1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #include "libiberty.h"
35 #include "parameters.h"
40 #include "descriptors.h"
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
54 posix_fallocate(int o, off_t offset, off_t len)
56 return ftruncate(o, offset + len);
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
63 // Output_data variables.
65 bool Output_data::allocated_sizes_are_fixed;
67 // Output_data methods.
69 Output_data::~Output_data()
73 // Return the default alignment for the target size.
76 Output_data::default_alignment()
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
82 // Return the default alignment for a size--32 or 64.
85 Output_data::default_alignment_for_size(int size)
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
98 Output_section_headers::Output_section_headers(
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
114 // Compute the current data size.
117 Output_section_headers::do_size() const
119 // Count all the sections. Start with 1 for the null section.
121 if (!parameters->options().relocatable())
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
139 count += this->unattached_section_list_->size();
141 const int size = parameters->target().get_size();
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
150 return count * shdr_size;
153 // Write out the section headers.
156 Output_section_headers::do_write(Output_file* of)
158 switch (parameters->size_and_endianness())
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
185 template<int size, bool big_endian>
187 Output_section_headers::do_sized_write(Output_file* of)
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
208 oshdr.put_sh_size(section_count);
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
214 oshdr.put_sh_link(shstrndx);
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
274 of->write_output_view(this->offset(), all_shdrs_size, view);
277 // Output_segment_header methods.
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
286 Output_segment_headers::do_write(Output_file* of)
288 switch (parameters->size_and_endianness())
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
315 template<int size, bool big_endian>
317 Output_segment_headers::do_sized_write(Output_file* of)
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
334 gold_assert(v - view == all_phdrs_size);
336 of->write_output_view(this->offset(), all_phdrs_size, view);
340 Output_segment_headers::do_size() const
342 const int size = parameters->target().get_size();
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
351 return this->segment_list_.size() * phdr_size;
354 // Output_file_header methods.
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
362 segment_header_(osh),
363 section_header_(NULL),
367 this->set_data_size(this->do_size());
370 // Set the section table information for a file header.
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
380 // Write out the file header.
383 Output_file_header::do_write(Output_file* of)
385 gold_assert(this->offset() == 0);
387 switch (parameters->size_and_endianness())
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
414 // Write out the file header with appropriate size and endianess.
416 template<int size, bool big_endian>
418 Output_file_header::do_sized_write(Output_file* of)
420 gold_assert(this->offset() == 0);
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
456 oehdr.put_e_entry(this->entry<size>());
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
461 oehdr.put_e_phoff(this->segment_header_->offset());
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
467 if (this->segment_header_ == NULL)
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
490 oehdr.put_e_shnum(0);
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
502 of->write_output_view(0, ehdr_size, view);
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
521 Symbol* sym = this->symtab_->lookup(entry);
523 typename Sized_symbol<size>::Value_type v;
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
537 v = strtoull(entry, &endptr, 0);
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
549 // Compute the current data size.
552 Output_file_header::do_size() const
554 const int size = parameters->target().get_size();
556 return elfcpp::Elf_sizes<32>::ehdr_size;
558 return elfcpp::Elf_sizes<64>::ehdr_size;
563 // Output_data_const methods.
566 Output_data_const::do_write(Output_file* of)
568 of->write(this->offset(), this->data_.data(), this->data_.size());
571 // Output_data_const_buffer methods.
574 Output_data_const_buffer::do_write(Output_file* of)
576 of->write(this->offset(), this->p_, this->data_size());
579 // Output_section_data methods.
581 // Record the output section, and set the entry size and such.
584 Output_section_data::set_output_section(Output_section* os)
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
591 // Return the section index of the output section.
594 Output_section_data::do_out_shndx() const
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
604 Output_section_data::set_addralign(uint64_t addralign)
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
612 // Output_data_strtab methods.
614 // Set the final data size.
617 Output_data_strtab::set_final_data_size()
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
623 // Write out a string table.
626 Output_data_strtab::do_write(Output_file* of)
628 this->strtab_->write(of, this->offset());
631 // Output_reloc methods.
633 // A reloc against a global symbol.
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
649 this->u1_.gsym = gsym;
652 this->set_needs_dynsym_index();
655 template<bool dynamic, int size, bool big_endian>
656 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
659 Sized_relobj<size, big_endian>* relobj,
664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
668 gold_assert(shndx != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
674 this->set_needs_dynsym_index();
677 // A reloc against a local symbol.
679 template<bool dynamic, int size, bool big_endian>
680 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
688 bool is_section_symbol)
689 : address_(address), local_sym_index_(local_sym_index), type_(type),
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
697 this->u1_.relobj = relobj;
700 this->set_needs_dynsym_index();
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
712 bool is_section_symbol)
713 : address_(address), local_sym_index_(local_sym_index), type_(type),
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
725 this->set_needs_dynsym_index();
728 // A reloc against the STT_SECTION symbol of an output section.
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
745 this->set_needs_dynsym_index();
747 os->set_needs_symtab_index();
750 template<bool dynamic, int size, bool big_endian>
751 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
754 Sized_relobj<size, big_endian>* relobj,
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
761 gold_assert(shndx != INVALID_CODE);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
765 this->u2_.relobj = relobj;
767 this->set_needs_dynsym_index();
769 os->set_needs_symtab_index();
772 // An absolute relocation.
774 template<bool dynamic, int size, bool big_endian>
775 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
779 : address_(address), local_sym_index_(0), type_(type),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
789 template<bool dynamic, int size, bool big_endian>
790 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
792 Sized_relobj<size, big_endian>* relobj,
795 : address_(address), local_sym_index_(0), type_(type),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
806 // A target specific relocation.
808 template<bool dynamic, int size, bool big_endian>
809 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
824 template<bool dynamic, int size, bool big_endian>
825 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
828 Sized_relobj<size, big_endian>* relobj,
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
839 this->u2_.relobj = relobj;
842 // Record that we need a dynamic symbol index for this relocation.
844 template<bool dynamic, int size, bool big_endian>
846 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847 set_needs_dynsym_index()
849 if (this->is_symbolless_)
851 switch (this->local_sym_index_)
857 this->u1_.gsym->set_needs_dynsym_entry();
861 this->u1_.os->set_needs_dynsym_index();
865 // The target must take care of this if necessary.
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
883 // Get the symbol index of a relocation.
885 template<bool dynamic, int size, bool big_endian>
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
891 if (this->is_symbolless_)
893 switch (this->local_sym_index_)
899 if (this->u1_.gsym == NULL)
902 index = this->u1_.gsym->dynsym_index();
904 index = this->u1_.gsym->symtab_index();
909 index = this->u1_.os->dynsym_index();
911 index = this->u1_.os->symtab_index();
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
920 // Relocations without symbols use a symbol index of 0.
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
930 index = this->u1_.relobj->dynsym_index(lsi);
932 index = this->u1_.relobj->symtab_index(lsi);
936 Output_section* os = this->u1_.relobj->output_section(lsi);
937 gold_assert(os != NULL);
939 index = os->dynsym_index();
941 index = os->symtab_index();
946 gold_assert(index != -1U);
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
953 template<bool dynamic, int size, bool big_endian>
954 typename elfcpp::Elf_types<size>::Elf_Addr
955 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
956 local_section_offset(Addend addend) const
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
960 && this->local_sym_index_ != TARGET_CODE
961 && this->local_sym_index_ != INVALID_CODE
962 && this->local_sym_index_ != 0
963 && this->is_section_symbol_);
964 const unsigned int lsi = this->local_sym_index_;
965 Output_section* os = this->u1_.relobj->output_section(lsi);
966 gold_assert(os != NULL);
967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
968 if (offset != invalid_address)
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
972 gold_assert(offset != invalid_address);
976 // Get the output address of a relocation.
978 template<bool dynamic, int size, bool big_endian>
979 typename elfcpp::Elf_types<size>::Elf_Addr
980 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
982 Address address = this->address_;
983 if (this->shndx_ != INVALID_CODE)
985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
986 gold_assert(os != NULL);
987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
988 if (off != invalid_address)
989 address += os->address() + off;
992 address = os->output_address(this->u2_.relobj, this->shndx_,
994 gold_assert(address != invalid_address);
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
1002 // Write out the offset and info fields of a Rel or Rela relocation
1005 template<bool dynamic, int size, bool big_endian>
1006 template<typename Write_rel>
1008 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1011 wr->put_r_offset(this->get_address());
1012 unsigned int sym_index = this->get_symbol_index();
1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1016 // Write out a Rel relocation.
1018 template<bool dynamic, int size, bool big_endian>
1020 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1027 // Get the value of the symbol referred to by a Rel relocation.
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1032 Addend addend) const
1034 if (this->local_sym_index_ == GSYM_CODE)
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1038 return sym->value() + addend;
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
1041 && this->local_sym_index_ != TARGET_CODE
1042 && this->local_sym_index_ != INVALID_CODE
1043 && this->local_sym_index_ != 0
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1056 template<bool dynamic, int size, bool big_endian>
1058 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1062 if (this->is_relative_)
1064 if (!r2.is_relative_)
1066 // Otherwise sort by reloc address below.
1068 else if (r2.is_relative_)
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1076 else if (sym1 > sym2)
1078 // Otherwise sort by reloc address.
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1085 else if (addr1 > addr2)
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1094 else if (type1 > type2)
1097 // These relocs appear to be exactly the same.
1101 // Write out a Rela relocation.
1103 template<bool dynamic, int size, bool big_endian>
1105 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
1110 Addend addend = this->addend_;
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
1114 else if (this->rel_.is_symbolless())
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
1117 addend = this->rel_.local_section_offset(addend);
1118 orel.put_r_addend(addend);
1121 // Output_data_reloc_base methods.
1123 // Adjust the output section.
1125 template<int sh_type, bool dynamic, int size, bool big_endian>
1127 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1137 os->set_should_link_to_dynsym();
1139 os->set_should_link_to_symtab();
1142 // Write out relocation data.
1144 template<int sh_type, bool dynamic, int size, bool big_endian>
1146 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1149 const off_t off = this->offset();
1150 const off_t oview_size = this->data_size();
1151 unsigned char* const oview = of->get_output_view(off, oview_size);
1153 if (this->sort_relocs())
1155 gold_assert(dynamic);
1156 std::sort(this->relocs_.begin(), this->relocs_.end(),
1157 Sort_relocs_comparison());
1160 unsigned char* pov = oview;
1161 for (typename Relocs::const_iterator p = this->relocs_.begin();
1162 p != this->relocs_.end();
1169 gold_assert(pov - oview == oview_size);
1171 of->write_output_view(off, oview_size, oview);
1173 // We no longer need the relocation entries.
1174 this->relocs_.clear();
1177 // Class Output_relocatable_relocs.
1179 template<int sh_type, int size, bool big_endian>
1181 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1183 this->set_data_size(this->rr_->output_reloc_count()
1184 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1187 // class Output_data_group.
1189 template<int size, bool big_endian>
1190 Output_data_group<size, big_endian>::Output_data_group(
1191 Sized_relobj<size, big_endian>* relobj,
1192 section_size_type entry_count,
1193 elfcpp::Elf_Word flags,
1194 std::vector<unsigned int>* input_shndxes)
1195 : Output_section_data(entry_count * 4, 4, false),
1199 this->input_shndxes_.swap(*input_shndxes);
1202 // Write out the section group, which means translating the section
1203 // indexes to apply to the output file.
1205 template<int size, bool big_endian>
1207 Output_data_group<size, big_endian>::do_write(Output_file* of)
1209 const off_t off = this->offset();
1210 const section_size_type oview_size =
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview = of->get_output_view(off, oview_size);
1214 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1215 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1218 for (std::vector<unsigned int>::const_iterator p =
1219 this->input_shndxes_.begin();
1220 p != this->input_shndxes_.end();
1223 Output_section* os = this->relobj_->output_section(*p);
1225 unsigned int output_shndx;
1227 output_shndx = os->out_shndx();
1230 this->relobj_->error(_("section group retained but "
1231 "group element discarded"));
1235 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1238 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1239 gold_assert(wrote == oview_size);
1241 of->write_output_view(off, oview_size, oview);
1243 // We no longer need this information.
