* incremental.cc (Incremental_inputs::report_command_line): Ignore
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "parameters.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "reloc.h"
43 #include "merge.h"
44 #include "descriptors.h"
45 #include "layout.h"
46 #include "output.h"
47
48 // For systems without mmap support.
49 #ifndef HAVE_MMAP
50 # define mmap gold_mmap
51 # define munmap gold_munmap
52 # define mremap gold_mremap
53 # ifndef MAP_FAILED
54 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
55 # endif
56 # ifndef PROT_READ
57 #  define PROT_READ 0
58 # endif
59 # ifndef PROT_WRITE
60 #  define PROT_WRITE 0
61 # endif
62 # ifndef MAP_PRIVATE
63 #  define MAP_PRIVATE 0
64 # endif
65 # ifndef MAP_ANONYMOUS
66 #  define MAP_ANONYMOUS 0
67 # endif
68 # ifndef MAP_SHARED
69 #  define MAP_SHARED 0
70 # endif
71
72 # ifndef ENOSYS
73 #  define ENOSYS EINVAL
74 # endif
75
76 static void *
77 gold_mmap(void *, size_t, int, int, int, off_t)
78 {
79   errno = ENOSYS;
80   return MAP_FAILED;
81 }
82
83 static int
84 gold_munmap(void *, size_t)
85 {
86   errno = ENOSYS;
87   return -1;
88 }
89
90 static void *
91 gold_mremap(void *, size_t, size_t, int)
92 {
93   errno = ENOSYS;
94   return MAP_FAILED;
95 }
96
97 #endif
98
99 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
100 # define mremap gold_mremap
101 extern "C" void *gold_mremap(void *, size_t, size_t, int);
102 #endif
103
104 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
105 #ifndef MAP_ANONYMOUS
106 # define MAP_ANONYMOUS  MAP_ANON
107 #endif
108
109 #ifndef MREMAP_MAYMOVE
110 # define MREMAP_MAYMOVE 1
111 #endif
112
113 #ifndef HAVE_POSIX_FALLOCATE
114 // A dummy, non general, version of posix_fallocate.  Here we just set
115 // the file size and hope that there is enough disk space.  FIXME: We
116 // could allocate disk space by walking block by block and writing a
117 // zero byte into each block.
118 static int
119 posix_fallocate(int o, off_t offset, off_t len)
120 {
121   return ftruncate(o, offset + len);
122 }
123 #endif // !defined(HAVE_POSIX_FALLOCATE)
124
125 // Mingw does not have S_ISLNK.
126 #ifndef S_ISLNK
127 # define S_ISLNK(mode) 0
128 #endif
129
130 namespace gold
131 {
132
133 // Output_data variables.
134
135 bool Output_data::allocated_sizes_are_fixed;
136
137 // Output_data methods.
138
139 Output_data::~Output_data()
140 {
141 }
142
143 // Return the default alignment for the target size.
144
145 uint64_t
146 Output_data::default_alignment()
147 {
148   return Output_data::default_alignment_for_size(
149       parameters->target().get_size());
150 }
151
152 // Return the default alignment for a size--32 or 64.
153
154 uint64_t
155 Output_data::default_alignment_for_size(int size)
156 {
157   if (size == 32)
158     return 4;
159   else if (size == 64)
160     return 8;
161   else
162     gold_unreachable();
163 }
164
165 // Output_section_header methods.  This currently assumes that the
166 // segment and section lists are complete at construction time.
167
168 Output_section_headers::Output_section_headers(
169     const Layout* layout,
170     const Layout::Segment_list* segment_list,
171     const Layout::Section_list* section_list,
172     const Layout::Section_list* unattached_section_list,
173     const Stringpool* secnamepool,
174     const Output_section* shstrtab_section)
175   : layout_(layout),
176     segment_list_(segment_list),
177     section_list_(section_list),
178     unattached_section_list_(unattached_section_list),
179     secnamepool_(secnamepool),
180     shstrtab_section_(shstrtab_section)
181 {
182 }
183
184 // Compute the current data size.
185
186 off_t
187 Output_section_headers::do_size() const
188 {
189   // Count all the sections.  Start with 1 for the null section.
190   off_t count = 1;
191   if (!parameters->options().relocatable())
192     {
193       for (Layout::Segment_list::const_iterator p =
194              this->segment_list_->begin();
195            p != this->segment_list_->end();
196            ++p)
197         if ((*p)->type() == elfcpp::PT_LOAD)
198           count += (*p)->output_section_count();
199     }
200   else
201     {
202       for (Layout::Section_list::const_iterator p =
203              this->section_list_->begin();
204            p != this->section_list_->end();
205            ++p)
206         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
207           ++count;
208     }
209   count += this->unattached_section_list_->size();
210
211   const int size = parameters->target().get_size();
212   int shdr_size;
213   if (size == 32)
214     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
215   else if (size == 64)
216     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
217   else
218     gold_unreachable();
219
220   return count * shdr_size;
221 }
222
223 // Write out the section headers.
224
225 void
226 Output_section_headers::do_write(Output_file* of)
227 {
228   switch (parameters->size_and_endianness())
229     {
230 #ifdef HAVE_TARGET_32_LITTLE
231     case Parameters::TARGET_32_LITTLE:
232       this->do_sized_write<32, false>(of);
233       break;
234 #endif
235 #ifdef HAVE_TARGET_32_BIG
236     case Parameters::TARGET_32_BIG:
237       this->do_sized_write<32, true>(of);
238       break;
239 #endif
240 #ifdef HAVE_TARGET_64_LITTLE
241     case Parameters::TARGET_64_LITTLE:
242       this->do_sized_write<64, false>(of);
243       break;
244 #endif
245 #ifdef HAVE_TARGET_64_BIG
246     case Parameters::TARGET_64_BIG:
247       this->do_sized_write<64, true>(of);
248       break;
249 #endif
250     default:
251       gold_unreachable();
252     }
253 }
254
255 template<int size, bool big_endian>
256 void
257 Output_section_headers::do_sized_write(Output_file* of)
258 {
259   off_t all_shdrs_size = this->data_size();
260   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
261
262   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
263   unsigned char* v = view;
264
265   {
266     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
267     oshdr.put_sh_name(0);
268     oshdr.put_sh_type(elfcpp::SHT_NULL);
269     oshdr.put_sh_flags(0);
270     oshdr.put_sh_addr(0);
271     oshdr.put_sh_offset(0);
272
273     size_t section_count = (this->data_size()
274                             / elfcpp::Elf_sizes<size>::shdr_size);
275     if (section_count < elfcpp::SHN_LORESERVE)
276       oshdr.put_sh_size(0);
277     else
278       oshdr.put_sh_size(section_count);
279
280     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
281     if (shstrndx < elfcpp::SHN_LORESERVE)
282       oshdr.put_sh_link(0);
283     else
284       oshdr.put_sh_link(shstrndx);
285
286     size_t segment_count = this->segment_list_->size();
287     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
288
289     oshdr.put_sh_addralign(0);
290     oshdr.put_sh_entsize(0);
291   }
292
293   v += shdr_size;
294
295   unsigned int shndx = 1;
296   if (!parameters->options().relocatable())
297     {
298       for (Layout::Segment_list::const_iterator p =
299              this->segment_list_->begin();
300            p != this->segment_list_->end();
301            ++p)
302         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
303                                                           this->secnamepool_,
304                                                           v,
305                                                           &shndx);
306     }
307   else
308     {
309       for (Layout::Section_list::const_iterator p =
310              this->section_list_->begin();
311            p != this->section_list_->end();
312            ++p)
313         {
314           // We do unallocated sections below, except that group
315           // sections have to come first.
316           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
317               && (*p)->type() != elfcpp::SHT_GROUP)
318             continue;
319           gold_assert(shndx == (*p)->out_shndx());
320           elfcpp::Shdr_write<size, big_endian> oshdr(v);
321           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
322           v += shdr_size;
323           ++shndx;
324         }
325     }
326
327   for (Layout::Section_list::const_iterator p =
328          this->unattached_section_list_->begin();
329        p != this->unattached_section_list_->end();
330        ++p)
331     {
332       // For a relocatable link, we did unallocated group sections
333       // above, since they have to come first.
334       if ((*p)->type() == elfcpp::SHT_GROUP
335           && parameters->options().relocatable())
336         continue;
337       gold_assert(shndx == (*p)->out_shndx());
338       elfcpp::Shdr_write<size, big_endian> oshdr(v);
339       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
340       v += shdr_size;
341       ++shndx;
342     }
343
344   of->write_output_view(this->offset(), all_shdrs_size, view);
345 }
346
347 // Output_segment_header methods.
348
349 Output_segment_headers::Output_segment_headers(
350     const Layout::Segment_list& segment_list)
351   : segment_list_(segment_list)
352 {
353   this->set_current_data_size_for_child(this->do_size());
354 }
355
356 void
357 Output_segment_headers::do_write(Output_file* of)
358 {
359   switch (parameters->size_and_endianness())
360     {
361 #ifdef HAVE_TARGET_32_LITTLE
362     case Parameters::TARGET_32_LITTLE:
363       this->do_sized_write<32, false>(of);
364       break;
365 #endif
366 #ifdef HAVE_TARGET_32_BIG
367     case Parameters::TARGET_32_BIG:
368       this->do_sized_write<32, true>(of);
369       break;
370 #endif
371 #ifdef HAVE_TARGET_64_LITTLE
372     case Parameters::TARGET_64_LITTLE:
373       this->do_sized_write<64, false>(of);
374       break;
375 #endif
376 #ifdef HAVE_TARGET_64_BIG
377     case Parameters::TARGET_64_BIG:
378       this->do_sized_write<64, true>(of);
379       break;
380 #endif
381     default:
382       gold_unreachable();
383     }
384 }
385
386 template<int size, bool big_endian>
387 void
388 Output_segment_headers::do_sized_write(Output_file* of)
389 {
390   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
391   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
392   gold_assert(all_phdrs_size == this->data_size());
393   unsigned char* view = of->get_output_view(this->offset(),
394                                             all_phdrs_size);
395   unsigned char* v = view;
396   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
397        p != this->segment_list_.end();
398        ++p)
399     {
400       elfcpp::Phdr_write<size, big_endian> ophdr(v);
401       (*p)->write_header(&ophdr);
402       v += phdr_size;
403     }
404
405   gold_assert(v - view == all_phdrs_size);
406
407   of->write_output_view(this->offset(), all_phdrs_size, view);
408 }
409
410 off_t
411 Output_segment_headers::do_size() const
412 {
413   const int size = parameters->target().get_size();
414   int phdr_size;
415   if (size == 32)
416     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
417   else if (size == 64)
418     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
419   else
420     gold_unreachable();
421
422   return this->segment_list_.size() * phdr_size;
423 }
424
425 // Output_file_header methods.
426
427 Output_file_header::Output_file_header(const Target* target,
428                                        const Symbol_table* symtab,
429                                        const Output_segment_headers* osh)
430   : target_(target),
431     symtab_(symtab),
432     segment_header_(osh),
433     section_header_(NULL),
434     shstrtab_(NULL)
435 {
436   this->set_data_size(this->do_size());
437 }
438
439 // Set the section table information for a file header.
440
441 void
442 Output_file_header::set_section_info(const Output_section_headers* shdrs,
443                                      const Output_section* shstrtab)
444 {
445   this->section_header_ = shdrs;
446   this->shstrtab_ = shstrtab;
447 }
448
449 // Write out the file header.
450
451 void
452 Output_file_header::do_write(Output_file* of)
453 {
454   gold_assert(this->offset() == 0);
455
456   switch (parameters->size_and_endianness())
457     {
458 #ifdef HAVE_TARGET_32_LITTLE
459     case Parameters::TARGET_32_LITTLE:
460       this->do_sized_write<32, false>(of);
461       break;
462 #endif
463 #ifdef HAVE_TARGET_32_BIG
464     case Parameters::TARGET_32_BIG:
465       this->do_sized_write<32, true>(of);
466       break;
467 #endif
468 #ifdef HAVE_TARGET_64_LITTLE
469     case Parameters::TARGET_64_LITTLE:
470       this->do_sized_write<64, false>(of);
471       break;
472 #endif
473 #ifdef HAVE_TARGET_64_BIG
474     case Parameters::TARGET_64_BIG:
475       this->do_sized_write<64, true>(of);
476       break;
477 #endif
478     default:
479       gold_unreachable();
480     }
481 }
482
483 // Write out the file header with appropriate size and endianness.
484
485 template<int size, bool big_endian>
486 void
487 Output_file_header::do_sized_write(Output_file* of)
488 {
489   gold_assert(this->offset() == 0);
490
491   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
492   unsigned char* view = of->get_output_view(0, ehdr_size);
493   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
494
495   unsigned char e_ident[elfcpp::EI_NIDENT];
496   memset(e_ident, 0, elfcpp::EI_NIDENT);
497   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
498   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
499   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
500   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
501   if (size == 32)
502     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
503   else if (size == 64)
504     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
505   else
506     gold_unreachable();
507   e_ident[elfcpp::EI_DATA] = (big_endian
508                               ? elfcpp::ELFDATA2MSB
509                               : elfcpp::ELFDATA2LSB);
510   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
511   oehdr.put_e_ident(e_ident);
512
513   elfcpp::ET e_type;
514   if (parameters->options().relocatable())
515     e_type = elfcpp::ET_REL;
516   else if (parameters->options().output_is_position_independent())
517     e_type = elfcpp::ET_DYN;
518   else
519     e_type = elfcpp::ET_EXEC;
520   oehdr.put_e_type(e_type);
521
522   oehdr.put_e_machine(this->target_->machine_code());
523   oehdr.put_e_version(elfcpp::EV_CURRENT);
524
525   oehdr.put_e_entry(this->entry<size>());
526
527   if (this->segment_header_ == NULL)
528     oehdr.put_e_phoff(0);
529   else
530     oehdr.put_e_phoff(this->segment_header_->offset());
531
532   oehdr.put_e_shoff(this->section_header_->offset());
533   oehdr.put_e_flags(this->target_->processor_specific_flags());
534   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
535
536   if (this->segment_header_ == NULL)
537     {
538       oehdr.put_e_phentsize(0);
539       oehdr.put_e_phnum(0);
540     }
541   else
542     {
543       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
544       size_t phnum = (this->segment_header_->data_size()
545                       / elfcpp::Elf_sizes<size>::phdr_size);
546       if (phnum > elfcpp::PN_XNUM)
547         phnum = elfcpp::PN_XNUM;
548       oehdr.put_e_phnum(phnum);
549     }
550
551   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
552   size_t section_count = (this->section_header_->data_size()
553                           / elfcpp::Elf_sizes<size>::shdr_size);
554
555   if (section_count < elfcpp::SHN_LORESERVE)
556     oehdr.put_e_shnum(this->section_header_->data_size()
557                       / elfcpp::Elf_sizes<size>::shdr_size);
558   else
559     oehdr.put_e_shnum(0);
560
561   unsigned int shstrndx = this->shstrtab_->out_shndx();
562   if (shstrndx < elfcpp::SHN_LORESERVE)
563     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
564   else
565     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
566
567   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
568   // the e_ident field.
569   parameters->target().adjust_elf_header(view, ehdr_size);
570
571   of->write_output_view(0, ehdr_size, view);
572 }
573
574 // Return the value to use for the entry address.
575
576 template<int size>
577 typename elfcpp::Elf_types<size>::Elf_Addr
578 Output_file_header::entry()
579 {
580   const bool should_issue_warning = (parameters->options().entry() != NULL
581                                      && !parameters->options().relocatable()
582                                      && !parameters->options().shared());
583   const char* entry = parameters->entry();
584   Symbol* sym = this->symtab_->lookup(entry);
585
586   typename Sized_symbol<size>::Value_type v;
587   if (sym != NULL)
588     {
589       Sized_symbol<size>* ssym;
590       ssym = this->symtab_->get_sized_symbol<size>(sym);
591       if (!ssym->is_defined() && should_issue_warning)
592         gold_warning("entry symbol '%s' exists but is not defined", entry);
593       v = ssym->value();
594     }
595   else
596     {
597       // We couldn't find the entry symbol.  See if we can parse it as
598       // a number.  This supports, e.g., -e 0x1000.
599       char* endptr;
600       v = strtoull(entry, &endptr, 0);
601       if (*endptr != '\0')
602         {
603           if (should_issue_warning)
604             gold_warning("cannot find entry symbol '%s'", entry);
605           v = 0;
606         }
607     }
608
609   return v;
610 }
611
612 // Compute the current data size.
613
614 off_t
615 Output_file_header::do_size() const
616 {
617   const int size = parameters->target().get_size();
618   if (size == 32)
619     return elfcpp::Elf_sizes<32>::ehdr_size;
620   else if (size == 64)
621     return elfcpp::Elf_sizes<64>::ehdr_size;
622   else
623     gold_unreachable();
624 }
625
626 // Output_data_const methods.
627
628 void
629 Output_data_const::do_write(Output_file* of)
630 {
631   of->write(this->offset(), this->data_.data(), this->data_.size());
632 }
633
634 // Output_data_const_buffer methods.
635
636 void
637 Output_data_const_buffer::do_write(Output_file* of)
638 {
639   of->write(this->offset(), this->p_, this->data_size());
640 }
641
642 // Output_section_data methods.
643
644 // Record the output section, and set the entry size and such.
645
646 void
647 Output_section_data::set_output_section(Output_section* os)
648 {
649   gold_assert(this->output_section_ == NULL);
650   this->output_section_ = os;
651   this->do_adjust_output_section(os);
652 }
653
654 // Return the section index of the output section.
655
656 unsigned int
657 Output_section_data::do_out_shndx() const
658 {
659   gold_assert(this->output_section_ != NULL);
660   return this->output_section_->out_shndx();
661 }
662
663 // Set the alignment, which means we may need to update the alignment
664 // of the output section.
665
666 void
667 Output_section_data::set_addralign(uint64_t addralign)
668 {
669   this->addralign_ = addralign;
670   if (this->output_section_ != NULL
671       && this->output_section_->addralign() < addralign)
672     this->output_section_->set_addralign(addralign);
673 }
674
675 // Output_data_strtab methods.
676
677 // Set the final data size.
678
679 void
680 Output_data_strtab::set_final_data_size()
681 {
682   this->strtab_->set_string_offsets();
683   this->set_data_size(this->strtab_->get_strtab_size());
684 }
685
686 // Write out a string table.
687
688 void
689 Output_data_strtab::do_write(Output_file* of)
690 {
691   this->strtab_->write(of, this->offset());
692 }
693
694 // Output_reloc methods.
695
696 // A reloc against a global symbol.
697
698 template<bool dynamic, int size, bool big_endian>
699 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
700     Symbol* gsym,
701     unsigned int type,
702     Output_data* od,
703     Address address,
704     bool is_relative,
705     bool is_symbolless)
706   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
707     is_relative_(is_relative), is_symbolless_(is_symbolless),
708     is_section_symbol_(false), shndx_(INVALID_CODE)
709 {
710   // this->type_ is a bitfield; make sure TYPE fits.
711   gold_assert(this->type_ == type);
712   this->u1_.gsym = gsym;
713   this->u2_.od = od;
714   if (dynamic)
715     this->set_needs_dynsym_index();
716 }
717
718 template<bool dynamic, int size, bool big_endian>
719 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
720     Symbol* gsym,
721     unsigned int type,
722     Sized_relobj<size, big_endian>* relobj,
723     unsigned int shndx,
724     Address address,
725     bool is_relative,
726     bool is_symbolless)
727   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
728     is_relative_(is_relative), is_symbolless_(is_symbolless),
729     is_section_symbol_(false), shndx_(shndx)
730 {
731   gold_assert(shndx != INVALID_CODE);
732   // this->type_ is a bitfield; make sure TYPE fits.
733   gold_assert(this->type_ == type);
734   this->u1_.gsym = gsym;
735   this->u2_.relobj = relobj;
736   if (dynamic)
737     this->set_needs_dynsym_index();
738 }
739
740 // A reloc against a local symbol.
