjust_output_section(os);
659 }
660
661 // Return the section index of the output section.
662
663 unsigned int
664 Output_section_data::do_out_shndx() const
665 {
666   gold_assert(this->output_section_ != NULL);
667   return this->output_section_->out_shndx();
668 }
669
670 // Set the alignment, which means we may need to update the alignment
671 // of the output section.
672
673 void
674 Output_section_data::set_addralign(uint64_t addralign)
675 {
676   this->addralign_ = addralign;
677   if (this->output_section_ != NULL
678       && this->output_section_->addralign() < addralign)
679     this->output_section_->set_addralign(addralign);
680 }
681
682 // Output_data_strtab methods.
683
684 // Set the final data size.
685
686 void
687 Output_data_strtab::set_final_data_size()
688 {
689   this->strtab_->set_string_offsets();
690   this->set_data_size(this->strtab_->get_strtab_size());
691 }
692
693 // Write out a string table.
694
695 void
696 Output_data_strtab::do_write(Output_file* of)
697 {
698   this->strtab_->write(of, this->offset());
699 }
700
701 // Output_reloc methods.
702
703 // A reloc against a global symbol.
704
705 template<bool dynamic, int size, bool big_endian>
706 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
707     Symbol* gsym,
708     unsigned int type,
709     Output_data* od,
710     Address address,
711     bool is_relative,
712     bool is_symbolless)
713   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
714     is_relative_(is_relative), is_symbolless_(is_symbolless),
715     is_section_symbol_(false), shndx_(INVALID_CODE)
716 {
717   // this->type_ is a bitfield; make sure TYPE fits.
718   gold_assert(this->type_ == type);
719   this->u1_.gsym = gsym;
720   this->u2_.od = od;
721   if (dynamic)
722     this->set_needs_dynsym_index();
723 }
724
725 template<bool dynamic, int size, bool big_endian>
726 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
727     Symbol* gsym,
728     unsigned int type,
729     Sized_relobj<size, big_endian>* relobj,
730     unsigned int shndx,
731     Address address,
732     bool is_relative,
733     bool is_symbolless)
734   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
735     is_relative_(is_relative), is_symbolless_(is_symbolless),
736     is_section_symbol_(false), shndx_(shndx)
737 {
738   gold_assert(shndx != INVALID_CODE);
739   // this->type_ is a bitfield; make sure TYPE fits.
740   gold_assert(this->type_ == type);
741   this->u1_.gsym = gsym;
742   this->u2_.relobj = relobj;
743   if (dynamic)
744     this->set_needs_dynsym_index();
745 }
746
747 // A reloc against a local symbol.
748
749 template<bool dynamic, int size, bool big_endian>
750 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
751     Sized_relobj<size, big_endian>* relobj,
752     unsigned int local_sym_index,
753     unsigned int type,
754     Output_data* od,
755     Address address,
756     bool is_relative,
757     bool is_symbolless,
758     bool is_section_symbol)
759   : address_(address), local_sym_index_(local_sym_index), type_(type),
760     is_relative_(is_relative), is_symbolless_(is_symbolless),
761     is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
762 {
763   gold_assert(local_sym_index != GSYM_CODE
764               && local_sym_index != INVALID_CODE);
765   // this->type_ is a bitfield; make sure TYPE fits.
766   gold_assert(this->type_ == type);
767   this->u1_.relobj = relobj;
768   this->u2_.od = od;
769   if (dynamic)
770     this->set_needs_dynsym_index();
771 }
772
773 template<bool dynamic, int size, bool big_endian>
774 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
775     Sized_relobj<size, big_endian>* relobj,
776     unsigned int local_sym_index,
777     unsigned int type,
778     unsigned int shndx,
779     Address address,
780     bool is_relative,
781     bool is_symbolless,
782     bool is_section_symbol)
783   : address_(address), local_sym_index_(local_sym_index), type_(type),
784     is_relative_(is_relative), is_symbolless_(is_symbolless),
785     is_section_symbol_(is_section_symbol), shndx_(shndx)
786 {
787   gold_assert(local_sym_index != GSYM_CODE
788               && local_sym_index != INVALID_CODE);
789   gold_assert(shndx != INVALID_CODE);
790   // this->type_ is a bitfield; make sure TYPE fits.
791   gold_assert(this->type_ == type);
792   this->u1_.relobj = relobj;
793   this->u2_.relobj = relobj;
794   if (dynamic)
795     this->set_needs_dynsym_index();
796 }
797
798 // A reloc against the STT_SECTION symbol of an output section.
799
800 template<bool dynamic, int size, bool big_endian>
801 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
802     Output_section* os,
803     unsigned int type,
804     Output_data* od,
805     Address address)
806   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
807     is_relative_(false), is_symbolless_(false),
808     is_section_symbol_(true), shndx_(INVALID_CODE)
809 {
810   // this->type_ is a bitfield; make sure TYPE fits.
811   gold_assert(this->type_ == type);
812   this->u1_.os = os;
813   this->u2_.od = od;
814   if (dynamic)
815     this->set_needs_dynsym_index();
816   else
817     os->set_needs_symtab_index();
818 }
819
820 template<bool dynamic, int size, bool big_endian>
821 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
822     Output_section* os,
823     unsigned int type,
824     Sized_relobj<size, big_endian>* relobj,
825     unsigned int shndx,
826     Address address)
827   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
828     is_relative_(false), is_symbolless_(false),
829     is_section_symbol_(true), shndx_(shndx)
830 {
831   gold_assert(shndx != INVALID_CODE);
832   // this->type_ is a bitfield; make sure TYPE fits.
833   gold_assert(this->type_ == type);
834   this->u1_.os = os;
835   this->u2_.relobj = relobj;
836   if (dynamic)
837     this->set_needs_dynsym_index();
838   else
839     os->set_needs_symtab_index();
840 }
841
842 // An absolute relocation.
843
844 template<bool dynamic, int size, bool big_endian>
845 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
846     unsigned int type,
847     Output_data* od,
848     Address address)
849   : address_(address), local_sym_index_(0), type_(type),
850     is_relative_(false), is_symbolless_(false),
851     is_section_symbol_(false), shndx_(INVALID_CODE)
852 {
853   // this->type_ is a bitfield; make sure TYPE fits.
854   gold_assert(this->type_ == type);
855   this->u1_.relobj = NULL;
856   this->u2_.od = od;
857 }
858
859 template<bool dynamic, int size, bool big_endian>
860 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
861     unsigned int type,
862     Sized_relobj<size, big_endian>* relobj,
863     unsigned int shndx,
864     Address address)
865   : address_(address), local_sym_index_(0), type_(type),
866     is_relative_(false), is_symbolless_(false),
867     is_section_symbol_(false), shndx_(shndx)
868 {
869   gold_assert(shndx != INVALID_CODE);
870   // this->type_ is a bitfield; make sure TYPE fits.
871   gold_assert(this->type_ == type);
872   this->u1_.relobj = NULL;
873   this->u2_.relobj = relobj;
874 }
875
876 // A target specific relocation.
877
878 template<bool dynamic, int size, bool big_endian>
879 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
880     unsigned int type,
881     void* arg,
882     Output_data* od,
883     Address address)
884   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
885     is_relative_(false), is_symbolless_(false),
886     is_section_symbol_(false), shndx_(INVALID_CODE)
887 {
888   // this->type_ is a bitfield; make sure TYPE fits.
889   gold_assert(this->type_ == type);
890   this->u1_.arg = arg;
891   this->u2_.od = od;
892 }
893
894 template<bool dynamic, int size, bool big_endian>
895 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
896     unsigned int type,
897     void* arg,
898     Sized_relobj<size, big_endian>* relobj,
899     unsigned int shndx,
900     Address address)
901   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
902     is_relative_(false), is_symbolless_(false),
903     is_section_symbol_(false), shndx_(shndx)
904 {
905   gold_assert(shndx != INVALID_CODE);
906   // this->type_ is a bitfield; make sure TYPE fits.
907   gold_assert(this->type_ == type);
908   this->u1_.arg = arg;
909   this->u2_.relobj = relobj;
910 }
911
912 // Record that we need a dynamic symbol index for this relocation.
913
914 template<bool dynamic, int size, bool big_endian>
915 void
916 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
917 set_needs_dynsym_index()
918 {
919   if (this->is_symbolless_)
920     return;
921   switch (this->local_sym_index_)
922     {
923     case INVALID_CODE:
924       gold_unreachable();
925
926     case GSYM_CODE:
927       this->u1_.gsym->set_needs_dynsym_entry();
928       break;
929
930     case SECTION_CODE:
931       this->u1_.os->set_needs_dynsym_index();
932       break;
933
934     case TARGET_CODE:
935       // The target must take care of this if necessary.
936       break;
937
938     case 0:
939       break;
940
941     default:
942       {
943         const unsigned int lsi = this->local_sym_index_;
944         Sized_relobj_file<size, big_endian>* relobj =
945             this->u1_.relobj->sized_relobj();
946         gold_assert(relobj != NULL);
947         if (!this->is_section_symbol_)
948           relobj->set_needs_output_dynsym_entry(lsi);
949         else
950           relobj->output_section(lsi)->set_needs_dynsym_index();
951       }
952       break;
953     }
954 }
955
956 // Get the symbol index of a relocation.
957
958 template<bool dynamic, int size, bool big_endian>
959 unsigned int
960 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
961   const
962 {
963   unsigned int index;
964   if (this->is_symbolless_)
965     return 0;
966   switch (this->local_sym_index_)
967     {
968     case INVALID_CODE:
969       gold_unreachable();
970
971     case GSYM_CODE:
972       if (this->u1_.gsym == NULL)
973         index = 0;
974       else if (dynamic)
975         index = this->u1_.gsym->dynsym_index();
976       else
977         index = this->u1_.gsym->symtab_index();
978       break;
979
980     case SECTION_CODE:
981       if (dynamic)
982         index = this->u1_.os->dynsym_index();
983       else
984         index = this->u1_.os->symtab_index();
985       break;
986
987     case TARGET_CODE:
988       index = parameters->target().reloc_symbol_index(this->u1_.arg,
989                                                       this->type_);
990       break;
991
992     case 0:
993       // Relocations without symbols use a symbol index of 0.
994       index = 0;
995       break;
996
997     default:
998       {
999         const unsigned int lsi = this->local_sym_index_;
1000         Sized_relobj_file<size, big_endian>* relobj =
1001             this->u1_.relobj->sized_relobj();
1002         gold_assert(relobj != NULL);
1003         if (!this->is_section_symbol_)
1004           {
1005             if (dynamic)
1006               index = relobj->dynsym_index(lsi);
1007             else
1008               index = relobj->symtab_index(lsi);
1009           }
1010         else
1011           {
1012             Output_section* os = relobj->output_section(lsi);
1013             gold_assert(os != NULL);
1014             if (dynamic)
1015               index = os->dynsym_index();
1016             else
1017               index = os->symtab_index();
1018           }
1019       }
1020       break;
1021     }
1022   gold_assert(index != -1U);
1023   return index;
1024 }
1025
1026 // For a local section symbol, get the address of the offset ADDEND
1027 // within the input section.
1028
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1032   local_section_offset(Addend addend) const
1033 {
1034   gold_assert(this->local_sym_index_ != GSYM_CODE
1035               && this->local_sym_index_ != SECTION_CODE
1036               && this->local_sym_index_ != TARGET_CODE
1037               && this->local_sym_index_ != INVALID_CODE
1038               && this->local_sym_index_ != 0
1039               && this->is_section_symbol_);
1040   const unsigned int lsi = this->local_sym_index_;
1041   Output_section* os = this->u1_.relobj->output_section(lsi);
1042   gold_assert(os != NULL);
1043   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1044   if (offset != invalid_address)
1045     return offset + addend;
1046   // This is a merge section.
1047   Sized_relobj_file<size, big_endian>* relobj =
1048       this->u1_.relobj->sized_relobj();
1049   gold_assert(relobj != NULL);
1050   offset = os->output_address(relobj, lsi, addend);
1051   gold_assert(offset != invalid_address);
1052   return offset;
1053 }
1054
1055 // Get the output address of a relocation.
1056
1057 template<bool dynamic, int size, bool big_endian>
1058 typename elfcpp::Elf_types<size>::Elf_Addr
1059 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1060 {
1061   Address address = this->address_;
1062   if (this->shndx_ != INVALID_CODE)
1063     {
1064       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1065       gold_assert(os != NULL);
1066       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1067       if (off != invalid_address)
1068         address += os->address() + off;
1069       else
1070         {
1071           Sized_relobj_file<size, big_endian>* relobj =
1072               this->u2_.relobj->sized_relobj();
1073           gold_assert(relobj != NULL);
1074           address = os->output_address(relobj, this->shndx_, address);
1075           gold_assert(address != invalid_address);
1076         }
1077     }
1078   else if (this->u2_.od != NULL)
1079     address += this->u2_.od->address();
1080   return address;
1081 }
1082
1083 // Write out the offset and info fields of a Rel or Rela relocation
1084 // entry.
1085
1086 template<bool dynamic, int size, bool big_endian>
1087 template<typename Write_rel>
1088 void
1089 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1090     Write_rel* wr) const
1091 {
1092   wr->put_r_offset(this->get_address());
1093   unsigned int sym_index = this->get_symbol_index();
1094   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1095 }
1096
1097 // Write out a Rel relocation.
1098
1099 template<bool dynamic, int size, bool big_endian>
1100 void
1101 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1102     unsigned char* pov) const
1103 {
1104   elfcpp::Rel_write<size, big_endian> orel(pov);
1105   this->write_rel(&orel);
1106 }
1107
1108 // Get the value of the symbol referred to by a Rel relocation.
1109
1110 template<bool dynamic, int size, bool big_endian>
1111 typename elfcpp::Elf_types<size>::Elf_Addr
1112 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1113     Addend addend) const
1114 {
1115   if (this->local_sym_index_ == GSYM_CODE)
1116     {
1117       const Sized_symbol<size>* sym;
1118       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1119       return sym->value() + addend;
1120     }
1121   gold_assert(this->local_sym_index_ != SECTION_CODE
1122               && this->local_sym_index_ != TARGET_CODE
1123               && this->local_sym_index_ != INVALID_CODE
1124               && this->local_sym_index_ != 0
1125               && !this->is_section_symbol_);
1126   const unsigned int lsi = this->local_sym_index_;
1127   Sized_relobj_file<size, big_endian>* relobj =
1128       this->u1_.relobj->sized_relobj();
1129   gold_assert(relobj != NULL);
1130   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1131   return symval->value(relobj, addend);
1132 }
1133
1134 // Reloc comparison.  This function sorts the dynamic relocs for the
1135 // benefit of the dynamic linker.  First we sort all relative relocs
1136 // to the front.  Among relative relocs, we sort by output address.
1137 // Among non-relative relocs, we sort by symbol index, then by output
1138 // address.
1139
1140 template<bool dynamic, int size, bool big_endian>
1141 int
1142 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1143   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1144     const
1145 {
1146   if (this->is_relative_)
1147     {
1148       if (!r2.is_relative_)
1149         return -1;
1150       // Otherwise sort by reloc address below.
1151     }
1152   else if (r2.is_relative_)
1153     return 1;
1154   else
1155     {
1156       unsigned int sym1 = this->get_symbol_index();
1157       unsigned int sym2 = r2.get_symbol_index();
1158       if (sym1 < sym2)
1159         return -1;
1160       else if (sym1 > sym2)
1161         return 1;
1162       // Otherwise sort by reloc address.
1163     }
1164
1165   section_offset_type addr1 = this->get_address();
1166   section_offset_type addr2 = r2.get_address();
1167   if (addr1 < addr2)
1168     return -1;
1169   else if (addr1 > addr2)
1170     return 1;
1171
1172   // Final tie breaker, in order to generate the same output on any
1173   // host: reloc type.
1174   unsigned int type1 = this->type_;
1175   unsigned int type2 = r2.type_;
1176   if (type1 < type2)
1177     return -1;
1178   else if (type1 > type2)
1179     return 1;
1180
1181   // These relocs appear to be exactly the same.
1182   return 0;
1183 }
1184
1185 // Write out a Rela relocation.
1186
1187 template<bool dynamic, int size, bool big_endian>
1188 void
1189 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1190     unsigned char* pov) const
1191 {
1192   elfcpp::Rela_write<size, big_endian> orel(pov);
1193   this->rel_.write_rel(&orel);
1194   Addend addend = this->addend_;
1195   if (this->rel_.is_target_specific())
1196     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1197                                                this->rel_.type(), addend);
1198   else if (this->rel_.is_symbolless())
1199     addend = this->rel_.symbol_value(addend);
1200   else if (this->rel_.is_local_section_symbol())
1201     addend = this->rel_.local_section_offset(addend);
1202   orel.put_r_addend(addend);
1203 }
1204
1205 // Output_data_reloc_base methods.
1206
1207 // Adjust the output section.
1208
1209 template<int sh_type, bool dynamic, int size, bool big_endian>
1210 void
1211 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1212     ::do_adjust_output_section(Output_section* os)
1213 {
1214   if (sh_type == elfcpp::SHT_REL)
1215     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1216   else if (sh_type == elfcpp::SHT_RELA)
1217     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1218   else
1219     gold_unreachable();
1220
1221   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1222   // static link.  The backends will generate a dynamic reloc section
1223   // to hold this.  In that case we don't want to link to the dynsym
1224   // section, because there isn't one.