1244 this->input_shndxes_.clear();
1247 // Output_data_got::Got_entry methods.
1249 // Write out the entry.
1251 template<int size, bool big_endian>
1253 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1257 switch (this->local_sym_index_)
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
1264 Symbol* gsym = this->u_.gsym;
1265 Sized_symbol<size>* sgsym;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1270 val = sgsym->value();
1275 val = this->u_.constant;
1280 const unsigned int lsi = this->local_sym_index_;
1281 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1282 val = symval->value(this->u_.object, 0);
1287 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1290 // Output_data_got methods.
1292 // Add an entry for a global symbol to the GOT. This returns true if
1293 // this is a new GOT entry, false if the symbol already had a GOT
1296 template<int size, bool big_endian>
1298 Output_data_got<size, big_endian>::add_global(
1300 unsigned int got_type)
1302 if (gsym->has_got_offset(got_type))
1305 this->entries_.push_back(Got_entry(gsym));
1306 this->set_got_size();
1307 gsym->set_got_offset(got_type, this->last_got_offset());
1311 // Add an entry for a global symbol to the GOT, and add a dynamic
1312 // relocation of type R_TYPE for the GOT entry.
1313 template<int size, bool big_endian>
1315 Output_data_got<size, big_endian>::add_global_with_rel(
1317 unsigned int got_type,
1319 unsigned int r_type)
1321 if (gsym->has_got_offset(got_type))
1324 this->entries_.push_back(Got_entry());
1325 this->set_got_size();
1326 unsigned int got_offset = this->last_got_offset();
1327 gsym->set_got_offset(got_type, got_offset);
1328 rel_dyn->add_global(gsym, r_type, this, got_offset);
1331 template<int size, bool big_endian>
1333 Output_data_got<size, big_endian>::add_global_with_rela(
1335 unsigned int got_type,
1337 unsigned int r_type)
1339 if (gsym->has_got_offset(got_type))
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
1345 gsym->set_got_offset(got_type, got_offset);
1346 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1349 // Add a pair of entries for a global symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size, bool big_endian>
1354 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1356 unsigned int got_type,
1358 unsigned int r_type_1,
1359 unsigned int r_type_2)
1361 if (gsym->has_got_offset(got_type))
1364 this->entries_.push_back(Got_entry());
1365 unsigned int got_offset = this->last_got_offset();
1366 gsym->set_got_offset(got_type, got_offset);
1367 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1369 this->entries_.push_back(Got_entry());
1372 got_offset = this->last_got_offset();
1373 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1376 this->set_got_size();
1379 template<int size, bool big_endian>
1381 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1383 unsigned int got_type,
1385 unsigned int r_type_1,
1386 unsigned int r_type_2)
1388 if (gsym->has_got_offset(got_type))
1391 this->entries_.push_back(Got_entry());
1392 unsigned int got_offset = this->last_got_offset();
1393 gsym->set_got_offset(got_type, got_offset);
1394 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1396 this->entries_.push_back(Got_entry());
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1403 this->set_got_size();
1406 // Add an entry for a local symbol to the GOT. This returns true if
1407 // this is a new GOT entry, false if the symbol already has a GOT
1410 template<int size, bool big_endian>
1412 Output_data_got<size, big_endian>::add_local(
1413 Sized_relobj<size, big_endian>* object,
1414 unsigned int symndx,
1415 unsigned int got_type)
1417 if (object->local_has_got_offset(symndx, got_type))
1420 this->entries_.push_back(Got_entry(object, symndx));
1421 this->set_got_size();
1422 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1426 // Add an entry for a local symbol to the GOT, and add a dynamic
1427 // relocation of type R_TYPE for the GOT entry.
1428 template<int size, bool big_endian>
1430 Output_data_got<size, big_endian>::add_local_with_rel(
1431 Sized_relobj<size, big_endian>* object,
1432 unsigned int symndx,
1433 unsigned int got_type,
1435 unsigned int r_type)
1437 if (object->local_has_got_offset(symndx, got_type))
1440 this->entries_.push_back(Got_entry());
1441 this->set_got_size();
1442 unsigned int got_offset = this->last_got_offset();
1443 object->set_local_got_offset(symndx, got_type, got_offset);
1444 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1447 template<int size, bool big_endian>
1449 Output_data_got<size, big_endian>::add_local_with_rela(
1450 Sized_relobj<size, big_endian>* object,
1451 unsigned int symndx,
1452 unsigned int got_type,
1454 unsigned int r_type)
1456 if (object->local_has_got_offset(symndx, got_type))
1459 this->entries_.push_back(Got_entry());
1460 this->set_got_size();
1461 unsigned int got_offset = this->last_got_offset();
1462 object->set_local_got_offset(symndx, got_type, got_offset);
1463 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1466 // Add a pair of entries for a local symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size, bool big_endian>
1471 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1472 Sized_relobj<size, big_endian>* object,
1473 unsigned int symndx,
1475 unsigned int got_type,
1477 unsigned int r_type_1,
1478 unsigned int r_type_2)
1480 if (object->local_has_got_offset(symndx, got_type))
1483 this->entries_.push_back(Got_entry());
1484 unsigned int got_offset = this->last_got_offset();
1485 object->set_local_got_offset(symndx, got_type, got_offset);
1486 Output_section* os = object->output_section(shndx);
1487 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1489 this->entries_.push_back(Got_entry(object, symndx));
1492 got_offset = this->last_got_offset();
1493 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1496 this->set_got_size();
1499 template<int size, bool big_endian>
1501 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1502 Sized_relobj<size, big_endian>* object,
1503 unsigned int symndx,
1505 unsigned int got_type,
1507 unsigned int r_type_1,
1508 unsigned int r_type_2)
1510 if (object->local_has_got_offset(symndx, got_type))
1513 this->entries_.push_back(Got_entry());
1514 unsigned int got_offset = this->last_got_offset();
1515 object->set_local_got_offset(symndx, got_type, got_offset);
1516 Output_section* os = object->output_section(shndx);
1517 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1519 this->entries_.push_back(Got_entry(object, symndx));
1522 got_offset = this->last_got_offset();
1523 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1526 this->set_got_size();
1529 // Write out the GOT.
1531 template<int size, bool big_endian>
1533 Output_data_got<size, big_endian>::do_write(Output_file* of)
1535 const int add = size / 8;
1537 const off_t off = this->offset();
1538 const off_t oview_size = this->data_size();
1539 unsigned char* const oview = of->get_output_view(off, oview_size);
1541 unsigned char* pov = oview;
1542 for (typename Got_entries::const_iterator p = this->entries_.begin();
1543 p != this->entries_.end();
1550 gold_assert(pov - oview == oview_size);
1552 of->write_output_view(off, oview_size, oview);
1554 // We no longer need the GOT entries.
1555 this->entries_.clear();
1558 // Output_data_dynamic::Dynamic_entry methods.
1560 // Write out the entry.
1562 template<int size, bool big_endian>
1564 Output_data_dynamic::Dynamic_entry::write(
1566 const Stringpool* pool) const
1568 typename elfcpp::Elf_types<size>::Elf_WXword val;
1569 switch (this->offset_)
1571 case DYNAMIC_NUMBER:
1575 case DYNAMIC_SECTION_SIZE:
1576 val = this->u_.od->data_size();
1577 if (this->od2 != NULL)
1578 val += this->od2->data_size();
1581 case DYNAMIC_SYMBOL:
1583 const Sized_symbol<size>* s =
1584 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1589 case DYNAMIC_STRING:
1590 val = pool->get_offset(this->u_.str);
1594 val = this->u_.od->address() + this->offset_;
1598 elfcpp::Dyn_write<size, big_endian> dw(pov);
1599 dw.put_d_tag(this->tag_);
1603 // Output_data_dynamic methods.
1605 // Adjust the output section to set the entry size.
1608 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1610 if (parameters->target().get_size() == 32)
1611 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1612 else if (parameters->target().get_size() == 64)
1613 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1618 // Set the final data size.
1621 Output_data_dynamic::set_final_data_size()
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
1625 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1627 int extra = parameters->options().spare_dynamic_tags();
1628 for (int i = 0; i < extra; ++i)
1629 this->add_constant(elfcpp::DT_NULL, 0);
1630 this->add_constant(elfcpp::DT_NULL, 0);
1634 if (parameters->target().get_size() == 32)
1635 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1636 else if (parameters->target().get_size() == 64)
1637 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1640 this->set_data_size(this->entries_.size() * dyn_size);
1643 // Write out the dynamic entries.
1646 Output_data_dynamic::do_write(Output_file* of)
1648 switch (parameters->size_and_endianness())
1650 #ifdef HAVE_TARGET_32_LITTLE
1651 case Parameters::TARGET_32_LITTLE:
1652 this->sized_write<32, false>(of);
1655 #ifdef HAVE_TARGET_32_BIG
1656 case Parameters::TARGET_32_BIG:
1657 this->sized_write<32, true>(of);
1660 #ifdef HAVE_TARGET_64_LITTLE
1661 case Parameters::TARGET_64_LITTLE:
1662 this->sized_write<64, false>(of);
1665 #ifdef HAVE_TARGET_64_BIG
1666 case Parameters::TARGET_64_BIG:
1667 this->sized_write<64, true>(of);
1675 template<int size, bool big_endian>
1677 Output_data_dynamic::sized_write(Output_file* of)
1679 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1681 const off_t offset = this->offset();
1682 const off_t oview_size = this->data_size();
1683 unsigned char* const oview = of->get_output_view(offset, oview_size);
1685 unsigned char* pov = oview;
1686 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1687 p != this->entries_.end();
1690 p->write<size, big_endian>(pov, this->pool_);
1694 gold_assert(pov - oview == oview_size);
1696 of->write_output_view(offset, oview_size, oview);
1698 // We no longer need the dynamic entries.
1699 this->entries_.clear();
1702 // Class Output_symtab_xindex.
1705 Output_symtab_xindex::do_write(Output_file* of)
1707 const off_t offset = this->offset();
1708 const off_t oview_size = this->data_size();
1709 unsigned char* const oview = of->get_output_view(offset, oview_size);
1711 memset(oview, 0, oview_size);
1713 if (parameters->target().is_big_endian())
1714 this->endian_do_write<true>(oview);
1716 this->endian_do_write<false>(oview);
1718 of->write_output_view(offset, oview_size, oview);
1720 // We no longer need the data.
1721 this->entries_.clear();
1724 template<bool big_endian>
1726 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1728 for (Xindex_entries::const_iterator p = this->entries_.begin();
1729 p != this->entries_.end();
1732 unsigned int symndx = p->first;
1733 gold_assert(symndx * 4 < this->data_size());
1734 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1738 // Output_section::Input_section methods.
1740 // Return the data size. For an input section we store the size here.
1741 // For an Output_section_data, we have to ask it for the size.
1744 Output_section::Input_section::data_size() const
1746 if (this->is_input_section())
1747 return this->u1_.data_size;
1749 return this->u2_.posd->data_size();
1752 // Return the object for an input section.
1755 Output_section::Input_section::relobj() const
1757 if (this->is_input_section())
1758 return this->u2_.object;
1759 else if (this->is_merge_section())
1761 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1762 return this->u2_.pomb->first_relobj();
1764 else if (this->is_relaxed_input_section())
1765 return this->u2_.poris->relobj();
1770 // Return the input section index for an input section.
1773 Output_section::Input_section::shndx() const
1775 if (this->is_input_section())
1776 return this->shndx_;
1777 else if (this->is_merge_section())
1779 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1780 return this->u2_.pomb->first_shndx();
1782 else if (this->is_relaxed_input_section())
1783 return this->u2_.poris->shndx();
1788 // Set the address and file offset.
1791 Output_section::Input_section::set_address_and_file_offset(
1794 off_t section_file_offset)
1796 if (this->is_input_section())
1797 this->u2_.object->set_section_offset(this->shndx_,
1798 file_offset - section_file_offset);
1800 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1803 // Reset the address and file offset.
