1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #include "libiberty.h"
35 #include "parameters.h"
40 #include "descriptors.h"
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
54 posix_fallocate(int o, off_t offset, off_t len)
56 return ftruncate(o, offset + len);
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
63 // Output_data variables.
65 bool Output_data::allocated_sizes_are_fixed;
67 // Output_data methods.
69 Output_data::~Output_data()
73 // Return the default alignment for the target size.
76 Output_data::default_alignment()
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
82 // Return the default alignment for a size--32 or 64.
85 Output_data::default_alignment_for_size(int size)
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
98 Output_section_headers::Output_section_headers(
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
114 // Compute the current data size.
117 Output_section_headers::do_size() const
119 // Count all the sections. Start with 1 for the null section.
121 if (!parameters->options().relocatable())
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
139 count += this->unattached_section_list_->size();
141 const int size = parameters->target().get_size();
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
150 return count * shdr_size;
153 // Write out the section headers.
156 Output_section_headers::do_write(Output_file* of)
158 switch (parameters->size_and_endianness())
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
185 template<int size, bool big_endian>
187 Output_section_headers::do_sized_write(Output_file* of)
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
208 oshdr.put_sh_size(section_count);
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
214 oshdr.put_sh_link(shstrndx);
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
274 of->write_output_view(this->offset(), all_shdrs_size, view);
277 // Output_segment_header methods.
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
286 Output_segment_headers::do_write(Output_file* of)
288 switch (parameters->size_and_endianness())
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
315 template<int size, bool big_endian>
317 Output_segment_headers::do_sized_write(Output_file* of)
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
334 gold_assert(v - view == all_phdrs_size);
336 of->write_output_view(this->offset(), all_phdrs_size, view);
340 Output_segment_headers::do_size() const
342 const int size = parameters->target().get_size();
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
351 return this->segment_list_.size() * phdr_size;
354 // Output_file_header methods.
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
362 segment_header_(osh),
363 section_header_(NULL),
367 this->set_data_size(this->do_size());
370 // Set the section table information for a file header.
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
380 // Write out the file header.
383 Output_file_header::do_write(Output_file* of)
385 gold_assert(this->offset() == 0);
387 switch (parameters->size_and_endianness())
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
414 // Write out the file header with appropriate size and endianess.
416 template<int size, bool big_endian>
418 Output_file_header::do_sized_write(Output_file* of)
420 gold_assert(this->offset() == 0);
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
456 oehdr.put_e_entry(this->entry<size>());
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
461 oehdr.put_e_phoff(this->segment_header_->offset());
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
467 if (this->segment_header_ == NULL)
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
490 oehdr.put_e_shnum(0);
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
502 of->write_output_view(0, ehdr_size, view);
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
521 Symbol* sym = this->symtab_->lookup(entry);
523 typename Sized_symbol<size>::Value_type v;
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
537 v = strtoull(entry, &endptr, 0);
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
549 // Compute the current data size.
552 Output_file_header::do_size() const
554 const int size = parameters->target().get_size();
556 return elfcpp::Elf_sizes<32>::ehdr_size;
558 return elfcpp::Elf_sizes<64>::ehdr_size;
563 // Output_data_const methods.
566 Output_data_const::do_write(Output_file* of)
568 of->write(this->offset(), this->data_.data(), this->data_.size());
571 // Output_data_const_buffer methods.
574 Output_data_const_buffer::do_write(Output_file* of)
576 of->write(this->offset(), this->p_, this->data_size());
579 // Output_section_data methods.
581 // Record the output section, and set the entry size and such.
584 Output_section_data::set_output_section(Output_section* os)
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
591 // Return the section index of the output section.
594 Output_section_data::do_out_shndx() const
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
604 Output_section_data::set_addralign(uint64_t addralign)
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
612 // Output_data_strtab methods.
614 // Set the final data size.
617 Output_data_strtab::set_final_data_size()
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
623 // Write out a string table.
626 Output_data_strtab::do_write(Output_file* of)
628 this->strtab_->write(of, this->offset());
631 // Output_reloc methods.
633 // A reloc against a global symbol.
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
642 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
643 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
645 // this->type_ is a bitfield; make sure TYPE fits.
646 gold_assert(this->type_ == type);
647 this->u1_.gsym = gsym;
650 this->set_needs_dynsym_index();
653 template<bool dynamic, int size, bool big_endian>
654 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Sized_relobj<size, big_endian>* relobj,
661 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
662 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
664 gold_assert(shndx != INVALID_CODE);
665 // this->type_ is a bitfield; make sure TYPE fits.
666 gold_assert(this->type_ == type);
667 this->u1_.gsym = gsym;
668 this->u2_.relobj = relobj;
670 this->set_needs_dynsym_index();
673 // A reloc against a local symbol.
675 template<bool dynamic, int size, bool big_endian>
676 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
677 Sized_relobj<size, big_endian>* relobj,
678 unsigned int local_sym_index,
683 bool is_section_symbol)
684 : address_(address), local_sym_index_(local_sym_index), type_(type),
685 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
688 gold_assert(local_sym_index != GSYM_CODE
689 && local_sym_index != INVALID_CODE);
690 // this->type_ is a bitfield; make sure TYPE fits.
691 gold_assert(this->type_ == type);
692 this->u1_.relobj = relobj;
695 this->set_needs_dynsym_index();
698 template<bool dynamic, int size, bool big_endian>
699 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
700 Sized_relobj<size, big_endian>* relobj,
701 unsigned int local_sym_index,
706 bool is_section_symbol)
707 : address_(address), local_sym_index_(local_sym_index), type_(type),
708 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
711 gold_assert(local_sym_index != GSYM_CODE
712 && local_sym_index != INVALID_CODE);
713 gold_assert(shndx != INVALID_CODE);
714 // this->type_ is a bitfield; make sure TYPE fits.
715 gold_assert(this->type_ == type);
716 this->u1_.relobj = relobj;
717 this->u2_.relobj = relobj;
719 this->set_needs_dynsym_index();
722 // A reloc against the STT_SECTION symbol of an output section.
724 template<bool dynamic, int size, bool big_endian>
725 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
730 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
731 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
738 this->set_needs_dynsym_index();
740 os->set_needs_symtab_index();
743 template<bool dynamic, int size, bool big_endian>
744 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
747 Sized_relobj<size, big_endian>* relobj,
750 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
751 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
753 gold_assert(shndx != INVALID_CODE);
754 // this->type_ is a bitfield; make sure TYPE fits.
755 gold_assert(this->type_ == type);
757 this->u2_.relobj = relobj;
759 this->set_needs_dynsym_index();
761 os->set_needs_symtab_index();
764 // An absolute relocation.
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
771 : address_(address), local_sym_index_(0), type_(type),
772 is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
774 // this->type_ is a bitfield; make sure TYPE fits.
775 gold_assert(this->type_ == type);
776 this->u1_.relobj = NULL;
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
783 Sized_relobj<size, big_endian>* relobj,
786 : address_(address), local_sym_index_(0), type_(type),
787 is_relative_(false), is_section_symbol_(false), shndx_(shndx)
789 gold_assert(shndx != INVALID_CODE);
790 // this->type_ is a bitfield; make sure TYPE fits.
791 gold_assert(this->type_ == type);
792 this->u1_.relobj = NULL;
793 this->u2_.relobj = relobj;
796 // A target specific relocation.
798 template<bool dynamic, int size, bool big_endian>
799 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
804 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
805 is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
807 // this->type_ is a bitfield; make sure TYPE fits.
808 gold_assert(this->type_ == type);
813 template<bool dynamic, int size, bool big_endian>
814 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
817 Sized_relobj<size, big_endian>* relobj,
820 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
821 is_relative_(false), is_section_symbol_(false), shndx_(shndx)
823 gold_assert(shndx != INVALID_CODE);
824 // this->type_ is a bitfield; make sure TYPE fits.
825 gold_assert(this->type_ == type);
827 this->u2_.relobj = relobj;
830 // Record that we need a dynamic symbol index for this relocation.
832 template<bool dynamic, int size, bool big_endian>
834 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
835 set_needs_dynsym_index()
837 if (this->is_relative_)
839 switch (this->local_sym_index_)
845 this->u1_.gsym->set_needs_dynsym_entry();
849 this->u1_.os->set_needs_dynsym_index();
853 // The target must take care of this if necessary.
861 const unsigned int lsi = this->local_sym_index_;
862 if (!this->is_section_symbol_)
863 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
865 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
871 // Get the symbol index of a relocation.
873 template<bool dynamic, int size, bool big_endian>
875 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
879 switch (this->local_sym_index_)
885 if (this->u1_.gsym == NULL)
888 index = this->u1_.gsym->dynsym_index();
890 index = this->u1_.gsym->symtab_index();
895 index = this->u1_.os->dynsym_index();
897 index = this->u1_.os->symtab_index();
901 index = parameters->target().reloc_symbol_index(this->u1_.arg,
906 // Relocations without symbols use a symbol index of 0.
912 const unsigned int lsi = this->local_sym_index_;
913 if (!this->is_section_symbol_)
916 index = this->u1_.relobj->dynsym_index(lsi);
918 index = this->u1_.relobj->symtab_index(lsi);
922 Output_section* os = this->u1_.relobj->output_section(lsi);
923 gold_assert(os != NULL);
925 index = os->dynsym_index();
927 index = os->symtab_index();
932 gold_assert(index != -1U);
936 // For a local section symbol, get the address of the offset ADDEND
937 // within the input section.
939 template<bool dynamic, int size, bool big_endian>
940 typename elfcpp::Elf_types<size>::Elf_Addr
941 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
942 local_section_offset(Addend addend) const
944 gold_assert(this->local_sym_index_ != GSYM_CODE
945 && this->local_sym_index_ != SECTION_CODE
946 && this->local_sym_index_ != TARGET_CODE
947 && this->local_sym_index_ != INVALID_CODE
948 && this->local_sym_index_ != 0
949 && this->is_section_symbol_);
950 const unsigned int lsi = this->local_sym_index_;
951 Output_section* os = this->u1_.relobj->output_section(lsi);
952 gold_assert(os != NULL);
953 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
954 if (offset != invalid_address)
955 return offset + addend;
956 // This is a merge section.
957 offset = os->output_address(this->u1_.relobj, lsi, addend);
958 gold_assert(offset != invalid_address);
962 // Get the output address of a relocation.
964 template<bool dynamic, int size, bool big_endian>
965 typename elfcpp::Elf_types<size>::Elf_Addr
966 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
968 Address address = this->address_;
969 if (this->shndx_ != INVALID_CODE)
971 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
972 gold_assert(os != NULL);
973 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
974 if (off != invalid_address)
975 address += os->address() + off;
978 address = os->output_address(this->u2_.relobj, this->shndx_,
980 gold_assert(address != invalid_address);
983 else if (this->u2_.od != NULL)
984 address += this->u2_.od->address();
988 // Write out the offset and info fields of a Rel or Rela relocation
991 template<bool dynamic, int size, bool big_endian>
992 template<typename Write_rel>
994 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
997 wr->put_r_offset(this->get_address());
998 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
999 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1002 // Write out a Rel relocation.
1004 template<bool dynamic, int size, bool big_endian>
1006 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1007 unsigned char* pov) const
1009 elfcpp::Rel_write<size, big_endian> orel(pov);
1010 this->write_rel(&orel);
1013 // Get the value of the symbol referred to by a Rel relocation.
1015 template<bool dynamic, int size, bool big_endian>
1016 typename elfcpp::Elf_types<size>::Elf_Addr
1017 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1018 Addend addend) const
1020 if (this->local_sym_index_ == GSYM_CODE)
1022 const Sized_symbol<size>* sym;
1023 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1024 return sym->value() + addend;
1026 gold_assert(this->local_sym_index_ != SECTION_CODE
1027 && this->local_sym_index_ != TARGET_CODE
1028 && this->local_sym_index_ != INVALID_CODE
1029 && this->local_sym_index_ != 0
1030 && !this->is_section_symbol_);
1031 const unsigned int lsi = this->local_sym_index_;
1032 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1033 return symval->value(this->u1_.relobj, addend);
1036 // Reloc comparison. This function sorts the dynamic relocs for the
1037 // benefit of the dynamic linker. First we sort all relative relocs
1038 // to the front. Among relative relocs, we sort by output address.
