PR gold/12910
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "parameters.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "reloc.h"
43 #include "merge.h"
44 #include "descriptors.h"
45 #include "layout.h"
46 #include "output.h"
47
48 // For systems without mmap support.
49 #ifndef HAVE_MMAP
50 # define mmap gold_mmap
51 # define munmap gold_munmap
52 # define mremap gold_mremap
53 # ifndef MAP_FAILED
54 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
55 # endif
56 # ifndef PROT_READ
57 #  define PROT_READ 0
58 # endif
59 # ifndef PROT_WRITE
60 #  define PROT_WRITE 0
61 # endif
62 # ifndef MAP_PRIVATE
63 #  define MAP_PRIVATE 0
64 # endif
65 # ifndef MAP_ANONYMOUS
66 #  define MAP_ANONYMOUS 0
67 # endif
68 # ifndef MAP_SHARED
69 #  define MAP_SHARED 0
70 # endif
71
72 # ifndef ENOSYS
73 #  define ENOSYS EINVAL
74 # endif
75
76 static void *
77 gold_mmap(void *, size_t, int, int, int, off_t)
78 {
79   errno = ENOSYS;
80   return MAP_FAILED;
81 }
82
83 static int
84 gold_munmap(void *, size_t)
85 {
86   errno = ENOSYS;
87   return -1;
88 }
89
90 static void *
91 gold_mremap(void *, size_t, size_t, int)
92 {
93   errno = ENOSYS;
94   return MAP_FAILED;
95 }
96
97 #endif
98
99 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
100 # define mremap gold_mremap
101 extern "C" void *gold_mremap(void *, size_t, size_t, int);
102 #endif
103
104 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
105 #ifndef MAP_ANONYMOUS
106 # define MAP_ANONYMOUS  MAP_ANON
107 #endif
108
109 #ifndef MREMAP_MAYMOVE
110 # define MREMAP_MAYMOVE 1
111 #endif
112
113 #ifndef HAVE_POSIX_FALLOCATE
114 // A dummy, non general, version of posix_fallocate.  Here we just set
115 // the file size and hope that there is enough disk space.  FIXME: We
116 // could allocate disk space by walking block by block and writing a
117 // zero byte into each block.
118 static int
119 posix_fallocate(int o, off_t offset, off_t len)
120 {
121   return ftruncate(o, offset + len);
122 }
123 #endif // !defined(HAVE_POSIX_FALLOCATE)
124
125 // Mingw does not have S_ISLNK.
126 #ifndef S_ISLNK
127 # define S_ISLNK(mode) 0
128 #endif
129
130 namespace gold
131 {
132
133 // Output_data variables.
134
135 bool Output_data::allocated_sizes_are_fixed;
136
137 // Output_data methods.
138
139 Output_data::~Output_data()
140 {
141 }
142
143 // Return the default alignment for the target size.
144
145 uint64_t
146 Output_data::default_alignment()
147 {
148   return Output_data::default_alignment_for_size(
149       parameters->target().get_size());
150 }
151
152 // Return the default alignment for a size--32 or 64.
153
154 uint64_t
155 Output_data::default_alignment_for_size(int size)
156 {
157   if (size == 32)
158     return 4;
159   else if (size == 64)
160     return 8;
161   else
162     gold_unreachable();
163 }
164
165 // Output_section_header methods.  This currently assumes that the
166 // segment and section lists are complete at construction time.
167
168 Output_section_headers::Output_section_headers(
169     const Layout* layout,
170     const Layout::Segment_list* segment_list,
171     const Layout::Section_list* section_list,
172     const Layout::Section_list* unattached_section_list,
173     const Stringpool* secnamepool,
174     const Output_section* shstrtab_section)
175   : layout_(layout),
176     segment_list_(segment_list),
177     section_list_(section_list),
178     unattached_section_list_(unattached_section_list),
179     secnamepool_(secnamepool),
180     shstrtab_section_(shstrtab_section)
181 {
182 }
183
184 // Compute the current data size.
185
186 off_t
187 Output_section_headers::do_size() const
188 {
189   // Count all the sections.  Start with 1 for the null section.
190   off_t count = 1;
191   if (!parameters->options().relocatable())
192     {
193       for (Layout::Segment_list::const_iterator p =
194              this->segment_list_->begin();
195            p != this->segment_list_->end();
196            ++p)
197         if ((*p)->type() == elfcpp::PT_LOAD)
198           count += (*p)->output_section_count();
199     }
200   else
201     {
202       for (Layout::Section_list::const_iterator p =
203              this->section_list_->begin();
204            p != this->section_list_->end();
205            ++p)
206         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
207           ++count;
208     }
209   count += this->unattached_section_list_->size();
210
211   const int size = parameters->target().get_size();
212   int shdr_size;
213   if (size == 32)
214     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
215   else if (size == 64)
216     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
217   else
218     gold_unreachable();
219
220   return count * shdr_size;
221 }
222
223 // Write out the section headers.
224
225 void
226 Output_section_headers::do_write(Output_file* of)
227 {
228   switch (parameters->size_and_endianness())
229     {
230 #ifdef HAVE_TARGET_32_LITTLE
231     case Parameters::TARGET_32_LITTLE:
232       this->do_sized_write<32, false>(of);
233       break;
234 #endif
235 #ifdef HAVE_TARGET_32_BIG
236     case Parameters::TARGET_32_BIG:
237       this->do_sized_write<32, true>(of);
238       break;
239 #endif
240 #ifdef HAVE_TARGET_64_LITTLE
241     case Parameters::TARGET_64_LITTLE:
242       this->do_sized_write<64, false>(of);
243       break;
244 #endif
245 #ifdef HAVE_TARGET_64_BIG
246     case Parameters::TARGET_64_BIG:
247       this->do_sized_write<64, true>(of);
248       break;
249 #endif
250     default:
251       gold_unreachable();
252     }
253 }
254
255 template<int size, bool big_endian>
256 void
257 Output_section_headers::do_sized_write(Output_file* of)
258 {
259   off_t all_shdrs_size = this->data_size();
260   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
261
262   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
263   unsigned char* v = view;
264
265   {
266     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
267     oshdr.put_sh_name(0);
268     oshdr.put_sh_type(elfcpp::SHT_NULL);
269     oshdr.put_sh_flags(0);
270     oshdr.put_sh_addr(0);
271     oshdr.put_sh_offset(0);
272
273     size_t section_count = (this->data_size()
274                             / elfcpp::Elf_sizes<size>::shdr_size);
275     if (section_count < elfcpp::SHN_LORESERVE)
276       oshdr.put_sh_size(0);
277     else
278       oshdr.put_sh_size(section_count);
279
280     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
281     if (shstrndx < elfcpp::SHN_LORESERVE)
282       oshdr.put_sh_link(0);
283     else
284       oshdr.put_sh_link(shstrndx);
285
286     size_t segment_count = this->segment_list_->size();
287     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
288
289     oshdr.put_sh_addralign(0);
290     oshdr.put_sh_entsize(0);
291   }
292
293   v += shdr_size;
294
295   unsigned int shndx = 1;
296   if (!parameters->options().relocatable())
297     {
298       for (Layout::Segment_list::const_iterator p =
299              this->segment_list_->begin();
300            p != this->segment_list_->end();
301            ++p)
302         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
303                                                           this->secnamepool_,
304                                                           v,
305                                                           &shndx);
306     }
307   else
308     {
309       for (Layout::Section_list::const_iterator p =
310              this->section_list_->begin();
311            p != this->section_list_->end();
312            ++p)
313         {
314           // We do unallocated sections below, except that group
315           // sections have to come first.
316           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
317               && (*p)->type() != elfcpp::SHT_GROUP)
318             continue;
319           gold_assert(shndx == (*p)->out_shndx());
320           elfcpp::Shdr_write<size, big_endian> oshdr(v);
321           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
322           v += shdr_size;
323           ++shndx;
324         }
325     }
326
327   for (Layout::Section_list::const_iterator p =
328          this->unattached_section_list_->begin();
329        p != this->unattached_section_list_->end();
330        ++p)
331     {
332       // For a relocatable link, we did unallocated group sections
333       // above, since they have to come first.
334       if ((*p)->type() == elfcpp::SHT_GROUP
335           && parameters->options().relocatable())
336         continue;
337       gold_assert(shndx == (*p)->out_shndx());
338       elfcpp::Shdr_write<size, big_endian> oshdr(v);
339       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
340       v += shdr_size;
341       ++shndx;
342     }
343
344   of->write_output_view(this->offset(), all_shdrs_size, view);
345 }
346
347 // Output_segment_header methods.
