2010-01-22 Doug Kwan <dougkwan@google.com>
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS  MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate.  Here we just set
50 // the file size and hope that there is enough disk space.  FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56   return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78   return Output_data::default_alignment_for_size(
79       parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87   if (size == 32)
88     return 4;
89   else if (size == 64)
90     return 8;
91   else
92     gold_unreachable();
93 }
94
95 // Output_section_header methods.  This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99     const Layout* layout,
100     const Layout::Segment_list* segment_list,
101     const Layout::Section_list* section_list,
102     const Layout::Section_list* unattached_section_list,
103     const Stringpool* secnamepool,
104     const Output_section* shstrtab_section)
105   : layout_(layout),
106     segment_list_(segment_list),
107     section_list_(section_list),
108     unattached_section_list_(unattached_section_list),
109     secnamepool_(secnamepool),
110     shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119   // Count all the sections.  Start with 1 for the null section.
120   off_t count = 1;
121   if (!parameters->options().relocatable())
122     {
123       for (Layout::Segment_list::const_iterator p =
124              this->segment_list_->begin();
125            p != this->segment_list_->end();
126            ++p)
127         if ((*p)->type() == elfcpp::PT_LOAD)
128           count += (*p)->output_section_count();
129     }
130   else
131     {
132       for (Layout::Section_list::const_iterator p =
133              this->section_list_->begin();
134            p != this->section_list_->end();
135            ++p)
136         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137           ++count;
138     }
139   count += this->unattached_section_list_->size();
140
141   const int size = parameters->target().get_size();
142   int shdr_size;
143   if (size == 32)
144     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145   else if (size == 64)
146     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147   else
148     gold_unreachable();
149
150   return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158   switch (parameters->size_and_endianness())
159     {
160 #ifdef HAVE_TARGET_32_LITTLE
161     case Parameters::TARGET_32_LITTLE:
162       this->do_sized_write<32, false>(of);
163       break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166     case Parameters::TARGET_32_BIG:
167       this->do_sized_write<32, true>(of);
168       break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171     case Parameters::TARGET_64_LITTLE:
172       this->do_sized_write<64, false>(of);
173       break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176     case Parameters::TARGET_64_BIG:
177       this->do_sized_write<64, true>(of);
178       break;
179 #endif
180     default:
181       gold_unreachable();
182     }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189   off_t all_shdrs_size = this->data_size();
190   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193   unsigned char* v = view;
194
195   {
196     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197     oshdr.put_sh_name(0);
198     oshdr.put_sh_type(elfcpp::SHT_NULL);
199     oshdr.put_sh_flags(0);
200     oshdr.put_sh_addr(0);
201     oshdr.put_sh_offset(0);
202
203     size_t section_count = (this->data_size()
204                             / elfcpp::Elf_sizes<size>::shdr_size);
205     if (section_count < elfcpp::SHN_LORESERVE)
206       oshdr.put_sh_size(0);
207     else
208       oshdr.put_sh_size(section_count);
209
210     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211     if (shstrndx < elfcpp::SHN_LORESERVE)
212       oshdr.put_sh_link(0);
213     else
214       oshdr.put_sh_link(shstrndx);
215
216     size_t segment_count = this->segment_list_->size();
217     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219     oshdr.put_sh_addralign(0);
220     oshdr.put_sh_entsize(0);
221   }
222
223   v += shdr_size;
224
225   unsigned int shndx = 1;
226   if (!parameters->options().relocatable())
227     {
228       for (Layout::Segment_list::const_iterator p =
229              this->segment_list_->begin();
230            p != this->segment_list_->end();
231            ++p)
232         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233                                                           this->secnamepool_,
234                                                           v,
235                                                           &shndx);
236     }
237   else
238     {
239       for (Layout::Section_list::const_iterator p =
240              this->section_list_->begin();
241            p != this->section_list_->end();
242            ++p)
243         {
244           // We do unallocated sections below, except that group
245           // sections have to come first.
246           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247               && (*p)->type() != elfcpp::SHT_GROUP)
248             continue;
249           gold_assert(shndx == (*p)->out_shndx());
250           elfcpp::Shdr_write<size, big_endian> oshdr(v);
251           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252           v += shdr_size;
253           ++shndx;
254         }
255     }
256
257   for (Layout::Section_list::const_iterator p =
258          this->unattached_section_list_->begin();
259        p != this->unattached_section_list_->end();
260        ++p)
261     {
262       // For a relocatable link, we did unallocated group sections
263       // above, since they have to come first.
264       if ((*p)->type() == elfcpp::SHT_GROUP
265           && parameters->options().relocatable())
266         continue;
267       gold_assert(shndx == (*p)->out_shndx());
268       elfcpp::Shdr_write<size, big_endian> oshdr(v);
269       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270       v += shdr_size;
271       ++shndx;
272     }
273
274   of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280     const Layout::Segment_list& segment_list)
281   : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288   switch (parameters->size_and_endianness())
289     {
290 #ifdef HAVE_TARGET_32_LITTLE
291     case Parameters::TARGET_32_LITTLE:
292       this->do_sized_write<32, false>(of);
293       break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296     case Parameters::TARGET_32_BIG:
297       this->do_sized_write<32, true>(of);
298       break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301     case Parameters::TARGET_64_LITTLE:
302       this->do_sized_write<64, false>(of);
303       break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306     case Parameters::TARGET_64_BIG:
307       this->do_sized_write<64, true>(of);
308       break;
309 #endif
310     default:
311       gold_unreachable();
312     }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321   gold_assert(all_phdrs_size == this->data_size());
322   unsigned char* view = of->get_output_view(this->offset(),
323                                             all_phdrs_size);
324   unsigned char* v = view;
325   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326        p != this->segment_list_.end();
327        ++p)
328     {
329       elfcpp::Phdr_write<size, big_endian> ophdr(v);
330       (*p)->write_header(&ophdr);
331       v += phdr_size;
332     }
333
334   gold_assert(v - view == all_phdrs_size);
335
336   of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342   const int size = parameters->target().get_size();
343   int phdr_size;
344   if (size == 32)
345     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346   else if (size == 64)
347     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348   else
349     gold_unreachable();
350
351   return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357                                        const Symbol_table* symtab,
358                                        const Output_segment_headers* osh,
359                                        const char* entry)
360   : target_(target),
361     symtab_(symtab),
362     segment_header_(osh),
363     section_header_(NULL),
364     shstrtab_(NULL),
365     entry_(entry)
366 {
367   this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374                                      const Output_section* shstrtab)
375 {
376   this->section_header_ = shdrs;
377   this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385   gold_assert(this->offset() == 0);
386
387   switch (parameters->size_and_endianness())
388     {
389 #ifdef HAVE_TARGET_32_LITTLE
390     case Parameters::TARGET_32_LITTLE:
391       this->do_sized_write<32, false>(of);
392       break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395     case Parameters::TARGET_32_BIG:
396       this->do_sized_write<32, true>(of);
397       break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400     case Parameters::TARGET_64_LITTLE:
401       this->do_sized_write<64, false>(of);
402       break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405     case Parameters::TARGET_64_BIG:
406       this->do_sized_write<64, true>(of);
407       break;
408 #endif
409     default:
410       gold_unreachable();
411     }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420   gold_assert(this->offset() == 0);
421
422   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423   unsigned char* view = of->get_output_view(0, ehdr_size);
424   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426   unsigned char e_ident[elfcpp::EI_NIDENT];
427   memset(e_ident, 0, elfcpp::EI_NIDENT);
428   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432   if (size == 32)
433     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434   else if (size == 64)
435     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436   else
437     gold_unreachable();
438   e_ident[elfcpp::EI_DATA] = (big_endian
439                               ? elfcpp::ELFDATA2MSB
440                               : elfcpp::ELFDATA2LSB);
441   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442   oehdr.put_e_ident(e_ident);
443
444   elfcpp::ET e_type;
445   if (parameters->options().relocatable())
446     e_type = elfcpp::ET_REL;
447   else if (parameters->options().output_is_position_independent())
448     e_type = elfcpp::ET_DYN;
449   else
450     e_type = elfcpp::ET_EXEC;
451   oehdr.put_e_type(e_type);
452
453   oehdr.put_e_machine(this->target_->machine_code());
454   oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456   oehdr.put_e_entry(this->entry<size>());
457
458   if (this->segment_header_ == NULL)
459     oehdr.put_e_phoff(0);
460   else
461     oehdr.put_e_phoff(this->segment_header_->offset());
462
463   oehdr.put_e_shoff(this->section_header_->offset());
464   oehdr.put_e_flags(this->target_->processor_specific_flags());
465   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467   if (this->segment_header_ == NULL)
468     {
469       oehdr.put_e_phentsize(0);
470       oehdr.put_e_phnum(0);
471     }
472   else
473     {
474       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475       size_t phnum = (this->segment_header_->data_size()
476                       / elfcpp::Elf_sizes<size>::phdr_size);
477       if (phnum > elfcpp::PN_XNUM)
478         phnum = elfcpp::PN_XNUM;
479       oehdr.put_e_phnum(phnum);
480     }
481
482   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483   size_t section_count = (this->section_header_->data_size()
484                           / elfcpp::Elf_sizes<size>::shdr_size);
485
486   if (section_count < elfcpp::SHN_LORESERVE)
487     oehdr.put_e_shnum(this->section_header_->data_size()
488                       / elfcpp::Elf_sizes<size>::shdr_size);
489   else
490     oehdr.put_e_shnum(0);
491
492   unsigned int shstrndx = this->shstrtab_->out_shndx();
493   if (shstrndx < elfcpp::SHN_LORESERVE)
494     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495   else
496     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499   // the e_ident field.
500   parameters->target().adjust_elf_header(view, ehdr_size);
501
502   of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address.  THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512   const bool should_issue_warning = (this->entry_ != NULL
513                                      && !parameters->options().relocatable()
514                                      && !parameters->options().shared());
515
516   // FIXME: Need to support target specific entry symbol.
517   const char* entry = this->entry_;
518   if (entry == NULL)
519     entry = "_start";
520
521   Symbol* sym = this->symtab_->lookup(entry);
522
523   typename Sized_symbol<size>::Value_type v;
524   if (sym != NULL)
525     {
526       Sized_symbol<size>* ssym;
527       ssym = this->symtab_->get_sized_symbol<size>(sym);
528       if (!ssym->is_defined() && should_issue_warning)
529         gold_warning("entry symbol '%s' exists but is not defined", entry);
530       v = ssym->value();
531     }
532   else
533     {
534       // We couldn't find the entry symbol.  See if we can parse it as
535       // a number.  This supports, e.g., -e 0x1000.
536       char* endptr;
537       v = strtoull(entry, &endptr, 0);
538       if (*endptr != '\0')
539         {
540           if (should_issue_warning)
541             gold_warning("cannot find entry symbol '%s'", entry);
542           v = 0;
543         }
544     }
545
546   return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554   const int size = parameters->target().get_size();
555   if (size == 32)
556     return elfcpp::Elf_sizes<32>::ehdr_size;
557   else if (size == 64)
558     return elfcpp::Elf_sizes<64>::ehdr_size;
559   else
560     gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568   of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576   of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586   gold_assert(this->output_section_ == NULL);
587   this->output_section_ = os;
588   this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596   gold_assert(this->output_section_ != NULL);
597   return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606   this->addralign_ = addralign;
607   if (this->output_section_ != NULL
608       && this->output_section_->addralign() < addralign)
609     this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619   this->strtab_->set_string_offsets();
620   this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628   this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637     Symbol* gsym,
638     unsigned int type,
639     Output_data* od,
640     Address address,
641     bool is_relative)
642   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
643     is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
644 {
645   // this->type_ is a bitfield; make sure TYPE fits.
646   gold_assert(this->type_ == type);
647   this->u1_.gsym = gsym;
648   this->u2_.od = od;
649   if (dynamic)
650     this->set_needs_dynsym_index();
651 }
652
653 template<bool dynamic, int size, bool big_endian>
654 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
655     Symbol* gsym,
656     unsigned int type,
657     Sized_relobj<size, big_endian>* relobj,
658     unsigned int shndx,
659     Address address,
660     bool is_relative)
661   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
662     is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
663 {
664   gold_assert(shndx != INVALID_CODE);
665   // this->type_ is a bitfield; make sure TYPE fits.
666   gold_assert(this->type_ == type);
667   this->u1_.gsym = gsym;
668   this->u2_.relobj = relobj;
669   if (dynamic)
670     this->set_needs_dynsym_index();
671 }
672
673 // A reloc against a local symbol.
674
675 template<bool dynamic, int size, bool big_endian>
676 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
677     Sized_relobj<size, big_endian>* relobj,
678     unsigned int local_sym_index,
679     unsigned int type,
680     Output_data* od,
681     Address address,
682     bool is_relative,
683     bool is_section_symbol)
684   : address_(address), local_sym_index_(local_sym_index), type_(type),
685     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
686     shndx_(INVALID_CODE)
687 {
688   gold_assert(local_sym_index != GSYM_CODE
689               && local_sym_index != INVALID_CODE);
690   // this->type_ is a bitfield; make sure TYPE fits.
691   gold_assert(this->type_ == type);
692   this->u1_.relobj = relobj;
693   this->u2_.od = od;
694   if (dynamic)
695     this->set_needs_dynsym_index();
696 }
697
698 template<bool dynamic, int size, bool big_endian>
699 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
700     Sized_relobj<size, big_endian>* relobj,
701     unsigned int local_sym_index,
702     unsigned int type,
703     unsigned int shndx,
704     Address address,
705     bool is_relative,
706     bool is_section_symbol)
707   : address_(address), local_sym_index_(local_sym_index), type_(type),
708     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
709     shndx_(shndx)
710 {
711   gold_assert(local_sym_index != GSYM_CODE
712               && local_sym_index != INVALID_CODE);
713   gold_assert(shndx != INVALID_CODE);
714   // this->type_ is a bitfield; make sure TYPE fits.
715   gold_assert(this->type_ == type);
716   this->u1_.relobj = relobj;
717   this->u2_.relobj = relobj;
718   if (dynamic)
719     this->set_needs_dynsym_index();
720 }
721
722 // A reloc against the STT_SECTION symbol of an output section.
723
724 template<bool dynamic, int size, bool big_endian>
725 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
726     Output_section* os,
727     unsigned int type,
728     Output_data* od,
729     Address address)
730   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
731     is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
732 {
733   // this->type_ is a bitfield; make sure TYPE fits.
734   gold_assert(this->type_ == type);
735   this->u1_.os = os;
736   this->u2_.od = od;
737   if (dynamic)
738     this->set_needs_dynsym_index();
739   else
740     os->set_needs_symtab_index();
741 }
742
743 template<bool dynamic, int size, bool big_endian>
744 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745     Output_section* os,
746     unsigned int type,
747     Sized_relobj<size, big_endian>* relobj,
748     unsigned int shndx,
749     Address address)
750   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
751     is_relative_(false), is_section_symbol_(true), shndx_(shndx)
752 {
753   gold_assert(shndx != INVALID_CODE);
754   // this->type_ is a bitfield; make sure TYPE fits.
755   gold_assert(this->type_ == type);
756   this->u1_.os = os;
757   this->u2_.relobj = relobj;
758   if (dynamic)
759     this->set_needs_dynsym_index();
760   else
761     os->set_needs_symtab_index();
762 }
763
764 // An absolute relocation.
765
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768     unsigned int type,
769     Output_data* od,
770     Address address)
771   : address_(address), local_sym_index_(0), type_(type),
772     is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
773 {
774   // this->type_ is a bitfield; make sure TYPE fits.
775   gold_assert(this->type_ == type);
776   this->u1_.relobj = NULL;
777   this->u2_.od = od;
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782     unsigned int type,
783     Sized_relobj<size, big_endian>* relobj,
784     unsigned int shndx,
785     Address address)
786   : address_(address), local_sym_index_(0), type_(type),
787     is_relative_(false), is_section_symbol_(false), shndx_(shndx)
788 {
789   gold_assert(shndx != INVALID_CODE);
790   // this->type_ is a bitfield; make sure TYPE fits.
791   gold_assert(this->type_ == type);
792   this->u1_.relobj = NULL;
793   this->u2_.relobj = relobj;
794 }
795
796 // A target specific relocation.
797
798 template<bool dynamic, int size, bool big_endian>
799 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
800     unsigned int type,
801     void* arg,
802     Output_data* od,
803     Address address)
804   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
805     is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
806 {
807   // this->type_ is a bitfield; make sure TYPE fits.