1039 // Among non-relative relocs, we sort by symbol index, then by output
1042 template<bool dynamic, int size, bool big_endian>
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1048 if (this->is_relative_)
1050 if (!r2.is_relative_)
1052 // Otherwise sort by reloc address below.
1054 else if (r2.is_relative_)
1058 unsigned int sym1 = this->get_symbol_index();
1059 unsigned int sym2 = r2.get_symbol_index();
1062 else if (sym1 > sym2)
1064 // Otherwise sort by reloc address.
1067 section_offset_type addr1 = this->get_address();
1068 section_offset_type addr2 = r2.get_address();
1071 else if (addr1 > addr2)
1074 // Final tie breaker, in order to generate the same output on any
1075 // host: reloc type.
1076 unsigned int type1 = this->type_;
1077 unsigned int type2 = r2.type_;
1080 else if (type1 > type2)
1083 // These relocs appear to be exactly the same.
1087 // Write out a Rela relocation.
1089 template<bool dynamic, int size, bool big_endian>
1091 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1092 unsigned char* pov) const
1094 elfcpp::Rela_write<size, big_endian> orel(pov);
1095 this->rel_.write_rel(&orel);
1096 Addend addend = this->addend_;
1097 if (this->rel_.is_target_specific())
1098 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1099 this->rel_.type(), addend);
1100 else if (this->rel_.is_relative())
1101 addend = this->rel_.symbol_value(addend);
1102 else if (this->rel_.is_local_section_symbol())
1103 addend = this->rel_.local_section_offset(addend);
1104 orel.put_r_addend(addend);
1107 // Output_data_reloc_base methods.
1109 // Adjust the output section.
1111 template<int sh_type, bool dynamic, int size, bool big_endian>
1113 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1114 ::do_adjust_output_section(Output_section* os)
1116 if (sh_type == elfcpp::SHT_REL)
1117 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1118 else if (sh_type == elfcpp::SHT_RELA)
1119 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1123 os->set_should_link_to_dynsym();
1125 os->set_should_link_to_symtab();
1128 // Write out relocation data.
1130 template<int sh_type, bool dynamic, int size, bool big_endian>
1132 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1135 const off_t off = this->offset();
1136 const off_t oview_size = this->data_size();
1137 unsigned char* const oview = of->get_output_view(off, oview_size);
1139 if (this->sort_relocs())
1141 gold_assert(dynamic);
1142 std::sort(this->relocs_.begin(), this->relocs_.end(),
1143 Sort_relocs_comparison());
1146 unsigned char* pov = oview;
1147 for (typename Relocs::const_iterator p = this->relocs_.begin();
1148 p != this->relocs_.end();
1155 gold_assert(pov - oview == oview_size);
1157 of->write_output_view(off, oview_size, oview);
1159 // We no longer need the relocation entries.
1160 this->relocs_.clear();
1163 // Class Output_relocatable_relocs.
1165 template<int sh_type, int size, bool big_endian>
1167 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1169 this->set_data_size(this->rr_->output_reloc_count()
1170 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1173 // class Output_data_group.
1175 template<int size, bool big_endian>
1176 Output_data_group<size, big_endian>::Output_data_group(
1177 Sized_relobj<size, big_endian>* relobj,
1178 section_size_type entry_count,
1179 elfcpp::Elf_Word flags,
1180 std::vector<unsigned int>* input_shndxes)
1181 : Output_section_data(entry_count * 4, 4, false),
1185 this->input_shndxes_.swap(*input_shndxes);
1188 // Write out the section group, which means translating the section
1189 // indexes to apply to the output file.
1191 template<int size, bool big_endian>
1193 Output_data_group<size, big_endian>::do_write(Output_file* of)
1195 const off_t off = this->offset();
1196 const section_size_type oview_size =
1197 convert_to_section_size_type(this->data_size());
1198 unsigned char* const oview = of->get_output_view(off, oview_size);
1200 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1201 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1204 for (std::vector<unsigned int>::const_iterator p =
1205 this->input_shndxes_.begin();
1206 p != this->input_shndxes_.end();
1209 Output_section* os = this->relobj_->output_section(*p);
1211 unsigned int output_shndx;
1213 output_shndx = os->out_shndx();
1216 this->relobj_->error(_("section group retained but "
1217 "group element discarded"));
1221 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1224 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1225 gold_assert(wrote == oview_size);
1227 of->write_output_view(off, oview_size, oview);
1229 // We no longer need this information.
1230 this->input_shndxes_.clear();
1233 // Output_data_got::Got_entry methods.
1235 // Write out the entry.
1237 template<int size, bool big_endian>
1239 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1243 switch (this->local_sym_index_)
1247 // If the symbol is resolved locally, we need to write out the
1248 // link-time value, which will be relocated dynamically by a
1249 // RELATIVE relocation.
1250 Symbol* gsym = this->u_.gsym;
1251 Sized_symbol<size>* sgsym;
1252 // This cast is a bit ugly. We don't want to put a
1253 // virtual method in Symbol, because we want Symbol to be
1254 // as small as possible.
1255 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1256 val = sgsym->value();
1261 val = this->u_.constant;
1266 const unsigned int lsi = this->local_sym_index_;
1267 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1268 val = symval->value(this->u_.object, 0);
1273 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1276 // Output_data_got methods.
1278 // Add an entry for a global symbol to the GOT. This returns true if
1279 // this is a new GOT entry, false if the symbol already had a GOT
1282 template<int size, bool big_endian>
1284 Output_data_got<size, big_endian>::add_global(
1286 unsigned int got_type)
1288 if (gsym->has_got_offset(got_type))
1291 this->entries_.push_back(Got_entry(gsym));
1292 this->set_got_size();
1293 gsym->set_got_offset(got_type, this->last_got_offset());
1297 // Add an entry for a global symbol to the GOT, and add a dynamic
1298 // relocation of type R_TYPE for the GOT entry.
1299 template<int size, bool big_endian>
1301 Output_data_got<size, big_endian>::add_global_with_rel(
1303 unsigned int got_type,
1305 unsigned int r_type)
1307 if (gsym->has_got_offset(got_type))
1310 this->entries_.push_back(Got_entry());
1311 this->set_got_size();
1312 unsigned int got_offset = this->last_got_offset();
1313 gsym->set_got_offset(got_type, got_offset);
1314 rel_dyn->add_global(gsym, r_type, this, got_offset);
1317 template<int size, bool big_endian>
1319 Output_data_got<size, big_endian>::add_global_with_rela(
1321 unsigned int got_type,
1323 unsigned int r_type)
1325 if (gsym->has_got_offset(got_type))
1328 this->entries_.push_back(Got_entry());
1329 this->set_got_size();
1330 unsigned int got_offset = this->last_got_offset();
1331 gsym->set_got_offset(got_type, got_offset);
1332 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1335 // Add a pair of entries for a global symbol to the GOT, and add
1336 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1337 // If R_TYPE_2 == 0, add the second entry with no relocation.
1338 template<int size, bool big_endian>
1340 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1342 unsigned int got_type,
1344 unsigned int r_type_1,
1345 unsigned int r_type_2)
1347 if (gsym->has_got_offset(got_type))
1350 this->entries_.push_back(Got_entry());
1351 unsigned int got_offset = this->last_got_offset();
1352 gsym->set_got_offset(got_type, got_offset);
1353 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1355 this->entries_.push_back(Got_entry());
1358 got_offset = this->last_got_offset();
1359 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1362 this->set_got_size();
1365 template<int size, bool big_endian>
1367 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1369 unsigned int got_type,
1371 unsigned int r_type_1,
1372 unsigned int r_type_2)
1374 if (gsym->has_got_offset(got_type))
1377 this->entries_.push_back(Got_entry());
1378 unsigned int got_offset = this->last_got_offset();
1379 gsym->set_got_offset(got_type, got_offset);
1380 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1382 this->entries_.push_back(Got_entry());
1385 got_offset = this->last_got_offset();
1386 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1389 this->set_got_size();
1392 // Add an entry for a local symbol to the GOT. This returns true if
1393 // this is a new GOT entry, false if the symbol already has a GOT
1396 template<int size, bool big_endian>
1398 Output_data_got<size, big_endian>::add_local(
1399 Sized_relobj<size, big_endian>* object,
1400 unsigned int symndx,
1401 unsigned int got_type)
1403 if (object->local_has_got_offset(symndx, got_type))
1406 this->entries_.push_back(Got_entry(object, symndx));
1407 this->set_got_size();
1408 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1412 // Add an entry for a local symbol to the GOT, and add a dynamic
1413 // relocation of type R_TYPE for the GOT entry.
1414 template<int size, bool big_endian>
1416 Output_data_got<size, big_endian>::add_local_with_rel(
1417 Sized_relobj<size, big_endian>* object,
1418 unsigned int symndx,
1419 unsigned int got_type,
1421 unsigned int r_type)
1423 if (object->local_has_got_offset(symndx, got_type))
1426 this->entries_.push_back(Got_entry());
1427 this->set_got_size();
1428 unsigned int got_offset = this->last_got_offset();
1429 object->set_local_got_offset(symndx, got_type, got_offset);
1430 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1433 template<int size, bool big_endian>
1435 Output_data_got<size, big_endian>::add_local_with_rela(
1436 Sized_relobj<size, big_endian>* object,
1437 unsigned int symndx,
1438 unsigned int got_type,
1440 unsigned int r_type)
1442 if (object->local_has_got_offset(symndx, got_type))
1445 this->entries_.push_back(Got_entry());
1446 this->set_got_size();
1447 unsigned int got_offset = this->last_got_offset();
1448 object->set_local_got_offset(symndx, got_type, got_offset);
1449 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1452 // Add a pair of entries for a local symbol to the GOT, and add
1453 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1454 // If R_TYPE_2 == 0, add the second entry with no relocation.
1455 template<int size, bool big_endian>
1457 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1458 Sized_relobj<size, big_endian>* object,
1459 unsigned int symndx,
1461 unsigned int got_type,
1463 unsigned int r_type_1,
1464 unsigned int r_type_2)
1466 if (object->local_has_got_offset(symndx, got_type))
1469 this->entries_.push_back(Got_entry());
1470 unsigned int got_offset = this->last_got_offset();
1471 object->set_local_got_offset(symndx, got_type, got_offset);
1472 Output_section* os = object->output_section(shndx);
1473 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1475 this->entries_.push_back(Got_entry(object, symndx));
1478 got_offset = this->last_got_offset();
1479 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1482 this->set_got_size();
1485 template<int size, bool big_endian>
1487 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1488 Sized_relobj<size, big_endian>* object,
1489 unsigned int symndx,
1491 unsigned int got_type,
1493 unsigned int r_type_1,
1494 unsigned int r_type_2)
1496 if (object->local_has_got_offset(symndx, got_type))
1499 this->entries_.push_back(Got_entry());
1500 unsigned int got_offset = this->last_got_offset();
1501 object->set_local_got_offset(symndx, got_type, got_offset);
1502 Output_section* os = object->output_section(shndx);
1503 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1505 this->entries_.push_back(Got_entry(object, symndx));
1508 got_offset = this->last_got_offset();
1509 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1512 this->set_got_size();
1515 // Write out the GOT.
1517 template<int size, bool big_endian>
1519 Output_data_got<size, big_endian>::do_write(Output_file* of)
1521 const int add = size / 8;
1523 const off_t off = this->offset();
1524 const off_t oview_size = this->data_size();
1525 unsigned char* const oview = of->get_output_view(off, oview_size);
1527 unsigned char* pov = oview;
1528 for (typename Got_entries::const_iterator p = this->entries_.begin();
1529 p != this->entries_.end();
1536 gold_assert(pov - oview == oview_size);
1538 of->write_output_view(off, oview_size, oview);
1540 // We no longer need the GOT entries.