741
742 template<bool dynamic, int size, bool big_endian>
743 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
744     Sized_relobj<size, big_endian>* relobj,
745     unsigned int local_sym_index,
746     unsigned int type,
747     Output_data* od,
748     Address address,
749     bool is_relative,
750     bool is_symbolless,
751     bool is_section_symbol)
752   : address_(address), local_sym_index_(local_sym_index), type_(type),
753     is_relative_(is_relative), is_symbolless_(is_symbolless),
754     is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
755 {
756   gold_assert(local_sym_index != GSYM_CODE
757               && local_sym_index != INVALID_CODE);
758   // this->type_ is a bitfield; make sure TYPE fits.
759   gold_assert(this->type_ == type);
760   this->u1_.relobj = relobj;
761   this->u2_.od = od;
762   if (dynamic)
763     this->set_needs_dynsym_index();
764 }
765
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768     Sized_relobj<size, big_endian>* relobj,
769     unsigned int local_sym_index,
770     unsigned int type,
771     unsigned int shndx,
772     Address address,
773     bool is_relative,
774     bool is_symbolless,
775     bool is_section_symbol)
776   : address_(address), local_sym_index_(local_sym_index), type_(type),
777     is_relative_(is_relative), is_symbolless_(is_symbolless),
778     is_section_symbol_(is_section_symbol), shndx_(shndx)
779 {
780   gold_assert(local_sym_index != GSYM_CODE
781               && local_sym_index != INVALID_CODE);
782   gold_assert(shndx != INVALID_CODE);
783   // this->type_ is a bitfield; make sure TYPE fits.
784   gold_assert(this->type_ == type);
785   this->u1_.relobj = relobj;
786   this->u2_.relobj = relobj;
787   if (dynamic)
788     this->set_needs_dynsym_index();
789 }
790
791 // A reloc against the STT_SECTION symbol of an output section.
792
793 template<bool dynamic, int size, bool big_endian>
794 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
795     Output_section* os,
796     unsigned int type,
797     Output_data* od,
798     Address address)
799   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
800     is_relative_(false), is_symbolless_(false),
801     is_section_symbol_(true), shndx_(INVALID_CODE)
802 {
803   // this->type_ is a bitfield; make sure TYPE fits.
804   gold_assert(this->type_ == type);
805   this->u1_.os = os;
806   this->u2_.od = od;
807   if (dynamic)
808     this->set_needs_dynsym_index();
809   else
810     os->set_needs_symtab_index();
811 }
812
813 template<bool dynamic, int size, bool big_endian>
814 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
815     Output_section* os,
816     unsigned int type,
817     Sized_relobj<size, big_endian>* relobj,
818     unsigned int shndx,
819     Address address)
820   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
821     is_relative_(false), is_symbolless_(false),
822     is_section_symbol_(true), shndx_(shndx)
823 {
824   gold_assert(shndx != INVALID_CODE);
825   // this->type_ is a bitfield; make sure TYPE fits.
826   gold_assert(this->type_ == type);
827   this->u1_.os = os;
828   this->u2_.relobj = relobj;
829   if (dynamic)
830     this->set_needs_dynsym_index();
831   else
832     os->set_needs_symtab_index();
833 }
834
835 // An absolute relocation.
836
837 template<bool dynamic, int size, bool big_endian>
838 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
839     unsigned int type,
840     Output_data* od,
841     Address address)
842   : address_(address), local_sym_index_(0), type_(type),
843     is_relative_(false), is_symbolless_(false),
844     is_section_symbol_(false), shndx_(INVALID_CODE)
845 {
846   // this->type_ is a bitfield; make sure TYPE fits.
847   gold_assert(this->type_ == type);
848   this->u1_.relobj = NULL;
849   this->u2_.od = od;
850 }
851
852 template<bool dynamic, int size, bool big_endian>
853 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
854     unsigned int type,
855     Sized_relobj<size, big_endian>* relobj,
856     unsigned int shndx,
857     Address address)
858   : address_(address), local_sym_index_(0), type_(type),
859     is_relative_(false), is_symbolless_(false),
860     is_section_symbol_(false), shndx_(shndx)
861 {
862   gold_assert(shndx != INVALID_CODE);
863   // this->type_ is a bitfield; make sure TYPE fits.
864   gold_assert(this->type_ == type);
865   this->u1_.relobj = NULL;
866   this->u2_.relobj = relobj;
867 }
868
869 // A target specific relocation.
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873     unsigned int type,
874     void* arg,
875     Output_data* od,
876     Address address)
877   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
878     is_relative_(false), is_symbolless_(false),
879     is_section_symbol_(false), shndx_(INVALID_CODE)
880 {
881   // this->type_ is a bitfield; make sure TYPE fits.
882   gold_assert(this->type_ == type);
883   this->u1_.arg = arg;
884   this->u2_.od = od;
885 }
886
887 template<bool dynamic, int size, bool big_endian>
888 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
889     unsigned int type,
890     void* arg,
891     Sized_relobj<size, big_endian>* relobj,
892     unsigned int shndx,
893     Address address)
894   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
895     is_relative_(false), is_symbolless_(false),
896     is_section_symbol_(false), shndx_(shndx)
897 {
898   gold_assert(shndx != INVALID_CODE);
899   // this->type_ is a bitfield; make sure TYPE fits.
900   gold_assert(this->type_ == type);
901   this->u1_.arg = arg;
902   this->u2_.relobj = relobj;
903 }
904
905 // Record that we need a dynamic symbol index for this relocation.
906
907 template<bool dynamic, int size, bool big_endian>
908 void
909 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
910 set_needs_dynsym_index()
911 {
912   if (this->is_symbolless_)
913     return;
914   switch (this->local_sym_index_)
915     {
916     case INVALID_CODE:
917       gold_unreachable();
918
919     case GSYM_CODE:
920       this->u1_.gsym->set_needs_dynsym_entry();
921       break;
922
923     case SECTION_CODE:
924       this->u1_.os->set_needs_dynsym_index();
925       break;
926
927     case TARGET_CODE:
928       // The target must take care of this if necessary.
929       break;
930
931     case 0:
932       break;
933
934     default:
935       {
936         const unsigned int lsi = this->local_sym_index_;
937         Sized_relobj_file<size, big_endian>* relobj =
938             this->u1_.relobj->sized_relobj();
939         gold_assert(relobj != NULL);
940         if (!this->is_section_symbol_)
941           relobj->set_needs_output_dynsym_entry(lsi);
942         else
943           relobj->output_section(lsi)->set_needs_dynsym_index();
944       }
945       break;
946     }
947 }
948
949 // Get the symbol index of a relocation.
950
951 template<bool dynamic, int size, bool big_endian>
952 unsigned int
953 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
954   const
955 {
956   unsigned int index;
957   if (this->is_symbolless_)
958     return 0;
959   switch (this->local_sym_index_)
960     {
961     case INVALID_CODE:
962       gold_unreachable();
963
964     case GSYM_CODE:
965       if (this->u1_.gsym == NULL)
966         index = 0;
967       else if (dynamic)
968         index = this->u1_.gsym->dynsym_index();
969       else
970         index = this->u1_.gsym->symtab_index();
971       break;
972
973     case SECTION_CODE:
974       if (dynamic)
975         index = this->u1_.os->dynsym_index();
976       else
977         index = this->u1_.os->symtab_index();
978       break;
979
980     case TARGET_CODE:
981       index = parameters->target().reloc_symbol_index(this->u1_.arg,
982                                                       this->type_);
983       break;
984
985     case 0:
986       // Relocations without symbols use a symbol index of 0.
987       index = 0;
988       break;
989
990     default:
991       {
992         const unsigned int lsi = this->local_sym_index_;
993         Sized_relobj_file<size, big_endian>* relobj =
994             this->u1_.relobj->sized_relobj();
995         gold_assert(relobj != NULL);
996         if (!this->is_section_symbol_)
997           {
998             if (dynamic)
999               index = relobj->dynsym_index(lsi);
1000             else
1001               index = relobj->symtab_index(lsi);
1002           }
1003         else
1004           {
1005             Output_section* os = relobj->output_section(lsi);
1006             gold_assert(os != NULL);
1007             if (dynamic)
1008               index = os->dynsym_index();
1009             else
1010               index = os->symtab_index();
1011           }
1012       }
1013       break;
1014     }
1015   gold_assert(index != -1U);
1016   return index;
1017 }
1018
1019 // For a local section symbol, get the address of the offset ADDEND
1020 // within the input section.
1021
1022 template<bool dynamic, int size, bool big_endian>
1023 typename elfcpp::Elf_types<size>::Elf_Addr
1024 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1025   local_section_offset(Addend addend) const
1026 {
1027   gold_assert(this->local_sym_index_ != GSYM_CODE
1028               && this->local_sym_index_ != SECTION_CODE
1029               && this->local_sym_index_ != TARGET_CODE
1030               && this->local_sym_index_ != INVALID_CODE
1031               && this->local_sym_index_ != 0
1032               && this->is_section_symbol_);
1033   const unsigned int lsi = this->local_sym_index_;
1034   Output_section* os = this->u1_.relobj->output_section(lsi);
1035   gold_assert(os != NULL);
1036   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1037   if (offset != invalid_address)
1038     return offset + addend;
1039   // This is a merge section.
1040   Sized_relobj_file<size, big_endian>* relobj =
1041       this->u1_.relobj->sized_relobj();
1042   gold_assert(relobj != NULL);
1043   offset = os->output_address(relobj, lsi, addend);
1044   gold_assert(offset != invalid_address);
1045   return offset;
1046 }
1047
1048 // Get the output address of a relocation.
1049
1050 template<bool dynamic, int size, bool big_endian>
1051 typename elfcpp::Elf_types<size>::Elf_Addr
1052 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1053 {
1054   Address address = this->address_;
1055   if (this->shndx_ != INVALID_CODE)
1056     {
1057       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1058       gold_assert(os != NULL);
1059       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1060       if (off != invalid_address)
1061         address += os->address() + off;
1062       else
1063         {
1064           Sized_relobj_file<size, big_endian>* relobj =
1065               this->u2_.relobj->sized_relobj();
1066           gold_assert(relobj != NULL);
1067           address = os->output_address(relobj, this->shndx_, address);
1068           gold_assert(address != invalid_address);
1069         }
1070     }
1071   else if (this->u2_.od != NULL)
1072     address += this->u2_.od->address();
1073   return address;
1074 }
1075
1076 // Write out the offset and info fields of a Rel or Rela relocation
1077 // entry.
1078
1079 template<bool dynamic, int size, bool big_endian>
1080 template<typename Write_rel>
1081 void
1082 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1083     Write_rel* wr) const
1084 {
1085   wr->put_r_offset(this->get_address());
1086   unsigned int sym_index = this->get_symbol_index();
1087   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1088 }
1089
1090 // Write out a Rel relocation.
1091
1092 template<bool dynamic, int size, bool big_endian>
1093 void
1094 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1095     unsigned char* pov) const
1096 {
1097   elfcpp::Rel_write<size, big_endian> orel(pov);
1098   this->write_rel(&orel);
1099 }
1100
1101 // Get the value of the symbol referred to by a Rel relocation.
1102
1103 template<bool dynamic, int size, bool big_endian>
1104 typename elfcpp::Elf_types<size>::Elf_Addr
1105 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1106     Addend addend) const
1107 {
1108   if (this->local_sym_index_ == GSYM_CODE)
1109     {
1110       const Sized_symbol<size>* sym;
1111       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1112       return sym->value() + addend;
1113     }
1114   gold_assert(this->local_sym_index_ != SECTION_CODE
1115               && this->local_sym_index_ != TARGET_CODE
1116               && this->local_sym_index_ != INVALID_CODE
1117               && this->local_sym_index_ != 0
1118               && !this->is_section_symbol_);
1119   const unsigned int lsi = this->local_sym_index_;
1120   Sized_relobj_file<size, big_endian>* relobj =
1121       this->u1_.relobj->sized_relobj();
1122   gold_assert(relobj != NULL);
1123   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1124   return symval->value(relobj, addend);
1125 }
1126
1127 // Reloc comparison.  This function sorts the dynamic relocs for the
1128 // benefit of the dynamic linker.  First we sort all relative relocs
1129 // to the front.  Among relative relocs, we sort by output address.
1130 // Among non-relative relocs, we sort by symbol index, then by output
1131 // address.
1132
1133 template<bool dynamic, int size, bool big_endian>
1134 int
1135 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1136   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1137     const
1138 {
1139   if (this->is_relative_)
1140     {
1141       if (!r2.is_relative_)
1142         return -1;
1143       // Otherwise sort by reloc address below.
1144     }
1145   else if (r2.is_relative_)
1146     return 1;
1147   else
1148     {
1149       unsigned int sym1 = this->get_symbol_index();
1150       unsigned int sym2 = r2.get_symbol_index();
1151       if (sym1 < sym2)
1152         return -1;
1153       else if (sym1 > sym2)
1154         return 1;
1155       // Otherwise sort by reloc address.
1156     }
1157
1158   section_offset_type addr1 = this->get_address();
1159   section_offset_type addr2 = r2.get_address();
1160   if (addr1 < addr2)
1161     return -1;
1162   else if (addr1 > addr2)
1163     return 1;
1164
1165   // Final tie breaker, in order to generate the same output on any
1166   // host: reloc type.
1167   unsigned int type1 = this->type_;
1168   unsigned int type2 = r2.type_;
1169   if (type1 < type2)
1170     return -1;
1171   else if (type1 > type2)
1172     return 1;
1173
1174   // These relocs appear to be exactly the same.
1175   return 0;
1176 }
1177
1178 // Write out a Rela relocation.
1179
1180 template<bool dynamic, int size, bool big_endian>
1181 void
1182 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1183     unsigned char* pov) const
1184 {
1185   elfcpp::Rela_write<size, big_endian> orel(pov);
1186   this->rel_.write_rel(&orel);
1187   Addend addend = this->addend_;
1188   if (this->rel_.is_target_specific())
1189     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1190                                                this->rel_.type(), addend);
1191   else if (this->rel_.is_symbolless())
1192     addend = this->rel_.symbol_value(addend);
1193   else if (this->rel_.is_local_section_symbol())
1194     addend = this->rel_.local_section_offset(addend);
1195   orel.put_r_addend(addend);
1196 }
1197
1198 // Output_data_reloc_base methods.
1199
1200 // Adjust the output section.
1201
1202 template<int sh_type, bool dynamic, int size, bool big_endian>
1203 void
1204 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1205     ::do_adjust_output_section(Output_section* os)
1206 {
1207   if (sh_type == elfcpp::SHT_REL)
1208     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1209   else if (sh_type == elfcpp::SHT_RELA)
1210     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1211   else
1212     gold_unreachable();
1213
1214   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1215   // static link.  The backends will generate a dynamic reloc section
1216   // to hold this.  In that case we don't want to link to the dynsym
1217   // section, because there isn't one.
1218   if (!dynamic)
1219     os->set_should_link_to_symtab();
1220   else if (parameters->doing_static_link())
1221     ;
1222   else
1223     os->set_should_link_to_dynsym();
1224 }
1225
1226 // Write out relocation data.
1227
1228 template<int sh_type, bool dynamic, int size, bool big_endian>
1229 void
1230 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1231     Output_file* of)
1232 {
1233   const off_t off = this->offset();
1234   const off_t oview_size = this->data_size();
1235   unsigned char* const oview = of->get_output_view(off, oview_size);
1236
1237   if (this->sort_relocs())
1238     {
1239       gold_assert(dynamic);
1240       std::sort(this->relocs_.begin(), this->relocs_.end(),
1241                 Sort_relocs_comparison());
1242     }
1243
1244   unsigned char* pov = oview;
1245   for (typename Relocs::const_iterator p = this->relocs_.begin();
1246        p != this->relocs_.end();
1247        ++p)
1248     {
1249       p->write(pov);
1250       pov += reloc_size;
1251     }
1252
1253   gold_assert(pov - oview == oview_size);
1254
1255   of->write_output_view(off, oview_size, oview);
1256
1257   // We no longer need the relocation entries.
1258   this->relocs_.clear();
1259 }
1260
1261 // Class Output_relocatable_relocs.
1262
1263 template<int sh_type, int size, bool big_endian>
1264 void
1265 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1266 {
1267   this->set_data_size(this->rr_->output_reloc_count()
1268                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1269 }
1270
1271 // class Output_data_group.
1272
1273 template<int size, bool big_endian>
1274 Output_data_group<size, big_endian>::Output_data_group(
1275     Sized_relobj_file<size, big_endian>* relobj,
1276     section_size_type entry_count,
1277     elfcpp::Elf_Word flags,
1278     std::vector<unsigned int>* input_shndxes)
1279   : Output_section_data(entry_count * 4, 4, false),
1280     relobj_(relobj),
1281     flags_(flags)
1282 {
1283   this->input_shndxes_.swap(*input_shndxes);
1284 }
1285
1286 // Write out the section group, which means translating the section
1287 // indexes to apply to the output file.
1288
1289 template<int size, bool big_endian>
1290 void
1291 Output_data_group<size, big_endian>::do_write(Output_file* of)
1292 {
1293   const off_t off = this->offset();
1294   const section_size_type oview_size =
1295     convert_to_section_size_type(this->data_size());
1296   unsigned char* const oview = of->get_output_view(off, oview_size);
1297
1298   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1299   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1300   ++contents;
1301
1302   for (std::vector<unsigned int>::const_iterator p =
1303          this->input_shndxes_.begin();
1304        p != this->input_shndxes_.end();
1305        ++p, ++contents)
1306     {
1307       Output_section* os = this->relobj_->output_section(*p);
1308
1309       unsigned int output_shndx;
1310       if (os != NULL)
1311         output_shndx = os->out_shndx();
1312       else
1313         {
1314           this->relobj_->error(_("section group retained but "
1315                                  "group element discarded"));
1316           output_shndx = 0;
1317         }
1318
1319       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1320     }
1321
1322   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1323   gold_assert(wrote == oview_size);
1324
1325   of->write_output_view(off, oview_size, oview);
1326
1327   // We no longer need this information.
1328   this->input_shndxes_.clear();
1329 }
1330
1331 // Output_data_got::Got_entry methods.
1332
1333 // Write out the entry.
1334
1335 template<int size, bool big_endian>
1336 void
1337 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1338 {
1339   Valtype val = 0;
1340
1341   switch (this->local_sym_index_)
1342     {
1343     case GSYM_CODE:
1344       {
1345         // If the symbol is resolved locally, we need to write out the
1346         // link-time value, which will be relocated dynamically by a
1347         // RELATIVE relocation.
1348         Symbol* gsym = this->u_.gsym;
1349         if (this->use_plt_offset_ && gsym->has_plt_offset())
1350           val = (parameters->target().plt_section_for_global(gsym)->address()
1351                  + gsym->plt_offset());
1352         else
1353           {
1354             Sized_symbol<size>* sgsym;
1355             // This cast is a bit ugly.  We don't want to put a
1356             // virtual method in Symbol, because we want Symbol to be
1357             // as small as possible.
1358             sgsym = static_cast<Sized_symbol<size>*>(gsym);
1359             val = sgsym->value();
1360           }
1361       }
1362       break;
1363
1364     case CONSTANT_CODE:
1365       val = this->u_.constant;
1366       break;
1367
1368     case RESERVED_CODE:
1369       // If we're doing an incremental update, don't touch this GOT entry.
1370       if (parameters->incremental_update())
1371         return;
1372       val = this->u_.constant;
1373       break;
1374
1375     default:
1376       {
1377         const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1378         const unsigned int lsi = this->local_sym_index_;
1379         const Symbol_value<size>* symval = object->local_symbol(lsi);
1380         if (!this->use_plt_offset_)
1381           val = symval->value(this->u_.object, 0);
1382         else
1383           {
1384             const Output_data* plt =
1385               parameters->target().plt_section_for_local(object, lsi);
1386             val = plt->address() + object->local_plt_offset(lsi);
1387           }
1388       }
1389       break;
1390     }
1391
1392   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1393 }
1394
1395 // Output_data_got methods.