808   gold_assert(this->type_ == type);
809   this->u1_.arg = arg;
810   this->u2_.od = od;
811 }
812
813 template<bool dynamic, int size, bool big_endian>
814 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
815     unsigned int type,
816     void* arg,
817     Sized_relobj<size, big_endian>* relobj,
818     unsigned int shndx,
819     Address address)
820   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
821     is_relative_(false), is_section_symbol_(false), shndx_(shndx)
822 {
823   gold_assert(shndx != INVALID_CODE);
824   // this->type_ is a bitfield; make sure TYPE fits.
825   gold_assert(this->type_ == type);
826   this->u1_.arg = arg;
827   this->u2_.relobj = relobj;
828 }
829
830 // Record that we need a dynamic symbol index for this relocation.
831
832 template<bool dynamic, int size, bool big_endian>
833 void
834 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
835 set_needs_dynsym_index()
836 {
837   if (this->is_relative_)
838     return;
839   switch (this->local_sym_index_)
840     {
841     case INVALID_CODE:
842       gold_unreachable();
843
844     case GSYM_CODE:
845       this->u1_.gsym->set_needs_dynsym_entry();
846       break;
847
848     case SECTION_CODE:
849       this->u1_.os->set_needs_dynsym_index();
850       break;
851
852     case TARGET_CODE:
853       // The target must take care of this if necessary.
854       break;
855
856     case 0:
857       break;
858
859     default:
860       {
861         const unsigned int lsi = this->local_sym_index_;
862         if (!this->is_section_symbol_)
863           this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
864         else
865           this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
866       }
867       break;
868     }
869 }
870
871 // Get the symbol index of a relocation.
872
873 template<bool dynamic, int size, bool big_endian>
874 unsigned int
875 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
876   const
877 {
878   unsigned int index;
879   switch (this->local_sym_index_)
880     {
881     case INVALID_CODE:
882       gold_unreachable();
883
884     case GSYM_CODE:
885       if (this->u1_.gsym == NULL)
886         index = 0;
887       else if (dynamic)
888         index = this->u1_.gsym->dynsym_index();
889       else
890         index = this->u1_.gsym->symtab_index();
891       break;
892
893     case SECTION_CODE:
894       if (dynamic)
895         index = this->u1_.os->dynsym_index();
896       else
897         index = this->u1_.os->symtab_index();
898       break;
899
900     case TARGET_CODE:
901       index = parameters->target().reloc_symbol_index(this->u1_.arg,
902                                                       this->type_);
903       break;
904
905     case 0:
906       // Relocations without symbols use a symbol index of 0.
907       index = 0;
908       break;
909
910     default:
911       {
912         const unsigned int lsi = this->local_sym_index_;
913         if (!this->is_section_symbol_)
914           {
915             if (dynamic)
916               index = this->u1_.relobj->dynsym_index(lsi);
917             else
918               index = this->u1_.relobj->symtab_index(lsi);
919           }
920         else
921           {
922             Output_section* os = this->u1_.relobj->output_section(lsi);
923             gold_assert(os != NULL);
924             if (dynamic)
925               index = os->dynsym_index();
926             else
927               index = os->symtab_index();
928           }
929       }
930       break;
931     }
932   gold_assert(index != -1U);
933   return index;
934 }
935
936 // For a local section symbol, get the address of the offset ADDEND
937 // within the input section.
938
939 template<bool dynamic, int size, bool big_endian>
940 typename elfcpp::Elf_types<size>::Elf_Addr
941 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
942   local_section_offset(Addend addend) const
943 {
944   gold_assert(this->local_sym_index_ != GSYM_CODE
945               && this->local_sym_index_ != SECTION_CODE
946               && this->local_sym_index_ != TARGET_CODE
947               && this->local_sym_index_ != INVALID_CODE
948               && this->local_sym_index_ != 0
949               && this->is_section_symbol_);
950   const unsigned int lsi = this->local_sym_index_;
951   Output_section* os = this->u1_.relobj->output_section(lsi);
952   gold_assert(os != NULL);
953   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
954   if (offset != invalid_address)
955     return offset + addend;
956   // This is a merge section.
957   offset = os->output_address(this->u1_.relobj, lsi, addend);
958   gold_assert(offset != invalid_address);
959   return offset;
960 }
961
962 // Get the output address of a relocation.
963
964 template<bool dynamic, int size, bool big_endian>
965 typename elfcpp::Elf_types<size>::Elf_Addr
966 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
967 {
968   Address address = this->address_;
969   if (this->shndx_ != INVALID_CODE)
970     {
971       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
972       gold_assert(os != NULL);
973       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
974       if (off != invalid_address)
975         address += os->address() + off;
976       else
977         {
978           address = os->output_address(this->u2_.relobj, this->shndx_,
979                                        address);
980           gold_assert(address != invalid_address);
981         }
982     }
983   else if (this->u2_.od != NULL)
984     address += this->u2_.od->address();
985   return address;
986 }
987
988 // Write out the offset and info fields of a Rel or Rela relocation
989 // entry.
990
991 template<bool dynamic, int size, bool big_endian>
992 template<typename Write_rel>
993 void
994 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
995     Write_rel* wr) const
996 {
997   wr->put_r_offset(this->get_address());
998   unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
999   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1000 }
1001
1002 // Write out a Rel relocation.
1003
1004 template<bool dynamic, int size, bool big_endian>
1005 void
1006 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1007     unsigned char* pov) const
1008 {
1009   elfcpp::Rel_write<size, big_endian> orel(pov);
1010   this->write_rel(&orel);
1011 }
1012
1013 // Get the value of the symbol referred to by a Rel relocation.
1014
1015 template<bool dynamic, int size, bool big_endian>
1016 typename elfcpp::Elf_types<size>::Elf_Addr
1017 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1018     Addend addend) const
1019 {
1020   if (this->local_sym_index_ == GSYM_CODE)
1021     {
1022       const Sized_symbol<size>* sym;
1023       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1024       return sym->value() + addend;
1025     }
1026   gold_assert(this->local_sym_index_ != SECTION_CODE
1027               && this->local_sym_index_ != TARGET_CODE
1028               && this->local_sym_index_ != INVALID_CODE
1029               && this->local_sym_index_ != 0
1030               && !this->is_section_symbol_);
1031   const unsigned int lsi = this->local_sym_index_;
1032   const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1033   return symval->value(this->u1_.relobj, addend);
1034 }
1035
1036 // Reloc comparison.  This function sorts the dynamic relocs for the
1037 // benefit of the dynamic linker.  First we sort all relative relocs
1038 // to the front.  Among relative relocs, we sort by output address.
1039 // Among non-relative relocs, we sort by symbol index, then by output
1040 // address.
1041
1042 template<bool dynamic, int size, bool big_endian>
1043 int
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1046     const
1047 {
1048   if (this->is_relative_)
1049     {
1050       if (!r2.is_relative_)
1051         return -1;
1052       // Otherwise sort by reloc address below.
1053     }
1054   else if (r2.is_relative_)
1055     return 1;
1056   else
1057     {
1058       unsigned int sym1 = this->get_symbol_index();
1059       unsigned int sym2 = r2.get_symbol_index();
1060       if (sym1 < sym2)
1061         return -1;
1062       else if (sym1 > sym2)
1063         return 1;
1064       // Otherwise sort by reloc address.
1065     }
1066
1067   section_offset_type addr1 = this->get_address();
1068   section_offset_type addr2 = r2.get_address();
1069   if (addr1 < addr2)
1070     return -1;
1071   else if (addr1 > addr2)
1072     return 1;
1073
1074   // Final tie breaker, in order to generate the same output on any
1075   // host: reloc type.
1076   unsigned int type1 = this->type_;
1077   unsigned int type2 = r2.type_;
1078   if (type1 < type2)
1079     return -1;
1080   else if (type1 > type2)
1081     return 1;
1082
1083   // These relocs appear to be exactly the same.
1084   return 0;
1085 }
1086
1087 // Write out a Rela relocation.
1088
1089 template<bool dynamic, int size, bool big_endian>
1090 void
1091 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1092     unsigned char* pov) const
1093 {
1094   elfcpp::Rela_write<size, big_endian> orel(pov);
1095   this->rel_.write_rel(&orel);
1096   Addend addend = this->addend_;
1097   if (this->rel_.is_target_specific())
1098     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1099                                                this->rel_.type(), addend);
1100   else if (this->rel_.is_relative())
1101     addend = this->rel_.symbol_value(addend);
1102   else if (this->rel_.is_local_section_symbol())
1103     addend = this->rel_.local_section_offset(addend);
1104   orel.put_r_addend(addend);
1105 }
1106
1107 // Output_data_reloc_base methods.
1108
1109 // Adjust the output section.
1110
1111 template<int sh_type, bool dynamic, int size, bool big_endian>
1112 void
1113 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1114     ::do_adjust_output_section(Output_section* os)
1115 {
1116   if (sh_type == elfcpp::SHT_REL)
1117     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1118   else if (sh_type == elfcpp::SHT_RELA)
1119     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1120   else
1121     gold_unreachable();
1122   if (dynamic)
1123     os->set_should_link_to_dynsym();
1124   else
1125     os->set_should_link_to_symtab();
1126 }
1127
1128 // Write out relocation data.
1129
1130 template<int sh_type, bool dynamic, int size, bool big_endian>
1131 void
1132 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1133     Output_file* of)
1134 {
1135   const off_t off = this->offset();
1136   const off_t oview_size = this->data_size();
1137   unsigned char* const oview = of->get_output_view(off, oview_size);
1138
1139   if (this->sort_relocs())
1140     {
1141       gold_assert(dynamic);
1142       std::sort(this->relocs_.begin(), this->relocs_.end(),
1143                 Sort_relocs_comparison());
1144     }
1145
1146   unsigned char* pov = oview;
1147   for (typename Relocs::const_iterator p = this->relocs_.begin();
1148        p != this->relocs_.end();
1149        ++p)
1150     {
1151       p->write(pov);
1152       pov += reloc_size;
1153     }
1154
1155   gold_assert(pov - oview == oview_size);
1156
1157   of->write_output_view(off, oview_size, oview);
1158
1159   // We no longer need the relocation entries.
1160   this->relocs_.clear();
1161 }
1162
1163 // Class Output_relocatable_relocs.
1164
1165 template<int sh_type, int size, bool big_endian>
1166 void
1167 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1168 {
1169   this->set_data_size(this->rr_->output_reloc_count()
1170                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1171 }
1172
1173 // class Output_data_group.
1174
1175 template<int size, bool big_endian>
1176 Output_data_group<size, big_endian>::Output_data_group(
1177     Sized_relobj<size, big_endian>* relobj,
1178     section_size_type entry_count,
1179     elfcpp::Elf_Word flags,
1180     std::vector<unsigned int>* input_shndxes)
1181   : Output_section_data(entry_count * 4, 4, false),
1182     relobj_(relobj),
1183     flags_(flags)
1184 {
1185   this->input_shndxes_.swap(*input_shndxes);
1186 }
1187
1188 // Write out the section group, which means translating the section
1189 // indexes to apply to the output file.
1190
1191 template<int size, bool big_endian>
1192 void
1193 Output_data_group<size, big_endian>::do_write(Output_file* of)
1194 {
1195   const off_t off = this->offset();
1196   const section_size_type oview_size =
1197     convert_to_section_size_type(this->data_size());
1198   unsigned char* const oview = of->get_output_view(off, oview_size);
1199
1200   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1201   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1202   ++contents;
1203
1204   for (std::vector<unsigned int>::const_iterator p =
1205          this->input_shndxes_.begin();
1206        p != this->input_shndxes_.end();
1207        ++p, ++contents)
1208     {
1209       Output_section* os = this->relobj_->output_section(*p);
1210
1211       unsigned int output_shndx;
1212       if (os != NULL)
1213         output_shndx = os->out_shndx();
1214       else
1215         {
1216           this->relobj_->error(_("section group retained but "
1217                                  "group element discarded"));
1218           output_shndx = 0;
1219         }
1220
1221       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1222     }
1223
1224   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1225   gold_assert(wrote == oview_size);
1226
1227   of->write_output_view(off, oview_size, oview);
1228
1229   // We no longer need this information.
1230   this->input_shndxes_.clear();
1231 }
1232
1233 // Output_data_got::Got_entry methods.
1234
1235 // Write out the entry.
1236
1237 template<int size, bool big_endian>
1238 void
1239 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1240 {
1241   Valtype val = 0;
1242
1243   switch (this->local_sym_index_)
1244     {
1245     case GSYM_CODE:
1246       {
1247         // If the symbol is resolved locally, we need to write out the
1248         // link-time value, which will be relocated dynamically by a
1249         // RELATIVE relocation.
1250         Symbol* gsym = this->u_.gsym;
1251         Sized_symbol<size>* sgsym;
1252         // This cast is a bit ugly.  We don't want to put a
1253         // virtual method in Symbol, because we want Symbol to be
1254         // as small as possible.
1255         sgsym = static_cast<Sized_symbol<size>*>(gsym);
1256         val = sgsym->value();
1257       }
1258       break;
1259
1260     case CONSTANT_CODE:
1261       val = this->u_.constant;
1262       break;
1263
1264     default:
1265       {
1266         const unsigned int lsi = this->local_sym_index_;
1267         const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1268         val = symval->value(this->u_.object, 0);
1269       }
1270       break;
1271     }
1272
1273   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1274 }
1275
1276 // Output_data_got methods.
1277
1278 // Add an entry for a global symbol to the GOT.  This returns true if
1279 // this is a new GOT entry, false if the symbol already had a GOT
1280 // entry.
1281
1282 template<int size, bool big_endian>
1283 bool
1284 Output_data_got<size, big_endian>::add_global(
1285     Symbol* gsym,
1286     unsigned int got_type)
1287 {
1288   if (gsym->has_got_offset(got_type))
1289     return false;
1290
1291   this->entries_.push_back(Got_entry(gsym));
1292   this->set_got_size();
1293   gsym->set_got_offset(got_type, this->last_got_offset());
1294   return true;
1295 }
1296
1297 // Add an entry for a global symbol to the GOT, and add a dynamic
1298 // relocation of type R_TYPE for the GOT entry.
1299 template<int size, bool big_endian>
1300 void
1301 Output_data_got<size, big_endian>::add_global_with_rel(
1302     Symbol* gsym,
1303     unsigned int got_type,
1304     Rel_dyn* rel_dyn,
1305     unsigned int r_type)
1306 {
1307   if (gsym->has_got_offset(got_type))
1308     return;
1309
1310   this->entries_.push_back(Got_entry());
1311   this->set_got_size();
1312   unsigned int got_offset = this->last_got_offset();
1313   gsym->set_got_offset(got_type, got_offset);
1314   rel_dyn->add_global(gsym, r_type, this, got_offset);
1315 }
1316
1317 template<int size, bool big_endian>
1318 void
1319 Output_data_got<size, big_endian>::add_global_with_rela(
1320     Symbol* gsym,
1321     unsigned int got_type,
1322     Rela_dyn* rela_dyn,
1323     unsigned int r_type)
1324 {
1325   if (gsym->has_got_offset(got_type))
1326     return;
1327
1328   this->entries_.push_back(Got_entry());
1329   this->set_got_size();
1330   unsigned int got_offset = this->last_got_offset();
1331   gsym->set_got_offset(got_type, got_offset);
1332   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1333 }
1334
1335 // Add a pair of entries for a global symbol to the GOT, and add
1336 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1337 // If R_TYPE_2 == 0, add the second entry with no relocation.
1338 template<int size, bool big_endian>
1339 void
1340 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1341     Symbol* gsym,
1342     unsigned int got_type,
1343     Rel_dyn* rel_dyn,
1344     unsigned int r_type_1,
1345     unsigned int r_type_2)
1346 {
1347   if (gsym->has_got_offset(got_type))
1348     return;
1349
1350   this->entries_.push_back(Got_entry());
1351   unsigned int got_offset = this->last_got_offset();
1352   gsym->set_got_offset(got_type, got_offset);
1353   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1354
1355   this->entries_.push_back(Got_entry());
1356   if (r_type_2 != 0)
1357     {
1358       got_offset = this->last_got_offset();
1359       rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1360     }
1361
1362   this->set_got_size();
1363 }
1364
1365 template<int size, bool big_endian>
1366 void
1367 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1368     Symbol* gsym,
1369     unsigned int got_type,
1370     Rela_dyn* rela_dyn,
1371     unsigned int r_type_1,
1372     unsigned int r_type_2)
1373 {
1374   if (gsym->has_got_offset(got_type))
1375     return;
1376
1377   this->entries_.push_back(Got_entry());
1378   unsigned int got_offset = this->last_got_offset();
1379   gsym->set_got_offset(got_type, got_offset);
1380   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1381
1382   this->entries_.push_back(Got_entry());
1383   if (r_type_2 != 0)
1384     {
1385       got_offset = this->last_got_offset();
1386       rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1387     }
1388
1389   this->set_got_size();
1390 }
1391
1392 // Add an entry for a local symbol to the GOT.  This returns true if
1393 // this is a new GOT entry, false if the symbol already has a GOT
1394 // entry.