1806 Output_section::Input_section::reset_address_and_file_offset()
1808 if (!this->is_input_section())
1809 this->u2_.posd->reset_address_and_file_offset();
1812 // Finalize the data size.
1815 Output_section::Input_section::finalize_data_size()
1817 if (!this->is_input_section())
1818 this->u2_.posd->finalize_data_size();
1821 // Try to turn an input offset into an output offset. We want to
1822 // return the output offset relative to the start of this
1823 // Input_section in the output section.
1826 Output_section::Input_section::output_offset(
1827 const Relobj* object,
1829 section_offset_type offset,
1830 section_offset_type *poutput) const
1832 if (!this->is_input_section())
1833 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1836 if (this->shndx_ != shndx || this->u2_.object != object)
1843 // Return whether this is the merge section for the input section
1847 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1848 unsigned int shndx) const
1850 if (this->is_input_section())
1852 return this->u2_.posd->is_merge_section_for(object, shndx);
1855 // Write out the data. We don't have to do anything for an input
1856 // section--they are handled via Object::relocate--but this is where
1857 // we write out the data for an Output_section_data.
1860 Output_section::Input_section::write(Output_file* of)
1862 if (!this->is_input_section())
1863 this->u2_.posd->write(of);
1866 // Write the data to a buffer. As for write(), we don't have to do
1867 // anything for an input section.
1870 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1872 if (!this->is_input_section())
1873 this->u2_.posd->write_to_buffer(buffer);
1876 // Print to a map file.
1879 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1881 switch (this->shndx_)
1883 case OUTPUT_SECTION_CODE:
1884 case MERGE_DATA_SECTION_CODE:
1885 case MERGE_STRING_SECTION_CODE:
1886 this->u2_.posd->print_to_mapfile(mapfile);
1889 case RELAXED_INPUT_SECTION_CODE:
1891 Output_relaxed_input_section* relaxed_section =
1892 this->relaxed_input_section();
1893 mapfile->print_input_section(relaxed_section->relobj(),
1894 relaxed_section->shndx());
1898 mapfile->print_input_section(this->u2_.object, this->shndx_);
1903 // Output_section methods.
1905 // Construct an Output_section. NAME will point into a Stringpool.
1907 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1908 elfcpp::Elf_Xword flags)
1913 link_section_(NULL),
1915 info_section_(NULL),
1924 first_input_offset_(0),
1926 postprocessing_buffer_(NULL),
1927 needs_symtab_index_(false),
1928 needs_dynsym_index_(false),
1929 should_link_to_symtab_(false),
1930 should_link_to_dynsym_(false),
1931 after_input_sections_(false),
1932 requires_postprocessing_(false),
1933 found_in_sections_clause_(false),
1934 has_load_address_(false),
1935 info_uses_section_index_(false),
1936 input_section_order_specified_(false),
1937 may_sort_attached_input_sections_(false),
1938 must_sort_attached_input_sections_(false),
1939 attached_input_sections_are_sorted_(false),
1941 is_relro_local_(false),
1942 is_last_relro_(false),
1943 is_first_non_relro_(false),
1944 is_small_section_(false),
1945 is_large_section_(false),
1947 is_dynamic_linker_section_(false),
1948 generate_code_fills_at_write_(false),
1949 is_entsize_zero_(false),
1950 section_offsets_need_adjustment_(false),
1954 lookup_maps_(new Output_section_lookup_maps)
1956 // An unallocated section has no address. Forcing this means that
1957 // we don't need special treatment for symbols defined in debug
1959 if ((flags & elfcpp::SHF_ALLOC) == 0)
1960 this->set_address(0);
1963 Output_section::~Output_section()
1965 delete this->checkpoint_;
1968 // Set the entry size.
1971 Output_section::set_entsize(uint64_t v)
1973 if (this->is_entsize_zero_)
1975 else if (this->entsize_ == 0)
1977 else if (this->entsize_ != v)
1980 this->is_entsize_zero_ = 1;
1984 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1985 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1986 // relocation section which applies to this section, or 0 if none, or
1987 // -1U if more than one. Return the offset of the input section
1988 // within the output section. Return -1 if the input section will
1989 // receive special handling. In the normal case we don't always keep
1990 // track of input sections for an Output_section. Instead, each
1991 // Object keeps track of the Output_section for each of its input
1992 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1993 // track of input sections here; this is used when SECTIONS appears in
1996 template<int size, bool big_endian>
1998 Output_section::add_input_section(Layout* layout,
1999 Sized_relobj<size, big_endian>* object,
2001 const char* secname,
2002 const elfcpp::Shdr<size, big_endian>& shdr,
2003 unsigned int reloc_shndx,
2004 bool have_sections_script)
2006 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2007 if ((addralign & (addralign - 1)) != 0)
2009 object->error(_("invalid alignment %lu for section \"%s\""),
2010 static_cast<unsigned long>(addralign), secname);
2014 if (addralign > this->addralign_)
2015 this->addralign_ = addralign;
2017 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2018 uint64_t entsize = shdr.get_sh_entsize();
2020 // .debug_str is a mergeable string section, but is not always so
2021 // marked by compilers. Mark manually here so we can optimize.
2022 if (strcmp(secname, ".debug_str") == 0)
2024 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2028 this->update_flags_for_input_section(sh_flags);
2029 this->set_entsize(entsize);
2031 // If this is a SHF_MERGE section, we pass all the input sections to
2032 // a Output_data_merge. We don't try to handle relocations for such
2033 // a section. We don't try to handle empty merge sections--they
2034 // mess up the mappings, and are useless anyhow.
2035 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2037 && shdr.get_sh_size() > 0)
2039 // Keep information about merged input sections for rebuilding fast
2040 // lookup maps if we have sections-script or we do relaxation.
2041 bool keeps_input_sections =
2042 have_sections_script || parameters->target().may_relax();
2043 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2044 addralign, keeps_input_sections))
2046 // Tell the relocation routines that they need to call the
2047 // output_offset method to determine the final address.
2052 off_t offset_in_section = this->current_data_size_for_child();
2053 off_t aligned_offset_in_section = align_address(offset_in_section,
2056 // Determine if we want to delay code-fill generation until the output
2057 // section is written. When the target is relaxing, we want to delay fill
2058 // generating to avoid adjusting them during relaxation.
2059 if (!this->generate_code_fills_at_write_
2060 && !have_sections_script
2061 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2062 && parameters->target().has_code_fill()
2063 && parameters->target().may_relax())
2065 gold_assert(this->fills_.empty());
2066 this->generate_code_fills_at_write_ = true;
2069 if (aligned_offset_in_section > offset_in_section
2070 && !this->generate_code_fills_at_write_
2071 && !have_sections_script
2072 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2073 && parameters->target().has_code_fill())
2075 // We need to add some fill data. Using fill_list_ when
2076 // possible is an optimization, since we will often have fill
2077 // sections without input sections.
2078 off_t fill_len = aligned_offset_in_section - offset_in_section;
2079 if (this->input_sections_.empty())
2080 this->fills_.push_back(Fill(offset_in_section, fill_len));
2083 std::string fill_data(parameters->target().code_fill(fill_len));
2084 Output_data_const* odc = new Output_data_const(fill_data, 1);
2085 this->input_sections_.push_back(Input_section(odc));
2089 section_size_type input_section_size = shdr.get_sh_size();
2090 section_size_type uncompressed_size;
2091 if (object->section_is_compressed(shndx, &uncompressed_size))
2092 input_section_size = uncompressed_size;
2094 this->set_current_data_size_for_child(aligned_offset_in_section
2095 + input_section_size);
2097 // We need to keep track of this section if we are already keeping
2098 // track of sections, or if we are relaxing. Also, if this is a
2099 // section which requires sorting, or which may require sorting in
2100 // the future, we keep track of the sections. If the
2101 // --section-ordering-file option is used to specify the order of
2102 // sections, we need to keep track of sections.
2103 if (have_sections_script
2104 || !this->input_sections_.empty()
2105 || this->may_sort_attached_input_sections()
2106 || this->must_sort_attached_input_sections()
2107 || parameters->options().user_set_Map()
2108 || parameters->target().may_relax()
2109 || parameters->options().section_ordering_file())
2111 Input_section isecn(object, shndx, shdr.get_sh_size(), addralign);
2112 if (parameters->options().section_ordering_file())
2114 unsigned int section_order_index =
2115 layout->find_section_order_index(std::string(secname));
2116 if (section_order_index != 0)
2118 isecn.set_section_order_index(section_order_index);
2119 this->set_input_section_order_specified();
2122 this->input_sections_.push_back(isecn);
2125 return aligned_offset_in_section;
2128 // Add arbitrary data to an output section.
2131 Output_section::add_output_section_data(Output_section_data* posd)
2133 Input_section inp(posd);
2134 this->add_output_section_data(&inp);
2136 if (posd->is_data_size_valid())
2138 off_t offset_in_section = this->current_data_size_for_child();
2139 off_t aligned_offset_in_section = align_address(offset_in_section,
2141 this->set_current_data_size_for_child(aligned_offset_in_section
2142 + posd->data_size());
2146 // Add a relaxed input section.
2149 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2151 Input_section inp(poris);
2152 this->add_output_section_data(&inp);
2153 if (this->lookup_maps_->is_valid())
2154 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2155 poris->shndx(), poris);
2157 // For a relaxed section, we use the current data size. Linker scripts
2158 // get all the input sections, including relaxed one from an output
2159 // section and add them back to them same output section to compute the
2160 // output section size. If we do not account for sizes of relaxed input
2161 // sections, an output section would be incorrectly sized.
2162 off_t offset_in_section = this->current_data_size_for_child();
2163 off_t aligned_offset_in_section = align_address(offset_in_section,
2164 poris->addralign());
2165 this->set_current_data_size_for_child(aligned_offset_in_section
2166 + poris->current_data_size());
2169 // Add arbitrary data to an output section by Input_section.
2172 Output_section::add_output_section_data(Input_section* inp)
2174 if (this->input_sections_.empty())
2175 this->first_input_offset_ = this->current_data_size_for_child();
2177 this->input_sections_.push_back(*inp);
2179 uint64_t addralign = inp->addralign();
2180 if (addralign > this->addralign_)
2181 this->addralign_ = addralign;
2183 inp->set_output_section(this);
2186 // Add a merge section to an output section.
2189 Output_section::add_output_merge_section(Output_section_data* posd,
2190 bool is_string, uint64_t entsize)
2192 Input_section inp(posd, is_string, entsize);
2193 this->add_output_section_data(&inp);
2196 // Add an input section to a SHF_MERGE section.
2199 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2200 uint64_t flags, uint64_t entsize,
2202 bool keeps_input_sections)
2204 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2206 // We only merge strings if the alignment is not more than the
2207 // character size. This could be handled, but it's unusual.
2208 if (is_string && addralign > entsize)
2211 // We cannot restore merged input section states.
2212 gold_assert(this->checkpoint_ == NULL);
2214 // Look up merge sections by required properties.
2215 // Currently, we only invalidate the lookup maps in script processing
2216 // and relaxation. We should not have done either when we reach here.
2217 // So we assume that the lookup maps are valid to simply code.
2218 gold_assert(this->lookup_maps_->is_valid());
2219 Merge_section_properties msp(is_string, entsize, addralign);
2220 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2221 bool is_new = false;
2224 gold_assert(pomb->is_string() == is_string
2225 && pomb->entsize() == entsize
2226 && pomb->addralign() == addralign);
2230 // Create a new Output_merge_data or Output_merge_string_data.
2232 pomb = new Output_merge_data(entsize, addralign);
2238 pomb = new Output_merge_string<char>(addralign);
2241 pomb = new Output_merge_string<uint16_t>(addralign);
2244 pomb = new Output_merge_string<uint32_t>(addralign);
2250 // If we need to do script processing or relaxation, we need to keep
2251 // the original input sections to rebuild the fast lookup maps.
2252 if (keeps_input_sections)
2253 pomb->set_keeps_input_sections();
2257 if (pomb->add_input_section(object, shndx))
2259 // Add new merge section to this output section and link merge
2260 // section properties to new merge section in map.
