1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #include "libiberty.h"
35 #include "parameters.h"
40 #include "descriptors.h"
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
54 posix_fallocate(int o, off_t offset, off_t len)
56 return ftruncate(o, offset + len);
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
63 // Output_data variables.
65 bool Output_data::allocated_sizes_are_fixed;
67 // Output_data methods.
69 Output_data::~Output_data()
73 // Return the default alignment for the target size.
76 Output_data::default_alignment()
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
82 // Return the default alignment for a size--32 or 64.
85 Output_data::default_alignment_for_size(int size)
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
98 Output_section_headers::Output_section_headers(
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
114 // Compute the current data size.
117 Output_section_headers::do_size() const
119 // Count all the sections. Start with 1 for the null section.
121 if (!parameters->options().relocatable())
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
139 count += this->unattached_section_list_->size();
141 const int size = parameters->target().get_size();
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
150 return count * shdr_size;
153 // Write out the section headers.
156 Output_section_headers::do_write(Output_file* of)
158 switch (parameters->size_and_endianness())
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
185 template<int size, bool big_endian>
187 Output_section_headers::do_sized_write(Output_file* of)
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
208 oshdr.put_sh_size(section_count);
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
214 oshdr.put_sh_link(shstrndx);
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
274 of->write_output_view(this->offset(), all_shdrs_size, view);
277 // Output_segment_header methods.
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
286 Output_segment_headers::do_write(Output_file* of)
288 switch (parameters->size_and_endianness())
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
315 template<int size, bool big_endian>
317 Output_segment_headers::do_sized_write(Output_file* of)
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
334 gold_assert(v - view == all_phdrs_size);
336 of->write_output_view(this->offset(), all_phdrs_size, view);
340 Output_segment_headers::do_size() const
342 const int size = parameters->target().get_size();
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
351 return this->segment_list_.size() * phdr_size;
354 // Output_file_header methods.
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
362 segment_header_(osh),
363 section_header_(NULL),
367 this->set_data_size(this->do_size());
370 // Set the section table information for a file header.
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
380 // Write out the file header.
383 Output_file_header::do_write(Output_file* of)
385 gold_assert(this->offset() == 0);
387 switch (parameters->size_and_endianness())
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
414 // Write out the file header with appropriate size and endianess.
416 template<int size, bool big_endian>
418 Output_file_header::do_sized_write(Output_file* of)
420 gold_assert(this->offset() == 0);
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
456 oehdr.put_e_entry(this->entry<size>());
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
461 oehdr.put_e_phoff(this->segment_header_->offset());
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
467 if (this->segment_header_ == NULL)
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
490 oehdr.put_e_shnum(0);
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
502 of->write_output_view(0, ehdr_size, view);
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
521 Symbol* sym = this->symtab_->lookup(entry);
523 typename Sized_symbol<size>::Value_type v;
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
537 v = strtoull(entry, &endptr, 0);
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
549 // Compute the current data size.
552 Output_file_header::do_size() const
554 const int size = parameters->target().get_size();
556 return elfcpp::Elf_sizes<32>::ehdr_size;
558 return elfcpp::Elf_sizes<64>::ehdr_size;
563 // Output_data_const methods.
566 Output_data_const::do_write(Output_file* of)
568 of->write(this->offset(), this->data_.data(), this->data_.size());
571 // Output_data_const_buffer methods.
574 Output_data_const_buffer::do_write(Output_file* of)
576 of->write(this->offset(), this->p_, this->data_size());
579 // Output_section_data methods.
581 // Record the output section, and set the entry size and such.
584 Output_section_data::set_output_section(Output_section* os)
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
591 // Return the section index of the output section.
594 Output_section_data::do_out_shndx() const
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
604 Output_section_data::set_addralign(uint64_t addralign)
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
612 // Output_data_strtab methods.
614 // Set the final data size.
617 Output_data_strtab::set_final_data_size()
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
623 // Write out a string table.
626 Output_data_strtab::do_write(Output_file* of)
628 this->strtab_->write(of, this->offset());
631 // Output_reloc methods.
633 // A reloc against a global symbol.
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
642 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
643 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
645 // this->type_ is a bitfield; make sure TYPE fits.
646 gold_assert(this->type_ == type);
647 this->u1_.gsym = gsym;
650 this->set_needs_dynsym_index();
653 template<bool dynamic, int size, bool big_endian>
654 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Sized_relobj<size, big_endian>* relobj,
661 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
662 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
664 gold_assert(shndx != INVALID_CODE);
665 // this->type_ is a bitfield; make sure TYPE fits.
666 gold_assert(this->type_ == type);
667 this->u1_.gsym = gsym;
668 this->u2_.relobj = relobj;
670 this->set_needs_dynsym_index();
673 // A reloc against a local symbol.
675 template<bool dynamic, int size, bool big_endian>
676 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
677 Sized_relobj<size, big_endian>* relobj,
678 unsigned int local_sym_index,
683 bool is_section_symbol)
684 : address_(address), local_sym_index_(local_sym_index), type_(type),
685 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
688 gold_assert(local_sym_index != GSYM_CODE
689 && local_sym_index != INVALID_CODE);
690 // this->type_ is a bitfield; make sure TYPE fits.
691 gold_assert(this->type_ == type);
692 this->u1_.relobj = relobj;
695 this->set_needs_dynsym_index();
698 template<bool dynamic, int size, bool big_endian>
699 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
700 Sized_relobj<size, big_endian>* relobj,
701 unsigned int local_sym_index,
706 bool is_section_symbol)
707 : address_(address), local_sym_index_(local_sym_index), type_(type),
708 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
711 gold_assert(local_sym_index != GSYM_CODE
712 && local_sym_index != INVALID_CODE);
713 gold_assert(shndx != INVALID_CODE);
714 // this->type_ is a bitfield; make sure TYPE fits.
715 gold_assert(this->type_ == type);
716 this->u1_.relobj = relobj;
717 this->u2_.relobj = relobj;
719 this->set_needs_dynsym_index();
722 // A reloc against the STT_SECTION symbol of an output section.
724 template<bool dynamic, int size, bool big_endian>
725 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
730 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
731 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
738 this->set_needs_dynsym_index();
740 os->set_needs_symtab_index();
743 template<bool dynamic, int size, bool big_endian>
744 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
747 Sized_relobj<size, big_endian>* relobj,
750 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
751 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
753 gold_assert(shndx != INVALID_CODE);
754 // this->type_ is a bitfield; make sure TYPE fits.
755 gold_assert(this->type_ == type);
757 this->u2_.relobj = relobj;
759 this->set_needs_dynsym_index();
761 os->set_needs_symtab_index();
764 // An absolute relocation.
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
771 : address_(address), local_sym_index_(0), type_(type),
772 is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
774 // this->type_ is a bitfield; make sure TYPE fits.
775 gold_assert(this->type_ == type);
776 this->u1_.relobj = NULL;
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
783 Sized_relobj<size, big_endian>* relobj,
786 : address_(address), local_sym_index_(0), type_(type),
787 is_relative_(false), is_section_symbol_(false), shndx_(shndx)
789 gold_assert(shndx != INVALID_CODE);
790 // this->type_ is a bitfield; make sure TYPE fits.
791 gold_assert(this->type_ == type);
792 this->u1_.relobj = NULL;
793 this->u2_.relobj = relobj;
796 // A target specific relocation.
798 template<bool dynamic, int size, bool big_endian>
799 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
804 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
805 is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
807 // this->type_ is a bitfield; make sure TYPE fits.
808 gold_assert(this->type_ == type);
813 template<bool dynamic, int size, bool big_endian>
814 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
817 Sized_relobj<size, big_endian>* relobj,
820 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
821 is_relative_(false), is_section_symbol_(false), shndx_(shndx)
823 gold_assert(shndx != INVALID_CODE);
824 // this->type_ is a bitfield; make sure TYPE fits.
825 gold_assert(this->type_ == type);
827 this->u2_.relobj = relobj;
830 // Record that we need a dynamic symbol index for this relocation.
832 template<bool dynamic, int size, bool big_endian>
834 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
835 set_needs_dynsym_index()
837 if (this->is_relative_)
839 switch (this->local_sym_index_)
845 this->u1_.gsym->set_needs_dynsym_entry();
849 this->u1_.os->set_needs_dynsym_index();
853 // The target must take care of this if necessary.
861 const unsigned int lsi = this->local_sym_index_;
862 if (!this->is_section_symbol_)
863 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
865 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
871 // Get the symbol index of a relocation.
873 template<bool dynamic, int size, bool big_endian>
875 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
879 switch (this->local_sym_index_)
885 if (this->u1_.gsym == NULL)
888 index = this->u1_.gsym->dynsym_index();
890 index = this->u1_.gsym->symtab_index();
895 index = this->u1_.os->dynsym_index();
897 index = this->u1_.os->symtab_index();
901 index = parameters->target().reloc_symbol_index(this->u1_.arg,
906 // Relocations without symbols use a symbol index of 0.
912 const unsigned int lsi = this->local_sym_index_;
913 if (!this->is_section_symbol_)
916 index = this->u1_.relobj->dynsym_index(lsi);
918 index = this->u1_.relobj->symtab_index(lsi);
922 Output_section* os = this->u1_.relobj->output_section(lsi);
923 gold_assert(os != NULL);
925 index = os->dynsym_index();
927 index = os->symtab_index();
932 gold_assert(index != -1U);
936 // For a local section symbol, get the address of the offset ADDEND
937 // within the input section.
939 template<bool dynamic, int size, bool big_endian>
940 typename elfcpp::Elf_types<size>::Elf_Addr
941 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
942 local_section_offset(Addend addend) const
944 gold_assert(this->local_sym_index_ != GSYM_CODE
945 && this->local_sym_index_ != SECTION_CODE
946 && this->local_sym_index_ != TARGET_CODE
947 && this->local_sym_index_ != INVALID_CODE
948 && this->local_sym_index_ != 0
949 && this->is_section_symbol_);
950 const unsigned int lsi = this->local_sym_index_;
951 Output_section* os = this->u1_.relobj->output_section(lsi);
952 gold_assert(os != NULL);
953 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
954 if (offset != invalid_address)
955 return offset + addend;
956 // This is a merge section.
957 offset = os->output_address(this->u1_.relobj, lsi, addend);
958 gold_assert(offset != invalid_address);
962 // Get the output address of a relocation.
964 template<bool dynamic, int size, bool big_endian>
965 typename elfcpp::Elf_types<size>::Elf_Addr
966 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
968 Address address = this->address_;
969 if (this->shndx_ != INVALID_CODE)
971 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
972 gold_assert(os != NULL);
973 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
974 if (off != invalid_address)
975 address += os->address() + off;
978 address = os->output_address(this->u2_.relobj, this->shndx_,
980 gold_assert(address != invalid_address);
983 else if (this->u2_.od != NULL)
984 address += this->u2_.od->address();
988 // Write out the offset and info fields of a Rel or Rela relocation
991 template<bool dynamic, int size, bool big_endian>
992 template<typename Write_rel>
994 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
997 wr->put_r_offset(this->get_address());
998 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
999 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1002 // Write out a Rel relocation.
1004 template<bool dynamic, int size, bool big_endian>
1006 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1007 unsigned char* pov) const
1009 elfcpp::Rel_write<size, big_endian> orel(pov);
1010 this->write_rel(&orel);
1013 // Get the value of the symbol referred to by a Rel relocation.
1015 template<bool dynamic, int size, bool big_endian>
1016 typename elfcpp::Elf_types<size>::Elf_Addr
1017 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1018 Addend addend) const
1020 if (this->local_sym_index_ == GSYM_CODE)
1022 const Sized_symbol<size>* sym;
1023 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1024 return sym->value() + addend;
1026 gold_assert(this->local_sym_index_ != SECTION_CODE
1027 && this->local_sym_index_ != TARGET_CODE
1028 && this->local_sym_index_ != INVALID_CODE
1029 && this->local_sym_index_ != 0
1030 && !this->is_section_symbol_);
1031 const unsigned int lsi = this->local_sym_index_;
1032 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1033 return symval->value(this->u1_.relobj, addend);
1036 // Reloc comparison. This function sorts the dynamic relocs for the
1037 // benefit of the dynamic linker. First we sort all relative relocs
1038 // to the front. Among relative relocs, we sort by output address.
