gold/
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 #  define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 #  define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 #  define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 #  define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 #  define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 #  define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80   errno = ENOSYS;
81   return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87   errno = ENOSYS;
88   return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94   errno = ENOSYS;
95   return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS  MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate.  If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly.  If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131   if (parameters->options().posix_fallocate())
132     return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135   if (::fallocate(o, 0, offset, len) == 0)
136     return 0;
137 #endif // defined(HAVE_FALLOCATE)
138   if (::ftruncate(o, offset + len) < 0)
139     return errno;
140   return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158   return Output_data::default_alignment_for_size(
159       parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167   if (size == 32)
168     return 4;
169   else if (size == 64)
170     return 8;
171   else
172     gold_unreachable();
173 }
174
175 // Output_section_header methods.  This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179     const Layout* layout,
180     const Layout::Segment_list* segment_list,
181     const Layout::Section_list* section_list,
182     const Layout::Section_list* unattached_section_list,
183     const Stringpool* secnamepool,
184     const Output_section* shstrtab_section)
185   : layout_(layout),
186     segment_list_(segment_list),
187     section_list_(section_list),
188     unattached_section_list_(unattached_section_list),
189     secnamepool_(secnamepool),
190     shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199   // Count all the sections.  Start with 1 for the null section.
200   off_t count = 1;
201   if (!parameters->options().relocatable())
202     {
203       for (Layout::Segment_list::const_iterator p =
204              this->segment_list_->begin();
205            p != this->segment_list_->end();
206            ++p)
207         if ((*p)->type() == elfcpp::PT_LOAD)
208           count += (*p)->output_section_count();
209     }
210   else
211     {
212       for (Layout::Section_list::const_iterator p =
213              this->section_list_->begin();
214            p != this->section_list_->end();
215            ++p)
216         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217           ++count;
218     }
219   count += this->unattached_section_list_->size();
220
221   const int size = parameters->target().get_size();
222   int shdr_size;
223   if (size == 32)
224     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225   else if (size == 64)
226     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227   else
228     gold_unreachable();
229
230   return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238   switch (parameters->size_and_endianness())
239     {
240 #ifdef HAVE_TARGET_32_LITTLE
241     case Parameters::TARGET_32_LITTLE:
242       this->do_sized_write<32, false>(of);
243       break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246     case Parameters::TARGET_32_BIG:
247       this->do_sized_write<32, true>(of);
248       break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251     case Parameters::TARGET_64_LITTLE:
252       this->do_sized_write<64, false>(of);
253       break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256     case Parameters::TARGET_64_BIG:
257       this->do_sized_write<64, true>(of);
258       break;
259 #endif
260     default:
261       gold_unreachable();
262     }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269   off_t all_shdrs_size = this->data_size();
270   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273   unsigned char* v = view;
274
275   {
276     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277     oshdr.put_sh_name(0);
278     oshdr.put_sh_type(elfcpp::SHT_NULL);
279     oshdr.put_sh_flags(0);
280     oshdr.put_sh_addr(0);
281     oshdr.put_sh_offset(0);
282
283     size_t section_count = (this->data_size()
284                             / elfcpp::Elf_sizes<size>::shdr_size);
285     if (section_count < elfcpp::SHN_LORESERVE)
286       oshdr.put_sh_size(0);
287     else
288       oshdr.put_sh_size(section_count);
289
290     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291     if (shstrndx < elfcpp::SHN_LORESERVE)
292       oshdr.put_sh_link(0);
293     else
294       oshdr.put_sh_link(shstrndx);
295
296     size_t segment_count = this->segment_list_->size();
297     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299     oshdr.put_sh_addralign(0);
300     oshdr.put_sh_entsize(0);
301   }
302
303   v += shdr_size;
304
305   unsigned int shndx = 1;
306   if (!parameters->options().relocatable())
307     {
308       for (Layout::Segment_list::const_iterator p =
309              this->segment_list_->begin();
310            p != this->segment_list_->end();
311            ++p)
312         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313                                                           this->secnamepool_,
314                                                           v,
315                                                           &shndx);
316     }
317   else
318     {
319       for (Layout::Section_list::const_iterator p =
320              this->section_list_->begin();
321            p != this->section_list_->end();
322            ++p)
323         {
324           // We do unallocated sections below, except that group
325           // sections have to come first.
326           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327               && (*p)->type() != elfcpp::SHT_GROUP)
328             continue;
329           gold_assert(shndx == (*p)->out_shndx());
330           elfcpp::Shdr_write<size, big_endian> oshdr(v);
331           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332           v += shdr_size;
333           ++shndx;
334         }
335     }
336
337   for (Layout::Section_list::const_iterator p =
338          this->unattached_section_list_->begin();
339        p != this->unattached_section_list_->end();
340        ++p)
341     {
342       // For a relocatable link, we did unallocated group sections
343       // above, since they have to come first.
344       if ((*p)->type() == elfcpp::SHT_GROUP
345           && parameters->options().relocatable())
346         continue;
347       gold_assert(shndx == (*p)->out_shndx());
348       elfcpp::Shdr_write<size, big_endian> oshdr(v);
349       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350       v += shdr_size;
351       ++shndx;
352     }
353
354   of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360     const Layout::Segment_list& segment_list)
361   : segment_list_(segment_list)
362 {
363   this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369   switch (parameters->size_and_endianness())
370     {
371 #ifdef HAVE_TARGET_32_LITTLE
372     case Parameters::TARGET_32_LITTLE:
373       this->do_sized_write<32, false>(of);
374       break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377     case Parameters::TARGET_32_BIG:
378       this->do_sized_write<32, true>(of);
379       break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382     case Parameters::TARGET_64_LITTLE:
383       this->do_sized_write<64, false>(of);
384       break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387     case Parameters::TARGET_64_BIG:
388       this->do_sized_write<64, true>(of);
389       break;
390 #endif
391     default:
392       gold_unreachable();
393     }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402   gold_assert(all_phdrs_size == this->data_size());
403   unsigned char* view = of->get_output_view(this->offset(),
404                                             all_phdrs_size);
405   unsigned char* v = view;
406   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407        p != this->segment_list_.end();
408        ++p)
409     {
410       elfcpp::Phdr_write<size, big_endian> ophdr(v);
411       (*p)->write_header(&ophdr);
412       v += phdr_size;
413     }
414
415   gold_assert(v - view == all_phdrs_size);
416
417   of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423   const int size = parameters->target().get_size();
424   int phdr_size;
425   if (size == 32)
426     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427   else if (size == 64)
428     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429   else
430     gold_unreachable();
431
432   return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(const Target* target,
438                                        const Symbol_table* symtab,
439                                        const Output_segment_headers* osh)
440   : target_(target),
441     symtab_(symtab),
442     segment_header_(osh),
443     section_header_(NULL),
444     shstrtab_(NULL)
445 {
446   this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453                                      const Output_section* shstrtab)
454 {
455   this->section_header_ = shdrs;
456   this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464   gold_assert(this->offset() == 0);
465
466   switch (parameters->size_and_endianness())
467     {
468 #ifdef HAVE_TARGET_32_LITTLE
469     case Parameters::TARGET_32_LITTLE:
470       this->do_sized_write<32, false>(of);
471       break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474     case Parameters::TARGET_32_BIG:
475       this->do_sized_write<32, true>(of);
476       break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479     case Parameters::TARGET_64_LITTLE:
480       this->do_sized_write<64, false>(of);
481       break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484     case Parameters::TARGET_64_BIG:
485       this->do_sized_write<64, true>(of);
486       break;
487 #endif
488     default:
489       gold_unreachable();
490     }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499   gold_assert(this->offset() == 0);
500
501   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502   unsigned char* view = of->get_output_view(0, ehdr_size);
503   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505   unsigned char e_ident[elfcpp::EI_NIDENT];
506   memset(e_ident, 0, elfcpp::EI_NIDENT);
507   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511   if (size == 32)
512     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513   else if (size == 64)
514     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515   else
516     gold_unreachable();
517   e_ident[elfcpp::EI_DATA] = (big_endian
518                               ? elfcpp::ELFDATA2MSB
519                               : elfcpp::ELFDATA2LSB);
520   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521   oehdr.put_e_ident(e_ident);
522
523   elfcpp::ET e_type;
524   if (parameters->options().relocatable())
525     e_type = elfcpp::ET_REL;
526   else if (parameters->options().output_is_position_independent())
527     e_type = elfcpp::ET_DYN;
528   else
529     e_type = elfcpp::ET_EXEC;
530   oehdr.put_e_type(e_type);
531
532   oehdr.put_e_machine(this->target_->machine_code());
533   oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535   oehdr.put_e_entry(this->entry<size>());
536
537   if (this->segment_header_ == NULL)
538     oehdr.put_e_phoff(0);
539   else
540     oehdr.put_e_phoff(this->segment_header_->offset());
541
542   oehdr.put_e_shoff(this->section_header_->offset());
543   oehdr.put_e_flags(this->target_->processor_specific_flags());
544   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546   if (this->segment_header_ == NULL)
547     {
548       oehdr.put_e_phentsize(0);
549       oehdr.put_e_phnum(0);
550     }
551   else
552     {
553       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554       size_t phnum = (this->segment_header_->data_size()
555                       / elfcpp::Elf_sizes<size>::phdr_size);
556       if (phnum > elfcpp::PN_XNUM)
557         phnum = elfcpp::PN_XNUM;
558       oehdr.put_e_phnum(phnum);
559     }
560
561   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562   size_t section_count = (this->section_header_->data_size()
563                           / elfcpp::Elf_sizes<size>::shdr_size);
564
565   if (section_count < elfcpp::SHN_LORESERVE)
566     oehdr.put_e_shnum(this->section_header_->data_size()
567                       / elfcpp::Elf_sizes<size>::shdr_size);
568   else
569     oehdr.put_e_shnum(0);
570
571   unsigned int shstrndx = this->shstrtab_->out_shndx();
572   if (shstrndx < elfcpp::SHN_LORESERVE)
573     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574   else
575     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578   // the e_ident field.
579   parameters->target().adjust_elf_header(view, ehdr_size);
580
581   of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590   const bool should_issue_warning = (parameters->options().entry() != NULL
591                                      && !parameters->options().relocatable()
592                                      && !parameters->options().shared());
593   const char* entry = parameters->entry();
594   Symbol* sym = this->symtab_->lookup(entry);
595
596   typename Sized_symbol<size>::Value_type v;
597   if (sym != NULL)
598     {
599       Sized_symbol<size>* ssym;
600       ssym = this->symtab_->get_sized_symbol<size>(sym);
601       if (!ssym->is_defined() && should_issue_warning)
602         gold_warning("entry symbol '%s' exists but is not defined", entry);
603       v = ssym->value();
604     }
605   else
606     {
607       // We couldn't find the entry symbol.  See if we can parse it as
608       // a number.  This supports, e.g., -e 0x1000.
609       char* endptr;
610       v = strtoull(entry, &endptr, 0);
611       if (*endptr != '\0')
612         {
613           if (should_issue_warning)
614             gold_warning("cannot find entry symbol '%s'", entry);
615           v = 0;
616         }
617     }
618
619   return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627   const int size = parameters->target().get_size();
628   if (size == 32)
629     return elfcpp::Elf_sizes<32>::ehdr_size;
630   else if (size == 64)
631     return elfcpp::Elf_sizes<64>::ehdr_size;
632   else
633     gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641   of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649   of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659   gold_assert(this->output_section_ == NULL);
660   this->output_section_ = os;
661   this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669   gold_assert(this->output_section_ != NULL);
670   return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679   this->addralign_ = addralign;
680   if (this->output_section_ != NULL
681       && this->output_section_->addralign() < addralign)
682     this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692   this->strtab_->set_string_offsets();
693   this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701   this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710     Symbol* gsym,
711     unsigned int type,
712     Output_data* od,
713     Address address,
714     bool is_relative,
715     bool is_symbolless,
716     bool use_plt_offset)
717   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718     is_relative_(is_relative), is_symbolless_(is_symbolless),
719     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721   // this->type_ is a bitfield; make sure TYPE fits.
722   gold_assert(this->type_ == type);
723   this->u1_.gsym = gsym;
724   this->u2_.od = od;
725   if (dynamic)
726     this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731     Symbol* gsym,
732     unsigned int type,
733     Sized_relobj<size, big_endian>* relobj,
734     unsigned int shndx,
735     Address address,
736     bool is_relative,
737     bool is_symbolless,
738     bool use_plt_offset)
739   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740     is_relative_(is_relative), is_symbolless_(is_symbolless),
741     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743   gold_assert(shndx != INVALID_CODE);
744   // this->type_ is a bitfield; make sure TYPE fits.
745   gold_assert(this->type_ == type);
746   this->u1_.gsym = gsym;
747   this->u2_.relobj = relobj;
748   if (dynamic)
749     this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756     Sized_relobj<size, big_endian>* relobj,
757     unsigned int local_sym_index,
758     unsigned int type,
759     Output_data* od,
760     Address address,
761     bool is_relative,
762     bool is_symbolless,
763     bool is_section_symbol,
764     bool use_plt_offset)
765   : address_(address), local_sym_index_(local_sym_index), type_(type),
766     is_relative_(is_relative), is_symbolless_(is_symbolless),
767     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768     shndx_(INVALID_CODE)
769 {
770   gold_assert(local_sym_index != GSYM_CODE
771               && local_sym_index != INVALID_CODE);
772   // this->type_ is a bitfield; make sure TYPE fits.
773   gold_assert(this->type_ == type);
774   this->u1_.relobj = relobj;
775   this->u2_.od = od;
776   if (dynamic)
777     this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782     Sized_relobj<size, big_endian>* relobj,
783     unsigned int local_sym_index,
784     unsigned int type,
785     unsigned int shndx,
786     Address address,
787     bool is_relative,
788     bool is_symbolless,
789     bool is_section_symbol,
790     bool use_plt_offset)
791   : address_(address), local_sym_index_(local_sym_index), type_(type),
792     is_relative_(is_relative), is_symbolless_(is_symbolless),
793     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794     shndx_(shndx)
795 {
796   gold_assert(local_sym_index != GSYM_CODE
797               && local_sym_index != INVALID_CODE);
798   gold_assert(shndx != INVALID_CODE);
799   // this->type_ is a bitfield; make sure TYPE fits.
800   gold_assert(this->type_ == type);
801   this->u1_.relobj = relobj;
802   this->u2_.relobj = relobj;
803   if (dynamic)
804     this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811     Output_section* os,
812     unsigned int type,
813     Output_data* od,
814     Address address)
815   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
816     is_relative_(false), is_symbolless_(false),
817     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
818 {
819   // this->type_ is a bitfield; make sure TYPE fits.
820   gold_assert(this->type_ == type);
821   this->u1_.os = os;
822   this->u2_.od = od;
823   if (dynamic)
824     this->set_needs_dynsym_index();
825   else
826     os->set_needs_symtab_index();
827 }
828
829 template<bool dynamic, int size, bool big_endian>
830 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
831     Output_section* os,
832     unsigned int type,
833     Sized_relobj<size, big_endian>* relobj,
834     unsigned int shndx,
835     Address address)
836   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
837     is_relative_(false), is_symbolless_(false),
838     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
839 {
840   gold_assert(shndx != INVALID_CODE);
841   // this->type_ is a bitfield; make sure TYPE fits.
842   gold_assert(this->type_ == type);
843   this->u1_.os = os;
844   this->u2_.relobj = relobj;
845   if (dynamic)
846     this->set_needs_dynsym_index();
847   else
848     os->set_needs_symtab_index();
849 }
850
851 // An absolute relocation.
852
853 template<bool dynamic, int size, bool big_endian>
854 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
855     unsigned int type,
856     Output_data* od,
857     Address address)
858   : address_(address), local_sym_index_(0), type_(type),
859     is_relative_(false), is_symbolless_(false),
860     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
861 {
862   // this->type_ is a bitfield; make sure TYPE fits.
863   gold_assert(this->type_ == type);
864   this->u1_.relobj = NULL;
865   this->u2_.od = od;
866 }
867
868 template<bool dynamic, int size, bool big_endian>
869 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
870     unsigned int type,
871     Sized_relobj<size, big_endian>* relobj,
872     unsigned int shndx,
873     Address address)
874   : address_(address), local_sym_index_(0), type_(type),
875     is_relative_(false), is_symbolless_(false),
876     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
877 {
878   gold_assert(shndx != INVALID_CODE);
879   // this->type_ is a bitfield; make sure TYPE fits.
880   gold_assert(this->type_ == type);
881   this->u1_.relobj = NULL;
882   this->u2_.relobj = relobj;
883 }
884
885 // A target specific relocation.
886
887 template<bool dynamic, int size, bool big_endian>
888 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
889     unsigned int type,
890     void* arg,
891     Output_data* od,
892     Address address)
893   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
894     is_relative_(false), is_symbolless_(false),
895     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
896 {
897   // this->type_ is a bitfield; make sure TYPE fits.
898   gold_assert(this->type_ == type);
899   this->u1_.arg = arg;
900   this->u2_.od = od;
901 }
902
903 template<bool dynamic, int size, bool big_endian>
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
905     unsigned int type,
906     void* arg,
907     Sized_relobj<size, big_endian>* relobj,
908     unsigned int shndx,
909     Address address)
910   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
911     is_relative_(false), is_symbolless_(false),
912     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
913 {
914   gold_assert(shndx != INVALID_CODE);
915   // this->type_ is a bitfield; make sure TYPE fits.
916   gold_assert(this->type_ == type);
917   this->u1_.arg = arg;
918   this->u2_.relobj = relobj;
919 }
920
921 // Record that we need a dynamic symbol index for this relocation.
922
923 template<bool dynamic, int size, bool big_endian>
924 void
925 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
926 set_needs_dynsym_index()
927 {
928   if (this->is_symbolless_)
929     return;
930   switch (this->local_sym_index_)
931     {
932     case INVALID_CODE:
933       gold_unreachable();
934
935     case GSYM_CODE:
936       this->u1_.gsym->set_needs_dynsym_entry();
937       break;
938
939     case SECTION_CODE:
940       this->u1_.os->set_needs_dynsym_index();
941       break;
942
943     case TARGET_CODE:
944       // The target must take care of this if necessary.
945       break;
946
947     case 0:
948       break;
949
950     default:
951       {
952         const unsigned int lsi = this->local_sym_index_;
953         Sized_relobj_file<size, big_endian>* relobj =
954             this->u1_.relobj->sized_relobj();
955         gold_assert(relobj != NULL);
956         if (!this->is_section_symbol_)
957           relobj->set_needs_output_dynsym_entry(lsi);
958         else
959           relobj->output_section(lsi)->set_needs_dynsym_index();
960       }
961       break;
962     }
963 }
964
965 // Get the symbol index of a relocation.
966
967 template<bool dynamic, int size, bool big_endian>
968 unsigned int
969 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
970   const
971 {
972   unsigned int index;
973   if (this->is_symbolless_)
974     return 0;
975   switch (this->local_sym_index_)
976     {
977     case INVALID_CODE:
978       gold_unreachable();
979
980     case GSYM_CODE:
981       if (this->u1_.gsym == NULL)
982         index = 0;
983       else if (dynamic)
984         index = this->u1_.gsym->dynsym_index();
985       else
986         index = this->u1_.gsym->symtab_index();
987       break;
988
989     case SECTION_CODE:
990       if (dynamic)
991         index = this->u1_.os->dynsym_index();
992       else
993         index = this->u1_.os->symtab_index();
994       break;
995
996     case TARGET_CODE:
997       index = parameters->target().reloc_symbol_index(this->u1_.arg,
998                                                       this->type_);
999       break;
1000
1001     case 0:
1002       // Relocations without symbols use a symbol index of 0.