1396
1397 // Add an entry for a global symbol to the GOT.  This returns true if
1398 // this is a new GOT entry, false if the symbol already had a GOT
1399 // entry.
1400
1401 template<int size, bool big_endian>
1402 bool
1403 Output_data_got<size, big_endian>::add_global(
1404     Symbol* gsym,
1405     unsigned int got_type)
1406 {
1407   if (gsym->has_got_offset(got_type))
1408     return false;
1409
1410   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1411   gsym->set_got_offset(got_type, got_offset);
1412   return true;
1413 }
1414
1415 // Like add_global, but use the PLT offset.
1416
1417 template<int size, bool big_endian>
1418 bool
1419 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1420                                                   unsigned int got_type)
1421 {
1422   if (gsym->has_got_offset(got_type))
1423     return false;
1424
1425   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1426   gsym->set_got_offset(got_type, got_offset);
1427   return true;
1428 }
1429
1430 // Add an entry for a global symbol to the GOT, and add a dynamic
1431 // relocation of type R_TYPE for the GOT entry.
1432
1433 template<int size, bool big_endian>
1434 void
1435 Output_data_got<size, big_endian>::add_global_with_rel(
1436     Symbol* gsym,
1437     unsigned int got_type,
1438     Rel_dyn* rel_dyn,
1439     unsigned int r_type)
1440 {
1441   if (gsym->has_got_offset(got_type))
1442     return;
1443
1444   unsigned int got_offset = this->add_got_entry(Got_entry());
1445   gsym->set_got_offset(got_type, got_offset);
1446   rel_dyn->add_global(gsym, r_type, this, got_offset);
1447 }
1448
1449 template<int size, bool big_endian>
1450 void
1451 Output_data_got<size, big_endian>::add_global_with_rela(
1452     Symbol* gsym,
1453     unsigned int got_type,
1454     Rela_dyn* rela_dyn,
1455     unsigned int r_type)
1456 {
1457   if (gsym->has_got_offset(got_type))
1458     return;
1459
1460   unsigned int got_offset = this->add_got_entry(Got_entry());
1461   gsym->set_got_offset(got_type, got_offset);
1462   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1463 }
1464
1465 // Add a pair of entries for a global symbol to the GOT, and add
1466 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1467 // If R_TYPE_2 == 0, add the second entry with no relocation.
1468 template<int size, bool big_endian>
1469 void
1470 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1471     Symbol* gsym,
1472     unsigned int got_type,
1473     Rel_dyn* rel_dyn,
1474     unsigned int r_type_1,
1475     unsigned int r_type_2)
1476 {
1477   if (gsym->has_got_offset(got_type))
1478     return;
1479
1480   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1481   gsym->set_got_offset(got_type, got_offset);
1482   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1483
1484   if (r_type_2 != 0)
1485     rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1486 }
1487
1488 template<int size, bool big_endian>
1489 void
1490 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1491     Symbol* gsym,
1492     unsigned int got_type,
1493     Rela_dyn* rela_dyn,
1494     unsigned int r_type_1,
1495     unsigned int r_type_2)
1496 {
1497   if (gsym->has_got_offset(got_type))
1498     return;
1499
1500   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1501   gsym->set_got_offset(got_type, got_offset);
1502   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1503
1504   if (r_type_2 != 0)
1505     rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1506 }
1507
1508 // Add an entry for a local symbol to the GOT.  This returns true if
1509 // this is a new GOT entry, false if the symbol already has a GOT
1510 // entry.
1511
1512 template<int size, bool big_endian>
1513 bool
1514 Output_data_got<size, big_endian>::add_local(
1515     Sized_relobj_file<size, big_endian>* object,
1516     unsigned int symndx,
1517     unsigned int got_type)
1518 {
1519   if (object->local_has_got_offset(symndx, got_type))
1520     return false;
1521
1522   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1523                                                           false));
1524   object->set_local_got_offset(symndx, got_type, got_offset);
1525   return true;
1526 }
1527
1528 // Like add_local, but use the PLT offset.
1529
1530 template<int size, bool big_endian>
1531 bool
1532 Output_data_got<size, big_endian>::add_local_plt(
1533     Sized_relobj_file<size, big_endian>* object,
1534     unsigned int symndx,
1535     unsigned int got_type)
1536 {
1537   if (object->local_has_got_offset(symndx, got_type))
1538     return false;
1539
1540   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1541                                                           true));
1542   object->set_local_got_offset(symndx, got_type, got_offset);
1543   return true;
1544 }
1545
1546 // Add an entry for a local symbol to the GOT, and add a dynamic
1547 // relocation of type R_TYPE for the GOT entry.
1548
1549 template<int size, bool big_endian>
1550 void
1551 Output_data_got<size, big_endian>::add_local_with_rel(
1552     Sized_relobj_file<size, big_endian>* object,
1553     unsigned int symndx,
1554     unsigned int got_type,
1555     Rel_dyn* rel_dyn,
1556     unsigned int r_type)
1557 {
1558   if (object->local_has_got_offset(symndx, got_type))
1559     return;
1560
1561   unsigned int got_offset = this->add_got_entry(Got_entry());
1562   object->set_local_got_offset(symndx, got_type, got_offset);
1563   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1564 }
1565
1566 template<int size, bool big_endian>
1567 void
1568 Output_data_got<size, big_endian>::add_local_with_rela(
1569     Sized_relobj_file<size, big_endian>* object,
1570     unsigned int symndx,
1571     unsigned int got_type,
1572     Rela_dyn* rela_dyn,
1573     unsigned int r_type)
1574 {
1575   if (object->local_has_got_offset(symndx, got_type))
1576     return;
1577
1578   unsigned int got_offset = this->add_got_entry(Got_entry());
1579   object->set_local_got_offset(symndx, got_type, got_offset);
1580   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1581 }
1582
1583 // Add a pair of entries for a local symbol to the GOT, and add
1584 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1585 // If R_TYPE_2 == 0, add the second entry with no relocation.
1586 template<int size, bool big_endian>
1587 void
1588 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1589     Sized_relobj_file<size, big_endian>* object,
1590     unsigned int symndx,
1591     unsigned int shndx,
1592     unsigned int got_type,
1593     Rel_dyn* rel_dyn,
1594     unsigned int r_type_1,
1595     unsigned int r_type_2)
1596 {
1597   if (object->local_has_got_offset(symndx, got_type))
1598     return;
1599
1600   unsigned int got_offset =
1601       this->add_got_entry_pair(Got_entry(),
1602                                Got_entry(object, symndx, false));
1603   object->set_local_got_offset(symndx, got_type, got_offset);
1604   Output_section* os = object->output_section(shndx);
1605   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1606
1607   if (r_type_2 != 0)
1608     rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1609 }
1610
1611 template<int size, bool big_endian>
1612 void
1613 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1614     Sized_relobj_file<size, big_endian>* object,
1615     unsigned int symndx,
1616     unsigned int shndx,
1617     unsigned int got_type,
1618     Rela_dyn* rela_dyn,
1619     unsigned int r_type_1,
1620     unsigned int r_type_2)
1621 {
1622   if (object->local_has_got_offset(symndx, got_type))
1623     return;
1624
1625   unsigned int got_offset =
1626       this->add_got_entry_pair(Got_entry(),
1627                                Got_entry(object, symndx, false));
1628   object->set_local_got_offset(symndx, got_type, got_offset);
1629   Output_section* os = object->output_section(shndx);
1630   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1631
1632   if (r_type_2 != 0)
1633     rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1634 }
1635
1636 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1637
1638 template<int size, bool big_endian>
1639 void
1640 Output_data_got<size, big_endian>::reserve_local(
1641     unsigned int i,
1642     Sized_relobj<size, big_endian>* object,
1643     unsigned int sym_index,
1644     unsigned int got_type)
1645 {
1646   this->reserve_slot(i);
1647   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1648 }
1649
1650 // Reserve a slot in the GOT for a global symbol.
1651
1652 template<int size, bool big_endian>
1653 void
1654 Output_data_got<size, big_endian>::reserve_global(
1655     unsigned int i,
1656     Symbol* gsym,
1657     unsigned int got_type)
1658 {
1659   this->reserve_slot(i);
1660   gsym->set_got_offset(got_type, this->got_offset(i));
1661 }
1662
1663 // Write out the GOT.
1664
1665 template<int size, bool big_endian>
1666 void
1667 Output_data_got<size, big_endian>::do_write(Output_file* of)
1668 {
1669   const int add = size / 8;
1670
1671   const off_t off = this->offset();
1672   const off_t oview_size = this->data_size();
1673   unsigned char* const oview = of->get_output_view(off, oview_size);
1674
1675   unsigned char* pov = oview;
1676   for (typename Got_entries::const_iterator p = this->entries_.begin();
1677        p != this->entries_.end();
1678        ++p)
1679     {
1680       p->write(pov);
1681       pov += add;
1682     }
1683
1684   gold_assert(pov - oview == oview_size);
1685
1686   of->write_output_view(off, oview_size, oview);
1687
1688   // We no longer need the GOT entries.
1689   this->entries_.clear();
1690 }
1691
1692 // Create a new GOT entry and return its offset.
1693
1694 template<int size, bool big_endian>
1695 unsigned int
1696 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1697 {
1698   if (!this->is_data_size_valid())
1699     {
1700       this->entries_.push_back(got_entry);
1701       this->set_got_size();
1702       return this->last_got_offset();
1703     }
1704   else
1705     {
1706       // For an incremental update, find an available slot.
1707       off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1708       if (got_offset == -1)
1709         gold_fallback(_("out of patch space (GOT);"
1710                         " relink with --incremental-full"));
1711       unsigned int got_index = got_offset / (size / 8);
1712       gold_assert(got_index < this->entries_.size());
1713       this->entries_[got_index] = got_entry;
1714       return static_cast<unsigned int>(got_offset);
1715     }
1716 }
1717
1718 // Create a pair of new GOT entries and return the offset of the first.
1719
1720 template<int size, bool big_endian>
1721 unsigned int
1722 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1723                                                       Got_entry got_entry_2)
1724 {
1725   if (!this->is_data_size_valid())
1726     {
1727       unsigned int got_offset;
1728       this->entries_.push_back(got_entry_1);
1729       got_offset = this->last_got_offset();
1730       this->entries_.push_back(got_entry_2);
1731       this->set_got_size();
1732       return got_offset;
1733     }
1734   else
1735     {
1736       // For an incremental update, find an available pair of slots.
1737       off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1738       if (got_offset == -1)
1739         gold_fallback(_("out of patch space (GOT);"
1740                         " relink with --incremental-full"));
1741       unsigned int got_index = got_offset / (size / 8);
1742       gold_assert(got_index < this->entries_.size());
1743       this->entries_[got_index] = got_entry_1;
1744       this->entries_[got_index + 1] = got_entry_2;
1745       return static_cast<unsigned int>(got_offset);
1746     }
1747 }
1748
1749 // Output_data_dynamic::Dynamic_entry methods.
1750
1751 // Write out the entry.
1752
1753 template<int size, bool big_endian>
1754 void
1755 Output_data_dynamic::Dynamic_entry::write(
1756     unsigned char* pov,
1757     const Stringpool* pool) const
1758 {
1759   typename elfcpp::Elf_types<size>::Elf_WXword val;
1760   switch (this->offset_)
1761     {
1762     case DYNAMIC_NUMBER:
1763       val = this->u_.val;
1764       break;
1765
1766     case DYNAMIC_SECTION_SIZE:
1767       val = this->u_.od->data_size();
1768       if (this->od2 != NULL)
1769         val += this->od2->data_size();
1770       break;
1771
1772     case DYNAMIC_SYMBOL:
1773       {
1774         const Sized_symbol<size>* s =
1775           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1776         val = s->value();
1777       }
1778       break;
1779
1780     case DYNAMIC_STRING:
1781       val = pool->get_offset(this->u_.str);
1782       break;
1783
1784     default:
1785       val = this->u_.od->address() + this->offset_;
1786       break;
1787     }
1788
1789   elfcpp::Dyn_write<size, big_endian> dw(pov);
1790   dw.put_d_tag(this->tag_);
1791   dw.put_d_val(val);
1792 }
1793
1794 // Output_data_dynamic methods.
1795
1796 // Adjust the output section to set the entry size.
1797
1798 void
1799 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1800 {
1801   if (parameters->target().get_size() == 32)
1802     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1803   else if (parameters->target().get_size() == 64)
1804     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1805   else
1806     gold_unreachable();
1807 }
1808
1809 // Set the final data size.
1810
1811 void
1812 Output_data_dynamic::set_final_data_size()
1813 {
1814   // Add the terminating entry if it hasn't been added.
1815   // Because of relaxation, we can run this multiple times.
1816   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1817     {
1818       int extra = parameters->options().spare_dynamic_tags();
1819       for (int i = 0; i < extra; ++i)
1820         this->add_constant(elfcpp::DT_NULL, 0);
1821       this->add_constant(elfcpp::DT_NULL, 0);
1822     }
1823
1824   int dyn_size;
1825   if (parameters->target().get_size() == 32)
1826     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1827   else if (parameters->target().get_size() == 64)
1828     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1829   else
1830     gold_unreachable();
1831   this->set_data_size(this->entries_.size() * dyn_size);
1832 }
1833
1834 // Write out the dynamic entries.
1835
1836 void
1837 Output_data_dynamic::do_write(Output_file* of)
1838 {
1839   switch (parameters->size_and_endianness())
1840     {
1841 #ifdef HAVE_TARGET_32_LITTLE
1842     case Parameters::TARGET_32_LITTLE:
1843       this->sized_write<32, false>(of);
1844       break;
1845 #endif
1846 #ifdef HAVE_TARGET_32_BIG
1847     case Parameters::TARGET_32_BIG:
1848       this->sized_write<32, true>(of);
1849       break;
1850 #endif
1851 #ifdef HAVE_TARGET_64_LITTLE
1852     case Parameters::TARGET_64_LITTLE:
1853       this->sized_write<64, false>(of);
1854       break;
1855 #endif
1856 #ifdef HAVE_TARGET_64_BIG
1857     case Parameters::TARGET_64_BIG:
1858       this->sized_write<64, true>(of);
1859       break;
1860 #endif
1861     default:
1862       gold_unreachable();
1863     }
1864 }
1865
1866 template<int size, bool big_endian>
1867 void
1868 Output_data_dynamic::sized_write(Output_file* of)
1869 {
1870   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1871
1872   const off_t offset = this->offset();
1873   const off_t oview_size = this->data_size();
1874   unsigned char* const oview = of->get_output_view(offset, oview_size);
1875
1876   unsigned char* pov = oview;
1877   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1878        p != this->entries_.end();
1879        ++p)
1880     {
1881       p->write<size, big_endian>(pov, this->pool_);
1882       pov += dyn_size;
1883     }
1884
1885   gold_assert(pov - oview == oview_size);
1886
1887   of->write_output_view(offset, oview_size, oview);
1888
1889   // We no longer need the dynamic entries.
1890   this->entries_.clear();
1891 }
1892
1893 // Class Output_symtab_xindex.
1894
1895 void
1896 Output_symtab_xindex::do_write(Output_file* of)
1897 {
1898   const off_t offset = this->offset();
1899   const off_t oview_size = this->data_size();
1900   unsigned char* const oview = of->get_output_view(offset, oview_size);
1901
1902   memset(oview, 0, oview_size);
1903
1904   if (parameters->target().is_big_endian())
1905     this->endian_do_write<true>(oview);
1906   else
1907     this->endian_do_write<false>(oview);
1908
1909   of->write_output_view(offset, oview_size, oview);
1910
1911   // We no longer need the data.
1912   this->entries_.clear();
1913 }
1914
1915 template<bool big_endian>
1916 void
1917 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1918 {
1919   for (Xindex_entries::const_iterator p = this->entries_.begin();
1920        p != this->entries_.end();
1921        ++p)
1922     {
1923       unsigned int symndx = p->first;
1924       gold_assert(symndx * 4 < this->data_size());
1925       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1926     }
1927 }
1928
1929 // Output_section::Input_section methods.
1930
1931 // Return the current data size.  For an input section we store the size here.
1932 // For an Output_section_data, we have to ask it for the size.
1933
1934 off_t
1935 Output_section::Input_section::current_data_size() const
1936 {
1937   if (this->is_input_section())
1938     return this->u1_.data_size;
1939   else
1940     {
1941       this->u2_.posd->pre_finalize_data_size();
1942       return this->u2_.posd->current_data_size();
1943     }
1944 }
1945
1946 // Return the data size.  For an input section we store the size here.
1947 // For an Output_section_data, we have to ask it for the size.
1948
1949 off_t
1950 Output_section::Input_section::data_size() const
1951 {
1952   if (this->is_input_section())
1953     return this->u1_.data_size;
1954   else
1955     return this->u2_.posd->data_size();
1956 }
1957
1958 // Return the object for an input section.
1959
1960 Relobj*
1961 Output_section::Input_section::relobj() const
1962 {
1963   if (this->is_input_section())
1964     return this->u2_.object;
1965   else if (this->is_merge_section())
1966     {
1967       gold_assert(this->u2_.pomb->first_relobj() != NULL);
1968       return this->u2_.pomb->first_relobj();
1969     }
1970   else if (this->is_relaxed_input_section())
1971     return this->u2_.poris->relobj();
1972   else
1973     gold_unreachable();
1974 }
1975
1976 // Return the input section index for an input section.
1977
1978 unsigned int
1979 Output_section::Input_section::shndx() const
1980 {
1981   if (this->is_input_section())
1982     return this->shndx_;
1983   else if (this->is_merge_section())
1984     {
1985       gold_assert(this->u2_.pomb->first_relobj() != NULL);
1986       return this->u2_.pomb->first_shndx();
1987     }
1988   else if (this->is_relaxed_input_section())
1989     return this->u2_.poris->shndx();
1990   else
1991     gold_unreachable();
1992 }
1993
1994 // Set the address and file offset.
1995
1996 void
1997 Output_section::Input_section::set_address_and_file_offset(
1998     uint64_t address,
1999     off_t file_offset,
2000     off_t section_file_offset)
2001 {
2002   if (this->is_input_section())
2003     this->u2_.object->set_section_offset(this->shndx_,
2004                                          file_offset - section_file_offset);
2005   else
2006     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2007 }
2008
2009 // Reset the address and file offset.
2010
2011 void
2012 Output_section::Input_section::reset_address_and_file_offset()
2013 {
2014   if (!this->is_input_section())
2015     this->u2_.posd->reset_address_and_file_offset();
2016 }
2017
2018 // Finalize the data size.
2019
2020 void
2021 Output_section::Input_section::finalize_data_size()
2022 {
2023   if (!this->is_input_section())
2024     this->u2_.posd->finalize_data_size();
2025 }
2026
2027 // Try to turn an input offset into an output offset.  We want to
2028 // return the output offset relative to the start of this
2029 // Input_section in the output section.
2030
2031 inline bool
2032 Output_section::Input_section::output_offset(
2033     const Relobj* object,
2034     unsigned int shndx,
2035     section_offset_type offset,
2036     section_offset_type* poutput) const
2037 {
2038   if (!this->is_input_section())
2039     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2040   else
2041     {
2042       if (this->shndx_ != shndx || this->u2_.object != object)
2043         return false;
2044       *poutput = offset;
2045       return true;
2046     }
2047 }
2048
2049 // Return whether this is the merge section for the input section
2050 // SHNDX in OBJECT.
2051
2052 inline bool
2053 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2054                                                     unsigned int shndx) const
2055 {
2056   if (this->is_input_section())
2057     return false;
2058   return this->u2_.posd->is_merge_section_for(object, shndx);
2059 }
2060
2061 // Write out the data.  We don't have to do anything for an input
2062 // section--they are handled via Object::relocate--but this is where
2063 // we write out the data for an Output_section_data.