348
349 Output_segment_headers::Output_segment_headers(
350     const Layout::Segment_list& segment_list)
351   : segment_list_(segment_list)
352 {
353   this->set_current_data_size_for_child(this->do_size());
354 }
355
356 void
357 Output_segment_headers::do_write(Output_file* of)
358 {
359   switch (parameters->size_and_endianness())
360     {
361 #ifdef HAVE_TARGET_32_LITTLE
362     case Parameters::TARGET_32_LITTLE:
363       this->do_sized_write<32, false>(of);
364       break;
365 #endif
366 #ifdef HAVE_TARGET_32_BIG
367     case Parameters::TARGET_32_BIG:
368       this->do_sized_write<32, true>(of);
369       break;
370 #endif
371 #ifdef HAVE_TARGET_64_LITTLE
372     case Parameters::TARGET_64_LITTLE:
373       this->do_sized_write<64, false>(of);
374       break;
375 #endif
376 #ifdef HAVE_TARGET_64_BIG
377     case Parameters::TARGET_64_BIG:
378       this->do_sized_write<64, true>(of);
379       break;
380 #endif
381     default:
382       gold_unreachable();
383     }
384 }
385
386 template<int size, bool big_endian>
387 void
388 Output_segment_headers::do_sized_write(Output_file* of)
389 {
390   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
391   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
392   gold_assert(all_phdrs_size == this->data_size());
393   unsigned char* view = of->get_output_view(this->offset(),
394                                             all_phdrs_size);
395   unsigned char* v = view;
396   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
397        p != this->segment_list_.end();
398        ++p)
399     {
400       elfcpp::Phdr_write<size, big_endian> ophdr(v);
401       (*p)->write_header(&ophdr);
402       v += phdr_size;
403     }
404
405   gold_assert(v - view == all_phdrs_size);
406
407   of->write_output_view(this->offset(), all_phdrs_size, view);
408 }
409
410 off_t
411 Output_segment_headers::do_size() const
412 {
413   const int size = parameters->target().get_size();
414   int phdr_size;
415   if (size == 32)
416     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
417   else if (size == 64)
418     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
419   else
420     gold_unreachable();
421
422   return this->segment_list_.size() * phdr_size;
423 }
424
425 // Output_file_header methods.
426
427 Output_file_header::Output_file_header(const Target* target,
428                                        const Symbol_table* symtab,
429                                        const Output_segment_headers* osh)
430   : target_(target),
431     symtab_(symtab),
432     segment_header_(osh),
433     section_header_(NULL),
434     shstrtab_(NULL)
435 {
436   this->set_data_size(this->do_size());
437 }
438
439 // Set the section table information for a file header.
440
441 void
442 Output_file_header::set_section_info(const Output_section_headers* shdrs,
443                                      const Output_section* shstrtab)
444 {
445   this->section_header_ = shdrs;
446   this->shstrtab_ = shstrtab;
447 }
448
449 // Write out the file header.
450
451 void
452 Output_file_header::do_write(Output_file* of)
453 {
454   gold_assert(this->offset() == 0);
455
456   switch (parameters->size_and_endianness())
457     {
458 #ifdef HAVE_TARGET_32_LITTLE
459     case Parameters::TARGET_32_LITTLE:
460       this->do_sized_write<32, false>(of);
461       break;
462 #endif
463 #ifdef HAVE_TARGET_32_BIG
464     case Parameters::TARGET_32_BIG:
465       this->do_sized_write<32, true>(of);
466       break;
467 #endif
468 #ifdef HAVE_TARGET_64_LITTLE
469     case Parameters::TARGET_64_LITTLE:
470       this->do_sized_write<64, false>(of);
471       break;
472 #endif
473 #ifdef HAVE_TARGET_64_BIG
474     case Parameters::TARGET_64_BIG:
475       this->do_sized_write<64, true>(of);
476       break;
477 #endif
478     default:
479       gold_unreachable();
480     }
481 }
482
483 // Write out the file header with appropriate size and endianness.
484
485 template<int size, bool big_endian>
486 void
487 Output_file_header::do_sized_write(Output_file* of)
488 {
489   gold_assert(this->offset() == 0);
490
491   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
492   unsigned char* view = of->get_output_view(0, ehdr_size);
493   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
494
495   unsigned char e_ident[elfcpp::EI_NIDENT];
496   memset(e_ident, 0, elfcpp::EI_NIDENT);
497   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
498   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
499   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
500   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
501   if (size == 32)
502     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
503   else if (size == 64)
504     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
505   else
506     gold_unreachable();
507   e_ident[elfcpp::EI_DATA] = (big_endian
508                               ? elfcpp::ELFDATA2MSB
509                               : elfcpp::ELFDATA2LSB);
510   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
511   oehdr.put_e_ident(e_ident);
512
513   elfcpp::ET e_type;
514   if (parameters->options().relocatable())
515     e_type = elfcpp::ET_REL;
516   else if (parameters->options().output_is_position_independent())
517     e_type = elfcpp::ET_DYN;
518   else
519     e_type = elfcpp::ET_EXEC;
520   oehdr.put_e_type(e_type);
521
522   oehdr.put_e_machine(this->target_->machine_code());
523   oehdr.put_e_version(elfcpp::EV_CURRENT);
524
525   oehdr.put_e_entry(this->entry<size>());
526
527   if (this->segment_header_ == NULL)
528     oehdr.put_e_phoff(0);
529   else
530     oehdr.put_e_phoff(this->segment_header_->offset());
531
532   oehdr.put_e_shoff(this->section_header_->offset());
533   oehdr.put_e_flags(this->target_->processor_specific_flags());
534   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
535
536   if (this->segment_header_ == NULL)
537     {
538       oehdr.put_e_phentsize(0);
539       oehdr.put_e_phnum(0);
540     }
541   else
542     {
543       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
544       size_t phnum = (this->segment_header_->data_size()
545                       / elfcpp::Elf_sizes<size>::phdr_size);
546       if (phnum > elfcpp::PN_XNUM)
547         phnum = elfcpp::PN_XNUM;
548       oehdr.put_e_phnum(phnum);
549     }
550
551   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
552   size_t section_count = (this->section_header_->data_size()
553                           / elfcpp::Elf_sizes<size>::shdr_size);
554
555   if (section_count < elfcpp::SHN_LORESERVE)
556     oehdr.put_e_shnum(this->section_header_->data_size()
557                       / elfcpp::Elf_sizes<size>::shdr_size);
558   else
559     oehdr.put_e_shnum(0);
560
561   unsigned int shstrndx = this->shstrtab_->out_shndx();
562   if (shstrndx < elfcpp::SHN_LORESERVE)
563     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
564   else
565     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
566
567   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
568   // the e_ident field.
569   parameters->target().adjust_elf_header(view, ehdr_size);
570
571   of->write_output_view(0, ehdr_size, view);
572 }
573
574 // Return the value to use for the entry address.
575
576 template<int size>
577 typename elfcpp::Elf_types<size>::Elf_Addr
578 Output_file_header::entry()
579 {
580   const bool should_issue_warning = (parameters->options().entry() != NULL
581                                      && !parameters->options().relocatable()
582                                      && !parameters->options().shared());
583   const char* entry = parameters->entry();
584   Symbol* sym = this->symtab_->lookup(entry);
585
586   typename Sized_symbol<size>::Value_type v;
587   if (sym != NULL)
588     {
589       Sized_symbol<size>* ssym;
590       ssym = this->symtab_->get_sized_symbol<size>(sym);
591       if (!ssym->is_defined() && should_issue_warning)
592         gold_warning("entry symbol '%s' exists but is not defined", entry);
593       v = ssym->value();
594     }
595   else
596     {
597       // We couldn't find the entry symbol.  See if we can parse it as
598       // a number.  This supports, e.g., -e 0x1000.
599       char* endptr;
600       v = strtoull(entry, &endptr, 0);
601       if (*endptr != '\0')
602         {
603           if (should_issue_warning)
604             gold_warning("cannot find entry symbol '%s'", entry);
605           v = 0;
606         }
607     }
608
609   return v;
610 }
611
612 // Compute the current data size.
613
614 off_t
615 Output_file_header::do_size() const
616 {
617   const int size = parameters->target().get_size();
618   if (size == 32)
619     return elfcpp::Elf_sizes<32>::ehdr_size;
620   else if (size == 64)
621     return elfcpp::Elf_sizes<64>::ehdr_size;
622   else
623     gold_unreachable();
624 }
625
626 // Output_data_const methods.
627
628 void
629 Output_data_const::do_write(Output_file* of)
630 {
631   of->write(this->offset(), this->data_.data(), this->data_.size());
632 }
633
634 // Output_data_const_buffer methods.
635
636 void
637 Output_data_const_buffer::do_write(Output_file* of)
638 {
639   of->write(this->offset(), this->p_, this->data_size());
640 }
641
642 // Output_section_data methods.
643
644 // Record the output section, and set the entry size and such.
645
646 void
647 Output_section_data::set_output_section(Output_section* os)
648 {
649   gold_assert(this->output_section_ == NULL);
650   this->output_section_ = os;
651   this->do_adjust_output_section(os);
652 }
653
654 // Return the section index of the output section.
655
656 unsigned int
657 Output_section_data::do_out_shndx() const
658 {
659   gold_assert(this->output_section_ != NULL);
660   return this->output_section_->out_shndx();
661 }
662
663 // Set the alignment, which means we may need to update the alignment
664 // of the output section.