1541 this->entries_.clear();
1544 // Output_data_dynamic::Dynamic_entry methods.
1546 // Write out the entry.
1548 template<int size, bool big_endian>
1550 Output_data_dynamic::Dynamic_entry::write(
1552 const Stringpool* pool) const
1554 typename elfcpp::Elf_types<size>::Elf_WXword val;
1555 switch (this->offset_)
1557 case DYNAMIC_NUMBER:
1561 case DYNAMIC_SECTION_SIZE:
1562 val = this->u_.od->data_size();
1563 if (this->od2 != NULL)
1564 val += this->od2->data_size();
1567 case DYNAMIC_SYMBOL:
1569 const Sized_symbol<size>* s =
1570 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1575 case DYNAMIC_STRING:
1576 val = pool->get_offset(this->u_.str);
1580 val = this->u_.od->address() + this->offset_;
1584 elfcpp::Dyn_write<size, big_endian> dw(pov);
1585 dw.put_d_tag(this->tag_);
1589 // Output_data_dynamic methods.
1591 // Adjust the output section to set the entry size.
1594 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1596 if (parameters->target().get_size() == 32)
1597 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1598 else if (parameters->target().get_size() == 64)
1599 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1604 // Set the final data size.
1607 Output_data_dynamic::set_final_data_size()
1609 // Add the terminating entry if it hasn't been added.
1610 // Because of relaxation, we can run this multiple times.
1611 if (this->entries_.empty()
1612 || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1613 this->add_constant(elfcpp::DT_NULL, 0);
1616 if (parameters->target().get_size() == 32)
1617 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1618 else if (parameters->target().get_size() == 64)
1619 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1622 this->set_data_size(this->entries_.size() * dyn_size);
1625 // Write out the dynamic entries.
1628 Output_data_dynamic::do_write(Output_file* of)
1630 switch (parameters->size_and_endianness())
1632 #ifdef HAVE_TARGET_32_LITTLE
1633 case Parameters::TARGET_32_LITTLE:
1634 this->sized_write<32, false>(of);
1637 #ifdef HAVE_TARGET_32_BIG
1638 case Parameters::TARGET_32_BIG:
1639 this->sized_write<32, true>(of);
1642 #ifdef HAVE_TARGET_64_LITTLE
1643 case Parameters::TARGET_64_LITTLE:
1644 this->sized_write<64, false>(of);
1647 #ifdef HAVE_TARGET_64_BIG
1648 case Parameters::TARGET_64_BIG:
1649 this->sized_write<64, true>(of);
1657 template<int size, bool big_endian>
1659 Output_data_dynamic::sized_write(Output_file* of)
1661 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1663 const off_t offset = this->offset();
1664 const off_t oview_size = this->data_size();
1665 unsigned char* const oview = of->get_output_view(offset, oview_size);
1667 unsigned char* pov = oview;
1668 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1669 p != this->entries_.end();
1672 p->write<size, big_endian>(pov, this->pool_);
1676 gold_assert(pov - oview == oview_size);
1678 of->write_output_view(offset, oview_size, oview);
1680 // We no longer need the dynamic entries.
1681 this->entries_.clear();
1684 // Class Output_symtab_xindex.
1687 Output_symtab_xindex::do_write(Output_file* of)
1689 const off_t offset = this->offset();
1690 const off_t oview_size = this->data_size();
1691 unsigned char* const oview = of->get_output_view(offset, oview_size);
1693 memset(oview, 0, oview_size);
1695 if (parameters->target().is_big_endian())
1696 this->endian_do_write<true>(oview);
1698 this->endian_do_write<false>(oview);
1700 of->write_output_view(offset, oview_size, oview);
1702 // We no longer need the data.
1703 this->entries_.clear();
1706 template<bool big_endian>
1708 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1710 for (Xindex_entries::const_iterator p = this->entries_.begin();
1711 p != this->entries_.end();
1714 unsigned int symndx = p->first;
1715 gold_assert(symndx * 4 < this->data_size());
1716 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1720 // Output_section::Input_section methods.
1722 // Return the data size. For an input section we store the size here.
1723 // For an Output_section_data, we have to ask it for the size.
1726 Output_section::Input_section::data_size() const
1728 if (this->is_input_section())
1729 return this->u1_.data_size;
1731 return this->u2_.posd->data_size();
1734 // Set the address and file offset.
1737 Output_section::Input_section::set_address_and_file_offset(
1740 off_t section_file_offset)
1742 if (this->is_input_section())
1743 this->u2_.object->set_section_offset(this->shndx_,
1744 file_offset - section_file_offset);
1746 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1749 // Reset the address and file offset.
1752 Output_section::Input_section::reset_address_and_file_offset()
1754 if (!this->is_input_section())
1755 this->u2_.posd->reset_address_and_file_offset();
1758 // Finalize the data size.
1761 Output_section::Input_section::finalize_data_size()
1763 if (!this->is_input_section())
1764 this->u2_.posd->finalize_data_size();
1767 // Try to turn an input offset into an output offset. We want to
1768 // return the output offset relative to the start of this
1769 // Input_section in the output section.
1772 Output_section::Input_section::output_offset(
1773 const Relobj* object,
1775 section_offset_type offset,
1776 section_offset_type *poutput) const
1778 if (!this->is_input_section())
1779 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1782 if (this->shndx_ != shndx || this->u2_.object != object)
1789 // Return whether this is the merge section for the input section
1793 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1794 unsigned int shndx) const
1796 if (this->is_input_section())
1798 return this->u2_.posd->is_merge_section_for(object, shndx);
1801 // Write out the data. We don't have to do anything for an input
1802 // section--they are handled via Object::relocate--but this is where
1803 // we write out the data for an Output_section_data.
1806 Output_section::Input_section::write(Output_file* of)
1808 if (!this->is_input_section())
1809 this->u2_.posd->write(of);
1812 // Write the data to a buffer. As for write(), we don't have to do
1813 // anything for an input section.
1816 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1818 if (!this->is_input_section())
1819 this->u2_.posd->write_to_buffer(buffer);
1822 // Print to a map file.
1825 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1827 switch (this->shndx_)
1829 case OUTPUT_SECTION_CODE:
1830 case MERGE_DATA_SECTION_CODE:
1831 case MERGE_STRING_SECTION_CODE:
1832 this->u2_.posd->print_to_mapfile(mapfile);
1835 case RELAXED_INPUT_SECTION_CODE:
1837 Output_relaxed_input_section* relaxed_section =
1838 this->relaxed_input_section();
1839 mapfile->print_input_section(relaxed_section->relobj(),
1840 relaxed_section->shndx());
1844 mapfile->print_input_section(this->u2_.object, this->shndx_);
1849 // Output_section methods.
1851 // Construct an Output_section. NAME will point into a Stringpool.
1853 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1854 elfcpp::Elf_Xword flags)
1859 link_section_(NULL),
1861 info_section_(NULL),
1870 first_input_offset_(0),
1872 postprocessing_buffer_(NULL),
1873 needs_symtab_index_(false),
1874 needs_dynsym_index_(false),
1875 should_link_to_symtab_(false),
1876 should_link_to_dynsym_(false),
1877 after_input_sections_(false),
1878 requires_postprocessing_(false),
1879 found_in_sections_clause_(false),
1880 has_load_address_(false),
1881 info_uses_section_index_(false),
1882 may_sort_attached_input_sections_(false),
1883 must_sort_attached_input_sections_(false),
1884 attached_input_sections_are_sorted_(false),
1886 is_relro_local_(false),
1887 is_last_relro_(false),
1888 is_first_non_relro_(false),
1889 is_small_section_(false),
1890 is_large_section_(false),
1892 is_dynamic_linker_section_(false),
1893 generate_code_fills_at_write_(false),
1894 is_entsize_zero_(false),
1895 section_offsets_need_adjustment_(false),
1898 merge_section_map_(),
1899 merge_section_by_properties_map_(),
1900 relaxed_input_section_map_(),
1901 is_relaxed_input_section_map_valid_(true)
1903 // An unallocated section has no address. Forcing this means that
1904 // we don't need special treatment for symbols defined in debug
1906 if ((flags & elfcpp::SHF_ALLOC) == 0)
1907 this->set_address(0);
1910 Output_section::~Output_section()
1912 delete this->checkpoint_;
1915 // Set the entry size.
1918 Output_section::set_entsize(uint64_t v)
1920 if (this->is_entsize_zero_)
1922 else if (this->entsize_ == 0)
1924 else if (this->entsize_ != v)
1927 this->is_entsize_zero_ = 1;
1931 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1932 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1933 // relocation section which applies to this section, or 0 if none, or
1934 // -1U if more than one. Return the offset of the input section
1935 // within the output section. Return -1 if the input section will
1936 // receive special handling. In the normal case we don't always keep
1937 // track of input sections for an Output_section. Instead, each
1938 // Object keeps track of the Output_section for each of its input
1939 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1940 // track of input sections here; this is used when SECTIONS appears in
1943 template<int size, bool big_endian>
1945 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1947 const char* secname,
1948 const elfcpp::Shdr<size, big_endian>& shdr,
1949 unsigned int reloc_shndx,
1950 bool have_sections_script)
1952 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1953 if ((addralign & (addralign - 1)) != 0)
1955 object->error(_("invalid alignment %lu for section \"%s\""),
1956 static_cast<unsigned long>(addralign), secname);
1960 if (addralign > this->addralign_)
1961 this->addralign_ = addralign;
1963 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1964 uint64_t entsize = shdr.get_sh_entsize();
1966 // .debug_str is a mergeable string section, but is not always so
1967 // marked by compilers. Mark manually here so we can optimize.
1968 if (strcmp(secname, ".debug_str") == 0)
1970 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1974 this->update_flags_for_input_section(sh_flags);
1975 this->set_entsize(entsize);
1977 // If this is a SHF_MERGE section, we pass all the input sections to
1978 // a Output_data_merge. We don't try to handle relocations for such
1979 // a section. We don't try to handle empty merge sections--they
1980 // mess up the mappings, and are useless anyhow.
1981 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1983 && shdr.get_sh_size() > 0)
1985 if (this->add_merge_input_section(object, shndx, sh_flags,
1986 entsize, addralign))
1988 // Tell the relocation routines that they need to call the
1989 // output_offset method to determine the final address.
1994 off_t offset_in_section = this->current_data_size_for_child();
1995 off_t aligned_offset_in_section = align_address(offset_in_section,
1998 // Determine if we want to delay code-fill generation until the output
1999 // section is written. When the target is relaxing, we want to delay fill
2000 // generating to avoid adjusting them during relaxation.
2001 if (!this->generate_code_fills_at_write_
2002 && !have_sections_script
2003 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2004 && parameters->target().has_code_fill()
2005 && parameters->target().may_relax())
2007 gold_assert(this->fills_.empty());
2008 this->generate_code_fills_at_write_ = true;
2011 if (aligned_offset_in_section > offset_in_section
2012 && !this->generate_code_fills_at_write_
2013 && !have_sections_script
2014 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2015 && parameters->target().has_code_fill())
2017 // We need to add some fill data. Using fill_list_ when
2018 // possible is an optimization, since we will often have fill
2019 // sections without input sections.
2020 off_t fill_len = aligned_offset_in_section - offset_in_section;
2021 if (this->input_sections_.empty())
2022 this->fills_.push_back(Fill(offset_in_section, fill_len));
2025 std::string fill_data(parameters->target().code_fill(fill_len));
2026 Output_data_const* odc = new Output_data_const(fill_data, 1);
2027 this->input_sections_.push_back(Input_section(odc));
2031 this->set_current_data_size_for_child(aligned_offset_in_section
2032 + shdr.get_sh_size());
2034 // We need to keep track of this section if we are already keeping
2035 // track of sections, or if we are relaxing. Also, if this is a
2036 // section which requires sorting, or which may require sorting in
2037 // the future, we keep track of the sections.