2064
2065 void
2066 Output_section::Input_section::write(Output_file* of)
2067 {
2068   if (!this->is_input_section())
2069     this->u2_.posd->write(of);
2070 }
2071
2072 // Write the data to a buffer.  As for write(), we don't have to do
2073 // anything for an input section.
2074
2075 void
2076 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2077 {
2078   if (!this->is_input_section())
2079     this->u2_.posd->write_to_buffer(buffer);
2080 }
2081
2082 // Print to a map file.
2083
2084 void
2085 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2086 {
2087   switch (this->shndx_)
2088     {
2089     case OUTPUT_SECTION_CODE:
2090     case MERGE_DATA_SECTION_CODE:
2091     case MERGE_STRING_SECTION_CODE:
2092       this->u2_.posd->print_to_mapfile(mapfile);
2093       break;
2094
2095     case RELAXED_INPUT_SECTION_CODE:
2096       {
2097         Output_relaxed_input_section* relaxed_section =
2098           this->relaxed_input_section();
2099         mapfile->print_input_section(relaxed_section->relobj(),
2100                                      relaxed_section->shndx());
2101       }
2102       break;
2103     default:
2104       mapfile->print_input_section(this->u2_.object, this->shndx_);
2105       break;
2106     }
2107 }
2108
2109 // Output_section methods.
2110
2111 // Construct an Output_section.  NAME will point into a Stringpool.
2112
2113 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2114                                elfcpp::Elf_Xword flags)
2115   : name_(name),
2116     addralign_(0),
2117     entsize_(0),
2118     load_address_(0),
2119     link_section_(NULL),
2120     link_(0),
2121     info_section_(NULL),
2122     info_symndx_(NULL),
2123     info_(0),
2124     type_(type),
2125     flags_(flags),
2126     order_(ORDER_INVALID),
2127     out_shndx_(-1U),
2128     symtab_index_(0),
2129     dynsym_index_(0),
2130     input_sections_(),
2131     first_input_offset_(0),
2132     fills_(),
2133     postprocessing_buffer_(NULL),
2134     needs_symtab_index_(false),
2135     needs_dynsym_index_(false),
2136     should_link_to_symtab_(false),
2137     should_link_to_dynsym_(false),
2138     after_input_sections_(false),
2139     requires_postprocessing_(false),
2140     found_in_sections_clause_(false),
2141     has_load_address_(false),
2142     info_uses_section_index_(false),
2143     input_section_order_specified_(false),
2144     may_sort_attached_input_sections_(false),
2145     must_sort_attached_input_sections_(false),
2146     attached_input_sections_are_sorted_(false),
2147     is_relro_(false),
2148     is_small_section_(false),
2149     is_large_section_(false),
2150     generate_code_fills_at_write_(false),
2151     is_entsize_zero_(false),
2152     section_offsets_need_adjustment_(false),
2153     is_noload_(false),
2154     always_keeps_input_sections_(false),
2155     has_fixed_layout_(false),
2156     is_patch_space_allowed_(false),
2157     tls_offset_(0),
2158     checkpoint_(NULL),
2159     lookup_maps_(new Output_section_lookup_maps),
2160     free_list_(),
2161     patch_space_(0)
2162 {
2163   // An unallocated section has no address.  Forcing this means that
2164   // we don't need special treatment for symbols defined in debug
2165   // sections.
2166   if ((flags & elfcpp::SHF_ALLOC) == 0)
2167     this->set_address(0);
2168 }
2169
2170 Output_section::~Output_section()
2171 {
2172   delete this->checkpoint_;
2173 }
2174
2175 // Set the entry size.
2176
2177 void
2178 Output_section::set_entsize(uint64_t v)
2179 {
2180   if (this->is_entsize_zero_)
2181     ;
2182   else if (this->entsize_ == 0)
2183     this->entsize_ = v;
2184   else if (this->entsize_ != v)
2185     {
2186       this->entsize_ = 0;
2187       this->is_entsize_zero_ = 1;
2188     }
2189 }
2190
2191 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2192 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2193 // relocation section which applies to this section, or 0 if none, or
2194 // -1U if more than one.  Return the offset of the input section
2195 // within the output section.  Return -1 if the input section will
2196 // receive special handling.  In the normal case we don't always keep
2197 // track of input sections for an Output_section.  Instead, each
2198 // Object keeps track of the Output_section for each of its input
2199 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2200 // track of input sections here; this is used when SECTIONS appears in
2201 // a linker script.
2202
2203 template<int size, bool big_endian>
2204 off_t
2205 Output_section::add_input_section(Layout* layout,
2206                                   Sized_relobj_file<size, big_endian>* object,
2207                                   unsigned int shndx,
2208                                   const char* secname,
2209                                   const elfcpp::Shdr<size, big_endian>& shdr,
2210                                   unsigned int reloc_shndx,
2211                                   bool have_sections_script)
2212 {
2213   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2214   if ((addralign & (addralign - 1)) != 0)
2215     {
2216       object->error(_("invalid alignment %lu for section \"%s\""),
2217                     static_cast<unsigned long>(addralign), secname);
2218       addralign = 1;
2219     }
2220
2221   if (addralign > this->addralign_)
2222     this->addralign_ = addralign;
2223
2224   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2225   uint64_t entsize = shdr.get_sh_entsize();
2226
2227   // .debug_str is a mergeable string section, but is not always so
2228   // marked by compilers.  Mark manually here so we can optimize.
2229   if (strcmp(secname, ".debug_str") == 0)
2230     {
2231       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2232       entsize = 1;
2233     }
2234
2235   this->update_flags_for_input_section(sh_flags);
2236   this->set_entsize(entsize);
2237
2238   // If this is a SHF_MERGE section, we pass all the input sections to
2239   // a Output_data_merge.  We don't try to handle relocations for such
2240   // a section.  We don't try to handle empty merge sections--they
2241   // mess up the mappings, and are useless anyhow.
2242   // FIXME: Need to handle merge sections during incremental update.
2243   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2244       && reloc_shndx == 0
2245       && shdr.get_sh_size() > 0
2246       && !parameters->incremental())
2247     {
2248       // Keep information about merged input sections for rebuilding fast
2249       // lookup maps if we have sections-script or we do relaxation.
2250       bool keeps_input_sections = (this->always_keeps_input_sections_
2251                                    || have_sections_script
2252                                    || parameters->target().may_relax());
2253
2254       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2255                                         addralign, keeps_input_sections))
2256         {
2257           // Tell the relocation routines that they need to call the
2258           // output_offset method to determine the final address.
2259           return -1;
2260         }
2261     }
2262
2263   section_size_type input_section_size = shdr.get_sh_size();
2264   section_size_type uncompressed_size;
2265   if (object->section_is_compressed(shndx, &uncompressed_size))
2266     input_section_size = uncompressed_size;
2267
2268   off_t offset_in_section;
2269   off_t aligned_offset_in_section;
2270   if (this->has_fixed_layout())
2271     {
2272       // For incremental updates, find a chunk of unused space in the section.
2273       offset_in_section = this->free_list_.allocate(input_section_size,
2274                                                     addralign, 0);
2275       if (offset_in_section == -1)
2276         gold_fallback(_("out of patch space in section %s; "
2277                         "relink with --incremental-full"),
2278                       this->name());
2279       aligned_offset_in_section = offset_in_section;
2280     }
2281   else
2282     {
2283       offset_in_section = this->current_data_size_for_child();
2284       aligned_offset_in_section = align_address(offset_in_section,
2285                                                 addralign);
2286       this->set_current_data_size_for_child(aligned_offset_in_section
2287                                             + input_section_size);
2288     }
2289
2290   // Determine if we want to delay code-fill generation until the output
2291   // section is written.  When the target is relaxing, we want to delay fill
2292   // generating to avoid adjusting them during relaxation.  Also, if we are
2293   // sorting input sections we must delay fill generation.
2294   if (!this->generate_code_fills_at_write_
2295       && !have_sections_script
2296       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2297       && parameters->target().has_code_fill()
2298       && (parameters->target().may_relax()
2299           || parameters->options().section_ordering_file()))
2300     {
2301       gold_assert(this->fills_.empty());
2302       this->generate_code_fills_at_write_ = true;
2303     }
2304
2305   if (aligned_offset_in_section > offset_in_section
2306       && !this->generate_code_fills_at_write_
2307       && !have_sections_script
2308       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2309       && parameters->target().has_code_fill())
2310     {
2311       // We need to add some fill data.  Using fill_list_ when
2312       // possible is an optimization, since we will often have fill
2313       // sections without input sections.
2314       off_t fill_len = aligned_offset_in_section - offset_in_section;
2315       if (this->input_sections_.empty())
2316         this->fills_.push_back(Fill(offset_in_section, fill_len));
2317       else
2318         {
2319           std::string fill_data(parameters->target().code_fill(fill_len));
2320           Output_data_const* odc = new Output_data_const(fill_data, 1);
2321           this->input_sections_.push_back(Input_section(odc));
2322         }
2323     }
2324
2325   // We need to keep track of this section if we are already keeping
2326   // track of sections, or if we are relaxing.  Also, if this is a
2327   // section which requires sorting, or which may require sorting in
2328   // the future, we keep track of the sections.  If the
2329   // --section-ordering-file option is used to specify the order of
2330   // sections, we need to keep track of sections.
2331   if (this->always_keeps_input_sections_
2332       || have_sections_script
2333       || !this->input_sections_.empty()
2334       || this->may_sort_attached_input_sections()
2335       || this->must_sort_attached_input_sections()
2336       || parameters->options().user_set_Map()
2337       || parameters->target().may_relax()
2338       || parameters->options().section_ordering_file())
2339     {
2340       Input_section isecn(object, shndx, input_section_size, addralign);
2341       if (parameters->options().section_ordering_file())
2342         {
2343           unsigned int section_order_index =
2344             layout->find_section_order_index(std::string(secname));
2345           if (section_order_index != 0)
2346             {
2347               isecn.set_section_order_index(section_order_index);
2348               this->set_input_section_order_specified();
2349             }
2350         }
2351       if (this->has_fixed_layout())
2352         {
2353           // For incremental updates, finalize the address and offset now.
2354           uint64_t addr = this->address();
2355           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2356                                             aligned_offset_in_section,
2357                                             this->offset());
2358         }
2359       this->input_sections_.push_back(isecn);
2360     }
2361
2362   return aligned_offset_in_section;
2363 }
2364
2365 // Add arbitrary data to an output section.
2366
2367 void
2368 Output_section::add_output_section_data(Output_section_data* posd)
2369 {
2370   Input_section inp(posd);
2371   this->add_output_section_data(&inp);
2372
2373   if (posd->is_data_size_valid())
2374     {
2375       off_t offset_in_section;
2376       if (this->has_fixed_layout())
2377         {
2378           // For incremental updates, find a chunk of unused space.
2379           offset_in_section = this->free_list_.allocate(posd->data_size(),
2380                                                         posd->addralign(), 0);
2381           if (offset_in_section == -1)
2382             gold_fallback(_("out of patch space in section %s; "
2383                             "relink with --incremental-full"),
2384                           this->name());
2385           // Finalize the address and offset now.
2386           uint64_t addr = this->address();
2387           off_t offset = this->offset();
2388           posd->set_address_and_file_offset(addr + offset_in_section,
2389                                             offset + offset_in_section);
2390         }
2391       else
2392         {
2393           offset_in_section = this->current_data_size_for_child();
2394           off_t aligned_offset_in_section = align_address(offset_in_section,
2395                                                           posd->addralign());
2396           this->set_current_data_size_for_child(aligned_offset_in_section
2397                                                 + posd->data_size());
2398         }
2399     }
2400   else if (this->has_fixed_layout())
2401     {
2402       // For incremental updates, arrange for the data to have a fixed layout.
2403       // This will mean that additions to the data must be allocated from
2404       // free space within the containing output section.
2405       uint64_t addr = this->address();
2406       posd->set_address(addr);
2407       posd->set_file_offset(0);
2408       // FIXME: This should eventually be unreachable.
2409       // gold_unreachable();
2410     }
2411 }
2412
2413 // Add a relaxed input section.
2414
2415 void
2416 Output_section::add_relaxed_input_section(Layout* layout,
2417                                           Output_relaxed_input_section* poris,
2418                                           const std::string& name)
2419 {
2420   Input_section inp(poris);
2421
2422   // If the --section-ordering-file option is used to specify the order of
2423   // sections, we need to keep track of sections.
2424   if (parameters->options().section_ordering_file())
2425     {
2426       unsigned int section_order_index =
2427         layout->find_section_order_index(name);
2428       if (section_order_index != 0)
2429         {
2430           inp.set_section_order_index(section_order_index);
2431           this->set_input_section_order_specified();
2432         }
2433     }
2434
2435   this->add_output_section_data(&inp);
2436   if (this->lookup_maps_->is_valid())
2437     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2438                                                   poris->shndx(), poris);
2439
2440   // For a relaxed section, we use the current data size.  Linker scripts
2441   // get all the input sections, including relaxed one from an output
2442   // section and add them back to them same output section to compute the
2443   // output section size.  If we do not account for sizes of relaxed input
2444   // sections,  an output section would be incorrectly sized.
2445   off_t offset_in_section = this->current_data_size_for_child();
2446   off_t aligned_offset_in_section = align_address(offset_in_section,
2447                                                   poris->addralign());
2448   this->set_current_data_size_for_child(aligned_offset_in_section
2449                                         + poris->current_data_size());
2450 }
2451
2452 // Add arbitrary data to an output section by Input_section.
2453
2454 void
2455 Output_section::add_output_section_data(Input_section* inp)
2456 {
2457   if (this->input_sections_.empty())
2458     this->first_input_offset_ = this->current_data_size_for_child();
2459
2460   this->input_sections_.push_back(*inp);
2461
2462   uint64_t addralign = inp->addralign();
2463   if (addralign > this->addralign_)
2464     this->addralign_ = addralign;
2465
2466   inp->set_output_section(this);
2467 }
2468
2469 // Add a merge section to an output section.
2470
2471 void
2472 Output_section::add_output_merge_section(Output_section_data* posd,
2473                                          bool is_string, uint64_t entsize)
2474 {
2475   Input_section inp(posd, is_string, entsize);
2476   this->add_output_section_data(&inp);
2477 }
2478
2479 // Add an input section to a SHF_MERGE section.
2480
2481 bool
2482 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2483                                         uint64_t flags, uint64_t entsize,
2484                                         uint64_t addralign,
2485                                         bool keeps_input_sections)
2486 {
2487   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2488
2489   // We only merge strings if the alignment is not more than the
2490   // character size.  This could be handled, but it's unusual.
2491   if (is_string && addralign > entsize)
2492     return false;
2493
2494   // We cannot restore merged input section states.
2495   gold_assert(this->checkpoint_ == NULL);
2496
2497   // Look up merge sections by required properties.
2498   // Currently, we only invalidate the lookup maps in script processing
2499   // and relaxation.  We should not have done either when we reach here.
2500   // So we assume that the lookup maps are valid to simply code.
2501   gold_assert(this->lookup_maps_->is_valid());
2502   Merge_section_properties msp(is_string, entsize, addralign);
2503   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2504   bool is_new = false;
2505   if (pomb != NULL)
2506     {
2507       gold_assert(pomb->is_string() == is_string
2508                   && pomb->entsize() == entsize
2509                   && pomb->addralign() == addralign);
2510     }
2511   else
2512     {
2513       // Create a new Output_merge_data or Output_merge_string_data.
2514       if (!is_string)
2515         pomb = new Output_merge_data(entsize, addralign);
2516       else
2517         {
2518           switch (entsize)
2519             {
2520             case 1:
2521               pomb = new Output_merge_string<char>(addralign);
2522               break;
2523             case 2:
2524               pomb = new Output_merge_string<uint16_t>(addralign);
2525               break;
2526             case 4:
2527               pomb = new Output_merge_string<uint32_t>(addralign);
2528               break;
2529             default:
2530               return false;
2531             }
2532         }
2533       // If we need to do script processing or relaxation, we need to keep
2534       // the original input sections to rebuild the fast lookup maps.
2535       if (keeps_input_sections)
2536         pomb->set_keeps_input_sections();
2537       is_new = true;
2538     }
2539
2540   if (pomb->add_input_section(object, shndx))
2541     {
2542       // Add new merge section to this output section and link merge
2543       // section properties to new merge section in map.
2544       if (is_new)
2545         {
2546           this->add_output_merge_section(pomb, is_string, entsize);
2547           this->lookup_maps_->add_merge_section(msp, pomb);
2548         }
2549
2550       // Add input section to new merge section and link input section to new
2551       // merge section in map.
2552       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2553       return true;
2554     }
2555   else
2556     {
2557       // If add_input_section failed, delete new merge section to avoid
2558       // exporting empty merge sections in Output_section::get_input_section.
2559       if (is_new)
2560         delete pomb;
2561       return false;
2562     }
2563 }
2564
2565 // Build a relaxation map to speed up relaxation of existing input sections.
2566 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2567
2568 void
2569 Output_section::build_relaxation_map(
2570   const Input_section_list& input_sections,
2571   size_t limit,
2572   Relaxation_map* relaxation_map) const
2573 {
2574   for (size_t i = 0; i < limit; ++i)
2575     {
2576       const Input_section& is(input_sections[i]);
2577       if (is.is_input_section() || is.is_relaxed_input_section())
2578         {
2579           Section_id sid(is.relobj(), is.shndx());
2580           (*relaxation_map)[sid] = i;
2581         }
2582     }
2583 }
2584
2585 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2586 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2587 // indices of INPUT_SECTIONS.
2588
2589 void
2590 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2591   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2592   const Relaxation_map& map,
2593   Input_section_list* input_sections)
2594 {
2595   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2596     {
2597       Output_relaxed_input_section* poris = relaxed_sections[i];
2598       Section_id sid(poris->relobj(), poris->shndx());
2599       Relaxation_map::const_iterator p = map.find(sid);
2600       gold_assert(p != map.end());
2601       gold_assert((*input_sections)[p->second].is_input_section());
2602
2603       // Remember section order index of original input section
2604       // if it is set.  Copy it to the relaxed input section.
2605       unsigned int soi =
2606         (*input_sections)[p->second].section_order_index();
2607       (*input_sections)[p->second] = Input_section(poris);
2608       (*input_sections)[p->second].set_section_order_index(soi);
2609     }
2610 }
2611   
2612 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2613 // is a vector of pointers to Output_relaxed_input_section or its derived
2614 // classes.  The relaxed sections must correspond to existing input sections.
2615
2616 void
2617 Output_section::convert_input_sections_to_relaxed_sections(
2618   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2619 {
2620   gold_assert(parameters->target().may_relax());
2621
2622   // We want to make sure that restore_states does not undo the effect of
2623   // this.  If there is no checkpoint active, just search the current
2624   // input section list and replace the sections there.  If there is
2625   // a checkpoint, also replace the sections there.
2626   
2627   // By default, we look at the whole list.
2628   size_t limit = this->input_sections_.size();
2629
2630   if (this->checkpoint_ != NULL)
2631     {
2632       // Replace input sections with relaxed input section in the saved
2633       // copy of the input section list.
2634       if (this->checkpoint_->input_sections_saved())
2635         {
2636           Relaxation_map map;
2637           this->build_relaxation_map(
2638                     *(this->checkpoint_->input_sections()),
2639                     this->checkpoint_->input_sections()->size(),
2640                     &map);
2641           this->convert_input_sections_in_list_to_relaxed_sections(
2642                     relaxed_sections,
2643                     map,
2644                     this->checkpoint_->input_sections());
2645         }
2646       else
2647         {
2648           // We have not copied the input section list yet.  Instead, just
2649           // look at the portion that would be saved.
2650           limit = this->checkpoint_->input_sections_size();
2651         }
2652     }
2653
2654   // Convert input sections in input_section_list.