665
666 void
667 Output_section_data::set_addralign(uint64_t addralign)
668 {
669   this->addralign_ = addralign;
670   if (this->output_section_ != NULL
671       && this->output_section_->addralign() < addralign)
672     this->output_section_->set_addralign(addralign);
673 }
674
675 // Output_data_strtab methods.
676
677 // Set the final data size.
678
679 void
680 Output_data_strtab::set_final_data_size()
681 {
682   this->strtab_->set_string_offsets();
683   this->set_data_size(this->strtab_->get_strtab_size());
684 }
685
686 // Write out a string table.
687
688 void
689 Output_data_strtab::do_write(Output_file* of)
690 {
691   this->strtab_->write(of, this->offset());
692 }
693
694 // Output_reloc methods.
695
696 // A reloc against a global symbol.
697
698 template<bool dynamic, int size, bool big_endian>
699 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
700     Symbol* gsym,
701     unsigned int type,
702     Output_data* od,
703     Address address,
704     bool is_relative,
705     bool is_symbolless)
706   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
707     is_relative_(is_relative), is_symbolless_(is_symbolless),
708     is_section_symbol_(false), shndx_(INVALID_CODE)
709 {
710   // this->type_ is a bitfield; make sure TYPE fits.
711   gold_assert(this->type_ == type);
712   this->u1_.gsym = gsym;
713   this->u2_.od = od;
714   if (dynamic)
715     this->set_needs_dynsym_index();
716 }
717
718 template<bool dynamic, int size, bool big_endian>
719 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
720     Symbol* gsym,
721     unsigned int type,
722     Sized_relobj<size, big_endian>* relobj,
723     unsigned int shndx,
724     Address address,
725     bool is_relative,
726     bool is_symbolless)
727   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
728     is_relative_(is_relative), is_symbolless_(is_symbolless),
729     is_section_symbol_(false), shndx_(shndx)
730 {
731   gold_assert(shndx != INVALID_CODE);
732   // this->type_ is a bitfield; make sure TYPE fits.
733   gold_assert(this->type_ == type);
734   this->u1_.gsym = gsym;
735   this->u2_.relobj = relobj;
736   if (dynamic)
737     this->set_needs_dynsym_index();
738 }
739
740 // A reloc against a local symbol.
741
742 template<bool dynamic, int size, bool big_endian>
743 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
744     Sized_relobj<size, big_endian>* relobj,
745     unsigned int local_sym_index,
746     unsigned int type,
747     Output_data* od,
748     Address address,
749     bool is_relative,
750     bool is_symbolless,
751     bool is_section_symbol)
752   : address_(address), local_sym_index_(local_sym_index), type_(type),
753     is_relative_(is_relative), is_symbolless_(is_symbolless),
754     is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
755 {
756   gold_assert(local_sym_index != GSYM_CODE
757               && local_sym_index != INVALID_CODE);
758   // this->type_ is a bitfield; make sure TYPE fits.
759   gold_assert(this->type_ == type);
760   this->u1_.relobj = relobj;
761   this->u2_.od = od;
762   if (dynamic)
763     this->set_needs_dynsym_index();
764 }
765
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768     Sized_relobj<size, big_endian>* relobj,
769     unsigned int local_sym_index,
770     unsigned int type,
771     unsigned int shndx,
772     Address address,
773     bool is_relative,
774     bool is_symbolless,
775     bool is_section_symbol)
776   : address_(address), local_sym_index_(local_sym_index), type_(type),
777     is_relative_(is_relative), is_symbolless_(is_symbolless),
778     is_section_symbol_(is_section_symbol), shndx_(shndx)
779 {
780   gold_assert(local_sym_index != GSYM_CODE
781               && local_sym_index != INVALID_CODE);
782   gold_assert(shndx != INVALID_CODE);
783   // this->type_ is a bitfield; make sure TYPE fits.
784   gold_assert(this->type_ == type);
785   this->u1_.relobj = relobj;
786   this->u2_.relobj = relobj;
787   if (dynamic)
788     this->set_needs_dynsym_index();
789 }
790
791 // A reloc against the STT_SECTION symbol of an output section.
792
793 template<bool dynamic, int size, bool big_endian>
794 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
795     Output_section* os,
796     unsigned int type,
797     Output_data* od,
798     Address address)
799   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
800     is_relative_(false), is_symbolless_(false),
801     is_section_symbol_(true), shndx_(INVALID_CODE)
802 {
803   // this->type_ is a bitfield; make sure TYPE fits.
804   gold_assert(this->type_ == type);
805   this->u1_.os = os;
806   this->u2_.od = od;
807   if (dynamic)
808     this->set_needs_dynsym_index();
809   else
810     os->set_needs_symtab_index();
811 }
812
813 template<bool dynamic, int size, bool big_endian>
814 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
815     Output_section* os,
816     unsigned int type,
817     Sized_relobj<size, big_endian>* relobj,
818     unsigned int shndx,
819     Address address)
820   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
821     is_relative_(false), is_symbolless_(false),
822     is_section_symbol_(true), shndx_(shndx)
823 {
824   gold_assert(shndx != INVALID_CODE);
825   // this->type_ is a bitfield; make sure TYPE fits.
826   gold_assert(this->type_ == type);
827   this->u1_.os = os;
828   this->u2_.relobj = relobj;
829   if (dynamic)
830     this->set_needs_dynsym_index();
831   else
832     os->set_needs_symtab_index();
833 }
834
835 // An absolute relocation.
836
837 template<bool dynamic, int size, bool big_endian>
838 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
839     unsigned int type,
840     Output_data* od,
841     Address address)
842   : address_(address), local_sym_index_(0), type_(type),
843     is_relative_(false), is_symbolless_(false),
844     is_section_symbol_(false), shndx_(INVALID_CODE)
845 {
846   // this->type_ is a bitfield; make sure TYPE fits.
847   gold_assert(this->type_ == type);
848   this->u1_.relobj = NULL;
849   this->u2_.od = od;
850 }
851
852 template<bool dynamic, int size, bool big_endian>
853 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
854     unsigned int type,
855     Sized_relobj<size, big_endian>* relobj,
856     unsigned int shndx,
857     Address address)
858   : address_(address), local_sym_index_(0), type_(type),
859     is_relative_(false), is_symbolless_(false),
860     is_section_symbol_(false), shndx_(shndx)
861 {
862   gold_assert(shndx != INVALID_CODE);
863   // this->type_ is a bitfield; make sure TYPE fits.
864   gold_assert(this->type_ == type);
865   this->u1_.relobj = NULL;
866   this->u2_.relobj = relobj;
867 }
868
869 // A target specific relocation.
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873     unsigned int type,
874     void* arg,
875     Output_data* od,
876     Address address)
877   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
878     is_relative_(false), is_symbolless_(false),
879     is_section_symbol_(false), shndx_(INVALID_CODE)
880 {
881   // this->type_ is a bitfield; make sure TYPE fits.
882   gold_assert(this->type_ == type);
883   this->u1_.arg = arg;
884   this->u2_.od = od;
885 }
886
887 template<bool dynamic, int size, bool big_endian>
888 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
889     unsigned int type,
890     void* arg,
891     Sized_relobj<size, big_endian>* relobj,
892     unsigned int shndx,
893     Address address)
894   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
895     is_relative_(false), is_symbolless_(false),
896     is_section_symbol_(false), shndx_(shndx)
897 {
898   gold_assert(shndx != INVALID_CODE);
899   // this->type_ is a bitfield; make sure TYPE fits.
900   gold_assert(this->type_ == type);
901   this->u1_.arg = arg;
902   this->u2_.relobj = relobj;
903 }
904
905 // Record that we need a dynamic symbol index for this relocation.
906
907 template<bool dynamic, int size, bool big_endian>
908 void
909 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
910 set_needs_dynsym_index()
911 {
912   if (this->is_symbolless_)
913     return;
914   switch (this->local_sym_index_)
915     {
916     case INVALID_CODE:
917       gold_unreachable();
918
919     case GSYM_CODE:
920       this->u1_.gsym->set_needs_dynsym_entry();
921       break;
922
923     case SECTION_CODE:
924       this->u1_.os->set_needs_dynsym_index();
925       break;
926
927     case TARGET_CODE:
928       // The target must take care of this if necessary.
929       break;
930
931     case 0:
932       break;
933
934     default:
935       {
936         const unsigned int lsi = this->local_sym_index_;
937         Sized_relobj_file<size, big_endian>* relobj =
938             this->u1_.relobj->sized_relobj();
939         gold_assert(relobj != NULL);
940         if (!this->is_section_symbol_)
941           relobj->set_needs_output_dynsym_entry(lsi);
942         else
943           relobj->output_section(lsi)->set_needs_dynsym_index();
944       }
945       break;
946     }
947 }
948
949 // Get the symbol index of a relocation.
