* output.h (Output_data_dynamic::add_section_size): New method
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS  MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate.  Here we just set
50 // the file size and hope that there is enough disk space.  FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56   return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78   return Output_data::default_alignment_for_size(
79       parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87   if (size == 32)
88     return 4;
89   else if (size == 64)
90     return 8;
91   else
92     gold_unreachable();
93 }
94
95 // Output_section_header methods.  This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99     const Layout* layout,
100     const Layout::Segment_list* segment_list,
101     const Layout::Section_list* section_list,
102     const Layout::Section_list* unattached_section_list,
103     const Stringpool* secnamepool,
104     const Output_section* shstrtab_section)
105   : layout_(layout),
106     segment_list_(segment_list),
107     section_list_(section_list),
108     unattached_section_list_(unattached_section_list),
109     secnamepool_(secnamepool),
110     shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119   // Count all the sections.  Start with 1 for the null section.
120   off_t count = 1;
121   if (!parameters->options().relocatable())
122     {
123       for (Layout::Segment_list::const_iterator p =
124              this->segment_list_->begin();
125            p != this->segment_list_->end();
126            ++p)
127         if ((*p)->type() == elfcpp::PT_LOAD)
128           count += (*p)->output_section_count();
129     }
130   else
131     {
132       for (Layout::Section_list::const_iterator p =
133              this->section_list_->begin();
134            p != this->section_list_->end();
135            ++p)
136         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137           ++count;
138     }
139   count += this->unattached_section_list_->size();
140
141   const int size = parameters->target().get_size();
142   int shdr_size;
143   if (size == 32)
144     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145   else if (size == 64)
146     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147   else
148     gold_unreachable();
149
150   return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158   switch (parameters->size_and_endianness())
159     {
160 #ifdef HAVE_TARGET_32_LITTLE
161     case Parameters::TARGET_32_LITTLE:
162       this->do_sized_write<32, false>(of);
163       break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166     case Parameters::TARGET_32_BIG:
167       this->do_sized_write<32, true>(of);
168       break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171     case Parameters::TARGET_64_LITTLE:
172       this->do_sized_write<64, false>(of);
173       break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176     case Parameters::TARGET_64_BIG:
177       this->do_sized_write<64, true>(of);
178       break;
179 #endif
180     default:
181       gold_unreachable();
182     }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189   off_t all_shdrs_size = this->data_size();
190   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193   unsigned char* v = view;
194
195   {
196     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197     oshdr.put_sh_name(0);
198     oshdr.put_sh_type(elfcpp::SHT_NULL);
199     oshdr.put_sh_flags(0);
200     oshdr.put_sh_addr(0);
201     oshdr.put_sh_offset(0);
202
203     size_t section_count = (this->data_size()
204                             / elfcpp::Elf_sizes<size>::shdr_size);
205     if (section_count < elfcpp::SHN_LORESERVE)
206       oshdr.put_sh_size(0);
207     else
208       oshdr.put_sh_size(section_count);
209
210     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211     if (shstrndx < elfcpp::SHN_LORESERVE)
212       oshdr.put_sh_link(0);
213     else
214       oshdr.put_sh_link(shstrndx);
215
216     size_t segment_count = this->segment_list_->size();
217     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219     oshdr.put_sh_addralign(0);
220     oshdr.put_sh_entsize(0);
221   }
222
223   v += shdr_size;
224
225   unsigned int shndx = 1;
226   if (!parameters->options().relocatable())
227     {
228       for (Layout::Segment_list::const_iterator p =
229              this->segment_list_->begin();
230            p != this->segment_list_->end();
231            ++p)
232         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233                                                           this->secnamepool_,
234                                                           v,
235                                                           &shndx);
236     }
237   else
238     {
239       for (Layout::Section_list::const_iterator p =
240              this->section_list_->begin();
241            p != this->section_list_->end();
242            ++p)
243         {
244           // We do unallocated sections below, except that group
245           // sections have to come first.
246           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247               && (*p)->type() != elfcpp::SHT_GROUP)
248             continue;
249           gold_assert(shndx == (*p)->out_shndx());
250           elfcpp::Shdr_write<size, big_endian> oshdr(v);
251           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252           v += shdr_size;
253           ++shndx;
254         }
255     }
256
257   for (Layout::Section_list::const_iterator p =
258          this->unattached_section_list_->begin();
259        p != this->unattached_section_list_->end();
260        ++p)
261     {
262       // For a relocatable link, we did unallocated group sections
263       // above, since they have to come first.
264       if ((*p)->type() == elfcpp::SHT_GROUP
265           && parameters->options().relocatable())
266         continue;
267       gold_assert(shndx == (*p)->out_shndx());
268       elfcpp::Shdr_write<size, big_endian> oshdr(v);
269       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270       v += shdr_size;
271       ++shndx;
272     }
273
274   of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280     const Layout::Segment_list& segment_list)
281   : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288   switch (parameters->size_and_endianness())
289     {
290 #ifdef HAVE_TARGET_32_LITTLE
291     case Parameters::TARGET_32_LITTLE:
292       this->do_sized_write<32, false>(of);
293       break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296     case Parameters::TARGET_32_BIG:
297       this->do_sized_write<32, true>(of);
298       break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301     case Parameters::TARGET_64_LITTLE:
302       this->do_sized_write<64, false>(of);
303       break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306     case Parameters::TARGET_64_BIG:
307       this->do_sized_write<64, true>(of);
308       break;
309 #endif
310     default:
311       gold_unreachable();
312     }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321   gold_assert(all_phdrs_size == this->data_size());
322   unsigned char* view = of->get_output_view(this->offset(),
323                                             all_phdrs_size);
324   unsigned char* v = view;
325   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326        p != this->segment_list_.end();
327        ++p)
328     {
329       elfcpp::Phdr_write<size, big_endian> ophdr(v);
330       (*p)->write_header(&ophdr);
331       v += phdr_size;
332     }
333
334   gold_assert(v - view == all_phdrs_size);
335
336   of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342   const int size = parameters->target().get_size();
343   int phdr_size;
344   if (size == 32)
345     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346   else if (size == 64)
347     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348   else
349     gold_unreachable();
350
351   return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357                                        const Symbol_table* symtab,
358                                        const Output_segment_headers* osh,
359                                        const char* entry)
360   : target_(target),
361     symtab_(symtab),
362     segment_header_(osh),
363     section_header_(NULL),
364     shstrtab_(NULL),
365     entry_(entry)
366 {
367   this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374                                      const Output_section* shstrtab)
375 {
376   this->section_header_ = shdrs;
377   this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385   gold_assert(this->offset() == 0);
386
387   switch (parameters->size_and_endianness())
388     {
389 #ifdef HAVE_TARGET_32_LITTLE
390     case Parameters::TARGET_32_LITTLE:
391       this->do_sized_write<32, false>(of);
392       break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395     case Parameters::TARGET_32_BIG:
396       this->do_sized_write<32, true>(of);
397       break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400     case Parameters::TARGET_64_LITTLE:
401       this->do_sized_write<64, false>(of);
402       break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405     case Parameters::TARGET_64_BIG:
406       this->do_sized_write<64, true>(of);
407       break;
408 #endif
409     default:
410       gold_unreachable();
411     }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420   gold_assert(this->offset() == 0);
421
422   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423   unsigned char* view = of->get_output_view(0, ehdr_size);
424   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426   unsigned char e_ident[elfcpp::EI_NIDENT];
427   memset(e_ident, 0, elfcpp::EI_NIDENT);
428   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432   if (size == 32)
433     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434   else if (size == 64)
435     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436   else
437     gold_unreachable();
438   e_ident[elfcpp::EI_DATA] = (big_endian
439                               ? elfcpp::ELFDATA2MSB
440                               : elfcpp::ELFDATA2LSB);
441   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442   oehdr.put_e_ident(e_ident);
443
444   elfcpp::ET e_type;
445   if (parameters->options().relocatable())
446     e_type = elfcpp::ET_REL;
447   else if (parameters->options().output_is_position_independent())
448     e_type = elfcpp::ET_DYN;
449   else
450     e_type = elfcpp::ET_EXEC;
451   oehdr.put_e_type(e_type);
452
453   oehdr.put_e_machine(this->target_->machine_code());
454   oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456   oehdr.put_e_entry(this->entry<size>());
457
458   if (this->segment_header_ == NULL)
459     oehdr.put_e_phoff(0);
460   else
461     oehdr.put_e_phoff(this->segment_header_->offset());
462
463   oehdr.put_e_shoff(this->section_header_->offset());
464   oehdr.put_e_flags(this->target_->processor_specific_flags());
465   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467   if (this->segment_header_ == NULL)
468     {
469       oehdr.put_e_phentsize(0);
470       oehdr.put_e_phnum(0);
471     }
472   else
473     {
474       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475       size_t phnum = (this->segment_header_->data_size()
476                       / elfcpp::Elf_sizes<size>::phdr_size);
477       if (phnum > elfcpp::PN_XNUM)
478         phnum = elfcpp::PN_XNUM;
479       oehdr.put_e_phnum(phnum);
480     }
481
482   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483   size_t section_count = (this->section_header_->data_size()
484                           / elfcpp::Elf_sizes<size>::shdr_size);
485
486   if (section_count < elfcpp::SHN_LORESERVE)
487     oehdr.put_e_shnum(this->section_header_->data_size()
488                       / elfcpp::Elf_sizes<size>::shdr_size);
489   else
490     oehdr.put_e_shnum(0);
491
492   unsigned int shstrndx = this->shstrtab_->out_shndx();
493   if (shstrndx < elfcpp::SHN_LORESERVE)
494     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495   else
496     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499   // the e_ident field.
500   parameters->target().adjust_elf_header(view, ehdr_size);
501
502   of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address.  THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512   const bool should_issue_warning = (this->entry_ != NULL
513                                      && !parameters->options().relocatable()
514                                      && !parameters->options().shared());
515
516   // FIXME: Need to support target specific entry symbol.
517   const char* entry = this->entry_;
518   if (entry == NULL)
519     entry = "_start";
520
521   Symbol* sym = this->symtab_->lookup(entry);
522
523   typename Sized_symbol<size>::Value_type v;
524   if (sym != NULL)
525     {
526       Sized_symbol<size>* ssym;
527       ssym = this->symtab_->get_sized_symbol<size>(sym);
528       if (!ssym->is_defined() && should_issue_warning)
529         gold_warning("entry symbol '%s' exists but is not defined", entry);
530       v = ssym->value();
531     }
532   else
533     {
534       // We couldn't find the entry symbol.  See if we can parse it as
535       // a number.  This supports, e.g., -e 0x1000.
536       char* endptr;
537       v = strtoull(entry, &endptr, 0);
538       if (*endptr != '\0')
539         {
540           if (should_issue_warning)
541             gold_warning("cannot find entry symbol '%s'", entry);
542           v = 0;
543         }
544     }
545
546   return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554   const int size = parameters->target().get_size();
555   if (size == 32)
556     return elfcpp::Elf_sizes<32>::ehdr_size;
557   else if (size == 64)
558     return elfcpp::Elf_sizes<64>::ehdr_size;
559   else
560     gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568   of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576   of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586   gold_assert(this->output_section_ == NULL);
587   this->output_section_ = os;
588   this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596   gold_assert(this->output_section_ != NULL);
597   return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606   this->addralign_ = addralign;
607   if (this->output_section_ != NULL
608       && this->output_section_->addralign() < addralign)
609     this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619   this->strtab_->set_string_offsets();
620   this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628   this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637     Symbol* gsym,
638     unsigned int type,
639     Output_data* od,
640     Address address,
641     bool is_relative)
642   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
643     is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
644 {
645   // this->type_ is a bitfield; make sure TYPE fits.
646   gold_assert(this->type_ == type);
647   this->u1_.gsym = gsym;
648   this->u2_.od = od;
649   if (dynamic)
650     this->set_needs_dynsym_index();
651 }
652
653 template<bool dynamic, int size, bool big_endian>
654 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
655     Symbol* gsym,
656     unsigned int type,
657     Sized_relobj<size, big_endian>* relobj,
658     unsigned int shndx,
659     Address address,
660     bool is_relative)
661   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
662     is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
663 {
664   gold_assert(shndx != INVALID_CODE);
665   // this->type_ is a bitfield; make sure TYPE fits.
666   gold_assert(this->type_ == type);
667   this->u1_.gsym = gsym;
668   this->u2_.relobj = relobj;
669   if (dynamic)
670     this->set_needs_dynsym_index();
671 }
672
673 // A reloc against a local symbol.
674
675 template<bool dynamic, int size, bool big_endian>
676 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
677     Sized_relobj<size, big_endian>* relobj,
678     unsigned int local_sym_index,
679     unsigned int type,
680     Output_data* od,
681     Address address,
682     bool is_relative,
683     bool is_section_symbol)
684   : address_(address), local_sym_index_(local_sym_index), type_(type),
685     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
686     shndx_(INVALID_CODE)
687 {
688   gold_assert(local_sym_index != GSYM_CODE
689               && local_sym_index != INVALID_CODE);
690   // this->type_ is a bitfield; make sure TYPE fits.
691   gold_assert(this->type_ == type);
692   this->u1_.relobj = relobj;
693   this->u2_.od = od;
694   if (dynamic)
695     this->set_needs_dynsym_index();
696 }
697
698 template<bool dynamic, int size, bool big_endian>
699 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
700     Sized_relobj<size, big_endian>* relobj,
701     unsigned int local_sym_index,
702     unsigned int type,
703     unsigned int shndx,
704     Address address,
705     bool is_relative,
706     bool is_section_symbol)
707   : address_(address), local_sym_index_(local_sym_index), type_(type),
708     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
709     shndx_(shndx)
710 {
711   gold_assert(local_sym_index != GSYM_CODE
712               && local_sym_index != INVALID_CODE);
713   gold_assert(shndx != INVALID_CODE);
714   // this->type_ is a bitfield; make sure TYPE fits.
715   gold_assert(this->type_ == type);
716   this->u1_.relobj = relobj;
717   this->u2_.relobj = relobj;
718   if (dynamic)
719     this->set_needs_dynsym_index();
720 }
721
722 // A reloc against the STT_SECTION symbol of an output section.
723
724 template<bool dynamic, int size, bool big_endian>
725 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
726     Output_section* os,
727     unsigned int type,
728     Output_data* od,
729     Address address)
730   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
731     is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
732 {
733   // this->type_ is a bitfield; make sure TYPE fits.
734   gold_assert(this->type_ == type);
735   this->u1_.os = os;
736   this->u2_.od = od;
737   if (dynamic)
738     this->set_needs_dynsym_index();
739   else
740     os->set_needs_symtab_index();
741 }
742
743 template<bool dynamic, int size, bool big_endian>
744 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745     Output_section* os,
746     unsigned int type,
747     Sized_relobj<size, big_endian>* relobj,
748     unsigned int shndx,
749     Address address)
750   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
751     is_relative_(false), is_section_symbol_(true), shndx_(shndx)
752 {
753   gold_assert(shndx != INVALID_CODE);
754   // this->type_ is a bitfield; make sure TYPE fits.
755   gold_assert(this->type_ == type);
756   this->u1_.os = os;
757   this->u2_.relobj = relobj;
758   if (dynamic)
759     this->set_needs_dynsym_index();
760   else
761     os->set_needs_symtab_index();
762 }
763
764 // An absolute relocation.
765
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768     unsigned int type,
769     Output_data* od,
770     Address address)
771   : address_(address), local_sym_index_(0), type_(type),
772     is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
773 {
774   // this->type_ is a bitfield; make sure TYPE fits.
775   gold_assert(this->type_ == type);
776   this->u1_.relobj = NULL;
777   this->u2_.od = od;
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782     unsigned int type,
783     Sized_relobj<size, big_endian>* relobj,
784     unsigned int shndx,
785     Address address)
786   : address_(address), local_sym_index_(0), type_(type),
787     is_relative_(false), is_section_symbol_(false), shndx_(shndx)
788 {
789   gold_assert(shndx != INVALID_CODE);
790   // this->type_ is a bitfield; make sure TYPE fits.
791   gold_assert(this->type_ == type);
792   this->u1_.relobj = NULL;
793   this->u2_.relobj = relobj;
794 }
795
796 // A target specific relocation.
797
798 template<bool dynamic, int size, bool big_endian>
799 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
800     unsigned int type,
801     void* arg,
802     Output_data* od,
803     Address address)
804   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
805     is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
806 {
807   // this->type_ is a bitfield; make sure TYPE fits.
