2008-04-23 Elliott Hughes <enh@google.com>
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"   // for unlink_if_ordinary()
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS  MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate.  Here we just set
50 // the file size and hope that there is enough disk space.  FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56   return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78   return Output_data::default_alignment_for_size(
79       parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87   if (size == 32)
88     return 4;
89   else if (size == 64)
90     return 8;
91   else
92     gold_unreachable();
93 }
94
95 // Output_section_header methods.  This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99     const Layout* layout,
100     const Layout::Segment_list* segment_list,
101     const Layout::Section_list* section_list,
102     const Layout::Section_list* unattached_section_list,
103     const Stringpool* secnamepool,
104     const Output_section* shstrtab_section)
105   : layout_(layout),
106     segment_list_(segment_list),
107     section_list_(section_list),
108     unattached_section_list_(unattached_section_list),
109     secnamepool_(secnamepool),
110     shstrtab_section_(shstrtab_section)
111 {
112   // Count all the sections.  Start with 1 for the null section.
113   off_t count = 1;
114   if (!parameters->options().relocatable())
115     {
116       for (Layout::Segment_list::const_iterator p = segment_list->begin();
117            p != segment_list->end();
118            ++p)
119         if ((*p)->type() == elfcpp::PT_LOAD)
120           count += (*p)->output_section_count();
121     }
122   else
123     {
124       for (Layout::Section_list::const_iterator p = section_list->begin();
125            p != section_list->end();
126            ++p)
127         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
128           ++count;
129     }
130   count += unattached_section_list->size();
131
132   const int size = parameters->target().get_size();
133   int shdr_size;
134   if (size == 32)
135     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
136   else if (size == 64)
137     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
138   else
139     gold_unreachable();
140
141   this->set_data_size(count * shdr_size);
142 }
143
144 // Write out the section headers.
145
146 void
147 Output_section_headers::do_write(Output_file* of)
148 {
149   switch (parameters->size_and_endianness())
150     {
151 #ifdef HAVE_TARGET_32_LITTLE
152     case Parameters::TARGET_32_LITTLE:
153       this->do_sized_write<32, false>(of);
154       break;
155 #endif
156 #ifdef HAVE_TARGET_32_BIG
157     case Parameters::TARGET_32_BIG:
158       this->do_sized_write<32, true>(of);
159       break;
160 #endif
161 #ifdef HAVE_TARGET_64_LITTLE
162     case Parameters::TARGET_64_LITTLE:
163       this->do_sized_write<64, false>(of);
164       break;
165 #endif
166 #ifdef HAVE_TARGET_64_BIG
167     case Parameters::TARGET_64_BIG:
168       this->do_sized_write<64, true>(of);
169       break;
170 #endif
171     default:
172       gold_unreachable();
173     }
174 }
175
176 template<int size, bool big_endian>
177 void
178 Output_section_headers::do_sized_write(Output_file* of)
179 {
180   off_t all_shdrs_size = this->data_size();
181   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
182
183   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
184   unsigned char* v = view;
185
186   {
187     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
188     oshdr.put_sh_name(0);
189     oshdr.put_sh_type(elfcpp::SHT_NULL);
190     oshdr.put_sh_flags(0);
191     oshdr.put_sh_addr(0);
192     oshdr.put_sh_offset(0);
193
194     size_t section_count = (this->data_size()
195                             / elfcpp::Elf_sizes<size>::shdr_size);
196     if (section_count < elfcpp::SHN_LORESERVE)
197       oshdr.put_sh_size(0);
198     else
199       oshdr.put_sh_size(section_count);
200
201     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
202     if (shstrndx < elfcpp::SHN_LORESERVE)
203       oshdr.put_sh_link(0);
204     else
205       oshdr.put_sh_link(shstrndx);
206
207     oshdr.put_sh_info(0);
208     oshdr.put_sh_addralign(0);
209     oshdr.put_sh_entsize(0);
210   }
211
212   v += shdr_size;
213
214   unsigned int shndx = 1;
215   if (!parameters->options().relocatable())
216     {
217       for (Layout::Segment_list::const_iterator p =
218              this->segment_list_->begin();
219            p != this->segment_list_->end();
220            ++p)
221         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
222                                                           this->secnamepool_,
223                                                           v,
224                                                           &shndx);
225     }
226   else
227     {
228       for (Layout::Section_list::const_iterator p =
229              this->section_list_->begin();
230            p != this->section_list_->end();
231            ++p)
232         {
233           // We do unallocated sections below, except that group
234           // sections have to come first.
235           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
236               && (*p)->type() != elfcpp::SHT_GROUP)
237             continue;
238           gold_assert(shndx == (*p)->out_shndx());
239           elfcpp::Shdr_write<size, big_endian> oshdr(v);
240           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
241           v += shdr_size;
242           ++shndx;
243         }
244     }
245
246   for (Layout::Section_list::const_iterator p =
247          this->unattached_section_list_->begin();
248        p != this->unattached_section_list_->end();
249        ++p)
250     {
251       // For a relocatable link, we did unallocated group sections
252       // above, since they have to come first.
253       if ((*p)->type() == elfcpp::SHT_GROUP
254           && parameters->options().relocatable())
255         continue;
256       gold_assert(shndx == (*p)->out_shndx());
257       elfcpp::Shdr_write<size, big_endian> oshdr(v);
258       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
259       v += shdr_size;
260       ++shndx;
261     }
262
263   of->write_output_view(this->offset(), all_shdrs_size, view);
264 }
265
266 // Output_segment_header methods.
267
268 Output_segment_headers::Output_segment_headers(
269     const Layout::Segment_list& segment_list)
270   : segment_list_(segment_list)
271 {
272   const int size = parameters->target().get_size();
273   int phdr_size;
274   if (size == 32)
275     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
276   else if (size == 64)
277     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
278   else
279     gold_unreachable();
280
281   this->set_data_size(segment_list.size() * phdr_size);
282 }
283
284 void
285 Output_segment_headers::do_write(Output_file* of)
286 {
287   switch (parameters->size_and_endianness())
288     {
289 #ifdef HAVE_TARGET_32_LITTLE
290     case Parameters::TARGET_32_LITTLE:
291       this->do_sized_write<32, false>(of);
292       break;
293 #endif
294 #ifdef HAVE_TARGET_32_BIG
295     case Parameters::TARGET_32_BIG:
296       this->do_sized_write<32, true>(of);
297       break;
298 #endif
299 #ifdef HAVE_TARGET_64_LITTLE
300     case Parameters::TARGET_64_LITTLE:
301       this->do_sized_write<64, false>(of);
302       break;
303 #endif
304 #ifdef HAVE_TARGET_64_BIG
305     case Parameters::TARGET_64_BIG:
306       this->do_sized_write<64, true>(of);
307       break;
308 #endif
309     default:
310       gold_unreachable();
311     }
312 }
313
314 template<int size, bool big_endian>
315 void
316 Output_segment_headers::do_sized_write(Output_file* of)
317 {
318   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
319   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
320   gold_assert(all_phdrs_size == this->data_size());
321   unsigned char* view = of->get_output_view(this->offset(),
322                                             all_phdrs_size);
323   unsigned char* v = view;
324   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
325        p != this->segment_list_.end();
326        ++p)
327     {
328       elfcpp::Phdr_write<size, big_endian> ophdr(v);
329       (*p)->write_header(&ophdr);
330       v += phdr_size;
331     }
332
333   gold_assert(v - view == all_phdrs_size);
334
335   of->write_output_view(this->offset(), all_phdrs_size, view);
336 }
337
338 // Output_file_header methods.
339
340 Output_file_header::Output_file_header(const Target* target,
341                                        const Symbol_table* symtab,
342                                        const Output_segment_headers* osh,
343                                        const char* entry)
344   : target_(target),
345     symtab_(symtab),
346     segment_header_(osh),
347     section_header_(NULL),
348     shstrtab_(NULL),
349     entry_(entry)
350 {
351   const int size = parameters->target().get_size();
352   int ehdr_size;
353   if (size == 32)
354     ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
355   else if (size == 64)
356     ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
357   else
358     gold_unreachable();
359
360   this->set_data_size(ehdr_size);
361 }
362
363 // Set the section table information for a file header.
364
365 void
366 Output_file_header::set_section_info(const Output_section_headers* shdrs,
367                                      const Output_section* shstrtab)
368 {
369   this->section_header_ = shdrs;
370   this->shstrtab_ = shstrtab;
371 }
372
373 // Write out the file header.
374
375 void
376 Output_file_header::do_write(Output_file* of)
377 {
378   gold_assert(this->offset() == 0);
379
380   switch (parameters->size_and_endianness())
381     {
382 #ifdef HAVE_TARGET_32_LITTLE
383     case Parameters::TARGET_32_LITTLE:
384       this->do_sized_write<32, false>(of);
385       break;
386 #endif
387 #ifdef HAVE_TARGET_32_BIG
388     case Parameters::TARGET_32_BIG:
389       this->do_sized_write<32, true>(of);
390       break;
391 #endif
392 #ifdef HAVE_TARGET_64_LITTLE
393     case Parameters::TARGET_64_LITTLE:
394       this->do_sized_write<64, false>(of);
395       break;
396 #endif
397 #ifdef HAVE_TARGET_64_BIG
398     case Parameters::TARGET_64_BIG:
399       this->do_sized_write<64, true>(of);
400       break;
401 #endif
402     default:
403       gold_unreachable();
404     }
405 }
406
407 // Write out the file header with appropriate size and endianess.
408
409 template<int size, bool big_endian>
410 void
411 Output_file_header::do_sized_write(Output_file* of)
412 {
413   gold_assert(this->offset() == 0);
414
415   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
416   unsigned char* view = of->get_output_view(0, ehdr_size);
417   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
418
419   unsigned char e_ident[elfcpp::EI_NIDENT];
420   memset(e_ident, 0, elfcpp::EI_NIDENT);
421   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
422   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
423   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
424   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
425   if (size == 32)
426     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
427   else if (size == 64)
428     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
429   else
430     gold_unreachable();
431   e_ident[elfcpp::EI_DATA] = (big_endian
432                               ? elfcpp::ELFDATA2MSB
433                               : elfcpp::ELFDATA2LSB);
434   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
435   oehdr.put_e_ident(e_ident);
436
437   elfcpp::ET e_type;
438   if (parameters->options().relocatable())
439     e_type = elfcpp::ET_REL;
440   else if (parameters->options().shared())
441     e_type = elfcpp::ET_DYN;
442   else
443     e_type = elfcpp::ET_EXEC;
444   oehdr.put_e_type(e_type);
445
446   oehdr.put_e_machine(this->target_->machine_code());
447   oehdr.put_e_version(elfcpp::EV_CURRENT);
448
449   oehdr.put_e_entry(this->entry<size>());
450
451   if (this->segment_header_ == NULL)
452     oehdr.put_e_phoff(0);
453   else
454     oehdr.put_e_phoff(this->segment_header_->offset());
455
456   oehdr.put_e_shoff(this->section_header_->offset());
457
458   // FIXME: The target needs to set the flags.
459   oehdr.put_e_flags(0);
460
461   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
462
463   if (this->segment_header_ == NULL)
464     {
465       oehdr.put_e_phentsize(0);
466       oehdr.put_e_phnum(0);
467     }
468   else
469     {
470       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
471       oehdr.put_e_phnum(this->segment_header_->data_size()
472                         / elfcpp::Elf_sizes<size>::phdr_size);
473     }
474
475   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
476   size_t section_count = (this->section_header_->data_size()
477                           / elfcpp::Elf_sizes<size>::shdr_size);
478
479   if (section_count < elfcpp::SHN_LORESERVE)
480     oehdr.put_e_shnum(this->section_header_->data_size()
481                       / elfcpp::Elf_sizes<size>::shdr_size);
482   else
483     oehdr.put_e_shnum(0);
484
485   unsigned int shstrndx = this->shstrtab_->out_shndx();
486   if (shstrndx < elfcpp::SHN_LORESERVE)
487     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
488   else
489     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
490
491   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
492   // the e_ident field.
493   parameters->target().adjust_elf_header(view, ehdr_size);
494
495   of->write_output_view(0, ehdr_size, view);
496 }
497
498 // Return the value to use for the entry address.  THIS->ENTRY_ is the
499 // symbol specified on the command line, if any.
500
501 template<int size>
502 typename elfcpp::Elf_types<size>::Elf_Addr
503 Output_file_header::entry()
504 {
505   const bool should_issue_warning = (this->entry_ != NULL
506                                      && !parameters->options().relocatable()
507                                      && !parameters->options().shared());
508
509   // FIXME: Need to support target specific entry symbol.
510   const char* entry = this->entry_;
511   if (entry == NULL)
512     entry = "_start";
513
514   Symbol* sym = this->symtab_->lookup(entry);
515
516   typename Sized_symbol<size>::Value_type v;
517   if (sym != NULL)
518     {
519       Sized_symbol<size>* ssym;
520       ssym = this->symtab_->get_sized_symbol<size>(sym);
521       if (!ssym->is_defined() && should_issue_warning)
522         gold_warning("entry symbol '%s' exists but is not defined", entry);
523       v = ssym->value();
524     }
525   else
526     {
527       // We couldn't find the entry symbol.  See if we can parse it as
528       // a number.  This supports, e.g., -e 0x1000.
529       char* endptr;
530       v = strtoull(entry, &endptr, 0);
531       if (*endptr != '\0')
532         {
533           if (should_issue_warning)
534             gold_warning("cannot find entry symbol '%s'", entry);
535           v = 0;
536         }
537     }
538
539   return v;
540 }
541
542 // Output_data_const methods.
543
544 void
545 Output_data_const::do_write(Output_file* of)
546 {
547   of->write(this->offset(), this->data_.data(), this->data_.size());
548 }
549
550 // Output_data_const_buffer methods.