950
951 template<bool dynamic, int size, bool big_endian>
952 unsigned int
953 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
954   const
955 {
956   unsigned int index;
957   if (this->is_symbolless_)
958     return 0;
959   switch (this->local_sym_index_)
960     {
961     case INVALID_CODE:
962       gold_unreachable();
963
964     case GSYM_CODE:
965       if (this->u1_.gsym == NULL)
966         index = 0;
967       else if (dynamic)
968         index = this->u1_.gsym->dynsym_index();
969       else
970         index = this->u1_.gsym->symtab_index();
971       break;
972
973     case SECTION_CODE:
974       if (dynamic)
975         index = this->u1_.os->dynsym_index();
976       else
977         index = this->u1_.os->symtab_index();
978       break;
979
980     case TARGET_CODE:
981       index = parameters->target().reloc_symbol_index(this->u1_.arg,
982                                                       this->type_);
983       break;
984
985     case 0:
986       // Relocations without symbols use a symbol index of 0.
987       index = 0;
988       break;
989
990     default:
991       {
992         const unsigned int lsi = this->local_sym_index_;
993         Sized_relobj_file<size, big_endian>* relobj =
994             this->u1_.relobj->sized_relobj();
995         gold_assert(relobj != NULL);
996         if (!this->is_section_symbol_)
997           {
998             if (dynamic)
999               index = relobj->dynsym_index(lsi);
1000             else
1001               index = relobj->symtab_index(lsi);
1002           }
1003         else
1004           {
1005             Output_section* os = relobj->output_section(lsi);
1006             gold_assert(os != NULL);
1007             if (dynamic)
1008               index = os->dynsym_index();
1009             else
1010               index = os->symtab_index();
1011           }
1012       }
1013       break;
1014     }
1015   gold_assert(index != -1U);
1016   return index;
1017 }
1018
1019 // For a local section symbol, get the address of the offset ADDEND
1020 // within the input section.
1021
1022 template<bool dynamic, int size, bool big_endian>
1023 typename elfcpp::Elf_types<size>::Elf_Addr
1024 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1025   local_section_offset(Addend addend) const
1026 {
1027   gold_assert(this->local_sym_index_ != GSYM_CODE
1028               && this->local_sym_index_ != SECTION_CODE
1029               && this->local_sym_index_ != TARGET_CODE
1030               && this->local_sym_index_ != INVALID_CODE
1031               && this->local_sym_index_ != 0
1032               && this->is_section_symbol_);
1033   const unsigned int lsi = this->local_sym_index_;
1034   Output_section* os = this->u1_.relobj->output_section(lsi);
1035   gold_assert(os != NULL);
1036   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1037   if (offset != invalid_address)
1038     return offset + addend;
1039   // This is a merge section.
1040   Sized_relobj_file<size, big_endian>* relobj =
1041       this->u1_.relobj->sized_relobj();
1042   gold_assert(relobj != NULL);
1043   offset = os->output_address(relobj, lsi, addend);
1044   gold_assert(offset != invalid_address);
1045   return offset;
1046 }
1047
1048 // Get the output address of a relocation.
1049
1050 template<bool dynamic, int size, bool big_endian>
1051 typename elfcpp::Elf_types<size>::Elf_Addr
1052 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1053 {
1054   Address address = this->address_;
1055   if (this->shndx_ != INVALID_CODE)
1056     {
1057       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1058       gold_assert(os != NULL);
1059       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1060       if (off != invalid_address)
1061         address += os->address() + off;
1062       else
1063         {
1064           Sized_relobj_file<size, big_endian>* relobj =
1065               this->u2_.relobj->sized_relobj();
1066           gold_assert(relobj != NULL);
1067           address = os->output_address(relobj, this->shndx_, address);
1068           gold_assert(address != invalid_address);
1069         }
1070     }
1071   else if (this->u2_.od != NULL)
1072     address += this->u2_.od->address();
1073   return address;
1074 }
1075
1076 // Write out the offset and info fields of a Rel or Rela relocation
1077 // entry.
1078
1079 template<bool dynamic, int size, bool big_endian>
1080 template<typename Write_rel>
1081 void
1082 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1083     Write_rel* wr) const
1084 {
1085   wr->put_r_offset(this->get_address());
1086   unsigned int sym_index = this->get_symbol_index();
1087   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1088 }
1089
1090 // Write out a Rel relocation.
1091
1092 template<bool dynamic, int size, bool big_endian>
1093 void
1094 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1095     unsigned char* pov) const
1096 {
1097   elfcpp::Rel_write<size, big_endian> orel(pov);
1098   this->write_rel(&orel);
1099 }
1100
1101 // Get the value of the symbol referred to by a Rel relocation.
1102
1103 template<bool dynamic, int size, bool big_endian>
1104 typename elfcpp::Elf_types<size>::Elf_Addr
1105 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1106     Addend addend) const
1107 {
1108   if (this->local_sym_index_ == GSYM_CODE)
1109     {
1110       const Sized_symbol<size>* sym;
1111       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1112       return sym->value() + addend;
1113     }
1114   gold_assert(this->local_sym_index_ != SECTION_CODE
1115               && this->local_sym_index_ != TARGET_CODE
1116               && this->local_sym_index_ != INVALID_CODE
1117               && this->local_sym_index_ != 0
1118               && !this->is_section_symbol_);
1119   const unsigned int lsi = this->local_sym_index_;
1120   Sized_relobj_file<size, big_endian>* relobj =
1121       this->u1_.relobj->sized_relobj();
1122   gold_assert(relobj != NULL);
1123   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1124   return symval->value(relobj, addend);
1125 }
1126
1127 // Reloc comparison.  This function sorts the dynamic relocs for the
1128 // benefit of the dynamic linker.  First we sort all relative relocs
1129 // to the front.  Among relative relocs, we sort by output address.
1130 // Among non-relative relocs, we sort by symbol index, then by output
1131 // address.
1132
1133 template<bool dynamic, int size, bool big_endian>
1134 int
1135 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1136   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1137     const
1138 {
1139   if (this->is_relative_)
1140     {
1141       if (!r2.is_relative_)
1142         return -1;
1143       // Otherwise sort by reloc address below.
1144     }
1145   else if (r2.is_relative_)
1146     return 1;
1147   else
1148     {
1149       unsigned int sym1 = this->get_symbol_index();
1150       unsigned int sym2 = r2.get_symbol_index();
1151       if (sym1 < sym2)
1152         return -1;
1153       else if (sym1 > sym2)
1154         return 1;
1155       // Otherwise sort by reloc address.
1156     }
1157
1158   section_offset_type addr1 = this->get_address();
1159   section_offset_type addr2 = r2.get_address();
1160   if (addr1 < addr2)
1161     return -1;
1162   else if (addr1 > addr2)
1163     return 1;
1164
1165   // Final tie breaker, in order to generate the same output on any
1166   // host: reloc type.
1167   unsigned int type1 = this->type_;
1168   unsigned int type2 = r2.type_;
1169   if (type1 < type2)
1170     return -1;
1171   else if (type1 > type2)
1172     return 1;
1173
1174   // These relocs appear to be exactly the same.
1175   return 0;
1176 }
1177
1178 // Write out a Rela relocation.
1179
1180 template<bool dynamic, int size, bool big_endian>
1181 void
1182 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1183     unsigned char* pov) const
1184 {
1185   elfcpp::Rela_write<size, big_endian> orel(pov);
1186   this->rel_.write_rel(&orel);
1187   Addend addend = this->addend_;
1188   if (this->rel_.is_target_specific())
1189     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1190                                                this->rel_.type(), addend);
1191   else if (this->rel_.is_symbolless())
1192     addend = this->rel_.symbol_value(addend);
1193   else if (this->rel_.is_local_section_symbol())
1194     addend = this->rel_.local_section_offset(addend);
1195   orel.put_r_addend(addend);
1196 }
1197
1198 // Output_data_reloc_base methods.
1199
1200 // Adjust the output section.
1201
1202 template<int sh_type, bool dynamic, int size, bool big_endian>
1203 void
1204 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1205     ::do_adjust_output_section(Output_section* os)
1206 {
1207   if (sh_type == elfcpp::SHT_REL)
1208     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1209   else if (sh_type == elfcpp::SHT_RELA)
1210     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1211   else
1212     gold_unreachable();
1213
1214   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1215   // static link.  The backends will generate a dynamic reloc section
1216   // to hold this.  In that case we don't want to link to the dynsym
1217   // section, because there isn't one.
1218   if (!dynamic)
1219     os->set_should_link_to_symtab();
1220   else if (parameters->doing_static_link())
1221     ;
1222   else
1223     os->set_should_link_to_dynsym();
1224 }
1225
1226 // Write out relocation data.
1227
1228 template<int sh_type, bool dynamic, int size, bool big_endian>
1229 void
1230 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1231     Output_file* of)
1232 {
1233   const off_t off = this->offset();
1234   const off_t oview_size = this->data_size();
1235   unsigned char* const oview = of->get_output_view(off, oview_size);
1236
1237   if (this->sort_relocs())
1238     {
1239       gold_assert(dynamic);
1240       std::sort(this->relocs_.begin(), this->relocs_.end(),
1241                 Sort_relocs_comparison());
1242     }
1243
1244   unsigned char* pov = oview;
1245   for (typename Relocs::const_iterator p = this->relocs_.begin();
1246        p != this->relocs_.end();
1247        ++p)
1248     {
1249       p->write(pov);
1250       pov += reloc_size;
1251     }
1252
1253   gold_assert(pov - oview == oview_size);
1254
1255   of->write_output_view(off, oview_size, oview);
1256
1257   // We no longer need the relocation entries.