2038 if (have_sections_script
2039 || !this->input_sections_.empty()
2040 || this->may_sort_attached_input_sections()
2041 || this->must_sort_attached_input_sections()
2042 || parameters->options().user_set_Map()
2043 || parameters->target().may_relax())
2044 this->input_sections_.push_back(Input_section(object, shndx,
2048 return aligned_offset_in_section;
2051 // Add arbitrary data to an output section.
2054 Output_section::add_output_section_data(Output_section_data* posd)
2056 Input_section inp(posd);
2057 this->add_output_section_data(&inp);
2059 if (posd->is_data_size_valid())
2061 off_t offset_in_section = this->current_data_size_for_child();
2062 off_t aligned_offset_in_section = align_address(offset_in_section,
2064 this->set_current_data_size_for_child(aligned_offset_in_section
2065 + posd->data_size());
2069 // Add a relaxed input section.
2072 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2074 Input_section inp(poris);
2075 this->add_output_section_data(&inp);
2076 if (this->is_relaxed_input_section_map_valid_)
2078 Const_section_id csid(poris->relobj(), poris->shndx());
2079 this->relaxed_input_section_map_[csid] = poris;
2082 // For a relaxed section, we use the current data size. Linker scripts
2083 // get all the input sections, including relaxed one from an output
2084 // section and add them back to them same output section to compute the
2085 // output section size. If we do not account for sizes of relaxed input
2086 // sections, an output section would be incorrectly sized.
2087 off_t offset_in_section = this->current_data_size_for_child();
2088 off_t aligned_offset_in_section = align_address(offset_in_section,
2089 poris->addralign());
2090 this->set_current_data_size_for_child(aligned_offset_in_section
2091 + poris->current_data_size());
2094 // Add arbitrary data to an output section by Input_section.
2097 Output_section::add_output_section_data(Input_section* inp)
2099 if (this->input_sections_.empty())
2100 this->first_input_offset_ = this->current_data_size_for_child();
2102 this->input_sections_.push_back(*inp);
2104 uint64_t addralign = inp->addralign();
2105 if (addralign > this->addralign_)
2106 this->addralign_ = addralign;
2108 inp->set_output_section(this);
2111 // Add a merge section to an output section.
2114 Output_section::add_output_merge_section(Output_section_data* posd,
2115 bool is_string, uint64_t entsize)
2117 Input_section inp(posd, is_string, entsize);
2118 this->add_output_section_data(&inp);
2121 // Add an input section to a SHF_MERGE section.
2124 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2125 uint64_t flags, uint64_t entsize,
2128 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2130 // We only merge strings if the alignment is not more than the
2131 // character size. This could be handled, but it's unusual.
2132 if (is_string && addralign > entsize)
2135 // We cannot restore merged input section states.
2136 gold_assert(this->checkpoint_ == NULL);
2138 // Look up merge sections by required properties.
2139 Merge_section_properties msp(is_string, entsize, addralign);
2140 Merge_section_by_properties_map::const_iterator p =
2141 this->merge_section_by_properties_map_.find(msp);
2142 if (p != this->merge_section_by_properties_map_.end())
2144 Output_merge_base* merge_section = p->second;
2145 merge_section->add_input_section(object, shndx);
2146 gold_assert(merge_section->is_string() == is_string
2147 && merge_section->entsize() == entsize
2148 && merge_section->addralign() == addralign);
2150 // Link input section to found merge section.
2151 Const_section_id csid(object, shndx);
2152 this->merge_section_map_[csid] = merge_section;
2156 // We handle the actual constant merging in Output_merge_data or
2157 // Output_merge_string_data.
2158 Output_merge_base* pomb;
2160 pomb = new Output_merge_data(entsize, addralign);
2166 pomb = new Output_merge_string<char>(addralign);
2169 pomb = new Output_merge_string<uint16_t>(addralign);
2172 pomb = new Output_merge_string<uint32_t>(addralign);
2179 // Add new merge section to this output section and link merge section
2180 // properties to new merge section in map.
2181 this->add_output_merge_section(pomb, is_string, entsize);
2182 this->merge_section_by_properties_map_[msp] = pomb;
2184 // Add input section to new merge section and link input section to new
2185 // merge section in map.
2186 pomb->add_input_section(object, shndx);
2187 Const_section_id csid(object, shndx);
2188 this->merge_section_map_[csid] = pomb;
2193 // Build a relaxation map to speed up relaxation of existing input sections.
2194 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2197 Output_section::build_relaxation_map(
2198 const Input_section_list& input_sections,
2200 Relaxation_map* relaxation_map) const
2202 for (size_t i = 0; i < limit; ++i)
2204 const Input_section& is(input_sections[i]);
2205 if (is.is_input_section() || is.is_relaxed_input_section())
2207 Section_id sid(is.relobj(), is.shndx());
2208 (*relaxation_map)[sid] = i;
2213 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2214 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2215 // indices of INPUT_SECTIONS.
2218 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2219 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2220 const Relaxation_map& map,
2221 Input_section_list* input_sections)
2223 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2225 Output_relaxed_input_section* poris = relaxed_sections[i];
2226 Section_id sid(poris->relobj(), poris->shndx());
2227 Relaxation_map::const_iterator p = map.find(sid);
2228 gold_assert(p != map.end());
2229 gold_assert((*input_sections)[p->second].is_input_section());
2230 (*input_sections)[p->second] = Input_section(poris);
2234 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2235 // is a vector of pointers to Output_relaxed_input_section or its derived
2236 // classes. The relaxed sections must correspond to existing input sections.
2239 Output_section::convert_input_sections_to_relaxed_sections(
2240 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2242 gold_assert(parameters->target().may_relax());
2244 // We want to make sure that restore_states does not undo the effect of
2245 // this. If there is no checkpoint active, just search the current
2246 // input section list and replace the sections there. If there is
2247 // a checkpoint, also replace the sections there.
2249 // By default, we look at the whole list.
2250 size_t limit = this->input_sections_.size();
2252 if (this->checkpoint_ != NULL)
2254 // Replace input sections with relaxed input section in the saved
2255 // copy of the input section list.
2256 if (this->checkpoint_->input_sections_saved())
2259 this->build_relaxation_map(
2260 *(this->checkpoint_->input_sections()),
2261 this->checkpoint_->input_sections()->size(),
2263 this->convert_input_sections_in_list_to_relaxed_sections(
2266 this->checkpoint_->input_sections());
2270 // We have not copied the input section list yet. Instead, just
2271 // look at the portion that would be saved.
2272 limit = this->checkpoint_->input_sections_size();
2276 // Convert input sections in input_section_list.
2278 this->build_relaxation_map(this->input_sections_, limit, &map);
2279 this->convert_input_sections_in_list_to_relaxed_sections(
2282 &this->input_sections_);
2284 // Update fast look-up map.
2285 if (this->is_relaxed_input_section_map_valid_)
2286 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2288 Output_relaxed_input_section* poris = relaxed_sections[i];
2289 Const_section_id csid(poris->relobj(), poris->shndx());
2290 this->relaxed_input_section_map_[csid] = poris;
2294 // Update the output section flags based on input section flags.
2297 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2299 // If we created the section with SHF_ALLOC clear, we set the
2300 // address. If we are now setting the SHF_ALLOC flag, we need to
2302 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2303 && (flags & elfcpp::SHF_ALLOC) != 0)
2304 this->mark_address_invalid();
2306 this->flags_ |= (flags
2307 & (elfcpp::SHF_WRITE
2309 | elfcpp::SHF_EXECINSTR));
2311 if ((flags & elfcpp::SHF_MERGE) == 0)
2312 this->flags_ &=~ elfcpp::SHF_MERGE;
2315 if (this->current_data_size_for_child() == 0)
2316 this->flags_ |= elfcpp::SHF_MERGE;
2319 if ((flags & elfcpp::SHF_STRINGS) == 0)
2320 this->flags_ &=~ elfcpp::SHF_STRINGS;
2323 if (this->current_data_size_for_child() == 0)
2324 this->flags_ |= elfcpp::SHF_STRINGS;
2328 // Find the merge section into which an input section with index SHNDX in
2329 // OBJECT has been added. Return NULL if none found.
2331 Output_section_data*
2332 Output_section::find_merge_section(const Relobj* object,
2333 unsigned int shndx) const
2335 Const_section_id csid(object, shndx);
2336 Output_section_data_by_input_section_map::const_iterator p =
2337 this->merge_section_map_.find(csid);
2338 if (p != this->merge_section_map_.end())
2340 Output_section_data* posd = p->second;
2341 gold_assert(posd->is_merge_section_for(object, shndx));
2348 // Find an relaxed input section corresponding to an input section
2349 // in OBJECT with index SHNDX.
2351 const Output_relaxed_input_section*
2352 Output_section::find_relaxed_input_section(const Relobj* object,
2353 unsigned int shndx) const
2355 // Be careful that the map may not be valid due to input section export
2356 // to scripts or a check-point restore.
2357 if (!this->is_relaxed_input_section_map_valid_)
2359 // Rebuild the map as needed.
2360 this->relaxed_input_section_map_.clear();
2361 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2362 p != this->input_sections_.end();
2364 if (p->is_relaxed_input_section())
2366 Const_section_id csid(p->relobj(), p->shndx());
2367 this->relaxed_input_section_map_[csid] =
2368 p->relaxed_input_section();
2370 this->is_relaxed_input_section_map_valid_ = true;
2373 Const_section_id csid(object, shndx);
2374 Output_relaxed_input_section_by_input_section_map::const_iterator p =
2375 this->relaxed_input_section_map_.find(csid);
2376 if (p != this->relaxed_input_section_map_.end())
2382 // Given an address OFFSET relative to the start of input section
2383 // SHNDX in OBJECT, return whether this address is being included in
2384 // the final link. This should only be called if SHNDX in OBJECT has
2385 // a special mapping.
2388 Output_section::is_input_address_mapped(const Relobj* object,
2392 // Look at the Output_section_data_maps first.
2393 const Output_section_data* posd = this->find_merge_section(object, shndx);
2395 posd = this->find_relaxed_input_section(object, shndx);
2399 section_offset_type output_offset;
2400 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2402 return output_offset != -1;
2405 // Fall back to the slow look-up.
2406 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2407 p != this->input_sections_.end();
2410 section_offset_type output_offset;
2411 if (p->output_offset(object, shndx, offset, &output_offset))
2412 return output_offset != -1;
2415 // By default we assume that the address is mapped. This should
2416 // only be called after we have passed all sections to Layout. At
2417 // that point we should know what we are discarding.
2421 // Given an address OFFSET relative to the start of input section
2422 // SHNDX in object OBJECT, return the output offset relative to the
2423 // start of the input section in the output section. This should only
2424 // be called if SHNDX in OBJECT has a special mapping.
2427 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2428 section_offset_type offset) const
2430 // This can only be called meaningfully when we know the data size
2432 gold_assert(this->is_data_size_valid());
2434 // Look at the Output_section_data_maps first.
2435 const Output_section_data* posd = this->find_merge_section(object, shndx);
2437 posd = this->find_relaxed_input_section(object, shndx);
2440 section_offset_type output_offset;
2441 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2443 return output_offset;
2446 // Fall back to the slow look-up.
2447 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2448 p != this->input_sections_.end();
2451 section_offset_type output_offset;
2452 if (p->output_offset(object, shndx, offset, &output_offset))
2453 return output_offset;
2458 // Return the output virtual address of OFFSET relative to the start
2459 // of input section SHNDX in object OBJECT.
2462 Output_section::output_address(const Relobj* object, unsigned int shndx,
2465 uint64_t addr = this->address() + this->first_input_offset_;
2467 // Look at the Output_section_data_maps first.
2468 const Output_section_data* posd = this->find_merge_section(object, shndx);
2470 posd = this->find_relaxed_input_section(object, shndx);
2471 if (posd != NULL && posd->is_address_valid())
2473 section_offset_type output_offset;
2474 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2476 return posd->address() + output_offset;
2479 // Fall back to the slow look-up.