2263 this->add_output_merge_section(pomb, is_string, entsize);
2264 this->lookup_maps_->add_merge_section(msp, pomb);
2267 // Add input section to new merge section and link input section to new
2268 // merge section in map.
2269 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2274 // If add_input_section failed, delete new merge section to avoid
2275 // exporting empty merge sections in Output_section::get_input_section.
2282 // Build a relaxation map to speed up relaxation of existing input sections.
2283 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2286 Output_section::build_relaxation_map(
2287 const Input_section_list& input_sections,
2289 Relaxation_map* relaxation_map) const
2291 for (size_t i = 0; i < limit; ++i)
2293 const Input_section& is(input_sections[i]);
2294 if (is.is_input_section() || is.is_relaxed_input_section())
2296 Section_id sid(is.relobj(), is.shndx());
2297 (*relaxation_map)[sid] = i;
2302 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2303 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2304 // indices of INPUT_SECTIONS.
2307 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2308 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2309 const Relaxation_map& map,
2310 Input_section_list* input_sections)
2312 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2314 Output_relaxed_input_section* poris = relaxed_sections[i];
2315 Section_id sid(poris->relobj(), poris->shndx());
2316 Relaxation_map::const_iterator p = map.find(sid);
2317 gold_assert(p != map.end());
2318 gold_assert((*input_sections)[p->second].is_input_section());
2319 (*input_sections)[p->second] = Input_section(poris);
2323 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2324 // is a vector of pointers to Output_relaxed_input_section or its derived
2325 // classes. The relaxed sections must correspond to existing input sections.
2328 Output_section::convert_input_sections_to_relaxed_sections(
2329 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2331 gold_assert(parameters->target().may_relax());
2333 // We want to make sure that restore_states does not undo the effect of
2334 // this. If there is no checkpoint active, just search the current
2335 // input section list and replace the sections there. If there is
2336 // a checkpoint, also replace the sections there.
2338 // By default, we look at the whole list.
2339 size_t limit = this->input_sections_.size();
2341 if (this->checkpoint_ != NULL)
2343 // Replace input sections with relaxed input section in the saved
2344 // copy of the input section list.
2345 if (this->checkpoint_->input_sections_saved())
2348 this->build_relaxation_map(
2349 *(this->checkpoint_->input_sections()),
2350 this->checkpoint_->input_sections()->size(),
2352 this->convert_input_sections_in_list_to_relaxed_sections(
2355 this->checkpoint_->input_sections());
2359 // We have not copied the input section list yet. Instead, just
2360 // look at the portion that would be saved.
2361 limit = this->checkpoint_->input_sections_size();
2365 // Convert input sections in input_section_list.
2367 this->build_relaxation_map(this->input_sections_, limit, &map);
2368 this->convert_input_sections_in_list_to_relaxed_sections(
2371 &this->input_sections_);
2373 // Update fast look-up map.
2374 if (this->lookup_maps_->is_valid())
2375 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2377 Output_relaxed_input_section* poris = relaxed_sections[i];
2378 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2379 poris->shndx(), poris);
2383 // Update the output section flags based on input section flags.
2386 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2388 // If we created the section with SHF_ALLOC clear, we set the
2389 // address. If we are now setting the SHF_ALLOC flag, we need to
2391 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2392 && (flags & elfcpp::SHF_ALLOC) != 0)
2393 this->mark_address_invalid();
2395 this->flags_ |= (flags
2396 & (elfcpp::SHF_WRITE
2398 | elfcpp::SHF_EXECINSTR));
2400 if ((flags & elfcpp::SHF_MERGE) == 0)
2401 this->flags_ &=~ elfcpp::SHF_MERGE;
2404 if (this->current_data_size_for_child() == 0)
2405 this->flags_ |= elfcpp::SHF_MERGE;
2408 if ((flags & elfcpp::SHF_STRINGS) == 0)
2409 this->flags_ &=~ elfcpp::SHF_STRINGS;
2412 if (this->current_data_size_for_child() == 0)
2413 this->flags_ |= elfcpp::SHF_STRINGS;
2417 // Find the merge section into which an input section with index SHNDX in
2418 // OBJECT has been added. Return NULL if none found.
2420 Output_section_data*
2421 Output_section::find_merge_section(const Relobj* object,
2422 unsigned int shndx) const
2424 if (!this->lookup_maps_->is_valid())
2425 this->build_lookup_maps();
2426 return this->lookup_maps_->find_merge_section(object, shndx);
2429 // Build the lookup maps for merge and relaxed sections. This is needs
2430 // to be declared as a const methods so that it is callable with a const
2431 // Output_section pointer. The method only updates states of the maps.
2434 Output_section::build_lookup_maps() const
2436 this->lookup_maps_->clear();
2437 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2438 p != this->input_sections_.end();
2441 if (p->is_merge_section())
2443 Output_merge_base* pomb = p->output_merge_base();
2444 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2446 this->lookup_maps_->add_merge_section(msp, pomb);
2447 for (Output_merge_base::Input_sections::const_iterator is =
2448 pomb->input_sections_begin();
2449 is != pomb->input_sections_end();
2452 const Const_section_id& csid = *is;
2453 this->lookup_maps_->add_merge_input_section(csid.first,
2458 else if (p->is_relaxed_input_section())
2460 Output_relaxed_input_section* poris = p->relaxed_input_section();
2461 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2462 poris->shndx(), poris);
2467 // Find an relaxed input section corresponding to an input section
2468 // in OBJECT with index SHNDX.
2470 const Output_relaxed_input_section*
2471 Output_section::find_relaxed_input_section(const Relobj* object,
2472 unsigned int shndx) const
2474 if (!this->lookup_maps_->is_valid())
2475 this->build_lookup_maps();
2476 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2479 // Given an address OFFSET relative to the start of input section
2480 // SHNDX in OBJECT, return whether this address is being included in
2481 // the final link. This should only be called if SHNDX in OBJECT has
2482 // a special mapping.
2485 Output_section::is_input_address_mapped(const Relobj* object,
2489 // Look at the Output_section_data_maps first.
2490 const Output_section_data* posd = this->find_merge_section(object, shndx);
2492 posd = this->find_relaxed_input_section(object, shndx);
2496 section_offset_type output_offset;
2497 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2499 return output_offset != -1;
2502 // Fall back to the slow look-up.
2503 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2504 p != this->input_sections_.end();
2507 section_offset_type output_offset;
2508 if (p->output_offset(object, shndx, offset, &output_offset))
2509 return output_offset != -1;
2512 // By default we assume that the address is mapped. This should
2513 // only be called after we have passed all sections to Layout. At
2514 // that point we should know what we are discarding.
2518 // Given an address OFFSET relative to the start of input section
2519 // SHNDX in object OBJECT, return the output offset relative to the
2520 // start of the input section in the output section. This should only
2521 // be called if SHNDX in OBJECT has a special mapping.
2524 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2525 section_offset_type offset) const
2527 // This can only be called meaningfully when we know the data size
2529 gold_assert(this->is_data_size_valid());
2531 // Look at the Output_section_data_maps first.
2532 const Output_section_data* posd = this->find_merge_section(object, shndx);
2534 posd = this->find_relaxed_input_section(object, shndx);
2537 section_offset_type output_offset;
2538 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2540 return output_offset;
2543 // Fall back to the slow look-up.
2544 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2545 p != this->input_sections_.end();
2548 section_offset_type output_offset;
2549 if (p->output_offset(object, shndx, offset, &output_offset))
2550 return output_offset;
2555 // Return the output virtual address of OFFSET relative to the start
2556 // of input section SHNDX in object OBJECT.
2559 Output_section::output_address(const Relobj* object, unsigned int shndx,
2562 uint64_t addr = this->address() + this->first_input_offset_;
2564 // Look at the Output_section_data_maps first.
2565 const Output_section_data* posd = this->find_merge_section(object, shndx);
2567 posd = this->find_relaxed_input_section(object, shndx);
2568 if (posd != NULL && posd->is_address_valid())
2570 section_offset_type output_offset;
2571 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2573 return posd->address() + output_offset;
2576 // Fall back to the slow look-up.
2577 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2578 p != this->input_sections_.end();
2581 addr = align_address(addr, p->addralign());
2582 section_offset_type output_offset;
2583 if (p->output_offset(object, shndx, offset, &output_offset))
2585 if (output_offset == -1)
2587 return addr + output_offset;
2589 addr += p->data_size();
2592 // If we get here, it means that we don't know the mapping for this
2593 // input section. This might happen in principle if
2594 // add_input_section were called before add_output_section_data.
2595 // But it should never actually happen.
2600 // Find the output address of the start of the merged section for
2601 // input section SHNDX in object OBJECT.
2604 Output_section::find_starting_output_address(const Relobj* object,
2606 uint64_t* paddr) const
2608 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2609 // Looking up the merge section map does not always work as we sometimes
2610 // find a merge section without its address set.
2611 uint64_t addr = this->address() + this->first_input_offset_;
2612 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2613 p != this->input_sections_.end();
2616 addr = align_address(addr, p->addralign());
2618 // It would be nice if we could use the existing output_offset
2619 // method to get the output offset of input offset 0.
2620 // Unfortunately we don't know for sure that input offset 0 is
2622 if (p->is_merge_section_for(object, shndx))
2628 addr += p->data_size();
2631 // We couldn't find a merge output section for this input section.
2635 // Set the data size of an Output_section. This is where we handle
2636 // setting the addresses of any Output_section_data objects.
2639 Output_section::set_final_data_size()
2641 if (this->input_sections_.empty())
2643 this->set_data_size(this->current_data_size_for_child());
2647 if (this->must_sort_attached_input_sections()
2648 || this->input_section_order_specified())
2649 this->sort_attached_input_sections();
2651 uint64_t address = this->address();
2652 off_t startoff = this->offset();
2653 off_t off = startoff + this->first_input_offset_;
2654 for (Input_section_list::iterator p = this->input_sections_.begin();
2655 p != this->input_sections_.end();
2658 off = align_address(off, p->addralign());
2659 p->set_address_and_file_offset(address + (off - startoff), off,
2661 off += p->data_size();
2664 this->set_data_size(off - startoff);
2667 // Reset the address and file offset.
2670 Output_section::do_reset_address_and_file_offset()
2672 // An unallocated section has no address. Forcing this means that
2673 // we don't need special treatment for symbols defined in debug
2674 // sections. We do the same in the constructor. This does not
2675 // apply to NOLOAD sections though.
2676 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
2677 this->set_address(0);
2679 for (Input_section_list::iterator p = this->input_sections_.begin();
2680 p != this->input_sections_.end();
2682 p->reset_address_and_file_offset();
2685 // Return true if address and file offset have the values after reset.
2688 Output_section::do_address_and_file_offset_have_reset_values() const
2690 if (this->is_offset_valid())
2693 // An unallocated section has address 0 after its construction or a reset.
2694 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2695 return this->is_address_valid() && this->address() == 0;
2697 return !this->is_address_valid();
2700 // Set the TLS offset. Called only for SHT_TLS sections.
2703 Output_section::do_set_tls_offset(uint64_t tls_base)
2705 this->tls_offset_ = this->address() - tls_base;
2708 // In a few cases we need to sort the input sections attached to an
2709 // output section. This is used to implement the type of constructor
2710 // priority ordering implemented by the GNU linker, in which the
2711 // priority becomes part of the section name and the sections are
2712 // sorted by name. We only do this for an output section if we see an
2713 // attached input section matching ".ctor.*", ".dtor.*",
2714 // ".init_array.*" or ".fini_array.*".
2716 class Output_section::Input_section_sort_entry
2719 Input_section_sort_entry()
2720 : input_section_(), index_(-1U), section_has_name_(false),
2724 Input_section_sort_entry(const Input_section& input_section,
2726 bool must_sort_attached_input_sections)
2727 : input_section_(input_section), index_(index),
2728 section_has_name_(input_section.is_input_section()
2729 || input_section.is_relaxed_input_section())
2731 if (this->section_has_name_
2732 && must_sort_attached_input_sections)
2734 // This is only called single-threaded from Layout::finalize,
2735 // so it is OK to lock. Unfortunately we have no way to pass
2737 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2738 Object* obj = (input_section.is_input_section()
2739 ? input_section.relobj()
2740 : input_section.relaxed_input_section()->relobj());
2741 Task_lock_obj<Object> tl(dummy_task, obj);
2743 // This is a slow operation, which should be cached in
2744 // Layout::layout if this becomes a speed problem.
