* layout.cc (Free_list::allocate): Provide guarantee of minimum
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 #  define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 #  define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 #  define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 #  define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 #  define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 #  define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80   errno = ENOSYS;
81   return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87   errno = ENOSYS;
88   return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94   errno = ENOSYS;
95   return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS  MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 #ifndef HAVE_POSIX_FALLOCATE
115 // A dummy, non general, version of posix_fallocate.  Here we just set
116 // the file size and hope that there is enough disk space.  FIXME: We
117 // could allocate disk space by walking block by block and writing a
118 // zero byte into each block.
119 static int
120 posix_fallocate(int o, off_t offset, off_t len)
121 {
122   return ftruncate(o, offset + len);
123 }
124 #endif // !defined(HAVE_POSIX_FALLOCATE)
125
126 // Mingw does not have S_ISLNK.
127 #ifndef S_ISLNK
128 # define S_ISLNK(mode) 0
129 #endif
130
131 namespace gold
132 {
133
134 // Output_data variables.
135
136 bool Output_data::allocated_sizes_are_fixed;
137
138 // Output_data methods.
139
140 Output_data::~Output_data()
141 {
142 }
143
144 // Return the default alignment for the target size.
145
146 uint64_t
147 Output_data::default_alignment()
148 {
149   return Output_data::default_alignment_for_size(
150       parameters->target().get_size());
151 }
152
153 // Return the default alignment for a size--32 or 64.
154
155 uint64_t
156 Output_data::default_alignment_for_size(int size)
157 {
158   if (size == 32)
159     return 4;
160   else if (size == 64)
161     return 8;
162   else
163     gold_unreachable();
164 }
165
166 // Output_section_header methods.  This currently assumes that the
167 // segment and section lists are complete at construction time.
168
169 Output_section_headers::Output_section_headers(
170     const Layout* layout,
171     const Layout::Segment_list* segment_list,
172     const Layout::Section_list* section_list,
173     const Layout::Section_list* unattached_section_list,
174     const Stringpool* secnamepool,
175     const Output_section* shstrtab_section)
176   : layout_(layout),
177     segment_list_(segment_list),
178     section_list_(section_list),
179     unattached_section_list_(unattached_section_list),
180     secnamepool_(secnamepool),
181     shstrtab_section_(shstrtab_section)
182 {
183 }
184
185 // Compute the current data size.
186
187 off_t
188 Output_section_headers::do_size() const
189 {
190   // Count all the sections.  Start with 1 for the null section.
191   off_t count = 1;
192   if (!parameters->options().relocatable())
193     {
194       for (Layout::Segment_list::const_iterator p =
195              this->segment_list_->begin();
196            p != this->segment_list_->end();
197            ++p)
198         if ((*p)->type() == elfcpp::PT_LOAD)
199           count += (*p)->output_section_count();
200     }
201   else
202     {
203       for (Layout::Section_list::const_iterator p =
204              this->section_list_->begin();
205            p != this->section_list_->end();
206            ++p)
207         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
208           ++count;
209     }
210   count += this->unattached_section_list_->size();
211
212   const int size = parameters->target().get_size();
213   int shdr_size;
214   if (size == 32)
215     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
216   else if (size == 64)
217     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
218   else
219     gold_unreachable();
220
221   return count * shdr_size;
222 }
223
224 // Write out the section headers.
225
226 void
227 Output_section_headers::do_write(Output_file* of)
228 {
229   switch (parameters->size_and_endianness())
230     {
231 #ifdef HAVE_TARGET_32_LITTLE
232     case Parameters::TARGET_32_LITTLE:
233       this->do_sized_write<32, false>(of);
234       break;
235 #endif
236 #ifdef HAVE_TARGET_32_BIG
237     case Parameters::TARGET_32_BIG:
238       this->do_sized_write<32, true>(of);
239       break;
240 #endif
241 #ifdef HAVE_TARGET_64_LITTLE
242     case Parameters::TARGET_64_LITTLE:
243       this->do_sized_write<64, false>(of);
244       break;
245 #endif
246 #ifdef HAVE_TARGET_64_BIG
247     case Parameters::TARGET_64_BIG:
248       this->do_sized_write<64, true>(of);
249       break;
250 #endif
251     default:
252       gold_unreachable();
253     }
254 }
255
256 template<int size, bool big_endian>
257 void
258 Output_section_headers::do_sized_write(Output_file* of)
259 {
260   off_t all_shdrs_size = this->data_size();
261   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
262
263   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
264   unsigned char* v = view;
265
266   {
267     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
268     oshdr.put_sh_name(0);
269     oshdr.put_sh_type(elfcpp::SHT_NULL);
270     oshdr.put_sh_flags(0);
271     oshdr.put_sh_addr(0);
272     oshdr.put_sh_offset(0);
273
274     size_t section_count = (this->data_size()
275                             / elfcpp::Elf_sizes<size>::shdr_size);
276     if (section_count < elfcpp::SHN_LORESERVE)
277       oshdr.put_sh_size(0);
278     else
279       oshdr.put_sh_size(section_count);
280
281     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
282     if (shstrndx < elfcpp::SHN_LORESERVE)
283       oshdr.put_sh_link(0);
284     else
285       oshdr.put_sh_link(shstrndx);
286
287     size_t segment_count = this->segment_list_->size();
288     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
289
290     oshdr.put_sh_addralign(0);
291     oshdr.put_sh_entsize(0);
292   }
293
294   v += shdr_size;
295
296   unsigned int shndx = 1;
297   if (!parameters->options().relocatable())
298     {
299       for (Layout::Segment_list::const_iterator p =
300              this->segment_list_->begin();
301            p != this->segment_list_->end();
302            ++p)
303         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
304                                                           this->secnamepool_,
305                                                           v,
306                                                           &shndx);
307     }
308   else
309     {
310       for (Layout::Section_list::const_iterator p =
311              this->section_list_->begin();
312            p != this->section_list_->end();
313            ++p)
314         {
315           // We do unallocated sections below, except that group
316           // sections have to come first.
317           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
318               && (*p)->type() != elfcpp::SHT_GROUP)
319             continue;
320           gold_assert(shndx == (*p)->out_shndx());
321           elfcpp::Shdr_write<size, big_endian> oshdr(v);
322           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
323           v += shdr_size;
324           ++shndx;
325         }
326     }
327
328   for (Layout::Section_list::const_iterator p =
329          this->unattached_section_list_->begin();
330        p != this->unattached_section_list_->end();
331        ++p)
332     {
333       // For a relocatable link, we did unallocated group sections
334       // above, since they have to come first.
335       if ((*p)->type() == elfcpp::SHT_GROUP
336           && parameters->options().relocatable())
337         continue;
338       gold_assert(shndx == (*p)->out_shndx());
339       elfcpp::Shdr_write<size, big_endian> oshdr(v);
340       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
341       v += shdr_size;
342       ++shndx;
343     }
344
345   of->write_output_view(this->offset(), all_shdrs_size, view);
346 }
347
348 // Output_segment_header methods.
349
350 Output_segment_headers::Output_segment_headers(
351     const Layout::Segment_list& segment_list)
352   : segment_list_(segment_list)
353 {
354   this->set_current_data_size_for_child(this->do_size());
355 }
356
357 void
358 Output_segment_headers::do_write(Output_file* of)
359 {
360   switch (parameters->size_and_endianness())
361     {
362 #ifdef HAVE_TARGET_32_LITTLE
363     case Parameters::TARGET_32_LITTLE:
364       this->do_sized_write<32, false>(of);
365       break;
366 #endif
367 #ifdef HAVE_TARGET_32_BIG
368     case Parameters::TARGET_32_BIG:
369       this->do_sized_write<32, true>(of);
370       break;
371 #endif
372 #ifdef HAVE_TARGET_64_LITTLE
373     case Parameters::TARGET_64_LITTLE:
374       this->do_sized_write<64, false>(of);
375       break;
376 #endif
377 #ifdef HAVE_TARGET_64_BIG
378     case Parameters::TARGET_64_BIG:
379       this->do_sized_write<64, true>(of);
380       break;
381 #endif
382     default:
383       gold_unreachable();
384     }
385 }
386
387 template<int size, bool big_endian>
388 void
389 Output_segment_headers::do_sized_write(Output_file* of)
390 {
391   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
392   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
393   gold_assert(all_phdrs_size == this->data_size());
394   unsigned char* view = of->get_output_view(this->offset(),
395                                             all_phdrs_size);
396   unsigned char* v = view;
397   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
398        p != this->segment_list_.end();
399        ++p)
400     {
401       elfcpp::Phdr_write<size, big_endian> ophdr(v);
402       (*p)->write_header(&ophdr);
403       v += phdr_size;
404     }
405
406   gold_assert(v - view == all_phdrs_size);
407
408   of->write_output_view(this->offset(), all_phdrs_size, view);
409 }
410
411 off_t
412 Output_segment_headers::do_size() const
413 {
414   const int size = parameters->target().get_size();
415   int phdr_size;
416   if (size == 32)
417     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
418   else if (size == 64)
419     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
420   else
421     gold_unreachable();
422
423   return this->segment_list_.size() * phdr_size;
424 }
425
426 // Output_file_header methods.
427
428 Output_file_header::Output_file_header(const Target* target,
429                                        const Symbol_table* symtab,
430                                        const Output_segment_headers* osh)
431   : target_(target),
432     symtab_(symtab),
433     segment_header_(osh),
434     section_header_(NULL),
435     shstrtab_(NULL)
436 {
437   this->set_data_size(this->do_size());
438 }
439
440 // Set the section table information for a file header.
441
442 void
443 Output_file_header::set_section_info(const Output_section_headers* shdrs,
444                                      const Output_section* shstrtab)
445 {
446   this->section_header_ = shdrs;
447   this->shstrtab_ = shstrtab;
448 }
449
450 // Write out the file header.
451
452 void
453 Output_file_header::do_write(Output_file* of)
454 {
455   gold_assert(this->offset() == 0);
456
457   switch (parameters->size_and_endianness())
458     {
459 #ifdef HAVE_TARGET_32_LITTLE
460     case Parameters::TARGET_32_LITTLE:
461       this->do_sized_write<32, false>(of);
462       break;
463 #endif
464 #ifdef HAVE_TARGET_32_BIG
465     case Parameters::TARGET_32_BIG:
466       this->do_sized_write<32, true>(of);
467       break;
468 #endif
469 #ifdef HAVE_TARGET_64_LITTLE
470     case Parameters::TARGET_64_LITTLE:
471       this->do_sized_write<64, false>(of);
472       break;
473 #endif
474 #ifdef HAVE_TARGET_64_BIG
475     case Parameters::TARGET_64_BIG:
476       this->do_sized_write<64, true>(of);
477       break;
478 #endif
479     default:
480       gold_unreachable();
481     }
482 }
483
484 // Write out the file header with appropriate size and endianness.
485
486 template<int size, bool big_endian>
487 void
488 Output_file_header::do_sized_write(Output_file* of)
489 {
490   gold_assert(this->offset() == 0);
491
492   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
493   unsigned char* view = of->get_output_view(0, ehdr_size);
494   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
495
496   unsigned char e_ident[elfcpp::EI_NIDENT];
497   memset(e_ident, 0, elfcpp::EI_NIDENT);
498   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
499   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
500   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
501   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
502   if (size == 32)
503     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
504   else if (size == 64)
505     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
506   else
507     gold_unreachable();
508   e_ident[elfcpp::EI_DATA] = (big_endian
509                               ? elfcpp::ELFDATA2MSB
510                               : elfcpp::ELFDATA2LSB);
511   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
512   oehdr.put_e_ident(e_ident);
513
514   elfcpp::ET e_type;
515   if (parameters->options().relocatable())
516     e_type = elfcpp::ET_REL;
517   else if (parameters->options().output_is_position_independent())
518     e_type = elfcpp::ET_DYN;
519   else
520     e_type = elfcpp::ET_EXEC;
521   oehdr.put_e_type(e_type);
522
523   oehdr.put_e_machine(this->target_->machine_code());
524   oehdr.put_e_version(elfcpp::EV_CURRENT);
525
526   oehdr.put_e_entry(this->entry<size>());
527
528   if (this->segment_header_ == NULL)
529     oehdr.put_e_phoff(0);
530   else
531     oehdr.put_e_phoff(this->segment_header_->offset());
532
533   oehdr.put_e_shoff(this->section_header_->offset());
534   oehdr.put_e_flags(this->target_->processor_specific_flags());
535   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
536
537   if (this->segment_header_ == NULL)
538     {
539       oehdr.put_e_phentsize(0);
540       oehdr.put_e_phnum(0);
541     }
542   else
543     {
544       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
545       size_t phnum = (this->segment_header_->data_size()
546                       / elfcpp::Elf_sizes<size>::phdr_size);
547       if (phnum > elfcpp::PN_XNUM)
548         phnum = elfcpp::PN_XNUM;
549       oehdr.put_e_phnum(phnum);
550     }
551
552   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
553   size_t section_count = (this->section_header_->data_size()
554                           / elfcpp::Elf_sizes<size>::shdr_size);
555
556   if (section_count < elfcpp::SHN_LORESERVE)
557     oehdr.put_e_shnum(this->section_header_->data_size()
558                       / elfcpp::Elf_sizes<size>::shdr_size);
559   else
560     oehdr.put_e_shnum(0);
561
562   unsigned int shstrndx = this->shstrtab_->out_shndx();
563   if (shstrndx < elfcpp::SHN_LORESERVE)
564     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
565   else
566     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
567
568   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
569   // the e_ident field.
570   parameters->target().adjust_elf_header(view, ehdr_size);
571
572   of->write_output_view(0, ehdr_size, view);
573 }
574
575 // Return the value to use for the entry address.
576
577 template<int size>
578 typename elfcpp::Elf_types<size>::Elf_Addr
579 Output_file_header::entry()
580 {
581   const bool should_issue_warning = (parameters->options().entry() != NULL
582                                      && !parameters->options().relocatable()
583                                      && !parameters->options().shared());
584   const char* entry = parameters->entry();
585   Symbol* sym = this->symtab_->lookup(entry);
586
587   typename Sized_symbol<size>::Value_type v;
588   if (sym != NULL)
589     {
590       Sized_symbol<size>* ssym;
591       ssym = this->symtab_->get_sized_symbol<size>(sym);
592       if (!ssym->is_defined() && should_issue_warning)
593         gold_warning("entry symbol '%s' exists but is not defined", entry);
594       v = ssym->value();
595     }
596   else
597     {
598       // We couldn't find the entry symbol.  See if we can parse it as
599       // a number.  This supports, e.g., -e 0x1000.
600       char* endptr;
601       v = strtoull(entry, &endptr, 0);
602       if (*endptr != '\0')
603         {
604           if (should_issue_warning)
605             gold_warning("cannot find entry symbol '%s'", entry);
606           v = 0;
607         }
608     }
609
610   return v;
611 }
612
613 // Compute the current data size.
614
615 off_t
616 Output_file_header::do_size() const
617 {
618   const int size = parameters->target().get_size();
619   if (size == 32)
620     return elfcpp::Elf_sizes<32>::ehdr_size;
621   else if (size == 64)
622     return elfcpp::Elf_sizes<64>::ehdr_size;
623   else
624     gold_unreachable();
625 }
626
627 // Output_data_const methods.
628
629 void
630 Output_data_const::do_write(Output_file* of)
631 {
632   of->write(this->offset(), this->data_.data(), this->data_.size());
633 }
634
635 // Output_data_const_buffer methods.
636
637 void
638 Output_data_const_buffer::do_write(Output_file* of)
639 {
640   of->write(this->offset(), this->p_, this->data_size());
641 }
642
643 // Output_section_data methods.
644
645 // Record the output section, and set the entry size and such.
646
647 void
648 Output_section_data::set_output_section(Output_section* os)
649 {
650   gold_assert(this->output_section_ == NULL);
651   this->output_section_ = os;
652   this->do_adjust_output_section(os);
653 }
654
655 // Return the section index of the output section.
656
657 unsigned int
658 Output_section_data::do_out_shndx() const
659 {
660   gold_assert(this->output_section_ != NULL);
661   return this->output_section_->out_shndx();
662 }
663
664 // Set the alignment, which means we may need to update the alignment
665 // of the output section.
666
667 void
668 Output_section_data::set_addralign(uint64_t addralign)
669 {
670   this->addralign_ = addralign;
671   if (this->output_section_ != NULL
672       && this->output_section_->addralign() < addralign)
673     this->output_section_->set_addralign(addralign);
674 }
675
676 // Output_data_strtab methods.
677
678 // Set the final data size.
679
680 void
681 Output_data_strtab::set_final_data_size()
682 {
683   this->strtab_->set_string_offsets();
684   this->set_data_size(this->strtab_->get_strtab_size());
685 }
686
687 // Write out a string table.
688
689 void
690 Output_data_strtab::do_write(Output_file* of)
691 {
692   this->strtab_->write(of, this->offset());
693 }
694
695 // Output_reloc methods.
696
697 // A reloc against a global symbol.
698
699 template<bool dynamic, int size, bool big_endian>
700 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
701     Symbol* gsym,
702     unsigned int type,
703     Output_data* od,
704     Address address,
705     bool is_relative,
706     bool is_symbolless)
707   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
708     is_relative_(is_relative), is_symbolless_(is_symbolless),
709     is_section_symbol_(false), shndx_(INVALID_CODE)
710 {
711   // this->type_ is a bitfield; make sure TYPE fits.
712   gold_assert(this->type_ == type);
713   this->u1_.gsym = gsym;
714   this->u2_.od = od;
715   if (dynamic)
716     this->set_needs_dynsym_index();
717 }
718
719 template<bool dynamic, int size, bool big_endian>
720 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
721     Symbol* gsym,
722     unsigned int type,
723     Sized_relobj<size, big_endian>* relobj,
724     unsigned int shndx,
725     Address address,
726     bool is_relative,
727     bool is_symbolless)
728   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
729     is_relative_(is_relative), is_symbolless_(is_symbolless),
730     is_section_symbol_(false), shndx_(shndx)
731 {
732   gold_assert(shndx != INVALID_CODE);
733   // this->type_ is a bitfield; make sure TYPE fits.
734   gold_assert(this->type_ == type);
735   this->u1_.gsym = gsym;
736   this->u2_.relobj = relobj;
737   if (dynamic)
738     this->set_needs_dynsym_index();
739 }
740
741 // A reloc against a local symbol.
742
743 template<bool dynamic, int size, bool big_endian>
744 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745     Sized_relobj<size, big_endian>* relobj,
746     unsigned int local_sym_index,
747     unsigned int type,
748     Output_data* od,
749     Address address,
750     bool is_relative,
751     bool is_symbolless,
752     bool is_section_symbol)
753   : address_(address), local_sym_index_(local_sym_index), type_(type),
754     is_relative_(is_relative), is_symbolless_(is_symbolless),
755     is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
756 {
757   gold_assert(local_sym_index != GSYM_CODE
758               && local_sym_index != INVALID_CODE);
759   // this->type_ is a bitfield; make sure TYPE fits.
760   gold_assert(this->type_ == type);
761   this->u1_.relobj = relobj;
762   this->u2_.od = od;
763   if (dynamic)
764     this->set_needs_dynsym_index();
765 }
766
767 template<bool dynamic, int size, bool big_endian>
768 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
769     Sized_relobj<size, big_endian>* relobj,
770     unsigned int local_sym_index,
771     unsigned int type,
772     unsigned int shndx,
773     Address address,
774     bool is_relative,
775     bool is_symbolless,
776     bool is_section_symbol)
777   : address_(address), local_sym_index_(local_sym_index), type_(type),
778     is_relative_(is_relative), is_symbolless_(is_symbolless),
779     is_section_symbol_(is_section_symbol), shndx_(shndx)
780 {
781   gold_assert(local_sym_index != GSYM_CODE
782               && local_sym_index != INVALID_CODE);
783   gold_assert(shndx != INVALID_CODE);
784   // this->type_ is a bitfield; make sure TYPE fits.
785   gold_assert(this->type_ == type);
786   this->u1_.relobj = relobj;
787   this->u2_.relobj = relobj;
788   if (dynamic)
789     this->set_needs_dynsym_index();
790 }
791
792 // A reloc against the STT_SECTION symbol of an output section.
793
794 template<bool dynamic, int size, bool big_endian>
795 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
796     Output_section* os,
797     unsigned int type,
798     Output_data* od,
799     Address address)
800   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
801     is_relative_(false), is_symbolless_(false),
802     is_section_symbol_(true), shndx_(INVALID_CODE)
803 {
804   // this->type_ is a bitfield; make sure TYPE fits.