1225   if (!dynamic)
1226     os->set_should_link_to_symtab();
1227   else if (parameters->doing_static_link())
1228     ;
1229   else
1230     os->set_should_link_to_dynsym();
1231 }
1232
1233 // Write out relocation data.
1234
1235 template<int sh_type, bool dynamic, int size, bool big_endian>
1236 void
1237 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1238     Output_file* of)
1239 {
1240   const off_t off = this->offset();
1241   const off_t oview_size = this->data_size();
1242   unsigned char* const oview = of->get_output_view(off, oview_size);
1243
1244   if (this->sort_relocs())
1245     {
1246       gold_assert(dynamic);
1247       std::sort(this->relocs_.begin(), this->relocs_.end(),
1248                 Sort_relocs_comparison());
1249     }
1250
1251   unsigned char* pov = oview;
1252   for (typename Relocs::const_iterator p = this->relocs_.begin();
1253        p != this->relocs_.end();
1254        ++p)
1255     {
1256       p->write(pov);
1257       pov += reloc_size;
1258     }
1259
1260   gold_assert(pov - oview == oview_size);
1261
1262   of->write_output_view(off, oview_size, oview);
1263
1264   // We no longer need the relocation entries.
1265   this->relocs_.clear();
1266 }
1267
1268 // Class Output_relocatable_relocs.
1269
1270 template<int sh_type, int size, bool big_endian>
1271 void
1272 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1273 {
1274   this->set_data_size(this->rr_->output_reloc_count()
1275                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1276 }
1277
1278 // class Output_data_group.
1279
1280 template<int size, bool big_endian>
1281 Output_data_group<size, big_endian>::Output_data_group(
1282     Sized_relobj_file<size, big_endian>* relobj,
1283     section_size_type entry_count,
1284     elfcpp::Elf_Word flags,
1285     std::vector<unsigned int>* input_shndxes)
1286   : Output_section_data(entry_count * 4, 4, false),
1287     relobj_(relobj),
1288     flags_(flags)
1289 {
1290   this->input_shndxes_.swap(*input_shndxes);
1291 }
1292
1293 // Write out the section group, which means translating the section
1294 // indexes to apply to the output file.
1295
1296 template<int size, bool big_endian>
1297 void
1298 Output_data_group<size, big_endian>::do_write(Output_file* of)
1299 {
1300   const off_t off = this->offset();
1301   const section_size_type oview_size =
1302     convert_to_section_size_type(this->data_size());
1303   unsigned char* const oview = of->get_output_view(off, oview_size);
1304
1305   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1306   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1307   ++contents;
1308
1309   for (std::vector<unsigned int>::const_iterator p =
1310          this->input_shndxes_.begin();
1311        p != this->input_shndxes_.end();
1312        ++p, ++contents)
1313     {
1314       Output_section* os = this->relobj_->output_section(*p);
1315
1316       unsigned int output_shndx;
1317       if (os != NULL)
1318         output_shndx = os->out_shndx();
1319       else
1320         {
1321           this->relobj_->error(_("section group retained but "
1322                                  "group element discarded"));
1323           output_shndx = 0;
1324         }
1325
1326       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1327     }
1328
1329   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1330   gold_assert(wrote == oview_size);
1331
1332   of->write_output_view(off, oview_size, oview);
1333
1334   // We no longer need this information.
1335   this->input_shndxes_.clear();
1336 }
1337
1338 // Output_data_got::Got_entry methods.
1339
1340 // Write out the entry.
1341
1342 template<int size, bool big_endian>
1343 void
1344 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1345 {
1346   Valtype val = 0;
1347
1348   switch (this->local_sym_index_)
1349     {
1350     case GSYM_CODE:
1351       {
1352         // If the symbol is resolved locally, we need to write out the
1353         // link-time value, which will be relocated dynamically by a
1354         // RELATIVE relocation.
1355         Symbol* gsym = this->u_.gsym;
1356         if (this->use_plt_offset_ && gsym->has_plt_offset())
1357           val = (parameters->target().plt_section_for_global(gsym)->address()
1358                  + gsym->plt_offset());
1359         else
1360           {
1361             Sized_symbol<size>* sgsym;
1362             // This cast is a bit ugly.  We don't want to put a
1363             // virtual method in Symbol, because we want Symbol to be
1364             // as small as possible.
1365             sgsym = static_cast<Sized_symbol<size>*>(gsym);
1366             val = sgsym->value();
1367           }
1368       }
1369       break;
1370
1371     case CONSTANT_CODE:
1372       val = this->u_.constant;
1373       break;
1374
1375     case RESERVED_CODE:
1376       // If we're doing an incremental update, don't touch this GOT entry.
1377       if (parameters->incremental_update())
1378         return;
1379       val = this->u_.constant;
1380       break;
1381
1382     default:
1383       {
1384         const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1385         const unsigned int lsi = this->local_sym_index_;
1386         const Symbol_value<size>* symval = object->local_symbol(lsi);
1387         if (!this->use_plt_offset_)
1388           val = symval->value(this->u_.object, 0);
1389         else
1390           {
1391             const Output_data* plt =
1392               parameters->target().plt_section_for_local(object, lsi);
1393             val = plt->address() + object->local_plt_offset(lsi);
1394           }
1395       }
1396       break;
1397     }
1398
1399   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1400 }
1401
1402 // Output_data_got methods.
1403
1404 // Add an entry for a global symbol to the GOT.  This returns true if
1405 // this is a new GOT entry, false if the symbol already had a GOT
1406 // entry.
1407
1408 template<int size, bool big_endian>
1409 bool
1410 Output_data_got<size, big_endian>::add_global(
1411     Symbol* gsym,
1412     unsigned int got_type)
1413 {
1414   if (gsym->has_got_offset(got_type))
1415     return false;
1416
1417   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1418   gsym->set_got_offset(got_type, got_offset);
1419   return true;
1420 }
1421
1422 // Like add_global, but use the PLT offset.
1423
1424 template<int size, bool big_endian>
1425 bool
1426 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1427                                                   unsigned int got_type)
1428 {
1429   if (gsym->has_got_offset(got_type))
1430     return false;
1431
1432   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1433   gsym->set_got_offset(got_type, got_offset);
1434   return true;
1435 }
1436
1437 // Add an entry for a global symbol to the GOT, and add a dynamic
1438 // relocation of type R_TYPE for the GOT entry.
1439
1440 template<int size, bool big_endian>
1441 void
1442 Output_data_got<size, big_endian>::add_global_with_rel(
1443     Symbol* gsym,
1444     unsigned int got_type,
1445     Rel_dyn* rel_dyn,
1446     unsigned int r_type)
1447 {
1448   if (gsym->has_got_offset(got_type))
1449     return;
1450
1451   unsigned int got_offset = this->add_got_entry(Got_entry());
1452   gsym->set_got_offset(got_type, got_offset);
1453   rel_dyn->add_global(gsym, r_type, this, got_offset);
1454 }
1455
1456 template<int size, bool big_endian>
1457 void
1458 Output_data_got<size, big_endian>::add_global_with_rela(
1459     Symbol* gsym,
1460     unsigned int got_type,
1461     Rela_dyn* rela_dyn,
1462     unsigned int r_type)
1463 {
1464   if (gsym->has_got_offset(got_type))
1465     return;
1466
1467   unsigned int got_offset = this->add_got_entry(Got_entry());
1468   gsym->set_got_offset(got_type, got_offset);
1469   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1470 }
1471
1472 // Add a pair of entries for a global symbol to the GOT, and add
1473 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1474 // If R_TYPE_2 == 0, add the second entry with no relocation.
1475 template<int size, bool big_endian>
1476 void
1477 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1478     Symbol* gsym,
1479     unsigned int got_type,
1480     Rel_dyn* rel_dyn,
1481     unsigned int r_type_1,
1482     unsigned int r_type_2)
1483 {
1484   if (gsym->has_got_offset(got_type))
1485     return;
1486
1487   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1488   gsym->set_got_offset(got_type, got_offset);
1489   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1490
1491   if (r_type_2 != 0)
1492     rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1493 }
1494
1495 template<int size, bool big_endian>
1496 void
1497 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1498     Symbol* gsym,
1499     unsigned int got_type,
1500     Rela_dyn* rela_dyn,
1501     unsigned int r_type_1,
1502     unsigned int r_type_2)
1503 {
1504   if (gsym->has_got_offset(got_type))
1505     return;
1506
1507   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1508   gsym->set_got_offset(got_type, got_offset);
1509   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1510
1511   if (r_type_2 != 0)
1512     rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1513 }
1514
1515 // Add an entry for a local symbol to the GOT.  This returns true if
1516 // this is a new GOT entry, false if the symbol already has a GOT
1517 // entry.
1518
1519 template<int size, bool big_endian>
1520 bool
1521 Output_data_got<size, big_endian>::add_local(
1522     Sized_relobj_file<size, big_endian>* object,
1523     unsigned int symndx,
1524     unsigned int got_type)
1525 {
1526   if (object->local_has_got_offset(symndx, got_type))
1527     return false;
1528
1529   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1530                                                           false));
1531   object->set_local_got_offset(symndx, got_type, got_offset);
1532   return true;
1533 }
1534
1535 // Like add_local, but use the PLT offset.
1536
1537 template<int size, bool big_endian>
1538 bool
1539 Output_data_got<size, big_endian>::add_local_plt(
1540     Sized_relobj_file<size, big_endian>* object,
1541     unsigned int symndx,
1542     unsigned int got_type)
1543 {
1544   if (object->local_has_got_offset(symndx, got_type))
1545     return false;
1546
1547   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1548                                                           true));
1549   object->set_local_got_offset(symndx, got_type, got_offset);
1550   return true;
1551 }
1552
1553 // Add an entry for a local symbol to the GOT, and add a dynamic
1554 // relocation of type R_TYPE for the GOT entry.
1555
1556 template<int size, bool big_endian>
1557 void
1558 Output_data_got<size, big_endian>::add_local_with_rel(
1559     Sized_relobj_file<size, big_endian>* object,
1560     unsigned int symndx,
1561     unsigned int got_type,
1562     Rel_dyn* rel_dyn,
1563     unsigned int r_type)
1564 {
1565   if (object->local_has_got_offset(symndx, got_type))
1566     return;
1567
1568   unsigned int got_offset = this->add_got_entry(Got_entry());
1569   object->set_local_got_offset(symndx, got_type, got_offset);
1570   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1571 }
1572
1573 template<int size, bool big_endian>
1574 void
1575 Output_data_got<size, big_endian>::add_local_with_rela(
1576     Sized_relobj_file<size, big_endian>* object,
1577     unsigned int symndx,
1578     unsigned int got_type,
1579     Rela_dyn* rela_dyn,
1580     unsigned int r_type)
1581 {
1582   if (object->local_has_got_offset(symndx, got_type))
1583     return;
1584
1585   unsigned int got_offset = this->add_got_entry(Got_entry());
1586   object->set_local_got_offset(symndx, got_type, got_offset);
1587   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1588 }
1589
1590 // Add a pair of entries for a local symbol to the GOT, and add
1591 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1592 // If R_TYPE_2 == 0, add the second entry with no relocation.
1593 template<int size, bool big_endian>
1594 void
1595 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1596     Sized_relobj_file<size, big_endian>* object,
1597     unsigned int symndx,
1598     unsigned int shndx,
1599     unsigned int got_type,
1600     Rel_dyn* rel_dyn,
1601     unsigned int r_type_1,
1602     unsigned int r_type_2)
1603 {
1604   if (object->local_has_got_offset(symndx, got_type))
1605     return;
1606
1607   unsigned int got_offset =
1608       this->add_got_entry_pair(Got_entry(),
1609                                Got_entry(object, symndx, false));
1610   object->set_local_got_offset(symndx, got_type, got_offset);
1611   Output_section* os = object->output_section(shndx);
1612   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1613
1614   if (r_type_2 != 0)
1615     rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1616 }
1617
1618 template<int size, bool big_endian>
1619 void
1620 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1621     Sized_relobj_file<size, big_endian>* object,
1622     unsigned int symndx,
1623     unsigned int shndx,
1624     unsigned int got_type,
1625     Rela_dyn* rela_dyn,
1626     unsigned int r_type_1,
1627     unsigned int r_type_2)
1628 {
1629   if (object->local_has_got_offset(symndx, got_type))
1630     return;
1631
1632   unsigned int got_offset =
1633       this->add_got_entry_pair(Got_entry(),
1634                                Got_entry(object, symndx, false));
1635   object->set_local_got_offset(symndx, got_type, got_offset);
1636   Output_section* os = object->output_section(shndx);
1637   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1638
1639   if (r_type_2 != 0)
1640     rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1641 }
1642
1643 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1644
1645 template<int size, bool big_endian>
1646 void
1647 Output_data_got<size, big_endian>::reserve_local(
1648     unsigned int i,
1649     Sized_relobj<size, big_endian>* object,
1650     unsigned int sym_index,
1651     unsigned int got_type)
1652 {
1653   this->reserve_slot(i);
1654   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1655 }
1656
1657 // Reserve a slot in the GOT for a global symbol.
1658
1659 template<int size, bool big_endian>
1660 void
1661 Output_data_got<size, big_endian>::reserve_global(
1662     unsigned int i,
1663     Symbol* gsym,
1664     unsigned int got_type)
1665 {
1666   this->reserve_slot(i);
1667   gsym->set_got_offset(got_type, this->got_offset(i));
1668 }
1669
1670 // Write out the GOT.
1671
1672 template<int size, bool big_endian>
1673 void
1674 Output_data_got<size, big_endian>::do_write(Output_file* of)
1675 {
1676   const int add = size / 8;
1677
1678   const off_t off = this->offset();
1679   const off_t oview_size = this->data_size();
1680   unsigned char* const oview = of->get_output_view(off, oview_size);
1681
1682   unsigned char* pov = oview;
1683   for (typename Got_entries::const_iterator p = this->entries_.begin();
1684        p != this->entries_.end();
1685        ++p)
1686     {
1687       p->write(pov);
1688       pov += add;
1689     }
1690
1691   gold_assert(pov - oview == oview_size);
1692
1693   of->write_output_view(off, oview_size, oview);
1694
1695   // We no longer need the GOT entries.
1696   this->entries_.clear();
1697 }
1698
1699 // Create a new GOT entry and return its offset.
1700
1701 template<int size, bool big_endian>
1702 unsigned int
1703 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1704 {
1705   if (!this->is_data_size_valid())
1706     {
1707       this->entries_.push_back(got_entry);
1708       this->set_got_size();
1709       return this->last_got_offset();
1710     }
1711   else
1712     {
1713       // For an incremental update, find an available slot.
1714       off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1715       if (got_offset == -1)
1716         gold_fatal(_("out of patch space (GOT);"
1717                      " relink with --incremental-full"));
1718       unsigned int got_index = got_offset / (size / 8);
1719       gold_assert(got_index < this->entries_.size());
1720       this->entries_[got_index] = got_entry;
1721       return static_cast<unsigned int>(got_offset);
1722     }
1723 }
1724
1725 // Create a pair of new GOT entries and return the offset of the first.
1726
1727 template<int size, bool big_endian>
1728 unsigned int
1729 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1730                                                       Got_entry got_entry_2)
1731 {
1732   if (!this->is_data_size_valid())
1733     {
1734       unsigned int got_offset;
1735       this->entries_.push_back(got_entry_1);
1736       got_offset = this->last_got_offset();
1737       this->entries_.push_back(got_entry_2);
1738       this->set_got_size();
1739       return got_offset;
1740     }
1741   else
1742     {
1743       // For an incremental update, find an available pair of slots.
1744       off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1745       if (got_offset == -1)
1746         gold_fatal(_("out of patch space (GOT);"
1747                      " relink with --incremental-full"));
1748       unsigned int got_index = got_offset / (size / 8);
1749       gold_assert(got_index < this->entries_.size());
1750       this->entries_[got_index] = got_entry_1;
1751       this->entries_[got_index + 1] = got_entry_2;
1752       return static_cast<unsigned int>(got_offset);
1753     }
1754 }
1755
1756 // Output_data_dynamic::Dynamic_entry methods.
1757
1758 // Write out the entry.
1759
1760 template<int size, bool big_endian>
1761 void
1762 Output_data_dynamic::Dynamic_entry::write(
1763     unsigned char* pov,
1764     const Stringpool* pool) const
1765 {
1766   typename elfcpp::Elf_types<size>::Elf_WXword val;
1767   switch (this->offset_)
1768     {
1769     case DYNAMIC_NUMBER:
1770       val = this->u_.val;
1771       break;
1772
1773     case DYNAMIC_SECTION_SIZE:
1774       val = this->u_.od->data_size();
1775       if (this->od2 != NULL)
1776         val += this->od2->data_size();
1777       break;
1778
1779     case DYNAMIC_SYMBOL:
1780       {
1781         const Sized_symbol<size>* s =
1782           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1783         val = s->value();
1784       }
1785       break;
1786
1787     case DYNAMIC_STRING:
1788       val = pool->get_offset(this->u_.str);
1789       break;
1790
1791     default:
1792       val = this->u_.od->address() + this->offset_;
1793       break;
1794     }
1795
1796   elfcpp::Dyn_write<size, big_endian> dw(pov);
1797   dw.put_d_tag(this->tag_);
1798   dw.put_d_val(val);
1799 }
1800
1801 // Output_data_dynamic methods.
1802
1803 // Adjust the output section to set the entry size.
1804
1805 void
1806 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1807 {
1808   if (parameters->target().get_size() == 32)
1809     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1810   else if (parameters->target().get_size() == 64)
1811     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1812   else
1813     gold_unreachable();
1814 }
1815
1816 // Set the final data size.
