Add licensing text to every source file.
[platform/upstream/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <algorithm>
31
32 #include "parameters.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "reloc.h"
36 #include "merge.h"
37 #include "output.h"
38
39 namespace gold
40 {
41
42 // Output_data variables.
43
44 bool Output_data::sizes_are_fixed;
45
46 // Output_data methods.
47
48 Output_data::~Output_data()
49 {
50 }
51
52 // Set the address and offset.
53
54 void
55 Output_data::set_address(uint64_t addr, off_t off)
56 {
57   this->address_ = addr;
58   this->offset_ = off;
59
60   // Let the child class know.
61   this->do_set_address(addr, off);
62 }
63
64 // Return the default alignment for a size--32 or 64.
65
66 uint64_t
67 Output_data::default_alignment(int size)
68 {
69   if (size == 32)
70     return 4;
71   else if (size == 64)
72     return 8;
73   else
74     gold_unreachable();
75 }
76
77 // Output_section_header methods.  This currently assumes that the
78 // segment and section lists are complete at construction time.
79
80 Output_section_headers::Output_section_headers(
81     int size,
82     bool big_endian,
83     const Layout* layout,
84     const Layout::Segment_list* segment_list,
85     const Layout::Section_list* unattached_section_list,
86     const Stringpool* secnamepool)
87   : size_(size),
88     big_endian_(big_endian),
89     layout_(layout),
90     segment_list_(segment_list),
91     unattached_section_list_(unattached_section_list),
92     secnamepool_(secnamepool)
93 {
94   // Count all the sections.  Start with 1 for the null section.
95   off_t count = 1;
96   for (Layout::Segment_list::const_iterator p = segment_list->begin();
97        p != segment_list->end();
98        ++p)
99     if ((*p)->type() == elfcpp::PT_LOAD)
100       count += (*p)->output_section_count();
101   count += unattached_section_list->size();
102
103   int shdr_size;
104   if (size == 32)
105     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
106   else if (size == 64)
107     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
108   else
109     gold_unreachable();
110
111   this->set_data_size(count * shdr_size);
112 }
113
114 // Write out the section headers.
115
116 void
117 Output_section_headers::do_write(Output_file* of)
118 {
119   if (this->size_ == 32)
120     {
121       if (this->big_endian_)
122         this->do_sized_write<32, true>(of);
123       else
124         this->do_sized_write<32, false>(of);
125     }
126   else if (this->size_ == 64)
127     {
128       if (this->big_endian_)
129         this->do_sized_write<64, true>(of);
130       else
131         this->do_sized_write<64, false>(of);
132     }
133   else
134     gold_unreachable();
135 }
136
137 template<int size, bool big_endian>
138 void
139 Output_section_headers::do_sized_write(Output_file* of)
140 {
141   off_t all_shdrs_size = this->data_size();
142   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
143
144   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
145   unsigned char* v = view;
146
147   {
148     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
149     oshdr.put_sh_name(0);
150     oshdr.put_sh_type(elfcpp::SHT_NULL);
151     oshdr.put_sh_flags(0);
152     oshdr.put_sh_addr(0);
153     oshdr.put_sh_offset(0);
154     oshdr.put_sh_size(0);
155     oshdr.put_sh_link(0);
156     oshdr.put_sh_info(0);
157     oshdr.put_sh_addralign(0);
158     oshdr.put_sh_entsize(0);
159   }
160
161   v += shdr_size;
162
163   unsigned shndx = 1;
164   for (Layout::Segment_list::const_iterator p = this->segment_list_->begin();
165        p != this->segment_list_->end();
166        ++p)
167     v = (*p)->write_section_headers SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
168             this->layout_, this->secnamepool_, v, &shndx
169             SELECT_SIZE_ENDIAN(size, big_endian));
170   for (Layout::Section_list::const_iterator p =
171          this->unattached_section_list_->begin();
172        p != this->unattached_section_list_->end();
173        ++p)
174     {
175       gold_assert(shndx == (*p)->out_shndx());
176       elfcpp::Shdr_write<size, big_endian> oshdr(v);
177       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
178       v += shdr_size;
179       ++shndx;
180     }
181
182   of->write_output_view(this->offset(), all_shdrs_size, view);
183 }
184
185 // Output_segment_header methods.
186
187 Output_segment_headers::Output_segment_headers(
188     int size,
189     bool big_endian,
190     const Layout::Segment_list& segment_list)
191   : size_(size), big_endian_(big_endian), segment_list_(segment_list)
192 {
193   int phdr_size;
194   if (size == 32)
195     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
196   else if (size == 64)
197     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
198   else
199     gold_unreachable();
200
201   this->set_data_size(segment_list.size() * phdr_size);
202 }
203
204 void
205 Output_segment_headers::do_write(Output_file* of)
206 {
207   if (this->size_ == 32)
208     {
209       if (this->big_endian_)
210         this->do_sized_write<32, true>(of);
211       else
212         this->do_sized_write<32, false>(of);
213     }
214   else if (this->size_ == 64)
215     {
216       if (this->big_endian_)
217         this->do_sized_write<64, true>(of);
218       else
219         this->do_sized_write<64, false>(of);
220     }
221   else
222     gold_unreachable();
223 }
224
225 template<int size, bool big_endian>
226 void
227 Output_segment_headers::do_sized_write(Output_file* of)
228 {
229   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
230   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
231   unsigned char* view = of->get_output_view(this->offset(),
232                                             all_phdrs_size);
233   unsigned char* v = view;
234   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
235        p != this->segment_list_.end();
236        ++p)
237     {
238       elfcpp::Phdr_write<size, big_endian> ophdr(v);
239       (*p)->write_header(&ophdr);
240       v += phdr_size;
241     }
242
243   of->write_output_view(this->offset(), all_phdrs_size, view);
244 }
245
246 // Output_file_header methods.
247
248 Output_file_header::Output_file_header(int size,
249                                        bool big_endian,
250                                        const Target* target,
251                                        const Symbol_table* symtab,
252                                        const Output_segment_headers* osh)
253   : size_(size),
254     big_endian_(big_endian),
255     target_(target),
256     symtab_(symtab),
257     segment_header_(osh),
258     section_header_(NULL),
259     shstrtab_(NULL)
260 {
261   int ehdr_size;
262   if (size == 32)
263     ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
264   else if (size == 64)
265     ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
266   else
267     gold_unreachable();
268
269   this->set_data_size(ehdr_size);
270 }
271
272 // Set the section table information for a file header.