1003       index = 0;
1004       break;
1005
1006     default:
1007       {
1008         const unsigned int lsi = this->local_sym_index_;
1009         Sized_relobj_file<size, big_endian>* relobj =
1010             this->u1_.relobj->sized_relobj();
1011         gold_assert(relobj != NULL);
1012         if (!this->is_section_symbol_)
1013           {
1014             if (dynamic)
1015               index = relobj->dynsym_index(lsi);
1016             else
1017               index = relobj->symtab_index(lsi);
1018           }
1019         else
1020           {
1021             Output_section* os = relobj->output_section(lsi);
1022             gold_assert(os != NULL);
1023             if (dynamic)
1024               index = os->dynsym_index();
1025             else
1026               index = os->symtab_index();
1027           }
1028       }
1029       break;
1030     }
1031   gold_assert(index != -1U);
1032   return index;
1033 }
1034
1035 // For a local section symbol, get the address of the offset ADDEND
1036 // within the input section.
1037
1038 template<bool dynamic, int size, bool big_endian>
1039 typename elfcpp::Elf_types<size>::Elf_Addr
1040 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1041   local_section_offset(Addend addend) const
1042 {
1043   gold_assert(this->local_sym_index_ != GSYM_CODE
1044               && this->local_sym_index_ != SECTION_CODE
1045               && this->local_sym_index_ != TARGET_CODE
1046               && this->local_sym_index_ != INVALID_CODE
1047               && this->local_sym_index_ != 0
1048               && this->is_section_symbol_);
1049   const unsigned int lsi = this->local_sym_index_;
1050   Output_section* os = this->u1_.relobj->output_section(lsi);
1051   gold_assert(os != NULL);
1052   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1053   if (offset != invalid_address)
1054     return offset + addend;
1055   // This is a merge section.
1056   Sized_relobj_file<size, big_endian>* relobj =
1057       this->u1_.relobj->sized_relobj();
1058   gold_assert(relobj != NULL);
1059   offset = os->output_address(relobj, lsi, addend);
1060   gold_assert(offset != invalid_address);
1061   return offset;
1062 }
1063
1064 // Get the output address of a relocation.
1065
1066 template<bool dynamic, int size, bool big_endian>
1067 typename elfcpp::Elf_types<size>::Elf_Addr
1068 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1069 {
1070   Address address = this->address_;
1071   if (this->shndx_ != INVALID_CODE)
1072     {
1073       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1074       gold_assert(os != NULL);
1075       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1076       if (off != invalid_address)
1077         address += os->address() + off;
1078       else
1079         {
1080           Sized_relobj_file<size, big_endian>* relobj =
1081               this->u2_.relobj->sized_relobj();
1082           gold_assert(relobj != NULL);
1083           address = os->output_address(relobj, this->shndx_, address);
1084           gold_assert(address != invalid_address);
1085         }
1086     }
1087   else if (this->u2_.od != NULL)
1088     address += this->u2_.od->address();
1089   return address;
1090 }
1091
1092 // Write out the offset and info fields of a Rel or Rela relocation
1093 // entry.
1094
1095 template<bool dynamic, int size, bool big_endian>
1096 template<typename Write_rel>
1097 void
1098 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1099     Write_rel* wr) const
1100 {
1101   wr->put_r_offset(this->get_address());
1102   unsigned int sym_index = this->get_symbol_index();
1103   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1104 }
1105
1106 // Write out a Rel relocation.
1107
1108 template<bool dynamic, int size, bool big_endian>
1109 void
1110 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1111     unsigned char* pov) const
1112 {
1113   elfcpp::Rel_write<size, big_endian> orel(pov);
1114   this->write_rel(&orel);
1115 }
1116
1117 // Get the value of the symbol referred to by a Rel relocation.
1118
1119 template<bool dynamic, int size, bool big_endian>
1120 typename elfcpp::Elf_types<size>::Elf_Addr
1121 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1122     Addend addend) const
1123 {
1124   if (this->local_sym_index_ == GSYM_CODE)
1125     {
1126       const Sized_symbol<size>* sym;
1127       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1128       if (this->use_plt_offset_ && sym->has_plt_offset())
1129         {
1130           uint64_t plt_address =
1131             parameters->target().plt_address_for_global(sym);
1132           return plt_address + sym->plt_offset();
1133         }
1134       else
1135         return sym->value() + addend;
1136     }
1137   gold_assert(this->local_sym_index_ != SECTION_CODE
1138               && this->local_sym_index_ != TARGET_CODE
1139               && this->local_sym_index_ != INVALID_CODE
1140               && this->local_sym_index_ != 0
1141               && !this->is_section_symbol_);
1142   const unsigned int lsi = this->local_sym_index_;
1143   Sized_relobj_file<size, big_endian>* relobj =
1144       this->u1_.relobj->sized_relobj();
1145   gold_assert(relobj != NULL);
1146   if (this->use_plt_offset_)
1147     {
1148       uint64_t plt_address =
1149           parameters->target().plt_address_for_local(relobj, lsi);
1150       return plt_address + relobj->local_plt_offset(lsi);
1151     }
1152   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153   return symval->value(relobj, addend);
1154 }
1155
1156 // Reloc comparison.  This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker.  First we sort all relative relocs
1158 // to the front.  Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166     const
1167 {
1168   if (this->is_relative_)
1169     {
1170       if (!r2.is_relative_)
1171         return -1;
1172       // Otherwise sort by reloc address below.
1173     }
1174   else if (r2.is_relative_)
1175     return 1;
1176   else
1177     {
1178       unsigned int sym1 = this->get_symbol_index();
1179       unsigned int sym2 = r2.get_symbol_index();
1180       if (sym1 < sym2)
1181         return -1;
1182       else if (sym1 > sym2)
1183         return 1;
1184       // Otherwise sort by reloc address.
1185     }
1186
1187   section_offset_type addr1 = this->get_address();
1188   section_offset_type addr2 = r2.get_address();
1189   if (addr1 < addr2)
1190     return -1;
1191   else if (addr1 > addr2)
1192     return 1;
1193
1194   // Final tie breaker, in order to generate the same output on any
1195   // host: reloc type.
1196   unsigned int type1 = this->type_;
1197   unsigned int type2 = r2.type_;
1198   if (type1 < type2)
1199     return -1;
1200   else if (type1 > type2)
1201     return 1;
1202
1203   // These relocs appear to be exactly the same.
1204   return 0;
1205 }
1206
1207 // Write out a Rela relocation.
1208
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212     unsigned char* pov) const
1213 {
1214   elfcpp::Rela_write<size, big_endian> orel(pov);
1215   this->rel_.write_rel(&orel);
1216   Addend addend = this->addend_;
1217   if (this->rel_.is_target_specific())
1218     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219                                                this->rel_.type(), addend);
1220   else if (this->rel_.is_symbolless())
1221     addend = this->rel_.symbol_value(addend);
1222   else if (this->rel_.is_local_section_symbol())
1223     addend = this->rel_.local_section_offset(addend);
1224   orel.put_r_addend(addend);
1225 }
1226
1227 // Output_data_reloc_base methods.
1228
1229 // Adjust the output section.
1230
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234     ::do_adjust_output_section(Output_section* os)
1235 {
1236   if (sh_type == elfcpp::SHT_REL)
1237     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238   else if (sh_type == elfcpp::SHT_RELA)
1239     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240   else
1241     gold_unreachable();
1242
1243   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244   // static link.  The backends will generate a dynamic reloc section
1245   // to hold this.  In that case we don't want to link to the dynsym
1246   // section, because there isn't one.
1247   if (!dynamic)
1248     os->set_should_link_to_symtab();
1249   else if (parameters->doing_static_link())
1250     ;
1251   else
1252     os->set_should_link_to_dynsym();
1253 }
1254
1255 // Write out relocation data.
1256
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 void
1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260     Output_file* of)
1261 {
1262   const off_t off = this->offset();
1263   const off_t oview_size = this->data_size();
1264   unsigned char* const oview = of->get_output_view(off, oview_size);
1265
1266   if (this->sort_relocs())
1267     {
1268       gold_assert(dynamic);
1269       std::sort(this->relocs_.begin(), this->relocs_.end(),
1270                 Sort_relocs_comparison());
1271     }
1272
1273   unsigned char* pov = oview;
1274   for (typename Relocs::const_iterator p = this->relocs_.begin();
1275        p != this->relocs_.end();
1276        ++p)
1277     {
1278       p->write(pov);
1279       pov += reloc_size;
1280     }
1281
1282   gold_assert(pov - oview == oview_size);
1283
1284   of->write_output_view(off, oview_size, oview);
1285
1286   // We no longer need the relocation entries.
1287   this->relocs_.clear();
1288 }
1289
1290 // Class Output_relocatable_relocs.
1291
1292 template<int sh_type, int size, bool big_endian>
1293 void
1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295 {
1296   this->set_data_size(this->rr_->output_reloc_count()
1297                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298 }
1299
1300 // class Output_data_group.
1301
1302 template<int size, bool big_endian>
1303 Output_data_group<size, big_endian>::Output_data_group(
1304     Sized_relobj_file<size, big_endian>* relobj,
1305     section_size_type entry_count,
1306     elfcpp::Elf_Word flags,
1307     std::vector<unsigned int>* input_shndxes)
1308   : Output_section_data(entry_count * 4, 4, false),
1309     relobj_(relobj),
1310     flags_(flags)
1311 {
1312   this->input_shndxes_.swap(*input_shndxes);
1313 }
1314
1315 // Write out the section group, which means translating the section
1316 // indexes to apply to the output file.
1317
1318 template<int size, bool big_endian>
1319 void
1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
1321 {
1322   const off_t off = this->offset();
1323   const section_size_type oview_size =
1324     convert_to_section_size_type(this->data_size());
1325   unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329   ++contents;
1330
1331   for (std::vector<unsigned int>::const_iterator p =
1332          this->input_shndxes_.begin();
1333        p != this->input_shndxes_.end();
1334        ++p, ++contents)
1335     {
1336       Output_section* os = this->relobj_->output_section(*p);
1337
1338       unsigned int output_shndx;
1339       if (os != NULL)
1340         output_shndx = os->out_shndx();
1341       else
1342         {
1343           this->relobj_->error(_("section group retained but "
1344                                  "group element discarded"));
1345           output_shndx = 0;
1346         }
1347
1348       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349     }
1350
1351   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352   gold_assert(wrote == oview_size);
1353
1354   of->write_output_view(off, oview_size, oview);
1355
1356   // We no longer need this information.
1357   this->input_shndxes_.clear();
1358 }
1359
1360 // Output_data_got::Got_entry methods.
1361
1362 // Write out the entry.
1363
1364 template<int size, bool big_endian>
1365 void
1366 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1367 {
1368   Valtype val = 0;
1369
1370   switch (this->local_sym_index_)
1371     {
1372     case GSYM_CODE:
1373       {
1374         // If the symbol is resolved locally, we need to write out the
1375         // link-time value, which will be relocated dynamically by a
1376         // RELATIVE relocation.
1377         Symbol* gsym = this->u_.gsym;
1378         if (this->use_plt_offset_ && gsym->has_plt_offset())
1379           val = (parameters->target().plt_address_for_global(gsym)
1380                  + gsym->plt_offset());
1381         else
1382           {
1383             Sized_symbol<size>* sgsym;
1384             // This cast is a bit ugly.  We don't want to put a
1385             // virtual method in Symbol, because we want Symbol to be
1386             // as small as possible.
1387             sgsym = static_cast<Sized_symbol<size>*>(gsym);
1388             val = sgsym->value();
1389           }
1390       }
1391       break;
1392
1393     case CONSTANT_CODE:
1394       val = this->u_.constant;
1395       break;
1396
1397     case RESERVED_CODE:
1398       // If we're doing an incremental update, don't touch this GOT entry.
1399       if (parameters->incremental_update())
1400         return;
1401       val = this->u_.constant;
1402       break;
1403
1404     default:
1405       {
1406         const Relobj* object = this->u_.object;
1407         const unsigned int lsi = this->local_sym_index_;
1408         if (!this->use_plt_offset_)
1409           {
1410             uint64_t lval = object->local_symbol_value(lsi, 0);
1411             val = convert_types<Valtype, uint64_t>(lval);
1412           }
1413         else
1414           {
1415             uint64_t plt_address =
1416               parameters->target().plt_address_for_local(object, lsi);
1417             val = plt_address + object->local_plt_offset(lsi);
1418           }
1419       }
1420       break;
1421     }
1422
1423   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1424 }
1425
1426 // Output_data_got methods.
1427
1428 // Add an entry for a global symbol to the GOT.  This returns true if
1429 // this is a new GOT entry, false if the symbol already had a GOT
1430 // entry.
1431
1432 template<int size, bool big_endian>
1433 bool
1434 Output_data_got<size, big_endian>::add_global(
1435     Symbol* gsym,
1436     unsigned int got_type)
1437 {
1438   if (gsym->has_got_offset(got_type))
1439     return false;
1440
1441   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1442   gsym->set_got_offset(got_type, got_offset);
1443   return true;
1444 }
1445
1446 // Like add_global, but use the PLT offset.
1447
1448 template<int size, bool big_endian>
1449 bool
1450 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1451                                                   unsigned int got_type)
1452 {
1453   if (gsym->has_got_offset(got_type))
1454     return false;
1455
1456   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1457   gsym->set_got_offset(got_type, got_offset);
1458   return true;
1459 }
1460
1461 // Add an entry for a global symbol to the GOT, and add a dynamic
1462 // relocation of type R_TYPE for the GOT entry.
1463
1464 template<int size, bool big_endian>
1465 void
1466 Output_data_got<size, big_endian>::add_global_with_rel(
1467     Symbol* gsym,
1468     unsigned int got_type,
1469     Output_data_reloc_generic* rel_dyn,
1470     unsigned int r_type)
1471 {
1472   if (gsym->has_got_offset(got_type))
1473     return;
1474
1475   unsigned int got_offset = this->add_got_entry(Got_entry());
1476   gsym->set_got_offset(got_type, got_offset);
1477   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1478 }
1479
1480 // Add a pair of entries for a global symbol to the GOT, and add
1481 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1482 // If R_TYPE_2 == 0, add the second entry with no relocation.
1483 template<int size, bool big_endian>
1484 void
1485 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1486     Symbol* gsym,
1487     unsigned int got_type,
1488     Output_data_reloc_generic* rel_dyn,
1489     unsigned int r_type_1,
1490     unsigned int r_type_2)
1491 {
1492   if (gsym->has_got_offset(got_type))
1493     return;
1494
1495   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1496   gsym->set_got_offset(got_type, got_offset);
1497   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1498
1499   if (r_type_2 != 0)
1500     rel_dyn->add_global_generic(gsym, r_type_2, this,
1501                                 got_offset + size / 8, 0);
1502 }
1503
1504 // Add an entry for a local symbol to the GOT.  This returns true if
1505 // this is a new GOT entry, false if the symbol already has a GOT
1506 // entry.
1507
1508 template<int size, bool big_endian>
1509 bool
1510 Output_data_got<size, big_endian>::add_local(
1511     Relobj* object,
1512     unsigned int symndx,
1513     unsigned int got_type)
1514 {
1515   if (object->local_has_got_offset(symndx, got_type))
1516     return false;
1517
1518   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1519                                                           false));
1520   object->set_local_got_offset(symndx, got_type, got_offset);
1521   return true;
1522 }
1523
1524 // Like add_local, but use the PLT offset.
1525
1526 template<int size, bool big_endian>
1527 bool
1528 Output_data_got<size, big_endian>::add_local_plt(
1529     Relobj* object,
1530     unsigned int symndx,
1531     unsigned int got_type)
1532 {
1533   if (object->local_has_got_offset(symndx, got_type))
1534     return false;
1535
1536   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1537                                                           true));
1538   object->set_local_got_offset(symndx, got_type, got_offset);
1539   return true;
1540 }
1541
1542 // Add an entry for a local symbol to the GOT, and add a dynamic
1543 // relocation of type R_TYPE for the GOT entry.
1544
1545 template<int size, bool big_endian>
1546 void
1547 Output_data_got<size, big_endian>::add_local_with_rel(
1548     Relobj* object,
1549     unsigned int symndx,
1550     unsigned int got_type,
1551     Output_data_reloc_generic* rel_dyn,
1552     unsigned int r_type)
1553 {
1554   if (object->local_has_got_offset(symndx, got_type))
1555     return;
1556
1557   unsigned int got_offset = this->add_got_entry(Got_entry());
1558   object->set_local_got_offset(symndx, got_type, got_offset);
1559   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1560 }
1561
1562 // Add a pair of entries for a local symbol to the GOT, and add
1563 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1564 // If R_TYPE_2 == 0, add the second entry with no relocation.
1565 template<int size, bool big_endian>
1566 void
1567 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1568     Relobj* object,
1569     unsigned int symndx,
1570     unsigned int shndx,
1571     unsigned int got_type,
1572     Output_data_reloc_generic* rel_dyn,
1573     unsigned int r_type_1,
1574     unsigned int r_type_2)
1575 {
1576   if (object->local_has_got_offset(symndx, got_type))
1577     return;
1578
1579   unsigned int got_offset =
1580       this->add_got_entry_pair(Got_entry(),
1581                                Got_entry(object, symndx, false));
1582   object->set_local_got_offset(symndx, got_type, got_offset);
1583   Output_section* os = object->output_section(shndx);
1584   rel_dyn->add_output_section_generic(os, r_type_1, this, got_offset, 0);
1585
1586   if (r_type_2 != 0)
1587     rel_dyn->add_output_section_generic(os, r_type_2, this,
1588                                         got_offset + size / 8, 0);
1589 }
1590
1591 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1592
1593 template<int size, bool big_endian>
1594 void
1595 Output_data_got<size, big_endian>::reserve_local(
1596     unsigned int i,
1597     Relobj* object,
1598     unsigned int sym_index,
1599     unsigned int got_type)
1600 {
1601   this->do_reserve_slot(i);
1602   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1603 }
1604
1605 // Reserve a slot in the GOT for a global symbol.
1606
1607 template<int size, bool big_endian>
1608 void
1609 Output_data_got<size, big_endian>::reserve_global(
1610     unsigned int i,
1611     Symbol* gsym,
1612     unsigned int got_type)
1613 {
1614   this->do_reserve_slot(i);
1615   gsym->set_got_offset(got_type, this->got_offset(i));
1616 }
1617
1618 // Write out the GOT.
1619
1620 template<int size, bool big_endian>
1621 void
1622 Output_data_got<size, big_endian>::do_write(Output_file* of)
1623 {
1624   const int add = size / 8;
1625
1626   const off_t off = this->offset();
1627   const off_t oview_size = this->data_size();
1628   unsigned char* const oview = of->get_output_view(off, oview_size);
1629
1630   unsigned char* pov = oview;
1631   for (typename Got_entries::const_iterator p = this->entries_.begin();
1632        p != this->entries_.end();
1633        ++p)
1634     {
1635       p->write(pov);
1636       pov += add;
1637     }
1638
1639   gold_assert(pov - oview == oview_size);
1640
1641   of->write_output_view(off, oview_size, oview);
1642
1643   // We no longer need the GOT entries.
1644   this->entries_.clear();
1645 }
1646
1647 // Create a new GOT entry and return its offset.