2745 this->section_name_ = obj->section_name(input_section.shndx());
2749 // Return the Input_section.
2750 const Input_section&
2751 input_section() const
2753 gold_assert(this->index_ != -1U);
2754 return this->input_section_;
2757 // The index of this entry in the original list. This is used to
2758 // make the sort stable.
2762 gold_assert(this->index_ != -1U);
2763 return this->index_;
2766 // Whether there is a section name.
2768 section_has_name() const
2769 { return this->section_has_name_; }
2771 // The section name.
2773 section_name() const
2775 gold_assert(this->section_has_name_);
2776 return this->section_name_;
2779 // Return true if the section name has a priority. This is assumed
2780 // to be true if it has a dot after the initial dot.
2782 has_priority() const
2784 gold_assert(this->section_has_name_);
2785 return this->section_name_.find('.', 1) != std::string::npos;
2788 // Return true if this an input file whose base name matches
2789 // FILE_NAME. The base name must have an extension of ".o", and
2790 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2791 // This is to match crtbegin.o as well as crtbeginS.o without
2792 // getting confused by other possibilities. Overall matching the
2793 // file name this way is a dreadful hack, but the GNU linker does it
2794 // in order to better support gcc, and we need to be compatible.
2796 match_file_name(const char* match_file_name) const
2798 const std::string& file_name(this->input_section_.relobj()->name());
2799 const char* base_name = lbasename(file_name.c_str());
2800 size_t match_len = strlen(match_file_name);
2801 if (strncmp(base_name, match_file_name, match_len) != 0)
2803 size_t base_len = strlen(base_name);
2804 if (base_len != match_len + 2 && base_len != match_len + 3)
2806 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2809 // Returns 1 if THIS should appear before S in section order, -1 if S
2810 // appears before THIS and 0 if they are not comparable.
2812 compare_section_ordering(const Input_section_sort_entry& s) const
2814 unsigned int this_secn_index = this->input_section_.section_order_index();
2815 unsigned int s_secn_index = s.input_section().section_order_index();
2816 if (this_secn_index > 0 && s_secn_index > 0)
2818 if (this_secn_index < s_secn_index)
2820 else if (this_secn_index > s_secn_index)
2827 // The Input_section we are sorting.
2828 Input_section input_section_;
2829 // The index of this Input_section in the original list.
2830 unsigned int index_;
2831 // Whether this Input_section has a section name--it won't if this
2832 // is some random Output_section_data.
2833 bool section_has_name_;
2834 // The section name if there is one.
2835 std::string section_name_;
2838 // Return true if S1 should come before S2 in the output section.
2841 Output_section::Input_section_sort_compare::operator()(
2842 const Output_section::Input_section_sort_entry& s1,
2843 const Output_section::Input_section_sort_entry& s2) const
2845 // crtbegin.o must come first.
2846 bool s1_begin = s1.match_file_name("crtbegin");
2847 bool s2_begin = s2.match_file_name("crtbegin");
2848 if (s1_begin || s2_begin)
2854 return s1.index() < s2.index();
2857 // crtend.o must come last.
2858 bool s1_end = s1.match_file_name("crtend");
2859 bool s2_end = s2.match_file_name("crtend");
2860 if (s1_end || s2_end)
2866 return s1.index() < s2.index();
2869 // We sort all the sections with no names to the end.
2870 if (!s1.section_has_name() || !s2.section_has_name())
2872 if (s1.section_has_name())
2874 if (s2.section_has_name())
2876 return s1.index() < s2.index();
2879 // A section with a priority follows a section without a priority.
2880 bool s1_has_priority = s1.has_priority();
2881 bool s2_has_priority = s2.has_priority();
2882 if (s1_has_priority && !s2_has_priority)
2884 if (!s1_has_priority && s2_has_priority)
2887 // Check if a section order exists for these sections through a section
2888 // ordering file. If sequence_num is 0, an order does not exist.
2889 int sequence_num = s1.compare_section_ordering(s2);
2890 if (sequence_num != 0)
2891 return sequence_num == 1;
2893 // Otherwise we sort by name.
2894 int compare = s1.section_name().compare(s2.section_name());
2898 // Otherwise we keep the input order.
2899 return s1.index() < s2.index();
2902 // Return true if S1 should come before S2 in an .init_array or .fini_array
2906 Output_section::Input_section_sort_init_fini_compare::operator()(
2907 const Output_section::Input_section_sort_entry& s1,
2908 const Output_section::Input_section_sort_entry& s2) const
2910 // We sort all the sections with no names to the end.
2911 if (!s1.section_has_name() || !s2.section_has_name())
2913 if (s1.section_has_name())
2915 if (s2.section_has_name())
2917 return s1.index() < s2.index();
2920 // A section without a priority follows a section with a priority.
2921 // This is the reverse of .ctors and .dtors sections.
2922 bool s1_has_priority = s1.has_priority();
2923 bool s2_has_priority = s2.has_priority();
2924 if (s1_has_priority && !s2_has_priority)
2926 if (!s1_has_priority && s2_has_priority)
2929 // Check if a section order exists for these sections through a section
2930 // ordering file. If sequence_num is 0, an order does not exist.
2931 int sequence_num = s1.compare_section_ordering(s2);
2932 if (sequence_num != 0)
2933 return sequence_num == 1;
2935 // Otherwise we sort by name.
2936 int compare = s1.section_name().compare(s2.section_name());
2940 // Otherwise we keep the input order.
2941 return s1.index() < s2.index();
2944 // Return true if S1 should come before S2. Sections that do not match
2945 // any pattern in the section ordering file are placed ahead of the sections
2946 // that match some pattern.
2949 Output_section::Input_section_sort_section_order_index_compare::operator()(
2950 const Output_section::Input_section_sort_entry& s1,
2951 const Output_section::Input_section_sort_entry& s2) const
2953 unsigned int s1_secn_index = s1.input_section().section_order_index();
2954 unsigned int s2_secn_index = s2.input_section().section_order_index();
2956 // Keep input order if section ordering cannot determine order.
2957 if (s1_secn_index == s2_secn_index)
2958 return s1.index() < s2.index();
2960 return s1_secn_index < s2_secn_index;
2963 // Sort the input sections attached to an output section.
2966 Output_section::sort_attached_input_sections()
2968 if (this->attached_input_sections_are_sorted_)
2971 if (this->checkpoint_ != NULL
2972 && !this->checkpoint_->input_sections_saved())
2973 this->checkpoint_->save_input_sections();
2975 // The only thing we know about an input section is the object and
2976 // the section index. We need the section name. Recomputing this
2977 // is slow but this is an unusual case. If this becomes a speed
2978 // problem we can cache the names as required in Layout::layout.
2980 // We start by building a larger vector holding a copy of each
2981 // Input_section, plus its current index in the list and its name.
2982 std::vector<Input_section_sort_entry> sort_list;
2985 for (Input_section_list::iterator p = this->input_sections_.begin();
2986 p != this->input_sections_.end();
2988 sort_list.push_back(Input_section_sort_entry(*p, i,
2989 this->must_sort_attached_input_sections()));
2991 // Sort the input sections.
2992 if (this->must_sort_attached_input_sections())
2994 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
2995 || this->type() == elfcpp::SHT_INIT_ARRAY
2996 || this->type() == elfcpp::SHT_FINI_ARRAY)
2997 std::sort(sort_list.begin(), sort_list.end(),
2998 Input_section_sort_init_fini_compare());
3000 std::sort(sort_list.begin(), sort_list.end(),
3001 Input_section_sort_compare());
3005 gold_assert(parameters->options().section_ordering_file());
3006 std::sort(sort_list.begin(), sort_list.end(),
3007 Input_section_sort_section_order_index_compare());
3010 // Copy the sorted input sections back to our list.
3011 this->input_sections_.clear();
3012 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3013 p != sort_list.end();
3015 this->input_sections_.push_back(p->input_section());
3018 // Remember that we sorted the input sections, since we might get
3020 this->attached_input_sections_are_sorted_ = true;
3023 // Write the section header to *OSHDR.
3025 template<int size, bool big_endian>
3027 Output_section::write_header(const Layout* layout,
3028 const Stringpool* secnamepool,
3029 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3031 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3032 oshdr->put_sh_type(this->type_);
3034 elfcpp::Elf_Xword flags = this->flags_;
3035 if (this->info_section_ != NULL && this->info_uses_section_index_)
3036 flags |= elfcpp::SHF_INFO_LINK;
3037 oshdr->put_sh_flags(flags);
3039 oshdr->put_sh_addr(this->address());
3040 oshdr->put_sh_offset(this->offset());
3041 oshdr->put_sh_size(this->data_size());
3042 if (this->link_section_ != NULL)
3043 oshdr->put_sh_link(this->link_section_->out_shndx());
3044 else if (this->should_link_to_symtab_)
3045 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3046 else if (this->should_link_to_dynsym_)
3047 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3049 oshdr->put_sh_link(this->link_);
3051 elfcpp::Elf_Word info;
3052 if (this->info_section_ != NULL)
3054 if (this->info_uses_section_index_)
3055 info = this->info_section_->out_shndx();
3057 info = this->info_section_->symtab_index();
3059 else if (this->info_symndx_ != NULL)
3060 info = this->info_symndx_->symtab_index();
3063 oshdr->put_sh_info(info);
3065 oshdr->put_sh_addralign(this->addralign_);
3066 oshdr->put_sh_entsize(this->entsize_);
3069 // Write out the data. For input sections the data is written out by
3070 // Object::relocate, but we have to handle Output_section_data objects
3074 Output_section::do_write(Output_file* of)
3076 gold_assert(!this->requires_postprocessing());
3078 // If the target performs relaxation, we delay filler generation until now.
3079 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3081 off_t output_section_file_offset = this->offset();
3082 for (Fill_list::iterator p = this->fills_.begin();
3083 p != this->fills_.end();
3086 std::string fill_data(parameters->target().code_fill(p->length()));
3087 of->write(output_section_file_offset + p->section_offset(),
3088 fill_data.data(), fill_data.size());
3091 off_t off = this->offset() + this->first_input_offset_;
3092 for (Input_section_list::iterator p = this->input_sections_.begin();
3093 p != this->input_sections_.end();
3096 off_t aligned_off = align_address(off, p->addralign());
3097 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3099 size_t fill_len = aligned_off - off;
3100 std::string fill_data(parameters->target().code_fill(fill_len));
3101 of->write(off, fill_data.data(), fill_data.size());
3105 off = aligned_off + p->data_size();
3109 // If a section requires postprocessing, create the buffer to use.
3112 Output_section::create_postprocessing_buffer()
3114 gold_assert(this->requires_postprocessing());
3116 if (this->postprocessing_buffer_ != NULL)
3119 if (!this->input_sections_.empty())
3121 off_t off = this->first_input_offset_;
3122 for (Input_section_list::iterator p = this->input_sections_.begin();
3123 p != this->input_sections_.end();
3126 off = align_address(off, p->addralign());
3127 p->finalize_data_size();
3128 off += p->data_size();
3130 this->set_current_data_size_for_child(off);
3133 off_t buffer_size = this->current_data_size_for_child();
3134 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3137 // Write all the data of an Output_section into the postprocessing
3138 // buffer. This is used for sections which require postprocessing,
3139 // such as compression. Input sections are handled by
3140 // Object::Relocate.
3143 Output_section::write_to_postprocessing_buffer()
3145 gold_assert(this->requires_postprocessing());
3147 // If the target performs relaxation, we delay filler generation until now.