808   gold_assert(this->type_ == type);
809   this->u1_.arg = arg;
810   this->u2_.od = od;
811 }
812
813 template<bool dynamic, int size, bool big_endian>
814 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
815     unsigned int type,
816     void* arg,
817     Sized_relobj<size, big_endian>* relobj,
818     unsigned int shndx,
819     Address address)
820   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
821     is_relative_(false), is_section_symbol_(false), shndx_(shndx)
822 {
823   gold_assert(shndx != INVALID_CODE);
824   // this->type_ is a bitfield; make sure TYPE fits.
825   gold_assert(this->type_ == type);
826   this->u1_.arg = arg;
827   this->u2_.relobj = relobj;
828 }
829
830 // Record that we need a dynamic symbol index for this relocation.
831
832 template<bool dynamic, int size, bool big_endian>
833 void
834 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
835 set_needs_dynsym_index()
836 {
837   if (this->is_relative_)
838     return;
839   switch (this->local_sym_index_)
840     {
841     case INVALID_CODE:
842       gold_unreachable();
843
844     case GSYM_CODE:
845       this->u1_.gsym->set_needs_dynsym_entry();
846       break;
847
848     case SECTION_CODE:
849       this->u1_.os->set_needs_dynsym_index();
850       break;
851
852     case TARGET_CODE:
853       // The target must take care of this if necessary.
854       break;
855
856     case 0:
857       break;
858
859     default:
860       {
861         const unsigned int lsi = this->local_sym_index_;
862         if (!this->is_section_symbol_)
863           this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
864         else
865           this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
866       }
867       break;
868     }
869 }
870
871 // Get the symbol index of a relocation.
872
873 template<bool dynamic, int size, bool big_endian>
874 unsigned int
875 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
876   const
877 {
878   unsigned int index;
879   switch (this->local_sym_index_)
880     {
881     case INVALID_CODE:
882       gold_unreachable();
883
884     case GSYM_CODE:
885       if (this->u1_.gsym == NULL)
886         index = 0;
887       else if (dynamic)
888         index = this->u1_.gsym->dynsym_index();
889       else
890         index = this->u1_.gsym->symtab_index();
891       break;
892
893     case SECTION_CODE:
894       if (dynamic)
895         index = this->u1_.os->dynsym_index();
896       else
897         index = this->u1_.os->symtab_index();
898       break;
899
900     case TARGET_CODE:
901       index = parameters->target().reloc_symbol_index(this->u1_.arg,
902                                                       this->type_);
903       break;
904
905     case 0:
906       // Relocations without symbols use a symbol index of 0.
907       index = 0;
908       break;
909
910     default:
911       {
912         const unsigned int lsi = this->local_sym_index_;
913         if (!this->is_section_symbol_)
914           {
915             if (dynamic)
916               index = this->u1_.relobj->dynsym_index(lsi);
917             else
918               index = this->u1_.relobj->symtab_index(lsi);
919           }
920         else
921           {
922             Output_section* os = this->u1_.relobj->output_section(lsi);
923             gold_assert(os != NULL);
924             if (dynamic)
925               index = os->dynsym_index();
926             else
927               index = os->symtab_index();
928           }
929       }
930       break;
931     }
932   gold_assert(index != -1U);
933   return index;
934 }
935
936 // For a local section symbol, get the address of the offset ADDEND
937 // within the input section.
938
939 template<bool dynamic, int size, bool big_endian>
940 typename elfcpp::Elf_types<size>::Elf_Addr
941 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
942   local_section_offset(Addend addend) const
943 {
944   gold_assert(this->local_sym_index_ != GSYM_CODE
945               && this->local_sym_index_ != SECTION_CODE
946               && this->local_sym_index_ != TARGET_CODE
947               && this->local_sym_index_ != INVALID_CODE
948               && this->local_sym_index_ != 0
949               && this->is_section_symbol_);
950   const unsigned int lsi = this->local_sym_index_;
951   Output_section* os = this->u1_.relobj->output_section(lsi);
952   gold_assert(os != NULL);
953   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
954   if (offset != invalid_address)
955     return offset + addend;
956   // This is a merge section.
957   offset = os->output_address(this->u1_.relobj, lsi, addend);
958   gold_assert(offset != invalid_address);
959   return offset;
960 }
961
962 // Get the output address of a relocation.
963
964 template<bool dynamic, int size, bool big_endian>
965 typename elfcpp::Elf_types<size>::Elf_Addr
966 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
967 {
968   Address address = this->address_;
969   if (this->shndx_ != INVALID_CODE)
970     {
971       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
972       gold_assert(os != NULL);
973       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
974       if (off != invalid_address)
975         address += os->address() + off;
976       else
977         {
978           address = os->output_address(this->u2_.relobj, this->shndx_,
979                                        address);
980           gold_assert(address != invalid_address);
981         }
982     }
983   else if (this->u2_.od != NULL)
984     address += this->u2_.od->address();
985   return address;
986 }
987
988 // Write out the offset and info fields of a Rel or Rela relocation
989 // entry.
990
991 template<bool dynamic, int size, bool big_endian>
992 template<typename Write_rel>
993 void
994 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
995     Write_rel* wr) const
996 {
997   wr->put_r_offset(this->get_address());
998   unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
999   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1000 }
1001
1002 // Write out a Rel relocation.
1003
1004 template<bool dynamic, int size, bool big_endian>
1005 void
1006 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1007     unsigned char* pov) const
1008 {
1009   elfcpp::Rel_write<size, big_endian> orel(pov);
1010   this->write_rel(&orel);
1011 }
1012
1013 // Get the value of the symbol referred to by a Rel relocation.
1014
1015 template<bool dynamic, int size, bool big_endian>
1016 typename elfcpp::Elf_types<size>::Elf_Addr
1017 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1018     Addend addend) const
1019 {
1020   if (this->local_sym_index_ == GSYM_CODE)
1021     {
1022       const Sized_symbol<size>* sym;
1023       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1024       return sym->value() + addend;
1025     }
1026   gold_assert(this->local_sym_index_ != SECTION_CODE
1027               && this->local_sym_index_ != TARGET_CODE
1028               && this->local_sym_index_ != INVALID_CODE
1029               && this->local_sym_index_ != 0
1030               && !this->is_section_symbol_);
1031   const unsigned int lsi = this->local_sym_index_;
1032   const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1033   return symval->value(this->u1_.relobj, addend);
1034 }
1035
1036 // Reloc comparison.  This function sorts the dynamic relocs for the
1037 // benefit of the dynamic linker.  First we sort all relative relocs
1038 // to the front.  Among relative relocs, we sort by output address.
1039 // Among non-relative relocs, we sort by symbol index, then by output
1040 // address.
1041
1042 template<bool dynamic, int size, bool big_endian>
1043 int
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1046     const
1047 {
1048   if (this->is_relative_)
1049     {
1050       if (!r2.is_relative_)
1051         return -1;
1052       // Otherwise sort by reloc address below.
1053     }
1054   else if (r2.is_relative_)
1055     return 1;
1056   else
1057     {
1058       unsigned int sym1 = this->get_symbol_index();
1059       unsigned int sym2 = r2.get_symbol_index();
1060       if (sym1 < sym2)
1061         return -1;
1062       else if (sym1 > sym2)
1063         return 1;
1064       // Otherwise sort by reloc address.
1065     }
1066
1067   section_offset_type addr1 = this->get_address();
1068   section_offset_type addr2 = r2.get_address();
1069   if (addr1 < addr2)
1070     return -1;
1071   else if (addr1 > addr2)
1072     return 1;
1073
1074   // Final tie breaker, in order to generate the same output on any
1075   // host: reloc type.
1076   unsigned int type1 = this->type_;
1077   unsigned int type2 = r2.type_;
1078   if (type1 < type2)
1079     return -1;
1080   else if (type1 > type2)
1081     return 1;
1082
1083   // These relocs appear to be exactly the same.
1084   return 0;
1085 }
1086
1087 // Write out a Rela relocation.
1088
1089 template<bool dynamic, int size, bool big_endian>
1090 void
1091 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1092     unsigned char* pov) const
1093 {
1094   elfcpp::Rela_write<size, big_endian> orel(pov);
1095   this->rel_.write_rel(&orel);
1096   Addend addend = this->addend_;
1097   if (this->rel_.is_target_specific())
1098     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1099                                                this->rel_.type(), addend);
1100   else if (this->rel_.is_relative())
1101     addend = this->rel_.symbol_value(addend);
1102   else if (this->rel_.is_local_section_symbol())
1103     addend = this->rel_.local_section_offset(addend);
1104   orel.put_r_addend(addend);
1105 }
1106
1107 // Output_data_reloc_base methods.
1108
1109 // Adjust the output section.
1110
1111 template<int sh_type, bool dynamic, int size, bool big_endian>
1112 void
1113 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1114     ::do_adjust_output_section(Output_section* os)
1115 {
1116   if (sh_type == elfcpp::SHT_REL)
1117     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1118   else if (sh_type == elfcpp::SHT_RELA)
1119     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1120   else
1121     gold_unreachable();
1122   if (dynamic)
1123     os->set_should_link_to_dynsym();
1124   else
1125     os->set_should_link_to_symtab();
1126 }
1127
1128 // Write out relocation data.
1129
1130 template<int sh_type, bool dynamic, int size, bool big_endian>
1131 void
1132 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1133     Output_file* of)
1134 {
1135   const off_t off = this->offset();
1136   const off_t oview_size = this->data_size();
1137   unsigned char* const oview = of->get_output_view(off, oview_size);
1138
1139   if (this->sort_relocs())
1140     {
1141       gold_assert(dynamic);
1142       std::sort(this->relocs_.begin(), this->relocs_.end(),
1143                 Sort_relocs_comparison());
1144     }
1145
1146   unsigned char* pov = oview;
1147   for (typename Relocs::const_iterator p = this->relocs_.begin();
1148        p != this->relocs_.end();
1149        ++p)
1150     {
1151       p->write(pov);
1152       pov += reloc_size;
1153     }
1154
1155   gold_assert(pov - oview == oview_size);
1156
1157   of->write_output_view(off, oview_size, oview);
1158
1159   // We no longer need the relocation entries.
1160   this->relocs_.clear();
1161 }
1162
1163 // Class Output_relocatable_relocs.
1164
1165 template<int sh_type, int size, bool big_endian>
1166 void
1167 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1168 {
1169   this->set_data_size(this->rr_->output_reloc_count()
1170                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1171 }
1172
1173 // class Output_data_group.
1174
1175 template<int size, bool big_endian>
1176 Output_data_group<size, big_endian>::Output_data_group(
1177     Sized_relobj<size, big_endian>* relobj,
1178     section_size_type entry_count,
1179     elfcpp::Elf_Word flags,
1180     std::vector<unsigned int>* input_shndxes)
1181   : Output_section_data(entry_count * 4, 4, false),
1182     relobj_(relobj),
1183     flags_(flags)
1184 {
1185   this->input_shndxes_.swap(*input_shndxes);
1186 }
1187
1188 // Write out the section group, which means translating the section
1189 // indexes to apply to the output file.
1190
1191 template<int size, bool big_endian>
1192 void
1193 Output_data_group<size, big_endian>::do_write(Output_file* of)
1194 {
1195   const off_t off = this->offset();
1196   const section_size_type oview_size =
1197     convert_to_section_size_type(this->data_size());
1198   unsigned char* const oview = of->get_output_view(off, oview_size);
1199
1200   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1201   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1202   ++contents;
1203
1204   for (std::vector<unsigned int>::const_iterator p =
1205          this->input_shndxes_.begin();
1206        p != this->input_shndxes_.end();
1207        ++p, ++contents)
1208     {
1209       Output_section* os = this->relobj_->output_section(*p);
1210
1211       unsigned int output_shndx;
1212       if (os != NULL)
1213         output_shndx = os->out_shndx();
1214       else
1215         {
1216           this->relobj_->error(_("section group retained but "
1217                                  "group element discarded"));
1218           output_shndx = 0;
1219         }
1220
1221       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1222     }
1223
1224   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1225   gold_assert(wrote == oview_size);
1226
1227   of->write_output_view(off, oview_size, oview);
1228
1229   // We no longer need this information.
1230   this->input_shndxes_.clear();
1231 }
1232
1233 // Output_data_got::Got_entry methods.
1234
1235 // Write out the entry.
1236
1237 template<int size, bool big_endian>
1238 void
1239 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1240 {
1241   Valtype val = 0;
1242
1243   switch (this->local_sym_index_)
1244     {
1245     case GSYM_CODE:
1246       {
1247         // If the symbol is resolved locally, we need to write out the
1248         // link-time value, which will be relocated dynamically by a
1249         // RELATIVE relocation.
1250         Symbol* gsym = this->u_.gsym;
1251         Sized_symbol<size>* sgsym;
1252         // This cast is a bit ugly.  We don't want to put a
1253         // virtual method in Symbol, because we want Symbol to be
1254         // as small as possible.
1255         sgsym = static_cast<Sized_symbol<size>*>(gsym);
1256         val = sgsym->value();
1257       }
1258       break;
1259
1260     case CONSTANT_CODE:
1261       val = this->u_.constant;
1262       break;
1263
1264     default:
1265       {
1266         const unsigned int lsi = this->local_sym_index_;
1267         const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1268         val = symval->value(this->u_.object, 0);
1269       }
1270       break;
1271     }
1272
1273   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1274 }
1275
1276 // Output_data_got methods.
1277
1278 // Add an entry for a global symbol to the GOT.  This returns true if
1279 // this is a new GOT entry, false if the symbol already had a GOT
1280 // entry.
1281
1282 template<int size, bool big_endian>
1283 bool
1284 Output_data_got<size, big_endian>::add_global(
1285     Symbol* gsym,
1286     unsigned int got_type)
1287 {
1288   if (gsym->has_got_offset(got_type))
1289     return false;
1290
1291   this->entries_.push_back(Got_entry(gsym));
1292   this->set_got_size();
1293   gsym->set_got_offset(got_type, this->last_got_offset());
1294   return true;
1295 }
1296
1297 // Add an entry for a global symbol to the GOT, and add a dynamic
1298 // relocation of type R_TYPE for the GOT entry.
1299 template<int size, bool big_endian>
1300 void
1301 Output_data_got<size, big_endian>::add_global_with_rel(
1302     Symbol* gsym,
1303     unsigned int got_type,
1304     Rel_dyn* rel_dyn,
1305     unsigned int r_type)
1306 {
1307   if (gsym->has_got_offset(got_type))
1308     return;
1309
1310   this->entries_.push_back(Got_entry());
1311   this->set_got_size();
1312   unsigned int got_offset = this->last_got_offset();
1313   gsym->set_got_offset(got_type, got_offset);
1314   rel_dyn->add_global(gsym, r_type, this, got_offset);
1315 }
1316
1317 template<int size, bool big_endian>
1318 void
1319 Output_data_got<size, big_endian>::add_global_with_rela(
1320     Symbol* gsym,
1321     unsigned int got_type,
1322     Rela_dyn* rela_dyn,
1323     unsigned int r_type)
1324 {
1325   if (gsym->has_got_offset(got_type))
1326     return;
1327
1328   this->entries_.push_back(Got_entry());
1329   this->set_got_size();
1330   unsigned int got_offset = this->last_got_offset();
1331   gsym->set_got_offset(got_type, got_offset);
1332   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1333 }
1334
1335 // Add a pair of entries for a global symbol to the GOT, and add
1336 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1337 // If R_TYPE_2 == 0, add the second entry with no relocation.
1338 template<int size, bool big_endian>
1339 void
1340 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1341     Symbol* gsym,
1342     unsigned int got_type,
1343     Rel_dyn* rel_dyn,
1344     unsigned int r_type_1,
1345     unsigned int r_type_2)
1346 {
1347   if (gsym->has_got_offset(got_type))
1348     return;
1349
1350   this->entries_.push_back(Got_entry());
1351   unsigned int got_offset = this->last_got_offset();
1352   gsym->set_got_offset(got_type, got_offset);
1353   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1354
1355   this->entries_.push_back(Got_entry());
1356   if (r_type_2 != 0)
1357     {
1358       got_offset = this->last_got_offset();
1359       rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1360     }
1361
1362   this->set_got_size();
1363 }
1364
1365 template<int size, bool big_endian>
1366 void
1367 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1368     Symbol* gsym,
1369     unsigned int got_type,
1370     Rela_dyn* rela_dyn,
1371     unsigned int r_type_1,
1372     unsigned int r_type_2)
1373 {
1374   if (gsym->has_got_offset(got_type))
1375     return;
1376
1377   this->entries_.push_back(Got_entry());
1378   unsigned int got_offset = this->last_got_offset();
1379   gsym->set_got_offset(got_type, got_offset);
1380   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1381
1382   this->entries_.push_back(Got_entry());
1383   if (r_type_2 != 0)
1384     {
1385       got_offset = this->last_got_offset();
1386       rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1387     }
1388
1389   this->set_got_size();
1390 }
1391
1392 // Add an entry for a local symbol to the GOT.  This returns true if
1393 // this is a new GOT entry, false if the symbol already has a GOT
1394 // entry.
