1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #ifdef HAVE_SYS_MMAN_H
37 #include "libiberty.h"
40 #include "parameters.h"
45 #include "descriptors.h"
49 // For systems without mmap support.
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
64 # define MAP_PRIVATE 0
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
74 # define ENOSYS EINVAL
78 gold_mmap(void *, size_t, int, int, int, off_t)
85 gold_munmap(void *, size_t)
92 gold_mremap(void *, size_t, size_t, int)
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
114 // Mingw does not have S_ISLNK.
116 # define S_ISLNK(mode) 0
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
128 gold_fallocate(int o, off_t offset, off_t len)
130 #ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
137 #endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
143 // Output_data variables.
145 bool Output_data::allocated_sizes_are_fixed;
147 // Output_data methods.
149 Output_data::~Output_data()
153 // Return the default alignment for the target size.
156 Output_data::default_alignment()
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
162 // Return the default alignment for a size--32 or 64.
165 Output_data::default_alignment_for_size(int size)
175 // Output_section_header methods. This currently assumes that the
176 // segment and section lists are complete at construction time.
178 Output_section_headers::Output_section_headers(
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
181 const Layout::Section_list* section_list,
182 const Layout::Section_list* unattached_section_list,
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
186 segment_list_(segment_list),
187 section_list_(section_list),
188 unattached_section_list_(unattached_section_list),
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
194 // Compute the current data size.
197 Output_section_headers::do_size() const
199 // Count all the sections. Start with 1 for the null section.
201 if (!parameters->options().relocatable())
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
219 count += this->unattached_section_list_->size();
221 const int size = parameters->target().get_size();
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
230 return count * shdr_size;
233 // Write out the section headers.
236 Output_section_headers::do_write(Output_file* of)
238 switch (parameters->size_and_endianness())
240 #ifdef HAVE_TARGET_32_LITTLE
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
245 #ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
250 #ifdef HAVE_TARGET_64_LITTLE
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
255 #ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
265 template<int size, bool big_endian>
267 Output_section_headers::do_sized_write(Output_file* of)
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
288 oshdr.put_sh_size(section_count);
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
294 oshdr.put_sh_link(shstrndx);
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
305 unsigned int shndx = 1;
306 if (!parameters->options().relocatable())
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
337 for (Layout::Section_list::const_iterator p =
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
345 && parameters->options().relocatable())
347 gold_assert(shndx == (*p)->out_shndx());
348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
354 of->write_output_view(this->offset(), all_shdrs_size, view);
357 // Output_segment_header methods.
359 Output_segment_headers::Output_segment_headers(
360 const Layout::Segment_list& segment_list)
361 : segment_list_(segment_list)
363 this->set_current_data_size_for_child(this->do_size());
367 Output_segment_headers::do_write(Output_file* of)
369 switch (parameters->size_and_endianness())
371 #ifdef HAVE_TARGET_32_LITTLE
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
376 #ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
381 #ifdef HAVE_TARGET_64_LITTLE
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
386 #ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
396 template<int size, bool big_endian>
398 Output_segment_headers::do_sized_write(Output_file* of)
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402 gold_assert(all_phdrs_size == this->data_size());
403 unsigned char* view = of->get_output_view(this->offset(),
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
415 gold_assert(v - view == all_phdrs_size);
417 of->write_output_view(this->offset(), all_phdrs_size, view);
421 Output_segment_headers::do_size() const
423 const int size = parameters->target().get_size();
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
432 return this->segment_list_.size() * phdr_size;
435 // Output_file_header methods.
437 Output_file_header::Output_file_header(const Target* target,
438 const Symbol_table* symtab,
439 const Output_segment_headers* osh)
442 segment_header_(osh),
443 section_header_(NULL),
446 this->set_data_size(this->do_size());
449 // Set the section table information for a file header.
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
459 // Write out the file header.
462 Output_file_header::do_write(Output_file* of)
464 gold_assert(this->offset() == 0);
466 switch (parameters->size_and_endianness())
468 #ifdef HAVE_TARGET_32_LITTLE
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
473 #ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
478 #ifdef HAVE_TARGET_64_LITTLE
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
483 #ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
493 // Write out the file header with appropriate size and endianness.
495 template<int size, bool big_endian>
497 Output_file_header::do_sized_write(Output_file* of)
499 gold_assert(this->offset() == 0);
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521 oehdr.put_e_ident(e_ident);
524 if (parameters->options().relocatable())
525 e_type = elfcpp::ET_REL;
526 else if (parameters->options().output_is_position_independent())
527 e_type = elfcpp::ET_DYN;
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
535 oehdr.put_e_entry(this->entry<size>());
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
540 oehdr.put_e_phoff(this->segment_header_->offset());
542 oehdr.put_e_shoff(this->section_header_->offset());
543 oehdr.put_e_flags(this->target_->processor_specific_flags());
544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
546 if (this->segment_header_ == NULL)
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
569 oehdr.put_e_shnum(0);
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 parameters->target().adjust_elf_header(view, ehdr_size);
581 of->write_output_view(0, ehdr_size, view);
584 // Return the value to use for the entry address.
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
590 const bool should_issue_warning = (parameters->options().entry() != NULL
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
593 const char* entry = parameters->entry();
594 Symbol* sym = this->symtab_->lookup(entry);
596 typename Sized_symbol<size>::Value_type v;
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
602 gold_warning("entry symbol '%s' exists but is not defined", entry);
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
610 v = strtoull(entry, &endptr, 0);
613 if (should_issue_warning)
614 gold_warning("cannot find entry symbol '%s'", entry);
622 // Compute the current data size.
625 Output_file_header::do_size() const
627 const int size = parameters->target().get_size();
629 return elfcpp::Elf_sizes<32>::ehdr_size;
631 return elfcpp::Elf_sizes<64>::ehdr_size;
636 // Output_data_const methods.
639 Output_data_const::do_write(Output_file* of)
641 of->write(this->offset(), this->data_.data(), this->data_.size());
644 // Output_data_const_buffer methods.
647 Output_data_const_buffer::do_write(Output_file* of)
649 of->write(this->offset(), this->p_, this->data_size());
652 // Output_section_data methods.
654 // Record the output section, and set the entry size and such.
657 Output_section_data::set_output_section(Output_section* os)
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
664 // Return the section index of the output section.
667 Output_section_data::do_out_shndx() const
669 gold_assert(this->output_section_ != NULL);
670 return this->output_section_->out_shndx();
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
677 Output_section_data::set_addralign(uint64_t addralign)
679 this->addralign_ = addralign;
680 if (this->output_section_ != NULL
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
685 // Output_data_strtab methods.
687 // Set the final data size.
690 Output_data_strtab::set_final_data_size()
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
696 // Write out a string table.
699 Output_data_strtab::do_write(Output_file* of)
701 this->strtab_->write(of, this->offset());
704 // Output_reloc methods.
706 // A reloc against a global symbol.
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718 is_relative_(is_relative), is_symbolless_(is_symbolless),
719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
723 this->u1_.gsym = gsym;
726 this->set_needs_dynsym_index();
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
733 Sized_relobj<size, big_endian>* relobj,
739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740 is_relative_(is_relative), is_symbolless_(is_symbolless),
741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
743 gold_assert(shndx != INVALID_CODE);
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
749 this->set_needs_dynsym_index();
752 // A reloc against a local symbol.
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
763 bool is_section_symbol,
765 : address_(address), local_sym_index_(local_sym_index), type_(type),
766 is_relative_(is_relative), is_symbolless_(is_symbolless),
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
774 this->u1_.relobj = relobj;
777 this->set_needs_dynsym_index();
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
789 bool is_section_symbol,
791 : address_(address), local_sym_index_(local_sym_index), type_(type),
792 is_relative_(is_relative), is_symbolless_(is_symbolless),
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
804 this->set_needs_dynsym_index();
807 // A reloc against the STT_SECTION symbol of an output section.
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
815 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
816 is_relative_(false), is_symbolless_(false),
817 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
819 // this->type_ is a bitfield; make sure TYPE fits.
820 gold_assert(this->type_ == type);
824 this->set_needs_dynsym_index();
826 os->set_needs_symtab_index();
829 template<bool dynamic, int size, bool big_endian>
830 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
833 Sized_relobj<size, big_endian>* relobj,
836 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
837 is_relative_(false), is_symbolless_(false),
838 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
840 gold_assert(shndx != INVALID_CODE);
841 // this->type_ is a bitfield; make sure TYPE fits.
842 gold_assert(this->type_ == type);
844 this->u2_.relobj = relobj;
846 this->set_needs_dynsym_index();
848 os->set_needs_symtab_index();
851 // An absolute relocation.
853 template<bool dynamic, int size, bool big_endian>
854 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
858 : address_(address), local_sym_index_(0), type_(type),
859 is_relative_(false), is_symbolless_(false),
860 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
862 // this->type_ is a bitfield; make sure TYPE fits.
863 gold_assert(this->type_ == type);
864 this->u1_.relobj = NULL;
868 template<bool dynamic, int size, bool big_endian>
869 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
871 Sized_relobj<size, big_endian>* relobj,
874 : address_(address), local_sym_index_(0), type_(type),
875 is_relative_(false), is_symbolless_(false),
876 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
878 gold_assert(shndx != INVALID_CODE);
879 // this->type_ is a bitfield; make sure TYPE fits.
880 gold_assert(this->type_ == type);
881 this->u1_.relobj = NULL;
882 this->u2_.relobj = relobj;
885 // A target specific relocation.
887 template<bool dynamic, int size, bool big_endian>
888 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
893 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
894 is_relative_(false), is_symbolless_(false),
895 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
897 // this->type_ is a bitfield; make sure TYPE fits.
898 gold_assert(this->type_ == type);
903 template<bool dynamic, int size, bool big_endian>
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
907 Sized_relobj<size, big_endian>* relobj,
910 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
911 is_relative_(false), is_symbolless_(false),
912 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
914 gold_assert(shndx != INVALID_CODE);
915 // this->type_ is a bitfield; make sure TYPE fits.
916 gold_assert(this->type_ == type);
918 this->u2_.relobj = relobj;
921 // Record that we need a dynamic symbol index for this relocation.
923 template<bool dynamic, int size, bool big_endian>
925 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
926 set_needs_dynsym_index()
928 if (this->is_symbolless_)
930 switch (this->local_sym_index_)
936 this->u1_.gsym->set_needs_dynsym_entry();
940 this->u1_.os->set_needs_dynsym_index();
944 // The target must take care of this if necessary.
952 const unsigned int lsi = this->local_sym_index_;
953 Sized_relobj_file<size, big_endian>* relobj =
954 this->u1_.relobj->sized_relobj();
955 gold_assert(relobj != NULL);
956 if (!this->is_section_symbol_)
957 relobj->set_needs_output_dynsym_entry(lsi);
959 relobj->output_section(lsi)->set_needs_dynsym_index();
965 // Get the symbol index of a relocation.
967 template<bool dynamic, int size, bool big_endian>
969 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
973 if (this->is_symbolless_)
975 switch (this->local_sym_index_)
981 if (this->u1_.gsym == NULL)
984 index = this->u1_.gsym->dynsym_index();
986 index = this->u1_.gsym->symtab_index();
991 index = this->u1_.os->dynsym_index();
993 index = this->u1_.os->symtab_index();
997 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1002 // Relocations without symbols use a symbol index of 0.
1008 const unsigned int lsi = this->local_sym_index_;
1009 Sized_relobj_file<size, big_endian>* relobj =
1010 this->u1_.relobj->sized_relobj();
1011 gold_assert(relobj != NULL);
1012 if (!this->is_section_symbol_)
1015 index = relobj->dynsym_index(lsi);
1017 index = relobj->symtab_index(lsi);
1021 Output_section* os = relobj->output_section(lsi);
1022 gold_assert(os != NULL);
1024 index = os->dynsym_index();
1026 index = os->symtab_index();
1031 gold_assert(index != -1U);
1035 // For a local section symbol, get the address of the offset ADDEND
1036 // within the input section.
1038 template<bool dynamic, int size, bool big_endian>
1039 typename elfcpp::Elf_types<size>::Elf_Addr
1040 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1041 local_section_offset(Addend addend) const
1043 gold_assert(this->local_sym_index_ != GSYM_CODE
1044 && this->local_sym_index_ != SECTION_CODE
1045 && this->local_sym_index_ != TARGET_CODE
1046 && this->local_sym_index_ != INVALID_CODE
1047 && this->local_sym_index_ != 0
1048 && this->is_section_symbol_);
1049 const unsigned int lsi = this->local_sym_index_;
1050 Output_section* os = this->u1_.relobj->output_section(lsi);
1051 gold_assert(os != NULL);
1052 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1053 if (offset != invalid_address)
1054 return offset + addend;
1055 // This is a merge section.
1056 Sized_relobj_file<size, big_endian>* relobj =
1057 this->u1_.relobj->sized_relobj();
1058 gold_assert(relobj != NULL);
1059 offset = os->output_address(relobj, lsi, addend);
1060 gold_assert(offset != invalid_address);
1064 // Get the output address of a relocation.
1066 template<bool dynamic, int size, bool big_endian>
1067 typename elfcpp::Elf_types<size>::Elf_Addr
1068 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1070 Address address = this->address_;
1071 if (this->shndx_ != INVALID_CODE)
1073 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1074 gold_assert(os != NULL);
1075 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1076 if (off != invalid_address)
1077 address += os->address() + off;
1080 Sized_relobj_file<size, big_endian>* relobj =
1081 this->u2_.relobj->sized_relobj();
1082 gold_assert(relobj != NULL);
1083 address = os->output_address(relobj, this->shndx_, address);
1084 gold_assert(address != invalid_address);
1087 else if (this->u2_.od != NULL)
1088 address += this->u2_.od->address();
1092 // Write out the offset and info fields of a Rel or Rela relocation
1095 template<bool dynamic, int size, bool big_endian>
1096 template<typename Write_rel>
1098 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1099 Write_rel* wr) const
1101 wr->put_r_offset(this->get_address());
1102 unsigned int sym_index = this->get_symbol_index();
1103 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1106 // Write out a Rel relocation.
1108 template<bool dynamic, int size, bool big_endian>
1110 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1111 unsigned char* pov) const
1113 elfcpp::Rel_write<size, big_endian> orel(pov);
1114 this->write_rel(&orel);
1117 // Get the value of the symbol referred to by a Rel relocation.
