Check that we don't set the output section index twice.
[platform/upstream/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 #include "libiberty.h"   // for unlink_if_ordinary()
33
34 #include "parameters.h"
35 #include "object.h"
36 #include "symtab.h"
37 #include "reloc.h"
38 #include "merge.h"
39 #include "output.h"
40
41 namespace gold
42 {
43
44 // Output_data variables.
45
46 bool Output_data::sizes_are_fixed;
47
48 // Output_data methods.
49
50 Output_data::~Output_data()
51 {
52 }
53
54 // Set the address and offset.
55
56 void
57 Output_data::set_address(uint64_t addr, off_t off)
58 {
59   this->address_ = addr;
60   this->offset_ = off;
61
62   // Let the child class know.
63   this->do_set_address(addr, off);
64 }
65
66 // Return the default alignment for a size--32 or 64.
67
68 uint64_t
69 Output_data::default_alignment(int size)
70 {
71   if (size == 32)
72     return 4;
73   else if (size == 64)
74     return 8;
75   else
76     gold_unreachable();
77 }
78
79 // Output_section_header methods.  This currently assumes that the
80 // segment and section lists are complete at construction time.
81
82 Output_section_headers::Output_section_headers(
83     const Layout* layout,
84     const Layout::Segment_list* segment_list,
85     const Layout::Section_list* unattached_section_list,
86     const Stringpool* secnamepool)
87   : layout_(layout),
88     segment_list_(segment_list),
89     unattached_section_list_(unattached_section_list),
90     secnamepool_(secnamepool)
91 {
92   // Count all the sections.  Start with 1 for the null section.
93   off_t count = 1;
94   for (Layout::Segment_list::const_iterator p = segment_list->begin();
95        p != segment_list->end();
96        ++p)
97     if ((*p)->type() == elfcpp::PT_LOAD)
98       count += (*p)->output_section_count();
99   count += unattached_section_list->size();
100
101   const int size = parameters->get_size();
102   int shdr_size;
103   if (size == 32)
104     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
105   else if (size == 64)
106     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
107   else
108     gold_unreachable();
109
110   this->set_data_size(count * shdr_size);
111 }
112
113 // Write out the section headers.
114
115 void
116 Output_section_headers::do_write(Output_file* of)
117 {
118   if (parameters->get_size() == 32)
119     {
120       if (parameters->is_big_endian())
121         {
122 #ifdef HAVE_TARGET_32_BIG
123           this->do_sized_write<32, true>(of);
124 #else
125           gold_unreachable();
126 #endif
127         }
128       else
129         {
130 #ifdef HAVE_TARGET_32_LITTLE
131           this->do_sized_write<32, false>(of);
132 #else
133           gold_unreachable();
134 #endif
135         }
136     }
137   else if (parameters->get_size() == 64)
138     {
139       if (parameters->is_big_endian())
140         {
141 #ifdef HAVE_TARGET_64_BIG
142           this->do_sized_write<64, true>(of);
143 #else
144           gold_unreachable();
145 #endif
146         }
147       else
148         {
149 #ifdef HAVE_TARGET_64_LITTLE
150           this->do_sized_write<64, false>(of);
151 #else
152           gold_unreachable();
153 #endif
154         }
155     }
156   else
157     gold_unreachable();
158 }
159
160 template<int size, bool big_endian>
161 void
162 Output_section_headers::do_sized_write(Output_file* of)
163 {
164   off_t all_shdrs_size = this->data_size();
165   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
166
167   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
168   unsigned char* v = view;
169
170   {
171     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
172     oshdr.put_sh_name(0);
173     oshdr.put_sh_type(elfcpp::SHT_NULL);
174     oshdr.put_sh_flags(0);
175     oshdr.put_sh_addr(0);
176     oshdr.put_sh_offset(0);
177     oshdr.put_sh_size(0);
178     oshdr.put_sh_link(0);
179     oshdr.put_sh_info(0);
180     oshdr.put_sh_addralign(0);
181     oshdr.put_sh_entsize(0);
182   }
183
184   v += shdr_size;
185
186   unsigned shndx = 1;
187   for (Layout::Segment_list::const_iterator p = this->segment_list_->begin();
188        p != this->segment_list_->end();
189        ++p)
190     v = (*p)->write_section_headers SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
191             this->layout_, this->secnamepool_, v, &shndx
192             SELECT_SIZE_ENDIAN(size, big_endian));
193   for (Layout::Section_list::const_iterator p =
194          this->unattached_section_list_->begin();
195        p != this->unattached_section_list_->end();
196        ++p)
197     {
198       gold_assert(shndx == (*p)->out_shndx());
199       elfcpp::Shdr_write<size, big_endian> oshdr(v);
200       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
201       v += shdr_size;
202       ++shndx;
203     }
204
205   of->write_output_view(this->offset(), all_shdrs_size, view);
206 }
207
208 // Output_segment_header methods.
209
210 Output_segment_headers::Output_segment_headers(
211     const Layout::Segment_list& segment_list)
212   : segment_list_(segment_list)
213 {
214   const int size = parameters->get_size();
215   int phdr_size;
216   if (size == 32)
217     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
218   else if (size == 64)
219     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
220   else
221     gold_unreachable();
222
223   this->set_data_size(segment_list.size() * phdr_size);
224 }
225
226 void
227 Output_segment_headers::do_write(Output_file* of)
228 {
229   if (parameters->get_size() == 32)
230     {
231       if (parameters->is_big_endian())
232         {
233 #ifdef HAVE_TARGET_32_BIG
234           this->do_sized_write<32, true>(of);
235 #else
236           gold_unreachable();
237 #endif
238         }
239       else
240         {
241 #ifdef HAVE_TARGET_32_LITTLE
242         this->do_sized_write<32, false>(of);
243 #else
244         gold_unreachable();
245 #endif
246         }
247     }
248   else if (parameters->get_size() == 64)
249     {
250       if (parameters->is_big_endian())
251         {
252 #ifdef HAVE_TARGET_64_BIG
253           this->do_sized_write<64, true>(of);
254 #else
255           gold_unreachable();
256 #endif
257         }
258       else
259         {
260 #ifdef HAVE_TARGET_64_LITTLE
261           this->do_sized_write<64, false>(of);
262 #else
263           gold_unreachable();
264 #endif
265         }
266     }
267   else
268     gold_unreachable();
269 }
270
271 template<int size, bool big_endian>
272 void
273 Output_segment_headers::do_sized_write(Output_file* of)
274 {
275   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
276   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
277   unsigned char* view = of->get_output_view(this->offset(),
278                                             all_phdrs_size);
279   unsigned char* v = view;
280   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
281        p != this->segment_list_.end();
282        ++p)
283     {
284       elfcpp::Phdr_write<size, big_endian> ophdr(v);
285       (*p)->write_header(&ophdr);
286       v += phdr_size;
287     }
288
289   of->write_output_view(this->offset(), all_phdrs_size, view);
290 }
291
292 // Output_file_header methods.