1395
1396 template<int size, bool big_endian>
1397 bool
1398 Output_data_got<size, big_endian>::add_local(
1399     Sized_relobj<size, big_endian>* object,
1400     unsigned int symndx,
1401     unsigned int got_type)
1402 {
1403   if (object->local_has_got_offset(symndx, got_type))
1404     return false;
1405
1406   this->entries_.push_back(Got_entry(object, symndx));
1407   this->set_got_size();
1408   object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1409   return true;
1410 }
1411
1412 // Add an entry for a local symbol to the GOT, and add a dynamic
1413 // relocation of type R_TYPE for the GOT entry.
1414 template<int size, bool big_endian>
1415 void
1416 Output_data_got<size, big_endian>::add_local_with_rel(
1417     Sized_relobj<size, big_endian>* object,
1418     unsigned int symndx,
1419     unsigned int got_type,
1420     Rel_dyn* rel_dyn,
1421     unsigned int r_type)
1422 {
1423   if (object->local_has_got_offset(symndx, got_type))
1424     return;
1425
1426   this->entries_.push_back(Got_entry());
1427   this->set_got_size();
1428   unsigned int got_offset = this->last_got_offset();
1429   object->set_local_got_offset(symndx, got_type, got_offset);
1430   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1431 }
1432
1433 template<int size, bool big_endian>
1434 void
1435 Output_data_got<size, big_endian>::add_local_with_rela(
1436     Sized_relobj<size, big_endian>* object,
1437     unsigned int symndx,
1438     unsigned int got_type,
1439     Rela_dyn* rela_dyn,
1440     unsigned int r_type)
1441 {
1442   if (object->local_has_got_offset(symndx, got_type))
1443     return;
1444
1445   this->entries_.push_back(Got_entry());
1446   this->set_got_size();
1447   unsigned int got_offset = this->last_got_offset();
1448   object->set_local_got_offset(symndx, got_type, got_offset);
1449   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1450 }
1451
1452 // Add a pair of entries for a local symbol to the GOT, and add
1453 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1454 // If R_TYPE_2 == 0, add the second entry with no relocation.
1455 template<int size, bool big_endian>
1456 void
1457 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1458     Sized_relobj<size, big_endian>* object,
1459     unsigned int symndx,
1460     unsigned int shndx,
1461     unsigned int got_type,
1462     Rel_dyn* rel_dyn,
1463     unsigned int r_type_1,
1464     unsigned int r_type_2)
1465 {
1466   if (object->local_has_got_offset(symndx, got_type))
1467     return;
1468
1469   this->entries_.push_back(Got_entry());
1470   unsigned int got_offset = this->last_got_offset();
1471   object->set_local_got_offset(symndx, got_type, got_offset);
1472   Output_section* os = object->output_section(shndx);
1473   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1474
1475   this->entries_.push_back(Got_entry(object, symndx));
1476   if (r_type_2 != 0)
1477     {
1478       got_offset = this->last_got_offset();
1479       rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1480     }
1481
1482   this->set_got_size();
1483 }
1484
1485 template<int size, bool big_endian>
1486 void
1487 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1488     Sized_relobj<size, big_endian>* object,
1489     unsigned int symndx,
1490     unsigned int shndx,
1491     unsigned int got_type,
1492     Rela_dyn* rela_dyn,
1493     unsigned int r_type_1,
1494     unsigned int r_type_2)
1495 {
1496   if (object->local_has_got_offset(symndx, got_type))
1497     return;
1498
1499   this->entries_.push_back(Got_entry());
1500   unsigned int got_offset = this->last_got_offset();
1501   object->set_local_got_offset(symndx, got_type, got_offset);
1502   Output_section* os = object->output_section(shndx);
1503   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1504
1505   this->entries_.push_back(Got_entry(object, symndx));
1506   if (r_type_2 != 0)
1507     {
1508       got_offset = this->last_got_offset();
1509       rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1510     }
1511
1512   this->set_got_size();
1513 }
1514
1515 // Write out the GOT.
1516
1517 template<int size, bool big_endian>
1518 void
1519 Output_data_got<size, big_endian>::do_write(Output_file* of)
1520 {
1521   const int add = size / 8;
1522
1523   const off_t off = this->offset();
1524   const off_t oview_size = this->data_size();
1525   unsigned char* const oview = of->get_output_view(off, oview_size);
1526
1527   unsigned char* pov = oview;
1528   for (typename Got_entries::const_iterator p = this->entries_.begin();
1529        p != this->entries_.end();
1530        ++p)
1531     {
1532       p->write(pov);
1533       pov += add;
1534     }
1535
1536   gold_assert(pov - oview == oview_size);
1537
1538   of->write_output_view(off, oview_size, oview);
1539
1540   // We no longer need the GOT entries.
1541   this->entries_.clear();
1542 }
1543
1544 // Output_data_dynamic::Dynamic_entry methods.
1545
1546 // Write out the entry.
1547
1548 template<int size, bool big_endian>
1549 void
1550 Output_data_dynamic::Dynamic_entry::write(
1551     unsigned char* pov,
1552     const Stringpool* pool) const
1553 {
1554   typename elfcpp::Elf_types<size>::Elf_WXword val;
1555   switch (this->offset_)
1556     {
1557     case DYNAMIC_NUMBER:
1558       val = this->u_.val;
1559       break;
1560
1561     case DYNAMIC_SECTION_SIZE:
1562       val = this->u_.od->data_size();
1563       if (this->od2 != NULL)
1564         val += this->od2->data_size();
1565       break;
1566
1567     case DYNAMIC_SYMBOL:
1568       {
1569         const Sized_symbol<size>* s =
1570           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1571         val = s->value();
1572       }
1573       break;
1574
1575     case DYNAMIC_STRING:
1576       val = pool->get_offset(this->u_.str);
1577       break;
1578
1579     default:
1580       val = this->u_.od->address() + this->offset_;
1581       break;
1582     }
1583
1584   elfcpp::Dyn_write<size, big_endian> dw(pov);
1585   dw.put_d_tag(this->tag_);
1586   dw.put_d_val(val);
1587 }
1588
1589 // Output_data_dynamic methods.
1590
1591 // Adjust the output section to set the entry size.
1592
1593 void
1594 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1595 {
1596   if (parameters->target().get_size() == 32)
1597     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1598   else if (parameters->target().get_size() == 64)
1599     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1600   else
1601     gold_unreachable();
1602 }
1603
1604 // Set the final data size.
1605
1606 void
1607 Output_data_dynamic::set_final_data_size()
1608 {
1609   // Add the terminating entry if it hasn't been added.
1610   // Because of relaxation, we can run this multiple times.
1611   if (this->entries_.empty()
1612       || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1613     this->add_constant(elfcpp::DT_NULL, 0);
1614
1615   int dyn_size;
1616   if (parameters->target().get_size() == 32)
1617     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1618   else if (parameters->target().get_size() == 64)
1619     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1620   else
1621     gold_unreachable();
1622   this->set_data_size(this->entries_.size() * dyn_size);
1623 }
1624
1625 // Write out the dynamic entries.
1626
1627 void
1628 Output_data_dynamic::do_write(Output_file* of)
1629 {
1630   switch (parameters->size_and_endianness())
1631     {
1632 #ifdef HAVE_TARGET_32_LITTLE
1633     case Parameters::TARGET_32_LITTLE:
1634       this->sized_write<32, false>(of);
1635       break;
1636 #endif
1637 #ifdef HAVE_TARGET_32_BIG
1638     case Parameters::TARGET_32_BIG:
1639       this->sized_write<32, true>(of);
1640       break;
1641 #endif
1642 #ifdef HAVE_TARGET_64_LITTLE
1643     case Parameters::TARGET_64_LITTLE:
1644       this->sized_write<64, false>(of);
1645       break;
1646 #endif
1647 #ifdef HAVE_TARGET_64_BIG
1648     case Parameters::TARGET_64_BIG:
1649       this->sized_write<64, true>(of);
1650       break;
1651 #endif
1652     default:
1653       gold_unreachable();
1654     }
1655 }
1656
1657 template<int size, bool big_endian>
1658 void
1659 Output_data_dynamic::sized_write(Output_file* of)
1660 {
1661   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1662
1663   const off_t offset = this->offset();
1664   const off_t oview_size = this->data_size();
1665   unsigned char* const oview = of->get_output_view(offset, oview_size);
1666
1667   unsigned char* pov = oview;
1668   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1669        p != this->entries_.end();
1670        ++p)
1671     {
1672       p->write<size, big_endian>(pov, this->pool_);
1673       pov += dyn_size;
1674     }
1675
1676   gold_assert(pov - oview == oview_size);
1677
1678   of->write_output_view(offset, oview_size, oview);
1679
1680   // We no longer need the dynamic entries.
1681   this->entries_.clear();
1682 }
1683
1684 // Class Output_symtab_xindex.
1685
1686 void
1687 Output_symtab_xindex::do_write(Output_file* of)
1688 {
1689   const off_t offset = this->offset();
1690   const off_t oview_size = this->data_size();
1691   unsigned char* const oview = of->get_output_view(offset, oview_size);
1692
1693   memset(oview, 0, oview_size);
1694
1695   if (parameters->target().is_big_endian())
1696     this->endian_do_write<true>(oview);
1697   else
1698     this->endian_do_write<false>(oview);
1699
1700   of->write_output_view(offset, oview_size, oview);
1701
1702   // We no longer need the data.
1703   this->entries_.clear();
1704 }
1705
1706 template<bool big_endian>
1707 void
1708 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1709 {
1710   for (Xindex_entries::const_iterator p = this->entries_.begin();
1711        p != this->entries_.end();
1712        ++p)
1713     {
1714       unsigned int symndx = p->first;
1715       gold_assert(symndx * 4 < this->data_size());
1716       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1717     }
1718 }
1719
1720 // Output_section::Input_section methods.
1721
1722 // Return the data size.  For an input section we store the size here.
1723 // For an Output_section_data, we have to ask it for the size.
1724
1725 off_t
1726 Output_section::Input_section::data_size() const
1727 {
1728   if (this->is_input_section())
1729     return this->u1_.data_size;
1730   else
1731     return this->u2_.posd->data_size();
1732 }
1733
1734 // Set the address and file offset.
1735
1736 void
1737 Output_section::Input_section::set_address_and_file_offset(
1738     uint64_t address,
1739     off_t file_offset,
1740     off_t section_file_offset)
1741 {
1742   if (this->is_input_section())
1743     this->u2_.object->set_section_offset(this->shndx_,
1744                                          file_offset - section_file_offset);
1745   else
1746     this->u2_.posd->set_address_and_file_offset(address, file_offset);
1747 }
1748
1749 // Reset the address and file offset.
1750
1751 void
1752 Output_section::Input_section::reset_address_and_file_offset()
1753 {
1754   if (!this->is_input_section())
1755     this->u2_.posd->reset_address_and_file_offset();
1756 }
1757
1758 // Finalize the data size.
1759
1760 void
1761 Output_section::Input_section::finalize_data_size()
1762 {
1763   if (!this->is_input_section())
1764     this->u2_.posd->finalize_data_size();
1765 }
1766
1767 // Try to turn an input offset into an output offset.  We want to
1768 // return the output offset relative to the start of this
1769 // Input_section in the output section.
1770
1771 inline bool
1772 Output_section::Input_section::output_offset(
1773     const Relobj* object,
1774     unsigned int shndx,
1775     section_offset_type offset,
1776     section_offset_type *poutput) const
1777 {
1778   if (!this->is_input_section())
1779     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1780   else
1781     {
1782       if (this->shndx_ != shndx || this->u2_.object != object)
1783         return false;
1784       *poutput = offset;
1785       return true;
1786     }
1787 }
1788
1789 // Return whether this is the merge section for the input section
1790 // SHNDX in OBJECT.
1791
1792 inline bool
1793 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1794                                                     unsigned int shndx) const
1795 {
1796   if (this->is_input_section())
1797     return false;
1798   return this->u2_.posd->is_merge_section_for(object, shndx);
1799 }
1800
1801 // Write out the data.  We don't have to do anything for an input
1802 // section--they are handled via Object::relocate--but this is where
1803 // we write out the data for an Output_section_data.
1804
1805 void
1806 Output_section::Input_section::write(Output_file* of)
1807 {
1808   if (!this->is_input_section())
1809     this->u2_.posd->write(of);
1810 }
1811
1812 // Write the data to a buffer.  As for write(), we don't have to do
1813 // anything for an input section.
1814
1815 void
1816 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1817 {
1818   if (!this->is_input_section())
1819     this->u2_.posd->write_to_buffer(buffer);
1820 }
1821
1822 // Print to a map file.
1823
1824 void
1825 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1826 {
1827   switch (this->shndx_)
1828     {
1829     case OUTPUT_SECTION_CODE:
1830     case MERGE_DATA_SECTION_CODE:
1831     case MERGE_STRING_SECTION_CODE:
1832       this->u2_.posd->print_to_mapfile(mapfile);
1833       break;
1834
1835     case RELAXED_INPUT_SECTION_CODE:
1836       {
1837         Output_relaxed_input_section* relaxed_section =
1838           this->relaxed_input_section();
1839         mapfile->print_input_section(relaxed_section->relobj(),
1840                                      relaxed_section->shndx());
1841       }
1842       break;
1843     default:
1844       mapfile->print_input_section(this->u2_.object, this->shndx_);
1845       break;
1846     }
1847 }
1848
1849 // Output_section methods.
1850
1851 // Construct an Output_section.  NAME will point into a Stringpool.
1852
1853 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1854                                elfcpp::Elf_Xword flags)
1855   : name_(name),
1856     addralign_(0),
1857     entsize_(0),
1858     load_address_(0),
1859     link_section_(NULL),
1860     link_(0),
1861     info_section_(NULL),
1862     info_symndx_(NULL),
1863     info_(0),
1864     type_(type),
1865     flags_(flags),
1866     out_shndx_(-1U),
1867     symtab_index_(0),
1868     dynsym_index_(0),
1869     input_sections_(),
1870     first_input_offset_(0),
1871     fills_(),
1872     postprocessing_buffer_(NULL),
1873     needs_symtab_index_(false),
1874     needs_dynsym_index_(false),
1875     should_link_to_symtab_(false),
1876     should_link_to_dynsym_(false),
1877     after_input_sections_(false),
1878     requires_postprocessing_(false),
1879     found_in_sections_clause_(false),
1880     has_load_address_(false),
1881     info_uses_section_index_(false),
1882     may_sort_attached_input_sections_(false),
1883     must_sort_attached_input_sections_(false),
1884     attached_input_sections_are_sorted_(false),
1885     is_relro_(false),
1886     is_relro_local_(false),
1887     is_last_relro_(false),
1888     is_first_non_relro_(false),
1889     is_small_section_(false),
1890     is_large_section_(false),
1891     is_interp_(false),
1892     is_dynamic_linker_section_(false),
1893     generate_code_fills_at_write_(false),
1894     is_entsize_zero_(false),
1895     section_offsets_need_adjustment_(false),
1896     tls_offset_(0),
1897     checkpoint_(NULL),
1898     merge_section_map_(),
1899     merge_section_by_properties_map_(),
1900     relaxed_input_section_map_(),
1901     is_relaxed_input_section_map_valid_(true)
1902 {
1903   // An unallocated section has no address.  Forcing this means that
1904   // we don't need special treatment for symbols defined in debug
1905   // sections.
1906   if ((flags & elfcpp::SHF_ALLOC) == 0)
1907     this->set_address(0);
1908 }
1909
1910 Output_section::~Output_section()
1911 {
1912   delete this->checkpoint_;
1913 }
1914
1915 // Set the entry size.
1916
1917 void
1918 Output_section::set_entsize(uint64_t v)
1919 {
1920   if (this->is_entsize_zero_)
1921     ;
1922   else if (this->entsize_ == 0)
1923     this->entsize_ = v;
1924   else if (this->entsize_ != v)
1925     {
1926       this->entsize_ = 0;
1927       this->is_entsize_zero_ = 1;
1928     }
1929 }
1930
1931 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1932 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
1933 // relocation section which applies to this section, or 0 if none, or
1934 // -1U if more than one.  Return the offset of the input section
1935 // within the output section.  Return -1 if the input section will
1936 // receive special handling.  In the normal case we don't always keep
1937 // track of input sections for an Output_section.  Instead, each
1938 // Object keeps track of the Output_section for each of its input
1939 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1940 // track of input sections here; this is used when SECTIONS appears in
1941 // a linker script.