551
552 void
553 Output_data_const_buffer::do_write(Output_file* of)
554 {
555   of->write(this->offset(), this->p_, this->data_size());
556 }
557
558 // Output_section_data methods.
559
560 // Record the output section, and set the entry size and such.
561
562 void
563 Output_section_data::set_output_section(Output_section* os)
564 {
565   gold_assert(this->output_section_ == NULL);
566   this->output_section_ = os;
567   this->do_adjust_output_section(os);
568 }
569
570 // Return the section index of the output section.
571
572 unsigned int
573 Output_section_data::do_out_shndx() const
574 {
575   gold_assert(this->output_section_ != NULL);
576   return this->output_section_->out_shndx();
577 }
578
579 // Set the alignment, which means we may need to update the alignment
580 // of the output section.
581
582 void
583 Output_section_data::set_addralign(uint64_t addralign)
584 {
585   this->addralign_ = addralign;
586   if (this->output_section_ != NULL
587       && this->output_section_->addralign() < addralign)
588     this->output_section_->set_addralign(addralign);
589 }
590
591 // Output_data_strtab methods.
592
593 // Set the final data size.
594
595 void
596 Output_data_strtab::set_final_data_size()
597 {
598   this->strtab_->set_string_offsets();
599   this->set_data_size(this->strtab_->get_strtab_size());
600 }
601
602 // Write out a string table.
603
604 void
605 Output_data_strtab::do_write(Output_file* of)
606 {
607   this->strtab_->write(of, this->offset());
608 }
609
610 // Output_reloc methods.
611
612 // A reloc against a global symbol.
613
614 template<bool dynamic, int size, bool big_endian>
615 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
616     Symbol* gsym,
617     unsigned int type,
618     Output_data* od,
619     Address address,
620     bool is_relative)
621   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
622     is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
623 {
624   // this->type_ is a bitfield; make sure TYPE fits.
625   gold_assert(this->type_ == type);
626   this->u1_.gsym = gsym;
627   this->u2_.od = od;
628   if (dynamic)
629     this->set_needs_dynsym_index();
630 }
631
632 template<bool dynamic, int size, bool big_endian>
633 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
634     Symbol* gsym,
635     unsigned int type,
636     Sized_relobj<size, big_endian>* relobj,
637     unsigned int shndx,
638     Address address,
639     bool is_relative)
640   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
641     is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
642 {
643   gold_assert(shndx != INVALID_CODE);
644   // this->type_ is a bitfield; make sure TYPE fits.
645   gold_assert(this->type_ == type);
646   this->u1_.gsym = gsym;
647   this->u2_.relobj = relobj;
648   if (dynamic)
649     this->set_needs_dynsym_index();
650 }
651
652 // A reloc against a local symbol.
653
654 template<bool dynamic, int size, bool big_endian>
655 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
656     Sized_relobj<size, big_endian>* relobj,
657     unsigned int local_sym_index,
658     unsigned int type,
659     Output_data* od,
660     Address address,
661     bool is_relative,
662     bool is_section_symbol)
663   : address_(address), local_sym_index_(local_sym_index), type_(type),
664     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
665     shndx_(INVALID_CODE)
666 {
667   gold_assert(local_sym_index != GSYM_CODE
668               && local_sym_index != INVALID_CODE);
669   // this->type_ is a bitfield; make sure TYPE fits.
670   gold_assert(this->type_ == type);
671   this->u1_.relobj = relobj;
672   this->u2_.od = od;
673   if (dynamic)
674     this->set_needs_dynsym_index();
675 }
676
677 template<bool dynamic, int size, bool big_endian>
678 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
679     Sized_relobj<size, big_endian>* relobj,
680     unsigned int local_sym_index,
681     unsigned int type,
682     unsigned int shndx,
683     Address address,
684     bool is_relative,
685     bool is_section_symbol)
686   : address_(address), local_sym_index_(local_sym_index), type_(type),
687     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
688     shndx_(shndx)
689 {
690   gold_assert(local_sym_index != GSYM_CODE
691               && local_sym_index != INVALID_CODE);
692   gold_assert(shndx != INVALID_CODE);
693   // this->type_ is a bitfield; make sure TYPE fits.
694   gold_assert(this->type_ == type);
695   this->u1_.relobj = relobj;
696   this->u2_.relobj = relobj;
697   if (dynamic)
698     this->set_needs_dynsym_index();
699 }
700
701 // A reloc against the STT_SECTION symbol of an output section.
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705     Output_section* os,
706     unsigned int type,
707     Output_data* od,
708     Address address)
709   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
710     is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
711 {
712   // this->type_ is a bitfield; make sure TYPE fits.
713   gold_assert(this->type_ == type);
714   this->u1_.os = os;
715   this->u2_.od = od;
716   if (dynamic)
717     this->set_needs_dynsym_index();
718   else
719     os->set_needs_symtab_index();
720 }
721
722 template<bool dynamic, int size, bool big_endian>
723 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
724     Output_section* os,
725     unsigned int type,
726     Sized_relobj<size, big_endian>* relobj,
727     unsigned int shndx,
728     Address address)
729   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
730     is_relative_(false), is_section_symbol_(true), shndx_(shndx)
731 {
732   gold_assert(shndx != INVALID_CODE);
733   // this->type_ is a bitfield; make sure TYPE fits.
734   gold_assert(this->type_ == type);
735   this->u1_.os = os;
736   this->u2_.relobj = relobj;
737   if (dynamic)
738     this->set_needs_dynsym_index();
739   else
740     os->set_needs_symtab_index();
741 }
742
743 // Record that we need a dynamic symbol index for this relocation.
744
745 template<bool dynamic, int size, bool big_endian>
746 void
747 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
748 set_needs_dynsym_index()
749 {
750   if (this->is_relative_)
751     return;
752   switch (this->local_sym_index_)
753     {
754     case INVALID_CODE:
755       gold_unreachable();
756
757     case GSYM_CODE:
758       this->u1_.gsym->set_needs_dynsym_entry();
759       break;
760
761     case SECTION_CODE:
762       this->u1_.os->set_needs_dynsym_index();
763       break;
764
765     case 0:
766       break;
767
768     default:
769       {
770         const unsigned int lsi = this->local_sym_index_;
771         if (!this->is_section_symbol_)
772           this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
773         else
774           this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
775       }
776       break;
777     }
778 }
779
780 // Get the symbol index of a relocation.
781
782 template<bool dynamic, int size, bool big_endian>
783 unsigned int
784 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
785   const
786 {
787   unsigned int index;
788   switch (this->local_sym_index_)
789     {
790     case INVALID_CODE:
791       gold_unreachable();
792
793     case GSYM_CODE:
794       if (this->u1_.gsym == NULL)
795         index = 0;
796       else if (dynamic)
797         index = this->u1_.gsym->dynsym_index();
798       else
799         index = this->u1_.gsym->symtab_index();
800       break;
801
802     case SECTION_CODE:
803       if (dynamic)
804         index = this->u1_.os->dynsym_index();
805       else
806         index = this->u1_.os->symtab_index();
807       break;
808
809     case 0:
810       // Relocations without symbols use a symbol index of 0.
811       index = 0;
812       break;
813
814     default:
815       {
816         const unsigned int lsi = this->local_sym_index_;
817         if (!this->is_section_symbol_)
818           {
819             if (dynamic)
820               index = this->u1_.relobj->dynsym_index(lsi);
821             else
822               index = this->u1_.relobj->symtab_index(lsi);
823           }
824         else
825           {
826             Output_section* os = this->u1_.relobj->output_section(lsi);
827             gold_assert(os != NULL);
828             if (dynamic)
829               index = os->dynsym_index();
830             else
831               index = os->symtab_index();
832           }
833       }
834       break;
835     }
836   gold_assert(index != -1U);
837   return index;
838 }
839
840 // For a local section symbol, get the address of the offset ADDEND
841 // within the input section.
842
843 template<bool dynamic, int size, bool big_endian>
844 typename elfcpp::Elf_types<size>::Elf_Addr
845 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
846   local_section_offset(Addend addend) const
847 {
848   gold_assert(this->local_sym_index_ != GSYM_CODE
849               && this->local_sym_index_ != SECTION_CODE
850               && this->local_sym_index_ != INVALID_CODE
851               && this->is_section_symbol_);
852   const unsigned int lsi = this->local_sym_index_;
853   Output_section* os = this->u1_.relobj->output_section(lsi);
854   gold_assert(os != NULL);
855   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
856   if (offset != invalid_address)
857     return offset + addend;
858   // This is a merge section.
859   offset = os->output_address(this->u1_.relobj, lsi, addend);
860   gold_assert(offset != invalid_address);
861   return offset;
862 }
863
864 // Get the output address of a relocation.
865
866 template<bool dynamic, int size, bool big_endian>
867 typename elfcpp::Elf_types<size>::Elf_Addr
868 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
869 {
870   Address address = this->address_;
871   if (this->shndx_ != INVALID_CODE)
872     {
873       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
874       gold_assert(os != NULL);
875       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
876       if (off != invalid_address)
877         address += os->address() + off;
878       else
879         {
880           address = os->output_address(this->u2_.relobj, this->shndx_,
881                                        address);
882           gold_assert(address != invalid_address);
883         }
884     }
885   else if (this->u2_.od != NULL)
886     address += this->u2_.od->address();
887   return address;
888 }
889
890 // Write out the offset and info fields of a Rel or Rela relocation
891 // entry.
892
893 template<bool dynamic, int size, bool big_endian>
894 template<typename Write_rel>
895 void
896 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
897     Write_rel* wr) const
898 {
899   wr->put_r_offset(this->get_address());
900   unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
901   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
902 }
903
904 // Write out a Rel relocation.
905
906 template<bool dynamic, int size, bool big_endian>
907 void
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
909     unsigned char* pov) const
910 {
911   elfcpp::Rel_write<size, big_endian> orel(pov);
912   this->write_rel(&orel);
913 }
914
915 // Get the value of the symbol referred to by a Rel relocation.
916
917 template<bool dynamic, int size, bool big_endian>
918 typename elfcpp::Elf_types<size>::Elf_Addr
919 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
920     Addend addend) const
921 {
922   if (this->local_sym_index_ == GSYM_CODE)
923     {
924       const Sized_symbol<size>* sym;
925       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
926       return sym->value() + addend;
927     }
928   gold_assert(this->local_sym_index_ != SECTION_CODE
929               && this->local_sym_index_ != INVALID_CODE
930               && !this->is_section_symbol_);
931   const unsigned int lsi = this->local_sym_index_;
932   const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
933   return symval->value(this->u1_.relobj, addend);
934 }
935
936 // Reloc comparison.  This function sorts the dynamic relocs for the
937 // benefit of the dynamic linker.  First we sort all relative relocs
938 // to the front.  Among relative relocs, we sort by output address.
939 // Among non-relative relocs, we sort by symbol index, then by output
940 // address.
941
942 template<bool dynamic, int size, bool big_endian>
943 int
944 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
945   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
946     const
947 {
948   if (this->is_relative_)
949     {
950       if (!r2.is_relative_)
951         return -1;
952       // Otherwise sort by reloc address below.
953     }
954   else if (r2.is_relative_)
955     return 1;
956   else
957     {
958       unsigned int sym1 = this->get_symbol_index();
959       unsigned int sym2 = r2.get_symbol_index();
960       if (sym1 < sym2)
961         return -1;
962       else if (sym1 > sym2)
963         return 1;
964       // Otherwise sort by reloc address.
965     }
966
967   section_offset_type addr1 = this->get_address();
968   section_offset_type addr2 = r2.get_address();
969   if (addr1 < addr2)
970     return -1;
971   else if (addr1 > addr2)
972     return 1;
973
974   // Final tie breaker, in order to generate the same output on any
975   // host: reloc type.
976   unsigned int type1 = this->type_;
977   unsigned int type2 = r2.type_;
978   if (type1 < type2)
979     return -1;
980   else if (type1 > type2)
981     return 1;
982
983   // These relocs appear to be exactly the same.
984   return 0;
985 }
986
987 // Write out a Rela relocation.
988
989 template<bool dynamic, int size, bool big_endian>
990 void
991 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
992     unsigned char* pov) const
993 {
994   elfcpp::Rela_write<size, big_endian> orel(pov);
995   this->rel_.write_rel(&orel);
996   Addend addend = this->addend_;
997   if (this->rel_.is_relative())
998     addend = this->rel_.symbol_value(addend);
999   else if (this->rel_.is_local_section_symbol())
1000     addend = this->rel_.local_section_offset(addend);
1001   orel.put_r_addend(addend);
1002 }
1003
1004 // Output_data_reloc_base methods.
1005
1006 // Adjust the output section.
1007
1008 template<int sh_type, bool dynamic, int size, bool big_endian>
1009 void
1010 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1011     ::do_adjust_output_section(Output_section* os)
1012 {
1013   if (sh_type == elfcpp::SHT_REL)
1014     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1015   else if (sh_type == elfcpp::SHT_RELA)
1016     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1017   else
1018     gold_unreachable();
1019   if (dynamic)
1020     os->set_should_link_to_dynsym();
1021   else
1022     os->set_should_link_to_symtab();
1023 }
1024
1025 // Write out relocation data.
1026
1027 template<int sh_type, bool dynamic, int size, bool big_endian>
1028 void
1029 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1030     Output_file* of)
1031 {
1032   const off_t off = this->offset();
1033   const off_t oview_size = this->data_size();
1034   unsigned char* const oview = of->get_output_view(off, oview_size);
1035
1036   if (this->sort_relocs_)
1037     {
1038       gold_assert(dynamic);
1039       std::sort(this->relocs_.begin(), this->relocs_.end(),
1040                 Sort_relocs_comparison());
1041     }
1042
1043   unsigned char* pov = oview;
1044   for (typename Relocs::const_iterator p = this->relocs_.begin();
1045        p != this->relocs_.end();
1046        ++p)
1047     {
1048       p->write(pov);
1049       pov += reloc_size;
1050     }
1051
1052   gold_assert(pov - oview == oview_size);
1053
1054   of->write_output_view(off, oview_size, oview);
1055
1056   // We no longer need the relocation entries.