1817
1818 void
1819 Output_data_dynamic::set_final_data_size()
1820 {
1821   // Add the terminating entry if it hasn't been added.
1822   // Because of relaxation, we can run this multiple times.
1823   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1824     {
1825       int extra = parameters->options().spare_dynamic_tags();
1826       for (int i = 0; i < extra; ++i)
1827         this->add_constant(elfcpp::DT_NULL, 0);
1828       this->add_constant(elfcpp::DT_NULL, 0);
1829     }
1830
1831   int dyn_size;
1832   if (parameters->target().get_size() == 32)
1833     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1834   else if (parameters->target().get_size() == 64)
1835     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1836   else
1837     gold_unreachable();
1838   this->set_data_size(this->entries_.size() * dyn_size);
1839 }
1840
1841 // Write out the dynamic entries.
1842
1843 void
1844 Output_data_dynamic::do_write(Output_file* of)
1845 {
1846   switch (parameters->size_and_endianness())
1847     {
1848 #ifdef HAVE_TARGET_32_LITTLE
1849     case Parameters::TARGET_32_LITTLE:
1850       this->sized_write<32, false>(of);
1851       break;
1852 #endif
1853 #ifdef HAVE_TARGET_32_BIG
1854     case Parameters::TARGET_32_BIG:
1855       this->sized_write<32, true>(of);
1856       break;
1857 #endif
1858 #ifdef HAVE_TARGET_64_LITTLE
1859     case Parameters::TARGET_64_LITTLE:
1860       this->sized_write<64, false>(of);
1861       break;
1862 #endif
1863 #ifdef HAVE_TARGET_64_BIG
1864     case Parameters::TARGET_64_BIG:
1865       this->sized_write<64, true>(of);
1866       break;
1867 #endif
1868     default:
1869       gold_unreachable();
1870     }
1871 }
1872
1873 template<int size, bool big_endian>
1874 void
1875 Output_data_dynamic::sized_write(Output_file* of)
1876 {
1877   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1878
1879   const off_t offset = this->offset();
1880   const off_t oview_size = this->data_size();
1881   unsigned char* const oview = of->get_output_view(offset, oview_size);
1882
1883   unsigned char* pov = oview;
1884   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1885        p != this->entries_.end();
1886        ++p)
1887     {
1888       p->write<size, big_endian>(pov, this->pool_);
1889       pov += dyn_size;
1890     }
1891
1892   gold_assert(pov - oview == oview_size);
1893
1894   of->write_output_view(offset, oview_size, oview);
1895
1896   // We no longer need the dynamic entries.
1897   this->entries_.clear();
1898 }
1899
1900 // Class Output_symtab_xindex.
1901
1902 void
1903 Output_symtab_xindex::do_write(Output_file* of)
1904 {
1905   const off_t offset = this->offset();
1906   const off_t oview_size = this->data_size();
1907   unsigned char* const oview = of->get_output_view(offset, oview_size);
1908
1909   memset(oview, 0, oview_size);
1910
1911   if (parameters->target().is_big_endian())
1912     this->endian_do_write<true>(oview);
1913   else
1914     this->endian_do_write<false>(oview);
1915
1916   of->write_output_view(offset, oview_size, oview);
1917
1918   // We no longer need the data.
1919   this->entries_.clear();
1920 }
1921
1922 template<bool big_endian>
1923 void
1924 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1925 {
1926   for (Xindex_entries::const_iterator p = this->entries_.begin();
1927        p != this->entries_.end();
1928        ++p)
1929     {
1930       unsigned int symndx = p->first;
1931       gold_assert(symndx * 4 < this->data_size());
1932       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1933     }
1934 }
1935
1936 // Output_section::Input_section methods.
1937
1938 // Return the current data size.  For an input section we store the size here.
1939 // For an Output_section_data, we have to ask it for the size.
1940
1941 off_t
1942 Output_section::Input_section::current_data_size() const
1943 {
1944   if (this->is_input_section())
1945     return this->u1_.data_size;
1946   else
1947     {
1948       this->u2_.posd->pre_finalize_data_size();
1949       return this->u2_.posd->current_data_size();
1950     }
1951 }
1952
1953 // Return the data size.  For an input section we store the size here.
1954 // For an Output_section_data, we have to ask it for the size.
1955
1956 off_t
1957 Output_section::Input_section::data_size() const
1958 {
1959   if (this->is_input_section())
1960     return this->u1_.data_size;
1961   else
1962     return this->u2_.posd->data_size();
1963 }
1964
1965 // Return the object for an input section.
1966
1967 Relobj*
1968 Output_section::Input_section::relobj() const
1969 {
1970   if (this->is_input_section())
1971     return this->u2_.object;
1972   else if (this->is_merge_section())
1973     {
1974       gold_assert(this->u2_.pomb->first_relobj() != NULL);
1975       return this->u2_.pomb->first_relobj();
1976     }
1977   else if (this->is_relaxed_input_section())
1978     return this->u2_.poris->relobj();
1979   else
1980     gold_unreachable();
1981 }
1982
1983 // Return the input section index for an input section.
1984
1985 unsigned int
1986 Output_section::Input_section::shndx() const
1987 {
1988   if (this->is_input_section())
1989     return this->shndx_;
1990   else if (this->is_merge_section())
1991     {
1992       gold_assert(this->u2_.pomb->first_relobj() != NULL);
1993       return this->u2_.pomb->first_shndx();
1994     }
1995   else if (this->is_relaxed_input_section())
1996     return this->u2_.poris->shndx();
1997   else
1998     gold_unreachable();
1999 }
2000
2001 // Set the address and file offset.
2002
2003 void
2004 Output_section::Input_section::set_address_and_file_offset(
2005     uint64_t address,
2006     off_t file_offset,
2007     off_t section_file_offset)
2008 {
2009   if (this->is_input_section())
2010     this->u2_.object->set_section_offset(this->shndx_,
2011                                          file_offset - section_file_offset);
2012   else
2013     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2014 }
2015
2016 // Reset the address and file offset.
2017
2018 void
2019 Output_section::Input_section::reset_address_and_file_offset()
2020 {
2021   if (!this->is_input_section())
2022     this->u2_.posd->reset_address_and_file_offset();
2023 }
2024
2025 // Finalize the data size.
2026
2027 void
2028 Output_section::Input_section::finalize_data_size()
2029 {
2030   if (!this->is_input_section())
2031     this->u2_.posd->finalize_data_size();
2032 }
2033
2034 // Try to turn an input offset into an output offset.  We want to
2035 // return the output offset relative to the start of this
2036 // Input_section in the output section.
2037
2038 inline bool
2039 Output_section::Input_section::output_offset(
2040     const Relobj* object,
2041     unsigned int shndx,
2042     section_offset_type offset,
2043     section_offset_type* poutput) const
2044 {
2045   if (!this->is_input_section())
2046     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2047   else
2048     {
2049       if (this->shndx_ != shndx || this->u2_.object != object)
2050         return false;
2051       *poutput = offset;
2052       return true;
2053     }
2054 }
2055
2056 // Return whether this is the merge section for the input section
2057 // SHNDX in OBJECT.
2058
2059 inline bool
2060 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2061                                                     unsigned int shndx) const
2062 {
2063   if (this->is_input_section())
2064     return false;
2065   return this->u2_.posd->is_merge_section_for(object, shndx);
2066 }
2067
2068 // Write out the data.  We don't have to do anything for an input
2069 // section--they are handled via Object::relocate--but this is where
2070 // we write out the data for an Output_section_data.
2071
2072 void
2073 Output_section::Input_section::write(Output_file* of)
2074 {
2075   if (!this->is_input_section())
2076     this->u2_.posd->write(of);
2077 }
2078
2079 // Write the data to a buffer.  As for write(), we don't have to do
2080 // anything for an input section.
2081
2082 void
2083 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2084 {
2085   if (!this->is_input_section())
2086     this->u2_.posd->write_to_buffer(buffer);
2087 }
2088
2089 // Print to a map file.
2090
2091 void
2092 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2093 {
2094   switch (this->shndx_)
2095     {
2096     case OUTPUT_SECTION_CODE:
2097     case MERGE_DATA_SECTION_CODE:
2098     case MERGE_STRING_SECTION_CODE:
2099       this->u2_.posd->print_to_mapfile(mapfile);
2100       break;
2101
2102     case RELAXED_INPUT_SECTION_CODE:
2103       {
2104         Output_relaxed_input_section* relaxed_section =
2105           this->relaxed_input_section();
2106         mapfile->print_input_section(relaxed_section->relobj(),
2107                                      relaxed_section->shndx());
2108       }
2109       break;
2110     default:
2111       mapfile->print_input_section(this->u2_.object, this->shndx_);
2112       break;
2113     }
2114 }
2115
2116 // Output_section methods.
2117
2118 // Construct an Output_section.  NAME will point into a Stringpool.
2119
2120 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2121                                elfcpp::Elf_Xword flags)
2122   : name_(name),
2123     addralign_(0),
2124     entsize_(0),
2125     load_address_(0),
2126     link_section_(NULL),
2127     link_(0),
2128     info_section_(NULL),
2129     info_symndx_(NULL),
2130     info_(0),
2131     type_(type),
2132     flags_(flags),
2133     order_(ORDER_INVALID),
2134     out_shndx_(-1U),
2135     symtab_index_(0),
2136     dynsym_index_(0),
2137     input_sections_(),
2138     first_input_offset_(0),
2139     fills_(),
2140     postprocessing_buffer_(NULL),
2141     needs_symtab_index_(false),
2142     needs_dynsym_index_(false),
2143     should_link_to_symtab_(false),
2144     should_link_to_dynsym_(false),
2145     after_input_sections_(false),
2146     requires_postprocessing_(false),
2147     found_in_sections_clause_(false),
2148     has_load_address_(false),
2149     info_uses_section_index_(false),
2150     input_section_order_specified_(false),
2151     may_sort_attached_input_sections_(false),
2152     must_sort_attached_input_sections_(false),
2153     attached_input_sections_are_sorted_(false),
2154     is_relro_(false),
2155     is_small_section_(false),
2156     is_large_section_(false),
2157     generate_code_fills_at_write_(false),
2158     is_entsize_zero_(false),
2159     section_offsets_need_adjustment_(false),
2160     is_noload_(false),
2161     always_keeps_input_sections_(false),
2162     has_fixed_layout_(false),
2163     tls_offset_(0),
2164     checkpoint_(NULL),
2165     lookup_maps_(new Output_section_lookup_maps),
2166     free_list_()
2167 {
2168   // An unallocated section has no address.  Forcing this means that
2169   // we don't need special treatment for symbols defined in debug
2170   // sections.
2171   if ((flags & elfcpp::SHF_ALLOC) == 0)
2172     this->set_address(0);
2173 }
2174
2175 Output_section::~Output_section()
2176 {
2177   delete this->checkpoint_;
2178 }
2179
2180 // Set the entry size.
2181
2182 void
2183 Output_section::set_entsize(uint64_t v)
2184 {
2185   if (this->is_entsize_zero_)
2186     ;
2187   else if (this->entsize_ == 0)
2188     this->entsize_ = v;
2189   else if (this->entsize_ != v)
2190     {
2191       this->entsize_ = 0;
2192       this->is_entsize_zero_ = 1;
2193     }
2194 }
2195
2196 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2197 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2198 // relocation section which applies to this section, or 0 if none, or
2199 // -1U if more than one.  Return the offset of the input section
2200 // within the output section.  Return -1 if the input section will
2201 // receive special handling.  In the normal case we don't always keep
2202 // track of input sections for an Output_section.  Instead, each
2203 // Object keeps track of the Output_section for each of its input
2204 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2205 // track of input sections here; this is used when SECTIONS appears in
2206 // a linker script.
2207
2208 template<int size, bool big_endian>
2209 off_t
2210 Output_section::add_input_section(Layout* layout,
2211                                   Sized_relobj_file<size, big_endian>* object,
2212                                   unsigned int shndx,
2213                                   const char* secname,
2214                                   const elfcpp::Shdr<size, big_endian>& shdr,
2215                                   unsigned int reloc_shndx,
2216                                   bool have_sections_script)
2217 {
2218   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2219   if ((addralign & (addralign - 1)) != 0)
2220     {
2221       object->error(_("invalid alignment %lu for section \"%s\""),
2222                     static_cast<unsigned long>(addralign), secname);
2223       addralign = 1;
2224     }
2225
2226   if (addralign > this->addralign_)
2227     this->addralign_ = addralign;
2228
2229   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2230   uint64_t entsize = shdr.get_sh_entsize();
2231
2232   // .debug_str is a mergeable string section, but is not always so
2233   // marked by compilers.  Mark manually here so we can optimize.
2234   if (strcmp(secname, ".debug_str") == 0)
2235     {
2236       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2237       entsize = 1;
2238     }
2239
2240   this->update_flags_for_input_section(sh_flags);
2241   this->set_entsize(entsize);
2242
2243   // If this is a SHF_MERGE section, we pass all the input sections to
2244   // a Output_data_merge.  We don't try to handle relocations for such
2245   // a section.  We don't try to handle empty merge sections--they
2246   // mess up the mappings, and are useless anyhow.
2247   // FIXME: Need to handle merge sections during incremental update.
2248   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2249       && reloc_shndx == 0
2250       && shdr.get_sh_size() > 0
2251       && !parameters->incremental())
2252     {
2253       // Keep information about merged input sections for rebuilding fast
2254       // lookup maps if we have sections-script or we do relaxation.
2255       bool keeps_input_sections = (this->always_keeps_input_sections_
2256                                    || have_sections_script
2257                                    || parameters->target().may_relax());
2258
2259       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2260                                         addralign, keeps_input_sections))
2261         {
2262           // Tell the relocation routines that they need to call the
2263           // output_offset method to determine the final address.
2264           return -1;
2265         }
2266     }
2267
2268   section_size_type input_section_size = shdr.get_sh_size();
2269   section_size_type uncompressed_size;
2270   if (object->section_is_compressed(shndx, &uncompressed_size))
2271     input_section_size = uncompressed_size;
2272
2273   off_t offset_in_section;
2274   off_t aligned_offset_in_section;
2275   if (this->has_fixed_layout())
2276     {
2277       // For incremental updates, find a chunk of unused space in the section.
2278       offset_in_section = this->free_list_.allocate(input_section_size,
2279                                                     addralign, 0);
2280       if (offset_in_section == -1)
2281         gold_fatal(_("out of patch space; relink with --incremental-full"));
2282       aligned_offset_in_section = offset_in_section;
2283     }
2284   else
2285     {
2286       offset_in_section = this->current_data_size_for_child();
2287       aligned_offset_in_section = align_address(offset_in_section,
2288                                                 addralign);
2289       this->set_current_data_size_for_child(aligned_offset_in_section
2290                                             + input_section_size);
2291     }
2292
2293   // Determine if we want to delay code-fill generation until the output
2294   // section is written.  When the target is relaxing, we want to delay fill
2295   // generating to avoid adjusting them during relaxation.  Also, if we are
2296   // sorting input sections we must delay fill generation.
2297   if (!this->generate_code_fills_at_write_
2298       && !have_sections_script
2299       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2300       && parameters->target().has_code_fill()
2301       && (parameters->target().may_relax()
2302           || parameters->options().section_ordering_file()))
2303     {
2304       gold_assert(this->fills_.empty());
2305       this->generate_code_fills_at_write_ = true;
2306     }
2307
2308   if (aligned_offset_in_section > offset_in_section
2309       && !this->generate_code_fills_at_write_
2310       && !have_sections_script
2311       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2312       && parameters->target().has_code_fill())
2313     {
2314       // We need to add some fill data.  Using fill_list_ when
2315       // possible is an optimization, since we will often have fill
2316       // sections without input sections.
2317       off_t fill_len = aligned_offset_in_section - offset_in_section;
2318       if (this->input_sections_.empty())
2319         this->fills_.push_back(Fill(offset_in_section, fill_len));
2320       else
2321         {
2322           std::string fill_data(parameters->target().code_fill(fill_len));
2323           Output_data_const* odc = new Output_data_const(fill_data, 1);
2324           this->input_sections_.push_back(Input_section(odc));
2325         }
2326     }
2327
2328   // We need to keep track of this section if we are already keeping
2329   // track of sections, or if we are relaxing.  Also, if this is a
2330   // section which requires sorting, or which may require sorting in
2331   // the future, we keep track of the sections.  If the
2332   // --section-ordering-file option is used to specify the order of
2333   // sections, we need to keep track of sections.
2334   if (this->always_keeps_input_sections_
2335       || have_sections_script
2336       || !this->input_sections_.empty()
2337       || this->may_sort_attached_input_sections()
2338       || this->must_sort_attached_input_sections()
2339       || parameters->options().user_set_Map()
2340       || parameters->target().may_relax()
2341       || parameters->options().section_ordering_file())
2342     {
2343       Input_section isecn(object, shndx, input_section_size, addralign);
2344       if (parameters->options().section_ordering_file())
2345         {
2346           unsigned int section_order_index =
2347             layout->find_section_order_index(std::string(secname));
2348           if (section_order_index != 0)
2349             {
2350               isecn.set_section_order_index(section_order_index);
2351               this->set_input_section_order_specified();
2352             }
2353         }
2354       if (this->has_fixed_layout())
2355         {
2356           // For incremental updates, finalize the address and offset now.