273
274 void
275 Output_file_header::set_section_info(const Output_section_headers* shdrs,
276                                      const Output_section* shstrtab)
277 {
278   this->section_header_ = shdrs;
279   this->shstrtab_ = shstrtab;
280 }
281
282 // Write out the file header.
283
284 void
285 Output_file_header::do_write(Output_file* of)
286 {
287   if (this->size_ == 32)
288     {
289       if (this->big_endian_)
290         this->do_sized_write<32, true>(of);
291       else
292         this->do_sized_write<32, false>(of);
293     }
294   else if (this->size_ == 64)
295     {
296       if (this->big_endian_)
297         this->do_sized_write<64, true>(of);
298       else
299         this->do_sized_write<64, false>(of);
300     }
301   else
302     gold_unreachable();
303 }
304
305 // Write out the file header with appropriate size and endianess.
306
307 template<int size, bool big_endian>
308 void
309 Output_file_header::do_sized_write(Output_file* of)
310 {
311   gold_assert(this->offset() == 0);
312
313   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
314   unsigned char* view = of->get_output_view(0, ehdr_size);
315   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
316
317   unsigned char e_ident[elfcpp::EI_NIDENT];
318   memset(e_ident, 0, elfcpp::EI_NIDENT);
319   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
320   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
321   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
322   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
323   if (size == 32)
324     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
325   else if (size == 64)
326     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
327   else
328     gold_unreachable();
329   e_ident[elfcpp::EI_DATA] = (big_endian
330                               ? elfcpp::ELFDATA2MSB
331                               : elfcpp::ELFDATA2LSB);
332   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
333   // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
334   oehdr.put_e_ident(e_ident);
335
336   elfcpp::ET e_type;
337   // FIXME: ET_DYN.
338   if (parameters->output_is_object())
339     e_type = elfcpp::ET_REL;
340   else
341     e_type = elfcpp::ET_EXEC;
342   oehdr.put_e_type(e_type);
343
344   oehdr.put_e_machine(this->target_->machine_code());
345   oehdr.put_e_version(elfcpp::EV_CURRENT);
346
347   // FIXME: Need to support -e, and target specific entry symbol.
348   Symbol* sym = this->symtab_->lookup("_start");
349   typename Sized_symbol<size>::Value_type v;
350   if (sym == NULL)
351     v = 0;
352   else
353     {
354       Sized_symbol<size>* ssym;
355       ssym = this->symtab_->get_sized_symbol SELECT_SIZE_NAME(size) (
356         sym SELECT_SIZE(size));
357       v = ssym->value();
358     }
359   oehdr.put_e_entry(v);
360
361   oehdr.put_e_phoff(this->segment_header_->offset());
362   oehdr.put_e_shoff(this->section_header_->offset());
363
364   // FIXME: The target needs to set the flags.
365   oehdr.put_e_flags(0);
366
367   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
368   oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
369   oehdr.put_e_phnum(this->segment_header_->data_size()
370                      / elfcpp::Elf_sizes<size>::phdr_size);
371   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
372   oehdr.put_e_shnum(this->section_header_->data_size()
373                      / elfcpp::Elf_sizes<size>::shdr_size);
374   oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
375
376   of->write_output_view(0, ehdr_size, view);
377 }
378
379 // Output_data_const methods.
380
381 void
382 Output_data_const::do_write(Output_file* of)
383 {
384   of->write(this->offset(), this->data_.data(), this->data_.size());
385 }
386
387 // Output_data_const_buffer methods.
388
389 void
390 Output_data_const_buffer::do_write(Output_file* of)
391 {
392   of->write(this->offset(), this->p_, this->data_size());
393 }
394
395 // Output_section_data methods.
396
397 // Record the output section, and set the entry size and such.
398
399 void
400 Output_section_data::set_output_section(Output_section* os)
401 {
402   gold_assert(this->output_section_ == NULL);
403   this->output_section_ = os;
404   this->do_adjust_output_section(os);
405 }
406
407 // Return the section index of the output section.
408
409 unsigned int
410 Output_section_data::do_out_shndx() const
411 {
412   gold_assert(this->output_section_ != NULL);
413   return this->output_section_->out_shndx();
414 }
415
416 // Output_data_strtab methods.
417
418 // Set the address.  We don't actually care about the address, but we
419 // do set our final size.
420
421 void
422 Output_data_strtab::do_set_address(uint64_t, off_t)
423 {
424   this->strtab_->set_string_offsets();
425   this->set_data_size(this->strtab_->get_strtab_size());
426 }
427
428 // Write out a string table.
429
430 void
431 Output_data_strtab::do_write(Output_file* of)
432 {
433   this->strtab_->write(of, this->offset());
434 }
435
436 // Output_reloc methods.
437
438 // Get the symbol index of a relocation.
439
440 template<bool dynamic, int size, bool big_endian>
441 unsigned int
442 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
443   const
444 {
445   unsigned int index;
446   switch (this->local_sym_index_)
447     {
448     case INVALID_CODE:
449       gold_unreachable();
450
451     case GSYM_CODE:
452       if (this->u1_.gsym == NULL)
453         index = 0;
454       else if (dynamic)
455         index = this->u1_.gsym->dynsym_index();
456       else
457         index = this->u1_.gsym->symtab_index();
458       break;
459
460     case SECTION_CODE:
461       if (dynamic)
462         index = this->u1_.os->dynsym_index();
463       else
464         index = this->u1_.os->symtab_index();
465       break;
466
467     default:
468       if (dynamic)
469         {
470           // FIXME: It seems that some targets may need to generate
471           // dynamic relocations against local symbols for some
472           // reasons.  This will have to be addressed at some point.
473           gold_unreachable();
474         }
475       else
476         index = this->u1_.relobj->symtab_index(this->local_sym_index_);
477       break;
478     }
479   gold_assert(index != -1U);
480   return index;
481 }
482
483 // Write out the offset and info fields of a Rel or Rela relocation
484 // entry.