1039 // Among non-relative relocs, we sort by symbol index, then by output
1042 template<bool dynamic, int size, bool big_endian>
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1048 if (this->is_relative_)
1050 if (!r2.is_relative_)
1052 // Otherwise sort by reloc address below.
1054 else if (r2.is_relative_)
1058 unsigned int sym1 = this->get_symbol_index();
1059 unsigned int sym2 = r2.get_symbol_index();
1062 else if (sym1 > sym2)
1064 // Otherwise sort by reloc address.
1067 section_offset_type addr1 = this->get_address();
1068 section_offset_type addr2 = r2.get_address();
1071 else if (addr1 > addr2)
1074 // Final tie breaker, in order to generate the same output on any
1075 // host: reloc type.
1076 unsigned int type1 = this->type_;
1077 unsigned int type2 = r2.type_;
1080 else if (type1 > type2)
1083 // These relocs appear to be exactly the same.
1087 // Write out a Rela relocation.
1089 template<bool dynamic, int size, bool big_endian>
1091 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1092 unsigned char* pov) const
1094 elfcpp::Rela_write<size, big_endian> orel(pov);
1095 this->rel_.write_rel(&orel);
1096 Addend addend = this->addend_;
1097 if (this->rel_.is_target_specific())
1098 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1099 this->rel_.type(), addend);
1100 else if (this->rel_.is_relative())
1101 addend = this->rel_.symbol_value(addend);
1102 else if (this->rel_.is_local_section_symbol())
1103 addend = this->rel_.local_section_offset(addend);
1104 orel.put_r_addend(addend);
1107 // Output_data_reloc_base methods.
1109 // Adjust the output section.
1111 template<int sh_type, bool dynamic, int size, bool big_endian>
1113 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1114 ::do_adjust_output_section(Output_section* os)
1116 if (sh_type == elfcpp::SHT_REL)
1117 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1118 else if (sh_type == elfcpp::SHT_RELA)
1119 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1123 os->set_should_link_to_dynsym();
1125 os->set_should_link_to_symtab();
1128 // Write out relocation data.
1130 template<int sh_type, bool dynamic, int size, bool big_endian>
1132 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1135 const off_t off = this->offset();
1136 const off_t oview_size = this->data_size();
1137 unsigned char* const oview = of->get_output_view(off, oview_size);
1139 if (this->sort_relocs())
1141 gold_assert(dynamic);
1142 std::sort(this->relocs_.begin(), this->relocs_.end(),
1143 Sort_relocs_comparison());
1146 unsigned char* pov = oview;
1147 for (typename Relocs::const_iterator p = this->relocs_.begin();
1148 p != this->relocs_.end();
1155 gold_assert(pov - oview == oview_size);
1157 of->write_output_view(off, oview_size, oview);
1159 // We no longer need the relocation entries.
1160 this->relocs_.clear();
1163 // Class Output_relocatable_relocs.
1165 template<int sh_type, int size, bool big_endian>
1167 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1169 this->set_data_size(this->rr_->output_reloc_count()
1170 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1173 // class Output_data_group.
1175 template<int size, bool big_endian>
1176 Output_data_group<size, big_endian>::Output_data_group(
1177 Sized_relobj<size, big_endian>* relobj,
1178 section_size_type entry_count,
1179 elfcpp::Elf_Word flags,
1180 std::vector<unsigned int>* input_shndxes)
1181 : Output_section_data(entry_count * 4, 4, false),
1185 this->input_shndxes_.swap(*input_shndxes);
1188 // Write out the section group, which means translating the section
1189 // indexes to apply to the output file.
1191 template<int size, bool big_endian>
1193 Output_data_group<size, big_endian>::do_write(Output_file* of)
1195 const off_t off = this->offset();
1196 const section_size_type oview_size =
1197 convert_to_section_size_type(this->data_size());
1198 unsigned char* const oview = of->get_output_view(off, oview_size);
1200 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1201 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1204 for (std::vector<unsigned int>::const_iterator p =
1205 this->input_shndxes_.begin();
1206 p != this->input_shndxes_.end();
1209 Output_section* os = this->relobj_->output_section(*p);
1211 unsigned int output_shndx;
1213 output_shndx = os->out_shndx();
1216 this->relobj_->error(_("section group retained but "
1217 "group element discarded"));
1221 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1224 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1225 gold_assert(wrote == oview_size);
1227 of->write_output_view(off, oview_size, oview);
1229 // We no longer need this information.
1230 this->input_shndxes_.clear();
1233 // Output_data_got::Got_entry methods.
1235 // Write out the entry.
1237 template<int size, bool big_endian>
1239 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1243 switch (this->local_sym_index_)
1247 // If the symbol is resolved locally, we need to write out the
1248 // link-time value, which will be relocated dynamically by a
1249 // RELATIVE relocation.
1250 Symbol* gsym = this->u_.gsym;
1251 Sized_symbol<size>* sgsym;
1252 // This cast is a bit ugly. We don't want to put a
1253 // virtual method in Symbol, because we want Symbol to be
1254 // as small as possible.
1255 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1256 val = sgsym->value();
1261 val = this->u_.constant;
1266 const unsigned int lsi = this->local_sym_index_;
1267 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1268 val = symval->value(this->u_.object, 0);
1273 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1276 // Output_data_got methods.
1278 // Add an entry for a global symbol to the GOT. This returns true if
1279 // this is a new GOT entry, false if the symbol already had a GOT
1282 template<int size, bool big_endian>
1284 Output_data_got<size, big_endian>::add_global(
1286 unsigned int got_type)
1288 if (gsym->has_got_offset(got_type))
1291 this->entries_.push_back(Got_entry(gsym));
1292 this->set_got_size();
1293 gsym->set_got_offset(got_type, this->last_got_offset());
1297 // Add an entry for a global symbol to the GOT, and add a dynamic
1298 // relocation of type R_TYPE for the GOT entry.
1299 template<int size, bool big_endian>
1301 Output_data_got<size, big_endian>::add_global_with_rel(
1303 unsigned int got_type,
1305 unsigned int r_type)
1307 if (gsym->has_got_offset(got_type))
1310 this->entries_.push_back(Got_entry());
1311 this->set_got_size();
1312 unsigned int got_offset = this->last_got_offset();
1313 gsym->set_got_offset(got_type, got_offset);
1314 rel_dyn->add_global(gsym, r_type, this, got_offset);
1317 template<int size, bool big_endian>
1319 Output_data_got<size, big_endian>::add_global_with_rela(
1321 unsigned int got_type,
1323 unsigned int r_type)
1325 if (gsym->has_got_offset(got_type))
1328 this->entries_.push_back(Got_entry());
1329 this->set_got_size();
1330 unsigned int got_offset = this->last_got_offset();
1331 gsym->set_got_offset(got_type, got_offset);
1332 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1335 // Add a pair of entries for a global symbol to the GOT, and add
1336 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1337 // If R_TYPE_2 == 0, add the second entry with no relocation.
1338 template<int size, bool big_endian>
1340 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1342 unsigned int got_type,
1344 unsigned int r_type_1,
1345 unsigned int r_type_2)
1347 if (gsym->has_got_offset(got_type))
1350 this->entries_.push_back(Got_entry());
1351 unsigned int got_offset = this->last_got_offset();
1352 gsym->set_got_offset(got_type, got_offset);
1353 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1355 this->entries_.push_back(Got_entry());
1358 got_offset = this->last_got_offset();
1359 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1362 this->set_got_size();
1365 template<int size, bool big_endian>
1367 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1369 unsigned int got_type,
1371 unsigned int r_type_1,
1372 unsigned int r_type_2)
1374 if (gsym->has_got_offset(got_type))
1377 this->entries_.push_back(Got_entry());
1378 unsigned int got_offset = this->last_got_offset();
1379 gsym->set_got_offset(got_type, got_offset);
1380 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1382 this->entries_.push_back(Got_entry());
1385 got_offset = this->last_got_offset();
1386 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1389 this->set_got_size();
1392 // Add an entry for a local symbol to the GOT. This returns true if
1393 // this is a new GOT entry, false if the symbol already has a GOT
1396 template<int size, bool big_endian>
1398 Output_data_got<size, big_endian>::add_local(
1399 Sized_relobj<size, big_endian>* object,
1400 unsigned int symndx,
1401 unsigned int got_type)
1403 if (object->local_has_got_offset(symndx, got_type))
1406 this->entries_.push_back(Got_entry(object, symndx));
1407 this->set_got_size();
1408 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1412 // Add an entry for a local symbol to the GOT, and add a dynamic
1413 // relocation of type R_TYPE for the GOT entry.
1414 template<int size, bool big_endian>
1416 Output_data_got<size, big_endian>::add_local_with_rel(
1417 Sized_relobj<size, big_endian>* object,
1418 unsigned int symndx,
1419 unsigned int got_type,
1421 unsigned int r_type)
1423 if (object->local_has_got_offset(symndx, got_type))
1426 this->entries_.push_back(Got_entry());
1427 this->set_got_size();
1428 unsigned int got_offset = this->last_got_offset();
1429 object->set_local_got_offset(symndx, got_type, got_offset);
1430 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1433 template<int size, bool big_endian>
1435 Output_data_got<size, big_endian>::add_local_with_rela(
1436 Sized_relobj<size, big_endian>* object,
1437 unsigned int symndx,
1438 unsigned int got_type,
1440 unsigned int r_type)
1442 if (object->local_has_got_offset(symndx, got_type))
1445 this->entries_.push_back(Got_entry());
1446 this->set_got_size();
1447 unsigned int got_offset = this->last_got_offset();
1448 object->set_local_got_offset(symndx, got_type, got_offset);
1449 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1452 // Add a pair of entries for a local symbol to the GOT, and add
1453 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1454 // If R_TYPE_2 == 0, add the second entry with no relocation.
1455 template<int size, bool big_endian>
1457 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1458 Sized_relobj<size, big_endian>* object,
1459 unsigned int symndx,
1461 unsigned int got_type,
1463 unsigned int r_type_1,
1464 unsigned int r_type_2)
1466 if (object->local_has_got_offset(symndx, got_type))
1469 this->entries_.push_back(Got_entry());
1470 unsigned int got_offset = this->last_got_offset();
1471 object->set_local_got_offset(symndx, got_type, got_offset);
1472 Output_section* os = object->output_section(shndx);
1473 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1475 this->entries_.push_back(Got_entry(object, symndx));
1478 got_offset = this->last_got_offset();
1479 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1482 this->set_got_size();
1485 template<int size, bool big_endian>
1487 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1488 Sized_relobj<size, big_endian>* object,
1489 unsigned int symndx,
1491 unsigned int got_type,
1493 unsigned int r_type_1,
1494 unsigned int r_type_2)
1496 if (object->local_has_got_offset(symndx, got_type))
1499 this->entries_.push_back(Got_entry());
1500 unsigned int got_offset = this->last_got_offset();
1501 object->set_local_got_offset(symndx, got_type, got_offset);
1502 Output_section* os = object->output_section(shndx);
1503 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1505 this->entries_.push_back(Got_entry(object, symndx));
1508 got_offset = this->last_got_offset();
1509 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1512 this->set_got_size();
1515 // Write out the GOT.
1517 template<int size, bool big_endian>
1519 Output_data_got<size, big_endian>::do_write(Output_file* of)
1521 const int add = size / 8;
1523 const off_t off = this->offset();
1524 const off_t oview_size = this->data_size();
1525 unsigned char* const oview = of->get_output_view(off, oview_size);
1527 unsigned char* pov = oview;
1528 for (typename Got_entries::const_iterator p = this->entries_.begin();
1529 p != this->entries_.end();
1536 gold_assert(pov - oview == oview_size);
1538 of->write_output_view(off, oview_size, oview);
1540 // We no longer need the GOT entries.