2480 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2481 p != this->input_sections_.end();
2484 addr = align_address(addr, p->addralign());
2485 section_offset_type output_offset;
2486 if (p->output_offset(object, shndx, offset, &output_offset))
2488 if (output_offset == -1)
2490 return addr + output_offset;
2492 addr += p->data_size();
2495 // If we get here, it means that we don't know the mapping for this
2496 // input section. This might happen in principle if
2497 // add_input_section were called before add_output_section_data.
2498 // But it should never actually happen.
2503 // Find the output address of the start of the merged section for
2504 // input section SHNDX in object OBJECT.
2507 Output_section::find_starting_output_address(const Relobj* object,
2509 uint64_t* paddr) const
2511 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2512 // Looking up the merge section map does not always work as we sometimes
2513 // find a merge section without its address set.
2514 uint64_t addr = this->address() + this->first_input_offset_;
2515 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2516 p != this->input_sections_.end();
2519 addr = align_address(addr, p->addralign());
2521 // It would be nice if we could use the existing output_offset
2522 // method to get the output offset of input offset 0.
2523 // Unfortunately we don't know for sure that input offset 0 is
2525 if (p->is_merge_section_for(object, shndx))
2531 addr += p->data_size();
2534 // We couldn't find a merge output section for this input section.
2538 // Set the data size of an Output_section. This is where we handle
2539 // setting the addresses of any Output_section_data objects.
2542 Output_section::set_final_data_size()
2544 if (this->input_sections_.empty())
2546 this->set_data_size(this->current_data_size_for_child());
2550 if (this->must_sort_attached_input_sections())
2551 this->sort_attached_input_sections();
2553 uint64_t address = this->address();
2554 off_t startoff = this->offset();
2555 off_t off = startoff + this->first_input_offset_;
2556 for (Input_section_list::iterator p = this->input_sections_.begin();
2557 p != this->input_sections_.end();
2560 off = align_address(off, p->addralign());
2561 p->set_address_and_file_offset(address + (off - startoff), off,
2563 off += p->data_size();
2566 this->set_data_size(off - startoff);
2569 // Reset the address and file offset.
2572 Output_section::do_reset_address_and_file_offset()
2574 // An unallocated section has no address. Forcing this means that
2575 // we don't need special treatment for symbols defined in debug
2576 // sections. We do the same in the constructor.
2577 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2578 this->set_address(0);
2580 for (Input_section_list::iterator p = this->input_sections_.begin();
2581 p != this->input_sections_.end();
2583 p->reset_address_and_file_offset();
2586 // Return true if address and file offset have the values after reset.
2589 Output_section::do_address_and_file_offset_have_reset_values() const
2591 if (this->is_offset_valid())
2594 // An unallocated section has address 0 after its construction or a reset.
2595 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2596 return this->is_address_valid() && this->address() == 0;
2598 return !this->is_address_valid();
2601 // Set the TLS offset. Called only for SHT_TLS sections.
2604 Output_section::do_set_tls_offset(uint64_t tls_base)
2606 this->tls_offset_ = this->address() - tls_base;
2609 // In a few cases we need to sort the input sections attached to an
2610 // output section. This is used to implement the type of constructor
2611 // priority ordering implemented by the GNU linker, in which the
2612 // priority becomes part of the section name and the sections are
2613 // sorted by name. We only do this for an output section if we see an
2614 // attached input section matching ".ctor.*", ".dtor.*",
2615 // ".init_array.*" or ".fini_array.*".
2617 class Output_section::Input_section_sort_entry
2620 Input_section_sort_entry()
2621 : input_section_(), index_(-1U), section_has_name_(false),
2625 Input_section_sort_entry(const Input_section& input_section,
2627 : input_section_(input_section), index_(index),
2628 section_has_name_(input_section.is_input_section()
2629 || input_section.is_relaxed_input_section())
2631 if (this->section_has_name_)
2633 // This is only called single-threaded from Layout::finalize,
2634 // so it is OK to lock. Unfortunately we have no way to pass
2636 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2637 Object* obj = (input_section.is_input_section()
2638 ? input_section.relobj()
2639 : input_section.relaxed_input_section()->relobj());
2640 Task_lock_obj<Object> tl(dummy_task, obj);
2642 // This is a slow operation, which should be cached in
2643 // Layout::layout if this becomes a speed problem.
2644 this->section_name_ = obj->section_name(input_section.shndx());
2648 // Return the Input_section.
2649 const Input_section&
2650 input_section() const
2652 gold_assert(this->index_ != -1U);
2653 return this->input_section_;
2656 // The index of this entry in the original list. This is used to
2657 // make the sort stable.
2661 gold_assert(this->index_ != -1U);
2662 return this->index_;
2665 // Whether there is a section name.
2667 section_has_name() const
2668 { return this->section_has_name_; }
2670 // The section name.
2672 section_name() const
2674 gold_assert(this->section_has_name_);
2675 return this->section_name_;
2678 // Return true if the section name has a priority. This is assumed
2679 // to be true if it has a dot after the initial dot.
2681 has_priority() const
2683 gold_assert(this->section_has_name_);
2684 return this->section_name_.find('.', 1);
2687 // Return true if this an input file whose base name matches
2688 // FILE_NAME. The base name must have an extension of ".o", and
2689 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2690 // This is to match crtbegin.o as well as crtbeginS.o without
2691 // getting confused by other possibilities. Overall matching the
2692 // file name this way is a dreadful hack, but the GNU linker does it
2693 // in order to better support gcc, and we need to be compatible.
2695 match_file_name(const char* match_file_name) const
2697 const std::string& file_name(this->input_section_.relobj()->name());
2698 const char* base_name = lbasename(file_name.c_str());
2699 size_t match_len = strlen(match_file_name);
2700 if (strncmp(base_name, match_file_name, match_len) != 0)
2702 size_t base_len = strlen(base_name);
2703 if (base_len != match_len + 2 && base_len != match_len + 3)
2705 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2709 // The Input_section we are sorting.
2710 Input_section input_section_;
2711 // The index of this Input_section in the original list.
2712 unsigned int index_;
2713 // Whether this Input_section has a section name--it won't if this
2714 // is some random Output_section_data.
2715 bool section_has_name_;
2716 // The section name if there is one.
2717 std::string section_name_;
2720 // Return true if S1 should come before S2 in the output section.
2723 Output_section::Input_section_sort_compare::operator()(
2724 const Output_section::Input_section_sort_entry& s1,
2725 const Output_section::Input_section_sort_entry& s2) const
2727 // crtbegin.o must come first.
2728 bool s1_begin = s1.match_file_name("crtbegin");
2729 bool s2_begin = s2.match_file_name("crtbegin");
2730 if (s1_begin || s2_begin)
2736 return s1.index() < s2.index();
2739 // crtend.o must come last.
2740 bool s1_end = s1.match_file_name("crtend");
2741 bool s2_end = s2.match_file_name("crtend");
2742 if (s1_end || s2_end)
2748 return s1.index() < s2.index();
2751 // We sort all the sections with no names to the end.
2752 if (!s1.section_has_name() || !s2.section_has_name())
2754 if (s1.section_has_name())
2756 if (s2.section_has_name())
2758 return s1.index() < s2.index();
2761 // A section with a priority follows a section without a priority.
2762 // The GNU linker does this for all but .init_array sections; until
2763 // further notice we'll assume that that is an mistake.
2764 bool s1_has_priority = s1.has_priority();
2765 bool s2_has_priority = s2.has_priority();
2766 if (s1_has_priority && !s2_has_priority)
2768 if (!s1_has_priority && s2_has_priority)
2771 // Otherwise we sort by name.
2772 int compare = s1.section_name().compare(s2.section_name());
2776 // Otherwise we keep the input order.
2777 return s1.index() < s2.index();
2780 // Sort the input sections attached to an output section.
2783 Output_section::sort_attached_input_sections()
2785 if (this->attached_input_sections_are_sorted_)
2788 if (this->checkpoint_ != NULL
2789 && !this->checkpoint_->input_sections_saved())
2790 this->checkpoint_->save_input_sections();
2792 // The only thing we know about an input section is the object and
2793 // the section index. We need the section name. Recomputing this
2794 // is slow but this is an unusual case. If this becomes a speed
2795 // problem we can cache the names as required in Layout::layout.
2797 // We start by building a larger vector holding a copy of each
2798 // Input_section, plus its current index in the list and its name.
2799 std::vector<Input_section_sort_entry> sort_list;
2802 for (Input_section_list::iterator p = this->input_sections_.begin();
2803 p != this->input_sections_.end();
2805 sort_list.push_back(Input_section_sort_entry(*p, i));
2807 // Sort the input sections.
2808 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2810 // Copy the sorted input sections back to our list.
2811 this->input_sections_.clear();
2812 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2813 p != sort_list.end();
2815 this->input_sections_.push_back(p->input_section());
2817 // Remember that we sorted the input sections, since we might get
2819 this->attached_input_sections_are_sorted_ = true;
2822 // Write the section header to *OSHDR.
2824 template<int size, bool big_endian>
2826 Output_section::write_header(const Layout* layout,
2827 const Stringpool* secnamepool,
2828 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2830 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2831 oshdr->put_sh_type(this->type_);
2833 elfcpp::Elf_Xword flags = this->flags_;
2834 if (this->info_section_ != NULL && this->info_uses_section_index_)
2835 flags |= elfcpp::SHF_INFO_LINK;
2836 oshdr->put_sh_flags(flags);
2838 oshdr->put_sh_addr(this->address());
2839 oshdr->put_sh_offset(this->offset());
2840 oshdr->put_sh_size(this->data_size());
2841 if (this->link_section_ != NULL)
2842 oshdr->put_sh_link(this->link_section_->out_shndx());
2843 else if (this->should_link_to_symtab_)
2844 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2845 else if (this->should_link_to_dynsym_)
2846 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2848 oshdr->put_sh_link(this->link_);
2850 elfcpp::Elf_Word info;
2851 if (this->info_section_ != NULL)
2853 if (this->info_uses_section_index_)
2854 info = this->info_section_->out_shndx();
2856 info = this->info_section_->symtab_index();
2858 else if (this->info_symndx_ != NULL)
2859 info = this->info_symndx_->symtab_index();
2862 oshdr->put_sh_info(info);
2864 oshdr->put_sh_addralign(this->addralign_);
2865 oshdr->put_sh_entsize(this->entsize_);
2868 // Write out the data. For input sections the data is written out by
2869 // Object::relocate, but we have to handle Output_section_data objects
2873 Output_section::do_write(Output_file* of)
2875 gold_assert(!this->requires_postprocessing());
2877 // If the target performs relaxation, we delay filler generation until now.
2878 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2880 off_t output_section_file_offset = this->offset();
2881 for (Fill_list::iterator p = this->fills_.begin();
2882 p != this->fills_.end();
2885 std::string fill_data(parameters->target().code_fill(p->length()));
2886 of->write(output_section_file_offset + p->section_offset(),
2887 fill_data.data(), fill_data.size());
2890 off_t off = this->offset() + this->first_input_offset_;
2891 for (Input_section_list::iterator p = this->input_sections_.begin();
2892 p != this->input_sections_.end();
2895 off_t aligned_off = align_address(off, p->addralign());
2896 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2898 size_t fill_len = aligned_off - off;
2899 std::string fill_data(parameters->target().code_fill(fill_len));
2900 of->write(off, fill_data.data(), fill_data.size());
2904 off = aligned_off + p->data_size();
2908 // If a section requires postprocessing, create the buffer to use.
2911 Output_section::create_postprocessing_buffer()
2913 gold_assert(this->requires_postprocessing());
2915 if (this->postprocessing_buffer_ != NULL)
2918 if (!this->input_sections_.empty())
2920 off_t off = this->first_input_offset_;
2921 for (Input_section_list::iterator p = this->input_sections_.begin();
2922 p != this->input_sections_.end();
2925 off = align_address(off, p->addralign());
2926 p->finalize_data_size();
2927 off += p->data_size();
2929 this->set_current_data_size_for_child(off);
2932 off_t buffer_size = this->current_data_size_for_child();
2933 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2936 // Write all the data of an Output_section into the postprocessing
2937 // buffer. This is used for sections which require postprocessing,
2938 // such as compression. Input sections are handled by
2939 // Object::Relocate.