1395
1396 template<int size, bool big_endian>
1397 bool
1398 Output_data_got<size, big_endian>::add_local(
1399     Sized_relobj<size, big_endian>* object,
1400     unsigned int symndx,
1401     unsigned int got_type)
1402 {
1403   if (object->local_has_got_offset(symndx, got_type))
1404     return false;
1405
1406   this->entries_.push_back(Got_entry(object, symndx));
1407   this->set_got_size();
1408   object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1409   return true;
1410 }
1411
1412 // Add an entry for a local symbol to the GOT, and add a dynamic
1413 // relocation of type R_TYPE for the GOT entry.
1414 template<int size, bool big_endian>
1415 void
1416 Output_data_got<size, big_endian>::add_local_with_rel(
1417     Sized_relobj<size, big_endian>* object,
1418     unsigned int symndx,
1419     unsigned int got_type,
1420     Rel_dyn* rel_dyn,
1421     unsigned int r_type)
1422 {
1423   if (object->local_has_got_offset(symndx, got_type))
1424     return;
1425
1426   this->entries_.push_back(Got_entry());
1427   this->set_got_size();
1428   unsigned int got_offset = this->last_got_offset();
1429   object->set_local_got_offset(symndx, got_type, got_offset);
1430   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1431 }
1432
1433 template<int size, bool big_endian>
1434 void
1435 Output_data_got<size, big_endian>::add_local_with_rela(
1436     Sized_relobj<size, big_endian>* object,
1437     unsigned int symndx,
1438     unsigned int got_type,
1439     Rela_dyn* rela_dyn,
1440     unsigned int r_type)
1441 {
1442   if (object->local_has_got_offset(symndx, got_type))
1443     return;
1444
1445   this->entries_.push_back(Got_entry());
1446   this->set_got_size();
1447   unsigned int got_offset = this->last_got_offset();
1448   object->set_local_got_offset(symndx, got_type, got_offset);
1449   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1450 }
1451
1452 // Add a pair of entries for a local symbol to the GOT, and add
1453 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1454 // If R_TYPE_2 == 0, add the second entry with no relocation.
1455 template<int size, bool big_endian>
1456 void
1457 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1458     Sized_relobj<size, big_endian>* object,
1459     unsigned int symndx,
1460     unsigned int shndx,
1461     unsigned int got_type,
1462     Rel_dyn* rel_dyn,
1463     unsigned int r_type_1,
1464     unsigned int r_type_2)
1465 {
1466   if (object->local_has_got_offset(symndx, got_type))
1467     return;
1468
1469   this->entries_.push_back(Got_entry());
1470   unsigned int got_offset = this->last_got_offset();
1471   object->set_local_got_offset(symndx, got_type, got_offset);
1472   Output_section* os = object->output_section(shndx);
1473   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1474
1475   this->entries_.push_back(Got_entry(object, symndx));
1476   if (r_type_2 != 0)
1477     {
1478       got_offset = this->last_got_offset();
1479       rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1480     }
1481
1482   this->set_got_size();
1483 }
1484
1485 template<int size, bool big_endian>
1486 void
1487 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1488     Sized_relobj<size, big_endian>* object,
1489     unsigned int symndx,
1490     unsigned int shndx,
1491     unsigned int got_type,
1492     Rela_dyn* rela_dyn,
1493     unsigned int r_type_1,
1494     unsigned int r_type_2)
1495 {
1496   if (object->local_has_got_offset(symndx, got_type))
1497     return;
1498
1499   this->entries_.push_back(Got_entry());
1500   unsigned int got_offset = this->last_got_offset();
1501   object->set_local_got_offset(symndx, got_type, got_offset);
1502   Output_section* os = object->output_section(shndx);
1503   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1504
1505   this->entries_.push_back(Got_entry(object, symndx));
1506   if (r_type_2 != 0)
1507     {
1508       got_offset = this->last_got_offset();
1509       rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1510     }
1511
1512   this->set_got_size();
1513 }
1514
1515 // Write out the GOT.
1516
1517 template<int size, bool big_endian>
1518 void
1519 Output_data_got<size, big_endian>::do_write(Output_file* of)
1520 {
1521   const int add = size / 8;
1522
1523   const off_t off = this->offset();
1524   const off_t oview_size = this->data_size();
1525   unsigned char* const oview = of->get_output_view(off, oview_size);
1526
1527   unsigned char* pov = oview;
1528   for (typename Got_entries::const_iterator p = this->entries_.begin();
1529        p != this->entries_.end();
1530        ++p)
1531     {
1532       p->write(pov);
1533       pov += add;
1534     }
1535
1536   gold_assert(pov - oview == oview_size);
1537
1538   of->write_output_view(off, oview_size, oview);
1539
1540   // We no longer need the GOT entries.
1541   this->entries_.clear();
1542 }
1543
1544 // Output_data_dynamic::Dynamic_entry methods.
1545
1546 // Write out the entry.
1547
1548 template<int size, bool big_endian>
1549 void
1550 Output_data_dynamic::Dynamic_entry::write(
1551     unsigned char* pov,
1552     const Stringpool* pool) const
1553 {
1554   typename elfcpp::Elf_types<size>::Elf_WXword val;
1555   switch (this->offset_)
1556     {
1557     case DYNAMIC_NUMBER:
1558       val = this->u_.val;
1559       break;
1560
1561     case DYNAMIC_SECTION_SIZE:
1562       val = this->u_.od->data_size();
1563       break;
1564
1565     case DYNAMIC_SYMBOL:
1566       {
1567         const Sized_symbol<size>* s =
1568           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1569         val = s->value();
1570       }
1571       break;
1572
1573     case DYNAMIC_STRING:
1574       val = pool->get_offset(this->u_.str);
1575       break;
1576
1577     default:
1578       val = this->u_.od->address() + this->offset_;
1579       break;
1580     }
1581
1582   elfcpp::Dyn_write<size, big_endian> dw(pov);
1583   dw.put_d_tag(this->tag_);
1584   dw.put_d_val(val);
1585 }
1586
1587 // Output_data_dynamic methods.
1588
1589 // Adjust the output section to set the entry size.
1590
1591 void
1592 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1593 {
1594   if (parameters->target().get_size() == 32)
1595     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1596   else if (parameters->target().get_size() == 64)
1597     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1598   else
1599     gold_unreachable();
1600 }
1601
1602 // Set the final data size.
1603
1604 void
1605 Output_data_dynamic::set_final_data_size()
1606 {
1607   // Add the terminating entry if it hasn't been added.
1608   // Because of relaxation, we can run this multiple times.
1609   if (this->entries_.empty()
1610       || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1611     this->add_constant(elfcpp::DT_NULL, 0);
1612
1613   int dyn_size;
1614   if (parameters->target().get_size() == 32)
1615     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1616   else if (parameters->target().get_size() == 64)
1617     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1618   else
1619     gold_unreachable();
1620   this->set_data_size(this->entries_.size() * dyn_size);
1621 }
1622
1623 // Write out the dynamic entries.
1624
1625 void
1626 Output_data_dynamic::do_write(Output_file* of)
1627 {
1628   switch (parameters->size_and_endianness())
1629     {
1630 #ifdef HAVE_TARGET_32_LITTLE
1631     case Parameters::TARGET_32_LITTLE:
1632       this->sized_write<32, false>(of);
1633       break;
1634 #endif
1635 #ifdef HAVE_TARGET_32_BIG
1636     case Parameters::TARGET_32_BIG:
1637       this->sized_write<32, true>(of);
1638       break;
1639 #endif
1640 #ifdef HAVE_TARGET_64_LITTLE
1641     case Parameters::TARGET_64_LITTLE:
1642       this->sized_write<64, false>(of);
1643       break;
1644 #endif
1645 #ifdef HAVE_TARGET_64_BIG
1646     case Parameters::TARGET_64_BIG:
1647       this->sized_write<64, true>(of);
1648       break;
1649 #endif
1650     default:
1651       gold_unreachable();
1652     }
1653 }
1654
1655 template<int size, bool big_endian>
1656 void
1657 Output_data_dynamic::sized_write(Output_file* of)
1658 {
1659   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1660
1661   const off_t offset = this->offset();
1662   const off_t oview_size = this->data_size();
1663   unsigned char* const oview = of->get_output_view(offset, oview_size);
1664
1665   unsigned char* pov = oview;
1666   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1667        p != this->entries_.end();
1668        ++p)
1669     {
1670       p->write<size, big_endian>(pov, this->pool_);
1671       pov += dyn_size;
1672     }
1673
1674   gold_assert(pov - oview == oview_size);
1675
1676   of->write_output_view(offset, oview_size, oview);
1677
1678   // We no longer need the dynamic entries.
1679   this->entries_.clear();
1680 }
1681
1682 // Class Output_symtab_xindex.
1683
1684 void
1685 Output_symtab_xindex::do_write(Output_file* of)
1686 {
1687   const off_t offset = this->offset();
1688   const off_t oview_size = this->data_size();
1689   unsigned char* const oview = of->get_output_view(offset, oview_size);
1690
1691   memset(oview, 0, oview_size);
1692
1693   if (parameters->target().is_big_endian())
1694     this->endian_do_write<true>(oview);
1695   else
1696     this->endian_do_write<false>(oview);
1697
1698   of->write_output_view(offset, oview_size, oview);
1699
1700   // We no longer need the data.
1701   this->entries_.clear();
1702 }
1703
1704 template<bool big_endian>
1705 void
1706 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1707 {
1708   for (Xindex_entries::const_iterator p = this->entries_.begin();
1709        p != this->entries_.end();
1710        ++p)
1711     {
1712       unsigned int symndx = p->first;
1713       gold_assert(symndx * 4 < this->data_size());
1714       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1715     }
1716 }
1717
1718 // Output_section::Input_section methods.
1719
1720 // Return the data size.  For an input section we store the size here.
1721 // For an Output_section_data, we have to ask it for the size.
1722
1723 off_t
1724 Output_section::Input_section::data_size() const
1725 {
1726   if (this->is_input_section())
1727     return this->u1_.data_size;
1728   else
1729     return this->u2_.posd->data_size();
1730 }
1731
1732 // Set the address and file offset.
1733
1734 void
1735 Output_section::Input_section::set_address_and_file_offset(
1736     uint64_t address,
1737     off_t file_offset,
1738     off_t section_file_offset)
1739 {
1740   if (this->is_input_section())
1741     this->u2_.object->set_section_offset(this->shndx_,
1742                                          file_offset - section_file_offset);
1743   else
1744     this->u2_.posd->set_address_and_file_offset(address, file_offset);
1745 }
1746
1747 // Reset the address and file offset.
1748
1749 void
1750 Output_section::Input_section::reset_address_and_file_offset()
1751 {
1752   if (!this->is_input_section())
1753     this->u2_.posd->reset_address_and_file_offset();
1754 }
1755
1756 // Finalize the data size.
1757
1758 void
1759 Output_section::Input_section::finalize_data_size()
1760 {
1761   if (!this->is_input_section())
1762     this->u2_.posd->finalize_data_size();
1763 }
1764
1765 // Try to turn an input offset into an output offset.  We want to
1766 // return the output offset relative to the start of this
1767 // Input_section in the output section.
1768
1769 inline bool
1770 Output_section::Input_section::output_offset(
1771     const Relobj* object,
1772     unsigned int shndx,
1773     section_offset_type offset,
1774     section_offset_type *poutput) const
1775 {
1776   if (!this->is_input_section())
1777     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1778   else
1779     {
1780       if (this->shndx_ != shndx || this->u2_.object != object)
1781         return false;
1782       *poutput = offset;
1783       return true;
1784     }
1785 }
1786
1787 // Return whether this is the merge section for the input section
1788 // SHNDX in OBJECT.
1789
1790 inline bool
1791 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1792                                                     unsigned int shndx) const
1793 {
1794   if (this->is_input_section())
1795     return false;
1796   return this->u2_.posd->is_merge_section_for(object, shndx);
1797 }
1798
1799 // Write out the data.  We don't have to do anything for an input
1800 // section--they are handled via Object::relocate--but this is where
1801 // we write out the data for an Output_section_data.
1802
1803 void
1804 Output_section::Input_section::write(Output_file* of)
1805 {
1806   if (!this->is_input_section())
1807     this->u2_.posd->write(of);
1808 }
1809
1810 // Write the data to a buffer.  As for write(), we don't have to do
1811 // anything for an input section.
1812
1813 void
1814 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1815 {
1816   if (!this->is_input_section())
1817     this->u2_.posd->write_to_buffer(buffer);
1818 }
1819
1820 // Print to a map file.
1821
1822 void
1823 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1824 {
1825   switch (this->shndx_)
1826     {
1827     case OUTPUT_SECTION_CODE:
1828     case MERGE_DATA_SECTION_CODE:
1829     case MERGE_STRING_SECTION_CODE:
1830       this->u2_.posd->print_to_mapfile(mapfile);
1831       break;
1832
1833     case RELAXED_INPUT_SECTION_CODE:
1834       {
1835         Output_relaxed_input_section* relaxed_section =
1836           this->relaxed_input_section();
1837         mapfile->print_input_section(relaxed_section->relobj(),
1838                                      relaxed_section->shndx());
1839       }
1840       break;
1841     default:
1842       mapfile->print_input_section(this->u2_.object, this->shndx_);
1843       break;
1844     }
1845 }
1846
1847 // Output_section methods.
1848
1849 // Construct an Output_section.  NAME will point into a Stringpool.
1850
1851 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1852                                elfcpp::Elf_Xword flags)
1853   : name_(name),
1854     addralign_(0),
1855     entsize_(0),
1856     load_address_(0),
1857     link_section_(NULL),
1858     link_(0),
1859     info_section_(NULL),
1860     info_symndx_(NULL),
1861     info_(0),
1862     type_(type),
1863     flags_(flags),
1864     out_shndx_(-1U),
1865     symtab_index_(0),
1866     dynsym_index_(0),
1867     input_sections_(),
1868     first_input_offset_(0),
1869     fills_(),
1870     postprocessing_buffer_(NULL),
1871     needs_symtab_index_(false),
1872     needs_dynsym_index_(false),
1873     should_link_to_symtab_(false),
1874     should_link_to_dynsym_(false),
1875     after_input_sections_(false),
1876     requires_postprocessing_(false),
1877     found_in_sections_clause_(false),
1878     has_load_address_(false),
1879     info_uses_section_index_(false),
1880     may_sort_attached_input_sections_(false),
1881     must_sort_attached_input_sections_(false),
1882     attached_input_sections_are_sorted_(false),
1883     is_relro_(false),
1884     is_relro_local_(false),
1885     is_last_relro_(false),
1886     is_first_non_relro_(false),
1887     is_small_section_(false),
1888     is_large_section_(false),
1889     is_interp_(false),
1890     is_dynamic_linker_section_(false),
1891     generate_code_fills_at_write_(false),
1892     is_entsize_zero_(false),
1893     section_offsets_need_adjustment_(false),
1894     tls_offset_(0),
1895     checkpoint_(NULL),
1896     merge_section_map_(),
1897     merge_section_by_properties_map_(),
1898     relaxed_input_section_map_(),
1899     is_relaxed_input_section_map_valid_(true)
1900 {
1901   // An unallocated section has no address.  Forcing this means that
1902   // we don't need special treatment for symbols defined in debug
1903   // sections.
1904   if ((flags & elfcpp::SHF_ALLOC) == 0)
1905     this->set_address(0);
1906 }
1907
1908 Output_section::~Output_section()
1909 {
1910   delete this->checkpoint_;
1911 }
1912
1913 // Set the entry size.
1914
1915 void
1916 Output_section::set_entsize(uint64_t v)
1917 {
1918   if (this->is_entsize_zero_)
1919     ;
1920   else if (this->entsize_ == 0)
1921     this->entsize_ = v;
1922   else if (this->entsize_ != v)
1923     {
1924       this->entsize_ = 0;
1925       this->is_entsize_zero_ = 1;
1926     }
1927 }
1928
1929 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1930 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
1931 // relocation section which applies to this section, or 0 if none, or
1932 // -1U if more than one.  Return the offset of the input section
1933 // within the output section.  Return -1 if the input section will
1934 // receive special handling.  In the normal case we don't always keep
1935 // track of input sections for an Output_section.  Instead, each
1936 // Object keeps track of the Output_section for each of its input
1937 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1938 // track of input sections here; this is used when SECTIONS appears in
1939 // a linker script.