293
294 Output_file_header::Output_file_header(const Target* target,
295                                        const Symbol_table* symtab,
296                                        const Output_segment_headers* osh)
297   : target_(target),
298     symtab_(symtab),
299     segment_header_(osh),
300     section_header_(NULL),
301     shstrtab_(NULL)
302 {
303   const int size = parameters->get_size();
304   int ehdr_size;
305   if (size == 32)
306     ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
307   else if (size == 64)
308     ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
309   else
310     gold_unreachable();
311
312   this->set_data_size(ehdr_size);
313 }
314
315 // Set the section table information for a file header.
316
317 void
318 Output_file_header::set_section_info(const Output_section_headers* shdrs,
319                                      const Output_section* shstrtab)
320 {
321   this->section_header_ = shdrs;
322   this->shstrtab_ = shstrtab;
323 }
324
325 // Write out the file header.
326
327 void
328 Output_file_header::do_write(Output_file* of)
329 {
330   if (parameters->get_size() == 32)
331     {
332       if (parameters->is_big_endian())
333         {
334 #ifdef HAVE_TARGET_32_BIG
335           this->do_sized_write<32, true>(of);
336 #else
337           gold_unreachable();
338 #endif
339         }
340       else
341         {
342 #ifdef HAVE_TARGET_32_LITTLE
343           this->do_sized_write<32, false>(of);
344 #else
345           gold_unreachable();
346 #endif
347         }
348     }
349   else if (parameters->get_size() == 64)
350     {
351       if (parameters->is_big_endian())
352         {
353 #ifdef HAVE_TARGET_64_BIG
354           this->do_sized_write<64, true>(of);
355 #else
356           gold_unreachable();
357 #endif
358         }
359       else
360         {
361 #ifdef HAVE_TARGET_64_LITTLE
362           this->do_sized_write<64, false>(of);
363 #else
364           gold_unreachable();
365 #endif
366         }
367     }
368   else
369     gold_unreachable();
370 }
371
372 // Write out the file header with appropriate size and endianess.
373
374 template<int size, bool big_endian>
375 void
376 Output_file_header::do_sized_write(Output_file* of)
377 {
378   gold_assert(this->offset() == 0);
379
380   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
381   unsigned char* view = of->get_output_view(0, ehdr_size);
382   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
383
384   unsigned char e_ident[elfcpp::EI_NIDENT];
385   memset(e_ident, 0, elfcpp::EI_NIDENT);
386   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
387   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
388   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
389   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
390   if (size == 32)
391     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
392   else if (size == 64)
393     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
394   else
395     gold_unreachable();
396   e_ident[elfcpp::EI_DATA] = (big_endian
397                               ? elfcpp::ELFDATA2MSB
398                               : elfcpp::ELFDATA2LSB);
399   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
400   // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
401   oehdr.put_e_ident(e_ident);
402
403   elfcpp::ET e_type;
404   if (parameters->output_is_object())
405     e_type = elfcpp::ET_REL;
406   else if (parameters->output_is_shared())
407     e_type = elfcpp::ET_DYN;
408   else
409     e_type = elfcpp::ET_EXEC;
410   oehdr.put_e_type(e_type);
411
412   oehdr.put_e_machine(this->target_->machine_code());
413   oehdr.put_e_version(elfcpp::EV_CURRENT);
414
415   // FIXME: Need to support -e, and target specific entry symbol.
416   Symbol* sym = this->symtab_->lookup("_start");
417   typename Sized_symbol<size>::Value_type v;
418   if (sym == NULL)
419     v = 0;
420   else
421     {
422       Sized_symbol<size>* ssym;
423       ssym = this->symtab_->get_sized_symbol SELECT_SIZE_NAME(size) (
424         sym SELECT_SIZE(size));
425       v = ssym->value();
426     }
427   oehdr.put_e_entry(v);
428
429   oehdr.put_e_phoff(this->segment_header_->offset());
430   oehdr.put_e_shoff(this->section_header_->offset());
431
432   // FIXME: The target needs to set the flags.
433   oehdr.put_e_flags(0);
434
435   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
436   oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
437   oehdr.put_e_phnum(this->segment_header_->data_size()
438                      / elfcpp::Elf_sizes<size>::phdr_size);
439   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
440   oehdr.put_e_shnum(this->section_header_->data_size()
441                      / elfcpp::Elf_sizes<size>::shdr_size);
442   oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
443
444   of->write_output_view(0, ehdr_size, view);
445 }
446
447 // Output_data_const methods.
448
449 void
450 Output_data_const::do_write(Output_file* of)
451 {
452   of->write(this->offset(), this->data_.data(), this->data_.size());
453 }
454
455 // Output_data_const_buffer methods.
456
457 void
458 Output_data_const_buffer::do_write(Output_file* of)
459 {
460   of->write(this->offset(), this->p_, this->data_size());
461 }
462
463 // Output_section_data methods.
464
465 // Record the output section, and set the entry size and such.
466
467 void
468 Output_section_data::set_output_section(Output_section* os)
469 {
470   gold_assert(this->output_section_ == NULL);
471   this->output_section_ = os;
472   this->do_adjust_output_section(os);
473 }
474
475 // Return the section index of the output section.
476
477 unsigned int
478 Output_section_data::do_out_shndx() const
479 {
480   gold_assert(this->output_section_ != NULL);
481   return this->output_section_->out_shndx();
482 }
483
484 // Output_data_strtab methods.
485
486 // Set the address.  We don't actually care about the address, but we
487 // do set our final size.
488
489 void
490 Output_data_strtab::do_set_address(uint64_t, off_t)
491 {
492   this->strtab_->set_string_offsets();
493   this->set_data_size(this->strtab_->get_strtab_size());
494 }
495
496 // Write out a string table.
497
498 void
499 Output_data_strtab::do_write(Output_file* of)
500 {
501   this->strtab_->write(of, this->offset());
502 }
503
504 // Output_reloc methods.
505
506 // Get the symbol index of a relocation.
507
508 template<bool dynamic, int size, bool big_endian>
509 unsigned int
510 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
511   const
512 {
513   unsigned int index;
514   switch (this->local_sym_index_)
515     {
516     case INVALID_CODE:
517       gold_unreachable();
518
519     case GSYM_CODE:
520       if (this->u1_.gsym == NULL)
521         index = 0;
522       else if (dynamic)
523         index = this->u1_.gsym->dynsym_index();
524       else
525         index = this->u1_.gsym->symtab_index();
526       break;
527
528     case SECTION_CODE:
529       if (dynamic)
530         index = this->u1_.os->dynsym_index();
531       else
532         index = this->u1_.os->symtab_index();
533       break;
534
535     case 0:
536       // Relocations without symbols use a symbol index of 0.