1942
1943 template<int size, bool big_endian>
1944 off_t
1945 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1946                                   unsigned int shndx,
1947                                   const char* secname,
1948                                   const elfcpp::Shdr<size, big_endian>& shdr,
1949                                   unsigned int reloc_shndx,
1950                                   bool have_sections_script)
1951 {
1952   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1953   if ((addralign & (addralign - 1)) != 0)
1954     {
1955       object->error(_("invalid alignment %lu for section \"%s\""),
1956                     static_cast<unsigned long>(addralign), secname);
1957       addralign = 1;
1958     }
1959
1960   if (addralign > this->addralign_)
1961     this->addralign_ = addralign;
1962
1963   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1964   uint64_t entsize = shdr.get_sh_entsize();
1965
1966   // .debug_str is a mergeable string section, but is not always so
1967   // marked by compilers.  Mark manually here so we can optimize.
1968   if (strcmp(secname, ".debug_str") == 0)
1969     {
1970       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1971       entsize = 1;
1972     }
1973
1974   this->update_flags_for_input_section(sh_flags);
1975   this->set_entsize(entsize);
1976
1977   // If this is a SHF_MERGE section, we pass all the input sections to
1978   // a Output_data_merge.  We don't try to handle relocations for such
1979   // a section.  We don't try to handle empty merge sections--they
1980   // mess up the mappings, and are useless anyhow.
1981   if ((sh_flags & elfcpp::SHF_MERGE) != 0
1982       && reloc_shndx == 0
1983       && shdr.get_sh_size() > 0)
1984     {
1985       if (this->add_merge_input_section(object, shndx, sh_flags,
1986                                         entsize, addralign))
1987         {
1988           // Tell the relocation routines that they need to call the
1989           // output_offset method to determine the final address.
1990           return -1;
1991         }
1992     }
1993
1994   off_t offset_in_section = this->current_data_size_for_child();
1995   off_t aligned_offset_in_section = align_address(offset_in_section,
1996                                                   addralign);
1997
1998   // Determine if we want to delay code-fill generation until the output
1999   // section is written.  When the target is relaxing, we want to delay fill
2000   // generating to avoid adjusting them during relaxation.
2001   if (!this->generate_code_fills_at_write_
2002       && !have_sections_script
2003       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2004       && parameters->target().has_code_fill()
2005       && parameters->target().may_relax())
2006     {
2007       gold_assert(this->fills_.empty());
2008       this->generate_code_fills_at_write_ = true;
2009     }
2010
2011   if (aligned_offset_in_section > offset_in_section
2012       && !this->generate_code_fills_at_write_
2013       && !have_sections_script
2014       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2015       && parameters->target().has_code_fill())
2016     {
2017       // We need to add some fill data.  Using fill_list_ when
2018       // possible is an optimization, since we will often have fill
2019       // sections without input sections.
2020       off_t fill_len = aligned_offset_in_section - offset_in_section;
2021       if (this->input_sections_.empty())
2022         this->fills_.push_back(Fill(offset_in_section, fill_len));
2023       else
2024         {
2025           std::string fill_data(parameters->target().code_fill(fill_len));
2026           Output_data_const* odc = new Output_data_const(fill_data, 1);
2027           this->input_sections_.push_back(Input_section(odc));
2028         }
2029     }
2030
2031   this->set_current_data_size_for_child(aligned_offset_in_section
2032                                         + shdr.get_sh_size());
2033
2034   // We need to keep track of this section if we are already keeping
2035   // track of sections, or if we are relaxing.  Also, if this is a
2036   // section which requires sorting, or which may require sorting in
2037   // the future, we keep track of the sections.
2038   if (have_sections_script
2039       || !this->input_sections_.empty()
2040       || this->may_sort_attached_input_sections()
2041       || this->must_sort_attached_input_sections()
2042       || parameters->options().user_set_Map()
2043       || parameters->target().may_relax())
2044     this->input_sections_.push_back(Input_section(object, shndx,
2045                                                   shdr.get_sh_size(),
2046                                                   addralign));
2047
2048   return aligned_offset_in_section;
2049 }
2050
2051 // Add arbitrary data to an output section.
2052
2053 void
2054 Output_section::add_output_section_data(Output_section_data* posd)
2055 {
2056   Input_section inp(posd);
2057   this->add_output_section_data(&inp);
2058
2059   if (posd->is_data_size_valid())
2060     {
2061       off_t offset_in_section = this->current_data_size_for_child();
2062       off_t aligned_offset_in_section = align_address(offset_in_section,
2063                                                       posd->addralign());
2064       this->set_current_data_size_for_child(aligned_offset_in_section
2065                                             + posd->data_size());
2066     }
2067 }
2068
2069 // Add a relaxed input section.
2070
2071 void
2072 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2073 {
2074   Input_section inp(poris);
2075   this->add_output_section_data(&inp);
2076   if (this->is_relaxed_input_section_map_valid_)
2077     {
2078       Const_section_id csid(poris->relobj(), poris->shndx());
2079       this->relaxed_input_section_map_[csid] = poris;
2080     }
2081
2082   // For a relaxed section, we use the current data size.  Linker scripts
2083   // get all the input sections, including relaxed one from an output
2084   // section and add them back to them same output section to compute the
2085   // output section size.  If we do not account for sizes of relaxed input
2086   // sections,  an output section would be incorrectly sized.
2087   off_t offset_in_section = this->current_data_size_for_child();
2088   off_t aligned_offset_in_section = align_address(offset_in_section,
2089                                                   poris->addralign());
2090   this->set_current_data_size_for_child(aligned_offset_in_section
2091                                         + poris->current_data_size());
2092 }
2093
2094 // Add arbitrary data to an output section by Input_section.
2095
2096 void
2097 Output_section::add_output_section_data(Input_section* inp)
2098 {
2099   if (this->input_sections_.empty())
2100     this->first_input_offset_ = this->current_data_size_for_child();
2101
2102   this->input_sections_.push_back(*inp);
2103
2104   uint64_t addralign = inp->addralign();
2105   if (addralign > this->addralign_)
2106     this->addralign_ = addralign;
2107
2108   inp->set_output_section(this);
2109 }
2110
2111 // Add a merge section to an output section.
2112
2113 void
2114 Output_section::add_output_merge_section(Output_section_data* posd,
2115                                          bool is_string, uint64_t entsize)
2116 {
2117   Input_section inp(posd, is_string, entsize);
2118   this->add_output_section_data(&inp);
2119 }
2120
2121 // Add an input section to a SHF_MERGE section.
2122
2123 bool
2124 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2125                                         uint64_t flags, uint64_t entsize,
2126                                         uint64_t addralign)
2127 {
2128   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2129
2130   // We only merge strings if the alignment is not more than the
2131   // character size.  This could be handled, but it's unusual.
2132   if (is_string && addralign > entsize)
2133     return false;
2134
2135   // We cannot restore merged input section states.
2136   gold_assert(this->checkpoint_ == NULL);
2137
2138   // Look up merge sections by required properties.
2139   Merge_section_properties msp(is_string, entsize, addralign);
2140   Merge_section_by_properties_map::const_iterator p =
2141     this->merge_section_by_properties_map_.find(msp);
2142   if (p != this->merge_section_by_properties_map_.end())
2143     {
2144       Output_merge_base* merge_section = p->second;
2145       merge_section->add_input_section(object, shndx);
2146       gold_assert(merge_section->is_string() == is_string
2147                   && merge_section->entsize() == entsize
2148                   && merge_section->addralign() == addralign);
2149
2150       // Link input section to found merge section.
2151       Const_section_id csid(object, shndx);
2152       this->merge_section_map_[csid] = merge_section;
2153       return true;
2154     }
2155
2156   // We handle the actual constant merging in Output_merge_data or
2157   // Output_merge_string_data.
2158   Output_merge_base* pomb;
2159   if (!is_string)
2160     pomb = new Output_merge_data(entsize, addralign);
2161   else
2162     {
2163       switch (entsize)
2164         {
2165         case 1:
2166           pomb = new Output_merge_string<char>(addralign);
2167           break;
2168         case 2:
2169           pomb = new Output_merge_string<uint16_t>(addralign);
2170           break;
2171         case 4:
2172           pomb = new Output_merge_string<uint32_t>(addralign);
2173           break;
2174         default:
2175           return false;
2176         }
2177     }
2178
2179   // Add new merge section to this output section and link merge section
2180   // properties to new merge section in map.
2181   this->add_output_merge_section(pomb, is_string, entsize);
2182   this->merge_section_by_properties_map_[msp] = pomb;
2183
2184   // Add input section to new merge section and link input section to new
2185   // merge section in map.
2186   pomb->add_input_section(object, shndx);
2187   Const_section_id csid(object, shndx);
2188   this->merge_section_map_[csid] = pomb;
2189
2190   return true;
2191 }
2192
2193 // Build a relaxation map to speed up relaxation of existing input sections.
2194 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2195
2196 void
2197 Output_section::build_relaxation_map(
2198   const Input_section_list& input_sections,
2199   size_t limit,
2200   Relaxation_map* relaxation_map) const
2201 {
2202   for (size_t i = 0; i < limit; ++i)
2203     {
2204       const Input_section& is(input_sections[i]);
2205       if (is.is_input_section() || is.is_relaxed_input_section())
2206         {
2207           Section_id sid(is.relobj(), is.shndx());
2208           (*relaxation_map)[sid] = i;
2209         }
2210     }
2211 }
2212
2213 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2214 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2215 // indices of INPUT_SECTIONS.
2216
2217 void
2218 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2219   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2220   const Relaxation_map& map,
2221   Input_section_list* input_sections)
2222 {
2223   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2224     {
2225       Output_relaxed_input_section* poris = relaxed_sections[i];
2226       Section_id sid(poris->relobj(), poris->shndx());
2227       Relaxation_map::const_iterator p = map.find(sid);
2228       gold_assert(p != map.end());
2229       gold_assert((*input_sections)[p->second].is_input_section());
2230       (*input_sections)[p->second] = Input_section(poris);
2231     }
2232 }
2233   
2234 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2235 // is a vector of pointers to Output_relaxed_input_section or its derived
2236 // classes.  The relaxed sections must correspond to existing input sections.
2237
2238 void
2239 Output_section::convert_input_sections_to_relaxed_sections(
2240   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2241 {
2242   gold_assert(parameters->target().may_relax());
2243
2244   // We want to make sure that restore_states does not undo the effect of
2245   // this.  If there is no checkpoint active, just search the current
2246   // input section list and replace the sections there.  If there is
2247   // a checkpoint, also replace the sections there.
2248   
2249   // By default, we look at the whole list.
2250   size_t limit = this->input_sections_.size();
2251
2252   if (this->checkpoint_ != NULL)
2253     {
2254       // Replace input sections with relaxed input section in the saved
2255       // copy of the input section list.
2256       if (this->checkpoint_->input_sections_saved())
2257         {
2258           Relaxation_map map;
2259           this->build_relaxation_map(
2260                     *(this->checkpoint_->input_sections()),
2261                     this->checkpoint_->input_sections()->size(),
2262                     &map);
2263           this->convert_input_sections_in_list_to_relaxed_sections(
2264                     relaxed_sections,
2265                     map,
2266                     this->checkpoint_->input_sections());
2267         }
2268       else
2269         {
2270           // We have not copied the input section list yet.  Instead, just
2271           // look at the portion that would be saved.
2272           limit = this->checkpoint_->input_sections_size();
2273         }
2274     }
2275
2276   // Convert input sections in input_section_list.
2277   Relaxation_map map;
2278   this->build_relaxation_map(this->input_sections_, limit, &map);
2279   this->convert_input_sections_in_list_to_relaxed_sections(
2280             relaxed_sections,
2281             map,
2282             &this->input_sections_);
2283
2284   // Update fast look-up map.
2285   if (this->is_relaxed_input_section_map_valid_)
2286     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2287       {
2288         Output_relaxed_input_section* poris = relaxed_sections[i];
2289         Const_section_id csid(poris->relobj(), poris->shndx());
2290         this->relaxed_input_section_map_[csid] = poris;
2291       }
2292 }
2293
2294 // Update the output section flags based on input section flags.
2295
2296 void
2297 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2298 {
2299   // If we created the section with SHF_ALLOC clear, we set the
2300   // address.  If we are now setting the SHF_ALLOC flag, we need to
2301   // undo that.
2302   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2303       && (flags & elfcpp::SHF_ALLOC) != 0)
2304     this->mark_address_invalid();
2305
2306   this->flags_ |= (flags
2307                    & (elfcpp::SHF_WRITE
2308                       | elfcpp::SHF_ALLOC
2309                       | elfcpp::SHF_EXECINSTR));
2310
2311   if ((flags & elfcpp::SHF_MERGE) == 0)
2312     this->flags_ &=~ elfcpp::SHF_MERGE;
2313   else
2314     {
2315       if (this->current_data_size_for_child() == 0)
2316         this->flags_ |= elfcpp::SHF_MERGE;
2317     }
2318
2319   if ((flags & elfcpp::SHF_STRINGS) == 0)
2320     this->flags_ &=~ elfcpp::SHF_STRINGS;
2321   else
2322     {
2323       if (this->current_data_size_for_child() == 0)
2324         this->flags_ |= elfcpp::SHF_STRINGS;
2325     }
2326 }
2327
2328 // Find the merge section into which an input section with index SHNDX in
2329 // OBJECT has been added.  Return NULL if none found.
2330
2331 Output_section_data*
2332 Output_section::find_merge_section(const Relobj* object,
2333                                    unsigned int shndx) const
2334 {
2335   Const_section_id csid(object, shndx);
2336   Output_section_data_by_input_section_map::const_iterator p =
2337     this->merge_section_map_.find(csid);
2338   if (p != this->merge_section_map_.end())
2339     {
2340       Output_section_data* posd = p->second;
2341       gold_assert(posd->is_merge_section_for(object, shndx));
2342       return posd;
2343     }
2344   else
2345     return NULL;
2346 }
2347
2348 // Find an relaxed input section corresponding to an input section
2349 // in OBJECT with index SHNDX.
2350
2351 const Output_relaxed_input_section*
2352 Output_section::find_relaxed_input_section(const Relobj* object,
2353                                            unsigned int shndx) const
2354 {
2355   // Be careful that the map may not be valid due to input section export
2356   // to scripts or a check-point restore.
2357   if (!this->is_relaxed_input_section_map_valid_)
2358     {
2359       // Rebuild the map as needed.
2360       this->relaxed_input_section_map_.clear();
2361       for (Input_section_list::const_iterator p = this->input_sections_.begin();
2362            p != this->input_sections_.end();
2363            ++p)
2364         if (p->is_relaxed_input_section())
2365           {
2366             Const_section_id csid(p->relobj(), p->shndx());
2367             this->relaxed_input_section_map_[csid] =
2368               p->relaxed_input_section();
2369           }
2370       this->is_relaxed_input_section_map_valid_ = true;
2371     }
2372
2373   Const_section_id csid(object, shndx);
2374   Output_relaxed_input_section_by_input_section_map::const_iterator p =
2375     this->relaxed_input_section_map_.find(csid);
2376   if (p != this->relaxed_input_section_map_.end())
2377     return p->second;
2378   else
2379     return NULL;
2380 }
2381
2382 // Given an address OFFSET relative to the start of input section
2383 // SHNDX in OBJECT, return whether this address is being included in
2384 // the final link.  This should only be called if SHNDX in OBJECT has
2385 // a special mapping.
2386
2387 bool
2388 Output_section::is_input_address_mapped(const Relobj* object,
2389                                         unsigned int shndx,
2390                                         off_t offset) const
2391 {
2392   // Look at the Output_section_data_maps first.
2393   const Output_section_data* posd = this->find_merge_section(object, shndx);
2394   if (posd == NULL)
2395     posd = this->find_relaxed_input_section(object, shndx);
2396
2397   if (posd != NULL)
2398     {
2399       section_offset_type output_offset;
2400       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2401       gold_assert(found);   
2402       return output_offset != -1;
2403     }
2404
2405   // Fall back to the slow look-up.
2406   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2407        p != this->input_sections_.end();
2408        ++p)
2409     {
2410       section_offset_type output_offset;
2411       if (p->output_offset(object, shndx, offset, &output_offset))
2412         return output_offset != -1;
2413     }
2414
2415   // By default we assume that the address is mapped.  This should
2416   // only be called after we have passed all sections to Layout.  At
2417   // that point we should know what we are discarding.