1258   this->relocs_.clear();
1259 }
1260
1261 // Class Output_relocatable_relocs.
1262
1263 template<int sh_type, int size, bool big_endian>
1264 void
1265 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1266 {
1267   this->set_data_size(this->rr_->output_reloc_count()
1268                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1269 }
1270
1271 // class Output_data_group.
1272
1273 template<int size, bool big_endian>
1274 Output_data_group<size, big_endian>::Output_data_group(
1275     Sized_relobj_file<size, big_endian>* relobj,
1276     section_size_type entry_count,
1277     elfcpp::Elf_Word flags,
1278     std::vector<unsigned int>* input_shndxes)
1279   : Output_section_data(entry_count * 4, 4, false),
1280     relobj_(relobj),
1281     flags_(flags)
1282 {
1283   this->input_shndxes_.swap(*input_shndxes);
1284 }
1285
1286 // Write out the section group, which means translating the section
1287 // indexes to apply to the output file.
1288
1289 template<int size, bool big_endian>
1290 void
1291 Output_data_group<size, big_endian>::do_write(Output_file* of)
1292 {
1293   const off_t off = this->offset();
1294   const section_size_type oview_size =
1295     convert_to_section_size_type(this->data_size());
1296   unsigned char* const oview = of->get_output_view(off, oview_size);
1297
1298   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1299   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1300   ++contents;
1301
1302   for (std::vector<unsigned int>::const_iterator p =
1303          this->input_shndxes_.begin();
1304        p != this->input_shndxes_.end();
1305        ++p, ++contents)
1306     {
1307       Output_section* os = this->relobj_->output_section(*p);
1308
1309       unsigned int output_shndx;
1310       if (os != NULL)
1311         output_shndx = os->out_shndx();
1312       else
1313         {
1314           this->relobj_->error(_("section group retained but "
1315                                  "group element discarded"));
1316           output_shndx = 0;
1317         }
1318
1319       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1320     }
1321
1322   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1323   gold_assert(wrote == oview_size);
1324
1325   of->write_output_view(off, oview_size, oview);
1326
1327   // We no longer need this information.
1328   this->input_shndxes_.clear();
1329 }
1330
1331 // Output_data_got::Got_entry methods.
1332
1333 // Write out the entry.
1334
1335 template<int size, bool big_endian>
1336 void
1337 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1338 {
1339   Valtype val = 0;
1340
1341   switch (this->local_sym_index_)
1342     {
1343     case GSYM_CODE:
1344       {
1345         // If the symbol is resolved locally, we need to write out the
1346         // link-time value, which will be relocated dynamically by a
1347         // RELATIVE relocation.
1348         Symbol* gsym = this->u_.gsym;
1349         if (this->use_plt_offset_ && gsym->has_plt_offset())
1350           val = (parameters->target().plt_section_for_global(gsym)->address()
1351                  + gsym->plt_offset());
1352         else
1353           {
1354             Sized_symbol<size>* sgsym;
1355             // This cast is a bit ugly.  We don't want to put a
1356             // virtual method in Symbol, because we want Symbol to be
1357             // as small as possible.
1358             sgsym = static_cast<Sized_symbol<size>*>(gsym);
1359             val = sgsym->value();
1360           }
1361       }
1362       break;
1363
1364     case CONSTANT_CODE:
1365       val = this->u_.constant;
1366       break;
1367
1368     case RESERVED_CODE:
1369       // If we're doing an incremental update, don't touch this GOT entry.
1370       if (parameters->incremental_update())
1371         return;
1372       val = this->u_.constant;
1373       break;
1374
1375     default:
1376       {
1377         const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1378         const unsigned int lsi = this->local_sym_index_;
1379         const Symbol_value<size>* symval = object->local_symbol(lsi);
1380         if (!this->use_plt_offset_)
1381           val = symval->value(this->u_.object, 0);
1382         else
1383           {
1384             const Output_data* plt =
1385               parameters->target().plt_section_for_local(object, lsi);
1386             val = plt->address() + object->local_plt_offset(lsi);
1387           }
1388       }
1389       break;
1390     }
1391
1392   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1393 }
1394
1395 // Output_data_got methods.
1396
1397 // Add an entry for a global symbol to the GOT.  This returns true if
1398 // this is a new GOT entry, false if the symbol already had a GOT
1399 // entry.
1400
1401 template<int size, bool big_endian>
1402 bool
1403 Output_data_got<size, big_endian>::add_global(
1404     Symbol* gsym,
1405     unsigned int got_type)
1406 {
1407   if (gsym->has_got_offset(got_type))
1408     return false;
1409
1410   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1411   gsym->set_got_offset(got_type, got_offset);
1412   return true;
1413 }
1414
1415 // Like add_global, but use the PLT offset.
1416
1417 template<int size, bool big_endian>
1418 bool
1419 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1420                                                   unsigned int got_type)
1421 {
1422   if (gsym->has_got_offset(got_type))
1423     return false;
1424
1425   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1426   gsym->set_got_offset(got_type, got_offset);
1427   return true;
1428 }
1429
1430 // Add an entry for a global symbol to the GOT, and add a dynamic
1431 // relocation of type R_TYPE for the GOT entry.
1432
1433 template<int size, bool big_endian>
1434 void
1435 Output_data_got<size, big_endian>::add_global_with_rel(
1436     Symbol* gsym,
1437     unsigned int got_type,
1438     Rel_dyn* rel_dyn,
1439     unsigned int r_type)
1440 {
1441   if (gsym->has_got_offset(got_type))
1442     return;
1443
1444   unsigned int got_offset = this->add_got_entry(Got_entry());
1445   gsym->set_got_offset(got_type, got_offset);
1446   rel_dyn->add_global(gsym, r_type, this, got_offset);
1447 }
1448
1449 template<int size, bool big_endian>
1450 void
1451 Output_data_got<size, big_endian>::add_global_with_rela(
1452     Symbol* gsym,
1453     unsigned int got_type,
1454     Rela_dyn* rela_dyn,
1455     unsigned int r_type)
1456 {
1457   if (gsym->has_got_offset(got_type))
1458     return;
1459
1460   unsigned int got_offset = this->add_got_entry(Got_entry());
1461   gsym->set_got_offset(got_type, got_offset);
1462   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1463 }
1464
1465 // Add a pair of entries for a global symbol to the GOT, and add
1466 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1467 // If R_TYPE_2 == 0, add the second entry with no relocation.
1468 template<int size, bool big_endian>
1469 void
1470 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1471     Symbol* gsym,
1472     unsigned int got_type,
1473     Rel_dyn* rel_dyn,
1474     unsigned int r_type_1,
1475     unsigned int r_type_2)
1476 {
1477   if (gsym->has_got_offset(got_type))
1478     return;
1479
1480   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1481   gsym->set_got_offset(got_type, got_offset);
1482   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1483
1484   if (r_type_2 != 0)
1485     rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1486 }
1487
1488 template<int size, bool big_endian>
1489 void
1490 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1491     Symbol* gsym,
1492     unsigned int got_type,
1493     Rela_dyn* rela_dyn,
1494     unsigned int r_type_1,
1495     unsigned int r_type_2)
1496 {
1497   if (gsym->has_got_offset(got_type))
1498     return;
1499
1500   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1501   gsym->set_got_offset(got_type, got_offset);
1502   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1503
1504   if (r_type_2 != 0)
1505     rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1506 }
1507
1508 // Add an entry for a local symbol to the GOT.  This returns true if
1509 // this is a new GOT entry, false if the symbol already has a GOT
1510 // entry.
1511
1512 template<int size, bool big_endian>
1513 bool
1514 Output_data_got<size, big_endian>::add_local(
1515     Sized_relobj_file<size, big_endian>* object,
1516     unsigned int symndx,
1517     unsigned int got_type)
1518 {
1519   if (object->local_has_got_offset(symndx, got_type))
1520     return false;
1521
1522   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1523                                                           false));
1524   object->set_local_got_offset(symndx, got_type, got_offset);
1525   return true;
1526 }
1527
1528 // Like add_local, but use the PLT offset.
1529
1530 template<int size, bool big_endian>
1531 bool
1532 Output_data_got<size, big_endian>::add_local_plt(
1533     Sized_relobj_file<size, big_endian>* object,
1534     unsigned int symndx,
1535     unsigned int got_type)
1536 {
1537   if (object->local_has_got_offset(symndx, got_type))
1538     return false;
1539
1540   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1541                                                           true));
1542   object->set_local_got_offset(symndx, got_type, got_offset);
1543   return true;
1544 }
1545
1546 // Add an entry for a local symbol to the GOT, and add a dynamic
1547 // relocation of type R_TYPE for the GOT entry.