1541 this->entries_.clear();
1544 // Output_data_dynamic::Dynamic_entry methods.
1546 // Write out the entry.
1548 template<int size, bool big_endian>
1550 Output_data_dynamic::Dynamic_entry::write(
1552 const Stringpool* pool) const
1554 typename elfcpp::Elf_types<size>::Elf_WXword val;
1555 switch (this->offset_)
1557 case DYNAMIC_NUMBER:
1561 case DYNAMIC_SECTION_SIZE:
1562 val = this->u_.od->data_size();
1565 case DYNAMIC_SYMBOL:
1567 const Sized_symbol<size>* s =
1568 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1573 case DYNAMIC_STRING:
1574 val = pool->get_offset(this->u_.str);
1578 val = this->u_.od->address() + this->offset_;
1582 elfcpp::Dyn_write<size, big_endian> dw(pov);
1583 dw.put_d_tag(this->tag_);
1587 // Output_data_dynamic methods.
1589 // Adjust the output section to set the entry size.
1592 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1594 if (parameters->target().get_size() == 32)
1595 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1596 else if (parameters->target().get_size() == 64)
1597 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1602 // Set the final data size.
1605 Output_data_dynamic::set_final_data_size()
1607 // Add the terminating entry if it hasn't been added.
1608 // Because of relaxation, we can run this multiple times.
1609 if (this->entries_.empty()
1610 || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1611 this->add_constant(elfcpp::DT_NULL, 0);
1614 if (parameters->target().get_size() == 32)
1615 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1616 else if (parameters->target().get_size() == 64)
1617 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1620 this->set_data_size(this->entries_.size() * dyn_size);
1623 // Write out the dynamic entries.
1626 Output_data_dynamic::do_write(Output_file* of)
1628 switch (parameters->size_and_endianness())
1630 #ifdef HAVE_TARGET_32_LITTLE
1631 case Parameters::TARGET_32_LITTLE:
1632 this->sized_write<32, false>(of);
1635 #ifdef HAVE_TARGET_32_BIG
1636 case Parameters::TARGET_32_BIG:
1637 this->sized_write<32, true>(of);
1640 #ifdef HAVE_TARGET_64_LITTLE
1641 case Parameters::TARGET_64_LITTLE:
1642 this->sized_write<64, false>(of);
1645 #ifdef HAVE_TARGET_64_BIG
1646 case Parameters::TARGET_64_BIG:
1647 this->sized_write<64, true>(of);
1655 template<int size, bool big_endian>
1657 Output_data_dynamic::sized_write(Output_file* of)
1659 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1661 const off_t offset = this->offset();
1662 const off_t oview_size = this->data_size();
1663 unsigned char* const oview = of->get_output_view(offset, oview_size);
1665 unsigned char* pov = oview;
1666 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1667 p != this->entries_.end();
1670 p->write<size, big_endian>(pov, this->pool_);
1674 gold_assert(pov - oview == oview_size);
1676 of->write_output_view(offset, oview_size, oview);
1678 // We no longer need the dynamic entries.
1679 this->entries_.clear();
1682 // Class Output_symtab_xindex.
1685 Output_symtab_xindex::do_write(Output_file* of)
1687 const off_t offset = this->offset();
1688 const off_t oview_size = this->data_size();
1689 unsigned char* const oview = of->get_output_view(offset, oview_size);
1691 memset(oview, 0, oview_size);
1693 if (parameters->target().is_big_endian())
1694 this->endian_do_write<true>(oview);
1696 this->endian_do_write<false>(oview);
1698 of->write_output_view(offset, oview_size, oview);
1700 // We no longer need the data.
1701 this->entries_.clear();
1704 template<bool big_endian>
1706 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1708 for (Xindex_entries::const_iterator p = this->entries_.begin();
1709 p != this->entries_.end();
1712 unsigned int symndx = p->first;
1713 gold_assert(symndx * 4 < this->data_size());
1714 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1718 // Output_section::Input_section methods.
1720 // Return the data size. For an input section we store the size here.
1721 // For an Output_section_data, we have to ask it for the size.
1724 Output_section::Input_section::data_size() const
1726 if (this->is_input_section())
1727 return this->u1_.data_size;
1729 return this->u2_.posd->data_size();
1732 // Set the address and file offset.
1735 Output_section::Input_section::set_address_and_file_offset(
1738 off_t section_file_offset)
1740 if (this->is_input_section())
1741 this->u2_.object->set_section_offset(this->shndx_,
1742 file_offset - section_file_offset);
1744 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1747 // Reset the address and file offset.
1750 Output_section::Input_section::reset_address_and_file_offset()
1752 if (!this->is_input_section())
1753 this->u2_.posd->reset_address_and_file_offset();
1756 // Finalize the data size.
1759 Output_section::Input_section::finalize_data_size()
1761 if (!this->is_input_section())
1762 this->u2_.posd->finalize_data_size();
1765 // Try to turn an input offset into an output offset. We want to
1766 // return the output offset relative to the start of this
1767 // Input_section in the output section.
1770 Output_section::Input_section::output_offset(
1771 const Relobj* object,
1773 section_offset_type offset,
1774 section_offset_type *poutput) const
1776 if (!this->is_input_section())
1777 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1780 if (this->shndx_ != shndx || this->u2_.object != object)
1787 // Return whether this is the merge section for the input section
1791 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1792 unsigned int shndx) const
1794 if (this->is_input_section())
1796 return this->u2_.posd->is_merge_section_for(object, shndx);
1799 // Write out the data. We don't have to do anything for an input
1800 // section--they are handled via Object::relocate--but this is where
1801 // we write out the data for an Output_section_data.
1804 Output_section::Input_section::write(Output_file* of)
1806 if (!this->is_input_section())
1807 this->u2_.posd->write(of);
1810 // Write the data to a buffer. As for write(), we don't have to do
1811 // anything for an input section.
1814 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1816 if (!this->is_input_section())
1817 this->u2_.posd->write_to_buffer(buffer);
1820 // Print to a map file.
1823 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1825 switch (this->shndx_)
1827 case OUTPUT_SECTION_CODE:
1828 case MERGE_DATA_SECTION_CODE:
1829 case MERGE_STRING_SECTION_CODE:
1830 this->u2_.posd->print_to_mapfile(mapfile);
1833 case RELAXED_INPUT_SECTION_CODE:
1835 Output_relaxed_input_section* relaxed_section =
1836 this->relaxed_input_section();
1837 mapfile->print_input_section(relaxed_section->relobj(),
1838 relaxed_section->shndx());
1842 mapfile->print_input_section(this->u2_.object, this->shndx_);
1847 // Output_section methods.
1849 // Construct an Output_section. NAME will point into a Stringpool.
1851 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1852 elfcpp::Elf_Xword flags)
1857 link_section_(NULL),
1859 info_section_(NULL),
1868 first_input_offset_(0),
1870 postprocessing_buffer_(NULL),
1871 needs_symtab_index_(false),
1872 needs_dynsym_index_(false),
1873 should_link_to_symtab_(false),
1874 should_link_to_dynsym_(false),
1875 after_input_sections_(false),
1876 requires_postprocessing_(false),
1877 found_in_sections_clause_(false),
1878 has_load_address_(false),
1879 info_uses_section_index_(false),
1880 may_sort_attached_input_sections_(false),
1881 must_sort_attached_input_sections_(false),
1882 attached_input_sections_are_sorted_(false),
1884 is_relro_local_(false),
1885 is_last_relro_(false),
1886 is_first_non_relro_(false),
1887 is_small_section_(false),
1888 is_large_section_(false),
1890 is_dynamic_linker_section_(false),
1891 generate_code_fills_at_write_(false),
1892 is_entsize_zero_(false),
1895 merge_section_map_(),
1896 merge_section_by_properties_map_(),
1897 relaxed_input_section_map_(),
1898 is_relaxed_input_section_map_valid_(true)
1900 // An unallocated section has no address. Forcing this means that
1901 // we don't need special treatment for symbols defined in debug
1903 if ((flags & elfcpp::SHF_ALLOC) == 0)
1904 this->set_address(0);
1907 Output_section::~Output_section()
1909 delete this->checkpoint_;
1912 // Set the entry size.
1915 Output_section::set_entsize(uint64_t v)
1917 if (this->is_entsize_zero_)
1919 else if (this->entsize_ == 0)
1921 else if (this->entsize_ != v)
1924 this->is_entsize_zero_ = 1;
1928 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1929 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1930 // relocation section which applies to this section, or 0 if none, or
1931 // -1U if more than one. Return the offset of the input section
1932 // within the output section. Return -1 if the input section will
1933 // receive special handling. In the normal case we don't always keep
1934 // track of input sections for an Output_section. Instead, each
1935 // Object keeps track of the Output_section for each of its input
1936 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1937 // track of input sections here; this is used when SECTIONS appears in
1940 template<int size, bool big_endian>
1942 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1944 const char* secname,
1945 const elfcpp::Shdr<size, big_endian>& shdr,
1946 unsigned int reloc_shndx,
1947 bool have_sections_script)
1949 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1950 if ((addralign & (addralign - 1)) != 0)
1952 object->error(_("invalid alignment %lu for section \"%s\""),
1953 static_cast<unsigned long>(addralign), secname);
1957 if (addralign > this->addralign_)
1958 this->addralign_ = addralign;
1960 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1961 uint64_t entsize = shdr.get_sh_entsize();
1963 // .debug_str is a mergeable string section, but is not always so
1964 // marked by compilers. Mark manually here so we can optimize.
1965 if (strcmp(secname, ".debug_str") == 0)
1967 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1971 this->update_flags_for_input_section(sh_flags);
1972 this->set_entsize(entsize);
1974 // If this is a SHF_MERGE section, we pass all the input sections to
1975 // a Output_data_merge. We don't try to handle relocations for such
1976 // a section. We don't try to handle empty merge sections--they
1977 // mess up the mappings, and are useless anyhow.
1978 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1980 && shdr.get_sh_size() > 0)
1982 if (this->add_merge_input_section(object, shndx, sh_flags,
1983 entsize, addralign))
1985 // Tell the relocation routines that they need to call the
1986 // output_offset method to determine the final address.
1991 off_t offset_in_section = this->current_data_size_for_child();
1992 off_t aligned_offset_in_section = align_address(offset_in_section,
1995 // Determine if we want to delay code-fill generation until the output
1996 // section is written. When the target is relaxing, we want to delay fill
1997 // generating to avoid adjusting them during relaxation.
1998 if (!this->generate_code_fills_at_write_
1999 && !have_sections_script
2000 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2001 && parameters->target().has_code_fill()
2002 && parameters->target().may_relax())
2004 gold_assert(this->fills_.empty());
2005 this->generate_code_fills_at_write_ = true;
2008 if (aligned_offset_in_section > offset_in_section
2009 && !this->generate_code_fills_at_write_
2010 && !have_sections_script
2011 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2012 && parameters->target().has_code_fill())
2014 // We need to add some fill data. Using fill_list_ when
2015 // possible is an optimization, since we will often have fill
2016 // sections without input sections.
2017 off_t fill_len = aligned_offset_in_section - offset_in_section;
2018 if (this->input_sections_.empty())
2019 this->fills_.push_back(Fill(offset_in_section, fill_len));
2022 std::string fill_data(parameters->target().code_fill(fill_len));
2023 Output_data_const* odc = new Output_data_const(fill_data, 1);
2024 this->input_sections_.push_back(Input_section(odc));
2028 this->set_current_data_size_for_child(aligned_offset_in_section
2029 + shdr.get_sh_size());
2031 // We need to keep track of this section if we are already keeping
2032 // track of sections, or if we are relaxing. Also, if this is a
2033 // section which requires sorting, or which may require sorting in
2034 // the future, we keep track of the sections.