1119 template<bool dynamic, int size, bool big_endian>
1120 typename elfcpp::Elf_types<size>::Elf_Addr
1121 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1122 Addend addend) const
1124 if (this->local_sym_index_ == GSYM_CODE)
1126 const Sized_symbol<size>* sym;
1127 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1128 if (this->use_plt_offset_ && sym->has_plt_offset())
1130 uint64_t plt_address =
1131 parameters->target().plt_address_for_global(sym);
1132 return plt_address + sym->plt_offset();
1135 return sym->value() + addend;
1137 gold_assert(this->local_sym_index_ != SECTION_CODE
1138 && this->local_sym_index_ != TARGET_CODE
1139 && this->local_sym_index_ != INVALID_CODE
1140 && this->local_sym_index_ != 0
1141 && !this->is_section_symbol_);
1142 const unsigned int lsi = this->local_sym_index_;
1143 Sized_relobj_file<size, big_endian>* relobj =
1144 this->u1_.relobj->sized_relobj();
1145 gold_assert(relobj != NULL);
1146 if (this->use_plt_offset_)
1148 uint64_t plt_address =
1149 parameters->target().plt_address_for_local(relobj, lsi);
1150 return plt_address + relobj->local_plt_offset(lsi);
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
1156 // Reloc comparison. This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker. First we sort all relative relocs
1158 // to the front. Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1162 template<bool dynamic, int size, bool big_endian>
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1168 if (this->is_relative_)
1170 if (!r2.is_relative_)
1172 // Otherwise sort by reloc address below.
1174 else if (r2.is_relative_)
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1182 else if (sym1 > sym2)
1184 // Otherwise sort by reloc address.
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1191 else if (addr1 > addr2)
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1200 else if (type1 > type2)
1203 // These relocs appear to be exactly the same.
1207 // Write out a Rela relocation.
1209 template<bool dynamic, int size, bool big_endian>
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
1216 Addend addend = this->addend_;
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
1220 else if (this->rel_.is_symbolless())
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
1223 addend = this->rel_.local_section_offset(addend);
1224 orel.put_r_addend(addend);
1227 // Output_data_reloc_base methods.
1229 // Adjust the output section.
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1248 os->set_should_link_to_symtab();
1249 else if (parameters->doing_static_link())
1252 os->set_should_link_to_dynsym();
1255 // Write out relocation data.
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1262 const off_t off = this->offset();
1263 const off_t oview_size = this->data_size();
1264 unsigned char* const oview = of->get_output_view(off, oview_size);
1266 if (this->sort_relocs())
1268 gold_assert(dynamic);
1269 std::sort(this->relocs_.begin(), this->relocs_.end(),
1270 Sort_relocs_comparison());
1273 unsigned char* pov = oview;
1274 for (typename Relocs::const_iterator p = this->relocs_.begin();
1275 p != this->relocs_.end();
1282 gold_assert(pov - oview == oview_size);
1284 of->write_output_view(off, oview_size, oview);
1286 // We no longer need the relocation entries.
1287 this->relocs_.clear();
1290 // Class Output_relocatable_relocs.
1292 template<int sh_type, int size, bool big_endian>
1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1296 this->set_data_size(this->rr_->output_reloc_count()
1297 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1300 // class Output_data_group.
1302 template<int size, bool big_endian>
1303 Output_data_group<size, big_endian>::Output_data_group(
1304 Sized_relobj_file<size, big_endian>* relobj,
1305 section_size_type entry_count,
1306 elfcpp::Elf_Word flags,
1307 std::vector<unsigned int>* input_shndxes)
1308 : Output_section_data(entry_count * 4, 4, false),
1312 this->input_shndxes_.swap(*input_shndxes);
1315 // Write out the section group, which means translating the section
1316 // indexes to apply to the output file.
1318 template<int size, bool big_endian>
1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
1322 const off_t off = this->offset();
1323 const section_size_type oview_size =
1324 convert_to_section_size_type(this->data_size());
1325 unsigned char* const oview = of->get_output_view(off, oview_size);
1327 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1331 for (std::vector<unsigned int>::const_iterator p =
1332 this->input_shndxes_.begin();
1333 p != this->input_shndxes_.end();
1336 Output_section* os = this->relobj_->output_section(*p);
1338 unsigned int output_shndx;
1340 output_shndx = os->out_shndx();
1343 this->relobj_->error(_("section group retained but "
1344 "group element discarded"));
1348 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1351 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352 gold_assert(wrote == oview_size);
1354 of->write_output_view(off, oview_size, oview);
1356 // We no longer need this information.
1357 this->input_shndxes_.clear();
1360 // Output_data_got::Got_entry methods.
1362 // Write out the entry.
1364 template<int size, bool big_endian>
1366 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1370 switch (this->local_sym_index_)
1374 // If the symbol is resolved locally, we need to write out the
1375 // link-time value, which will be relocated dynamically by a
1376 // RELATIVE relocation.
1377 Symbol* gsym = this->u_.gsym;
1378 if (this->use_plt_offset_ && gsym->has_plt_offset())
1379 val = (parameters->target().plt_address_for_global(gsym)
1380 + gsym->plt_offset());
1383 Sized_symbol<size>* sgsym;
1384 // This cast is a bit ugly. We don't want to put a
1385 // virtual method in Symbol, because we want Symbol to be
1386 // as small as possible.
1387 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1388 val = sgsym->value();
1394 val = this->u_.constant;
1398 // If we're doing an incremental update, don't touch this GOT entry.
1399 if (parameters->incremental_update())
1401 val = this->u_.constant;
1406 const Relobj* object = this->u_.object;
1407 const unsigned int lsi = this->local_sym_index_;
1408 if (!this->use_plt_offset_)
1410 uint64_t lval = object->local_symbol_value(lsi, 0);
1411 val = convert_types<Valtype, uint64_t>(lval);
1415 uint64_t plt_address =
1416 parameters->target().plt_address_for_local(object, lsi);
1417 val = plt_address + object->local_plt_offset(lsi);
1423 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1426 // Output_data_got methods.
1428 // Add an entry for a global symbol to the GOT. This returns true if
1429 // this is a new GOT entry, false if the symbol already had a GOT
1432 template<int size, bool big_endian>
1434 Output_data_got<size, big_endian>::add_global(
1436 unsigned int got_type)
1438 if (gsym->has_got_offset(got_type))
1441 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1442 gsym->set_got_offset(got_type, got_offset);
1446 // Like add_global, but use the PLT offset.
1448 template<int size, bool big_endian>
1450 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1451 unsigned int got_type)
1453 if (gsym->has_got_offset(got_type))
1456 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1457 gsym->set_got_offset(got_type, got_offset);
1461 // Add an entry for a global symbol to the GOT, and add a dynamic
1462 // relocation of type R_TYPE for the GOT entry.
1464 template<int size, bool big_endian>
1466 Output_data_got<size, big_endian>::add_global_with_rel(
1468 unsigned int got_type,
1469 Output_data_reloc_generic* rel_dyn,
1470 unsigned int r_type)
1472 if (gsym->has_got_offset(got_type))
1475 unsigned int got_offset = this->add_got_entry(Got_entry());
1476 gsym->set_got_offset(got_type, got_offset);
1477 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1480 // Add a pair of entries for a global symbol to the GOT, and add
1481 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1482 // If R_TYPE_2 == 0, add the second entry with no relocation.
1483 template<int size, bool big_endian>
1485 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1487 unsigned int got_type,
1488 Output_data_reloc_generic* rel_dyn,
1489 unsigned int r_type_1,
1490 unsigned int r_type_2)
1492 if (gsym->has_got_offset(got_type))
1495 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1496 gsym->set_got_offset(got_type, got_offset);
1497 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1500 rel_dyn->add_global_generic(gsym, r_type_2, this,
1501 got_offset + size / 8, 0);
1504 // Add an entry for a local symbol to the GOT. This returns true if
1505 // this is a new GOT entry, false if the symbol already has a GOT
1508 template<int size, bool big_endian>
1510 Output_data_got<size, big_endian>::add_local(
1512 unsigned int symndx,
1513 unsigned int got_type)
1515 if (object->local_has_got_offset(symndx, got_type))
1518 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1520 object->set_local_got_offset(symndx, got_type, got_offset);
1524 // Like add_local, but use the PLT offset.
1526 template<int size, bool big_endian>
1528 Output_data_got<size, big_endian>::add_local_plt(
1530 unsigned int symndx,
1531 unsigned int got_type)
1533 if (object->local_has_got_offset(symndx, got_type))
1536 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1538 object->set_local_got_offset(symndx, got_type, got_offset);
1542 // Add an entry for a local symbol to the GOT, and add a dynamic
1543 // relocation of type R_TYPE for the GOT entry.
1545 template<int size, bool big_endian>
1547 Output_data_got<size, big_endian>::add_local_with_rel(
1549 unsigned int symndx,
1550 unsigned int got_type,
1551 Output_data_reloc_generic* rel_dyn,
1552 unsigned int r_type)
1554 if (object->local_has_got_offset(symndx, got_type))
1557 unsigned int got_offset = this->add_got_entry(Got_entry());
1558 object->set_local_got_offset(symndx, got_type, got_offset);
1559 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1562 // Add a pair of entries for a local symbol to the GOT, and add
1563 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1564 // If R_TYPE_2 == 0, add the second entry with no relocation.
1565 template<int size, bool big_endian>
1567 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1569 unsigned int symndx,
1571 unsigned int got_type,
1572 Output_data_reloc_generic* rel_dyn,
1573 unsigned int r_type_1,
1574 unsigned int r_type_2)
1576 if (object->local_has_got_offset(symndx, got_type))
1579 unsigned int got_offset =
1580 this->add_got_entry_pair(Got_entry(),
1581 Got_entry(object, symndx, false));
1582 object->set_local_got_offset(symndx, got_type, got_offset);
1583 Output_section* os = object->output_section(shndx);
1584 rel_dyn->add_output_section_generic(os, r_type_1, this, got_offset, 0);
1587 rel_dyn->add_output_section_generic(os, r_type_2, this,
1588 got_offset + size / 8, 0);
1591 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1593 template<int size, bool big_endian>
1595 Output_data_got<size, big_endian>::reserve_local(
1598 unsigned int sym_index,
1599 unsigned int got_type)
1601 this->do_reserve_slot(i);
1602 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1605 // Reserve a slot in the GOT for a global symbol.
1607 template<int size, bool big_endian>
1609 Output_data_got<size, big_endian>::reserve_global(
1612 unsigned int got_type)
1614 this->do_reserve_slot(i);
1615 gsym->set_got_offset(got_type, this->got_offset(i));
1618 // Write out the GOT.
1620 template<int size, bool big_endian>
1622 Output_data_got<size, big_endian>::do_write(Output_file* of)
1624 const int add = size / 8;
1626 const off_t off = this->offset();
1627 const off_t oview_size = this->data_size();
1628 unsigned char* const oview = of->get_output_view(off, oview_size);
1630 unsigned char* pov = oview;
1631 for (typename Got_entries::const_iterator p = this->entries_.begin();
1632 p != this->entries_.end();
1639 gold_assert(pov - oview == oview_size);
1641 of->write_output_view(off, oview_size, oview);
1643 // We no longer need the GOT entries.
1644 this->entries_.clear();
1647 // Create a new GOT entry and return its offset.
1649 template<int size, bool big_endian>
1651 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1653 if (!this->is_data_size_valid())
1655 this->entries_.push_back(got_entry);
1656 this->set_got_size();
1657 return this->last_got_offset();
1661 // For an incremental update, find an available slot.
1662 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1663 if (got_offset == -1)
1664 gold_fallback(_("out of patch space (GOT);"
1665 " relink with --incremental-full"));
1666 unsigned int got_index = got_offset / (size / 8);
1667 gold_assert(got_index < this->entries_.size());
1668 this->entries_[got_index] = got_entry;
1669 return static_cast<unsigned int>(got_offset);
1673 // Create a pair of new GOT entries and return the offset of the first.
1675 template<int size, bool big_endian>
1677 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1678 Got_entry got_entry_2)
1680 if (!this->is_data_size_valid())
1682 unsigned int got_offset;
1683 this->entries_.push_back(got_entry_1);
1684 got_offset = this->last_got_offset();
1685 this->entries_.push_back(got_entry_2);
1686 this->set_got_size();
1691 // For an incremental update, find an available pair of slots.
1692 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1693 if (got_offset == -1)
1694 gold_fallback(_("out of patch space (GOT);"
1695 " relink with --incremental-full"));
1696 unsigned int got_index = got_offset / (size / 8);
1697 gold_assert(got_index < this->entries_.size());
1698 this->entries_[got_index] = got_entry_1;
1699 this->entries_[got_index + 1] = got_entry_2;
1700 return static_cast<unsigned int>(got_offset);
1704 // Output_data_dynamic::Dynamic_entry methods.
1706 // Write out the entry.
1708 template<int size, bool big_endian>
1710 Output_data_dynamic::Dynamic_entry::write(
1712 const Stringpool* pool) const
1714 typename elfcpp::Elf_types<size>::Elf_WXword val;
1715 switch (this->offset_)
1717 case DYNAMIC_NUMBER:
1721 case DYNAMIC_SECTION_SIZE:
1722 val = this->u_.od->data_size();
1723 if (this->od2 != NULL)
1724 val += this->od2->data_size();
1727 case DYNAMIC_SYMBOL:
1729 const Sized_symbol<size>* s =
1730 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1735 case DYNAMIC_STRING:
1736 val = pool->get_offset(this->u_.str);
1740 val = this->u_.od->address() + this->offset_;
1744 elfcpp::Dyn_write<size, big_endian> dw(pov);
1745 dw.put_d_tag(this->tag_);
1749 // Output_data_dynamic methods.
1751 // Adjust the output section to set the entry size.
1754 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1756 if (parameters->target().get_size() == 32)
1757 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1758 else if (parameters->target().get_size() == 64)
1759 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1764 // Set the final data size.
1767 Output_data_dynamic::set_final_data_size()
1769 // Add the terminating entry if it hasn't been added.
1770 // Because of relaxation, we can run this multiple times.
1771 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1773 int extra = parameters->options().spare_dynamic_tags();
1774 for (int i = 0; i < extra; ++i)
1775 this->add_constant(elfcpp::DT_NULL, 0);
1776 this->add_constant(elfcpp::DT_NULL, 0);
1780 if (parameters->target().get_size() == 32)
1781 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1782 else if (parameters->target().get_size() == 64)
1783 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1786 this->set_data_size(this->entries_.size() * dyn_size);
1789 // Write out the dynamic entries.