3148 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3150 unsigned char* buffer = this->postprocessing_buffer();
3151 for (Fill_list::iterator p = this->fills_.begin();
3152 p != this->fills_.end();
3155 std::string fill_data(parameters->target().code_fill(p->length()));
3156 memcpy(buffer + p->section_offset(), fill_data.data(),
3160 off_t off = this->first_input_offset_;
3161 for (Input_section_list::iterator p = this->input_sections_.begin();
3162 p != this->input_sections_.end();
3165 off_t aligned_off = align_address(off, p->addralign());
3166 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3168 size_t fill_len = aligned_off - off;
3169 std::string fill_data(parameters->target().code_fill(fill_len));
3170 memcpy(buffer + off, fill_data.data(), fill_data.size());
3173 p->write_to_buffer(buffer + aligned_off);
3174 off = aligned_off + p->data_size();
3178 // Get the input sections for linker script processing. We leave
3179 // behind the Output_section_data entries. Note that this may be
3180 // slightly incorrect for merge sections. We will leave them behind,
3181 // but it is possible that the script says that they should follow
3182 // some other input sections, as in:
3183 // .rodata { *(.rodata) *(.rodata.cst*) }
3184 // For that matter, we don't handle this correctly:
3185 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3186 // With luck this will never matter.
3189 Output_section::get_input_sections(
3191 const std::string& fill,
3192 std::list<Input_section>* input_sections)
3194 if (this->checkpoint_ != NULL
3195 && !this->checkpoint_->input_sections_saved())
3196 this->checkpoint_->save_input_sections();
3198 // Invalidate fast look-up maps.
3199 this->lookup_maps_->invalidate();
3201 uint64_t orig_address = address;
3203 address = align_address(address, this->addralign());
3205 Input_section_list remaining;
3206 for (Input_section_list::iterator p = this->input_sections_.begin();
3207 p != this->input_sections_.end();
3210 if (p->is_input_section()
3211 || p->is_relaxed_input_section()
3212 || p->is_merge_section())
3213 input_sections->push_back(*p);
3216 uint64_t aligned_address = align_address(address, p->addralign());
3217 if (aligned_address != address && !fill.empty())
3219 section_size_type length =
3220 convert_to_section_size_type(aligned_address - address);
3221 std::string this_fill;
3222 this_fill.reserve(length);
3223 while (this_fill.length() + fill.length() <= length)
3225 if (this_fill.length() < length)
3226 this_fill.append(fill, 0, length - this_fill.length());
3228 Output_section_data* posd = new Output_data_const(this_fill, 0);
3229 remaining.push_back(Input_section(posd));
3231 address = aligned_address;
3233 remaining.push_back(*p);
3235 p->finalize_data_size();
3236 address += p->data_size();
3240 this->input_sections_.swap(remaining);
3241 this->first_input_offset_ = 0;
3243 uint64_t data_size = address - orig_address;
3244 this->set_current_data_size_for_child(data_size);
3248 // Add a script input section. SIS is an Output_section::Input_section,
3249 // which can be either a plain input section or a special input section like
3250 // a relaxed input section. For a special input section, its size must be
3254 Output_section::add_script_input_section(const Input_section& sis)
3256 uint64_t data_size = sis.data_size();
3257 uint64_t addralign = sis.addralign();
3258 if (addralign > this->addralign_)
3259 this->addralign_ = addralign;
3261 off_t offset_in_section = this->current_data_size_for_child();
3262 off_t aligned_offset_in_section = align_address(offset_in_section,
3265 this->set_current_data_size_for_child(aligned_offset_in_section
3268 this->input_sections_.push_back(sis);
3270 // Update fast lookup maps if necessary.
3271 if (this->lookup_maps_->is_valid())
3273 if (sis.is_merge_section())
3275 Output_merge_base* pomb = sis.output_merge_base();
3276 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3278 this->lookup_maps_->add_merge_section(msp, pomb);
3279 for (Output_merge_base::Input_sections::const_iterator p =
3280 pomb->input_sections_begin();
3281 p != pomb->input_sections_end();
3283 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3286 else if (sis.is_relaxed_input_section())
3288 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3289 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3290 poris->shndx(), poris);
3295 // Save states for relaxation.
3298 Output_section::save_states()
3300 gold_assert(this->checkpoint_ == NULL);
3301 Checkpoint_output_section* checkpoint =
3302 new Checkpoint_output_section(this->addralign_, this->flags_,
3303 this->input_sections_,
3304 this->first_input_offset_,
3305 this->attached_input_sections_are_sorted_);
3306 this->checkpoint_ = checkpoint;
3307 gold_assert(this->fills_.empty());
3311 Output_section::discard_states()
3313 gold_assert(this->checkpoint_ != NULL);
3314 delete this->checkpoint_;
3315 this->checkpoint_ = NULL;
3316 gold_assert(this->fills_.empty());
3318 // Simply invalidate the fast lookup maps since we do not keep
3320 this->lookup_maps_->invalidate();
3324 Output_section::restore_states()
3326 gold_assert(this->checkpoint_ != NULL);
3327 Checkpoint_output_section* checkpoint = this->checkpoint_;
3329 this->addralign_ = checkpoint->addralign();
3330 this->flags_ = checkpoint->flags();
3331 this->first_input_offset_ = checkpoint->first_input_offset();
3333 if (!checkpoint->input_sections_saved())
3335 // If we have not copied the input sections, just resize it.
3336 size_t old_size = checkpoint->input_sections_size();
3337 gold_assert(this->input_sections_.size() >= old_size);
3338 this->input_sections_.resize(old_size);
3342 // We need to copy the whole list. This is not efficient for
3343 // extremely large output with hundreads of thousands of input
3344 // objects. We may need to re-think how we should pass sections
3346 this->input_sections_ = *checkpoint->input_sections();
3349 this->attached_input_sections_are_sorted_ =
3350 checkpoint->attached_input_sections_are_sorted();
3352 // Simply invalidate the fast lookup maps since we do not keep
3354 this->lookup_maps_->invalidate();
3357 // Update the section offsets of input sections in this. This is required if
3358 // relaxation causes some input sections to change sizes.
3361 Output_section::adjust_section_offsets()
3363 if (!this->section_offsets_need_adjustment_)
3367 for (Input_section_list::iterator p = this->input_sections_.begin();
3368 p != this->input_sections_.end();
3371 off = align_address(off, p->addralign());
3372 if (p->is_input_section())
3373 p->relobj()->set_section_offset(p->shndx(), off);
3374 off += p->data_size();
3377 this->section_offsets_need_adjustment_ = false;
3380 // Print to the map file.
3383 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3385 mapfile->print_output_section(this);
3387 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3388 p != this->input_sections_.end();
3390 p->print_to_mapfile(mapfile);
3393 // Print stats for merge sections to stderr.
3396 Output_section::print_merge_stats()
3398 Input_section_list::iterator p;
3399 for (p = this->input_sections_.begin();
3400 p != this->input_sections_.end();
3402 p->print_merge_stats(this->name_);
3405 // Output segment methods.
3407 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3419 is_max_align_known_(false),
3420 are_addresses_set_(false),
3421 is_large_data_segment_(false)
3423 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3425 if (type == elfcpp::PT_TLS)
3426 this->flags_ = elfcpp::PF_R;
3429 // Add an Output_section to an Output_segment.
3432 Output_segment::add_output_section(Output_section* os,
3433 elfcpp::Elf_Word seg_flags,
3436 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3437 gold_assert(!this->is_max_align_known_);
3438 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3439 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3441 this->update_flags_for_output_section(seg_flags);
3443 Output_segment::Output_data_list* pdl;
3444 if (os->type() == elfcpp::SHT_NOBITS)
3445 pdl = &this->output_bss_;
3447 pdl = &this->output_data_;
3449 // Note that while there may be many input sections in an output
3450 // section, there are normally only a few output sections in an
3451 // output segment. The loops below are expected to be fast.
3453 // So that PT_NOTE segments will work correctly, we need to ensure
3454 // that all SHT_NOTE sections are adjacent.
3455 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3457 Output_segment::Output_data_list::iterator p = pdl->end();
3461 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3468 while (p != pdl->begin());
3471 // Similarly, so that PT_TLS segments will work, we need to group
3472 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3473 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3474 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3475 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3476 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3478 if (this->type_ != elfcpp::PT_TLS
3479 && (os->flags() & elfcpp::SHF_TLS) != 0)
3481 pdl = &this->output_data_;
3484 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3485 bool sawtls = false;
3486 Output_segment::Output_data_list::iterator p = pdl->end();
3487 gold_assert(p != pdl->begin());
3492 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3495 // Put a NOBITS section after the first TLS section.
3496 // Put a PROGBITS section after the first
3497 // TLS/PROGBITS section.
3498 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3502 // If we've gone past the TLS sections, but we've
3503 // seen a TLS section, then we need to insert this
3515 while (p != pdl->begin());
3518 // There are no TLS sections yet; put this one at the requested
3519 // location in the section list.
3524 // For the PT_GNU_RELRO segment, we need to group relro
3525 // sections, and we need to put them before any non-relro
3526 // sections. Any relro local sections go before relro non-local
3527 // sections. One section may be marked as the last relro
3531 gold_assert(pdl == &this->output_data_);
3532 Output_segment::Output_data_list::iterator p;
3533 for (p = pdl->begin(); p != pdl->end(); ++p)
3535 if (!(*p)->is_section())
3538 Output_section* pos = (*p)->output_section();
3539 if (!pos->is_relro()
3540 || (os->is_relro_local() && !pos->is_relro_local())
3541 || (!os->is_last_relro() && pos->is_last_relro()))
3549 // One section may be marked as the first section which follows
3550 // the relro sections.
3551 if (os->is_first_non_relro())
3553 gold_assert(pdl == &this->output_data_);
3554 Output_segment::Output_data_list::iterator p;
3555 for (p = pdl->begin(); p != pdl->end(); ++p)
3557 if (!(*p)->is_section())
3560 Output_section* pos = (*p)->output_section();
3561 if (!pos->is_relro())
3570 // Small data sections go at the end of the list of data sections.
3571 // If OS is not small, and there are small sections, we have to
3572 // insert it before the first small section.
3573 if (os->type() != elfcpp::SHT_NOBITS
3574 && !os->is_small_section()
3576 && pdl->back()->is_section()
3577 && pdl->back()->output_section()->is_small_section())
3579 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3583 if ((*p)->is_section()
3584 && (*p)->output_section()->is_small_section())
3593 // A small BSS section goes at the start of the BSS sections, after
3594 // other small BSS sections.
3595 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3597 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3601 if (!(*p)->is_section()
3602 || !(*p)->output_section()->is_small_section())
3610 // A large BSS section goes at the end of the BSS sections, which
3611 // means that one that is not large must come before the first large
3613 if (os->type() == elfcpp::SHT_NOBITS
3614 && !os->is_large_section()
3616 && pdl->back()->is_section()
3617 && pdl->back()->output_section()->is_large_section())
3619 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3623 if ((*p)->is_section()
3624 && (*p)->output_section()->is_large_section())
3633 // We do some further output section sorting in order to make the
3634 // generated program run more efficiently. We should only do this
3635 // when not using a linker script, so it is controled by the DO_SORT
3639 // FreeBSD requires the .interp section to be in the first page
3640 // of the executable. That is a more efficient location anyhow
3641 // for any OS, since it means that the kernel will have the data
3642 // handy after it reads the program headers.
3643 if (os->is_interp() && !pdl->empty())
3645 pdl->insert(pdl->begin(), os);
3649 // Put loadable non-writable notes immediately after the .interp
3650 // sections, so that the PT_NOTE segment is on the first page of
3652 if (os->type() == elfcpp::SHT_NOTE
3653 && (os->flags() & elfcpp::SHF_WRITE) == 0
3656 Output_segment::Output_data_list::iterator p = pdl->begin();
3657 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3663 // If this section is used by the dynamic linker, and it is not
3664 // writable, then put it first, after the .interp section and
3665 // any loadable notes. This makes it more likely that the
3666 // dynamic linker will have to read less data from the disk.