1648
1649 template<int size, bool big_endian>
1650 unsigned int
1651 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1652 {
1653   if (!this->is_data_size_valid())
1654     {
1655       this->entries_.push_back(got_entry);
1656       this->set_got_size();
1657       return this->last_got_offset();
1658     }
1659   else
1660     {
1661       // For an incremental update, find an available slot.
1662       off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1663       if (got_offset == -1)
1664         gold_fallback(_("out of patch space (GOT);"
1665                         " relink with --incremental-full"));
1666       unsigned int got_index = got_offset / (size / 8);
1667       gold_assert(got_index < this->entries_.size());
1668       this->entries_[got_index] = got_entry;
1669       return static_cast<unsigned int>(got_offset);
1670     }
1671 }
1672
1673 // Create a pair of new GOT entries and return the offset of the first.
1674
1675 template<int size, bool big_endian>
1676 unsigned int
1677 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1678                                                       Got_entry got_entry_2)
1679 {
1680   if (!this->is_data_size_valid())
1681     {
1682       unsigned int got_offset;
1683       this->entries_.push_back(got_entry_1);
1684       got_offset = this->last_got_offset();
1685       this->entries_.push_back(got_entry_2);
1686       this->set_got_size();
1687       return got_offset;
1688     }
1689   else
1690     {
1691       // For an incremental update, find an available pair of slots.
1692       off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1693       if (got_offset == -1)
1694         gold_fallback(_("out of patch space (GOT);"
1695                         " relink with --incremental-full"));
1696       unsigned int got_index = got_offset / (size / 8);
1697       gold_assert(got_index < this->entries_.size());
1698       this->entries_[got_index] = got_entry_1;
1699       this->entries_[got_index + 1] = got_entry_2;
1700       return static_cast<unsigned int>(got_offset);
1701     }
1702 }
1703
1704 // Output_data_dynamic::Dynamic_entry methods.
1705
1706 // Write out the entry.
1707
1708 template<int size, bool big_endian>
1709 void
1710 Output_data_dynamic::Dynamic_entry::write(
1711     unsigned char* pov,
1712     const Stringpool* pool) const
1713 {
1714   typename elfcpp::Elf_types<size>::Elf_WXword val;
1715   switch (this->offset_)
1716     {
1717     case DYNAMIC_NUMBER:
1718       val = this->u_.val;
1719       break;
1720
1721     case DYNAMIC_SECTION_SIZE:
1722       val = this->u_.od->data_size();
1723       if (this->od2 != NULL)
1724         val += this->od2->data_size();
1725       break;
1726
1727     case DYNAMIC_SYMBOL:
1728       {
1729         const Sized_symbol<size>* s =
1730           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1731         val = s->value();
1732       }
1733       break;
1734
1735     case DYNAMIC_STRING:
1736       val = pool->get_offset(this->u_.str);
1737       break;
1738
1739     default:
1740       val = this->u_.od->address() + this->offset_;
1741       break;
1742     }
1743
1744   elfcpp::Dyn_write<size, big_endian> dw(pov);
1745   dw.put_d_tag(this->tag_);
1746   dw.put_d_val(val);
1747 }
1748
1749 // Output_data_dynamic methods.
1750
1751 // Adjust the output section to set the entry size.
1752
1753 void
1754 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1755 {
1756   if (parameters->target().get_size() == 32)
1757     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1758   else if (parameters->target().get_size() == 64)
1759     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1760   else
1761     gold_unreachable();
1762 }
1763
1764 // Set the final data size.
1765
1766 void
1767 Output_data_dynamic::set_final_data_size()
1768 {
1769   // Add the terminating entry if it hasn't been added.
1770   // Because of relaxation, we can run this multiple times.
1771   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1772     {
1773       int extra = parameters->options().spare_dynamic_tags();
1774       for (int i = 0; i < extra; ++i)
1775         this->add_constant(elfcpp::DT_NULL, 0);
1776       this->add_constant(elfcpp::DT_NULL, 0);
1777     }
1778
1779   int dyn_size;
1780   if (parameters->target().get_size() == 32)
1781     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1782   else if (parameters->target().get_size() == 64)
1783     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1784   else
1785     gold_unreachable();
1786   this->set_data_size(this->entries_.size() * dyn_size);
1787 }
1788
1789 // Write out the dynamic entries.
1790
1791 void
1792 Output_data_dynamic::do_write(Output_file* of)
1793 {
1794   switch (parameters->size_and_endianness())
1795     {
1796 #ifdef HAVE_TARGET_32_LITTLE
1797     case Parameters::TARGET_32_LITTLE:
1798       this->sized_write<32, false>(of);
1799       break;
1800 #endif
1801 #ifdef HAVE_TARGET_32_BIG
1802     case Parameters::TARGET_32_BIG:
1803       this->sized_write<32, true>(of);
1804       break;
1805 #endif
1806 #ifdef HAVE_TARGET_64_LITTLE
1807     case Parameters::TARGET_64_LITTLE:
1808       this->sized_write<64, false>(of);
1809       break;
1810 #endif
1811 #ifdef HAVE_TARGET_64_BIG
1812     case Parameters::TARGET_64_BIG:
1813       this->sized_write<64, true>(of);
1814       break;
1815 #endif
1816     default:
1817       gold_unreachable();
1818     }
1819 }
1820
1821 template<int size, bool big_endian>
1822 void
1823 Output_data_dynamic::sized_write(Output_file* of)
1824 {
1825   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1826
1827   const off_t offset = this->offset();
1828   const off_t oview_size = this->data_size();
1829   unsigned char* const oview = of->get_output_view(offset, oview_size);
1830
1831   unsigned char* pov = oview;
1832   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1833        p != this->entries_.end();
1834        ++p)
1835     {
1836       p->write<size, big_endian>(pov, this->pool_);
1837       pov += dyn_size;
1838     }
1839
1840   gold_assert(pov - oview == oview_size);
1841
1842   of->write_output_view(offset, oview_size, oview);
1843
1844   // We no longer need the dynamic entries.
1845   this->entries_.clear();
1846 }
1847
1848 // Class Output_symtab_xindex.
1849
1850 void
1851 Output_symtab_xindex::do_write(Output_file* of)
1852 {
1853   const off_t offset = this->offset();
1854   const off_t oview_size = this->data_size();
1855   unsigned char* const oview = of->get_output_view(offset, oview_size);
1856
1857   memset(oview, 0, oview_size);
1858
1859   if (parameters->target().is_big_endian())
1860     this->endian_do_write<true>(oview);
1861   else
1862     this->endian_do_write<false>(oview);
1863
1864   of->write_output_view(offset, oview_size, oview);
1865
1866   // We no longer need the data.
1867   this->entries_.clear();
1868 }
1869
1870 template<bool big_endian>
1871 void
1872 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1873 {
1874   for (Xindex_entries::const_iterator p = this->entries_.begin();
1875        p != this->entries_.end();
1876        ++p)
1877     {
1878       unsigned int symndx = p->first;
1879       gold_assert(symndx * 4 < this->data_size());
1880       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1881     }
1882 }
1883
1884 // Output_fill_debug_info methods.
1885
1886 // Return the minimum size needed for a dummy compilation unit header.
1887
1888 size_t
1889 Output_fill_debug_info::do_minimum_hole_size() const
1890 {
1891   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1892   // address_size.
1893   const size_t len = 4 + 2 + 4 + 1;
1894   // For type units, add type_signature, type_offset.
1895   if (this->is_debug_types_)
1896     return len + 8 + 4;
1897   return len;
1898 }
1899
1900 // Write a dummy compilation unit header to fill a hole in the
1901 // .debug_info or .debug_types section.
1902
1903 void
1904 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1905 {
1906   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1907              static_cast<long>(off), static_cast<long>(len));
1908
1909   gold_assert(len >= this->do_minimum_hole_size());
1910
1911   unsigned char* const oview = of->get_output_view(off, len);
1912   unsigned char* pov = oview;
1913
1914   // Write header fields: unit_length, version, debug_abbrev_offset,
1915   // address_size.
1916   if (this->is_big_endian())
1917     {
1918       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1919       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1920       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1921     }
1922   else
1923     {
1924       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1925       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1926       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1927     }
1928   pov += 4 + 2 + 4;
1929   *pov++ = 4;
1930
1931   // For type units, the additional header fields -- type_signature,
1932   // type_offset -- can be filled with zeroes.
1933
1934   // Fill the remainder of the free space with zeroes.  The first
1935   // zero should tell the consumer there are no DIEs to read in this
1936   // compilation unit.
1937   if (pov < oview + len)
1938     memset(pov, 0, oview + len - pov);
1939
1940   of->write_output_view(off, len, oview);
1941 }
1942
1943 // Output_fill_debug_line methods.
1944
1945 // Return the minimum size needed for a dummy line number program header.
1946
1947 size_t
1948 Output_fill_debug_line::do_minimum_hole_size() const
1949 {
1950   // Line number program header fields: unit_length, version, header_length,
1951   // minimum_instruction_length, default_is_stmt, line_base, line_range,
1952   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1953   const size_t len = 4 + 2 + 4 + this->header_length;
1954   return len;
1955 }
1956
1957 // Write a dummy line number program header to fill a hole in the
1958 // .debug_line section.
1959
1960 void
1961 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
1962 {
1963   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
1964              static_cast<long>(off), static_cast<long>(len));
1965
1966   gold_assert(len >= this->do_minimum_hole_size());
1967
1968   unsigned char* const oview = of->get_output_view(off, len);
1969   unsigned char* pov = oview;
1970
1971   // Write header fields: unit_length, version, header_length,
1972   // minimum_instruction_length, default_is_stmt, line_base, line_range,
1973   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1974   // We set the header_length field to cover the entire hole, so the
1975   // line number program is empty.
1976   if (this->is_big_endian())
1977     {
1978       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1979       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1980       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
1981     }
1982   else
1983     {
1984       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1985       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1986       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
1987     }
1988   pov += 4 + 2 + 4;
1989   *pov++ = 1;   // minimum_instruction_length
1990   *pov++ = 0;   // default_is_stmt
1991   *pov++ = 0;   // line_base
1992   *pov++ = 5;   // line_range
1993   *pov++ = 13;  // opcode_base
1994   *pov++ = 0;   // standard_opcode_lengths[1]
1995   *pov++ = 1;   // standard_opcode_lengths[2]
1996   *pov++ = 1;   // standard_opcode_lengths[3]
1997   *pov++ = 1;   // standard_opcode_lengths[4]
1998   *pov++ = 1;   // standard_opcode_lengths[5]
1999   *pov++ = 0;   // standard_opcode_lengths[6]
2000   *pov++ = 0;   // standard_opcode_lengths[7]
2001   *pov++ = 0;   // standard_opcode_lengths[8]
2002   *pov++ = 1;   // standard_opcode_lengths[9]
2003   *pov++ = 0;   // standard_opcode_lengths[10]
2004   *pov++ = 0;   // standard_opcode_lengths[11]
2005   *pov++ = 1;   // standard_opcode_lengths[12]
2006   *pov++ = 0;   // include_directories (empty)
2007   *pov++ = 0;   // filenames (empty)
2008
2009   // Some consumers don't check the header_length field, and simply
2010   // start reading the line number program immediately following the
2011   // header.  For those consumers, we fill the remainder of the free
2012   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2013   // no-ops: the resulting line table program will not create any rows.
2014   if (pov < oview + len)
2015     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2016
2017   of->write_output_view(off, len, oview);
2018 }
2019
2020 // Output_section::Input_section methods.
2021
2022 // Return the current data size.  For an input section we store the size here.
2023 // For an Output_section_data, we have to ask it for the size.
2024
2025 off_t
2026 Output_section::Input_section::current_data_size() const
2027 {
2028   if (this->is_input_section())
2029     return this->u1_.data_size;
2030   else
2031     {
2032       this->u2_.posd->pre_finalize_data_size();
2033       return this->u2_.posd->current_data_size();
2034     }
2035 }
2036
2037 // Return the data size.  For an input section we store the size here.
2038 // For an Output_section_data, we have to ask it for the size.
2039
2040 off_t
2041 Output_section::Input_section::data_size() const
2042 {
2043   if (this->is_input_section())
2044     return this->u1_.data_size;
2045   else
2046     return this->u2_.posd->data_size();
2047 }
2048
2049 // Return the object for an input section.
2050
2051 Relobj*
2052 Output_section::Input_section::relobj() const
2053 {
2054   if (this->is_input_section())
2055     return this->u2_.object;
2056   else if (this->is_merge_section())
2057     {
2058       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2059       return this->u2_.pomb->first_relobj();
2060     }
2061   else if (this->is_relaxed_input_section())
2062     return this->u2_.poris->relobj();
2063   else
2064     gold_unreachable();
2065 }
2066
2067 // Return the input section index for an input section.
2068
2069 unsigned int
2070 Output_section::Input_section::shndx() const
2071 {
2072   if (this->is_input_section())
2073     return this->shndx_;
2074   else if (this->is_merge_section())
2075     {
2076       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2077       return this->u2_.pomb->first_shndx();
2078     }
2079   else if (this->is_relaxed_input_section())
2080     return this->u2_.poris->shndx();
2081   else
2082     gold_unreachable();
2083 }
2084
2085 // Set the address and file offset.
2086
2087 void
2088 Output_section::Input_section::set_address_and_file_offset(
2089     uint64_t address,
2090     off_t file_offset,
2091     off_t section_file_offset)
2092 {
2093   if (this->is_input_section())
2094     this->u2_.object->set_section_offset(this->shndx_,
2095                                          file_offset - section_file_offset);
2096   else
2097     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2098 }
2099
2100 // Reset the address and file offset.
2101
2102 void
2103 Output_section::Input_section::reset_address_and_file_offset()
2104 {
2105   if (!this->is_input_section())
2106     this->u2_.posd->reset_address_and_file_offset();
2107 }
2108
2109 // Finalize the data size.
2110
2111 void
2112 Output_section::Input_section::finalize_data_size()
2113 {
2114   if (!this->is_input_section())
2115     this->u2_.posd->finalize_data_size();
2116 }
2117
2118 // Try to turn an input offset into an output offset.  We want to
2119 // return the output offset relative to the start of this
2120 // Input_section in the output section.
2121
2122 inline bool
2123 Output_section::Input_section::output_offset(
2124     const Relobj* object,
2125     unsigned int shndx,
2126     section_offset_type offset,
2127     section_offset_type* poutput) const
2128 {
2129   if (!this->is_input_section())
2130     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2131   else
2132     {
2133       if (this->shndx_ != shndx || this->u2_.object != object)
2134         return false;
2135       *poutput = offset;
2136       return true;
2137     }
2138 }
2139
2140 // Return whether this is the merge section for the input section
2141 // SHNDX in OBJECT.
2142
2143 inline bool
2144 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2145                                                     unsigned int shndx) const
2146 {
2147   if (this->is_input_section())
2148     return false;
2149   return this->u2_.posd->is_merge_section_for(object, shndx);
2150 }
2151
2152 // Write out the data.  We don't have to do anything for an input
2153 // section--they are handled via Object::relocate--but this is where
2154 // we write out the data for an Output_section_data.
2155
2156 void
2157 Output_section::Input_section::write(Output_file* of)
2158 {
2159   if (!this->is_input_section())
2160     this->u2_.posd->write(of);
2161 }
2162
2163 // Write the data to a buffer.  As for write(), we don't have to do
2164 // anything for an input section.
2165
2166 void
2167 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2168 {
2169   if (!this->is_input_section())
2170     this->u2_.posd->write_to_buffer(buffer);
2171 }
2172
2173 // Print to a map file.
2174
2175 void
2176 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2177 {
2178   switch (this->shndx_)
2179     {
2180     case OUTPUT_SECTION_CODE:
2181     case MERGE_DATA_SECTION_CODE:
2182     case MERGE_STRING_SECTION_CODE:
2183       this->u2_.posd->print_to_mapfile(mapfile);
2184       break;
2185
2186     case RELAXED_INPUT_SECTION_CODE:
2187       {
2188         Output_relaxed_input_section* relaxed_section =
2189           this->relaxed_input_section();
2190         mapfile->print_input_section(relaxed_section->relobj(),
2191                                      relaxed_section->shndx());
2192       }
2193       break;
2194     default:
2195       mapfile->print_input_section(this->u2_.object, this->shndx_);
2196       break;
2197     }
2198 }
2199
2200 // Output_section methods.
2201
2202 // Construct an Output_section.  NAME will point into a Stringpool.
2203
2204 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2205                                elfcpp::Elf_Xword flags)
2206   : name_(name),
2207     addralign_(0),
2208     entsize_(0),
2209     load_address_(0),
2210     link_section_(NULL),
2211     link_(0),
2212     info_section_(NULL),
2213     info_symndx_(NULL),
2214     info_(0),
2215     type_(type),
2216     flags_(flags),
2217     order_(ORDER_INVALID),
2218     out_shndx_(-1U),
2219     symtab_index_(0),
2220     dynsym_index_(0),
2221     input_sections_(),
2222     first_input_offset_(0),
2223     fills_(),
2224     postprocessing_buffer_(NULL),
2225     needs_symtab_index_(false),
2226     needs_dynsym_index_(false),
2227     should_link_to_symtab_(false),
2228     should_link_to_dynsym_(false),
2229     after_input_sections_(false),
2230     requires_postprocessing_(false),
2231     found_in_sections_clause_(false),
2232     has_load_address_(false),
2233     info_uses_section_index_(false),
2234     input_section_order_specified_(false),
2235     may_sort_attached_input_sections_(false),
2236     must_sort_attached_input_sections_(false),
2237     attached_input_sections_are_sorted_(false),
2238     is_relro_(false),
2239     is_small_section_(false),
2240     is_large_section_(false),
2241     generate_code_fills_at_write_(false),
2242     is_entsize_zero_(false),
2243     section_offsets_need_adjustment_(false),
2244     is_noload_(false),
2245     always_keeps_input_sections_(false),
2246     has_fixed_layout_(false),
2247     is_patch_space_allowed_(false),
2248     tls_offset_(0),
2249     checkpoint_(NULL),
2250     lookup_maps_(new Output_section_lookup_maps),
2251     free_list_(),
2252     free_space_fill_(NULL),
2253     patch_space_(0)
2254 {
2255   // An unallocated section has no address.  Forcing this means that
2256   // we don't need special treatment for symbols defined in debug
2257   // sections.
2258   if ((flags & elfcpp::SHF_ALLOC) == 0)
2259     this->set_address(0);
2260 }
2261
2262 Output_section::~Output_section()
2263 {
2264   delete this->checkpoint_;
2265 }
2266
2267 // Set the entry size.
2268
2269 void
2270 Output_section::set_entsize(uint64_t v)
2271 {
2272   if (this->is_entsize_zero_)
2273     ;
2274   else if (this->entsize_ == 0)
2275     this->entsize_ = v;
2276   else if (this->entsize_ != v)
2277     {
2278       this->entsize_ = 0;
2279       this->is_entsize_zero_ = 1;
2280     }
2281 }
2282
2283 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2284 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2285 // relocation section which applies to this section, or 0 if none, or
2286 // -1U if more than one.  Return the offset of the input section
2287 // within the output section.  Return -1 if the input section will
2288 // receive special handling.  In the normal case we don't always keep
2289 // track of input sections for an Output_section.  Instead, each
2290 // Object keeps track of the Output_section for each of its input
2291 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2292 // track of input sections here; this is used when SECTIONS appears in
2293 // a linker script.