1792 Output_data_dynamic::do_write(Output_file* of)
1794 switch (parameters->size_and_endianness())
1796 #ifdef HAVE_TARGET_32_LITTLE
1797 case Parameters::TARGET_32_LITTLE:
1798 this->sized_write<32, false>(of);
1801 #ifdef HAVE_TARGET_32_BIG
1802 case Parameters::TARGET_32_BIG:
1803 this->sized_write<32, true>(of);
1806 #ifdef HAVE_TARGET_64_LITTLE
1807 case Parameters::TARGET_64_LITTLE:
1808 this->sized_write<64, false>(of);
1811 #ifdef HAVE_TARGET_64_BIG
1812 case Parameters::TARGET_64_BIG:
1813 this->sized_write<64, true>(of);
1821 template<int size, bool big_endian>
1823 Output_data_dynamic::sized_write(Output_file* of)
1825 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1827 const off_t offset = this->offset();
1828 const off_t oview_size = this->data_size();
1829 unsigned char* const oview = of->get_output_view(offset, oview_size);
1831 unsigned char* pov = oview;
1832 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1833 p != this->entries_.end();
1836 p->write<size, big_endian>(pov, this->pool_);
1840 gold_assert(pov - oview == oview_size);
1842 of->write_output_view(offset, oview_size, oview);
1844 // We no longer need the dynamic entries.
1845 this->entries_.clear();
1848 // Class Output_symtab_xindex.
1851 Output_symtab_xindex::do_write(Output_file* of)
1853 const off_t offset = this->offset();
1854 const off_t oview_size = this->data_size();
1855 unsigned char* const oview = of->get_output_view(offset, oview_size);
1857 memset(oview, 0, oview_size);
1859 if (parameters->target().is_big_endian())
1860 this->endian_do_write<true>(oview);
1862 this->endian_do_write<false>(oview);
1864 of->write_output_view(offset, oview_size, oview);
1866 // We no longer need the data.
1867 this->entries_.clear();
1870 template<bool big_endian>
1872 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1874 for (Xindex_entries::const_iterator p = this->entries_.begin();
1875 p != this->entries_.end();
1878 unsigned int symndx = p->first;
1879 gold_assert(symndx * 4 < this->data_size());
1880 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1884 // Output_fill_debug_info methods.
1886 // Return the minimum size needed for a dummy compilation unit header.
1889 Output_fill_debug_info::do_minimum_hole_size() const
1891 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1893 const size_t len = 4 + 2 + 4 + 1;
1894 // For type units, add type_signature, type_offset.
1895 if (this->is_debug_types_)
1900 // Write a dummy compilation unit header to fill a hole in the
1901 // .debug_info or .debug_types section.
1904 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1906 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1907 static_cast<long>(off), static_cast<long>(len));
1909 gold_assert(len >= this->do_minimum_hole_size());
1911 unsigned char* const oview = of->get_output_view(off, len);
1912 unsigned char* pov = oview;
1914 // Write header fields: unit_length, version, debug_abbrev_offset,
1916 if (this->is_big_endian())
1918 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1919 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1920 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1924 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1925 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1926 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1931 // For type units, the additional header fields -- type_signature,
1932 // type_offset -- can be filled with zeroes.
1934 // Fill the remainder of the free space with zeroes. The first
1935 // zero should tell the consumer there are no DIEs to read in this
1936 // compilation unit.
1937 if (pov < oview + len)
1938 memset(pov, 0, oview + len - pov);
1940 of->write_output_view(off, len, oview);
1943 // Output_fill_debug_line methods.
1945 // Return the minimum size needed for a dummy line number program header.
1948 Output_fill_debug_line::do_minimum_hole_size() const
1950 // Line number program header fields: unit_length, version, header_length,
1951 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1952 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1953 const size_t len = 4 + 2 + 4 + this->header_length;
1957 // Write a dummy line number program header to fill a hole in the
1958 // .debug_line section.
1961 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
1963 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
1964 static_cast<long>(off), static_cast<long>(len));
1966 gold_assert(len >= this->do_minimum_hole_size());
1968 unsigned char* const oview = of->get_output_view(off, len);
1969 unsigned char* pov = oview;
1971 // Write header fields: unit_length, version, header_length,
1972 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1973 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1974 // We set the header_length field to cover the entire hole, so the
1975 // line number program is empty.
1976 if (this->is_big_endian())
1978 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1979 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1980 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
1984 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1985 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1986 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
1989 *pov++ = 1; // minimum_instruction_length
1990 *pov++ = 0; // default_is_stmt
1991 *pov++ = 0; // line_base
1992 *pov++ = 5; // line_range
1993 *pov++ = 13; // opcode_base
1994 *pov++ = 0; // standard_opcode_lengths[1]
1995 *pov++ = 1; // standard_opcode_lengths[2]
1996 *pov++ = 1; // standard_opcode_lengths[3]
1997 *pov++ = 1; // standard_opcode_lengths[4]
1998 *pov++ = 1; // standard_opcode_lengths[5]
1999 *pov++ = 0; // standard_opcode_lengths[6]
2000 *pov++ = 0; // standard_opcode_lengths[7]
2001 *pov++ = 0; // standard_opcode_lengths[8]
2002 *pov++ = 1; // standard_opcode_lengths[9]
2003 *pov++ = 0; // standard_opcode_lengths[10]
2004 *pov++ = 0; // standard_opcode_lengths[11]
2005 *pov++ = 1; // standard_opcode_lengths[12]
2006 *pov++ = 0; // include_directories (empty)
2007 *pov++ = 0; // filenames (empty)
2009 // Some consumers don't check the header_length field, and simply
2010 // start reading the line number program immediately following the
2011 // header. For those consumers, we fill the remainder of the free
2012 // space with DW_LNS_set_basic_block opcodes. These are effectively
2013 // no-ops: the resulting line table program will not create any rows.
2014 if (pov < oview + len)
2015 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2017 of->write_output_view(off, len, oview);
2020 // Output_section::Input_section methods.
2022 // Return the current data size. For an input section we store the size here.
2023 // For an Output_section_data, we have to ask it for the size.
2026 Output_section::Input_section::current_data_size() const
2028 if (this->is_input_section())
2029 return this->u1_.data_size;
2032 this->u2_.posd->pre_finalize_data_size();
2033 return this->u2_.posd->current_data_size();
2037 // Return the data size. For an input section we store the size here.
2038 // For an Output_section_data, we have to ask it for the size.
2041 Output_section::Input_section::data_size() const
2043 if (this->is_input_section())
2044 return this->u1_.data_size;
2046 return this->u2_.posd->data_size();
2049 // Return the object for an input section.
2052 Output_section::Input_section::relobj() const
2054 if (this->is_input_section())
2055 return this->u2_.object;
2056 else if (this->is_merge_section())
2058 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2059 return this->u2_.pomb->first_relobj();
2061 else if (this->is_relaxed_input_section())
2062 return this->u2_.poris->relobj();
2067 // Return the input section index for an input section.
2070 Output_section::Input_section::shndx() const
2072 if (this->is_input_section())
2073 return this->shndx_;
2074 else if (this->is_merge_section())
2076 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2077 return this->u2_.pomb->first_shndx();
2079 else if (this->is_relaxed_input_section())
2080 return this->u2_.poris->shndx();
2085 // Set the address and file offset.
2088 Output_section::Input_section::set_address_and_file_offset(
2091 off_t section_file_offset)
2093 if (this->is_input_section())
2094 this->u2_.object->set_section_offset(this->shndx_,
2095 file_offset - section_file_offset);
2097 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2100 // Reset the address and file offset.
2103 Output_section::Input_section::reset_address_and_file_offset()
2105 if (!this->is_input_section())
2106 this->u2_.posd->reset_address_and_file_offset();
2109 // Finalize the data size.
2112 Output_section::Input_section::finalize_data_size()
2114 if (!this->is_input_section())
2115 this->u2_.posd->finalize_data_size();
2118 // Try to turn an input offset into an output offset. We want to
2119 // return the output offset relative to the start of this
2120 // Input_section in the output section.
2123 Output_section::Input_section::output_offset(
2124 const Relobj* object,
2126 section_offset_type offset,
2127 section_offset_type* poutput) const
2129 if (!this->is_input_section())
2130 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2133 if (this->shndx_ != shndx || this->u2_.object != object)
2140 // Return whether this is the merge section for the input section
2144 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2145 unsigned int shndx) const
2147 if (this->is_input_section())
2149 return this->u2_.posd->is_merge_section_for(object, shndx);
2152 // Write out the data. We don't have to do anything for an input
2153 // section--they are handled via Object::relocate--but this is where
2154 // we write out the data for an Output_section_data.
2157 Output_section::Input_section::write(Output_file* of)
2159 if (!this->is_input_section())
2160 this->u2_.posd->write(of);
2163 // Write the data to a buffer. As for write(), we don't have to do
2164 // anything for an input section.
2167 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2169 if (!this->is_input_section())
2170 this->u2_.posd->write_to_buffer(buffer);
2173 // Print to a map file.
2176 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2178 switch (this->shndx_)
2180 case OUTPUT_SECTION_CODE:
2181 case MERGE_DATA_SECTION_CODE:
2182 case MERGE_STRING_SECTION_CODE:
2183 this->u2_.posd->print_to_mapfile(mapfile);
2186 case RELAXED_INPUT_SECTION_CODE:
2188 Output_relaxed_input_section* relaxed_section =
2189 this->relaxed_input_section();
2190 mapfile->print_input_section(relaxed_section->relobj(),
2191 relaxed_section->shndx());
2195 mapfile->print_input_section(this->u2_.object, this->shndx_);
2200 // Output_section methods.
2202 // Construct an Output_section. NAME will point into a Stringpool.
2204 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2205 elfcpp::Elf_Xword flags)
2210 link_section_(NULL),
2212 info_section_(NULL),
2217 order_(ORDER_INVALID),
2222 first_input_offset_(0),
2224 postprocessing_buffer_(NULL),
2225 needs_symtab_index_(false),
2226 needs_dynsym_index_(false),
2227 should_link_to_symtab_(false),
2228 should_link_to_dynsym_(false),
2229 after_input_sections_(false),
2230 requires_postprocessing_(false),
2231 found_in_sections_clause_(false),
2232 has_load_address_(false),
2233 info_uses_section_index_(false),
2234 input_section_order_specified_(false),
2235 may_sort_attached_input_sections_(false),
2236 must_sort_attached_input_sections_(false),
2237 attached_input_sections_are_sorted_(false),
2239 is_small_section_(false),
2240 is_large_section_(false),
2241 generate_code_fills_at_write_(false),
2242 is_entsize_zero_(false),
2243 section_offsets_need_adjustment_(false),
2245 always_keeps_input_sections_(false),
2246 has_fixed_layout_(false),
2247 is_patch_space_allowed_(false),
2250 lookup_maps_(new Output_section_lookup_maps),
2252 free_space_fill_(NULL),
2255 // An unallocated section has no address. Forcing this means that
2256 // we don't need special treatment for symbols defined in debug
2258 if ((flags & elfcpp::SHF_ALLOC) == 0)
2259 this->set_address(0);
2262 Output_section::~Output_section()
2264 delete this->checkpoint_;
2267 // Set the entry size.
2270 Output_section::set_entsize(uint64_t v)
2272 if (this->is_entsize_zero_)
2274 else if (this->entsize_ == 0)
2276 else if (this->entsize_ != v)
2279 this->is_entsize_zero_ = 1;
2283 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2284 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2285 // relocation section which applies to this section, or 0 if none, or
2286 // -1U if more than one. Return the offset of the input section
2287 // within the output section. Return -1 if the input section will
2288 // receive special handling. In the normal case we don't always keep
2289 // track of input sections for an Output_section. Instead, each
2290 // Object keeps track of the Output_section for each of its input
2291 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2292 // track of input sections here; this is used when SECTIONS appears in
2295 template<int size, bool big_endian>
2297 Output_section::add_input_section(Layout* layout,
2298 Sized_relobj_file<size, big_endian>* object,
2300 const char* secname,
2301 const elfcpp::Shdr<size, big_endian>& shdr,
2302 unsigned int reloc_shndx,
2303 bool have_sections_script)
2305 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2306 if ((addralign & (addralign - 1)) != 0)
2308 object->error(_("invalid alignment %lu for section \"%s\""),
2309 static_cast<unsigned long>(addralign), secname);
2313 if (addralign > this->addralign_)
2314 this->addralign_ = addralign;
2316 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2317 uint64_t entsize = shdr.get_sh_entsize();
2319 // .debug_str is a mergeable string section, but is not always so
2320 // marked by compilers. Mark manually here so we can optimize.
2321 if (strcmp(secname, ".debug_str") == 0)
2323 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2327 this->update_flags_for_input_section(sh_flags);
2328 this->set_entsize(entsize);
2330 // If this is a SHF_MERGE section, we pass all the input sections to
2331 // a Output_data_merge. We don't try to handle relocations for such
2332 // a section. We don't try to handle empty merge sections--they
2333 // mess up the mappings, and are useless anyhow.
2334 // FIXME: Need to handle merge sections during incremental update.
2335 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2337 && shdr.get_sh_size() > 0
2338 && !parameters->incremental())
2340 // Keep information about merged input sections for rebuilding fast
2341 // lookup maps if we have sections-script or we do relaxation.
2342 bool keeps_input_sections = (this->always_keeps_input_sections_
2343 || have_sections_script
2344 || parameters->target().may_relax());
2346 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2347 addralign, keeps_input_sections))
2349 // Tell the relocation routines that they need to call the
2350 // output_offset method to determine the final address.
2355 section_size_type input_section_size = shdr.get_sh_size();
2356 section_size_type uncompressed_size;
2357 if (object->section_is_compressed(shndx, &uncompressed_size))
2358 input_section_size = uncompressed_size;
2360 off_t offset_in_section;
2361 off_t aligned_offset_in_section;
2362 if (this->has_fixed_layout())
2364 // For incremental updates, find a chunk of unused space in the section.
2365 offset_in_section = this->free_list_.allocate(input_section_size,
2367 if (offset_in_section == -1)
2368 gold_fallback(_("out of patch space in section %s; "
2369 "relink with --incremental-full"),
2371 aligned_offset_in_section = offset_in_section;
2375 offset_in_section = this->current_data_size_for_child();
2376 aligned_offset_in_section = align_address(offset_in_section,
2378 this->set_current_data_size_for_child(aligned_offset_in_section
2379 + input_section_size);
2382 // Determine if we want to delay code-fill generation until the output
2383 // section is written. When the target is relaxing, we want to delay fill
2384 // generating to avoid adjusting them during relaxation. Also, if we are
2385 // sorting input sections we must delay fill generation.