485
486 template<bool dynamic, int size, bool big_endian>
487 template<typename Write_rel>
488 void
489 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
490     Write_rel* wr) const
491 {
492   Address address = this->address_;
493   if (this->shndx_ != INVALID_CODE)
494     {
495       off_t off;
496       Output_section* os = this->u2_.relobj->output_section(this->shndx_,
497                                                             &off);
498       gold_assert(os != NULL);
499       address += os->address() + off;
500     }
501   else if (this->u2_.od != NULL)
502     address += this->u2_.od->address();
503   wr->put_r_offset(address);
504   wr->put_r_info(elfcpp::elf_r_info<size>(this->get_symbol_index(),
505                                           this->type_));
506 }
507
508 // Write out a Rel relocation.
509
510 template<bool dynamic, int size, bool big_endian>
511 void
512 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
513     unsigned char* pov) const
514 {
515   elfcpp::Rel_write<size, big_endian> orel(pov);
516   this->write_rel(&orel);
517 }
518
519 // Write out a Rela relocation.
520
521 template<bool dynamic, int size, bool big_endian>
522 void
523 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
524     unsigned char* pov) const
525 {
526   elfcpp::Rela_write<size, big_endian> orel(pov);
527   this->rel_.write_rel(&orel);
528   orel.put_r_addend(this->addend_);
529 }
530
531 // Output_data_reloc_base methods.
532
533 // Adjust the output section.
534
535 template<int sh_type, bool dynamic, int size, bool big_endian>
536 void
537 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
538     ::do_adjust_output_section(Output_section* os)
539 {
540   if (sh_type == elfcpp::SHT_REL)
541     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
542   else if (sh_type == elfcpp::SHT_RELA)
543     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
544   else
545     gold_unreachable();
546   if (dynamic)
547     os->set_should_link_to_dynsym();
548   else
549     os->set_should_link_to_symtab();
550 }
551
552 // Write out relocation data.
553
554 template<int sh_type, bool dynamic, int size, bool big_endian>
555 void
556 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
557     Output_file* of)
558 {
559   const off_t off = this->offset();
560   const off_t oview_size = this->data_size();
561   unsigned char* const oview = of->get_output_view(off, oview_size);
562
563   unsigned char* pov = oview;
564   for (typename Relocs::const_iterator p = this->relocs_.begin();
565        p != this->relocs_.end();
566        ++p)
567     {
568       p->write(pov);
569       pov += reloc_size;
570     }
571
572   gold_assert(pov - oview == oview_size);
573
574   of->write_output_view(off, oview_size, oview);
575
576   // We no longer need the relocation entries.
577   this->relocs_.clear();
578 }
579
580 // Output_data_got::Got_entry methods.
581
582 // Write out the entry.
583
584 template<int size, bool big_endian>
585 void
586 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
587 {
588   Valtype val = 0;
589
590   switch (this->local_sym_index_)
591     {
592     case GSYM_CODE:
593       {
594         Symbol* gsym = this->u_.gsym;
595
596         // If the symbol is resolved locally, we need to write out its
597         // value.  Otherwise we just write zero.  The target code is
598         // responsible for creating a relocation entry to fill in the
599         // value at runtime.
600         if (gsym->final_value_is_known())
601           {
602             Sized_symbol<size>* sgsym;
603             // This cast is a bit ugly.  We don't want to put a
604             // virtual method in Symbol, because we want Symbol to be
605             // as small as possible.
606             sgsym = static_cast<Sized_symbol<size>*>(gsym);
607             val = sgsym->value();
608           }
609       }
610       break;
611
612     case CONSTANT_CODE:
613       val = this->u_.constant;
614       break;
615
616     default:
617       gold_unreachable();
618     }
619
620   elfcpp::Swap<size, big_endian>::writeval(pov, val);
621 }
622
623 // Output_data_got methods.
624
625 // Add an entry for a global symbol to the GOT.  This returns true if
626 // this is a new GOT entry, false if the symbol already had a GOT
627 // entry.
628
629 template<int size, bool big_endian>
630 bool
631 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
632 {
633   if (gsym->has_got_offset())
634     return false;
635
636   this->entries_.push_back(Got_entry(gsym));
637   this->set_got_size();
638   gsym->set_got_offset(this->last_got_offset());
639   return true;
640 }
641
642 // Write out the GOT.
643
644 template<int size, bool big_endian>
645 void
646 Output_data_got<size, big_endian>::do_write(Output_file* of)
647 {
648   const int add = size / 8;
649
650   const off_t off = this->offset();
651   const off_t oview_size = this->data_size();
652   unsigned char* const oview = of->get_output_view(off, oview_size);
653
654   unsigned char* pov = oview;
655   for (typename Got_entries::const_iterator p = this->entries_.begin();
656        p != this->entries_.end();
657        ++p)
658     {
659       p->write(pov);
660       pov += add;
661     }
662
663   gold_assert(pov - oview == oview_size);
664
665   of->write_output_view(off, oview_size, oview);
666
667   // We no longer need the GOT entries.
668   this->entries_.clear();
669 }
670
671 // Output_data_dynamic::Dynamic_entry methods.
672
673 // Write out the entry.
674
675 template<int size, bool big_endian>
676 void
677 Output_data_dynamic::Dynamic_entry::write(
678     unsigned char* pov,
679     const Stringpool* pool
680     ACCEPT_SIZE_ENDIAN) const
681 {
682   typename elfcpp::Elf_types<size>::Elf_WXword val;
683   switch (this->classification_)
684     {
685     case DYNAMIC_NUMBER:
686       val = this->u_.val;
687       break;
688
689     case DYNAMIC_SECTION_ADDRESS:
690       val = this->u_.od->address();
691       break;
692
693     case DYNAMIC_SECTION_SIZE:
694       val = this->u_.od->data_size();
695       break;
696
697     case DYNAMIC_SYMBOL:
698       {
699         const Sized_symbol<size>* s =
700           static_cast<const Sized_symbol<size>*>(this->u_.sym);
701         val = s->value();
702       }
703       break;
704
705     case DYNAMIC_STRING:
706       val = pool->get_offset(this->u_.str);
707       break;
708
709     default:
710       gold_unreachable();
711     }
712
713   elfcpp::Dyn_write<size, big_endian> dw(pov);
714   dw.put_d_tag(this->tag_);
715   dw.put_d_val(val);
716 }
717
718 // Output_data_dynamic methods.
719
720 // Adjust the output section to set the entry size.
721
722 void
723 Output_data_dynamic::do_adjust_output_section(Output_section* os)
724 {
725   if (this->target_->get_size() == 32)
726     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
727   else if (this->target_->get_size() == 64)
728     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
729   else
730     gold_unreachable();
731 }
732
733 // Set the final data size.