537       index = 0;
538       break;
539
540     default:
541       if (dynamic)
542         {
543           // FIXME: It seems that some targets may need to generate
544           // dynamic relocations against local symbols for some
545           // reasons.  This will have to be addressed at some point.
546           gold_unreachable();
547         }
548       else
549         index = this->u1_.relobj->symtab_index(this->local_sym_index_);
550       break;
551     }
552   gold_assert(index != -1U);
553   return index;
554 }
555
556 // Write out the offset and info fields of a Rel or Rela relocation
557 // entry.
558
559 template<bool dynamic, int size, bool big_endian>
560 template<typename Write_rel>
561 void
562 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
563     Write_rel* wr) const
564 {
565   Address address = this->address_;
566   if (this->shndx_ != INVALID_CODE)
567     {
568       off_t off;
569       Output_section* os = this->u2_.relobj->output_section(this->shndx_,
570                                                             &off);
571       gold_assert(os != NULL);
572       address += os->address() + off;
573     }
574   else if (this->u2_.od != NULL)
575     address += this->u2_.od->address();
576   wr->put_r_offset(address);
577   wr->put_r_info(elfcpp::elf_r_info<size>(this->get_symbol_index(),
578                                           this->type_));
579 }
580
581 // Write out a Rel relocation.
582
583 template<bool dynamic, int size, bool big_endian>
584 void
585 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
586     unsigned char* pov) const
587 {
588   elfcpp::Rel_write<size, big_endian> orel(pov);
589   this->write_rel(&orel);
590 }
591
592 // Write out a Rela relocation.
593
594 template<bool dynamic, int size, bool big_endian>
595 void
596 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
597     unsigned char* pov) const
598 {
599   elfcpp::Rela_write<size, big_endian> orel(pov);
600   this->rel_.write_rel(&orel);
601   orel.put_r_addend(this->addend_);
602 }
603
604 // Output_data_reloc_base methods.
605
606 // Adjust the output section.
607
608 template<int sh_type, bool dynamic, int size, bool big_endian>
609 void
610 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
611     ::do_adjust_output_section(Output_section* os)
612 {
613   if (sh_type == elfcpp::SHT_REL)
614     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
615   else if (sh_type == elfcpp::SHT_RELA)
616     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
617   else
618     gold_unreachable();
619   if (dynamic)
620     os->set_should_link_to_dynsym();
621   else
622     os->set_should_link_to_symtab();
623 }
624
625 // Write out relocation data.
626
627 template<int sh_type, bool dynamic, int size, bool big_endian>
628 void
629 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
630     Output_file* of)
631 {
632   const off_t off = this->offset();
633   const off_t oview_size = this->data_size();
634   unsigned char* const oview = of->get_output_view(off, oview_size);
635
636   unsigned char* pov = oview;
637   for (typename Relocs::const_iterator p = this->relocs_.begin();
638        p != this->relocs_.end();
639        ++p)
640     {
641       p->write(pov);
642       pov += reloc_size;
643     }
644
645   gold_assert(pov - oview == oview_size);
646
647   of->write_output_view(off, oview_size, oview);
648
649   // We no longer need the relocation entries.
650   this->relocs_.clear();
651 }
652
653 // Output_data_got::Got_entry methods.
654
655 // Write out the entry.
656
657 template<int size, bool big_endian>
658 void
659 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
660 {
661   Valtype val = 0;
662
663   switch (this->local_sym_index_)
664     {
665     case GSYM_CODE:
666       {
667         Symbol* gsym = this->u_.gsym;
668
669         // If the symbol is resolved locally, we need to write out its
670         // value.  Otherwise we just write zero.  The target code is
671         // responsible for creating a relocation entry to fill in the
672         // value at runtime.
673         if (gsym->final_value_is_known())
674           {
675             Sized_symbol<size>* sgsym;
676             // This cast is a bit ugly.  We don't want to put a
677             // virtual method in Symbol, because we want Symbol to be
678             // as small as possible.
679             sgsym = static_cast<Sized_symbol<size>*>(gsym);
680             val = sgsym->value();
681           }
682       }
683       break;
684
685     case CONSTANT_CODE:
686       val = this->u_.constant;
687       break;
688
689     default:
690       val = this->u_.object->local_symbol_value(this->local_sym_index_);
691       break;
692     }
693
694   elfcpp::Swap<size, big_endian>::writeval(pov, val);
695 }
696
697 // Output_data_got methods.
698
699 // Add an entry for a global symbol to the GOT.  This returns true if
700 // this is a new GOT entry, false if the symbol already had a GOT
701 // entry.
702
703 template<int size, bool big_endian>
704 bool
705 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
706 {
707   if (gsym->has_got_offset())
708     return false;
709
710   this->entries_.push_back(Got_entry(gsym));
711   this->set_got_size();
712   gsym->set_got_offset(this->last_got_offset());
713   return true;
714 }
715
716 // Add an entry for a local symbol to the GOT.  This returns true if
717 // this is a new GOT entry, false if the symbol already has a GOT
718 // entry.
719
720 template<int size, bool big_endian>
721 bool
722 Output_data_got<size, big_endian>::add_local(
723     Sized_relobj<size, big_endian>* object,
724     unsigned int symndx)
725 {
726   if (object->local_has_got_offset(symndx))
727     return false;
728   this->entries_.push_back(Got_entry(object, symndx));
729   this->set_got_size();
730   object->set_local_got_offset(symndx, this->last_got_offset());
731   return true;
732 }
733
734 // Write out the GOT.
735
736 template<int size, bool big_endian>
737 void
738 Output_data_got<size, big_endian>::do_write(Output_file* of)
739 {
740   const int add = size / 8;
741
742   const off_t off = this->offset();
743   const off_t oview_size = this->data_size();
744   unsigned char* const oview = of->get_output_view(off, oview_size);
745
746   unsigned char* pov = oview;
747   for (typename Got_entries::const_iterator p = this->entries_.begin();
748        p != this->entries_.end();
749        ++p)
750     {
751       p->write(pov);
752       pov += add;
753     }
754
755   gold_assert(pov - oview == oview_size);
756
757   of->write_output_view(off, oview_size, oview);
758
759   // We no longer need the GOT entries.
760   this->entries_.clear();
761 }
762
763 // Output_data_dynamic::Dynamic_entry methods.
764
765 // Write out the entry.