2942 Output_section::write_to_postprocessing_buffer()
2944 gold_assert(this->requires_postprocessing());
2946 // If the target performs relaxation, we delay filler generation until now.
2947 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2949 unsigned char* buffer = this->postprocessing_buffer();
2950 for (Fill_list::iterator p = this->fills_.begin();
2951 p != this->fills_.end();
2954 std::string fill_data(parameters->target().code_fill(p->length()));
2955 memcpy(buffer + p->section_offset(), fill_data.data(),
2959 off_t off = this->first_input_offset_;
2960 for (Input_section_list::iterator p = this->input_sections_.begin();
2961 p != this->input_sections_.end();
2964 off_t aligned_off = align_address(off, p->addralign());
2965 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2967 size_t fill_len = aligned_off - off;
2968 std::string fill_data(parameters->target().code_fill(fill_len));
2969 memcpy(buffer + off, fill_data.data(), fill_data.size());
2972 p->write_to_buffer(buffer + aligned_off);
2973 off = aligned_off + p->data_size();
2977 // Get the input sections for linker script processing. We leave
2978 // behind the Output_section_data entries. Note that this may be
2979 // slightly incorrect for merge sections. We will leave them behind,
2980 // but it is possible that the script says that they should follow
2981 // some other input sections, as in:
2982 // .rodata { *(.rodata) *(.rodata.cst*) }
2983 // For that matter, we don't handle this correctly:
2984 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2985 // With luck this will never matter.
2988 Output_section::get_input_sections(
2990 const std::string& fill,
2991 std::list<Simple_input_section>* input_sections)
2993 if (this->checkpoint_ != NULL
2994 && !this->checkpoint_->input_sections_saved())
2995 this->checkpoint_->save_input_sections();
2997 // Invalidate the relaxed input section map.
2998 this->is_relaxed_input_section_map_valid_ = false;
3000 uint64_t orig_address = address;
3002 address = align_address(address, this->addralign());
3004 Input_section_list remaining;
3005 for (Input_section_list::iterator p = this->input_sections_.begin();
3006 p != this->input_sections_.end();
3009 if (p->is_input_section())
3010 input_sections->push_back(Simple_input_section(p->relobj(),
3012 else if (p->is_relaxed_input_section())
3013 input_sections->push_back(
3014 Simple_input_section(p->relaxed_input_section()));
3017 uint64_t aligned_address = align_address(address, p->addralign());
3018 if (aligned_address != address && !fill.empty())
3020 section_size_type length =
3021 convert_to_section_size_type(aligned_address - address);
3022 std::string this_fill;
3023 this_fill.reserve(length);
3024 while (this_fill.length() + fill.length() <= length)
3026 if (this_fill.length() < length)
3027 this_fill.append(fill, 0, length - this_fill.length());
3029 Output_section_data* posd = new Output_data_const(this_fill, 0);
3030 remaining.push_back(Input_section(posd));
3032 address = aligned_address;
3034 remaining.push_back(*p);
3036 p->finalize_data_size();
3037 address += p->data_size();
3041 this->input_sections_.swap(remaining);
3042 this->first_input_offset_ = 0;
3044 uint64_t data_size = address - orig_address;
3045 this->set_current_data_size_for_child(data_size);
3049 // Add an simple input section.
3052 Output_section::add_simple_input_section(const Simple_input_section& sis,
3056 if (addralign > this->addralign_)
3057 this->addralign_ = addralign;
3059 off_t offset_in_section = this->current_data_size_for_child();
3060 off_t aligned_offset_in_section = align_address(offset_in_section,
3063 this->set_current_data_size_for_child(aligned_offset_in_section
3067 (sis.is_relaxed_input_section()
3068 ? Input_section(sis.relaxed_input_section())
3069 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
3070 this->input_sections_.push_back(is);
3073 // Save states for relaxation.
3076 Output_section::save_states()
3078 gold_assert(this->checkpoint_ == NULL);
3079 Checkpoint_output_section* checkpoint =
3080 new Checkpoint_output_section(this->addralign_, this->flags_,
3081 this->input_sections_,
3082 this->first_input_offset_,
3083 this->attached_input_sections_are_sorted_);
3084 this->checkpoint_ = checkpoint;
3085 gold_assert(this->fills_.empty());
3089 Output_section::discard_states()
3091 gold_assert(this->checkpoint_ != NULL);
3092 delete this->checkpoint_;
3093 this->checkpoint_ = NULL;
3094 gold_assert(this->fills_.empty());
3096 // Simply invalidate the relaxed input section map since we do not keep
3098 this->is_relaxed_input_section_map_valid_ = false;
3102 Output_section::restore_states()
3104 gold_assert(this->checkpoint_ != NULL);
3105 Checkpoint_output_section* checkpoint = this->checkpoint_;
3107 this->addralign_ = checkpoint->addralign();
3108 this->flags_ = checkpoint->flags();
3109 this->first_input_offset_ = checkpoint->first_input_offset();
3111 if (!checkpoint->input_sections_saved())
3113 // If we have not copied the input sections, just resize it.
3114 size_t old_size = checkpoint->input_sections_size();
3115 gold_assert(this->input_sections_.size() >= old_size);
3116 this->input_sections_.resize(old_size);
3120 // We need to copy the whole list. This is not efficient for
3121 // extremely large output with hundreads of thousands of input
3122 // objects. We may need to re-think how we should pass sections
3124 this->input_sections_ = *checkpoint->input_sections();
3127 this->attached_input_sections_are_sorted_ =
3128 checkpoint->attached_input_sections_are_sorted();
3130 // Simply invalidate the relaxed input section map since we do not keep
3132 this->is_relaxed_input_section_map_valid_ = false;
3135 // Update the section offsets of input sections in this. This is required if
3136 // relaxation causes some input sections to change sizes.
3139 Output_section::adjust_section_offsets()
3141 if (!this->section_offsets_need_adjustment_)
3145 for (Input_section_list::iterator p = this->input_sections_.begin();
3146 p != this->input_sections_.end();
3149 off = align_address(off, p->addralign());
3150 if (p->is_input_section())
3151 p->relobj()->set_section_offset(p->shndx(), off);
3152 off += p->data_size();
3155 this->section_offsets_need_adjustment_ = false;
3158 // Print to the map file.
3161 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3163 mapfile->print_output_section(this);
3165 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3166 p != this->input_sections_.end();
3168 p->print_to_mapfile(mapfile);
3171 // Print stats for merge sections to stderr.
3174 Output_section::print_merge_stats()
3176 Input_section_list::iterator p;
3177 for (p = this->input_sections_.begin();
3178 p != this->input_sections_.end();
3180 p->print_merge_stats(this->name_);
3183 // Output segment methods.
3185 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3197 is_max_align_known_(false),
3198 are_addresses_set_(false),
3199 is_large_data_segment_(false)
3201 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3203 if (type == elfcpp::PT_TLS)
3204 this->flags_ = elfcpp::PF_R;
3207 // Add an Output_section to an Output_segment.
3210 Output_segment::add_output_section(Output_section* os,
3211 elfcpp::Elf_Word seg_flags,
3214 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3215 gold_assert(!this->is_max_align_known_);
3216 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3217 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3219 this->update_flags_for_output_section(seg_flags);
3221 Output_segment::Output_data_list* pdl;
3222 if (os->type() == elfcpp::SHT_NOBITS)
3223 pdl = &this->output_bss_;
3225 pdl = &this->output_data_;
3227 // Note that while there may be many input sections in an output
3228 // section, there are normally only a few output sections in an
3229 // output segment. The loops below are expected to be fast.
3231 // So that PT_NOTE segments will work correctly, we need to ensure
3232 // that all SHT_NOTE sections are adjacent.
3233 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3235 Output_segment::Output_data_list::iterator p = pdl->end();
3239 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3246 while (p != pdl->begin());
3249 // Similarly, so that PT_TLS segments will work, we need to group
3250 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3251 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3252 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3253 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3254 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3256 if (this->type_ != elfcpp::PT_TLS
3257 && (os->flags() & elfcpp::SHF_TLS) != 0)
3259 pdl = &this->output_data_;
3262 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3263 bool sawtls = false;
3264 Output_segment::Output_data_list::iterator p = pdl->end();
3265 gold_assert(p != pdl->begin());
3270 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3273 // Put a NOBITS section after the first TLS section.
3274 // Put a PROGBITS section after the first
3275 // TLS/PROGBITS section.
3276 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3280 // If we've gone past the TLS sections, but we've
3281 // seen a TLS section, then we need to insert this
3293 while (p != pdl->begin());
3296 // There are no TLS sections yet; put this one at the requested
3297 // location in the section list.
3302 // For the PT_GNU_RELRO segment, we need to group relro
3303 // sections, and we need to put them before any non-relro
3304 // sections. Any relro local sections go before relro non-local
3305 // sections. One section may be marked as the last relro
3309 gold_assert(pdl == &this->output_data_);
3310 Output_segment::Output_data_list::iterator p;
3311 for (p = pdl->begin(); p != pdl->end(); ++p)
3313 if (!(*p)->is_section())
3316 Output_section* pos = (*p)->output_section();
3317 if (!pos->is_relro()
3318 || (os->is_relro_local() && !pos->is_relro_local())
3319 || (!os->is_last_relro() && pos->is_last_relro()))
3327 // One section may be marked as the first section which follows
3328 // the relro sections.
3329 if (os->is_first_non_relro())
3331 gold_assert(pdl == &this->output_data_);
3332 Output_segment::Output_data_list::iterator p;
3333 for (p = pdl->begin(); p != pdl->end(); ++p)
3335 if (!(*p)->is_section())
3338 Output_section* pos = (*p)->output_section();
3339 if (!pos->is_relro())
3348 // Small data sections go at the end of the list of data sections.
3349 // If OS is not small, and there are small sections, we have to
3350 // insert it before the first small section.
3351 if (os->type() != elfcpp::SHT_NOBITS
3352 && !os->is_small_section()
3354 && pdl->back()->is_section()
3355 && pdl->back()->output_section()->is_small_section())
3357 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3361 if ((*p)->is_section()
3362 && (*p)->output_section()->is_small_section())
3371 // A small BSS section goes at the start of the BSS sections, after
3372 // other small BSS sections.
3373 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3375 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3379 if (!(*p)->is_section()
3380 || !(*p)->output_section()->is_small_section())
3388 // A large BSS section goes at the end of the BSS sections, which
3389 // means that one that is not large must come before the first large
3391 if (os->type() == elfcpp::SHT_NOBITS
3392 && !os->is_large_section()
3394 && pdl->back()->is_section()
3395 && pdl->back()->output_section()->is_large_section())
3397 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3401 if ((*p)->is_section()
3402 && (*p)->output_section()->is_large_section())
3411 // We do some further output section sorting in order to make the
3412 // generated program run more efficiently. We should only do this
3413 // when not using a linker script, so it is controled by the DO_SORT
3417 // FreeBSD requires the .interp section to be in the first page
3418 // of the executable. That is a more efficient location anyhow
3419 // for any OS, since it means that the kernel will have the data
3420 // handy after it reads the program headers.
3421 if (os->is_interp() && !pdl->empty())
3423 pdl->insert(pdl->begin(), os);
3427 // Put loadable non-writable notes immediately after the .interp
3428 // sections, so that the PT_NOTE segment is on the first page of
3430 if (os->type() == elfcpp::SHT_NOTE
3431 && (os->flags() & elfcpp::SHF_WRITE) == 0
3434 Output_segment::Output_data_list::iterator p = pdl->begin();
3435 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3441 // If this section is used by the dynamic linker, and it is not
3442 // writable, then put it first, after the .interp section and
3443 // any loadable notes. This makes it more likely that the
3444 // dynamic linker will have to read less data from the disk.