2035 if (have_sections_script
2036 || !this->input_sections_.empty()
2037 || this->may_sort_attached_input_sections()
2038 || this->must_sort_attached_input_sections()
2039 || parameters->options().user_set_Map()
2040 || parameters->target().may_relax())
2041 this->input_sections_.push_back(Input_section(object, shndx,
2045 return aligned_offset_in_section;
2048 // Add arbitrary data to an output section.
2051 Output_section::add_output_section_data(Output_section_data* posd)
2053 Input_section inp(posd);
2054 this->add_output_section_data(&inp);
2056 if (posd->is_data_size_valid())
2058 off_t offset_in_section = this->current_data_size_for_child();
2059 off_t aligned_offset_in_section = align_address(offset_in_section,
2061 this->set_current_data_size_for_child(aligned_offset_in_section
2062 + posd->data_size());
2066 // Add a relaxed input section.
2069 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2071 Input_section inp(poris);
2072 this->add_output_section_data(&inp);
2073 if (this->is_relaxed_input_section_map_valid_)
2075 Input_section_specifier iss(poris->relobj(), poris->shndx());
2076 this->relaxed_input_section_map_[iss] = poris;
2079 // For a relaxed section, we use the current data size. Linker scripts
2080 // get all the input sections, including relaxed one from an output
2081 // section and add them back to them same output section to compute the
2082 // output section size. If we do not account for sizes of relaxed input
2083 // sections, an output section would be incorrectly sized.
2084 off_t offset_in_section = this->current_data_size_for_child();
2085 off_t aligned_offset_in_section = align_address(offset_in_section,
2086 poris->addralign());
2087 this->set_current_data_size_for_child(aligned_offset_in_section
2088 + poris->current_data_size());
2091 // Add arbitrary data to an output section by Input_section.
2094 Output_section::add_output_section_data(Input_section* inp)
2096 if (this->input_sections_.empty())
2097 this->first_input_offset_ = this->current_data_size_for_child();
2099 this->input_sections_.push_back(*inp);
2101 uint64_t addralign = inp->addralign();
2102 if (addralign > this->addralign_)
2103 this->addralign_ = addralign;
2105 inp->set_output_section(this);
2108 // Add a merge section to an output section.
2111 Output_section::add_output_merge_section(Output_section_data* posd,
2112 bool is_string, uint64_t entsize)
2114 Input_section inp(posd, is_string, entsize);
2115 this->add_output_section_data(&inp);
2118 // Add an input section to a SHF_MERGE section.
2121 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2122 uint64_t flags, uint64_t entsize,
2125 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2127 // We only merge strings if the alignment is not more than the
2128 // character size. This could be handled, but it's unusual.
2129 if (is_string && addralign > entsize)
2132 // We cannot restore merged input section states.
2133 gold_assert(this->checkpoint_ == NULL);
2135 // Look up merge sections by required properties.
2136 Merge_section_properties msp(is_string, entsize, addralign);
2137 Merge_section_by_properties_map::const_iterator p =
2138 this->merge_section_by_properties_map_.find(msp);
2139 if (p != this->merge_section_by_properties_map_.end())
2141 Output_merge_base* merge_section = p->second;
2142 merge_section->add_input_section(object, shndx);
2143 gold_assert(merge_section->is_string() == is_string
2144 && merge_section->entsize() == entsize
2145 && merge_section->addralign() == addralign);
2147 // Link input section to found merge section.
2148 Input_section_specifier iss(object, shndx);
2149 this->merge_section_map_[iss] = merge_section;
2153 // We handle the actual constant merging in Output_merge_data or
2154 // Output_merge_string_data.
2155 Output_merge_base* pomb;
2157 pomb = new Output_merge_data(entsize, addralign);
2163 pomb = new Output_merge_string<char>(addralign);
2166 pomb = new Output_merge_string<uint16_t>(addralign);
2169 pomb = new Output_merge_string<uint32_t>(addralign);
2176 // Add new merge section to this output section and link merge section
2177 // properties to new merge section in map.
2178 this->add_output_merge_section(pomb, is_string, entsize);
2179 this->merge_section_by_properties_map_[msp] = pomb;
2181 // Add input section to new merge section and link input section to new
2182 // merge section in map.
2183 pomb->add_input_section(object, shndx);
2184 Input_section_specifier iss(object, shndx);
2185 this->merge_section_map_[iss] = pomb;
2190 // Build a relaxation map to speed up relaxation of existing input sections.
2191 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2194 Output_section::build_relaxation_map(
2195 const Input_section_list& input_sections,
2197 Relaxation_map* relaxation_map) const
2199 for (size_t i = 0; i < limit; ++i)
2201 const Input_section& is(input_sections[i]);
2202 if (is.is_input_section() || is.is_relaxed_input_section())
2204 Input_section_specifier iss(is.relobj(), is.shndx());
2205 (*relaxation_map)[iss] = i;
2210 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2211 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from input section
2212 // specifier to indices of INPUT_SECTIONS.
2215 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2216 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2217 const Relaxation_map& map,
2218 Input_section_list* input_sections)
2220 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2222 Output_relaxed_input_section* poris = relaxed_sections[i];
2223 Input_section_specifier iss(poris->relobj(), poris->shndx());
2224 Relaxation_map::const_iterator p = map.find(iss);
2225 gold_assert(p != map.end());
2226 gold_assert((*input_sections)[p->second].is_input_section());
2227 (*input_sections)[p->second] = Input_section(poris);
2231 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2232 // is a vector of pointers to Output_relaxed_input_section or its derived
2233 // classes. The relaxed sections must correspond to existing input sections.
2236 Output_section::convert_input_sections_to_relaxed_sections(
2237 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2239 gold_assert(parameters->target().may_relax());
2241 // We want to make sure that restore_states does not undo the effect of
2242 // this. If there is no checkpoint active, just search the current
2243 // input section list and replace the sections there. If there is
2244 // a checkpoint, also replace the sections there.
2246 // By default, we look at the whole list.
2247 size_t limit = this->input_sections_.size();
2249 if (this->checkpoint_ != NULL)
2251 // Replace input sections with relaxed input section in the saved
2252 // copy of the input section list.
2253 if (this->checkpoint_->input_sections_saved())
2256 this->build_relaxation_map(
2257 *(this->checkpoint_->input_sections()),
2258 this->checkpoint_->input_sections()->size(),
2260 this->convert_input_sections_in_list_to_relaxed_sections(
2263 this->checkpoint_->input_sections());
2267 // We have not copied the input section list yet. Instead, just
2268 // look at the portion that would be saved.
2269 limit = this->checkpoint_->input_sections_size();
2273 // Convert input sections in input_section_list.
2275 this->build_relaxation_map(this->input_sections_, limit, &map);
2276 this->convert_input_sections_in_list_to_relaxed_sections(
2279 &this->input_sections_);
2281 // Update fast look-up map.
2282 if (this->is_relaxed_input_section_map_valid_)
2283 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2285 Output_relaxed_input_section* poris = relaxed_sections[i];
2286 Input_section_specifier iss(poris->relobj(), poris->shndx());
2287 this->relaxed_input_section_map_[iss] = poris;
2291 // Update the output section flags based on input section flags.
2294 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2296 // If we created the section with SHF_ALLOC clear, we set the
2297 // address. If we are now setting the SHF_ALLOC flag, we need to
2299 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2300 && (flags & elfcpp::SHF_ALLOC) != 0)
2301 this->mark_address_invalid();
2303 this->flags_ |= (flags
2304 & (elfcpp::SHF_WRITE
2306 | elfcpp::SHF_EXECINSTR));
2308 if ((flags & elfcpp::SHF_MERGE) == 0)
2309 this->flags_ &=~ elfcpp::SHF_MERGE;
2312 if (this->current_data_size_for_child() == 0)
2313 this->flags_ |= elfcpp::SHF_MERGE;
2316 if ((flags & elfcpp::SHF_STRINGS) == 0)
2317 this->flags_ &=~ elfcpp::SHF_STRINGS;
2320 if (this->current_data_size_for_child() == 0)
2321 this->flags_ |= elfcpp::SHF_STRINGS;
2325 // Find the merge section into which an input section with index SHNDX in
2326 // OBJECT has been added. Return NULL if none found.
2328 Output_section_data*
2329 Output_section::find_merge_section(const Relobj* object,
2330 unsigned int shndx) const
2332 Input_section_specifier iss(object, shndx);
2333 Output_section_data_by_input_section_map::const_iterator p =
2334 this->merge_section_map_.find(iss);
2335 if (p != this->merge_section_map_.end())
2337 Output_section_data* posd = p->second;
2338 gold_assert(posd->is_merge_section_for(object, shndx));
2345 // Find an relaxed input section corresponding to an input section
2346 // in OBJECT with index SHNDX.
2348 const Output_relaxed_input_section*
2349 Output_section::find_relaxed_input_section(const Relobj* object,
2350 unsigned int shndx) const
2352 // Be careful that the map may not be valid due to input section export
2353 // to scripts or a check-point restore.
2354 if (!this->is_relaxed_input_section_map_valid_)
2356 // Rebuild the map as needed.
2357 this->relaxed_input_section_map_.clear();
2358 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2359 p != this->input_sections_.end();
2361 if (p->is_relaxed_input_section())
2363 Input_section_specifier iss(p->relobj(), p->shndx());
2364 this->relaxed_input_section_map_[iss] =
2365 p->relaxed_input_section();
2367 this->is_relaxed_input_section_map_valid_ = true;
2370 Input_section_specifier iss(object, shndx);
2371 Output_relaxed_input_section_by_input_section_map::const_iterator p =
2372 this->relaxed_input_section_map_.find(iss);
2373 if (p != this->relaxed_input_section_map_.end())
2379 // Given an address OFFSET relative to the start of input section
2380 // SHNDX in OBJECT, return whether this address is being included in
2381 // the final link. This should only be called if SHNDX in OBJECT has
2382 // a special mapping.
2385 Output_section::is_input_address_mapped(const Relobj* object,
2389 // Look at the Output_section_data_maps first.
2390 const Output_section_data* posd = this->find_merge_section(object, shndx);
2392 posd = this->find_relaxed_input_section(object, shndx);
2396 section_offset_type output_offset;
2397 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2399 return output_offset != -1;
2402 // Fall back to the slow look-up.
2403 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2404 p != this->input_sections_.end();
2407 section_offset_type output_offset;
2408 if (p->output_offset(object, shndx, offset, &output_offset))
2409 return output_offset != -1;
2412 // By default we assume that the address is mapped. This should
2413 // only be called after we have passed all sections to Layout. At
2414 // that point we should know what we are discarding.
2418 // Given an address OFFSET relative to the start of input section
2419 // SHNDX in object OBJECT, return the output offset relative to the
2420 // start of the input section in the output section. This should only
2421 // be called if SHNDX in OBJECT has a special mapping.
2424 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2425 section_offset_type offset) const
2427 // This can only be called meaningfully when we know the data size
2429 gold_assert(this->is_data_size_valid());
2431 // Look at the Output_section_data_maps first.
2432 const Output_section_data* posd = this->find_merge_section(object, shndx);
2434 posd = this->find_relaxed_input_section(object, shndx);
2437 section_offset_type output_offset;
2438 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2440 return output_offset;
2443 // Fall back to the slow look-up.
2444 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2445 p != this->input_sections_.end();
2448 section_offset_type output_offset;
2449 if (p->output_offset(object, shndx, offset, &output_offset))
2450 return output_offset;
2455 // Return the output virtual address of OFFSET relative to the start
2456 // of input section SHNDX in object OBJECT.
2459 Output_section::output_address(const Relobj* object, unsigned int shndx,
2462 uint64_t addr = this->address() + this->first_input_offset_;
2464 // Look at the Output_section_data_maps first.