766
767 template<int size, bool big_endian>
768 void
769 Output_data_dynamic::Dynamic_entry::write(
770     unsigned char* pov,
771     const Stringpool* pool
772     ACCEPT_SIZE_ENDIAN) const
773 {
774   typename elfcpp::Elf_types<size>::Elf_WXword val;
775   switch (this->classification_)
776     {
777     case DYNAMIC_NUMBER:
778       val = this->u_.val;
779       break;
780
781     case DYNAMIC_SECTION_ADDRESS:
782       val = this->u_.od->address();
783       break;
784
785     case DYNAMIC_SECTION_SIZE:
786       val = this->u_.od->data_size();
787       break;
788
789     case DYNAMIC_SYMBOL:
790       {
791         const Sized_symbol<size>* s =
792           static_cast<const Sized_symbol<size>*>(this->u_.sym);
793         val = s->value();
794       }
795       break;
796
797     case DYNAMIC_STRING:
798       val = pool->get_offset(this->u_.str);
799       break;
800
801     default:
802       gold_unreachable();
803     }
804
805   elfcpp::Dyn_write<size, big_endian> dw(pov);
806   dw.put_d_tag(this->tag_);
807   dw.put_d_val(val);
808 }
809
810 // Output_data_dynamic methods.
811
812 // Adjust the output section to set the entry size.
813
814 void
815 Output_data_dynamic::do_adjust_output_section(Output_section* os)
816 {
817   if (parameters->get_size() == 32)
818     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
819   else if (parameters->get_size() == 64)
820     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
821   else
822     gold_unreachable();
823 }
824
825 // Set the final data size.
826
827 void
828 Output_data_dynamic::do_set_address(uint64_t, off_t)
829 {
830   // Add the terminating entry.
831   this->add_constant(elfcpp::DT_NULL, 0);
832
833   int dyn_size;
834   if (parameters->get_size() == 32)
835     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
836   else if (parameters->get_size() == 64)
837     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
838   else
839     gold_unreachable();
840   this->set_data_size(this->entries_.size() * dyn_size);
841 }
842
843 // Write out the dynamic entries.
844
845 void
846 Output_data_dynamic::do_write(Output_file* of)
847 {
848   if (parameters->get_size() == 32)
849     {
850       if (parameters->is_big_endian())
851         {
852 #ifdef HAVE_TARGET_32_BIG
853           this->sized_write<32, true>(of);
854 #else
855           gold_unreachable();
856 #endif
857         }
858       else
859         {
860 #ifdef HAVE_TARGET_32_LITTLE
861           this->sized_write<32, false>(of);
862 #else
863           gold_unreachable();
864 #endif
865         }
866     }
867   else if (parameters->get_size() == 64)
868     {
869       if (parameters->is_big_endian())
870         {
871 #ifdef HAVE_TARGET_64_BIG
872           this->sized_write<64, true>(of);
873 #else
874           gold_unreachable();
875 #endif
876         }
877       else
878         {
879 #ifdef HAVE_TARGET_64_LITTLE
880           this->sized_write<64, false>(of);
881 #else
882           gold_unreachable();
883 #endif
884         }
885     }
886   else
887     gold_unreachable();
888 }
889
890 template<int size, bool big_endian>
891 void
892 Output_data_dynamic::sized_write(Output_file* of)
893 {
894   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
895
896   const off_t offset = this->offset();
897   const off_t oview_size = this->data_size();
898   unsigned char* const oview = of->get_output_view(offset, oview_size);
899
900   unsigned char* pov = oview;
901   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
902        p != this->entries_.end();
903        ++p)
904     {
905       p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
906           pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
907       pov += dyn_size;
908     }
909
910   gold_assert(pov - oview == oview_size);
911
912   of->write_output_view(offset, oview_size, oview);
913
914   // We no longer need the dynamic entries.
915   this->entries_.clear();
916 }
917
918 // Output_section::Input_section methods.
919
920 // Return the data size.  For an input section we store the size here.
921 // For an Output_section_data, we have to ask it for the size.
922
923 off_t
924 Output_section::Input_section::data_size() const
925 {
926   if (this->is_input_section())
927     return this->u1_.data_size;
928   else
929     return this->u2_.posd->data_size();
930 }
931
932 // Set the address and file offset.
933
934 void
935 Output_section::Input_section::set_address(uint64_t addr, off_t off,
936                                            off_t secoff)
937 {
938   if (this->is_input_section())
939     this->u2_.object->set_section_offset(this->shndx_, off - secoff);
940   else
941     this->u2_.posd->set_address(addr, off);
942 }
943
944 // Try to turn an input address into an output address.
945
946 bool
947 Output_section::Input_section::output_address(const Relobj* object,
948                                               unsigned int shndx,
949                                               off_t offset,
950                                               uint64_t output_section_address,
951                                               uint64_t *poutput) const
952 {
953   if (!this->is_input_section())
954     return this->u2_.posd->output_address(object, shndx, offset,
955                                           output_section_address, poutput);
956   else
957     {
958       if (this->shndx_ != shndx
959           || this->u2_.object != object)
960         return false;
961       off_t output_offset;
962       Output_section* os = object->output_section(shndx, &output_offset);
963       gold_assert(os != NULL);
964       *poutput = output_section_address + output_offset + offset;
965       return true;
966     }
967 }
968
969 // Write out the data.  We don't have to do anything for an input
970 // section--they are handled via Object::relocate--but this is where
971 // we write out the data for an Output_section_data.
972
973 void
974 Output_section::Input_section::write(Output_file* of)
975 {
976   if (!this->is_input_section())
977     this->u2_.posd->write(of);
978 }
979
980 // Output_section methods.
981
982 // Construct an Output_section.  NAME will point into a Stringpool.
983
984 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
985                                elfcpp::Elf_Xword flags)
986   : name_(name),
987     addralign_(0),
988     entsize_(0),
989     link_section_(NULL),
990     link_(0),
991     info_section_(NULL),
992     info_(0),
993     type_(type),
994     flags_(flags),
995     out_shndx_(-1U),
996     symtab_index_(0),
997     dynsym_index_(0),
998     input_sections_(),
999     first_input_offset_(0),
1000     fills_(),
1001     needs_symtab_index_(false),
1002     needs_dynsym_index_(false),
1003     should_link_to_symtab_(false),
1004     should_link_to_dynsym_(false)
1005 {
1006 }
1007
1008 Output_section::~Output_section()
1009 {
1010 }
1011
1012 // Set the entry size.
1013
1014 void
1015 Output_section::set_entsize(uint64_t v)
1016 {
1017   if (this->entsize_ == 0)
1018     this->entsize_ = v;
1019   else
1020     gold_assert(this->entsize_ == v);
1021 }
1022
1023 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1024 // OBJECT, to the Output_section.  Return the offset of the input
1025 // section within the output section.  We don't always keep track of
1026 // input sections for an Output_section.  Instead, each Object keeps
1027 // track of the Output_section for each of its input sections.