2655   Relaxation_map map;
2656   this->build_relaxation_map(this->input_sections_, limit, &map);
2657   this->convert_input_sections_in_list_to_relaxed_sections(
2658             relaxed_sections,
2659             map,
2660             &this->input_sections_);
2661
2662   // Update fast look-up map.
2663   if (this->lookup_maps_->is_valid())
2664     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2665       {
2666         Output_relaxed_input_section* poris = relaxed_sections[i];
2667         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2668                                                       poris->shndx(), poris);
2669       }
2670 }
2671
2672 // Update the output section flags based on input section flags.
2673
2674 void
2675 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2676 {
2677   // If we created the section with SHF_ALLOC clear, we set the
2678   // address.  If we are now setting the SHF_ALLOC flag, we need to
2679   // undo that.
2680   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2681       && (flags & elfcpp::SHF_ALLOC) != 0)
2682     this->mark_address_invalid();
2683
2684   this->flags_ |= (flags
2685                    & (elfcpp::SHF_WRITE
2686                       | elfcpp::SHF_ALLOC
2687                       | elfcpp::SHF_EXECINSTR));
2688
2689   if ((flags & elfcpp::SHF_MERGE) == 0)
2690     this->flags_ &=~ elfcpp::SHF_MERGE;
2691   else
2692     {
2693       if (this->current_data_size_for_child() == 0)
2694         this->flags_ |= elfcpp::SHF_MERGE;
2695     }
2696
2697   if ((flags & elfcpp::SHF_STRINGS) == 0)
2698     this->flags_ &=~ elfcpp::SHF_STRINGS;
2699   else
2700     {
2701       if (this->current_data_size_for_child() == 0)
2702         this->flags_ |= elfcpp::SHF_STRINGS;
2703     }
2704 }
2705
2706 // Find the merge section into which an input section with index SHNDX in
2707 // OBJECT has been added.  Return NULL if none found.
2708
2709 Output_section_data*
2710 Output_section::find_merge_section(const Relobj* object,
2711                                    unsigned int shndx) const
2712 {
2713   if (!this->lookup_maps_->is_valid())
2714     this->build_lookup_maps();
2715   return this->lookup_maps_->find_merge_section(object, shndx);
2716 }
2717
2718 // Build the lookup maps for merge and relaxed sections.  This is needs
2719 // to be declared as a const methods so that it is callable with a const
2720 // Output_section pointer.  The method only updates states of the maps.
2721
2722 void
2723 Output_section::build_lookup_maps() const
2724 {
2725   this->lookup_maps_->clear();
2726   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2727        p != this->input_sections_.end();
2728        ++p)
2729     {
2730       if (p->is_merge_section())
2731         {
2732           Output_merge_base* pomb = p->output_merge_base();
2733           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2734                                        pomb->addralign());
2735           this->lookup_maps_->add_merge_section(msp, pomb);
2736           for (Output_merge_base::Input_sections::const_iterator is =
2737                  pomb->input_sections_begin();
2738                is != pomb->input_sections_end();
2739                ++is) 
2740             {
2741               const Const_section_id& csid = *is;
2742             this->lookup_maps_->add_merge_input_section(csid.first,
2743                                                         csid.second, pomb);
2744             }
2745             
2746         }
2747       else if (p->is_relaxed_input_section())
2748         {
2749           Output_relaxed_input_section* poris = p->relaxed_input_section();
2750           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2751                                                         poris->shndx(), poris);
2752         }
2753     }
2754 }
2755
2756 // Find an relaxed input section corresponding to an input section
2757 // in OBJECT with index SHNDX.
2758
2759 const Output_relaxed_input_section*
2760 Output_section::find_relaxed_input_section(const Relobj* object,
2761                                            unsigned int shndx) const
2762 {
2763   if (!this->lookup_maps_->is_valid())
2764     this->build_lookup_maps();
2765   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2766 }
2767
2768 // Given an address OFFSET relative to the start of input section
2769 // SHNDX in OBJECT, return whether this address is being included in
2770 // the final link.  This should only be called if SHNDX in OBJECT has
2771 // a special mapping.
2772
2773 bool
2774 Output_section::is_input_address_mapped(const Relobj* object,
2775                                         unsigned int shndx,
2776                                         off_t offset) const
2777 {
2778   // Look at the Output_section_data_maps first.
2779   const Output_section_data* posd = this->find_merge_section(object, shndx);
2780   if (posd == NULL)
2781     posd = this->find_relaxed_input_section(object, shndx);
2782
2783   if (posd != NULL)
2784     {
2785       section_offset_type output_offset;
2786       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2787       gold_assert(found);   
2788       return output_offset != -1;
2789     }
2790
2791   // Fall back to the slow look-up.
2792   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2793        p != this->input_sections_.end();
2794        ++p)
2795     {
2796       section_offset_type output_offset;
2797       if (p->output_offset(object, shndx, offset, &output_offset))
2798         return output_offset != -1;
2799     }
2800
2801   // By default we assume that the address is mapped.  This should
2802   // only be called after we have passed all sections to Layout.  At
2803   // that point we should know what we are discarding.
2804   return true;
2805 }
2806
2807 // Given an address OFFSET relative to the start of input section
2808 // SHNDX in object OBJECT, return the output offset relative to the
2809 // start of the input section in the output section.  This should only
2810 // be called if SHNDX in OBJECT has a special mapping.
2811
2812 section_offset_type
2813 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2814                               section_offset_type offset) const
2815 {
2816   // This can only be called meaningfully when we know the data size
2817   // of this.
2818   gold_assert(this->is_data_size_valid());
2819
2820   // Look at the Output_section_data_maps first.
2821   const Output_section_data* posd = this->find_merge_section(object, shndx);
2822   if (posd == NULL) 
2823     posd = this->find_relaxed_input_section(object, shndx);
2824   if (posd != NULL)
2825     {
2826       section_offset_type output_offset;
2827       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2828       gold_assert(found);   
2829       return output_offset;
2830     }
2831
2832   // Fall back to the slow look-up.
2833   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2834        p != this->input_sections_.end();
2835        ++p)
2836     {
2837       section_offset_type output_offset;
2838       if (p->output_offset(object, shndx, offset, &output_offset))
2839         return output_offset;
2840     }
2841   gold_unreachable();
2842 }
2843
2844 // Return the output virtual address of OFFSET relative to the start
2845 // of input section SHNDX in object OBJECT.
2846
2847 uint64_t
2848 Output_section::output_address(const Relobj* object, unsigned int shndx,
2849                                off_t offset) const
2850 {
2851   uint64_t addr = this->address() + this->first_input_offset_;
2852
2853   // Look at the Output_section_data_maps first.
2854   const Output_section_data* posd = this->find_merge_section(object, shndx);
2855   if (posd == NULL) 
2856     posd = this->find_relaxed_input_section(object, shndx);
2857   if (posd != NULL && posd->is_address_valid())
2858     {
2859       section_offset_type output_offset;
2860       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2861       gold_assert(found);
2862       return posd->address() + output_offset;
2863     }
2864
2865   // Fall back to the slow look-up.
2866   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2867        p != this->input_sections_.end();
2868        ++p)
2869     {
2870       addr = align_address(addr, p->addralign());
2871       section_offset_type output_offset;
2872       if (p->output_offset(object, shndx, offset, &output_offset))
2873         {
2874           if (output_offset == -1)
2875             return -1ULL;
2876           return addr + output_offset;
2877         }
2878       addr += p->data_size();
2879     }
2880
2881   // If we get here, it means that we don't know the mapping for this
2882   // input section.  This might happen in principle if
2883   // add_input_section were called before add_output_section_data.
2884   // But it should never actually happen.
2885
2886   gold_unreachable();
2887 }
2888
2889 // Find the output address of the start of the merged section for
2890 // input section SHNDX in object OBJECT.
2891
2892 bool
2893 Output_section::find_starting_output_address(const Relobj* object,
2894                                              unsigned int shndx,
2895                                              uint64_t* paddr) const
2896 {
2897   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2898   // Looking up the merge section map does not always work as we sometimes
2899   // find a merge section without its address set.
2900   uint64_t addr = this->address() + this->first_input_offset_;
2901   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2902        p != this->input_sections_.end();
2903        ++p)
2904     {
2905       addr = align_address(addr, p->addralign());
2906
2907       // It would be nice if we could use the existing output_offset
2908       // method to get the output offset of input offset 0.
2909       // Unfortunately we don't know for sure that input offset 0 is
2910       // mapped at all.
2911       if (p->is_merge_section_for(object, shndx))
2912         {
2913           *paddr = addr;
2914           return true;
2915         }
2916
2917       addr += p->data_size();
2918     }
2919
2920   // We couldn't find a merge output section for this input section.
2921   return false;
2922 }
2923
2924 // Update the data size of an Output_section.
2925
2926 void
2927 Output_section::update_data_size()
2928 {
2929   if (this->input_sections_.empty())
2930       return;
2931
2932   if (this->must_sort_attached_input_sections()
2933       || this->input_section_order_specified())
2934     this->sort_attached_input_sections();
2935
2936   off_t off = this->first_input_offset_;
2937   for (Input_section_list::iterator p = this->input_sections_.begin();
2938        p != this->input_sections_.end();
2939        ++p)
2940     {
2941       off = align_address(off, p->addralign());
2942       off += p->current_data_size();
2943     }
2944
2945   this->set_current_data_size_for_child(off);
2946 }
2947
2948 // Set the data size of an Output_section.  This is where we handle
2949 // setting the addresses of any Output_section_data objects.
2950
2951 void
2952 Output_section::set_final_data_size()
2953 {
2954   off_t data_size;
2955
2956   if (this->input_sections_.empty())
2957     data_size = this->current_data_size_for_child();
2958   else
2959     {
2960       if (this->must_sort_attached_input_sections()
2961           || this->input_section_order_specified())
2962         this->sort_attached_input_sections();
2963
2964       uint64_t address = this->address();
2965       off_t startoff = this->offset();
2966       off_t off = startoff + this->first_input_offset_;
2967       for (Input_section_list::iterator p = this->input_sections_.begin();
2968            p != this->input_sections_.end();
2969            ++p)
2970         {
2971           off = align_address(off, p->addralign());
2972           p->set_address_and_file_offset(address + (off - startoff), off,
2973                                          startoff);
2974           off += p->data_size();
2975         }
2976       data_size = off - startoff;
2977     }
2978
2979   // For full incremental links, we want to allocate some patch space
2980   // in most sections for subsequent incremental updates.
2981   if (this->is_patch_space_allowed_ && parameters->incremental_full())
2982     {
2983       double pct = parameters->options().incremental_patch();
2984       off_t extra = static_cast<off_t>(data_size * pct);
2985       off_t new_size = align_address(data_size + extra, this->addralign());
2986       this->patch_space_ = new_size - data_size;
2987       gold_debug(DEBUG_INCREMENTAL,
2988                  "set_final_data_size: %08lx + %08lx: section %s",
2989                  static_cast<long>(data_size),
2990                  static_cast<long>(this->patch_space_),
2991                  this->name());
2992       data_size = new_size;
2993     }
2994
2995   this->set_data_size(data_size);
2996 }
2997
2998 // Reset the address and file offset.
2999
3000 void
3001 Output_section::do_reset_address_and_file_offset()
3002 {
3003   // An unallocated section has no address.  Forcing this means that
3004   // we don't need special treatment for symbols defined in debug
3005   // sections.  We do the same in the constructor.  This does not
3006   // apply to NOLOAD sections though.
3007   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3008      this->set_address(0);
3009
3010   for (Input_section_list::iterator p = this->input_sections_.begin();
3011        p != this->input_sections_.end();
3012        ++p)
3013     p->reset_address_and_file_offset();
3014
3015   // Remove any patch space that was added in set_final_data_size.
3016   if (this->patch_space_ > 0)
3017     {
3018       this->set_current_data_size_for_child(this->current_data_size_for_child()
3019                                             - this->patch_space_);
3020       this->patch_space_ = 0;
3021     }
3022 }
3023
3024 // Return true if address and file offset have the values after reset.
3025
3026 bool
3027 Output_section::do_address_and_file_offset_have_reset_values() const
3028 {
3029   if (this->is_offset_valid())
3030     return false;
3031
3032   // An unallocated section has address 0 after its construction or a reset.
3033   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3034     return this->is_address_valid() && this->address() == 0;
3035   else
3036     return !this->is_address_valid();
3037 }
3038
3039 // Set the TLS offset.  Called only for SHT_TLS sections.
3040
3041 void
3042 Output_section::do_set_tls_offset(uint64_t tls_base)
3043 {
3044   this->tls_offset_ = this->address() - tls_base;
3045 }
3046
3047 // In a few cases we need to sort the input sections attached to an
3048 // output section.  This is used to implement the type of constructor
3049 // priority ordering implemented by the GNU linker, in which the
3050 // priority becomes part of the section name and the sections are
3051 // sorted by name.  We only do this for an output section if we see an
3052 // attached input section matching ".ctors.*", ".dtors.*",
3053 // ".init_array.*" or ".fini_array.*".
3054
3055 class Output_section::Input_section_sort_entry
3056 {
3057  public:
3058   Input_section_sort_entry()
3059     : input_section_(), index_(-1U), section_has_name_(false),
3060       section_name_()
3061   { }
3062
3063   Input_section_sort_entry(const Input_section& input_section,
3064                            unsigned int index,
3065                            bool must_sort_attached_input_sections)
3066     : input_section_(input_section), index_(index),
3067       section_has_name_(input_section.is_input_section()
3068                         || input_section.is_relaxed_input_section())
3069   {
3070     if (this->section_has_name_
3071         && must_sort_attached_input_sections)
3072       {
3073         // This is only called single-threaded from Layout::finalize,
3074         // so it is OK to lock.  Unfortunately we have no way to pass
3075         // in a Task token.
3076         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3077         Object* obj = (input_section.is_input_section()
3078                        ? input_section.relobj()
3079                        : input_section.relaxed_input_section()->relobj());
3080         Task_lock_obj<Object> tl(dummy_task, obj);
3081
3082         // This is a slow operation, which should be cached in
3083         // Layout::layout if this becomes a speed problem.
3084         this->section_name_ = obj->section_name(input_section.shndx());
3085       }
3086   }
3087
3088   // Return the Input_section.
3089   const Input_section&
3090   input_section() const
3091   {
3092     gold_assert(this->index_ != -1U);
3093     return this->input_section_;
3094   }
3095
3096   // The index of this entry in the original list.  This is used to
3097   // make the sort stable.
3098   unsigned int
3099   index() const
3100   {
3101     gold_assert(this->index_ != -1U);
3102     return this->index_;
3103   }
3104
3105   // Whether there is a section name.
3106   bool
3107   section_has_name() const
3108   { return this->section_has_name_; }
3109
3110   // The section name.
3111   const std::string&
3112   section_name() const
3113   {
3114     gold_assert(this->section_has_name_);
3115     return this->section_name_;
3116   }
3117
3118   // Return true if the section name has a priority.  This is assumed
3119   // to be true if it has a dot after the initial dot.
3120   bool
3121   has_priority() const
3122   {
3123     gold_assert(this->section_has_name_);
3124     return this->section_name_.find('.', 1) != std::string::npos;
3125   }
3126
3127   // Return the priority.  Believe it or not, gcc encodes the priority
3128   // differently for .ctors/.dtors and .init_array/.fini_array
3129   // sections.
3130   unsigned int
3131   get_priority() const
3132   {
3133     gold_assert(this->section_has_name_);
3134     bool is_ctors;
3135     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3136         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3137       is_ctors = true;
3138     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3139              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3140       is_ctors = false;
3141     else
3142       return 0;
3143     char* end;
3144     unsigned long prio = strtoul((this->section_name_.c_str()
3145                                   + (is_ctors ? 7 : 12)),
3146                                  &end, 10);
3147     if (*end != '\0')
3148       return 0;
3149     else if (is_ctors)
3150       return 65535 - prio;
3151     else
3152       return prio;
3153   }
3154
3155   // Return true if this an input file whose base name matches
3156   // FILE_NAME.  The base name must have an extension of ".o", and
3157   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3158   // This is to match crtbegin.o as well as crtbeginS.o without
3159   // getting confused by other possibilities.  Overall matching the
3160   // file name this way is a dreadful hack, but the GNU linker does it
3161   // in order to better support gcc, and we need to be compatible.
3162   bool
3163   match_file_name(const char* file_name) const
3164   { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3165
3166   // Returns 1 if THIS should appear before S in section order, -1 if S
3167   // appears before THIS and 0 if they are not comparable.
3168   int
3169   compare_section_ordering(const Input_section_sort_entry& s) const
3170   {
3171     unsigned int this_secn_index = this->input_section_.section_order_index();
3172     unsigned int s_secn_index = s.input_section().section_order_index();
3173     if (this_secn_index > 0 && s_secn_index > 0)
3174       {
3175         if (this_secn_index < s_secn_index)
3176           return 1;
3177         else if (this_secn_index > s_secn_index)
3178           return -1;
3179       }
3180     return 0;
3181   }
3182
3183  private:
3184   // The Input_section we are sorting.
3185   Input_section input_section_;
3186   // The index of this Input_section in the original list.
3187   unsigned int index_;
3188   // Whether this Input_section has a section name--it won't if this
3189   // is some random Output_section_data.
3190   bool section_has_name_;
3191   // The section name if there is one.
3192   std::string section_name_;
3193 };
3194
3195 // Return true if S1 should come before S2 in the output section.
3196
3197 bool
3198 Output_section::Input_section_sort_compare::operator()(
3199     const Output_section::Input_section_sort_entry& s1,
3200     const Output_section::Input_section_sort_entry& s2) const
3201 {
3202   // crtbegin.o must come first.
3203   bool s1_begin = s1.match_file_name("crtbegin");
3204   bool s2_begin = s2.match_file_name("crtbegin");
3205   if (s1_begin || s2_begin)
3206     {
3207       if (!s1_begin)
3208         return false;
3209       if (!s2_begin)
3210         return true;
3211       return s1.index() < s2.index();
3212     }
3213
3214   // crtend.o must come last.
3215   bool s1_end = s1.match_file_name("crtend");
3216   bool s2_end = s2.match_file_name("crtend");
3217   if (s1_end || s2_end)
3218     {
3219       if (!s1_end)
3220         return true;
3221       if (!s2_end)
3222         return false;
3223       return s1.index() < s2.index();
3224     }
3225
3226   // We sort all the sections with no names to the end.
3227   if (!s1.section_has_name() || !s2.section_has_name())
3228     {
3229       if (s1.section_has_name())
3230         return true;
3231       if (s2.section_has_name())
3232         return false;
3233       return s1.index() < s2.index();
3234     }
3235
3236   // A section with a priority follows a section without a priority.
3237   bool s1_has_priority = s1.has_priority();
3238   bool s2_has_priority = s2.has_priority();
3239   if (s1_has_priority && !s2_has_priority)
3240     return false;
3241   if (!s1_has_priority && s2_has_priority)
3242     return true;
3243
3244   // Check if a section order exists for these sections through a section
3245   // ordering file.  If sequence_num is 0, an order does not exist.
3246   int sequence_num = s1.compare_section_ordering(s2);
3247   if (sequence_num != 0)
3248     return sequence_num == 1;
3249
3250   // Otherwise we sort by name.
3251   int compare = s1.section_name().compare(s2.section_name());
3252   if (compare != 0)
3253     return compare < 0;
3254
3255   // Otherwise we keep the input order.
3256   return s1.index() < s2.index();
3257 }
3258
3259 // Return true if S1 should come before S2 in an .init_array or .fini_array
3260 // output section.
3261
3262 bool
3263 Output_section::Input_section_sort_init_fini_compare::operator()(
3264     const Output_section::Input_section_sort_entry& s1,
3265     const Output_section::Input_section_sort_entry& s2) const
3266 {
3267   // We sort all the sections with no names to the end.