3667 if (os->is_dynamic_linker_section()
3669 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3671 bool is_reloc = (os->type() == elfcpp::SHT_REL
3672 || os->type() == elfcpp::SHT_RELA);
3673 Output_segment::Output_data_list::iterator p = pdl->begin();
3674 while (p != pdl->end()
3675 && (*p)->is_section()
3676 && ((*p)->output_section()->is_dynamic_linker_section()
3677 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3679 // Put reloc sections after the other ones. Putting the
3680 // dynamic reloc sections first confuses BFD, notably
3681 // objcopy and strip.
3683 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3684 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3693 // If there were no constraints on the output section, just add it
3694 // to the end of the list.
3698 // Remove an Output_section from this segment. It is an error if it
3702 Output_segment::remove_output_section(Output_section* os)
3704 // We only need this for SHT_PROGBITS.
3705 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3706 for (Output_data_list::iterator p = this->output_data_.begin();
3707 p != this->output_data_.end();
3712 this->output_data_.erase(p);
3719 // Add an Output_data (which need not be an Output_section) to the
3720 // start of a segment.
3723 Output_segment::add_initial_output_data(Output_data* od)
3725 gold_assert(!this->is_max_align_known_);
3726 this->output_data_.push_front(od);
3729 // Return whether the first data section is a relro section.
3732 Output_segment::is_first_section_relro() const
3734 return (!this->output_data_.empty()
3735 && this->output_data_.front()->is_section()
3736 && this->output_data_.front()->output_section()->is_relro());
3739 // Return the maximum alignment of the Output_data in Output_segment.
3742 Output_segment::maximum_alignment()
3744 if (!this->is_max_align_known_)
3748 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3749 if (addralign > this->max_align_)
3750 this->max_align_ = addralign;
3752 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3753 if (addralign > this->max_align_)
3754 this->max_align_ = addralign;
3756 this->is_max_align_known_ = true;
3759 return this->max_align_;
3762 // Return the maximum alignment of a list of Output_data.
3765 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3768 for (Output_data_list::const_iterator p = pdl->begin();
3772 uint64_t addralign = (*p)->addralign();
3773 if (addralign > ret)
3779 // Return the number of dynamic relocs applied to this segment.
3782 Output_segment::dynamic_reloc_count() const
3784 return (this->dynamic_reloc_count_list(&this->output_data_)
3785 + this->dynamic_reloc_count_list(&this->output_bss_));
3788 // Return the number of dynamic relocs applied to an Output_data_list.
3791 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3793 unsigned int count = 0;
3794 for (Output_data_list::const_iterator p = pdl->begin();
3797 count += (*p)->dynamic_reloc_count();
3801 // Set the section addresses for an Output_segment. If RESET is true,
3802 // reset the addresses first. ADDR is the address and *POFF is the
3803 // file offset. Set the section indexes starting with *PSHNDX.
3804 // Return the address of the immediately following segment. Update
3805 // *POFF and *PSHNDX.
3808 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3810 unsigned int increase_relro,
3812 unsigned int* pshndx)
3814 gold_assert(this->type_ == elfcpp::PT_LOAD);
3816 off_t orig_off = *poff;
3818 // If we have relro sections, we need to pad forward now so that the
3819 // relro sections plus INCREASE_RELRO end on a common page boundary.
3820 if (parameters->options().relro()
3821 && this->is_first_section_relro()
3822 && (!this->are_addresses_set_ || reset))
3824 uint64_t relro_size = 0;
3826 for (Output_data_list::iterator p = this->output_data_.begin();
3827 p != this->output_data_.end();
3830 if (!(*p)->is_section())
3832 Output_section* pos = (*p)->output_section();
3833 if (!pos->is_relro())
3835 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3836 if ((*p)->is_address_valid())
3837 relro_size += (*p)->data_size();
3840 // FIXME: This could be faster.
3841 (*p)->set_address_and_file_offset(addr + relro_size,
3843 relro_size += (*p)->data_size();
3844 (*p)->reset_address_and_file_offset();
3847 relro_size += increase_relro;
3849 uint64_t page_align = parameters->target().common_pagesize();
3851 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3852 uint64_t desired_align = page_align - (relro_size % page_align);
3853 if (desired_align < *poff % page_align)
3854 *poff += page_align - *poff % page_align;
3855 *poff += desired_align - *poff % page_align;
3856 addr += *poff - orig_off;
3860 if (!reset && this->are_addresses_set_)
3862 gold_assert(this->paddr_ == addr);
3863 addr = this->vaddr_;
3867 this->vaddr_ = addr;
3868 this->paddr_ = addr;
3869 this->are_addresses_set_ = true;
3872 bool in_tls = false;
3874 this->offset_ = orig_off;
3876 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3877 addr, poff, pshndx, &in_tls);
3878 this->filesz_ = *poff - orig_off;
3882 uint64_t ret = this->set_section_list_addresses(layout, reset,
3887 // If the last section was a TLS section, align upward to the
3888 // alignment of the TLS segment, so that the overall size of the TLS
3889 // segment is aligned.
3892 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3893 *poff = align_address(*poff, segment_align);
3896 this->memsz_ = *poff - orig_off;
3898 // Ignore the file offset adjustments made by the BSS Output_data
3905 // Set the addresses and file offsets in a list of Output_data
3909 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3910 Output_data_list* pdl,
3911 uint64_t addr, off_t* poff,
3912 unsigned int* pshndx,
3915 off_t startoff = *poff;
3917 off_t off = startoff;
3918 for (Output_data_list::iterator p = pdl->begin();
3923 (*p)->reset_address_and_file_offset();
3925 // When using a linker script the section will most likely
3926 // already have an address.
3927 if (!(*p)->is_address_valid())
3929 uint64_t align = (*p)->addralign();
3931 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3933 // Give the first TLS section the alignment of the
3934 // entire TLS segment. Otherwise the TLS segment as a
3935 // whole may be misaligned.
3938 Output_segment* tls_segment = layout->tls_segment();
3939 gold_assert(tls_segment != NULL);
3940 uint64_t segment_align = tls_segment->maximum_alignment();
3941 gold_assert(segment_align >= align);
3942 align = segment_align;
3949 // If this is the first section after the TLS segment,
3950 // align it to at least the alignment of the TLS
3951 // segment, so that the size of the overall TLS segment
3955 uint64_t segment_align =
3956 layout->tls_segment()->maximum_alignment();
3957 if (segment_align > align)
3958 align = segment_align;
3964 off = align_address(off, align);
3965 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3969 // The script may have inserted a skip forward, but it
3970 // better not have moved backward.
3971 if ((*p)->address() >= addr + (off - startoff))
3972 off += (*p)->address() - (addr + (off - startoff));
3975 if (!layout->script_options()->saw_sections_clause())
3979 Output_section* os = (*p)->output_section();
3981 // Cast to unsigned long long to avoid format warnings.
3982 unsigned long long previous_dot =
3983 static_cast<unsigned long long>(addr + (off - startoff));
3984 unsigned long long dot =
3985 static_cast<unsigned long long>((*p)->address());
3988 gold_error(_("dot moves backward in linker script "
3989 "from 0x%llx to 0x%llx"), previous_dot, dot);
3991 gold_error(_("address of section '%s' moves backward "
3992 "from 0x%llx to 0x%llx"),
3993 os->name(), previous_dot, dot);
3996 (*p)->set_file_offset(off);
3997 (*p)->finalize_data_size();
4000 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
4001 // section. Such a section does not affect the size of a
4003 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4004 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4005 off += (*p)->data_size();
4007 if ((*p)->is_section())
4009 (*p)->set_out_shndx(*pshndx);
4015 return addr + (off - startoff);
4018 // For a non-PT_LOAD segment, set the offset from the sections, if
4019 // any. Add INCREASE to the file size and the memory size.
4022 Output_segment::set_offset(unsigned int increase)
4024 gold_assert(this->type_ != elfcpp::PT_LOAD);
4026 gold_assert(!this->are_addresses_set_);
4028 if (this->output_data_.empty() && this->output_bss_.empty())
4030 gold_assert(increase == 0);
4033 this->are_addresses_set_ = true;
4035 this->min_p_align_ = 0;
4041 const Output_data* first;
4042 if (this->output_data_.empty())
4043 first = this->output_bss_.front();
4045 first = this->output_data_.front();
4046 this->vaddr_ = first->address();
4047 this->paddr_ = (first->has_load_address()
4048 ? first->load_address()
4050 this->are_addresses_set_ = true;
4051 this->offset_ = first->offset();
4053 if (this->output_data_.empty())
4057 const Output_data* last_data = this->output_data_.back();
4058 this->filesz_ = (last_data->address()
4059 + last_data->data_size()
4063 const Output_data* last;
4064 if (this->output_bss_.empty())
4065 last = this->output_data_.back();
4067 last = this->output_bss_.back();
4068 this->memsz_ = (last->address()
4072 this->filesz_ += increase;
4073 this->memsz_ += increase;
4075 // If this is a TLS segment, align the memory size. The code in
4076 // set_section_list ensures that the section after the TLS segment
4077 // is aligned to give us room.
4078 if (this->type_ == elfcpp::PT_TLS)
4080 uint64_t segment_align = this->maximum_alignment();
4081 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4082 this->memsz_ = align_address(this->memsz_, segment_align);
4086 // Set the TLS offsets of the sections in the PT_TLS segment.
4089 Output_segment::set_tls_offsets()
4091 gold_assert(this->type_ == elfcpp::PT_TLS);
4093 for (Output_data_list::iterator p = this->output_data_.begin();
4094 p != this->output_data_.end();
4096 (*p)->set_tls_offset(this->vaddr_);
4098 for (Output_data_list::iterator p = this->output_bss_.begin();
4099 p != this->output_bss_.end();
4101 (*p)->set_tls_offset(this->vaddr_);
4104 // Return the address of the first section.
4107 Output_segment::first_section_load_address() const
4109 for (Output_data_list::const_iterator p = this->output_data_.begin();
4110 p != this->output_data_.end();
4112 if ((*p)->is_section())
4113 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
4115 for (Output_data_list::const_iterator p = this->output_bss_.begin();
4116 p != this->output_bss_.end();
4118 if ((*p)->is_section())
4119 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
4124 // Return the number of Output_sections in an Output_segment.
4127 Output_segment::output_section_count() const
4129 return (this->output_section_count_list(&this->output_data_)
4130 + this->output_section_count_list(&this->output_bss_));
4133 // Return the number of Output_sections in an Output_data_list.
4136 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4138 unsigned int count = 0;
4139 for (Output_data_list::const_iterator p = pdl->begin();
4143 if ((*p)->is_section())
4149 // Return the section attached to the list segment with the lowest
4150 // load address. This is used when handling a PHDRS clause in a
4154 Output_segment::section_with_lowest_load_address() const
4156 Output_section* found = NULL;
4157 uint64_t found_lma = 0;
4158 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
4160 Output_section* found_data = found;
4161 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
4162 if (found != found_data && found_data != NULL)
4164 gold_error(_("nobits section %s may not precede progbits section %s "
4166 found->name(), found_data->name());
4173 // Look through a list for a section with a lower load address.
4176 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4177 Output_section** found,
4178 uint64_t* found_lma) const
4180 for (Output_data_list::const_iterator p = pdl->begin();
4184 if (!(*p)->is_section())
4186 Output_section* os = static_cast<Output_section*>(*p);
4187 uint64_t lma = (os->has_load_address()
4188 ? os->load_address()
4190 if (*found == NULL || lma < *found_lma)
4198 // Write the segment data into *OPHDR.
4200 template<int size, bool big_endian>
4202 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4204 ophdr->put_p_type(this->type_);
4205 ophdr->put_p_offset(this->offset_);
4206 ophdr->put_p_vaddr(this->vaddr_);
4207 ophdr->put_p_paddr(this->paddr_);
4208 ophdr->put_p_filesz(this->filesz_);
4209 ophdr->put_p_memsz(this->memsz_);
4210 ophdr->put_p_flags(this->flags_);
4211 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4214 // Write the section headers into V.