2294
2295 template<int size, bool big_endian>
2296 off_t
2297 Output_section::add_input_section(Layout* layout,
2298                                   Sized_relobj_file<size, big_endian>* object,
2299                                   unsigned int shndx,
2300                                   const char* secname,
2301                                   const elfcpp::Shdr<size, big_endian>& shdr,
2302                                   unsigned int reloc_shndx,
2303                                   bool have_sections_script)
2304 {
2305   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2306   if ((addralign & (addralign - 1)) != 0)
2307     {
2308       object->error(_("invalid alignment %lu for section \"%s\""),
2309                     static_cast<unsigned long>(addralign), secname);
2310       addralign = 1;
2311     }
2312
2313   if (addralign > this->addralign_)
2314     this->addralign_ = addralign;
2315
2316   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2317   uint64_t entsize = shdr.get_sh_entsize();
2318
2319   // .debug_str is a mergeable string section, but is not always so
2320   // marked by compilers.  Mark manually here so we can optimize.
2321   if (strcmp(secname, ".debug_str") == 0)
2322     {
2323       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2324       entsize = 1;
2325     }
2326
2327   this->update_flags_for_input_section(sh_flags);
2328   this->set_entsize(entsize);
2329
2330   // If this is a SHF_MERGE section, we pass all the input sections to
2331   // a Output_data_merge.  We don't try to handle relocations for such
2332   // a section.  We don't try to handle empty merge sections--they
2333   // mess up the mappings, and are useless anyhow.
2334   // FIXME: Need to handle merge sections during incremental update.
2335   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2336       && reloc_shndx == 0
2337       && shdr.get_sh_size() > 0
2338       && !parameters->incremental())
2339     {
2340       // Keep information about merged input sections for rebuilding fast
2341       // lookup maps if we have sections-script or we do relaxation.
2342       bool keeps_input_sections = (this->always_keeps_input_sections_
2343                                    || have_sections_script
2344                                    || parameters->target().may_relax());
2345
2346       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2347                                         addralign, keeps_input_sections))
2348         {
2349           // Tell the relocation routines that they need to call the
2350           // output_offset method to determine the final address.
2351           return -1;
2352         }
2353     }
2354
2355   section_size_type input_section_size = shdr.get_sh_size();
2356   section_size_type uncompressed_size;
2357   if (object->section_is_compressed(shndx, &uncompressed_size))
2358     input_section_size = uncompressed_size;
2359
2360   off_t offset_in_section;
2361   off_t aligned_offset_in_section;
2362   if (this->has_fixed_layout())
2363     {
2364       // For incremental updates, find a chunk of unused space in the section.
2365       offset_in_section = this->free_list_.allocate(input_section_size,
2366                                                     addralign, 0);
2367       if (offset_in_section == -1)
2368         gold_fallback(_("out of patch space in section %s; "
2369                         "relink with --incremental-full"),
2370                       this->name());
2371       aligned_offset_in_section = offset_in_section;
2372     }
2373   else
2374     {
2375       offset_in_section = this->current_data_size_for_child();
2376       aligned_offset_in_section = align_address(offset_in_section,
2377                                                 addralign);
2378       this->set_current_data_size_for_child(aligned_offset_in_section
2379                                             + input_section_size);
2380     }
2381
2382   // Determine if we want to delay code-fill generation until the output
2383   // section is written.  When the target is relaxing, we want to delay fill
2384   // generating to avoid adjusting them during relaxation.  Also, if we are
2385   // sorting input sections we must delay fill generation.
2386   if (!this->generate_code_fills_at_write_
2387       && !have_sections_script
2388       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2389       && parameters->target().has_code_fill()
2390       && (parameters->target().may_relax()
2391           || layout->is_section_ordering_specified()))
2392     {
2393       gold_assert(this->fills_.empty());
2394       this->generate_code_fills_at_write_ = true;
2395     }
2396
2397   if (aligned_offset_in_section > offset_in_section
2398       && !this->generate_code_fills_at_write_
2399       && !have_sections_script
2400       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2401       && parameters->target().has_code_fill())
2402     {
2403       // We need to add some fill data.  Using fill_list_ when
2404       // possible is an optimization, since we will often have fill
2405       // sections without input sections.
2406       off_t fill_len = aligned_offset_in_section - offset_in_section;
2407       if (this->input_sections_.empty())
2408         this->fills_.push_back(Fill(offset_in_section, fill_len));
2409       else
2410         {
2411           std::string fill_data(parameters->target().code_fill(fill_len));
2412           Output_data_const* odc = new Output_data_const(fill_data, 1);
2413           this->input_sections_.push_back(Input_section(odc));
2414         }
2415     }
2416
2417   // We need to keep track of this section if we are already keeping
2418   // track of sections, or if we are relaxing.  Also, if this is a
2419   // section which requires sorting, or which may require sorting in
2420   // the future, we keep track of the sections.  If the
2421   // --section-ordering-file option is used to specify the order of
2422   // sections, we need to keep track of sections.
2423   if (this->always_keeps_input_sections_
2424       || have_sections_script
2425       || !this->input_sections_.empty()
2426       || this->may_sort_attached_input_sections()
2427       || this->must_sort_attached_input_sections()
2428       || parameters->options().user_set_Map()
2429       || parameters->target().may_relax()
2430       || layout->is_section_ordering_specified())
2431     {
2432       Input_section isecn(object, shndx, input_section_size, addralign);
2433       /* If section ordering is requested by specifying a ordering file,
2434          using --section-ordering-file, match the section name with
2435          a pattern.  */
2436       if (parameters->options().section_ordering_file())
2437         {
2438           unsigned int section_order_index =
2439             layout->find_section_order_index(std::string(secname));
2440           if (section_order_index != 0)
2441             {
2442               isecn.set_section_order_index(section_order_index);
2443               this->set_input_section_order_specified();
2444             }
2445         }
2446       if (this->has_fixed_layout())
2447         {
2448           // For incremental updates, finalize the address and offset now.
2449           uint64_t addr = this->address();
2450           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2451                                             aligned_offset_in_section,
2452                                             this->offset());
2453         }
2454       this->input_sections_.push_back(isecn);
2455     }
2456
2457   return aligned_offset_in_section;
2458 }
2459
2460 // Add arbitrary data to an output section.
2461
2462 void
2463 Output_section::add_output_section_data(Output_section_data* posd)
2464 {
2465   Input_section inp(posd);
2466   this->add_output_section_data(&inp);
2467
2468   if (posd->is_data_size_valid())
2469     {
2470       off_t offset_in_section;
2471       if (this->has_fixed_layout())
2472         {
2473           // For incremental updates, find a chunk of unused space.
2474           offset_in_section = this->free_list_.allocate(posd->data_size(),
2475                                                         posd->addralign(), 0);
2476           if (offset_in_section == -1)
2477             gold_fallback(_("out of patch space in section %s; "
2478                             "relink with --incremental-full"),
2479                           this->name());
2480           // Finalize the address and offset now.
2481           uint64_t addr = this->address();
2482           off_t offset = this->offset();
2483           posd->set_address_and_file_offset(addr + offset_in_section,
2484                                             offset + offset_in_section);
2485         }
2486       else
2487         {
2488           offset_in_section = this->current_data_size_for_child();
2489           off_t aligned_offset_in_section = align_address(offset_in_section,
2490                                                           posd->addralign());
2491           this->set_current_data_size_for_child(aligned_offset_in_section
2492                                                 + posd->data_size());
2493         }
2494     }
2495   else if (this->has_fixed_layout())
2496     {
2497       // For incremental updates, arrange for the data to have a fixed layout.
2498       // This will mean that additions to the data must be allocated from
2499       // free space within the containing output section.
2500       uint64_t addr = this->address();
2501       posd->set_address(addr);
2502       posd->set_file_offset(0);
2503       // FIXME: This should eventually be unreachable.
2504       // gold_unreachable();
2505     }
2506 }
2507
2508 // Add a relaxed input section.
2509
2510 void
2511 Output_section::add_relaxed_input_section(Layout* layout,
2512                                           Output_relaxed_input_section* poris,
2513                                           const std::string& name)
2514 {
2515   Input_section inp(poris);
2516
2517   // If the --section-ordering-file option is used to specify the order of
2518   // sections, we need to keep track of sections.
2519   if (layout->is_section_ordering_specified())
2520     {
2521       unsigned int section_order_index =
2522         layout->find_section_order_index(name);
2523       if (section_order_index != 0)
2524         {
2525           inp.set_section_order_index(section_order_index);
2526           this->set_input_section_order_specified();
2527         }
2528     }
2529
2530   this->add_output_section_data(&inp);
2531   if (this->lookup_maps_->is_valid())
2532     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2533                                                   poris->shndx(), poris);
2534
2535   // For a relaxed section, we use the current data size.  Linker scripts
2536   // get all the input sections, including relaxed one from an output
2537   // section and add them back to them same output section to compute the
2538   // output section size.  If we do not account for sizes of relaxed input
2539   // sections,  an output section would be incorrectly sized.
2540   off_t offset_in_section = this->current_data_size_for_child();
2541   off_t aligned_offset_in_section = align_address(offset_in_section,
2542                                                   poris->addralign());
2543   this->set_current_data_size_for_child(aligned_offset_in_section
2544                                         + poris->current_data_size());
2545 }
2546
2547 // Add arbitrary data to an output section by Input_section.
2548
2549 void
2550 Output_section::add_output_section_data(Input_section* inp)
2551 {
2552   if (this->input_sections_.empty())
2553     this->first_input_offset_ = this->current_data_size_for_child();
2554
2555   this->input_sections_.push_back(*inp);
2556
2557   uint64_t addralign = inp->addralign();
2558   if (addralign > this->addralign_)
2559     this->addralign_ = addralign;
2560
2561   inp->set_output_section(this);
2562 }
2563
2564 // Add a merge section to an output section.
2565
2566 void
2567 Output_section::add_output_merge_section(Output_section_data* posd,
2568                                          bool is_string, uint64_t entsize)
2569 {
2570   Input_section inp(posd, is_string, entsize);
2571   this->add_output_section_data(&inp);
2572 }
2573
2574 // Add an input section to a SHF_MERGE section.
2575
2576 bool
2577 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2578                                         uint64_t flags, uint64_t entsize,
2579                                         uint64_t addralign,
2580                                         bool keeps_input_sections)
2581 {
2582   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2583
2584   // We only merge strings if the alignment is not more than the
2585   // character size.  This could be handled, but it's unusual.
2586   if (is_string && addralign > entsize)
2587     return false;
2588
2589   // We cannot restore merged input section states.
2590   gold_assert(this->checkpoint_ == NULL);
2591
2592   // Look up merge sections by required properties.
2593   // Currently, we only invalidate the lookup maps in script processing
2594   // and relaxation.  We should not have done either when we reach here.
2595   // So we assume that the lookup maps are valid to simply code.
2596   gold_assert(this->lookup_maps_->is_valid());
2597   Merge_section_properties msp(is_string, entsize, addralign);
2598   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2599   bool is_new = false;
2600   if (pomb != NULL)
2601     {
2602       gold_assert(pomb->is_string() == is_string
2603                   && pomb->entsize() == entsize
2604                   && pomb->addralign() == addralign);
2605     }
2606   else
2607     {
2608       // Create a new Output_merge_data or Output_merge_string_data.
2609       if (!is_string)
2610         pomb = new Output_merge_data(entsize, addralign);
2611       else
2612         {
2613           switch (entsize)
2614             {
2615             case 1:
2616               pomb = new Output_merge_string<char>(addralign);
2617               break;
2618             case 2:
2619               pomb = new Output_merge_string<uint16_t>(addralign);
2620               break;
2621             case 4:
2622               pomb = new Output_merge_string<uint32_t>(addralign);
2623               break;
2624             default:
2625               return false;
2626             }
2627         }
2628       // If we need to do script processing or relaxation, we need to keep
2629       // the original input sections to rebuild the fast lookup maps.
2630       if (keeps_input_sections)
2631         pomb->set_keeps_input_sections();
2632       is_new = true;
2633     }
2634
2635   if (pomb->add_input_section(object, shndx))
2636     {
2637       // Add new merge section to this output section and link merge
2638       // section properties to new merge section in map.
2639       if (is_new)
2640         {
2641           this->add_output_merge_section(pomb, is_string, entsize);
2642           this->lookup_maps_->add_merge_section(msp, pomb);
2643         }
2644
2645       // Add input section to new merge section and link input section to new
2646       // merge section in map.
2647       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2648       return true;
2649     }
2650   else
2651     {
2652       // If add_input_section failed, delete new merge section to avoid
2653       // exporting empty merge sections in Output_section::get_input_section.
2654       if (is_new)
2655         delete pomb;
2656       return false;
2657     }
2658 }
2659
2660 // Build a relaxation map to speed up relaxation of existing input sections.
2661 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2662
2663 void
2664 Output_section::build_relaxation_map(
2665   const Input_section_list& input_sections,
2666   size_t limit,
2667   Relaxation_map* relaxation_map) const
2668 {
2669   for (size_t i = 0; i < limit; ++i)
2670     {
2671       const Input_section& is(input_sections[i]);
2672       if (is.is_input_section() || is.is_relaxed_input_section())
2673         {
2674           Section_id sid(is.relobj(), is.shndx());
2675           (*relaxation_map)[sid] = i;
2676         }
2677     }
2678 }
2679
2680 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2681 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2682 // indices of INPUT_SECTIONS.
2683
2684 void
2685 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2686   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2687   const Relaxation_map& map,
2688   Input_section_list* input_sections)
2689 {
2690   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2691     {
2692       Output_relaxed_input_section* poris = relaxed_sections[i];
2693       Section_id sid(poris->relobj(), poris->shndx());
2694       Relaxation_map::const_iterator p = map.find(sid);
2695       gold_assert(p != map.end());
2696       gold_assert((*input_sections)[p->second].is_input_section());
2697
2698       // Remember section order index of original input section
2699       // if it is set.  Copy it to the relaxed input section.
2700       unsigned int soi =
2701         (*input_sections)[p->second].section_order_index();
2702       (*input_sections)[p->second] = Input_section(poris);
2703       (*input_sections)[p->second].set_section_order_index(soi);
2704     }
2705 }
2706   
2707 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2708 // is a vector of pointers to Output_relaxed_input_section or its derived
2709 // classes.  The relaxed sections must correspond to existing input sections.
2710
2711 void
2712 Output_section::convert_input_sections_to_relaxed_sections(
2713   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2714 {
2715   gold_assert(parameters->target().may_relax());
2716
2717   // We want to make sure that restore_states does not undo the effect of
2718   // this.  If there is no checkpoint active, just search the current
2719   // input section list and replace the sections there.  If there is
2720   // a checkpoint, also replace the sections there.
2721   
2722   // By default, we look at the whole list.
2723   size_t limit = this->input_sections_.size();
2724
2725   if (this->checkpoint_ != NULL)
2726     {
2727       // Replace input sections with relaxed input section in the saved
2728       // copy of the input section list.
2729       if (this->checkpoint_->input_sections_saved())
2730         {
2731           Relaxation_map map;
2732           this->build_relaxation_map(
2733                     *(this->checkpoint_->input_sections()),
2734                     this->checkpoint_->input_sections()->size(),
2735                     &map);
2736           this->convert_input_sections_in_list_to_relaxed_sections(
2737                     relaxed_sections,
2738                     map,
2739                     this->checkpoint_->input_sections());
2740         }
2741       else
2742         {
2743           // We have not copied the input section list yet.  Instead, just
2744           // look at the portion that would be saved.
2745           limit = this->checkpoint_->input_sections_size();
2746         }
2747     }
2748
2749   // Convert input sections in input_section_list.
2750   Relaxation_map map;
2751   this->build_relaxation_map(this->input_sections_, limit, &map);
2752   this->convert_input_sections_in_list_to_relaxed_sections(
2753             relaxed_sections,
2754             map,
2755             &this->input_sections_);
2756
2757   // Update fast look-up map.
2758   if (this->lookup_maps_->is_valid())
2759     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2760       {
2761         Output_relaxed_input_section* poris = relaxed_sections[i];
2762         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2763                                                       poris->shndx(), poris);
2764       }
2765 }
2766
2767 // Update the output section flags based on input section flags.
2768
2769 void
2770 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2771 {
2772   // If we created the section with SHF_ALLOC clear, we set the
2773   // address.  If we are now setting the SHF_ALLOC flag, we need to
2774   // undo that.
2775   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2776       && (flags & elfcpp::SHF_ALLOC) != 0)
2777     this->mark_address_invalid();
2778
2779   this->flags_ |= (flags
2780                    & (elfcpp::SHF_WRITE
2781                       | elfcpp::SHF_ALLOC
2782                       | elfcpp::SHF_EXECINSTR));
2783
2784   if ((flags & elfcpp::SHF_MERGE) == 0)
2785     this->flags_ &=~ elfcpp::SHF_MERGE;
2786   else
2787     {
2788       if (this->current_data_size_for_child() == 0)
2789         this->flags_ |= elfcpp::SHF_MERGE;
2790     }
2791
2792   if ((flags & elfcpp::SHF_STRINGS) == 0)
2793     this->flags_ &=~ elfcpp::SHF_STRINGS;
2794   else
2795     {
2796       if (this->current_data_size_for_child() == 0)
2797         this->flags_ |= elfcpp::SHF_STRINGS;
2798     }
2799 }
2800
2801 // Find the merge section into which an input section with index SHNDX in
2802 // OBJECT has been added.  Return NULL if none found.
2803
2804 Output_section_data*
2805 Output_section::find_merge_section(const Relobj* object,
2806                                    unsigned int shndx) const
2807 {
2808   if (!this->lookup_maps_->is_valid())
2809     this->build_lookup_maps();
2810   return this->lookup_maps_->find_merge_section(object, shndx);
2811 }
2812
2813 // Build the lookup maps for merge and relaxed sections.  This is needs
2814 // to be declared as a const methods so that it is callable with a const
2815 // Output_section pointer.  The method only updates states of the maps.
2816
2817 void
2818 Output_section::build_lookup_maps() const
2819 {
2820   this->lookup_maps_->clear();
2821   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2822        p != this->input_sections_.end();
2823        ++p)
2824     {
2825       if (p->is_merge_section())
2826         {
2827           Output_merge_base* pomb = p->output_merge_base();
2828           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2829                                        pomb->addralign());
2830           this->lookup_maps_->add_merge_section(msp, pomb);
2831           for (Output_merge_base::Input_sections::const_iterator is =
2832                  pomb->input_sections_begin();
2833                is != pomb->input_sections_end();
2834                ++is) 
2835             {
2836               const Const_section_id& csid = *is;
2837             this->lookup_maps_->add_merge_input_section(csid.first,
2838                                                         csid.second, pomb);
2839             }
2840             
2841         }
2842       else if (p->is_relaxed_input_section())
2843         {
2844           Output_relaxed_input_section* poris = p->relaxed_input_section();
2845           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2846                                                         poris->shndx(), poris);
2847         }
2848     }
2849 }
2850
2851 // Find an relaxed input section corresponding to an input section
2852 // in OBJECT with index SHNDX.
2853
2854 const Output_relaxed_input_section*
2855 Output_section::find_relaxed_input_section(const Relobj* object,
2856                                            unsigned int shndx) const
2857 {
2858   if (!this->lookup_maps_->is_valid())
2859     this->build_lookup_maps();
2860   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2861 }
2862
2863 // Given an address OFFSET relative to the start of input section
2864 // SHNDX in OBJECT, return whether this address is being included in
2865 // the final link.  This should only be called if SHNDX in OBJECT has
2866 // a special mapping.