1940
1941 template<int size, bool big_endian>
1942 off_t
1943 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1944                                   unsigned int shndx,
1945                                   const char* secname,
1946                                   const elfcpp::Shdr<size, big_endian>& shdr,
1947                                   unsigned int reloc_shndx,
1948                                   bool have_sections_script)
1949 {
1950   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1951   if ((addralign & (addralign - 1)) != 0)
1952     {
1953       object->error(_("invalid alignment %lu for section \"%s\""),
1954                     static_cast<unsigned long>(addralign), secname);
1955       addralign = 1;
1956     }
1957
1958   if (addralign > this->addralign_)
1959     this->addralign_ = addralign;
1960
1961   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1962   uint64_t entsize = shdr.get_sh_entsize();
1963
1964   // .debug_str is a mergeable string section, but is not always so
1965   // marked by compilers.  Mark manually here so we can optimize.
1966   if (strcmp(secname, ".debug_str") == 0)
1967     {
1968       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1969       entsize = 1;
1970     }
1971
1972   this->update_flags_for_input_section(sh_flags);
1973   this->set_entsize(entsize);
1974
1975   // If this is a SHF_MERGE section, we pass all the input sections to
1976   // a Output_data_merge.  We don't try to handle relocations for such
1977   // a section.  We don't try to handle empty merge sections--they
1978   // mess up the mappings, and are useless anyhow.
1979   if ((sh_flags & elfcpp::SHF_MERGE) != 0
1980       && reloc_shndx == 0
1981       && shdr.get_sh_size() > 0)
1982     {
1983       if (this->add_merge_input_section(object, shndx, sh_flags,
1984                                         entsize, addralign))
1985         {
1986           // Tell the relocation routines that they need to call the
1987           // output_offset method to determine the final address.
1988           return -1;
1989         }
1990     }
1991
1992   off_t offset_in_section = this->current_data_size_for_child();
1993   off_t aligned_offset_in_section = align_address(offset_in_section,
1994                                                   addralign);
1995
1996   // Determine if we want to delay code-fill generation until the output
1997   // section is written.  When the target is relaxing, we want to delay fill
1998   // generating to avoid adjusting them during relaxation.
1999   if (!this->generate_code_fills_at_write_
2000       && !have_sections_script
2001       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2002       && parameters->target().has_code_fill()
2003       && parameters->target().may_relax())
2004     {
2005       gold_assert(this->fills_.empty());
2006       this->generate_code_fills_at_write_ = true;
2007     }
2008
2009   if (aligned_offset_in_section > offset_in_section
2010       && !this->generate_code_fills_at_write_
2011       && !have_sections_script
2012       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2013       && parameters->target().has_code_fill())
2014     {
2015       // We need to add some fill data.  Using fill_list_ when
2016       // possible is an optimization, since we will often have fill
2017       // sections without input sections.
2018       off_t fill_len = aligned_offset_in_section - offset_in_section;
2019       if (this->input_sections_.empty())
2020         this->fills_.push_back(Fill(offset_in_section, fill_len));
2021       else
2022         {
2023           std::string fill_data(parameters->target().code_fill(fill_len));
2024           Output_data_const* odc = new Output_data_const(fill_data, 1);
2025           this->input_sections_.push_back(Input_section(odc));
2026         }
2027     }
2028
2029   this->set_current_data_size_for_child(aligned_offset_in_section
2030                                         + shdr.get_sh_size());
2031
2032   // We need to keep track of this section if we are already keeping
2033   // track of sections, or if we are relaxing.  Also, if this is a
2034   // section which requires sorting, or which may require sorting in
2035   // the future, we keep track of the sections.
2036   if (have_sections_script
2037       || !this->input_sections_.empty()
2038       || this->may_sort_attached_input_sections()
2039       || this->must_sort_attached_input_sections()
2040       || parameters->options().user_set_Map()
2041       || parameters->target().may_relax())
2042     this->input_sections_.push_back(Input_section(object, shndx,
2043                                                   shdr.get_sh_size(),
2044                                                   addralign));
2045
2046   return aligned_offset_in_section;
2047 }
2048
2049 // Add arbitrary data to an output section.
2050
2051 void
2052 Output_section::add_output_section_data(Output_section_data* posd)
2053 {
2054   Input_section inp(posd);
2055   this->add_output_section_data(&inp);
2056
2057   if (posd->is_data_size_valid())
2058     {
2059       off_t offset_in_section = this->current_data_size_for_child();
2060       off_t aligned_offset_in_section = align_address(offset_in_section,
2061                                                       posd->addralign());
2062       this->set_current_data_size_for_child(aligned_offset_in_section
2063                                             + posd->data_size());
2064     }
2065 }
2066
2067 // Add a relaxed input section.
2068
2069 void
2070 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2071 {
2072   Input_section inp(poris);
2073   this->add_output_section_data(&inp);
2074   if (this->is_relaxed_input_section_map_valid_)
2075     {
2076       Const_section_id csid(poris->relobj(), poris->shndx());
2077       this->relaxed_input_section_map_[csid] = poris;
2078     }
2079
2080   // For a relaxed section, we use the current data size.  Linker scripts
2081   // get all the input sections, including relaxed one from an output
2082   // section and add them back to them same output section to compute the
2083   // output section size.  If we do not account for sizes of relaxed input
2084   // sections,  an output section would be incorrectly sized.
2085   off_t offset_in_section = this->current_data_size_for_child();
2086   off_t aligned_offset_in_section = align_address(offset_in_section,
2087                                                   poris->addralign());
2088   this->set_current_data_size_for_child(aligned_offset_in_section
2089                                         + poris->current_data_size());
2090 }
2091
2092 // Add arbitrary data to an output section by Input_section.
2093
2094 void
2095 Output_section::add_output_section_data(Input_section* inp)
2096 {
2097   if (this->input_sections_.empty())
2098     this->first_input_offset_ = this->current_data_size_for_child();
2099
2100   this->input_sections_.push_back(*inp);
2101
2102   uint64_t addralign = inp->addralign();
2103   if (addralign > this->addralign_)
2104     this->addralign_ = addralign;
2105
2106   inp->set_output_section(this);
2107 }
2108
2109 // Add a merge section to an output section.
2110
2111 void
2112 Output_section::add_output_merge_section(Output_section_data* posd,
2113                                          bool is_string, uint64_t entsize)
2114 {
2115   Input_section inp(posd, is_string, entsize);
2116   this->add_output_section_data(&inp);
2117 }
2118
2119 // Add an input section to a SHF_MERGE section.
2120
2121 bool
2122 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2123                                         uint64_t flags, uint64_t entsize,
2124                                         uint64_t addralign)
2125 {
2126   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2127
2128   // We only merge strings if the alignment is not more than the
2129   // character size.  This could be handled, but it's unusual.
2130   if (is_string && addralign > entsize)
2131     return false;
2132
2133   // We cannot restore merged input section states.
2134   gold_assert(this->checkpoint_ == NULL);
2135
2136   // Look up merge sections by required properties.
2137   Merge_section_properties msp(is_string, entsize, addralign);
2138   Merge_section_by_properties_map::const_iterator p =
2139     this->merge_section_by_properties_map_.find(msp);
2140   if (p != this->merge_section_by_properties_map_.end())
2141     {
2142       Output_merge_base* merge_section = p->second;
2143       merge_section->add_input_section(object, shndx);
2144       gold_assert(merge_section->is_string() == is_string
2145                   && merge_section->entsize() == entsize
2146                   && merge_section->addralign() == addralign);
2147
2148       // Link input section to found merge section.
2149       Const_section_id csid(object, shndx);
2150       this->merge_section_map_[csid] = merge_section;
2151       return true;
2152     }
2153
2154   // We handle the actual constant merging in Output_merge_data or
2155   // Output_merge_string_data.
2156   Output_merge_base* pomb;
2157   if (!is_string)
2158     pomb = new Output_merge_data(entsize, addralign);
2159   else
2160     {
2161       switch (entsize)
2162         {
2163         case 1:
2164           pomb = new Output_merge_string<char>(addralign);
2165           break;
2166         case 2:
2167           pomb = new Output_merge_string<uint16_t>(addralign);
2168           break;
2169         case 4:
2170           pomb = new Output_merge_string<uint32_t>(addralign);
2171           break;
2172         default:
2173           return false;
2174         }
2175     }
2176
2177   // Add new merge section to this output section and link merge section
2178   // properties to new merge section in map.
2179   this->add_output_merge_section(pomb, is_string, entsize);
2180   this->merge_section_by_properties_map_[msp] = pomb;
2181
2182   // Add input section to new merge section and link input section to new
2183   // merge section in map.
2184   pomb->add_input_section(object, shndx);
2185   Const_section_id csid(object, shndx);
2186   this->merge_section_map_[csid] = pomb;
2187
2188   return true;
2189 }
2190
2191 // Build a relaxation map to speed up relaxation of existing input sections.
2192 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2193
2194 void
2195 Output_section::build_relaxation_map(
2196   const Input_section_list& input_sections,
2197   size_t limit,
2198   Relaxation_map* relaxation_map) const
2199 {
2200   for (size_t i = 0; i < limit; ++i)
2201     {
2202       const Input_section& is(input_sections[i]);
2203       if (is.is_input_section() || is.is_relaxed_input_section())
2204         {
2205           Section_id sid(is.relobj(), is.shndx());
2206           (*relaxation_map)[sid] = i;
2207         }
2208     }
2209 }
2210
2211 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2212 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2213 // indices of INPUT_SECTIONS.
2214
2215 void
2216 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2217   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2218   const Relaxation_map& map,
2219   Input_section_list* input_sections)
2220 {
2221   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2222     {
2223       Output_relaxed_input_section* poris = relaxed_sections[i];
2224       Section_id sid(poris->relobj(), poris->shndx());
2225       Relaxation_map::const_iterator p = map.find(sid);
2226       gold_assert(p != map.end());
2227       gold_assert((*input_sections)[p->second].is_input_section());
2228       (*input_sections)[p->second] = Input_section(poris);
2229     }
2230 }
2231   
2232 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2233 // is a vector of pointers to Output_relaxed_input_section or its derived
2234 // classes.  The relaxed sections must correspond to existing input sections.
2235
2236 void
2237 Output_section::convert_input_sections_to_relaxed_sections(
2238   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2239 {
2240   gold_assert(parameters->target().may_relax());
2241
2242   // We want to make sure that restore_states does not undo the effect of
2243   // this.  If there is no checkpoint active, just search the current
2244   // input section list and replace the sections there.  If there is
2245   // a checkpoint, also replace the sections there.
2246   
2247   // By default, we look at the whole list.
2248   size_t limit = this->input_sections_.size();
2249
2250   if (this->checkpoint_ != NULL)
2251     {
2252       // Replace input sections with relaxed input section in the saved
2253       // copy of the input section list.
2254       if (this->checkpoint_->input_sections_saved())
2255         {
2256           Relaxation_map map;
2257           this->build_relaxation_map(
2258                     *(this->checkpoint_->input_sections()),
2259                     this->checkpoint_->input_sections()->size(),
2260                     &map);
2261           this->convert_input_sections_in_list_to_relaxed_sections(
2262                     relaxed_sections,
2263                     map,
2264                     this->checkpoint_->input_sections());
2265         }
2266       else
2267         {
2268           // We have not copied the input section list yet.  Instead, just
2269           // look at the portion that would be saved.
2270           limit = this->checkpoint_->input_sections_size();
2271         }
2272     }
2273
2274   // Convert input sections in input_section_list.
2275   Relaxation_map map;
2276   this->build_relaxation_map(this->input_sections_, limit, &map);
2277   this->convert_input_sections_in_list_to_relaxed_sections(
2278             relaxed_sections,
2279             map,
2280             &this->input_sections_);
2281
2282   // Update fast look-up map.
2283   if (this->is_relaxed_input_section_map_valid_)
2284     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2285       {
2286         Output_relaxed_input_section* poris = relaxed_sections[i];
2287         Const_section_id csid(poris->relobj(), poris->shndx());
2288         this->relaxed_input_section_map_[csid] = poris;
2289       }
2290 }
2291
2292 // Update the output section flags based on input section flags.
2293
2294 void
2295 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2296 {
2297   // If we created the section with SHF_ALLOC clear, we set the
2298   // address.  If we are now setting the SHF_ALLOC flag, we need to
2299   // undo that.
2300   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2301       && (flags & elfcpp::SHF_ALLOC) != 0)
2302     this->mark_address_invalid();
2303
2304   this->flags_ |= (flags
2305                    & (elfcpp::SHF_WRITE
2306                       | elfcpp::SHF_ALLOC
2307                       | elfcpp::SHF_EXECINSTR));
2308
2309   if ((flags & elfcpp::SHF_MERGE) == 0)
2310     this->flags_ &=~ elfcpp::SHF_MERGE;
2311   else
2312     {
2313       if (this->current_data_size_for_child() == 0)
2314         this->flags_ |= elfcpp::SHF_MERGE;
2315     }
2316
2317   if ((flags & elfcpp::SHF_STRINGS) == 0)
2318     this->flags_ &=~ elfcpp::SHF_STRINGS;
2319   else
2320     {
2321       if (this->current_data_size_for_child() == 0)
2322         this->flags_ |= elfcpp::SHF_STRINGS;
2323     }
2324 }
2325
2326 // Find the merge section into which an input section with index SHNDX in
2327 // OBJECT has been added.  Return NULL if none found.
2328
2329 Output_section_data*
2330 Output_section::find_merge_section(const Relobj* object,
2331                                    unsigned int shndx) const
2332 {
2333   Const_section_id csid(object, shndx);
2334   Output_section_data_by_input_section_map::const_iterator p =
2335     this->merge_section_map_.find(csid);
2336   if (p != this->merge_section_map_.end())
2337     {
2338       Output_section_data* posd = p->second;
2339       gold_assert(posd->is_merge_section_for(object, shndx));
2340       return posd;
2341     }
2342   else
2343     return NULL;
2344 }
2345
2346 // Find an relaxed input section corresponding to an input section
2347 // in OBJECT with index SHNDX.
2348
2349 const Output_relaxed_input_section*
2350 Output_section::find_relaxed_input_section(const Relobj* object,
2351                                            unsigned int shndx) const
2352 {
2353   // Be careful that the map may not be valid due to input section export
2354   // to scripts or a check-point restore.
2355   if (!this->is_relaxed_input_section_map_valid_)
2356     {
2357       // Rebuild the map as needed.
2358       this->relaxed_input_section_map_.clear();
2359       for (Input_section_list::const_iterator p = this->input_sections_.begin();
2360            p != this->input_sections_.end();
2361            ++p)
2362         if (p->is_relaxed_input_section())
2363           {
2364             Const_section_id csid(p->relobj(), p->shndx());
2365             this->relaxed_input_section_map_[csid] =
2366               p->relaxed_input_section();
2367           }
2368       this->is_relaxed_input_section_map_valid_ = true;
2369     }
2370
2371   Const_section_id csid(object, shndx);
2372   Output_relaxed_input_section_by_input_section_map::const_iterator p =
2373     this->relaxed_input_section_map_.find(csid);
2374   if (p != this->relaxed_input_section_map_.end())
2375     return p->second;
2376   else
2377     return NULL;
2378 }
2379
2380 // Given an address OFFSET relative to the start of input section
2381 // SHNDX in OBJECT, return whether this address is being included in
2382 // the final link.  This should only be called if SHNDX in OBJECT has
2383 // a special mapping.
2384
2385 bool
2386 Output_section::is_input_address_mapped(const Relobj* object,
2387                                         unsigned int shndx,
2388                                         off_t offset) const
2389 {
2390   // Look at the Output_section_data_maps first.
2391   const Output_section_data* posd = this->find_merge_section(object, shndx);
2392   if (posd == NULL)
2393     posd = this->find_relaxed_input_section(object, shndx);
2394
2395   if (posd != NULL)
2396     {
2397       section_offset_type output_offset;
2398       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2399       gold_assert(found);   
2400       return output_offset != -1;
2401     }
2402
2403   // Fall back to the slow look-up.
2404   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2405        p != this->input_sections_.end();
2406        ++p)
2407     {
2408       section_offset_type output_offset;
2409       if (p->output_offset(object, shndx, offset, &output_offset))
2410         return output_offset != -1;
2411     }
2412
2413   // By default we assume that the address is mapped.  This should
2414   // only be called after we have passed all sections to Layout.  At
2415   // that point we should know what we are discarding.