1028
1029 template<int size, bool big_endian>
1030 off_t
1031 Output_section::add_input_section(Relobj* object, unsigned int shndx,
1032                                   const char* secname,
1033                                   const elfcpp::Shdr<size, big_endian>& shdr)
1034 {
1035   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1036   if ((addralign & (addralign - 1)) != 0)
1037     {
1038       object->error(_("invalid alignment %lu for section \"%s\""),
1039                     static_cast<unsigned long>(addralign), secname);
1040       addralign = 1;
1041     }
1042
1043   if (addralign > this->addralign_)
1044     this->addralign_ = addralign;
1045
1046   // If this is a SHF_MERGE section, we pass all the input sections to
1047   // a Output_data_merge.
1048   if ((shdr.get_sh_flags() & elfcpp::SHF_MERGE) != 0)
1049     {
1050       if (this->add_merge_input_section(object, shndx, shdr.get_sh_flags(),
1051                                         shdr.get_sh_entsize(),
1052                                         addralign))
1053         {
1054           // Tell the relocation routines that they need to call the
1055           // output_address method to determine the final address.
1056           return -1;
1057         }
1058     }
1059
1060   off_t offset_in_section = this->data_size();
1061   off_t aligned_offset_in_section = align_address(offset_in_section,
1062                                                   addralign);
1063
1064   if (aligned_offset_in_section > offset_in_section
1065       && (shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0
1066       && object->target()->has_code_fill())
1067     {
1068       // We need to add some fill data.  Using fill_list_ when
1069       // possible is an optimization, since we will often have fill
1070       // sections without input sections.
1071       off_t fill_len = aligned_offset_in_section - offset_in_section;
1072       if (this->input_sections_.empty())
1073         this->fills_.push_back(Fill(offset_in_section, fill_len));
1074       else
1075         {
1076           // FIXME: When relaxing, the size needs to adjust to
1077           // maintain a constant alignment.
1078           std::string fill_data(object->target()->code_fill(fill_len));
1079           Output_data_const* odc = new Output_data_const(fill_data, 1);
1080           this->input_sections_.push_back(Input_section(odc));
1081         }
1082     }
1083
1084   this->set_data_size(aligned_offset_in_section + shdr.get_sh_size());
1085
1086   // We need to keep track of this section if we are already keeping
1087   // track of sections, or if we are relaxing.  FIXME: Add test for
1088   // relaxing.
1089   if (!this->input_sections_.empty())
1090     this->input_sections_.push_back(Input_section(object, shndx,
1091                                                   shdr.get_sh_size(),
1092                                                   addralign));
1093
1094   return aligned_offset_in_section;
1095 }
1096
1097 // Add arbitrary data to an output section.
1098
1099 void
1100 Output_section::add_output_section_data(Output_section_data* posd)
1101 {
1102   Input_section inp(posd);
1103   this->add_output_section_data(&inp);
1104 }
1105
1106 // Add arbitrary data to an output section by Input_section.
1107
1108 void
1109 Output_section::add_output_section_data(Input_section* inp)
1110 {
1111   if (this->input_sections_.empty())
1112     this->first_input_offset_ = this->data_size();
1113
1114   this->input_sections_.push_back(*inp);
1115
1116   uint64_t addralign = inp->addralign();
1117   if (addralign > this->addralign_)
1118     this->addralign_ = addralign;
1119
1120   inp->set_output_section(this);
1121 }
1122
1123 // Add a merge section to an output section.
1124
1125 void
1126 Output_section::add_output_merge_section(Output_section_data* posd,
1127                                          bool is_string, uint64_t entsize)
1128 {
1129   Input_section inp(posd, is_string, entsize);
1130   this->add_output_section_data(&inp);
1131 }
1132
1133 // Add an input section to a SHF_MERGE section.
1134
1135 bool
1136 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1137                                         uint64_t flags, uint64_t entsize,
1138                                         uint64_t addralign)
1139 {
1140   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1141
1142   // We only merge strings if the alignment is not more than the
1143   // character size.  This could be handled, but it's unusual.
1144   if (is_string && addralign > entsize)
1145     return false;
1146
1147   Input_section_list::iterator p;
1148   for (p = this->input_sections_.begin();
1149        p != this->input_sections_.end();
1150        ++p)
1151     if (p->is_merge_section(is_string, entsize, addralign))
1152       break;
1153
1154   // We handle the actual constant merging in Output_merge_data or
1155   // Output_merge_string_data.
1156   if (p != this->input_sections_.end())
1157     p->add_input_section(object, shndx);
1158   else
1159     {
1160       Output_section_data* posd;
1161       if (!is_string)
1162         posd = new Output_merge_data(entsize, addralign);
1163       else if (entsize == 1)
1164         posd = new Output_merge_string<char>(addralign);
1165       else if (entsize == 2)
1166         posd = new Output_merge_string<uint16_t>(addralign);
1167       else if (entsize == 4)
1168         posd = new Output_merge_string<uint32_t>(addralign);
1169       else
1170         return false;
1171
1172       this->add_output_merge_section(posd, is_string, entsize);
1173       posd->add_input_section(object, shndx);
1174     }
1175
1176   return true;
1177 }
1178
1179 // Return the output virtual address of OFFSET relative to the start
1180 // of input section SHNDX in object OBJECT.
1181
1182 uint64_t
1183 Output_section::output_address(const Relobj* object, unsigned int shndx,
1184                                off_t offset) const
1185 {
1186   uint64_t addr = this->address() + this->first_input_offset_;
1187   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1188        p != this->input_sections_.end();
1189        ++p)
1190     {
1191       addr = align_address(addr, p->addralign());
1192       uint64_t output;
1193       if (p->output_address(object, shndx, offset, addr, &output))
1194         return output;
1195       addr += p->data_size();
1196     }
1197
1198   // If we get here, it means that we don't know the mapping for this
1199   // input section.  This might happen in principle if
1200   // add_input_section were called before add_output_section_data.
1201   // But it should never actually happen.
1202
1203   gold_unreachable();
1204 }
1205
1206 // Set the address of an Output_section.  This is where we handle
1207 // setting the addresses of any Output_section_data objects.
1208
1209 void
1210 Output_section::do_set_address(uint64_t address, off_t startoff)
1211 {
1212   if (this->input_sections_.empty())
1213     return;
1214
1215   off_t off = startoff + this->first_input_offset_;
1216   for (Input_section_list::iterator p = this->input_sections_.begin();
1217        p != this->input_sections_.end();
1218        ++p)
1219     {
1220       off = align_address(off, p->addralign());
1221       p->set_address(address + (off - startoff), off, startoff);
1222       off += p->data_size();
1223     }
1224
1225   this->set_data_size(off - startoff);
1226 }
1227
1228 // Write the section header to *OSHDR.