2418   return true;
2419 }
2420
2421 // Given an address OFFSET relative to the start of input section
2422 // SHNDX in object OBJECT, return the output offset relative to the
2423 // start of the input section in the output section.  This should only
2424 // be called if SHNDX in OBJECT has a special mapping.
2425
2426 section_offset_type
2427 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2428                               section_offset_type offset) const
2429 {
2430   // This can only be called meaningfully when we know the data size
2431   // of this.
2432   gold_assert(this->is_data_size_valid());
2433
2434   // Look at the Output_section_data_maps first.
2435   const Output_section_data* posd = this->find_merge_section(object, shndx);
2436   if (posd == NULL) 
2437     posd = this->find_relaxed_input_section(object, shndx);
2438   if (posd != NULL)
2439     {
2440       section_offset_type output_offset;
2441       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2442       gold_assert(found);   
2443       return output_offset;
2444     }
2445
2446   // Fall back to the slow look-up.
2447   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2448        p != this->input_sections_.end();
2449        ++p)
2450     {
2451       section_offset_type output_offset;
2452       if (p->output_offset(object, shndx, offset, &output_offset))
2453         return output_offset;
2454     }
2455   gold_unreachable();
2456 }
2457
2458 // Return the output virtual address of OFFSET relative to the start
2459 // of input section SHNDX in object OBJECT.
2460
2461 uint64_t
2462 Output_section::output_address(const Relobj* object, unsigned int shndx,
2463                                off_t offset) const
2464 {
2465   uint64_t addr = this->address() + this->first_input_offset_;
2466
2467   // Look at the Output_section_data_maps first.
2468   const Output_section_data* posd = this->find_merge_section(object, shndx);
2469   if (posd == NULL) 
2470     posd = this->find_relaxed_input_section(object, shndx);
2471   if (posd != NULL && posd->is_address_valid())
2472     {
2473       section_offset_type output_offset;
2474       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2475       gold_assert(found);
2476       return posd->address() + output_offset;
2477     }
2478
2479   // Fall back to the slow look-up.
2480   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2481        p != this->input_sections_.end();
2482        ++p)
2483     {
2484       addr = align_address(addr, p->addralign());
2485       section_offset_type output_offset;
2486       if (p->output_offset(object, shndx, offset, &output_offset))
2487         {
2488           if (output_offset == -1)
2489             return -1ULL;
2490           return addr + output_offset;
2491         }
2492       addr += p->data_size();
2493     }
2494
2495   // If we get here, it means that we don't know the mapping for this
2496   // input section.  This might happen in principle if
2497   // add_input_section were called before add_output_section_data.
2498   // But it should never actually happen.
2499
2500   gold_unreachable();
2501 }
2502
2503 // Find the output address of the start of the merged section for
2504 // input section SHNDX in object OBJECT.
2505
2506 bool
2507 Output_section::find_starting_output_address(const Relobj* object,
2508                                              unsigned int shndx,
2509                                              uint64_t* paddr) const
2510 {
2511   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2512   // Looking up the merge section map does not always work as we sometimes
2513   // find a merge section without its address set.
2514   uint64_t addr = this->address() + this->first_input_offset_;
2515   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2516        p != this->input_sections_.end();
2517        ++p)
2518     {
2519       addr = align_address(addr, p->addralign());
2520
2521       // It would be nice if we could use the existing output_offset
2522       // method to get the output offset of input offset 0.
2523       // Unfortunately we don't know for sure that input offset 0 is
2524       // mapped at all.
2525       if (p->is_merge_section_for(object, shndx))
2526         {
2527           *paddr = addr;
2528           return true;
2529         }
2530
2531       addr += p->data_size();
2532     }
2533
2534   // We couldn't find a merge output section for this input section.
2535   return false;
2536 }
2537
2538 // Set the data size of an Output_section.  This is where we handle
2539 // setting the addresses of any Output_section_data objects.
2540
2541 void
2542 Output_section::set_final_data_size()
2543 {
2544   if (this->input_sections_.empty())
2545     {
2546       this->set_data_size(this->current_data_size_for_child());
2547       return;
2548     }
2549
2550   if (this->must_sort_attached_input_sections())
2551     this->sort_attached_input_sections();
2552
2553   uint64_t address = this->address();
2554   off_t startoff = this->offset();
2555   off_t off = startoff + this->first_input_offset_;
2556   for (Input_section_list::iterator p = this->input_sections_.begin();
2557        p != this->input_sections_.end();
2558        ++p)
2559     {
2560       off = align_address(off, p->addralign());
2561       p->set_address_and_file_offset(address + (off - startoff), off,
2562                                      startoff);
2563       off += p->data_size();
2564     }
2565
2566   this->set_data_size(off - startoff);
2567 }
2568
2569 // Reset the address and file offset.
2570
2571 void
2572 Output_section::do_reset_address_and_file_offset()
2573 {
2574   // An unallocated section has no address.  Forcing this means that
2575   // we don't need special treatment for symbols defined in debug
2576   // sections.  We do the same in the constructor.
2577   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2578      this->set_address(0);
2579
2580   for (Input_section_list::iterator p = this->input_sections_.begin();
2581        p != this->input_sections_.end();
2582        ++p)
2583     p->reset_address_and_file_offset();
2584 }
2585   
2586 // Return true if address and file offset have the values after reset.
2587
2588 bool
2589 Output_section::do_address_and_file_offset_have_reset_values() const
2590 {
2591   if (this->is_offset_valid())
2592     return false;
2593
2594   // An unallocated section has address 0 after its construction or a reset.
2595   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2596     return this->is_address_valid() && this->address() == 0;
2597   else
2598     return !this->is_address_valid();
2599 }
2600
2601 // Set the TLS offset.  Called only for SHT_TLS sections.
2602
2603 void
2604 Output_section::do_set_tls_offset(uint64_t tls_base)
2605 {
2606   this->tls_offset_ = this->address() - tls_base;
2607 }
2608
2609 // In a few cases we need to sort the input sections attached to an
2610 // output section.  This is used to implement the type of constructor
2611 // priority ordering implemented by the GNU linker, in which the
2612 // priority becomes part of the section name and the sections are
2613 // sorted by name.  We only do this for an output section if we see an
2614 // attached input section matching ".ctor.*", ".dtor.*",
2615 // ".init_array.*" or ".fini_array.*".
2616
2617 class Output_section::Input_section_sort_entry
2618 {
2619  public:
2620   Input_section_sort_entry()
2621     : input_section_(), index_(-1U), section_has_name_(false),
2622       section_name_()
2623   { }
2624
2625   Input_section_sort_entry(const Input_section& input_section,
2626                            unsigned int index)
2627     : input_section_(input_section), index_(index),
2628       section_has_name_(input_section.is_input_section()
2629                         || input_section.is_relaxed_input_section())
2630   {
2631     if (this->section_has_name_)
2632       {
2633         // This is only called single-threaded from Layout::finalize,
2634         // so it is OK to lock.  Unfortunately we have no way to pass
2635         // in a Task token.
2636         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2637         Object* obj = (input_section.is_input_section()
2638                        ? input_section.relobj()
2639                        : input_section.relaxed_input_section()->relobj());
2640         Task_lock_obj<Object> tl(dummy_task, obj);
2641
2642         // This is a slow operation, which should be cached in
2643         // Layout::layout if this becomes a speed problem.
2644         this->section_name_ = obj->section_name(input_section.shndx());
2645       }
2646   }
2647
2648   // Return the Input_section.
2649   const Input_section&
2650   input_section() const
2651   {
2652     gold_assert(this->index_ != -1U);
2653     return this->input_section_;
2654   }
2655
2656   // The index of this entry in the original list.  This is used to
2657   // make the sort stable.
2658   unsigned int
2659   index() const
2660   {
2661     gold_assert(this->index_ != -1U);
2662     return this->index_;
2663   }
2664
2665   // Whether there is a section name.
2666   bool
2667   section_has_name() const
2668   { return this->section_has_name_; }
2669
2670   // The section name.
2671   const std::string&
2672   section_name() const
2673   {
2674     gold_assert(this->section_has_name_);
2675     return this->section_name_;
2676   }
2677
2678   // Return true if the section name has a priority.  This is assumed
2679   // to be true if it has a dot after the initial dot.
2680   bool
2681   has_priority() const
2682   {
2683     gold_assert(this->section_has_name_);
2684     return this->section_name_.find('.', 1);
2685   }
2686
2687   // Return true if this an input file whose base name matches
2688   // FILE_NAME.  The base name must have an extension of ".o", and
2689   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2690   // This is to match crtbegin.o as well as crtbeginS.o without
2691   // getting confused by other possibilities.  Overall matching the
2692   // file name this way is a dreadful hack, but the GNU linker does it
2693   // in order to better support gcc, and we need to be compatible.
2694   bool
2695   match_file_name(const char* match_file_name) const
2696   {
2697     const std::string& file_name(this->input_section_.relobj()->name());
2698     const char* base_name = lbasename(file_name.c_str());
2699     size_t match_len = strlen(match_file_name);
2700     if (strncmp(base_name, match_file_name, match_len) != 0)
2701       return false;
2702     size_t base_len = strlen(base_name);
2703     if (base_len != match_len + 2 && base_len != match_len + 3)
2704       return false;
2705     return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2706   }
2707
2708  private:
2709   // The Input_section we are sorting.
2710   Input_section input_section_;
2711   // The index of this Input_section in the original list.
2712   unsigned int index_;
2713   // Whether this Input_section has a section name--it won't if this
2714   // is some random Output_section_data.
2715   bool section_has_name_;
2716   // The section name if there is one.
2717   std::string section_name_;
2718 };
2719
2720 // Return true if S1 should come before S2 in the output section.
2721
2722 bool
2723 Output_section::Input_section_sort_compare::operator()(
2724     const Output_section::Input_section_sort_entry& s1,
2725     const Output_section::Input_section_sort_entry& s2) const
2726 {
2727   // crtbegin.o must come first.
2728   bool s1_begin = s1.match_file_name("crtbegin");
2729   bool s2_begin = s2.match_file_name("crtbegin");
2730   if (s1_begin || s2_begin)
2731     {
2732       if (!s1_begin)
2733         return false;
2734       if (!s2_begin)
2735         return true;
2736       return s1.index() < s2.index();
2737     }
2738
2739   // crtend.o must come last.
2740   bool s1_end = s1.match_file_name("crtend");
2741   bool s2_end = s2.match_file_name("crtend");
2742   if (s1_end || s2_end)
2743     {
2744       if (!s1_end)
2745         return true;
2746       if (!s2_end)
2747         return false;
2748       return s1.index() < s2.index();
2749     }
2750
2751   // We sort all the sections with no names to the end.
2752   if (!s1.section_has_name() || !s2.section_has_name())
2753     {
2754       if (s1.section_has_name())
2755         return true;
2756       if (s2.section_has_name())
2757         return false;
2758       return s1.index() < s2.index();
2759     }
2760
2761   // A section with a priority follows a section without a priority.
2762   // The GNU linker does this for all but .init_array sections; until
2763   // further notice we'll assume that that is an mistake.
2764   bool s1_has_priority = s1.has_priority();
2765   bool s2_has_priority = s2.has_priority();
2766   if (s1_has_priority && !s2_has_priority)
2767     return false;
2768   if (!s1_has_priority && s2_has_priority)
2769     return true;
2770
2771   // Otherwise we sort by name.
2772   int compare = s1.section_name().compare(s2.section_name());
2773   if (compare != 0)
2774     return compare < 0;
2775
2776   // Otherwise we keep the input order.
2777   return s1.index() < s2.index();
2778 }
2779
2780 // Sort the input sections attached to an output section.
2781
2782 void
2783 Output_section::sort_attached_input_sections()
2784 {
2785   if (this->attached_input_sections_are_sorted_)
2786     return;
2787
2788   if (this->checkpoint_ != NULL
2789       && !this->checkpoint_->input_sections_saved())
2790     this->checkpoint_->save_input_sections();
2791
2792   // The only thing we know about an input section is the object and
2793   // the section index.  We need the section name.  Recomputing this
2794   // is slow but this is an unusual case.  If this becomes a speed
2795   // problem we can cache the names as required in Layout::layout.
2796
2797   // We start by building a larger vector holding a copy of each
2798   // Input_section, plus its current index in the list and its name.
2799   std::vector<Input_section_sort_entry> sort_list;
2800
2801   unsigned int i = 0;
2802   for (Input_section_list::iterator p = this->input_sections_.begin();
2803        p != this->input_sections_.end();
2804        ++p, ++i)
2805     sort_list.push_back(Input_section_sort_entry(*p, i));
2806
2807   // Sort the input sections.
2808   std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2809
2810   // Copy the sorted input sections back to our list.
2811   this->input_sections_.clear();
2812   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2813        p != sort_list.end();
2814        ++p)
2815     this->input_sections_.push_back(p->input_section());
2816
2817   // Remember that we sorted the input sections, since we might get
2818   // called again.
2819   this->attached_input_sections_are_sorted_ = true;
2820 }
2821
2822 // Write the section header to *OSHDR.
2823
2824 template<int size, bool big_endian>
2825 void
2826 Output_section::write_header(const Layout* layout,
2827                              const Stringpool* secnamepool,
2828                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
2829 {
2830   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2831   oshdr->put_sh_type(this->type_);
2832
2833   elfcpp::Elf_Xword flags = this->flags_;
2834   if (this->info_section_ != NULL && this->info_uses_section_index_)
2835     flags |= elfcpp::SHF_INFO_LINK;
2836   oshdr->put_sh_flags(flags);
2837
2838   oshdr->put_sh_addr(this->address());
2839   oshdr->put_sh_offset(this->offset());
2840   oshdr->put_sh_size(this->data_size());
2841   if (this->link_section_ != NULL)
2842     oshdr->put_sh_link(this->link_section_->out_shndx());
2843   else if (this->should_link_to_symtab_)
2844     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2845   else if (this->should_link_to_dynsym_)
2846     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2847   else
2848     oshdr->put_sh_link(this->link_);
2849
2850   elfcpp::Elf_Word info;
2851   if (this->info_section_ != NULL)
2852     {
2853       if (this->info_uses_section_index_)
2854         info = this->info_section_->out_shndx();
2855       else
2856         info = this->info_section_->symtab_index();
2857     }
2858   else if (this->info_symndx_ != NULL)
2859     info = this->info_symndx_->symtab_index();
2860   else
2861     info = this->info_;
2862   oshdr->put_sh_info(info);
2863
2864   oshdr->put_sh_addralign(this->addralign_);
2865   oshdr->put_sh_entsize(this->entsize_);
2866 }
2867
2868 // Write out the data.  For input sections the data is written out by
2869 // Object::relocate, but we have to handle Output_section_data objects
2870 // here.
2871
2872 void
2873 Output_section::do_write(Output_file* of)
2874 {
2875   gold_assert(!this->requires_postprocessing());
2876
2877   // If the target performs relaxation, we delay filler generation until now.
2878   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2879
2880   off_t output_section_file_offset = this->offset();
2881   for (Fill_list::iterator p = this->fills_.begin();
2882        p != this->fills_.end();
2883        ++p)
2884     {
2885       std::string fill_data(parameters->target().code_fill(p->length()));
2886       of->write(output_section_file_offset + p->section_offset(),
2887                 fill_data.data(), fill_data.size());
2888     }
2889
2890   off_t off = this->offset() + this->first_input_offset_;
2891   for (Input_section_list::iterator p = this->input_sections_.begin();
2892        p != this->input_sections_.end();
2893        ++p)
2894     {
2895       off_t aligned_off = align_address(off, p->addralign());
2896       if (this->generate_code_fills_at_write_ && (off != aligned_off))
2897         {
2898           size_t fill_len = aligned_off - off;
2899           std::string fill_data(parameters->target().code_fill(fill_len));
2900           of->write(off, fill_data.data(), fill_data.size());
2901         }
2902
2903       p->write(of);
2904       off = aligned_off + p->data_size();
2905     }
2906 }
2907
2908 // If a section requires postprocessing, create the buffer to use.
2909
2910 void
2911 Output_section::create_postprocessing_buffer()
2912 {
2913   gold_assert(this->requires_postprocessing());
2914
2915   if (this->postprocessing_buffer_ != NULL)
2916     return;
2917
2918   if (!this->input_sections_.empty())
2919     {
2920       off_t off = this->first_input_offset_;
2921       for (Input_section_list::iterator p = this->input_sections_.begin();
2922            p != this->input_sections_.end();
2923            ++p)
2924         {
2925           off = align_address(off, p->addralign());
2926           p->finalize_data_size();
2927           off += p->data_size();
2928         }
2929       this->set_current_data_size_for_child(off);
2930     }
2931
2932   off_t buffer_size = this->current_data_size_for_child();
2933   this->postprocessing_buffer_ = new unsigned char[buffer_size];
2934 }
2935
2936 // Write all the data of an Output_section into the postprocessing
2937 // buffer.  This is used for sections which require postprocessing,
2938 // such as compression.  Input sections are handled by
2939 // Object::Relocate.