2357           uint64_t addr = this->address();
2358           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2359                                             aligned_offset_in_section,
2360                                             this->offset());
2361         }
2362       this->input_sections_.push_back(isecn);
2363     }
2364
2365   return aligned_offset_in_section;
2366 }
2367
2368 // Add arbitrary data to an output section.
2369
2370 void
2371 Output_section::add_output_section_data(Output_section_data* posd)
2372 {
2373   Input_section inp(posd);
2374   this->add_output_section_data(&inp);
2375
2376   if (posd->is_data_size_valid())
2377     {
2378       off_t offset_in_section;
2379       if (this->has_fixed_layout())
2380         {
2381           // For incremental updates, find a chunk of unused space.
2382           offset_in_section = this->free_list_.allocate(posd->data_size(),
2383                                                         posd->addralign(), 0);
2384           if (offset_in_section == -1)
2385             gold_fatal(_("out of patch space; relink with --incremental-full"));
2386           // Finalize the address and offset now.
2387           uint64_t addr = this->address();
2388           off_t offset = this->offset();
2389           posd->set_address_and_file_offset(addr + offset_in_section,
2390                                             offset + offset_in_section);
2391         }
2392       else
2393         {
2394           offset_in_section = this->current_data_size_for_child();
2395           off_t aligned_offset_in_section = align_address(offset_in_section,
2396                                                           posd->addralign());
2397           this->set_current_data_size_for_child(aligned_offset_in_section
2398                                                 + posd->data_size());
2399         }
2400     }
2401   else if (this->has_fixed_layout())
2402     {
2403       // For incremental updates, arrange for the data to have a fixed layout.
2404       // This will mean that additions to the data must be allocated from
2405       // free space within the containing output section.
2406       uint64_t addr = this->address();
2407       posd->set_address(addr);
2408       posd->set_file_offset(0);
2409       // FIXME: This should eventually be unreachable.
2410       // gold_unreachable();
2411     }
2412 }
2413
2414 // Add a relaxed input section.
2415
2416 void
2417 Output_section::add_relaxed_input_section(Layout* layout,
2418                                           Output_relaxed_input_section* poris,
2419                                           const std::string& name)
2420 {
2421   Input_section inp(poris);
2422
2423   // If the --section-ordering-file option is used to specify the order of
2424   // sections, we need to keep track of sections.
2425   if (parameters->options().section_ordering_file())
2426     {
2427       unsigned int section_order_index =
2428         layout->find_section_order_index(name);
2429       if (section_order_index != 0)
2430         {
2431           inp.set_section_order_index(section_order_index);
2432           this->set_input_section_order_specified();
2433         }
2434     }
2435
2436   this->add_output_section_data(&inp);
2437   if (this->lookup_maps_->is_valid())
2438     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2439                                                   poris->shndx(), poris);
2440
2441   // For a relaxed section, we use the current data size.  Linker scripts
2442   // get all the input sections, including relaxed one from an output
2443   // section and add them back to them same output section to compute the
2444   // output section size.  If we do not account for sizes of relaxed input
2445   // sections,  an output section would be incorrectly sized.
2446   off_t offset_in_section = this->current_data_size_for_child();
2447   off_t aligned_offset_in_section = align_address(offset_in_section,
2448                                                   poris->addralign());
2449   this->set_current_data_size_for_child(aligned_offset_in_section
2450                                         + poris->current_data_size());
2451 }
2452
2453 // Add arbitrary data to an output section by Input_section.
2454
2455 void
2456 Output_section::add_output_section_data(Input_section* inp)
2457 {
2458   if (this->input_sections_.empty())
2459     this->first_input_offset_ = this->current_data_size_for_child();
2460
2461   this->input_sections_.push_back(*inp);
2462
2463   uint64_t addralign = inp->addralign();
2464   if (addralign > this->addralign_)
2465     this->addralign_ = addralign;
2466
2467   inp->set_output_section(this);
2468 }
2469
2470 // Add a merge section to an output section.
2471
2472 void
2473 Output_section::add_output_merge_section(Output_section_data* posd,
2474                                          bool is_string, uint64_t entsize)
2475 {
2476   Input_section inp(posd, is_string, entsize);
2477   this->add_output_section_data(&inp);
2478 }
2479
2480 // Add an input section to a SHF_MERGE section.
2481
2482 bool
2483 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2484                                         uint64_t flags, uint64_t entsize,
2485                                         uint64_t addralign,
2486                                         bool keeps_input_sections)
2487 {
2488   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2489
2490   // We only merge strings if the alignment is not more than the
2491   // character size.  This could be handled, but it's unusual.
2492   if (is_string && addralign > entsize)
2493     return false;
2494
2495   // We cannot restore merged input section states.
2496   gold_assert(this->checkpoint_ == NULL);
2497
2498   // Look up merge sections by required properties.
2499   // Currently, we only invalidate the lookup maps in script processing
2500   // and relaxation.  We should not have done either when we reach here.
2501   // So we assume that the lookup maps are valid to simply code.
2502   gold_assert(this->lookup_maps_->is_valid());
2503   Merge_section_properties msp(is_string, entsize, addralign);
2504   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2505   bool is_new = false;
2506   if (pomb != NULL)
2507     {
2508       gold_assert(pomb->is_string() == is_string
2509                   && pomb->entsize() == entsize
2510                   && pomb->addralign() == addralign);
2511     }
2512   else
2513     {
2514       // Create a new Output_merge_data or Output_merge_string_data.
2515       if (!is_string)
2516         pomb = new Output_merge_data(entsize, addralign);
2517       else
2518         {
2519           switch (entsize)
2520             {
2521             case 1:
2522               pomb = new Output_merge_string<char>(addralign);
2523               break;
2524             case 2:
2525               pomb = new Output_merge_string<uint16_t>(addralign);
2526               break;
2527             case 4:
2528               pomb = new Output_merge_string<uint32_t>(addralign);
2529               break;
2530             default:
2531               return false;
2532             }
2533         }
2534       // If we need to do script processing or relaxation, we need to keep
2535       // the original input sections to rebuild the fast lookup maps.
2536       if (keeps_input_sections)
2537         pomb->set_keeps_input_sections();
2538       is_new = true;
2539     }
2540
2541   if (pomb->add_input_section(object, shndx))
2542     {
2543       // Add new merge section to this output section and link merge
2544       // section properties to new merge section in map.
2545       if (is_new)
2546         {
2547           this->add_output_merge_section(pomb, is_string, entsize);
2548           this->lookup_maps_->add_merge_section(msp, pomb);
2549         }
2550
2551       // Add input section to new merge section and link input section to new
2552       // merge section in map.
2553       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2554       return true;
2555     }
2556   else
2557     {
2558       // If add_input_section failed, delete new merge section to avoid
2559       // exporting empty merge sections in Output_section::get_input_section.
2560       if (is_new)
2561         delete pomb;
2562       return false;
2563     }
2564 }
2565
2566 // Build a relaxation map to speed up relaxation of existing input sections.
2567 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2568
2569 void
2570 Output_section::build_relaxation_map(
2571   const Input_section_list& input_sections,
2572   size_t limit,
2573   Relaxation_map* relaxation_map) const
2574 {
2575   for (size_t i = 0; i < limit; ++i)
2576     {
2577       const Input_section& is(input_sections[i]);
2578       if (is.is_input_section() || is.is_relaxed_input_section())
2579         {
2580           Section_id sid(is.relobj(), is.shndx());
2581           (*relaxation_map)[sid] = i;
2582         }
2583     }
2584 }
2585
2586 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2587 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2588 // indices of INPUT_SECTIONS.
2589
2590 void
2591 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2592   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2593   const Relaxation_map& map,
2594   Input_section_list* input_sections)
2595 {
2596   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2597     {
2598       Output_relaxed_input_section* poris = relaxed_sections[i];
2599       Section_id sid(poris->relobj(), poris->shndx());
2600       Relaxation_map::const_iterator p = map.find(sid);
2601       gold_assert(p != map.end());
2602       gold_assert((*input_sections)[p->second].is_input_section());
2603
2604       // Remember section order index of original input section
2605       // if it is set.  Copy it to the relaxed input section.
2606       unsigned int soi =
2607         (*input_sections)[p->second].section_order_index();
2608       (*input_sections)[p->second] = Input_section(poris);
2609       (*input_sections)[p->second].set_section_order_index(soi);
2610     }
2611 }
2612   
2613 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2614 // is a vector of pointers to Output_relaxed_input_section or its derived
2615 // classes.  The relaxed sections must correspond to existing input sections.
2616
2617 void
2618 Output_section::convert_input_sections_to_relaxed_sections(
2619   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2620 {
2621   gold_assert(parameters->target().may_relax());
2622
2623   // We want to make sure that restore_states does not undo the effect of
2624   // this.  If there is no checkpoint active, just search the current
2625   // input section list and replace the sections there.  If there is
2626   // a checkpoint, also replace the sections there.
2627   
2628   // By default, we look at the whole list.
2629   size_t limit = this->input_sections_.size();
2630
2631   if (this->checkpoint_ != NULL)
2632     {
2633       // Replace input sections with relaxed input section in the saved
2634       // copy of the input section list.
2635       if (this->checkpoint_->input_sections_saved())
2636         {
2637           Relaxation_map map;
2638           this->build_relaxation_map(
2639                     *(this->checkpoint_->input_sections()),
2640                     this->checkpoint_->input_sections()->size(),
2641                     &map);
2642           this->convert_input_sections_in_list_to_relaxed_sections(
2643                     relaxed_sections,
2644                     map,
2645                     this->checkpoint_->input_sections());
2646         }
2647       else
2648         {
2649           // We have not copied the input section list yet.  Instead, just
2650           // look at the portion that would be saved.
2651           limit = this->checkpoint_->input_sections_size();
2652         }
2653     }
2654
2655   // Convert input sections in input_section_list.
2656   Relaxation_map map;
2657   this->build_relaxation_map(this->input_sections_, limit, &map);
2658   this->convert_input_sections_in_list_to_relaxed_sections(
2659             relaxed_sections,
2660             map,
2661             &this->input_sections_);
2662
2663   // Update fast look-up map.
2664   if (this->lookup_maps_->is_valid())
2665     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2666       {
2667         Output_relaxed_input_section* poris = relaxed_sections[i];
2668         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2669                                                       poris->shndx(), poris);
2670       }
2671 }
2672
2673 // Update the output section flags based on input section flags.
2674
2675 void
2676 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2677 {
2678   // If we created the section with SHF_ALLOC clear, we set the
2679   // address.  If we are now setting the SHF_ALLOC flag, we need to
2680   // undo that.
2681   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2682       && (flags & elfcpp::SHF_ALLOC) != 0)
2683     this->mark_address_invalid();
2684
2685   this->flags_ |= (flags
2686                    & (elfcpp::SHF_WRITE
2687                       | elfcpp::SHF_ALLOC
2688                       | elfcpp::SHF_EXECINSTR));
2689
2690   if ((flags & elfcpp::SHF_MERGE) == 0)
2691     this->flags_ &=~ elfcpp::SHF_MERGE;
2692   else
2693     {
2694       if (this->current_data_size_for_child() == 0)
2695         this->flags_ |= elfcpp::SHF_MERGE;
2696     }
2697
2698   if ((flags & elfcpp::SHF_STRINGS) == 0)
2699     this->flags_ &=~ elfcpp::SHF_STRINGS;
2700   else
2701     {
2702       if (this->current_data_size_for_child() == 0)
2703         this->flags_ |= elfcpp::SHF_STRINGS;
2704     }
2705 }
2706
2707 // Find the merge section into which an input section with index SHNDX in
2708 // OBJECT has been added.  Return NULL if none found.
2709
2710 Output_section_data*
2711 Output_section::find_merge_section(const Relobj* object,
2712                                    unsigned int shndx) const
2713 {
2714   if (!this->lookup_maps_->is_valid())
2715     this->build_lookup_maps();
2716   return this->lookup_maps_->find_merge_section(object, shndx);
2717 }
2718
2719 // Build the lookup maps for merge and relaxed sections.  This is needs
2720 // to be declared as a const methods so that it is callable with a const
2721 // Output_section pointer.  The method only updates states of the maps.
2722
2723 void
2724 Output_section::build_lookup_maps() const
2725 {
2726   this->lookup_maps_->clear();
2727   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2728        p != this->input_sections_.end();
2729        ++p)
2730     {
2731       if (p->is_merge_section())
2732         {
2733           Output_merge_base* pomb = p->output_merge_base();
2734           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2735                                        pomb->addralign());
2736           this->lookup_maps_->add_merge_section(msp, pomb);
2737           for (Output_merge_base::Input_sections::const_iterator is =
2738                  pomb->input_sections_begin();
2739                is != pomb->input_sections_end();
2740                ++is) 
2741             {
2742               const Const_section_id& csid = *is;
2743             this->lookup_maps_->add_merge_input_section(csid.first,
2744                                                         csid.second, pomb);
2745             }
2746             
2747         }
2748       else if (p->is_relaxed_input_section())
2749         {
2750           Output_relaxed_input_section* poris = p->relaxed_input_section();
2751           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2752                                                         poris->shndx(), poris);
2753         }
2754     }
2755 }
2756
2757 // Find an relaxed input section corresponding to an input section
2758 // in OBJECT with index SHNDX.
2759
2760 const Output_relaxed_input_section*
2761 Output_section::find_relaxed_input_section(const Relobj* object,
2762                                            unsigned int shndx) const
2763 {
2764   if (!this->lookup_maps_->is_valid())
2765     this->build_lookup_maps();
2766   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2767 }
2768
2769 // Given an address OFFSET relative to the start of input section
2770 // SHNDX in OBJECT, return whether this address is being included in
2771 // the final link.  This should only be called if SHNDX in OBJECT has
2772 // a special mapping.
2773
2774 bool
2775 Output_section::is_input_address_mapped(const Relobj* object,
2776                                         unsigned int shndx,
2777                                         off_t offset) const
2778 {
2779   // Look at the Output_section_data_maps first.
2780   const Output_section_data* posd = this->find_merge_section(object, shndx);
2781   if (posd == NULL)
2782     posd = this->find_relaxed_input_section(object, shndx);
2783
2784   if (posd != NULL)
2785     {
2786       section_offset_type output_offset;
2787       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2788       gold_assert(found);   
2789       return output_offset != -1;
2790     }
2791
2792   // Fall back to the slow look-up.
2793   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2794        p != this->input_sections_.end();
2795        ++p)
2796     {
2797       section_offset_type output_offset;
2798       if (p->output_offset(object, shndx, offset, &output_offset))
2799         return output_offset != -1;
2800     }
2801
2802   // By default we assume that the address is mapped.  This should
2803   // only be called after we have passed all sections to Layout.  At
2804   // that point we should know what we are discarding.
2805   return true;
2806 }
2807
2808 // Given an address OFFSET relative to the start of input section
2809 // SHNDX in object OBJECT, return the output offset relative to the
2810 // start of the input section in the output section.  This should only
2811 // be called if SHNDX in OBJECT has a special mapping.
2812
2813 section_offset_type
2814 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2815                               section_offset_type offset) const
2816 {
2817   // This can only be called meaningfully when we know the data size
2818   // of this.
2819   gold_assert(this->is_data_size_valid());
2820
2821   // Look at the Output_section_data_maps first.
2822   const Output_section_data* posd = this->find_merge_section(object, shndx);
2823   if (posd == NULL) 
2824     posd = this->find_relaxed_input_section(object, shndx);
2825   if (posd != NULL)
2826     {
2827       section_offset_type output_offset;
2828       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2829       gold_assert(found);   
2830       return output_offset;
2831     }
2832
2833   // Fall back to the slow look-up.
2834   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2835        p != this->input_sections_.end();
2836        ++p)
2837     {
2838       section_offset_type output_offset;
2839       if (p->output_offset(object, shndx, offset, &output_offset))
2840         return output_offset;
2841     }
2842   gold_unreachable();
2843 }
2844
2845 // Return the output virtual address of OFFSET relative to the start
2846 // of input section SHNDX in object OBJECT.
2847
2848 uint64_t
2849 Output_section::output_address(const Relobj* object, unsigned int shndx,
2850                                off_t offset) const
2851 {
2852   uint64_t addr = this->address() + this->first_input_offset_;
2853
2854   // Look at the Output_section_data_maps first.
2855   const Output_section_data* posd = this->find_merge_section(object, shndx);
2856   if (posd == NULL) 
2857     posd = this->find_relaxed_input_section(object, shndx);
2858   if (posd != NULL && posd->is_address_valid())
2859     {
2860       section_offset_type output_offset;
2861       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2862       gold_assert(found);
2863       return posd->address() + output_offset;
2864     }
2865
2866   // Fall back to the slow look-up.
2867   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2868        p != this->input_sections_.end();
2869        ++p)
2870     {
2871       addr = align_address(addr, p->addralign());
2872       section_offset_type output_offset;
2873       if (p->output_offset(object, shndx, offset, &output_offset))
2874         {
2875           if (output_offset == -1)
2876             return -1ULL;
2877           return addr + output_offset;
2878         }
2879       addr += p->data_size();
2880     }
2881
2882   // If we get here, it means that we don't know the mapping for this
2883   // input section.  This might happen in principle if
2884   // add_input_section were called before add_output_section_data.
2885   // But it should never actually happen.
2886
2887   gold_unreachable();
2888 }
2889
2890 // Find the output address of the start of the merged section for
2891 // input section SHNDX in object OBJECT.
2892
2893 bool
2894 Output_section::find_starting_output_address(const Relobj* object,
2895                                              unsigned int shndx,
2896                                              uint64_t* paddr) const
2897 {
2898   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2899   // Looking up the merge section map does not always work as we sometimes
2900   // find a merge section without its address set.