3445 if (os->is_dynamic_linker_section()
3447 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3449 bool is_reloc = (os->type() == elfcpp::SHT_REL
3450 || os->type() == elfcpp::SHT_RELA);
3451 Output_segment::Output_data_list::iterator p = pdl->begin();
3452 while (p != pdl->end()
3453 && (*p)->is_section()
3454 && ((*p)->output_section()->is_dynamic_linker_section()
3455 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3457 // Put reloc sections after the other ones. Putting the
3458 // dynamic reloc sections first confuses BFD, notably
3459 // objcopy and strip.
3461 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3462 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3471 // If there were no constraints on the output section, just add it
3472 // to the end of the list.
3476 // Remove an Output_section from this segment. It is an error if it
3480 Output_segment::remove_output_section(Output_section* os)
3482 // We only need this for SHT_PROGBITS.
3483 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3484 for (Output_data_list::iterator p = this->output_data_.begin();
3485 p != this->output_data_.end();
3490 this->output_data_.erase(p);
3497 // Add an Output_data (which need not be an Output_section) to the
3498 // start of a segment.
3501 Output_segment::add_initial_output_data(Output_data* od)
3503 gold_assert(!this->is_max_align_known_);
3504 this->output_data_.push_front(od);
3507 // Return whether the first data section is a relro section.
3510 Output_segment::is_first_section_relro() const
3512 return (!this->output_data_.empty()
3513 && this->output_data_.front()->is_section()
3514 && this->output_data_.front()->output_section()->is_relro());
3517 // Return the maximum alignment of the Output_data in Output_segment.
3520 Output_segment::maximum_alignment()
3522 if (!this->is_max_align_known_)
3526 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3527 if (addralign > this->max_align_)
3528 this->max_align_ = addralign;
3530 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3531 if (addralign > this->max_align_)
3532 this->max_align_ = addralign;
3534 this->is_max_align_known_ = true;
3537 return this->max_align_;
3540 // Return the maximum alignment of a list of Output_data.
3543 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3546 for (Output_data_list::const_iterator p = pdl->begin();
3550 uint64_t addralign = (*p)->addralign();
3551 if (addralign > ret)
3557 // Return the number of dynamic relocs applied to this segment.
3560 Output_segment::dynamic_reloc_count() const
3562 return (this->dynamic_reloc_count_list(&this->output_data_)
3563 + this->dynamic_reloc_count_list(&this->output_bss_));
3566 // Return the number of dynamic relocs applied to an Output_data_list.
3569 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3571 unsigned int count = 0;
3572 for (Output_data_list::const_iterator p = pdl->begin();
3575 count += (*p)->dynamic_reloc_count();
3579 // Set the section addresses for an Output_segment. If RESET is true,
3580 // reset the addresses first. ADDR is the address and *POFF is the
3581 // file offset. Set the section indexes starting with *PSHNDX.
3582 // Return the address of the immediately following segment. Update
3583 // *POFF and *PSHNDX.
3586 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3588 unsigned int increase_relro,
3590 unsigned int* pshndx)
3592 gold_assert(this->type_ == elfcpp::PT_LOAD);
3594 off_t orig_off = *poff;
3596 // If we have relro sections, we need to pad forward now so that the
3597 // relro sections plus INCREASE_RELRO end on a common page boundary.
3598 if (parameters->options().relro()
3599 && this->is_first_section_relro()
3600 && (!this->are_addresses_set_ || reset))
3602 uint64_t relro_size = 0;
3604 for (Output_data_list::iterator p = this->output_data_.begin();
3605 p != this->output_data_.end();
3608 if (!(*p)->is_section())
3610 Output_section* pos = (*p)->output_section();
3611 if (!pos->is_relro())
3613 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3614 if ((*p)->is_address_valid())
3615 relro_size += (*p)->data_size();
3618 // FIXME: This could be faster.
3619 (*p)->set_address_and_file_offset(addr + relro_size,
3621 relro_size += (*p)->data_size();
3622 (*p)->reset_address_and_file_offset();
3625 relro_size += increase_relro;
3627 uint64_t page_align = parameters->target().common_pagesize();
3629 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3630 uint64_t desired_align = page_align - (relro_size % page_align);
3631 if (desired_align < *poff % page_align)
3632 *poff += page_align - *poff % page_align;
3633 *poff += desired_align - *poff % page_align;
3634 addr += *poff - orig_off;
3638 if (!reset && this->are_addresses_set_)
3640 gold_assert(this->paddr_ == addr);
3641 addr = this->vaddr_;
3645 this->vaddr_ = addr;
3646 this->paddr_ = addr;
3647 this->are_addresses_set_ = true;
3650 bool in_tls = false;
3652 this->offset_ = orig_off;
3654 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3655 addr, poff, pshndx, &in_tls);
3656 this->filesz_ = *poff - orig_off;
3660 uint64_t ret = this->set_section_list_addresses(layout, reset,
3665 // If the last section was a TLS section, align upward to the
3666 // alignment of the TLS segment, so that the overall size of the TLS
3667 // segment is aligned.
3670 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3671 *poff = align_address(*poff, segment_align);
3674 this->memsz_ = *poff - orig_off;
3676 // Ignore the file offset adjustments made by the BSS Output_data
3683 // Set the addresses and file offsets in a list of Output_data
3687 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3688 Output_data_list* pdl,
3689 uint64_t addr, off_t* poff,
3690 unsigned int* pshndx,
3693 off_t startoff = *poff;
3695 off_t off = startoff;
3696 for (Output_data_list::iterator p = pdl->begin();
3701 (*p)->reset_address_and_file_offset();
3703 // When using a linker script the section will most likely
3704 // already have an address.
3705 if (!(*p)->is_address_valid())
3707 uint64_t align = (*p)->addralign();
3709 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3711 // Give the first TLS section the alignment of the
3712 // entire TLS segment. Otherwise the TLS segment as a
3713 // whole may be misaligned.
3716 Output_segment* tls_segment = layout->tls_segment();
3717 gold_assert(tls_segment != NULL);
3718 uint64_t segment_align = tls_segment->maximum_alignment();
3719 gold_assert(segment_align >= align);
3720 align = segment_align;
3727 // If this is the first section after the TLS segment,
3728 // align it to at least the alignment of the TLS
3729 // segment, so that the size of the overall TLS segment
3733 uint64_t segment_align =
3734 layout->tls_segment()->maximum_alignment();
3735 if (segment_align > align)
3736 align = segment_align;
3742 off = align_address(off, align);
3743 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3747 // The script may have inserted a skip forward, but it
3748 // better not have moved backward.
3749 if ((*p)->address() >= addr + (off - startoff))
3750 off += (*p)->address() - (addr + (off - startoff));
3753 if (!layout->script_options()->saw_sections_clause())
3757 Output_section* os = (*p)->output_section();
3759 // Cast to unsigned long long to avoid format warnings.
3760 unsigned long long previous_dot =
3761 static_cast<unsigned long long>(addr + (off - startoff));
3762 unsigned long long dot =
3763 static_cast<unsigned long long>((*p)->address());
3766 gold_error(_("dot moves backward in linker script "
3767 "from 0x%llx to 0x%llx"), previous_dot, dot);
3769 gold_error(_("address of section '%s' moves backward "
3770 "from 0x%llx to 0x%llx"),
3771 os->name(), previous_dot, dot);
3774 (*p)->set_file_offset(off);
3775 (*p)->finalize_data_size();
3778 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3779 // section. Such a section does not affect the size of a
3781 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3782 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3783 off += (*p)->data_size();
3785 if ((*p)->is_section())
3787 (*p)->set_out_shndx(*pshndx);
3793 return addr + (off - startoff);
3796 // For a non-PT_LOAD segment, set the offset from the sections, if
3797 // any. Add INCREASE to the file size and the memory size.
3800 Output_segment::set_offset(unsigned int increase)
3802 gold_assert(this->type_ != elfcpp::PT_LOAD);
3804 gold_assert(!this->are_addresses_set_);
3806 if (this->output_data_.empty() && this->output_bss_.empty())
3808 gold_assert(increase == 0);
3811 this->are_addresses_set_ = true;
3813 this->min_p_align_ = 0;
3819 const Output_data* first;
3820 if (this->output_data_.empty())
3821 first = this->output_bss_.front();
3823 first = this->output_data_.front();
3824 this->vaddr_ = first->address();
3825 this->paddr_ = (first->has_load_address()
3826 ? first->load_address()
3828 this->are_addresses_set_ = true;
3829 this->offset_ = first->offset();
3831 if (this->output_data_.empty())
3835 const Output_data* last_data = this->output_data_.back();
3836 this->filesz_ = (last_data->address()
3837 + last_data->data_size()
3841 const Output_data* last;
3842 if (this->output_bss_.empty())
3843 last = this->output_data_.back();
3845 last = this->output_bss_.back();
3846 this->memsz_ = (last->address()
3850 this->filesz_ += increase;
3851 this->memsz_ += increase;
3853 // If this is a TLS segment, align the memory size. The code in
3854 // set_section_list ensures that the section after the TLS segment
3855 // is aligned to give us room.
3856 if (this->type_ == elfcpp::PT_TLS)
3858 uint64_t segment_align = this->maximum_alignment();
3859 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3860 this->memsz_ = align_address(this->memsz_, segment_align);
3864 // Set the TLS offsets of the sections in the PT_TLS segment.
3867 Output_segment::set_tls_offsets()
3869 gold_assert(this->type_ == elfcpp::PT_TLS);
3871 for (Output_data_list::iterator p = this->output_data_.begin();
3872 p != this->output_data_.end();
3874 (*p)->set_tls_offset(this->vaddr_);
3876 for (Output_data_list::iterator p = this->output_bss_.begin();
3877 p != this->output_bss_.end();
3879 (*p)->set_tls_offset(this->vaddr_);
3882 // Return the address of the first section.
3885 Output_segment::first_section_load_address() const
3887 for (Output_data_list::const_iterator p = this->output_data_.begin();
3888 p != this->output_data_.end();
3890 if ((*p)->is_section())
3891 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3893 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3894 p != this->output_bss_.end();
3896 if ((*p)->is_section())
3897 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3902 // Return the number of Output_sections in an Output_segment.
3905 Output_segment::output_section_count() const
3907 return (this->output_section_count_list(&this->output_data_)
3908 + this->output_section_count_list(&this->output_bss_));
3911 // Return the number of Output_sections in an Output_data_list.
3914 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3916 unsigned int count = 0;
3917 for (Output_data_list::const_iterator p = pdl->begin();
3921 if ((*p)->is_section())
3927 // Return the section attached to the list segment with the lowest
3928 // load address. This is used when handling a PHDRS clause in a
3932 Output_segment::section_with_lowest_load_address() const
3934 Output_section* found = NULL;
3935 uint64_t found_lma = 0;
3936 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3938 Output_section* found_data = found;
3939 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3940 if (found != found_data && found_data != NULL)
3942 gold_error(_("nobits section %s may not precede progbits section %s "
3944 found->name(), found_data->name());
3951 // Look through a list for a section with a lower load address.
3954 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3955 Output_section** found,
3956 uint64_t* found_lma) const
3958 for (Output_data_list::const_iterator p = pdl->begin();
3962 if (!(*p)->is_section())
3964 Output_section* os = static_cast<Output_section*>(*p);
3965 uint64_t lma = (os->has_load_address()
3966 ? os->load_address()
3968 if (*found == NULL || lma < *found_lma)
3976 // Write the segment data into *OPHDR.
3978 template<int size, bool big_endian>
3980 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3982 ophdr->put_p_type(this->type_);
3983 ophdr->put_p_offset(this->offset_);
3984 ophdr->put_p_vaddr(this->vaddr_);
3985 ophdr->put_p_paddr(this->paddr_);
3986 ophdr->put_p_filesz(this->filesz_);
3987 ophdr->put_p_memsz(this->memsz_);
3988 ophdr->put_p_flags(this->flags_);
3989 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3992 // Write the section headers into V.