2465 const Output_section_data* posd = this->find_merge_section(object, shndx);
2467 posd = this->find_relaxed_input_section(object, shndx);
2468 if (posd != NULL && posd->is_address_valid())
2470 section_offset_type output_offset;
2471 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2473 return posd->address() + output_offset;
2476 // Fall back to the slow look-up.
2477 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2478 p != this->input_sections_.end();
2481 addr = align_address(addr, p->addralign());
2482 section_offset_type output_offset;
2483 if (p->output_offset(object, shndx, offset, &output_offset))
2485 if (output_offset == -1)
2487 return addr + output_offset;
2489 addr += p->data_size();
2492 // If we get here, it means that we don't know the mapping for this
2493 // input section. This might happen in principle if
2494 // add_input_section were called before add_output_section_data.
2495 // But it should never actually happen.
2500 // Find the output address of the start of the merged section for
2501 // input section SHNDX in object OBJECT.
2504 Output_section::find_starting_output_address(const Relobj* object,
2506 uint64_t* paddr) const
2508 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2509 // Looking up the merge section map does not always work as we sometimes
2510 // find a merge section without its address set.
2511 uint64_t addr = this->address() + this->first_input_offset_;
2512 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2513 p != this->input_sections_.end();
2516 addr = align_address(addr, p->addralign());
2518 // It would be nice if we could use the existing output_offset
2519 // method to get the output offset of input offset 0.
2520 // Unfortunately we don't know for sure that input offset 0 is
2522 if (p->is_merge_section_for(object, shndx))
2528 addr += p->data_size();
2531 // We couldn't find a merge output section for this input section.
2535 // Set the data size of an Output_section. This is where we handle
2536 // setting the addresses of any Output_section_data objects.
2539 Output_section::set_final_data_size()
2541 if (this->input_sections_.empty())
2543 this->set_data_size(this->current_data_size_for_child());
2547 if (this->must_sort_attached_input_sections())
2548 this->sort_attached_input_sections();
2550 uint64_t address = this->address();
2551 off_t startoff = this->offset();
2552 off_t off = startoff + this->first_input_offset_;
2553 for (Input_section_list::iterator p = this->input_sections_.begin();
2554 p != this->input_sections_.end();
2557 off = align_address(off, p->addralign());
2558 p->set_address_and_file_offset(address + (off - startoff), off,
2560 off += p->data_size();
2563 this->set_data_size(off - startoff);
2566 // Reset the address and file offset.
2569 Output_section::do_reset_address_and_file_offset()
2571 // An unallocated section has no address. Forcing this means that
2572 // we don't need special treatment for symbols defined in debug
2573 // sections. We do the same in the constructor.
2574 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2575 this->set_address(0);
2577 for (Input_section_list::iterator p = this->input_sections_.begin();
2578 p != this->input_sections_.end();
2580 p->reset_address_and_file_offset();
2583 // Return true if address and file offset have the values after reset.
2586 Output_section::do_address_and_file_offset_have_reset_values() const
2588 if (this->is_offset_valid())
2591 // An unallocated section has address 0 after its construction or a reset.
2592 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2593 return this->is_address_valid() && this->address() == 0;
2595 return !this->is_address_valid();
2598 // Set the TLS offset. Called only for SHT_TLS sections.
2601 Output_section::do_set_tls_offset(uint64_t tls_base)
2603 this->tls_offset_ = this->address() - tls_base;
2606 // In a few cases we need to sort the input sections attached to an
2607 // output section. This is used to implement the type of constructor
2608 // priority ordering implemented by the GNU linker, in which the
2609 // priority becomes part of the section name and the sections are
2610 // sorted by name. We only do this for an output section if we see an
2611 // attached input section matching ".ctor.*", ".dtor.*",
2612 // ".init_array.*" or ".fini_array.*".
2614 class Output_section::Input_section_sort_entry
2617 Input_section_sort_entry()
2618 : input_section_(), index_(-1U), section_has_name_(false),
2622 Input_section_sort_entry(const Input_section& input_section,
2624 : input_section_(input_section), index_(index),
2625 section_has_name_(input_section.is_input_section()
2626 || input_section.is_relaxed_input_section())
2628 if (this->section_has_name_)
2630 // This is only called single-threaded from Layout::finalize,
2631 // so it is OK to lock. Unfortunately we have no way to pass
2633 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2634 Object* obj = (input_section.is_input_section()
2635 ? input_section.relobj()
2636 : input_section.relaxed_input_section()->relobj());
2637 Task_lock_obj<Object> tl(dummy_task, obj);
2639 // This is a slow operation, which should be cached in
2640 // Layout::layout if this becomes a speed problem.
2641 this->section_name_ = obj->section_name(input_section.shndx());
2645 // Return the Input_section.
2646 const Input_section&
2647 input_section() const
2649 gold_assert(this->index_ != -1U);
2650 return this->input_section_;
2653 // The index of this entry in the original list. This is used to
2654 // make the sort stable.
2658 gold_assert(this->index_ != -1U);
2659 return this->index_;
2662 // Whether there is a section name.
2664 section_has_name() const
2665 { return this->section_has_name_; }
2667 // The section name.
2669 section_name() const
2671 gold_assert(this->section_has_name_);
2672 return this->section_name_;
2675 // Return true if the section name has a priority. This is assumed
2676 // to be true if it has a dot after the initial dot.
2678 has_priority() const
2680 gold_assert(this->section_has_name_);
2681 return this->section_name_.find('.', 1);
2684 // Return true if this an input file whose base name matches
2685 // FILE_NAME. The base name must have an extension of ".o", and
2686 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2687 // This is to match crtbegin.o as well as crtbeginS.o without
2688 // getting confused by other possibilities. Overall matching the
2689 // file name this way is a dreadful hack, but the GNU linker does it
2690 // in order to better support gcc, and we need to be compatible.
2692 match_file_name(const char* match_file_name) const
2694 const std::string& file_name(this->input_section_.relobj()->name());
2695 const char* base_name = lbasename(file_name.c_str());
2696 size_t match_len = strlen(match_file_name);
2697 if (strncmp(base_name, match_file_name, match_len) != 0)
2699 size_t base_len = strlen(base_name);
2700 if (base_len != match_len + 2 && base_len != match_len + 3)
2702 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2706 // The Input_section we are sorting.
2707 Input_section input_section_;
2708 // The index of this Input_section in the original list.
2709 unsigned int index_;
2710 // Whether this Input_section has a section name--it won't if this
2711 // is some random Output_section_data.
2712 bool section_has_name_;
2713 // The section name if there is one.
2714 std::string section_name_;
2717 // Return true if S1 should come before S2 in the output section.
2720 Output_section::Input_section_sort_compare::operator()(
2721 const Output_section::Input_section_sort_entry& s1,
2722 const Output_section::Input_section_sort_entry& s2) const
2724 // crtbegin.o must come first.
2725 bool s1_begin = s1.match_file_name("crtbegin");
2726 bool s2_begin = s2.match_file_name("crtbegin");
2727 if (s1_begin || s2_begin)
2733 return s1.index() < s2.index();
2736 // crtend.o must come last.
2737 bool s1_end = s1.match_file_name("crtend");
2738 bool s2_end = s2.match_file_name("crtend");
2739 if (s1_end || s2_end)
2745 return s1.index() < s2.index();
2748 // We sort all the sections with no names to the end.
2749 if (!s1.section_has_name() || !s2.section_has_name())
2751 if (s1.section_has_name())
2753 if (s2.section_has_name())
2755 return s1.index() < s2.index();
2758 // A section with a priority follows a section without a priority.
2759 // The GNU linker does this for all but .init_array sections; until
2760 // further notice we'll assume that that is an mistake.
2761 bool s1_has_priority = s1.has_priority();
2762 bool s2_has_priority = s2.has_priority();
2763 if (s1_has_priority && !s2_has_priority)
2765 if (!s1_has_priority && s2_has_priority)
2768 // Otherwise we sort by name.
2769 int compare = s1.section_name().compare(s2.section_name());
2773 // Otherwise we keep the input order.
2774 return s1.index() < s2.index();
2777 // Sort the input sections attached to an output section.
2780 Output_section::sort_attached_input_sections()
2782 if (this->attached_input_sections_are_sorted_)
2785 if (this->checkpoint_ != NULL
2786 && !this->checkpoint_->input_sections_saved())
2787 this->checkpoint_->save_input_sections();
2789 // The only thing we know about an input section is the object and
2790 // the section index. We need the section name. Recomputing this
2791 // is slow but this is an unusual case. If this becomes a speed
2792 // problem we can cache the names as required in Layout::layout.
2794 // We start by building a larger vector holding a copy of each
2795 // Input_section, plus its current index in the list and its name.
2796 std::vector<Input_section_sort_entry> sort_list;
2799 for (Input_section_list::iterator p = this->input_sections_.begin();
2800 p != this->input_sections_.end();
2802 sort_list.push_back(Input_section_sort_entry(*p, i));
2804 // Sort the input sections.
2805 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2807 // Copy the sorted input sections back to our list.
2808 this->input_sections_.clear();
2809 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2810 p != sort_list.end();
2812 this->input_sections_.push_back(p->input_section());
2814 // Remember that we sorted the input sections, since we might get
2816 this->attached_input_sections_are_sorted_ = true;
2819 // Write the section header to *OSHDR.
2821 template<int size, bool big_endian>
2823 Output_section::write_header(const Layout* layout,
2824 const Stringpool* secnamepool,
2825 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2827 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2828 oshdr->put_sh_type(this->type_);
2830 elfcpp::Elf_Xword flags = this->flags_;
2831 if (this->info_section_ != NULL && this->info_uses_section_index_)
2832 flags |= elfcpp::SHF_INFO_LINK;
2833 oshdr->put_sh_flags(flags);
2835 oshdr->put_sh_addr(this->address());
2836 oshdr->put_sh_offset(this->offset());
2837 oshdr->put_sh_size(this->data_size());
2838 if (this->link_section_ != NULL)
2839 oshdr->put_sh_link(this->link_section_->out_shndx());
2840 else if (this->should_link_to_symtab_)
2841 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2842 else if (this->should_link_to_dynsym_)
2843 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2845 oshdr->put_sh_link(this->link_);
2847 elfcpp::Elf_Word info;
2848 if (this->info_section_ != NULL)
2850 if (this->info_uses_section_index_)
2851 info = this->info_section_->out_shndx();
2853 info = this->info_section_->symtab_index();
2855 else if (this->info_symndx_ != NULL)
2856 info = this->info_symndx_->symtab_index();
2859 oshdr->put_sh_info(info);
2861 oshdr->put_sh_addralign(this->addralign_);
2862 oshdr->put_sh_entsize(this->entsize_);
2865 // Write out the data. For input sections the data is written out by
2866 // Object::relocate, but we have to handle Output_section_data objects
2870 Output_section::do_write(Output_file* of)
2872 gold_assert(!this->requires_postprocessing());
2874 // If the target performs relaxation, we delay filler generation until now.
2875 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2877 off_t output_section_file_offset = this->offset();
2878 for (Fill_list::iterator p = this->fills_.begin();
2879 p != this->fills_.end();
2882 std::string fill_data(parameters->target().code_fill(p->length()));
2883 of->write(output_section_file_offset + p->section_offset(),
2884 fill_data.data(), fill_data.size());
2887 off_t off = this->offset() + this->first_input_offset_;
2888 for (Input_section_list::iterator p = this->input_sections_.begin();
2889 p != this->input_sections_.end();
2892 off_t aligned_off = align_address(off, p->addralign());
2893 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2895 size_t fill_len = aligned_off - off;
2896 std::string fill_data(parameters->target().code_fill(fill_len));
2897 of->write(off, fill_data.data(), fill_data.size());
2901 off = aligned_off + p->data_size();
2905 // If a section requires postprocessing, create the buffer to use.