805   gold_assert(this->type_ == type);
806   this->u1_.os = os;
807   this->u2_.od = od;
808   if (dynamic)
809     this->set_needs_dynsym_index();
810   else
811     os->set_needs_symtab_index();
812 }
813
814 template<bool dynamic, int size, bool big_endian>
815 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
816     Output_section* os,
817     unsigned int type,
818     Sized_relobj<size, big_endian>* relobj,
819     unsigned int shndx,
820     Address address)
821   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
822     is_relative_(false), is_symbolless_(false),
823     is_section_symbol_(true), shndx_(shndx)
824 {
825   gold_assert(shndx != INVALID_CODE);
826   // this->type_ is a bitfield; make sure TYPE fits.
827   gold_assert(this->type_ == type);
828   this->u1_.os = os;
829   this->u2_.relobj = relobj;
830   if (dynamic)
831     this->set_needs_dynsym_index();
832   else
833     os->set_needs_symtab_index();
834 }
835
836 // An absolute relocation.
837
838 template<bool dynamic, int size, bool big_endian>
839 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
840     unsigned int type,
841     Output_data* od,
842     Address address)
843   : address_(address), local_sym_index_(0), type_(type),
844     is_relative_(false), is_symbolless_(false),
845     is_section_symbol_(false), shndx_(INVALID_CODE)
846 {
847   // this->type_ is a bitfield; make sure TYPE fits.
848   gold_assert(this->type_ == type);
849   this->u1_.relobj = NULL;
850   this->u2_.od = od;
851 }
852
853 template<bool dynamic, int size, bool big_endian>
854 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
855     unsigned int type,
856     Sized_relobj<size, big_endian>* relobj,
857     unsigned int shndx,
858     Address address)
859   : address_(address), local_sym_index_(0), type_(type),
860     is_relative_(false), is_symbolless_(false),
861     is_section_symbol_(false), shndx_(shndx)
862 {
863   gold_assert(shndx != INVALID_CODE);
864   // this->type_ is a bitfield; make sure TYPE fits.
865   gold_assert(this->type_ == type);
866   this->u1_.relobj = NULL;
867   this->u2_.relobj = relobj;
868 }
869
870 // A target specific relocation.
871
872 template<bool dynamic, int size, bool big_endian>
873 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
874     unsigned int type,
875     void* arg,
876     Output_data* od,
877     Address address)
878   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
879     is_relative_(false), is_symbolless_(false),
880     is_section_symbol_(false), shndx_(INVALID_CODE)
881 {
882   // this->type_ is a bitfield; make sure TYPE fits.
883   gold_assert(this->type_ == type);
884   this->u1_.arg = arg;
885   this->u2_.od = od;
886 }
887
888 template<bool dynamic, int size, bool big_endian>
889 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
890     unsigned int type,
891     void* arg,
892     Sized_relobj<size, big_endian>* relobj,
893     unsigned int shndx,
894     Address address)
895   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
896     is_relative_(false), is_symbolless_(false),
897     is_section_symbol_(false), shndx_(shndx)
898 {
899   gold_assert(shndx != INVALID_CODE);
900   // this->type_ is a bitfield; make sure TYPE fits.
901   gold_assert(this->type_ == type);
902   this->u1_.arg = arg;
903   this->u2_.relobj = relobj;
904 }
905
906 // Record that we need a dynamic symbol index for this relocation.
907
908 template<bool dynamic, int size, bool big_endian>
909 void
910 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
911 set_needs_dynsym_index()
912 {
913   if (this->is_symbolless_)
914     return;
915   switch (this->local_sym_index_)
916     {
917     case INVALID_CODE:
918       gold_unreachable();
919
920     case GSYM_CODE:
921       this->u1_.gsym->set_needs_dynsym_entry();
922       break;
923
924     case SECTION_CODE:
925       this->u1_.os->set_needs_dynsym_index();
926       break;
927
928     case TARGET_CODE:
929       // The target must take care of this if necessary.
930       break;
931
932     case 0:
933       break;
934
935     default:
936       {
937         const unsigned int lsi = this->local_sym_index_;
938         Sized_relobj_file<size, big_endian>* relobj =
939             this->u1_.relobj->sized_relobj();
940         gold_assert(relobj != NULL);
941         if (!this->is_section_symbol_)
942           relobj->set_needs_output_dynsym_entry(lsi);
943         else
944           relobj->output_section(lsi)->set_needs_dynsym_index();
945       }
946       break;
947     }
948 }
949
950 // Get the symbol index of a relocation.
951
952 template<bool dynamic, int size, bool big_endian>
953 unsigned int
954 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
955   const
956 {
957   unsigned int index;
958   if (this->is_symbolless_)
959     return 0;
960   switch (this->local_sym_index_)
961     {
962     case INVALID_CODE:
963       gold_unreachable();
964
965     case GSYM_CODE:
966       if (this->u1_.gsym == NULL)
967         index = 0;
968       else if (dynamic)
969         index = this->u1_.gsym->dynsym_index();
970       else
971         index = this->u1_.gsym->symtab_index();
972       break;
973
974     case SECTION_CODE:
975       if (dynamic)
976         index = this->u1_.os->dynsym_index();
977       else
978         index = this->u1_.os->symtab_index();
979       break;
980
981     case TARGET_CODE:
982       index = parameters->target().reloc_symbol_index(this->u1_.arg,
983                                                       this->type_);
984       break;
985
986     case 0:
987       // Relocations without symbols use a symbol index of 0.
988       index = 0;
989       break;
990
991     default:
992       {
993         const unsigned int lsi = this->local_sym_index_;
994         Sized_relobj_file<size, big_endian>* relobj =
995             this->u1_.relobj->sized_relobj();
996         gold_assert(relobj != NULL);
997         if (!this->is_section_symbol_)
998           {
999             if (dynamic)
1000               index = relobj->dynsym_index(lsi);
1001             else
1002               index = relobj->symtab_index(lsi);
1003           }
1004         else
1005           {
1006             Output_section* os = relobj->output_section(lsi);
1007             gold_assert(os != NULL);
1008             if (dynamic)
1009               index = os->dynsym_index();
1010             else
1011               index = os->symtab_index();
1012           }
1013       }
1014       break;
1015     }
1016   gold_assert(index != -1U);
1017   return index;
1018 }
1019
1020 // For a local section symbol, get the address of the offset ADDEND
1021 // within the input section.
1022
1023 template<bool dynamic, int size, bool big_endian>
1024 typename elfcpp::Elf_types<size>::Elf_Addr
1025 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1026   local_section_offset(Addend addend) const
1027 {
1028   gold_assert(this->local_sym_index_ != GSYM_CODE
1029               && this->local_sym_index_ != SECTION_CODE
1030               && this->local_sym_index_ != TARGET_CODE
1031               && this->local_sym_index_ != INVALID_CODE
1032               && this->local_sym_index_ != 0
1033               && this->is_section_symbol_);
1034   const unsigned int lsi = this->local_sym_index_;
1035   Output_section* os = this->u1_.relobj->output_section(lsi);
1036   gold_assert(os != NULL);
1037   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1038   if (offset != invalid_address)
1039     return offset + addend;
1040   // This is a merge section.
1041   Sized_relobj_file<size, big_endian>* relobj =
1042       this->u1_.relobj->sized_relobj();
1043   gold_assert(relobj != NULL);
1044   offset = os->output_address(relobj, lsi, addend);
1045   gold_assert(offset != invalid_address);
1046   return offset;
1047 }
1048
1049 // Get the output address of a relocation.
1050
1051 template<bool dynamic, int size, bool big_endian>
1052 typename elfcpp::Elf_types<size>::Elf_Addr
1053 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1054 {
1055   Address address = this->address_;
1056   if (this->shndx_ != INVALID_CODE)
1057     {
1058       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1059       gold_assert(os != NULL);
1060       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1061       if (off != invalid_address)
1062         address += os->address() + off;
1063       else
1064         {
1065           Sized_relobj_file<size, big_endian>* relobj =
1066               this->u2_.relobj->sized_relobj();
1067           gold_assert(relobj != NULL);
1068           address = os->output_address(relobj, this->shndx_, address);
1069           gold_assert(address != invalid_address);
1070         }
1071     }
1072   else if (this->u2_.od != NULL)
1073     address += this->u2_.od->address();
1074   return address;
1075 }
1076
1077 // Write out the offset and info fields of a Rel or Rela relocation
1078 // entry.
1079
1080 template<bool dynamic, int size, bool big_endian>
1081 template<typename Write_rel>
1082 void
1083 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1084     Write_rel* wr) const
1085 {
1086   wr->put_r_offset(this->get_address());
1087   unsigned int sym_index = this->get_symbol_index();
1088   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1089 }
1090
1091 // Write out a Rel relocation.
1092
1093 template<bool dynamic, int size, bool big_endian>
1094 void
1095 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1096     unsigned char* pov) const
1097 {
1098   elfcpp::Rel_write<size, big_endian> orel(pov);
1099   this->write_rel(&orel);
1100 }
1101
1102 // Get the value of the symbol referred to by a Rel relocation.
1103
1104 template<bool dynamic, int size, bool big_endian>
1105 typename elfcpp::Elf_types<size>::Elf_Addr
1106 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1107     Addend addend) const
1108 {
1109   if (this->local_sym_index_ == GSYM_CODE)
1110     {
1111       const Sized_symbol<size>* sym;
1112       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1113       return sym->value() + addend;
1114     }
1115   gold_assert(this->local_sym_index_ != SECTION_CODE
1116               && this->local_sym_index_ != TARGET_CODE
1117               && this->local_sym_index_ != INVALID_CODE
1118               && this->local_sym_index_ != 0
1119               && !this->is_section_symbol_);
1120   const unsigned int lsi = this->local_sym_index_;
1121   Sized_relobj_file<size, big_endian>* relobj =
1122       this->u1_.relobj->sized_relobj();
1123   gold_assert(relobj != NULL);
1124   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1125   return symval->value(relobj, addend);
1126 }
1127
1128 // Reloc comparison.  This function sorts the dynamic relocs for the
1129 // benefit of the dynamic linker.  First we sort all relative relocs
1130 // to the front.  Among relative relocs, we sort by output address.
1131 // Among non-relative relocs, we sort by symbol index, then by output
1132 // address.
1133
1134 template<bool dynamic, int size, bool big_endian>
1135 int
1136 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1137   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1138     const
1139 {
1140   if (this->is_relative_)
1141     {
1142       if (!r2.is_relative_)
1143         return -1;
1144       // Otherwise sort by reloc address below.
1145     }
1146   else if (r2.is_relative_)
1147     return 1;
1148   else
1149     {
1150       unsigned int sym1 = this->get_symbol_index();
1151       unsigned int sym2 = r2.get_symbol_index();
1152       if (sym1 < sym2)
1153         return -1;
1154       else if (sym1 > sym2)
1155         return 1;
1156       // Otherwise sort by reloc address.
1157     }
1158
1159   section_offset_type addr1 = this->get_address();
1160   section_offset_type addr2 = r2.get_address();
1161   if (addr1 < addr2)
1162     return -1;
1163   else if (addr1 > addr2)
1164     return 1;
1165
1166   // Final tie breaker, in order to generate the same output on any
1167   // host: reloc type.
1168   unsigned int type1 = this->type_;
1169   unsigned int type2 = r2.type_;
1170   if (type1 < type2)
1171     return -1;
1172   else if (type1 > type2)
1173     return 1;
1174
1175   // These relocs appear to be exactly the same.
1176   return 0;
1177 }
1178
1179 // Write out a Rela relocation.
1180
1181 template<bool dynamic, int size, bool big_endian>
1182 void
1183 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1184     unsigned char* pov) const
1185 {
1186   elfcpp::Rela_write<size, big_endian> orel(pov);
1187   this->rel_.write_rel(&orel);
1188   Addend addend = this->addend_;
1189   if (this->rel_.is_target_specific())
1190     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1191                                                this->rel_.type(), addend);
1192   else if (this->rel_.is_symbolless())
1193     addend = this->rel_.symbol_value(addend);
1194   else if (this->rel_.is_local_section_symbol())
1195     addend = this->rel_.local_section_offset(addend);
1196   orel.put_r_addend(addend);
1197 }
1198
1199 // Output_data_reloc_base methods.
1200
1201 // Adjust the output section.
1202
1203 template<int sh_type, bool dynamic, int size, bool big_endian>
1204 void
1205 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1206     ::do_adjust_output_section(Output_section* os)
1207 {
1208   if (sh_type == elfcpp::SHT_REL)
1209     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1210   else if (sh_type == elfcpp::SHT_RELA)
1211     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1212   else
1213     gold_unreachable();
1214
1215   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1216   // static link.  The backends will generate a dynamic reloc section
1217   // to hold this.  In that case we don't want to link to the dynsym
1218   // section, because there isn't one.
1219   if (!dynamic)
1220     os->set_should_link_to_symtab();
1221   else if (parameters->doing_static_link())
1222     ;
1223   else
1224     os->set_should_link_to_dynsym();
1225 }
1226
1227 // Write out relocation data.
1228
1229 template<int sh_type, bool dynamic, int size, bool big_endian>
1230 void
1231 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1232     Output_file* of)
1233 {
1234   const off_t off = this->offset();
1235   const off_t oview_size = this->data_size();
1236   unsigned char* const oview = of->get_output_view(off, oview_size);
1237
1238   if (this->sort_relocs())
1239     {
1240       gold_assert(dynamic);
1241       std::sort(this->relocs_.begin(), this->relocs_.end(),
1242                 Sort_relocs_comparison());
1243     }
1244
1245   unsigned char* pov = oview;
1246   for (typename Relocs::const_iterator p = this->relocs_.begin();
1247        p != this->relocs_.end();
1248        ++p)
1249     {
1250       p->write(pov);
1251       pov += reloc_size;
1252     }
1253
1254   gold_assert(pov - oview == oview_size);
1255
1256   of->write_output_view(off, oview_size, oview);
1257
1258   // We no longer need the relocation entries.
1259   this->relocs_.clear();
1260 }
1261
1262 // Class Output_relocatable_relocs.
1263
1264 template<int sh_type, int size, bool big_endian>
1265 void
1266 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1267 {
1268   this->set_data_size(this->rr_->output_reloc_count()
1269                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1270 }
1271
1272 // class Output_data_group.
1273
1274 template<int size, bool big_endian>
1275 Output_data_group<size, big_endian>::Output_data_group(
1276     Sized_relobj_file<size, big_endian>* relobj,
1277     section_size_type entry_count,
1278     elfcpp::Elf_Word flags,
1279     std::vector<unsigned int>* input_shndxes)
1280   : Output_section_data(entry_count * 4, 4, false),
1281     relobj_(relobj),
1282     flags_(flags)
1283 {
1284   this->input_shndxes_.swap(*input_shndxes);
1285 }
1286
1287 // Write out the section group, which means translating the section
1288 // indexes to apply to the output file.
1289
1290 template<int size, bool big_endian>
1291 void
1292 Output_data_group<size, big_endian>::do_write(Output_file* of)
1293 {
1294   const off_t off = this->offset();
1295   const section_size_type oview_size =
1296     convert_to_section_size_type(this->data_size());
1297   unsigned char* const oview = of->get_output_view(off, oview_size);
1298
1299   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1300   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1301   ++contents;
1302
1303   for (std::vector<unsigned int>::const_iterator p =
1304          this->input_shndxes_.begin();
1305        p != this->input_shndxes_.end();
1306        ++p, ++contents)
1307     {
1308       Output_section* os = this->relobj_->output_section(*p);
1309
1310       unsigned int output_shndx;
1311       if (os != NULL)
1312         output_shndx = os->out_shndx();
1313       else
1314         {
1315           this->relobj_->error(_("section group retained but "
1316                                  "group element discarded"));
1317           output_shndx = 0;
1318         }
1319
1320       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1321     }
1322
1323   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1324   gold_assert(wrote == oview_size);
1325
1326   of->write_output_view(off, oview_size, oview);
1327
1328   // We no longer need this information.
1329   this->input_shndxes_.clear();
1330 }
1331
1332 // Output_data_got::Got_entry methods.
1333
1334 // Write out the entry.
1335
1336 template<int size, bool big_endian>
1337 void
1338 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1339 {
1340   Valtype val = 0;
1341
1342   switch (this->local_sym_index_)
1343     {
1344     case GSYM_CODE:
1345       {
1346         // If the symbol is resolved locally, we need to write out the
1347         // link-time value, which will be relocated dynamically by a
1348         // RELATIVE relocation.
1349         Symbol* gsym = this->u_.gsym;
1350         if (this->use_plt_offset_ && gsym->has_plt_offset())
1351           val = (parameters->target().plt_address_for_global(gsym)
1352                  + gsym->plt_offset());
1353         else
1354           {
1355             Sized_symbol<size>* sgsym;
1356             // This cast is a bit ugly.  We don't want to put a
1357             // virtual method in Symbol, because we want Symbol to be
1358             // as small as possible.
1359             sgsym = static_cast<Sized_symbol<size>*>(gsym);
1360             val = sgsym->value();
1361           }
1362       }
1363       break;
1364
1365     case CONSTANT_CODE:
1366       val = this->u_.constant;
1367       break;
1368
1369     case RESERVED_CODE:
1370       // If we're doing an incremental update, don't touch this GOT entry.
1371       if (parameters->incremental_update())
1372         return;
1373       val = this->u_.constant;
1374       break;
1375
1376     default:
1377       {
1378         const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1379         const unsigned int lsi = this->local_sym_index_;
1380         const Symbol_value<size>* symval = object->local_symbol(lsi);
1381         if (!this->use_plt_offset_)
1382           val = symval->value(this->u_.object, 0);
1383         else
1384           {
1385             uint64_t plt_address =
1386               parameters->target().plt_address_for_local(object, lsi);
1387             val = plt_address + object->local_plt_offset(lsi);
1388           }
1389       }
1390       break;
1391     }
1392
1393   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1394 }
1395
1396 // Output_data_got methods.
1397
1398 // Add an entry for a global symbol to the GOT.  This returns true if
1399 // this is a new GOT entry, false if the symbol already had a GOT
1400 // entry.
1401
1402 template<int size, bool big_endian>
1403 bool
1404 Output_data_got<size, big_endian>::add_global(
1405     Symbol* gsym,
1406     unsigned int got_type)
1407 {
1408   if (gsym->has_got_offset(got_type))
1409     return false;
1410
1411   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1412   gsym->set_got_offset(got_type, got_offset);
1413   return true;
1414 }
1415
1416 // Like add_global, but use the PLT offset.
1417
1418 template<int size, bool big_endian>
1419 bool
1420 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1421                                                   unsigned int got_type)
1422 {
1423   if (gsym->has_got_offset(got_type))
1424     return false;
1425
1426   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1427   gsym->set_got_offset(got_type, got_offset);
1428   return true;
1429 }
1430
1431 // Add an entry for a global symbol to the GOT, and add a dynamic
1432 // relocation of type R_TYPE for the GOT entry.
1433
1434 template<int size, bool big_endian>
1435 void
1436 Output_data_got<size, big_endian>::add_global_with_rel(
1437     Symbol* gsym,
1438     unsigned int got_type,
1439     Rel_dyn* rel_dyn,
1440     unsigned int r_type)
1441 {
1442   if (gsym->has_got_offset(got_type))
1443     return;
1444
1445   unsigned int got_offset = this->add_got_entry(Got_entry());
1446   gsym->set_got_offset(got_type, got_offset);
1447   rel_dyn->add_global(gsym, r_type, this, got_offset);
1448 }
1449
1450 template<int size, bool big_endian>
1451 void
1452 Output_data_got<size, big_endian>::add_global_with_rela(
1453     Symbol* gsym,
1454     unsigned int got_type,
1455     Rela_dyn* rela_dyn,
1456     unsigned int r_type)
1457 {
1458   if (gsym->has_got_offset(got_type))
1459     return;
1460
1461   unsigned int got_offset = this->add_got_entry(Got_entry());
1462   gsym->set_got_offset(got_type, got_offset);
1463   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1464 }
1465
1466 // Add a pair of entries for a global symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size, bool big_endian>
1470 void
1471 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1472     Symbol* gsym,
1473     unsigned int got_type,
1474     Rel_dyn* rel_dyn,
1475     unsigned int r_type_1,
1476     unsigned int r_type_2)
1477 {
1478   if (gsym->has_got_offset(got_type))
1479     return;
1480
1481   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1482   gsym->set_got_offset(got_type, got_offset);
1483   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1484
1485   if (r_type_2 != 0)
1486     rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1487 }
1488
1489 template<int size, bool big_endian>
1490 void
1491 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1492     Symbol* gsym,
1493     unsigned int got_type,
1494     Rela_dyn* rela_dyn,
1495     unsigned int r_type_1,
1496     unsigned int r_type_2)
1497 {
1498   if (gsym->has_got_offset(got_type))
1499     return;
1500
1501   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1502   gsym->set_got_offset(got_type, got_offset);
1503   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1504
1505   if (r_type_2 != 0)
1506     rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1507 }
1508
1509 // Add an entry for a local symbol to the GOT.  This returns true if
1510 // this is a new GOT entry, false if the symbol already has a GOT
1511 // entry.