1548
1549 template<int size, bool big_endian>
1550 void
1551 Output_data_got<size, big_endian>::add_local_with_rel(
1552     Sized_relobj_file<size, big_endian>* object,
1553     unsigned int symndx,
1554     unsigned int got_type,
1555     Rel_dyn* rel_dyn,
1556     unsigned int r_type)
1557 {
1558   if (object->local_has_got_offset(symndx, got_type))
1559     return;
1560
1561   unsigned int got_offset = this->add_got_entry(Got_entry());
1562   object->set_local_got_offset(symndx, got_type, got_offset);
1563   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1564 }
1565
1566 template<int size, bool big_endian>
1567 void
1568 Output_data_got<size, big_endian>::add_local_with_rela(
1569     Sized_relobj_file<size, big_endian>* object,
1570     unsigned int symndx,
1571     unsigned int got_type,
1572     Rela_dyn* rela_dyn,
1573     unsigned int r_type)
1574 {
1575   if (object->local_has_got_offset(symndx, got_type))
1576     return;
1577
1578   unsigned int got_offset = this->add_got_entry(Got_entry());
1579   object->set_local_got_offset(symndx, got_type, got_offset);
1580   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1581 }
1582
1583 // Add a pair of entries for a local symbol to the GOT, and add
1584 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1585 // If R_TYPE_2 == 0, add the second entry with no relocation.
1586 template<int size, bool big_endian>
1587 void
1588 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1589     Sized_relobj_file<size, big_endian>* object,
1590     unsigned int symndx,
1591     unsigned int shndx,
1592     unsigned int got_type,
1593     Rel_dyn* rel_dyn,
1594     unsigned int r_type_1,
1595     unsigned int r_type_2)
1596 {
1597   if (object->local_has_got_offset(symndx, got_type))
1598     return;
1599
1600   unsigned int got_offset =
1601       this->add_got_entry_pair(Got_entry(),
1602                                Got_entry(object, symndx, false));
1603   object->set_local_got_offset(symndx, got_type, got_offset);
1604   Output_section* os = object->output_section(shndx);
1605   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1606
1607   if (r_type_2 != 0)
1608     rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1609 }
1610
1611 template<int size, bool big_endian>
1612 void
1613 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1614     Sized_relobj_file<size, big_endian>* object,
1615     unsigned int symndx,
1616     unsigned int shndx,
1617     unsigned int got_type,
1618     Rela_dyn* rela_dyn,
1619     unsigned int r_type_1,
1620     unsigned int r_type_2)
1621 {
1622   if (object->local_has_got_offset(symndx, got_type))
1623     return;
1624
1625   unsigned int got_offset =
1626       this->add_got_entry_pair(Got_entry(),
1627                                Got_entry(object, symndx, false));
1628   object->set_local_got_offset(symndx, got_type, got_offset);
1629   Output_section* os = object->output_section(shndx);
1630   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1631
1632   if (r_type_2 != 0)
1633     rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1634 }
1635
1636 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1637
1638 template<int size, bool big_endian>
1639 void
1640 Output_data_got<size, big_endian>::reserve_local(
1641     unsigned int i,
1642     Sized_relobj<size, big_endian>* object,
1643     unsigned int sym_index,
1644     unsigned int got_type)
1645 {
1646   this->reserve_slot(i);
1647   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1648 }
1649
1650 // Reserve a slot in the GOT for a global symbol.
1651
1652 template<int size, bool big_endian>
1653 void
1654 Output_data_got<size, big_endian>::reserve_global(
1655     unsigned int i,
1656     Symbol* gsym,
1657     unsigned int got_type)
1658 {
1659   this->reserve_slot(i);
1660   gsym->set_got_offset(got_type, this->got_offset(i));
1661 }
1662
1663 // Write out the GOT.
1664
1665 template<int size, bool big_endian>
1666 void
1667 Output_data_got<size, big_endian>::do_write(Output_file* of)
1668 {
1669   const int add = size / 8;
1670
1671   const off_t off = this->offset();
1672   const off_t oview_size = this->data_size();
1673   unsigned char* const oview = of->get_output_view(off, oview_size);
1674
1675   unsigned char* pov = oview;
1676   for (typename Got_entries::const_iterator p = this->entries_.begin();
1677        p != this->entries_.end();
1678        ++p)
1679     {
1680       p->write(pov);
1681       pov += add;
1682     }
1683
1684   gold_assert(pov - oview == oview_size);
1685
1686   of->write_output_view(off, oview_size, oview);
1687
1688   // We no longer need the GOT entries.
1689   this->entries_.clear();
1690 }
1691
1692 // Create a new GOT entry and return its offset.
1693
1694 template<int size, bool big_endian>
1695 unsigned int
1696 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1697 {
1698   if (!this->is_data_size_valid())
1699     {
1700       this->entries_.push_back(got_entry);
1701       this->set_got_size();
1702       return this->last_got_offset();
1703     }
1704   else
1705     {
1706       // For an incremental update, find an available slot.
1707       off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1708       if (got_offset == -1)
1709         gold_fallback(_("out of patch space (GOT);"
1710                         " relink with --incremental-full"));
1711       unsigned int got_index = got_offset / (size / 8);
1712       gold_assert(got_index < this->entries_.size());
1713       this->entries_[got_index] = got_entry;
1714       return static_cast<unsigned int>(got_offset);
1715     }
1716 }
1717
1718 // Create a pair of new GOT entries and return the offset of the first.
1719
1720 template<int size, bool big_endian>
1721 unsigned int
1722 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1723                                                       Got_entry got_entry_2)
1724 {
1725   if (!this->is_data_size_valid())
1726     {
1727       unsigned int got_offset;
1728       this->entries_.push_back(got_entry_1);
1729       got_offset = this->last_got_offset();
1730       this->entries_.push_back(got_entry_2);
1731       this->set_got_size();
1732       return got_offset;
1733     }
1734   else
1735     {
1736       // For an incremental update, find an available pair of slots.
1737       off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1738       if (got_offset == -1)
1739         gold_fallback(_("out of patch space (GOT);"
1740                         " relink with --incremental-full"));
1741       unsigned int got_index = got_offset / (size / 8);
1742       gold_assert(got_index < this->entries_.size());
1743       this->entries_[got_index] = got_entry_1;
1744       this->entries_[got_index + 1] = got_entry_2;
1745       return static_cast<unsigned int>(got_offset);
1746     }
1747 }
1748
1749 // Output_data_dynamic::Dynamic_entry methods.
1750
1751 // Write out the entry.
1752
1753 template<int size, bool big_endian>
1754 void
1755 Output_data_dynamic::Dynamic_entry::write(
1756     unsigned char* pov,
1757     const Stringpool* pool) const
1758 {
1759   typename elfcpp::Elf_types<size>::Elf_WXword val;
1760   switch (this->offset_)
1761     {
1762     case DYNAMIC_NUMBER:
1763       val = this->u_.val;
1764       break;
1765
1766     case DYNAMIC_SECTION_SIZE:
1767       val = this->u_.od->data_size();
1768       if (this->od2 != NULL)
1769         val += this->od2->data_size();
1770       break;
1771
1772     case DYNAMIC_SYMBOL:
1773       {
1774         const Sized_symbol<size>* s =
1775           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1776         val = s->value();
1777       }
1778       break;
1779
1780     case DYNAMIC_STRING:
1781       val = pool->get_offset(this->u_.str);
1782       break;
1783
1784     default:
1785       val = this->u_.od->address() + this->offset_;
1786       break;
1787     }
1788
1789   elfcpp::Dyn_write<size, big_endian> dw(pov);
1790   dw.put_d_tag(this->tag_);
1791   dw.put_d_val(val);
1792 }
1793
1794 // Output_data_dynamic methods.
1795
1796 // Adjust the output section to set the entry size.
1797
1798 void
1799 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1800 {
1801   if (parameters->target().get_size() == 32)
1802     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1803   else if (parameters->target().get_size() == 64)
1804     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1805   else
1806     gold_unreachable();
1807 }
1808
1809 // Set the final data size.
1810
1811 void
1812 Output_data_dynamic::set_final_data_size()
1813 {
1814   // Add the terminating entry if it hasn't been added.
1815   // Because of relaxation, we can run this multiple times.
1816   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1817     {
1818       int extra = parameters->options().spare_dynamic_tags();
1819       for (int i = 0; i < extra; ++i)
1820         this->add_constant(elfcpp::DT_NULL, 0);
1821       this->add_constant(elfcpp::DT_NULL, 0);
1822     }
1823
1824   int dyn_size;
1825   if (parameters->target().get_size() == 32)
1826     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1827   else if (parameters->target().get_size() == 64)
1828     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1829   else
1830     gold_unreachable();
1831   this->set_data_size(this->entries_.size() * dyn_size);
1832 }
1833
1834 // Write out the dynamic entries.