2416   return true;
2417 }
2418
2419 // Given an address OFFSET relative to the start of input section
2420 // SHNDX in object OBJECT, return the output offset relative to the
2421 // start of the input section in the output section.  This should only
2422 // be called if SHNDX in OBJECT has a special mapping.
2423
2424 section_offset_type
2425 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2426                               section_offset_type offset) const
2427 {
2428   // This can only be called meaningfully when we know the data size
2429   // of this.
2430   gold_assert(this->is_data_size_valid());
2431
2432   // Look at the Output_section_data_maps first.
2433   const Output_section_data* posd = this->find_merge_section(object, shndx);
2434   if (posd == NULL) 
2435     posd = this->find_relaxed_input_section(object, shndx);
2436   if (posd != NULL)
2437     {
2438       section_offset_type output_offset;
2439       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2440       gold_assert(found);   
2441       return output_offset;
2442     }
2443
2444   // Fall back to the slow look-up.
2445   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2446        p != this->input_sections_.end();
2447        ++p)
2448     {
2449       section_offset_type output_offset;
2450       if (p->output_offset(object, shndx, offset, &output_offset))
2451         return output_offset;
2452     }
2453   gold_unreachable();
2454 }
2455
2456 // Return the output virtual address of OFFSET relative to the start
2457 // of input section SHNDX in object OBJECT.
2458
2459 uint64_t
2460 Output_section::output_address(const Relobj* object, unsigned int shndx,
2461                                off_t offset) const
2462 {
2463   uint64_t addr = this->address() + this->first_input_offset_;
2464
2465   // Look at the Output_section_data_maps first.
2466   const Output_section_data* posd = this->find_merge_section(object, shndx);
2467   if (posd == NULL) 
2468     posd = this->find_relaxed_input_section(object, shndx);
2469   if (posd != NULL && posd->is_address_valid())
2470     {
2471       section_offset_type output_offset;
2472       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2473       gold_assert(found);
2474       return posd->address() + output_offset;
2475     }
2476
2477   // Fall back to the slow look-up.
2478   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2479        p != this->input_sections_.end();
2480        ++p)
2481     {
2482       addr = align_address(addr, p->addralign());
2483       section_offset_type output_offset;
2484       if (p->output_offset(object, shndx, offset, &output_offset))
2485         {
2486           if (output_offset == -1)
2487             return -1ULL;
2488           return addr + output_offset;
2489         }
2490       addr += p->data_size();
2491     }
2492
2493   // If we get here, it means that we don't know the mapping for this
2494   // input section.  This might happen in principle if
2495   // add_input_section were called before add_output_section_data.
2496   // But it should never actually happen.
2497
2498   gold_unreachable();
2499 }
2500
2501 // Find the output address of the start of the merged section for
2502 // input section SHNDX in object OBJECT.
2503
2504 bool
2505 Output_section::find_starting_output_address(const Relobj* object,
2506                                              unsigned int shndx,
2507                                              uint64_t* paddr) const
2508 {
2509   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2510   // Looking up the merge section map does not always work as we sometimes
2511   // find a merge section without its address set.
2512   uint64_t addr = this->address() + this->first_input_offset_;
2513   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2514        p != this->input_sections_.end();
2515        ++p)
2516     {
2517       addr = align_address(addr, p->addralign());
2518
2519       // It would be nice if we could use the existing output_offset
2520       // method to get the output offset of input offset 0.
2521       // Unfortunately we don't know for sure that input offset 0 is
2522       // mapped at all.
2523       if (p->is_merge_section_for(object, shndx))
2524         {
2525           *paddr = addr;
2526           return true;
2527         }
2528
2529       addr += p->data_size();
2530     }
2531
2532   // We couldn't find a merge output section for this input section.
2533   return false;
2534 }
2535
2536 // Set the data size of an Output_section.  This is where we handle
2537 // setting the addresses of any Output_section_data objects.
2538
2539 void
2540 Output_section::set_final_data_size()
2541 {
2542   if (this->input_sections_.empty())
2543     {
2544       this->set_data_size(this->current_data_size_for_child());
2545       return;
2546     }
2547
2548   if (this->must_sort_attached_input_sections())
2549     this->sort_attached_input_sections();
2550
2551   uint64_t address = this->address();
2552   off_t startoff = this->offset();
2553   off_t off = startoff + this->first_input_offset_;
2554   for (Input_section_list::iterator p = this->input_sections_.begin();
2555        p != this->input_sections_.end();
2556        ++p)
2557     {
2558       off = align_address(off, p->addralign());
2559       p->set_address_and_file_offset(address + (off - startoff), off,
2560                                      startoff);
2561       off += p->data_size();
2562     }
2563
2564   this->set_data_size(off - startoff);
2565 }
2566
2567 // Reset the address and file offset.
2568
2569 void
2570 Output_section::do_reset_address_and_file_offset()
2571 {
2572   // An unallocated section has no address.  Forcing this means that
2573   // we don't need special treatment for symbols defined in debug
2574   // sections.  We do the same in the constructor.
2575   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2576      this->set_address(0);
2577
2578   for (Input_section_list::iterator p = this->input_sections_.begin();
2579        p != this->input_sections_.end();
2580        ++p)
2581     p->reset_address_and_file_offset();
2582 }
2583   
2584 // Return true if address and file offset have the values after reset.
2585
2586 bool
2587 Output_section::do_address_and_file_offset_have_reset_values() const
2588 {
2589   if (this->is_offset_valid())
2590     return false;
2591
2592   // An unallocated section has address 0 after its construction or a reset.
2593   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2594     return this->is_address_valid() && this->address() == 0;
2595   else
2596     return !this->is_address_valid();
2597 }
2598
2599 // Set the TLS offset.  Called only for SHT_TLS sections.
2600
2601 void
2602 Output_section::do_set_tls_offset(uint64_t tls_base)
2603 {
2604   this->tls_offset_ = this->address() - tls_base;
2605 }
2606
2607 // In a few cases we need to sort the input sections attached to an
2608 // output section.  This is used to implement the type of constructor
2609 // priority ordering implemented by the GNU linker, in which the
2610 // priority becomes part of the section name and the sections are
2611 // sorted by name.  We only do this for an output section if we see an
2612 // attached input section matching ".ctor.*", ".dtor.*",
2613 // ".init_array.*" or ".fini_array.*".
2614
2615 class Output_section::Input_section_sort_entry
2616 {
2617  public:
2618   Input_section_sort_entry()
2619     : input_section_(), index_(-1U), section_has_name_(false),
2620       section_name_()
2621   { }
2622
2623   Input_section_sort_entry(const Input_section& input_section,
2624                            unsigned int index)
2625     : input_section_(input_section), index_(index),
2626       section_has_name_(input_section.is_input_section()
2627                         || input_section.is_relaxed_input_section())
2628   {
2629     if (this->section_has_name_)
2630       {
2631         // This is only called single-threaded from Layout::finalize,
2632         // so it is OK to lock.  Unfortunately we have no way to pass
2633         // in a Task token.
2634         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2635         Object* obj = (input_section.is_input_section()
2636                        ? input_section.relobj()
2637                        : input_section.relaxed_input_section()->relobj());
2638         Task_lock_obj<Object> tl(dummy_task, obj);
2639
2640         // This is a slow operation, which should be cached in
2641         // Layout::layout if this becomes a speed problem.
2642         this->section_name_ = obj->section_name(input_section.shndx());
2643       }
2644   }
2645
2646   // Return the Input_section.
2647   const Input_section&
2648   input_section() const
2649   {
2650     gold_assert(this->index_ != -1U);
2651     return this->input_section_;
2652   }
2653
2654   // The index of this entry in the original list.  This is used to
2655   // make the sort stable.
2656   unsigned int
2657   index() const
2658   {
2659     gold_assert(this->index_ != -1U);
2660     return this->index_;
2661   }
2662
2663   // Whether there is a section name.
2664   bool
2665   section_has_name() const
2666   { return this->section_has_name_; }
2667
2668   // The section name.
2669   const std::string&
2670   section_name() const
2671   {
2672     gold_assert(this->section_has_name_);
2673     return this->section_name_;
2674   }
2675
2676   // Return true if the section name has a priority.  This is assumed
2677   // to be true if it has a dot after the initial dot.
2678   bool
2679   has_priority() const
2680   {
2681     gold_assert(this->section_has_name_);
2682     return this->section_name_.find('.', 1);
2683   }
2684
2685   // Return true if this an input file whose base name matches
2686   // FILE_NAME.  The base name must have an extension of ".o", and
2687   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2688   // This is to match crtbegin.o as well as crtbeginS.o without
2689   // getting confused by other possibilities.  Overall matching the
2690   // file name this way is a dreadful hack, but the GNU linker does it
2691   // in order to better support gcc, and we need to be compatible.
2692   bool
2693   match_file_name(const char* match_file_name) const
2694   {
2695     const std::string& file_name(this->input_section_.relobj()->name());
2696     const char* base_name = lbasename(file_name.c_str());
2697     size_t match_len = strlen(match_file_name);
2698     if (strncmp(base_name, match_file_name, match_len) != 0)
2699       return false;
2700     size_t base_len = strlen(base_name);
2701     if (base_len != match_len + 2 && base_len != match_len + 3)
2702       return false;
2703     return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2704   }
2705
2706  private:
2707   // The Input_section we are sorting.
2708   Input_section input_section_;
2709   // The index of this Input_section in the original list.
2710   unsigned int index_;
2711   // Whether this Input_section has a section name--it won't if this
2712   // is some random Output_section_data.
2713   bool section_has_name_;
2714   // The section name if there is one.
2715   std::string section_name_;
2716 };
2717
2718 // Return true if S1 should come before S2 in the output section.
2719
2720 bool
2721 Output_section::Input_section_sort_compare::operator()(
2722     const Output_section::Input_section_sort_entry& s1,
2723     const Output_section::Input_section_sort_entry& s2) const
2724 {
2725   // crtbegin.o must come first.
2726   bool s1_begin = s1.match_file_name("crtbegin");
2727   bool s2_begin = s2.match_file_name("crtbegin");
2728   if (s1_begin || s2_begin)
2729     {
2730       if (!s1_begin)
2731         return false;
2732       if (!s2_begin)
2733         return true;
2734       return s1.index() < s2.index();
2735     }
2736
2737   // crtend.o must come last.
2738   bool s1_end = s1.match_file_name("crtend");
2739   bool s2_end = s2.match_file_name("crtend");
2740   if (s1_end || s2_end)
2741     {
2742       if (!s1_end)
2743         return true;
2744       if (!s2_end)
2745         return false;
2746       return s1.index() < s2.index();
2747     }
2748
2749   // We sort all the sections with no names to the end.
2750   if (!s1.section_has_name() || !s2.section_has_name())
2751     {
2752       if (s1.section_has_name())
2753         return true;
2754       if (s2.section_has_name())
2755         return false;
2756       return s1.index() < s2.index();
2757     }
2758
2759   // A section with a priority follows a section without a priority.
2760   // The GNU linker does this for all but .init_array sections; until
2761   // further notice we'll assume that that is an mistake.
2762   bool s1_has_priority = s1.has_priority();
2763   bool s2_has_priority = s2.has_priority();
2764   if (s1_has_priority && !s2_has_priority)
2765     return false;
2766   if (!s1_has_priority && s2_has_priority)
2767     return true;
2768
2769   // Otherwise we sort by name.
2770   int compare = s1.section_name().compare(s2.section_name());
2771   if (compare != 0)
2772     return compare < 0;
2773
2774   // Otherwise we keep the input order.
2775   return s1.index() < s2.index();
2776 }
2777
2778 // Sort the input sections attached to an output section.
2779
2780 void
2781 Output_section::sort_attached_input_sections()
2782 {
2783   if (this->attached_input_sections_are_sorted_)
2784     return;
2785
2786   if (this->checkpoint_ != NULL
2787       && !this->checkpoint_->input_sections_saved())
2788     this->checkpoint_->save_input_sections();
2789
2790   // The only thing we know about an input section is the object and
2791   // the section index.  We need the section name.  Recomputing this
2792   // is slow but this is an unusual case.  If this becomes a speed
2793   // problem we can cache the names as required in Layout::layout.
2794
2795   // We start by building a larger vector holding a copy of each
2796   // Input_section, plus its current index in the list and its name.
2797   std::vector<Input_section_sort_entry> sort_list;
2798
2799   unsigned int i = 0;
2800   for (Input_section_list::iterator p = this->input_sections_.begin();
2801        p != this->input_sections_.end();
2802        ++p, ++i)
2803     sort_list.push_back(Input_section_sort_entry(*p, i));
2804
2805   // Sort the input sections.
2806   std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2807
2808   // Copy the sorted input sections back to our list.
2809   this->input_sections_.clear();
2810   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2811        p != sort_list.end();
2812        ++p)
2813     this->input_sections_.push_back(p->input_section());
2814
2815   // Remember that we sorted the input sections, since we might get
2816   // called again.
2817   this->attached_input_sections_are_sorted_ = true;
2818 }
2819
2820 // Write the section header to *OSHDR.
2821
2822 template<int size, bool big_endian>
2823 void
2824 Output_section::write_header(const Layout* layout,
2825                              const Stringpool* secnamepool,
2826                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
2827 {
2828   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2829   oshdr->put_sh_type(this->type_);
2830
2831   elfcpp::Elf_Xword flags = this->flags_;
2832   if (this->info_section_ != NULL && this->info_uses_section_index_)
2833     flags |= elfcpp::SHF_INFO_LINK;
2834   oshdr->put_sh_flags(flags);
2835
2836   oshdr->put_sh_addr(this->address());
2837   oshdr->put_sh_offset(this->offset());
2838   oshdr->put_sh_size(this->data_size());
2839   if (this->link_section_ != NULL)
2840     oshdr->put_sh_link(this->link_section_->out_shndx());
2841   else if (this->should_link_to_symtab_)
2842     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2843   else if (this->should_link_to_dynsym_)
2844     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2845   else
2846     oshdr->put_sh_link(this->link_);
2847
2848   elfcpp::Elf_Word info;
2849   if (this->info_section_ != NULL)
2850     {
2851       if (this->info_uses_section_index_)
2852         info = this->info_section_->out_shndx();
2853       else
2854         info = this->info_section_->symtab_index();
2855     }
2856   else if (this->info_symndx_ != NULL)
2857     info = this->info_symndx_->symtab_index();
2858   else
2859     info = this->info_;
2860   oshdr->put_sh_info(info);
2861
2862   oshdr->put_sh_addralign(this->addralign_);
2863   oshdr->put_sh_entsize(this->entsize_);
2864 }
2865
2866 // Write out the data.  For input sections the data is written out by
2867 // Object::relocate, but we have to handle Output_section_data objects
2868 // here.
2869
2870 void
2871 Output_section::do_write(Output_file* of)
2872 {
2873   gold_assert(!this->requires_postprocessing());
2874
2875   // If the target performs relaxation, we delay filler generation until now.
2876   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2877
2878   off_t output_section_file_offset = this->offset();
2879   for (Fill_list::iterator p = this->fills_.begin();
2880        p != this->fills_.end();
2881        ++p)
2882     {
2883       std::string fill_data(parameters->target().code_fill(p->length()));
2884       of->write(output_section_file_offset + p->section_offset(),
2885                 fill_data.data(), fill_data.size());
2886     }
2887
2888   off_t off = this->offset() + this->first_input_offset_;
2889   for (Input_section_list::iterator p = this->input_sections_.begin();
2890        p != this->input_sections_.end();
2891        ++p)
2892     {
2893       off_t aligned_off = align_address(off, p->addralign());
2894       if (this->generate_code_fills_at_write_ && (off != aligned_off))
2895         {
2896           size_t fill_len = aligned_off - off;
2897           std::string fill_data(parameters->target().code_fill(fill_len));
2898           of->write(off, fill_data.data(), fill_data.size());
2899         }
2900
2901       p->write(of);
2902       off = aligned_off + p->data_size();
2903     }
2904 }
2905
2906 // If a section requires postprocessing, create the buffer to use.
2907
2908 void
2909 Output_section::create_postprocessing_buffer()
2910 {
2911   gold_assert(this->requires_postprocessing());
2912
2913   if (this->postprocessing_buffer_ != NULL)
2914     return;
2915
2916   if (!this->input_sections_.empty())
2917     {
2918       off_t off = this->first_input_offset_;
2919       for (Input_section_list::iterator p = this->input_sections_.begin();
2920            p != this->input_sections_.end();
2921            ++p)
2922         {
2923           off = align_address(off, p->addralign());
2924           p->finalize_data_size();
2925           off += p->data_size();
2926         }
2927       this->set_current_data_size_for_child(off);
2928     }
2929
2930   off_t buffer_size = this->current_data_size_for_child();
2931   this->postprocessing_buffer_ = new unsigned char[buffer_size];
2932 }
2933
2934 // Write all the data of an Output_section into the postprocessing
2935 // buffer.  This is used for sections which require postprocessing,
2936 // such as compression.  Input sections are handled by
2937 // Object::Relocate.