1512
1513 template<int size, bool big_endian>
1514 bool
1515 Output_data_got<size, big_endian>::add_local(
1516     Sized_relobj_file<size, big_endian>* object,
1517     unsigned int symndx,
1518     unsigned int got_type)
1519 {
1520   if (object->local_has_got_offset(symndx, got_type))
1521     return false;
1522
1523   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1524                                                           false));
1525   object->set_local_got_offset(symndx, got_type, got_offset);
1526   return true;
1527 }
1528
1529 // Like add_local, but use the PLT offset.
1530
1531 template<int size, bool big_endian>
1532 bool
1533 Output_data_got<size, big_endian>::add_local_plt(
1534     Sized_relobj_file<size, big_endian>* object,
1535     unsigned int symndx,
1536     unsigned int got_type)
1537 {
1538   if (object->local_has_got_offset(symndx, got_type))
1539     return false;
1540
1541   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1542                                                           true));
1543   object->set_local_got_offset(symndx, got_type, got_offset);
1544   return true;
1545 }
1546
1547 // Add an entry for a local symbol to the GOT, and add a dynamic
1548 // relocation of type R_TYPE for the GOT entry.
1549
1550 template<int size, bool big_endian>
1551 void
1552 Output_data_got<size, big_endian>::add_local_with_rel(
1553     Sized_relobj_file<size, big_endian>* object,
1554     unsigned int symndx,
1555     unsigned int got_type,
1556     Rel_dyn* rel_dyn,
1557     unsigned int r_type)
1558 {
1559   if (object->local_has_got_offset(symndx, got_type))
1560     return;
1561
1562   unsigned int got_offset = this->add_got_entry(Got_entry());
1563   object->set_local_got_offset(symndx, got_type, got_offset);
1564   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1565 }
1566
1567 template<int size, bool big_endian>
1568 void
1569 Output_data_got<size, big_endian>::add_local_with_rela(
1570     Sized_relobj_file<size, big_endian>* object,
1571     unsigned int symndx,
1572     unsigned int got_type,
1573     Rela_dyn* rela_dyn,
1574     unsigned int r_type)
1575 {
1576   if (object->local_has_got_offset(symndx, got_type))
1577     return;
1578
1579   unsigned int got_offset = this->add_got_entry(Got_entry());
1580   object->set_local_got_offset(symndx, got_type, got_offset);
1581   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1582 }
1583
1584 // Add a pair of entries for a local symbol to the GOT, and add
1585 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1586 // If R_TYPE_2 == 0, add the second entry with no relocation.
1587 template<int size, bool big_endian>
1588 void
1589 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1590     Sized_relobj_file<size, big_endian>* object,
1591     unsigned int symndx,
1592     unsigned int shndx,
1593     unsigned int got_type,
1594     Rel_dyn* rel_dyn,
1595     unsigned int r_type_1,
1596     unsigned int r_type_2)
1597 {
1598   if (object->local_has_got_offset(symndx, got_type))
1599     return;
1600
1601   unsigned int got_offset =
1602       this->add_got_entry_pair(Got_entry(),
1603                                Got_entry(object, symndx, false));
1604   object->set_local_got_offset(symndx, got_type, got_offset);
1605   Output_section* os = object->output_section(shndx);
1606   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1607
1608   if (r_type_2 != 0)
1609     rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1610 }
1611
1612 template<int size, bool big_endian>
1613 void
1614 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1615     Sized_relobj_file<size, big_endian>* object,
1616     unsigned int symndx,
1617     unsigned int shndx,
1618     unsigned int got_type,
1619     Rela_dyn* rela_dyn,
1620     unsigned int r_type_1,
1621     unsigned int r_type_2)
1622 {
1623   if (object->local_has_got_offset(symndx, got_type))
1624     return;
1625
1626   unsigned int got_offset =
1627       this->add_got_entry_pair(Got_entry(),
1628                                Got_entry(object, symndx, false));
1629   object->set_local_got_offset(symndx, got_type, got_offset);
1630   Output_section* os = object->output_section(shndx);
1631   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1632
1633   if (r_type_2 != 0)
1634     rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1635 }
1636
1637 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1638
1639 template<int size, bool big_endian>
1640 void
1641 Output_data_got<size, big_endian>::reserve_local(
1642     unsigned int i,
1643     Sized_relobj<size, big_endian>* object,
1644     unsigned int sym_index,
1645     unsigned int got_type)
1646 {
1647   this->reserve_slot(i);
1648   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1649 }
1650
1651 // Reserve a slot in the GOT for a global symbol.
1652
1653 template<int size, bool big_endian>
1654 void
1655 Output_data_got<size, big_endian>::reserve_global(
1656     unsigned int i,
1657     Symbol* gsym,
1658     unsigned int got_type)
1659 {
1660   this->reserve_slot(i);
1661   gsym->set_got_offset(got_type, this->got_offset(i));
1662 }
1663
1664 // Write out the GOT.
1665
1666 template<int size, bool big_endian>
1667 void
1668 Output_data_got<size, big_endian>::do_write(Output_file* of)
1669 {
1670   const int add = size / 8;
1671
1672   const off_t off = this->offset();
1673   const off_t oview_size = this->data_size();
1674   unsigned char* const oview = of->get_output_view(off, oview_size);
1675
1676   unsigned char* pov = oview;
1677   for (typename Got_entries::const_iterator p = this->entries_.begin();
1678        p != this->entries_.end();
1679        ++p)
1680     {
1681       p->write(pov);
1682       pov += add;
1683     }
1684
1685   gold_assert(pov - oview == oview_size);
1686
1687   of->write_output_view(off, oview_size, oview);
1688
1689   // We no longer need the GOT entries.
1690   this->entries_.clear();
1691 }
1692
1693 // Create a new GOT entry and return its offset.
1694
1695 template<int size, bool big_endian>
1696 unsigned int
1697 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1698 {
1699   if (!this->is_data_size_valid())
1700     {
1701       this->entries_.push_back(got_entry);
1702       this->set_got_size();
1703       return this->last_got_offset();
1704     }
1705   else
1706     {
1707       // For an incremental update, find an available slot.
1708       off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1709       if (got_offset == -1)
1710         gold_fallback(_("out of patch space (GOT);"
1711                         " relink with --incremental-full"));
1712       unsigned int got_index = got_offset / (size / 8);
1713       gold_assert(got_index < this->entries_.size());
1714       this->entries_[got_index] = got_entry;
1715       return static_cast<unsigned int>(got_offset);
1716     }
1717 }
1718
1719 // Create a pair of new GOT entries and return the offset of the first.
1720
1721 template<int size, bool big_endian>
1722 unsigned int
1723 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1724                                                       Got_entry got_entry_2)
1725 {
1726   if (!this->is_data_size_valid())
1727     {
1728       unsigned int got_offset;
1729       this->entries_.push_back(got_entry_1);
1730       got_offset = this->last_got_offset();
1731       this->entries_.push_back(got_entry_2);
1732       this->set_got_size();
1733       return got_offset;
1734     }
1735   else
1736     {
1737       // For an incremental update, find an available pair of slots.
1738       off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1739       if (got_offset == -1)
1740         gold_fallback(_("out of patch space (GOT);"
1741                         " relink with --incremental-full"));
1742       unsigned int got_index = got_offset / (size / 8);
1743       gold_assert(got_index < this->entries_.size());
1744       this->entries_[got_index] = got_entry_1;
1745       this->entries_[got_index + 1] = got_entry_2;
1746       return static_cast<unsigned int>(got_offset);
1747     }
1748 }
1749
1750 // Output_data_dynamic::Dynamic_entry methods.
1751
1752 // Write out the entry.
1753
1754 template<int size, bool big_endian>
1755 void
1756 Output_data_dynamic::Dynamic_entry::write(
1757     unsigned char* pov,
1758     const Stringpool* pool) const
1759 {
1760   typename elfcpp::Elf_types<size>::Elf_WXword val;
1761   switch (this->offset_)
1762     {
1763     case DYNAMIC_NUMBER:
1764       val = this->u_.val;
1765       break;
1766
1767     case DYNAMIC_SECTION_SIZE:
1768       val = this->u_.od->data_size();
1769       if (this->od2 != NULL)
1770         val += this->od2->data_size();
1771       break;
1772
1773     case DYNAMIC_SYMBOL:
1774       {
1775         const Sized_symbol<size>* s =
1776           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1777         val = s->value();
1778       }
1779       break;
1780
1781     case DYNAMIC_STRING:
1782       val = pool->get_offset(this->u_.str);
1783       break;
1784
1785     default:
1786       val = this->u_.od->address() + this->offset_;
1787       break;
1788     }
1789
1790   elfcpp::Dyn_write<size, big_endian> dw(pov);
1791   dw.put_d_tag(this->tag_);
1792   dw.put_d_val(val);
1793 }
1794
1795 // Output_data_dynamic methods.
1796
1797 // Adjust the output section to set the entry size.
1798
1799 void
1800 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1801 {
1802   if (parameters->target().get_size() == 32)
1803     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1804   else if (parameters->target().get_size() == 64)
1805     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1806   else
1807     gold_unreachable();
1808 }
1809
1810 // Set the final data size.
1811
1812 void
1813 Output_data_dynamic::set_final_data_size()
1814 {
1815   // Add the terminating entry if it hasn't been added.
1816   // Because of relaxation, we can run this multiple times.
1817   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1818     {
1819       int extra = parameters->options().spare_dynamic_tags();
1820       for (int i = 0; i < extra; ++i)
1821         this->add_constant(elfcpp::DT_NULL, 0);
1822       this->add_constant(elfcpp::DT_NULL, 0);
1823     }
1824
1825   int dyn_size;
1826   if (parameters->target().get_size() == 32)
1827     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1828   else if (parameters->target().get_size() == 64)
1829     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1830   else
1831     gold_unreachable();
1832   this->set_data_size(this->entries_.size() * dyn_size);
1833 }
1834
1835 // Write out the dynamic entries.
1836
1837 void
1838 Output_data_dynamic::do_write(Output_file* of)
1839 {
1840   switch (parameters->size_and_endianness())
1841     {
1842 #ifdef HAVE_TARGET_32_LITTLE
1843     case Parameters::TARGET_32_LITTLE:
1844       this->sized_write<32, false>(of);
1845       break;
1846 #endif
1847 #ifdef HAVE_TARGET_32_BIG
1848     case Parameters::TARGET_32_BIG:
1849       this->sized_write<32, true>(of);
1850       break;
1851 #endif
1852 #ifdef HAVE_TARGET_64_LITTLE
1853     case Parameters::TARGET_64_LITTLE:
1854       this->sized_write<64, false>(of);
1855       break;
1856 #endif
1857 #ifdef HAVE_TARGET_64_BIG
1858     case Parameters::TARGET_64_BIG:
1859       this->sized_write<64, true>(of);
1860       break;
1861 #endif
1862     default:
1863       gold_unreachable();
1864     }
1865 }
1866
1867 template<int size, bool big_endian>
1868 void
1869 Output_data_dynamic::sized_write(Output_file* of)
1870 {
1871   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1872
1873   const off_t offset = this->offset();
1874   const off_t oview_size = this->data_size();
1875   unsigned char* const oview = of->get_output_view(offset, oview_size);
1876
1877   unsigned char* pov = oview;
1878   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1879        p != this->entries_.end();
1880        ++p)
1881     {
1882       p->write<size, big_endian>(pov, this->pool_);
1883       pov += dyn_size;
1884     }
1885
1886   gold_assert(pov - oview == oview_size);
1887
1888   of->write_output_view(offset, oview_size, oview);
1889
1890   // We no longer need the dynamic entries.
1891   this->entries_.clear();
1892 }
1893
1894 // Class Output_symtab_xindex.
1895
1896 void
1897 Output_symtab_xindex::do_write(Output_file* of)
1898 {
1899   const off_t offset = this->offset();
1900   const off_t oview_size = this->data_size();
1901   unsigned char* const oview = of->get_output_view(offset, oview_size);
1902
1903   memset(oview, 0, oview_size);
1904
1905   if (parameters->target().is_big_endian())
1906     this->endian_do_write<true>(oview);
1907   else
1908     this->endian_do_write<false>(oview);
1909
1910   of->write_output_view(offset, oview_size, oview);
1911
1912   // We no longer need the data.
1913   this->entries_.clear();
1914 }
1915
1916 template<bool big_endian>
1917 void
1918 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1919 {
1920   for (Xindex_entries::const_iterator p = this->entries_.begin();
1921        p != this->entries_.end();
1922        ++p)
1923     {
1924       unsigned int symndx = p->first;
1925       gold_assert(symndx * 4 < this->data_size());
1926       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1927     }
1928 }
1929
1930 // Output_fill_debug_info methods.
1931
1932 // Return the minimum size needed for a dummy compilation unit header.
1933
1934 size_t
1935 Output_fill_debug_info::do_minimum_hole_size() const
1936 {
1937   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1938   // address_size.
1939   const size_t len = 4 + 2 + 4 + 1;
1940   // For type units, add type_signature, type_offset.
1941   if (this->is_debug_types_)
1942     return len + 8 + 4;
1943   return len;
1944 }
1945
1946 // Write a dummy compilation unit header to fill a hole in the
1947 // .debug_info or .debug_types section.
1948
1949 void
1950 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1951 {
1952   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)", off, len);
1953
1954   gold_assert(len >= this->do_minimum_hole_size());
1955
1956   unsigned char* const oview = of->get_output_view(off, len);
1957   unsigned char* pov = oview;
1958
1959   // Write header fields: unit_length, version, debug_abbrev_offset,
1960   // address_size.
1961   if (this->is_big_endian())
1962     {
1963       elfcpp::Swap<32, true>::writeval(pov, len - 4);
1964       elfcpp::Swap<16, true>::writeval(pov + 4, this->version);
1965       elfcpp::Swap<32, true>::writeval(pov + 6, 0);
1966     }
1967   else
1968     {
1969       elfcpp::Swap<32, false>::writeval(pov, len - 4);
1970       elfcpp::Swap<16, false>::writeval(pov + 4, this->version);
1971       elfcpp::Swap<32, false>::writeval(pov + 6, 0);
1972     }
1973   pov += 4 + 2 + 4;
1974   *pov++ = 4;
1975
1976   // For type units, the additional header fields -- type_signature,
1977   // type_offset -- can be filled with zeroes.
1978
1979   // Fill the remainder of the free space with zeroes.  The first
1980   // zero should tell the consumer there are no DIEs to read in this
1981   // compilation unit.
1982   if (pov < oview + len)
1983     memset(pov, 0, oview + len - pov);
1984
1985   of->write_output_view(off, len, oview);
1986 }
1987
1988 // Output_fill_debug_line methods.
1989
1990 // Return the minimum size needed for a dummy line number program header.
1991
1992 size_t
1993 Output_fill_debug_line::do_minimum_hole_size() const
1994 {
1995   // Line number program header fields: unit_length, version, header_length,
1996   // minimum_instruction_length, default_is_stmt, line_base, line_range,
1997   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1998   const size_t len = 4 + 2 + 4 + this->header_length;
1999   return len;
2000 }
2001
2002 // Write a dummy line number program header to fill a hole in the
2003 // .debug_line section.
2004
2005 void
2006 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2007 {
2008   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)", off, len);
2009
2010   gold_assert(len >= this->do_minimum_hole_size());
2011
2012   unsigned char* const oview = of->get_output_view(off, len);
2013   unsigned char* pov = oview;
2014
2015   // Write header fields: unit_length, version, header_length,
2016   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2017   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2018   // We set the header_length field to cover the entire hole, so the
2019   // line number program is empty.
2020   if (this->is_big_endian())
2021     {
2022       elfcpp::Swap<32, true>::writeval(pov, len - 4);
2023       elfcpp::Swap<16, true>::writeval(pov + 4, this->version);
2024       elfcpp::Swap<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2025     }
2026   else
2027     {
2028       elfcpp::Swap<32, false>::writeval(pov, len - 4);
2029       elfcpp::Swap<16, false>::writeval(pov + 4, this->version);
2030       elfcpp::Swap<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2031     }
2032   pov += 4 + 2 + 4;
2033   *pov++ = 1;   // minimum_instruction_length
2034   *pov++ = 0;   // default_is_stmt
2035   *pov++ = 0;   // line_base
2036   *pov++ = 5;   // line_range
2037   *pov++ = 13;  // opcode_base
2038   *pov++ = 0;   // standard_opcode_lengths[1]
2039   *pov++ = 1;   // standard_opcode_lengths[2]
2040   *pov++ = 1;   // standard_opcode_lengths[3]
2041   *pov++ = 1;   // standard_opcode_lengths[4]
2042   *pov++ = 1;   // standard_opcode_lengths[5]
2043   *pov++ = 0;   // standard_opcode_lengths[6]
2044   *pov++ = 0;   // standard_opcode_lengths[7]
2045   *pov++ = 0;   // standard_opcode_lengths[8]
2046   *pov++ = 1;   // standard_opcode_lengths[9]
2047   *pov++ = 0;   // standard_opcode_lengths[10]
2048   *pov++ = 0;   // standard_opcode_lengths[11]
2049   *pov++ = 1;   // standard_opcode_lengths[12]
2050   *pov++ = 0;   // include_directories (empty)
2051   *pov++ = 0;   // filenames (empty)
2052
2053   // Some consumers don't check the header_length field, and simply
2054   // start reading the line number program immediately following the
2055   // header.  For those consumers, we fill the remainder of the free
2056   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2057   // no-ops: the resulting line table program will not create any rows.
2058   if (pov < oview + len)
2059     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2060
2061   of->write_output_view(off, len, oview);
2062 }
2063
2064 // Output_section::Input_section methods.
2065
2066 // Return the current data size.  For an input section we store the size here.
2067 // For an Output_section_data, we have to ask it for the size.
2068
2069 off_t
2070 Output_section::Input_section::current_data_size() const
2071 {
2072   if (this->is_input_section())
2073     return this->u1_.data_size;
2074   else
2075     {
2076       this->u2_.posd->pre_finalize_data_size();
2077       return this->u2_.posd->current_data_size();
2078     }
2079 }
2080
2081 // Return the data size.  For an input section we store the size here.
2082 // For an Output_section_data, we have to ask it for the size.
2083
2084 off_t
2085 Output_section::Input_section::data_size() const
2086 {
2087   if (this->is_input_section())
2088     return this->u1_.data_size;
2089   else
2090     return this->u2_.posd->data_size();
2091 }
2092
2093 // Return the object for an input section.
2094
2095 Relobj*
2096 Output_section::Input_section::relobj() const
2097 {
2098   if (this->is_input_section())
2099     return this->u2_.object;
2100   else if (this->is_merge_section())
2101     {
2102       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2103       return this->u2_.pomb->first_relobj();
2104     }
2105   else if (this->is_relaxed_input_section())
2106     return this->u2_.poris->relobj();
2107   else
2108     gold_unreachable();
2109 }
2110
2111 // Return the input section index for an input section.
2112
2113 unsigned int
2114 Output_section::Input_section::shndx() const
2115 {
2116   if (this->is_input_section())
2117     return this->shndx_;
2118   else if (this->is_merge_section())
2119     {
2120       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2121       return this->u2_.pomb->first_shndx();
2122     }
2123   else if (this->is_relaxed_input_section())
2124     return this->u2_.poris->shndx();
2125   else
2126     gold_unreachable();
2127 }
2128
2129 // Set the address and file offset.
2130
2131 void
2132 Output_section::Input_section::set_address_and_file_offset(
2133     uint64_t address,
2134     off_t file_offset,
2135     off_t section_file_offset)
2136 {
2137   if (this->is_input_section())
2138     this->u2_.object->set_section_offset(this->shndx_,
2139                                          file_offset - section_file_offset);
2140   else
2141     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2142 }
2143
2144 // Reset the address and file offset.