1229
1230 template<int size, bool big_endian>
1231 void
1232 Output_section::write_header(const Layout* layout,
1233                              const Stringpool* secnamepool,
1234                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
1235 {
1236   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1237   oshdr->put_sh_type(this->type_);
1238   oshdr->put_sh_flags(this->flags_);
1239   oshdr->put_sh_addr(this->address());
1240   oshdr->put_sh_offset(this->offset());
1241   oshdr->put_sh_size(this->data_size());
1242   if (this->link_section_ != NULL)
1243     oshdr->put_sh_link(this->link_section_->out_shndx());
1244   else if (this->should_link_to_symtab_)
1245     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
1246   else if (this->should_link_to_dynsym_)
1247     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
1248   else
1249     oshdr->put_sh_link(this->link_);
1250   if (this->info_section_ != NULL)
1251     oshdr->put_sh_info(this->info_section_->out_shndx());
1252   else
1253     oshdr->put_sh_info(this->info_);
1254   oshdr->put_sh_addralign(this->addralign_);
1255   oshdr->put_sh_entsize(this->entsize_);
1256 }
1257
1258 // Write out the data.  For input sections the data is written out by
1259 // Object::relocate, but we have to handle Output_section_data objects
1260 // here.
1261
1262 void
1263 Output_section::do_write(Output_file* of)
1264 {
1265   off_t output_section_file_offset = this->offset();
1266   for (Fill_list::iterator p = this->fills_.begin();
1267        p != this->fills_.end();
1268        ++p)
1269     {
1270       std::string fill_data(of->target()->code_fill(p->length()));
1271       of->write(output_section_file_offset + p->section_offset(),
1272                 fill_data.data(), fill_data.size());
1273     }
1274
1275   for (Input_section_list::iterator p = this->input_sections_.begin();
1276        p != this->input_sections_.end();
1277        ++p)
1278     p->write(of);
1279 }
1280
1281 // Output segment methods.
1282
1283 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
1284   : output_data_(),
1285     output_bss_(),
1286     vaddr_(0),
1287     paddr_(0),
1288     memsz_(0),
1289     align_(0),
1290     offset_(0),
1291     filesz_(0),
1292     type_(type),
1293     flags_(flags),
1294     is_align_known_(false)
1295 {
1296 }
1297
1298 // Add an Output_section to an Output_segment.
1299
1300 void
1301 Output_segment::add_output_section(Output_section* os,
1302                                    elfcpp::Elf_Word seg_flags,
1303                                    bool front)
1304 {
1305   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1306   gold_assert(!this->is_align_known_);
1307
1308   // Update the segment flags.
1309   this->flags_ |= seg_flags;
1310
1311   Output_segment::Output_data_list* pdl;
1312   if (os->type() == elfcpp::SHT_NOBITS)
1313     pdl = &this->output_bss_;
1314   else
1315     pdl = &this->output_data_;
1316
1317   // So that PT_NOTE segments will work correctly, we need to ensure
1318   // that all SHT_NOTE sections are adjacent.  This will normally
1319   // happen automatically, because all the SHT_NOTE input sections
1320   // will wind up in the same output section.  However, it is possible
1321   // for multiple SHT_NOTE input sections to have different section
1322   // flags, and thus be in different output sections, but for the
1323   // different section flags to map into the same segment flags and
1324   // thus the same output segment.
1325
1326   // Note that while there may be many input sections in an output
1327   // section, there are normally only a few output sections in an
1328   // output segment.  This loop is expected to be fast.
1329
1330   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
1331     {
1332       Output_segment::Output_data_list::iterator p = pdl->end();
1333       do
1334         {
1335           --p;
1336           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
1337             {
1338               // We don't worry about the FRONT parameter.
1339               ++p;
1340               pdl->insert(p, os);
1341               return;
1342             }
1343         }
1344       while (p != pdl->begin());
1345     }
1346
1347   // Similarly, so that PT_TLS segments will work, we need to group
1348   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
1349   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
1350   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
1351   // correctly.
1352   if ((os->flags() & elfcpp::SHF_TLS) != 0 && !this->output_data_.empty())
1353     {
1354       pdl = &this->output_data_;
1355       bool nobits = os->type() == elfcpp::SHT_NOBITS;
1356       bool sawtls = false;
1357       Output_segment::Output_data_list::iterator p = pdl->end();
1358       do
1359         {
1360           --p;
1361           bool insert;
1362           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
1363             {
1364               sawtls = true;
1365               // Put a NOBITS section after the first TLS section.
1366               // But a PROGBITS section after the first TLS/PROGBITS
1367               // section.
1368               insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
1369             }
1370           else
1371             {
1372               // If we've gone past the TLS sections, but we've seen a
1373               // TLS section, then we need to insert this section now.
1374               insert = sawtls;
1375             }
1376
1377           if (insert)
1378             {
1379               // We don't worry about the FRONT parameter.
1380               ++p;
1381               pdl->insert(p, os);
1382               return;
1383             }
1384         }
1385       while (p != pdl->begin());
1386
1387       // There are no TLS sections yet; put this one at the requested
1388       // location in the section list.
1389     }
1390
1391   if (front)
1392     pdl->push_front(os);
1393   else
1394     pdl->push_back(os);
1395 }
1396
1397 // Add an Output_data (which is not an Output_section) to the start of
1398 // a segment.
1399
1400 void
1401 Output_segment::add_initial_output_data(Output_data* od)
1402 {
1403   gold_assert(!this->is_align_known_);
1404   this->output_data_.push_front(od);
1405 }
1406
1407 // Return the maximum alignment of the Output_data in Output_segment.
1408 // Once we compute this, we prohibit new sections from being added.
1409
1410 uint64_t
1411 Output_segment::addralign()
1412 {
1413   if (!this->is_align_known_)
1414     {
1415       uint64_t addralign;
1416
1417       addralign = Output_segment::maximum_alignment(&this->output_data_);
1418       if (addralign > this->align_)
1419         this->align_ = addralign;
1420
1421       addralign = Output_segment::maximum_alignment(&this->output_bss_);
1422       if (addralign > this->align_)
1423         this->align_ = addralign;
1424
1425       this->is_align_known_ = true;
1426     }
1427
1428   return this->align_;
1429 }
1430
1431 // Return the maximum alignment of a list of Output_data.
1432
1433 uint64_t
1434 Output_segment::maximum_alignment(const Output_data_list* pdl)
1435 {
1436   uint64_t ret = 0;
1437   for (Output_data_list::const_iterator p = pdl->begin();
1438        p != pdl->end();
1439        ++p)
1440     {
1441       uint64_t addralign = (*p)->addralign();
1442       if (addralign > ret)
1443         ret = addralign;
1444     }
1445   return ret;
1446 }
1447
1448 // Set the section addresses for an Output_segment.  ADDR is the
1449 // address and *POFF is the file offset.  Set the section indexes
1450 // starting with *PSHNDX.  Return the address of the immediately
1451 // following segment.  Update *POFF and *PSHNDX.