2867
2868 bool
2869 Output_section::is_input_address_mapped(const Relobj* object,
2870                                         unsigned int shndx,
2871                                         off_t offset) const
2872 {
2873   // Look at the Output_section_data_maps first.
2874   const Output_section_data* posd = this->find_merge_section(object, shndx);
2875   if (posd == NULL)
2876     posd = this->find_relaxed_input_section(object, shndx);
2877
2878   if (posd != NULL)
2879     {
2880       section_offset_type output_offset;
2881       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2882       gold_assert(found);   
2883       return output_offset != -1;
2884     }
2885
2886   // Fall back to the slow look-up.
2887   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2888        p != this->input_sections_.end();
2889        ++p)
2890     {
2891       section_offset_type output_offset;
2892       if (p->output_offset(object, shndx, offset, &output_offset))
2893         return output_offset != -1;
2894     }
2895
2896   // By default we assume that the address is mapped.  This should
2897   // only be called after we have passed all sections to Layout.  At
2898   // that point we should know what we are discarding.
2899   return true;
2900 }
2901
2902 // Given an address OFFSET relative to the start of input section
2903 // SHNDX in object OBJECT, return the output offset relative to the
2904 // start of the input section in the output section.  This should only
2905 // be called if SHNDX in OBJECT has a special mapping.
2906
2907 section_offset_type
2908 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2909                               section_offset_type offset) const
2910 {
2911   // This can only be called meaningfully when we know the data size
2912   // of this.
2913   gold_assert(this->is_data_size_valid());
2914
2915   // Look at the Output_section_data_maps first.
2916   const Output_section_data* posd = this->find_merge_section(object, shndx);
2917   if (posd == NULL) 
2918     posd = this->find_relaxed_input_section(object, shndx);
2919   if (posd != NULL)
2920     {
2921       section_offset_type output_offset;
2922       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2923       gold_assert(found);   
2924       return output_offset;
2925     }
2926
2927   // Fall back to the slow look-up.
2928   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2929        p != this->input_sections_.end();
2930        ++p)
2931     {
2932       section_offset_type output_offset;
2933       if (p->output_offset(object, shndx, offset, &output_offset))
2934         return output_offset;
2935     }
2936   gold_unreachable();
2937 }
2938
2939 // Return the output virtual address of OFFSET relative to the start
2940 // of input section SHNDX in object OBJECT.
2941
2942 uint64_t
2943 Output_section::output_address(const Relobj* object, unsigned int shndx,
2944                                off_t offset) const
2945 {
2946   uint64_t addr = this->address() + this->first_input_offset_;
2947
2948   // Look at the Output_section_data_maps first.
2949   const Output_section_data* posd = this->find_merge_section(object, shndx);
2950   if (posd == NULL) 
2951     posd = this->find_relaxed_input_section(object, shndx);
2952   if (posd != NULL && posd->is_address_valid())
2953     {
2954       section_offset_type output_offset;
2955       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2956       gold_assert(found);
2957       return posd->address() + output_offset;
2958     }
2959
2960   // Fall back to the slow look-up.
2961   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2962        p != this->input_sections_.end();
2963        ++p)
2964     {
2965       addr = align_address(addr, p->addralign());
2966       section_offset_type output_offset;
2967       if (p->output_offset(object, shndx, offset, &output_offset))
2968         {
2969           if (output_offset == -1)
2970             return -1ULL;
2971           return addr + output_offset;
2972         }
2973       addr += p->data_size();
2974     }
2975
2976   // If we get here, it means that we don't know the mapping for this
2977   // input section.  This might happen in principle if
2978   // add_input_section were called before add_output_section_data.
2979   // But it should never actually happen.
2980
2981   gold_unreachable();
2982 }
2983
2984 // Find the output address of the start of the merged section for
2985 // input section SHNDX in object OBJECT.
2986
2987 bool
2988 Output_section::find_starting_output_address(const Relobj* object,
2989                                              unsigned int shndx,
2990                                              uint64_t* paddr) const
2991 {
2992   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2993   // Looking up the merge section map does not always work as we sometimes
2994   // find a merge section without its address set.
2995   uint64_t addr = this->address() + this->first_input_offset_;
2996   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2997        p != this->input_sections_.end();
2998        ++p)
2999     {
3000       addr = align_address(addr, p->addralign());
3001
3002       // It would be nice if we could use the existing output_offset
3003       // method to get the output offset of input offset 0.
3004       // Unfortunately we don't know for sure that input offset 0 is
3005       // mapped at all.
3006       if (p->is_merge_section_for(object, shndx))
3007         {
3008           *paddr = addr;
3009           return true;
3010         }
3011
3012       addr += p->data_size();
3013     }
3014
3015   // We couldn't find a merge output section for this input section.
3016   return false;
3017 }
3018
3019 // Update the data size of an Output_section.
3020
3021 void
3022 Output_section::update_data_size()
3023 {
3024   if (this->input_sections_.empty())
3025       return;
3026
3027   if (this->must_sort_attached_input_sections()
3028       || this->input_section_order_specified())
3029     this->sort_attached_input_sections();
3030
3031   off_t off = this->first_input_offset_;
3032   for (Input_section_list::iterator p = this->input_sections_.begin();
3033        p != this->input_sections_.end();
3034        ++p)
3035     {
3036       off = align_address(off, p->addralign());
3037       off += p->current_data_size();
3038     }
3039
3040   this->set_current_data_size_for_child(off);
3041 }
3042
3043 // Set the data size of an Output_section.  This is where we handle
3044 // setting the addresses of any Output_section_data objects.
3045
3046 void
3047 Output_section::set_final_data_size()
3048 {
3049   off_t data_size;
3050
3051   if (this->input_sections_.empty())
3052     data_size = this->current_data_size_for_child();
3053   else
3054     {
3055       if (this->must_sort_attached_input_sections()
3056           || this->input_section_order_specified())
3057         this->sort_attached_input_sections();
3058
3059       uint64_t address = this->address();
3060       off_t startoff = this->offset();
3061       off_t off = startoff + this->first_input_offset_;
3062       for (Input_section_list::iterator p = this->input_sections_.begin();
3063            p != this->input_sections_.end();
3064            ++p)
3065         {
3066           off = align_address(off, p->addralign());
3067           p->set_address_and_file_offset(address + (off - startoff), off,
3068                                          startoff);
3069           off += p->data_size();
3070         }
3071       data_size = off - startoff;
3072     }
3073
3074   // For full incremental links, we want to allocate some patch space
3075   // in most sections for subsequent incremental updates.
3076   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3077     {
3078       double pct = parameters->options().incremental_patch();
3079       size_t extra = static_cast<size_t>(data_size * pct);
3080       if (this->free_space_fill_ != NULL
3081           && this->free_space_fill_->minimum_hole_size() > extra)
3082         extra = this->free_space_fill_->minimum_hole_size();
3083       off_t new_size = align_address(data_size + extra, this->addralign());
3084       this->patch_space_ = new_size - data_size;
3085       gold_debug(DEBUG_INCREMENTAL,
3086                  "set_final_data_size: %08lx + %08lx: section %s",
3087                  static_cast<long>(data_size),
3088                  static_cast<long>(this->patch_space_),
3089                  this->name());
3090       data_size = new_size;
3091     }
3092
3093   this->set_data_size(data_size);
3094 }
3095
3096 // Reset the address and file offset.
3097
3098 void
3099 Output_section::do_reset_address_and_file_offset()
3100 {
3101   // An unallocated section has no address.  Forcing this means that
3102   // we don't need special treatment for symbols defined in debug
3103   // sections.  We do the same in the constructor.  This does not
3104   // apply to NOLOAD sections though.
3105   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3106      this->set_address(0);
3107
3108   for (Input_section_list::iterator p = this->input_sections_.begin();
3109        p != this->input_sections_.end();
3110        ++p)
3111     p->reset_address_and_file_offset();
3112
3113   // Remove any patch space that was added in set_final_data_size.
3114   if (this->patch_space_ > 0)
3115     {
3116       this->set_current_data_size_for_child(this->current_data_size_for_child()
3117                                             - this->patch_space_);
3118       this->patch_space_ = 0;
3119     }
3120 }
3121
3122 // Return true if address and file offset have the values after reset.
3123
3124 bool
3125 Output_section::do_address_and_file_offset_have_reset_values() const
3126 {
3127   if (this->is_offset_valid())
3128     return false;
3129
3130   // An unallocated section has address 0 after its construction or a reset.
3131   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3132     return this->is_address_valid() && this->address() == 0;
3133   else
3134     return !this->is_address_valid();
3135 }
3136
3137 // Set the TLS offset.  Called only for SHT_TLS sections.
3138
3139 void
3140 Output_section::do_set_tls_offset(uint64_t tls_base)
3141 {
3142   this->tls_offset_ = this->address() - tls_base;
3143 }
3144
3145 // In a few cases we need to sort the input sections attached to an
3146 // output section.  This is used to implement the type of constructor
3147 // priority ordering implemented by the GNU linker, in which the
3148 // priority becomes part of the section name and the sections are
3149 // sorted by name.  We only do this for an output section if we see an
3150 // attached input section matching ".ctors.*", ".dtors.*",
3151 // ".init_array.*" or ".fini_array.*".
3152
3153 class Output_section::Input_section_sort_entry
3154 {
3155  public:
3156   Input_section_sort_entry()
3157     : input_section_(), index_(-1U), section_has_name_(false),
3158       section_name_()
3159   { }
3160
3161   Input_section_sort_entry(const Input_section& input_section,
3162                            unsigned int index,
3163                            bool must_sort_attached_input_sections)
3164     : input_section_(input_section), index_(index),
3165       section_has_name_(input_section.is_input_section()
3166                         || input_section.is_relaxed_input_section())
3167   {
3168     if (this->section_has_name_
3169         && must_sort_attached_input_sections)
3170       {
3171         // This is only called single-threaded from Layout::finalize,
3172         // so it is OK to lock.  Unfortunately we have no way to pass
3173         // in a Task token.
3174         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3175         Object* obj = (input_section.is_input_section()
3176                        ? input_section.relobj()
3177                        : input_section.relaxed_input_section()->relobj());
3178         Task_lock_obj<Object> tl(dummy_task, obj);
3179
3180         // This is a slow operation, which should be cached in
3181         // Layout::layout if this becomes a speed problem.
3182         this->section_name_ = obj->section_name(input_section.shndx());
3183       }
3184   }
3185
3186   // Return the Input_section.
3187   const Input_section&
3188   input_section() const
3189   {
3190     gold_assert(this->index_ != -1U);
3191     return this->input_section_;
3192   }
3193
3194   // The index of this entry in the original list.  This is used to
3195   // make the sort stable.
3196   unsigned int
3197   index() const
3198   {
3199     gold_assert(this->index_ != -1U);
3200     return this->index_;
3201   }
3202
3203   // Whether there is a section name.
3204   bool
3205   section_has_name() const
3206   { return this->section_has_name_; }
3207
3208   // The section name.
3209   const std::string&
3210   section_name() const
3211   {
3212     gold_assert(this->section_has_name_);
3213     return this->section_name_;
3214   }
3215
3216   // Return true if the section name has a priority.  This is assumed
3217   // to be true if it has a dot after the initial dot.
3218   bool
3219   has_priority() const
3220   {
3221     gold_assert(this->section_has_name_);
3222     return this->section_name_.find('.', 1) != std::string::npos;
3223   }
3224
3225   // Return the priority.  Believe it or not, gcc encodes the priority
3226   // differently for .ctors/.dtors and .init_array/.fini_array
3227   // sections.
3228   unsigned int
3229   get_priority() const
3230   {
3231     gold_assert(this->section_has_name_);
3232     bool is_ctors;
3233     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3234         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3235       is_ctors = true;
3236     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3237              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3238       is_ctors = false;
3239     else
3240       return 0;
3241     char* end;
3242     unsigned long prio = strtoul((this->section_name_.c_str()
3243                                   + (is_ctors ? 7 : 12)),
3244                                  &end, 10);
3245     if (*end != '\0')
3246       return 0;
3247     else if (is_ctors)
3248       return 65535 - prio;
3249     else
3250       return prio;
3251   }
3252
3253   // Return true if this an input file whose base name matches
3254   // FILE_NAME.  The base name must have an extension of ".o", and
3255   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3256   // This is to match crtbegin.o as well as crtbeginS.o without
3257   // getting confused by other possibilities.  Overall matching the
3258   // file name this way is a dreadful hack, but the GNU linker does it
3259   // in order to better support gcc, and we need to be compatible.
3260   bool
3261   match_file_name(const char* file_name) const
3262   { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3263
3264   // Returns 1 if THIS should appear before S in section order, -1 if S
3265   // appears before THIS and 0 if they are not comparable.
3266   int
3267   compare_section_ordering(const Input_section_sort_entry& s) const
3268   {
3269     unsigned int this_secn_index = this->input_section_.section_order_index();
3270     unsigned int s_secn_index = s.input_section().section_order_index();
3271     if (this_secn_index > 0 && s_secn_index > 0)
3272       {
3273         if (this_secn_index < s_secn_index)
3274           return 1;
3275         else if (this_secn_index > s_secn_index)
3276           return -1;
3277       }
3278     return 0;
3279   }
3280
3281  private:
3282   // The Input_section we are sorting.
3283   Input_section input_section_;
3284   // The index of this Input_section in the original list.
3285   unsigned int index_;
3286   // Whether this Input_section has a section name--it won't if this
3287   // is some random Output_section_data.
3288   bool section_has_name_;
3289   // The section name if there is one.
3290   std::string section_name_;
3291 };
3292
3293 // Return true if S1 should come before S2 in the output section.
3294
3295 bool
3296 Output_section::Input_section_sort_compare::operator()(
3297     const Output_section::Input_section_sort_entry& s1,
3298     const Output_section::Input_section_sort_entry& s2) const
3299 {
3300   // crtbegin.o must come first.
3301   bool s1_begin = s1.match_file_name("crtbegin");
3302   bool s2_begin = s2.match_file_name("crtbegin");
3303   if (s1_begin || s2_begin)
3304     {
3305       if (!s1_begin)
3306         return false;
3307       if (!s2_begin)
3308         return true;
3309       return s1.index() < s2.index();
3310     }
3311
3312   // crtend.o must come last.
3313   bool s1_end = s1.match_file_name("crtend");
3314   bool s2_end = s2.match_file_name("crtend");
3315   if (s1_end || s2_end)
3316     {
3317       if (!s1_end)
3318         return true;
3319       if (!s2_end)
3320         return false;
3321       return s1.index() < s2.index();
3322     }
3323
3324   // We sort all the sections with no names to the end.
3325   if (!s1.section_has_name() || !s2.section_has_name())
3326     {
3327       if (s1.section_has_name())
3328         return true;
3329       if (s2.section_has_name())
3330         return false;
3331       return s1.index() < s2.index();
3332     }
3333
3334   // A section with a priority follows a section without a priority.
3335   bool s1_has_priority = s1.has_priority();
3336   bool s2_has_priority = s2.has_priority();
3337   if (s1_has_priority && !s2_has_priority)
3338     return false;
3339   if (!s1_has_priority && s2_has_priority)
3340     return true;
3341
3342   // Check if a section order exists for these sections through a section
3343   // ordering file.  If sequence_num is 0, an order does not exist.
3344   int sequence_num = s1.compare_section_ordering(s2);
3345   if (sequence_num != 0)
3346     return sequence_num == 1;
3347
3348   // Otherwise we sort by name.
3349   int compare = s1.section_name().compare(s2.section_name());
3350   if (compare != 0)
3351     return compare < 0;
3352
3353   // Otherwise we keep the input order.
3354   return s1.index() < s2.index();
3355 }
3356
3357 // Return true if S1 should come before S2 in an .init_array or .fini_array
3358 // output section.
3359
3360 bool
3361 Output_section::Input_section_sort_init_fini_compare::operator()(
3362     const Output_section::Input_section_sort_entry& s1,
3363     const Output_section::Input_section_sort_entry& s2) const
3364 {
3365   // We sort all the sections with no names to the end.
3366   if (!s1.section_has_name() || !s2.section_has_name())
3367     {
3368       if (s1.section_has_name())
3369         return true;
3370       if (s2.section_has_name())
3371         return false;
3372       return s1.index() < s2.index();
3373     }
3374
3375   // A section without a priority follows a section with a priority.
3376   // This is the reverse of .ctors and .dtors sections.
3377   bool s1_has_priority = s1.has_priority();
3378   bool s2_has_priority = s2.has_priority();
3379   if (s1_has_priority && !s2_has_priority)
3380     return true;
3381   if (!s1_has_priority && s2_has_priority)
3382     return false;
3383
3384   // .ctors and .dtors sections without priority come after
3385   // .init_array and .fini_array sections without priority.
3386   if (!s1_has_priority
3387       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3388       && s1.section_name() != s2.section_name())
3389     return false;
3390   if (!s2_has_priority
3391       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3392       && s2.section_name() != s1.section_name())
3393     return true;
3394
3395   // Sort by priority if we can.
3396   if (s1_has_priority)
3397     {
3398       unsigned int s1_prio = s1.get_priority();
3399       unsigned int s2_prio = s2.get_priority();
3400       if (s1_prio < s2_prio)
3401         return true;
3402       else if (s1_prio > s2_prio)
3403         return false;
3404     }
3405
3406   // Check if a section order exists for these sections through a section
3407   // ordering file.  If sequence_num is 0, an order does not exist.
3408   int sequence_num = s1.compare_section_ordering(s2);
3409   if (sequence_num != 0)
3410     return sequence_num == 1;
3411
3412   // Otherwise we sort by name.
3413   int compare = s1.section_name().compare(s2.section_name());
3414   if (compare != 0)
3415     return compare < 0;
3416
3417   // Otherwise we keep the input order.
3418   return s1.index() < s2.index();
3419 }
3420
3421 // Return true if S1 should come before S2.  Sections that do not match
3422 // any pattern in the section ordering file are placed ahead of the sections
3423 // that match some pattern.
3424
3425 bool
3426 Output_section::Input_section_sort_section_order_index_compare::operator()(
3427     const Output_section::Input_section_sort_entry& s1,
3428     const Output_section::Input_section_sort_entry& s2) const
3429 {
3430   unsigned int s1_secn_index = s1.input_section().section_order_index();
3431   unsigned int s2_secn_index = s2.input_section().section_order_index();
3432
3433   // Keep input order if section ordering cannot determine order.
3434   if (s1_secn_index == s2_secn_index)
3435     return s1.index() < s2.index();
3436   
3437   return s1_secn_index < s2_secn_index;
3438 }
3439
3440 // This updates the section order index of input sections according to the
3441 // the order specified in the mapping from Section id to order index.
3442
3443 void
3444 Output_section::update_section_layout(
3445   const Section_layout_order* order_map)
3446 {
3447   for (Input_section_list::iterator p = this->input_sections_.begin();
3448        p != this->input_sections_.end();
3449        ++p)
3450     {
3451       if (p->is_input_section()
3452           || p->is_relaxed_input_section())
3453         {
3454           Object* obj = (p->is_input_section()
3455                          ? p->relobj()
3456                          : p->relaxed_input_section()->relobj());
3457           unsigned int shndx = p->shndx();
3458           Section_layout_order::const_iterator it
3459             = order_map->find(Section_id(obj, shndx));
3460           if (it == order_map->end())
3461             continue;
3462           unsigned int section_order_index = it->second;
3463           if (section_order_index != 0)
3464             {
3465               p->set_section_order_index(section_order_index);
3466               this->set_input_section_order_specified();
3467             }
3468         }
3469     }
3470 }
3471
3472 // Sort the input sections attached to an output section.