2386 if (!this->generate_code_fills_at_write_
2387 && !have_sections_script
2388 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2389 && parameters->target().has_code_fill()
2390 && (parameters->target().may_relax()
2391 || layout->is_section_ordering_specified()))
2393 gold_assert(this->fills_.empty());
2394 this->generate_code_fills_at_write_ = true;
2397 if (aligned_offset_in_section > offset_in_section
2398 && !this->generate_code_fills_at_write_
2399 && !have_sections_script
2400 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2401 && parameters->target().has_code_fill())
2403 // We need to add some fill data. Using fill_list_ when
2404 // possible is an optimization, since we will often have fill
2405 // sections without input sections.
2406 off_t fill_len = aligned_offset_in_section - offset_in_section;
2407 if (this->input_sections_.empty())
2408 this->fills_.push_back(Fill(offset_in_section, fill_len));
2411 std::string fill_data(parameters->target().code_fill(fill_len));
2412 Output_data_const* odc = new Output_data_const(fill_data, 1);
2413 this->input_sections_.push_back(Input_section(odc));
2417 // We need to keep track of this section if we are already keeping
2418 // track of sections, or if we are relaxing. Also, if this is a
2419 // section which requires sorting, or which may require sorting in
2420 // the future, we keep track of the sections. If the
2421 // --section-ordering-file option is used to specify the order of
2422 // sections, we need to keep track of sections.
2423 if (this->always_keeps_input_sections_
2424 || have_sections_script
2425 || !this->input_sections_.empty()
2426 || this->may_sort_attached_input_sections()
2427 || this->must_sort_attached_input_sections()
2428 || parameters->options().user_set_Map()
2429 || parameters->target().may_relax()
2430 || layout->is_section_ordering_specified())
2432 Input_section isecn(object, shndx, input_section_size, addralign);
2433 /* If section ordering is requested by specifying a ordering file,
2434 using --section-ordering-file, match the section name with
2436 if (parameters->options().section_ordering_file())
2438 unsigned int section_order_index =
2439 layout->find_section_order_index(std::string(secname));
2440 if (section_order_index != 0)
2442 isecn.set_section_order_index(section_order_index);
2443 this->set_input_section_order_specified();
2446 if (this->has_fixed_layout())
2448 // For incremental updates, finalize the address and offset now.
2449 uint64_t addr = this->address();
2450 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2451 aligned_offset_in_section,
2454 this->input_sections_.push_back(isecn);
2457 return aligned_offset_in_section;
2460 // Add arbitrary data to an output section.
2463 Output_section::add_output_section_data(Output_section_data* posd)
2465 Input_section inp(posd);
2466 this->add_output_section_data(&inp);
2468 if (posd->is_data_size_valid())
2470 off_t offset_in_section;
2471 if (this->has_fixed_layout())
2473 // For incremental updates, find a chunk of unused space.
2474 offset_in_section = this->free_list_.allocate(posd->data_size(),
2475 posd->addralign(), 0);
2476 if (offset_in_section == -1)
2477 gold_fallback(_("out of patch space in section %s; "
2478 "relink with --incremental-full"),
2480 // Finalize the address and offset now.
2481 uint64_t addr = this->address();
2482 off_t offset = this->offset();
2483 posd->set_address_and_file_offset(addr + offset_in_section,
2484 offset + offset_in_section);
2488 offset_in_section = this->current_data_size_for_child();
2489 off_t aligned_offset_in_section = align_address(offset_in_section,
2491 this->set_current_data_size_for_child(aligned_offset_in_section
2492 + posd->data_size());
2495 else if (this->has_fixed_layout())
2497 // For incremental updates, arrange for the data to have a fixed layout.
2498 // This will mean that additions to the data must be allocated from
2499 // free space within the containing output section.
2500 uint64_t addr = this->address();
2501 posd->set_address(addr);
2502 posd->set_file_offset(0);
2503 // FIXME: This should eventually be unreachable.
2504 // gold_unreachable();
2508 // Add a relaxed input section.
2511 Output_section::add_relaxed_input_section(Layout* layout,
2512 Output_relaxed_input_section* poris,
2513 const std::string& name)
2515 Input_section inp(poris);
2517 // If the --section-ordering-file option is used to specify the order of
2518 // sections, we need to keep track of sections.
2519 if (layout->is_section_ordering_specified())
2521 unsigned int section_order_index =
2522 layout->find_section_order_index(name);
2523 if (section_order_index != 0)
2525 inp.set_section_order_index(section_order_index);
2526 this->set_input_section_order_specified();
2530 this->add_output_section_data(&inp);
2531 if (this->lookup_maps_->is_valid())
2532 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2533 poris->shndx(), poris);
2535 // For a relaxed section, we use the current data size. Linker scripts
2536 // get all the input sections, including relaxed one from an output
2537 // section and add them back to them same output section to compute the
2538 // output section size. If we do not account for sizes of relaxed input
2539 // sections, an output section would be incorrectly sized.
2540 off_t offset_in_section = this->current_data_size_for_child();
2541 off_t aligned_offset_in_section = align_address(offset_in_section,
2542 poris->addralign());
2543 this->set_current_data_size_for_child(aligned_offset_in_section
2544 + poris->current_data_size());
2547 // Add arbitrary data to an output section by Input_section.
2550 Output_section::add_output_section_data(Input_section* inp)
2552 if (this->input_sections_.empty())
2553 this->first_input_offset_ = this->current_data_size_for_child();
2555 this->input_sections_.push_back(*inp);
2557 uint64_t addralign = inp->addralign();
2558 if (addralign > this->addralign_)
2559 this->addralign_ = addralign;
2561 inp->set_output_section(this);
2564 // Add a merge section to an output section.
2567 Output_section::add_output_merge_section(Output_section_data* posd,
2568 bool is_string, uint64_t entsize)
2570 Input_section inp(posd, is_string, entsize);
2571 this->add_output_section_data(&inp);
2574 // Add an input section to a SHF_MERGE section.
2577 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2578 uint64_t flags, uint64_t entsize,
2580 bool keeps_input_sections)
2582 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2584 // We only merge strings if the alignment is not more than the
2585 // character size. This could be handled, but it's unusual.
2586 if (is_string && addralign > entsize)
2589 // We cannot restore merged input section states.
2590 gold_assert(this->checkpoint_ == NULL);
2592 // Look up merge sections by required properties.
2593 // Currently, we only invalidate the lookup maps in script processing
2594 // and relaxation. We should not have done either when we reach here.
2595 // So we assume that the lookup maps are valid to simply code.
2596 gold_assert(this->lookup_maps_->is_valid());
2597 Merge_section_properties msp(is_string, entsize, addralign);
2598 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2599 bool is_new = false;
2602 gold_assert(pomb->is_string() == is_string
2603 && pomb->entsize() == entsize
2604 && pomb->addralign() == addralign);
2608 // Create a new Output_merge_data or Output_merge_string_data.
2610 pomb = new Output_merge_data(entsize, addralign);
2616 pomb = new Output_merge_string<char>(addralign);
2619 pomb = new Output_merge_string<uint16_t>(addralign);
2622 pomb = new Output_merge_string<uint32_t>(addralign);
2628 // If we need to do script processing or relaxation, we need to keep
2629 // the original input sections to rebuild the fast lookup maps.
2630 if (keeps_input_sections)
2631 pomb->set_keeps_input_sections();
2635 if (pomb->add_input_section(object, shndx))
2637 // Add new merge section to this output section and link merge
2638 // section properties to new merge section in map.
2641 this->add_output_merge_section(pomb, is_string, entsize);
2642 this->lookup_maps_->add_merge_section(msp, pomb);
2645 // Add input section to new merge section and link input section to new
2646 // merge section in map.
2647 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2652 // If add_input_section failed, delete new merge section to avoid
2653 // exporting empty merge sections in Output_section::get_input_section.
2660 // Build a relaxation map to speed up relaxation of existing input sections.
2661 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2664 Output_section::build_relaxation_map(
2665 const Input_section_list& input_sections,
2667 Relaxation_map* relaxation_map) const
2669 for (size_t i = 0; i < limit; ++i)
2671 const Input_section& is(input_sections[i]);
2672 if (is.is_input_section() || is.is_relaxed_input_section())
2674 Section_id sid(is.relobj(), is.shndx());
2675 (*relaxation_map)[sid] = i;
2680 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2681 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2682 // indices of INPUT_SECTIONS.
2685 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2686 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2687 const Relaxation_map& map,
2688 Input_section_list* input_sections)
2690 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2692 Output_relaxed_input_section* poris = relaxed_sections[i];
2693 Section_id sid(poris->relobj(), poris->shndx());
2694 Relaxation_map::const_iterator p = map.find(sid);
2695 gold_assert(p != map.end());
2696 gold_assert((*input_sections)[p->second].is_input_section());
2698 // Remember section order index of original input section
2699 // if it is set. Copy it to the relaxed input section.
2701 (*input_sections)[p->second].section_order_index();
2702 (*input_sections)[p->second] = Input_section(poris);
2703 (*input_sections)[p->second].set_section_order_index(soi);
2707 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2708 // is a vector of pointers to Output_relaxed_input_section or its derived
2709 // classes. The relaxed sections must correspond to existing input sections.
2712 Output_section::convert_input_sections_to_relaxed_sections(
2713 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2715 gold_assert(parameters->target().may_relax());
2717 // We want to make sure that restore_states does not undo the effect of
2718 // this. If there is no checkpoint active, just search the current
2719 // input section list and replace the sections there. If there is
2720 // a checkpoint, also replace the sections there.
2722 // By default, we look at the whole list.
2723 size_t limit = this->input_sections_.size();
2725 if (this->checkpoint_ != NULL)
2727 // Replace input sections with relaxed input section in the saved
2728 // copy of the input section list.
2729 if (this->checkpoint_->input_sections_saved())
2732 this->build_relaxation_map(
2733 *(this->checkpoint_->input_sections()),
2734 this->checkpoint_->input_sections()->size(),
2736 this->convert_input_sections_in_list_to_relaxed_sections(
2739 this->checkpoint_->input_sections());
2743 // We have not copied the input section list yet. Instead, just
2744 // look at the portion that would be saved.
2745 limit = this->checkpoint_->input_sections_size();
2749 // Convert input sections in input_section_list.
2751 this->build_relaxation_map(this->input_sections_, limit, &map);
2752 this->convert_input_sections_in_list_to_relaxed_sections(
2755 &this->input_sections_);
2757 // Update fast look-up map.
2758 if (this->lookup_maps_->is_valid())
2759 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2761 Output_relaxed_input_section* poris = relaxed_sections[i];
2762 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2763 poris->shndx(), poris);
2767 // Update the output section flags based on input section flags.
2770 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2772 // If we created the section with SHF_ALLOC clear, we set the
2773 // address. If we are now setting the SHF_ALLOC flag, we need to
2775 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2776 && (flags & elfcpp::SHF_ALLOC) != 0)
2777 this->mark_address_invalid();
2779 this->flags_ |= (flags
2780 & (elfcpp::SHF_WRITE
2782 | elfcpp::SHF_EXECINSTR));
2784 if ((flags & elfcpp::SHF_MERGE) == 0)
2785 this->flags_ &=~ elfcpp::SHF_MERGE;
2788 if (this->current_data_size_for_child() == 0)
2789 this->flags_ |= elfcpp::SHF_MERGE;
2792 if ((flags & elfcpp::SHF_STRINGS) == 0)
2793 this->flags_ &=~ elfcpp::SHF_STRINGS;
2796 if (this->current_data_size_for_child() == 0)
2797 this->flags_ |= elfcpp::SHF_STRINGS;
2801 // Find the merge section into which an input section with index SHNDX in
2802 // OBJECT has been added. Return NULL if none found.
2804 Output_section_data*
2805 Output_section::find_merge_section(const Relobj* object,
2806 unsigned int shndx) const
2808 if (!this->lookup_maps_->is_valid())
2809 this->build_lookup_maps();
2810 return this->lookup_maps_->find_merge_section(object, shndx);
2813 // Build the lookup maps for merge and relaxed sections. This is needs
2814 // to be declared as a const methods so that it is callable with a const
2815 // Output_section pointer. The method only updates states of the maps.
2818 Output_section::build_lookup_maps() const
2820 this->lookup_maps_->clear();
2821 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2822 p != this->input_sections_.end();
2825 if (p->is_merge_section())
2827 Output_merge_base* pomb = p->output_merge_base();
2828 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2830 this->lookup_maps_->add_merge_section(msp, pomb);
2831 for (Output_merge_base::Input_sections::const_iterator is =
2832 pomb->input_sections_begin();
2833 is != pomb->input_sections_end();
2836 const Const_section_id& csid = *is;
2837 this->lookup_maps_->add_merge_input_section(csid.first,
2842 else if (p->is_relaxed_input_section())
2844 Output_relaxed_input_section* poris = p->relaxed_input_section();
2845 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2846 poris->shndx(), poris);
2851 // Find an relaxed input section corresponding to an input section
2852 // in OBJECT with index SHNDX.
2854 const Output_relaxed_input_section*
2855 Output_section::find_relaxed_input_section(const Relobj* object,
2856 unsigned int shndx) const
2858 if (!this->lookup_maps_->is_valid())
2859 this->build_lookup_maps();
2860 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2863 // Given an address OFFSET relative to the start of input section
2864 // SHNDX in OBJECT, return whether this address is being included in
2865 // the final link. This should only be called if SHNDX in OBJECT has
2866 // a special mapping.
2869 Output_section::is_input_address_mapped(const Relobj* object,
2873 // Look at the Output_section_data_maps first.
2874 const Output_section_data* posd = this->find_merge_section(object, shndx);
2876 posd = this->find_relaxed_input_section(object, shndx);
2880 section_offset_type output_offset;
2881 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2883 return output_offset != -1;
2886 // Fall back to the slow look-up.
2887 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2888 p != this->input_sections_.end();
2891 section_offset_type output_offset;
2892 if (p->output_offset(object, shndx, offset, &output_offset))
2893 return output_offset != -1;
2896 // By default we assume that the address is mapped. This should
2897 // only be called after we have passed all sections to Layout. At
2898 // that point we should know what we are discarding.
2902 // Given an address OFFSET relative to the start of input section
2903 // SHNDX in object OBJECT, return the output offset relative to the
2904 // start of the input section in the output section. This should only
2905 // be called if SHNDX in OBJECT has a special mapping.
2908 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2909 section_offset_type offset) const
2911 // This can only be called meaningfully when we know the data size
2913 gold_assert(this->is_data_size_valid());
2915 // Look at the Output_section_data_maps first.
2916 const Output_section_data* posd = this->find_merge_section(object, shndx);
2918 posd = this->find_relaxed_input_section(object, shndx);
2921 section_offset_type output_offset;
2922 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2924 return output_offset;
2927 // Fall back to the slow look-up.