1452
1453 uint64_t
1454 Output_segment::set_section_addresses(uint64_t addr, off_t* poff,
1455                                       unsigned int* pshndx)
1456 {
1457   gold_assert(this->type_ == elfcpp::PT_LOAD);
1458
1459   this->vaddr_ = addr;
1460   this->paddr_ = addr;
1461
1462   off_t orig_off = *poff;
1463   this->offset_ = orig_off;
1464
1465   *poff = align_address(*poff, this->addralign());
1466
1467   addr = this->set_section_list_addresses(&this->output_data_, addr, poff,
1468                                           pshndx);
1469   this->filesz_ = *poff - orig_off;
1470
1471   off_t off = *poff;
1472
1473   uint64_t ret = this->set_section_list_addresses(&this->output_bss_, addr,
1474                                                   poff, pshndx);
1475   this->memsz_ = *poff - orig_off;
1476
1477   // Ignore the file offset adjustments made by the BSS Output_data
1478   // objects.
1479   *poff = off;
1480
1481   return ret;
1482 }
1483
1484 // Set the addresses and file offsets in a list of Output_data
1485 // structures.
1486
1487 uint64_t
1488 Output_segment::set_section_list_addresses(Output_data_list* pdl,
1489                                            uint64_t addr, off_t* poff,
1490                                            unsigned int* pshndx)
1491 {
1492   off_t startoff = *poff;
1493
1494   off_t off = startoff;
1495   for (Output_data_list::iterator p = pdl->begin();
1496        p != pdl->end();
1497        ++p)
1498     {
1499       off = align_address(off, (*p)->addralign());
1500       (*p)->set_address(addr + (off - startoff), off);
1501
1502       // Unless this is a PT_TLS segment, we want to ignore the size
1503       // of a SHF_TLS/SHT_NOBITS section.  Such a section does not
1504       // affect the size of a PT_LOAD segment.
1505       if (this->type_ == elfcpp::PT_TLS
1506           || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
1507           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
1508         off += (*p)->data_size();
1509
1510       if ((*p)->is_section())
1511         {
1512           (*p)->set_out_shndx(*pshndx);
1513           ++*pshndx;
1514         }
1515     }
1516
1517   *poff = off;
1518   return addr + (off - startoff);
1519 }
1520
1521 // For a non-PT_LOAD segment, set the offset from the sections, if
1522 // any.
1523
1524 void
1525 Output_segment::set_offset()
1526 {
1527   gold_assert(this->type_ != elfcpp::PT_LOAD);
1528
1529   if (this->output_data_.empty() && this->output_bss_.empty())
1530     {
1531       this->vaddr_ = 0;
1532       this->paddr_ = 0;
1533       this->memsz_ = 0;
1534       this->align_ = 0;
1535       this->offset_ = 0;
1536       this->filesz_ = 0;
1537       return;
1538     }
1539
1540   const Output_data* first;
1541   if (this->output_data_.empty())
1542     first = this->output_bss_.front();
1543   else
1544     first = this->output_data_.front();
1545   this->vaddr_ = first->address();
1546   this->paddr_ = this->vaddr_;
1547   this->offset_ = first->offset();
1548
1549   if (this->output_data_.empty())
1550     this->filesz_ = 0;
1551   else
1552     {
1553       const Output_data* last_data = this->output_data_.back();
1554       this->filesz_ = (last_data->address()
1555                        + last_data->data_size()
1556                        - this->vaddr_);
1557     }
1558
1559   const Output_data* last;
1560   if (this->output_bss_.empty())
1561     last = this->output_data_.back();
1562   else
1563     last = this->output_bss_.back();
1564   this->memsz_ = (last->address()
1565                   + last->data_size()
1566                   - this->vaddr_);
1567 }
1568
1569 // Return the number of Output_sections in an Output_segment.
1570
1571 unsigned int
1572 Output_segment::output_section_count() const
1573 {
1574   return (this->output_section_count_list(&this->output_data_)
1575           + this->output_section_count_list(&this->output_bss_));
1576 }
1577
1578 // Return the number of Output_sections in an Output_data_list.
1579
1580 unsigned int
1581 Output_segment::output_section_count_list(const Output_data_list* pdl) const
1582 {
1583   unsigned int count = 0;
1584   for (Output_data_list::const_iterator p = pdl->begin();
1585        p != pdl->end();
1586        ++p)
1587     {
1588       if ((*p)->is_section())
1589         ++count;
1590     }
1591   return count;
1592 }
1593
1594 // Write the segment data into *OPHDR.
1595
1596 template<int size, bool big_endian>
1597 void
1598 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
1599 {
1600   ophdr->put_p_type(this->type_);
1601   ophdr->put_p_offset(this->offset_);
1602   ophdr->put_p_vaddr(this->vaddr_);
1603   ophdr->put_p_paddr(this->paddr_);
1604   ophdr->put_p_filesz(this->filesz_);
1605   ophdr->put_p_memsz(this->memsz_);
1606   ophdr->put_p_flags(this->flags_);
1607   ophdr->put_p_align(this->addralign());
1608 }
1609
1610 // Write the section headers into V.
1611
1612 template<int size, bool big_endian>
1613 unsigned char*
1614 Output_segment::write_section_headers(const Layout* layout,
1615                                       const Stringpool* secnamepool,
1616                                       unsigned char* v,
1617                                       unsigned int *pshndx
1618                                       ACCEPT_SIZE_ENDIAN) const
1619 {
1620   // Every section that is attached to a segment must be attached to a
1621   // PT_LOAD segment, so we only write out section headers for PT_LOAD
1622   // segments.
1623   if (this->type_ != elfcpp::PT_LOAD)
1624     return v;
1625
1626   v = this->write_section_headers_list
1627       SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1628           layout, secnamepool, &this->output_data_, v, pshndx
1629           SELECT_SIZE_ENDIAN(size, big_endian));
1630   v = this->write_section_headers_list
1631       SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1632           layout, secnamepool, &this->output_bss_, v, pshndx
1633           SELECT_SIZE_ENDIAN(size, big_endian));
1634   return v;
1635 }
1636
1637 template<int size, bool big_endian>
1638 unsigned char*
1639 Output_segment::write_section_headers_list(const Layout* layout,
1640                                            const Stringpool* secnamepool,
1641                                            const Output_data_list* pdl,
1642                                            unsigned char* v,
1643                                            unsigned int* pshndx
1644                                            ACCEPT_SIZE_ENDIAN) const
1645 {
1646   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1647   for (Output_data_list::const_iterator p = pdl->begin();
1648        p != pdl->end();
1649        ++p)
1650     {
1651       if ((*p)->is_section())
1652         {
1653           const Output_section* ps = static_cast<const Output_section*>(*p);
1654           gold_assert(*pshndx == ps->out_shndx());
1655           elfcpp::Shdr_write<size, big_endian> oshdr(v);
1656           ps->write_header(layout, secnamepool, &oshdr);
1657           v += shdr_size;
1658           ++*pshndx;
1659         }
1660     }
1661   return v;
1662 }
1663
1664 // Output_file methods.