734
735 void
736 Output_data_dynamic::do_set_address(uint64_t, off_t)
737 {
738   // Add the terminating entry.
739   this->add_constant(elfcpp::DT_NULL, 0);
740
741   int dyn_size;
742   if (this->target_->get_size() == 32)
743     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
744   else if (this->target_->get_size() == 64)
745     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
746   else
747     gold_unreachable();
748   this->set_data_size(this->entries_.size() * dyn_size);
749 }
750
751 // Write out the dynamic entries.
752
753 void
754 Output_data_dynamic::do_write(Output_file* of)
755 {
756   if (this->target_->get_size() == 32)
757     {
758       if (this->target_->is_big_endian())
759         this->sized_write<32, true>(of);
760       else
761         this->sized_write<32, false>(of);
762     }
763   else if (this->target_->get_size() == 64)
764     {
765       if (this->target_->is_big_endian())
766         this->sized_write<64, true>(of);
767       else
768         this->sized_write<64, false>(of);
769     }
770   else
771     gold_unreachable();
772 }
773
774 template<int size, bool big_endian>
775 void
776 Output_data_dynamic::sized_write(Output_file* of)
777 {
778   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
779
780   const off_t offset = this->offset();
781   const off_t oview_size = this->data_size();
782   unsigned char* const oview = of->get_output_view(offset, oview_size);
783
784   unsigned char* pov = oview;
785   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
786        p != this->entries_.end();
787        ++p)
788     {
789       p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
790           pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
791       pov += dyn_size;
792     }
793
794   gold_assert(pov - oview == oview_size);
795
796   of->write_output_view(offset, oview_size, oview);
797
798   // We no longer need the dynamic entries.
799   this->entries_.clear();
800 }
801
802 // Output_section::Input_section methods.
803
804 // Return the data size.  For an input section we store the size here.
805 // For an Output_section_data, we have to ask it for the size.
806
807 off_t
808 Output_section::Input_section::data_size() const
809 {
810   if (this->is_input_section())
811     return this->u1_.data_size;
812   else
813     return this->u2_.posd->data_size();
814 }
815
816 // Set the address and file offset.
817
818 void
819 Output_section::Input_section::set_address(uint64_t addr, off_t off,
820                                            off_t secoff)
821 {
822   if (this->is_input_section())
823     this->u2_.object->set_section_offset(this->shndx_, off - secoff);
824   else
825     this->u2_.posd->set_address(addr, off);
826 }
827
828 // Try to turn an input address into an output address.
829
830 bool
831 Output_section::Input_section::output_address(const Relobj* object,
832                                               unsigned int shndx,
833                                               off_t offset,
834                                               uint64_t output_section_address,
835                                               uint64_t *poutput) const
836 {
837   if (!this->is_input_section())
838     return this->u2_.posd->output_address(object, shndx, offset,
839                                           output_section_address, poutput);
840   else
841     {
842       if (this->u2_.object != object)
843         return false;
844       off_t output_offset;
845       Output_section* os = object->output_section(shndx, &output_offset);
846       gold_assert(os != NULL);
847       *poutput = output_section_address + output_offset + offset;
848       return true;
849     }
850 }
851
852 // Write out the data.  We don't have to do anything for an input
853 // section--they are handled via Object::relocate--but this is where
854 // we write out the data for an Output_section_data.
855
856 void
857 Output_section::Input_section::write(Output_file* of)
858 {
859   if (!this->is_input_section())
860     this->u2_.posd->write(of);
861 }
862
863 // Output_section methods.
864
865 // Construct an Output_section.  NAME will point into a Stringpool.
866
867 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
868                                elfcpp::Elf_Xword flags)
869   : name_(name),
870     addralign_(0),
871     entsize_(0),
872     link_section_(NULL),
873     link_(0),
874     info_section_(NULL),
875     info_(0),
876     type_(type),
877     flags_(flags),
878     out_shndx_(0),
879     symtab_index_(0),
880     dynsym_index_(0),
881     input_sections_(),
882     first_input_offset_(0),
883     fills_(),
884     needs_symtab_index_(false),
885     needs_dynsym_index_(false),
886     should_link_to_symtab_(false),
887     should_link_to_dynsym_(false)
888 {
889 }
890
891 Output_section::~Output_section()
892 {
893 }
894
895 // Set the entry size.
896
897 void
898 Output_section::set_entsize(uint64_t v)
899 {
900   if (this->entsize_ == 0)
901     this->entsize_ = v;
902   else
903     gold_assert(this->entsize_ == v);
904 }
905
906 // Add the input section SHNDX, with header SHDR, named SECNAME, in
907 // OBJECT, to the Output_section.  Return the offset of the input
908 // section within the output section.  We don't always keep track of
909 // input sections for an Output_section.  Instead, each Object keeps
910 // track of the Output_section for each of its input sections.
911
912 template<int size, bool big_endian>
913 off_t
914 Output_section::add_input_section(Relobj* object, unsigned int shndx,
915                                   const char* secname,
916                                   const elfcpp::Shdr<size, big_endian>& shdr)
917 {
918   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
919   if ((addralign & (addralign - 1)) != 0)
920     {
921       fprintf(stderr, _("%s: %s: invalid alignment %lu for section \"%s\"\n"),
922               program_name, object->name().c_str(),
923               static_cast<unsigned long>(addralign), secname);
924       gold_exit(false);
925     }
926
927   if (addralign > this->addralign_)
928     this->addralign_ = addralign;
929
930   // If this is a SHF_MERGE section, we pass all the input sections to
931   // a Output_data_merge.
932   if ((shdr.get_sh_flags() & elfcpp::SHF_MERGE) != 0)
933     {
934       if (this->add_merge_input_section(object, shndx, shdr.get_sh_flags(),
935                                         shdr.get_sh_entsize(),
936                                         addralign))
937         {
938           // Tell the relocation routines that they need to call the
939           // output_address method to determine the final address.
940           return -1;
941         }
942     }
943
944   off_t offset_in_section = this->data_size();
945   off_t aligned_offset_in_section = align_address(offset_in_section,
946                                                   addralign);
947
948   if (aligned_offset_in_section > offset_in_section
949       && (shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0
950       && object->target()->has_code_fill())
951     {
952       // We need to add some fill data.  Using fill_list_ when
953       // possible is an optimization, since we will often have fill
954       // sections without input sections.