2928 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2929 p != this->input_sections_.end();
2932 section_offset_type output_offset;
2933 if (p->output_offset(object, shndx, offset, &output_offset))
2934 return output_offset;
2939 // Return the output virtual address of OFFSET relative to the start
2940 // of input section SHNDX in object OBJECT.
2943 Output_section::output_address(const Relobj* object, unsigned int shndx,
2946 uint64_t addr = this->address() + this->first_input_offset_;
2948 // Look at the Output_section_data_maps first.
2949 const Output_section_data* posd = this->find_merge_section(object, shndx);
2951 posd = this->find_relaxed_input_section(object, shndx);
2952 if (posd != NULL && posd->is_address_valid())
2954 section_offset_type output_offset;
2955 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2957 return posd->address() + output_offset;
2960 // Fall back to the slow look-up.
2961 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2962 p != this->input_sections_.end();
2965 addr = align_address(addr, p->addralign());
2966 section_offset_type output_offset;
2967 if (p->output_offset(object, shndx, offset, &output_offset))
2969 if (output_offset == -1)
2971 return addr + output_offset;
2973 addr += p->data_size();
2976 // If we get here, it means that we don't know the mapping for this
2977 // input section. This might happen in principle if
2978 // add_input_section were called before add_output_section_data.
2979 // But it should never actually happen.
2984 // Find the output address of the start of the merged section for
2985 // input section SHNDX in object OBJECT.
2988 Output_section::find_starting_output_address(const Relobj* object,
2990 uint64_t* paddr) const
2992 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2993 // Looking up the merge section map does not always work as we sometimes
2994 // find a merge section without its address set.
2995 uint64_t addr = this->address() + this->first_input_offset_;
2996 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2997 p != this->input_sections_.end();
3000 addr = align_address(addr, p->addralign());
3002 // It would be nice if we could use the existing output_offset
3003 // method to get the output offset of input offset 0.
3004 // Unfortunately we don't know for sure that input offset 0 is
3006 if (p->is_merge_section_for(object, shndx))
3012 addr += p->data_size();
3015 // We couldn't find a merge output section for this input section.
3019 // Update the data size of an Output_section.
3022 Output_section::update_data_size()
3024 if (this->input_sections_.empty())
3027 if (this->must_sort_attached_input_sections()
3028 || this->input_section_order_specified())
3029 this->sort_attached_input_sections();
3031 off_t off = this->first_input_offset_;
3032 for (Input_section_list::iterator p = this->input_sections_.begin();
3033 p != this->input_sections_.end();
3036 off = align_address(off, p->addralign());
3037 off += p->current_data_size();
3040 this->set_current_data_size_for_child(off);
3043 // Set the data size of an Output_section. This is where we handle
3044 // setting the addresses of any Output_section_data objects.
3047 Output_section::set_final_data_size()
3051 if (this->input_sections_.empty())
3052 data_size = this->current_data_size_for_child();
3055 if (this->must_sort_attached_input_sections()
3056 || this->input_section_order_specified())
3057 this->sort_attached_input_sections();
3059 uint64_t address = this->address();
3060 off_t startoff = this->offset();
3061 off_t off = startoff + this->first_input_offset_;
3062 for (Input_section_list::iterator p = this->input_sections_.begin();
3063 p != this->input_sections_.end();
3066 off = align_address(off, p->addralign());
3067 p->set_address_and_file_offset(address + (off - startoff), off,
3069 off += p->data_size();
3071 data_size = off - startoff;
3074 // For full incremental links, we want to allocate some patch space
3075 // in most sections for subsequent incremental updates.
3076 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3078 double pct = parameters->options().incremental_patch();
3079 size_t extra = static_cast<size_t>(data_size * pct);
3080 if (this->free_space_fill_ != NULL
3081 && this->free_space_fill_->minimum_hole_size() > extra)
3082 extra = this->free_space_fill_->minimum_hole_size();
3083 off_t new_size = align_address(data_size + extra, this->addralign());
3084 this->patch_space_ = new_size - data_size;
3085 gold_debug(DEBUG_INCREMENTAL,
3086 "set_final_data_size: %08lx + %08lx: section %s",
3087 static_cast<long>(data_size),
3088 static_cast<long>(this->patch_space_),
3090 data_size = new_size;
3093 this->set_data_size(data_size);
3096 // Reset the address and file offset.
3099 Output_section::do_reset_address_and_file_offset()
3101 // An unallocated section has no address. Forcing this means that
3102 // we don't need special treatment for symbols defined in debug
3103 // sections. We do the same in the constructor. This does not
3104 // apply to NOLOAD sections though.
3105 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3106 this->set_address(0);
3108 for (Input_section_list::iterator p = this->input_sections_.begin();
3109 p != this->input_sections_.end();
3111 p->reset_address_and_file_offset();
3113 // Remove any patch space that was added in set_final_data_size.
3114 if (this->patch_space_ > 0)
3116 this->set_current_data_size_for_child(this->current_data_size_for_child()
3117 - this->patch_space_);
3118 this->patch_space_ = 0;
3122 // Return true if address and file offset have the values after reset.
3125 Output_section::do_address_and_file_offset_have_reset_values() const
3127 if (this->is_offset_valid())
3130 // An unallocated section has address 0 after its construction or a reset.
3131 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3132 return this->is_address_valid() && this->address() == 0;
3134 return !this->is_address_valid();
3137 // Set the TLS offset. Called only for SHT_TLS sections.
3140 Output_section::do_set_tls_offset(uint64_t tls_base)
3142 this->tls_offset_ = this->address() - tls_base;
3145 // In a few cases we need to sort the input sections attached to an
3146 // output section. This is used to implement the type of constructor
3147 // priority ordering implemented by the GNU linker, in which the
3148 // priority becomes part of the section name and the sections are
3149 // sorted by name. We only do this for an output section if we see an
3150 // attached input section matching ".ctors.*", ".dtors.*",
3151 // ".init_array.*" or ".fini_array.*".
3153 class Output_section::Input_section_sort_entry
3156 Input_section_sort_entry()
3157 : input_section_(), index_(-1U), section_has_name_(false),
3161 Input_section_sort_entry(const Input_section& input_section,
3163 bool must_sort_attached_input_sections)
3164 : input_section_(input_section), index_(index),
3165 section_has_name_(input_section.is_input_section()
3166 || input_section.is_relaxed_input_section())
3168 if (this->section_has_name_
3169 && must_sort_attached_input_sections)
3171 // This is only called single-threaded from Layout::finalize,
3172 // so it is OK to lock. Unfortunately we have no way to pass
3174 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3175 Object* obj = (input_section.is_input_section()
3176 ? input_section.relobj()
3177 : input_section.relaxed_input_section()->relobj());
3178 Task_lock_obj<Object> tl(dummy_task, obj);
3180 // This is a slow operation, which should be cached in
3181 // Layout::layout if this becomes a speed problem.
3182 this->section_name_ = obj->section_name(input_section.shndx());
3186 // Return the Input_section.
3187 const Input_section&
3188 input_section() const
3190 gold_assert(this->index_ != -1U);
3191 return this->input_section_;
3194 // The index of this entry in the original list. This is used to
3195 // make the sort stable.
3199 gold_assert(this->index_ != -1U);
3200 return this->index_;
3203 // Whether there is a section name.
3205 section_has_name() const
3206 { return this->section_has_name_; }
3208 // The section name.
3210 section_name() const
3212 gold_assert(this->section_has_name_);
3213 return this->section_name_;
3216 // Return true if the section name has a priority. This is assumed
3217 // to be true if it has a dot after the initial dot.
3219 has_priority() const
3221 gold_assert(this->section_has_name_);
3222 return this->section_name_.find('.', 1) != std::string::npos;
3225 // Return the priority. Believe it or not, gcc encodes the priority
3226 // differently for .ctors/.dtors and .init_array/.fini_array
3229 get_priority() const
3231 gold_assert(this->section_has_name_);
3233 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3234 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3236 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3237 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3242 unsigned long prio = strtoul((this->section_name_.c_str()
3243 + (is_ctors ? 7 : 12)),
3248 return 65535 - prio;
3253 // Return true if this an input file whose base name matches
3254 // FILE_NAME. The base name must have an extension of ".o", and
3255 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3256 // This is to match crtbegin.o as well as crtbeginS.o without
3257 // getting confused by other possibilities. Overall matching the
3258 // file name this way is a dreadful hack, but the GNU linker does it
3259 // in order to better support gcc, and we need to be compatible.
3261 match_file_name(const char* file_name) const
3262 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3264 // Returns 1 if THIS should appear before S in section order, -1 if S
3265 // appears before THIS and 0 if they are not comparable.
3267 compare_section_ordering(const Input_section_sort_entry& s) const
3269 unsigned int this_secn_index = this->input_section_.section_order_index();
3270 unsigned int s_secn_index = s.input_section().section_order_index();
3271 if (this_secn_index > 0 && s_secn_index > 0)
3273 if (this_secn_index < s_secn_index)
3275 else if (this_secn_index > s_secn_index)
3282 // The Input_section we are sorting.
3283 Input_section input_section_;
3284 // The index of this Input_section in the original list.
3285 unsigned int index_;
3286 // Whether this Input_section has a section name--it won't if this
3287 // is some random Output_section_data.
3288 bool section_has_name_;
3289 // The section name if there is one.
3290 std::string section_name_;
3293 // Return true if S1 should come before S2 in the output section.
3296 Output_section::Input_section_sort_compare::operator()(
3297 const Output_section::Input_section_sort_entry& s1,
3298 const Output_section::Input_section_sort_entry& s2) const
3300 // crtbegin.o must come first.
3301 bool s1_begin = s1.match_file_name("crtbegin");
3302 bool s2_begin = s2.match_file_name("crtbegin");
3303 if (s1_begin || s2_begin)
3309 return s1.index() < s2.index();
3312 // crtend.o must come last.
3313 bool s1_end = s1.match_file_name("crtend");
3314 bool s2_end = s2.match_file_name("crtend");
3315 if (s1_end || s2_end)
3321 return s1.index() < s2.index();
3324 // We sort all the sections with no names to the end.
3325 if (!s1.section_has_name() || !s2.section_has_name())
3327 if (s1.section_has_name())
3329 if (s2.section_has_name())
3331 return s1.index() < s2.index();
3334 // A section with a priority follows a section without a priority.
3335 bool s1_has_priority = s1.has_priority();
3336 bool s2_has_priority = s2.has_priority();
3337 if (s1_has_priority && !s2_has_priority)
3339 if (!s1_has_priority && s2_has_priority)
3342 // Check if a section order exists for these sections through a section
3343 // ordering file. If sequence_num is 0, an order does not exist.
3344 int sequence_num = s1.compare_section_ordering(s2);
3345 if (sequence_num != 0)
3346 return sequence_num == 1;
3348 // Otherwise we sort by name.
3349 int compare = s1.section_name().compare(s2.section_name());
3353 // Otherwise we keep the input order.
3354 return s1.index() < s2.index();
3357 // Return true if S1 should come before S2 in an .init_array or .fini_array
3361 Output_section::Input_section_sort_init_fini_compare::operator()(
3362 const Output_section::Input_section_sort_entry& s1,
3363 const Output_section::Input_section_sort_entry& s2) const
3365 // We sort all the sections with no names to the end.
3366 if (!s1.section_has_name() || !s2.section_has_name())
3368 if (s1.section_has_name())
3370 if (s2.section_has_name())
3372 return s1.index() < s2.index();
3375 // A section without a priority follows a section with a priority.
3376 // This is the reverse of .ctors and .dtors sections.
3377 bool s1_has_priority = s1.has_priority();
3378 bool s2_has_priority = s2.has_priority();
3379 if (s1_has_priority && !s2_has_priority)
3381 if (!s1_has_priority && s2_has_priority)
3384 // .ctors and .dtors sections without priority come after
3385 // .init_array and .fini_array sections without priority.
3386 if (!s1_has_priority
3387 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3388 && s1.section_name() != s2.section_name())
3390 if (!s2_has_priority
3391 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3392 && s2.section_name() != s1.section_name())
3395 // Sort by priority if we can.
3396 if (s1_has_priority)
3398 unsigned int s1_prio = s1.get_priority();
3399 unsigned int s2_prio = s2.get_priority();
3400 if (s1_prio < s2_prio)
3402 else if (s1_prio > s2_prio)
3406 // Check if a section order exists for these sections through a section
3407 // ordering file. If sequence_num is 0, an order does not exist.
3408 int sequence_num = s1.compare_section_ordering(s2);
3409 if (sequence_num != 0)
3410 return sequence_num == 1;
3412 // Otherwise we sort by name.
3413 int compare = s1.section_name().compare(s2.section_name());
3417 // Otherwise we keep the input order.
3418 return s1.index() < s2.index();
3421 // Return true if S1 should come before S2. Sections that do not match
3422 // any pattern in the section ordering file are placed ahead of the sections
3423 // that match some pattern.
3426 Output_section::Input_section_sort_section_order_index_compare::operator()(
3427 const Output_section::Input_section_sort_entry& s1,
3428 const Output_section::Input_section_sort_entry& s2) const
3430 unsigned int s1_secn_index = s1.input_section().section_order_index();
3431 unsigned int s2_secn_index = s2.input_section().section_order_index();
3433 // Keep input order if section ordering cannot determine order.
3434 if (s1_secn_index == s2_secn_index)
3435 return s1.index() < s2.index();
3437 return s1_secn_index < s2_secn_index;
3440 // This updates the section order index of input sections according to the
3441 // the order specified in the mapping from Section id to order index.
3444 Output_section::update_section_layout(
3445 const Section_layout_order* order_map)
3447 for (Input_section_list::iterator p = this->input_sections_.begin();
3448 p != this->input_sections_.end();
3451 if (p->is_input_section()
3452 || p->is_relaxed_input_section())
3454 Object* obj = (p->is_input_section()
3456 : p->relaxed_input_section()->relobj());
3457 unsigned int shndx = p->shndx();
3458 Section_layout_order::const_iterator it
3459 = order_map->find(Section_id(obj, shndx));
3460 if (it == order_map->end())
3462 unsigned int section_order_index = it->second;
3463 if (section_order_index != 0)
3465 p->set_section_order_index(section_order_index);
3466 this->set_input_section_order_specified();
3472 // Sort the input sections attached to an output section.
3475 Output_section::sort_attached_input_sections()
3477 if (this->attached_input_sections_are_sorted_)
3480 if (this->checkpoint_ != NULL
3481 && !this->checkpoint_->input_sections_saved())
3482 this->checkpoint_->save_input_sections();
3484 // The only thing we know about an input section is the object and
3485 // the section index. We need the section name. Recomputing this
3486 // is slow but this is an unusual case. If this becomes a speed
3487 // problem we can cache the names as required in Layout::layout.