3473
3474 void
3475 Output_section::sort_attached_input_sections()
3476 {
3477   if (this->attached_input_sections_are_sorted_)
3478     return;
3479
3480   if (this->checkpoint_ != NULL
3481       && !this->checkpoint_->input_sections_saved())
3482     this->checkpoint_->save_input_sections();
3483
3484   // The only thing we know about an input section is the object and
3485   // the section index.  We need the section name.  Recomputing this
3486   // is slow but this is an unusual case.  If this becomes a speed
3487   // problem we can cache the names as required in Layout::layout.
3488
3489   // We start by building a larger vector holding a copy of each
3490   // Input_section, plus its current index in the list and its name.
3491   std::vector<Input_section_sort_entry> sort_list;
3492
3493   unsigned int i = 0;
3494   for (Input_section_list::iterator p = this->input_sections_.begin();
3495        p != this->input_sections_.end();
3496        ++p, ++i)
3497       sort_list.push_back(Input_section_sort_entry(*p, i,
3498                             this->must_sort_attached_input_sections()));
3499
3500   // Sort the input sections.
3501   if (this->must_sort_attached_input_sections())
3502     {
3503       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3504           || this->type() == elfcpp::SHT_INIT_ARRAY
3505           || this->type() == elfcpp::SHT_FINI_ARRAY)
3506         std::sort(sort_list.begin(), sort_list.end(),
3507                   Input_section_sort_init_fini_compare());
3508       else
3509         std::sort(sort_list.begin(), sort_list.end(),
3510                   Input_section_sort_compare());
3511     }
3512   else
3513     {
3514       gold_assert(this->input_section_order_specified());
3515       std::sort(sort_list.begin(), sort_list.end(),
3516                 Input_section_sort_section_order_index_compare());
3517     }
3518
3519   // Copy the sorted input sections back to our list.
3520   this->input_sections_.clear();
3521   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3522        p != sort_list.end();
3523        ++p)
3524     this->input_sections_.push_back(p->input_section());
3525   sort_list.clear();
3526
3527   // Remember that we sorted the input sections, since we might get
3528   // called again.
3529   this->attached_input_sections_are_sorted_ = true;
3530 }
3531
3532 // Write the section header to *OSHDR.
3533
3534 template<int size, bool big_endian>
3535 void
3536 Output_section::write_header(const Layout* layout,
3537                              const Stringpool* secnamepool,
3538                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3539 {
3540   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3541   oshdr->put_sh_type(this->type_);
3542
3543   elfcpp::Elf_Xword flags = this->flags_;
3544   if (this->info_section_ != NULL && this->info_uses_section_index_)
3545     flags |= elfcpp::SHF_INFO_LINK;
3546   oshdr->put_sh_flags(flags);
3547
3548   oshdr->put_sh_addr(this->address());
3549   oshdr->put_sh_offset(this->offset());
3550   oshdr->put_sh_size(this->data_size());
3551   if (this->link_section_ != NULL)
3552     oshdr->put_sh_link(this->link_section_->out_shndx());
3553   else if (this->should_link_to_symtab_)
3554     oshdr->put_sh_link(layout->symtab_section_shndx());
3555   else if (this->should_link_to_dynsym_)
3556     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3557   else
3558     oshdr->put_sh_link(this->link_);
3559
3560   elfcpp::Elf_Word info;
3561   if (this->info_section_ != NULL)
3562     {
3563       if (this->info_uses_section_index_)
3564         info = this->info_section_->out_shndx();
3565       else
3566         info = this->info_section_->symtab_index();
3567     }
3568   else if (this->info_symndx_ != NULL)
3569     info = this->info_symndx_->symtab_index();
3570   else
3571     info = this->info_;
3572   oshdr->put_sh_info(info);
3573
3574   oshdr->put_sh_addralign(this->addralign_);
3575   oshdr->put_sh_entsize(this->entsize_);
3576 }
3577
3578 // Write out the data.  For input sections the data is written out by
3579 // Object::relocate, but we have to handle Output_section_data objects
3580 // here.
3581
3582 void
3583 Output_section::do_write(Output_file* of)
3584 {
3585   gold_assert(!this->requires_postprocessing());
3586
3587   // If the target performs relaxation, we delay filler generation until now.
3588   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3589
3590   off_t output_section_file_offset = this->offset();
3591   for (Fill_list::iterator p = this->fills_.begin();
3592        p != this->fills_.end();
3593        ++p)
3594     {
3595       std::string fill_data(parameters->target().code_fill(p->length()));
3596       of->write(output_section_file_offset + p->section_offset(),
3597                 fill_data.data(), fill_data.size());
3598     }
3599
3600   off_t off = this->offset() + this->first_input_offset_;
3601   for (Input_section_list::iterator p = this->input_sections_.begin();
3602        p != this->input_sections_.end();
3603        ++p)
3604     {
3605       off_t aligned_off = align_address(off, p->addralign());
3606       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3607         {
3608           size_t fill_len = aligned_off - off;
3609           std::string fill_data(parameters->target().code_fill(fill_len));
3610           of->write(off, fill_data.data(), fill_data.size());
3611         }
3612
3613       p->write(of);
3614       off = aligned_off + p->data_size();
3615     }
3616
3617   // For incremental links, fill in unused chunks in debug sections
3618   // with dummy compilation unit headers.
3619   if (this->free_space_fill_ != NULL)
3620     {
3621       for (Free_list::Const_iterator p = this->free_list_.begin();
3622            p != this->free_list_.end();
3623            ++p)
3624         {
3625           off_t off = p->start_;
3626           size_t len = p->end_ - off;
3627           this->free_space_fill_->write(of, this->offset() + off, len);
3628         }
3629       if (this->patch_space_ > 0)
3630         {
3631           off_t off = this->current_data_size_for_child() - this->patch_space_;
3632           this->free_space_fill_->write(of, this->offset() + off,
3633                                         this->patch_space_);
3634         }
3635     }
3636 }
3637
3638 // If a section requires postprocessing, create the buffer to use.
3639
3640 void
3641 Output_section::create_postprocessing_buffer()
3642 {
3643   gold_assert(this->requires_postprocessing());
3644
3645   if (this->postprocessing_buffer_ != NULL)
3646     return;
3647
3648   if (!this->input_sections_.empty())
3649     {
3650       off_t off = this->first_input_offset_;
3651       for (Input_section_list::iterator p = this->input_sections_.begin();
3652            p != this->input_sections_.end();
3653            ++p)
3654         {
3655           off = align_address(off, p->addralign());
3656           p->finalize_data_size();
3657           off += p->data_size();
3658         }
3659       this->set_current_data_size_for_child(off);
3660     }
3661
3662   off_t buffer_size = this->current_data_size_for_child();
3663   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3664 }
3665
3666 // Write all the data of an Output_section into the postprocessing
3667 // buffer.  This is used for sections which require postprocessing,
3668 // such as compression.  Input sections are handled by
3669 // Object::Relocate.
3670
3671 void
3672 Output_section::write_to_postprocessing_buffer()
3673 {
3674   gold_assert(this->requires_postprocessing());
3675
3676   // If the target performs relaxation, we delay filler generation until now.
3677   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3678
3679   unsigned char* buffer = this->postprocessing_buffer();
3680   for (Fill_list::iterator p = this->fills_.begin();
3681        p != this->fills_.end();
3682        ++p)
3683     {
3684       std::string fill_data(parameters->target().code_fill(p->length()));
3685       memcpy(buffer + p->section_offset(), fill_data.data(),
3686              fill_data.size());
3687     }
3688
3689   off_t off = this->first_input_offset_;
3690   for (Input_section_list::iterator p = this->input_sections_.begin();
3691        p != this->input_sections_.end();
3692        ++p)
3693     {
3694       off_t aligned_off = align_address(off, p->addralign());
3695       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3696         {
3697           size_t fill_len = aligned_off - off;
3698           std::string fill_data(parameters->target().code_fill(fill_len));
3699           memcpy(buffer + off, fill_data.data(), fill_data.size());
3700         }
3701
3702       p->write_to_buffer(buffer + aligned_off);
3703       off = aligned_off + p->data_size();
3704     }
3705 }
3706
3707 // Get the input sections for linker script processing.  We leave
3708 // behind the Output_section_data entries.  Note that this may be
3709 // slightly incorrect for merge sections.  We will leave them behind,
3710 // but it is possible that the script says that they should follow
3711 // some other input sections, as in:
3712 //    .rodata { *(.rodata) *(.rodata.cst*) }
3713 // For that matter, we don't handle this correctly:
3714 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3715 // With luck this will never matter.
3716
3717 uint64_t
3718 Output_section::get_input_sections(
3719     uint64_t address,
3720     const std::string& fill,
3721     std::list<Input_section>* input_sections)
3722 {
3723   if (this->checkpoint_ != NULL
3724       && !this->checkpoint_->input_sections_saved())
3725     this->checkpoint_->save_input_sections();
3726
3727   // Invalidate fast look-up maps.
3728   this->lookup_maps_->invalidate();
3729
3730   uint64_t orig_address = address;
3731
3732   address = align_address(address, this->addralign());
3733
3734   Input_section_list remaining;
3735   for (Input_section_list::iterator p = this->input_sections_.begin();
3736        p != this->input_sections_.end();
3737        ++p)
3738     {
3739       if (p->is_input_section()
3740           || p->is_relaxed_input_section()
3741           || p->is_merge_section())
3742         input_sections->push_back(*p);
3743       else
3744         {
3745           uint64_t aligned_address = align_address(address, p->addralign());
3746           if (aligned_address != address && !fill.empty())
3747             {
3748               section_size_type length =
3749                 convert_to_section_size_type(aligned_address - address);
3750               std::string this_fill;
3751               this_fill.reserve(length);
3752               while (this_fill.length() + fill.length() <= length)
3753                 this_fill += fill;
3754               if (this_fill.length() < length)
3755                 this_fill.append(fill, 0, length - this_fill.length());
3756
3757               Output_section_data* posd = new Output_data_const(this_fill, 0);
3758               remaining.push_back(Input_section(posd));
3759             }
3760           address = aligned_address;
3761
3762           remaining.push_back(*p);
3763
3764           p->finalize_data_size();
3765           address += p->data_size();
3766         }
3767     }
3768
3769   this->input_sections_.swap(remaining);
3770   this->first_input_offset_ = 0;
3771
3772   uint64_t data_size = address - orig_address;
3773   this->set_current_data_size_for_child(data_size);
3774   return data_size;
3775 }
3776
3777 // Add a script input section.  SIS is an Output_section::Input_section,
3778 // which can be either a plain input section or a special input section like
3779 // a relaxed input section.  For a special input section, its size must be
3780 // finalized.
3781
3782 void
3783 Output_section::add_script_input_section(const Input_section& sis)
3784 {
3785   uint64_t data_size = sis.data_size();
3786   uint64_t addralign = sis.addralign();
3787   if (addralign > this->addralign_)
3788     this->addralign_ = addralign;
3789
3790   off_t offset_in_section = this->current_data_size_for_child();
3791   off_t aligned_offset_in_section = align_address(offset_in_section,
3792                                                   addralign);
3793
3794   this->set_current_data_size_for_child(aligned_offset_in_section
3795                                         + data_size);
3796
3797   this->input_sections_.push_back(sis);
3798
3799   // Update fast lookup maps if necessary. 
3800   if (this->lookup_maps_->is_valid())
3801     {
3802       if (sis.is_merge_section())
3803         {
3804           Output_merge_base* pomb = sis.output_merge_base();
3805           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3806                                        pomb->addralign());
3807           this->lookup_maps_->add_merge_section(msp, pomb);
3808           for (Output_merge_base::Input_sections::const_iterator p =
3809                  pomb->input_sections_begin();
3810                p != pomb->input_sections_end();
3811                ++p)
3812             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3813                                                         pomb);
3814         }
3815       else if (sis.is_relaxed_input_section())
3816         {
3817           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3818           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3819                                                         poris->shndx(), poris);
3820         }
3821     }
3822 }
3823
3824 // Save states for relaxation.
3825
3826 void
3827 Output_section::save_states()
3828 {
3829   gold_assert(this->checkpoint_ == NULL);
3830   Checkpoint_output_section* checkpoint =
3831     new Checkpoint_output_section(this->addralign_, this->flags_,
3832                                   this->input_sections_,
3833                                   this->first_input_offset_,
3834                                   this->attached_input_sections_are_sorted_);
3835   this->checkpoint_ = checkpoint;
3836   gold_assert(this->fills_.empty());
3837 }
3838
3839 void
3840 Output_section::discard_states()
3841 {
3842   gold_assert(this->checkpoint_ != NULL);
3843   delete this->checkpoint_;
3844   this->checkpoint_ = NULL;
3845   gold_assert(this->fills_.empty());
3846
3847   // Simply invalidate the fast lookup maps since we do not keep
3848   // track of them.
3849   this->lookup_maps_->invalidate();
3850 }
3851
3852 void
3853 Output_section::restore_states()
3854 {
3855   gold_assert(this->checkpoint_ != NULL);
3856   Checkpoint_output_section* checkpoint = this->checkpoint_;
3857
3858   this->addralign_ = checkpoint->addralign();
3859   this->flags_ = checkpoint->flags();
3860   this->first_input_offset_ = checkpoint->first_input_offset();
3861
3862   if (!checkpoint->input_sections_saved())
3863     {
3864       // If we have not copied the input sections, just resize it.
3865       size_t old_size = checkpoint->input_sections_size();
3866       gold_assert(this->input_sections_.size() >= old_size);
3867       this->input_sections_.resize(old_size);
3868     }
3869   else
3870     {
3871       // We need to copy the whole list.  This is not efficient for
3872       // extremely large output with hundreads of thousands of input
3873       // objects.  We may need to re-think how we should pass sections
3874       // to scripts.
3875       this->input_sections_ = *checkpoint->input_sections();
3876     }
3877
3878   this->attached_input_sections_are_sorted_ =
3879     checkpoint->attached_input_sections_are_sorted();
3880
3881   // Simply invalidate the fast lookup maps since we do not keep
3882   // track of them.
3883   this->lookup_maps_->invalidate();
3884 }
3885
3886 // Update the section offsets of input sections in this.  This is required if
3887 // relaxation causes some input sections to change sizes.
3888
3889 void
3890 Output_section::adjust_section_offsets()
3891 {
3892   if (!this->section_offsets_need_adjustment_)
3893     return;
3894
3895   off_t off = 0;
3896   for (Input_section_list::iterator p = this->input_sections_.begin();
3897        p != this->input_sections_.end();
3898        ++p)
3899     {
3900       off = align_address(off, p->addralign());
3901       if (p->is_input_section())
3902         p->relobj()->set_section_offset(p->shndx(), off);
3903       off += p->data_size();
3904     }
3905
3906   this->section_offsets_need_adjustment_ = false;
3907 }
3908
3909 // Print to the map file.
3910
3911 void
3912 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3913 {
3914   mapfile->print_output_section(this);
3915
3916   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3917        p != this->input_sections_.end();
3918        ++p)
3919     p->print_to_mapfile(mapfile);
3920 }
3921
3922 // Print stats for merge sections to stderr.
3923
3924 void
3925 Output_section::print_merge_stats()
3926 {
3927   Input_section_list::iterator p;
3928   for (p = this->input_sections_.begin();
3929        p != this->input_sections_.end();
3930        ++p)
3931     p->print_merge_stats(this->name_);
3932 }
3933
3934 // Set a fixed layout for the section.  Used for incremental update links.
3935
3936 void
3937 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3938                                  off_t sh_size, uint64_t sh_addralign)
3939 {
3940   this->addralign_ = sh_addralign;
3941   this->set_current_data_size(sh_size);
3942   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3943     this->set_address(sh_addr);
3944   this->set_file_offset(sh_offset);
3945   this->finalize_data_size();
3946   this->free_list_.init(sh_size, false);
3947   this->has_fixed_layout_ = true;
3948 }
3949
3950 // Reserve space within the fixed layout for the section.  Used for
3951 // incremental update links.
3952
3953 void
3954 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3955 {
3956   this->free_list_.remove(sh_offset, sh_offset + sh_size);
3957 }
3958
3959 // Allocate space from the free list for the section.  Used for
3960 // incremental update links.
3961
3962 off_t
3963 Output_section::allocate(off_t len, uint64_t addralign)
3964 {
3965   return this->free_list_.allocate(len, addralign, 0);
3966 }
3967
3968 // Output segment methods.
3969
3970 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3971   : vaddr_(0),
3972     paddr_(0),
3973     memsz_(0),
3974     max_align_(0),
3975     min_p_align_(0),
3976     offset_(0),
3977     filesz_(0),
3978     type_(type),
3979     flags_(flags),
3980     is_max_align_known_(false),
3981     are_addresses_set_(false),
3982     is_large_data_segment_(false)
3983 {
3984   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3985   // the flags.
3986   if (type == elfcpp::PT_TLS)
3987     this->flags_ = elfcpp::PF_R;
3988 }
3989
3990 // Add an Output_section to a PT_LOAD Output_segment.
3991
3992 void
3993 Output_segment::add_output_section_to_load(Layout* layout,
3994                                            Output_section* os,
3995                                            elfcpp::Elf_Word seg_flags)
3996 {
3997   gold_assert(this->type() == elfcpp::PT_LOAD);
3998   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3999   gold_assert(!this->is_max_align_known_);
4000   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4001
4002   this->update_flags_for_output_section(seg_flags);
4003
4004   // We don't want to change the ordering if we have a linker script
4005   // with a SECTIONS clause.
4006   Output_section_order order = os->order();
4007   if (layout->script_options()->saw_sections_clause())
4008     order = static_cast<Output_section_order>(0);
4009   else
4010     gold_assert(order != ORDER_INVALID);
4011
4012   this->output_lists_[order].push_back(os);
4013 }
4014
4015 // Add an Output_section to a non-PT_LOAD Output_segment.
4016
4017 void
4018 Output_segment::add_output_section_to_nonload(Output_section* os,
4019                                               elfcpp::Elf_Word seg_flags)
4020 {
4021   gold_assert(this->type() != elfcpp::PT_LOAD);
4022   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4023   gold_assert(!this->is_max_align_known_);
4024
4025   this->update_flags_for_output_section(seg_flags);
4026
4027   this->output_lists_[0].push_back(os);
4028 }
4029
4030 // Remove an Output_section from this segment.  It is an error if it
4031 // is not present.
4032
4033 void
4034 Output_segment::remove_output_section(Output_section* os)
4035 {
4036   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4037     {
4038       Output_data_list* pdl = &this->output_lists_[i];
4039       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4040         {
4041           if (*p == os)
4042             {
4043               pdl->erase(p);
4044               return;
4045             }
4046         }
4047     }
4048   gold_unreachable();
4049 }
4050
4051 // Add an Output_data (which need not be an Output_section) to the
4052 // start of a segment.
4053
4054 void
4055 Output_segment::add_initial_output_data(Output_data* od)
4056 {
4057   gold_assert(!this->is_max_align_known_);
4058   Output_data_list::iterator p = this->output_lists_[0].begin();
4059   this->output_lists_[0].insert(p, od);
4060 }
4061
4062 // Return true if this segment has any sections which hold actual
4063 // data, rather than being a BSS section.