955       off_t fill_len = aligned_offset_in_section - offset_in_section;
956       if (this->input_sections_.empty())
957         this->fills_.push_back(Fill(offset_in_section, fill_len));
958       else
959         {
960           // FIXME: When relaxing, the size needs to adjust to
961           // maintain a constant alignment.
962           std::string fill_data(object->target()->code_fill(fill_len));
963           Output_data_const* odc = new Output_data_const(fill_data, 1);
964           this->input_sections_.push_back(Input_section(odc));
965         }
966     }
967
968   this->set_data_size(aligned_offset_in_section + shdr.get_sh_size());
969
970   // We need to keep track of this section if we are already keeping
971   // track of sections, or if we are relaxing.  FIXME: Add test for
972   // relaxing.
973   if (!this->input_sections_.empty())
974     this->input_sections_.push_back(Input_section(object, shndx,
975                                                   shdr.get_sh_size(),
976                                                   addralign));
977
978   return aligned_offset_in_section;
979 }
980
981 // Add arbitrary data to an output section.
982
983 void
984 Output_section::add_output_section_data(Output_section_data* posd)
985 {
986   Input_section inp(posd);
987   this->add_output_section_data(&inp);
988 }
989
990 // Add arbitrary data to an output section by Input_section.
991
992 void
993 Output_section::add_output_section_data(Input_section* inp)
994 {
995   if (this->input_sections_.empty())
996     this->first_input_offset_ = this->data_size();
997
998   this->input_sections_.push_back(*inp);
999
1000   uint64_t addralign = inp->addralign();
1001   if (addralign > this->addralign_)
1002     this->addralign_ = addralign;
1003
1004   inp->set_output_section(this);
1005 }
1006
1007 // Add a merge section to an output section.
1008
1009 void
1010 Output_section::add_output_merge_section(Output_section_data* posd,
1011                                          bool is_string, uint64_t entsize)
1012 {
1013   Input_section inp(posd, is_string, entsize);
1014   this->add_output_section_data(&inp);
1015 }
1016
1017 // Add an input section to a SHF_MERGE section.
1018
1019 bool
1020 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1021                                         uint64_t flags, uint64_t entsize,
1022                                         uint64_t addralign)
1023 {
1024   // We only merge constants if the alignment is not more than the
1025   // entry size.  This could be handled, but it's unusual.
1026   if (addralign > entsize)
1027     return false;
1028
1029   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1030   Input_section_list::iterator p;
1031   for (p = this->input_sections_.begin();
1032        p != this->input_sections_.end();
1033        ++p)
1034     if (p->is_merge_section(is_string, entsize))
1035       break;
1036
1037   // We handle the actual constant merging in Output_merge_data or
1038   // Output_merge_string_data.
1039   if (p != this->input_sections_.end())
1040     p->add_input_section(object, shndx);
1041   else
1042     {
1043       Output_section_data* posd;
1044       if (!is_string)
1045         posd = new Output_merge_data(entsize);
1046       else if (entsize == 1)
1047         posd = new Output_merge_string<char>();
1048       else if (entsize == 2)
1049         posd = new Output_merge_string<uint16_t>();
1050       else if (entsize == 4)
1051         posd = new Output_merge_string<uint32_t>();
1052       else
1053         return false;
1054
1055       this->add_output_merge_section(posd, is_string, entsize);
1056       posd->add_input_section(object, shndx);
1057     }
1058
1059   return true;
1060 }
1061
1062 // Return the output virtual address of OFFSET relative to the start
1063 // of input section SHNDX in object OBJECT.
1064
1065 uint64_t
1066 Output_section::output_address(const Relobj* object, unsigned int shndx,
1067                                off_t offset) const
1068 {
1069   uint64_t addr = this->address() + this->first_input_offset_;
1070   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1071        p != this->input_sections_.end();
1072        ++p)
1073     {
1074       addr = align_address(addr, p->addralign());
1075       uint64_t output;
1076       if (p->output_address(object, shndx, offset, addr, &output))
1077         return output;
1078       addr += p->data_size();
1079     }
1080
1081   // If we get here, it means that we don't know the mapping for this
1082   // input section.  This might happen in principle if
1083   // add_input_section were called before add_output_section_data.
1084   // But it should never actually happen.
1085
1086   gold_unreachable();
1087 }
1088
1089 // Set the address of an Output_section.  This is where we handle
1090 // setting the addresses of any Output_section_data objects.
1091
1092 void
1093 Output_section::do_set_address(uint64_t address, off_t startoff)
1094 {
1095   if (this->input_sections_.empty())
1096     return;
1097
1098   off_t off = startoff + this->first_input_offset_;
1099   for (Input_section_list::iterator p = this->input_sections_.begin();
1100        p != this->input_sections_.end();
1101        ++p)
1102     {
1103       off = align_address(off, p->addralign());
1104       p->set_address(address + (off - startoff), off, startoff);
1105       off += p->data_size();
1106     }
1107
1108   this->set_data_size(off - startoff);
1109 }
1110
1111 // Write the section header to *OSHDR.
1112
1113 template<int size, bool big_endian>
1114 void
1115 Output_section::write_header(const Layout* layout,
1116                              const Stringpool* secnamepool,
1117                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
1118 {
1119   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1120   oshdr->put_sh_type(this->type_);
1121   oshdr->put_sh_flags(this->flags_);
1122   oshdr->put_sh_addr(this->address());
1123   oshdr->put_sh_offset(this->offset());
1124   oshdr->put_sh_size(this->data_size());
1125   if (this->link_section_ != NULL)
1126     oshdr->put_sh_link(this->link_section_->out_shndx());
1127   else if (this->should_link_to_symtab_)
1128     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
1129   else if (this->should_link_to_dynsym_)
1130     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
1131   else
1132     oshdr->put_sh_link(this->link_);
1133   if (this->info_section_ != NULL)
1134     oshdr->put_sh_info(this->info_section_->out_shndx());
1135   else
1136     oshdr->put_sh_info(this->info_);
1137   oshdr->put_sh_addralign(this->addralign_);
1138   oshdr->put_sh_entsize(this->entsize_);
1139 }
1140
1141 // Write out the data.  For input sections the data is written out by
1142 // Object::relocate, but we have to handle Output_section_data objects
1143 // here.