3489 // We start by building a larger vector holding a copy of each
3490 // Input_section, plus its current index in the list and its name.
3491 std::vector<Input_section_sort_entry> sort_list;
3494 for (Input_section_list::iterator p = this->input_sections_.begin();
3495 p != this->input_sections_.end();
3497 sort_list.push_back(Input_section_sort_entry(*p, i,
3498 this->must_sort_attached_input_sections()));
3500 // Sort the input sections.
3501 if (this->must_sort_attached_input_sections())
3503 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3504 || this->type() == elfcpp::SHT_INIT_ARRAY
3505 || this->type() == elfcpp::SHT_FINI_ARRAY)
3506 std::sort(sort_list.begin(), sort_list.end(),
3507 Input_section_sort_init_fini_compare());
3509 std::sort(sort_list.begin(), sort_list.end(),
3510 Input_section_sort_compare());
3514 gold_assert(this->input_section_order_specified());
3515 std::sort(sort_list.begin(), sort_list.end(),
3516 Input_section_sort_section_order_index_compare());
3519 // Copy the sorted input sections back to our list.
3520 this->input_sections_.clear();
3521 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3522 p != sort_list.end();
3524 this->input_sections_.push_back(p->input_section());
3527 // Remember that we sorted the input sections, since we might get
3529 this->attached_input_sections_are_sorted_ = true;
3532 // Write the section header to *OSHDR.
3534 template<int size, bool big_endian>
3536 Output_section::write_header(const Layout* layout,
3537 const Stringpool* secnamepool,
3538 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3540 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3541 oshdr->put_sh_type(this->type_);
3543 elfcpp::Elf_Xword flags = this->flags_;
3544 if (this->info_section_ != NULL && this->info_uses_section_index_)
3545 flags |= elfcpp::SHF_INFO_LINK;
3546 oshdr->put_sh_flags(flags);
3548 oshdr->put_sh_addr(this->address());
3549 oshdr->put_sh_offset(this->offset());
3550 oshdr->put_sh_size(this->data_size());
3551 if (this->link_section_ != NULL)
3552 oshdr->put_sh_link(this->link_section_->out_shndx());
3553 else if (this->should_link_to_symtab_)
3554 oshdr->put_sh_link(layout->symtab_section_shndx());
3555 else if (this->should_link_to_dynsym_)
3556 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3558 oshdr->put_sh_link(this->link_);
3560 elfcpp::Elf_Word info;
3561 if (this->info_section_ != NULL)
3563 if (this->info_uses_section_index_)
3564 info = this->info_section_->out_shndx();
3566 info = this->info_section_->symtab_index();
3568 else if (this->info_symndx_ != NULL)
3569 info = this->info_symndx_->symtab_index();
3572 oshdr->put_sh_info(info);
3574 oshdr->put_sh_addralign(this->addralign_);
3575 oshdr->put_sh_entsize(this->entsize_);
3578 // Write out the data. For input sections the data is written out by
3579 // Object::relocate, but we have to handle Output_section_data objects
3583 Output_section::do_write(Output_file* of)
3585 gold_assert(!this->requires_postprocessing());
3587 // If the target performs relaxation, we delay filler generation until now.
3588 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3590 off_t output_section_file_offset = this->offset();
3591 for (Fill_list::iterator p = this->fills_.begin();
3592 p != this->fills_.end();
3595 std::string fill_data(parameters->target().code_fill(p->length()));
3596 of->write(output_section_file_offset + p->section_offset(),
3597 fill_data.data(), fill_data.size());
3600 off_t off = this->offset() + this->first_input_offset_;
3601 for (Input_section_list::iterator p = this->input_sections_.begin();
3602 p != this->input_sections_.end();
3605 off_t aligned_off = align_address(off, p->addralign());
3606 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3608 size_t fill_len = aligned_off - off;
3609 std::string fill_data(parameters->target().code_fill(fill_len));
3610 of->write(off, fill_data.data(), fill_data.size());
3614 off = aligned_off + p->data_size();
3617 // For incremental links, fill in unused chunks in debug sections
3618 // with dummy compilation unit headers.
3619 if (this->free_space_fill_ != NULL)
3621 for (Free_list::Const_iterator p = this->free_list_.begin();
3622 p != this->free_list_.end();
3625 off_t off = p->start_;
3626 size_t len = p->end_ - off;
3627 this->free_space_fill_->write(of, this->offset() + off, len);
3629 if (this->patch_space_ > 0)
3631 off_t off = this->current_data_size_for_child() - this->patch_space_;
3632 this->free_space_fill_->write(of, this->offset() + off,
3633 this->patch_space_);
3638 // If a section requires postprocessing, create the buffer to use.
3641 Output_section::create_postprocessing_buffer()
3643 gold_assert(this->requires_postprocessing());
3645 if (this->postprocessing_buffer_ != NULL)
3648 if (!this->input_sections_.empty())
3650 off_t off = this->first_input_offset_;
3651 for (Input_section_list::iterator p = this->input_sections_.begin();
3652 p != this->input_sections_.end();
3655 off = align_address(off, p->addralign());
3656 p->finalize_data_size();
3657 off += p->data_size();
3659 this->set_current_data_size_for_child(off);
3662 off_t buffer_size = this->current_data_size_for_child();
3663 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3666 // Write all the data of an Output_section into the postprocessing
3667 // buffer. This is used for sections which require postprocessing,
3668 // such as compression. Input sections are handled by
3669 // Object::Relocate.
3672 Output_section::write_to_postprocessing_buffer()
3674 gold_assert(this->requires_postprocessing());
3676 // If the target performs relaxation, we delay filler generation until now.
3677 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3679 unsigned char* buffer = this->postprocessing_buffer();
3680 for (Fill_list::iterator p = this->fills_.begin();
3681 p != this->fills_.end();
3684 std::string fill_data(parameters->target().code_fill(p->length()));
3685 memcpy(buffer + p->section_offset(), fill_data.data(),
3689 off_t off = this->first_input_offset_;
3690 for (Input_section_list::iterator p = this->input_sections_.begin();
3691 p != this->input_sections_.end();
3694 off_t aligned_off = align_address(off, p->addralign());
3695 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3697 size_t fill_len = aligned_off - off;
3698 std::string fill_data(parameters->target().code_fill(fill_len));
3699 memcpy(buffer + off, fill_data.data(), fill_data.size());
3702 p->write_to_buffer(buffer + aligned_off);
3703 off = aligned_off + p->data_size();
3707 // Get the input sections for linker script processing. We leave
3708 // behind the Output_section_data entries. Note that this may be
3709 // slightly incorrect for merge sections. We will leave them behind,
3710 // but it is possible that the script says that they should follow
3711 // some other input sections, as in:
3712 // .rodata { *(.rodata) *(.rodata.cst*) }
3713 // For that matter, we don't handle this correctly:
3714 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3715 // With luck this will never matter.
3718 Output_section::get_input_sections(
3720 const std::string& fill,
3721 std::list<Input_section>* input_sections)
3723 if (this->checkpoint_ != NULL
3724 && !this->checkpoint_->input_sections_saved())
3725 this->checkpoint_->save_input_sections();
3727 // Invalidate fast look-up maps.
3728 this->lookup_maps_->invalidate();
3730 uint64_t orig_address = address;
3732 address = align_address(address, this->addralign());
3734 Input_section_list remaining;
3735 for (Input_section_list::iterator p = this->input_sections_.begin();
3736 p != this->input_sections_.end();
3739 if (p->is_input_section()
3740 || p->is_relaxed_input_section()
3741 || p->is_merge_section())
3742 input_sections->push_back(*p);
3745 uint64_t aligned_address = align_address(address, p->addralign());
3746 if (aligned_address != address && !fill.empty())
3748 section_size_type length =
3749 convert_to_section_size_type(aligned_address - address);
3750 std::string this_fill;
3751 this_fill.reserve(length);
3752 while (this_fill.length() + fill.length() <= length)
3754 if (this_fill.length() < length)
3755 this_fill.append(fill, 0, length - this_fill.length());
3757 Output_section_data* posd = new Output_data_const(this_fill, 0);
3758 remaining.push_back(Input_section(posd));
3760 address = aligned_address;
3762 remaining.push_back(*p);
3764 p->finalize_data_size();
3765 address += p->data_size();
3769 this->input_sections_.swap(remaining);
3770 this->first_input_offset_ = 0;
3772 uint64_t data_size = address - orig_address;
3773 this->set_current_data_size_for_child(data_size);
3777 // Add a script input section. SIS is an Output_section::Input_section,
3778 // which can be either a plain input section or a special input section like
3779 // a relaxed input section. For a special input section, its size must be
3783 Output_section::add_script_input_section(const Input_section& sis)
3785 uint64_t data_size = sis.data_size();
3786 uint64_t addralign = sis.addralign();
3787 if (addralign > this->addralign_)
3788 this->addralign_ = addralign;
3790 off_t offset_in_section = this->current_data_size_for_child();
3791 off_t aligned_offset_in_section = align_address(offset_in_section,
3794 this->set_current_data_size_for_child(aligned_offset_in_section
3797 this->input_sections_.push_back(sis);
3799 // Update fast lookup maps if necessary.
3800 if (this->lookup_maps_->is_valid())
3802 if (sis.is_merge_section())
3804 Output_merge_base* pomb = sis.output_merge_base();
3805 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3807 this->lookup_maps_->add_merge_section(msp, pomb);
3808 for (Output_merge_base::Input_sections::const_iterator p =
3809 pomb->input_sections_begin();
3810 p != pomb->input_sections_end();
3812 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3815 else if (sis.is_relaxed_input_section())
3817 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3818 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3819 poris->shndx(), poris);
3824 // Save states for relaxation.
3827 Output_section::save_states()
3829 gold_assert(this->checkpoint_ == NULL);
3830 Checkpoint_output_section* checkpoint =
3831 new Checkpoint_output_section(this->addralign_, this->flags_,
3832 this->input_sections_,
3833 this->first_input_offset_,
3834 this->attached_input_sections_are_sorted_);
3835 this->checkpoint_ = checkpoint;
3836 gold_assert(this->fills_.empty());
3840 Output_section::discard_states()
3842 gold_assert(this->checkpoint_ != NULL);
3843 delete this->checkpoint_;
3844 this->checkpoint_ = NULL;
3845 gold_assert(this->fills_.empty());
3847 // Simply invalidate the fast lookup maps since we do not keep
3849 this->lookup_maps_->invalidate();
3853 Output_section::restore_states()
3855 gold_assert(this->checkpoint_ != NULL);
3856 Checkpoint_output_section* checkpoint = this->checkpoint_;
3858 this->addralign_ = checkpoint->addralign();
3859 this->flags_ = checkpoint->flags();
3860 this->first_input_offset_ = checkpoint->first_input_offset();
3862 if (!checkpoint->input_sections_saved())
3864 // If we have not copied the input sections, just resize it.
3865 size_t old_size = checkpoint->input_sections_size();
3866 gold_assert(this->input_sections_.size() >= old_size);
3867 this->input_sections_.resize(old_size);
3871 // We need to copy the whole list. This is not efficient for
3872 // extremely large output with hundreads of thousands of input
3873 // objects. We may need to re-think how we should pass sections
3875 this->input_sections_ = *checkpoint->input_sections();
3878 this->attached_input_sections_are_sorted_ =
3879 checkpoint->attached_input_sections_are_sorted();
3881 // Simply invalidate the fast lookup maps since we do not keep
3883 this->lookup_maps_->invalidate();
3886 // Update the section offsets of input sections in this. This is required if
3887 // relaxation causes some input sections to change sizes.
3890 Output_section::adjust_section_offsets()
3892 if (!this->section_offsets_need_adjustment_)
3896 for (Input_section_list::iterator p = this->input_sections_.begin();
3897 p != this->input_sections_.end();
3900 off = align_address(off, p->addralign());
3901 if (p->is_input_section())
3902 p->relobj()->set_section_offset(p->shndx(), off);
3903 off += p->data_size();
3906 this->section_offsets_need_adjustment_ = false;
3909 // Print to the map file.
3912 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3914 mapfile->print_output_section(this);
3916 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3917 p != this->input_sections_.end();
3919 p->print_to_mapfile(mapfile);
3922 // Print stats for merge sections to stderr.
3925 Output_section::print_merge_stats()
3927 Input_section_list::iterator p;
3928 for (p = this->input_sections_.begin();
3929 p != this->input_sections_.end();
3931 p->print_merge_stats(this->name_);
3934 // Set a fixed layout for the section. Used for incremental update links.
3937 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3938 off_t sh_size, uint64_t sh_addralign)
3940 this->addralign_ = sh_addralign;
3941 this->set_current_data_size(sh_size);
3942 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3943 this->set_address(sh_addr);
3944 this->set_file_offset(sh_offset);
3945 this->finalize_data_size();
3946 this->free_list_.init(sh_size, false);
3947 this->has_fixed_layout_ = true;
3950 // Reserve space within the fixed layout for the section. Used for
3951 // incremental update links.
3954 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3956 this->free_list_.remove(sh_offset, sh_offset + sh_size);
3959 // Allocate space from the free list for the section. Used for
3960 // incremental update links.
3963 Output_section::allocate(off_t len, uint64_t addralign)
3965 return this->free_list_.allocate(len, addralign, 0);
3968 // Output segment methods.
3970 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3980 is_max_align_known_(false),
3981 are_addresses_set_(false),
3982 is_large_data_segment_(false)
3984 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3986 if (type == elfcpp::PT_TLS)
3987 this->flags_ = elfcpp::PF_R;
3990 // Add an Output_section to a PT_LOAD Output_segment.
3993 Output_segment::add_output_section_to_load(Layout* layout,
3995 elfcpp::Elf_Word seg_flags)
3997 gold_assert(this->type() == elfcpp::PT_LOAD);
3998 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3999 gold_assert(!this->is_max_align_known_);
4000 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4002 this->update_flags_for_output_section(seg_flags);
4004 // We don't want to change the ordering if we have a linker script
4005 // with a SECTIONS clause.
4006 Output_section_order order = os->order();
4007 if (layout->script_options()->saw_sections_clause())
4008 order = static_cast<Output_section_order>(0);
4010 gold_assert(order != ORDER_INVALID);
4012 this->output_lists_[order].push_back(os);
4015 // Add an Output_section to a non-PT_LOAD Output_segment.