2901   uint64_t addr = this->address() + this->first_input_offset_;
2902   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2903        p != this->input_sections_.end();
2904        ++p)
2905     {
2906       addr = align_address(addr, p->addralign());
2907
2908       // It would be nice if we could use the existing output_offset
2909       // method to get the output offset of input offset 0.
2910       // Unfortunately we don't know for sure that input offset 0 is
2911       // mapped at all.
2912       if (p->is_merge_section_for(object, shndx))
2913         {
2914           *paddr = addr;
2915           return true;
2916         }
2917
2918       addr += p->data_size();
2919     }
2920
2921   // We couldn't find a merge output section for this input section.
2922   return false;
2923 }
2924
2925 // Update the data size of an Output_section.
2926
2927 void
2928 Output_section::update_data_size()
2929 {
2930   if (this->input_sections_.empty())
2931       return;
2932
2933   if (this->must_sort_attached_input_sections()
2934       || this->input_section_order_specified())
2935     this->sort_attached_input_sections();
2936
2937   off_t off = this->first_input_offset_;
2938   for (Input_section_list::iterator p = this->input_sections_.begin();
2939        p != this->input_sections_.end();
2940        ++p)
2941     {
2942       off = align_address(off, p->addralign());
2943       off += p->current_data_size();
2944     }
2945
2946   this->set_current_data_size_for_child(off);
2947 }
2948
2949 // Set the data size of an Output_section.  This is where we handle
2950 // setting the addresses of any Output_section_data objects.
2951
2952 void
2953 Output_section::set_final_data_size()
2954 {
2955   if (this->input_sections_.empty())
2956     {
2957       this->set_data_size(this->current_data_size_for_child());
2958       return;
2959     }
2960
2961   if (this->must_sort_attached_input_sections()
2962       || this->input_section_order_specified())
2963     this->sort_attached_input_sections();
2964
2965   uint64_t address = this->address();
2966   off_t startoff = this->offset();
2967   off_t off = startoff + this->first_input_offset_;
2968   for (Input_section_list::iterator p = this->input_sections_.begin();
2969        p != this->input_sections_.end();
2970        ++p)
2971     {
2972       off = align_address(off, p->addralign());
2973       p->set_address_and_file_offset(address + (off - startoff), off,
2974                                      startoff);
2975       off += p->data_size();
2976     }
2977
2978   this->set_data_size(off - startoff);
2979 }
2980
2981 // Reset the address and file offset.
2982
2983 void
2984 Output_section::do_reset_address_and_file_offset()
2985 {
2986   // An unallocated section has no address.  Forcing this means that
2987   // we don't need special treatment for symbols defined in debug
2988   // sections.  We do the same in the constructor.  This does not
2989   // apply to NOLOAD sections though.
2990   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
2991      this->set_address(0);
2992
2993   for (Input_section_list::iterator p = this->input_sections_.begin();
2994        p != this->input_sections_.end();
2995        ++p)
2996     p->reset_address_and_file_offset();
2997 }
2998   
2999 // Return true if address and file offset have the values after reset.
3000
3001 bool
3002 Output_section::do_address_and_file_offset_have_reset_values() const
3003 {
3004   if (this->is_offset_valid())
3005     return false;
3006
3007   // An unallocated section has address 0 after its construction or a reset.
3008   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3009     return this->is_address_valid() && this->address() == 0;
3010   else
3011     return !this->is_address_valid();
3012 }
3013
3014 // Set the TLS offset.  Called only for SHT_TLS sections.
3015
3016 void
3017 Output_section::do_set_tls_offset(uint64_t tls_base)
3018 {
3019   this->tls_offset_ = this->address() - tls_base;
3020 }
3021
3022 // In a few cases we need to sort the input sections attached to an
3023 // output section.  This is used to implement the type of constructor
3024 // priority ordering implemented by the GNU linker, in which the
3025 // priority becomes part of the section name and the sections are
3026 // sorted by name.  We only do this for an output section if we see an
3027 // attached input section matching ".ctor.*", ".dtor.*",
3028 // ".init_array.*" or ".fini_array.*".
3029
3030 class Output_section::Input_section_sort_entry
3031 {
3032  public:
3033   Input_section_sort_entry()
3034     : input_section_(), index_(-1U), section_has_name_(false),
3035       section_name_()
3036   { }
3037
3038   Input_section_sort_entry(const Input_section& input_section,
3039                            unsigned int index,
3040                            bool must_sort_attached_input_sections)
3041     : input_section_(input_section), index_(index),
3042       section_has_name_(input_section.is_input_section()
3043                         || input_section.is_relaxed_input_section())
3044   {
3045     if (this->section_has_name_
3046         && must_sort_attached_input_sections)
3047       {
3048         // This is only called single-threaded from Layout::finalize,
3049         // so it is OK to lock.  Unfortunately we have no way to pass
3050         // in a Task token.
3051         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3052         Object* obj = (input_section.is_input_section()
3053                        ? input_section.relobj()
3054                        : input_section.relaxed_input_section()->relobj());
3055         Task_lock_obj<Object> tl(dummy_task, obj);
3056
3057         // This is a slow operation, which should be cached in
3058         // Layout::layout if this becomes a speed problem.
3059         this->section_name_ = obj->section_name(input_section.shndx());
3060       }
3061   }
3062
3063   // Return the Input_section.
3064   const Input_section&
3065   input_section() const
3066   {
3067     gold_assert(this->index_ != -1U);
3068     return this->input_section_;
3069   }
3070
3071   // The index of this entry in the original list.  This is used to
3072   // make the sort stable.
3073   unsigned int
3074   index() const
3075   {
3076     gold_assert(this->index_ != -1U);
3077     return this->index_;
3078   }
3079
3080   // Whether there is a section name.
3081   bool
3082   section_has_name() const
3083   { return this->section_has_name_; }
3084
3085   // The section name.
3086   const std::string&
3087   section_name() const
3088   {
3089     gold_assert(this->section_has_name_);
3090     return this->section_name_;
3091   }
3092
3093   // Return true if the section name has a priority.  This is assumed
3094   // to be true if it has a dot after the initial dot.
3095   bool
3096   has_priority() const
3097   {
3098     gold_assert(this->section_has_name_);
3099     return this->section_name_.find('.', 1) != std::string::npos;
3100   }
3101
3102   // Return true if this an input file whose base name matches
3103   // FILE_NAME.  The base name must have an extension of ".o", and
3104   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3105   // This is to match crtbegin.o as well as crtbeginS.o without
3106   // getting confused by other possibilities.  Overall matching the
3107   // file name this way is a dreadful hack, but the GNU linker does it
3108   // in order to better support gcc, and we need to be compatible.
3109   bool
3110   match_file_name(const char* match_file_name) const
3111   {
3112     const std::string& file_name(this->input_section_.relobj()->name());
3113     const char* base_name = lbasename(file_name.c_str());
3114     size_t match_len = strlen(match_file_name);
3115     if (strncmp(base_name, match_file_name, match_len) != 0)
3116       return false;
3117     size_t base_len = strlen(base_name);
3118     if (base_len != match_len + 2 && base_len != match_len + 3)
3119       return false;
3120     return memcmp(base_name + base_len - 2, ".o", 2) == 0;
3121   }
3122
3123   // Returns 1 if THIS should appear before S in section order, -1 if S
3124   // appears before THIS and 0 if they are not comparable.
3125   int
3126   compare_section_ordering(const Input_section_sort_entry& s) const
3127   {
3128     unsigned int this_secn_index = this->input_section_.section_order_index();
3129     unsigned int s_secn_index = s.input_section().section_order_index();
3130     if (this_secn_index > 0 && s_secn_index > 0)
3131       {
3132         if (this_secn_index < s_secn_index)
3133           return 1;
3134         else if (this_secn_index > s_secn_index)
3135           return -1;
3136       }
3137     return 0;
3138   }
3139
3140  private:
3141   // The Input_section we are sorting.
3142   Input_section input_section_;
3143   // The index of this Input_section in the original list.
3144   unsigned int index_;
3145   // Whether this Input_section has a section name--it won't if this
3146   // is some random Output_section_data.
3147   bool section_has_name_;
3148   // The section name if there is one.
3149   std::string section_name_;
3150 };
3151
3152 // Return true if S1 should come before S2 in the output section.
3153
3154 bool
3155 Output_section::Input_section_sort_compare::operator()(
3156     const Output_section::Input_section_sort_entry& s1,
3157     const Output_section::Input_section_sort_entry& s2) const
3158 {
3159   // crtbegin.o must come first.
3160   bool s1_begin = s1.match_file_name("crtbegin");
3161   bool s2_begin = s2.match_file_name("crtbegin");
3162   if (s1_begin || s2_begin)
3163     {
3164       if (!s1_begin)
3165         return false;
3166       if (!s2_begin)
3167         return true;
3168       return s1.index() < s2.index();
3169     }
3170
3171   // crtend.o must come last.
3172   bool s1_end = s1.match_file_name("crtend");
3173   bool s2_end = s2.match_file_name("crtend");
3174   if (s1_end || s2_end)
3175     {
3176       if (!s1_end)
3177         return true;
3178       if (!s2_end)
3179         return false;
3180       return s1.index() < s2.index();
3181     }
3182
3183   // We sort all the sections with no names to the end.
3184   if (!s1.section_has_name() || !s2.section_has_name())
3185     {
3186       if (s1.section_has_name())
3187         return true;
3188       if (s2.section_has_name())
3189         return false;
3190       return s1.index() < s2.index();
3191     }
3192
3193   // A section with a priority follows a section without a priority.
3194   bool s1_has_priority = s1.has_priority();
3195   bool s2_has_priority = s2.has_priority();
3196   if (s1_has_priority && !s2_has_priority)
3197     return false;
3198   if (!s1_has_priority && s2_has_priority)
3199     return true;
3200
3201   // Check if a section order exists for these sections through a section
3202   // ordering file.  If sequence_num is 0, an order does not exist.
3203   int sequence_num = s1.compare_section_ordering(s2);
3204   if (sequence_num != 0)
3205     return sequence_num == 1;
3206
3207   // Otherwise we sort by name.
3208   int compare = s1.section_name().compare(s2.section_name());
3209   if (compare != 0)
3210     return compare < 0;
3211
3212   // Otherwise we keep the input order.
3213   return s1.index() < s2.index();
3214 }
3215
3216 // Return true if S1 should come before S2 in an .init_array or .fini_array
3217 // output section.
3218
3219 bool
3220 Output_section::Input_section_sort_init_fini_compare::operator()(
3221     const Output_section::Input_section_sort_entry& s1,
3222     const Output_section::Input_section_sort_entry& s2) const
3223 {
3224   // We sort all the sections with no names to the end.
3225   if (!s1.section_has_name() || !s2.section_has_name())
3226     {
3227       if (s1.section_has_name())
3228         return true;
3229       if (s2.section_has_name())
3230         return false;
3231       return s1.index() < s2.index();
3232     }
3233
3234   // A section without a priority follows a section with a priority.
3235   // This is the reverse of .ctors and .dtors sections.
3236   bool s1_has_priority = s1.has_priority();
3237   bool s2_has_priority = s2.has_priority();
3238   if (s1_has_priority && !s2_has_priority)
3239     return true;
3240   if (!s1_has_priority && s2_has_priority)
3241     return false;
3242
3243   // Check if a section order exists for these sections through a section
3244   // ordering file.  If sequence_num is 0, an order does not exist.
3245   int sequence_num = s1.compare_section_ordering(s2);
3246   if (sequence_num != 0)
3247     return sequence_num == 1;
3248
3249   // Otherwise we sort by name.
3250   int compare = s1.section_name().compare(s2.section_name());
3251   if (compare != 0)
3252     return compare < 0;
3253
3254   // Otherwise we keep the input order.
3255   return s1.index() < s2.index();
3256 }
3257
3258 // Return true if S1 should come before S2.  Sections that do not match
3259 // any pattern in the section ordering file are placed ahead of the sections
3260 // that match some pattern.
3261
3262 bool
3263 Output_section::Input_section_sort_section_order_index_compare::operator()(
3264     const Output_section::Input_section_sort_entry& s1,
3265     const Output_section::Input_section_sort_entry& s2) const
3266 {
3267   unsigned int s1_secn_index = s1.input_section().section_order_index();
3268   unsigned int s2_secn_index = s2.input_section().section_order_index();
3269
3270   // Keep input order if section ordering cannot determine order.
3271   if (s1_secn_index == s2_secn_index)
3272     return s1.index() < s2.index();
3273   
3274   return s1_secn_index < s2_secn_index;
3275 }
3276
3277 // Sort the input sections attached to an output section.
3278
3279 void
3280 Output_section::sort_attached_input_sections()
3281 {
3282   if (this->attached_input_sections_are_sorted_)
3283     return;
3284
3285   if (this->checkpoint_ != NULL
3286       && !this->checkpoint_->input_sections_saved())
3287     this->checkpoint_->save_input_sections();
3288
3289   // The only thing we know about an input section is the object and
3290   // the section index.  We need the section name.  Recomputing this
3291   // is slow but this is an unusual case.  If this becomes a speed
3292   // problem we can cache the names as required in Layout::layout.
3293
3294   // We start by building a larger vector holding a copy of each
3295   // Input_section, plus its current index in the list and its name.
3296   std::vector<Input_section_sort_entry> sort_list;
3297
3298   unsigned int i = 0;
3299   for (Input_section_list::iterator p = this->input_sections_.begin();
3300        p != this->input_sections_.end();
3301        ++p, ++i)
3302       sort_list.push_back(Input_section_sort_entry(*p, i,
3303                             this->must_sort_attached_input_sections()));
3304
3305   // Sort the input sections.
3306   if (this->must_sort_attached_input_sections())
3307     {
3308       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3309           || this->type() == elfcpp::SHT_INIT_ARRAY
3310           || this->type() == elfcpp::SHT_FINI_ARRAY)
3311         std::sort(sort_list.begin(), sort_list.end(),
3312                   Input_section_sort_init_fini_compare());
3313       else
3314         std::sort(sort_list.begin(), sort_list.end(),
3315                   Input_section_sort_compare());
3316     }
3317   else
3318     {
3319       gold_assert(parameters->options().section_ordering_file());
3320       std::sort(sort_list.begin(), sort_list.end(),
3321                 Input_section_sort_section_order_index_compare());
3322     }
3323
3324   // Copy the sorted input sections back to our list.
3325   this->input_sections_.clear();
3326   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3327        p != sort_list.end();
3328        ++p)
3329     this->input_sections_.push_back(p->input_section());
3330   sort_list.clear();
3331
3332   // Remember that we sorted the input sections, since we might get
3333   // called again.
3334   this->attached_input_sections_are_sorted_ = true;
3335 }
3336
3337 // Write the section header to *OSHDR.
3338
3339 template<int size, bool big_endian>
3340 void
3341 Output_section::write_header(const Layout* layout,
3342                              const Stringpool* secnamepool,
3343                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3344 {
3345   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3346   oshdr->put_sh_type(this->type_);
3347
3348   elfcpp::Elf_Xword flags = this->flags_;
3349   if (this->info_section_ != NULL && this->info_uses_section_index_)
3350     flags |= elfcpp::SHF_INFO_LINK;
3351   oshdr->put_sh_flags(flags);
3352
3353   oshdr->put_sh_addr(this->address());
3354   oshdr->put_sh_offset(this->offset());
3355   oshdr->put_sh_size(this->data_size());
3356   if (this->link_section_ != NULL)
3357     oshdr->put_sh_link(this->link_section_->out_shndx());
3358   else if (this->should_link_to_symtab_)
3359     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3360   else if (this->should_link_to_dynsym_)
3361     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3362   else
3363     oshdr->put_sh_link(this->link_);
3364
3365   elfcpp::Elf_Word info;
3366   if (this->info_section_ != NULL)
3367     {
3368       if (this->info_uses_section_index_)
3369         info = this->info_section_->out_shndx();
3370       else
3371         info = this->info_section_->symtab_index();
3372     }
3373   else if (this->info_symndx_ != NULL)
3374     info = this->info_symndx_->symtab_index();
3375   else
3376     info = this->info_;
3377   oshdr->put_sh_info(info);
3378
3379   oshdr->put_sh_addralign(this->addralign_);
3380   oshdr->put_sh_entsize(this->entsize_);
3381 }
3382
3383 // Write out the data.  For input sections the data is written out by
3384 // Object::relocate, but we have to handle Output_section_data objects
3385 // here.
3386
3387 void
3388 Output_section::do_write(Output_file* of)
3389 {
3390   gold_assert(!this->requires_postprocessing());
3391
3392   // If the target performs relaxation, we delay filler generation until now.
3393   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3394
3395   off_t output_section_file_offset = this->offset();
3396   for (Fill_list::iterator p = this->fills_.begin();
3397        p != this->fills_.end();
3398        ++p)
3399     {
3400       std::string fill_data(parameters->target().code_fill(p->length()));
3401       of->write(output_section_file_offset + p->section_offset(),
3402                 fill_data.data(), fill_data.size());
3403     }
3404
3405   off_t off = this->offset() + this->first_input_offset_;
3406   for (Input_section_list::iterator p = this->input_sections_.begin();
3407        p != this->input_sections_.end();
3408        ++p)
3409     {
3410       off_t aligned_off = align_address(off, p->addralign());
3411       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3412         {
3413           size_t fill_len = aligned_off - off;
3414           std::string fill_data(parameters->target().code_fill(fill_len));
3415           of->write(off, fill_data.data(), fill_data.size());
3416         }
3417
3418       p->write(of);
3419       off = aligned_off + p->data_size();
3420     }
3421 }
3422
3423 // If a section requires postprocessing, create the buffer to use.