2940
2941 void
2942 Output_section::write_to_postprocessing_buffer()
2943 {
2944   gold_assert(this->requires_postprocessing());
2945
2946   // If the target performs relaxation, we delay filler generation until now.
2947   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2948
2949   unsigned char* buffer = this->postprocessing_buffer();
2950   for (Fill_list::iterator p = this->fills_.begin();
2951        p != this->fills_.end();
2952        ++p)
2953     {
2954       std::string fill_data(parameters->target().code_fill(p->length()));
2955       memcpy(buffer + p->section_offset(), fill_data.data(),
2956              fill_data.size());
2957     }
2958
2959   off_t off = this->first_input_offset_;
2960   for (Input_section_list::iterator p = this->input_sections_.begin();
2961        p != this->input_sections_.end();
2962        ++p)
2963     {
2964       off_t aligned_off = align_address(off, p->addralign());
2965       if (this->generate_code_fills_at_write_ && (off != aligned_off))
2966         {
2967           size_t fill_len = aligned_off - off;
2968           std::string fill_data(parameters->target().code_fill(fill_len));
2969           memcpy(buffer + off, fill_data.data(), fill_data.size());
2970         }
2971
2972       p->write_to_buffer(buffer + aligned_off);
2973       off = aligned_off + p->data_size();
2974     }
2975 }
2976
2977 // Get the input sections for linker script processing.  We leave
2978 // behind the Output_section_data entries.  Note that this may be
2979 // slightly incorrect for merge sections.  We will leave them behind,
2980 // but it is possible that the script says that they should follow
2981 // some other input sections, as in:
2982 //    .rodata { *(.rodata) *(.rodata.cst*) }
2983 // For that matter, we don't handle this correctly:
2984 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2985 // With luck this will never matter.
2986
2987 uint64_t
2988 Output_section::get_input_sections(
2989     uint64_t address,
2990     const std::string& fill,
2991     std::list<Simple_input_section>* input_sections)
2992 {
2993   if (this->checkpoint_ != NULL
2994       && !this->checkpoint_->input_sections_saved())
2995     this->checkpoint_->save_input_sections();
2996
2997   // Invalidate the relaxed input section map.
2998   this->is_relaxed_input_section_map_valid_ = false;
2999
3000   uint64_t orig_address = address;
3001
3002   address = align_address(address, this->addralign());
3003
3004   Input_section_list remaining;
3005   for (Input_section_list::iterator p = this->input_sections_.begin();
3006        p != this->input_sections_.end();
3007        ++p)
3008     {
3009       if (p->is_input_section())
3010         input_sections->push_back(Simple_input_section(p->relobj(),
3011                                                        p->shndx()));
3012       else if (p->is_relaxed_input_section())
3013         input_sections->push_back(
3014             Simple_input_section(p->relaxed_input_section()));
3015       else
3016         {
3017           uint64_t aligned_address = align_address(address, p->addralign());
3018           if (aligned_address != address && !fill.empty())
3019             {
3020               section_size_type length =
3021                 convert_to_section_size_type(aligned_address - address);
3022               std::string this_fill;
3023               this_fill.reserve(length);
3024               while (this_fill.length() + fill.length() <= length)
3025                 this_fill += fill;
3026               if (this_fill.length() < length)
3027                 this_fill.append(fill, 0, length - this_fill.length());
3028
3029               Output_section_data* posd = new Output_data_const(this_fill, 0);
3030               remaining.push_back(Input_section(posd));
3031             }
3032           address = aligned_address;
3033
3034           remaining.push_back(*p);
3035
3036           p->finalize_data_size();
3037           address += p->data_size();
3038         }
3039     }
3040
3041   this->input_sections_.swap(remaining);
3042   this->first_input_offset_ = 0;
3043
3044   uint64_t data_size = address - orig_address;
3045   this->set_current_data_size_for_child(data_size);
3046   return data_size;
3047 }
3048
3049 // Add an simple input section.
3050
3051 void
3052 Output_section::add_simple_input_section(const Simple_input_section& sis,
3053                                          off_t data_size,
3054                                          uint64_t addralign)
3055 {
3056   if (addralign > this->addralign_)
3057     this->addralign_ = addralign;
3058
3059   off_t offset_in_section = this->current_data_size_for_child();
3060   off_t aligned_offset_in_section = align_address(offset_in_section,
3061                                                   addralign);
3062
3063   this->set_current_data_size_for_child(aligned_offset_in_section
3064                                         + data_size);
3065
3066   Input_section is =
3067     (sis.is_relaxed_input_section()
3068      ? Input_section(sis.relaxed_input_section())
3069      : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
3070   this->input_sections_.push_back(is);
3071 }
3072
3073 // Save states for relaxation.
3074
3075 void
3076 Output_section::save_states()
3077 {
3078   gold_assert(this->checkpoint_ == NULL);
3079   Checkpoint_output_section* checkpoint =
3080     new Checkpoint_output_section(this->addralign_, this->flags_,
3081                                   this->input_sections_,
3082                                   this->first_input_offset_,
3083                                   this->attached_input_sections_are_sorted_);
3084   this->checkpoint_ = checkpoint;
3085   gold_assert(this->fills_.empty());
3086 }
3087
3088 void
3089 Output_section::discard_states()
3090 {
3091   gold_assert(this->checkpoint_ != NULL);
3092   delete this->checkpoint_;
3093   this->checkpoint_ = NULL;
3094   gold_assert(this->fills_.empty());
3095
3096   // Simply invalidate the relaxed input section map since we do not keep
3097   // track of it.
3098   this->is_relaxed_input_section_map_valid_ = false;
3099 }
3100
3101 void
3102 Output_section::restore_states()
3103 {
3104   gold_assert(this->checkpoint_ != NULL);
3105   Checkpoint_output_section* checkpoint = this->checkpoint_;
3106
3107   this->addralign_ = checkpoint->addralign();
3108   this->flags_ = checkpoint->flags();
3109   this->first_input_offset_ = checkpoint->first_input_offset();
3110
3111   if (!checkpoint->input_sections_saved())
3112     {
3113       // If we have not copied the input sections, just resize it.
3114       size_t old_size = checkpoint->input_sections_size();
3115       gold_assert(this->input_sections_.size() >= old_size);
3116       this->input_sections_.resize(old_size);
3117     }
3118   else
3119     {
3120       // We need to copy the whole list.  This is not efficient for
3121       // extremely large output with hundreads of thousands of input
3122       // objects.  We may need to re-think how we should pass sections
3123       // to scripts.
3124       this->input_sections_ = *checkpoint->input_sections();
3125     }
3126
3127   this->attached_input_sections_are_sorted_ =
3128     checkpoint->attached_input_sections_are_sorted();
3129
3130   // Simply invalidate the relaxed input section map since we do not keep
3131   // track of it.
3132   this->is_relaxed_input_section_map_valid_ = false;
3133 }
3134
3135 // Update the section offsets of input sections in this.  This is required if
3136 // relaxation causes some input sections to change sizes.
3137
3138 void
3139 Output_section::adjust_section_offsets()
3140 {
3141   if (!this->section_offsets_need_adjustment_)
3142     return;
3143
3144   off_t off = 0;
3145   for (Input_section_list::iterator p = this->input_sections_.begin();
3146        p != this->input_sections_.end();
3147        ++p)
3148     {
3149       off = align_address(off, p->addralign());
3150       if (p->is_input_section())
3151         p->relobj()->set_section_offset(p->shndx(), off);
3152       off += p->data_size();
3153     }
3154
3155   this->section_offsets_need_adjustment_ = false;
3156 }
3157
3158 // Print to the map file.
3159
3160 void
3161 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3162 {
3163   mapfile->print_output_section(this);
3164
3165   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3166        p != this->input_sections_.end();
3167        ++p)
3168     p->print_to_mapfile(mapfile);
3169 }
3170
3171 // Print stats for merge sections to stderr.
3172
3173 void
3174 Output_section::print_merge_stats()
3175 {
3176   Input_section_list::iterator p;
3177   for (p = this->input_sections_.begin();
3178        p != this->input_sections_.end();
3179        ++p)
3180     p->print_merge_stats(this->name_);
3181 }
3182
3183 // Output segment methods.
3184
3185 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3186   : output_data_(),
3187     output_bss_(),
3188     vaddr_(0),
3189     paddr_(0),
3190     memsz_(0),
3191     max_align_(0),
3192     min_p_align_(0),
3193     offset_(0),
3194     filesz_(0),
3195     type_(type),
3196     flags_(flags),
3197     is_max_align_known_(false),
3198     are_addresses_set_(false),
3199     is_large_data_segment_(false)
3200 {
3201   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3202   // the flags.
3203   if (type == elfcpp::PT_TLS)
3204     this->flags_ = elfcpp::PF_R;
3205 }
3206
3207 // Add an Output_section to an Output_segment.
3208
3209 void
3210 Output_segment::add_output_section(Output_section* os,
3211                                    elfcpp::Elf_Word seg_flags,
3212                                    bool do_sort)
3213 {
3214   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3215   gold_assert(!this->is_max_align_known_);
3216   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3217   gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3218
3219   this->update_flags_for_output_section(seg_flags);
3220
3221   Output_segment::Output_data_list* pdl;
3222   if (os->type() == elfcpp::SHT_NOBITS)
3223     pdl = &this->output_bss_;
3224   else
3225     pdl = &this->output_data_;
3226
3227   // Note that while there may be many input sections in an output
3228   // section, there are normally only a few output sections in an
3229   // output segment.  The loops below are expected to be fast.
3230
3231   // So that PT_NOTE segments will work correctly, we need to ensure
3232   // that all SHT_NOTE sections are adjacent.
3233   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3234     {
3235       Output_segment::Output_data_list::iterator p = pdl->end();
3236       do
3237         {
3238           --p;
3239           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3240             {
3241               ++p;
3242               pdl->insert(p, os);
3243               return;
3244             }
3245         }
3246       while (p != pdl->begin());
3247     }
3248
3249   // Similarly, so that PT_TLS segments will work, we need to group
3250   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
3251   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3252   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
3253   // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
3254   // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3255   // segment.
3256   if (this->type_ != elfcpp::PT_TLS
3257       && (os->flags() & elfcpp::SHF_TLS) != 0)
3258     {
3259       pdl = &this->output_data_;
3260       if (!pdl->empty())
3261         {
3262           bool nobits = os->type() == elfcpp::SHT_NOBITS;
3263           bool sawtls = false;
3264           Output_segment::Output_data_list::iterator p = pdl->end();
3265           gold_assert(p != pdl->begin());
3266           do
3267             {
3268               --p;
3269               bool insert;
3270               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3271                 {
3272                   sawtls = true;
3273                   // Put a NOBITS section after the first TLS section.
3274                   // Put a PROGBITS section after the first
3275                   // TLS/PROGBITS section.
3276                   insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3277                 }
3278               else
3279                 {
3280                   // If we've gone past the TLS sections, but we've
3281                   // seen a TLS section, then we need to insert this
3282                   // section now.
3283                   insert = sawtls;
3284                 }
3285
3286               if (insert)
3287                 {
3288                   ++p;
3289                   pdl->insert(p, os);
3290                   return;
3291                 }
3292             }
3293           while (p != pdl->begin());
3294         }
3295
3296       // There are no TLS sections yet; put this one at the requested
3297       // location in the section list.
3298     }
3299
3300   if (do_sort)
3301     {
3302       // For the PT_GNU_RELRO segment, we need to group relro
3303       // sections, and we need to put them before any non-relro
3304       // sections.  Any relro local sections go before relro non-local
3305       // sections.  One section may be marked as the last relro
3306       // section.
3307       if (os->is_relro())
3308         {
3309           gold_assert(pdl == &this->output_data_);
3310           Output_segment::Output_data_list::iterator p;
3311           for (p = pdl->begin(); p != pdl->end(); ++p)
3312             {
3313               if (!(*p)->is_section())
3314                 break;
3315
3316               Output_section* pos = (*p)->output_section();
3317               if (!pos->is_relro()
3318                   || (os->is_relro_local() && !pos->is_relro_local())
3319                   || (!os->is_last_relro() && pos->is_last_relro()))
3320                 break;
3321             }
3322
3323           pdl->insert(p, os);
3324           return;
3325         }
3326
3327       // One section may be marked as the first section which follows
3328       // the relro sections.
3329       if (os->is_first_non_relro())
3330         {
3331           gold_assert(pdl == &this->output_data_);
3332           Output_segment::Output_data_list::iterator p;
3333           for (p = pdl->begin(); p != pdl->end(); ++p)
3334             {
3335               if (!(*p)->is_section())
3336                 break;
3337
3338               Output_section* pos = (*p)->output_section();
3339               if (!pos->is_relro())
3340                 break;
3341             }
3342
3343           pdl->insert(p, os);
3344           return;
3345         }
3346     }
3347
3348   // Small data sections go at the end of the list of data sections.
3349   // If OS is not small, and there are small sections, we have to
3350   // insert it before the first small section.
3351   if (os->type() != elfcpp::SHT_NOBITS
3352       && !os->is_small_section()
3353       && !pdl->empty()
3354       && pdl->back()->is_section()
3355       && pdl->back()->output_section()->is_small_section())
3356     {
3357       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3358            p != pdl->end();
3359            ++p)
3360         {
3361           if ((*p)->is_section()
3362               && (*p)->output_section()->is_small_section())
3363             {
3364               pdl->insert(p, os);
3365               return;
3366             }
3367         }
3368       gold_unreachable();
3369     }
3370
3371   // A small BSS section goes at the start of the BSS sections, after
3372   // other small BSS sections.
3373   if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3374     {
3375       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3376            p != pdl->end();
3377            ++p)
3378         {
3379           if (!(*p)->is_section()
3380               || !(*p)->output_section()->is_small_section())
3381             {
3382               pdl->insert(p, os);
3383               return;
3384             }
3385         }
3386     }
3387
3388   // A large BSS section goes at the end of the BSS sections, which
3389   // means that one that is not large must come before the first large
3390   // one.
3391   if (os->type() == elfcpp::SHT_NOBITS
3392       && !os->is_large_section()
3393       && !pdl->empty()
3394       && pdl->back()->is_section()
3395       && pdl->back()->output_section()->is_large_section())
3396     {
3397       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3398            p != pdl->end();
3399            ++p)
3400         {
3401           if ((*p)->is_section()
3402               && (*p)->output_section()->is_large_section())
3403             {
3404               pdl->insert(p, os);
3405               return;
3406             }
3407         }
3408       gold_unreachable();
3409     }
3410
3411   // We do some further output section sorting in order to make the
3412   // generated program run more efficiently.  We should only do this
3413   // when not using a linker script, so it is controled by the DO_SORT
3414   // parameter.
3415   if (do_sort)
3416     {
3417       // FreeBSD requires the .interp section to be in the first page
3418       // of the executable.  That is a more efficient location anyhow
3419       // for any OS, since it means that the kernel will have the data
3420       // handy after it reads the program headers.
3421       if (os->is_interp() && !pdl->empty())
3422         {
3423           pdl->insert(pdl->begin(), os);
3424           return;
3425         }
3426
3427       // Put loadable non-writable notes immediately after the .interp
3428       // sections, so that the PT_NOTE segment is on the first page of
3429       // the executable.
3430       if (os->type() == elfcpp::SHT_NOTE
3431           && (os->flags() & elfcpp::SHF_WRITE) == 0
3432           && !pdl->empty())
3433         {
3434           Output_segment::Output_data_list::iterator p = pdl->begin();
3435           if ((*p)->is_section() && (*p)->output_section()->is_interp())
3436             ++p;
3437           pdl->insert(p, os);
3438           return;
3439         }
3440
3441       // If this section is used by the dynamic linker, and it is not
3442       // writable, then put it first, after the .interp section and
3443       // any loadable notes.  This makes it more likely that the
3444       // dynamic linker will have to read less data from the disk.