2908 Output_section::create_postprocessing_buffer()
2910 gold_assert(this->requires_postprocessing());
2912 if (this->postprocessing_buffer_ != NULL)
2915 if (!this->input_sections_.empty())
2917 off_t off = this->first_input_offset_;
2918 for (Input_section_list::iterator p = this->input_sections_.begin();
2919 p != this->input_sections_.end();
2922 off = align_address(off, p->addralign());
2923 p->finalize_data_size();
2924 off += p->data_size();
2926 this->set_current_data_size_for_child(off);
2929 off_t buffer_size = this->current_data_size_for_child();
2930 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2933 // Write all the data of an Output_section into the postprocessing
2934 // buffer. This is used for sections which require postprocessing,
2935 // such as compression. Input sections are handled by
2936 // Object::Relocate.
2939 Output_section::write_to_postprocessing_buffer()
2941 gold_assert(this->requires_postprocessing());
2943 // If the target performs relaxation, we delay filler generation until now.
2944 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2946 unsigned char* buffer = this->postprocessing_buffer();
2947 for (Fill_list::iterator p = this->fills_.begin();
2948 p != this->fills_.end();
2951 std::string fill_data(parameters->target().code_fill(p->length()));
2952 memcpy(buffer + p->section_offset(), fill_data.data(),
2956 off_t off = this->first_input_offset_;
2957 for (Input_section_list::iterator p = this->input_sections_.begin();
2958 p != this->input_sections_.end();
2961 off_t aligned_off = align_address(off, p->addralign());
2962 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2964 size_t fill_len = aligned_off - off;
2965 std::string fill_data(parameters->target().code_fill(fill_len));
2966 memcpy(buffer + off, fill_data.data(), fill_data.size());
2969 p->write_to_buffer(buffer + aligned_off);
2970 off = aligned_off + p->data_size();
2974 // Get the input sections for linker script processing. We leave
2975 // behind the Output_section_data entries. Note that this may be
2976 // slightly incorrect for merge sections. We will leave them behind,
2977 // but it is possible that the script says that they should follow
2978 // some other input sections, as in:
2979 // .rodata { *(.rodata) *(.rodata.cst*) }
2980 // For that matter, we don't handle this correctly:
2981 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2982 // With luck this will never matter.
2985 Output_section::get_input_sections(
2987 const std::string& fill,
2988 std::list<Simple_input_section>* input_sections)
2990 if (this->checkpoint_ != NULL
2991 && !this->checkpoint_->input_sections_saved())
2992 this->checkpoint_->save_input_sections();
2994 // Invalidate the relaxed input section map.
2995 this->is_relaxed_input_section_map_valid_ = false;
2997 uint64_t orig_address = address;
2999 address = align_address(address, this->addralign());
3001 Input_section_list remaining;
3002 for (Input_section_list::iterator p = this->input_sections_.begin();
3003 p != this->input_sections_.end();
3006 if (p->is_input_section())
3007 input_sections->push_back(Simple_input_section(p->relobj(),
3009 else if (p->is_relaxed_input_section())
3010 input_sections->push_back(
3011 Simple_input_section(p->relaxed_input_section()));
3014 uint64_t aligned_address = align_address(address, p->addralign());
3015 if (aligned_address != address && !fill.empty())
3017 section_size_type length =
3018 convert_to_section_size_type(aligned_address - address);
3019 std::string this_fill;
3020 this_fill.reserve(length);
3021 while (this_fill.length() + fill.length() <= length)
3023 if (this_fill.length() < length)
3024 this_fill.append(fill, 0, length - this_fill.length());
3026 Output_section_data* posd = new Output_data_const(this_fill, 0);
3027 remaining.push_back(Input_section(posd));
3029 address = aligned_address;
3031 remaining.push_back(*p);
3033 p->finalize_data_size();
3034 address += p->data_size();
3038 this->input_sections_.swap(remaining);
3039 this->first_input_offset_ = 0;
3041 uint64_t data_size = address - orig_address;
3042 this->set_current_data_size_for_child(data_size);
3046 // Add an input section from a script.
3049 Output_section::add_input_section_for_script(const Simple_input_section& sis,
3053 if (addralign > this->addralign_)
3054 this->addralign_ = addralign;
3056 off_t offset_in_section = this->current_data_size_for_child();
3057 off_t aligned_offset_in_section = align_address(offset_in_section,
3060 this->set_current_data_size_for_child(aligned_offset_in_section
3064 (sis.is_relaxed_input_section()
3065 ? Input_section(sis.relaxed_input_section())
3066 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
3067 this->input_sections_.push_back(is);
3073 Output_section::save_states()
3075 gold_assert(this->checkpoint_ == NULL);
3076 Checkpoint_output_section* checkpoint =
3077 new Checkpoint_output_section(this->addralign_, this->flags_,
3078 this->input_sections_,
3079 this->first_input_offset_,
3080 this->attached_input_sections_are_sorted_);
3081 this->checkpoint_ = checkpoint;
3082 gold_assert(this->fills_.empty());
3086 Output_section::restore_states()
3088 gold_assert(this->checkpoint_ != NULL);
3089 Checkpoint_output_section* checkpoint = this->checkpoint_;
3091 this->addralign_ = checkpoint->addralign();
3092 this->flags_ = checkpoint->flags();
3093 this->first_input_offset_ = checkpoint->first_input_offset();
3095 if (!checkpoint->input_sections_saved())
3097 // If we have not copied the input sections, just resize it.
3098 size_t old_size = checkpoint->input_sections_size();
3099 gold_assert(this->input_sections_.size() >= old_size);
3100 this->input_sections_.resize(old_size);
3104 // We need to copy the whole list. This is not efficient for
3105 // extremely large output with hundreads of thousands of input
3106 // objects. We may need to re-think how we should pass sections
3108 this->input_sections_ = *checkpoint->input_sections();
3111 this->attached_input_sections_are_sorted_ =
3112 checkpoint->attached_input_sections_are_sorted();
3114 // Simply invalidate the relaxed input section map since we do not keep
3116 this->is_relaxed_input_section_map_valid_ = false;
3119 // Print to the map file.
3122 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3124 mapfile->print_output_section(this);
3126 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3127 p != this->input_sections_.end();
3129 p->print_to_mapfile(mapfile);
3132 // Print stats for merge sections to stderr.
3135 Output_section::print_merge_stats()
3137 Input_section_list::iterator p;
3138 for (p = this->input_sections_.begin();
3139 p != this->input_sections_.end();
3141 p->print_merge_stats(this->name_);
3144 // Output segment methods.
3146 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3158 is_max_align_known_(false),
3159 are_addresses_set_(false),
3160 is_large_data_segment_(false)
3162 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3164 if (type == elfcpp::PT_TLS)
3165 this->flags_ = elfcpp::PF_R;
3168 // Add an Output_section to an Output_segment.
3171 Output_segment::add_output_section(Output_section* os,
3172 elfcpp::Elf_Word seg_flags,
3175 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3176 gold_assert(!this->is_max_align_known_);
3177 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3178 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3180 this->update_flags_for_output_section(seg_flags);
3182 Output_segment::Output_data_list* pdl;
3183 if (os->type() == elfcpp::SHT_NOBITS)
3184 pdl = &this->output_bss_;
3186 pdl = &this->output_data_;
3188 // Note that while there may be many input sections in an output
3189 // section, there are normally only a few output sections in an
3190 // output segment. The loops below are expected to be fast.
3192 // So that PT_NOTE segments will work correctly, we need to ensure
3193 // that all SHT_NOTE sections are adjacent.
3194 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3196 Output_segment::Output_data_list::iterator p = pdl->end();
3200 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3207 while (p != pdl->begin());
3210 // Similarly, so that PT_TLS segments will work, we need to group
3211 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3212 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3213 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3214 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3215 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3217 if (this->type_ != elfcpp::PT_TLS
3218 && (os->flags() & elfcpp::SHF_TLS) != 0)
3220 pdl = &this->output_data_;
3223 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3224 bool sawtls = false;
3225 Output_segment::Output_data_list::iterator p = pdl->end();
3226 gold_assert(p != pdl->begin());
3231 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3234 // Put a NOBITS section after the first TLS section.
3235 // Put a PROGBITS section after the first
3236 // TLS/PROGBITS section.
3237 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3241 // If we've gone past the TLS sections, but we've
3242 // seen a TLS section, then we need to insert this
3254 while (p != pdl->begin());
3257 // There are no TLS sections yet; put this one at the requested
3258 // location in the section list.
3263 // For the PT_GNU_RELRO segment, we need to group relro
3264 // sections, and we need to put them before any non-relro
3265 // sections. Any relro local sections go before relro non-local
3266 // sections. One section may be marked as the last relro
3270 gold_assert(pdl == &this->output_data_);
3271 Output_segment::Output_data_list::iterator p;
3272 for (p = pdl->begin(); p != pdl->end(); ++p)
3274 if (!(*p)->is_section())
3277 Output_section* pos = (*p)->output_section();
3278 if (!pos->is_relro()
3279 || (os->is_relro_local() && !pos->is_relro_local())
3280 || (!os->is_last_relro() && pos->is_last_relro()))
3288 // One section may be marked as the first section which follows
3289 // the relro sections.
3290 if (os->is_first_non_relro())
3292 gold_assert(pdl == &this->output_data_);
3293 Output_segment::Output_data_list::iterator p;
3294 for (p = pdl->begin(); p != pdl->end(); ++p)
3296 if (!(*p)->is_section())
3299 Output_section* pos = (*p)->output_section();
3300 if (!pos->is_relro())
3309 // Small data sections go at the end of the list of data sections.
3310 // If OS is not small, and there are small sections, we have to
3311 // insert it before the first small section.
3312 if (os->type() != elfcpp::SHT_NOBITS
3313 && !os->is_small_section()
3315 && pdl->back()->is_section()
3316 && pdl->back()->output_section()->is_small_section())
3318 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3322 if ((*p)->is_section()
3323 && (*p)->output_section()->is_small_section())
3332 // A small BSS section goes at the start of the BSS sections, after
3333 // other small BSS sections.
3334 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3336 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3340 if (!(*p)->is_section()
3341 || !(*p)->output_section()->is_small_section())
3349 // A large BSS section goes at the end of the BSS sections, which
3350 // means that one that is not large must come before the first large
3352 if (os->type() == elfcpp::SHT_NOBITS
3353 && !os->is_large_section()
3355 && pdl->back()->is_section()
3356 && pdl->back()->output_section()->is_large_section())
3358 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3362 if ((*p)->is_section()
3363 && (*p)->output_section()->is_large_section())
3372 // We do some further output section sorting in order to make the
3373 // generated program run more efficiently. We should only do this
3374 // when not using a linker script, so it is controled by the DO_SORT
3378 // FreeBSD requires the .interp section to be in the first page
3379 // of the executable. That is a more efficient location anyhow
3380 // for any OS, since it means that the kernel will have the data
3381 // handy after it reads the program headers.
3382 if (os->is_interp() && !pdl->empty())
3384 pdl->insert(pdl->begin(), os);
3388 // Put loadable non-writable notes immediately after the .interp
3389 // sections, so that the PT_NOTE segment is on the first page of
3391 if (os->type() == elfcpp::SHT_NOTE
3392 && (os->flags() & elfcpp::SHF_WRITE) == 0
3395 Output_segment::Output_data_list::iterator p = pdl->begin();
3396 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3402 // If this section is used by the dynamic linker, and it is not
3403 // writable, then put it first, after the .interp section and
3404 // any loadable notes. This makes it more likely that the
3405 // dynamic linker will have to read less data from the disk.
3406 if (os->is_dynamic_linker_section()
3408 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3410 bool is_reloc = (os->type() == elfcpp::SHT_REL
3411 || os->type() == elfcpp::SHT_RELA);
3412 Output_segment::Output_data_list::iterator p = pdl->begin();
3413 while (p != pdl->end()
3414 && (*p)->is_section()
3415 && ((*p)->output_section()->is_dynamic_linker_section()
3416 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3418 // Put reloc sections after the other ones. Putting the
3419 // dynamic reloc sections first confuses BFD, notably
3420 // objcopy and strip.