3424
3425 void
3426 Output_section::create_postprocessing_buffer()
3427 {
3428   gold_assert(this->requires_postprocessing());
3429
3430   if (this->postprocessing_buffer_ != NULL)
3431     return;
3432
3433   if (!this->input_sections_.empty())
3434     {
3435       off_t off = this->first_input_offset_;
3436       for (Input_section_list::iterator p = this->input_sections_.begin();
3437            p != this->input_sections_.end();
3438            ++p)
3439         {
3440           off = align_address(off, p->addralign());
3441           p->finalize_data_size();
3442           off += p->data_size();
3443         }
3444       this->set_current_data_size_for_child(off);
3445     }
3446
3447   off_t buffer_size = this->current_data_size_for_child();
3448   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3449 }
3450
3451 // Write all the data of an Output_section into the postprocessing
3452 // buffer.  This is used for sections which require postprocessing,
3453 // such as compression.  Input sections are handled by
3454 // Object::Relocate.
3455
3456 void
3457 Output_section::write_to_postprocessing_buffer()
3458 {
3459   gold_assert(this->requires_postprocessing());
3460
3461   // If the target performs relaxation, we delay filler generation until now.
3462   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3463
3464   unsigned char* buffer = this->postprocessing_buffer();
3465   for (Fill_list::iterator p = this->fills_.begin();
3466        p != this->fills_.end();
3467        ++p)
3468     {
3469       std::string fill_data(parameters->target().code_fill(p->length()));
3470       memcpy(buffer + p->section_offset(), fill_data.data(),
3471              fill_data.size());
3472     }
3473
3474   off_t off = this->first_input_offset_;
3475   for (Input_section_list::iterator p = this->input_sections_.begin();
3476        p != this->input_sections_.end();
3477        ++p)
3478     {
3479       off_t aligned_off = align_address(off, p->addralign());
3480       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3481         {
3482           size_t fill_len = aligned_off - off;
3483           std::string fill_data(parameters->target().code_fill(fill_len));
3484           memcpy(buffer + off, fill_data.data(), fill_data.size());
3485         }
3486
3487       p->write_to_buffer(buffer + aligned_off);
3488       off = aligned_off + p->data_size();
3489     }
3490 }
3491
3492 // Get the input sections for linker script processing.  We leave
3493 // behind the Output_section_data entries.  Note that this may be
3494 // slightly incorrect for merge sections.  We will leave them behind,
3495 // but it is possible that the script says that they should follow
3496 // some other input sections, as in:
3497 //    .rodata { *(.rodata) *(.rodata.cst*) }
3498 // For that matter, we don't handle this correctly:
3499 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3500 // With luck this will never matter.
3501
3502 uint64_t
3503 Output_section::get_input_sections(
3504     uint64_t address,
3505     const std::string& fill,
3506     std::list<Input_section>* input_sections)
3507 {
3508   if (this->checkpoint_ != NULL
3509       && !this->checkpoint_->input_sections_saved())
3510     this->checkpoint_->save_input_sections();
3511
3512   // Invalidate fast look-up maps.
3513   this->lookup_maps_->invalidate();
3514
3515   uint64_t orig_address = address;
3516
3517   address = align_address(address, this->addralign());
3518
3519   Input_section_list remaining;
3520   for (Input_section_list::iterator p = this->input_sections_.begin();
3521        p != this->input_sections_.end();
3522        ++p)
3523     {
3524       if (p->is_input_section()
3525           || p->is_relaxed_input_section()
3526           || p->is_merge_section())
3527         input_sections->push_back(*p);
3528       else
3529         {
3530           uint64_t aligned_address = align_address(address, p->addralign());
3531           if (aligned_address != address && !fill.empty())
3532             {
3533               section_size_type length =
3534                 convert_to_section_size_type(aligned_address - address);
3535               std::string this_fill;
3536               this_fill.reserve(length);
3537               while (this_fill.length() + fill.length() <= length)
3538                 this_fill += fill;
3539               if (this_fill.length() < length)
3540                 this_fill.append(fill, 0, length - this_fill.length());
3541
3542               Output_section_data* posd = new Output_data_const(this_fill, 0);
3543               remaining.push_back(Input_section(posd));
3544             }
3545           address = aligned_address;
3546
3547           remaining.push_back(*p);
3548
3549           p->finalize_data_size();
3550           address += p->data_size();
3551         }
3552     }
3553
3554   this->input_sections_.swap(remaining);
3555   this->first_input_offset_ = 0;
3556
3557   uint64_t data_size = address - orig_address;
3558   this->set_current_data_size_for_child(data_size);
3559   return data_size;
3560 }
3561
3562 // Add a script input section.  SIS is an Output_section::Input_section,
3563 // which can be either a plain input section or a special input section like
3564 // a relaxed input section.  For a special input section, its size must be
3565 // finalized.
3566
3567 void
3568 Output_section::add_script_input_section(const Input_section& sis)
3569 {
3570   uint64_t data_size = sis.data_size();
3571   uint64_t addralign = sis.addralign();
3572   if (addralign > this->addralign_)
3573     this->addralign_ = addralign;
3574
3575   off_t offset_in_section = this->current_data_size_for_child();
3576   off_t aligned_offset_in_section = align_address(offset_in_section,
3577                                                   addralign);
3578
3579   this->set_current_data_size_for_child(aligned_offset_in_section
3580                                         + data_size);
3581
3582   this->input_sections_.push_back(sis);
3583
3584   // Update fast lookup maps if necessary. 
3585   if (this->lookup_maps_->is_valid())
3586     {
3587       if (sis.is_merge_section())
3588         {
3589           Output_merge_base* pomb = sis.output_merge_base();
3590           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3591                                        pomb->addralign());
3592           this->lookup_maps_->add_merge_section(msp, pomb);
3593           for (Output_merge_base::Input_sections::const_iterator p =
3594                  pomb->input_sections_begin();
3595                p != pomb->input_sections_end();
3596                ++p)
3597             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3598                                                         pomb);
3599         }
3600       else if (sis.is_relaxed_input_section())
3601         {
3602           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3603           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3604                                                         poris->shndx(), poris);
3605         }
3606     }
3607 }
3608
3609 // Save states for relaxation.
3610
3611 void
3612 Output_section::save_states()
3613 {
3614   gold_assert(this->checkpoint_ == NULL);
3615   Checkpoint_output_section* checkpoint =
3616     new Checkpoint_output_section(this->addralign_, this->flags_,
3617                                   this->input_sections_,
3618                                   this->first_input_offset_,
3619                                   this->attached_input_sections_are_sorted_);
3620   this->checkpoint_ = checkpoint;
3621   gold_assert(this->fills_.empty());
3622 }
3623
3624 void
3625 Output_section::discard_states()
3626 {
3627   gold_assert(this->checkpoint_ != NULL);
3628   delete this->checkpoint_;
3629   this->checkpoint_ = NULL;
3630   gold_assert(this->fills_.empty());
3631
3632   // Simply invalidate the fast lookup maps since we do not keep
3633   // track of them.
3634   this->lookup_maps_->invalidate();
3635 }
3636
3637 void
3638 Output_section::restore_states()
3639 {
3640   gold_assert(this->checkpoint_ != NULL);
3641   Checkpoint_output_section* checkpoint = this->checkpoint_;
3642
3643   this->addralign_ = checkpoint->addralign();
3644   this->flags_ = checkpoint->flags();
3645   this->first_input_offset_ = checkpoint->first_input_offset();
3646
3647   if (!checkpoint->input_sections_saved())
3648     {
3649       // If we have not copied the input sections, just resize it.
3650       size_t old_size = checkpoint->input_sections_size();
3651       gold_assert(this->input_sections_.size() >= old_size);
3652       this->input_sections_.resize(old_size);
3653     }
3654   else
3655     {
3656       // We need to copy the whole list.  This is not efficient for
3657       // extremely large output with hundreads of thousands of input
3658       // objects.  We may need to re-think how we should pass sections
3659       // to scripts.
3660       this->input_sections_ = *checkpoint->input_sections();
3661     }
3662
3663   this->attached_input_sections_are_sorted_ =
3664     checkpoint->attached_input_sections_are_sorted();
3665
3666   // Simply invalidate the fast lookup maps since we do not keep
3667   // track of them.
3668   this->lookup_maps_->invalidate();
3669 }
3670
3671 // Update the section offsets of input sections in this.  This is required if
3672 // relaxation causes some input sections to change sizes.
3673
3674 void
3675 Output_section::adjust_section_offsets()
3676 {
3677   if (!this->section_offsets_need_adjustment_)
3678     return;
3679
3680   off_t off = 0;
3681   for (Input_section_list::iterator p = this->input_sections_.begin();
3682        p != this->input_sections_.end();
3683        ++p)
3684     {
3685       off = align_address(off, p->addralign());
3686       if (p->is_input_section())
3687         p->relobj()->set_section_offset(p->shndx(), off);
3688       off += p->data_size();
3689     }
3690
3691   this->section_offsets_need_adjustment_ = false;
3692 }
3693
3694 // Print to the map file.
3695
3696 void
3697 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3698 {
3699   mapfile->print_output_section(this);
3700
3701   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3702        p != this->input_sections_.end();
3703        ++p)
3704     p->print_to_mapfile(mapfile);
3705 }
3706
3707 // Print stats for merge sections to stderr.
3708
3709 void
3710 Output_section::print_merge_stats()
3711 {
3712   Input_section_list::iterator p;
3713   for (p = this->input_sections_.begin();
3714        p != this->input_sections_.end();
3715        ++p)
3716     p->print_merge_stats(this->name_);
3717 }
3718
3719 // Set a fixed layout for the section.  Used for incremental update links.
3720
3721 void
3722 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3723                                  off_t sh_size, uint64_t sh_addralign)
3724 {
3725   this->addralign_ = sh_addralign;
3726   this->set_current_data_size(sh_size);
3727   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3728     this->set_address(sh_addr);
3729   this->set_file_offset(sh_offset);
3730   this->finalize_data_size();
3731   this->free_list_.init(sh_size, false);
3732   this->has_fixed_layout_ = true;
3733 }
3734
3735 // Reserve space within the fixed layout for the section.  Used for
3736 // incremental update links.
3737 void
3738 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3739 {
3740   this->free_list_.remove(sh_offset, sh_offset + sh_size);
3741 }
3742
3743 // Output segment methods.
3744
3745 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3746   : vaddr_(0),
3747     paddr_(0),
3748     memsz_(0),
3749     max_align_(0),
3750     min_p_align_(0),
3751     offset_(0),
3752     filesz_(0),
3753     type_(type),
3754     flags_(flags),
3755     is_max_align_known_(false),
3756     are_addresses_set_(false),
3757     is_large_data_segment_(false)
3758 {
3759   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3760   // the flags.
3761   if (type == elfcpp::PT_TLS)
3762     this->flags_ = elfcpp::PF_R;
3763 }
3764
3765 // Add an Output_section to a PT_LOAD Output_segment.
3766
3767 void
3768 Output_segment::add_output_section_to_load(Layout* layout,
3769                                            Output_section* os,
3770                                            elfcpp::Elf_Word seg_flags)
3771 {
3772   gold_assert(this->type() == elfcpp::PT_LOAD);
3773   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3774   gold_assert(!this->is_max_align_known_);
3775   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3776
3777   this->update_flags_for_output_section(seg_flags);
3778
3779   // We don't want to change the ordering if we have a linker script
3780   // with a SECTIONS clause.
3781   Output_section_order order = os->order();
3782   if (layout->script_options()->saw_sections_clause())
3783     order = static_cast<Output_section_order>(0);
3784   else
3785     gold_assert(order != ORDER_INVALID);
3786
3787   this->output_lists_[order].push_back(os);
3788 }
3789
3790 // Add an Output_section to a non-PT_LOAD Output_segment.
3791
3792 void
3793 Output_segment::add_output_section_to_nonload(Output_section* os,
3794                                               elfcpp::Elf_Word seg_flags)
3795 {
3796   gold_assert(this->type() != elfcpp::PT_LOAD);
3797   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3798   gold_assert(!this->is_max_align_known_);
3799
3800   this->update_flags_for_output_section(seg_flags);
3801
3802   this->output_lists_[0].push_back(os);
3803 }
3804
3805 // Remove an Output_section from this segment.  It is an error if it
3806 // is not present.
3807
3808 void
3809 Output_segment::remove_output_section(Output_section* os)
3810 {
3811   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3812     {
3813       Output_data_list* pdl = &this->output_lists_[i];
3814       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
3815         {
3816           if (*p == os)
3817             {
3818               pdl->erase(p);
3819               return;
3820             }
3821         }
3822     }
3823   gold_unreachable();
3824 }
3825
3826 // Add an Output_data (which need not be an Output_section) to the
3827 // start of a segment.
3828
3829 void
3830 Output_segment::add_initial_output_data(Output_data* od)
3831 {
3832   gold_assert(!this->is_max_align_known_);
3833   Output_data_list::iterator p = this->output_lists_[0].begin();
3834   this->output_lists_[0].insert(p, od);
3835 }
3836
3837 // Return true if this segment has any sections which hold actual
3838 // data, rather than being a BSS section.
3839
3840 bool
3841 Output_segment::has_any_data_sections() const
3842 {
3843   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3844     {
3845       const Output_data_list* pdl = &this->output_lists_[i];
3846       for (Output_data_list::const_iterator p = pdl->begin();
3847            p != pdl->end();
3848            ++p)
3849         {
3850           if (!(*p)->is_section())
3851             return true;
3852           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
3853             return true;
3854         }
3855     }
3856   return false;
3857 }
3858
3859 // Return whether the first data section (not counting TLS sections)
3860 // is a relro section.
3861
3862 bool
3863 Output_segment::is_first_section_relro() const
3864 {
3865   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3866     {
3867       if (i == static_cast<int>(ORDER_TLS_DATA)
3868           || i == static_cast<int>(ORDER_TLS_BSS))
3869         continue;
3870       const Output_data_list* pdl = &this->output_lists_[i];
3871       if (!pdl->empty())
3872         {
3873           Output_data* p = pdl->front();
3874           return p->is_section() && p->output_section()->is_relro();
3875         }
3876     }
3877   return false;
3878 }
3879
3880 // Return the maximum alignment of the Output_data in Output_segment.
3881
3882 uint64_t
3883 Output_segment::maximum_alignment()
3884 {
3885   if (!this->is_max_align_known_)
3886     {
3887       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3888         {       
3889           const Output_data_list* pdl = &this->output_lists_[i];
3890           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
3891           if (addralign > this->max_align_)
3892             this->max_align_ = addralign;
3893         }
3894       this->is_max_align_known_ = true;
3895     }
3896
3897   return this->max_align_;
3898 }
3899
3900 // Return the maximum alignment of a list of Output_data.
3901
3902 uint64_t
3903 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3904 {
3905   uint64_t ret = 0;
3906   for (Output_data_list::const_iterator p = pdl->begin();
3907        p != pdl->end();
3908        ++p)
3909     {
3910       uint64_t addralign = (*p)->addralign();
3911       if (addralign > ret)
3912         ret = addralign;
3913     }
3914   return ret;
3915 }
3916
3917 // Return whether this segment has any dynamic relocs.
3918
3919 bool
3920 Output_segment::has_dynamic_reloc() const
3921 {
3922   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3923     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
3924       return true;
3925   return false;
3926 }
3927
3928 // Return whether this Output_data_list has any dynamic relocs.
3929
3930 bool
3931 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
3932 {
3933   for (Output_data_list::const_iterator p = pdl->begin();
3934        p != pdl->end();
3935        ++p)
3936     if ((*p)->has_dynamic_reloc())
3937       return true;
3938   return false;
3939 }
3940
3941 // Set the section addresses for an Output_segment.  If RESET is true,
3942 // reset the addresses first.  ADDR is the address and *POFF is the
3943 // file offset.  Set the section indexes starting with *PSHNDX.
3944 // INCREASE_RELRO is the size of the portion of the first non-relro
3945 // section that should be included in the PT_GNU_RELRO segment.
3946 // If this segment has relro sections, and has been aligned for
3947 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
3948 // the immediately following segment.  Update *HAS_RELRO, *POFF,
3949 // and *PSHNDX.
3950
3951 uint64_t
3952 Output_segment::set_section_addresses(Layout* layout, bool reset,
3953                                       uint64_t addr,
3954                                       unsigned int* increase_relro,
3955                                       bool* has_relro,
3956                                       off_t* poff,
3957                                       unsigned int* pshndx)
3958 {
3959   gold_assert(this->type_ == elfcpp::PT_LOAD);
3960
3961   uint64_t last_relro_pad = 0;
3962   off_t orig_off = *poff;
3963
3964   bool in_tls = false;
3965
3966   // If we have relro sections, we need to pad forward now so that the
3967   // relro sections plus INCREASE_RELRO end on a common page boundary.