4064
4065 bool
4066 Output_segment::has_any_data_sections() const
4067 {
4068   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4069     {
4070       const Output_data_list* pdl = &this->output_lists_[i];
4071       for (Output_data_list::const_iterator p = pdl->begin();
4072            p != pdl->end();
4073            ++p)
4074         {
4075           if (!(*p)->is_section())
4076             return true;
4077           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4078             return true;
4079         }
4080     }
4081   return false;
4082 }
4083
4084 // Return whether the first data section (not counting TLS sections)
4085 // is a relro section.
4086
4087 bool
4088 Output_segment::is_first_section_relro() const
4089 {
4090   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4091     {
4092       if (i == static_cast<int>(ORDER_TLS_DATA)
4093           || i == static_cast<int>(ORDER_TLS_BSS))
4094         continue;
4095       const Output_data_list* pdl = &this->output_lists_[i];
4096       if (!pdl->empty())
4097         {
4098           Output_data* p = pdl->front();
4099           return p->is_section() && p->output_section()->is_relro();
4100         }
4101     }
4102   return false;
4103 }
4104
4105 // Return the maximum alignment of the Output_data in Output_segment.
4106
4107 uint64_t
4108 Output_segment::maximum_alignment()
4109 {
4110   if (!this->is_max_align_known_)
4111     {
4112       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4113         {       
4114           const Output_data_list* pdl = &this->output_lists_[i];
4115           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4116           if (addralign > this->max_align_)
4117             this->max_align_ = addralign;
4118         }
4119       this->is_max_align_known_ = true;
4120     }
4121
4122   return this->max_align_;
4123 }
4124
4125 // Return the maximum alignment of a list of Output_data.
4126
4127 uint64_t
4128 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4129 {
4130   uint64_t ret = 0;
4131   for (Output_data_list::const_iterator p = pdl->begin();
4132        p != pdl->end();
4133        ++p)
4134     {
4135       uint64_t addralign = (*p)->addralign();
4136       if (addralign > ret)
4137         ret = addralign;
4138     }
4139   return ret;
4140 }
4141
4142 // Return whether this segment has any dynamic relocs.
4143
4144 bool
4145 Output_segment::has_dynamic_reloc() const
4146 {
4147   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4148     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4149       return true;
4150   return false;
4151 }
4152
4153 // Return whether this Output_data_list has any dynamic relocs.
4154
4155 bool
4156 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4157 {
4158   for (Output_data_list::const_iterator p = pdl->begin();
4159        p != pdl->end();
4160        ++p)
4161     if ((*p)->has_dynamic_reloc())
4162       return true;
4163   return false;
4164 }
4165
4166 // Set the section addresses for an Output_segment.  If RESET is true,
4167 // reset the addresses first.  ADDR is the address and *POFF is the
4168 // file offset.  Set the section indexes starting with *PSHNDX.
4169 // INCREASE_RELRO is the size of the portion of the first non-relro
4170 // section that should be included in the PT_GNU_RELRO segment.
4171 // If this segment has relro sections, and has been aligned for
4172 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4173 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4174 // and *PSHNDX.
4175
4176 uint64_t
4177 Output_segment::set_section_addresses(Layout* layout, bool reset,
4178                                       uint64_t addr,
4179                                       unsigned int* increase_relro,
4180                                       bool* has_relro,
4181                                       off_t* poff,
4182                                       unsigned int* pshndx)
4183 {
4184   gold_assert(this->type_ == elfcpp::PT_LOAD);
4185
4186   uint64_t last_relro_pad = 0;
4187   off_t orig_off = *poff;
4188
4189   bool in_tls = false;
4190
4191   // If we have relro sections, we need to pad forward now so that the
4192   // relro sections plus INCREASE_RELRO end on a common page boundary.
4193   if (parameters->options().relro()
4194       && this->is_first_section_relro()
4195       && (!this->are_addresses_set_ || reset))
4196     {
4197       uint64_t relro_size = 0;
4198       off_t off = *poff;
4199       uint64_t max_align = 0;
4200       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4201         {
4202           Output_data_list* pdl = &this->output_lists_[i];
4203           Output_data_list::iterator p;
4204           for (p = pdl->begin(); p != pdl->end(); ++p)
4205             {
4206               if (!(*p)->is_section())
4207                 break;
4208               uint64_t align = (*p)->addralign();
4209               if (align > max_align)
4210                 max_align = align;
4211               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4212                 in_tls = true;
4213               else if (in_tls)
4214                 {
4215                   // Align the first non-TLS section to the alignment
4216                   // of the TLS segment.
4217                   align = max_align;
4218                   in_tls = false;
4219                 }
4220               relro_size = align_address(relro_size, align);
4221               // Ignore the size of the .tbss section.
4222               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4223                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4224                 continue;
4225               if ((*p)->is_address_valid())
4226                 relro_size += (*p)->data_size();
4227               else
4228                 {
4229                   // FIXME: This could be faster.
4230                   (*p)->set_address_and_file_offset(addr + relro_size,
4231                                                     off + relro_size);
4232                   relro_size += (*p)->data_size();
4233                   (*p)->reset_address_and_file_offset();
4234                 }
4235             }
4236           if (p != pdl->end())
4237             break;
4238         }
4239       relro_size += *increase_relro;
4240       // Pad the total relro size to a multiple of the maximum
4241       // section alignment seen.
4242       uint64_t aligned_size = align_address(relro_size, max_align);
4243       // Note the amount of padding added after the last relro section.
4244       last_relro_pad = aligned_size - relro_size;
4245       *has_relro = true;
4246
4247       uint64_t page_align = parameters->target().common_pagesize();
4248
4249       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4250       uint64_t desired_align = page_align - (aligned_size % page_align);
4251       if (desired_align < *poff % page_align)
4252         *poff += page_align - *poff % page_align;
4253       *poff += desired_align - *poff % page_align;
4254       addr += *poff - orig_off;
4255       orig_off = *poff;
4256     }
4257
4258   if (!reset && this->are_addresses_set_)
4259     {
4260       gold_assert(this->paddr_ == addr);
4261       addr = this->vaddr_;
4262     }
4263   else
4264     {
4265       this->vaddr_ = addr;
4266       this->paddr_ = addr;
4267       this->are_addresses_set_ = true;
4268     }
4269
4270   in_tls = false;
4271
4272   this->offset_ = orig_off;
4273
4274   off_t off = 0;
4275   uint64_t ret;
4276   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4277     {
4278       if (i == static_cast<int>(ORDER_RELRO_LAST))
4279         {
4280           *poff += last_relro_pad;
4281           addr += last_relro_pad;
4282           if (this->output_lists_[i].empty())
4283             {
4284               // If there is nothing in the ORDER_RELRO_LAST list,
4285               // the padding will occur at the end of the relro
4286               // segment, and we need to add it to *INCREASE_RELRO.
4287               *increase_relro += last_relro_pad;
4288             }
4289         }
4290       addr = this->set_section_list_addresses(layout, reset,
4291                                               &this->output_lists_[i],
4292                                               addr, poff, pshndx, &in_tls);
4293       if (i < static_cast<int>(ORDER_SMALL_BSS))
4294         {
4295           this->filesz_ = *poff - orig_off;
4296           off = *poff;
4297         }
4298
4299       ret = addr;
4300     }
4301
4302   // If the last section was a TLS section, align upward to the
4303   // alignment of the TLS segment, so that the overall size of the TLS
4304   // segment is aligned.
4305   if (in_tls)
4306     {
4307       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4308       *poff = align_address(*poff, segment_align);
4309     }
4310
4311   this->memsz_ = *poff - orig_off;
4312
4313   // Ignore the file offset adjustments made by the BSS Output_data
4314   // objects.
4315   *poff = off;
4316
4317   return ret;
4318 }
4319
4320 // Set the addresses and file offsets in a list of Output_data
4321 // structures.
4322
4323 uint64_t
4324 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4325                                            Output_data_list* pdl,
4326                                            uint64_t addr, off_t* poff,
4327                                            unsigned int* pshndx,
4328                                            bool* in_tls)
4329 {
4330   off_t startoff = *poff;
4331   // For incremental updates, we may allocate non-fixed sections from
4332   // free space in the file.  This keeps track of the high-water mark.
4333   off_t maxoff = startoff;
4334
4335   off_t off = startoff;
4336   for (Output_data_list::iterator p = pdl->begin();
4337        p != pdl->end();
4338        ++p)
4339     {
4340       if (reset)
4341         (*p)->reset_address_and_file_offset();
4342
4343       // When doing an incremental update or when using a linker script,
4344       // the section will most likely already have an address.
4345       if (!(*p)->is_address_valid())
4346         {
4347           uint64_t align = (*p)->addralign();
4348
4349           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4350             {
4351               // Give the first TLS section the alignment of the
4352               // entire TLS segment.  Otherwise the TLS segment as a
4353               // whole may be misaligned.
4354               if (!*in_tls)
4355                 {
4356                   Output_segment* tls_segment = layout->tls_segment();
4357                   gold_assert(tls_segment != NULL);
4358                   uint64_t segment_align = tls_segment->maximum_alignment();
4359                   gold_assert(segment_align >= align);
4360                   align = segment_align;
4361
4362                   *in_tls = true;
4363                 }
4364             }
4365           else
4366             {
4367               // If this is the first section after the TLS segment,
4368               // align it to at least the alignment of the TLS
4369               // segment, so that the size of the overall TLS segment
4370               // is aligned.
4371               if (*in_tls)
4372                 {
4373                   uint64_t segment_align =
4374                       layout->tls_segment()->maximum_alignment();
4375                   if (segment_align > align)
4376                     align = segment_align;
4377
4378                   *in_tls = false;
4379                 }
4380             }
4381
4382           if (!parameters->incremental_update())
4383             {
4384               off = align_address(off, align);
4385               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4386             }
4387           else
4388             {
4389               // Incremental update: allocate file space from free list.
4390               (*p)->pre_finalize_data_size();
4391               off_t current_size = (*p)->current_data_size();
4392               off = layout->allocate(current_size, align, startoff);
4393               if (off == -1)
4394                 {
4395                   gold_assert((*p)->output_section() != NULL);
4396                   gold_fallback(_("out of patch space for section %s; "
4397                                   "relink with --incremental-full"),
4398                                 (*p)->output_section()->name());
4399                 }
4400               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4401               if ((*p)->data_size() > current_size)
4402                 {
4403                   gold_assert((*p)->output_section() != NULL);
4404                   gold_fallback(_("%s: section changed size; "
4405                                   "relink with --incremental-full"),
4406                                 (*p)->output_section()->name());
4407                 }
4408             }
4409         }
4410       else if (parameters->incremental_update())
4411         {
4412           // For incremental updates, use the fixed offset for the
4413           // high-water mark computation.
4414           off = (*p)->offset();
4415         }
4416       else
4417         {
4418           // The script may have inserted a skip forward, but it
4419           // better not have moved backward.
4420           if ((*p)->address() >= addr + (off - startoff))
4421             off += (*p)->address() - (addr + (off - startoff));
4422           else
4423             {
4424               if (!layout->script_options()->saw_sections_clause())
4425                 gold_unreachable();
4426               else
4427                 {
4428                   Output_section* os = (*p)->output_section();
4429
4430                   // Cast to unsigned long long to avoid format warnings.
4431                   unsigned long long previous_dot =
4432                     static_cast<unsigned long long>(addr + (off - startoff));
4433                   unsigned long long dot =
4434                     static_cast<unsigned long long>((*p)->address());
4435
4436                   if (os == NULL)
4437                     gold_error(_("dot moves backward in linker script "
4438                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4439                   else
4440                     gold_error(_("address of section '%s' moves backward "
4441                                  "from 0x%llx to 0x%llx"),
4442                                os->name(), previous_dot, dot);
4443                 }
4444             }
4445           (*p)->set_file_offset(off);
4446           (*p)->finalize_data_size();
4447         }
4448
4449       if (parameters->incremental_update())
4450         gold_debug(DEBUG_INCREMENTAL,
4451                    "set_section_list_addresses: %08lx %08lx %s",
4452                    static_cast<long>(off),
4453                    static_cast<long>((*p)->data_size()),
4454                    ((*p)->output_section() != NULL
4455                     ? (*p)->output_section()->name() : "(special)"));
4456
4457       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4458       // section.  Such a section does not affect the size of a
4459       // PT_LOAD segment.
4460       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4461           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4462         off += (*p)->data_size();
4463
4464       if (off > maxoff)
4465         maxoff = off;
4466
4467       if ((*p)->is_section())
4468         {
4469           (*p)->set_out_shndx(*pshndx);
4470           ++*pshndx;
4471         }
4472     }
4473
4474   *poff = maxoff;
4475   return addr + (maxoff - startoff);
4476 }
4477
4478 // For a non-PT_LOAD segment, set the offset from the sections, if
4479 // any.  Add INCREASE to the file size and the memory size.
4480
4481 void
4482 Output_segment::set_offset(unsigned int increase)
4483 {
4484   gold_assert(this->type_ != elfcpp::PT_LOAD);
4485
4486   gold_assert(!this->are_addresses_set_);
4487
4488   // A non-load section only uses output_lists_[0].
4489
4490   Output_data_list* pdl = &this->output_lists_[0];
4491
4492   if (pdl->empty())
4493     {
4494       gold_assert(increase == 0);
4495       this->vaddr_ = 0;
4496       this->paddr_ = 0;
4497       this->are_addresses_set_ = true;
4498       this->memsz_ = 0;
4499       this->min_p_align_ = 0;
4500       this->offset_ = 0;
4501       this->filesz_ = 0;
4502       return;
4503     }
4504
4505   // Find the first and last section by address.
4506   const Output_data* first = NULL;
4507   const Output_data* last_data = NULL;
4508   const Output_data* last_bss = NULL;
4509   for (Output_data_list::const_iterator p = pdl->begin();
4510        p != pdl->end();
4511        ++p)
4512     {
4513       if (first == NULL
4514           || (*p)->address() < first->address()
4515           || ((*p)->address() == first->address()
4516               && (*p)->data_size() < first->data_size()))
4517         first = *p;
4518       const Output_data** plast;
4519       if ((*p)->is_section()
4520           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4521         plast = &last_bss;
4522       else
4523         plast = &last_data;
4524       if (*plast == NULL
4525           || (*p)->address() > (*plast)->address()
4526           || ((*p)->address() == (*plast)->address()
4527               && (*p)->data_size() > (*plast)->data_size()))
4528         *plast = *p;
4529     }
4530
4531   this->vaddr_ = first->address();
4532   this->paddr_ = (first->has_load_address()
4533                   ? first->load_address()
4534                   : this->vaddr_);
4535   this->are_addresses_set_ = true;
4536   this->offset_ = first->offset();
4537
4538   if (last_data == NULL)
4539     this->filesz_ = 0;
4540   else
4541     this->filesz_ = (last_data->address()
4542                      + last_data->data_size()
4543                      - this->vaddr_);
4544
4545   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4546   this->memsz_ = (last->address()
4547                   + last->data_size()
4548                   - this->vaddr_);
4549
4550   this->filesz_ += increase;
4551   this->memsz_ += increase;
4552
4553   // If this is a RELRO segment, verify that the segment ends at a
4554   // page boundary.
4555   if (this->type_ == elfcpp::PT_GNU_RELRO)
4556     {
4557       uint64_t page_align = parameters->target().common_pagesize();
4558       uint64_t segment_end = this->vaddr_ + this->memsz_;
4559       if (parameters->incremental_update())
4560         {
4561           // The INCREASE_RELRO calculation is bypassed for an incremental
4562           // update, so we need to adjust the segment size manually here.
4563           segment_end = align_address(segment_end, page_align);
4564           this->memsz_ = segment_end - this->vaddr_;
4565         }
4566       else
4567         gold_assert(segment_end == align_address(segment_end, page_align));
4568     }
4569
4570   // If this is a TLS segment, align the memory size.  The code in
4571   // set_section_list ensures that the section after the TLS segment
4572   // is aligned to give us room.
4573   if (this->type_ == elfcpp::PT_TLS)
4574     {
4575       uint64_t segment_align = this->maximum_alignment();
4576       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4577       this->memsz_ = align_address(this->memsz_, segment_align);
4578     }
4579 }
4580
4581 // Set the TLS offsets of the sections in the PT_TLS segment.
4582
4583 void
4584 Output_segment::set_tls_offsets()
4585 {
4586   gold_assert(this->type_ == elfcpp::PT_TLS);
4587
4588   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4589        p != this->output_lists_[0].end();
4590        ++p)
4591     (*p)->set_tls_offset(this->vaddr_);
4592 }
4593
4594 // Return the load address of the first section.
4595
4596 uint64_t
4597 Output_segment::first_section_load_address() const
4598 {
4599   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4600     {
4601       const Output_data_list* pdl = &this->output_lists_[i];
4602       for (Output_data_list::const_iterator p = pdl->begin();
4603            p != pdl->end();
4604            ++p)
4605         {
4606           if ((*p)->is_section())
4607             return ((*p)->has_load_address()
4608                     ? (*p)->load_address()
4609                     : (*p)->address());
4610         }
4611     }
4612   gold_unreachable();
4613 }
4614
4615 // Return the number of Output_sections in an Output_segment.
4616
4617 unsigned int
4618 Output_segment::output_section_count() const
4619 {
4620   unsigned int ret = 0;
4621   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4622     ret += this->output_section_count_list(&this->output_lists_[i]);
4623   return ret;
4624 }
4625
4626 // Return the number of Output_sections in an Output_data_list.
4627
4628 unsigned int
4629 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4630 {
4631   unsigned int count = 0;
4632   for (Output_data_list::const_iterator p = pdl->begin();
4633        p != pdl->end();
4634        ++p)
4635     {
4636       if ((*p)->is_section())
4637         ++count;
4638     }
4639   return count;
4640 }
4641
4642 // Return the section attached to the list segment with the lowest
4643 // load address.  This is used when handling a PHDRS clause in a
4644 // linker script.
4645
4646 Output_section*
4647 Output_segment::section_with_lowest_load_address() const
4648 {
4649   Output_section* found = NULL;
4650   uint64_t found_lma = 0;
4651   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4652     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4653                                       &found_lma);
4654   return found;
4655 }
4656
4657 // Look through a list for a section with a lower load address.
4658
4659 void
4660 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4661                                             Output_section** found,
4662                                             uint64_t* found_lma) const
4663 {
4664   for (Output_data_list::const_iterator p = pdl->begin();
4665        p != pdl->end();
4666        ++p)
4667     {
4668       if (!(*p)->is_section())
4669         continue;
4670       Output_section* os = static_cast<Output_section*>(*p);
4671       uint64_t lma = (os->has_load_address()
4672                       ? os->load_address()
4673                       : os->address());
4674       if (*found == NULL || lma < *found_lma)
4675         {
4676           *found = os;
4677           *found_lma = lma;
4678         }
4679     }
4680 }
4681
4682 // Write the segment data into *OPHDR.
4683
4684 template<int size, bool big_endian>
4685 void
4686 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4687 {
4688   ophdr->put_p_type(this->type_);
4689   ophdr->put_p_offset(this->offset_);
4690   ophdr->put_p_vaddr(this->vaddr_);
4691   ophdr->put_p_paddr(this->paddr_);
4692   ophdr->put_p_filesz(this->filesz_);
4693   ophdr->put_p_memsz(this->memsz_);
4694   ophdr->put_p_flags(this->flags_);
4695   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4696 }
4697
4698 // Write the section headers into V.
4699
4700 template<int size, bool big_endian>
4701 unsigned char*
4702 Output_segment::write_section_headers(const Layout* layout,
4703                                       const Stringpool* secnamepool,
4704                                       unsigned char* v,
4705                                       unsigned int* pshndx) const
4706 {
4707   // Every section that is attached to a segment must be attached to a
4708   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4709   // segments.