3422 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3423 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3432 // If there were no constraints on the output section, just add it
3433 // to the end of the list.
3437 // Remove an Output_section from this segment. It is an error if it
3441 Output_segment::remove_output_section(Output_section* os)
3443 // We only need this for SHT_PROGBITS.
3444 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3445 for (Output_data_list::iterator p = this->output_data_.begin();
3446 p != this->output_data_.end();
3451 this->output_data_.erase(p);
3458 // Add an Output_data (which need not be an Output_section) to the
3459 // start of a segment.
3462 Output_segment::add_initial_output_data(Output_data* od)
3464 gold_assert(!this->is_max_align_known_);
3465 this->output_data_.push_front(od);
3468 // Return whether the first data section is a relro section.
3471 Output_segment::is_first_section_relro() const
3473 return (!this->output_data_.empty()
3474 && this->output_data_.front()->is_section()
3475 && this->output_data_.front()->output_section()->is_relro());
3478 // Return the maximum alignment of the Output_data in Output_segment.
3481 Output_segment::maximum_alignment()
3483 if (!this->is_max_align_known_)
3487 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3488 if (addralign > this->max_align_)
3489 this->max_align_ = addralign;
3491 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3492 if (addralign > this->max_align_)
3493 this->max_align_ = addralign;
3495 this->is_max_align_known_ = true;
3498 return this->max_align_;
3501 // Return the maximum alignment of a list of Output_data.
3504 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3507 for (Output_data_list::const_iterator p = pdl->begin();
3511 uint64_t addralign = (*p)->addralign();
3512 if (addralign > ret)
3518 // Return the number of dynamic relocs applied to this segment.
3521 Output_segment::dynamic_reloc_count() const
3523 return (this->dynamic_reloc_count_list(&this->output_data_)
3524 + this->dynamic_reloc_count_list(&this->output_bss_));
3527 // Return the number of dynamic relocs applied to an Output_data_list.
3530 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3532 unsigned int count = 0;
3533 for (Output_data_list::const_iterator p = pdl->begin();
3536 count += (*p)->dynamic_reloc_count();
3540 // Set the section addresses for an Output_segment. If RESET is true,
3541 // reset the addresses first. ADDR is the address and *POFF is the
3542 // file offset. Set the section indexes starting with *PSHNDX.
3543 // Return the address of the immediately following segment. Update
3544 // *POFF and *PSHNDX.
3547 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3549 unsigned int increase_relro,
3551 unsigned int* pshndx)
3553 gold_assert(this->type_ == elfcpp::PT_LOAD);
3555 off_t orig_off = *poff;
3557 // If we have relro sections, we need to pad forward now so that the
3558 // relro sections plus INCREASE_RELRO end on a common page boundary.
3559 if (parameters->options().relro()
3560 && this->is_first_section_relro()
3561 && (!this->are_addresses_set_ || reset))
3563 uint64_t relro_size = 0;
3565 for (Output_data_list::iterator p = this->output_data_.begin();
3566 p != this->output_data_.end();
3569 if (!(*p)->is_section())
3571 Output_section* pos = (*p)->output_section();
3572 if (!pos->is_relro())
3574 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3575 if ((*p)->is_address_valid())
3576 relro_size += (*p)->data_size();
3579 // FIXME: This could be faster.
3580 (*p)->set_address_and_file_offset(addr + relro_size,
3582 relro_size += (*p)->data_size();
3583 (*p)->reset_address_and_file_offset();
3586 relro_size += increase_relro;
3588 uint64_t page_align = parameters->target().common_pagesize();
3590 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3591 uint64_t desired_align = page_align - (relro_size % page_align);
3592 if (desired_align < *poff % page_align)
3593 *poff += page_align - *poff % page_align;
3594 *poff += desired_align - *poff % page_align;
3595 addr += *poff - orig_off;
3599 if (!reset && this->are_addresses_set_)
3601 gold_assert(this->paddr_ == addr);
3602 addr = this->vaddr_;
3606 this->vaddr_ = addr;
3607 this->paddr_ = addr;
3608 this->are_addresses_set_ = true;
3611 bool in_tls = false;
3613 this->offset_ = orig_off;
3615 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3616 addr, poff, pshndx, &in_tls);
3617 this->filesz_ = *poff - orig_off;
3621 uint64_t ret = this->set_section_list_addresses(layout, reset,
3626 // If the last section was a TLS section, align upward to the
3627 // alignment of the TLS segment, so that the overall size of the TLS
3628 // segment is aligned.
3631 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3632 *poff = align_address(*poff, segment_align);
3635 this->memsz_ = *poff - orig_off;
3637 // Ignore the file offset adjustments made by the BSS Output_data
3644 // Set the addresses and file offsets in a list of Output_data
3648 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3649 Output_data_list* pdl,
3650 uint64_t addr, off_t* poff,
3651 unsigned int* pshndx,
3654 off_t startoff = *poff;
3656 off_t off = startoff;
3657 for (Output_data_list::iterator p = pdl->begin();
3662 (*p)->reset_address_and_file_offset();
3664 // When using a linker script the section will most likely
3665 // already have an address.
3666 if (!(*p)->is_address_valid())
3668 uint64_t align = (*p)->addralign();
3670 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3672 // Give the first TLS section the alignment of the
3673 // entire TLS segment. Otherwise the TLS segment as a
3674 // whole may be misaligned.
3677 Output_segment* tls_segment = layout->tls_segment();
3678 gold_assert(tls_segment != NULL);
3679 uint64_t segment_align = tls_segment->maximum_alignment();
3680 gold_assert(segment_align >= align);
3681 align = segment_align;
3688 // If this is the first section after the TLS segment,
3689 // align it to at least the alignment of the TLS
3690 // segment, so that the size of the overall TLS segment
3694 uint64_t segment_align =
3695 layout->tls_segment()->maximum_alignment();
3696 if (segment_align > align)
3697 align = segment_align;
3703 off = align_address(off, align);
3704 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3708 // The script may have inserted a skip forward, but it
3709 // better not have moved backward.
3710 if ((*p)->address() >= addr + (off - startoff))
3711 off += (*p)->address() - (addr + (off - startoff));
3714 if (!layout->script_options()->saw_sections_clause())
3718 Output_section* os = (*p)->output_section();
3720 // Cast to unsigned long long to avoid format warnings.
3721 unsigned long long previous_dot =
3722 static_cast<unsigned long long>(addr + (off - startoff));
3723 unsigned long long dot =
3724 static_cast<unsigned long long>((*p)->address());
3727 gold_error(_("dot moves backward in linker script "
3728 "from 0x%llx to 0x%llx"), previous_dot, dot);
3730 gold_error(_("address of section '%s' moves backward "
3731 "from 0x%llx to 0x%llx"),
3732 os->name(), previous_dot, dot);
3735 (*p)->set_file_offset(off);
3736 (*p)->finalize_data_size();
3739 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3740 // section. Such a section does not affect the size of a
3742 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3743 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3744 off += (*p)->data_size();
3746 if ((*p)->is_section())
3748 (*p)->set_out_shndx(*pshndx);
3754 return addr + (off - startoff);
3757 // For a non-PT_LOAD segment, set the offset from the sections, if
3758 // any. Add INCREASE to the file size and the memory size.
3761 Output_segment::set_offset(unsigned int increase)
3763 gold_assert(this->type_ != elfcpp::PT_LOAD);
3765 gold_assert(!this->are_addresses_set_);
3767 if (this->output_data_.empty() && this->output_bss_.empty())
3769 gold_assert(increase == 0);
3772 this->are_addresses_set_ = true;
3774 this->min_p_align_ = 0;
3780 const Output_data* first;
3781 if (this->output_data_.empty())
3782 first = this->output_bss_.front();
3784 first = this->output_data_.front();
3785 this->vaddr_ = first->address();
3786 this->paddr_ = (first->has_load_address()
3787 ? first->load_address()
3789 this->are_addresses_set_ = true;
3790 this->offset_ = first->offset();
3792 if (this->output_data_.empty())
3796 const Output_data* last_data = this->output_data_.back();
3797 this->filesz_ = (last_data->address()
3798 + last_data->data_size()
3802 const Output_data* last;
3803 if (this->output_bss_.empty())
3804 last = this->output_data_.back();
3806 last = this->output_bss_.back();
3807 this->memsz_ = (last->address()
3811 this->filesz_ += increase;
3812 this->memsz_ += increase;
3814 // If this is a TLS segment, align the memory size. The code in
3815 // set_section_list ensures that the section after the TLS segment
3816 // is aligned to give us room.
3817 if (this->type_ == elfcpp::PT_TLS)
3819 uint64_t segment_align = this->maximum_alignment();
3820 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3821 this->memsz_ = align_address(this->memsz_, segment_align);
3825 // Set the TLS offsets of the sections in the PT_TLS segment.
3828 Output_segment::set_tls_offsets()
3830 gold_assert(this->type_ == elfcpp::PT_TLS);
3832 for (Output_data_list::iterator p = this->output_data_.begin();
3833 p != this->output_data_.end();
3835 (*p)->set_tls_offset(this->vaddr_);
3837 for (Output_data_list::iterator p = this->output_bss_.begin();
3838 p != this->output_bss_.end();
3840 (*p)->set_tls_offset(this->vaddr_);
3843 // Return the address of the first section.
3846 Output_segment::first_section_load_address() const
3848 for (Output_data_list::const_iterator p = this->output_data_.begin();
3849 p != this->output_data_.end();
3851 if ((*p)->is_section())
3852 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3854 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3855 p != this->output_bss_.end();
3857 if ((*p)->is_section())
3858 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3863 // Return the number of Output_sections in an Output_segment.
3866 Output_segment::output_section_count() const
3868 return (this->output_section_count_list(&this->output_data_)
3869 + this->output_section_count_list(&this->output_bss_));
3872 // Return the number of Output_sections in an Output_data_list.
3875 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3877 unsigned int count = 0;
3878 for (Output_data_list::const_iterator p = pdl->begin();
3882 if ((*p)->is_section())
3888 // Return the section attached to the list segment with the lowest
3889 // load address. This is used when handling a PHDRS clause in a
3893 Output_segment::section_with_lowest_load_address() const
3895 Output_section* found = NULL;
3896 uint64_t found_lma = 0;
3897 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3899 Output_section* found_data = found;
3900 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3901 if (found != found_data && found_data != NULL)
3903 gold_error(_("nobits section %s may not precede progbits section %s "
3905 found->name(), found_data->name());
3912 // Look through a list for a section with a lower load address.
3915 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3916 Output_section** found,
3917 uint64_t* found_lma) const
3919 for (Output_data_list::const_iterator p = pdl->begin();
3923 if (!(*p)->is_section())
3925 Output_section* os = static_cast<Output_section*>(*p);
3926 uint64_t lma = (os->has_load_address()
3927 ? os->load_address()
3929 if (*found == NULL || lma < *found_lma)
3937 // Write the segment data into *OPHDR.
3939 template<int size, bool big_endian>
3941 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3943 ophdr->put_p_type(this->type_);
3944 ophdr->put_p_offset(this->offset_);
3945 ophdr->put_p_vaddr(this->vaddr_);
3946 ophdr->put_p_paddr(this->paddr_);
3947 ophdr->put_p_filesz(this->filesz_);
3948 ophdr->put_p_memsz(this->memsz_);
3949 ophdr->put_p_flags(this->flags_);
3950 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3953 // Write the section headers into V.