3268   if (!s1.section_has_name() || !s2.section_has_name())
3269     {
3270       if (s1.section_has_name())
3271         return true;
3272       if (s2.section_has_name())
3273         return false;
3274       return s1.index() < s2.index();
3275     }
3276
3277   // A section without a priority follows a section with a priority.
3278   // This is the reverse of .ctors and .dtors sections.
3279   bool s1_has_priority = s1.has_priority();
3280   bool s2_has_priority = s2.has_priority();
3281   if (s1_has_priority && !s2_has_priority)
3282     return true;
3283   if (!s1_has_priority && s2_has_priority)
3284     return false;
3285
3286   // .ctors and .dtors sections without priority come after
3287   // .init_array and .fini_array sections without priority.
3288   if (!s1_has_priority
3289       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3290       && s1.section_name() != s2.section_name())
3291     return false;
3292   if (!s2_has_priority
3293       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3294       && s2.section_name() != s1.section_name())
3295     return true;
3296
3297   // Sort by priority if we can.
3298   if (s1_has_priority)
3299     {
3300       unsigned int s1_prio = s1.get_priority();
3301       unsigned int s2_prio = s2.get_priority();
3302       if (s1_prio < s2_prio)
3303         return true;
3304       else if (s1_prio > s2_prio)
3305         return false;
3306     }
3307
3308   // Check if a section order exists for these sections through a section
3309   // ordering file.  If sequence_num is 0, an order does not exist.
3310   int sequence_num = s1.compare_section_ordering(s2);
3311   if (sequence_num != 0)
3312     return sequence_num == 1;
3313
3314   // Otherwise we sort by name.
3315   int compare = s1.section_name().compare(s2.section_name());
3316   if (compare != 0)
3317     return compare < 0;
3318
3319   // Otherwise we keep the input order.
3320   return s1.index() < s2.index();
3321 }
3322
3323 // Return true if S1 should come before S2.  Sections that do not match
3324 // any pattern in the section ordering file are placed ahead of the sections
3325 // that match some pattern.
3326
3327 bool
3328 Output_section::Input_section_sort_section_order_index_compare::operator()(
3329     const Output_section::Input_section_sort_entry& s1,
3330     const Output_section::Input_section_sort_entry& s2) const
3331 {
3332   unsigned int s1_secn_index = s1.input_section().section_order_index();
3333   unsigned int s2_secn_index = s2.input_section().section_order_index();
3334
3335   // Keep input order if section ordering cannot determine order.
3336   if (s1_secn_index == s2_secn_index)
3337     return s1.index() < s2.index();
3338   
3339   return s1_secn_index < s2_secn_index;
3340 }
3341
3342 // Sort the input sections attached to an output section.
3343
3344 void
3345 Output_section::sort_attached_input_sections()
3346 {
3347   if (this->attached_input_sections_are_sorted_)
3348     return;
3349
3350   if (this->checkpoint_ != NULL
3351       && !this->checkpoint_->input_sections_saved())
3352     this->checkpoint_->save_input_sections();
3353
3354   // The only thing we know about an input section is the object and
3355   // the section index.  We need the section name.  Recomputing this
3356   // is slow but this is an unusual case.  If this becomes a speed
3357   // problem we can cache the names as required in Layout::layout.
3358
3359   // We start by building a larger vector holding a copy of each
3360   // Input_section, plus its current index in the list and its name.
3361   std::vector<Input_section_sort_entry> sort_list;
3362
3363   unsigned int i = 0;
3364   for (Input_section_list::iterator p = this->input_sections_.begin();
3365        p != this->input_sections_.end();
3366        ++p, ++i)
3367       sort_list.push_back(Input_section_sort_entry(*p, i,
3368                             this->must_sort_attached_input_sections()));
3369
3370   // Sort the input sections.
3371   if (this->must_sort_attached_input_sections())
3372     {
3373       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3374           || this->type() == elfcpp::SHT_INIT_ARRAY
3375           || this->type() == elfcpp::SHT_FINI_ARRAY)
3376         std::sort(sort_list.begin(), sort_list.end(),
3377                   Input_section_sort_init_fini_compare());
3378       else
3379         std::sort(sort_list.begin(), sort_list.end(),
3380                   Input_section_sort_compare());
3381     }
3382   else
3383     {
3384       gold_assert(parameters->options().section_ordering_file());
3385       std::sort(sort_list.begin(), sort_list.end(),
3386                 Input_section_sort_section_order_index_compare());
3387     }
3388
3389   // Copy the sorted input sections back to our list.
3390   this->input_sections_.clear();
3391   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3392        p != sort_list.end();
3393        ++p)
3394     this->input_sections_.push_back(p->input_section());
3395   sort_list.clear();
3396
3397   // Remember that we sorted the input sections, since we might get
3398   // called again.
3399   this->attached_input_sections_are_sorted_ = true;
3400 }
3401
3402 // Write the section header to *OSHDR.
3403
3404 template<int size, bool big_endian>
3405 void
3406 Output_section::write_header(const Layout* layout,
3407                              const Stringpool* secnamepool,
3408                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3409 {
3410   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3411   oshdr->put_sh_type(this->type_);
3412
3413   elfcpp::Elf_Xword flags = this->flags_;
3414   if (this->info_section_ != NULL && this->info_uses_section_index_)
3415     flags |= elfcpp::SHF_INFO_LINK;
3416   oshdr->put_sh_flags(flags);
3417
3418   oshdr->put_sh_addr(this->address());
3419   oshdr->put_sh_offset(this->offset());
3420   oshdr->put_sh_size(this->data_size());
3421   if (this->link_section_ != NULL)
3422     oshdr->put_sh_link(this->link_section_->out_shndx());
3423   else if (this->should_link_to_symtab_)
3424     oshdr->put_sh_link(layout->symtab_section_shndx());
3425   else if (this->should_link_to_dynsym_)
3426     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3427   else
3428     oshdr->put_sh_link(this->link_);
3429
3430   elfcpp::Elf_Word info;
3431   if (this->info_section_ != NULL)
3432     {
3433       if (this->info_uses_section_index_)
3434         info = this->info_section_->out_shndx();
3435       else
3436         info = this->info_section_->symtab_index();
3437     }
3438   else if (this->info_symndx_ != NULL)
3439     info = this->info_symndx_->symtab_index();
3440   else
3441     info = this->info_;
3442   oshdr->put_sh_info(info);
3443
3444   oshdr->put_sh_addralign(this->addralign_);
3445   oshdr->put_sh_entsize(this->entsize_);
3446 }
3447
3448 // Write out the data.  For input sections the data is written out by
3449 // Object::relocate, but we have to handle Output_section_data objects
3450 // here.
3451
3452 void
3453 Output_section::do_write(Output_file* of)
3454 {
3455   gold_assert(!this->requires_postprocessing());
3456
3457   // If the target performs relaxation, we delay filler generation until now.
3458   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3459
3460   off_t output_section_file_offset = this->offset();
3461   for (Fill_list::iterator p = this->fills_.begin();
3462        p != this->fills_.end();
3463        ++p)
3464     {
3465       std::string fill_data(parameters->target().code_fill(p->length()));
3466       of->write(output_section_file_offset + p->section_offset(),
3467                 fill_data.data(), fill_data.size());
3468     }
3469
3470   off_t off = this->offset() + this->first_input_offset_;
3471   for (Input_section_list::iterator p = this->input_sections_.begin();
3472        p != this->input_sections_.end();
3473        ++p)
3474     {
3475       off_t aligned_off = align_address(off, p->addralign());
3476       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3477         {
3478           size_t fill_len = aligned_off - off;
3479           std::string fill_data(parameters->target().code_fill(fill_len));
3480           of->write(off, fill_data.data(), fill_data.size());
3481         }
3482
3483       p->write(of);
3484       off = aligned_off + p->data_size();
3485     }
3486 }
3487
3488 // If a section requires postprocessing, create the buffer to use.
3489
3490 void
3491 Output_section::create_postprocessing_buffer()
3492 {
3493   gold_assert(this->requires_postprocessing());
3494
3495   if (this->postprocessing_buffer_ != NULL)
3496     return;
3497
3498   if (!this->input_sections_.empty())
3499     {
3500       off_t off = this->first_input_offset_;
3501       for (Input_section_list::iterator p = this->input_sections_.begin();
3502            p != this->input_sections_.end();
3503            ++p)
3504         {
3505           off = align_address(off, p->addralign());
3506           p->finalize_data_size();
3507           off += p->data_size();
3508         }
3509       this->set_current_data_size_for_child(off);
3510     }
3511
3512   off_t buffer_size = this->current_data_size_for_child();
3513   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3514 }
3515
3516 // Write all the data of an Output_section into the postprocessing
3517 // buffer.  This is used for sections which require postprocessing,
3518 // such as compression.  Input sections are handled by
3519 // Object::Relocate.
3520
3521 void
3522 Output_section::write_to_postprocessing_buffer()
3523 {
3524   gold_assert(this->requires_postprocessing());
3525
3526   // If the target performs relaxation, we delay filler generation until now.
3527   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3528
3529   unsigned char* buffer = this->postprocessing_buffer();
3530   for (Fill_list::iterator p = this->fills_.begin();
3531        p != this->fills_.end();
3532        ++p)
3533     {
3534       std::string fill_data(parameters->target().code_fill(p->length()));
3535       memcpy(buffer + p->section_offset(), fill_data.data(),
3536              fill_data.size());
3537     }
3538
3539   off_t off = this->first_input_offset_;
3540   for (Input_section_list::iterator p = this->input_sections_.begin();
3541        p != this->input_sections_.end();
3542        ++p)
3543     {
3544       off_t aligned_off = align_address(off, p->addralign());
3545       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3546         {
3547           size_t fill_len = aligned_off - off;
3548           std::string fill_data(parameters->target().code_fill(fill_len));
3549           memcpy(buffer + off, fill_data.data(), fill_data.size());
3550         }
3551
3552       p->write_to_buffer(buffer + aligned_off);
3553       off = aligned_off + p->data_size();
3554     }
3555 }
3556
3557 // Get the input sections for linker script processing.  We leave
3558 // behind the Output_section_data entries.  Note that this may be
3559 // slightly incorrect for merge sections.  We will leave them behind,
3560 // but it is possible that the script says that they should follow
3561 // some other input sections, as in:
3562 //    .rodata { *(.rodata) *(.rodata.cst*) }
3563 // For that matter, we don't handle this correctly:
3564 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3565 // With luck this will never matter.
3566
3567 uint64_t
3568 Output_section::get_input_sections(
3569     uint64_t address,
3570     const std::string& fill,
3571     std::list<Input_section>* input_sections)
3572 {
3573   if (this->checkpoint_ != NULL
3574       && !this->checkpoint_->input_sections_saved())
3575     this->checkpoint_->save_input_sections();
3576
3577   // Invalidate fast look-up maps.
3578   this->lookup_maps_->invalidate();
3579
3580   uint64_t orig_address = address;
3581
3582   address = align_address(address, this->addralign());
3583
3584   Input_section_list remaining;
3585   for (Input_section_list::iterator p = this->input_sections_.begin();
3586        p != this->input_sections_.end();
3587        ++p)
3588     {
3589       if (p->is_input_section()
3590           || p->is_relaxed_input_section()
3591           || p->is_merge_section())
3592         input_sections->push_back(*p);
3593       else
3594         {
3595           uint64_t aligned_address = align_address(address, p->addralign());
3596           if (aligned_address != address && !fill.empty())
3597             {
3598               section_size_type length =
3599                 convert_to_section_size_type(aligned_address - address);
3600               std::string this_fill;
3601               this_fill.reserve(length);
3602               while (this_fill.length() + fill.length() <= length)
3603                 this_fill += fill;
3604               if (this_fill.length() < length)
3605                 this_fill.append(fill, 0, length - this_fill.length());
3606
3607               Output_section_data* posd = new Output_data_const(this_fill, 0);
3608               remaining.push_back(Input_section(posd));
3609             }
3610           address = aligned_address;
3611
3612           remaining.push_back(*p);
3613
3614           p->finalize_data_size();
3615           address += p->data_size();
3616         }
3617     }
3618
3619   this->input_sections_.swap(remaining);
3620   this->first_input_offset_ = 0;
3621
3622   uint64_t data_size = address - orig_address;
3623   this->set_current_data_size_for_child(data_size);
3624   return data_size;
3625 }
3626
3627 // Add a script input section.  SIS is an Output_section::Input_section,
3628 // which can be either a plain input section or a special input section like
3629 // a relaxed input section.  For a special input section, its size must be
3630 // finalized.
3631
3632 void
3633 Output_section::add_script_input_section(const Input_section& sis)
3634 {
3635   uint64_t data_size = sis.data_size();
3636   uint64_t addralign = sis.addralign();
3637   if (addralign > this->addralign_)
3638     this->addralign_ = addralign;
3639
3640   off_t offset_in_section = this->current_data_size_for_child();
3641   off_t aligned_offset_in_section = align_address(offset_in_section,
3642                                                   addralign);
3643
3644   this->set_current_data_size_for_child(aligned_offset_in_section
3645                                         + data_size);
3646
3647   this->input_sections_.push_back(sis);
3648
3649   // Update fast lookup maps if necessary. 
3650   if (this->lookup_maps_->is_valid())
3651     {
3652       if (sis.is_merge_section())
3653         {
3654           Output_merge_base* pomb = sis.output_merge_base();
3655           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3656                                        pomb->addralign());
3657           this->lookup_maps_->add_merge_section(msp, pomb);
3658           for (Output_merge_base::Input_sections::const_iterator p =
3659                  pomb->input_sections_begin();
3660                p != pomb->input_sections_end();
3661                ++p)
3662             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3663                                                         pomb);
3664         }
3665       else if (sis.is_relaxed_input_section())
3666         {
3667           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3668           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3669                                                         poris->shndx(), poris);
3670         }
3671     }
3672 }
3673
3674 // Save states for relaxation.
3675
3676 void
3677 Output_section::save_states()
3678 {
3679   gold_assert(this->checkpoint_ == NULL);
3680   Checkpoint_output_section* checkpoint =
3681     new Checkpoint_output_section(this->addralign_, this->flags_,
3682                                   this->input_sections_,
3683                                   this->first_input_offset_,
3684                                   this->attached_input_sections_are_sorted_);
3685   this->checkpoint_ = checkpoint;
3686   gold_assert(this->fills_.empty());
3687 }
3688
3689 void
3690 Output_section::discard_states()
3691 {
3692   gold_assert(this->checkpoint_ != NULL);
3693   delete this->checkpoint_;
3694   this->checkpoint_ = NULL;
3695   gold_assert(this->fills_.empty());
3696
3697   // Simply invalidate the fast lookup maps since we do not keep
3698   // track of them.
3699   this->lookup_maps_->invalidate();
3700 }
3701
3702 void
3703 Output_section::restore_states()
3704 {
3705   gold_assert(this->checkpoint_ != NULL);
3706   Checkpoint_output_section* checkpoint = this->checkpoint_;
3707
3708   this->addralign_ = checkpoint->addralign();
3709   this->flags_ = checkpoint->flags();
3710   this->first_input_offset_ = checkpoint->first_input_offset();
3711
3712   if (!checkpoint->input_sections_saved())
3713     {
3714       // If we have not copied the input sections, just resize it.
3715       size_t old_size = checkpoint->input_sections_size();
3716       gold_assert(this->input_sections_.size() >= old_size);
3717       this->input_sections_.resize(old_size);
3718     }
3719   else
3720     {
3721       // We need to copy the whole list.  This is not efficient for
3722       // extremely large output with hundreads of thousands of input
3723       // objects.  We may need to re-think how we should pass sections
3724       // to scripts.
3725       this->input_sections_ = *checkpoint->input_sections();
3726     }
3727
3728   this->attached_input_sections_are_sorted_ =
3729     checkpoint->attached_input_sections_are_sorted();
3730
3731   // Simply invalidate the fast lookup maps since we do not keep
3732   // track of them.
3733   this->lookup_maps_->invalidate();
3734 }
3735
3736 // Update the section offsets of input sections in this.  This is required if
3737 // relaxation causes some input sections to change sizes.
3738
3739 void
3740 Output_section::adjust_section_offsets()
3741 {
3742   if (!this->section_offsets_need_adjustment_)
3743     return;
3744
3745   off_t off = 0;
3746   for (Input_section_list::iterator p = this->input_sections_.begin();
3747        p != this->input_sections_.end();
3748        ++p)
3749     {
3750       off = align_address(off, p->addralign());
3751       if (p->is_input_section())
3752         p->relobj()->set_section_offset(p->shndx(), off);
3753       off += p->data_size();
3754     }
3755
3756   this->section_offsets_need_adjustment_ = false;
3757 }
3758
3759 // Print to the map file.
3760
3761 void
3762 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3763 {
3764   mapfile->print_output_section(this);
3765
3766   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3767        p != this->input_sections_.end();
3768        ++p)
3769     p->print_to_mapfile(mapfile);
3770 }
3771
3772 // Print stats for merge sections to stderr.
3773
3774 void
3775 Output_section::print_merge_stats()
3776 {
3777   Input_section_list::iterator p;
3778   for (p = this->input_sections_.begin();
3779        p != this->input_sections_.end();
3780        ++p)
3781     p->print_merge_stats(this->name_);
3782 }
3783
3784 // Set a fixed layout for the section.  Used for incremental update links.
3785
3786 void
3787 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3788                                  off_t sh_size, uint64_t sh_addralign)
3789 {
3790   this->addralign_ = sh_addralign;
3791   this->set_current_data_size(sh_size);
3792   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3793     this->set_address(sh_addr);
3794   this->set_file_offset(sh_offset);
3795   this->finalize_data_size();
3796   this->free_list_.init(sh_size, false);
3797   this->has_fixed_layout_ = true;
3798 }
3799
3800 // Reserve space within the fixed layout for the section.  Used for
3801 // incremental update links.
3802
3803 void
3804 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3805 {
3806   this->free_list_.remove(sh_offset, sh_offset + sh_size);
3807 }
3808
3809 // Allocate space from the free list for the section.  Used for
3810 // incremental update links.
3811
3812 off_t
3813 Output_section::allocate(off_t len, uint64_t addralign)
3814 {
3815   return this->free_list_.allocate(len, addralign, 0);
3816 }
3817
3818 // Output segment methods.
3819
3820 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3821   : vaddr_(0),
3822     paddr_(0),
3823     memsz_(0),
3824     max_align_(0),
3825     min_p_align_(0),
3826     offset_(0),
3827     filesz_(0),
3828     type_(type),
3829     flags_(flags),
3830     is_max_align_known_(false),
3831     are_addresses_set_(false),
3832     is_large_data_segment_(false)
3833 {
3834   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3835   // the flags.
3836   if (type == elfcpp::PT_TLS)
3837     this->flags_ = elfcpp::PF_R;
3838 }
3839
3840 // Add an Output_section to a PT_LOAD Output_segment.
3841
3842 void
3843 Output_segment::add_output_section_to_load(Layout* layout,
3844                                            Output_section* os,
3845                                            elfcpp::Elf_Word seg_flags)
3846 {
3847   gold_assert(this->type() == elfcpp::PT_LOAD);
3848   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3849   gold_assert(!this->is_max_align_known_);
3850   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3851
3852   this->update_flags_for_output_section(seg_flags);
3853
3854   // We don't want to change the ordering if we have a linker script
3855   // with a SECTIONS clause.
3856   Output_section_order order = os->order();
3857   if (layout->script_options()->saw_sections_clause())
3858     order = static_cast<Output_section_order>(0);
3859   else
3860     gold_assert(order != ORDER_INVALID);
3861
3862   this->output_lists_[order].push_back(os);
3863 }
3864
3865 // Add an Output_section to a non-PT_LOAD Output_segment.
3866
3867 void
3868 Output_segment::add_output_section_to_nonload(Output_section* os,
3869                                               elfcpp::Elf_Word seg_flags)
3870 {
3871   gold_assert(this->type() != elfcpp::PT_LOAD);
3872   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3873   gold_assert(!this->is_max_align_known_);
3874
3875   this->update_flags_for_output_section(seg_flags);
3876
3877   this->output_lists_[0].push_back(os);
3878 }
3879
3880 // Remove an Output_section from this segment.  It is an error if it
3881 // is not present.