1057   this->relocs_.clear();
1058 }
1059
1060 // Class Output_relocatable_relocs.
1061
1062 template<int sh_type, int size, bool big_endian>
1063 void
1064 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1065 {
1066   this->set_data_size(this->rr_->output_reloc_count()
1067                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1068 }
1069
1070 // class Output_data_group.
1071
1072 template<int size, bool big_endian>
1073 Output_data_group<size, big_endian>::Output_data_group(
1074     Sized_relobj<size, big_endian>* relobj,
1075     section_size_type entry_count,
1076     elfcpp::Elf_Word flags,
1077     std::vector<unsigned int>* input_shndxes)
1078   : Output_section_data(entry_count * 4, 4),
1079     relobj_(relobj),
1080     flags_(flags)
1081 {
1082   this->input_shndxes_.swap(*input_shndxes);
1083 }
1084
1085 // Write out the section group, which means translating the section
1086 // indexes to apply to the output file.
1087
1088 template<int size, bool big_endian>
1089 void
1090 Output_data_group<size, big_endian>::do_write(Output_file* of)
1091 {
1092   const off_t off = this->offset();
1093   const section_size_type oview_size =
1094     convert_to_section_size_type(this->data_size());
1095   unsigned char* const oview = of->get_output_view(off, oview_size);
1096
1097   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1098   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1099   ++contents;
1100
1101   for (std::vector<unsigned int>::const_iterator p =
1102          this->input_shndxes_.begin();
1103        p != this->input_shndxes_.end();
1104        ++p, ++contents)
1105     {
1106       Output_section* os = this->relobj_->output_section(*p);
1107
1108       unsigned int output_shndx;
1109       if (os != NULL)
1110         output_shndx = os->out_shndx();
1111       else
1112         {
1113           this->relobj_->error(_("section group retained but "
1114                                  "group element discarded"));
1115           output_shndx = 0;
1116         }
1117
1118       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1119     }
1120
1121   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1122   gold_assert(wrote == oview_size);
1123
1124   of->write_output_view(off, oview_size, oview);
1125
1126   // We no longer need this information.
1127   this->input_shndxes_.clear();
1128 }
1129
1130 // Output_data_got::Got_entry methods.
1131
1132 // Write out the entry.
1133
1134 template<int size, bool big_endian>
1135 void
1136 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1137 {
1138   Valtype val = 0;
1139
1140   switch (this->local_sym_index_)
1141     {
1142     case GSYM_CODE:
1143       {
1144         // If the symbol is resolved locally, we need to write out the
1145         // link-time value, which will be relocated dynamically by a
1146         // RELATIVE relocation.
1147         Symbol* gsym = this->u_.gsym;
1148         Sized_symbol<size>* sgsym;
1149         // This cast is a bit ugly.  We don't want to put a
1150         // virtual method in Symbol, because we want Symbol to be
1151         // as small as possible.
1152         sgsym = static_cast<Sized_symbol<size>*>(gsym);
1153         val = sgsym->value();
1154       }
1155       break;
1156
1157     case CONSTANT_CODE:
1158       val = this->u_.constant;
1159       break;
1160
1161     default:
1162       {
1163         const unsigned int lsi = this->local_sym_index_;
1164         const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1165         val = symval->value(this->u_.object, 0);
1166       }
1167       break;
1168     }
1169
1170   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1171 }
1172
1173 // Output_data_got methods.
1174
1175 // Add an entry for a global symbol to the GOT.  This returns true if
1176 // this is a new GOT entry, false if the symbol already had a GOT
1177 // entry.
1178
1179 template<int size, bool big_endian>
1180 bool
1181 Output_data_got<size, big_endian>::add_global(
1182     Symbol* gsym,
1183     unsigned int got_type)
1184 {
1185   if (gsym->has_got_offset(got_type))
1186     return false;
1187
1188   this->entries_.push_back(Got_entry(gsym));
1189   this->set_got_size();
1190   gsym->set_got_offset(got_type, this->last_got_offset());
1191   return true;
1192 }
1193
1194 // Add an entry for a global symbol to the GOT, and add a dynamic
1195 // relocation of type R_TYPE for the GOT entry.
1196 template<int size, bool big_endian>
1197 void
1198 Output_data_got<size, big_endian>::add_global_with_rel(
1199     Symbol* gsym,
1200     unsigned int got_type,
1201     Rel_dyn* rel_dyn,
1202     unsigned int r_type)
1203 {
1204   if (gsym->has_got_offset(got_type))
1205     return;
1206
1207   this->entries_.push_back(Got_entry());
1208   this->set_got_size();
1209   unsigned int got_offset = this->last_got_offset();
1210   gsym->set_got_offset(got_type, got_offset);
1211   rel_dyn->add_global(gsym, r_type, this, got_offset);
1212 }
1213
1214 template<int size, bool big_endian>
1215 void
1216 Output_data_got<size, big_endian>::add_global_with_rela(
1217     Symbol* gsym,
1218     unsigned int got_type,
1219     Rela_dyn* rela_dyn,
1220     unsigned int r_type)
1221 {
1222   if (gsym->has_got_offset(got_type))
1223     return;
1224
1225   this->entries_.push_back(Got_entry());
1226   this->set_got_size();
1227   unsigned int got_offset = this->last_got_offset();
1228   gsym->set_got_offset(got_type, got_offset);
1229   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1230 }
1231
1232 // Add a pair of entries for a global symbol to the GOT, and add
1233 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1234 // If R_TYPE_2 == 0, add the second entry with no relocation.
1235 template<int size, bool big_endian>
1236 void
1237 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1238     Symbol* gsym,
1239     unsigned int got_type,
1240     Rel_dyn* rel_dyn,
1241     unsigned int r_type_1,
1242     unsigned int r_type_2)
1243 {
1244   if (gsym->has_got_offset(got_type))
1245     return;
1246
1247   this->entries_.push_back(Got_entry());
1248   unsigned int got_offset = this->last_got_offset();
1249   gsym->set_got_offset(got_type, got_offset);
1250   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1251
1252   this->entries_.push_back(Got_entry());
1253   if (r_type_2 != 0)
1254     {
1255       got_offset = this->last_got_offset();
1256       rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1257     }
1258
1259   this->set_got_size();
1260 }
1261
1262 template<int size, bool big_endian>
1263 void
1264 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1265     Symbol* gsym,
1266     unsigned int got_type,
1267     Rela_dyn* rela_dyn,
1268     unsigned int r_type_1,
1269     unsigned int r_type_2)
1270 {
1271   if (gsym->has_got_offset(got_type))
1272     return;
1273
1274   this->entries_.push_back(Got_entry());
1275   unsigned int got_offset = this->last_got_offset();
1276   gsym->set_got_offset(got_type, got_offset);
1277   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1278
1279   this->entries_.push_back(Got_entry());
1280   if (r_type_2 != 0)
1281     {
1282       got_offset = this->last_got_offset();
1283       rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1284     }
1285
1286   this->set_got_size();
1287 }
1288
1289 // Add an entry for a local symbol to the GOT.  This returns true if
1290 // this is a new GOT entry, false if the symbol already has a GOT
1291 // entry.
1292
1293 template<int size, bool big_endian>
1294 bool
1295 Output_data_got<size, big_endian>::add_local(
1296     Sized_relobj<size, big_endian>* object,
1297     unsigned int symndx,
1298     unsigned int got_type)
1299 {
1300   if (object->local_has_got_offset(symndx, got_type))
1301     return false;
1302
1303   this->entries_.push_back(Got_entry(object, symndx));
1304   this->set_got_size();
1305   object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1306   return true;
1307 }
1308
1309 // Add an entry for a local symbol to the GOT, and add a dynamic
1310 // relocation of type R_TYPE for the GOT entry.
1311 template<int size, bool big_endian>
1312 void
1313 Output_data_got<size, big_endian>::add_local_with_rel(
1314     Sized_relobj<size, big_endian>* object,
1315     unsigned int symndx,
1316     unsigned int got_type,
1317     Rel_dyn* rel_dyn,
1318     unsigned int r_type)
1319 {
1320   if (object->local_has_got_offset(symndx, got_type))
1321     return;
1322
1323   this->entries_.push_back(Got_entry());
1324   this->set_got_size();
1325   unsigned int got_offset = this->last_got_offset();
1326   object->set_local_got_offset(symndx, got_type, got_offset);
1327   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1328 }
1329
1330 template<int size, bool big_endian>
1331 void
1332 Output_data_got<size, big_endian>::add_local_with_rela(
1333     Sized_relobj<size, big_endian>* object,
1334     unsigned int symndx,
1335     unsigned int got_type,
1336     Rela_dyn* rela_dyn,
1337     unsigned int r_type)
1338 {
1339   if (object->local_has_got_offset(symndx, got_type))
1340     return;
1341
1342   this->entries_.push_back(Got_entry());
1343   this->set_got_size();
1344   unsigned int got_offset = this->last_got_offset();
1345   object->set_local_got_offset(symndx, got_type, got_offset);
1346   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1347 }
1348
1349 // Add a pair of entries for a local symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size, bool big_endian>
1353 void
1354 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1355     Sized_relobj<size, big_endian>* object,
1356     unsigned int symndx,
1357     unsigned int shndx,
1358     unsigned int got_type,
1359     Rel_dyn* rel_dyn,
1360     unsigned int r_type_1,
1361     unsigned int r_type_2)
1362 {
1363   if (object->local_has_got_offset(symndx, got_type))
1364     return;
1365
1366   this->entries_.push_back(Got_entry());
1367   unsigned int got_offset = this->last_got_offset();
1368   object->set_local_got_offset(symndx, got_type, got_offset);
1369   Output_section* os = object->output_section(shndx);
1370   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1371
1372   this->entries_.push_back(Got_entry(object, symndx));
1373   if (r_type_2 != 0)
1374     {
1375       got_offset = this->last_got_offset();
1376       rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1377     }
1378
1379   this->set_got_size();
1380 }
1381
1382 template<int size, bool big_endian>
1383 void
1384 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1385     Sized_relobj<size, big_endian>* object,
1386     unsigned int symndx,
1387     unsigned int shndx,
1388     unsigned int got_type,
1389     Rela_dyn* rela_dyn,
1390     unsigned int r_type_1,
1391     unsigned int r_type_2)
1392 {
1393   if (object->local_has_got_offset(symndx, got_type))
1394     return;
1395
1396   this->entries_.push_back(Got_entry());
1397   unsigned int got_offset = this->last_got_offset();
1398   object->set_local_got_offset(symndx, got_type, got_offset);
1399   Output_section* os = object->output_section(shndx);
1400   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1401
1402   this->entries_.push_back(Got_entry(object, symndx));
1403   if (r_type_2 != 0)
1404     {
1405       got_offset = this->last_got_offset();
1406       rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1407     }
1408
1409   this->set_got_size();
1410 }
1411
1412 // Write out the GOT.
1413
1414 template<int size, bool big_endian>
1415 void
1416 Output_data_got<size, big_endian>::do_write(Output_file* of)
1417 {
1418   const int add = size / 8;
1419
1420   const off_t off = this->offset();
1421   const off_t oview_size = this->data_size();
1422   unsigned char* const oview = of->get_output_view(off, oview_size);
1423
1424   unsigned char* pov = oview;
1425   for (typename Got_entries::const_iterator p = this->entries_.begin();
1426        p != this->entries_.end();
1427        ++p)
1428     {
1429       p->write(pov);
1430       pov += add;
1431     }
1432
1433   gold_assert(pov - oview == oview_size);
1434
1435   of->write_output_view(off, oview_size, oview);
1436
1437   // We no longer need the GOT entries.
1438   this->entries_.clear();
1439 }
1440
1441 // Output_data_dynamic::Dynamic_entry methods.
1442
1443 // Write out the entry.
1444
1445 template<int size, bool big_endian>
1446 void
1447 Output_data_dynamic::Dynamic_entry::write(
1448     unsigned char* pov,
1449     const Stringpool* pool) const
1450 {
1451   typename elfcpp::Elf_types<size>::Elf_WXword val;
1452   switch (this->offset_)
1453     {
1454     case DYNAMIC_NUMBER:
1455       val = this->u_.val;
1456       break;
1457
1458     case DYNAMIC_SECTION_SIZE:
1459       val = this->u_.od->data_size();
1460       break;
1461
1462     case DYNAMIC_SYMBOL:
1463       {
1464         const Sized_symbol<size>* s =
1465           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1466         val = s->value();
1467       }
1468       break;
1469
1470     case DYNAMIC_STRING:
1471       val = pool->get_offset(this->u_.str);
1472       break;
1473
1474     default:
1475       val = this->u_.od->address() + this->offset_;
1476       break;
1477     }
1478
1479   elfcpp::Dyn_write<size, big_endian> dw(pov);
1480   dw.put_d_tag(this->tag_);
1481   dw.put_d_val(val);
1482 }
1483
1484 // Output_data_dynamic methods.
1485
1486 // Adjust the output section to set the entry size.
1487
1488 void
1489 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1490 {
1491   if (parameters->target().get_size() == 32)
1492     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1493   else if (parameters->target().get_size() == 64)
1494     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1495   else
1496     gold_unreachable();
1497 }
1498
1499 // Set the final data size.
1500
1501 void
1502 Output_data_dynamic::set_final_data_size()
1503 {
1504   // Add the terminating entry.