3955 template<int size, bool big_endian>
3957 Output_segment::write_section_headers(const Layout* layout,
3958 const Stringpool* secnamepool,
3960 unsigned int *pshndx) const
3962 // Every section that is attached to a segment must be attached to a
3963 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3965 if (this->type_ != elfcpp::PT_LOAD)
3968 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3969 &this->output_data_,
3971 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3977 template<int size, bool big_endian>
3979 Output_segment::write_section_headers_list(const Layout* layout,
3980 const Stringpool* secnamepool,
3981 const Output_data_list* pdl,
3983 unsigned int* pshndx) const
3985 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3986 for (Output_data_list::const_iterator p = pdl->begin();
3990 if ((*p)->is_section())
3992 const Output_section* ps = static_cast<const Output_section*>(*p);
3993 gold_assert(*pshndx == ps->out_shndx());
3994 elfcpp::Shdr_write<size, big_endian> oshdr(v);
3995 ps->write_header(layout, secnamepool, &oshdr);
4003 // Print the output sections to the map file.
4006 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4008 if (this->type() != elfcpp::PT_LOAD)
4010 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4011 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4014 // Print an output section list to the map file.
4017 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4018 const Output_data_list* pdl) const
4020 for (Output_data_list::const_iterator p = pdl->begin();
4023 (*p)->print_to_mapfile(mapfile);
4026 // Output_file methods.
4028 Output_file::Output_file(const char* name)
4033 map_is_anonymous_(false),
4034 is_temporary_(false)
4038 // Try to open an existing file. Returns false if the file doesn't
4039 // exist, has a size of 0 or can't be mmapped.
4042 Output_file::open_for_modification()
4044 // The name "-" means "stdout".
4045 if (strcmp(this->name_, "-") == 0)
4048 // Don't bother opening files with a size of zero.
4050 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4053 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4055 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4057 this->file_size_ = s.st_size;
4059 // If the file can't be mmapped, copying the content to an anonymous
4060 // map will probably negate the performance benefits of incremental
4061 // linking. This could be helped by using views and loading only
4062 // the necessary parts, but this is not supported as of now.
4063 if (!this->map_no_anonymous())
4065 release_descriptor(o, true);
4067 this->file_size_ = 0;
4074 // Open the output file.
4077 Output_file::open(off_t file_size)
4079 this->file_size_ = file_size;
4081 // Unlink the file first; otherwise the open() may fail if the file
4082 // is busy (e.g. it's an executable that's currently being executed).
4084 // However, the linker may be part of a system where a zero-length
4085 // file is created for it to write to, with tight permissions (gcc
4086 // 2.95 did something like this). Unlinking the file would work
4087 // around those permission controls, so we only unlink if the file
4088 // has a non-zero size. We also unlink only regular files to avoid
4089 // trouble with directories/etc.
4091 // If we fail, continue; this command is merely a best-effort attempt
4092 // to improve the odds for open().
4094 // We let the name "-" mean "stdout"
4095 if (!this->is_temporary_)
4097 if (strcmp(this->name_, "-") == 0)
4098 this->o_ = STDOUT_FILENO;
4102 if (::stat(this->name_, &s) == 0
4103 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4106 ::unlink(this->name_);
4107 else if (!parameters->options().relocatable())
4109 // If we don't unlink the existing file, add execute
4110 // permission where read permissions already exist
4111 // and where the umask permits.
4112 int mask = ::umask(0);
4114 s.st_mode |= (s.st_mode & 0444) >> 2;
4115 ::chmod(this->name_, s.st_mode & ~mask);
4119 int mode = parameters->options().relocatable() ? 0666 : 0777;
4120 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4123 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4131 // Resize the output file.
4134 Output_file::resize(off_t file_size)
4136 // If the mmap is mapping an anonymous memory buffer, this is easy:
4137 // just mremap to the new size. If it's mapping to a file, we want
4138 // to unmap to flush to the file, then remap after growing the file.
4139 if (this->map_is_anonymous_)
4141 void* base = ::mremap(this->base_, this->file_size_, file_size,
4143 if (base == MAP_FAILED)
4144 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4145 this->base_ = static_cast<unsigned char*>(base);
4146 this->file_size_ = file_size;
4151 this->file_size_ = file_size;
4152 if (!this->map_no_anonymous())
4153 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4157 // Map an anonymous block of memory which will later be written to the
4158 // file. Return whether the map succeeded.
4161 Output_file::map_anonymous()
4163 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4164 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4165 if (base != MAP_FAILED)
4167 this->map_is_anonymous_ = true;
4168 this->base_ = static_cast<unsigned char*>(base);
4174 // Map the file into memory. Return whether the mapping succeeded.
4177 Output_file::map_no_anonymous()
4179 const int o = this->o_;
4181 // If the output file is not a regular file, don't try to mmap it;
4182 // instead, we'll mmap a block of memory (an anonymous buffer), and
4183 // then later write the buffer to the file.
4185 struct stat statbuf;
4186 if (o == STDOUT_FILENO || o == STDERR_FILENO
4187 || ::fstat(o, &statbuf) != 0
4188 || !S_ISREG(statbuf.st_mode)
4189 || this->is_temporary_)
4192 // Ensure that we have disk space available for the file. If we
4193 // don't do this, it is possible that we will call munmap, close,
4194 // and exit with dirty buffers still in the cache with no assigned
4195 // disk blocks. If the disk is out of space at that point, the
4196 // output file will wind up incomplete, but we will have already
4197 // exited. The alternative to fallocate would be to use fdatasync,
4198 // but that would be a more significant performance hit.
4199 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4200 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4202 // Map the file into memory.
4203 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4206 // The mmap call might fail because of file system issues: the file
4207 // system might not support mmap at all, or it might not support
4208 // mmap with PROT_WRITE.
4209 if (base == MAP_FAILED)
4212 this->map_is_anonymous_ = false;
4213 this->base_ = static_cast<unsigned char*>(base);
4217 // Map the file into memory.
4222 if (this->map_no_anonymous())
4225 // The mmap call might fail because of file system issues: the file
4226 // system might not support mmap at all, or it might not support
4227 // mmap with PROT_WRITE. I'm not sure which errno values we will
4228 // see in all cases, so if the mmap fails for any reason and we
4229 // don't care about file contents, try for an anonymous map.
4230 if (this->map_anonymous())
4233 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4234 this->name_, static_cast<unsigned long>(this->file_size_),
4238 // Unmap the file from memory.
4241 Output_file::unmap()
4243 if (::munmap(this->base_, this->file_size_) < 0)
4244 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4248 // Close the output file.
4251 Output_file::close()
4253 // If the map isn't file-backed, we need to write it now.
4254 if (this->map_is_anonymous_ && !this->is_temporary_)
4256 size_t bytes_to_write = this->file_size_;
4258 while (bytes_to_write > 0)
4260 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4262 if (bytes_written == 0)
4263 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4264 else if (bytes_written < 0)
4265 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4268 bytes_to_write -= bytes_written;
4269 offset += bytes_written;
4275 // We don't close stdout or stderr
4276 if (this->o_ != STDOUT_FILENO
4277 && this->o_ != STDERR_FILENO
4278 && !this->is_temporary_)
4279 if (::close(this->o_) < 0)
4280 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4284 // Instantiate the templates we need. We could use the configure
4285 // script to restrict this to only the ones for implemented targets.
4287 #ifdef HAVE_TARGET_32_LITTLE
4290 Output_section::add_input_section<32, false>(
4291 Sized_relobj<32, false>* object,
4293 const char* secname,
4294 const elfcpp::Shdr<32, false>& shdr,
4295 unsigned int reloc_shndx,
4296 bool have_sections_script);
4299 #ifdef HAVE_TARGET_32_BIG
4302 Output_section::add_input_section<32, true>(
4303 Sized_relobj<32, true>* object,
4305 const char* secname,
4306 const elfcpp::Shdr<32, true>& shdr,
4307 unsigned int reloc_shndx,
4308 bool have_sections_script);
4311 #ifdef HAVE_TARGET_64_LITTLE
4314 Output_section::add_input_section<64, false>(
4315 Sized_relobj<64, false>* object,
4317 const char* secname,
4318 const elfcpp::Shdr<64, false>& shdr,
4319 unsigned int reloc_shndx,
4320 bool have_sections_script);
4323 #ifdef HAVE_TARGET_64_BIG
4326 Output_section::add_input_section<64, true>(
4327 Sized_relobj<64, true>* object,
4329 const char* secname,
4330 const elfcpp::Shdr<64, true>& shdr,
4331 unsigned int reloc_shndx,
4332 bool have_sections_script);
4335 #ifdef HAVE_TARGET_32_LITTLE
4337 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4340 #ifdef HAVE_TARGET_32_BIG
4342 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4345 #ifdef HAVE_TARGET_64_LITTLE
4347 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4350 #ifdef HAVE_TARGET_64_BIG
4352 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4355 #ifdef HAVE_TARGET_32_LITTLE
4357 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4360 #ifdef HAVE_TARGET_32_BIG
4362 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4365 #ifdef HAVE_TARGET_64_LITTLE
4367 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4370 #ifdef HAVE_TARGET_64_BIG
4372 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4375 #ifdef HAVE_TARGET_32_LITTLE
4377 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4380 #ifdef HAVE_TARGET_32_BIG
4382 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4385 #ifdef HAVE_TARGET_64_LITTLE
4387 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4390 #ifdef HAVE_TARGET_64_BIG
4392 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4395 #ifdef HAVE_TARGET_32_LITTLE
4397 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4400 #ifdef HAVE_TARGET_32_BIG
4402 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4405 #ifdef HAVE_TARGET_64_LITTLE
4407 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4410 #ifdef HAVE_TARGET_64_BIG
4412 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4415 #ifdef HAVE_TARGET_32_LITTLE
4417 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4420 #ifdef HAVE_TARGET_32_BIG
4422 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4425 #ifdef HAVE_TARGET_64_LITTLE
4427 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4430 #ifdef HAVE_TARGET_64_BIG
4432 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4435 #ifdef HAVE_TARGET_32_LITTLE
4437 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4440 #ifdef HAVE_TARGET_32_BIG
4442 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4445 #ifdef HAVE_TARGET_64_LITTLE
4447 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4450 #ifdef HAVE_TARGET_64_BIG
4452 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4455 #ifdef HAVE_TARGET_32_LITTLE
4457 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4460 #ifdef HAVE_TARGET_32_BIG
4462 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4465 #ifdef HAVE_TARGET_64_LITTLE
4467 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4470 #ifdef HAVE_TARGET_64_BIG
4472 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4475 #ifdef HAVE_TARGET_32_LITTLE
4477 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4480 #ifdef HAVE_TARGET_32_BIG
4482 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4485 #ifdef HAVE_TARGET_64_LITTLE
4487 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4490 #ifdef HAVE_TARGET_64_BIG
4492 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4495 #ifdef HAVE_TARGET_32_LITTLE
4497 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4500 #ifdef HAVE_TARGET_32_BIG
4502 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4505 #ifdef HAVE_TARGET_64_LITTLE
4507 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4510 #ifdef HAVE_TARGET_64_BIG
4512 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4515 #ifdef HAVE_TARGET_32_LITTLE
4517 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4520 #ifdef HAVE_TARGET_32_BIG
4522 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4525 #ifdef HAVE_TARGET_64_LITTLE
4527 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4530 #ifdef HAVE_TARGET_64_BIG
4532 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4535 #ifdef HAVE_TARGET_32_LITTLE
4537 class Output_data_group<32, false>;
4540 #ifdef HAVE_TARGET_32_BIG
4542 class Output_data_group<32, true>;
4545 #ifdef HAVE_TARGET_64_LITTLE
4547 class Output_data_group<64, false>;
4550 #ifdef HAVE_TARGET_64_BIG
4552 class Output_data_group<64, true>;
4555 #ifdef HAVE_TARGET_32_LITTLE
4557 class Output_data_got<32, false>;
4560 #ifdef HAVE_TARGET_32_BIG
4562 class Output_data_got<32, true>;
4565 #ifdef HAVE_TARGET_64_LITTLE
4567 class Output_data_got<64, false>;
4570 #ifdef HAVE_TARGET_64_BIG
4572 class Output_data_got<64, true>;
4575 } // End namespace gold.