1835
1836 void
1837 Output_data_dynamic::do_write(Output_file* of)
1838 {
1839   switch (parameters->size_and_endianness())
1840     {
1841 #ifdef HAVE_TARGET_32_LITTLE
1842     case Parameters::TARGET_32_LITTLE:
1843       this->sized_write<32, false>(of);
1844       break;
1845 #endif
1846 #ifdef HAVE_TARGET_32_BIG
1847     case Parameters::TARGET_32_BIG:
1848       this->sized_write<32, true>(of);
1849       break;
1850 #endif
1851 #ifdef HAVE_TARGET_64_LITTLE
1852     case Parameters::TARGET_64_LITTLE:
1853       this->sized_write<64, false>(of);
1854       break;
1855 #endif
1856 #ifdef HAVE_TARGET_64_BIG
1857     case Parameters::TARGET_64_BIG:
1858       this->sized_write<64, true>(of);
1859       break;
1860 #endif
1861     default:
1862       gold_unreachable();
1863     }
1864 }
1865
1866 template<int size, bool big_endian>
1867 void
1868 Output_data_dynamic::sized_write(Output_file* of)
1869 {
1870   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1871
1872   const off_t offset = this->offset();
1873   const off_t oview_size = this->data_size();
1874   unsigned char* const oview = of->get_output_view(offset, oview_size);
1875
1876   unsigned char* pov = oview;
1877   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1878        p != this->entries_.end();
1879        ++p)
1880     {
1881       p->write<size, big_endian>(pov, this->pool_);
1882       pov += dyn_size;
1883     }
1884
1885   gold_assert(pov - oview == oview_size);
1886
1887   of->write_output_view(offset, oview_size, oview);
1888
1889   // We no longer need the dynamic entries.
1890   this->entries_.clear();
1891 }
1892
1893 // Class Output_symtab_xindex.
1894
1895 void
1896 Output_symtab_xindex::do_write(Output_file* of)
1897 {
1898   const off_t offset = this->offset();
1899   const off_t oview_size = this->data_size();
1900   unsigned char* const oview = of->get_output_view(offset, oview_size);
1901
1902   memset(oview, 0, oview_size);
1903
1904   if (parameters->target().is_big_endian())
1905     this->endian_do_write<true>(oview);
1906   else
1907     this->endian_do_write<false>(oview);
1908
1909   of->write_output_view(offset, oview_size, oview);
1910
1911   // We no longer need the data.
1912   this->entries_.clear();
1913 }
1914
1915 template<bool big_endian>
1916 void
1917 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1918 {
1919   for (Xindex_entries::const_iterator p = this->entries_.begin();
1920        p != this->entries_.end();
1921        ++p)
1922     {
1923       unsigned int symndx = p->first;
1924       gold_assert(symndx * 4 < this->data_size());
1925       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1926     }
1927 }
1928
1929 // Output_section::Input_section methods.
1930
1931 // Return the current data size.  For an input section we store the size here.
1932 // For an Output_section_data, we have to ask it for the size.
1933
1934 off_t
1935 Output_section::Input_section::current_data_size() const
1936 {
1937   if (this->is_input_section())
1938     return this->u1_.data_size;
1939   else
1940     {
1941       this->u2_.posd->pre_finalize_data_size();
1942       return this->u2_.posd->current_data_size();
1943     }
1944 }
1945
1946 // Return the data size.  For an input section we store the size here.
1947 // For an Output_section_data, we have to ask it for the size.
1948
1949 off_t
1950 Output_section::Input_section::data_size() const
1951 {
1952   if (this->is_input_section())
1953     return this->u1_.data_size;
1954   else
1955     return this->u2_.posd->data_size();
1956 }
1957
1958 // Return the object for an input section.
1959
1960 Relobj*
1961 Output_section::Input_section::relobj() const
1962 {
1963   if (this->is_input_section())
1964     return this->u2_.object;
1965   else if (this->is_merge_section())
1966     {
1967       gold_assert(this->u2_.pomb->first_relobj() != NULL);
1968       return this->u2_.pomb->first_relobj();
1969     }
1970   else if (this->is_relaxed_input_section())
1971     return this->u2_.poris->relobj();
1972   else
1973     gold_unreachable();
1974 }
1975
1976 // Return the input section index for an input section.
1977
1978 unsigned int
1979 Output_section::Input_section::shndx() const
1980 {
1981   if (this->is_input_section())
1982     return this->shndx_;
1983   else if (this->is_merge_section())
1984     {
1985       gold_assert(this->u2_.pomb->first_relobj() != NULL);
1986       return this->u2_.pomb->first_shndx();
1987     }
1988   else if (this->is_relaxed_input_section())
1989     return this->u2_.poris->shndx();
1990   else
1991     gold_unreachable();
1992 }
1993
1994 // Set the address and file offset.
1995
1996 void
1997 Output_section::Input_section::set_address_and_file_offset(
1998     uint64_t address,
1999     off_t file_offset,
2000     off_t section_file_offset)
2001 {
2002   if (this->is_input_section())
2003     this->u2_.object->set_section_offset(this->shndx_,
2004                                          file_offset - section_file_offset);
2005   else
2006     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2007 }
2008
2009 // Reset the address and file offset.
2010
2011 void
2012 Output_section::Input_section::reset_address_and_file_offset()
2013 {
2014   if (!this->is_input_section())
2015     this->u2_.posd->reset_address_and_file_offset();
2016 }
2017
2018 // Finalize the data size.
2019
2020 void
2021 Output_section::Input_section::finalize_data_size()
2022 {
2023   if (!this->is_input_section())
2024     this->u2_.posd->finalize_data_size();
2025 }
2026
2027 // Try to turn an input offset into an output offset.  We want to
2028 // return the output offset relative to the start of this
2029 // Input_section in the output section.
2030
2031 inline bool
2032 Output_section::Input_section::output_offset(
2033     const Relobj* object,
2034     unsigned int shndx,
2035     section_offset_type offset,
2036     section_offset_type* poutput) const
2037 {
2038   if (!this->is_input_section())
2039     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2040   else
2041     {
2042       if (this->shndx_ != shndx || this->u2_.object != object)
2043         return false;
2044       *poutput = offset;
2045       return true;
2046     }
2047 }
2048
2049 // Return whether this is the merge section for the input section
2050 // SHNDX in OBJECT.
2051
2052 inline bool
2053 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2054                                                     unsigned int shndx) const
2055 {
2056   if (this->is_input_section())
2057     return false;
2058   return this->u2_.posd->is_merge_section_for(object, shndx);
2059 }
2060
2061 // Write out the data.  We don't have to do anything for an input
2062 // section--they are handled via Object::relocate--but this is where
2063 // we write out the data for an Output_section_data.
2064
2065 void
2066 Output_section::Input_section::write(Output_file* of)
2067 {
2068   if (!this->is_input_section())
2069     this->u2_.posd->write(of);
2070 }
2071
2072 // Write the data to a buffer.  As for write(), we don't have to do
2073 // anything for an input section.
2074
2075 void
2076 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2077 {
2078   if (!this->is_input_section())
2079     this->u2_.posd->write_to_buffer(buffer);
2080 }
2081
2082 // Print to a map file.
2083
2084 void
2085 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2086 {
2087   switch (this->shndx_)
2088     {
2089     case OUTPUT_SECTION_CODE:
2090     case MERGE_DATA_SECTION_CODE:
2091     case MERGE_STRING_SECTION_CODE:
2092       this->u2_.posd->print_to_mapfile(mapfile);
2093       break;
2094
2095     case RELAXED_INPUT_SECTION_CODE:
2096       {
2097         Output_relaxed_input_section* relaxed_section =
2098           this->relaxed_input_section();
2099         mapfile->print_input_section(relaxed_section->relobj(),
2100                                      relaxed_section->shndx());
2101       }
2102       break;
2103     default:
2104       mapfile->print_input_section(this->u2_.object, this->shndx_);
2105       break;
2106     }
2107 }
2108
2109 // Output_section methods.
2110
2111 // Construct an Output_section.  NAME will point into a Stringpool.
2112
2113 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2114                                elfcpp::Elf_Xword flags)
2115   : name_(name),
2116     addralign_(0),
2117     entsize_(0),
2118     load_address_(0),
2119     link_section_(NULL),
2120     link_(0),
2121     info_section_(NULL),
2122     info_symndx_(NULL),
2123     info_(0),
2124     type_(type),
2125     flags_(flags),
2126     order_(ORDER_INVALID),
2127     out_shndx_(-1U),
2128     symtab_index_(0),
2129     dynsym_index_(0),
2130     input_sections_(),
2131     first_input_offset_(0),
2132     fills_(),
2133     postprocessing_buffer_(NULL),
2134     needs_symtab_index_(false),
2135     needs_dynsym_index_(false),
2136     should_link_to_symtab_(false),
2137     should_link_to_dynsym_(false),
2138     after_input_sections_(false),
2139     requires_postprocessing_(false),
2140     found_in_sections_clause_(false),
2141     has_load_address_(false),
2142     info_uses_section_index_(false),
2143     input_section_order_specified_(false),
2144     may_sort_attached_input_sections_(false),
2145     must_sort_attached_input_sections_(false),
2146     attached_input_sections_are_sorted_(false),
2147     is_relro_(false),
2148     is_small_section_(false),
2149     is_large_section_(false),
2150     generate_code_fills_at_write_(false),
2151     is_entsize_zero_(false),
2152     section_offsets_need_adjustment_(false),
2153     is_noload_(false),
2154     always_keeps_input_sections_(false),
2155     has_fixed_layout_(false),
2156     tls_offset_(0),
2157     checkpoint_(NULL),
2158     lookup_maps_(new Output_section_lookup_maps),
2159     free_list_()
2160 {
2161   // An unallocated section has no address.  Forcing this means that
2162   // we don't need special treatment for symbols defined in debug
2163   // sections.