2938
2939 void
2940 Output_section::write_to_postprocessing_buffer()
2941 {
2942   gold_assert(this->requires_postprocessing());
2943
2944   // If the target performs relaxation, we delay filler generation until now.
2945   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2946
2947   unsigned char* buffer = this->postprocessing_buffer();
2948   for (Fill_list::iterator p = this->fills_.begin();
2949        p != this->fills_.end();
2950        ++p)
2951     {
2952       std::string fill_data(parameters->target().code_fill(p->length()));
2953       memcpy(buffer + p->section_offset(), fill_data.data(),
2954              fill_data.size());
2955     }
2956
2957   off_t off = this->first_input_offset_;
2958   for (Input_section_list::iterator p = this->input_sections_.begin();
2959        p != this->input_sections_.end();
2960        ++p)
2961     {
2962       off_t aligned_off = align_address(off, p->addralign());
2963       if (this->generate_code_fills_at_write_ && (off != aligned_off))
2964         {
2965           size_t fill_len = aligned_off - off;
2966           std::string fill_data(parameters->target().code_fill(fill_len));
2967           memcpy(buffer + off, fill_data.data(), fill_data.size());
2968         }
2969
2970       p->write_to_buffer(buffer + aligned_off);
2971       off = aligned_off + p->data_size();
2972     }
2973 }
2974
2975 // Get the input sections for linker script processing.  We leave
2976 // behind the Output_section_data entries.  Note that this may be
2977 // slightly incorrect for merge sections.  We will leave them behind,
2978 // but it is possible that the script says that they should follow
2979 // some other input sections, as in:
2980 //    .rodata { *(.rodata) *(.rodata.cst*) }
2981 // For that matter, we don't handle this correctly:
2982 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2983 // With luck this will never matter.
2984
2985 uint64_t
2986 Output_section::get_input_sections(
2987     uint64_t address,
2988     const std::string& fill,
2989     std::list<Simple_input_section>* input_sections)
2990 {
2991   if (this->checkpoint_ != NULL
2992       && !this->checkpoint_->input_sections_saved())
2993     this->checkpoint_->save_input_sections();
2994
2995   // Invalidate the relaxed input section map.
2996   this->is_relaxed_input_section_map_valid_ = false;
2997
2998   uint64_t orig_address = address;
2999
3000   address = align_address(address, this->addralign());
3001
3002   Input_section_list remaining;
3003   for (Input_section_list::iterator p = this->input_sections_.begin();
3004        p != this->input_sections_.end();
3005        ++p)
3006     {
3007       if (p->is_input_section())
3008         input_sections->push_back(Simple_input_section(p->relobj(),
3009                                                        p->shndx()));
3010       else if (p->is_relaxed_input_section())
3011         input_sections->push_back(
3012             Simple_input_section(p->relaxed_input_section()));
3013       else
3014         {
3015           uint64_t aligned_address = align_address(address, p->addralign());
3016           if (aligned_address != address && !fill.empty())
3017             {
3018               section_size_type length =
3019                 convert_to_section_size_type(aligned_address - address);
3020               std::string this_fill;
3021               this_fill.reserve(length);
3022               while (this_fill.length() + fill.length() <= length)
3023                 this_fill += fill;
3024               if (this_fill.length() < length)
3025                 this_fill.append(fill, 0, length - this_fill.length());
3026
3027               Output_section_data* posd = new Output_data_const(this_fill, 0);
3028               remaining.push_back(Input_section(posd));
3029             }
3030           address = aligned_address;
3031
3032           remaining.push_back(*p);
3033
3034           p->finalize_data_size();
3035           address += p->data_size();
3036         }
3037     }
3038
3039   this->input_sections_.swap(remaining);
3040   this->first_input_offset_ = 0;
3041
3042   uint64_t data_size = address - orig_address;
3043   this->set_current_data_size_for_child(data_size);
3044   return data_size;
3045 }
3046
3047 // Add an simple input section.
3048
3049 void
3050 Output_section::add_simple_input_section(const Simple_input_section& sis,
3051                                          off_t data_size,
3052                                          uint64_t addralign)
3053 {
3054   if (addralign > this->addralign_)
3055     this->addralign_ = addralign;
3056
3057   off_t offset_in_section = this->current_data_size_for_child();
3058   off_t aligned_offset_in_section = align_address(offset_in_section,
3059                                                   addralign);
3060
3061   this->set_current_data_size_for_child(aligned_offset_in_section
3062                                         + data_size);
3063
3064   Input_section is =
3065     (sis.is_relaxed_input_section()
3066      ? Input_section(sis.relaxed_input_section())
3067      : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
3068   this->input_sections_.push_back(is);
3069 }
3070
3071 // Save states for relaxation.
3072
3073 void
3074 Output_section::save_states()
3075 {
3076   gold_assert(this->checkpoint_ == NULL);
3077   Checkpoint_output_section* checkpoint =
3078     new Checkpoint_output_section(this->addralign_, this->flags_,
3079                                   this->input_sections_,
3080                                   this->first_input_offset_,
3081                                   this->attached_input_sections_are_sorted_);
3082   this->checkpoint_ = checkpoint;
3083   gold_assert(this->fills_.empty());
3084 }
3085
3086 void
3087 Output_section::discard_states()
3088 {
3089   gold_assert(this->checkpoint_ != NULL);
3090   delete this->checkpoint_;
3091   this->checkpoint_ = NULL;
3092   gold_assert(this->fills_.empty());
3093
3094   // Simply invalidate the relaxed input section map since we do not keep
3095   // track of it.
3096   this->is_relaxed_input_section_map_valid_ = false;
3097 }
3098
3099 void
3100 Output_section::restore_states()
3101 {
3102   gold_assert(this->checkpoint_ != NULL);
3103   Checkpoint_output_section* checkpoint = this->checkpoint_;
3104
3105   this->addralign_ = checkpoint->addralign();
3106   this->flags_ = checkpoint->flags();
3107   this->first_input_offset_ = checkpoint->first_input_offset();
3108
3109   if (!checkpoint->input_sections_saved())
3110     {
3111       // If we have not copied the input sections, just resize it.
3112       size_t old_size = checkpoint->input_sections_size();
3113       gold_assert(this->input_sections_.size() >= old_size);
3114       this->input_sections_.resize(old_size);
3115     }
3116   else
3117     {
3118       // We need to copy the whole list.  This is not efficient for
3119       // extremely large output with hundreads of thousands of input
3120       // objects.  We may need to re-think how we should pass sections
3121       // to scripts.
3122       this->input_sections_ = *checkpoint->input_sections();
3123     }
3124
3125   this->attached_input_sections_are_sorted_ =
3126     checkpoint->attached_input_sections_are_sorted();
3127
3128   // Simply invalidate the relaxed input section map since we do not keep
3129   // track of it.
3130   this->is_relaxed_input_section_map_valid_ = false;
3131 }
3132
3133 // Update the section offsets of input sections in this.  This is required if
3134 // relaxation causes some input sections to change sizes.
3135
3136 void
3137 Output_section::adjust_section_offsets()
3138 {
3139   if (!this->section_offsets_need_adjustment_)
3140     return;
3141
3142   off_t off = 0;
3143   for (Input_section_list::iterator p = this->input_sections_.begin();
3144        p != this->input_sections_.end();
3145        ++p)
3146     {
3147       off = align_address(off, p->addralign());
3148       if (p->is_input_section())
3149         p->relobj()->set_section_offset(p->shndx(), off);
3150       off += p->data_size();
3151     }
3152
3153   this->section_offsets_need_adjustment_ = false;
3154 }
3155
3156 // Print to the map file.
3157
3158 void
3159 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3160 {
3161   mapfile->print_output_section(this);
3162
3163   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3164        p != this->input_sections_.end();
3165        ++p)
3166     p->print_to_mapfile(mapfile);
3167 }
3168
3169 // Print stats for merge sections to stderr.
3170
3171 void
3172 Output_section::print_merge_stats()
3173 {
3174   Input_section_list::iterator p;
3175   for (p = this->input_sections_.begin();
3176        p != this->input_sections_.end();
3177        ++p)
3178     p->print_merge_stats(this->name_);
3179 }
3180
3181 // Output segment methods.
3182
3183 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3184   : output_data_(),
3185     output_bss_(),
3186     vaddr_(0),
3187     paddr_(0),
3188     memsz_(0),
3189     max_align_(0),
3190     min_p_align_(0),
3191     offset_(0),
3192     filesz_(0),
3193     type_(type),
3194     flags_(flags),
3195     is_max_align_known_(false),
3196     are_addresses_set_(false),
3197     is_large_data_segment_(false)
3198 {
3199   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3200   // the flags.
3201   if (type == elfcpp::PT_TLS)
3202     this->flags_ = elfcpp::PF_R;
3203 }
3204
3205 // Add an Output_section to an Output_segment.
3206
3207 void
3208 Output_segment::add_output_section(Output_section* os,
3209                                    elfcpp::Elf_Word seg_flags,
3210                                    bool do_sort)
3211 {
3212   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3213   gold_assert(!this->is_max_align_known_);
3214   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3215   gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3216
3217   this->update_flags_for_output_section(seg_flags);
3218
3219   Output_segment::Output_data_list* pdl;
3220   if (os->type() == elfcpp::SHT_NOBITS)
3221     pdl = &this->output_bss_;
3222   else
3223     pdl = &this->output_data_;
3224
3225   // Note that while there may be many input sections in an output
3226   // section, there are normally only a few output sections in an
3227   // output segment.  The loops below are expected to be fast.
3228
3229   // So that PT_NOTE segments will work correctly, we need to ensure
3230   // that all SHT_NOTE sections are adjacent.
3231   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3232     {
3233       Output_segment::Output_data_list::iterator p = pdl->end();
3234       do
3235         {
3236           --p;
3237           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3238             {
3239               ++p;
3240               pdl->insert(p, os);
3241               return;
3242             }
3243         }
3244       while (p != pdl->begin());
3245     }
3246
3247   // Similarly, so that PT_TLS segments will work, we need to group
3248   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
3249   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3250   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
3251   // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
3252   // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3253   // segment.
3254   if (this->type_ != elfcpp::PT_TLS
3255       && (os->flags() & elfcpp::SHF_TLS) != 0)
3256     {
3257       pdl = &this->output_data_;
3258       if (!pdl->empty())
3259         {
3260           bool nobits = os->type() == elfcpp::SHT_NOBITS;
3261           bool sawtls = false;
3262           Output_segment::Output_data_list::iterator p = pdl->end();
3263           gold_assert(p != pdl->begin());
3264           do
3265             {
3266               --p;
3267               bool insert;
3268               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3269                 {
3270                   sawtls = true;
3271                   // Put a NOBITS section after the first TLS section.
3272                   // Put a PROGBITS section after the first
3273                   // TLS/PROGBITS section.
3274                   insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3275                 }
3276               else
3277                 {
3278                   // If we've gone past the TLS sections, but we've
3279                   // seen a TLS section, then we need to insert this
3280                   // section now.
3281                   insert = sawtls;
3282                 }
3283
3284               if (insert)
3285                 {
3286                   ++p;
3287                   pdl->insert(p, os);
3288                   return;
3289                 }
3290             }
3291           while (p != pdl->begin());
3292         }
3293
3294       // There are no TLS sections yet; put this one at the requested
3295       // location in the section list.
3296     }
3297
3298   if (do_sort)
3299     {
3300       // For the PT_GNU_RELRO segment, we need to group relro
3301       // sections, and we need to put them before any non-relro
3302       // sections.  Any relro local sections go before relro non-local
3303       // sections.  One section may be marked as the last relro
3304       // section.
3305       if (os->is_relro())
3306         {
3307           gold_assert(pdl == &this->output_data_);
3308           Output_segment::Output_data_list::iterator p;
3309           for (p = pdl->begin(); p != pdl->end(); ++p)
3310             {
3311               if (!(*p)->is_section())
3312                 break;
3313
3314               Output_section* pos = (*p)->output_section();
3315               if (!pos->is_relro()
3316                   || (os->is_relro_local() && !pos->is_relro_local())
3317                   || (!os->is_last_relro() && pos->is_last_relro()))
3318                 break;
3319             }
3320
3321           pdl->insert(p, os);
3322           return;
3323         }
3324
3325       // One section may be marked as the first section which follows
3326       // the relro sections.
3327       if (os->is_first_non_relro())
3328         {
3329           gold_assert(pdl == &this->output_data_);
3330           Output_segment::Output_data_list::iterator p;
3331           for (p = pdl->begin(); p != pdl->end(); ++p)
3332             {
3333               if (!(*p)->is_section())
3334                 break;
3335
3336               Output_section* pos = (*p)->output_section();
3337               if (!pos->is_relro())
3338                 break;
3339             }
3340
3341           pdl->insert(p, os);
3342           return;
3343         }
3344     }
3345
3346   // Small data sections go at the end of the list of data sections.
3347   // If OS is not small, and there are small sections, we have to
3348   // insert it before the first small section.
3349   if (os->type() != elfcpp::SHT_NOBITS
3350       && !os->is_small_section()
3351       && !pdl->empty()
3352       && pdl->back()->is_section()
3353       && pdl->back()->output_section()->is_small_section())
3354     {
3355       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3356            p != pdl->end();
3357            ++p)
3358         {
3359           if ((*p)->is_section()
3360               && (*p)->output_section()->is_small_section())
3361             {
3362               pdl->insert(p, os);
3363               return;
3364             }
3365         }
3366       gold_unreachable();
3367     }
3368
3369   // A small BSS section goes at the start of the BSS sections, after
3370   // other small BSS sections.
3371   if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3372     {
3373       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3374            p != pdl->end();
3375            ++p)
3376         {
3377           if (!(*p)->is_section()
3378               || !(*p)->output_section()->is_small_section())
3379             {
3380               pdl->insert(p, os);
3381               return;
3382             }
3383         }
3384     }
3385
3386   // A large BSS section goes at the end of the BSS sections, which
3387   // means that one that is not large must come before the first large
3388   // one.
3389   if (os->type() == elfcpp::SHT_NOBITS
3390       && !os->is_large_section()
3391       && !pdl->empty()
3392       && pdl->back()->is_section()
3393       && pdl->back()->output_section()->is_large_section())
3394     {
3395       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3396            p != pdl->end();
3397            ++p)
3398         {
3399           if ((*p)->is_section()
3400               && (*p)->output_section()->is_large_section())
3401             {
3402               pdl->insert(p, os);
3403               return;
3404             }
3405         }
3406       gold_unreachable();
3407     }
3408
3409   // We do some further output section sorting in order to make the
3410   // generated program run more efficiently.  We should only do this
3411   // when not using a linker script, so it is controled by the DO_SORT
3412   // parameter.
3413   if (do_sort)
3414     {
3415       // FreeBSD requires the .interp section to be in the first page
3416       // of the executable.  That is a more efficient location anyhow
3417       // for any OS, since it means that the kernel will have the data
3418       // handy after it reads the program headers.
3419       if (os->is_interp() && !pdl->empty())
3420         {
3421           pdl->insert(pdl->begin(), os);
3422           return;
3423         }
3424
3425       // Put loadable non-writable notes immediately after the .interp
3426       // sections, so that the PT_NOTE segment is on the first page of
3427       // the executable.
3428       if (os->type() == elfcpp::SHT_NOTE
3429           && (os->flags() & elfcpp::SHF_WRITE) == 0
3430           && !pdl->empty())
3431         {
3432           Output_segment::Output_data_list::iterator p = pdl->begin();
3433           if ((*p)->is_section() && (*p)->output_section()->is_interp())
3434             ++p;
3435           pdl->insert(p, os);
3436           return;
3437         }
3438
3439       // If this section is used by the dynamic linker, and it is not
3440       // writable, then put it first, after the .interp section and
3441       // any loadable notes.  This makes it more likely that the
3442       // dynamic linker will have to read less data from the disk.