4216 template<int size, bool big_endian>
4218 Output_segment::write_section_headers(const Layout* layout,
4219 const Stringpool* secnamepool,
4221 unsigned int *pshndx) const
4223 // Every section that is attached to a segment must be attached to a
4224 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4226 if (this->type_ != elfcpp::PT_LOAD)
4229 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4230 &this->output_data_,
4232 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4238 template<int size, bool big_endian>
4240 Output_segment::write_section_headers_list(const Layout* layout,
4241 const Stringpool* secnamepool,
4242 const Output_data_list* pdl,
4244 unsigned int* pshndx) const
4246 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4247 for (Output_data_list::const_iterator p = pdl->begin();
4251 if ((*p)->is_section())
4253 const Output_section* ps = static_cast<const Output_section*>(*p);
4254 gold_assert(*pshndx == ps->out_shndx());
4255 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4256 ps->write_header(layout, secnamepool, &oshdr);
4264 // Print the output sections to the map file.
4267 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4269 if (this->type() != elfcpp::PT_LOAD)
4271 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4272 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4275 // Print an output section list to the map file.
4278 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4279 const Output_data_list* pdl) const
4281 for (Output_data_list::const_iterator p = pdl->begin();
4284 (*p)->print_to_mapfile(mapfile);
4287 // Output_file methods.
4289 Output_file::Output_file(const char* name)
4294 map_is_anonymous_(false),
4295 is_temporary_(false)
4299 // Try to open an existing file. Returns false if the file doesn't
4300 // exist, has a size of 0 or can't be mmapped.
4303 Output_file::open_for_modification()
4305 // The name "-" means "stdout".
4306 if (strcmp(this->name_, "-") == 0)
4309 // Don't bother opening files with a size of zero.
4311 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4314 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4316 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4318 this->file_size_ = s.st_size;
4320 // If the file can't be mmapped, copying the content to an anonymous
4321 // map will probably negate the performance benefits of incremental
4322 // linking. This could be helped by using views and loading only
4323 // the necessary parts, but this is not supported as of now.
4324 if (!this->map_no_anonymous())
4326 release_descriptor(o, true);
4328 this->file_size_ = 0;
4335 // Open the output file.
4338 Output_file::open(off_t file_size)
4340 this->file_size_ = file_size;
4342 // Unlink the file first; otherwise the open() may fail if the file
4343 // is busy (e.g. it's an executable that's currently being executed).
4345 // However, the linker may be part of a system where a zero-length
4346 // file is created for it to write to, with tight permissions (gcc
4347 // 2.95 did something like this). Unlinking the file would work
4348 // around those permission controls, so we only unlink if the file
4349 // has a non-zero size. We also unlink only regular files to avoid
4350 // trouble with directories/etc.
4352 // If we fail, continue; this command is merely a best-effort attempt
4353 // to improve the odds for open().
4355 // We let the name "-" mean "stdout"
4356 if (!this->is_temporary_)
4358 if (strcmp(this->name_, "-") == 0)
4359 this->o_ = STDOUT_FILENO;
4363 if (::stat(this->name_, &s) == 0
4364 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4367 ::unlink(this->name_);
4368 else if (!parameters->options().relocatable())
4370 // If we don't unlink the existing file, add execute
4371 // permission where read permissions already exist
4372 // and where the umask permits.
4373 int mask = ::umask(0);
4375 s.st_mode |= (s.st_mode & 0444) >> 2;
4376 ::chmod(this->name_, s.st_mode & ~mask);
4380 int mode = parameters->options().relocatable() ? 0666 : 0777;
4381 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4384 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4392 // Resize the output file.
4395 Output_file::resize(off_t file_size)
4397 // If the mmap is mapping an anonymous memory buffer, this is easy:
4398 // just mremap to the new size. If it's mapping to a file, we want
4399 // to unmap to flush to the file, then remap after growing the file.
4400 if (this->map_is_anonymous_)
4402 void* base = ::mremap(this->base_, this->file_size_, file_size,
4404 if (base == MAP_FAILED)
4405 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4406 this->base_ = static_cast<unsigned char*>(base);
4407 this->file_size_ = file_size;
4412 this->file_size_ = file_size;
4413 if (!this->map_no_anonymous())
4414 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4418 // Map an anonymous block of memory which will later be written to the
4419 // file. Return whether the map succeeded.
4422 Output_file::map_anonymous()
4424 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4425 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4426 if (base != MAP_FAILED)
4428 this->map_is_anonymous_ = true;
4429 this->base_ = static_cast<unsigned char*>(base);
4435 // Map the file into memory. Return whether the mapping succeeded.
4438 Output_file::map_no_anonymous()
4440 const int o = this->o_;
4442 // If the output file is not a regular file, don't try to mmap it;
4443 // instead, we'll mmap a block of memory (an anonymous buffer), and
4444 // then later write the buffer to the file.
4446 struct stat statbuf;
4447 if (o == STDOUT_FILENO || o == STDERR_FILENO
4448 || ::fstat(o, &statbuf) != 0
4449 || !S_ISREG(statbuf.st_mode)
4450 || this->is_temporary_)
4453 // Ensure that we have disk space available for the file. If we
4454 // don't do this, it is possible that we will call munmap, close,
4455 // and exit with dirty buffers still in the cache with no assigned
4456 // disk blocks. If the disk is out of space at that point, the
4457 // output file will wind up incomplete, but we will have already
4458 // exited. The alternative to fallocate would be to use fdatasync,
4459 // but that would be a more significant performance hit.
4460 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4461 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4463 // Map the file into memory.
4464 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4467 // The mmap call might fail because of file system issues: the file
4468 // system might not support mmap at all, or it might not support
4469 // mmap with PROT_WRITE.
4470 if (base == MAP_FAILED)
4473 this->map_is_anonymous_ = false;
4474 this->base_ = static_cast<unsigned char*>(base);
4478 // Map the file into memory.
4483 if (this->map_no_anonymous())
4486 // The mmap call might fail because of file system issues: the file
4487 // system might not support mmap at all, or it might not support
4488 // mmap with PROT_WRITE. I'm not sure which errno values we will
4489 // see in all cases, so if the mmap fails for any reason and we
4490 // don't care about file contents, try for an anonymous map.
4491 if (this->map_anonymous())
4494 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4495 this->name_, static_cast<unsigned long>(this->file_size_),
4499 // Unmap the file from memory.
4502 Output_file::unmap()
4504 if (::munmap(this->base_, this->file_size_) < 0)
4505 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4509 // Close the output file.
4512 Output_file::close()
4514 // If the map isn't file-backed, we need to write it now.
4515 if (this->map_is_anonymous_ && !this->is_temporary_)
4517 size_t bytes_to_write = this->file_size_;
4519 while (bytes_to_write > 0)
4521 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4523 if (bytes_written == 0)
4524 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4525 else if (bytes_written < 0)
4526 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4529 bytes_to_write -= bytes_written;
4530 offset += bytes_written;
4536 // We don't close stdout or stderr
4537 if (this->o_ != STDOUT_FILENO
4538 && this->o_ != STDERR_FILENO
4539 && !this->is_temporary_)
4540 if (::close(this->o_) < 0)
4541 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4545 // Instantiate the templates we need. We could use the configure
4546 // script to restrict this to only the ones for implemented targets.
4548 #ifdef HAVE_TARGET_32_LITTLE
4551 Output_section::add_input_section<32, false>(
4553 Sized_relobj<32, false>* object,
4555 const char* secname,
4556 const elfcpp::Shdr<32, false>& shdr,
4557 unsigned int reloc_shndx,
4558 bool have_sections_script);
4561 #ifdef HAVE_TARGET_32_BIG
4564 Output_section::add_input_section<32, true>(
4566 Sized_relobj<32, true>* object,
4568 const char* secname,
4569 const elfcpp::Shdr<32, true>& shdr,
4570 unsigned int reloc_shndx,
4571 bool have_sections_script);
4574 #ifdef HAVE_TARGET_64_LITTLE
4577 Output_section::add_input_section<64, false>(
4579 Sized_relobj<64, false>* object,
4581 const char* secname,
4582 const elfcpp::Shdr<64, false>& shdr,
4583 unsigned int reloc_shndx,
4584 bool have_sections_script);
4587 #ifdef HAVE_TARGET_64_BIG
4590 Output_section::add_input_section<64, true>(
4592 Sized_relobj<64, true>* object,
4594 const char* secname,
4595 const elfcpp::Shdr<64, true>& shdr,
4596 unsigned int reloc_shndx,
4597 bool have_sections_script);
4600 #ifdef HAVE_TARGET_32_LITTLE
4602 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4605 #ifdef HAVE_TARGET_32_BIG
4607 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4610 #ifdef HAVE_TARGET_64_LITTLE
4612 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4615 #ifdef HAVE_TARGET_64_BIG
4617 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4620 #ifdef HAVE_TARGET_32_LITTLE
4622 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4625 #ifdef HAVE_TARGET_32_BIG
4627 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4630 #ifdef HAVE_TARGET_64_LITTLE
4632 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4635 #ifdef HAVE_TARGET_64_BIG
4637 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4640 #ifdef HAVE_TARGET_32_LITTLE
4642 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4645 #ifdef HAVE_TARGET_32_BIG
4647 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4650 #ifdef HAVE_TARGET_64_LITTLE
4652 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4655 #ifdef HAVE_TARGET_64_BIG
4657 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4660 #ifdef HAVE_TARGET_32_LITTLE
4662 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4665 #ifdef HAVE_TARGET_32_BIG
4667 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4670 #ifdef HAVE_TARGET_64_LITTLE
4672 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4675 #ifdef HAVE_TARGET_64_BIG
4677 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4680 #ifdef HAVE_TARGET_32_LITTLE
4682 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4685 #ifdef HAVE_TARGET_32_BIG
4687 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4690 #ifdef HAVE_TARGET_64_LITTLE
4692 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4695 #ifdef HAVE_TARGET_64_BIG
4697 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4700 #ifdef HAVE_TARGET_32_LITTLE
4702 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4705 #ifdef HAVE_TARGET_32_BIG
4707 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4710 #ifdef HAVE_TARGET_64_LITTLE
4712 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4715 #ifdef HAVE_TARGET_64_BIG
4717 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4720 #ifdef HAVE_TARGET_32_LITTLE
4722 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4725 #ifdef HAVE_TARGET_32_BIG
4727 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4730 #ifdef HAVE_TARGET_64_LITTLE
4732 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4735 #ifdef HAVE_TARGET_64_BIG
4737 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4740 #ifdef HAVE_TARGET_32_LITTLE
4742 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4745 #ifdef HAVE_TARGET_32_BIG
4747 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4750 #ifdef HAVE_TARGET_64_LITTLE
4752 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4755 #ifdef HAVE_TARGET_64_BIG
4757 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4760 #ifdef HAVE_TARGET_32_LITTLE
4762 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4765 #ifdef HAVE_TARGET_32_BIG
4767 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4770 #ifdef HAVE_TARGET_64_LITTLE
4772 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4775 #ifdef HAVE_TARGET_64_BIG
4777 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4780 #ifdef HAVE_TARGET_32_LITTLE
4782 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4785 #ifdef HAVE_TARGET_32_BIG
4787 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4790 #ifdef HAVE_TARGET_64_LITTLE
4792 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4795 #ifdef HAVE_TARGET_64_BIG
4797 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4800 #ifdef HAVE_TARGET_32_LITTLE
4802 class Output_data_group<32, false>;
4805 #ifdef HAVE_TARGET_32_BIG
4807 class Output_data_group<32, true>;
4810 #ifdef HAVE_TARGET_64_LITTLE
4812 class Output_data_group<64, false>;
4815 #ifdef HAVE_TARGET_64_BIG
4817 class Output_data_group<64, true>;
4820 #ifdef HAVE_TARGET_32_LITTLE
4822 class Output_data_got<32, false>;
4825 #ifdef HAVE_TARGET_32_BIG
4827 class Output_data_got<32, true>;
4830 #ifdef HAVE_TARGET_64_LITTLE
4832 class Output_data_got<64, false>;
4835 #ifdef HAVE_TARGET_64_BIG
4837 class Output_data_got<64, true>;
4840 } // End namespace gold.