1505   this->add_constant(elfcpp::DT_NULL, 0);
1506
1507   int dyn_size;
1508   if (parameters->target().get_size() == 32)
1509     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1510   else if (parameters->target().get_size() == 64)
1511     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1512   else
1513     gold_unreachable();
1514   this->set_data_size(this->entries_.size() * dyn_size);
1515 }
1516
1517 // Write out the dynamic entries.
1518
1519 void
1520 Output_data_dynamic::do_write(Output_file* of)
1521 {
1522   switch (parameters->size_and_endianness())
1523     {
1524 #ifdef HAVE_TARGET_32_LITTLE
1525     case Parameters::TARGET_32_LITTLE:
1526       this->sized_write<32, false>(of);
1527       break;
1528 #endif
1529 #ifdef HAVE_TARGET_32_BIG
1530     case Parameters::TARGET_32_BIG:
1531       this->sized_write<32, true>(of);
1532       break;
1533 #endif
1534 #ifdef HAVE_TARGET_64_LITTLE
1535     case Parameters::TARGET_64_LITTLE:
1536       this->sized_write<64, false>(of);
1537       break;
1538 #endif
1539 #ifdef HAVE_TARGET_64_BIG
1540     case Parameters::TARGET_64_BIG:
1541       this->sized_write<64, true>(of);
1542       break;
1543 #endif
1544     default:
1545       gold_unreachable();
1546     }
1547 }
1548
1549 template<int size, bool big_endian>
1550 void
1551 Output_data_dynamic::sized_write(Output_file* of)
1552 {
1553   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1554
1555   const off_t offset = this->offset();
1556   const off_t oview_size = this->data_size();
1557   unsigned char* const oview = of->get_output_view(offset, oview_size);
1558
1559   unsigned char* pov = oview;
1560   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1561        p != this->entries_.end();
1562        ++p)
1563     {
1564       p->write<size, big_endian>(pov, this->pool_);
1565       pov += dyn_size;
1566     }
1567
1568   gold_assert(pov - oview == oview_size);
1569
1570   of->write_output_view(offset, oview_size, oview);
1571
1572   // We no longer need the dynamic entries.
1573   this->entries_.clear();
1574 }
1575
1576 // Class Output_symtab_xindex.
1577
1578 void
1579 Output_symtab_xindex::do_write(Output_file* of)
1580 {
1581   const off_t offset = this->offset();
1582   const off_t oview_size = this->data_size();
1583   unsigned char* const oview = of->get_output_view(offset, oview_size);
1584
1585   memset(oview, 0, oview_size);
1586
1587   if (parameters->target().is_big_endian())
1588     this->endian_do_write<true>(oview);
1589   else
1590     this->endian_do_write<false>(oview);
1591
1592   of->write_output_view(offset, oview_size, oview);
1593
1594   // We no longer need the data.
1595   this->entries_.clear();
1596 }
1597
1598 template<bool big_endian>
1599 void
1600 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1601 {
1602   for (Xindex_entries::const_iterator p = this->entries_.begin();
1603        p != this->entries_.end();
1604        ++p)
1605     elfcpp::Swap<32, big_endian>::writeval(oview + p->first * 4, p->second);
1606 }
1607
1608 // Output_section::Input_section methods.
1609
1610 // Return the data size.  For an input section we store the size here.
1611 // For an Output_section_data, we have to ask it for the size.
1612
1613 off_t
1614 Output_section::Input_section::data_size() const
1615 {
1616   if (this->is_input_section())
1617     return this->u1_.data_size;
1618   else
1619     return this->u2_.posd->data_size();
1620 }
1621
1622 // Set the address and file offset.
1623
1624 void
1625 Output_section::Input_section::set_address_and_file_offset(
1626     uint64_t address,
1627     off_t file_offset,
1628     off_t section_file_offset)
1629 {
1630   if (this->is_input_section())
1631     this->u2_.object->set_section_offset(this->shndx_,
1632                                          file_offset - section_file_offset);
1633   else
1634     this->u2_.posd->set_address_and_file_offset(address, file_offset);
1635 }
1636
1637 // Reset the address and file offset.
1638
1639 void
1640 Output_section::Input_section::reset_address_and_file_offset()
1641 {
1642   if (!this->is_input_section())
1643     this->u2_.posd->reset_address_and_file_offset();
1644 }
1645
1646 // Finalize the data size.
1647
1648 void
1649 Output_section::Input_section::finalize_data_size()
1650 {
1651   if (!this->is_input_section())
1652     this->u2_.posd->finalize_data_size();
1653 }
1654
1655 // Try to turn an input offset into an output offset.  We want to
1656 // return the output offset relative to the start of this
1657 // Input_section in the output section.
1658
1659 inline bool
1660 Output_section::Input_section::output_offset(
1661     const Relobj* object,
1662     unsigned int shndx,
1663     section_offset_type offset,
1664     section_offset_type *poutput) const
1665 {
1666   if (!this->is_input_section())
1667     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1668   else
1669     {
1670       if (this->shndx_ != shndx || this->u2_.object != object)
1671         return false;
1672       *poutput = offset;
1673       return true;
1674     }
1675 }
1676
1677 // Return whether this is the merge section for the input section
1678 // SHNDX in OBJECT.
1679
1680 inline bool
1681 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1682                                                     unsigned int shndx) const
1683 {
1684   if (this->is_input_section())
1685     return false;
1686   return this->u2_.posd->is_merge_section_for(object, shndx);
1687 }
1688
1689 // Write out the data.  We don't have to do anything for an input
1690 // section--they are handled via Object::relocate--but this is where
1691 // we write out the data for an Output_section_data.
1692
1693 void
1694 Output_section::Input_section::write(Output_file* of)
1695 {
1696   if (!this->is_input_section())
1697     this->u2_.posd->write(of);
1698 }
1699
1700 // Write the data to a buffer.  As for write(), we don't have to do
1701 // anything for an input section.
1702
1703 void
1704 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1705 {
1706   if (!this->is_input_section())
1707     this->u2_.posd->write_to_buffer(buffer);
1708 }
1709
1710 // Print to a map file.
1711
1712 void
1713 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1714 {
1715   switch (this->shndx_)
1716     {
1717     case OUTPUT_SECTION_CODE:
1718     case MERGE_DATA_SECTION_CODE:
1719     case MERGE_STRING_SECTION_CODE:
1720       this->u2_.posd->print_to_mapfile(mapfile);
1721       break;
1722
1723     default:
1724       mapfile->print_input_section(this->u2_.object, this->shndx_);
1725       break;
1726     }
1727 }
1728
1729 // Output_section methods.
1730
1731 // Construct an Output_section.  NAME will point into a Stringpool.
1732
1733 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1734                                elfcpp::Elf_Xword flags)
1735   : name_(name),
1736     addralign_(0),
1737     entsize_(0),
1738     load_address_(0),
1739     link_section_(NULL),
1740     link_(0),
1741     info_section_(NULL),
1742     info_symndx_(NULL),
1743     info_(0),
1744     type_(type),
1745     flags_(flags),
1746     out_shndx_(-1U),
1747     symtab_index_(0),
1748     dynsym_index_(0),
1749     input_sections_(),
1750     first_input_offset_(0),
1751     fills_(),
1752     postprocessing_buffer_(NULL),
1753     needs_symtab_index_(false),
1754     needs_dynsym_index_(false),
1755     should_link_to_symtab_(false),
1756     should_link_to_dynsym_(false),
1757     after_input_sections_(false),
1758     requires_postprocessing_(false),
1759     found_in_sections_clause_(false),
1760     has_load_address_(false),
1761     info_uses_section_index_(false),
1762     may_sort_attached_input_sections_(false),
1763     must_sort_attached_input_sections_(false),
1764     attached_input_sections_are_sorted_(false),
1765     is_relro_(false),
1766     is_relro_local_(false),
1767     tls_offset_(0)
1768 {
1769   // An unallocated section has no address.  Forcing this means that
1770   // we don't need special treatment for symbols defined in debug
1771   // sections.
1772   if ((flags & elfcpp::SHF_ALLOC) == 0)
1773     this->set_address(0);
1774 }
1775
1776 Output_section::~Output_section()
1777 {
1778 }
1779
1780 // Set the entry size.
1781
1782 void
1783 Output_section::set_entsize(uint64_t v)
1784 {
1785   if (this->entsize_ == 0)
1786     this->entsize_ = v;
1787   else
1788     gold_assert(this->entsize_ == v);
1789 }
1790
1791 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1792 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
1793 // relocation section which applies to this section, or 0 if none, or
1794 // -1U if more than one.  Return the offset of the input section
1795 // within the output section.  Return -1 if the input section will
1796 // receive special handling.  In the normal case we don't always keep
1797 // track of input sections for an Output_section.  Instead, each
1798 // Object keeps track of the Output_section for each of its input
1799 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1800 // track of input sections here; this is used when SECTIONS appears in
1801 // a linker script.
1802
1803 template<int size, bool big_endian>
1804 off_t
1805 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1806                                   unsigned int shndx,
1807                                   const char* secname,
1808                                   const elfcpp::Shdr<size, big_endian>& shdr,
1809                                   unsigned int reloc_shndx,
1810                                   bool have_sections_script)
1811 {
1812   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1813   if ((addralign & (addralign - 1)) != 0)
1814     {
1815       object->error(_("invalid alignment %lu for section \"%s\""),
1816                     static_cast<unsigned long>(addralign), secname);
1817       addralign = 1;
1818     }
1819
1820   if (addralign > this->addralign_)
1821     this->addralign_ = addralign;
1822
1823   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1824   this->update_flags_for_input_section(sh_flags);
1825
1826   uint64_t entsize = shdr.get_sh_entsize();
1827
1828   // .debug_str is a mergeable string section, but is not always so
1829   // marked by compilers.  Mark manually here so we can optimize.
1830   if (strcmp(secname, ".debug_str") == 0)
1831     {
1832       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1833       entsize = 1;
1834     }
1835
1836   // If this is a SHF_MERGE section, we pass all the input sections to
1837   // a Output_data_merge.  We don't try to handle relocations for such
1838   // a section.  We don't try to handle empty merge sections--they
1839   // mess up the mappings, and are useless anyhow.
1840   if ((sh_flags & elfcpp::SHF_MERGE) != 0
1841       && reloc_shndx == 0
1842       && shdr.get_sh_size() > 0)
1843     {
1844       if (this->add_merge_input_section(object, shndx, sh_flags,
1845                                         entsize, addralign))
1846         {
1847           // Tell the relocation routines that they need to call the
1848           // output_offset method to determine the final address.
1849           return -1;
1850         }
1851     }
1852
1853   off_t offset_in_section = this->current_data_size_for_child();
1854   off_t aligned_offset_in_section = align_address(offset_in_section,
1855                                                   addralign);
1856
1857   if (aligned_offset_in_section > offset_in_section
1858       && !have_sections_script
1859       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1860       && object->target()->has_code_fill())
1861     {
1862       // We need to add some fill data.  Using fill_list_ when
1863       // possible is an optimization, since we will often have fill
1864       // sections without input sections.
1865       off_t fill_len = aligned_offset_in_section - offset_in_section;
1866       if (this->input_sections_.empty())
1867         this->fills_.push_back(Fill(offset_in_section, fill_len));
1868       else
1869         {
1870           // FIXME: When relaxing, the size needs to adjust to
1871           // maintain a constant alignment.
1872           std::string fill_data(object->target()->code_fill(fill_len));
1873           Output_data_const* odc = new Output_data_const(fill_data, 1);
1874           this->input_sections_.push_back(Input_section(odc));
1875         }
1876     }
1877
1878   this->set_current_data_size_for_child(aligned_offset_in_section
1879                                         + shdr.get_sh_size());
1880
1881   // We need to keep track of this section if we are already keeping
1882   // track of sections, or if we are relaxing.  Also, if this is a
1883   // section which requires sorting, or which may require sorting in
1884   // the future, we keep track of the sections.  FIXME: Add test for
1885   // relaxing.
1886   if (have_sections_script
1887       || !this->input_sections_.empty()
1888       || this->may_sort_attached_input_sections()
1889       || this->must_sort_attached_input_sections()
1890       || parameters->options().user_set_Map())
1891     this->input_sections_.push_back(Input_section(object, shndx,
1892                                                   shdr.get_sh_size(),
1893                                                   addralign));
1894
1895   return aligned_offset_in_section;
1896 }
1897
1898 // Add arbitrary data to an output section.
1899
1900 void
1901 Output_section::add_output_section_data(Output_section_data* posd)
1902 {
1903   Input_section inp(posd);
1904   this->add_output_section_data(&inp);
1905
1906   if (posd->is_data_size_valid())
1907     {
1908       off_t offset_in_section = this->current_data_size_for_child();
1909       off_t aligned_offset_in_section = align_address(offset_in_section,
1910                                                       posd->addralign());
1911       this->set_current_data_size_for_child(aligned_offset_in_section
1912                                             + posd->data_size());
1913     }
1914 }
1915
1916 // Add arbitrary data to an output section by Input_section.
1917
1918 void
1919 Output_section::add_output_section_data(Input_section* inp)
1920 {
1921   if (this->input_sections_.empty())
1922     this->first_input_offset_ = this->current_data_size_for_child();
1923
1924   this->input_sections_.push_back(*inp);
1925
1926   uint64_t addralign = inp->addralign();
1927   if (addralign > this->addralign_)
1928     this->addralign_ = addralign;
1929
1930   inp->set_output_section(this);
1931 }
1932
1933 // Add a merge section to an output section.
1934
1935 void
1936 Output_section::add_output_merge_section(Output_section_data* posd,
1937                                          bool is_string, uint64_t entsize)
1938 {
1939   Input_section inp(posd, is_string, entsize);
1940   this->add_output_section_data(&inp);
1941 }
1942
1943 // Add an input section to a SHF_MERGE section.