3443       if (os->is_dynamic_linker_section()
3444           && !pdl->empty()
3445           && (os->flags() & elfcpp::SHF_WRITE) == 0)
3446         {
3447           bool is_reloc = (os->type() == elfcpp::SHT_REL
3448                            || os->type() == elfcpp::SHT_RELA);
3449           Output_segment::Output_data_list::iterator p = pdl->begin();
3450           while (p != pdl->end()
3451                  && (*p)->is_section()
3452                  && ((*p)->output_section()->is_dynamic_linker_section()
3453                      || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3454             {
3455               // Put reloc sections after the other ones.  Putting the
3456               // dynamic reloc sections first confuses BFD, notably
3457               // objcopy and strip.
3458               if (!is_reloc
3459                   && ((*p)->output_section()->type() == elfcpp::SHT_REL
3460                       || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3461                 break;
3462               ++p;
3463             }
3464           pdl->insert(p, os);
3465           return;
3466         }
3467     }
3468
3469   // If there were no constraints on the output section, just add it
3470   // to the end of the list.
3471   pdl->push_back(os);
3472 }
3473
3474 // Remove an Output_section from this segment.  It is an error if it
3475 // is not present.
3476
3477 void
3478 Output_segment::remove_output_section(Output_section* os)
3479 {
3480   // We only need this for SHT_PROGBITS.
3481   gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3482   for (Output_data_list::iterator p = this->output_data_.begin();
3483        p != this->output_data_.end();
3484        ++p)
3485    {
3486      if (*p == os)
3487        {
3488          this->output_data_.erase(p);
3489          return;
3490        }
3491    }
3492   gold_unreachable();
3493 }
3494
3495 // Add an Output_data (which need not be an Output_section) to the
3496 // start of a segment.
3497
3498 void
3499 Output_segment::add_initial_output_data(Output_data* od)
3500 {
3501   gold_assert(!this->is_max_align_known_);
3502   this->output_data_.push_front(od);
3503 }
3504
3505 // Return whether the first data section is a relro section.
3506
3507 bool
3508 Output_segment::is_first_section_relro() const
3509 {
3510   return (!this->output_data_.empty()
3511           && this->output_data_.front()->is_section()
3512           && this->output_data_.front()->output_section()->is_relro());
3513 }
3514
3515 // Return the maximum alignment of the Output_data in Output_segment.
3516
3517 uint64_t
3518 Output_segment::maximum_alignment()
3519 {
3520   if (!this->is_max_align_known_)
3521     {
3522       uint64_t addralign;
3523
3524       addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3525       if (addralign > this->max_align_)
3526         this->max_align_ = addralign;
3527
3528       addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3529       if (addralign > this->max_align_)
3530         this->max_align_ = addralign;
3531
3532       this->is_max_align_known_ = true;
3533     }
3534
3535   return this->max_align_;
3536 }
3537
3538 // Return the maximum alignment of a list of Output_data.
3539
3540 uint64_t
3541 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3542 {
3543   uint64_t ret = 0;
3544   for (Output_data_list::const_iterator p = pdl->begin();
3545        p != pdl->end();
3546        ++p)
3547     {
3548       uint64_t addralign = (*p)->addralign();
3549       if (addralign > ret)
3550         ret = addralign;
3551     }
3552   return ret;
3553 }
3554
3555 // Return the number of dynamic relocs applied to this segment.
3556
3557 unsigned int
3558 Output_segment::dynamic_reloc_count() const
3559 {
3560   return (this->dynamic_reloc_count_list(&this->output_data_)
3561           + this->dynamic_reloc_count_list(&this->output_bss_));
3562 }
3563
3564 // Return the number of dynamic relocs applied to an Output_data_list.
3565
3566 unsigned int
3567 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3568 {
3569   unsigned int count = 0;
3570   for (Output_data_list::const_iterator p = pdl->begin();
3571        p != pdl->end();
3572        ++p)
3573     count += (*p)->dynamic_reloc_count();
3574   return count;
3575 }
3576
3577 // Set the section addresses for an Output_segment.  If RESET is true,
3578 // reset the addresses first.  ADDR is the address and *POFF is the
3579 // file offset.  Set the section indexes starting with *PSHNDX.
3580 // Return the address of the immediately following segment.  Update
3581 // *POFF and *PSHNDX.
3582
3583 uint64_t
3584 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3585                                       uint64_t addr,
3586                                       unsigned int increase_relro,
3587                                       off_t* poff,
3588                                       unsigned int* pshndx)
3589 {
3590   gold_assert(this->type_ == elfcpp::PT_LOAD);
3591
3592   off_t orig_off = *poff;
3593
3594   // If we have relro sections, we need to pad forward now so that the
3595   // relro sections plus INCREASE_RELRO end on a common page boundary.
3596   if (parameters->options().relro()
3597       && this->is_first_section_relro()
3598       && (!this->are_addresses_set_ || reset))
3599     {
3600       uint64_t relro_size = 0;
3601       off_t off = *poff;
3602       for (Output_data_list::iterator p = this->output_data_.begin();
3603            p != this->output_data_.end();
3604            ++p)
3605         {
3606           if (!(*p)->is_section())
3607             break;
3608           Output_section* pos = (*p)->output_section();
3609           if (!pos->is_relro())
3610             break;
3611           gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3612           if ((*p)->is_address_valid())
3613             relro_size += (*p)->data_size();
3614           else
3615             {
3616               // FIXME: This could be faster.
3617               (*p)->set_address_and_file_offset(addr + relro_size,
3618                                                 off + relro_size);
3619               relro_size += (*p)->data_size();
3620               (*p)->reset_address_and_file_offset();
3621             }
3622         }
3623       relro_size += increase_relro;
3624
3625       uint64_t page_align = parameters->target().common_pagesize();
3626
3627       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3628       uint64_t desired_align = page_align - (relro_size % page_align);
3629       if (desired_align < *poff % page_align)
3630         *poff += page_align - *poff % page_align;
3631       *poff += desired_align - *poff % page_align;
3632       addr += *poff - orig_off;
3633       orig_off = *poff;
3634     }
3635
3636   if (!reset && this->are_addresses_set_)
3637     {
3638       gold_assert(this->paddr_ == addr);
3639       addr = this->vaddr_;
3640     }
3641   else
3642     {
3643       this->vaddr_ = addr;
3644       this->paddr_ = addr;
3645       this->are_addresses_set_ = true;
3646     }
3647
3648   bool in_tls = false;
3649
3650   this->offset_ = orig_off;
3651
3652   addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3653                                           addr, poff, pshndx, &in_tls);
3654   this->filesz_ = *poff - orig_off;
3655
3656   off_t off = *poff;
3657
3658   uint64_t ret = this->set_section_list_addresses(layout, reset,
3659                                                   &this->output_bss_,
3660                                                   addr, poff, pshndx,
3661                                                   &in_tls);
3662
3663   // If the last section was a TLS section, align upward to the
3664   // alignment of the TLS segment, so that the overall size of the TLS
3665   // segment is aligned.
3666   if (in_tls)
3667     {
3668       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3669       *poff = align_address(*poff, segment_align);
3670     }
3671
3672   this->memsz_ = *poff - orig_off;
3673
3674   // Ignore the file offset adjustments made by the BSS Output_data
3675   // objects.
3676   *poff = off;
3677
3678   return ret;
3679 }
3680
3681 // Set the addresses and file offsets in a list of Output_data
3682 // structures.
3683
3684 uint64_t
3685 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3686                                            Output_data_list* pdl,
3687                                            uint64_t addr, off_t* poff,
3688                                            unsigned int* pshndx,
3689                                            bool* in_tls)
3690 {
3691   off_t startoff = *poff;
3692
3693   off_t off = startoff;
3694   for (Output_data_list::iterator p = pdl->begin();
3695        p != pdl->end();
3696        ++p)
3697     {
3698       if (reset)
3699         (*p)->reset_address_and_file_offset();
3700
3701       // When using a linker script the section will most likely
3702       // already have an address.
3703       if (!(*p)->is_address_valid())
3704         {
3705           uint64_t align = (*p)->addralign();
3706
3707           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3708             {
3709               // Give the first TLS section the alignment of the
3710               // entire TLS segment.  Otherwise the TLS segment as a
3711               // whole may be misaligned.
3712               if (!*in_tls)
3713                 {
3714                   Output_segment* tls_segment = layout->tls_segment();
3715                   gold_assert(tls_segment != NULL);
3716                   uint64_t segment_align = tls_segment->maximum_alignment();
3717                   gold_assert(segment_align >= align);
3718                   align = segment_align;
3719
3720                   *in_tls = true;
3721                 }
3722             }
3723           else
3724             {
3725               // If this is the first section after the TLS segment,
3726               // align it to at least the alignment of the TLS
3727               // segment, so that the size of the overall TLS segment
3728               // is aligned.
3729               if (*in_tls)
3730                 {
3731                   uint64_t segment_align =
3732                       layout->tls_segment()->maximum_alignment();
3733                   if (segment_align > align)
3734                     align = segment_align;
3735
3736                   *in_tls = false;
3737                 }
3738             }
3739
3740           off = align_address(off, align);
3741           (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3742         }
3743       else
3744         {
3745           // The script may have inserted a skip forward, but it
3746           // better not have moved backward.
3747           if ((*p)->address() >= addr + (off - startoff))
3748             off += (*p)->address() - (addr + (off - startoff));
3749           else
3750             {
3751               if (!layout->script_options()->saw_sections_clause())
3752                 gold_unreachable();
3753               else
3754                 {
3755                   Output_section* os = (*p)->output_section();
3756
3757                   // Cast to unsigned long long to avoid format warnings.
3758                   unsigned long long previous_dot =
3759                     static_cast<unsigned long long>(addr + (off - startoff));
3760                   unsigned long long dot =
3761                     static_cast<unsigned long long>((*p)->address());
3762
3763                   if (os == NULL)
3764                     gold_error(_("dot moves backward in linker script "
3765                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
3766                   else
3767                     gold_error(_("address of section '%s' moves backward "
3768                                  "from 0x%llx to 0x%llx"),
3769                                os->name(), previous_dot, dot);
3770                 }
3771             }
3772           (*p)->set_file_offset(off);
3773           (*p)->finalize_data_size();
3774         }
3775
3776       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3777       // section.  Such a section does not affect the size of a
3778       // PT_LOAD segment.
3779       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3780           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3781         off += (*p)->data_size();
3782
3783       if ((*p)->is_section())
3784         {
3785           (*p)->set_out_shndx(*pshndx);
3786           ++*pshndx;
3787         }
3788     }
3789
3790   *poff = off;
3791   return addr + (off - startoff);
3792 }
3793
3794 // For a non-PT_LOAD segment, set the offset from the sections, if
3795 // any.  Add INCREASE to the file size and the memory size.
3796
3797 void
3798 Output_segment::set_offset(unsigned int increase)
3799 {
3800   gold_assert(this->type_ != elfcpp::PT_LOAD);
3801
3802   gold_assert(!this->are_addresses_set_);
3803
3804   if (this->output_data_.empty() && this->output_bss_.empty())
3805     {
3806       gold_assert(increase == 0);
3807       this->vaddr_ = 0;
3808       this->paddr_ = 0;
3809       this->are_addresses_set_ = true;
3810       this->memsz_ = 0;
3811       this->min_p_align_ = 0;
3812       this->offset_ = 0;
3813       this->filesz_ = 0;
3814       return;
3815     }
3816
3817   const Output_data* first;
3818   if (this->output_data_.empty())
3819     first = this->output_bss_.front();
3820   else
3821     first = this->output_data_.front();
3822   this->vaddr_ = first->address();
3823   this->paddr_ = (first->has_load_address()
3824                   ? first->load_address()
3825                   : this->vaddr_);
3826   this->are_addresses_set_ = true;
3827   this->offset_ = first->offset();
3828
3829   if (this->output_data_.empty())
3830     this->filesz_ = 0;
3831   else
3832     {
3833       const Output_data* last_data = this->output_data_.back();
3834       this->filesz_ = (last_data->address()
3835                        + last_data->data_size()
3836                        - this->vaddr_);
3837     }
3838
3839   const Output_data* last;
3840   if (this->output_bss_.empty())
3841     last = this->output_data_.back();
3842   else
3843     last = this->output_bss_.back();
3844   this->memsz_ = (last->address()
3845                   + last->data_size()
3846                   - this->vaddr_);
3847
3848   this->filesz_ += increase;
3849   this->memsz_ += increase;
3850
3851   // If this is a TLS segment, align the memory size.  The code in
3852   // set_section_list ensures that the section after the TLS segment
3853   // is aligned to give us room.
3854   if (this->type_ == elfcpp::PT_TLS)
3855     {
3856       uint64_t segment_align = this->maximum_alignment();
3857       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3858       this->memsz_ = align_address(this->memsz_, segment_align);
3859     }
3860 }
3861
3862 // Set the TLS offsets of the sections in the PT_TLS segment.
3863
3864 void
3865 Output_segment::set_tls_offsets()
3866 {
3867   gold_assert(this->type_ == elfcpp::PT_TLS);
3868
3869   for (Output_data_list::iterator p = this->output_data_.begin();
3870        p != this->output_data_.end();
3871        ++p)
3872     (*p)->set_tls_offset(this->vaddr_);
3873
3874   for (Output_data_list::iterator p = this->output_bss_.begin();
3875        p != this->output_bss_.end();
3876        ++p)
3877     (*p)->set_tls_offset(this->vaddr_);
3878 }
3879
3880 // Return the address of the first section.
3881
3882 uint64_t
3883 Output_segment::first_section_load_address() const
3884 {
3885   for (Output_data_list::const_iterator p = this->output_data_.begin();
3886        p != this->output_data_.end();
3887        ++p)
3888     if ((*p)->is_section())
3889       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3890
3891   for (Output_data_list::const_iterator p = this->output_bss_.begin();
3892        p != this->output_bss_.end();
3893        ++p)
3894     if ((*p)->is_section())
3895       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3896
3897   gold_unreachable();
3898 }
3899
3900 // Return the number of Output_sections in an Output_segment.
3901
3902 unsigned int
3903 Output_segment::output_section_count() const
3904 {
3905   return (this->output_section_count_list(&this->output_data_)
3906           + this->output_section_count_list(&this->output_bss_));
3907 }
3908
3909 // Return the number of Output_sections in an Output_data_list.
3910
3911 unsigned int
3912 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3913 {
3914   unsigned int count = 0;
3915   for (Output_data_list::const_iterator p = pdl->begin();
3916        p != pdl->end();
3917        ++p)
3918     {
3919       if ((*p)->is_section())
3920         ++count;
3921     }
3922   return count;
3923 }
3924
3925 // Return the section attached to the list segment with the lowest
3926 // load address.  This is used when handling a PHDRS clause in a
3927 // linker script.
3928
3929 Output_section*
3930 Output_segment::section_with_lowest_load_address() const
3931 {
3932   Output_section* found = NULL;
3933   uint64_t found_lma = 0;
3934   this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3935
3936   Output_section* found_data = found;
3937   this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3938   if (found != found_data && found_data != NULL)
3939     {
3940       gold_error(_("nobits section %s may not precede progbits section %s "
3941                    "in same segment"),
3942                  found->name(), found_data->name());
3943       return NULL;
3944     }
3945
3946   return found;
3947 }
3948
3949 // Look through a list for a section with a lower load address.
3950
3951 void
3952 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3953                                             Output_section** found,
3954                                             uint64_t* found_lma) const
3955 {
3956   for (Output_data_list::const_iterator p = pdl->begin();
3957        p != pdl->end();
3958        ++p)
3959     {
3960       if (!(*p)->is_section())
3961         continue;
3962       Output_section* os = static_cast<Output_section*>(*p);
3963       uint64_t lma = (os->has_load_address()
3964                       ? os->load_address()
3965                       : os->address());
3966       if (*found == NULL || lma < *found_lma)
3967         {
3968           *found = os;
3969           *found_lma = lma;
3970         }
3971     }
3972 }
3973
3974 // Write the segment data into *OPHDR.
3975
3976 template<int size, bool big_endian>
3977 void
3978 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3979 {
3980   ophdr->put_p_type(this->type_);
3981   ophdr->put_p_offset(this->offset_);
3982   ophdr->put_p_vaddr(this->vaddr_);
3983   ophdr->put_p_paddr(this->paddr_);
3984   ophdr->put_p_filesz(this->filesz_);
3985   ophdr->put_p_memsz(this->memsz_);
3986   ophdr->put_p_flags(this->flags_);
3987   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3988 }
3989
3990 // Write the section headers into V.
3991
3992 template<int size, bool big_endian>
3993 unsigned char*
3994 Output_segment::write_section_headers(const Layout* layout,
3995                                       const Stringpool* secnamepool,
3996                                       unsigned char* v,
3997                                       unsigned int *pshndx) const
3998 {
3999   // Every section that is attached to a segment must be attached to a
4000   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4001   // segments.