3445       if (os->is_dynamic_linker_section()
3446           && !pdl->empty()
3447           && (os->flags() & elfcpp::SHF_WRITE) == 0)
3448         {
3449           bool is_reloc = (os->type() == elfcpp::SHT_REL
3450                            || os->type() == elfcpp::SHT_RELA);
3451           Output_segment::Output_data_list::iterator p = pdl->begin();
3452           while (p != pdl->end()
3453                  && (*p)->is_section()
3454                  && ((*p)->output_section()->is_dynamic_linker_section()
3455                      || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3456             {
3457               // Put reloc sections after the other ones.  Putting the
3458               // dynamic reloc sections first confuses BFD, notably
3459               // objcopy and strip.
3460               if (!is_reloc
3461                   && ((*p)->output_section()->type() == elfcpp::SHT_REL
3462                       || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3463                 break;
3464               ++p;
3465             }
3466           pdl->insert(p, os);
3467           return;
3468         }
3469     }
3470
3471   // If there were no constraints on the output section, just add it
3472   // to the end of the list.
3473   pdl->push_back(os);
3474 }
3475
3476 // Remove an Output_section from this segment.  It is an error if it
3477 // is not present.
3478
3479 void
3480 Output_segment::remove_output_section(Output_section* os)
3481 {
3482   // We only need this for SHT_PROGBITS.
3483   gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3484   for (Output_data_list::iterator p = this->output_data_.begin();
3485        p != this->output_data_.end();
3486        ++p)
3487    {
3488      if (*p == os)
3489        {
3490          this->output_data_.erase(p);
3491          return;
3492        }
3493    }
3494   gold_unreachable();
3495 }
3496
3497 // Add an Output_data (which need not be an Output_section) to the
3498 // start of a segment.
3499
3500 void
3501 Output_segment::add_initial_output_data(Output_data* od)
3502 {
3503   gold_assert(!this->is_max_align_known_);
3504   this->output_data_.push_front(od);
3505 }
3506
3507 // Return whether the first data section is a relro section.
3508
3509 bool
3510 Output_segment::is_first_section_relro() const
3511 {
3512   return (!this->output_data_.empty()
3513           && this->output_data_.front()->is_section()
3514           && this->output_data_.front()->output_section()->is_relro());
3515 }
3516
3517 // Return the maximum alignment of the Output_data in Output_segment.
3518
3519 uint64_t
3520 Output_segment::maximum_alignment()
3521 {
3522   if (!this->is_max_align_known_)
3523     {
3524       uint64_t addralign;
3525
3526       addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3527       if (addralign > this->max_align_)
3528         this->max_align_ = addralign;
3529
3530       addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3531       if (addralign > this->max_align_)
3532         this->max_align_ = addralign;
3533
3534       this->is_max_align_known_ = true;
3535     }
3536
3537   return this->max_align_;
3538 }
3539
3540 // Return the maximum alignment of a list of Output_data.
3541
3542 uint64_t
3543 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3544 {
3545   uint64_t ret = 0;
3546   for (Output_data_list::const_iterator p = pdl->begin();
3547        p != pdl->end();
3548        ++p)
3549     {
3550       uint64_t addralign = (*p)->addralign();
3551       if (addralign > ret)
3552         ret = addralign;
3553     }
3554   return ret;
3555 }
3556
3557 // Return the number of dynamic relocs applied to this segment.
3558
3559 unsigned int
3560 Output_segment::dynamic_reloc_count() const
3561 {
3562   return (this->dynamic_reloc_count_list(&this->output_data_)
3563           + this->dynamic_reloc_count_list(&this->output_bss_));
3564 }
3565
3566 // Return the number of dynamic relocs applied to an Output_data_list.
3567
3568 unsigned int
3569 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3570 {
3571   unsigned int count = 0;
3572   for (Output_data_list::const_iterator p = pdl->begin();
3573        p != pdl->end();
3574        ++p)
3575     count += (*p)->dynamic_reloc_count();
3576   return count;
3577 }
3578
3579 // Set the section addresses for an Output_segment.  If RESET is true,
3580 // reset the addresses first.  ADDR is the address and *POFF is the
3581 // file offset.  Set the section indexes starting with *PSHNDX.
3582 // Return the address of the immediately following segment.  Update
3583 // *POFF and *PSHNDX.
3584
3585 uint64_t
3586 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3587                                       uint64_t addr,
3588                                       unsigned int increase_relro,
3589                                       off_t* poff,
3590                                       unsigned int* pshndx)
3591 {
3592   gold_assert(this->type_ == elfcpp::PT_LOAD);
3593
3594   off_t orig_off = *poff;
3595
3596   // If we have relro sections, we need to pad forward now so that the
3597   // relro sections plus INCREASE_RELRO end on a common page boundary.
3598   if (parameters->options().relro()
3599       && this->is_first_section_relro()
3600       && (!this->are_addresses_set_ || reset))
3601     {
3602       uint64_t relro_size = 0;
3603       off_t off = *poff;
3604       for (Output_data_list::iterator p = this->output_data_.begin();
3605            p != this->output_data_.end();
3606            ++p)
3607         {
3608           if (!(*p)->is_section())
3609             break;
3610           Output_section* pos = (*p)->output_section();
3611           if (!pos->is_relro())
3612             break;
3613           gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3614           if ((*p)->is_address_valid())
3615             relro_size += (*p)->data_size();
3616           else
3617             {
3618               // FIXME: This could be faster.
3619               (*p)->set_address_and_file_offset(addr + relro_size,
3620                                                 off + relro_size);
3621               relro_size += (*p)->data_size();
3622               (*p)->reset_address_and_file_offset();
3623             }
3624         }
3625       relro_size += increase_relro;
3626
3627       uint64_t page_align = parameters->target().common_pagesize();
3628
3629       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3630       uint64_t desired_align = page_align - (relro_size % page_align);
3631       if (desired_align < *poff % page_align)
3632         *poff += page_align - *poff % page_align;
3633       *poff += desired_align - *poff % page_align;
3634       addr += *poff - orig_off;
3635       orig_off = *poff;
3636     }
3637
3638   if (!reset && this->are_addresses_set_)
3639     {
3640       gold_assert(this->paddr_ == addr);
3641       addr = this->vaddr_;
3642     }
3643   else
3644     {
3645       this->vaddr_ = addr;
3646       this->paddr_ = addr;
3647       this->are_addresses_set_ = true;
3648     }
3649
3650   bool in_tls = false;
3651
3652   this->offset_ = orig_off;
3653
3654   addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3655                                           addr, poff, pshndx, &in_tls);
3656   this->filesz_ = *poff - orig_off;
3657
3658   off_t off = *poff;
3659
3660   uint64_t ret = this->set_section_list_addresses(layout, reset,
3661                                                   &this->output_bss_,
3662                                                   addr, poff, pshndx,
3663                                                   &in_tls);
3664
3665   // If the last section was a TLS section, align upward to the
3666   // alignment of the TLS segment, so that the overall size of the TLS
3667   // segment is aligned.
3668   if (in_tls)
3669     {
3670       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3671       *poff = align_address(*poff, segment_align);
3672     }
3673
3674   this->memsz_ = *poff - orig_off;
3675
3676   // Ignore the file offset adjustments made by the BSS Output_data
3677   // objects.
3678   *poff = off;
3679
3680   return ret;
3681 }
3682
3683 // Set the addresses and file offsets in a list of Output_data
3684 // structures.
3685
3686 uint64_t
3687 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3688                                            Output_data_list* pdl,
3689                                            uint64_t addr, off_t* poff,
3690                                            unsigned int* pshndx,
3691                                            bool* in_tls)
3692 {
3693   off_t startoff = *poff;
3694
3695   off_t off = startoff;
3696   for (Output_data_list::iterator p = pdl->begin();
3697        p != pdl->end();
3698        ++p)
3699     {
3700       if (reset)
3701         (*p)->reset_address_and_file_offset();
3702
3703       // When using a linker script the section will most likely
3704       // already have an address.
3705       if (!(*p)->is_address_valid())
3706         {
3707           uint64_t align = (*p)->addralign();
3708
3709           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3710             {
3711               // Give the first TLS section the alignment of the
3712               // entire TLS segment.  Otherwise the TLS segment as a
3713               // whole may be misaligned.
3714               if (!*in_tls)
3715                 {
3716                   Output_segment* tls_segment = layout->tls_segment();
3717                   gold_assert(tls_segment != NULL);
3718                   uint64_t segment_align = tls_segment->maximum_alignment();
3719                   gold_assert(segment_align >= align);
3720                   align = segment_align;
3721
3722                   *in_tls = true;
3723                 }
3724             }
3725           else
3726             {
3727               // If this is the first section after the TLS segment,
3728               // align it to at least the alignment of the TLS
3729               // segment, so that the size of the overall TLS segment
3730               // is aligned.
3731               if (*in_tls)
3732                 {
3733                   uint64_t segment_align =
3734                       layout->tls_segment()->maximum_alignment();
3735                   if (segment_align > align)
3736                     align = segment_align;
3737
3738                   *in_tls = false;
3739                 }
3740             }
3741
3742           off = align_address(off, align);
3743           (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3744         }
3745       else
3746         {
3747           // The script may have inserted a skip forward, but it
3748           // better not have moved backward.
3749           if ((*p)->address() >= addr + (off - startoff))
3750             off += (*p)->address() - (addr + (off - startoff));
3751           else
3752             {
3753               if (!layout->script_options()->saw_sections_clause())
3754                 gold_unreachable();
3755               else
3756                 {
3757                   Output_section* os = (*p)->output_section();
3758
3759                   // Cast to unsigned long long to avoid format warnings.
3760                   unsigned long long previous_dot =
3761                     static_cast<unsigned long long>(addr + (off - startoff));
3762                   unsigned long long dot =
3763                     static_cast<unsigned long long>((*p)->address());
3764
3765                   if (os == NULL)
3766                     gold_error(_("dot moves backward in linker script "
3767                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
3768                   else
3769                     gold_error(_("address of section '%s' moves backward "
3770                                  "from 0x%llx to 0x%llx"),
3771                                os->name(), previous_dot, dot);
3772                 }
3773             }
3774           (*p)->set_file_offset(off);
3775           (*p)->finalize_data_size();
3776         }
3777
3778       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3779       // section.  Such a section does not affect the size of a
3780       // PT_LOAD segment.
3781       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3782           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3783         off += (*p)->data_size();
3784
3785       if ((*p)->is_section())
3786         {
3787           (*p)->set_out_shndx(*pshndx);
3788           ++*pshndx;
3789         }
3790     }
3791
3792   *poff = off;
3793   return addr + (off - startoff);
3794 }
3795
3796 // For a non-PT_LOAD segment, set the offset from the sections, if
3797 // any.  Add INCREASE to the file size and the memory size.
3798
3799 void
3800 Output_segment::set_offset(unsigned int increase)
3801 {
3802   gold_assert(this->type_ != elfcpp::PT_LOAD);
3803
3804   gold_assert(!this->are_addresses_set_);
3805
3806   if (this->output_data_.empty() && this->output_bss_.empty())
3807     {
3808       gold_assert(increase == 0);
3809       this->vaddr_ = 0;
3810       this->paddr_ = 0;
3811       this->are_addresses_set_ = true;
3812       this->memsz_ = 0;
3813       this->min_p_align_ = 0;
3814       this->offset_ = 0;
3815       this->filesz_ = 0;
3816       return;
3817     }
3818
3819   const Output_data* first;
3820   if (this->output_data_.empty())
3821     first = this->output_bss_.front();
3822   else
3823     first = this->output_data_.front();
3824   this->vaddr_ = first->address();
3825   this->paddr_ = (first->has_load_address()
3826                   ? first->load_address()
3827                   : this->vaddr_);
3828   this->are_addresses_set_ = true;
3829   this->offset_ = first->offset();
3830
3831   if (this->output_data_.empty())
3832     this->filesz_ = 0;
3833   else
3834     {
3835       const Output_data* last_data = this->output_data_.back();
3836       this->filesz_ = (last_data->address()
3837                        + last_data->data_size()
3838                        - this->vaddr_);
3839     }
3840
3841   const Output_data* last;
3842   if (this->output_bss_.empty())
3843     last = this->output_data_.back();
3844   else
3845     last = this->output_bss_.back();
3846   this->memsz_ = (last->address()
3847                   + last->data_size()
3848                   - this->vaddr_);
3849
3850   this->filesz_ += increase;
3851   this->memsz_ += increase;
3852
3853   // If this is a TLS segment, align the memory size.  The code in
3854   // set_section_list ensures that the section after the TLS segment
3855   // is aligned to give us room.
3856   if (this->type_ == elfcpp::PT_TLS)
3857     {
3858       uint64_t segment_align = this->maximum_alignment();
3859       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3860       this->memsz_ = align_address(this->memsz_, segment_align);
3861     }
3862 }
3863
3864 // Set the TLS offsets of the sections in the PT_TLS segment.
3865
3866 void
3867 Output_segment::set_tls_offsets()
3868 {
3869   gold_assert(this->type_ == elfcpp::PT_TLS);
3870
3871   for (Output_data_list::iterator p = this->output_data_.begin();
3872        p != this->output_data_.end();
3873        ++p)
3874     (*p)->set_tls_offset(this->vaddr_);
3875
3876   for (Output_data_list::iterator p = this->output_bss_.begin();
3877        p != this->output_bss_.end();
3878        ++p)
3879     (*p)->set_tls_offset(this->vaddr_);
3880 }
3881
3882 // Return the address of the first section.
3883
3884 uint64_t
3885 Output_segment::first_section_load_address() const
3886 {
3887   for (Output_data_list::const_iterator p = this->output_data_.begin();
3888        p != this->output_data_.end();
3889        ++p)
3890     if ((*p)->is_section())
3891       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3892
3893   for (Output_data_list::const_iterator p = this->output_bss_.begin();
3894        p != this->output_bss_.end();
3895        ++p)
3896     if ((*p)->is_section())
3897       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3898
3899   gold_unreachable();
3900 }
3901
3902 // Return the number of Output_sections in an Output_segment.
3903
3904 unsigned int
3905 Output_segment::output_section_count() const
3906 {
3907   return (this->output_section_count_list(&this->output_data_)
3908           + this->output_section_count_list(&this->output_bss_));
3909 }
3910
3911 // Return the number of Output_sections in an Output_data_list.
3912
3913 unsigned int
3914 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3915 {
3916   unsigned int count = 0;
3917   for (Output_data_list::const_iterator p = pdl->begin();
3918        p != pdl->end();
3919        ++p)
3920     {
3921       if ((*p)->is_section())
3922         ++count;
3923     }
3924   return count;
3925 }
3926
3927 // Return the section attached to the list segment with the lowest
3928 // load address.  This is used when handling a PHDRS clause in a
3929 // linker script.
3930
3931 Output_section*
3932 Output_segment::section_with_lowest_load_address() const
3933 {
3934   Output_section* found = NULL;
3935   uint64_t found_lma = 0;
3936   this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3937
3938   Output_section* found_data = found;
3939   this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3940   if (found != found_data && found_data != NULL)
3941     {
3942       gold_error(_("nobits section %s may not precede progbits section %s "
3943                    "in same segment"),
3944                  found->name(), found_data->name());
3945       return NULL;
3946     }
3947
3948   return found;
3949 }
3950
3951 // Look through a list for a section with a lower load address.
3952
3953 void
3954 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3955                                             Output_section** found,
3956                                             uint64_t* found_lma) const
3957 {
3958   for (Output_data_list::const_iterator p = pdl->begin();
3959        p != pdl->end();
3960        ++p)
3961     {
3962       if (!(*p)->is_section())
3963         continue;
3964       Output_section* os = static_cast<Output_section*>(*p);
3965       uint64_t lma = (os->has_load_address()
3966                       ? os->load_address()
3967                       : os->address());
3968       if (*found == NULL || lma < *found_lma)
3969         {
3970           *found = os;
3971           *found_lma = lma;
3972         }
3973     }
3974 }
3975
3976 // Write the segment data into *OPHDR.
3977
3978 template<int size, bool big_endian>
3979 void
3980 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3981 {
3982   ophdr->put_p_type(this->type_);
3983   ophdr->put_p_offset(this->offset_);
3984   ophdr->put_p_vaddr(this->vaddr_);
3985   ophdr->put_p_paddr(this->paddr_);
3986   ophdr->put_p_filesz(this->filesz_);
3987   ophdr->put_p_memsz(this->memsz_);
3988   ophdr->put_p_flags(this->flags_);
3989   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3990 }
3991
3992 // Write the section headers into V.
3993
3994 template<int size, bool big_endian>
3995 unsigned char*
3996 Output_segment::write_section_headers(const Layout* layout,
3997                                       const Stringpool* secnamepool,
3998                                       unsigned char* v,
3999                                       unsigned int *pshndx) const
4000 {
4001   // Every section that is attached to a segment must be attached to a
4002   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4003   // segments.