1944
1945 bool
1946 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1947                                         uint64_t flags, uint64_t entsize,
1948                                         uint64_t addralign)
1949 {
1950   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1951
1952   // We only merge strings if the alignment is not more than the
1953   // character size.  This could be handled, but it's unusual.
1954   if (is_string && addralign > entsize)
1955     return false;
1956
1957   Input_section_list::iterator p;
1958   for (p = this->input_sections_.begin();
1959        p != this->input_sections_.end();
1960        ++p)
1961     if (p->is_merge_section(is_string, entsize, addralign))
1962       {
1963         p->add_input_section(object, shndx);
1964         return true;
1965       }
1966
1967   // We handle the actual constant merging in Output_merge_data or
1968   // Output_merge_string_data.
1969   Output_section_data* posd;
1970   if (!is_string)
1971     posd = new Output_merge_data(entsize, addralign);
1972   else
1973     {
1974       switch (entsize)
1975         {
1976         case 1:
1977           posd = new Output_merge_string<char>(addralign);
1978           break;
1979         case 2:
1980           posd = new Output_merge_string<uint16_t>(addralign);
1981           break;
1982         case 4:
1983           posd = new Output_merge_string<uint32_t>(addralign);
1984           break;
1985         default:
1986           return false;
1987         }
1988     }
1989
1990   this->add_output_merge_section(posd, is_string, entsize);
1991   posd->add_input_section(object, shndx);
1992
1993   return true;
1994 }
1995
1996 // Given an address OFFSET relative to the start of input section
1997 // SHNDX in OBJECT, return whether this address is being included in
1998 // the final link.  This should only be called if SHNDX in OBJECT has
1999 // a special mapping.
2000
2001 bool
2002 Output_section::is_input_address_mapped(const Relobj* object,
2003                                         unsigned int shndx,
2004                                         off_t offset) const
2005 {
2006   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2007        p != this->input_sections_.end();
2008        ++p)
2009     {
2010       section_offset_type output_offset;
2011       if (p->output_offset(object, shndx, offset, &output_offset))
2012         return output_offset != -1;
2013     }
2014
2015   // By default we assume that the address is mapped.  This should
2016   // only be called after we have passed all sections to Layout.  At
2017   // that point we should know what we are discarding.
2018   return true;
2019 }
2020
2021 // Given an address OFFSET relative to the start of input section
2022 // SHNDX in object OBJECT, return the output offset relative to the
2023 // start of the input section in the output section.  This should only
2024 // be called if SHNDX in OBJECT has a special mapping.
2025
2026 section_offset_type
2027 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2028                               section_offset_type offset) const
2029 {
2030   // This can only be called meaningfully when layout is complete.
2031   gold_assert(Output_data::is_layout_complete());
2032
2033   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2034        p != this->input_sections_.end();
2035        ++p)
2036     {
2037       section_offset_type output_offset;
2038       if (p->output_offset(object, shndx, offset, &output_offset))
2039         return output_offset;
2040     }
2041   gold_unreachable();
2042 }
2043
2044 // Return the output virtual address of OFFSET relative to the start
2045 // of input section SHNDX in object OBJECT.
2046
2047 uint64_t
2048 Output_section::output_address(const Relobj* object, unsigned int shndx,
2049                                off_t offset) const
2050 {
2051   uint64_t addr = this->address() + this->first_input_offset_;
2052   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2053        p != this->input_sections_.end();
2054        ++p)
2055     {
2056       addr = align_address(addr, p->addralign());
2057       section_offset_type output_offset;
2058       if (p->output_offset(object, shndx, offset, &output_offset))
2059         {
2060           if (output_offset == -1)
2061             return -1ULL;
2062           return addr + output_offset;
2063         }
2064       addr += p->data_size();
2065     }
2066
2067   // If we get here, it means that we don't know the mapping for this
2068   // input section.  This might happen in principle if
2069   // add_input_section were called before add_output_section_data.
2070   // But it should never actually happen.
2071
2072   gold_unreachable();
2073 }
2074
2075 // Find the output address of the start of the merged section for
2076 // input section SHNDX in object OBJECT.
2077
2078 bool
2079 Output_section::find_starting_output_address(const Relobj* object,
2080                                              unsigned int shndx,
2081                                              uint64_t* paddr) const
2082 {
2083   uint64_t addr = this->address() + this->first_input_offset_;
2084   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2085        p != this->input_sections_.end();
2086        ++p)
2087     {
2088       addr = align_address(addr, p->addralign());
2089
2090       // It would be nice if we could use the existing output_offset
2091       // method to get the output offset of input offset 0.
2092       // Unfortunately we don't know for sure that input offset 0 is
2093       // mapped at all.
2094       if (p->is_merge_section_for(object, shndx))
2095         {
2096           *paddr = addr;
2097           return true;
2098         }
2099
2100       addr += p->data_size();
2101     }
2102
2103   // We couldn't find a merge output section for this input section.
2104   return false;
2105 }
2106
2107 // Set the data size of an Output_section.  This is where we handle
2108 // setting the addresses of any Output_section_data objects.
2109
2110 void
2111 Output_section::set_final_data_size()
2112 {
2113   if (this->input_sections_.empty())
2114     {
2115       this->set_data_size(this->current_data_size_for_child());
2116       return;
2117     }
2118
2119   if (this->must_sort_attached_input_sections())
2120     this->sort_attached_input_sections();
2121
2122   uint64_t address = this->address();
2123   off_t startoff = this->offset();
2124   off_t off = startoff + this->first_input_offset_;
2125   for (Input_section_list::iterator p = this->input_sections_.begin();
2126        p != this->input_sections_.end();
2127        ++p)
2128     {
2129       off = align_address(off, p->addralign());
2130       p->set_address_and_file_offset(address + (off - startoff), off,
2131                                      startoff);
2132       off += p->data_size();
2133     }
2134
2135   this->set_data_size(off - startoff);
2136 }
2137
2138 // Reset the address and file offset.
2139
2140 void
2141 Output_section::do_reset_address_and_file_offset()
2142 {
2143   for (Input_section_list::iterator p = this->input_sections_.begin();
2144        p != this->input_sections_.end();
2145        ++p)
2146     p->reset_address_and_file_offset();
2147 }
2148
2149 // Set the TLS offset.  Called only for SHT_TLS sections.
2150
2151 void
2152 Output_section::do_set_tls_offset(uint64_t tls_base)
2153 {
2154   this->tls_offset_ = this->address() - tls_base;
2155 }
2156
2157 // In a few cases we need to sort the input sections attached to an
2158 // output section.  This is used to implement the type of constructor
2159 // priority ordering implemented by the GNU linker, in which the
2160 // priority becomes part of the section name and the sections are
2161 // sorted by name.  We only do this for an output section if we see an
2162 // attached input section matching ".ctor.*", ".dtor.*",
2163 // ".init_array.*" or ".fini_array.*".
2164
2165 class Output_section::Input_section_sort_entry
2166 {
2167  public:
2168   Input_section_sort_entry()
2169     : input_section_(), index_(-1U), section_has_name_(false),
2170       section_name_()
2171   { }
2172
2173   Input_section_sort_entry(const Input_section& input_section,
2174                            unsigned int index)
2175     : input_section_(input_section), index_(index),
2176       section_has_name_(input_section.is_input_section())
2177   {
2178     if (this->section_has_name_)
2179       {
2180         // This is only called single-threaded from Layout::finalize,
2181         // so it is OK to lock.  Unfortunately we have no way to pass
2182         // in a Task token.
2183         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2184         Object* obj = input_section.relobj();
2185         Task_lock_obj<Object> tl(dummy_task, obj);
2186
2187         // This is a slow operation, which should be cached in
2188         // Layout::layout if this becomes a speed problem.
2189         this->section_name_ = obj->section_name(input_section.shndx());
2190       }
2191   }
2192
2193   // Return the Input_section.
2194   const Input_section&
2195   input_section() const
2196   {
2197     gold_assert(this->index_ != -1U);
2198     return this->input_section_;
2199   }
2200
2201   // The index of this entry in the original list.  This is used to
2202   // make the sort stable.
2203   unsigned int
2204   index() const
2205   {
2206     gold_assert(this->index_ != -1U);
2207     return this->index_;
2208   }
2209
2210   // Whether there is a section name.
2211   bool
2212   section_has_name() const
2213   { return this->section_has_name_; }
2214
2215   // The section name.
2216   const std::string&
2217   section_name() const
2218   {
2219     gold_assert(this->section_has_name_);
2220     return this->section_name_;
2221   }
2222
2223   // Return true if the section name has a priority.  This is assumed
2224   // to be true if it has a dot after the initial dot.
2225   bool
2226   has_priority() const
2227   {
2228     gold_assert(this->section_has_name_);
2229     return this->section_name_.find('.', 1);
2230   }
2231
2232   // Return true if this an input file whose base name matches
2233   // FILE_NAME.  The base name must have an extension of ".o", and
2234   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2235   // This is to match crtbegin.o as well as crtbeginS.o without
2236   // getting confused by other possibilities.  Overall matching the
2237   // file name this way is a dreadful hack, but the GNU linker does it
2238   // in order to better support gcc, and we need to be compatible.
2239   bool
2240   match_file_name(const char* match_file_name) const
2241   {
2242     const std::string& file_name(this->input_section_.relobj()->name());
2243     const char* base_name = lbasename(file_name.c_str());
2244     size_t match_len = strlen(match_file_name);
2245     if (strncmp(base_name, match_file_name, match_len) != 0)
2246       return false;
2247     size_t base_len = strlen(base_name);
2248     if (base_len != match_len + 2 && base_len != match_len + 3)
2249       return false;
2250     return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2251   }
2252
2253  private:
2254   // The Input_section we are sorting.
2255   Input_section input_section_;
2256   // The index of this Input_section in the original list.
2257   unsigned int index_;
2258   // Whether this Input_section has a section name--it won't if this
2259   // is some random Output_section_data.
2260   bool section_has_name_;
2261   // The section name if there is one.
2262   std::string section_name_;
2263 };
2264
2265 // Return true if S1 should come before S2 in the output section.
2266
2267 bool
2268 Output_section::Input_section_sort_compare::operator()(
2269     const Output_section::Input_section_sort_entry& s1,
2270     const Output_section::Input_section_sort_entry& s2) const
2271 {
2272   // crtbegin.o must come first.
2273   bool s1_begin = s1.match_file_name("crtbegin");
2274   bool s2_begin = s2.match_file_name("crtbegin");
2275   if (s1_begin || s2_begin)
2276     {
2277       if (!s1_begin)
2278         return false;
2279       if (!s2_begin)
2280         return true;
2281       return s1.index() < s2.index();
2282     }
2283
2284   // crtend.o must come last.
2285   bool s1_end = s1.match_file_name("crtend");
2286   bool s2_end = s2.match_file_name("crtend");
2287   if (s1_end || s2_end)
2288     {
2289       if (!s1_end)
2290         return true;
2291       if (!s2_end)
2292         return false;
2293       return s1.index() < s2.index();
2294     }
2295
2296   // We sort all the sections with no names to the end.
2297   if (!s1.section_has_name() || !s2.section_has_name())
2298     {
2299       if (s1.section_has_name())
2300         return true;
2301       if (s2.section_has_name())
2302         return false;
2303       return s1.index() < s2.index();
2304     }
2305
2306   // A section with a priority follows a section without a priority.
2307   // The GNU linker does this for all but .init_array sections; until
2308   // further notice we'll assume that that is an mistake.
2309   bool s1_has_priority = s1.has_priority();
2310   bool s2_has_priority = s2.has_priority();
2311   if (s1_has_priority && !s2_has_priority)
2312     return false;
2313   if (!s1_has_priority && s2_has_priority)
2314     return true;
2315
2316   // Otherwise we sort by name.
2317   int compare = s1.section_name().compare(s2.section_name());
2318   if (compare != 0)
2319     return compare < 0;
2320
2321   // Otherwise we keep the input order.
2322   return s1.index() < s2.index();
2323 }
2324
2325 // Sort the input sections attached to an output section.
2326
2327 void
2328 Output_section::sort_attached_input_sections()
2329 {
2330   if (this->attached_input_sections_are_sorted_)
2331     return;
2332
2333   // The only thing we know about an input section is the object and
2334   // the section index.  We need the section name.  Recomputing this
2335   // is slow but this is an unusual case.  If this becomes a speed
2336   // problem we can cache the names as required in Layout::layout.
2337
2338   // We start by building a larger vector holding a copy of each
2339   // Input_section, plus its current index in the list and its name.
2340   std::vector<Input_section_sort_entry> sort_list;
2341
2342   unsigned int i = 0;
2343   for (Input_section_list::iterator p = this->input_sections_.begin();
2344        p != this->input_sections_.end();
2345        ++p, ++i)
2346     sort_list.push_back(Input_section_sort_entry(*p, i));
2347
2348   // Sort the input sections.
2349   std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2350
2351   // Copy the sorted input sections back to our list.
2352   this->input_sections_.clear();
2353   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2354        p != sort_list.end();
2355        ++p)
2356     this->input_sections_.push_back(p->input_section());
2357
2358   // Remember that we sorted the input sections, since we might get
2359   // called again.
2360   this->attached_input_sections_are_sorted_ = true;
2361 }
2362
2363 // Write the section header to *OSHDR.