2145
2146 void
2147 Output_section::Input_section::reset_address_and_file_offset()
2148 {
2149   if (!this->is_input_section())
2150     this->u2_.posd->reset_address_and_file_offset();
2151 }
2152
2153 // Finalize the data size.
2154
2155 void
2156 Output_section::Input_section::finalize_data_size()
2157 {
2158   if (!this->is_input_section())
2159     this->u2_.posd->finalize_data_size();
2160 }
2161
2162 // Try to turn an input offset into an output offset.  We want to
2163 // return the output offset relative to the start of this
2164 // Input_section in the output section.
2165
2166 inline bool
2167 Output_section::Input_section::output_offset(
2168     const Relobj* object,
2169     unsigned int shndx,
2170     section_offset_type offset,
2171     section_offset_type* poutput) const
2172 {
2173   if (!this->is_input_section())
2174     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2175   else
2176     {
2177       if (this->shndx_ != shndx || this->u2_.object != object)
2178         return false;
2179       *poutput = offset;
2180       return true;
2181     }
2182 }
2183
2184 // Return whether this is the merge section for the input section
2185 // SHNDX in OBJECT.
2186
2187 inline bool
2188 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2189                                                     unsigned int shndx) const
2190 {
2191   if (this->is_input_section())
2192     return false;
2193   return this->u2_.posd->is_merge_section_for(object, shndx);
2194 }
2195
2196 // Write out the data.  We don't have to do anything for an input
2197 // section--they are handled via Object::relocate--but this is where
2198 // we write out the data for an Output_section_data.
2199
2200 void
2201 Output_section::Input_section::write(Output_file* of)
2202 {
2203   if (!this->is_input_section())
2204     this->u2_.posd->write(of);
2205 }
2206
2207 // Write the data to a buffer.  As for write(), we don't have to do
2208 // anything for an input section.
2209
2210 void
2211 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2212 {
2213   if (!this->is_input_section())
2214     this->u2_.posd->write_to_buffer(buffer);
2215 }
2216
2217 // Print to a map file.
2218
2219 void
2220 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2221 {
2222   switch (this->shndx_)
2223     {
2224     case OUTPUT_SECTION_CODE:
2225     case MERGE_DATA_SECTION_CODE:
2226     case MERGE_STRING_SECTION_CODE:
2227       this->u2_.posd->print_to_mapfile(mapfile);
2228       break;
2229
2230     case RELAXED_INPUT_SECTION_CODE:
2231       {
2232         Output_relaxed_input_section* relaxed_section =
2233           this->relaxed_input_section();
2234         mapfile->print_input_section(relaxed_section->relobj(),
2235                                      relaxed_section->shndx());
2236       }
2237       break;
2238     default:
2239       mapfile->print_input_section(this->u2_.object, this->shndx_);
2240       break;
2241     }
2242 }
2243
2244 // Output_section methods.
2245
2246 // Construct an Output_section.  NAME will point into a Stringpool.
2247
2248 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2249                                elfcpp::Elf_Xword flags)
2250   : name_(name),
2251     addralign_(0),
2252     entsize_(0),
2253     load_address_(0),
2254     link_section_(NULL),
2255     link_(0),
2256     info_section_(NULL),
2257     info_symndx_(NULL),
2258     info_(0),
2259     type_(type),
2260     flags_(flags),
2261     order_(ORDER_INVALID),
2262     out_shndx_(-1U),
2263     symtab_index_(0),
2264     dynsym_index_(0),
2265     input_sections_(),
2266     first_input_offset_(0),
2267     fills_(),
2268     postprocessing_buffer_(NULL),
2269     needs_symtab_index_(false),
2270     needs_dynsym_index_(false),
2271     should_link_to_symtab_(false),
2272     should_link_to_dynsym_(false),
2273     after_input_sections_(false),
2274     requires_postprocessing_(false),
2275     found_in_sections_clause_(false),
2276     has_load_address_(false),
2277     info_uses_section_index_(false),
2278     input_section_order_specified_(false),
2279     may_sort_attached_input_sections_(false),
2280     must_sort_attached_input_sections_(false),
2281     attached_input_sections_are_sorted_(false),
2282     is_relro_(false),
2283     is_small_section_(false),
2284     is_large_section_(false),
2285     generate_code_fills_at_write_(false),
2286     is_entsize_zero_(false),
2287     section_offsets_need_adjustment_(false),
2288     is_noload_(false),
2289     always_keeps_input_sections_(false),
2290     has_fixed_layout_(false),
2291     is_patch_space_allowed_(false),
2292     tls_offset_(0),
2293     checkpoint_(NULL),
2294     lookup_maps_(new Output_section_lookup_maps),
2295     free_list_(),
2296     free_space_fill_(NULL),
2297     patch_space_(0)
2298 {
2299   // An unallocated section has no address.  Forcing this means that
2300   // we don't need special treatment for symbols defined in debug
2301   // sections.
2302   if ((flags & elfcpp::SHF_ALLOC) == 0)
2303     this->set_address(0);
2304 }
2305
2306 Output_section::~Output_section()
2307 {
2308   delete this->checkpoint_;
2309 }
2310
2311 // Set the entry size.
2312
2313 void
2314 Output_section::set_entsize(uint64_t v)
2315 {
2316   if (this->is_entsize_zero_)
2317     ;
2318   else if (this->entsize_ == 0)
2319     this->entsize_ = v;
2320   else if (this->entsize_ != v)
2321     {
2322       this->entsize_ = 0;
2323       this->is_entsize_zero_ = 1;
2324     }
2325 }
2326
2327 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2328 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2329 // relocation section which applies to this section, or 0 if none, or
2330 // -1U if more than one.  Return the offset of the input section
2331 // within the output section.  Return -1 if the input section will
2332 // receive special handling.  In the normal case we don't always keep
2333 // track of input sections for an Output_section.  Instead, each
2334 // Object keeps track of the Output_section for each of its input
2335 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2336 // track of input sections here; this is used when SECTIONS appears in
2337 // a linker script.
2338
2339 template<int size, bool big_endian>
2340 off_t
2341 Output_section::add_input_section(Layout* layout,
2342                                   Sized_relobj_file<size, big_endian>* object,
2343                                   unsigned int shndx,
2344                                   const char* secname,
2345                                   const elfcpp::Shdr<size, big_endian>& shdr,
2346                                   unsigned int reloc_shndx,
2347                                   bool have_sections_script)
2348 {
2349   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2350   if ((addralign & (addralign - 1)) != 0)
2351     {
2352       object->error(_("invalid alignment %lu for section \"%s\""),
2353                     static_cast<unsigned long>(addralign), secname);
2354       addralign = 1;
2355     }
2356
2357   if (addralign > this->addralign_)
2358     this->addralign_ = addralign;
2359
2360   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2361   uint64_t entsize = shdr.get_sh_entsize();
2362
2363   // .debug_str is a mergeable string section, but is not always so
2364   // marked by compilers.  Mark manually here so we can optimize.
2365   if (strcmp(secname, ".debug_str") == 0)
2366     {
2367       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2368       entsize = 1;
2369     }
2370
2371   this->update_flags_for_input_section(sh_flags);
2372   this->set_entsize(entsize);
2373
2374   // If this is a SHF_MERGE section, we pass all the input sections to
2375   // a Output_data_merge.  We don't try to handle relocations for such
2376   // a section.  We don't try to handle empty merge sections--they
2377   // mess up the mappings, and are useless anyhow.
2378   // FIXME: Need to handle merge sections during incremental update.
2379   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2380       && reloc_shndx == 0
2381       && shdr.get_sh_size() > 0
2382       && !parameters->incremental())
2383     {
2384       // Keep information about merged input sections for rebuilding fast
2385       // lookup maps if we have sections-script or we do relaxation.
2386       bool keeps_input_sections = (this->always_keeps_input_sections_
2387                                    || have_sections_script
2388                                    || parameters->target().may_relax());
2389
2390       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2391                                         addralign, keeps_input_sections))
2392         {
2393           // Tell the relocation routines that they need to call the
2394           // output_offset method to determine the final address.
2395           return -1;
2396         }
2397     }
2398
2399   section_size_type input_section_size = shdr.get_sh_size();
2400   section_size_type uncompressed_size;
2401   if (object->section_is_compressed(shndx, &uncompressed_size))
2402     input_section_size = uncompressed_size;
2403
2404   off_t offset_in_section;
2405   off_t aligned_offset_in_section;
2406   if (this->has_fixed_layout())
2407     {
2408       // For incremental updates, find a chunk of unused space in the section.
2409       offset_in_section = this->free_list_.allocate(input_section_size,
2410                                                     addralign, 0);
2411       if (offset_in_section == -1)
2412         gold_fallback(_("out of patch space in section %s; "
2413                         "relink with --incremental-full"),
2414                       this->name());
2415       aligned_offset_in_section = offset_in_section;
2416     }
2417   else
2418     {
2419       offset_in_section = this->current_data_size_for_child();
2420       aligned_offset_in_section = align_address(offset_in_section,
2421                                                 addralign);
2422       this->set_current_data_size_for_child(aligned_offset_in_section
2423                                             + input_section_size);
2424     }
2425
2426   // Determine if we want to delay code-fill generation until the output
2427   // section is written.  When the target is relaxing, we want to delay fill
2428   // generating to avoid adjusting them during relaxation.  Also, if we are
2429   // sorting input sections we must delay fill generation.
2430   if (!this->generate_code_fills_at_write_
2431       && !have_sections_script
2432       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2433       && parameters->target().has_code_fill()
2434       && (parameters->target().may_relax()
2435           || layout->is_section_ordering_specified()))
2436     {
2437       gold_assert(this->fills_.empty());
2438       this->generate_code_fills_at_write_ = true;
2439     }
2440
2441   if (aligned_offset_in_section > offset_in_section
2442       && !this->generate_code_fills_at_write_
2443       && !have_sections_script
2444       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2445       && parameters->target().has_code_fill())
2446     {
2447       // We need to add some fill data.  Using fill_list_ when
2448       // possible is an optimization, since we will often have fill
2449       // sections without input sections.
2450       off_t fill_len = aligned_offset_in_section - offset_in_section;
2451       if (this->input_sections_.empty())
2452         this->fills_.push_back(Fill(offset_in_section, fill_len));
2453       else
2454         {
2455           std::string fill_data(parameters->target().code_fill(fill_len));
2456           Output_data_const* odc = new Output_data_const(fill_data, 1);
2457           this->input_sections_.push_back(Input_section(odc));
2458         }
2459     }
2460
2461   // We need to keep track of this section if we are already keeping
2462   // track of sections, or if we are relaxing.  Also, if this is a
2463   // section which requires sorting, or which may require sorting in
2464   // the future, we keep track of the sections.  If the
2465   // --section-ordering-file option is used to specify the order of
2466   // sections, we need to keep track of sections.
2467   if (this->always_keeps_input_sections_
2468       || have_sections_script
2469       || !this->input_sections_.empty()
2470       || this->may_sort_attached_input_sections()
2471       || this->must_sort_attached_input_sections()
2472       || parameters->options().user_set_Map()
2473       || parameters->target().may_relax()
2474       || layout->is_section_ordering_specified())
2475     {
2476       Input_section isecn(object, shndx, input_section_size, addralign);
2477       if (layout->is_section_ordering_specified())
2478         {
2479           unsigned int section_order_index =
2480             layout->find_section_order_index(std::string(secname));
2481           if (section_order_index != 0)
2482             {
2483               isecn.set_section_order_index(section_order_index);
2484               this->set_input_section_order_specified();
2485             }
2486         }
2487       if (this->has_fixed_layout())
2488         {
2489           // For incremental updates, finalize the address and offset now.
2490           uint64_t addr = this->address();
2491           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2492                                             aligned_offset_in_section,
2493                                             this->offset());
2494         }
2495       this->input_sections_.push_back(isecn);
2496     }
2497
2498   return aligned_offset_in_section;
2499 }
2500
2501 // Add arbitrary data to an output section.
2502
2503 void
2504 Output_section::add_output_section_data(Output_section_data* posd)
2505 {
2506   Input_section inp(posd);
2507   this->add_output_section_data(&inp);
2508
2509   if (posd->is_data_size_valid())
2510     {
2511       off_t offset_in_section;
2512       if (this->has_fixed_layout())
2513         {
2514           // For incremental updates, find a chunk of unused space.
2515           offset_in_section = this->free_list_.allocate(posd->data_size(),
2516                                                         posd->addralign(), 0);
2517           if (offset_in_section == -1)
2518             gold_fallback(_("out of patch space in section %s; "
2519                             "relink with --incremental-full"),
2520                           this->name());
2521           // Finalize the address and offset now.
2522           uint64_t addr = this->address();
2523           off_t offset = this->offset();
2524           posd->set_address_and_file_offset(addr + offset_in_section,
2525                                             offset + offset_in_section);
2526         }
2527       else
2528         {
2529           offset_in_section = this->current_data_size_for_child();
2530           off_t aligned_offset_in_section = align_address(offset_in_section,
2531                                                           posd->addralign());
2532           this->set_current_data_size_for_child(aligned_offset_in_section
2533                                                 + posd->data_size());
2534         }
2535     }
2536   else if (this->has_fixed_layout())
2537     {
2538       // For incremental updates, arrange for the data to have a fixed layout.
2539       // This will mean that additions to the data must be allocated from
2540       // free space within the containing output section.
2541       uint64_t addr = this->address();
2542       posd->set_address(addr);
2543       posd->set_file_offset(0);
2544       // FIXME: This should eventually be unreachable.
2545       // gold_unreachable();
2546     }
2547 }
2548
2549 // Add a relaxed input section.
2550
2551 void
2552 Output_section::add_relaxed_input_section(Layout* layout,
2553                                           Output_relaxed_input_section* poris,
2554                                           const std::string& name)
2555 {
2556   Input_section inp(poris);
2557
2558   // If the --section-ordering-file option is used to specify the order of
2559   // sections, we need to keep track of sections.
2560   if (layout->is_section_ordering_specified())
2561     {
2562       unsigned int section_order_index =
2563         layout->find_section_order_index(name);
2564       if (section_order_index != 0)
2565         {
2566           inp.set_section_order_index(section_order_index);
2567           this->set_input_section_order_specified();
2568         }
2569     }
2570
2571   this->add_output_section_data(&inp);
2572   if (this->lookup_maps_->is_valid())
2573     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2574                                                   poris->shndx(), poris);
2575
2576   // For a relaxed section, we use the current data size.  Linker scripts
2577   // get all the input sections, including relaxed one from an output
2578   // section and add them back to them same output section to compute the
2579   // output section size.  If we do not account for sizes of relaxed input
2580   // sections,  an output section would be incorrectly sized.
2581   off_t offset_in_section = this->current_data_size_for_child();
2582   off_t aligned_offset_in_section = align_address(offset_in_section,
2583                                                   poris->addralign());
2584   this->set_current_data_size_for_child(aligned_offset_in_section
2585                                         + poris->current_data_size());
2586 }
2587
2588 // Add arbitrary data to an output section by Input_section.
2589
2590 void
2591 Output_section::add_output_section_data(Input_section* inp)
2592 {
2593   if (this->input_sections_.empty())
2594     this->first_input_offset_ = this->current_data_size_for_child();
2595
2596   this->input_sections_.push_back(*inp);
2597
2598   uint64_t addralign = inp->addralign();
2599   if (addralign > this->addralign_)
2600     this->addralign_ = addralign;
2601
2602   inp->set_output_section(this);
2603 }
2604
2605 // Add a merge section to an output section.
2606
2607 void
2608 Output_section::add_output_merge_section(Output_section_data* posd,
2609                                          bool is_string, uint64_t entsize)
2610 {
2611   Input_section inp(posd, is_string, entsize);
2612   this->add_output_section_data(&inp);
2613 }
2614
2615 // Add an input section to a SHF_MERGE section.
2616
2617 bool
2618 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2619                                         uint64_t flags, uint64_t entsize,
2620                                         uint64_t addralign,
2621                                         bool keeps_input_sections)
2622 {
2623   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2624
2625   // We only merge strings if the alignment is not more than the
2626   // character size.  This could be handled, but it's unusual.
2627   if (is_string && addralign > entsize)
2628     return false;
2629
2630   // We cannot restore merged input section states.
2631   gold_assert(this->checkpoint_ == NULL);
2632
2633   // Look up merge sections by required properties.
2634   // Currently, we only invalidate the lookup maps in script processing
2635   // and relaxation.  We should not have done either when we reach here.
2636   // So we assume that the lookup maps are valid to simply code.
2637   gold_assert(this->lookup_maps_->is_valid());
2638   Merge_section_properties msp(is_string, entsize, addralign);
2639   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2640   bool is_new = false;
2641   if (pomb != NULL)
2642     {
2643       gold_assert(pomb->is_string() == is_string
2644                   && pomb->entsize() == entsize
2645                   && pomb->addralign() == addralign);
2646     }
2647   else
2648     {
2649       // Create a new Output_merge_data or Output_merge_string_data.
2650       if (!is_string)
2651         pomb = new Output_merge_data(entsize, addralign);
2652       else
2653         {
2654           switch (entsize)
2655             {
2656             case 1:
2657               pomb = new Output_merge_string<char>(addralign);
2658               break;
2659             case 2:
2660               pomb = new Output_merge_string<uint16_t>(addralign);
2661               break;
2662             case 4:
2663               pomb = new Output_merge_string<uint32_t>(addralign);
2664               break;
2665             default:
2666               return false;
2667             }
2668         }
2669       // If we need to do script processing or relaxation, we need to keep
2670       // the original input sections to rebuild the fast lookup maps.
2671       if (keeps_input_sections)
2672         pomb->set_keeps_input_sections();
2673       is_new = true;
2674     }
2675
2676   if (pomb->add_input_section(object, shndx))
2677     {
2678       // Add new merge section to this output section and link merge
2679       // section properties to new merge section in map.
2680       if (is_new)
2681         {
2682           this->add_output_merge_section(pomb, is_string, entsize);
2683           this->lookup_maps_->add_merge_section(msp, pomb);
2684         }
2685
2686       // Add input section to new merge section and link input section to new
2687       // merge section in map.
2688       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2689       return true;
2690     }
2691   else
2692     {
2693       // If add_input_section failed, delete new merge section to avoid
2694       // exporting empty merge sections in Output_section::get_input_section.
2695       if (is_new)
2696         delete pomb;
2697       return false;
2698     }
2699 }
2700
2701 // Build a relaxation map to speed up relaxation of existing input sections.
2702 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2703
2704 void
2705 Output_section::build_relaxation_map(
2706   const Input_section_list& input_sections,
2707   size_t limit,
2708   Relaxation_map* relaxation_map) const
2709 {
2710   for (size_t i = 0; i < limit; ++i)
2711     {
2712       const Input_section& is(input_sections[i]);
2713       if (is.is_input_section() || is.is_relaxed_input_section())
2714         {
2715           Section_id sid(is.relobj(), is.shndx());
2716           (*relaxation_map)[sid] = i;
2717         }
2718     }
2719 }
2720
2721 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2722 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2723 // indices of INPUT_SECTIONS.
2724
2725 void
2726 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2727   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2728   const Relaxation_map& map,
2729   Input_section_list* input_sections)
2730 {
2731   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2732     {
2733       Output_relaxed_input_section* poris = relaxed_sections[i];
2734       Section_id sid(poris->relobj(), poris->shndx());
2735       Relaxation_map::const_iterator p = map.find(sid);
2736       gold_assert(p != map.end());
2737       gold_assert((*input_sections)[p->second].is_input_section());
2738
2739       // Remember section order index of original input section
2740       // if it is set.  Copy it to the relaxed input section.
2741       unsigned int soi =
2742         (*input_sections)[p->second].section_order_index();
2743       (*input_sections)[p->second] = Input_section(poris);
2744       (*input_sections)[p->second].set_section_order_index(soi);
2745     }
2746 }
2747   
2748 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2749 // is a vector of pointers to Output_relaxed_input_section or its derived
2750 // classes.  The relaxed sections must correspond to existing input sections.
2751
2752 void
2753 Output_section::convert_input_sections_to_relaxed_sections(
2754   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2755 {
2756   gold_assert(parameters->target().may_relax());
2757
2758   // We want to make sure that restore_states does not undo the effect of
2759   // this.  If there is no checkpoint active, just search the current
2760   // input section list and replace the sections there.  If there is
2761   // a checkpoint, also replace the sections there.
2762   
2763   // By default, we look at the whole list.
2764   size_t limit = this->input_sections_.size();
2765
2766   if (this->checkpoint_ != NULL)
2767     {
2768       // Replace input sections with relaxed input section in the saved
2769       // copy of the input section list.