4018 Output_segment::add_output_section_to_nonload(Output_section* os,
4019 elfcpp::Elf_Word seg_flags)
4021 gold_assert(this->type() != elfcpp::PT_LOAD);
4022 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4023 gold_assert(!this->is_max_align_known_);
4025 this->update_flags_for_output_section(seg_flags);
4027 this->output_lists_[0].push_back(os);
4030 // Remove an Output_section from this segment. It is an error if it
4034 Output_segment::remove_output_section(Output_section* os)
4036 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4038 Output_data_list* pdl = &this->output_lists_[i];
4039 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4051 // Add an Output_data (which need not be an Output_section) to the
4052 // start of a segment.
4055 Output_segment::add_initial_output_data(Output_data* od)
4057 gold_assert(!this->is_max_align_known_);
4058 Output_data_list::iterator p = this->output_lists_[0].begin();
4059 this->output_lists_[0].insert(p, od);
4062 // Return true if this segment has any sections which hold actual
4063 // data, rather than being a BSS section.
4066 Output_segment::has_any_data_sections() const
4068 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4070 const Output_data_list* pdl = &this->output_lists_[i];
4071 for (Output_data_list::const_iterator p = pdl->begin();
4075 if (!(*p)->is_section())
4077 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4084 // Return whether the first data section (not counting TLS sections)
4085 // is a relro section.
4088 Output_segment::is_first_section_relro() const
4090 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4092 if (i == static_cast<int>(ORDER_TLS_DATA)
4093 || i == static_cast<int>(ORDER_TLS_BSS))
4095 const Output_data_list* pdl = &this->output_lists_[i];
4098 Output_data* p = pdl->front();
4099 return p->is_section() && p->output_section()->is_relro();
4105 // Return the maximum alignment of the Output_data in Output_segment.
4108 Output_segment::maximum_alignment()
4110 if (!this->is_max_align_known_)
4112 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4114 const Output_data_list* pdl = &this->output_lists_[i];
4115 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4116 if (addralign > this->max_align_)
4117 this->max_align_ = addralign;
4119 this->is_max_align_known_ = true;
4122 return this->max_align_;
4125 // Return the maximum alignment of a list of Output_data.
4128 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4131 for (Output_data_list::const_iterator p = pdl->begin();
4135 uint64_t addralign = (*p)->addralign();
4136 if (addralign > ret)
4142 // Return whether this segment has any dynamic relocs.
4145 Output_segment::has_dynamic_reloc() const
4147 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4148 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4153 // Return whether this Output_data_list has any dynamic relocs.
4156 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4158 for (Output_data_list::const_iterator p = pdl->begin();
4161 if ((*p)->has_dynamic_reloc())
4166 // Set the section addresses for an Output_segment. If RESET is true,
4167 // reset the addresses first. ADDR is the address and *POFF is the
4168 // file offset. Set the section indexes starting with *PSHNDX.
4169 // INCREASE_RELRO is the size of the portion of the first non-relro
4170 // section that should be included in the PT_GNU_RELRO segment.
4171 // If this segment has relro sections, and has been aligned for
4172 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4173 // the immediately following segment. Update *HAS_RELRO, *POFF,
4177 Output_segment::set_section_addresses(Layout* layout, bool reset,
4179 unsigned int* increase_relro,
4182 unsigned int* pshndx)
4184 gold_assert(this->type_ == elfcpp::PT_LOAD);
4186 uint64_t last_relro_pad = 0;
4187 off_t orig_off = *poff;
4189 bool in_tls = false;
4191 // If we have relro sections, we need to pad forward now so that the
4192 // relro sections plus INCREASE_RELRO end on a common page boundary.
4193 if (parameters->options().relro()
4194 && this->is_first_section_relro()
4195 && (!this->are_addresses_set_ || reset))
4197 uint64_t relro_size = 0;
4199 uint64_t max_align = 0;
4200 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4202 Output_data_list* pdl = &this->output_lists_[i];
4203 Output_data_list::iterator p;
4204 for (p = pdl->begin(); p != pdl->end(); ++p)
4206 if (!(*p)->is_section())
4208 uint64_t align = (*p)->addralign();
4209 if (align > max_align)
4211 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4215 // Align the first non-TLS section to the alignment
4216 // of the TLS segment.
4220 relro_size = align_address(relro_size, align);
4221 // Ignore the size of the .tbss section.
4222 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4223 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4225 if ((*p)->is_address_valid())
4226 relro_size += (*p)->data_size();
4229 // FIXME: This could be faster.
4230 (*p)->set_address_and_file_offset(addr + relro_size,
4232 relro_size += (*p)->data_size();
4233 (*p)->reset_address_and_file_offset();
4236 if (p != pdl->end())
4239 relro_size += *increase_relro;
4240 // Pad the total relro size to a multiple of the maximum
4241 // section alignment seen.
4242 uint64_t aligned_size = align_address(relro_size, max_align);
4243 // Note the amount of padding added after the last relro section.
4244 last_relro_pad = aligned_size - relro_size;
4247 uint64_t page_align = parameters->target().common_pagesize();
4249 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4250 uint64_t desired_align = page_align - (aligned_size % page_align);
4251 if (desired_align < *poff % page_align)
4252 *poff += page_align - *poff % page_align;
4253 *poff += desired_align - *poff % page_align;
4254 addr += *poff - orig_off;
4258 if (!reset && this->are_addresses_set_)
4260 gold_assert(this->paddr_ == addr);
4261 addr = this->vaddr_;
4265 this->vaddr_ = addr;
4266 this->paddr_ = addr;
4267 this->are_addresses_set_ = true;
4272 this->offset_ = orig_off;
4276 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4278 if (i == static_cast<int>(ORDER_RELRO_LAST))
4280 *poff += last_relro_pad;
4281 addr += last_relro_pad;
4282 if (this->output_lists_[i].empty())
4284 // If there is nothing in the ORDER_RELRO_LAST list,
4285 // the padding will occur at the end of the relro
4286 // segment, and we need to add it to *INCREASE_RELRO.
4287 *increase_relro += last_relro_pad;
4290 addr = this->set_section_list_addresses(layout, reset,
4291 &this->output_lists_[i],
4292 addr, poff, pshndx, &in_tls);
4293 if (i < static_cast<int>(ORDER_SMALL_BSS))
4295 this->filesz_ = *poff - orig_off;
4302 // If the last section was a TLS section, align upward to the
4303 // alignment of the TLS segment, so that the overall size of the TLS
4304 // segment is aligned.
4307 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4308 *poff = align_address(*poff, segment_align);
4311 this->memsz_ = *poff - orig_off;
4313 // Ignore the file offset adjustments made by the BSS Output_data
4320 // Set the addresses and file offsets in a list of Output_data
4324 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4325 Output_data_list* pdl,
4326 uint64_t addr, off_t* poff,
4327 unsigned int* pshndx,
4330 off_t startoff = *poff;
4331 // For incremental updates, we may allocate non-fixed sections from
4332 // free space in the file. This keeps track of the high-water mark.
4333 off_t maxoff = startoff;
4335 off_t off = startoff;
4336 for (Output_data_list::iterator p = pdl->begin();
4341 (*p)->reset_address_and_file_offset();
4343 // When doing an incremental update or when using a linker script,
4344 // the section will most likely already have an address.
4345 if (!(*p)->is_address_valid())
4347 uint64_t align = (*p)->addralign();
4349 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4351 // Give the first TLS section the alignment of the
4352 // entire TLS segment. Otherwise the TLS segment as a
4353 // whole may be misaligned.
4356 Output_segment* tls_segment = layout->tls_segment();
4357 gold_assert(tls_segment != NULL);
4358 uint64_t segment_align = tls_segment->maximum_alignment();
4359 gold_assert(segment_align >= align);
4360 align = segment_align;
4367 // If this is the first section after the TLS segment,
4368 // align it to at least the alignment of the TLS
4369 // segment, so that the size of the overall TLS segment
4373 uint64_t segment_align =
4374 layout->tls_segment()->maximum_alignment();
4375 if (segment_align > align)
4376 align = segment_align;
4382 if (!parameters->incremental_update())
4384 off = align_address(off, align);
4385 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4389 // Incremental update: allocate file space from free list.
4390 (*p)->pre_finalize_data_size();
4391 off_t current_size = (*p)->current_data_size();
4392 off = layout->allocate(current_size, align, startoff);
4395 gold_assert((*p)->output_section() != NULL);
4396 gold_fallback(_("out of patch space for section %s; "
4397 "relink with --incremental-full"),
4398 (*p)->output_section()->name());
4400 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4401 if ((*p)->data_size() > current_size)
4403 gold_assert((*p)->output_section() != NULL);
4404 gold_fallback(_("%s: section changed size; "
4405 "relink with --incremental-full"),
4406 (*p)->output_section()->name());
4410 else if (parameters->incremental_update())
4412 // For incremental updates, use the fixed offset for the
4413 // high-water mark computation.
4414 off = (*p)->offset();
4418 // The script may have inserted a skip forward, but it
4419 // better not have moved backward.
4420 if ((*p)->address() >= addr + (off - startoff))
4421 off += (*p)->address() - (addr + (off - startoff));
4424 if (!layout->script_options()->saw_sections_clause())
4428 Output_section* os = (*p)->output_section();
4430 // Cast to unsigned long long to avoid format warnings.
4431 unsigned long long previous_dot =
4432 static_cast<unsigned long long>(addr + (off - startoff));
4433 unsigned long long dot =
4434 static_cast<unsigned long long>((*p)->address());
4437 gold_error(_("dot moves backward in linker script "
4438 "from 0x%llx to 0x%llx"), previous_dot, dot);
4440 gold_error(_("address of section '%s' moves backward "
4441 "from 0x%llx to 0x%llx"),
4442 os->name(), previous_dot, dot);
4445 (*p)->set_file_offset(off);
4446 (*p)->finalize_data_size();
4449 if (parameters->incremental_update())
4450 gold_debug(DEBUG_INCREMENTAL,
4451 "set_section_list_addresses: %08lx %08lx %s",
4452 static_cast<long>(off),
4453 static_cast<long>((*p)->data_size()),
4454 ((*p)->output_section() != NULL
4455 ? (*p)->output_section()->name() : "(special)"));
4457 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4458 // section. Such a section does not affect the size of a
4460 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4461 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4462 off += (*p)->data_size();
4467 if ((*p)->is_section())
4469 (*p)->set_out_shndx(*pshndx);
4475 return addr + (maxoff - startoff);
4478 // For a non-PT_LOAD segment, set the offset from the sections, if
4479 // any. Add INCREASE to the file size and the memory size.
4482 Output_segment::set_offset(unsigned int increase)
4484 gold_assert(this->type_ != elfcpp::PT_LOAD);
4486 gold_assert(!this->are_addresses_set_);
4488 // A non-load section only uses output_lists_[0].
4490 Output_data_list* pdl = &this->output_lists_[0];
4494 gold_assert(increase == 0);
4497 this->are_addresses_set_ = true;
4499 this->min_p_align_ = 0;
4505 // Find the first and last section by address.
4506 const Output_data* first = NULL;
4507 const Output_data* last_data = NULL;
4508 const Output_data* last_bss = NULL;
4509 for (Output_data_list::const_iterator p = pdl->begin();
4514 || (*p)->address() < first->address()
4515 || ((*p)->address() == first->address()
4516 && (*p)->data_size() < first->data_size()))
4518 const Output_data** plast;
4519 if ((*p)->is_section()
4520 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4525 || (*p)->address() > (*plast)->address()
4526 || ((*p)->address() == (*plast)->address()
4527 && (*p)->data_size() > (*plast)->data_size()))
4531 this->vaddr_ = first->address();
4532 this->paddr_ = (first->has_load_address()
4533 ? first->load_address()
4535 this->are_addresses_set_ = true;
4536 this->offset_ = first->offset();
4538 if (last_data == NULL)
4541 this->filesz_ = (last_data->address()
4542 + last_data->data_size()
4545 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4546 this->memsz_ = (last->address()
4550 this->filesz_ += increase;
4551 this->memsz_ += increase;
4553 // If this is a RELRO segment, verify that the segment ends at a
4555 if (this->type_ == elfcpp::PT_GNU_RELRO)
4557 uint64_t page_align = parameters->target().common_pagesize();
4558 uint64_t segment_end = this->vaddr_ + this->memsz_;
4559 if (parameters->incremental_update())
4561 // The INCREASE_RELRO calculation is bypassed for an incremental
4562 // update, so we need to adjust the segment size manually here.
4563 segment_end = align_address(segment_end, page_align);
4564 this->memsz_ = segment_end - this->vaddr_;
4567 gold_assert(segment_end == align_address(segment_end, page_align));
4570 // If this is a TLS segment, align the memory size. The code in
4571 // set_section_list ensures that the section after the TLS segment
4572 // is aligned to give us room.
4573 if (this->type_ == elfcpp::PT_TLS)
4575 uint64_t segment_align = this->maximum_alignment();
4576 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4577 this->memsz_ = align_address(this->memsz_, segment_align);
4581 // Set the TLS offsets of the sections in the PT_TLS segment.
4584 Output_segment::set_tls_offsets()
4586 gold_assert(this->type_ == elfcpp::PT_TLS);
4588 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4589 p != this->output_lists_[0].end();
4591 (*p)->set_tls_offset(this->vaddr_);
4594 // Return the load address of the first section.
4597 Output_segment::first_section_load_address() const
4599 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4601 const Output_data_list* pdl = &this->output_lists_[i];
4602 for (Output_data_list::const_iterator p = pdl->begin();
4606 if ((*p)->is_section())
4607 return ((*p)->has_load_address()
4608 ? (*p)->load_address()
4615 // Return the number of Output_sections in an Output_segment.
4618 Output_segment::output_section_count() const
4620 unsigned int ret = 0;
4621 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4622 ret += this->output_section_count_list(&this->output_lists_[i]);
4626 // Return the number of Output_sections in an Output_data_list.
4629 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4631 unsigned int count = 0;
4632 for (Output_data_list::const_iterator p = pdl->begin();
4636 if ((*p)->is_section())
4642 // Return the section attached to the list segment with the lowest
4643 // load address. This is used when handling a PHDRS clause in a
4647 Output_segment::section_with_lowest_load_address() const
4649 Output_section* found = NULL;
4650 uint64_t found_lma = 0;
4651 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4652 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4657 // Look through a list for a section with a lower load address.
4660 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4661 Output_section** found,
4662 uint64_t* found_lma) const
4664 for (Output_data_list::const_iterator p = pdl->begin();
4668 if (!(*p)->is_section())
4670 Output_section* os = static_cast<Output_section*>(*p);
4671 uint64_t lma = (os->has_load_address()
4672 ? os->load_address()
4674 if (*found == NULL || lma < *found_lma)
4682 // Write the segment data into *OPHDR.