3994 template<int size, bool big_endian>
3996 Output_segment::write_section_headers(const Layout* layout,
3997 const Stringpool* secnamepool,
3999 unsigned int *pshndx) const
4001 // Every section that is attached to a segment must be attached to a
4002 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4004 if (this->type_ != elfcpp::PT_LOAD)
4007 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4008 &this->output_data_,
4010 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4016 template<int size, bool big_endian>
4018 Output_segment::write_section_headers_list(const Layout* layout,
4019 const Stringpool* secnamepool,
4020 const Output_data_list* pdl,
4022 unsigned int* pshndx) const
4024 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4025 for (Output_data_list::const_iterator p = pdl->begin();
4029 if ((*p)->is_section())
4031 const Output_section* ps = static_cast<const Output_section*>(*p);
4032 gold_assert(*pshndx == ps->out_shndx());
4033 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4034 ps->write_header(layout, secnamepool, &oshdr);
4042 // Print the output sections to the map file.
4045 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4047 if (this->type() != elfcpp::PT_LOAD)
4049 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4050 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4053 // Print an output section list to the map file.
4056 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4057 const Output_data_list* pdl) const
4059 for (Output_data_list::const_iterator p = pdl->begin();
4062 (*p)->print_to_mapfile(mapfile);
4065 // Output_file methods.
4067 Output_file::Output_file(const char* name)
4072 map_is_anonymous_(false),
4073 is_temporary_(false)
4077 // Try to open an existing file. Returns false if the file doesn't
4078 // exist, has a size of 0 or can't be mmapped.
4081 Output_file::open_for_modification()
4083 // The name "-" means "stdout".
4084 if (strcmp(this->name_, "-") == 0)
4087 // Don't bother opening files with a size of zero.
4089 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4092 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4094 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4096 this->file_size_ = s.st_size;
4098 // If the file can't be mmapped, copying the content to an anonymous
4099 // map will probably negate the performance benefits of incremental
4100 // linking. This could be helped by using views and loading only
4101 // the necessary parts, but this is not supported as of now.
4102 if (!this->map_no_anonymous())
4104 release_descriptor(o, true);
4106 this->file_size_ = 0;
4113 // Open the output file.
4116 Output_file::open(off_t file_size)
4118 this->file_size_ = file_size;
4120 // Unlink the file first; otherwise the open() may fail if the file
4121 // is busy (e.g. it's an executable that's currently being executed).
4123 // However, the linker may be part of a system where a zero-length
4124 // file is created for it to write to, with tight permissions (gcc
4125 // 2.95 did something like this). Unlinking the file would work
4126 // around those permission controls, so we only unlink if the file
4127 // has a non-zero size. We also unlink only regular files to avoid
4128 // trouble with directories/etc.
4130 // If we fail, continue; this command is merely a best-effort attempt
4131 // to improve the odds for open().
4133 // We let the name "-" mean "stdout"
4134 if (!this->is_temporary_)
4136 if (strcmp(this->name_, "-") == 0)
4137 this->o_ = STDOUT_FILENO;
4141 if (::stat(this->name_, &s) == 0
4142 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4145 ::unlink(this->name_);
4146 else if (!parameters->options().relocatable())
4148 // If we don't unlink the existing file, add execute
4149 // permission where read permissions already exist
4150 // and where the umask permits.
4151 int mask = ::umask(0);
4153 s.st_mode |= (s.st_mode & 0444) >> 2;
4154 ::chmod(this->name_, s.st_mode & ~mask);
4158 int mode = parameters->options().relocatable() ? 0666 : 0777;
4159 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4162 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4170 // Resize the output file.
4173 Output_file::resize(off_t file_size)
4175 // If the mmap is mapping an anonymous memory buffer, this is easy:
4176 // just mremap to the new size. If it's mapping to a file, we want
4177 // to unmap to flush to the file, then remap after growing the file.
4178 if (this->map_is_anonymous_)
4180 void* base = ::mremap(this->base_, this->file_size_, file_size,
4182 if (base == MAP_FAILED)
4183 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4184 this->base_ = static_cast<unsigned char*>(base);
4185 this->file_size_ = file_size;
4190 this->file_size_ = file_size;
4191 if (!this->map_no_anonymous())
4192 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4196 // Map an anonymous block of memory which will later be written to the
4197 // file. Return whether the map succeeded.
4200 Output_file::map_anonymous()
4202 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4203 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4204 if (base != MAP_FAILED)
4206 this->map_is_anonymous_ = true;
4207 this->base_ = static_cast<unsigned char*>(base);
4213 // Map the file into memory. Return whether the mapping succeeded.
4216 Output_file::map_no_anonymous()
4218 const int o = this->o_;
4220 // If the output file is not a regular file, don't try to mmap it;
4221 // instead, we'll mmap a block of memory (an anonymous buffer), and
4222 // then later write the buffer to the file.
4224 struct stat statbuf;
4225 if (o == STDOUT_FILENO || o == STDERR_FILENO
4226 || ::fstat(o, &statbuf) != 0
4227 || !S_ISREG(statbuf.st_mode)
4228 || this->is_temporary_)
4231 // Ensure that we have disk space available for the file. If we
4232 // don't do this, it is possible that we will call munmap, close,
4233 // and exit with dirty buffers still in the cache with no assigned
4234 // disk blocks. If the disk is out of space at that point, the
4235 // output file will wind up incomplete, but we will have already
4236 // exited. The alternative to fallocate would be to use fdatasync,
4237 // but that would be a more significant performance hit.
4238 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4239 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4241 // Map the file into memory.
4242 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4245 // The mmap call might fail because of file system issues: the file
4246 // system might not support mmap at all, or it might not support
4247 // mmap with PROT_WRITE.
4248 if (base == MAP_FAILED)
4251 this->map_is_anonymous_ = false;
4252 this->base_ = static_cast<unsigned char*>(base);
4256 // Map the file into memory.
4261 if (this->map_no_anonymous())
4264 // The mmap call might fail because of file system issues: the file
4265 // system might not support mmap at all, or it might not support
4266 // mmap with PROT_WRITE. I'm not sure which errno values we will
4267 // see in all cases, so if the mmap fails for any reason and we
4268 // don't care about file contents, try for an anonymous map.
4269 if (this->map_anonymous())
4272 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4273 this->name_, static_cast<unsigned long>(this->file_size_),
4277 // Unmap the file from memory.
4280 Output_file::unmap()
4282 if (::munmap(this->base_, this->file_size_) < 0)
4283 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4287 // Close the output file.
4290 Output_file::close()
4292 // If the map isn't file-backed, we need to write it now.
4293 if (this->map_is_anonymous_ && !this->is_temporary_)
4295 size_t bytes_to_write = this->file_size_;
4297 while (bytes_to_write > 0)
4299 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4301 if (bytes_written == 0)
4302 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4303 else if (bytes_written < 0)
4304 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4307 bytes_to_write -= bytes_written;
4308 offset += bytes_written;
4314 // We don't close stdout or stderr
4315 if (this->o_ != STDOUT_FILENO
4316 && this->o_ != STDERR_FILENO
4317 && !this->is_temporary_)
4318 if (::close(this->o_) < 0)
4319 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4323 // Instantiate the templates we need. We could use the configure
4324 // script to restrict this to only the ones for implemented targets.
4326 #ifdef HAVE_TARGET_32_LITTLE
4329 Output_section::add_input_section<32, false>(
4330 Sized_relobj<32, false>* object,
4332 const char* secname,
4333 const elfcpp::Shdr<32, false>& shdr,
4334 unsigned int reloc_shndx,
4335 bool have_sections_script);
4338 #ifdef HAVE_TARGET_32_BIG
4341 Output_section::add_input_section<32, true>(
4342 Sized_relobj<32, true>* object,
4344 const char* secname,
4345 const elfcpp::Shdr<32, true>& shdr,
4346 unsigned int reloc_shndx,
4347 bool have_sections_script);
4350 #ifdef HAVE_TARGET_64_LITTLE
4353 Output_section::add_input_section<64, false>(
4354 Sized_relobj<64, false>* object,
4356 const char* secname,
4357 const elfcpp::Shdr<64, false>& shdr,
4358 unsigned int reloc_shndx,
4359 bool have_sections_script);
4362 #ifdef HAVE_TARGET_64_BIG
4365 Output_section::add_input_section<64, true>(
4366 Sized_relobj<64, true>* object,
4368 const char* secname,
4369 const elfcpp::Shdr<64, true>& shdr,
4370 unsigned int reloc_shndx,
4371 bool have_sections_script);
4374 #ifdef HAVE_TARGET_32_LITTLE
4376 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4379 #ifdef HAVE_TARGET_32_BIG
4381 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4384 #ifdef HAVE_TARGET_64_LITTLE
4386 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4389 #ifdef HAVE_TARGET_64_BIG
4391 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4394 #ifdef HAVE_TARGET_32_LITTLE
4396 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4399 #ifdef HAVE_TARGET_32_BIG
4401 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4404 #ifdef HAVE_TARGET_64_LITTLE
4406 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4409 #ifdef HAVE_TARGET_64_BIG
4411 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4414 #ifdef HAVE_TARGET_32_LITTLE
4416 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4419 #ifdef HAVE_TARGET_32_BIG
4421 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4424 #ifdef HAVE_TARGET_64_LITTLE
4426 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4429 #ifdef HAVE_TARGET_64_BIG
4431 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4434 #ifdef HAVE_TARGET_32_LITTLE
4436 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4439 #ifdef HAVE_TARGET_32_BIG
4441 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4444 #ifdef HAVE_TARGET_64_LITTLE
4446 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4449 #ifdef HAVE_TARGET_64_BIG
4451 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4454 #ifdef HAVE_TARGET_32_LITTLE
4456 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4459 #ifdef HAVE_TARGET_32_BIG
4461 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4464 #ifdef HAVE_TARGET_64_LITTLE
4466 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4469 #ifdef HAVE_TARGET_64_BIG
4471 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4474 #ifdef HAVE_TARGET_32_LITTLE
4476 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4479 #ifdef HAVE_TARGET_32_BIG
4481 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4484 #ifdef HAVE_TARGET_64_LITTLE
4486 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4489 #ifdef HAVE_TARGET_64_BIG
4491 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4494 #ifdef HAVE_TARGET_32_LITTLE
4496 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4499 #ifdef HAVE_TARGET_32_BIG
4501 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4504 #ifdef HAVE_TARGET_64_LITTLE
4506 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4509 #ifdef HAVE_TARGET_64_BIG
4511 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4514 #ifdef HAVE_TARGET_32_LITTLE
4516 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4519 #ifdef HAVE_TARGET_32_BIG
4521 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4524 #ifdef HAVE_TARGET_64_LITTLE
4526 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4529 #ifdef HAVE_TARGET_64_BIG
4531 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4534 #ifdef HAVE_TARGET_32_LITTLE
4536 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4539 #ifdef HAVE_TARGET_32_BIG
4541 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4544 #ifdef HAVE_TARGET_64_LITTLE
4546 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4549 #ifdef HAVE_TARGET_64_BIG
4551 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4554 #ifdef HAVE_TARGET_32_LITTLE
4556 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4559 #ifdef HAVE_TARGET_32_BIG
4561 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4564 #ifdef HAVE_TARGET_64_LITTLE
4566 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4569 #ifdef HAVE_TARGET_64_BIG
4571 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4574 #ifdef HAVE_TARGET_32_LITTLE
4576 class Output_data_group<32, false>;
4579 #ifdef HAVE_TARGET_32_BIG
4581 class Output_data_group<32, true>;
4584 #ifdef HAVE_TARGET_64_LITTLE
4586 class Output_data_group<64, false>;
4589 #ifdef HAVE_TARGET_64_BIG
4591 class Output_data_group<64, true>;
4594 #ifdef HAVE_TARGET_32_LITTLE
4596 class Output_data_got<32, false>;
4599 #ifdef HAVE_TARGET_32_BIG
4601 class Output_data_got<32, true>;
4604 #ifdef HAVE_TARGET_64_LITTLE
4606 class Output_data_got<64, false>;
4609 #ifdef HAVE_TARGET_64_BIG
4611 class Output_data_got<64, true>;
4614 } // End namespace gold.