2770       if (this->checkpoint_->input_sections_saved())
2771         {
2772           Relaxation_map map;
2773           this->build_relaxation_map(
2774                     *(this->checkpoint_->input_sections()),
2775                     this->checkpoint_->input_sections()->size(),
2776                     &map);
2777           this->convert_input_sections_in_list_to_relaxed_sections(
2778                     relaxed_sections,
2779                     map,
2780                     this->checkpoint_->input_sections());
2781         }
2782       else
2783         {
2784           // We have not copied the input section list yet.  Instead, just
2785           // look at the portion that would be saved.
2786           limit = this->checkpoint_->input_sections_size();
2787         }
2788     }
2789
2790   // Convert input sections in input_section_list.
2791   Relaxation_map map;
2792   this->build_relaxation_map(this->input_sections_, limit, &map);
2793   this->convert_input_sections_in_list_to_relaxed_sections(
2794             relaxed_sections,
2795             map,
2796             &this->input_sections_);
2797
2798   // Update fast look-up map.
2799   if (this->lookup_maps_->is_valid())
2800     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2801       {
2802         Output_relaxed_input_section* poris = relaxed_sections[i];
2803         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2804                                                       poris->shndx(), poris);
2805       }
2806 }
2807
2808 // Update the output section flags based on input section flags.
2809
2810 void
2811 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2812 {
2813   // If we created the section with SHF_ALLOC clear, we set the
2814   // address.  If we are now setting the SHF_ALLOC flag, we need to
2815   // undo that.
2816   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2817       && (flags & elfcpp::SHF_ALLOC) != 0)
2818     this->mark_address_invalid();
2819
2820   this->flags_ |= (flags
2821                    & (elfcpp::SHF_WRITE
2822                       | elfcpp::SHF_ALLOC
2823                       | elfcpp::SHF_EXECINSTR));
2824
2825   if ((flags & elfcpp::SHF_MERGE) == 0)
2826     this->flags_ &=~ elfcpp::SHF_MERGE;
2827   else
2828     {
2829       if (this->current_data_size_for_child() == 0)
2830         this->flags_ |= elfcpp::SHF_MERGE;
2831     }
2832
2833   if ((flags & elfcpp::SHF_STRINGS) == 0)
2834     this->flags_ &=~ elfcpp::SHF_STRINGS;
2835   else
2836     {
2837       if (this->current_data_size_for_child() == 0)
2838         this->flags_ |= elfcpp::SHF_STRINGS;
2839     }
2840 }
2841
2842 // Find the merge section into which an input section with index SHNDX in
2843 // OBJECT has been added.  Return NULL if none found.
2844
2845 Output_section_data*
2846 Output_section::find_merge_section(const Relobj* object,
2847                                    unsigned int shndx) const
2848 {
2849   if (!this->lookup_maps_->is_valid())
2850     this->build_lookup_maps();
2851   return this->lookup_maps_->find_merge_section(object, shndx);
2852 }
2853
2854 // Build the lookup maps for merge and relaxed sections.  This is needs
2855 // to be declared as a const methods so that it is callable with a const
2856 // Output_section pointer.  The method only updates states of the maps.
2857
2858 void
2859 Output_section::build_lookup_maps() const
2860 {
2861   this->lookup_maps_->clear();
2862   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2863        p != this->input_sections_.end();
2864        ++p)
2865     {
2866       if (p->is_merge_section())
2867         {
2868           Output_merge_base* pomb = p->output_merge_base();
2869           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2870                                        pomb->addralign());
2871           this->lookup_maps_->add_merge_section(msp, pomb);
2872           for (Output_merge_base::Input_sections::const_iterator is =
2873                  pomb->input_sections_begin();
2874                is != pomb->input_sections_end();
2875                ++is) 
2876             {
2877               const Const_section_id& csid = *is;
2878             this->lookup_maps_->add_merge_input_section(csid.first,
2879                                                         csid.second, pomb);
2880             }
2881             
2882         }
2883       else if (p->is_relaxed_input_section())
2884         {
2885           Output_relaxed_input_section* poris = p->relaxed_input_section();
2886           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2887                                                         poris->shndx(), poris);
2888         }
2889     }
2890 }
2891
2892 // Find an relaxed input section corresponding to an input section
2893 // in OBJECT with index SHNDX.
2894
2895 const Output_relaxed_input_section*
2896 Output_section::find_relaxed_input_section(const Relobj* object,
2897                                            unsigned int shndx) const
2898 {
2899   if (!this->lookup_maps_->is_valid())
2900     this->build_lookup_maps();
2901   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2902 }
2903
2904 // Given an address OFFSET relative to the start of input section
2905 // SHNDX in OBJECT, return whether this address is being included in
2906 // the final link.  This should only be called if SHNDX in OBJECT has
2907 // a special mapping.
2908
2909 bool
2910 Output_section::is_input_address_mapped(const Relobj* object,
2911                                         unsigned int shndx,
2912                                         off_t offset) const
2913 {
2914   // Look at the Output_section_data_maps first.
2915   const Output_section_data* posd = this->find_merge_section(object, shndx);
2916   if (posd == NULL)
2917     posd = this->find_relaxed_input_section(object, shndx);
2918
2919   if (posd != NULL)
2920     {
2921       section_offset_type output_offset;
2922       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2923       gold_assert(found);   
2924       return output_offset != -1;
2925     }
2926
2927   // Fall back to the slow look-up.
2928   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2929        p != this->input_sections_.end();
2930        ++p)
2931     {
2932       section_offset_type output_offset;
2933       if (p->output_offset(object, shndx, offset, &output_offset))
2934         return output_offset != -1;
2935     }
2936
2937   // By default we assume that the address is mapped.  This should
2938   // only be called after we have passed all sections to Layout.  At
2939   // that point we should know what we are discarding.
2940   return true;
2941 }
2942
2943 // Given an address OFFSET relative to the start of input section
2944 // SHNDX in object OBJECT, return the output offset relative to the
2945 // start of the input section in the output section.  This should only
2946 // be called if SHNDX in OBJECT has a special mapping.
2947
2948 section_offset_type
2949 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2950                               section_offset_type offset) const
2951 {
2952   // This can only be called meaningfully when we know the data size
2953   // of this.
2954   gold_assert(this->is_data_size_valid());
2955
2956   // Look at the Output_section_data_maps first.
2957   const Output_section_data* posd = this->find_merge_section(object, shndx);
2958   if (posd == NULL) 
2959     posd = this->find_relaxed_input_section(object, shndx);
2960   if (posd != NULL)
2961     {
2962       section_offset_type output_offset;
2963       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2964       gold_assert(found);   
2965       return output_offset;
2966     }
2967
2968   // Fall back to the slow look-up.
2969   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2970        p != this->input_sections_.end();
2971        ++p)
2972     {
2973       section_offset_type output_offset;
2974       if (p->output_offset(object, shndx, offset, &output_offset))
2975         return output_offset;
2976     }
2977   gold_unreachable();
2978 }
2979
2980 // Return the output virtual address of OFFSET relative to the start
2981 // of input section SHNDX in object OBJECT.
2982
2983 uint64_t
2984 Output_section::output_address(const Relobj* object, unsigned int shndx,
2985                                off_t offset) const
2986 {
2987   uint64_t addr = this->address() + this->first_input_offset_;
2988
2989   // Look at the Output_section_data_maps first.
2990   const Output_section_data* posd = this->find_merge_section(object, shndx);
2991   if (posd == NULL) 
2992     posd = this->find_relaxed_input_section(object, shndx);
2993   if (posd != NULL && posd->is_address_valid())
2994     {
2995       section_offset_type output_offset;
2996       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2997       gold_assert(found);
2998       return posd->address() + output_offset;
2999     }
3000
3001   // Fall back to the slow look-up.
3002   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3003        p != this->input_sections_.end();
3004        ++p)
3005     {
3006       addr = align_address(addr, p->addralign());
3007       section_offset_type output_offset;
3008       if (p->output_offset(object, shndx, offset, &output_offset))
3009         {
3010           if (output_offset == -1)
3011             return -1ULL;
3012           return addr + output_offset;
3013         }
3014       addr += p->data_size();
3015     }
3016
3017   // If we get here, it means that we don't know the mapping for this
3018   // input section.  This might happen in principle if
3019   // add_input_section were called before add_output_section_data.
3020   // But it should never actually happen.
3021
3022   gold_unreachable();
3023 }
3024
3025 // Find the output address of the start of the merged section for
3026 // input section SHNDX in object OBJECT.
3027
3028 bool
3029 Output_section::find_starting_output_address(const Relobj* object,
3030                                              unsigned int shndx,
3031                                              uint64_t* paddr) const
3032 {
3033   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3034   // Looking up the merge section map does not always work as we sometimes
3035   // find a merge section without its address set.
3036   uint64_t addr = this->address() + this->first_input_offset_;
3037   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3038        p != this->input_sections_.end();
3039        ++p)
3040     {
3041       addr = align_address(addr, p->addralign());
3042
3043       // It would be nice if we could use the existing output_offset
3044       // method to get the output offset of input offset 0.
3045       // Unfortunately we don't know for sure that input offset 0 is
3046       // mapped at all.
3047       if (p->is_merge_section_for(object, shndx))
3048         {
3049           *paddr = addr;
3050           return true;
3051         }
3052
3053       addr += p->data_size();
3054     }
3055
3056   // We couldn't find a merge output section for this input section.
3057   return false;
3058 }
3059
3060 // Update the data size of an Output_section.
3061
3062 void
3063 Output_section::update_data_size()
3064 {
3065   if (this->input_sections_.empty())
3066       return;
3067
3068   if (this->must_sort_attached_input_sections()
3069       || this->input_section_order_specified())
3070     this->sort_attached_input_sections();
3071
3072   off_t off = this->first_input_offset_;
3073   for (Input_section_list::iterator p = this->input_sections_.begin();
3074        p != this->input_sections_.end();
3075        ++p)
3076     {
3077       off = align_address(off, p->addralign());
3078       off += p->current_data_size();
3079     }
3080
3081   this->set_current_data_size_for_child(off);
3082 }
3083
3084 // Set the data size of an Output_section.  This is where we handle
3085 // setting the addresses of any Output_section_data objects.
3086
3087 void
3088 Output_section::set_final_data_size()
3089 {
3090   off_t data_size;
3091
3092   if (this->input_sections_.empty())
3093     data_size = this->current_data_size_for_child();
3094   else
3095     {
3096       if (this->must_sort_attached_input_sections()
3097           || this->input_section_order_specified())
3098         this->sort_attached_input_sections();
3099
3100       uint64_t address = this->address();
3101       off_t startoff = this->offset();
3102       off_t off = startoff + this->first_input_offset_;
3103       for (Input_section_list::iterator p = this->input_sections_.begin();
3104            p != this->input_sections_.end();
3105            ++p)
3106         {
3107           off = align_address(off, p->addralign());
3108           p->set_address_and_file_offset(address + (off - startoff), off,
3109                                          startoff);
3110           off += p->data_size();
3111         }
3112       data_size = off - startoff;
3113     }
3114
3115   // For full incremental links, we want to allocate some patch space
3116   // in most sections for subsequent incremental updates.
3117   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3118     {
3119       double pct = parameters->options().incremental_patch();
3120       size_t extra = static_cast<size_t>(data_size * pct);
3121       if (this->free_space_fill_ != NULL
3122           && this->free_space_fill_->minimum_hole_size() > extra)
3123         extra = this->free_space_fill_->minimum_hole_size();
3124       off_t new_size = align_address(data_size + extra, this->addralign());
3125       this->patch_space_ = new_size - data_size;
3126       gold_debug(DEBUG_INCREMENTAL,
3127                  "set_final_data_size: %08lx + %08lx: section %s",
3128                  static_cast<long>(data_size),
3129                  static_cast<long>(this->patch_space_),
3130                  this->name());
3131       data_size = new_size;
3132     }
3133
3134   this->set_data_size(data_size);
3135 }
3136
3137 // Reset the address and file offset.
3138
3139 void
3140 Output_section::do_reset_address_and_file_offset()
3141 {
3142   // An unallocated section has no address.  Forcing this means that
3143   // we don't need special treatment for symbols defined in debug
3144   // sections.  We do the same in the constructor.  This does not
3145   // apply to NOLOAD sections though.
3146   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3147      this->set_address(0);
3148
3149   for (Input_section_list::iterator p = this->input_sections_.begin();
3150        p != this->input_sections_.end();
3151        ++p)
3152     p->reset_address_and_file_offset();
3153
3154   // Remove any patch space that was added in set_final_data_size.
3155   if (this->patch_space_ > 0)
3156     {
3157       this->set_current_data_size_for_child(this->current_data_size_for_child()
3158                                             - this->patch_space_);
3159       this->patch_space_ = 0;
3160     }
3161 }
3162
3163 // Return true if address and file offset have the values after reset.
3164
3165 bool
3166 Output_section::do_address_and_file_offset_have_reset_values() const
3167 {
3168   if (this->is_offset_valid())
3169     return false;
3170
3171   // An unallocated section has address 0 after its construction or a reset.
3172   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3173     return this->is_address_valid() && this->address() == 0;
3174   else
3175     return !this->is_address_valid();
3176 }
3177
3178 // Set the TLS offset.  Called only for SHT_TLS sections.
3179
3180 void
3181 Output_section::do_set_tls_offset(uint64_t tls_base)
3182 {
3183   this->tls_offset_ = this->address() - tls_base;
3184 }
3185
3186 // In a few cases we need to sort the input sections attached to an
3187 // output section.  This is used to implement the type of constructor
3188 // priority ordering implemented by the GNU linker, in which the
3189 // priority becomes part of the section name and the sections are
3190 // sorted by name.  We only do this for an output section if we see an
3191 // attached input section matching ".ctors.*", ".dtors.*",
3192 // ".init_array.*" or ".fini_array.*".
3193
3194 class Output_section::Input_section_sort_entry
3195 {
3196  public:
3197   Input_section_sort_entry()
3198     : input_section_(), index_(-1U), section_has_name_(false),
3199       section_name_()
3200   { }
3201
3202   Input_section_sort_entry(const Input_section& input_section,
3203                            unsigned int index,
3204                            bool must_sort_attached_input_sections)
3205     : input_section_(input_section), index_(index),
3206       section_has_name_(input_section.is_input_section()
3207                         || input_section.is_relaxed_input_section())
3208   {
3209     if (this->section_has_name_
3210         && must_sort_attached_input_sections)
3211       {
3212         // This is only called single-threaded from Layout::finalize,
3213         // so it is OK to lock.  Unfortunately we have no way to pass
3214         // in a Task token.
3215         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3216         Object* obj = (input_section.is_input_section()
3217                        ? input_section.relobj()
3218                        : input_section.relaxed_input_section()->relobj());
3219         Task_lock_obj<Object> tl(dummy_task, obj);
3220
3221         // This is a slow operation, which should be cached in
3222         // Layout::layout if this becomes a speed problem.
3223         this->section_name_ = obj->section_name(input_section.shndx());
3224       }
3225   }
3226
3227   // Return the Input_section.
3228   const Input_section&
3229   input_section() const
3230   {
3231     gold_assert(this->index_ != -1U);
3232     return this->input_section_;
3233   }
3234
3235   // The index of this entry in the original list.  This is used to
3236   // make the sort stable.
3237   unsigned int
3238   index() const
3239   {
3240     gold_assert(this->index_ != -1U);
3241     return this->index_;
3242   }
3243
3244   // Whether there is a section name.
3245   bool
3246   section_has_name() const
3247   { return this->section_has_name_; }
3248
3249   // The section name.
3250   const std::string&
3251   section_name() const
3252   {
3253     gold_assert(this->section_has_name_);
3254     return this->section_name_;
3255   }
3256
3257   // Return true if the section name has a priority.  This is assumed
3258   // to be true if it has a dot after the initial dot.
3259   bool
3260   has_priority() const
3261   {
3262     gold_assert(this->section_has_name_);
3263     return this->section_name_.find('.', 1) != std::string::npos;
3264   }
3265
3266   // Return the priority.  Believe it or not, gcc encodes the priority
3267   // differently for .ctors/.dtors and .init_array/.fini_array
3268   // sections.
3269   unsigned int
3270   get_priority() const
3271   {
3272     gold_assert(this->section_has_name_);
3273     bool is_ctors;
3274     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3275         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3276       is_ctors = true;
3277     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3278              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3279       is_ctors = false;
3280     else
3281       return 0;
3282     char* end;
3283     unsigned long prio = strtoul((this->section_name_.c_str()
3284                                   + (is_ctors ? 7 : 12)),
3285                                  &end, 10);
3286     if (*end != '\0')
3287       return 0;
3288     else if (is_ctors)
3289       return 65535 - prio;
3290     else
3291       return prio;
3292   }
3293
3294   // Return true if this an input file whose base name matches
3295   // FILE_NAME.  The base name must have an extension of ".o", and
3296   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3297   // This is to match crtbegin.o as well as crtbeginS.o without
3298   // getting confused by other possibilities.  Overall matching the
3299   // file name this way is a dreadful hack, but the GNU linker does it
3300   // in order to better support gcc, and we need to be compatible.
3301   bool
3302   match_file_name(const char* file_name) const
3303   { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3304
3305   // Returns 1 if THIS should appear before S in section order, -1 if S
3306   // appears before THIS and 0 if they are not comparable.
3307   int
3308   compare_section_ordering(const Input_section_sort_entry& s) const
3309   {
3310     unsigned int this_secn_index = this->input_section_.section_order_index();
3311     unsigned int s_secn_index = s.input_section().section_order_index();
3312     if (this_secn_index > 0 && s_secn_index > 0)
3313       {
3314         if (this_secn_index < s_secn_index)
3315           return 1;
3316         else if (this_secn_index > s_secn_index)
3317           return -1;
3318       }
3319     return 0;
3320   }
3321
3322  private:
3323   // The Input_section we are sorting.
3324   Input_section input_section_;
3325   // The index of this Input_section in the original list.
3326   unsigned int index_;
3327   // Whether this Input_section has a section name--it won't if this
3328   // is some random Output_section_data.
3329   bool section_has_name_;
3330   // The section name if there is one.
3331   std::string section_name_;
3332 };
3333
3334 // Return true if S1 should come before S2 in the output section.
3335
3336 bool
3337 Output_section::Input_section_sort_compare::operator()(
3338     const Output_section::Input_section_sort_entry& s1,
3339     const Output_section::Input_section_sort_entry& s2) const
3340 {
3341   // crtbegin.o must come first.
3342   bool s1_begin = s1.match_file_name("crtbegin");
3343   bool s2_begin = s2.match_file_name("crtbegin");
3344   if (s1_begin || s2_begin)
3345     {
3346       if (!s1_begin)
3347         return false;
3348       if (!s2_begin)
3349         return true;
3350       return s1.index() < s2.index();
3351     }
3352
3353   // crtend.o must come last.
3354   bool s1_end = s1.match_file_name("crtend");
3355   bool s2_end = s2.match_file_name("crtend");
3356   if (s1_end || s2_end)
3357     {
3358       if (!s1_end)
3359         return true;
3360       if (!s2_end)
3361         return false;
3362       return s1.index() < s2.index();
3363     }
3364
3365   // We sort all the sections with no names to the end.
3366   if (!s1.section_has_name() || !s2.section_has_name())
3367     {
3368       if (s1.section_has_name())
3369         return true;
3370       if (s2.section_has_name())
3371         return false;
3372       return s1.index() < s2.index();
3373     }
3374
3375   // A section with a priority follows a section without a priority.
3376   bool s1_has_priority = s1.has_priority();
3377   bool s2_has_priority = s2.has_priority();
3378   if (s1_has_priority && !s2_has_priority)
3379     return false;
3380   if (!s1_has_priority && s2_has_priority)
3381     return true;
3382
3383   // Check if a section order exists for these sections through a section
3384   // ordering file.  If sequence_num is 0, an order does not exist.
3385   int sequence_num = s1.compare_section_ordering(s2);
3386   if (sequence_num != 0)
3387     return sequence_num == 1;
3388
3389   // Otherwise we sort by name.
3390   int compare = s1.section_name().compare(s2.section_name());
3391   if (compare != 0)
3392     return compare < 0;
3393
3394   // Otherwise we keep the input order.
3395   return s1.index() < s2.index();
3396 }
3397
3398 // Return true if S1 should come before S2 in an .init_array or .fini_array
3399 // output section.