4684 template<int size, bool big_endian>
4686 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4688 ophdr->put_p_type(this->type_);
4689 ophdr->put_p_offset(this->offset_);
4690 ophdr->put_p_vaddr(this->vaddr_);
4691 ophdr->put_p_paddr(this->paddr_);
4692 ophdr->put_p_filesz(this->filesz_);
4693 ophdr->put_p_memsz(this->memsz_);
4694 ophdr->put_p_flags(this->flags_);
4695 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4698 // Write the section headers into V.
4700 template<int size, bool big_endian>
4702 Output_segment::write_section_headers(const Layout* layout,
4703 const Stringpool* secnamepool,
4705 unsigned int* pshndx) const
4707 // Every section that is attached to a segment must be attached to a
4708 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4710 if (this->type_ != elfcpp::PT_LOAD)
4713 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4715 const Output_data_list* pdl = &this->output_lists_[i];
4716 v = this->write_section_headers_list<size, big_endian>(layout,
4725 template<int size, bool big_endian>
4727 Output_segment::write_section_headers_list(const Layout* layout,
4728 const Stringpool* secnamepool,
4729 const Output_data_list* pdl,
4731 unsigned int* pshndx) const
4733 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4734 for (Output_data_list::const_iterator p = pdl->begin();
4738 if ((*p)->is_section())
4740 const Output_section* ps = static_cast<const Output_section*>(*p);
4741 gold_assert(*pshndx == ps->out_shndx());
4742 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4743 ps->write_header(layout, secnamepool, &oshdr);
4751 // Print the output sections to the map file.
4754 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4756 if (this->type() != elfcpp::PT_LOAD)
4758 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4759 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4762 // Print an output section list to the map file.
4765 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4766 const Output_data_list* pdl) const
4768 for (Output_data_list::const_iterator p = pdl->begin();
4771 (*p)->print_to_mapfile(mapfile);
4774 // Output_file methods.
4776 Output_file::Output_file(const char* name)
4781 map_is_anonymous_(false),
4782 map_is_allocated_(false),
4783 is_temporary_(false)
4787 // Try to open an existing file. Returns false if the file doesn't
4788 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4789 // NULL, open that file as the base for incremental linking, and
4790 // copy its contents to the new output file. This routine can
4791 // be called for incremental updates, in which case WRITABLE should
4792 // be true, or by the incremental-dump utility, in which case
4793 // WRITABLE should be false.
4796 Output_file::open_base_file(const char* base_name, bool writable)
4798 // The name "-" means "stdout".
4799 if (strcmp(this->name_, "-") == 0)
4802 bool use_base_file = base_name != NULL;
4804 base_name = this->name_;
4805 else if (strcmp(base_name, this->name_) == 0)
4806 gold_fatal(_("%s: incremental base and output file name are the same"),
4809 // Don't bother opening files with a size of zero.
4811 if (::stat(base_name, &s) != 0)
4813 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4818 gold_info(_("%s: incremental base file is empty"), base_name);
4822 // If we're using a base file, we want to open it read-only.
4826 int oflags = writable ? O_RDWR : O_RDONLY;
4827 int o = open_descriptor(-1, base_name, oflags, 0);
4830 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4834 // If the base file and the output file are different, open a
4835 // new output file and read the contents from the base file into
4836 // the newly-mapped region.
4839 this->open(s.st_size);
4840 ssize_t bytes_to_read = s.st_size;
4841 unsigned char* p = this->base_;
4842 while (bytes_to_read > 0)
4844 ssize_t len = ::read(o, p, bytes_to_read);
4847 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4852 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4854 static_cast<long long>(s.st_size - bytes_to_read),
4855 static_cast<long long>(s.st_size));
4859 bytes_to_read -= len;
4866 this->file_size_ = s.st_size;
4868 if (!this->map_no_anonymous(writable))
4870 release_descriptor(o, true);
4872 this->file_size_ = 0;
4879 // Open the output file.
4882 Output_file::open(off_t file_size)
4884 this->file_size_ = file_size;
4886 // Unlink the file first; otherwise the open() may fail if the file
4887 // is busy (e.g. it's an executable that's currently being executed).
4889 // However, the linker may be part of a system where a zero-length
4890 // file is created for it to write to, with tight permissions (gcc
4891 // 2.95 did something like this). Unlinking the file would work
4892 // around those permission controls, so we only unlink if the file
4893 // has a non-zero size. We also unlink only regular files to avoid
4894 // trouble with directories/etc.
4896 // If we fail, continue; this command is merely a best-effort attempt
4897 // to improve the odds for open().
4899 // We let the name "-" mean "stdout"
4900 if (!this->is_temporary_)
4902 if (strcmp(this->name_, "-") == 0)
4903 this->o_ = STDOUT_FILENO;
4907 if (::stat(this->name_, &s) == 0
4908 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4911 ::unlink(this->name_);
4912 else if (!parameters->options().relocatable())
4914 // If we don't unlink the existing file, add execute
4915 // permission where read permissions already exist
4916 // and where the umask permits.
4917 int mask = ::umask(0);
4919 s.st_mode |= (s.st_mode & 0444) >> 2;
4920 ::chmod(this->name_, s.st_mode & ~mask);
4924 int mode = parameters->options().relocatable() ? 0666 : 0777;
4925 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4928 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4936 // Resize the output file.
4939 Output_file::resize(off_t file_size)
4941 // If the mmap is mapping an anonymous memory buffer, this is easy:
4942 // just mremap to the new size. If it's mapping to a file, we want
4943 // to unmap to flush to the file, then remap after growing the file.
4944 if (this->map_is_anonymous_)
4947 if (!this->map_is_allocated_)
4949 base = ::mremap(this->base_, this->file_size_, file_size,
4951 if (base == MAP_FAILED)
4952 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4956 base = realloc(this->base_, file_size);
4959 if (file_size > this->file_size_)
4960 memset(static_cast<char*>(base) + this->file_size_, 0,
4961 file_size - this->file_size_);
4963 this->base_ = static_cast<unsigned char*>(base);
4964 this->file_size_ = file_size;
4969 this->file_size_ = file_size;
4970 if (!this->map_no_anonymous(true))
4971 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4975 // Map an anonymous block of memory which will later be written to the
4976 // file. Return whether the map succeeded.
4979 Output_file::map_anonymous()
4981 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4982 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4983 if (base == MAP_FAILED)
4985 base = malloc(this->file_size_);
4988 memset(base, 0, this->file_size_);
4989 this->map_is_allocated_ = true;
4991 this->base_ = static_cast<unsigned char*>(base);
4992 this->map_is_anonymous_ = true;
4996 // Map the file into memory. Return whether the mapping succeeded.
4997 // If WRITABLE is true, map with write access.
5000 Output_file::map_no_anonymous(bool writable)
5002 const int o = this->o_;
5004 // If the output file is not a regular file, don't try to mmap it;
5005 // instead, we'll mmap a block of memory (an anonymous buffer), and
5006 // then later write the buffer to the file.
5008 struct stat statbuf;
5009 if (o == STDOUT_FILENO || o == STDERR_FILENO
5010 || ::fstat(o, &statbuf) != 0
5011 || !S_ISREG(statbuf.st_mode)
5012 || this->is_temporary_)
5015 // Ensure that we have disk space available for the file. If we
5016 // don't do this, it is possible that we will call munmap, close,
5017 // and exit with dirty buffers still in the cache with no assigned
5018 // disk blocks. If the disk is out of space at that point, the
5019 // output file will wind up incomplete, but we will have already
5020 // exited. The alternative to fallocate would be to use fdatasync,
5021 // but that would be a more significant performance hit.
5024 int err = gold_fallocate(o, 0, this->file_size_);
5026 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5029 // Map the file into memory.
5030 int prot = PROT_READ;
5033 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5035 // The mmap call might fail because of file system issues: the file
5036 // system might not support mmap at all, or it might not support
5037 // mmap with PROT_WRITE.
5038 if (base == MAP_FAILED)
5041 this->map_is_anonymous_ = false;
5042 this->base_ = static_cast<unsigned char*>(base);
5046 // Map the file into memory.
5051 if (parameters->options().mmap_output_file()
5052 && this->map_no_anonymous(true))
5055 // The mmap call might fail because of file system issues: the file
5056 // system might not support mmap at all, or it might not support
5057 // mmap with PROT_WRITE. I'm not sure which errno values we will
5058 // see in all cases, so if the mmap fails for any reason and we
5059 // don't care about file contents, try for an anonymous map.
5060 if (this->map_anonymous())
5063 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5064 this->name_, static_cast<unsigned long>(this->file_size_),
5068 // Unmap the file from memory.
5071 Output_file::unmap()
5073 if (this->map_is_anonymous_)
5075 // We've already written out the data, so there is no reason to
5076 // waste time unmapping or freeing the memory.
5080 if (::munmap(this->base_, this->file_size_) < 0)
5081 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5086 // Close the output file.
5089 Output_file::close()
5091 // If the map isn't file-backed, we need to write it now.
5092 if (this->map_is_anonymous_ && !this->is_temporary_)
5094 size_t bytes_to_write = this->file_size_;
5096 while (bytes_to_write > 0)
5098 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5100 if (bytes_written == 0)
5101 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5102 else if (bytes_written < 0)
5103 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5106 bytes_to_write -= bytes_written;
5107 offset += bytes_written;
5113 // We don't close stdout or stderr
5114 if (this->o_ != STDOUT_FILENO
5115 && this->o_ != STDERR_FILENO
5116 && !this->is_temporary_)
5117 if (::close(this->o_) < 0)
5118 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5122 // Instantiate the templates we need. We could use the configure
5123 // script to restrict this to only the ones for implemented targets.
5125 #ifdef HAVE_TARGET_32_LITTLE
5128 Output_section::add_input_section<32, false>(
5130 Sized_relobj_file<32, false>* object,
5132 const char* secname,
5133 const elfcpp::Shdr<32, false>& shdr,
5134 unsigned int reloc_shndx,
5135 bool have_sections_script);
5138 #ifdef HAVE_TARGET_32_BIG
5141 Output_section::add_input_section<32, true>(
5143 Sized_relobj_file<32, true>* object,
5145 const char* secname,
5146 const elfcpp::Shdr<32, true>& shdr,
5147 unsigned int reloc_shndx,
5148 bool have_sections_script);
5151 #ifdef HAVE_TARGET_64_LITTLE
5154 Output_section::add_input_section<64, false>(
5156 Sized_relobj_file<64, false>* object,
5158 const char* secname,
5159 const elfcpp::Shdr<64, false>& shdr,
5160 unsigned int reloc_shndx,
5161 bool have_sections_script);
5164 #ifdef HAVE_TARGET_64_BIG
5167 Output_section::add_input_section<64, true>(
5169 Sized_relobj_file<64, true>* object,
5171 const char* secname,
5172 const elfcpp::Shdr<64, true>& shdr,
5173 unsigned int reloc_shndx,
5174 bool have_sections_script);
5177 #ifdef HAVE_TARGET_32_LITTLE
5179 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5182 #ifdef HAVE_TARGET_32_BIG
5184 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5187 #ifdef HAVE_TARGET_64_LITTLE
5189 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5192 #ifdef HAVE_TARGET_64_BIG
5194 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5197 #ifdef HAVE_TARGET_32_LITTLE
5199 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5202 #ifdef HAVE_TARGET_32_BIG
5204 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5207 #ifdef HAVE_TARGET_64_LITTLE
5209 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5212 #ifdef HAVE_TARGET_64_BIG
5214 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5217 #ifdef HAVE_TARGET_32_LITTLE
5219 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5222 #ifdef HAVE_TARGET_32_BIG
5224 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5227 #ifdef HAVE_TARGET_64_LITTLE
5229 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5232 #ifdef HAVE_TARGET_64_BIG
5234 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5237 #ifdef HAVE_TARGET_32_LITTLE
5239 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5242 #ifdef HAVE_TARGET_32_BIG
5244 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5247 #ifdef HAVE_TARGET_64_LITTLE
5249 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5252 #ifdef HAVE_TARGET_64_BIG
5254 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5257 #ifdef HAVE_TARGET_32_LITTLE
5259 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5262 #ifdef HAVE_TARGET_32_BIG
5264 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5267 #ifdef HAVE_TARGET_64_LITTLE
5269 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5272 #ifdef HAVE_TARGET_64_BIG
5274 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5277 #ifdef HAVE_TARGET_32_LITTLE
5279 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5282 #ifdef HAVE_TARGET_32_BIG
5284 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5287 #ifdef HAVE_TARGET_64_LITTLE
5289 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5292 #ifdef HAVE_TARGET_64_BIG
5294 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5297 #ifdef HAVE_TARGET_32_LITTLE
5299 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5302 #ifdef HAVE_TARGET_32_BIG
5304 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5307 #ifdef HAVE_TARGET_64_LITTLE
5309 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5312 #ifdef HAVE_TARGET_64_BIG
5314 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5317 #ifdef HAVE_TARGET_32_LITTLE
5319 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5322 #ifdef HAVE_TARGET_32_BIG
5324 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5327 #ifdef HAVE_TARGET_64_LITTLE
5329 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5332 #ifdef HAVE_TARGET_64_BIG
5334 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5337 #ifdef HAVE_TARGET_32_LITTLE
5339 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5342 #ifdef HAVE_TARGET_32_BIG
5344 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5347 #ifdef HAVE_TARGET_64_LITTLE
5349 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5352 #ifdef HAVE_TARGET_64_BIG
5354 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5357 #ifdef HAVE_TARGET_32_LITTLE
5359 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5362 #ifdef HAVE_TARGET_32_BIG
5364 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5367 #ifdef HAVE_TARGET_64_LITTLE
5369 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5372 #ifdef HAVE_TARGET_64_BIG
5374 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5377 #ifdef HAVE_TARGET_32_LITTLE
5379 class Output_data_group<32, false>;
5382 #ifdef HAVE_TARGET_32_BIG
5384 class Output_data_group<32, true>;
5387 #ifdef HAVE_TARGET_64_LITTLE
5389 class Output_data_group<64, false>;
5392 #ifdef HAVE_TARGET_64_BIG
5394 class Output_data_group<64, true>;
5397 #ifdef HAVE_TARGET_32_LITTLE
5399 class Output_data_got<32, false>;
5402 #ifdef HAVE_TARGET_32_BIG
5404 class Output_data_got<32, true>;
5407 #ifdef HAVE_TARGET_64_LITTLE
5409 class Output_data_got<64, false>;
5412 #ifdef HAVE_TARGET_64_BIG
5414 class Output_data_got<64, true>;
5417 } // End namespace gold.