2364
2365 template<int size, bool big_endian>
2366 void
2367 Output_section::write_header(const Layout* layout,
2368                              const Stringpool* secnamepool,
2369                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
2370 {
2371   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2372   oshdr->put_sh_type(this->type_);
2373
2374   elfcpp::Elf_Xword flags = this->flags_;
2375   if (this->info_section_ != NULL && this->info_uses_section_index_)
2376     flags |= elfcpp::SHF_INFO_LINK;
2377   oshdr->put_sh_flags(flags);
2378
2379   oshdr->put_sh_addr(this->address());
2380   oshdr->put_sh_offset(this->offset());
2381   oshdr->put_sh_size(this->data_size());
2382   if (this->link_section_ != NULL)
2383     oshdr->put_sh_link(this->link_section_->out_shndx());
2384   else if (this->should_link_to_symtab_)
2385     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2386   else if (this->should_link_to_dynsym_)
2387     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2388   else
2389     oshdr->put_sh_link(this->link_);
2390
2391   elfcpp::Elf_Word info;
2392   if (this->info_section_ != NULL)
2393     {
2394       if (this->info_uses_section_index_)
2395         info = this->info_section_->out_shndx();
2396       else
2397         info = this->info_section_->symtab_index();
2398     }
2399   else if (this->info_symndx_ != NULL)
2400     info = this->info_symndx_->symtab_index();
2401   else
2402     info = this->info_;
2403   oshdr->put_sh_info(info);
2404
2405   oshdr->put_sh_addralign(this->addralign_);
2406   oshdr->put_sh_entsize(this->entsize_);
2407 }
2408
2409 // Write out the data.  For input sections the data is written out by
2410 // Object::relocate, but we have to handle Output_section_data objects
2411 // here.
2412
2413 void
2414 Output_section::do_write(Output_file* of)
2415 {
2416   gold_assert(!this->requires_postprocessing());
2417
2418   off_t output_section_file_offset = this->offset();
2419   for (Fill_list::iterator p = this->fills_.begin();
2420        p != this->fills_.end();
2421        ++p)
2422     {
2423       std::string fill_data(parameters->target().code_fill(p->length()));
2424       of->write(output_section_file_offset + p->section_offset(),
2425                 fill_data.data(), fill_data.size());
2426     }
2427
2428   for (Input_section_list::iterator p = this->input_sections_.begin();
2429        p != this->input_sections_.end();
2430        ++p)
2431     p->write(of);
2432 }
2433
2434 // If a section requires postprocessing, create the buffer to use.
2435
2436 void
2437 Output_section::create_postprocessing_buffer()
2438 {
2439   gold_assert(this->requires_postprocessing());
2440
2441   if (this->postprocessing_buffer_ != NULL)
2442     return;
2443
2444   if (!this->input_sections_.empty())
2445     {
2446       off_t off = this->first_input_offset_;
2447       for (Input_section_list::iterator p = this->input_sections_.begin();
2448            p != this->input_sections_.end();
2449            ++p)
2450         {
2451           off = align_address(off, p->addralign());
2452           p->finalize_data_size();
2453           off += p->data_size();
2454         }
2455       this->set_current_data_size_for_child(off);
2456     }
2457
2458   off_t buffer_size = this->current_data_size_for_child();
2459   this->postprocessing_buffer_ = new unsigned char[buffer_size];
2460 }
2461
2462 // Write all the data of an Output_section into the postprocessing
2463 // buffer.  This is used for sections which require postprocessing,
2464 // such as compression.  Input sections are handled by
2465 // Object::Relocate.
2466
2467 void
2468 Output_section::write_to_postprocessing_buffer()
2469 {
2470   gold_assert(this->requires_postprocessing());
2471
2472   unsigned char* buffer = this->postprocessing_buffer();
2473   for (Fill_list::iterator p = this->fills_.begin();
2474        p != this->fills_.end();
2475        ++p)
2476     {
2477       std::string fill_data(parameters->target().code_fill(p->length()));
2478       memcpy(buffer + p->section_offset(), fill_data.data(),
2479              fill_data.size());
2480     }
2481
2482   off_t off = this->first_input_offset_;
2483   for (Input_section_list::iterator p = this->input_sections_.begin();
2484        p != this->input_sections_.end();
2485        ++p)
2486     {
2487       off = align_address(off, p->addralign());
2488       p->write_to_buffer(buffer + off);
2489       off += p->data_size();
2490     }
2491 }
2492
2493 // Get the input sections for linker script processing.  We leave
2494 // behind the Output_section_data entries.  Note that this may be
2495 // slightly incorrect for merge sections.  We will leave them behind,
2496 // but it is possible that the script says that they should follow
2497 // some other input sections, as in:
2498 //    .rodata { *(.rodata) *(.rodata.cst*) }
2499 // For that matter, we don't handle this correctly:
2500 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2501 // With luck this will never matter.
2502
2503 uint64_t
2504 Output_section::get_input_sections(
2505     uint64_t address,
2506     const std::string& fill,
2507     std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2508 {
2509   uint64_t orig_address = address;
2510
2511   address = align_address(address, this->addralign());
2512
2513   Input_section_list remaining;
2514   for (Input_section_list::iterator p = this->input_sections_.begin();
2515        p != this->input_sections_.end();
2516        ++p)
2517     {
2518       if (p->is_input_section())
2519         input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2520       else
2521         {
2522           uint64_t aligned_address = align_address(address, p->addralign());
2523           if (aligned_address != address && !fill.empty())
2524             {
2525               section_size_type length =
2526                 convert_to_section_size_type(aligned_address - address);
2527               std::string this_fill;
2528               this_fill.reserve(length);
2529               while (this_fill.length() + fill.length() <= length)
2530                 this_fill += fill;
2531               if (this_fill.length() < length)
2532                 this_fill.append(fill, 0, length - this_fill.length());
2533
2534               Output_section_data* posd = new Output_data_const(this_fill, 0);
2535               remaining.push_back(Input_section(posd));
2536             }
2537           address = aligned_address;
2538
2539           remaining.push_back(*p);
2540
2541           p->finalize_data_size();
2542           address += p->data_size();
2543         }
2544     }
2545
2546   this->input_sections_.swap(remaining);
2547   this->first_input_offset_ = 0;
2548
2549   uint64_t data_size = address - orig_address;
2550   this->set_current_data_size_for_child(data_size);
2551   return data_size;
2552 }
2553
2554 // Add an input section from a script.
2555
2556 void
2557 Output_section::add_input_section_for_script(Relobj* object,
2558                                              unsigned int shndx,
2559                                              off_t data_size,
2560                                              uint64_t addralign)
2561 {
2562   if (addralign > this->addralign_)
2563     this->addralign_ = addralign;
2564
2565   off_t offset_in_section = this->current_data_size_for_child();
2566   off_t aligned_offset_in_section = align_address(offset_in_section,
2567                                                   addralign);
2568
2569   this->set_current_data_size_for_child(aligned_offset_in_section
2570                                         + data_size);
2571
2572   this->input_sections_.push_back(Input_section(object, shndx,
2573                                                 data_size, addralign));
2574 }
2575
2576 // Print to the map file.
2577
2578 void
2579 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
2580 {
2581   mapfile->print_output_section(this);
2582
2583   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2584        p != this->input_sections_.end();
2585        ++p)
2586     p->print_to_mapfile(mapfile);
2587 }
2588
2589 // Print stats for merge sections to stderr.
2590
2591 void
2592 Output_section::print_merge_stats()
2593 {
2594   Input_section_list::iterator p;
2595   for (p = this->input_sections_.begin();
2596        p != this->input_sections_.end();
2597        ++p)
2598     p->print_merge_stats(this->name_);
2599 }
2600
2601 // Output segment methods.
2602
2603 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2604   : output_data_(),
2605     output_bss_(),
2606     vaddr_(0),
2607     paddr_(0),
2608     memsz_(0),
2609     max_align_(0),
2610     min_p_align_(0),
2611     offset_(0),
2612     filesz_(0),
2613     type_(type),
2614     flags_(flags),
2615     is_max_align_known_(false),
2616     are_addresses_set_(false)
2617 {
2618 }
2619
2620 // Add an Output_section to an Output_segment.
2621
2622 void
2623 Output_segment::add_output_section(Output_section* os,
2624                                    elfcpp::Elf_Word seg_flags)
2625 {
2626   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2627   gold_assert(!this->is_max_align_known_);
2628
2629   // Update the segment flags.
2630   this->flags_ |= seg_flags;
2631
2632   Output_segment::Output_data_list* pdl;
2633   if (os->type() == elfcpp::SHT_NOBITS)
2634     pdl = &this->output_bss_;
2635   else
2636     pdl = &this->output_data_;
2637
2638   // So that PT_NOTE segments will work correctly, we need to ensure
2639   // that all SHT_NOTE sections are adjacent.  This will normally
2640   // happen automatically, because all the SHT_NOTE input sections
2641   // will wind up in the same output section.  However, it is possible
2642   // for multiple SHT_NOTE input sections to have different section
2643   // flags, and thus be in different output sections, but for the
2644   // different section flags to map into the same segment flags and
2645   // thus the same output segment.
2646
2647   // Note that while there may be many input sections in an output
2648   // section, there are normally only a few output sections in an
2649   // output segment.  This loop is expected to be fast.
2650
2651   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2652     {
2653       Output_segment::Output_data_list::iterator p = pdl->end();
2654       do
2655         {
2656           --p;
2657           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2658             {
2659               ++p;
2660               pdl->insert(p, os);
2661               return;
2662             }
2663         }
2664       while (p != pdl->begin());
2665     }
2666
2667   // Similarly, so that PT_TLS segments will work, we need to group
2668   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
2669   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2670   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
2671   // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
2672   // and the PT_TLS segment -- we do this grouping only for the
2673   // PT_LOAD segment.
2674   if (this->type_ != elfcpp::PT_TLS
2675       && (os->flags() & elfcpp::SHF_TLS) != 0)
2676     {
2677       pdl = &this->output_data_;
2678       bool nobits = os->type() == elfcpp::SHT_NOBITS;
2679       bool sawtls = false;
2680       Output_segment::Output_data_list::iterator p = pdl->end();
2681       do
2682         {
2683           --p;
2684           bool insert;
2685           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2686             {
2687               sawtls = true;
2688               // Put a NOBITS section after the first TLS section.
2689               // Put a PROGBITS section after the first TLS/PROGBITS
2690               // section.
2691               insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2692             }
2693           else
2694             {
2695               // If we've gone past the TLS sections, but we've seen a
2696               // TLS section, then we need to insert this section now.
2697               insert = sawtls;
2698             }
2699
2700           if (insert)
2701             {
2702               ++p;
2703               pdl->insert(p, os);
2704               return;
2705             }
2706         }
2707       while (p != pdl->begin());
2708
2709       // There are no TLS sections yet; put this one at the requested
2710       // location in the section list.
2711     }
2712
2713   // For the PT_GNU_RELRO segment, we need to group relro sections,
2714   // and we need to put them before any non-relro sections.  Also,
2715   // relro local sections go before relro non-local sections.
2716   if (parameters->options().relro() && os->is_relro())
2717     {
2718       gold_assert(pdl == &this->output_data_);
2719       Output_segment::Output_data_list::iterator p;
2720       for (p = pdl->begin(); p != pdl->end(); ++p)
2721         {
2722           if (!(*p)->is_section())
2723             break;
2724
2725           Output_section* pos = (*p)->output_section();
2726           if (!pos->is_relro()
2727               || (os->is_relro_local() && !pos->is_relro_local()))
2728             break;
2729         }
2730
2731       pdl->insert(p, os);
2732       return;
2733     }
2734
2735   pdl->push_back(os);
2736 }
2737
2738 // Remove an Output_section from this segment.  It is an error if it
2739 // is not present.
2740
2741 void
2742 Output_segment::remove_output_section(Output_section* os)
2743 {
2744   // We only need this for SHT_PROGBITS.
2745   gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2746   for (Output_data_list::iterator p = this->output_data_.begin();
2747        p != this->output_data_.end();
2748        ++p)
2749    {
2750      if (*p == os)
2751        {
2752          this->output_data_.erase(p);
2753          return;
2754        }
2755    }
2756   gold_unreachable();
2757 }
2758
2759 // Add an Output_data (which is not an Output_section) to the start of
2760 // a segment.
2761
2762 void
2763 Output_segment::add_initial_output_data(Output_data* od)
2764 {
2765   gold_assert(!this->is_max_align_known_);
2766   this->output_data_.push_front(od);
2767 }
2768
2769 // Return whether the first data section is a relro section.
2770
2771 bool
2772 Output_segment::is_first_section_relro() const
2773 {
2774   return (!this->output_data_.empty()
2775           && this->output_data_.front()->is_section()
2776           && this->output_data_.front()->output_section()->is_relro());
2777 }
2778
2779 // Return the maximum alignment of the Output_data in Output_segment.
2780
2781 uint64_t
2782 Output_segment::maximum_alignment()
2783 {
2784   if (!this->is_max_align_known_)
2785     {
2786       uint64_t addralign;
2787
2788       addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2789       if (addralign > this->max_align_)
2790         this->max_align_ = addralign;
2791
2792       addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2793       if (addralign > this->max_align_)
2794         this->max_align_ = addralign;
2795
2796       // If -z relro is in effect, and the first section in this
2797       // segment is a relro section, then the segment must be aligned
2798       // to at least the common page size.  This ensures that the
2799       // PT_GNU_RELRO segment will start at a page boundary.
2800       if (this->type_ == elfcpp::PT_LOAD
2801           && parameters->options().relro()
2802           && this->is_first_section_relro())
2803         {
2804           addralign = parameters->target().common_pagesize();
2805           if (addralign > this->max_align_)
2806             this->max_align_ = addralign;
2807         }
2808
2809       this->is_max_align_known_ = true;
2810     }
2811
2812   return this->max_align_;
2813 }
2814
2815 // Return the maximum alignment of a list of Output_data.
2816
2817 uint64_t
2818 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2819 {
2820   uint64_t ret = 0;
2821   for (Output_data_list::const_iterator p = pdl->begin();
2822        p != pdl->end();
2823        ++p)
2824     {
2825       uint64_t addralign = (*p)->addralign();
2826       if (addralign > ret)
2827         ret = addralign;
2828     }
2829   return ret;
2830 }
2831
2832 // Return the number of dynamic relocs applied to this segment.