3882
3883 void
3884 Output_segment::remove_output_section(Output_section* os)
3885 {
3886   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3887     {
3888       Output_data_list* pdl = &this->output_lists_[i];
3889       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
3890         {
3891           if (*p == os)
3892             {
3893               pdl->erase(p);
3894               return;
3895             }
3896         }
3897     }
3898   gold_unreachable();
3899 }
3900
3901 // Add an Output_data (which need not be an Output_section) to the
3902 // start of a segment.
3903
3904 void
3905 Output_segment::add_initial_output_data(Output_data* od)
3906 {
3907   gold_assert(!this->is_max_align_known_);
3908   Output_data_list::iterator p = this->output_lists_[0].begin();
3909   this->output_lists_[0].insert(p, od);
3910 }
3911
3912 // Return true if this segment has any sections which hold actual
3913 // data, rather than being a BSS section.
3914
3915 bool
3916 Output_segment::has_any_data_sections() const
3917 {
3918   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3919     {
3920       const Output_data_list* pdl = &this->output_lists_[i];
3921       for (Output_data_list::const_iterator p = pdl->begin();
3922            p != pdl->end();
3923            ++p)
3924         {
3925           if (!(*p)->is_section())
3926             return true;
3927           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
3928             return true;
3929         }
3930     }
3931   return false;
3932 }
3933
3934 // Return whether the first data section (not counting TLS sections)
3935 // is a relro section.
3936
3937 bool
3938 Output_segment::is_first_section_relro() const
3939 {
3940   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3941     {
3942       if (i == static_cast<int>(ORDER_TLS_DATA)
3943           || i == static_cast<int>(ORDER_TLS_BSS))
3944         continue;
3945       const Output_data_list* pdl = &this->output_lists_[i];
3946       if (!pdl->empty())
3947         {
3948           Output_data* p = pdl->front();
3949           return p->is_section() && p->output_section()->is_relro();
3950         }
3951     }
3952   return false;
3953 }
3954
3955 // Return the maximum alignment of the Output_data in Output_segment.
3956
3957 uint64_t
3958 Output_segment::maximum_alignment()
3959 {
3960   if (!this->is_max_align_known_)
3961     {
3962       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3963         {       
3964           const Output_data_list* pdl = &this->output_lists_[i];
3965           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
3966           if (addralign > this->max_align_)
3967             this->max_align_ = addralign;
3968         }
3969       this->is_max_align_known_ = true;
3970     }
3971
3972   return this->max_align_;
3973 }
3974
3975 // Return the maximum alignment of a list of Output_data.
3976
3977 uint64_t
3978 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3979 {
3980   uint64_t ret = 0;
3981   for (Output_data_list::const_iterator p = pdl->begin();
3982        p != pdl->end();
3983        ++p)
3984     {
3985       uint64_t addralign = (*p)->addralign();
3986       if (addralign > ret)
3987         ret = addralign;
3988     }
3989   return ret;
3990 }
3991
3992 // Return whether this segment has any dynamic relocs.
3993
3994 bool
3995 Output_segment::has_dynamic_reloc() const
3996 {
3997   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3998     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
3999       return true;
4000   return false;
4001 }
4002
4003 // Return whether this Output_data_list has any dynamic relocs.
4004
4005 bool
4006 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4007 {
4008   for (Output_data_list::const_iterator p = pdl->begin();
4009        p != pdl->end();
4010        ++p)
4011     if ((*p)->has_dynamic_reloc())
4012       return true;
4013   return false;
4014 }
4015
4016 // Set the section addresses for an Output_segment.  If RESET is true,
4017 // reset the addresses first.  ADDR is the address and *POFF is the
4018 // file offset.  Set the section indexes starting with *PSHNDX.
4019 // INCREASE_RELRO is the size of the portion of the first non-relro
4020 // section that should be included in the PT_GNU_RELRO segment.
4021 // If this segment has relro sections, and has been aligned for
4022 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4023 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4024 // and *PSHNDX.
4025
4026 uint64_t
4027 Output_segment::set_section_addresses(Layout* layout, bool reset,
4028                                       uint64_t addr,
4029                                       unsigned int* increase_relro,
4030                                       bool* has_relro,
4031                                       off_t* poff,
4032                                       unsigned int* pshndx)
4033 {
4034   gold_assert(this->type_ == elfcpp::PT_LOAD);
4035
4036   uint64_t last_relro_pad = 0;
4037   off_t orig_off = *poff;
4038
4039   bool in_tls = false;
4040
4041   // If we have relro sections, we need to pad forward now so that the
4042   // relro sections plus INCREASE_RELRO end on a common page boundary.
4043   if (parameters->options().relro()
4044       && this->is_first_section_relro()
4045       && (!this->are_addresses_set_ || reset))
4046     {
4047       uint64_t relro_size = 0;
4048       off_t off = *poff;
4049       uint64_t max_align = 0;
4050       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4051         {
4052           Output_data_list* pdl = &this->output_lists_[i];
4053           Output_data_list::iterator p;
4054           for (p = pdl->begin(); p != pdl->end(); ++p)
4055             {
4056               if (!(*p)->is_section())
4057                 break;
4058               uint64_t align = (*p)->addralign();
4059               if (align > max_align)
4060                 max_align = align;
4061               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4062                 in_tls = true;
4063               else if (in_tls)
4064                 {
4065                   // Align the first non-TLS section to the alignment
4066                   // of the TLS segment.
4067                   align = max_align;
4068                   in_tls = false;
4069                 }
4070               relro_size = align_address(relro_size, align);
4071               // Ignore the size of the .tbss section.
4072               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4073                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4074                 continue;
4075               if ((*p)->is_address_valid())
4076                 relro_size += (*p)->data_size();
4077               else
4078                 {
4079                   // FIXME: This could be faster.
4080                   (*p)->set_address_and_file_offset(addr + relro_size,
4081                                                     off + relro_size);
4082                   relro_size += (*p)->data_size();
4083                   (*p)->reset_address_and_file_offset();
4084                 }
4085             }
4086           if (p != pdl->end())
4087             break;
4088         }
4089       relro_size += *increase_relro;
4090       // Pad the total relro size to a multiple of the maximum
4091       // section alignment seen.
4092       uint64_t aligned_size = align_address(relro_size, max_align);
4093       // Note the amount of padding added after the last relro section.
4094       last_relro_pad = aligned_size - relro_size;
4095       *has_relro = true;
4096
4097       uint64_t page_align = parameters->target().common_pagesize();
4098
4099       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4100       uint64_t desired_align = page_align - (aligned_size % page_align);
4101       if (desired_align < *poff % page_align)
4102         *poff += page_align - *poff % page_align;
4103       *poff += desired_align - *poff % page_align;
4104       addr += *poff - orig_off;
4105       orig_off = *poff;
4106     }
4107
4108   if (!reset && this->are_addresses_set_)
4109     {
4110       gold_assert(this->paddr_ == addr);
4111       addr = this->vaddr_;
4112     }
4113   else
4114     {
4115       this->vaddr_ = addr;
4116       this->paddr_ = addr;
4117       this->are_addresses_set_ = true;
4118     }
4119
4120   in_tls = false;
4121
4122   this->offset_ = orig_off;
4123
4124   off_t off = 0;
4125   uint64_t ret;
4126   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4127     {
4128       if (i == static_cast<int>(ORDER_RELRO_LAST))
4129         {
4130           *poff += last_relro_pad;
4131           addr += last_relro_pad;
4132           if (this->output_lists_[i].empty())
4133             {
4134               // If there is nothing in the ORDER_RELRO_LAST list,
4135               // the padding will occur at the end of the relro
4136               // segment, and we need to add it to *INCREASE_RELRO.
4137               *increase_relro += last_relro_pad;
4138             }
4139         }
4140       addr = this->set_section_list_addresses(layout, reset,
4141                                               &this->output_lists_[i],
4142                                               addr, poff, pshndx, &in_tls);
4143       if (i < static_cast<int>(ORDER_SMALL_BSS))
4144         {
4145           this->filesz_ = *poff - orig_off;
4146           off = *poff;
4147         }
4148
4149       ret = addr;
4150     }
4151
4152   // If the last section was a TLS section, align upward to the
4153   // alignment of the TLS segment, so that the overall size of the TLS
4154   // segment is aligned.
4155   if (in_tls)
4156     {
4157       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4158       *poff = align_address(*poff, segment_align);
4159     }
4160
4161   this->memsz_ = *poff - orig_off;
4162
4163   // Ignore the file offset adjustments made by the BSS Output_data
4164   // objects.
4165   *poff = off;
4166
4167   return ret;
4168 }
4169
4170 // Set the addresses and file offsets in a list of Output_data
4171 // structures.
4172
4173 uint64_t
4174 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4175                                            Output_data_list* pdl,
4176                                            uint64_t addr, off_t* poff,
4177                                            unsigned int* pshndx,
4178                                            bool* in_tls)
4179 {
4180   off_t startoff = *poff;
4181   // For incremental updates, we may allocate non-fixed sections from
4182   // free space in the file.  This keeps track of the high-water mark.
4183   off_t maxoff = startoff;
4184
4185   off_t off = startoff;
4186   for (Output_data_list::iterator p = pdl->begin();
4187        p != pdl->end();
4188        ++p)
4189     {
4190       if (reset)
4191         (*p)->reset_address_and_file_offset();
4192
4193       // When doing an incremental update or when using a linker script,
4194       // the section will most likely already have an address.
4195       if (!(*p)->is_address_valid())
4196         {
4197           uint64_t align = (*p)->addralign();
4198
4199           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4200             {
4201               // Give the first TLS section the alignment of the
4202               // entire TLS segment.  Otherwise the TLS segment as a
4203               // whole may be misaligned.
4204               if (!*in_tls)
4205                 {
4206                   Output_segment* tls_segment = layout->tls_segment();
4207                   gold_assert(tls_segment != NULL);
4208                   uint64_t segment_align = tls_segment->maximum_alignment();
4209                   gold_assert(segment_align >= align);
4210                   align = segment_align;
4211
4212                   *in_tls = true;
4213                 }
4214             }
4215           else
4216             {
4217               // If this is the first section after the TLS segment,
4218               // align it to at least the alignment of the TLS
4219               // segment, so that the size of the overall TLS segment
4220               // is aligned.
4221               if (*in_tls)
4222                 {
4223                   uint64_t segment_align =
4224                       layout->tls_segment()->maximum_alignment();
4225                   if (segment_align > align)
4226                     align = segment_align;
4227
4228                   *in_tls = false;
4229                 }
4230             }
4231
4232           if (!parameters->incremental_update())
4233             {
4234               off = align_address(off, align);
4235               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4236             }
4237           else
4238             {
4239               // Incremental update: allocate file space from free list.
4240               (*p)->pre_finalize_data_size();
4241               off_t current_size = (*p)->current_data_size();
4242               off = layout->allocate(current_size, align, startoff);
4243               if (off == -1)
4244                 {
4245                   gold_assert((*p)->output_section() != NULL);
4246                   gold_fallback(_("out of patch space for section %s; "
4247                                   "relink with --incremental-full"),
4248                                 (*p)->output_section()->name());
4249                 }
4250               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4251               if ((*p)->data_size() > current_size)
4252                 {
4253                   gold_assert((*p)->output_section() != NULL);
4254                   gold_fallback(_("%s: section changed size; "
4255                                   "relink with --incremental-full"),
4256                                 (*p)->output_section()->name());
4257                 }
4258             }
4259         }
4260       else if (parameters->incremental_update())
4261         {
4262           // For incremental updates, use the fixed offset for the
4263           // high-water mark computation.
4264           off = (*p)->offset();
4265         }
4266       else
4267         {
4268           // The script may have inserted a skip forward, but it
4269           // better not have moved backward.
4270           if ((*p)->address() >= addr + (off - startoff))
4271             off += (*p)->address() - (addr + (off - startoff));
4272           else
4273             {
4274               if (!layout->script_options()->saw_sections_clause())
4275                 gold_unreachable();
4276               else
4277                 {
4278                   Output_section* os = (*p)->output_section();
4279
4280                   // Cast to unsigned long long to avoid format warnings.
4281                   unsigned long long previous_dot =
4282                     static_cast<unsigned long long>(addr + (off - startoff));
4283                   unsigned long long dot =
4284                     static_cast<unsigned long long>((*p)->address());
4285
4286                   if (os == NULL)
4287                     gold_error(_("dot moves backward in linker script "
4288                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4289                   else
4290                     gold_error(_("address of section '%s' moves backward "
4291                                  "from 0x%llx to 0x%llx"),
4292                                os->name(), previous_dot, dot);
4293                 }
4294             }
4295           (*p)->set_file_offset(off);
4296           (*p)->finalize_data_size();
4297         }
4298
4299       if (parameters->incremental_update())
4300         gold_debug(DEBUG_INCREMENTAL,
4301                    "set_section_list_addresses: %08lx %08lx %s",
4302                    static_cast<long>(off),
4303                    static_cast<long>((*p)->data_size()),
4304                    ((*p)->output_section() != NULL
4305                     ? (*p)->output_section()->name() : "(special)"));
4306
4307       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4308       // section.  Such a section does not affect the size of a
4309       // PT_LOAD segment.
4310       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4311           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4312         off += (*p)->data_size();
4313
4314       if (off > maxoff)
4315         maxoff = off;
4316
4317       if ((*p)->is_section())
4318         {
4319           (*p)->set_out_shndx(*pshndx);
4320           ++*pshndx;
4321         }
4322     }
4323
4324   *poff = maxoff;
4325   return addr + (maxoff - startoff);
4326 }
4327
4328 // For a non-PT_LOAD segment, set the offset from the sections, if
4329 // any.  Add INCREASE to the file size and the memory size.
4330
4331 void
4332 Output_segment::set_offset(unsigned int increase)
4333 {
4334   gold_assert(this->type_ != elfcpp::PT_LOAD);
4335
4336   gold_assert(!this->are_addresses_set_);
4337
4338   // A non-load section only uses output_lists_[0].
4339
4340   Output_data_list* pdl = &this->output_lists_[0];
4341
4342   if (pdl->empty())
4343     {
4344       gold_assert(increase == 0);
4345       this->vaddr_ = 0;
4346       this->paddr_ = 0;
4347       this->are_addresses_set_ = true;
4348       this->memsz_ = 0;
4349       this->min_p_align_ = 0;
4350       this->offset_ = 0;
4351       this->filesz_ = 0;
4352       return;
4353     }
4354
4355   // Find the first and last section by address.
4356   const Output_data* first = NULL;
4357   const Output_data* last_data = NULL;
4358   const Output_data* last_bss = NULL;
4359   for (Output_data_list::const_iterator p = pdl->begin();
4360        p != pdl->end();
4361        ++p)
4362     {
4363       if (first == NULL
4364           || (*p)->address() < first->address()
4365           || ((*p)->address() == first->address()
4366               && (*p)->data_size() < first->data_size()))
4367         first = *p;
4368       const Output_data** plast;
4369       if ((*p)->is_section()
4370           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4371         plast = &last_bss;
4372       else
4373         plast = &last_data;
4374       if (*plast == NULL
4375           || (*p)->address() > (*plast)->address()
4376           || ((*p)->address() == (*plast)->address()
4377               && (*p)->data_size() > (*plast)->data_size()))
4378         *plast = *p;
4379     }
4380
4381   this->vaddr_ = first->address();
4382   this->paddr_ = (first->has_load_address()
4383                   ? first->load_address()
4384                   : this->vaddr_);
4385   this->are_addresses_set_ = true;
4386   this->offset_ = first->offset();
4387
4388   if (last_data == NULL)
4389     this->filesz_ = 0;
4390   else
4391     this->filesz_ = (last_data->address()
4392                      + last_data->data_size()
4393                      - this->vaddr_);
4394
4395   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4396   this->memsz_ = (last->address()
4397                   + last->data_size()
4398                   - this->vaddr_);
4399
4400   this->filesz_ += increase;
4401   this->memsz_ += increase;
4402
4403   // If this is a RELRO segment, verify that the segment ends at a
4404   // page boundary.
4405   if (this->type_ == elfcpp::PT_GNU_RELRO)
4406     {
4407       uint64_t page_align = parameters->target().common_pagesize();
4408       uint64_t segment_end = this->vaddr_ + this->memsz_;
4409       if (parameters->incremental_update())
4410         {
4411           // The INCREASE_RELRO calculation is bypassed for an incremental
4412           // update, so we need to adjust the segment size manually here.
4413           segment_end = align_address(segment_end, page_align);
4414           this->memsz_ = segment_end - this->vaddr_;
4415         }
4416       else
4417         gold_assert(segment_end == align_address(segment_end, page_align));
4418     }
4419
4420   // If this is a TLS segment, align the memory size.  The code in
4421   // set_section_list ensures that the section after the TLS segment
4422   // is aligned to give us room.
4423   if (this->type_ == elfcpp::PT_TLS)
4424     {
4425       uint64_t segment_align = this->maximum_alignment();
4426       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4427       this->memsz_ = align_address(this->memsz_, segment_align);
4428     }
4429 }
4430
4431 // Set the TLS offsets of the sections in the PT_TLS segment.
4432
4433 void
4434 Output_segment::set_tls_offsets()
4435 {
4436   gold_assert(this->type_ == elfcpp::PT_TLS);
4437
4438   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4439        p != this->output_lists_[0].end();
4440        ++p)
4441     (*p)->set_tls_offset(this->vaddr_);
4442 }
4443
4444 // Return the load address of the first section.
4445
4446 uint64_t
4447 Output_segment::first_section_load_address() const
4448 {
4449   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4450     {
4451       const Output_data_list* pdl = &this->output_lists_[i];
4452       for (Output_data_list::const_iterator p = pdl->begin();
4453            p != pdl->end();
4454            ++p)
4455         {
4456           if ((*p)->is_section())
4457             return ((*p)->has_load_address()
4458                     ? (*p)->load_address()
4459                     : (*p)->address());
4460         }
4461     }
4462   gold_unreachable();
4463 }
4464
4465 // Return the number of Output_sections in an Output_segment.
4466
4467 unsigned int
4468 Output_segment::output_section_count() const
4469 {
4470   unsigned int ret = 0;
4471   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4472     ret += this->output_section_count_list(&this->output_lists_[i]);
4473   return ret;
4474 }
4475
4476 // Return the number of Output_sections in an Output_data_list.
4477
4478 unsigned int
4479 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4480 {
4481   unsigned int count = 0;
4482   for (Output_data_list::const_iterator p = pdl->begin();
4483        p != pdl->end();
4484        ++p)
4485     {
4486       if ((*p)->is_section())
4487         ++count;
4488     }
4489   return count;
4490 }
4491
4492 // Return the section attached to the list segment with the lowest
4493 // load address.  This is used when handling a PHDRS clause in a
4494 // linker script.
4495
4496 Output_section*
4497 Output_segment::section_with_lowest_load_address() const
4498 {
4499   Output_section* found = NULL;
4500   uint64_t found_lma = 0;
4501   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4502     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4503                                       &found_lma);
4504   return found;
4505 }
4506
4507 // Look through a list for a section with a lower load address.
4508
4509 void
4510 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4511                                             Output_section** found,
4512                                             uint64_t* found_lma) const
4513 {
4514   for (Output_data_list::const_iterator p = pdl->begin();
4515        p != pdl->end();
4516        ++p)
4517     {
4518       if (!(*p)->is_section())
4519         continue;
4520       Output_section* os = static_cast<Output_section*>(*p);
4521       uint64_t lma = (os->has_load_address()
4522                       ? os->load_address()
4523                       : os->address());
4524       if (*found == NULL || lma < *found_lma)
4525         {
4526           *found = os;
4527           *found_lma = lma;
4528         }
4529     }
4530 }
4531
4532 // Write the segment data into *OPHDR.