3400
3401 bool
3402 Output_section::Input_section_sort_init_fini_compare::operator()(
3403     const Output_section::Input_section_sort_entry& s1,
3404     const Output_section::Input_section_sort_entry& s2) const
3405 {
3406   // We sort all the sections with no names to the end.
3407   if (!s1.section_has_name() || !s2.section_has_name())
3408     {
3409       if (s1.section_has_name())
3410         return true;
3411       if (s2.section_has_name())
3412         return false;
3413       return s1.index() < s2.index();
3414     }
3415
3416   // A section without a priority follows a section with a priority.
3417   // This is the reverse of .ctors and .dtors sections.
3418   bool s1_has_priority = s1.has_priority();
3419   bool s2_has_priority = s2.has_priority();
3420   if (s1_has_priority && !s2_has_priority)
3421     return true;
3422   if (!s1_has_priority && s2_has_priority)
3423     return false;
3424
3425   // .ctors and .dtors sections without priority come after
3426   // .init_array and .fini_array sections without priority.
3427   if (!s1_has_priority
3428       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3429       && s1.section_name() != s2.section_name())
3430     return false;
3431   if (!s2_has_priority
3432       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3433       && s2.section_name() != s1.section_name())
3434     return true;
3435
3436   // Sort by priority if we can.
3437   if (s1_has_priority)
3438     {
3439       unsigned int s1_prio = s1.get_priority();
3440       unsigned int s2_prio = s2.get_priority();
3441       if (s1_prio < s2_prio)
3442         return true;
3443       else if (s1_prio > s2_prio)
3444         return false;
3445     }
3446
3447   // Check if a section order exists for these sections through a section
3448   // ordering file.  If sequence_num is 0, an order does not exist.
3449   int sequence_num = s1.compare_section_ordering(s2);
3450   if (sequence_num != 0)
3451     return sequence_num == 1;
3452
3453   // Otherwise we sort by name.
3454   int compare = s1.section_name().compare(s2.section_name());
3455   if (compare != 0)
3456     return compare < 0;
3457
3458   // Otherwise we keep the input order.
3459   return s1.index() < s2.index();
3460 }
3461
3462 // Return true if S1 should come before S2.  Sections that do not match
3463 // any pattern in the section ordering file are placed ahead of the sections
3464 // that match some pattern.
3465
3466 bool
3467 Output_section::Input_section_sort_section_order_index_compare::operator()(
3468     const Output_section::Input_section_sort_entry& s1,
3469     const Output_section::Input_section_sort_entry& s2) const
3470 {
3471   unsigned int s1_secn_index = s1.input_section().section_order_index();
3472   unsigned int s2_secn_index = s2.input_section().section_order_index();
3473
3474   // Keep input order if section ordering cannot determine order.
3475   if (s1_secn_index == s2_secn_index)
3476     return s1.index() < s2.index();
3477   
3478   return s1_secn_index < s2_secn_index;
3479 }
3480
3481 // This updates the section order index of input sections according to the
3482 // the order specified in the mapping from Section id to order index.
3483
3484 void
3485 Output_section::update_section_layout(
3486   const Section_layout_order& order_map)
3487 {
3488   for (Input_section_list::iterator p = this->input_sections_.begin();
3489        p != this->input_sections_.end();
3490        ++p)
3491     {
3492       if (p->is_input_section()
3493           || p->is_relaxed_input_section())
3494         {
3495           Object* obj = (p->is_input_section()
3496                          ? p->relobj()
3497                          : p->relaxed_input_section()->relobj());
3498           unsigned int shndx = p->shndx();
3499           Section_layout_order::const_iterator it
3500             = order_map.find(Section_id(obj, shndx));
3501           if (it == order_map.end())
3502             continue;
3503           unsigned int section_order_index = it->second;
3504           if (section_order_index != 0)
3505             {
3506               p->set_section_order_index(section_order_index);
3507               this->set_input_section_order_specified();
3508             }
3509         }
3510     }
3511 }
3512
3513 // Sort the input sections attached to an output section.
3514
3515 void
3516 Output_section::sort_attached_input_sections()
3517 {
3518   if (this->attached_input_sections_are_sorted_)
3519     return;
3520
3521   if (this->checkpoint_ != NULL
3522       && !this->checkpoint_->input_sections_saved())
3523     this->checkpoint_->save_input_sections();
3524
3525   // The only thing we know about an input section is the object and
3526   // the section index.  We need the section name.  Recomputing this
3527   // is slow but this is an unusual case.  If this becomes a speed
3528   // problem we can cache the names as required in Layout::layout.
3529
3530   // We start by building a larger vector holding a copy of each
3531   // Input_section, plus its current index in the list and its name.
3532   std::vector<Input_section_sort_entry> sort_list;
3533
3534   unsigned int i = 0;
3535   for (Input_section_list::iterator p = this->input_sections_.begin();
3536        p != this->input_sections_.end();
3537        ++p, ++i)
3538       sort_list.push_back(Input_section_sort_entry(*p, i,
3539                             this->must_sort_attached_input_sections()));
3540
3541   // Sort the input sections.
3542   if (this->must_sort_attached_input_sections())
3543     {
3544       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3545           || this->type() == elfcpp::SHT_INIT_ARRAY
3546           || this->type() == elfcpp::SHT_FINI_ARRAY)
3547         std::sort(sort_list.begin(), sort_list.end(),
3548                   Input_section_sort_init_fini_compare());
3549       else
3550         std::sort(sort_list.begin(), sort_list.end(),
3551                   Input_section_sort_compare());
3552     }
3553   else
3554     {
3555       gold_assert(this->input_section_order_specified());
3556       std::sort(sort_list.begin(), sort_list.end(),
3557                 Input_section_sort_section_order_index_compare());
3558     }
3559
3560   // Copy the sorted input sections back to our list.
3561   this->input_sections_.clear();
3562   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3563        p != sort_list.end();
3564        ++p)
3565     this->input_sections_.push_back(p->input_section());
3566   sort_list.clear();
3567
3568   // Remember that we sorted the input sections, since we might get
3569   // called again.
3570   this->attached_input_sections_are_sorted_ = true;
3571 }
3572
3573 // Write the section header to *OSHDR.
3574
3575 template<int size, bool big_endian>
3576 void
3577 Output_section::write_header(const Layout* layout,
3578                              const Stringpool* secnamepool,
3579                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3580 {
3581   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3582   oshdr->put_sh_type(this->type_);
3583
3584   elfcpp::Elf_Xword flags = this->flags_;
3585   if (this->info_section_ != NULL && this->info_uses_section_index_)
3586     flags |= elfcpp::SHF_INFO_LINK;
3587   oshdr->put_sh_flags(flags);
3588
3589   oshdr->put_sh_addr(this->address());
3590   oshdr->put_sh_offset(this->offset());
3591   oshdr->put_sh_size(this->data_size());
3592   if (this->link_section_ != NULL)
3593     oshdr->put_sh_link(this->link_section_->out_shndx());
3594   else if (this->should_link_to_symtab_)
3595     oshdr->put_sh_link(layout->symtab_section_shndx());
3596   else if (this->should_link_to_dynsym_)
3597     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3598   else
3599     oshdr->put_sh_link(this->link_);
3600
3601   elfcpp::Elf_Word info;
3602   if (this->info_section_ != NULL)
3603     {
3604       if (this->info_uses_section_index_)
3605         info = this->info_section_->out_shndx();
3606       else
3607         info = this->info_section_->symtab_index();
3608     }
3609   else if (this->info_symndx_ != NULL)
3610     info = this->info_symndx_->symtab_index();
3611   else
3612     info = this->info_;
3613   oshdr->put_sh_info(info);
3614
3615   oshdr->put_sh_addralign(this->addralign_);
3616   oshdr->put_sh_entsize(this->entsize_);
3617 }
3618
3619 // Write out the data.  For input sections the data is written out by
3620 // Object::relocate, but we have to handle Output_section_data objects
3621 // here.
3622
3623 void
3624 Output_section::do_write(Output_file* of)
3625 {
3626   gold_assert(!this->requires_postprocessing());
3627
3628   // If the target performs relaxation, we delay filler generation until now.
3629   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3630
3631   off_t output_section_file_offset = this->offset();
3632   for (Fill_list::iterator p = this->fills_.begin();
3633        p != this->fills_.end();
3634        ++p)
3635     {
3636       std::string fill_data(parameters->target().code_fill(p->length()));
3637       of->write(output_section_file_offset + p->section_offset(),
3638                 fill_data.data(), fill_data.size());
3639     }
3640
3641   off_t off = this->offset() + this->first_input_offset_;
3642   for (Input_section_list::iterator p = this->input_sections_.begin();
3643        p != this->input_sections_.end();
3644        ++p)
3645     {
3646       off_t aligned_off = align_address(off, p->addralign());
3647       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3648         {
3649           size_t fill_len = aligned_off - off;
3650           std::string fill_data(parameters->target().code_fill(fill_len));
3651           of->write(off, fill_data.data(), fill_data.size());
3652         }
3653
3654       p->write(of);
3655       off = aligned_off + p->data_size();
3656     }
3657
3658   // For incremental links, fill in unused chunks in debug sections
3659   // with dummy compilation unit headers.
3660   if (this->free_space_fill_ != NULL)
3661     {
3662       for (Free_list::Const_iterator p = this->free_list_.begin();
3663            p != this->free_list_.end();
3664            ++p)
3665         {
3666           off_t off = p->start_;
3667           size_t len = p->end_ - off;
3668           this->free_space_fill_->write(of, this->offset() + off, len);
3669         }
3670       if (this->patch_space_ > 0)
3671         {
3672           off_t off = this->current_data_size_for_child() - this->patch_space_;
3673           this->free_space_fill_->write(of, this->offset() + off,
3674                                         this->patch_space_);
3675         }
3676     }
3677 }
3678
3679 // If a section requires postprocessing, create the buffer to use.
3680
3681 void
3682 Output_section::create_postprocessing_buffer()
3683 {
3684   gold_assert(this->requires_postprocessing());
3685
3686   if (this->postprocessing_buffer_ != NULL)
3687     return;
3688
3689   if (!this->input_sections_.empty())
3690     {
3691       off_t off = this->first_input_offset_;
3692       for (Input_section_list::iterator p = this->input_sections_.begin();
3693            p != this->input_sections_.end();
3694            ++p)
3695         {
3696           off = align_address(off, p->addralign());
3697           p->finalize_data_size();
3698           off += p->data_size();
3699         }
3700       this->set_current_data_size_for_child(off);
3701     }
3702
3703   off_t buffer_size = this->current_data_size_for_child();
3704   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3705 }
3706
3707 // Write all the data of an Output_section into the postprocessing
3708 // buffer.  This is used for sections which require postprocessing,
3709 // such as compression.  Input sections are handled by
3710 // Object::Relocate.
3711
3712 void
3713 Output_section::write_to_postprocessing_buffer()
3714 {
3715   gold_assert(this->requires_postprocessing());
3716
3717   // If the target performs relaxation, we delay filler generation until now.
3718   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3719
3720   unsigned char* buffer = this->postprocessing_buffer();
3721   for (Fill_list::iterator p = this->fills_.begin();
3722        p != this->fills_.end();
3723        ++p)
3724     {
3725       std::string fill_data(parameters->target().code_fill(p->length()));
3726       memcpy(buffer + p->section_offset(), fill_data.data(),
3727              fill_data.size());
3728     }
3729
3730   off_t off = this->first_input_offset_;
3731   for (Input_section_list::iterator p = this->input_sections_.begin();
3732        p != this->input_sections_.end();
3733        ++p)
3734     {
3735       off_t aligned_off = align_address(off, p->addralign());
3736       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3737         {
3738           size_t fill_len = aligned_off - off;
3739           std::string fill_data(parameters->target().code_fill(fill_len));
3740           memcpy(buffer + off, fill_data.data(), fill_data.size());
3741         }
3742
3743       p->write_to_buffer(buffer + aligned_off);
3744       off = aligned_off + p->data_size();
3745     }
3746 }
3747
3748 // Get the input sections for linker script processing.  We leave
3749 // behind the Output_section_data entries.  Note that this may be
3750 // slightly incorrect for merge sections.  We will leave them behind,
3751 // but it is possible that the script says that they should follow
3752 // some other input sections, as in:
3753 //    .rodata { *(.rodata) *(.rodata.cst*) }
3754 // For that matter, we don't handle this correctly:
3755 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3756 // With luck this will never matter.
3757
3758 uint64_t
3759 Output_section::get_input_sections(
3760     uint64_t address,
3761     const std::string& fill,
3762     std::list<Input_section>* input_sections)
3763 {
3764   if (this->checkpoint_ != NULL
3765       && !this->checkpoint_->input_sections_saved())
3766     this->checkpoint_->save_input_sections();
3767
3768   // Invalidate fast look-up maps.
3769   this->lookup_maps_->invalidate();
3770
3771   uint64_t orig_address = address;
3772
3773   address = align_address(address, this->addralign());
3774
3775   Input_section_list remaining;
3776   for (Input_section_list::iterator p = this->input_sections_.begin();
3777        p != this->input_sections_.end();
3778        ++p)
3779     {
3780       if (p->is_input_section()
3781           || p->is_relaxed_input_section()
3782           || p->is_merge_section())
3783         input_sections->push_back(*p);
3784       else
3785         {
3786           uint64_t aligned_address = align_address(address, p->addralign());
3787           if (aligned_address != address && !fill.empty())
3788             {
3789               section_size_type length =
3790                 convert_to_section_size_type(aligned_address - address);
3791               std::string this_fill;
3792               this_fill.reserve(length);
3793               while (this_fill.length() + fill.length() <= length)
3794                 this_fill += fill;
3795               if (this_fill.length() < length)
3796                 this_fill.append(fill, 0, length - this_fill.length());
3797
3798               Output_section_data* posd = new Output_data_const(this_fill, 0);
3799               remaining.push_back(Input_section(posd));
3800             }
3801           address = aligned_address;
3802
3803           remaining.push_back(*p);
3804
3805           p->finalize_data_size();
3806           address += p->data_size();
3807         }
3808     }
3809
3810   this->input_sections_.swap(remaining);
3811   this->first_input_offset_ = 0;
3812
3813   uint64_t data_size = address - orig_address;
3814   this->set_current_data_size_for_child(data_size);
3815   return data_size;
3816 }
3817
3818 // Add a script input section.  SIS is an Output_section::Input_section,
3819 // which can be either a plain input section or a special input section like
3820 // a relaxed input section.  For a special input section, its size must be
3821 // finalized.
3822
3823 void
3824 Output_section::add_script_input_section(const Input_section& sis)
3825 {
3826   uint64_t data_size = sis.data_size();
3827   uint64_t addralign = sis.addralign();
3828   if (addralign > this->addralign_)
3829     this->addralign_ = addralign;
3830
3831   off_t offset_in_section = this->current_data_size_for_child();
3832   off_t aligned_offset_in_section = align_address(offset_in_section,
3833                                                   addralign);
3834
3835   this->set_current_data_size_for_child(aligned_offset_in_section
3836                                         + data_size);
3837
3838   this->input_sections_.push_back(sis);
3839
3840   // Update fast lookup maps if necessary. 
3841   if (this->lookup_maps_->is_valid())
3842     {
3843       if (sis.is_merge_section())
3844         {
3845           Output_merge_base* pomb = sis.output_merge_base();
3846           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3847                                        pomb->addralign());
3848           this->lookup_maps_->add_merge_section(msp, pomb);
3849           for (Output_merge_base::Input_sections::const_iterator p =
3850                  pomb->input_sections_begin();
3851                p != pomb->input_sections_end();
3852                ++p)
3853             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3854                                                         pomb);
3855         }
3856       else if (sis.is_relaxed_input_section())
3857         {
3858           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3859           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3860                                                         poris->shndx(), poris);
3861         }
3862     }
3863 }
3864
3865 // Save states for relaxation.
3866
3867 void
3868 Output_section::save_states()
3869 {
3870   gold_assert(this->checkpoint_ == NULL);
3871   Checkpoint_output_section* checkpoint =
3872     new Checkpoint_output_section(this->addralign_, this->flags_,
3873                                   this->input_sections_,
3874                                   this->first_input_offset_,
3875                                   this->attached_input_sections_are_sorted_);
3876   this->checkpoint_ = checkpoint;
3877   gold_assert(this->fills_.empty());
3878 }
3879
3880 void
3881 Output_section::discard_states()
3882 {
3883   gold_assert(this->checkpoint_ != NULL);
3884   delete this->checkpoint_;
3885   this->checkpoint_ = NULL;
3886   gold_assert(this->fills_.empty());
3887
3888   // Simply invalidate the fast lookup maps since we do not keep
3889   // track of them.
3890   this->lookup_maps_->invalidate();
3891 }
3892
3893 void
3894 Output_section::restore_states()
3895 {
3896   gold_assert(this->checkpoint_ != NULL);
3897   Checkpoint_output_section* checkpoint = this->checkpoint_;
3898
3899   this->addralign_ = checkpoint->addralign();
3900   this->flags_ = checkpoint->flags();
3901   this->first_input_offset_ = checkpoint->first_input_offset();
3902
3903   if (!checkpoint->input_sections_saved())
3904     {
3905       // If we have not copied the input sections, just resize it.
3906       size_t old_size = checkpoint->input_sections_size();
3907       gold_assert(this->input_sections_.size() >= old_size);
3908       this->input_sections_.resize(old_size);
3909     }
3910   else
3911     {
3912       // We need to copy the whole list.  This is not efficient for
3913       // extremely large output with hundreads of thousands of input
3914       // objects.  We may need to re-think how we should pass sections
3915       // to scripts.
3916       this->input_sections_ = *checkpoint->input_sections();
3917     }
3918
3919   this->attached_input_sections_are_sorted_ =
3920     checkpoint->attached_input_sections_are_sorted();
3921
3922   // Simply invalidate the fast lookup maps since we do not keep
3923   // track of them.
3924   this->lookup_maps_->invalidate();
3925 }
3926
3927 // Update the section offsets of input sections in this.  This is required if
3928 // relaxation causes some input sections to change sizes.
3929
3930 void
3931 Output_section::adjust_section_offsets()
3932 {
3933   if (!this->section_offsets_need_adjustment_)
3934     return;
3935
3936   off_t off = 0;
3937   for (Input_section_list::iterator p = this->input_sections_.begin();
3938        p != this->input_sections_.end();
3939        ++p)
3940     {
3941       off = align_address(off, p->addralign());
3942       if (p->is_input_section())
3943         p->relobj()->set_section_offset(p->shndx(), off);
3944       off += p->data_size();
3945     }
3946
3947   this->section_offsets_need_adjustment_ = false;
3948 }
3949
3950 // Print to the map file.
3951
3952 void
3953 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3954 {
3955   mapfile->print_output_section(this);
3956
3957   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3958        p != this->input_sections_.end();
3959        ++p)
3960     p->print_to_mapfile(mapfile);
3961 }
3962
3963 // Print stats for merge sections to stderr.
3964
3965 void
3966 Output_section::print_merge_stats()
3967 {
3968   Input_section_list::iterator p;
3969   for (p = this->input_sections_.begin();
3970        p != this->input_sections_.end();
3971        ++p)
3972     p->print_merge_stats(this->name_);
3973 }
3974
3975 // Set a fixed layout for the section.  Used for incremental update links.
3976
3977 void
3978 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3979                                  off_t sh_size, uint64_t sh_addralign)
3980 {
3981   this->addralign_ = sh_addralign;
3982   this->set_current_data_size(sh_size);
3983   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3984     this->set_address(sh_addr);
3985   this->set_file_offset(sh_offset);
3986   this->finalize_data_size();
3987   this->free_list_.init(sh_size, false);
3988   this->has_fixed_layout_ = true;
3989 }
3990
3991 // Reserve space within the fixed layout for the section.  Used for
3992 // incremental update links.
3993
3994 void
3995 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3996 {
3997   this->free_list_.remove(sh_offset, sh_offset + sh_size);
3998 }
3999
4000 // Allocate space from the free list for the section.  Used for
4001 // incremental update links.
4002
4003 off_t
4004 Output_section::allocate(off_t len, uint64_t addralign)
4005 {
4006   return this->free_list_.allocate(len, addralign, 0);
4007 }
4008
4009 // Output segment methods.
4010
4011 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4012   : vaddr_(0),
4013     paddr_(0),
4014     memsz_(0),
4015     max_align_(0),
4016     min_p_align_(0),
4017     offset_(0),
4018     filesz_(0),
4019     type_(type),
4020     flags_(flags),
4021     is_max_align_known_(false),
4022     are_addresses_set_(false),
4023     is_large_data_segment_(false)
4024 {
4025   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4026   // the flags.