2833
2834 unsigned int
2835 Output_segment::dynamic_reloc_count() const
2836 {
2837   return (this->dynamic_reloc_count_list(&this->output_data_)
2838           + this->dynamic_reloc_count_list(&this->output_bss_));
2839 }
2840
2841 // Return the number of dynamic relocs applied to an Output_data_list.
2842
2843 unsigned int
2844 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2845 {
2846   unsigned int count = 0;
2847   for (Output_data_list::const_iterator p = pdl->begin();
2848        p != pdl->end();
2849        ++p)
2850     count += (*p)->dynamic_reloc_count();
2851   return count;
2852 }
2853
2854 // Set the section addresses for an Output_segment.  If RESET is true,
2855 // reset the addresses first.  ADDR is the address and *POFF is the
2856 // file offset.  Set the section indexes starting with *PSHNDX.
2857 // Return the address of the immediately following segment.  Update
2858 // *POFF and *PSHNDX.
2859
2860 uint64_t
2861 Output_segment::set_section_addresses(const Layout* layout, bool reset,
2862                                       uint64_t addr, off_t* poff,
2863                                       unsigned int* pshndx)
2864 {
2865   gold_assert(this->type_ == elfcpp::PT_LOAD);
2866
2867   if (!reset && this->are_addresses_set_)
2868     {
2869       gold_assert(this->paddr_ == addr);
2870       addr = this->vaddr_;
2871     }
2872   else
2873     {
2874       this->vaddr_ = addr;
2875       this->paddr_ = addr;
2876       this->are_addresses_set_ = true;
2877     }
2878
2879   bool in_tls = false;
2880
2881   bool in_relro = (parameters->options().relro()
2882                    && this->is_first_section_relro());
2883
2884   off_t orig_off = *poff;
2885   this->offset_ = orig_off;
2886
2887   addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2888                                           addr, poff, pshndx, &in_tls,
2889                                           &in_relro);
2890   this->filesz_ = *poff - orig_off;
2891
2892   off_t off = *poff;
2893
2894   uint64_t ret = this->set_section_list_addresses(layout, reset,
2895                                                   &this->output_bss_,
2896                                                   addr, poff, pshndx,
2897                                                   &in_tls, &in_relro);
2898
2899   // If the last section was a TLS section, align upward to the
2900   // alignment of the TLS segment, so that the overall size of the TLS
2901   // segment is aligned.
2902   if (in_tls)
2903     {
2904       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2905       *poff = align_address(*poff, segment_align);
2906     }
2907
2908   // If all the sections were relro sections, align upward to the
2909   // common page size.
2910   if (in_relro)
2911     {
2912       uint64_t page_align = parameters->target().common_pagesize();
2913       *poff = align_address(*poff, page_align);
2914     }
2915
2916   this->memsz_ = *poff - orig_off;
2917
2918   // Ignore the file offset adjustments made by the BSS Output_data
2919   // objects.
2920   *poff = off;
2921
2922   return ret;
2923 }
2924
2925 // Set the addresses and file offsets in a list of Output_data
2926 // structures.
2927
2928 uint64_t
2929 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2930                                            Output_data_list* pdl,
2931                                            uint64_t addr, off_t* poff,
2932                                            unsigned int* pshndx,
2933                                            bool* in_tls, bool* in_relro)
2934 {
2935   off_t startoff = *poff;
2936
2937   off_t off = startoff;
2938   for (Output_data_list::iterator p = pdl->begin();
2939        p != pdl->end();
2940        ++p)
2941     {
2942       if (reset)
2943         (*p)->reset_address_and_file_offset();
2944
2945       // When using a linker script the section will most likely
2946       // already have an address.
2947       if (!(*p)->is_address_valid())
2948         {
2949           uint64_t align = (*p)->addralign();
2950
2951           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2952             {
2953               // Give the first TLS section the alignment of the
2954               // entire TLS segment.  Otherwise the TLS segment as a
2955               // whole may be misaligned.
2956               if (!*in_tls)
2957                 {
2958                   Output_segment* tls_segment = layout->tls_segment();
2959                   gold_assert(tls_segment != NULL);
2960                   uint64_t segment_align = tls_segment->maximum_alignment();
2961                   gold_assert(segment_align >= align);
2962                   align = segment_align;
2963
2964                   *in_tls = true;
2965                 }
2966             }
2967           else
2968             {
2969               // If this is the first section after the TLS segment,
2970               // align it to at least the alignment of the TLS
2971               // segment, so that the size of the overall TLS segment
2972               // is aligned.
2973               if (*in_tls)
2974                 {
2975                   uint64_t segment_align =
2976                       layout->tls_segment()->maximum_alignment();
2977                   if (segment_align > align)
2978                     align = segment_align;
2979
2980                   *in_tls = false;
2981                 }
2982             }
2983
2984           // If this is a non-relro section after a relro section,
2985           // align it to a common page boundary so that the dynamic
2986           // linker has a page to mark as read-only.
2987           if (*in_relro
2988               && (!(*p)->is_section()
2989                   || !(*p)->output_section()->is_relro()))
2990             {
2991               uint64_t page_align = parameters->target().common_pagesize();
2992               if (page_align > align)
2993                 align = page_align;
2994               *in_relro = false;
2995             }
2996
2997           off = align_address(off, align);
2998           (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2999         }
3000       else
3001         {
3002           // The script may have inserted a skip forward, but it
3003           // better not have moved backward.
3004           gold_assert((*p)->address() >= addr + (off - startoff));
3005           off += (*p)->address() - (addr + (off - startoff));
3006           (*p)->set_file_offset(off);
3007           (*p)->finalize_data_size();
3008         }
3009
3010       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3011       // section.  Such a section does not affect the size of a
3012       // PT_LOAD segment.
3013       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3014           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3015         off += (*p)->data_size();
3016
3017       if ((*p)->is_section())
3018         {
3019           (*p)->set_out_shndx(*pshndx);
3020           ++*pshndx;
3021         }
3022     }
3023
3024   *poff = off;
3025   return addr + (off - startoff);
3026 }
3027
3028 // For a non-PT_LOAD segment, set the offset from the sections, if
3029 // any.
3030
3031 void
3032 Output_segment::set_offset()
3033 {
3034   gold_assert(this->type_ != elfcpp::PT_LOAD);
3035
3036   gold_assert(!this->are_addresses_set_);
3037
3038   if (this->output_data_.empty() && this->output_bss_.empty())
3039     {
3040       this->vaddr_ = 0;
3041       this->paddr_ = 0;
3042       this->are_addresses_set_ = true;
3043       this->memsz_ = 0;
3044       this->min_p_align_ = 0;
3045       this->offset_ = 0;
3046       this->filesz_ = 0;
3047       return;
3048     }
3049
3050   const Output_data* first;
3051   if (this->output_data_.empty())
3052     first = this->output_bss_.front();
3053   else
3054     first = this->output_data_.front();
3055   this->vaddr_ = first->address();
3056   this->paddr_ = (first->has_load_address()
3057                   ? first->load_address()
3058                   : this->vaddr_);
3059   this->are_addresses_set_ = true;
3060   this->offset_ = first->offset();
3061
3062   if (this->output_data_.empty())
3063     this->filesz_ = 0;
3064   else
3065     {
3066       const Output_data* last_data = this->output_data_.back();
3067       this->filesz_ = (last_data->address()
3068                        + last_data->data_size()
3069                        - this->vaddr_);
3070     }
3071
3072   const Output_data* last;
3073   if (this->output_bss_.empty())
3074     last = this->output_data_.back();
3075   else
3076     last = this->output_bss_.back();
3077   this->memsz_ = (last->address()
3078                   + last->data_size()
3079                   - this->vaddr_);
3080
3081   // If this is a TLS segment, align the memory size.  The code in
3082   // set_section_list ensures that the section after the TLS segment
3083   // is aligned to give us room.
3084   if (this->type_ == elfcpp::PT_TLS)
3085     {
3086       uint64_t segment_align = this->maximum_alignment();
3087       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3088       this->memsz_ = align_address(this->memsz_, segment_align);
3089     }
3090
3091   // If this is a RELRO segment, align the memory size.  The code in
3092   // set_section_list ensures that the section after the RELRO segment
3093   // is aligned to give us room.
3094   if (this->type_ == elfcpp::PT_GNU_RELRO)
3095     {
3096       uint64_t page_align = parameters->target().common_pagesize();
3097       gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3098       this->memsz_ = align_address(this->memsz_, page_align);
3099     }
3100 }
3101
3102 // Set the TLS offsets of the sections in the PT_TLS segment.
3103
3104 void
3105 Output_segment::set_tls_offsets()
3106 {
3107   gold_assert(this->type_ == elfcpp::PT_TLS);
3108
3109   for (Output_data_list::iterator p = this->output_data_.begin();
3110        p != this->output_data_.end();
3111        ++p)
3112     (*p)->set_tls_offset(this->vaddr_);
3113
3114   for (Output_data_list::iterator p = this->output_bss_.begin();
3115        p != this->output_bss_.end();
3116        ++p)
3117     (*p)->set_tls_offset(this->vaddr_);
3118 }
3119
3120 // Return the address of the first section.
3121
3122 uint64_t
3123 Output_segment::first_section_load_address() const
3124 {
3125   for (Output_data_list::const_iterator p = this->output_data_.begin();
3126        p != this->output_data_.end();
3127        ++p)
3128     if ((*p)->is_section())
3129       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3130
3131   for (Output_data_list::const_iterator p = this->output_bss_.begin();
3132        p != this->output_bss_.end();
3133        ++p)
3134     if ((*p)->is_section())
3135       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3136
3137   gold_unreachable();
3138 }
3139
3140 // Return the number of Output_sections in an Output_segment.
3141
3142 unsigned int
3143 Output_segment::output_section_count() const
3144 {
3145   return (this->output_section_count_list(&this->output_data_)
3146           + this->output_section_count_list(&this->output_bss_));
3147 }
3148
3149 // Return the number of Output_sections in an Output_data_list.
3150
3151 unsigned int
3152 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3153 {
3154   unsigned int count = 0;
3155   for (Output_data_list::const_iterator p = pdl->begin();
3156        p != pdl->end();
3157        ++p)
3158     {
3159       if ((*p)->is_section())
3160         ++count;
3161     }
3162   return count;
3163 }
3164
3165 // Return the section attached to the list segment with the lowest
3166 // load address.  This is used when handling a PHDRS clause in a
3167 // linker script.
3168
3169 Output_section*
3170 Output_segment::section_with_lowest_load_address() const
3171 {
3172   Output_section* found = NULL;
3173   uint64_t found_lma = 0;
3174   this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3175
3176   Output_section* found_data = found;
3177   this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3178   if (found != found_data && found_data != NULL)
3179     {
3180       gold_error(_("nobits section %s may not precede progbits section %s "
3181                    "in same segment"),
3182                  found->name(), found_data->name());
3183       return NULL;
3184     }
3185
3186   return found;
3187 }
3188
3189 // Look through a list for a section with a lower load address.
3190
3191 void
3192 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3193                                             Output_section** found,
3194                                             uint64_t* found_lma) const
3195 {
3196   for (Output_data_list::const_iterator p = pdl->begin();
3197        p != pdl->end();
3198        ++p)
3199     {
3200       if (!(*p)->is_section())
3201         continue;
3202       Output_section* os = static_cast<Output_section*>(*p);
3203       uint64_t lma = (os->has_load_address()
3204                       ? os->load_address()
3205                       : os->address());
3206       if (*found == NULL || lma < *found_lma)
3207         {
3208           *found = os;
3209           *found_lma = lma;
3210         }
3211     }
3212 }
3213
3214 // Write the segment data into *OPHDR.
3215
3216 template<int size, bool big_endian>
3217 void
3218 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3219 {
3220   ophdr->put_p_type(this->type_);
3221   ophdr->put_p_offset(this->offset_);
3222   ophdr->put_p_vaddr(this->vaddr_);
3223   ophdr->put_p_paddr(this->paddr_);
3224   ophdr->put_p_filesz(this->filesz_);
3225   ophdr->put_p_memsz(this->memsz_);
3226   ophdr->put_p_flags(this->flags_);
3227   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3228 }
3229
3230 // Write the section headers into V.
3231
3232 template<int size, bool big_endian>
3233 unsigned char*
3234 Output_segment::write_section_headers(const Layout* layout,
3235                                       const Stringpool* secnamepool,
3236                                       unsigned char* v,
3237                                       unsigned int *pshndx) const
3238 {
3239   // Every section that is attached to a segment must be attached to a
3240   // PT_LOAD segment, so we only write out section headers for PT_LOAD
3241   // segments.
3242   if (this->type_ != elfcpp::PT_LOAD)
3243     return v;
3244
3245   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3246                                                          &this->output_data_,
3247                                                          v, pshndx);
3248   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3249                                                          &this->output_bss_,
3250                                                          v, pshndx);
3251   return v;
3252 }
3253
3254 template<int size, bool big_endian>
3255 unsigned char*
3256 Output_segment::write_section_headers_list(const Layout* layout,
3257                                            const Stringpool* secnamepool,
3258                                            const Output_data_list* pdl,
3259                                            unsigned char* v,
3260                                            unsigned int* pshndx) const
3261 {
3262   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3263   for (Output_data_list::const_iterator p = pdl->begin();
3264        p != pdl->end();
3265        ++p)
3266     {
3267       if ((*p)->is_section())
3268         {
3269           const Output_section* ps = static_cast<const Output_section*>(*p);
3270           gold_assert(*pshndx == ps->out_shndx());
3271           elfcpp::Shdr_write<size, big_endian> oshdr(v);
3272           ps->write_header(layout, secnamepool, &oshdr);
3273           v += shdr_size;
3274           ++*pshndx;
3275         }
3276     }
3277   return v;
3278 }
3279
3280 // Print the output sections to the map file.