4533
4534 template<int size, bool big_endian>
4535 void
4536 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4537 {
4538   ophdr->put_p_type(this->type_);
4539   ophdr->put_p_offset(this->offset_);
4540   ophdr->put_p_vaddr(this->vaddr_);
4541   ophdr->put_p_paddr(this->paddr_);
4542   ophdr->put_p_filesz(this->filesz_);
4543   ophdr->put_p_memsz(this->memsz_);
4544   ophdr->put_p_flags(this->flags_);
4545   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4546 }
4547
4548 // Write the section headers into V.
4549
4550 template<int size, bool big_endian>
4551 unsigned char*
4552 Output_segment::write_section_headers(const Layout* layout,
4553                                       const Stringpool* secnamepool,
4554                                       unsigned char* v,
4555                                       unsigned int* pshndx) const
4556 {
4557   // Every section that is attached to a segment must be attached to a
4558   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4559   // segments.
4560   if (this->type_ != elfcpp::PT_LOAD)
4561     return v;
4562
4563   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4564     {
4565       const Output_data_list* pdl = &this->output_lists_[i];
4566       v = this->write_section_headers_list<size, big_endian>(layout,
4567                                                              secnamepool,
4568                                                              pdl,
4569                                                              v, pshndx);
4570     }
4571
4572   return v;
4573 }
4574
4575 template<int size, bool big_endian>
4576 unsigned char*
4577 Output_segment::write_section_headers_list(const Layout* layout,
4578                                            const Stringpool* secnamepool,
4579                                            const Output_data_list* pdl,
4580                                            unsigned char* v,
4581                                            unsigned int* pshndx) const
4582 {
4583   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4584   for (Output_data_list::const_iterator p = pdl->begin();
4585        p != pdl->end();
4586        ++p)
4587     {
4588       if ((*p)->is_section())
4589         {
4590           const Output_section* ps = static_cast<const Output_section*>(*p);
4591           gold_assert(*pshndx == ps->out_shndx());
4592           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4593           ps->write_header(layout, secnamepool, &oshdr);
4594           v += shdr_size;
4595           ++*pshndx;
4596         }
4597     }
4598   return v;
4599 }
4600
4601 // Print the output sections to the map file.
4602
4603 void
4604 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4605 {
4606   if (this->type() != elfcpp::PT_LOAD)
4607     return;
4608   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4609     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4610 }
4611
4612 // Print an output section list to the map file.
4613
4614 void
4615 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4616                                               const Output_data_list* pdl) const
4617 {
4618   for (Output_data_list::const_iterator p = pdl->begin();
4619        p != pdl->end();
4620        ++p)
4621     (*p)->print_to_mapfile(mapfile);
4622 }
4623
4624 // Output_file methods.
4625
4626 Output_file::Output_file(const char* name)
4627   : name_(name),
4628     o_(-1),
4629     file_size_(0),
4630     base_(NULL),
4631     map_is_anonymous_(false),
4632     map_is_allocated_(false),
4633     is_temporary_(false)
4634 {
4635 }
4636
4637 // Try to open an existing file.  Returns false if the file doesn't
4638 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4639 // NULL, open that file as the base for incremental linking, and
4640 // copy its contents to the new output file.  This routine can
4641 // be called for incremental updates, in which case WRITABLE should
4642 // be true, or by the incremental-dump utility, in which case
4643 // WRITABLE should be false.
4644
4645 bool
4646 Output_file::open_base_file(const char* base_name, bool writable)
4647 {
4648   // The name "-" means "stdout".
4649   if (strcmp(this->name_, "-") == 0)
4650     return false;
4651
4652   bool use_base_file = base_name != NULL;
4653   if (!use_base_file)
4654     base_name = this->name_;
4655   else if (strcmp(base_name, this->name_) == 0)
4656     gold_fatal(_("%s: incremental base and output file name are the same"),
4657                base_name);
4658
4659   // Don't bother opening files with a size of zero.
4660   struct stat s;
4661   if (::stat(base_name, &s) != 0)
4662     {
4663       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4664       return false;
4665     }
4666   if (s.st_size == 0)
4667     {
4668       gold_info(_("%s: incremental base file is empty"), base_name);
4669       return false;
4670     }
4671
4672   // If we're using a base file, we want to open it read-only.
4673   if (use_base_file)
4674     writable = false;
4675
4676   int oflags = writable ? O_RDWR : O_RDONLY;
4677   int o = open_descriptor(-1, base_name, oflags, 0);
4678   if (o < 0)
4679     {
4680       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4681       return false;
4682     }
4683
4684   // If the base file and the output file are different, open a
4685   // new output file and read the contents from the base file into
4686   // the newly-mapped region.
4687   if (use_base_file)
4688     {
4689       this->open(s.st_size);
4690       ssize_t len = ::read(o, this->base_, s.st_size);
4691       if (len < 0)
4692         {
4693           gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4694           return false;
4695         }
4696       if (len < s.st_size)
4697         {
4698           gold_info(_("%s: file too short"), base_name);
4699           return false;
4700         }
4701       ::close(o);
4702       return true;
4703     }
4704
4705   this->o_ = o;
4706   this->file_size_ = s.st_size;
4707
4708   if (!this->map_no_anonymous(writable))
4709     {
4710       release_descriptor(o, true);
4711       this->o_ = -1;
4712       this->file_size_ = 0;
4713       return false;
4714     }
4715
4716   return true;
4717 }
4718
4719 // Open the output file.
4720
4721 void
4722 Output_file::open(off_t file_size)
4723 {
4724   this->file_size_ = file_size;
4725
4726   // Unlink the file first; otherwise the open() may fail if the file
4727   // is busy (e.g. it's an executable that's currently being executed).
4728   //
4729   // However, the linker may be part of a system where a zero-length
4730   // file is created for it to write to, with tight permissions (gcc
4731   // 2.95 did something like this).  Unlinking the file would work
4732   // around those permission controls, so we only unlink if the file
4733   // has a non-zero size.  We also unlink only regular files to avoid
4734   // trouble with directories/etc.
4735   //
4736   // If we fail, continue; this command is merely a best-effort attempt
4737   // to improve the odds for open().
4738
4739   // We let the name "-" mean "stdout"
4740   if (!this->is_temporary_)
4741     {
4742       if (strcmp(this->name_, "-") == 0)
4743         this->o_ = STDOUT_FILENO;
4744       else
4745         {
4746           struct stat s;
4747           if (::stat(this->name_, &s) == 0
4748               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4749             {
4750               if (s.st_size != 0)
4751                 ::unlink(this->name_);
4752               else if (!parameters->options().relocatable())
4753                 {
4754                   // If we don't unlink the existing file, add execute
4755                   // permission where read permissions already exist
4756                   // and where the umask permits.
4757                   int mask = ::umask(0);
4758                   ::umask(mask);
4759                   s.st_mode |= (s.st_mode & 0444) >> 2;
4760                   ::chmod(this->name_, s.st_mode & ~mask);
4761                 }
4762             }
4763
4764           int mode = parameters->options().relocatable() ? 0666 : 0777;
4765           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4766                                   mode);
4767           if (o < 0)
4768             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4769           this->o_ = o;
4770         }
4771     }
4772
4773   this->map();
4774 }
4775
4776 // Resize the output file.
4777
4778 void
4779 Output_file::resize(off_t file_size)
4780 {
4781   // If the mmap is mapping an anonymous memory buffer, this is easy:
4782   // just mremap to the new size.  If it's mapping to a file, we want
4783   // to unmap to flush to the file, then remap after growing the file.
4784   if (this->map_is_anonymous_)
4785     {
4786       void* base;
4787       if (!this->map_is_allocated_)
4788         {
4789           base = ::mremap(this->base_, this->file_size_, file_size,
4790                           MREMAP_MAYMOVE);
4791           if (base == MAP_FAILED)
4792             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4793         }
4794       else
4795         {
4796           base = realloc(this->base_, file_size);
4797           if (base == NULL)
4798             gold_nomem();
4799           if (file_size > this->file_size_)
4800             memset(static_cast<char*>(base) + this->file_size_, 0,
4801                    file_size - this->file_size_);
4802         }
4803       this->base_ = static_cast<unsigned char*>(base);
4804       this->file_size_ = file_size;
4805     }
4806   else
4807     {
4808       this->unmap();
4809       this->file_size_ = file_size;
4810       if (!this->map_no_anonymous(true))
4811         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4812     }
4813 }
4814
4815 // Map an anonymous block of memory which will later be written to the
4816 // file.  Return whether the map succeeded.
4817
4818 bool
4819 Output_file::map_anonymous()
4820 {
4821   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4822                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4823   if (base == MAP_FAILED)
4824     {
4825       base = malloc(this->file_size_);
4826       if (base == NULL)
4827         return false;
4828       memset(base, 0, this->file_size_);
4829       this->map_is_allocated_ = true;
4830     }
4831   this->base_ = static_cast<unsigned char*>(base);
4832   this->map_is_anonymous_ = true;
4833   return true;
4834 }
4835
4836 // Map the file into memory.  Return whether the mapping succeeded.
4837 // If WRITABLE is true, map with write access.
4838
4839 bool
4840 Output_file::map_no_anonymous(bool writable)
4841 {
4842   const int o = this->o_;
4843
4844   // If the output file is not a regular file, don't try to mmap it;
4845   // instead, we'll mmap a block of memory (an anonymous buffer), and
4846   // then later write the buffer to the file.
4847   void* base;
4848   struct stat statbuf;
4849   if (o == STDOUT_FILENO || o == STDERR_FILENO
4850       || ::fstat(o, &statbuf) != 0
4851       || !S_ISREG(statbuf.st_mode)
4852       || this->is_temporary_)
4853     return false;
4854
4855   // Ensure that we have disk space available for the file.  If we
4856   // don't do this, it is possible that we will call munmap, close,
4857   // and exit with dirty buffers still in the cache with no assigned
4858   // disk blocks.  If the disk is out of space at that point, the
4859   // output file will wind up incomplete, but we will have already
4860   // exited.  The alternative to fallocate would be to use fdatasync,
4861   // but that would be a more significant performance hit.
4862   if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
4863     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4864
4865   // Map the file into memory.
4866   int prot = PROT_READ;
4867   if (writable)
4868     prot |= PROT_WRITE;
4869   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
4870
4871   // The mmap call might fail because of file system issues: the file
4872   // system might not support mmap at all, or it might not support
4873   // mmap with PROT_WRITE.
4874   if (base == MAP_FAILED)
4875     return false;
4876
4877   this->map_is_anonymous_ = false;
4878   this->base_ = static_cast<unsigned char*>(base);
4879   return true;
4880 }
4881
4882 // Map the file into memory.
4883
4884 void
4885 Output_file::map()
4886 {
4887   if (this->map_no_anonymous(true))
4888     return;
4889
4890   // The mmap call might fail because of file system issues: the file
4891   // system might not support mmap at all, or it might not support
4892   // mmap with PROT_WRITE.  I'm not sure which errno values we will
4893   // see in all cases, so if the mmap fails for any reason and we
4894   // don't care about file contents, try for an anonymous map.
4895   if (this->map_anonymous())
4896     return;
4897
4898   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4899              this->name_, static_cast<unsigned long>(this->file_size_),
4900              strerror(errno));
4901 }
4902
4903 // Unmap the file from memory.
4904
4905 void
4906 Output_file::unmap()
4907 {
4908   if (this->map_is_anonymous_)
4909     {
4910       // We've already written out the data, so there is no reason to
4911       // waste time unmapping or freeing the memory.
4912     }
4913   else
4914     {
4915       if (::munmap(this->base_, this->file_size_) < 0)
4916         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4917     }
4918   this->base_ = NULL;
4919 }
4920
4921 // Close the output file.
4922
4923 void
4924 Output_file::close()
4925 {
4926   // If the map isn't file-backed, we need to write it now.
4927   if (this->map_is_anonymous_ && !this->is_temporary_)
4928     {
4929       size_t bytes_to_write = this->file_size_;
4930       size_t offset = 0;
4931       while (bytes_to_write > 0)
4932         {
4933           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4934                                           bytes_to_write);
4935           if (bytes_written == 0)
4936             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4937           else if (bytes_written < 0)
4938             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4939           else
4940             {
4941               bytes_to_write -= bytes_written;
4942               offset += bytes_written;
4943             }
4944         }
4945     }
4946   this->unmap();
4947
4948   // We don't close stdout or stderr
4949   if (this->o_ != STDOUT_FILENO
4950       && this->o_ != STDERR_FILENO
4951       && !this->is_temporary_)
4952     if (::close(this->o_) < 0)
4953       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4954   this->o_ = -1;
4955 }
4956
4957 // Instantiate the templates we need.  We could use the configure
4958 // script to restrict this to only the ones for implemented targets.
4959
4960 #ifdef HAVE_TARGET_32_LITTLE
4961 template
4962 off_t
4963 Output_section::add_input_section<32, false>(
4964     Layout* layout,
4965     Sized_relobj_file<32, false>* object,
4966     unsigned int shndx,
4967     const char* secname,
4968     const elfcpp::Shdr<32, false>& shdr,
4969     unsigned int reloc_shndx,
4970     bool have_sections_script);
4971 #endif
4972
4973 #ifdef HAVE_TARGET_32_BIG
4974 template
4975 off_t
4976 Output_section::add_input_section<32, true>(
4977     Layout* layout,
4978     Sized_relobj_file<32, true>* object,
4979     unsigned int shndx,
4980     const char* secname,
4981     const elfcpp::Shdr<32, true>& shdr,
4982     unsigned int reloc_shndx,
4983     bool have_sections_script);
4984 #endif
4985
4986 #ifdef HAVE_TARGET_64_LITTLE
4987 template
4988 off_t
4989 Output_section::add_input_section<64, false>(
4990     Layout* layout,
4991     Sized_relobj_file<64, false>* object,
4992     unsigned int shndx,
4993     const char* secname,
4994     const elfcpp::Shdr<64, false>& shdr,
4995     unsigned int reloc_shndx,
4996     bool have_sections_script);
4997 #endif
4998
4999 #ifdef HAVE_TARGET_64_BIG
5000 template
5001 off_t
5002 Output_section::add_input_section<64, true>(
5003     Layout* layout,
5004     Sized_relobj_file<64, true>* object,
5005     unsigned int shndx,
5006     const char* secname,
5007     const elfcpp::Shdr<64, true>& shdr,
5008     unsigned int reloc_shndx,
5009     bool have_sections_script);
5010 #endif
5011
5012 #ifdef HAVE_TARGET_32_LITTLE
5013 template
5014 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5015 #endif
5016
5017 #ifdef HAVE_TARGET_32_BIG
5018 template
5019 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5020 #endif
5021
5022 #ifdef HAVE_TARGET_64_LITTLE
5023 template
5024 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5025 #endif
5026
5027 #ifdef HAVE_TARGET_64_BIG
5028 template
5029 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5030 #endif
5031
5032 #ifdef HAVE_TARGET_32_LITTLE
5033 template
5034 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5035 #endif
5036
5037 #ifdef HAVE_TARGET_32_BIG
5038 template
5039 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5040 #endif
5041
5042 #ifdef HAVE_TARGET_64_LITTLE
5043 template
5044 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5045 #endif
5046
5047 #ifdef HAVE_TARGET_64_BIG
5048 template
5049 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5050 #endif
5051
5052 #ifdef HAVE_TARGET_32_LITTLE
5053 template
5054 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5055 #endif
5056
5057 #ifdef HAVE_TARGET_32_BIG
5058 template
5059 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5060 #endif
5061
5062 #ifdef HAVE_TARGET_64_LITTLE
5063 template
5064 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5065 #endif
5066
5067 #ifdef HAVE_TARGET_64_BIG
5068 template
5069 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5070 #endif
5071
5072 #ifdef HAVE_TARGET_32_LITTLE
5073 template
5074 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5075 #endif
5076
5077 #ifdef HAVE_TARGET_32_BIG
5078 template
5079 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5080 #endif
5081
5082 #ifdef HAVE_TARGET_64_LITTLE
5083 template
5084 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5085 #endif
5086
5087 #ifdef HAVE_TARGET_64_BIG
5088 template
5089 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5090 #endif
5091
5092 #ifdef HAVE_TARGET_32_LITTLE
5093 template
5094 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5095 #endif
5096
5097 #ifdef HAVE_TARGET_32_BIG
5098 template
5099 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5100 #endif
5101
5102 #ifdef HAVE_TARGET_64_LITTLE
5103 template
5104 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5105 #endif
5106
5107 #ifdef HAVE_TARGET_64_BIG
5108 template
5109 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5110 #endif
5111
5112 #ifdef HAVE_TARGET_32_LITTLE
5113 template
5114 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5115 #endif
5116
5117 #ifdef HAVE_TARGET_32_BIG
5118 template
5119 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5120 #endif
5121
5122 #ifdef HAVE_TARGET_64_LITTLE
5123 template
5124 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5125 #endif
5126
5127 #ifdef HAVE_TARGET_64_BIG
5128 template
5129 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5130 #endif
5131
5132 #ifdef HAVE_TARGET_32_LITTLE
5133 template
5134 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5135 #endif
5136
5137 #ifdef HAVE_TARGET_32_BIG
5138 template
5139 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5140 #endif
5141
5142 #ifdef HAVE_TARGET_64_LITTLE
5143 template
5144 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5145 #endif
5146
5147 #ifdef HAVE_TARGET_64_BIG
5148 template
5149 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5150 #endif
5151
5152 #ifdef HAVE_TARGET_32_LITTLE
5153 template
5154 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5155 #endif
5156
5157 #ifdef HAVE_TARGET_32_BIG
5158 template
5159 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5160 #endif
5161
5162 #ifdef HAVE_TARGET_64_LITTLE
5163 template
5164 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5165 #endif
5166
5167 #ifdef HAVE_TARGET_64_BIG
5168 template
5169 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5170 #endif
5171
5172 #ifdef HAVE_TARGET_32_LITTLE
5173 template
5174 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5175 #endif
5176
5177 #ifdef HAVE_TARGET_32_BIG
5178 template
5179 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5180 #endif
5181
5182 #ifdef HAVE_TARGET_64_LITTLE
5183 template
5184 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5185 #endif
5186
5187 #ifdef HAVE_TARGET_64_BIG
5188 template
5189 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5190 #endif
5191
5192 #ifdef HAVE_TARGET_32_LITTLE
5193 template
5194 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5195 #endif
5196
5197 #ifdef HAVE_TARGET_32_BIG
5198 template
5199 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5200 #endif
5201
5202 #ifdef HAVE_TARGET_64_LITTLE
5203 template
5204 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5205 #endif
5206
5207 #ifdef HAVE_TARGET_64_BIG
5208 template
5209 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5210 #endif
5211
5212 #ifdef HAVE_TARGET_32_LITTLE
5213 template
5214 class Output_data_group<32, false>;
5215 #endif
5216
5217 #ifdef HAVE_TARGET_32_BIG
5218 template
5219 class Output_data_group<32, true>;
5220 #endif
5221
5222 #ifdef HAVE_TARGET_64_LITTLE
5223 template
5224 class Output_data_group<64, false>;
5225 #endif
5226
5227 #ifdef HAVE_TARGET_64_BIG
5228 template
5229 class Output_data_group<64, true>;
5230 #endif
5231
5232 #ifdef HAVE_TARGET_32_LITTLE
5233 template
5234 class Output_data_got<32, false>;
5235 #endif
5236
5237 #ifdef HAVE_TARGET_32_BIG
5238 template
5239 class Output_data_got<32, true>;
5240 #endif
5241
5242 #ifdef HAVE_TARGET_64_LITTLE
5243 template
5244 class Output_data_got<64, false>;
5245 #endif
5246
5247 #ifdef HAVE_TARGET_64_BIG
5248 template
5249 class Output_data_got<64, true>;
5250 #endif
5251
5252 } // End namespace gold.