1144
1145 void
1146 Output_section::do_write(Output_file* of)
1147 {
1148   off_t output_section_file_offset = this->offset();
1149   for (Fill_list::iterator p = this->fills_.begin();
1150        p != this->fills_.end();
1151        ++p)
1152     {
1153       std::string fill_data(of->target()->code_fill(p->length()));
1154       of->write(output_section_file_offset + p->section_offset(),
1155                 fill_data.data(), fill_data.size());
1156     }
1157
1158   for (Input_section_list::iterator p = this->input_sections_.begin();
1159        p != this->input_sections_.end();
1160        ++p)
1161     p->write(of);
1162 }
1163
1164 // Output segment methods.
1165
1166 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
1167   : output_data_(),
1168     output_bss_(),
1169     vaddr_(0),
1170     paddr_(0),
1171     memsz_(0),
1172     align_(0),
1173     offset_(0),
1174     filesz_(0),
1175     type_(type),
1176     flags_(flags),
1177     is_align_known_(false)
1178 {
1179 }
1180
1181 // Add an Output_section to an Output_segment.
1182
1183 void
1184 Output_segment::add_output_section(Output_section* os,
1185                                    elfcpp::Elf_Word seg_flags,
1186                                    bool front)
1187 {
1188   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1189   gold_assert(!this->is_align_known_);
1190
1191   // Update the segment flags.
1192   this->flags_ |= seg_flags;
1193
1194   Output_segment::Output_data_list* pdl;
1195   if (os->type() == elfcpp::SHT_NOBITS)
1196     pdl = &this->output_bss_;
1197   else
1198     pdl = &this->output_data_;
1199
1200   // So that PT_NOTE segments will work correctly, we need to ensure
1201   // that all SHT_NOTE sections are adjacent.  This will normally
1202   // happen automatically, because all the SHT_NOTE input sections
1203   // will wind up in the same output section.  However, it is possible
1204   // for multiple SHT_NOTE input sections to have different section
1205   // flags, and thus be in different output sections, but for the
1206   // different section flags to map into the same segment flags and
1207   // thus the same output segment.
1208
1209   // Note that while there may be many input sections in an output
1210   // section, there are normally only a few output sections in an
1211   // output segment.  This loop is expected to be fast.
1212
1213   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
1214     {
1215       Output_segment::Output_data_list::iterator p = pdl->end();
1216       do
1217         {
1218           --p;
1219           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
1220             {
1221               // We don't worry about the FRONT parameter.
1222               ++p;
1223               pdl->insert(p, os);
1224               return;
1225             }
1226         }
1227       while (p != pdl->begin());
1228     }
1229
1230   // Similarly, so that PT_TLS segments will work, we need to group
1231   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
1232   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
1233   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
1234   // correctly.
1235   if ((os->flags() & elfcpp::SHF_TLS) != 0 && !this->output_data_.empty())
1236     {
1237       pdl = &this->output_data_;
1238       bool nobits = os->type() == elfcpp::SHT_NOBITS;
1239       bool sawtls = false;
1240       Output_segment::Output_data_list::iterator p = pdl->end();
1241       do
1242         {
1243           --p;
1244           bool insert;
1245           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
1246             {
1247               sawtls = true;
1248               // Put a NOBITS section after the first TLS section.
1249               // But a PROGBITS section after the first TLS/PROGBITS
1250               // section.
1251               insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
1252             }
1253           else
1254             {
1255               // If we've gone past the TLS sections, but we've seen a
1256               // TLS section, then we need to insert this section now.
1257               insert = sawtls;
1258             }
1259
1260           if (insert)
1261             {
1262               // We don't worry about the FRONT parameter.
1263               ++p;
1264               pdl->insert(p, os);
1265               return;
1266             }
1267         }
1268       while (p != pdl->begin());
1269
1270       // There are no TLS sections yet; put this one at the requested
1271       // location in the section list.
1272     }
1273
1274   if (front)
1275     pdl->push_front(os);
1276   else
1277     pdl->push_back(os);
1278 }
1279
1280 // Add an Output_data (which is not an Output_section) to the start of
1281 // a segment.
1282
1283 void
1284 Output_segment::add_initial_output_data(Output_data* od)
1285 {
1286   gold_assert(!this->is_align_known_);
1287   this->output_data_.push_front(od);
1288 }
1289
1290 // Return the maximum alignment of the Output_data in Output_segment.
1291 // Once we compute this, we prohibit new sections from being added.
1292
1293 uint64_t
1294 Output_segment::addralign()
1295 {
1296   if (!this->is_align_known_)
1297     {
1298       uint64_t addralign;
1299
1300       addralign = Output_segment::maximum_alignment(&this->output_data_);
1301       if (addralign > this->align_)
1302         this->align_ = addralign;
1303
1304       addralign = Output_segment::maximum_alignment(&this->output_bss_);
1305       if (addralign > this->align_)
1306         this->align_ = addralign;
1307
1308       this->is_align_known_ = true;
1309     }
1310
1311   return this->align_;
1312 }
1313
1314 // Return the maximum alignment of a list of Output_data.
1315
1316 uint64_t
1317 Output_segment::maximum_alignment(const Output_data_list* pdl)
1318 {
1319   uint64_t ret = 0;
1320   for (Output_data_list::const_iterator p = pdl->begin();
1321        p != pdl->end();
1322        ++p)
1323     {
1324       uint64_t addralign = (*p)->addralign();
1325       if (addralign > ret)
1326         ret = addralign;
1327     }
1328   return ret;
1329 }
1330
1331 // Set the section addresses for an Output_segment.  ADDR is the
1332 // address and *POFF is the file offset.  Set the section indexes
1333 // starting with *PSHNDX.  Return the address of the immediately
1334 // following segment.  Update *POFF and *PSHNDX.
1335
1336 uint64_t
1337 Output_segment::set_section_addresses(uint64_t addr, off_t* poff,
1338                                       unsigned int* pshndx)
1339 {
1340   gold_assert(this->type_ == elfcpp::PT_LOAD);
1341
1342   this->vaddr_ = addr;
1343   this->paddr_ = addr;
1344
1345   off_t orig_off = *poff;
1346   this->offset_ = orig_off;
1347
1348   *poff = align_address(*poff, this->addralign());
1349
1350   addr = this->set_section_list_addresses(&this->output_data_, addr, poff,
1351                                           pshndx);
1352   this->filesz_ = *poff - orig_off;
1353
1354   off_t off = *poff;
1355
1356   uint64_t ret = this->set_section_list_addresses(&this->output_bss_, addr,
1357                                                   poff, pshndx);
1358   this->memsz_ = *poff - orig_off;
1359
1360   // Ignore the file offset adjustments made by the BSS Output_data
1361   // objects.