3281
3282 void
3283 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3284 {
3285   if (this->type() != elfcpp::PT_LOAD)
3286     return;
3287   this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3288   this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3289 }
3290
3291 // Print an output section list to the map file.
3292
3293 void
3294 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3295                                               const Output_data_list* pdl) const
3296 {
3297   for (Output_data_list::const_iterator p = pdl->begin();
3298        p != pdl->end();
3299        ++p)
3300     (*p)->print_to_mapfile(mapfile);
3301 }
3302
3303 // Output_file methods.
3304
3305 Output_file::Output_file(const char* name)
3306   : name_(name),
3307     o_(-1),
3308     file_size_(0),
3309     base_(NULL),
3310     map_is_anonymous_(false),
3311     is_temporary_(false)
3312 {
3313 }
3314
3315 // Open the output file.
3316
3317 void
3318 Output_file::open(off_t file_size)
3319 {
3320   this->file_size_ = file_size;
3321
3322   // Unlink the file first; otherwise the open() may fail if the file
3323   // is busy (e.g. it's an executable that's currently being executed).
3324   //
3325   // However, the linker may be part of a system where a zero-length
3326   // file is created for it to write to, with tight permissions (gcc
3327   // 2.95 did something like this).  Unlinking the file would work
3328   // around those permission controls, so we only unlink if the file
3329   // has a non-zero size.  We also unlink only regular files to avoid
3330   // trouble with directories/etc.
3331   //
3332   // If we fail, continue; this command is merely a best-effort attempt
3333   // to improve the odds for open().
3334
3335   // We let the name "-" mean "stdout"
3336   if (!this->is_temporary_)
3337     {
3338       if (strcmp(this->name_, "-") == 0)
3339         this->o_ = STDOUT_FILENO;
3340       else
3341         {
3342           struct stat s;
3343           if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3344             unlink_if_ordinary(this->name_);
3345
3346           int mode = parameters->options().relocatable() ? 0666 : 0777;
3347           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3348                                   mode);
3349           if (o < 0)
3350             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3351           this->o_ = o;
3352         }
3353     }
3354
3355   this->map();
3356 }
3357
3358 // Resize the output file.
3359
3360 void
3361 Output_file::resize(off_t file_size)
3362 {
3363   // If the mmap is mapping an anonymous memory buffer, this is easy:
3364   // just mremap to the new size.  If it's mapping to a file, we want
3365   // to unmap to flush to the file, then remap after growing the file.
3366   if (this->map_is_anonymous_)
3367     {
3368       void* base = ::mremap(this->base_, this->file_size_, file_size,
3369                             MREMAP_MAYMOVE);
3370       if (base == MAP_FAILED)
3371         gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3372       this->base_ = static_cast<unsigned char*>(base);
3373       this->file_size_ = file_size;
3374     }
3375   else
3376     {
3377       this->unmap();
3378       this->file_size_ = file_size;
3379       this->map();
3380     }
3381 }
3382
3383 // Map a block of memory which will later be written to the file.
3384 // Return a pointer to the memory.
3385
3386 void*
3387 Output_file::map_anonymous()
3388 {
3389   this->map_is_anonymous_ = true;
3390   return ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3391                 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3392 }
3393
3394 // Map the file into memory.
3395
3396 void
3397 Output_file::map()
3398 {
3399   const int o = this->o_;
3400
3401   // If the output file is not a regular file, don't try to mmap it;
3402   // instead, we'll mmap a block of memory (an anonymous buffer), and
3403   // then later write the buffer to the file.
3404   void* base;
3405   struct stat statbuf;
3406   if (o == STDOUT_FILENO || o == STDERR_FILENO
3407       || ::fstat(o, &statbuf) != 0
3408       || !S_ISREG(statbuf.st_mode)
3409       || this->is_temporary_)
3410     base = this->map_anonymous();
3411   else
3412     {
3413       // Ensure that we have disk space available for the file.  If we
3414       // don't do this, it is possible that we will call munmap,
3415       // close, and exit with dirty buffers still in the cache with no
3416       // assigned disk blocks.  If the disk is out of space at that
3417       // point, the output file will wind up incomplete, but we will
3418       // have already exited.  The alternative to fallocate would be
3419       // to use fdatasync, but that would be a more significant
3420       // performance hit.
3421       if (::posix_fallocate(o, 0, this->file_size_) < 0)
3422         gold_fatal(_("%s: %s"), this->name_, strerror(errno));
3423
3424       // Map the file into memory.
3425       this->map_is_anonymous_ = false;
3426       base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3427                     MAP_SHARED, o, 0);
3428
3429       // The mmap call might fail because of file system issues: the
3430       // file system might not support mmap at all, or it might not
3431       // support mmap with PROT_WRITE.  I'm not sure which errno
3432       // values we will see in all cases, so if the mmap fails for any
3433       // reason try for an anonymous map.
3434       if (base == MAP_FAILED)
3435         base = this->map_anonymous();
3436     }
3437   if (base == MAP_FAILED)
3438     gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
3439                this->name_, static_cast<unsigned long>(this->file_size_),
3440                strerror(errno));
3441   this->base_ = static_cast<unsigned char*>(base);
3442 }
3443
3444 // Unmap the file from memory.
3445
3446 void
3447 Output_file::unmap()
3448 {
3449   if (::munmap(this->base_, this->file_size_) < 0)
3450     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
3451   this->base_ = NULL;
3452 }
3453
3454 // Close the output file.
3455
3456 void
3457 Output_file::close()
3458 {
3459   // If the map isn't file-backed, we need to write it now.
3460   if (this->map_is_anonymous_ && !this->is_temporary_)
3461     {
3462       size_t bytes_to_write = this->file_size_;
3463       size_t offset = 0;
3464       while (bytes_to_write > 0)
3465         {
3466           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
3467                                           bytes_to_write);
3468           if (bytes_written == 0)
3469             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3470           else if (bytes_written < 0)
3471             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3472           else
3473             {
3474               bytes_to_write -= bytes_written;
3475               offset += bytes_written;
3476             }
3477         }
3478     }
3479   this->unmap();
3480
3481   // We don't close stdout or stderr
3482   if (this->o_ != STDOUT_FILENO
3483       && this->o_ != STDERR_FILENO
3484       && !this->is_temporary_)
3485     if (::close(this->o_) < 0)
3486       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3487   this->o_ = -1;
3488 }
3489
3490 // Instantiate the templates we need.  We could use the configure
3491 // script to restrict this to only the ones for implemented targets.
3492
3493 #ifdef HAVE_TARGET_32_LITTLE
3494 template
3495 off_t
3496 Output_section::add_input_section<32, false>(
3497     Sized_relobj<32, false>* object,
3498     unsigned int shndx,
3499     const char* secname,
3500     const elfcpp::Shdr<32, false>& shdr,
3501     unsigned int reloc_shndx,
3502     bool have_sections_script);
3503 #endif
3504
3505 #ifdef HAVE_TARGET_32_BIG
3506 template
3507 off_t
3508 Output_section::add_input_section<32, true>(
3509     Sized_relobj<32, true>* object,
3510     unsigned int shndx,
3511     const char* secname,
3512     const elfcpp::Shdr<32, true>& shdr,
3513     unsigned int reloc_shndx,
3514     bool have_sections_script);
3515 #endif
3516
3517 #ifdef HAVE_TARGET_64_LITTLE
3518 template
3519 off_t
3520 Output_section::add_input_section<64, false>(
3521     Sized_relobj<64, false>* object,
3522     unsigned int shndx,
3523     const char* secname,
3524     const elfcpp::Shdr<64, false>& shdr,
3525     unsigned int reloc_shndx,
3526     bool have_sections_script);
3527 #endif
3528
3529 #ifdef HAVE_TARGET_64_BIG
3530 template
3531 off_t
3532 Output_section::add_input_section<64, true>(
3533     Sized_relobj<64, true>* object,
3534     unsigned int shndx,
3535     const char* secname,
3536     const elfcpp::Shdr<64, true>& shdr,
3537     unsigned int reloc_shndx,
3538     bool have_sections_script);
3539 #endif
3540
3541 #ifdef HAVE_TARGET_32_LITTLE
3542 template
3543 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
3544 #endif
3545
3546 #ifdef HAVE_TARGET_32_BIG
3547 template
3548 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
3549 #endif
3550
3551 #ifdef HAVE_TARGET_64_LITTLE
3552 template
3553 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
3554 #endif
3555
3556 #ifdef HAVE_TARGET_64_BIG
3557 template
3558 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
3559 #endif
3560
3561 #ifdef HAVE_TARGET_32_LITTLE
3562 template
3563 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
3564 #endif
3565
3566 #ifdef HAVE_TARGET_32_BIG
3567 template
3568 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
3569 #endif
3570
3571 #ifdef HAVE_TARGET_64_LITTLE
3572 template
3573 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
3574 #endif
3575
3576 #ifdef HAVE_TARGET_64_BIG
3577 template
3578 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
3579 #endif
3580
3581 #ifdef HAVE_TARGET_32_LITTLE
3582 template
3583 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
3584 #endif
3585
3586 #ifdef HAVE_TARGET_32_BIG
3587 template
3588 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
3589 #endif
3590
3591 #ifdef HAVE_TARGET_64_LITTLE
3592 template
3593 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
3594 #endif
3595
3596 #ifdef HAVE_TARGET_64_BIG
3597 template
3598 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
3599 #endif
3600
3601 #ifdef HAVE_TARGET_32_LITTLE
3602 template
3603 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
3604 #endif
3605
3606 #ifdef HAVE_TARGET_32_BIG
3607 template
3608 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
3609 #endif
3610
3611 #ifdef HAVE_TARGET_64_LITTLE
3612 template
3613 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
3614 #endif
3615
3616 #ifdef HAVE_TARGET_64_BIG
3617 template
3618 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
3619 #endif
3620
3621 #ifdef HAVE_TARGET_32_LITTLE
3622 template
3623 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3624 #endif
3625
3626 #ifdef HAVE_TARGET_32_BIG
3627 template
3628 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3629 #endif
3630
3631 #ifdef HAVE_TARGET_64_LITTLE
3632 template
3633 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3634 #endif
3635
3636 #ifdef HAVE_TARGET_64_BIG
3637 template
3638 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3639 #endif
3640
3641 #ifdef HAVE_TARGET_32_LITTLE
3642 template
3643 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3644 #endif
3645
3646 #ifdef HAVE_TARGET_32_BIG
3647 template
3648 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3649 #endif
3650
3651 #ifdef HAVE_TARGET_64_LITTLE
3652 template
3653 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3654 #endif
3655
3656 #ifdef HAVE_TARGET_64_BIG
3657 template
3658 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3659 #endif
3660
3661 #ifdef HAVE_TARGET_32_LITTLE
3662 template
3663 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3664 #endif
3665
3666 #ifdef HAVE_TARGET_32_BIG
3667 template
3668 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3669 #endif
3670
3671 #ifdef HAVE_TARGET_64_LITTLE
3672 template
3673 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3674 #endif
3675
3676 #ifdef HAVE_TARGET_64_BIG
3677 template
3678 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3679 #endif
3680
3681 #ifdef HAVE_TARGET_32_LITTLE
3682 template
3683 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3684 #endif
3685
3686 #ifdef HAVE_TARGET_32_BIG
3687 template
3688 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3689 #endif
3690
3691 #ifdef HAVE_TARGET_64_LITTLE
3692 template
3693 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3694 #endif
3695
3696 #ifdef HAVE_TARGET_64_BIG
3697 template
3698 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3699 #endif
3700
3701 #ifdef HAVE_TARGET_32_LITTLE
3702 template
3703 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3704 #endif
3705
3706 #ifdef HAVE_TARGET_32_BIG
3707 template
3708 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3709 #endif
3710
3711 #ifdef HAVE_TARGET_64_LITTLE
3712 template
3713 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3714 #endif
3715
3716 #ifdef HAVE_TARGET_64_BIG
3717 template
3718 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3719 #endif
3720
3721 #ifdef HAVE_TARGET_32_LITTLE
3722 template
3723 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3724 #endif
3725
3726 #ifdef HAVE_TARGET_32_BIG
3727 template
3728 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3729 #endif
3730
3731 #ifdef HAVE_TARGET_64_LITTLE
3732 template
3733 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3734 #endif
3735
3736 #ifdef HAVE_TARGET_64_BIG
3737 template
3738 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3739 #endif
3740
3741 #ifdef HAVE_TARGET_32_LITTLE
3742 template
3743 class Output_data_group<32, false>;
3744 #endif
3745
3746 #ifdef HAVE_TARGET_32_BIG
3747 template
3748 class Output_data_group<32, true>;
3749 #endif
3750
3751 #ifdef HAVE_TARGET_64_LITTLE
3752 template
3753 class Output_data_group<64, false>;
3754 #endif
3755
3756 #ifdef HAVE_TARGET_64_BIG
3757 template
3758 class Output_data_group<64, true>;
3759 #endif
3760
3761 #ifdef HAVE_TARGET_32_LITTLE
3762 template
3763 class Output_data_got<32, false>;
3764 #endif
3765
3766 #ifdef HAVE_TARGET_32_BIG
3767 template
3768 class Output_data_got<32, true>;
3769 #endif
3770
3771 #ifdef HAVE_TARGET_64_LITTLE
3772 template
3773 class Output_data_got<64, false>;
3774 #endif
3775
3776 #ifdef HAVE_TARGET_64_BIG
3777 template
3778 class Output_data_got<64, true>;
3779 #endif
3780
3781 } // End namespace gold.