4710   if (this->type_ != elfcpp::PT_LOAD)
4711     return v;
4712
4713   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4714     {
4715       const Output_data_list* pdl = &this->output_lists_[i];
4716       v = this->write_section_headers_list<size, big_endian>(layout,
4717                                                              secnamepool,
4718                                                              pdl,
4719                                                              v, pshndx);
4720     }
4721
4722   return v;
4723 }
4724
4725 template<int size, bool big_endian>
4726 unsigned char*
4727 Output_segment::write_section_headers_list(const Layout* layout,
4728                                            const Stringpool* secnamepool,
4729                                            const Output_data_list* pdl,
4730                                            unsigned char* v,
4731                                            unsigned int* pshndx) const
4732 {
4733   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4734   for (Output_data_list::const_iterator p = pdl->begin();
4735        p != pdl->end();
4736        ++p)
4737     {
4738       if ((*p)->is_section())
4739         {
4740           const Output_section* ps = static_cast<const Output_section*>(*p);
4741           gold_assert(*pshndx == ps->out_shndx());
4742           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4743           ps->write_header(layout, secnamepool, &oshdr);
4744           v += shdr_size;
4745           ++*pshndx;
4746         }
4747     }
4748   return v;
4749 }
4750
4751 // Print the output sections to the map file.
4752
4753 void
4754 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4755 {
4756   if (this->type() != elfcpp::PT_LOAD)
4757     return;
4758   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4759     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4760 }
4761
4762 // Print an output section list to the map file.
4763
4764 void
4765 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4766                                               const Output_data_list* pdl) const
4767 {
4768   for (Output_data_list::const_iterator p = pdl->begin();
4769        p != pdl->end();
4770        ++p)
4771     (*p)->print_to_mapfile(mapfile);
4772 }
4773
4774 // Output_file methods.
4775
4776 Output_file::Output_file(const char* name)
4777   : name_(name),
4778     o_(-1),
4779     file_size_(0),
4780     base_(NULL),
4781     map_is_anonymous_(false),
4782     map_is_allocated_(false),
4783     is_temporary_(false)
4784 {
4785 }
4786
4787 // Try to open an existing file.  Returns false if the file doesn't
4788 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4789 // NULL, open that file as the base for incremental linking, and
4790 // copy its contents to the new output file.  This routine can
4791 // be called for incremental updates, in which case WRITABLE should
4792 // be true, or by the incremental-dump utility, in which case
4793 // WRITABLE should be false.
4794
4795 bool
4796 Output_file::open_base_file(const char* base_name, bool writable)
4797 {
4798   // The name "-" means "stdout".
4799   if (strcmp(this->name_, "-") == 0)
4800     return false;
4801
4802   bool use_base_file = base_name != NULL;
4803   if (!use_base_file)
4804     base_name = this->name_;
4805   else if (strcmp(base_name, this->name_) == 0)
4806     gold_fatal(_("%s: incremental base and output file name are the same"),
4807                base_name);
4808
4809   // Don't bother opening files with a size of zero.
4810   struct stat s;
4811   if (::stat(base_name, &s) != 0)
4812     {
4813       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4814       return false;
4815     }
4816   if (s.st_size == 0)
4817     {
4818       gold_info(_("%s: incremental base file is empty"), base_name);
4819       return false;
4820     }
4821
4822   // If we're using a base file, we want to open it read-only.
4823   if (use_base_file)
4824     writable = false;
4825
4826   int oflags = writable ? O_RDWR : O_RDONLY;
4827   int o = open_descriptor(-1, base_name, oflags, 0);
4828   if (o < 0)
4829     {
4830       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4831       return false;
4832     }
4833
4834   // If the base file and the output file are different, open a
4835   // new output file and read the contents from the base file into
4836   // the newly-mapped region.
4837   if (use_base_file)
4838     {
4839       this->open(s.st_size);
4840       ssize_t bytes_to_read = s.st_size;
4841       unsigned char* p = this->base_;
4842       while (bytes_to_read > 0)
4843         {
4844           ssize_t len = ::read(o, p, bytes_to_read);
4845           if (len < 0)
4846             {
4847               gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4848               return false;
4849             }
4850           if (len == 0)
4851             {
4852               gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4853                         base_name,
4854                         static_cast<long long>(s.st_size - bytes_to_read),
4855                         static_cast<long long>(s.st_size));
4856               return false;
4857             }
4858           p += len;
4859           bytes_to_read -= len;
4860         }
4861       ::close(o);
4862       return true;
4863     }
4864
4865   this->o_ = o;
4866   this->file_size_ = s.st_size;
4867
4868   if (!this->map_no_anonymous(writable))
4869     {
4870       release_descriptor(o, true);
4871       this->o_ = -1;
4872       this->file_size_ = 0;
4873       return false;
4874     }
4875
4876   return true;
4877 }
4878
4879 // Open the output file.
4880
4881 void
4882 Output_file::open(off_t file_size)
4883 {
4884   this->file_size_ = file_size;
4885
4886   // Unlink the file first; otherwise the open() may fail if the file
4887   // is busy (e.g. it's an executable that's currently being executed).
4888   //
4889   // However, the linker may be part of a system where a zero-length
4890   // file is created for it to write to, with tight permissions (gcc
4891   // 2.95 did something like this).  Unlinking the file would work
4892   // around those permission controls, so we only unlink if the file
4893   // has a non-zero size.  We also unlink only regular files to avoid
4894   // trouble with directories/etc.
4895   //
4896   // If we fail, continue; this command is merely a best-effort attempt
4897   // to improve the odds for open().
4898
4899   // We let the name "-" mean "stdout"
4900   if (!this->is_temporary_)
4901     {
4902       if (strcmp(this->name_, "-") == 0)
4903         this->o_ = STDOUT_FILENO;
4904       else
4905         {
4906           struct stat s;
4907           if (::stat(this->name_, &s) == 0
4908               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4909             {
4910               if (s.st_size != 0)
4911                 ::unlink(this->name_);
4912               else if (!parameters->options().relocatable())
4913                 {
4914                   // If we don't unlink the existing file, add execute
4915                   // permission where read permissions already exist
4916                   // and where the umask permits.
4917                   int mask = ::umask(0);
4918                   ::umask(mask);
4919                   s.st_mode |= (s.st_mode & 0444) >> 2;
4920                   ::chmod(this->name_, s.st_mode & ~mask);
4921                 }
4922             }
4923
4924           int mode = parameters->options().relocatable() ? 0666 : 0777;
4925           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4926                                   mode);
4927           if (o < 0)
4928             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4929           this->o_ = o;
4930         }
4931     }
4932
4933   this->map();
4934 }
4935
4936 // Resize the output file.
4937
4938 void
4939 Output_file::resize(off_t file_size)
4940 {
4941   // If the mmap is mapping an anonymous memory buffer, this is easy:
4942   // just mremap to the new size.  If it's mapping to a file, we want
4943   // to unmap to flush to the file, then remap after growing the file.
4944   if (this->map_is_anonymous_)
4945     {
4946       void* base;
4947       if (!this->map_is_allocated_)
4948         {
4949           base = ::mremap(this->base_, this->file_size_, file_size,
4950                           MREMAP_MAYMOVE);
4951           if (base == MAP_FAILED)
4952             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4953         }
4954       else
4955         {
4956           base = realloc(this->base_, file_size);
4957           if (base == NULL)
4958             gold_nomem();
4959           if (file_size > this->file_size_)
4960             memset(static_cast<char*>(base) + this->file_size_, 0,
4961                    file_size - this->file_size_);
4962         }
4963       this->base_ = static_cast<unsigned char*>(base);
4964       this->file_size_ = file_size;
4965     }
4966   else
4967     {
4968       this->unmap();
4969       this->file_size_ = file_size;
4970       if (!this->map_no_anonymous(true))
4971         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4972     }
4973 }
4974
4975 // Map an anonymous block of memory which will later be written to the
4976 // file.  Return whether the map succeeded.
4977
4978 bool
4979 Output_file::map_anonymous()
4980 {
4981   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4982                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4983   if (base == MAP_FAILED)
4984     {
4985       base = malloc(this->file_size_);
4986       if (base == NULL)
4987         return false;
4988       memset(base, 0, this->file_size_);
4989       this->map_is_allocated_ = true;
4990     }
4991   this->base_ = static_cast<unsigned char*>(base);
4992   this->map_is_anonymous_ = true;
4993   return true;
4994 }
4995
4996 // Map the file into memory.  Return whether the mapping succeeded.
4997 // If WRITABLE is true, map with write access.
4998
4999 bool
5000 Output_file::map_no_anonymous(bool writable)
5001 {
5002   const int o = this->o_;
5003
5004   // If the output file is not a regular file, don't try to mmap it;
5005   // instead, we'll mmap a block of memory (an anonymous buffer), and
5006   // then later write the buffer to the file.
5007   void* base;
5008   struct stat statbuf;
5009   if (o == STDOUT_FILENO || o == STDERR_FILENO
5010       || ::fstat(o, &statbuf) != 0
5011       || !S_ISREG(statbuf.st_mode)
5012       || this->is_temporary_)
5013     return false;
5014
5015   // Ensure that we have disk space available for the file.  If we
5016   // don't do this, it is possible that we will call munmap, close,
5017   // and exit with dirty buffers still in the cache with no assigned
5018   // disk blocks.  If the disk is out of space at that point, the
5019   // output file will wind up incomplete, but we will have already
5020   // exited.  The alternative to fallocate would be to use fdatasync,
5021   // but that would be a more significant performance hit.
5022   if (writable)
5023     {
5024       int err = gold_fallocate(o, 0, this->file_size_);
5025       if (err != 0)
5026        gold_fatal(_("%s: %s"), this->name_, strerror(err));
5027     }
5028
5029   // Map the file into memory.
5030   int prot = PROT_READ;
5031   if (writable)
5032     prot |= PROT_WRITE;
5033   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5034
5035   // The mmap call might fail because of file system issues: the file
5036   // system might not support mmap at all, or it might not support
5037   // mmap with PROT_WRITE.
5038   if (base == MAP_FAILED)
5039     return false;
5040
5041   this->map_is_anonymous_ = false;
5042   this->base_ = static_cast<unsigned char*>(base);
5043   return true;
5044 }
5045
5046 // Map the file into memory.
5047
5048 void
5049 Output_file::map()
5050 {
5051   if (parameters->options().mmap_output_file()
5052       && this->map_no_anonymous(true))
5053     return;
5054
5055   // The mmap call might fail because of file system issues: the file
5056   // system might not support mmap at all, or it might not support
5057   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5058   // see in all cases, so if the mmap fails for any reason and we
5059   // don't care about file contents, try for an anonymous map.
5060   if (this->map_anonymous())
5061     return;
5062
5063   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5064              this->name_, static_cast<unsigned long>(this->file_size_),
5065              strerror(errno));
5066 }
5067
5068 // Unmap the file from memory.
5069
5070 void
5071 Output_file::unmap()
5072 {
5073   if (this->map_is_anonymous_)
5074     {
5075       // We've already written out the data, so there is no reason to
5076       // waste time unmapping or freeing the memory.
5077     }
5078   else
5079     {
5080       if (::munmap(this->base_, this->file_size_) < 0)
5081         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5082     }
5083   this->base_ = NULL;
5084 }
5085
5086 // Close the output file.
5087
5088 void
5089 Output_file::close()
5090 {
5091   // If the map isn't file-backed, we need to write it now.
5092   if (this->map_is_anonymous_ && !this->is_temporary_)
5093     {
5094       size_t bytes_to_write = this->file_size_;
5095       size_t offset = 0;
5096       while (bytes_to_write > 0)
5097         {
5098           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5099                                           bytes_to_write);
5100           if (bytes_written == 0)
5101             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5102           else if (bytes_written < 0)
5103             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5104           else
5105             {
5106               bytes_to_write -= bytes_written;
5107               offset += bytes_written;
5108             }
5109         }
5110     }
5111   this->unmap();
5112
5113   // We don't close stdout or stderr
5114   if (this->o_ != STDOUT_FILENO
5115       && this->o_ != STDERR_FILENO
5116       && !this->is_temporary_)
5117     if (::close(this->o_) < 0)
5118       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5119   this->o_ = -1;
5120 }
5121
5122 // Instantiate the templates we need.  We could use the configure
5123 // script to restrict this to only the ones for implemented targets.
5124
5125 #ifdef HAVE_TARGET_32_LITTLE
5126 template
5127 off_t
5128 Output_section::add_input_section<32, false>(
5129     Layout* layout,
5130     Sized_relobj_file<32, false>* object,
5131     unsigned int shndx,
5132     const char* secname,
5133     const elfcpp::Shdr<32, false>& shdr,
5134     unsigned int reloc_shndx,
5135     bool have_sections_script);
5136 #endif
5137
5138 #ifdef HAVE_TARGET_32_BIG
5139 template
5140 off_t
5141 Output_section::add_input_section<32, true>(
5142     Layout* layout,
5143     Sized_relobj_file<32, true>* object,
5144     unsigned int shndx,
5145     const char* secname,
5146     const elfcpp::Shdr<32, true>& shdr,
5147     unsigned int reloc_shndx,
5148     bool have_sections_script);
5149 #endif
5150
5151 #ifdef HAVE_TARGET_64_LITTLE
5152 template
5153 off_t
5154 Output_section::add_input_section<64, false>(
5155     Layout* layout,
5156     Sized_relobj_file<64, false>* object,
5157     unsigned int shndx,
5158     const char* secname,
5159     const elfcpp::Shdr<64, false>& shdr,
5160     unsigned int reloc_shndx,
5161     bool have_sections_script);
5162 #endif
5163
5164 #ifdef HAVE_TARGET_64_BIG
5165 template
5166 off_t
5167 Output_section::add_input_section<64, true>(
5168     Layout* layout,
5169     Sized_relobj_file<64, true>* object,
5170     unsigned int shndx,
5171     const char* secname,
5172     const elfcpp::Shdr<64, true>& shdr,
5173     unsigned int reloc_shndx,
5174     bool have_sections_script);
5175 #endif
5176
5177 #ifdef HAVE_TARGET_32_LITTLE
5178 template
5179 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5180 #endif
5181
5182 #ifdef HAVE_TARGET_32_BIG
5183 template
5184 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5185 #endif
5186
5187 #ifdef HAVE_TARGET_64_LITTLE
5188 template
5189 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5190 #endif
5191
5192 #ifdef HAVE_TARGET_64_BIG
5193 template
5194 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5195 #endif
5196
5197 #ifdef HAVE_TARGET_32_LITTLE
5198 template
5199 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5200 #endif
5201
5202 #ifdef HAVE_TARGET_32_BIG
5203 template
5204 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5205 #endif
5206
5207 #ifdef HAVE_TARGET_64_LITTLE
5208 template
5209 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5210 #endif
5211
5212 #ifdef HAVE_TARGET_64_BIG
5213 template
5214 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5215 #endif
5216
5217 #ifdef HAVE_TARGET_32_LITTLE
5218 template
5219 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5220 #endif
5221
5222 #ifdef HAVE_TARGET_32_BIG
5223 template
5224 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5225 #endif
5226
5227 #ifdef HAVE_TARGET_64_LITTLE
5228 template
5229 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5230 #endif
5231
5232 #ifdef HAVE_TARGET_64_BIG
5233 template
5234 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5235 #endif
5236
5237 #ifdef HAVE_TARGET_32_LITTLE
5238 template
5239 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5240 #endif
5241
5242 #ifdef HAVE_TARGET_32_BIG
5243 template
5244 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5245 #endif
5246
5247 #ifdef HAVE_TARGET_64_LITTLE
5248 template
5249 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5250 #endif
5251
5252 #ifdef HAVE_TARGET_64_BIG
5253 template
5254 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5255 #endif
5256
5257 #ifdef HAVE_TARGET_32_LITTLE
5258 template
5259 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5260 #endif
5261
5262 #ifdef HAVE_TARGET_32_BIG
5263 template
5264 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5265 #endif
5266
5267 #ifdef HAVE_TARGET_64_LITTLE
5268 template
5269 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5270 #endif
5271
5272 #ifdef HAVE_TARGET_64_BIG
5273 template
5274 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5275 #endif
5276
5277 #ifdef HAVE_TARGET_32_LITTLE
5278 template
5279 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5280 #endif
5281
5282 #ifdef HAVE_TARGET_32_BIG
5283 template
5284 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5285 #endif
5286
5287 #ifdef HAVE_TARGET_64_LITTLE
5288 template
5289 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5290 #endif
5291
5292 #ifdef HAVE_TARGET_64_BIG
5293 template
5294 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5295 #endif
5296
5297 #ifdef HAVE_TARGET_32_LITTLE
5298 template
5299 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5300 #endif
5301
5302 #ifdef HAVE_TARGET_32_BIG
5303 template
5304 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5305 #endif
5306
5307 #ifdef HAVE_TARGET_64_LITTLE
5308 template
5309 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5310 #endif
5311
5312 #ifdef HAVE_TARGET_64_BIG
5313 template
5314 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5315 #endif
5316
5317 #ifdef HAVE_TARGET_32_LITTLE
5318 template
5319 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5320 #endif
5321
5322 #ifdef HAVE_TARGET_32_BIG
5323 template
5324 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5325 #endif
5326
5327 #ifdef HAVE_TARGET_64_LITTLE
5328 template
5329 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5330 #endif
5331
5332 #ifdef HAVE_TARGET_64_BIG
5333 template
5334 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5335 #endif
5336
5337 #ifdef HAVE_TARGET_32_LITTLE
5338 template
5339 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5340 #endif
5341
5342 #ifdef HAVE_TARGET_32_BIG
5343 template
5344 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5345 #endif
5346
5347 #ifdef HAVE_TARGET_64_LITTLE
5348 template
5349 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5350 #endif
5351
5352 #ifdef HAVE_TARGET_64_BIG
5353 template
5354 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5355 #endif
5356
5357 #ifdef HAVE_TARGET_32_LITTLE
5358 template
5359 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5360 #endif
5361
5362 #ifdef HAVE_TARGET_32_BIG
5363 template
5364 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5365 #endif
5366
5367 #ifdef HAVE_TARGET_64_LITTLE
5368 template
5369 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5370 #endif
5371
5372 #ifdef HAVE_TARGET_64_BIG
5373 template
5374 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5375 #endif
5376
5377 #ifdef HAVE_TARGET_32_LITTLE
5378 template
5379 class Output_data_group<32, false>;
5380 #endif
5381
5382 #ifdef HAVE_TARGET_32_BIG
5383 template
5384 class Output_data_group<32, true>;
5385 #endif
5386
5387 #ifdef HAVE_TARGET_64_LITTLE
5388 template
5389 class Output_data_group<64, false>;
5390 #endif
5391
5392 #ifdef HAVE_TARGET_64_BIG
5393 template
5394 class Output_data_group<64, true>;
5395 #endif
5396
5397 #ifdef HAVE_TARGET_32_LITTLE
5398 template
5399 class Output_data_got<32, false>;
5400 #endif
5401
5402 #ifdef HAVE_TARGET_32_BIG
5403 template
5404 class Output_data_got<32, true>;
5405 #endif
5406
5407 #ifdef HAVE_TARGET_64_LITTLE
5408 template
5409 class Output_data_got<64, false>;
5410 #endif
5411
5412 #ifdef HAVE_TARGET_64_BIG
5413 template
5414 class Output_data_got<64, true>;
5415 #endif
5416
5417 } // End namespace gold.