1362   *poff = off;
1363
1364   return ret;
1365 }
1366
1367 // Set the addresses and file offsets in a list of Output_data
1368 // structures.
1369
1370 uint64_t
1371 Output_segment::set_section_list_addresses(Output_data_list* pdl,
1372                                            uint64_t addr, off_t* poff,
1373                                            unsigned int* pshndx)
1374 {
1375   off_t startoff = *poff;
1376
1377   off_t off = startoff;
1378   for (Output_data_list::iterator p = pdl->begin();
1379        p != pdl->end();
1380        ++p)
1381     {
1382       off = align_address(off, (*p)->addralign());
1383       (*p)->set_address(addr + (off - startoff), off);
1384
1385       // Unless this is a PT_TLS segment, we want to ignore the size
1386       // of a SHF_TLS/SHT_NOBITS section.  Such a section does not
1387       // affect the size of a PT_LOAD segment.
1388       if (this->type_ == elfcpp::PT_TLS
1389           || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
1390           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
1391         off += (*p)->data_size();
1392
1393       if ((*p)->is_section())
1394         {
1395           (*p)->set_out_shndx(*pshndx);
1396           ++*pshndx;
1397         }
1398     }
1399
1400   *poff = off;
1401   return addr + (off - startoff);
1402 }
1403
1404 // For a non-PT_LOAD segment, set the offset from the sections, if
1405 // any.
1406
1407 void
1408 Output_segment::set_offset()
1409 {
1410   gold_assert(this->type_ != elfcpp::PT_LOAD);
1411
1412   if (this->output_data_.empty() && this->output_bss_.empty())
1413     {
1414       this->vaddr_ = 0;
1415       this->paddr_ = 0;
1416       this->memsz_ = 0;
1417       this->align_ = 0;
1418       this->offset_ = 0;
1419       this->filesz_ = 0;
1420       return;
1421     }
1422
1423   const Output_data* first;
1424   if (this->output_data_.empty())
1425     first = this->output_bss_.front();
1426   else
1427     first = this->output_data_.front();
1428   this->vaddr_ = first->address();
1429   this->paddr_ = this->vaddr_;
1430   this->offset_ = first->offset();
1431
1432   if (this->output_data_.empty())
1433     this->filesz_ = 0;
1434   else
1435     {
1436       const Output_data* last_data = this->output_data_.back();
1437       this->filesz_ = (last_data->address()
1438                        + last_data->data_size()
1439                        - this->vaddr_);
1440     }
1441
1442   const Output_data* last;
1443   if (this->output_bss_.empty())
1444     last = this->output_data_.back();
1445   else
1446     last = this->output_bss_.back();
1447   this->memsz_ = (last->address()
1448                   + last->data_size()
1449                   - this->vaddr_);
1450 }
1451
1452 // Return the number of Output_sections in an Output_segment.
1453
1454 unsigned int
1455 Output_segment::output_section_count() const
1456 {
1457   return (this->output_section_count_list(&this->output_data_)
1458           + this->output_section_count_list(&this->output_bss_));
1459 }
1460
1461 // Return the number of Output_sections in an Output_data_list.
1462
1463 unsigned int
1464 Output_segment::output_section_count_list(const Output_data_list* pdl) const
1465 {
1466   unsigned int count = 0;
1467   for (Output_data_list::const_iterator p = pdl->begin();
1468        p != pdl->end();
1469        ++p)
1470     {
1471       if ((*p)->is_section())
1472         ++count;
1473     }
1474   return count;
1475 }
1476
1477 // Write the segment data into *OPHDR.
1478
1479 template<int size, bool big_endian>
1480 void
1481 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
1482 {
1483   ophdr->put_p_type(this->type_);
1484   ophdr->put_p_offset(this->offset_);
1485   ophdr->put_p_vaddr(this->vaddr_);
1486   ophdr->put_p_paddr(this->paddr_);
1487   ophdr->put_p_filesz(this->filesz_);
1488   ophdr->put_p_memsz(this->memsz_);
1489   ophdr->put_p_flags(this->flags_);
1490   ophdr->put_p_align(this->addralign());
1491 }
1492
1493 // Write the section headers into V.
1494
1495 template<int size, bool big_endian>
1496 unsigned char*
1497 Output_segment::write_section_headers(const Layout* layout,
1498                                       const Stringpool* secnamepool,
1499                                       unsigned char* v,
1500                                       unsigned int *pshndx
1501                                       ACCEPT_SIZE_ENDIAN) const
1502 {
1503   // Every section that is attached to a segment must be attached to a
1504   // PT_LOAD segment, so we only write out section headers for PT_LOAD
1505   // segments.
1506   if (this->type_ != elfcpp::PT_LOAD)
1507     return v;
1508
1509   v = this->write_section_headers_list
1510       SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1511           layout, secnamepool, &this->output_data_, v, pshndx
1512           SELECT_SIZE_ENDIAN(size, big_endian));
1513   v = this->write_section_headers_list
1514       SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1515           layout, secnamepool, &this->output_bss_, v, pshndx
1516           SELECT_SIZE_ENDIAN(size, big_endian));
1517   return v;
1518 }
1519
1520 template<int size, bool big_endian>
1521 unsigned char*
1522 Output_segment::write_section_headers_list(const Layout* layout,
1523                                            const Stringpool* secnamepool,
1524                                            const Output_data_list* pdl,
1525                                            unsigned char* v,
1526                                            unsigned int* pshndx
1527                                            ACCEPT_SIZE_ENDIAN) const
1528 {
1529   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1530   for (Output_data_list::const_iterator p = pdl->begin();
1531        p != pdl->end();
1532        ++p)
1533     {
1534       if ((*p)->is_section())
1535         {
1536           const Output_section* ps = static_cast<const Output_section*>(*p);
1537           gold_assert(*pshndx == ps->out_shndx());
1538           elfcpp::Shdr_write<size, big_endian> oshdr(v);
1539           ps->write_header(layout, secnamepool, &oshdr);
1540           v += shdr_size;
1541           ++*pshndx;
1542         }
1543     }
1544   return v;
1545 }
1546
1547 // Output_file methods.