4002   if (this->type_ != elfcpp::PT_LOAD)
4003     return v;
4004
4005   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4006                                                          &this->output_data_,
4007                                                          v, pshndx);
4008   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4009                                                          &this->output_bss_,
4010                                                          v, pshndx);
4011   return v;
4012 }
4013
4014 template<int size, bool big_endian>
4015 unsigned char*
4016 Output_segment::write_section_headers_list(const Layout* layout,
4017                                            const Stringpool* secnamepool,
4018                                            const Output_data_list* pdl,
4019                                            unsigned char* v,
4020                                            unsigned int* pshndx) const
4021 {
4022   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4023   for (Output_data_list::const_iterator p = pdl->begin();
4024        p != pdl->end();
4025        ++p)
4026     {
4027       if ((*p)->is_section())
4028         {
4029           const Output_section* ps = static_cast<const Output_section*>(*p);
4030           gold_assert(*pshndx == ps->out_shndx());
4031           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4032           ps->write_header(layout, secnamepool, &oshdr);
4033           v += shdr_size;
4034           ++*pshndx;
4035         }
4036     }
4037   return v;
4038 }
4039
4040 // Print the output sections to the map file.
4041
4042 void
4043 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4044 {
4045   if (this->type() != elfcpp::PT_LOAD)
4046     return;
4047   this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4048   this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4049 }
4050
4051 // Print an output section list to the map file.
4052
4053 void
4054 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4055                                               const Output_data_list* pdl) const
4056 {
4057   for (Output_data_list::const_iterator p = pdl->begin();
4058        p != pdl->end();
4059        ++p)
4060     (*p)->print_to_mapfile(mapfile);
4061 }
4062
4063 // Output_file methods.
4064
4065 Output_file::Output_file(const char* name)
4066   : name_(name),
4067     o_(-1),
4068     file_size_(0),
4069     base_(NULL),
4070     map_is_anonymous_(false),
4071     is_temporary_(false)
4072 {
4073 }
4074
4075 // Try to open an existing file.  Returns false if the file doesn't
4076 // exist, has a size of 0 or can't be mmapped.
4077
4078 bool
4079 Output_file::open_for_modification()
4080 {
4081   // The name "-" means "stdout".
4082   if (strcmp(this->name_, "-") == 0)
4083     return false;
4084
4085   // Don't bother opening files with a size of zero.
4086   struct stat s;
4087   if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4088     return false;
4089
4090   int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4091   if (o < 0)
4092     gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4093   this->o_ = o;
4094   this->file_size_ = s.st_size;
4095
4096   // If the file can't be mmapped, copying the content to an anonymous
4097   // map will probably negate the performance benefits of incremental
4098   // linking.  This could be helped by using views and loading only
4099   // the necessary parts, but this is not supported as of now.
4100   if (!this->map_no_anonymous())
4101     {
4102       release_descriptor(o, true);
4103       this->o_ = -1;
4104       this->file_size_ = 0;
4105       return false;
4106     }
4107
4108   return true;
4109 }
4110
4111 // Open the output file.
4112
4113 void
4114 Output_file::open(off_t file_size)
4115 {
4116   this->file_size_ = file_size;
4117
4118   // Unlink the file first; otherwise the open() may fail if the file
4119   // is busy (e.g. it's an executable that's currently being executed).
4120   //
4121   // However, the linker may be part of a system where a zero-length
4122   // file is created for it to write to, with tight permissions (gcc
4123   // 2.95 did something like this).  Unlinking the file would work
4124   // around those permission controls, so we only unlink if the file
4125   // has a non-zero size.  We also unlink only regular files to avoid
4126   // trouble with directories/etc.
4127   //
4128   // If we fail, continue; this command is merely a best-effort attempt
4129   // to improve the odds for open().
4130
4131   // We let the name "-" mean "stdout"
4132   if (!this->is_temporary_)
4133     {
4134       if (strcmp(this->name_, "-") == 0)
4135         this->o_ = STDOUT_FILENO;
4136       else
4137         {
4138           struct stat s;
4139           if (::stat(this->name_, &s) == 0
4140               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4141             {
4142               if (s.st_size != 0)
4143                 ::unlink(this->name_);
4144               else if (!parameters->options().relocatable())
4145                 {
4146                   // If we don't unlink the existing file, add execute
4147                   // permission where read permissions already exist
4148                   // and where the umask permits.
4149                   int mask = ::umask(0);
4150                   ::umask(mask);
4151                   s.st_mode |= (s.st_mode & 0444) >> 2;
4152                   ::chmod(this->name_, s.st_mode & ~mask);
4153                 }
4154             }
4155
4156           int mode = parameters->options().relocatable() ? 0666 : 0777;
4157           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4158                                   mode);
4159           if (o < 0)
4160             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4161           this->o_ = o;
4162         }
4163     }
4164
4165   this->map();
4166 }
4167
4168 // Resize the output file.
4169
4170 void
4171 Output_file::resize(off_t file_size)
4172 {
4173   // If the mmap is mapping an anonymous memory buffer, this is easy:
4174   // just mremap to the new size.  If it's mapping to a file, we want
4175   // to unmap to flush to the file, then remap after growing the file.
4176   if (this->map_is_anonymous_)
4177     {
4178       void* base = ::mremap(this->base_, this->file_size_, file_size,
4179                             MREMAP_MAYMOVE);
4180       if (base == MAP_FAILED)
4181         gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4182       this->base_ = static_cast<unsigned char*>(base);
4183       this->file_size_ = file_size;
4184     }
4185   else
4186     {
4187       this->unmap();
4188       this->file_size_ = file_size;
4189       if (!this->map_no_anonymous())
4190         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4191     }
4192 }
4193
4194 // Map an anonymous block of memory which will later be written to the
4195 // file.  Return whether the map succeeded.
4196
4197 bool
4198 Output_file::map_anonymous()
4199 {
4200   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4201                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4202   if (base != MAP_FAILED)
4203     {
4204       this->map_is_anonymous_ = true;
4205       this->base_ = static_cast<unsigned char*>(base);
4206       return true;
4207     }
4208   return false;
4209 }
4210
4211 // Map the file into memory.  Return whether the mapping succeeded.
4212
4213 bool
4214 Output_file::map_no_anonymous()
4215 {
4216   const int o = this->o_;
4217
4218   // If the output file is not a regular file, don't try to mmap it;
4219   // instead, we'll mmap a block of memory (an anonymous buffer), and
4220   // then later write the buffer to the file.
4221   void* base;
4222   struct stat statbuf;
4223   if (o == STDOUT_FILENO || o == STDERR_FILENO
4224       || ::fstat(o, &statbuf) != 0
4225       || !S_ISREG(statbuf.st_mode)
4226       || this->is_temporary_)
4227     return false;
4228
4229   // Ensure that we have disk space available for the file.  If we
4230   // don't do this, it is possible that we will call munmap, close,
4231   // and exit with dirty buffers still in the cache with no assigned
4232   // disk blocks.  If the disk is out of space at that point, the
4233   // output file will wind up incomplete, but we will have already
4234   // exited.  The alternative to fallocate would be to use fdatasync,
4235   // but that would be a more significant performance hit.
4236   if (::posix_fallocate(o, 0, this->file_size_) < 0)
4237     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4238
4239   // Map the file into memory.
4240   base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4241                 MAP_SHARED, o, 0);
4242
4243   // The mmap call might fail because of file system issues: the file
4244   // system might not support mmap at all, or it might not support
4245   // mmap with PROT_WRITE.
4246   if (base == MAP_FAILED)
4247     return false;
4248
4249   this->map_is_anonymous_ = false;
4250   this->base_ = static_cast<unsigned char*>(base);
4251   return true;
4252 }
4253
4254 // Map the file into memory.
4255
4256 void
4257 Output_file::map()
4258 {
4259   if (this->map_no_anonymous())
4260     return;
4261
4262   // The mmap call might fail because of file system issues: the file
4263   // system might not support mmap at all, or it might not support
4264   // mmap with PROT_WRITE.  I'm not sure which errno values we will
4265   // see in all cases, so if the mmap fails for any reason and we
4266   // don't care about file contents, try for an anonymous map.
4267   if (this->map_anonymous())
4268     return;
4269
4270   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4271              this->name_, static_cast<unsigned long>(this->file_size_),
4272              strerror(errno));
4273 }
4274
4275 // Unmap the file from memory.
4276
4277 void
4278 Output_file::unmap()
4279 {
4280   if (::munmap(this->base_, this->file_size_) < 0)
4281     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4282   this->base_ = NULL;
4283 }
4284
4285 // Close the output file.
4286
4287 void
4288 Output_file::close()
4289 {
4290   // If the map isn't file-backed, we need to write it now.
4291   if (this->map_is_anonymous_ && !this->is_temporary_)
4292     {
4293       size_t bytes_to_write = this->file_size_;
4294       size_t offset = 0;
4295       while (bytes_to_write > 0)
4296         {
4297           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4298                                           bytes_to_write);
4299           if (bytes_written == 0)
4300             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4301           else if (bytes_written < 0)
4302             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4303           else
4304             {
4305               bytes_to_write -= bytes_written;
4306               offset += bytes_written;
4307             }
4308         }
4309     }
4310   this->unmap();
4311
4312   // We don't close stdout or stderr
4313   if (this->o_ != STDOUT_FILENO
4314       && this->o_ != STDERR_FILENO
4315       && !this->is_temporary_)
4316     if (::close(this->o_) < 0)
4317       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4318   this->o_ = -1;
4319 }
4320
4321 // Instantiate the templates we need.  We could use the configure
4322 // script to restrict this to only the ones for implemented targets.
4323
4324 #ifdef HAVE_TARGET_32_LITTLE
4325 template
4326 off_t
4327 Output_section::add_input_section<32, false>(
4328     Sized_relobj<32, false>* object,
4329     unsigned int shndx,
4330     const char* secname,
4331     const elfcpp::Shdr<32, false>& shdr,
4332     unsigned int reloc_shndx,
4333     bool have_sections_script);
4334 #endif
4335
4336 #ifdef HAVE_TARGET_32_BIG
4337 template
4338 off_t
4339 Output_section::add_input_section<32, true>(
4340     Sized_relobj<32, true>* object,
4341     unsigned int shndx,
4342     const char* secname,
4343     const elfcpp::Shdr<32, true>& shdr,
4344     unsigned int reloc_shndx,
4345     bool have_sections_script);
4346 #endif
4347
4348 #ifdef HAVE_TARGET_64_LITTLE
4349 template
4350 off_t
4351 Output_section::add_input_section<64, false>(
4352     Sized_relobj<64, false>* object,
4353     unsigned int shndx,
4354     const char* secname,
4355     const elfcpp::Shdr<64, false>& shdr,
4356     unsigned int reloc_shndx,
4357     bool have_sections_script);
4358 #endif
4359
4360 #ifdef HAVE_TARGET_64_BIG
4361 template
4362 off_t
4363 Output_section::add_input_section<64, true>(
4364     Sized_relobj<64, true>* object,
4365     unsigned int shndx,
4366     const char* secname,
4367     const elfcpp::Shdr<64, true>& shdr,
4368     unsigned int reloc_shndx,
4369     bool have_sections_script);
4370 #endif
4371
4372 #ifdef HAVE_TARGET_32_LITTLE
4373 template
4374 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4375 #endif
4376
4377 #ifdef HAVE_TARGET_32_BIG
4378 template
4379 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4380 #endif
4381
4382 #ifdef HAVE_TARGET_64_LITTLE
4383 template
4384 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4385 #endif
4386
4387 #ifdef HAVE_TARGET_64_BIG
4388 template
4389 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4390 #endif
4391
4392 #ifdef HAVE_TARGET_32_LITTLE
4393 template
4394 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4395 #endif
4396
4397 #ifdef HAVE_TARGET_32_BIG
4398 template
4399 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4400 #endif
4401
4402 #ifdef HAVE_TARGET_64_LITTLE
4403 template
4404 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4405 #endif
4406
4407 #ifdef HAVE_TARGET_64_BIG
4408 template
4409 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4410 #endif
4411
4412 #ifdef HAVE_TARGET_32_LITTLE
4413 template
4414 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4415 #endif
4416
4417 #ifdef HAVE_TARGET_32_BIG
4418 template
4419 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4420 #endif
4421
4422 #ifdef HAVE_TARGET_64_LITTLE
4423 template
4424 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4425 #endif
4426
4427 #ifdef HAVE_TARGET_64_BIG
4428 template
4429 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4430 #endif
4431
4432 #ifdef HAVE_TARGET_32_LITTLE
4433 template
4434 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4435 #endif
4436
4437 #ifdef HAVE_TARGET_32_BIG
4438 template
4439 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4440 #endif
4441
4442 #ifdef HAVE_TARGET_64_LITTLE
4443 template
4444 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4445 #endif
4446
4447 #ifdef HAVE_TARGET_64_BIG
4448 template
4449 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4450 #endif
4451
4452 #ifdef HAVE_TARGET_32_LITTLE
4453 template
4454 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4455 #endif
4456
4457 #ifdef HAVE_TARGET_32_BIG
4458 template
4459 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4460 #endif
4461
4462 #ifdef HAVE_TARGET_64_LITTLE
4463 template
4464 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4465 #endif
4466
4467 #ifdef HAVE_TARGET_64_BIG
4468 template
4469 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4470 #endif
4471
4472 #ifdef HAVE_TARGET_32_LITTLE
4473 template
4474 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4475 #endif
4476
4477 #ifdef HAVE_TARGET_32_BIG
4478 template
4479 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4480 #endif
4481
4482 #ifdef HAVE_TARGET_64_LITTLE
4483 template
4484 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4485 #endif
4486
4487 #ifdef HAVE_TARGET_64_BIG
4488 template
4489 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4490 #endif
4491
4492 #ifdef HAVE_TARGET_32_LITTLE
4493 template
4494 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4495 #endif
4496
4497 #ifdef HAVE_TARGET_32_BIG
4498 template
4499 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4500 #endif
4501
4502 #ifdef HAVE_TARGET_64_LITTLE
4503 template
4504 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4505 #endif
4506
4507 #ifdef HAVE_TARGET_64_BIG
4508 template
4509 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4510 #endif
4511
4512 #ifdef HAVE_TARGET_32_LITTLE
4513 template
4514 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4515 #endif
4516
4517 #ifdef HAVE_TARGET_32_BIG
4518 template
4519 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4520 #endif
4521
4522 #ifdef HAVE_TARGET_64_LITTLE
4523 template
4524 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4525 #endif
4526
4527 #ifdef HAVE_TARGET_64_BIG
4528 template
4529 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4530 #endif
4531
4532 #ifdef HAVE_TARGET_32_LITTLE
4533 template
4534 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4535 #endif
4536
4537 #ifdef HAVE_TARGET_32_BIG
4538 template
4539 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4540 #endif
4541
4542 #ifdef HAVE_TARGET_64_LITTLE
4543 template
4544 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4545 #endif
4546
4547 #ifdef HAVE_TARGET_64_BIG
4548 template
4549 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4550 #endif
4551
4552 #ifdef HAVE_TARGET_32_LITTLE
4553 template
4554 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4555 #endif
4556
4557 #ifdef HAVE_TARGET_32_BIG
4558 template
4559 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4560 #endif
4561
4562 #ifdef HAVE_TARGET_64_LITTLE
4563 template
4564 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4565 #endif
4566
4567 #ifdef HAVE_TARGET_64_BIG
4568 template
4569 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4570 #endif
4571
4572 #ifdef HAVE_TARGET_32_LITTLE
4573 template
4574 class Output_data_group<32, false>;
4575 #endif
4576
4577 #ifdef HAVE_TARGET_32_BIG
4578 template
4579 class Output_data_group<32, true>;
4580 #endif
4581
4582 #ifdef HAVE_TARGET_64_LITTLE
4583 template
4584 class Output_data_group<64, false>;
4585 #endif
4586
4587 #ifdef HAVE_TARGET_64_BIG
4588 template
4589 class Output_data_group<64, true>;
4590 #endif
4591
4592 #ifdef HAVE_TARGET_32_LITTLE
4593 template
4594 class Output_data_got<32, false>;
4595 #endif
4596
4597 #ifdef HAVE_TARGET_32_BIG
4598 template
4599 class Output_data_got<32, true>;
4600 #endif
4601
4602 #ifdef HAVE_TARGET_64_LITTLE
4603 template
4604 class Output_data_got<64, false>;
4605 #endif
4606
4607 #ifdef HAVE_TARGET_64_BIG
4608 template
4609 class Output_data_got<64, true>;
4610 #endif
4611
4612 } // End namespace gold.