1665
1666 Output_file::Output_file(const General_options& options, Target* target)
1667   : options_(options),
1668     target_(target),
1669     name_(options.output_file_name()),
1670     o_(-1),
1671     file_size_(0),
1672     base_(NULL)
1673 {
1674 }
1675
1676 // Open the output file.
1677
1678 void
1679 Output_file::open(off_t file_size)
1680 {
1681   this->file_size_ = file_size;
1682
1683   // Unlink the file first; otherwise the open() may fail if the file
1684   // is busy (e.g. it's an executable that's currently being executed).
1685   //
1686   // However, the linker may be part of a system where a zero-length
1687   // file is created for it to write to, with tight permissions (gcc
1688   // 2.95 did something like this).  Unlinking the file would work
1689   // around those permission controls, so we only unlink if the file
1690   // has a non-zero size.  We also unlink only regular files to avoid
1691   // trouble with directories/etc.
1692   //
1693   // If we fail, continue; this command is merely a best-effort attempt
1694   // to improve the odds for open().
1695
1696   struct stat s;
1697   if (::stat(this->name_, &s) == 0 && s.st_size != 0)
1698     unlink_if_ordinary(this->name_);
1699
1700   int mode = parameters->output_is_object() ? 0666 : 0777;
1701   int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
1702   if (o < 0)
1703     gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
1704   this->o_ = o;
1705
1706   // Write out one byte to make the file the right size.
1707   if (::lseek(o, file_size - 1, SEEK_SET) < 0)
1708     gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
1709   char b = 0;
1710   if (::write(o, &b, 1) != 1)
1711     gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
1712
1713   // Map the file into memory.
1714   void* base = ::mmap(NULL, file_size, PROT_READ | PROT_WRITE,
1715                       MAP_SHARED, o, 0);
1716   if (base == MAP_FAILED)
1717     gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
1718   this->base_ = static_cast<unsigned char*>(base);
1719 }
1720
1721 // Close the output file.
1722
1723 void
1724 Output_file::close()
1725 {
1726   if (::munmap(this->base_, this->file_size_) < 0)
1727     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
1728   this->base_ = NULL;
1729
1730   if (::close(this->o_) < 0)
1731     gold_error(_("%s: close: %s"), this->name_, strerror(errno));
1732   this->o_ = -1;
1733 }
1734
1735 // Instantiate the templates we need.  We could use the configure
1736 // script to restrict this to only the ones for implemented targets.
1737
1738 #ifdef HAVE_TARGET_32_LITTLE
1739 template
1740 off_t
1741 Output_section::add_input_section<32, false>(
1742     Relobj* object,
1743     unsigned int shndx,
1744     const char* secname,
1745     const elfcpp::Shdr<32, false>& shdr);
1746 #endif
1747
1748 #ifdef HAVE_TARGET_32_BIG
1749 template
1750 off_t
1751 Output_section::add_input_section<32, true>(
1752     Relobj* object,
1753     unsigned int shndx,
1754     const char* secname,
1755     const elfcpp::Shdr<32, true>& shdr);
1756 #endif
1757
1758 #ifdef HAVE_TARGET_64_LITTLE
1759 template
1760 off_t
1761 Output_section::add_input_section<64, false>(
1762     Relobj* object,
1763     unsigned int shndx,
1764     const char* secname,
1765     const elfcpp::Shdr<64, false>& shdr);
1766 #endif
1767
1768 #ifdef HAVE_TARGET_64_BIG
1769 template
1770 off_t
1771 Output_section::add_input_section<64, true>(
1772     Relobj* object,
1773     unsigned int shndx,
1774     const char* secname,
1775     const elfcpp::Shdr<64, true>& shdr);
1776 #endif
1777
1778 #ifdef HAVE_TARGET_32_LITTLE
1779 template
1780 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
1781 #endif
1782
1783 #ifdef HAVE_TARGET_32_BIG
1784 template
1785 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
1786 #endif
1787
1788 #ifdef HAVE_TARGET_64_LITTLE
1789 template
1790 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
1791 #endif
1792
1793 #ifdef HAVE_TARGET_64_BIG
1794 template
1795 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
1796 #endif
1797
1798 #ifdef HAVE_TARGET_32_LITTLE
1799 template
1800 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
1801 #endif
1802
1803 #ifdef HAVE_TARGET_32_BIG
1804 template
1805 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
1806 #endif
1807
1808 #ifdef HAVE_TARGET_64_LITTLE
1809 template
1810 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
1811 #endif
1812
1813 #ifdef HAVE_TARGET_64_BIG
1814 template
1815 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
1816 #endif
1817
1818 #ifdef HAVE_TARGET_32_LITTLE
1819 template
1820 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
1821 #endif
1822
1823 #ifdef HAVE_TARGET_32_BIG
1824 template
1825 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
1826 #endif
1827
1828 #ifdef HAVE_TARGET_64_LITTLE
1829 template
1830 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
1831 #endif
1832
1833 #ifdef HAVE_TARGET_64_BIG
1834 template
1835 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
1836 #endif
1837
1838 #ifdef HAVE_TARGET_32_LITTLE
1839 template
1840 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
1841 #endif
1842
1843 #ifdef HAVE_TARGET_32_BIG
1844 template
1845 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
1846 #endif
1847
1848 #ifdef HAVE_TARGET_64_LITTLE
1849 template
1850 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
1851 #endif
1852
1853 #ifdef HAVE_TARGET_64_BIG
1854 template
1855 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
1856 #endif
1857
1858 #ifdef HAVE_TARGET_32_LITTLE
1859 template
1860 class Output_data_got<32, false>;
1861 #endif
1862
1863 #ifdef HAVE_TARGET_32_BIG
1864 template
1865 class Output_data_got<32, true>;
1866 #endif
1867
1868 #ifdef HAVE_TARGET_64_LITTLE
1869 template
1870 class Output_data_got<64, false>;
1871 #endif
1872
1873 #ifdef HAVE_TARGET_64_BIG
1874 template
1875 class Output_data_got<64, true>;
1876 #endif
1877
1878 } // End namespace gold.