3968   if (parameters->options().relro()
3969       && this->is_first_section_relro()
3970       && (!this->are_addresses_set_ || reset))
3971     {
3972       uint64_t relro_size = 0;
3973       off_t off = *poff;
3974       uint64_t max_align = 0;
3975       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
3976         {
3977           Output_data_list* pdl = &this->output_lists_[i];
3978           Output_data_list::iterator p;
3979           for (p = pdl->begin(); p != pdl->end(); ++p)
3980             {
3981               if (!(*p)->is_section())
3982                 break;
3983               uint64_t align = (*p)->addralign();
3984               if (align > max_align)
3985                 max_align = align;
3986               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3987                 in_tls = true;
3988               else if (in_tls)
3989                 {
3990                   // Align the first non-TLS section to the alignment
3991                   // of the TLS segment.
3992                   align = max_align;
3993                   in_tls = false;
3994                 }
3995               relro_size = align_address(relro_size, align);
3996               // Ignore the size of the .tbss section.
3997               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
3998                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
3999                 continue;
4000               if ((*p)->is_address_valid())
4001                 relro_size += (*p)->data_size();
4002               else
4003                 {
4004                   // FIXME: This could be faster.
4005                   (*p)->set_address_and_file_offset(addr + relro_size,
4006                                                     off + relro_size);
4007                   relro_size += (*p)->data_size();
4008                   (*p)->reset_address_and_file_offset();
4009                 }
4010             }
4011           if (p != pdl->end())
4012             break;
4013         }
4014       relro_size += *increase_relro;
4015       // Pad the total relro size to a multiple of the maximum
4016       // section alignment seen.
4017       uint64_t aligned_size = align_address(relro_size, max_align);
4018       // Note the amount of padding added after the last relro section.
4019       last_relro_pad = aligned_size - relro_size;
4020       *has_relro = true;
4021
4022       uint64_t page_align = parameters->target().common_pagesize();
4023
4024       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4025       uint64_t desired_align = page_align - (aligned_size % page_align);
4026       if (desired_align < *poff % page_align)
4027         *poff += page_align - *poff % page_align;
4028       *poff += desired_align - *poff % page_align;
4029       addr += *poff - orig_off;
4030       orig_off = *poff;
4031     }
4032
4033   if (!reset && this->are_addresses_set_)
4034     {
4035       gold_assert(this->paddr_ == addr);
4036       addr = this->vaddr_;
4037     }
4038   else
4039     {
4040       this->vaddr_ = addr;
4041       this->paddr_ = addr;
4042       this->are_addresses_set_ = true;
4043     }
4044
4045   in_tls = false;
4046
4047   this->offset_ = orig_off;
4048
4049   off_t off = 0;
4050   uint64_t ret;
4051   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4052     {
4053       if (i == static_cast<int>(ORDER_RELRO_LAST))
4054         {
4055           *poff += last_relro_pad;
4056           addr += last_relro_pad;
4057           if (this->output_lists_[i].empty())
4058             {
4059               // If there is nothing in the ORDER_RELRO_LAST list,
4060               // the padding will occur at the end of the relro
4061               // segment, and we need to add it to *INCREASE_RELRO.
4062               *increase_relro += last_relro_pad;
4063             }
4064         }
4065       addr = this->set_section_list_addresses(layout, reset,
4066                                               &this->output_lists_[i],
4067                                               addr, poff, pshndx, &in_tls);
4068       if (i < static_cast<int>(ORDER_SMALL_BSS))
4069         {
4070           this->filesz_ = *poff - orig_off;
4071           off = *poff;
4072         }
4073
4074       ret = addr;
4075     }
4076
4077   // If the last section was a TLS section, align upward to the
4078   // alignment of the TLS segment, so that the overall size of the TLS
4079   // segment is aligned.
4080   if (in_tls)
4081     {
4082       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4083       *poff = align_address(*poff, segment_align);
4084     }
4085
4086   this->memsz_ = *poff - orig_off;
4087
4088   // Ignore the file offset adjustments made by the BSS Output_data
4089   // objects.
4090   *poff = off;
4091
4092   return ret;
4093 }
4094
4095 // Set the addresses and file offsets in a list of Output_data
4096 // structures.
4097
4098 uint64_t
4099 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4100                                            Output_data_list* pdl,
4101                                            uint64_t addr, off_t* poff,
4102                                            unsigned int* pshndx,
4103                                            bool* in_tls)
4104 {
4105   off_t startoff = *poff;
4106   // For incremental updates, we may allocate non-fixed sections from
4107   // free space in the file.  This keeps track of the high-water mark.
4108   off_t maxoff = startoff;
4109
4110   off_t off = startoff;
4111   for (Output_data_list::iterator p = pdl->begin();
4112        p != pdl->end();
4113        ++p)
4114     {
4115       if (reset)
4116         (*p)->reset_address_and_file_offset();
4117
4118       // When doing an incremental update or when using a linker script,
4119       // the section will most likely already have an address.
4120       if (!(*p)->is_address_valid())
4121         {
4122           uint64_t align = (*p)->addralign();
4123
4124           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4125             {
4126               // Give the first TLS section the alignment of the
4127               // entire TLS segment.  Otherwise the TLS segment as a
4128               // whole may be misaligned.
4129               if (!*in_tls)
4130                 {
4131                   Output_segment* tls_segment = layout->tls_segment();
4132                   gold_assert(tls_segment != NULL);
4133                   uint64_t segment_align = tls_segment->maximum_alignment();
4134                   gold_assert(segment_align >= align);
4135                   align = segment_align;
4136
4137                   *in_tls = true;
4138                 }
4139             }
4140           else
4141             {
4142               // If this is the first section after the TLS segment,
4143               // align it to at least the alignment of the TLS
4144               // segment, so that the size of the overall TLS segment
4145               // is aligned.
4146               if (*in_tls)
4147                 {
4148                   uint64_t segment_align =
4149                       layout->tls_segment()->maximum_alignment();
4150                   if (segment_align > align)
4151                     align = segment_align;
4152
4153                   *in_tls = false;
4154                 }
4155             }
4156
4157           // FIXME: Need to handle TLS and .bss with incremental update.
4158           if (!parameters->incremental_update()
4159               || (*p)->is_section_flag_set(elfcpp::SHF_TLS)
4160               || (*p)->is_section_type(elfcpp::SHT_NOBITS))
4161             {
4162               off = align_address(off, align);
4163               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4164             }
4165           else
4166             {
4167               // Incremental update: allocate file space from free list.
4168               (*p)->pre_finalize_data_size();
4169               off_t current_size = (*p)->current_data_size();
4170               off = layout->allocate(current_size, align, startoff);
4171               if (off == -1)
4172                 {
4173                   gold_assert((*p)->output_section() != NULL);
4174                   gold_fatal(_("out of patch space for section %s; "
4175                                "relink with --incremental-full"),
4176                              (*p)->output_section()->name());
4177                 }
4178               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4179               if ((*p)->data_size() > current_size)
4180                 {
4181                   gold_assert((*p)->output_section() != NULL);
4182                   gold_fatal(_("%s: section changed size; "
4183                                "relink with --incremental-full"),
4184                              (*p)->output_section()->name());
4185                 }
4186             }
4187         }
4188       else if (parameters->incremental_update())
4189         {
4190           // For incremental updates, use the fixed offset for the
4191           // high-water mark computation.
4192           off = (*p)->offset();
4193         }
4194       else
4195         {
4196           // The script may have inserted a skip forward, but it
4197           // better not have moved backward.
4198           if ((*p)->address() >= addr + (off - startoff))
4199             off += (*p)->address() - (addr + (off - startoff));
4200           else
4201             {
4202               if (!layout->script_options()->saw_sections_clause())
4203                 gold_unreachable();
4204               else
4205                 {
4206                   Output_section* os = (*p)->output_section();
4207
4208                   // Cast to unsigned long long to avoid format warnings.
4209                   unsigned long long previous_dot =
4210                     static_cast<unsigned long long>(addr + (off - startoff));
4211                   unsigned long long dot =
4212                     static_cast<unsigned long long>((*p)->address());
4213
4214                   if (os == NULL)
4215                     gold_error(_("dot moves backward in linker script "
4216                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4217                   else
4218                     gold_error(_("address of section '%s' moves backward "
4219                                  "from 0x%llx to 0x%llx"),
4220                                os->name(), previous_dot, dot);
4221                 }
4222             }
4223           (*p)->set_file_offset(off);
4224           (*p)->finalize_data_size();
4225         }
4226
4227       gold_debug(DEBUG_INCREMENTAL,
4228                  "set_section_list_addresses: %08lx %08lx %s",
4229                  static_cast<long>(off),
4230                  static_cast<long>((*p)->data_size()),
4231                  ((*p)->output_section() != NULL
4232                   ? (*p)->output_section()->name() : "(special)"));
4233
4234       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
4235       // section.  Such a section does not affect the size of a
4236       // PT_LOAD segment.
4237       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4238           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4239         off += (*p)->data_size();
4240
4241       if (off > maxoff)
4242         maxoff = off;
4243
4244       if ((*p)->is_section())
4245         {
4246           (*p)->set_out_shndx(*pshndx);
4247           ++*pshndx;
4248         }
4249     }
4250
4251   *poff = maxoff;
4252   return addr + (maxoff - startoff);
4253 }
4254
4255 // For a non-PT_LOAD segment, set the offset from the sections, if
4256 // any.  Add INCREASE to the file size and the memory size.
4257
4258 void
4259 Output_segment::set_offset(unsigned int increase)
4260 {
4261   gold_assert(this->type_ != elfcpp::PT_LOAD);
4262
4263   gold_assert(!this->are_addresses_set_);
4264
4265   // A non-load section only uses output_lists_[0].
4266
4267   Output_data_list* pdl = &this->output_lists_[0];
4268
4269   if (pdl->empty())
4270     {
4271       gold_assert(increase == 0);
4272       this->vaddr_ = 0;
4273       this->paddr_ = 0;
4274       this->are_addresses_set_ = true;
4275       this->memsz_ = 0;
4276       this->min_p_align_ = 0;
4277       this->offset_ = 0;
4278       this->filesz_ = 0;
4279       return;
4280     }
4281
4282   // Find the first and last section by address.
4283   const Output_data* first = NULL;
4284   const Output_data* last_data = NULL;
4285   const Output_data* last_bss = NULL;
4286   for (Output_data_list::const_iterator p = pdl->begin();
4287        p != pdl->end();
4288        ++p)
4289     {
4290       if (first == NULL
4291           || (*p)->address() < first->address()
4292           || ((*p)->address() == first->address()
4293               && (*p)->data_size() < first->data_size()))
4294         first = *p;
4295       const Output_data** plast;
4296       if ((*p)->is_section()
4297           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4298         plast = &last_bss;
4299       else
4300         plast = &last_data;
4301       if (*plast == NULL
4302           || (*p)->address() > (*plast)->address()
4303           || ((*p)->address() == (*plast)->address()
4304               && (*p)->data_size() > (*plast)->data_size()))
4305         *plast = *p;
4306     }
4307
4308   this->vaddr_ = first->address();
4309   this->paddr_ = (first->has_load_address()
4310                   ? first->load_address()
4311                   : this->vaddr_);
4312   this->are_addresses_set_ = true;
4313   this->offset_ = first->offset();
4314
4315   if (last_data == NULL)
4316     this->filesz_ = 0;
4317   else
4318     this->filesz_ = (last_data->address()
4319                      + last_data->data_size()
4320                      - this->vaddr_);
4321
4322   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4323   this->memsz_ = (last->address()
4324                   + last->data_size()
4325                   - this->vaddr_);
4326
4327   this->filesz_ += increase;
4328   this->memsz_ += increase;
4329
4330   // If this is a RELRO segment, verify that the segment ends at a
4331   // page boundary.
4332   if (this->type_ == elfcpp::PT_GNU_RELRO)
4333     {
4334       uint64_t page_align = parameters->target().common_pagesize();
4335       uint64_t segment_end = this->vaddr_ + this->memsz_;
4336       if (parameters->incremental_update())
4337         {
4338           // The INCREASE_RELRO calculation is bypassed for an incremental
4339           // update, so we need to adjust the segment size manually here.
4340           segment_end = align_address(segment_end, page_align);
4341           this->memsz_ = segment_end - this->vaddr_;
4342         }
4343       else
4344         gold_assert(segment_end == align_address(segment_end, page_align));
4345     }
4346
4347   // If this is a TLS segment, align the memory size.  The code in
4348   // set_section_list ensures that the section after the TLS segment
4349   // is aligned to give us room.
4350   if (this->type_ == elfcpp::PT_TLS)
4351     {
4352       uint64_t segment_align = this->maximum_alignment();
4353       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4354       this->memsz_ = align_address(this->memsz_, segment_align);
4355     }
4356 }
4357
4358 // Set the TLS offsets of the sections in the PT_TLS segment.
4359
4360 void
4361 Output_segment::set_tls_offsets()
4362 {
4363   gold_assert(this->type_ == elfcpp::PT_TLS);
4364
4365   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4366        p != this->output_lists_[0].end();
4367        ++p)
4368     (*p)->set_tls_offset(this->vaddr_);
4369 }
4370
4371 // Return the load address of the first section.
4372
4373 uint64_t
4374 Output_segment::first_section_load_address() const
4375 {
4376   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4377     {
4378       const Output_data_list* pdl = &this->output_lists_[i];
4379       for (Output_data_list::const_iterator p = pdl->begin();
4380            p != pdl->end();
4381            ++p)
4382         {
4383           if ((*p)->is_section())
4384             return ((*p)->has_load_address()
4385                     ? (*p)->load_address()
4386                     : (*p)->address());
4387         }
4388     }
4389   gold_unreachable();
4390 }
4391
4392 // Return the number of Output_sections in an Output_segment.
4393
4394 unsigned int
4395 Output_segment::output_section_count() const
4396 {
4397   unsigned int ret = 0;
4398   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4399     ret += this->output_section_count_list(&this->output_lists_[i]);
4400   return ret;
4401 }
4402
4403 // Return the number of Output_sections in an Output_data_list.
4404
4405 unsigned int
4406 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4407 {
4408   unsigned int count = 0;
4409   for (Output_data_list::const_iterator p = pdl->begin();
4410        p != pdl->end();
4411        ++p)
4412     {
4413       if ((*p)->is_section())
4414         ++count;
4415     }
4416   return count;
4417 }
4418
4419 // Return the section attached to the list segment with the lowest
4420 // load address.  This is used when handling a PHDRS clause in a
4421 // linker script.
4422
4423 Output_section*
4424 Output_segment::section_with_lowest_load_address() const
4425 {
4426   Output_section* found = NULL;
4427   uint64_t found_lma = 0;
4428   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4429     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4430                                       &found_lma);
4431   return found;
4432 }
4433
4434 // Look through a list for a section with a lower load address.
4435
4436 void
4437 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4438                                             Output_section** found,
4439                                             uint64_t* found_lma) const
4440 {
4441   for (Output_data_list::const_iterator p = pdl->begin();
4442        p != pdl->end();
4443        ++p)
4444     {
4445       if (!(*p)->is_section())
4446         continue;
4447       Output_section* os = static_cast<Output_section*>(*p);
4448       uint64_t lma = (os->has_load_address()
4449                       ? os->load_address()
4450                       : os->address());
4451       if (*found == NULL || lma < *found_lma)
4452         {
4453           *found = os;
4454           *found_lma = lma;
4455         }
4456     }
4457 }
4458
4459 // Write the segment data into *OPHDR.
4460
4461 template<int size, bool big_endian>
4462 void
4463 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4464 {
4465   ophdr->put_p_type(this->type_);
4466   ophdr->put_p_offset(this->offset_);
4467   ophdr->put_p_vaddr(this->vaddr_);
4468   ophdr->put_p_paddr(this->paddr_);
4469   ophdr->put_p_filesz(this->filesz_);
4470   ophdr->put_p_memsz(this->memsz_);
4471   ophdr->put_p_flags(this->flags_);
4472   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4473 }
4474
4475 // Write the section headers into V.
4476
4477 template<int size, bool big_endian>
4478 unsigned char*
4479 Output_segment::write_section_headers(const Layout* layout,
4480                                       const Stringpool* secnamepool,
4481                                       unsigned char* v,
4482                                       unsigned int* pshndx) const
4483 {
4484   // Every section that is attached to a segment must be attached to a
4485   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4486   // segments.
4487   if (this->type_ != elfcpp::PT_LOAD)
4488     return v;
4489
4490   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4491     {
4492       const Output_data_list* pdl = &this->output_lists_[i];
4493       v = this->write_section_headers_list<size, big_endian>(layout,
4494                                                              secnamepool,
4495                                                              pdl,
4496                                                              v, pshndx);
4497     }
4498
4499   return v;
4500 }
4501
4502 template<int size, bool big_endian>
4503 unsigned char*
4504 Output_segment::write_section_headers_list(const Layout* layout,
4505                                            const Stringpool* secnamepool,
4506                                            const Output_data_list* pdl,
4507                                            unsigned char* v,
4508                                            unsigned int* pshndx) const
4509 {
4510   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4511   for (Output_data_list::const_iterator p = pdl->begin();
4512        p != pdl->end();
4513        ++p)
4514     {
4515       if ((*p)->is_section())
4516         {
4517           const Output_section* ps = static_cast<const Output_section*>(*p);
4518           gold_assert(*pshndx == ps->out_shndx());
4519           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4520           ps->write_header(layout, secnamepool, &oshdr);
4521           v += shdr_size;
4522           ++*pshndx;
4523         }
4524     }
4525   return v;
4526 }
4527
4528 // Print the output sections to the map file.
4529
4530 void
4531 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4532 {
4533   if (this->type() != elfcpp::PT_LOAD)
4534     return;
4535   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4536     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4537 }
4538
4539 // Print an output section list to the map file.