4004   if (this->type_ != elfcpp::PT_LOAD)
4005     return v;
4006
4007   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4008                                                          &this->output_data_,
4009                                                          v, pshndx);
4010   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4011                                                          &this->output_bss_,
4012                                                          v, pshndx);
4013   return v;
4014 }
4015
4016 template<int size, bool big_endian>
4017 unsigned char*
4018 Output_segment::write_section_headers_list(const Layout* layout,
4019                                            const Stringpool* secnamepool,
4020                                            const Output_data_list* pdl,
4021                                            unsigned char* v,
4022                                            unsigned int* pshndx) const
4023 {
4024   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4025   for (Output_data_list::const_iterator p = pdl->begin();
4026        p != pdl->end();
4027        ++p)
4028     {
4029       if ((*p)->is_section())
4030         {
4031           const Output_section* ps = static_cast<const Output_section*>(*p);
4032           gold_assert(*pshndx == ps->out_shndx());
4033           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4034           ps->write_header(layout, secnamepool, &oshdr);
4035           v += shdr_size;
4036           ++*pshndx;
4037         }
4038     }
4039   return v;
4040 }
4041
4042 // Print the output sections to the map file.
4043
4044 void
4045 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4046 {
4047   if (this->type() != elfcpp::PT_LOAD)
4048     return;
4049   this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4050   this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4051 }
4052
4053 // Print an output section list to the map file.
4054
4055 void
4056 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4057                                               const Output_data_list* pdl) const
4058 {
4059   for (Output_data_list::const_iterator p = pdl->begin();
4060        p != pdl->end();
4061        ++p)
4062     (*p)->print_to_mapfile(mapfile);
4063 }
4064
4065 // Output_file methods.
4066
4067 Output_file::Output_file(const char* name)
4068   : name_(name),
4069     o_(-1),
4070     file_size_(0),
4071     base_(NULL),
4072     map_is_anonymous_(false),
4073     is_temporary_(false)
4074 {
4075 }
4076
4077 // Try to open an existing file.  Returns false if the file doesn't
4078 // exist, has a size of 0 or can't be mmapped.
4079
4080 bool
4081 Output_file::open_for_modification()
4082 {
4083   // The name "-" means "stdout".
4084   if (strcmp(this->name_, "-") == 0)
4085     return false;
4086
4087   // Don't bother opening files with a size of zero.
4088   struct stat s;
4089   if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4090     return false;
4091
4092   int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4093   if (o < 0)
4094     gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4095   this->o_ = o;
4096   this->file_size_ = s.st_size;
4097
4098   // If the file can't be mmapped, copying the content to an anonymous
4099   // map will probably negate the performance benefits of incremental
4100   // linking.  This could be helped by using views and loading only
4101   // the necessary parts, but this is not supported as of now.
4102   if (!this->map_no_anonymous())
4103     {
4104       release_descriptor(o, true);
4105       this->o_ = -1;
4106       this->file_size_ = 0;
4107       return false;
4108     }
4109
4110   return true;
4111 }
4112
4113 // Open the output file.
4114
4115 void
4116 Output_file::open(off_t file_size)
4117 {
4118   this->file_size_ = file_size;
4119
4120   // Unlink the file first; otherwise the open() may fail if the file
4121   // is busy (e.g. it's an executable that's currently being executed).
4122   //
4123   // However, the linker may be part of a system where a zero-length
4124   // file is created for it to write to, with tight permissions (gcc
4125   // 2.95 did something like this).  Unlinking the file would work
4126   // around those permission controls, so we only unlink if the file
4127   // has a non-zero size.  We also unlink only regular files to avoid
4128   // trouble with directories/etc.
4129   //
4130   // If we fail, continue; this command is merely a best-effort attempt
4131   // to improve the odds for open().
4132
4133   // We let the name "-" mean "stdout"
4134   if (!this->is_temporary_)
4135     {
4136       if (strcmp(this->name_, "-") == 0)
4137         this->o_ = STDOUT_FILENO;
4138       else
4139         {
4140           struct stat s;
4141           if (::stat(this->name_, &s) == 0
4142               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4143             {
4144               if (s.st_size != 0)
4145                 ::unlink(this->name_);
4146               else if (!parameters->options().relocatable())
4147                 {
4148                   // If we don't unlink the existing file, add execute
4149                   // permission where read permissions already exist
4150                   // and where the umask permits.
4151                   int mask = ::umask(0);
4152                   ::umask(mask);
4153                   s.st_mode |= (s.st_mode & 0444) >> 2;
4154                   ::chmod(this->name_, s.st_mode & ~mask);
4155                 }
4156             }
4157
4158           int mode = parameters->options().relocatable() ? 0666 : 0777;
4159           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4160                                   mode);
4161           if (o < 0)
4162             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4163           this->o_ = o;
4164         }
4165     }
4166
4167   this->map();
4168 }
4169
4170 // Resize the output file.
4171
4172 void
4173 Output_file::resize(off_t file_size)
4174 {
4175   // If the mmap is mapping an anonymous memory buffer, this is easy:
4176   // just mremap to the new size.  If it's mapping to a file, we want
4177   // to unmap to flush to the file, then remap after growing the file.
4178   if (this->map_is_anonymous_)
4179     {
4180       void* base = ::mremap(this->base_, this->file_size_, file_size,
4181                             MREMAP_MAYMOVE);
4182       if (base == MAP_FAILED)
4183         gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4184       this->base_ = static_cast<unsigned char*>(base);
4185       this->file_size_ = file_size;
4186     }
4187   else
4188     {
4189       this->unmap();
4190       this->file_size_ = file_size;
4191       if (!this->map_no_anonymous())
4192         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4193     }
4194 }
4195
4196 // Map an anonymous block of memory which will later be written to the
4197 // file.  Return whether the map succeeded.
4198
4199 bool
4200 Output_file::map_anonymous()
4201 {
4202   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4203                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4204   if (base != MAP_FAILED)
4205     {
4206       this->map_is_anonymous_ = true;
4207       this->base_ = static_cast<unsigned char*>(base);
4208       return true;
4209     }
4210   return false;
4211 }
4212
4213 // Map the file into memory.  Return whether the mapping succeeded.
4214
4215 bool
4216 Output_file::map_no_anonymous()
4217 {
4218   const int o = this->o_;
4219
4220   // If the output file is not a regular file, don't try to mmap it;
4221   // instead, we'll mmap a block of memory (an anonymous buffer), and
4222   // then later write the buffer to the file.
4223   void* base;
4224   struct stat statbuf;
4225   if (o == STDOUT_FILENO || o == STDERR_FILENO
4226       || ::fstat(o, &statbuf) != 0
4227       || !S_ISREG(statbuf.st_mode)
4228       || this->is_temporary_)
4229     return false;
4230
4231   // Ensure that we have disk space available for the file.  If we
4232   // don't do this, it is possible that we will call munmap, close,
4233   // and exit with dirty buffers still in the cache with no assigned
4234   // disk blocks.  If the disk is out of space at that point, the
4235   // output file will wind up incomplete, but we will have already
4236   // exited.  The alternative to fallocate would be to use fdatasync,
4237   // but that would be a more significant performance hit.
4238   if (::posix_fallocate(o, 0, this->file_size_) < 0)
4239     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4240
4241   // Map the file into memory.
4242   base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4243                 MAP_SHARED, o, 0);
4244
4245   // The mmap call might fail because of file system issues: the file
4246   // system might not support mmap at all, or it might not support
4247   // mmap with PROT_WRITE.
4248   if (base == MAP_FAILED)
4249     return false;
4250
4251   this->map_is_anonymous_ = false;
4252   this->base_ = static_cast<unsigned char*>(base);
4253   return true;
4254 }
4255
4256 // Map the file into memory.
4257
4258 void
4259 Output_file::map()
4260 {
4261   if (this->map_no_anonymous())
4262     return;
4263
4264   // The mmap call might fail because of file system issues: the file
4265   // system might not support mmap at all, or it might not support
4266   // mmap with PROT_WRITE.  I'm not sure which errno values we will
4267   // see in all cases, so if the mmap fails for any reason and we
4268   // don't care about file contents, try for an anonymous map.
4269   if (this->map_anonymous())
4270     return;
4271
4272   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4273              this->name_, static_cast<unsigned long>(this->file_size_),
4274              strerror(errno));
4275 }
4276
4277 // Unmap the file from memory.
4278
4279 void
4280 Output_file::unmap()
4281 {
4282   if (::munmap(this->base_, this->file_size_) < 0)
4283     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4284   this->base_ = NULL;
4285 }
4286
4287 // Close the output file.
4288
4289 void
4290 Output_file::close()
4291 {
4292   // If the map isn't file-backed, we need to write it now.
4293   if (this->map_is_anonymous_ && !this->is_temporary_)
4294     {
4295       size_t bytes_to_write = this->file_size_;
4296       size_t offset = 0;
4297       while (bytes_to_write > 0)
4298         {
4299           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4300                                           bytes_to_write);
4301           if (bytes_written == 0)
4302             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4303           else if (bytes_written < 0)
4304             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4305           else
4306             {
4307               bytes_to_write -= bytes_written;
4308               offset += bytes_written;
4309             }
4310         }
4311     }
4312   this->unmap();
4313
4314   // We don't close stdout or stderr
4315   if (this->o_ != STDOUT_FILENO
4316       && this->o_ != STDERR_FILENO
4317       && !this->is_temporary_)
4318     if (::close(this->o_) < 0)
4319       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4320   this->o_ = -1;
4321 }
4322
4323 // Instantiate the templates we need.  We could use the configure
4324 // script to restrict this to only the ones for implemented targets.
4325
4326 #ifdef HAVE_TARGET_32_LITTLE
4327 template
4328 off_t
4329 Output_section::add_input_section<32, false>(
4330     Sized_relobj<32, false>* object,
4331     unsigned int shndx,
4332     const char* secname,
4333     const elfcpp::Shdr<32, false>& shdr,
4334     unsigned int reloc_shndx,
4335     bool have_sections_script);
4336 #endif
4337
4338 #ifdef HAVE_TARGET_32_BIG
4339 template
4340 off_t
4341 Output_section::add_input_section<32, true>(
4342     Sized_relobj<32, true>* object,
4343     unsigned int shndx,
4344     const char* secname,
4345     const elfcpp::Shdr<32, true>& shdr,
4346     unsigned int reloc_shndx,
4347     bool have_sections_script);
4348 #endif
4349
4350 #ifdef HAVE_TARGET_64_LITTLE
4351 template
4352 off_t
4353 Output_section::add_input_section<64, false>(
4354     Sized_relobj<64, false>* object,
4355     unsigned int shndx,
4356     const char* secname,
4357     const elfcpp::Shdr<64, false>& shdr,
4358     unsigned int reloc_shndx,
4359     bool have_sections_script);
4360 #endif
4361
4362 #ifdef HAVE_TARGET_64_BIG
4363 template
4364 off_t
4365 Output_section::add_input_section<64, true>(
4366     Sized_relobj<64, true>* object,
4367     unsigned int shndx,
4368     const char* secname,
4369     const elfcpp::Shdr<64, true>& shdr,
4370     unsigned int reloc_shndx,
4371     bool have_sections_script);
4372 #endif
4373
4374 #ifdef HAVE_TARGET_32_LITTLE
4375 template
4376 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4377 #endif
4378
4379 #ifdef HAVE_TARGET_32_BIG
4380 template
4381 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4382 #endif
4383
4384 #ifdef HAVE_TARGET_64_LITTLE
4385 template
4386 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4387 #endif
4388
4389 #ifdef HAVE_TARGET_64_BIG
4390 template
4391 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4392 #endif
4393
4394 #ifdef HAVE_TARGET_32_LITTLE
4395 template
4396 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4397 #endif
4398
4399 #ifdef HAVE_TARGET_32_BIG
4400 template
4401 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4402 #endif
4403
4404 #ifdef HAVE_TARGET_64_LITTLE
4405 template
4406 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4407 #endif
4408
4409 #ifdef HAVE_TARGET_64_BIG
4410 template
4411 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4412 #endif
4413
4414 #ifdef HAVE_TARGET_32_LITTLE
4415 template
4416 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4417 #endif
4418
4419 #ifdef HAVE_TARGET_32_BIG
4420 template
4421 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4422 #endif
4423
4424 #ifdef HAVE_TARGET_64_LITTLE
4425 template
4426 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4427 #endif
4428
4429 #ifdef HAVE_TARGET_64_BIG
4430 template
4431 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4432 #endif
4433
4434 #ifdef HAVE_TARGET_32_LITTLE
4435 template
4436 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4437 #endif
4438
4439 #ifdef HAVE_TARGET_32_BIG
4440 template
4441 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4442 #endif
4443
4444 #ifdef HAVE_TARGET_64_LITTLE
4445 template
4446 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4447 #endif
4448
4449 #ifdef HAVE_TARGET_64_BIG
4450 template
4451 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4452 #endif
4453
4454 #ifdef HAVE_TARGET_32_LITTLE
4455 template
4456 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4457 #endif
4458
4459 #ifdef HAVE_TARGET_32_BIG
4460 template
4461 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4462 #endif
4463
4464 #ifdef HAVE_TARGET_64_LITTLE
4465 template
4466 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4467 #endif
4468
4469 #ifdef HAVE_TARGET_64_BIG
4470 template
4471 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4472 #endif
4473
4474 #ifdef HAVE_TARGET_32_LITTLE
4475 template
4476 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4477 #endif
4478
4479 #ifdef HAVE_TARGET_32_BIG
4480 template
4481 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4482 #endif
4483
4484 #ifdef HAVE_TARGET_64_LITTLE
4485 template
4486 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4487 #endif
4488
4489 #ifdef HAVE_TARGET_64_BIG
4490 template
4491 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4492 #endif
4493
4494 #ifdef HAVE_TARGET_32_LITTLE
4495 template
4496 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4497 #endif
4498
4499 #ifdef HAVE_TARGET_32_BIG
4500 template
4501 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4502 #endif
4503
4504 #ifdef HAVE_TARGET_64_LITTLE
4505 template
4506 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4507 #endif
4508
4509 #ifdef HAVE_TARGET_64_BIG
4510 template
4511 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4512 #endif
4513
4514 #ifdef HAVE_TARGET_32_LITTLE
4515 template
4516 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4517 #endif
4518
4519 #ifdef HAVE_TARGET_32_BIG
4520 template
4521 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4522 #endif
4523
4524 #ifdef HAVE_TARGET_64_LITTLE
4525 template
4526 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4527 #endif
4528
4529 #ifdef HAVE_TARGET_64_BIG
4530 template
4531 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4532 #endif
4533
4534 #ifdef HAVE_TARGET_32_LITTLE
4535 template
4536 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4537 #endif
4538
4539 #ifdef HAVE_TARGET_32_BIG
4540 template
4541 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4542 #endif
4543
4544 #ifdef HAVE_TARGET_64_LITTLE
4545 template
4546 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4547 #endif
4548
4549 #ifdef HAVE_TARGET_64_BIG
4550 template
4551 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4552 #endif
4553
4554 #ifdef HAVE_TARGET_32_LITTLE
4555 template
4556 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4557 #endif
4558
4559 #ifdef HAVE_TARGET_32_BIG
4560 template
4561 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4562 #endif
4563
4564 #ifdef HAVE_TARGET_64_LITTLE
4565 template
4566 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4567 #endif
4568
4569 #ifdef HAVE_TARGET_64_BIG
4570 template
4571 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4572 #endif
4573
4574 #ifdef HAVE_TARGET_32_LITTLE
4575 template
4576 class Output_data_group<32, false>;
4577 #endif
4578
4579 #ifdef HAVE_TARGET_32_BIG
4580 template
4581 class Output_data_group<32, true>;
4582 #endif
4583
4584 #ifdef HAVE_TARGET_64_LITTLE
4585 template
4586 class Output_data_group<64, false>;
4587 #endif
4588
4589 #ifdef HAVE_TARGET_64_BIG
4590 template
4591 class Output_data_group<64, true>;
4592 #endif
4593
4594 #ifdef HAVE_TARGET_32_LITTLE
4595 template
4596 class Output_data_got<32, false>;
4597 #endif
4598
4599 #ifdef HAVE_TARGET_32_BIG
4600 template
4601 class Output_data_got<32, true>;
4602 #endif
4603
4604 #ifdef HAVE_TARGET_64_LITTLE
4605 template
4606 class Output_data_got<64, false>;
4607 #endif
4608
4609 #ifdef HAVE_TARGET_64_BIG
4610 template
4611 class Output_data_got<64, true>;
4612 #endif
4613
4614 } // End namespace gold.