4027   if (type == elfcpp::PT_TLS)
4028     this->flags_ = elfcpp::PF_R;
4029 }
4030
4031 // Add an Output_section to a PT_LOAD Output_segment.
4032
4033 void
4034 Output_segment::add_output_section_to_load(Layout* layout,
4035                                            Output_section* os,
4036                                            elfcpp::Elf_Word seg_flags)
4037 {
4038   gold_assert(this->type() == elfcpp::PT_LOAD);
4039   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4040   gold_assert(!this->is_max_align_known_);
4041   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4042
4043   this->update_flags_for_output_section(seg_flags);
4044
4045   // We don't want to change the ordering if we have a linker script
4046   // with a SECTIONS clause.
4047   Output_section_order order = os->order();
4048   if (layout->script_options()->saw_sections_clause())
4049     order = static_cast<Output_section_order>(0);
4050   else
4051     gold_assert(order != ORDER_INVALID);
4052
4053   this->output_lists_[order].push_back(os);
4054 }
4055
4056 // Add an Output_section to a non-PT_LOAD Output_segment.
4057
4058 void
4059 Output_segment::add_output_section_to_nonload(Output_section* os,
4060                                               elfcpp::Elf_Word seg_flags)
4061 {
4062   gold_assert(this->type() != elfcpp::PT_LOAD);
4063   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4064   gold_assert(!this->is_max_align_known_);
4065
4066   this->update_flags_for_output_section(seg_flags);
4067
4068   this->output_lists_[0].push_back(os);
4069 }
4070
4071 // Remove an Output_section from this segment.  It is an error if it
4072 // is not present.
4073
4074 void
4075 Output_segment::remove_output_section(Output_section* os)
4076 {
4077   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4078     {
4079       Output_data_list* pdl = &this->output_lists_[i];
4080       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4081         {
4082           if (*p == os)
4083             {
4084               pdl->erase(p);
4085               return;
4086             }
4087         }
4088     }
4089   gold_unreachable();
4090 }
4091
4092 // Add an Output_data (which need not be an Output_section) to the
4093 // start of a segment.
4094
4095 void
4096 Output_segment::add_initial_output_data(Output_data* od)
4097 {
4098   gold_assert(!this->is_max_align_known_);
4099   Output_data_list::iterator p = this->output_lists_[0].begin();
4100   this->output_lists_[0].insert(p, od);
4101 }
4102
4103 // Return true if this segment has any sections which hold actual
4104 // data, rather than being a BSS section.
4105
4106 bool
4107 Output_segment::has_any_data_sections() const
4108 {
4109   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4110     {
4111       const Output_data_list* pdl = &this->output_lists_[i];
4112       for (Output_data_list::const_iterator p = pdl->begin();
4113            p != pdl->end();
4114            ++p)
4115         {
4116           if (!(*p)->is_section())
4117             return true;
4118           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4119             return true;
4120         }
4121     }
4122   return false;
4123 }
4124
4125 // Return whether the first data section (not counting TLS sections)
4126 // is a relro section.
4127
4128 bool
4129 Output_segment::is_first_section_relro() const
4130 {
4131   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4132     {
4133       if (i == static_cast<int>(ORDER_TLS_DATA)
4134           || i == static_cast<int>(ORDER_TLS_BSS))
4135         continue;
4136       const Output_data_list* pdl = &this->output_lists_[i];
4137       if (!pdl->empty())
4138         {
4139           Output_data* p = pdl->front();
4140           return p->is_section() && p->output_section()->is_relro();
4141         }
4142     }
4143   return false;
4144 }
4145
4146 // Return the maximum alignment of the Output_data in Output_segment.
4147
4148 uint64_t
4149 Output_segment::maximum_alignment()
4150 {
4151   if (!this->is_max_align_known_)
4152     {
4153       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4154         {       
4155           const Output_data_list* pdl = &this->output_lists_[i];
4156           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4157           if (addralign > this->max_align_)
4158             this->max_align_ = addralign;
4159         }
4160       this->is_max_align_known_ = true;
4161     }
4162
4163   return this->max_align_;
4164 }
4165
4166 // Return the maximum alignment of a list of Output_data.
4167
4168 uint64_t
4169 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4170 {
4171   uint64_t ret = 0;
4172   for (Output_data_list::const_iterator p = pdl->begin();
4173        p != pdl->end();
4174        ++p)
4175     {
4176       uint64_t addralign = (*p)->addralign();
4177       if (addralign > ret)
4178         ret = addralign;
4179     }
4180   return ret;
4181 }
4182
4183 // Return whether this segment has any dynamic relocs.
4184
4185 bool
4186 Output_segment::has_dynamic_reloc() const
4187 {
4188   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4189     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4190       return true;
4191   return false;
4192 }
4193
4194 // Return whether this Output_data_list has any dynamic relocs.
4195
4196 bool
4197 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4198 {
4199   for (Output_data_list::const_iterator p = pdl->begin();
4200        p != pdl->end();
4201        ++p)
4202     if ((*p)->has_dynamic_reloc())
4203       return true;
4204   return false;
4205 }
4206
4207 // Set the section addresses for an Output_segment.  If RESET is true,
4208 // reset the addresses first.  ADDR is the address and *POFF is the
4209 // file offset.  Set the section indexes starting with *PSHNDX.
4210 // INCREASE_RELRO is the size of the portion of the first non-relro
4211 // section that should be included in the PT_GNU_RELRO segment.
4212 // If this segment has relro sections, and has been aligned for
4213 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4214 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4215 // and *PSHNDX.
4216
4217 uint64_t
4218 Output_segment::set_section_addresses(Layout* layout, bool reset,
4219                                       uint64_t addr,
4220                                       unsigned int* increase_relro,
4221                                       bool* has_relro,
4222                                       off_t* poff,
4223                                       unsigned int* pshndx)
4224 {
4225   gold_assert(this->type_ == elfcpp::PT_LOAD);
4226
4227   uint64_t last_relro_pad = 0;
4228   off_t orig_off = *poff;
4229
4230   bool in_tls = false;
4231
4232   // If we have relro sections, we need to pad forward now so that the
4233   // relro sections plus INCREASE_RELRO end on a common page boundary.
4234   if (parameters->options().relro()
4235       && this->is_first_section_relro()
4236       && (!this->are_addresses_set_ || reset))
4237     {
4238       uint64_t relro_size = 0;
4239       off_t off = *poff;
4240       uint64_t max_align = 0;
4241       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4242         {
4243           Output_data_list* pdl = &this->output_lists_[i];
4244           Output_data_list::iterator p;
4245           for (p = pdl->begin(); p != pdl->end(); ++p)
4246             {
4247               if (!(*p)->is_section())
4248                 break;
4249               uint64_t align = (*p)->addralign();
4250               if (align > max_align)
4251                 max_align = align;
4252               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4253                 in_tls = true;
4254               else if (in_tls)
4255                 {
4256                   // Align the first non-TLS section to the alignment
4257                   // of the TLS segment.
4258                   align = max_align;
4259                   in_tls = false;
4260                 }
4261               relro_size = align_address(relro_size, align);
4262               // Ignore the size of the .tbss section.
4263               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4264                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4265                 continue;
4266               if ((*p)->is_address_valid())
4267                 relro_size += (*p)->data_size();
4268               else
4269                 {
4270                   // FIXME: This could be faster.
4271                   (*p)->set_address_and_file_offset(addr + relro_size,
4272                                                     off + relro_size);
4273                   relro_size += (*p)->data_size();
4274                   (*p)->reset_address_and_file_offset();
4275                 }
4276             }
4277           if (p != pdl->end())
4278             break;
4279         }
4280       relro_size += *increase_relro;
4281       // Pad the total relro size to a multiple of the maximum
4282       // section alignment seen.
4283       uint64_t aligned_size = align_address(relro_size, max_align);
4284       // Note the amount of padding added after the last relro section.
4285       last_relro_pad = aligned_size - relro_size;
4286       *has_relro = true;
4287
4288       uint64_t page_align = parameters->target().common_pagesize();
4289
4290       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4291       uint64_t desired_align = page_align - (aligned_size % page_align);
4292       if (desired_align < *poff % page_align)
4293         *poff += page_align - *poff % page_align;
4294       *poff += desired_align - *poff % page_align;
4295       addr += *poff - orig_off;
4296       orig_off = *poff;
4297     }
4298
4299   if (!reset && this->are_addresses_set_)
4300     {
4301       gold_assert(this->paddr_ == addr);
4302       addr = this->vaddr_;
4303     }
4304   else
4305     {
4306       this->vaddr_ = addr;
4307       this->paddr_ = addr;
4308       this->are_addresses_set_ = true;
4309     }
4310
4311   in_tls = false;
4312
4313   this->offset_ = orig_off;
4314
4315   off_t off = 0;
4316   uint64_t ret;
4317   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4318     {
4319       if (i == static_cast<int>(ORDER_RELRO_LAST))
4320         {
4321           *poff += last_relro_pad;
4322           addr += last_relro_pad;
4323           if (this->output_lists_[i].empty())
4324             {
4325               // If there is nothing in the ORDER_RELRO_LAST list,
4326               // the padding will occur at the end of the relro
4327               // segment, and we need to add it to *INCREASE_RELRO.
4328               *increase_relro += last_relro_pad;
4329             }
4330         }
4331       addr = this->set_section_list_addresses(layout, reset,
4332                                               &this->output_lists_[i],
4333                                               addr, poff, pshndx, &in_tls);
4334       if (i < static_cast<int>(ORDER_SMALL_BSS))
4335         {
4336           this->filesz_ = *poff - orig_off;
4337           off = *poff;
4338         }
4339
4340       ret = addr;
4341     }
4342
4343   // If the last section was a TLS section, align upward to the
4344   // alignment of the TLS segment, so that the overall size of the TLS
4345   // segment is aligned.
4346   if (in_tls)
4347     {
4348       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4349       *poff = align_address(*poff, segment_align);
4350     }
4351
4352   this->memsz_ = *poff - orig_off;
4353
4354   // Ignore the file offset adjustments made by the BSS Output_data
4355   // objects.
4356   *poff = off;
4357
4358   return ret;
4359 }
4360
4361 // Set the addresses and file offsets in a list of Output_data
4362 // structures.
4363
4364 uint64_t
4365 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4366                                            Output_data_list* pdl,
4367                                            uint64_t addr, off_t* poff,
4368                                            unsigned int* pshndx,
4369                                            bool* in_tls)
4370 {
4371   off_t startoff = *poff;
4372   // For incremental updates, we may allocate non-fixed sections from
4373   // free space in the file.  This keeps track of the high-water mark.
4374   off_t maxoff = startoff;
4375
4376   off_t off = startoff;
4377   for (Output_data_list::iterator p = pdl->begin();
4378        p != pdl->end();
4379        ++p)
4380     {
4381       if (reset)
4382         (*p)->reset_address_and_file_offset();
4383
4384       // When doing an incremental update or when using a linker script,
4385       // the section will most likely already have an address.
4386       if (!(*p)->is_address_valid())
4387         {
4388           uint64_t align = (*p)->addralign();
4389
4390           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4391             {
4392               // Give the first TLS section the alignment of the
4393               // entire TLS segment.  Otherwise the TLS segment as a
4394               // whole may be misaligned.
4395               if (!*in_tls)
4396                 {
4397                   Output_segment* tls_segment = layout->tls_segment();
4398                   gold_assert(tls_segment != NULL);
4399                   uint64_t segment_align = tls_segment->maximum_alignment();
4400                   gold_assert(segment_align >= align);
4401                   align = segment_align;
4402
4403                   *in_tls = true;
4404                 }
4405             }
4406           else
4407             {
4408               // If this is the first section after the TLS segment,
4409               // align it to at least the alignment of the TLS
4410               // segment, so that the size of the overall TLS segment
4411               // is aligned.
4412               if (*in_tls)
4413                 {
4414                   uint64_t segment_align =
4415                       layout->tls_segment()->maximum_alignment();
4416                   if (segment_align > align)
4417                     align = segment_align;
4418
4419                   *in_tls = false;
4420                 }
4421             }
4422
4423           if (!parameters->incremental_update())
4424             {
4425               off = align_address(off, align);
4426               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4427             }
4428           else
4429             {
4430               // Incremental update: allocate file space from free list.
4431               (*p)->pre_finalize_data_size();
4432               off_t current_size = (*p)->current_data_size();
4433               off = layout->allocate(current_size, align, startoff);
4434               if (off == -1)
4435                 {
4436                   gold_assert((*p)->output_section() != NULL);
4437                   gold_fallback(_("out of patch space for section %s; "
4438                                   "relink with --incremental-full"),
4439                                 (*p)->output_section()->name());
4440                 }
4441               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4442               if ((*p)->data_size() > current_size)
4443                 {
4444                   gold_assert((*p)->output_section() != NULL);
4445                   gold_fallback(_("%s: section changed size; "
4446                                   "relink with --incremental-full"),
4447                                 (*p)->output_section()->name());
4448                 }
4449             }
4450         }
4451       else if (parameters->incremental_update())
4452         {
4453           // For incremental updates, use the fixed offset for the
4454           // high-water mark computation.
4455           off = (*p)->offset();
4456         }
4457       else
4458         {
4459           // The script may have inserted a skip forward, but it
4460           // better not have moved backward.
4461           if ((*p)->address() >= addr + (off - startoff))
4462             off += (*p)->address() - (addr + (off - startoff));
4463           else
4464             {
4465               if (!layout->script_options()->saw_sections_clause())
4466                 gold_unreachable();
4467               else
4468                 {
4469                   Output_section* os = (*p)->output_section();
4470
4471                   // Cast to unsigned long long to avoid format warnings.
4472                   unsigned long long previous_dot =
4473                     static_cast<unsigned long long>(addr + (off - startoff));
4474                   unsigned long long dot =
4475                     static_cast<unsigned long long>((*p)->address());
4476
4477                   if (os == NULL)
4478                     gold_error(_("dot moves backward in linker script "
4479                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4480                   else
4481                     gold_error(_("address of section '%s' moves backward "
4482                                  "from 0x%llx to 0x%llx"),
4483                                os->name(), previous_dot, dot);
4484                 }
4485             }
4486           (*p)->set_file_offset(off);
4487           (*p)->finalize_data_size();
4488         }
4489
4490       if (parameters->incremental_update())
4491         gold_debug(DEBUG_INCREMENTAL,
4492                    "set_section_list_addresses: %08lx %08lx %s",
4493                    static_cast<long>(off),
4494                    static_cast<long>((*p)->data_size()),
4495                    ((*p)->output_section() != NULL
4496                     ? (*p)->output_section()->name() : "(special)"));
4497
4498       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4499       // section.  Such a section does not affect the size of a
4500       // PT_LOAD segment.
4501       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4502           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4503         off += (*p)->data_size();
4504
4505       if (off > maxoff)
4506         maxoff = off;
4507
4508       if ((*p)->is_section())
4509         {
4510           (*p)->set_out_shndx(*pshndx);
4511           ++*pshndx;
4512         }
4513     }
4514
4515   *poff = maxoff;
4516   return addr + (maxoff - startoff);
4517 }
4518
4519 // For a non-PT_LOAD segment, set the offset from the sections, if
4520 // any.  Add INCREASE to the file size and the memory size.
4521
4522 void
4523 Output_segment::set_offset(unsigned int increase)
4524 {
4525   gold_assert(this->type_ != elfcpp::PT_LOAD);
4526
4527   gold_assert(!this->are_addresses_set_);
4528
4529   // A non-load section only uses output_lists_[0].
4530
4531   Output_data_list* pdl = &this->output_lists_[0];
4532
4533   if (pdl->empty())
4534     {
4535       gold_assert(increase == 0);
4536       this->vaddr_ = 0;
4537       this->paddr_ = 0;
4538       this->are_addresses_set_ = true;
4539       this->memsz_ = 0;
4540       this->min_p_align_ = 0;
4541       this->offset_ = 0;
4542       this->filesz_ = 0;
4543       return;
4544     }
4545
4546   // Find the first and last section by address.
4547   const Output_data* first = NULL;
4548   const Output_data* last_data = NULL;
4549   const Output_data* last_bss = NULL;
4550   for (Output_data_list::const_iterator p = pdl->begin();
4551        p != pdl->end();
4552        ++p)
4553     {
4554       if (first == NULL
4555           || (*p)->address() < first->address()
4556           || ((*p)->address() == first->address()
4557               && (*p)->data_size() < first->data_size()))
4558         first = *p;
4559       const Output_data** plast;
4560       if ((*p)->is_section()
4561           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4562         plast = &last_bss;
4563       else
4564         plast = &last_data;
4565       if (*plast == NULL
4566           || (*p)->address() > (*plast)->address()
4567           || ((*p)->address() == (*plast)->address()
4568               && (*p)->data_size() > (*plast)->data_size()))
4569         *plast = *p;
4570     }
4571
4572   this->vaddr_ = first->address();
4573   this->paddr_ = (first->has_load_address()
4574                   ? first->load_address()
4575                   : this->vaddr_);
4576   this->are_addresses_set_ = true;
4577   this->offset_ = first->offset();
4578
4579   if (last_data == NULL)
4580     this->filesz_ = 0;
4581   else
4582     this->filesz_ = (last_data->address()
4583                      + last_data->data_size()
4584                      - this->vaddr_);
4585
4586   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4587   this->memsz_ = (last->address()
4588                   + last->data_size()
4589                   - this->vaddr_);
4590
4591   this->filesz_ += increase;
4592   this->memsz_ += increase;
4593
4594   // If this is a RELRO segment, verify that the segment ends at a
4595   // page boundary.
4596   if (this->type_ == elfcpp::PT_GNU_RELRO)
4597     {
4598       uint64_t page_align = parameters->target().common_pagesize();
4599       uint64_t segment_end = this->vaddr_ + this->memsz_;
4600       if (parameters->incremental_update())
4601         {
4602           // The INCREASE_RELRO calculation is bypassed for an incremental
4603           // update, so we need to adjust the segment size manually here.
4604           segment_end = align_address(segment_end, page_align);
4605           this->memsz_ = segment_end - this->vaddr_;
4606         }
4607       else
4608         gold_assert(segment_end == align_address(segment_end, page_align));
4609     }
4610
4611   // If this is a TLS segment, align the memory size.  The code in
4612   // set_section_list ensures that the section after the TLS segment
4613   // is aligned to give us room.
4614   if (this->type_ == elfcpp::PT_TLS)
4615     {
4616       uint64_t segment_align = this->maximum_alignment();
4617       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4618       this->memsz_ = align_address(this->memsz_, segment_align);
4619     }
4620 }
4621
4622 // Set the TLS offsets of the sections in the PT_TLS segment.
4623
4624 void
4625 Output_segment::set_tls_offsets()
4626 {
4627   gold_assert(this->type_ == elfcpp::PT_TLS);
4628
4629   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4630        p != this->output_lists_[0].end();
4631        ++p)
4632     (*p)->set_tls_offset(this->vaddr_);
4633 }
4634
4635 // Return the load address of the first section.
4636
4637 uint64_t
4638 Output_segment::first_section_load_address() const
4639 {
4640   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4641     {
4642       const Output_data_list* pdl = &this->output_lists_[i];
4643       for (Output_data_list::const_iterator p = pdl->begin();
4644            p != pdl->end();
4645            ++p)
4646         {
4647           if ((*p)->is_section())
4648             return ((*p)->has_load_address()
4649                     ? (*p)->load_address()
4650                     : (*p)->address());
4651         }
4652     }
4653   gold_unreachable();
4654 }
4655
4656 // Return the number of Output_sections in an Output_segment.
4657
4658 unsigned int
4659 Output_segment::output_section_count() const
4660 {
4661   unsigned int ret = 0;
4662   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4663     ret += this->output_section_count_list(&this->output_lists_[i]);
4664   return ret;
4665 }
4666
4667 // Return the number of Output_sections in an Output_data_list.
4668
4669 unsigned int
4670 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4671 {
4672   unsigned int count = 0;
4673   for (Output_data_list::const_iterator p = pdl->begin();
4674        p != pdl->end();
4675        ++p)
4676     {
4677       if ((*p)->is_section())
4678         ++count;
4679     }
4680   return count;
4681 }
4682
4683 // Return the section attached to the list segment with the lowest
4684 // load address.  This is used when handling a PHDRS clause in a
4685 // linker script.
4686
4687 Output_section*
4688 Output_segment::section_with_lowest_load_address() const
4689 {
4690   Output_section* found = NULL;
4691   uint64_t found_lma = 0;
4692   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4693     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4694                                       &found_lma);
4695   return found;
4696 }
4697
4698 // Look through a list for a section with a lower load address.