1548
1549 Output_file::Output_file(const General_options& options, Target* target)
1550   : options_(options),
1551     target_(target),
1552     name_(options.output_file_name()),
1553     o_(-1),
1554     file_size_(0),
1555     base_(NULL)
1556 {
1557 }
1558
1559 // Open the output file.
1560
1561 void
1562 Output_file::open(off_t file_size)
1563 {
1564   this->file_size_ = file_size;
1565
1566   int mode = parameters->output_is_object() ? 0666 : 0777;
1567   int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
1568   if (o < 0)
1569     {
1570       fprintf(stderr, _("%s: %s: open: %s\n"),
1571               program_name, this->name_, strerror(errno));
1572       gold_exit(false);
1573     }
1574   this->o_ = o;
1575
1576   // Write out one byte to make the file the right size.
1577   if (::lseek(o, file_size - 1, SEEK_SET) < 0)
1578     {
1579       fprintf(stderr, _("%s: %s: lseek: %s\n"),
1580               program_name, this->name_, strerror(errno));
1581       gold_exit(false);
1582     }
1583   char b = 0;
1584   if (::write(o, &b, 1) != 1)
1585     {
1586       fprintf(stderr, _("%s: %s: write: %s\n"),
1587               program_name, this->name_, strerror(errno));
1588       gold_exit(false);
1589     }
1590
1591   // Map the file into memory.
1592   void* base = ::mmap(NULL, file_size, PROT_READ | PROT_WRITE,
1593                       MAP_SHARED, o, 0);
1594   if (base == MAP_FAILED)
1595     {
1596       fprintf(stderr, _("%s: %s: mmap: %s\n"),
1597               program_name, this->name_, strerror(errno));
1598       gold_exit(false);
1599     }
1600   this->base_ = static_cast<unsigned char*>(base);
1601 }
1602
1603 // Close the output file.
1604
1605 void
1606 Output_file::close()
1607 {
1608   if (::munmap(this->base_, this->file_size_) < 0)
1609     {
1610       fprintf(stderr, _("%s: %s: munmap: %s\n"),
1611               program_name, this->name_, strerror(errno));
1612       gold_exit(false);
1613     }
1614   this->base_ = NULL;
1615
1616   if (::close(this->o_) < 0)
1617     {
1618       fprintf(stderr, _("%s: %s: close: %s\n"),
1619               program_name, this->name_, strerror(errno));
1620       gold_exit(false);
1621     }
1622   this->o_ = -1;
1623 }
1624
1625 // Instantiate the templates we need.  We could use the configure
1626 // script to restrict this to only the ones for implemented targets.
1627
1628 #ifdef HAVE_TARGET_32_LITTLE
1629 template
1630 off_t
1631 Output_section::add_input_section<32, false>(
1632     Relobj* object,
1633     unsigned int shndx,
1634     const char* secname,
1635     const elfcpp::Shdr<32, false>& shdr);
1636 #endif
1637
1638 #ifdef HAVE_TARGET_32_BIG
1639 template
1640 off_t
1641 Output_section::add_input_section<32, true>(
1642     Relobj* object,
1643     unsigned int shndx,
1644     const char* secname,
1645     const elfcpp::Shdr<32, true>& shdr);
1646 #endif
1647
1648 #ifdef HAVE_TARGET_64_LITTLE
1649 template
1650 off_t
1651 Output_section::add_input_section<64, false>(
1652     Relobj* object,
1653     unsigned int shndx,
1654     const char* secname,
1655     const elfcpp::Shdr<64, false>& shdr);
1656 #endif
1657
1658 #ifdef HAVE_TARGET_64_BIG
1659 template
1660 off_t
1661 Output_section::add_input_section<64, true>(
1662     Relobj* object,
1663     unsigned int shndx,
1664     const char* secname,
1665     const elfcpp::Shdr<64, true>& shdr);
1666 #endif
1667
1668 #ifdef HAVE_TARGET_32_LITTLE
1669 template
1670 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
1671 #endif
1672
1673 #ifdef HAVE_TARGET_32_BIG
1674 template
1675 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
1676 #endif
1677
1678 #ifdef HAVE_TARGET_64_LITTLE
1679 template
1680 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
1681 #endif
1682
1683 #ifdef HAVE_TARGET_64_BIG
1684 template
1685 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
1686 #endif
1687
1688 #ifdef HAVE_TARGET_32_LITTLE
1689 template
1690 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
1691 #endif
1692
1693 #ifdef HAVE_TARGET_32_BIG
1694 template
1695 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
1696 #endif
1697
1698 #ifdef HAVE_TARGET_64_LITTLE
1699 template
1700 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
1701 #endif
1702
1703 #ifdef HAVE_TARGET_64_BIG
1704 template
1705 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
1706 #endif
1707
1708 #ifdef HAVE_TARGET_32_LITTLE
1709 template
1710 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
1711 #endif
1712
1713 #ifdef HAVE_TARGET_32_BIG
1714 template
1715 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
1716 #endif
1717
1718 #ifdef HAVE_TARGET_64_LITTLE
1719 template
1720 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
1721 #endif
1722
1723 #ifdef HAVE_TARGET_64_BIG
1724 template
1725 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
1726 #endif
1727
1728 #ifdef HAVE_TARGET_32_LITTLE
1729 template
1730 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
1731 #endif
1732
1733 #ifdef HAVE_TARGET_32_BIG
1734 template
1735 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
1736 #endif
1737
1738 #ifdef HAVE_TARGET_64_LITTLE
1739 template
1740 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
1741 #endif
1742
1743 #ifdef HAVE_TARGET_64_BIG
1744 template
1745 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
1746 #endif
1747
1748 #ifdef HAVE_TARGET_32_LITTLE
1749 template
1750 class Output_data_got<32, false>;
1751 #endif
1752
1753 #ifdef HAVE_TARGET_32_BIG
1754 template
1755 class Output_data_got<32, true>;
1756 #endif
1757
1758 #ifdef HAVE_TARGET_64_LITTLE
1759 template
1760 class Output_data_got<64, false>;
1761 #endif
1762
1763 #ifdef HAVE_TARGET_64_BIG
1764 template
1765 class Output_data_got<64, true>;
1766 #endif
1767
1768 } // End namespace gold.