4540
4541 void
4542 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4543                                               const Output_data_list* pdl) const
4544 {
4545   for (Output_data_list::const_iterator p = pdl->begin();
4546        p != pdl->end();
4547        ++p)
4548     (*p)->print_to_mapfile(mapfile);
4549 }
4550
4551 // Output_file methods.
4552
4553 Output_file::Output_file(const char* name)
4554   : name_(name),
4555     o_(-1),
4556     file_size_(0),
4557     base_(NULL),
4558     map_is_anonymous_(false),
4559     map_is_allocated_(false),
4560     is_temporary_(false)
4561 {
4562 }
4563
4564 // Try to open an existing file.  Returns false if the file doesn't
4565 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4566 // NULL, open that file as the base for incremental linking, and
4567 // copy its contents to the new output file.  This routine can
4568 // be called for incremental updates, in which case WRITABLE should
4569 // be true, or by the incremental-dump utility, in which case
4570 // WRITABLE should be false.
4571
4572 bool
4573 Output_file::open_base_file(const char* base_name, bool writable)
4574 {
4575   // The name "-" means "stdout".
4576   if (strcmp(this->name_, "-") == 0)
4577     return false;
4578
4579   bool use_base_file = base_name != NULL;
4580   if (!use_base_file)
4581     base_name = this->name_;
4582   else if (strcmp(base_name, this->name_) == 0)
4583     gold_fatal(_("%s: incremental base and output file name are the same"),
4584                base_name);
4585
4586   // Don't bother opening files with a size of zero.
4587   struct stat s;
4588   if (::stat(base_name, &s) != 0)
4589     {
4590       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4591       return false;
4592     }
4593   if (s.st_size == 0)
4594     {
4595       gold_info(_("%s: incremental base file is empty"), base_name);
4596       return false;
4597     }
4598
4599   // If we're using a base file, we want to open it read-only.
4600   if (use_base_file)
4601     writable = false;
4602
4603   int oflags = writable ? O_RDWR : O_RDONLY;
4604   int o = open_descriptor(-1, base_name, oflags, 0);
4605   if (o < 0)
4606     {
4607       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4608       return false;
4609     }
4610
4611   // If the base file and the output file are different, open a
4612   // new output file and read the contents from the base file into
4613   // the newly-mapped region.
4614   if (use_base_file)
4615     {
4616       this->open(s.st_size);
4617       ssize_t len = ::read(o, this->base_, s.st_size);
4618       if (len < 0)
4619         {
4620           gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4621           return false;
4622         }
4623       if (len < s.st_size)
4624         {
4625           gold_info(_("%s: file too short"), base_name);
4626           return false;
4627         }
4628       ::close(o);
4629       return true;
4630     }
4631
4632   this->o_ = o;
4633   this->file_size_ = s.st_size;
4634
4635   if (!this->map_no_anonymous(writable))
4636     {
4637       release_descriptor(o, true);
4638       this->o_ = -1;
4639       this->file_size_ = 0;
4640       return false;
4641     }
4642
4643   return true;
4644 }
4645
4646 // Open the output file.
4647
4648 void
4649 Output_file::open(off_t file_size)
4650 {
4651   this->file_size_ = file_size;
4652
4653   // Unlink the file first; otherwise the open() may fail if the file
4654   // is busy (e.g. it's an executable that's currently being executed).
4655   //
4656   // However, the linker may be part of a system where a zero-length
4657   // file is created for it to write to, with tight permissions (gcc
4658   // 2.95 did something like this).  Unlinking the file would work
4659   // around those permission controls, so we only unlink if the file
4660   // has a non-zero size.  We also unlink only regular files to avoid
4661   // trouble with directories/etc.
4662   //
4663   // If we fail, continue; this command is merely a best-effort attempt
4664   // to improve the odds for open().
4665
4666   // We let the name "-" mean "stdout"
4667   if (!this->is_temporary_)
4668     {
4669       if (strcmp(this->name_, "-") == 0)
4670         this->o_ = STDOUT_FILENO;
4671       else
4672         {
4673           struct stat s;
4674           if (::stat(this->name_, &s) == 0
4675               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4676             {
4677               if (s.st_size != 0)
4678                 ::unlink(this->name_);
4679               else if (!parameters->options().relocatable())
4680                 {
4681                   // If we don't unlink the existing file, add execute
4682                   // permission where read permissions already exist
4683                   // and where the umask permits.
4684                   int mask = ::umask(0);
4685                   ::umask(mask);
4686                   s.st_mode |= (s.st_mode & 0444) >> 2;
4687                   ::chmod(this->name_, s.st_mode & ~mask);
4688                 }
4689             }
4690
4691           int mode = parameters->options().relocatable() ? 0666 : 0777;
4692           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4693                                   mode);
4694           if (o < 0)
4695             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4696           this->o_ = o;
4697         }
4698     }
4699
4700   this->map();
4701 }
4702
4703 // Resize the output file.
4704
4705 void
4706 Output_file::resize(off_t file_size)
4707 {
4708   // If the mmap is mapping an anonymous memory buffer, this is easy:
4709   // just mremap to the new size.  If it's mapping to a file, we want
4710   // to unmap to flush to the file, then remap after growing the file.
4711   if (this->map_is_anonymous_)
4712     {
4713       void* base;
4714       if (!this->map_is_allocated_)
4715         {
4716           base = ::mremap(this->base_, this->file_size_, file_size,
4717                           MREMAP_MAYMOVE);
4718           if (base == MAP_FAILED)
4719             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4720         }
4721       else
4722         {
4723           base = realloc(this->base_, file_size);
4724           if (base == NULL)
4725             gold_nomem();
4726           if (file_size > this->file_size_)
4727             memset(static_cast<char*>(base) + this->file_size_, 0,
4728                    file_size - this->file_size_);
4729         }
4730       this->base_ = static_cast<unsigned char*>(base);
4731       this->file_size_ = file_size;
4732     }
4733   else
4734     {
4735       this->unmap();
4736       this->file_size_ = file_size;
4737       if (!this->map_no_anonymous(true))
4738         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4739     }
4740 }
4741
4742 // Map an anonymous block of memory which will later be written to the
4743 // file.  Return whether the map succeeded.
4744
4745 bool
4746 Output_file::map_anonymous()
4747 {
4748   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4749                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4750   if (base == MAP_FAILED)
4751     {
4752       base = malloc(this->file_size_);
4753       if (base == NULL)
4754         return false;
4755       memset(base, 0, this->file_size_);
4756       this->map_is_allocated_ = true;
4757     }
4758   this->base_ = static_cast<unsigned char*>(base);
4759   this->map_is_anonymous_ = true;
4760   return true;
4761 }
4762
4763 // Map the file into memory.  Return whether the mapping succeeded.
4764 // If WRITABLE is true, map with write access.
4765
4766 bool
4767 Output_file::map_no_anonymous(bool writable)
4768 {
4769   const int o = this->o_;
4770
4771   // If the output file is not a regular file, don't try to mmap it;
4772   // instead, we'll mmap a block of memory (an anonymous buffer), and
4773   // then later write the buffer to the file.
4774   void* base;
4775   struct stat statbuf;
4776   if (o == STDOUT_FILENO || o == STDERR_FILENO
4777       || ::fstat(o, &statbuf) != 0
4778       || !S_ISREG(statbuf.st_mode)
4779       || this->is_temporary_)
4780     return false;
4781
4782   // Ensure that we have disk space available for the file.  If we
4783   // don't do this, it is possible that we will call munmap, close,
4784   // and exit with dirty buffers still in the cache with no assigned
4785   // disk blocks.  If the disk is out of space at that point, the
4786   // output file will wind up incomplete, but we will have already
4787   // exited.  The alternative to fallocate would be to use fdatasync,
4788   // but that would be a more significant performance hit.
4789   if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
4790     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4791
4792   // Map the file into memory.
4793   int prot = PROT_READ;
4794   if (writable)
4795     prot |= PROT_WRITE;
4796   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
4797
4798   // The mmap call might fail because of file system issues: the file
4799   // system might not support mmap at all, or it might not support
4800   // mmap with PROT_WRITE.
4801   if (base == MAP_FAILED)
4802     return false;
4803
4804   this->map_is_anonymous_ = false;
4805   this->base_ = static_cast<unsigned char*>(base);
4806   return true;
4807 }
4808
4809 // Map the file into memory.
4810
4811 void
4812 Output_file::map()
4813 {
4814   if (this->map_no_anonymous(true))
4815     return;
4816
4817   // The mmap call might fail because of file system issues: the file
4818   // system might not support mmap at all, or it might not support
4819   // mmap with PROT_WRITE.  I'm not sure which errno values we will
4820   // see in all cases, so if the mmap fails for any reason and we
4821   // don't care about file contents, try for an anonymous map.
4822   if (this->map_anonymous())
4823     return;
4824
4825   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4826              this->name_, static_cast<unsigned long>(this->file_size_),
4827              strerror(errno));
4828 }
4829
4830 // Unmap the file from memory.
4831
4832 void
4833 Output_file::unmap()
4834 {
4835   if (this->map_is_anonymous_)
4836     {
4837       // We've already written out the data, so there is no reason to
4838       // waste time unmapping or freeing the memory.
4839     }
4840   else
4841     {
4842       if (::munmap(this->base_, this->file_size_) < 0)
4843         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4844     }
4845   this->base_ = NULL;
4846 }
4847
4848 // Close the output file.
4849
4850 void
4851 Output_file::close()
4852 {
4853   // If the map isn't file-backed, we need to write it now.
4854   if (this->map_is_anonymous_ && !this->is_temporary_)
4855     {
4856       size_t bytes_to_write = this->file_size_;
4857       size_t offset = 0;
4858       while (bytes_to_write > 0)
4859         {
4860           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4861                                           bytes_to_write);
4862           if (bytes_written == 0)
4863             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4864           else if (bytes_written < 0)
4865             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4866           else
4867             {
4868               bytes_to_write -= bytes_written;
4869               offset += bytes_written;
4870             }
4871         }
4872     }
4873   this->unmap();
4874
4875   // We don't close stdout or stderr
4876   if (this->o_ != STDOUT_FILENO
4877       && this->o_ != STDERR_FILENO
4878       && !this->is_temporary_)
4879     if (::close(this->o_) < 0)
4880       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4881   this->o_ = -1;
4882 }
4883
4884 // Instantiate the templates we need.  We could use the configure
4885 // script to restrict this to only the ones for implemented targets.
4886
4887 #ifdef HAVE_TARGET_32_LITTLE
4888 template
4889 off_t
4890 Output_section::add_input_section<32, false>(
4891     Layout* layout,
4892     Sized_relobj_file<32, false>* object,
4893     unsigned int shndx,
4894     const char* secname,
4895     const elfcpp::Shdr<32, false>& shdr,
4896     unsigned int reloc_shndx,
4897     bool have_sections_script);
4898 #endif
4899
4900 #ifdef HAVE_TARGET_32_BIG
4901 template
4902 off_t
4903 Output_section::add_input_section<32, true>(
4904     Layout* layout,
4905     Sized_relobj_file<32, true>* object,
4906     unsigned int shndx,
4907     const char* secname,
4908     const elfcpp::Shdr<32, true>& shdr,
4909     unsigned int reloc_shndx,
4910     bool have_sections_script);
4911 #endif
4912
4913 #ifdef HAVE_TARGET_64_LITTLE
4914 template
4915 off_t
4916 Output_section::add_input_section<64, false>(
4917     Layout* layout,
4918     Sized_relobj_file<64, false>* object,
4919     unsigned int shndx,
4920     const char* secname,
4921     const elfcpp::Shdr<64, false>& shdr,
4922     unsigned int reloc_shndx,
4923     bool have_sections_script);
4924 #endif
4925
4926 #ifdef HAVE_TARGET_64_BIG
4927 template
4928 off_t
4929 Output_section::add_input_section<64, true>(
4930     Layout* layout,
4931     Sized_relobj_file<64, true>* object,
4932     unsigned int shndx,
4933     const char* secname,
4934     const elfcpp::Shdr<64, true>& shdr,
4935     unsigned int reloc_shndx,
4936     bool have_sections_script);
4937 #endif
4938
4939 #ifdef HAVE_TARGET_32_LITTLE
4940 template
4941 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4942 #endif
4943
4944 #ifdef HAVE_TARGET_32_BIG
4945 template
4946 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4947 #endif
4948
4949 #ifdef HAVE_TARGET_64_LITTLE
4950 template
4951 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4952 #endif
4953
4954 #ifdef HAVE_TARGET_64_BIG
4955 template
4956 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4957 #endif
4958
4959 #ifdef HAVE_TARGET_32_LITTLE
4960 template
4961 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4962 #endif
4963
4964 #ifdef HAVE_TARGET_32_BIG
4965 template
4966 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4967 #endif
4968
4969 #ifdef HAVE_TARGET_64_LITTLE
4970 template
4971 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4972 #endif
4973
4974 #ifdef HAVE_TARGET_64_BIG
4975 template
4976 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4977 #endif
4978
4979 #ifdef HAVE_TARGET_32_LITTLE
4980 template
4981 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4982 #endif
4983
4984 #ifdef HAVE_TARGET_32_BIG
4985 template
4986 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4987 #endif
4988
4989 #ifdef HAVE_TARGET_64_LITTLE
4990 template
4991 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4992 #endif
4993
4994 #ifdef HAVE_TARGET_64_BIG
4995 template
4996 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4997 #endif
4998
4999 #ifdef HAVE_TARGET_32_LITTLE
5000 template
5001 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5002 #endif
5003
5004 #ifdef HAVE_TARGET_32_BIG
5005 template
5006 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5007 #endif
5008
5009 #ifdef HAVE_TARGET_64_LITTLE
5010 template
5011 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5012 #endif
5013
5014 #ifdef HAVE_TARGET_64_BIG
5015 template
5016 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5017 #endif
5018
5019 #ifdef HAVE_TARGET_32_LITTLE
5020 template
5021 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5022 #endif
5023
5024 #ifdef HAVE_TARGET_32_BIG
5025 template
5026 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5027 #endif
5028
5029 #ifdef HAVE_TARGET_64_LITTLE
5030 template
5031 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5032 #endif
5033
5034 #ifdef HAVE_TARGET_64_BIG
5035 template
5036 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5037 #endif
5038
5039 #ifdef HAVE_TARGET_32_LITTLE
5040 template
5041 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5042 #endif
5043
5044 #ifdef HAVE_TARGET_32_BIG
5045 template
5046 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5047 #endif
5048
5049 #ifdef HAVE_TARGET_64_LITTLE
5050 template
5051 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5052 #endif
5053
5054 #ifdef HAVE_TARGET_64_BIG
5055 template
5056 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5057 #endif
5058
5059 #ifdef HAVE_TARGET_32_LITTLE
5060 template
5061 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5062 #endif
5063
5064 #ifdef HAVE_TARGET_32_BIG
5065 template
5066 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5067 #endif
5068
5069 #ifdef HAVE_TARGET_64_LITTLE
5070 template
5071 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5072 #endif
5073
5074 #ifdef HAVE_TARGET_64_BIG
5075 template
5076 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5077 #endif
5078
5079 #ifdef HAVE_TARGET_32_LITTLE
5080 template
5081 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5082 #endif
5083
5084 #ifdef HAVE_TARGET_32_BIG
5085 template
5086 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5087 #endif
5088
5089 #ifdef HAVE_TARGET_64_LITTLE
5090 template
5091 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5092 #endif
5093
5094 #ifdef HAVE_TARGET_64_BIG
5095 template
5096 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5097 #endif
5098
5099 #ifdef HAVE_TARGET_32_LITTLE
5100 template
5101 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5102 #endif
5103
5104 #ifdef HAVE_TARGET_32_BIG
5105 template
5106 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5107 #endif
5108
5109 #ifdef HAVE_TARGET_64_LITTLE
5110 template
5111 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5112 #endif
5113
5114 #ifdef HAVE_TARGET_64_BIG
5115 template
5116 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5117 #endif
5118
5119 #ifdef HAVE_TARGET_32_LITTLE
5120 template
5121 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5122 #endif
5123
5124 #ifdef HAVE_TARGET_32_BIG
5125 template
5126 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5127 #endif
5128
5129 #ifdef HAVE_TARGET_64_LITTLE
5130 template
5131 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5132 #endif
5133
5134 #ifdef HAVE_TARGET_64_BIG
5135 template
5136 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5137 #endif
5138
5139 #ifdef HAVE_TARGET_32_LITTLE
5140 template
5141 class Output_data_group<32, false>;
5142 #endif
5143
5144 #ifdef HAVE_TARGET_32_BIG
5145 template
5146 class Output_data_group<32, true>;
5147 #endif
5148
5149 #ifdef HAVE_TARGET_64_LITTLE
5150 template
5151 class Output_data_group<64, false>;
5152 #endif
5153
5154 #ifdef HAVE_TARGET_64_BIG
5155 template
5156 class Output_data_group<64, true>;
5157 #endif
5158
5159 #ifdef HAVE_TARGET_32_LITTLE
5160 template
5161 class Output_data_got<32, false>;
5162 #endif
5163
5164 #ifdef HAVE_TARGET_32_BIG
5165 template
5166 class Output_data_got<32, true>;
5167 #endif
5168
5169 #ifdef HAVE_TARGET_64_LITTLE
5170 template
5171 class Output_data_got<64, false>;
5172 #endif
5173
5174 #ifdef HAVE_TARGET_64_BIG
5175 template
5176 class Output_data_got<64, true>;
5177 #endif
5178
5179 } // End namespace gold.