4699
4700 void
4701 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4702                                             Output_section** found,
4703                                             uint64_t* found_lma) const
4704 {
4705   for (Output_data_list::const_iterator p = pdl->begin();
4706        p != pdl->end();
4707        ++p)
4708     {
4709       if (!(*p)->is_section())
4710         continue;
4711       Output_section* os = static_cast<Output_section*>(*p);
4712       uint64_t lma = (os->has_load_address()
4713                       ? os->load_address()
4714                       : os->address());
4715       if (*found == NULL || lma < *found_lma)
4716         {
4717           *found = os;
4718           *found_lma = lma;
4719         }
4720     }
4721 }
4722
4723 // Write the segment data into *OPHDR.
4724
4725 template<int size, bool big_endian>
4726 void
4727 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4728 {
4729   ophdr->put_p_type(this->type_);
4730   ophdr->put_p_offset(this->offset_);
4731   ophdr->put_p_vaddr(this->vaddr_);
4732   ophdr->put_p_paddr(this->paddr_);
4733   ophdr->put_p_filesz(this->filesz_);
4734   ophdr->put_p_memsz(this->memsz_);
4735   ophdr->put_p_flags(this->flags_);
4736   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4737 }
4738
4739 // Write the section headers into V.
4740
4741 template<int size, bool big_endian>
4742 unsigned char*
4743 Output_segment::write_section_headers(const Layout* layout,
4744                                       const Stringpool* secnamepool,
4745                                       unsigned char* v,
4746                                       unsigned int* pshndx) const
4747 {
4748   // Every section that is attached to a segment must be attached to a
4749   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4750   // segments.
4751   if (this->type_ != elfcpp::PT_LOAD)
4752     return v;
4753
4754   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4755     {
4756       const Output_data_list* pdl = &this->output_lists_[i];
4757       v = this->write_section_headers_list<size, big_endian>(layout,
4758                                                              secnamepool,
4759                                                              pdl,
4760                                                              v, pshndx);
4761     }
4762
4763   return v;
4764 }
4765
4766 template<int size, bool big_endian>
4767 unsigned char*
4768 Output_segment::write_section_headers_list(const Layout* layout,
4769                                            const Stringpool* secnamepool,
4770                                            const Output_data_list* pdl,
4771                                            unsigned char* v,
4772                                            unsigned int* pshndx) const
4773 {
4774   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4775   for (Output_data_list::const_iterator p = pdl->begin();
4776        p != pdl->end();
4777        ++p)
4778     {
4779       if ((*p)->is_section())
4780         {
4781           const Output_section* ps = static_cast<const Output_section*>(*p);
4782           gold_assert(*pshndx == ps->out_shndx());
4783           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4784           ps->write_header(layout, secnamepool, &oshdr);
4785           v += shdr_size;
4786           ++*pshndx;
4787         }
4788     }
4789   return v;
4790 }
4791
4792 // Print the output sections to the map file.
4793
4794 void
4795 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4796 {
4797   if (this->type() != elfcpp::PT_LOAD)
4798     return;
4799   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4800     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4801 }
4802
4803 // Print an output section list to the map file.
4804
4805 void
4806 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4807                                               const Output_data_list* pdl) const
4808 {
4809   for (Output_data_list::const_iterator p = pdl->begin();
4810        p != pdl->end();
4811        ++p)
4812     (*p)->print_to_mapfile(mapfile);
4813 }
4814
4815 // Output_file methods.
4816
4817 Output_file::Output_file(const char* name)
4818   : name_(name),
4819     o_(-1),
4820     file_size_(0),
4821     base_(NULL),
4822     map_is_anonymous_(false),
4823     map_is_allocated_(false),
4824     is_temporary_(false)
4825 {
4826 }
4827
4828 // Try to open an existing file.  Returns false if the file doesn't
4829 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4830 // NULL, open that file as the base for incremental linking, and
4831 // copy its contents to the new output file.  This routine can
4832 // be called for incremental updates, in which case WRITABLE should
4833 // be true, or by the incremental-dump utility, in which case
4834 // WRITABLE should be false.
4835
4836 bool
4837 Output_file::open_base_file(const char* base_name, bool writable)
4838 {
4839   // The name "-" means "stdout".
4840   if (strcmp(this->name_, "-") == 0)
4841     return false;
4842
4843   bool use_base_file = base_name != NULL;
4844   if (!use_base_file)
4845     base_name = this->name_;
4846   else if (strcmp(base_name, this->name_) == 0)
4847     gold_fatal(_("%s: incremental base and output file name are the same"),
4848                base_name);
4849
4850   // Don't bother opening files with a size of zero.
4851   struct stat s;
4852   if (::stat(base_name, &s) != 0)
4853     {
4854       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4855       return false;
4856     }
4857   if (s.st_size == 0)
4858     {
4859       gold_info(_("%s: incremental base file is empty"), base_name);
4860       return false;
4861     }
4862
4863   // If we're using a base file, we want to open it read-only.
4864   if (use_base_file)
4865     writable = false;
4866
4867   int oflags = writable ? O_RDWR : O_RDONLY;
4868   int o = open_descriptor(-1, base_name, oflags, 0);
4869   if (o < 0)
4870     {
4871       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4872       return false;
4873     }
4874
4875   // If the base file and the output file are different, open a
4876   // new output file and read the contents from the base file into
4877   // the newly-mapped region.
4878   if (use_base_file)
4879     {
4880       this->open(s.st_size);
4881       ssize_t len = ::read(o, this->base_, s.st_size);
4882       if (len < 0)
4883         {
4884           gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4885           return false;
4886         }
4887       if (len < s.st_size)
4888         {
4889           gold_info(_("%s: file too short"), base_name);
4890           return false;
4891         }
4892       ::close(o);
4893       return true;
4894     }
4895
4896   this->o_ = o;
4897   this->file_size_ = s.st_size;
4898
4899   if (!this->map_no_anonymous(writable))
4900     {
4901       release_descriptor(o, true);
4902       this->o_ = -1;
4903       this->file_size_ = 0;
4904       return false;
4905     }
4906
4907   return true;
4908 }
4909
4910 // Open the output file.
4911
4912 void
4913 Output_file::open(off_t file_size)
4914 {
4915   this->file_size_ = file_size;
4916
4917   // Unlink the file first; otherwise the open() may fail if the file
4918   // is busy (e.g. it's an executable that's currently being executed).
4919   //
4920   // However, the linker may be part of a system where a zero-length
4921   // file is created for it to write to, with tight permissions (gcc
4922   // 2.95 did something like this).  Unlinking the file would work
4923   // around those permission controls, so we only unlink if the file
4924   // has a non-zero size.  We also unlink only regular files to avoid
4925   // trouble with directories/etc.
4926   //
4927   // If we fail, continue; this command is merely a best-effort attempt
4928   // to improve the odds for open().
4929
4930   // We let the name "-" mean "stdout"
4931   if (!this->is_temporary_)
4932     {
4933       if (strcmp(this->name_, "-") == 0)
4934         this->o_ = STDOUT_FILENO;
4935       else
4936         {
4937           struct stat s;
4938           if (::stat(this->name_, &s) == 0
4939               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4940             {
4941               if (s.st_size != 0)
4942                 ::unlink(this->name_);
4943               else if (!parameters->options().relocatable())
4944                 {
4945                   // If we don't unlink the existing file, add execute
4946                   // permission where read permissions already exist
4947                   // and where the umask permits.
4948                   int mask = ::umask(0);
4949                   ::umask(mask);
4950                   s.st_mode |= (s.st_mode & 0444) >> 2;
4951                   ::chmod(this->name_, s.st_mode & ~mask);
4952                 }
4953             }
4954
4955           int mode = parameters->options().relocatable() ? 0666 : 0777;
4956           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4957                                   mode);
4958           if (o < 0)
4959             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4960           this->o_ = o;
4961         }
4962     }
4963
4964   this->map();
4965 }
4966
4967 // Resize the output file.
4968
4969 void
4970 Output_file::resize(off_t file_size)
4971 {
4972   // If the mmap is mapping an anonymous memory buffer, this is easy:
4973   // just mremap to the new size.  If it's mapping to a file, we want
4974   // to unmap to flush to the file, then remap after growing the file.
4975   if (this->map_is_anonymous_)
4976     {
4977       void* base;
4978       if (!this->map_is_allocated_)
4979         {
4980           base = ::mremap(this->base_, this->file_size_, file_size,
4981                           MREMAP_MAYMOVE);
4982           if (base == MAP_FAILED)
4983             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4984         }
4985       else
4986         {
4987           base = realloc(this->base_, file_size);
4988           if (base == NULL)
4989             gold_nomem();
4990           if (file_size > this->file_size_)
4991             memset(static_cast<char*>(base) + this->file_size_, 0,
4992                    file_size - this->file_size_);
4993         }
4994       this->base_ = static_cast<unsigned char*>(base);
4995       this->file_size_ = file_size;
4996     }
4997   else
4998     {
4999       this->unmap();
5000       this->file_size_ = file_size;
5001       if (!this->map_no_anonymous(true))
5002         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5003     }
5004 }
5005
5006 // Map an anonymous block of memory which will later be written to the
5007 // file.  Return whether the map succeeded.
5008
5009 bool
5010 Output_file::map_anonymous()
5011 {
5012   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5013                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5014   if (base == MAP_FAILED)
5015     {
5016       base = malloc(this->file_size_);
5017       if (base == NULL)
5018         return false;
5019       memset(base, 0, this->file_size_);
5020       this->map_is_allocated_ = true;
5021     }
5022   this->base_ = static_cast<unsigned char*>(base);
5023   this->map_is_anonymous_ = true;
5024   return true;
5025 }
5026
5027 // Map the file into memory.  Return whether the mapping succeeded.
5028 // If WRITABLE is true, map with write access.
5029
5030 bool
5031 Output_file::map_no_anonymous(bool writable)
5032 {
5033   const int o = this->o_;
5034
5035   // If the output file is not a regular file, don't try to mmap it;
5036   // instead, we'll mmap a block of memory (an anonymous buffer), and
5037   // then later write the buffer to the file.
5038   void* base;
5039   struct stat statbuf;
5040   if (o == STDOUT_FILENO || o == STDERR_FILENO
5041       || ::fstat(o, &statbuf) != 0
5042       || !S_ISREG(statbuf.st_mode)
5043       || this->is_temporary_)
5044     return false;
5045
5046   // Ensure that we have disk space available for the file.  If we
5047   // don't do this, it is possible that we will call munmap, close,
5048   // and exit with dirty buffers still in the cache with no assigned
5049   // disk blocks.  If the disk is out of space at that point, the
5050   // output file will wind up incomplete, but we will have already
5051   // exited.  The alternative to fallocate would be to use fdatasync,
5052   // but that would be a more significant performance hit.
5053   if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
5054     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
5055
5056   // Map the file into memory.
5057   int prot = PROT_READ;
5058   if (writable)
5059     prot |= PROT_WRITE;
5060   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5061
5062   // The mmap call might fail because of file system issues: the file
5063   // system might not support mmap at all, or it might not support
5064   // mmap with PROT_WRITE.
5065   if (base == MAP_FAILED)
5066     return false;
5067
5068   this->map_is_anonymous_ = false;
5069   this->base_ = static_cast<unsigned char*>(base);
5070   return true;
5071 }
5072
5073 // Map the file into memory.
5074
5075 void
5076 Output_file::map()
5077 {
5078   if (this->map_no_anonymous(true))
5079     return;
5080
5081   // The mmap call might fail because of file system issues: the file
5082   // system might not support mmap at all, or it might not support
5083   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5084   // see in all cases, so if the mmap fails for any reason and we
5085   // don't care about file contents, try for an anonymous map.
5086   if (this->map_anonymous())
5087     return;
5088
5089   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5090              this->name_, static_cast<unsigned long>(this->file_size_),
5091              strerror(errno));
5092 }
5093
5094 // Unmap the file from memory.
5095
5096 void
5097 Output_file::unmap()
5098 {
5099   if (this->map_is_anonymous_)
5100     {
5101       // We've already written out the data, so there is no reason to
5102       // waste time unmapping or freeing the memory.
5103     }
5104   else
5105     {
5106       if (::munmap(this->base_, this->file_size_) < 0)
5107         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5108     }
5109   this->base_ = NULL;
5110 }
5111
5112 // Close the output file.
5113
5114 void
5115 Output_file::close()
5116 {
5117   // If the map isn't file-backed, we need to write it now.
5118   if (this->map_is_anonymous_ && !this->is_temporary_)
5119     {
5120       size_t bytes_to_write = this->file_size_;
5121       size_t offset = 0;
5122       while (bytes_to_write > 0)
5123         {
5124           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5125                                           bytes_to_write);
5126           if (bytes_written == 0)
5127             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5128           else if (bytes_written < 0)
5129             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5130           else
5131             {
5132               bytes_to_write -= bytes_written;
5133               offset += bytes_written;
5134             }
5135         }
5136     }
5137   this->unmap();
5138
5139   // We don't close stdout or stderr
5140   if (this->o_ != STDOUT_FILENO
5141       && this->o_ != STDERR_FILENO
5142       && !this->is_temporary_)
5143     if (::close(this->o_) < 0)
5144       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5145   this->o_ = -1;
5146 }
5147
5148 // Instantiate the templates we need.  We could use the configure
5149 // script to restrict this to only the ones for implemented targets.
5150
5151 #ifdef HAVE_TARGET_32_LITTLE
5152 template
5153 off_t
5154 Output_section::add_input_section<32, false>(
5155     Layout* layout,
5156     Sized_relobj_file<32, false>* object,
5157     unsigned int shndx,
5158     const char* secname,
5159     const elfcpp::Shdr<32, false>& shdr,
5160     unsigned int reloc_shndx,
5161     bool have_sections_script);
5162 #endif
5163
5164 #ifdef HAVE_TARGET_32_BIG
5165 template
5166 off_t
5167 Output_section::add_input_section<32, true>(
5168     Layout* layout,
5169     Sized_relobj_file<32, true>* object,
5170     unsigned int shndx,
5171     const char* secname,
5172     const elfcpp::Shdr<32, true>& shdr,
5173     unsigned int reloc_shndx,
5174     bool have_sections_script);
5175 #endif
5176
5177 #ifdef HAVE_TARGET_64_LITTLE
5178 template
5179 off_t
5180 Output_section::add_input_section<64, false>(
5181     Layout* layout,
5182     Sized_relobj_file<64, false>* object,
5183     unsigned int shndx,
5184     const char* secname,
5185     const elfcpp::Shdr<64, false>& shdr,
5186     unsigned int reloc_shndx,
5187     bool have_sections_script);
5188 #endif
5189
5190 #ifdef HAVE_TARGET_64_BIG
5191 template
5192 off_t
5193 Output_section::add_input_section<64, true>(
5194     Layout* layout,
5195     Sized_relobj_file<64, true>* object,
5196     unsigned int shndx,
5197     const char* secname,
5198     const elfcpp::Shdr<64, true>& shdr,
5199     unsigned int reloc_shndx,
5200     bool have_sections_script);
5201 #endif
5202
5203 #ifdef HAVE_TARGET_32_LITTLE
5204 template
5205 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5206 #endif
5207
5208 #ifdef HAVE_TARGET_32_BIG
5209 template
5210 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5211 #endif
5212
5213 #ifdef HAVE_TARGET_64_LITTLE
5214 template
5215 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5216 #endif
5217
5218 #ifdef HAVE_TARGET_64_BIG
5219 template
5220 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5221 #endif
5222
5223 #ifdef HAVE_TARGET_32_LITTLE
5224 template
5225 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5226 #endif
5227
5228 #ifdef HAVE_TARGET_32_BIG
5229 template
5230 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5231 #endif
5232
5233 #ifdef HAVE_TARGET_64_LITTLE
5234 template
5235 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5236 #endif
5237
5238 #ifdef HAVE_TARGET_64_BIG
5239 template
5240 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5241 #endif
5242
5243 #ifdef HAVE_TARGET_32_LITTLE
5244 template
5245 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5246 #endif
5247
5248 #ifdef HAVE_TARGET_32_BIG
5249 template
5250 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5251 #endif
5252
5253 #ifdef HAVE_TARGET_64_LITTLE
5254 template
5255 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5256 #endif
5257
5258 #ifdef HAVE_TARGET_64_BIG
5259 template
5260 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5261 #endif
5262
5263 #ifdef HAVE_TARGET_32_LITTLE
5264 template
5265 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5266 #endif
5267
5268 #ifdef HAVE_TARGET_32_BIG
5269 template
5270 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5271 #endif
5272
5273 #ifdef HAVE_TARGET_64_LITTLE
5274 template
5275 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5276 #endif
5277
5278 #ifdef HAVE_TARGET_64_BIG
5279 template
5280 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5281 #endif
5282
5283 #ifdef HAVE_TARGET_32_LITTLE
5284 template
5285 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5286 #endif
5287
5288 #ifdef HAVE_TARGET_32_BIG
5289 template
5290 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5291 #endif
5292
5293 #ifdef HAVE_TARGET_64_LITTLE
5294 template
5295 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5296 #endif
5297
5298 #ifdef HAVE_TARGET_64_BIG
5299 template
5300 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5301 #endif
5302
5303 #ifdef HAVE_TARGET_32_LITTLE
5304 template
5305 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5306 #endif
5307
5308 #ifdef HAVE_TARGET_32_BIG
5309 template
5310 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5311 #endif
5312
5313 #ifdef HAVE_TARGET_64_LITTLE
5314 template
5315 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5316 #endif
5317
5318 #ifdef HAVE_TARGET_64_BIG
5319 template
5320 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5321 #endif
5322
5323 #ifdef HAVE_TARGET_32_LITTLE
5324 template
5325 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5326 #endif
5327
5328 #ifdef HAVE_TARGET_32_BIG
5329 template
5330 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5331 #endif
5332
5333 #ifdef HAVE_TARGET_64_LITTLE
5334 template
5335 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5336 #endif
5337
5338 #ifdef HAVE_TARGET_64_BIG
5339 template
5340 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5341 #endif
5342
5343 #ifdef HAVE_TARGET_32_LITTLE
5344 template
5345 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5346 #endif
5347
5348 #ifdef HAVE_TARGET_32_BIG
5349 template
5350 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5351 #endif
5352
5353 #ifdef HAVE_TARGET_64_LITTLE
5354 template
5355 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5356 #endif
5357
5358 #ifdef HAVE_TARGET_64_BIG
5359 template
5360 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5361 #endif
5362
5363 #ifdef HAVE_TARGET_32_LITTLE
5364 template
5365 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5366 #endif
5367
5368 #ifdef HAVE_TARGET_32_BIG
5369 template
5370 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5371 #endif
5372
5373 #ifdef HAVE_TARGET_64_LITTLE
5374 template
5375 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5376 #endif
5377
5378 #ifdef HAVE_TARGET_64_BIG
5379 template
5380 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5381 #endif
5382
5383 #ifdef HAVE_TARGET_32_LITTLE
5384 template
5385 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5386 #endif
5387
5388 #ifdef HAVE_TARGET_32_BIG
5389 template
5390 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5391 #endif
5392
5393 #ifdef HAVE_TARGET_64_LITTLE
5394 template
5395 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5396 #endif
5397
5398 #ifdef HAVE_TARGET_64_BIG
5399 template
5400 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5401 #endif
5402
5403 #ifdef HAVE_TARGET_32_LITTLE
5404 template
5405 class Output_data_group<32, false>;
5406 #endif
5407
5408 #ifdef HAVE_TARGET_32_BIG
5409 template
5410 class Output_data_group<32, true>;
5411 #endif
5412
5413 #ifdef HAVE_TARGET_64_LITTLE
5414 template
5415 class Output_data_group<64, false>;
5416 #endif
5417
5418 #ifdef HAVE_TARGET_64_BIG
5419 template
5420 class Output_data_group<64, true>;
5421 #endif
5422
5423 #ifdef HAVE_TARGET_32_LITTLE
5424 template
5425 class Output_data_got<32, false>;
5426 #endif
5427
5428 #ifdef HAVE_TARGET_32_BIG
5429 template
5430 class Output_data_got<32, true>;
5431 #endif
5432
5433 #ifdef HAVE_TARGET_64_LITTLE
5434 template
5435 class Output_data_got<64, false>;
5436 #endif
5437
5438 #ifdef HAVE_TARGET_64_BIG
5439 template
5440 class Output_data_got<64, true>;
5441 #endif
5442
5443 } // End namespace gold.