2164   if ((flags & elfcpp::SHF_ALLOC) == 0)
2165     this->set_address(0);
2166 }
2167
2168 Output_section::~Output_section()
2169 {
2170   delete this->checkpoint_;
2171 }
2172
2173 // Set the entry size.
2174
2175 void
2176 Output_section::set_entsize(uint64_t v)
2177 {
2178   if (this->is_entsize_zero_)
2179     ;
2180   else if (this->entsize_ == 0)
2181     this->entsize_ = v;
2182   else if (this->entsize_ != v)
2183     {
2184       this->entsize_ = 0;
2185       this->is_entsize_zero_ = 1;
2186     }
2187 }
2188
2189 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2190 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2191 // relocation section which applies to this section, or 0 if none, or
2192 // -1U if more than one.  Return the offset of the input section
2193 // within the output section.  Return -1 if the input section will
2194 // receive special handling.  In the normal case we don't always keep
2195 // track of input sections for an Output_section.  Instead, each
2196 // Object keeps track of the Output_section for each of its input
2197 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2198 // track of input sections here; this is used when SECTIONS appears in
2199 // a linker script.
2200
2201 template<int size, bool big_endian>
2202 off_t
2203 Output_section::add_input_section(Layout* layout,
2204                                   Sized_relobj_file<size, big_endian>* object,
2205                                   unsigned int shndx,
2206                                   const char* secname,
2207                                   const elfcpp::Shdr<size, big_endian>& shdr,
2208                                   unsigned int reloc_shndx,
2209                                   bool have_sections_script)
2210 {
2211   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2212   if ((addralign & (addralign - 1)) != 0)
2213     {
2214       object->error(_("invalid alignment %lu for section \"%s\""),
2215                     static_cast<unsigned long>(addralign), secname);
2216       addralign = 1;
2217     }
2218
2219   if (addralign > this->addralign_)
2220     this->addralign_ = addralign;
2221
2222   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2223   uint64_t entsize = shdr.get_sh_entsize();
2224
2225   // .debug_str is a mergeable string section, but is not always so
2226   // marked by compilers.  Mark manually here so we can optimize.
2227   if (strcmp(secname, ".debug_str") == 0)
2228     {
2229       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2230       entsize = 1;
2231     }
2232
2233   this->update_flags_for_input_section(sh_flags);
2234   this->set_entsize(entsize);
2235
2236   // If this is a SHF_MERGE section, we pass all the input sections to
2237   // a Output_data_merge.  We don't try to handle relocations for such
2238   // a section.  We don't try to handle empty merge sections--they
2239   // mess up the mappings, and are useless anyhow.
2240   // FIXME: Need to handle merge sections during incremental update.
2241   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2242       && reloc_shndx == 0
2243       && shdr.get_sh_size() > 0
2244       && !parameters->incremental())
2245     {
2246       // Keep information about merged input sections for rebuilding fast
2247       // lookup maps if we have sections-script or we do relaxation.
2248       bool keeps_input_sections = (this->always_keeps_input_sections_
2249                                    || have_sections_script
2250                                    || parameters->target().may_relax());
2251
2252       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2253                                         addralign, keeps_input_sections))
2254         {
2255           // Tell the relocation routines that they need to call the
2256           // output_offset method to determine the final address.
2257           return -1;
2258         }
2259     }
2260
2261   section_size_type input_section_size = shdr.get_sh_size();
2262   section_size_type uncompressed_size;
2263   if (object->section_is_compressed(shndx, &uncompressed_size))
2264     input_section_size = uncompressed_size;
2265
2266   off_t offset_in_section;
2267   off_t aligned_offset_in_section;
2268   if (this->has_fixed_layout())
2269     {
2270       // For incremental updates, find a chunk of unused space in the section.
2271       offset_in_section = this->free_list_.allocate(input_section_size,
2272                                                     addralign, 0);
2273       if (offset_in_section == -1)
2274         gold_fallback(_("out of patch space; relink with --incremental-full"));
2275       aligned_offset_in_section = offset_in_section;
2276     }
2277   else
2278     {
2279       offset_in_section = this->current_data_size_for_child();
2280       aligned_offset_in_section = align_address(offset_in_section,
2281                                                 addralign);
2282       this->set_current_data_size_for_child(aligned_offset_in_section
2283                                             + input_section_size);
2284     }
2285
2286   // Determine if we want to delay code-fill generation until the output
2287   // section is written.  When the target is relaxing, we want to delay fill
2288   // generating to avoid adjusting them during relaxation.  Also, if we are
2289   // sorting input sections we must delay fill generation.
2290   if (!this->generate_code_fills_at_write_
2291       && !have_sections_script
2292       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2293       && parameters->target().has_code_fill()
2294       && (parameters->target().may_relax()
2295           || parameters->options().section_ordering_file()))
2296     {
2297       gold_assert(this->fills_.empty());
2298       this->generate_code_fills_at_write_ = true;
2299     }
2300
2301   if (aligned_offset_in_section > offset_in_section
2302       && !this->generate_code_fills_at_write_
2303       && !have_sections_script
2304       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2305       && parameters->target().has_code_fill())
2306     {
2307       // We need to add some fill data.  Using fill_list_ when
2308       // possible is an optimization, since we will often have fill
2309       // sections without input sections.
2310       off_t fill_len = aligned_offset_in_section - offset_in_section;
2311       if (this->input_sections_.empty())
2312         this->fills_.push_back(Fill(offset_in_section, fill_len));
2313       else
2314         {
2315           std::string fill_data(parameters->target().code_fill(fill_len));
2316           Output_data_const* odc = new Output_data_const(fill_data, 1);
2317           this->input_sections_.push_back(Input_section(odc));
2318         }
2319     }
2320
2321   // We need to keep track of this section if we are already keeping
2322   // track of sections, or if we are relaxing.  Also, if this is a
2323   // section which requires sorting, or which may require sorting in
2324   // the future, we keep track of the sections.  If the
2325   // --section-ordering-file option is used to specify the order of
2326   // sections, we need to keep track of sections.
2327   if (this->always_keeps_input_sections_
2328       || have_sections_script
2329       || !this->input_sections_.empty()
2330       || this->may_sort_attached_input_sections()
2331       || this->must_sort_attached_input_sections()
2332       || parameters->options().user_set_Map()
2333       || parameters->target().may_relax()
2334       || parameters->options().section_ordering_file())
2335     {
2336       Input_section isecn(object, shndx, input_section_size, addralign);
2337       if (parameters->options().section_ordering_file())
2338         {
2339           unsigned int section_order_index =
2340             layout->find_section_order_index(std::string(secname));
2341           if (section_order_index != 0)
2342             {
2343               isecn.set_section_order_index(section_order_index);
2344               this->set_input_section_order_specified();
2345             }
2346         }
2347       if (this->has_fixed_layout())
2348         {
2349           // For incremental updates, finalize the address and offset now.
2350           uint64_t addr = this->address();
2351           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2352                                             aligned_offset_in_section,
2353                                             this->offset());
2354         }
2355       this->input_sections_.push_back(isecn);
2356     }
2357
2358   return aligned_offset_in_section;
2359 }
2360
2361 // Add arbitrary data to an output section.
2362
2363 void
2364 Output_section::add_output_section_data(Output_section_data* posd)
2365 {
2366   Input_section inp(posd);
2367   this->add_output_section_data(&inp);
2368
2369   if (posd->is_data_size_valid())
2370     {
2371       off_t offset_in_section;
2372       if (this->has_fixed_layout())
2373         {
2374           // For incremental updates, find a chunk of unused space.
2375           offset_in_section = this->free_list_.allocate(posd->data_size(),
2376                                                         posd->addralign(), 0);
2377           if (offset_in_section == -1)
2378             gold_fallback(_("out of patch space; "
2379                             "relink with --incremental-full"));
2380           // Finalize the address and offset now.
2381           uint64_t addr = this->address();
2382           off_t offset = this->offset();
2383           posd->set_address_and_file_offset(addr + offset_in_section,
2384                                             offset + offset_in_section);
2385         }
2386       else
2387         {
2388           offset_in_section = this->current_data_size_for_child();
2389           off_t aligned_offset_in_section = align_address(offset_in_section,
2390                                                           posd->addralign());
2391           this->set_current_data_size_for_child(aligned_offset_in_section
2392                                                 + posd->data_size());
2393         }
2394     }
2395   else if (this->has_fixed_layout())
2396     {
2397       // For incremental updates, arrange for the data to have a fixed layout.
2398       // This will mean that additions to the data must be allocated from
2399       // free space within the containing output section.
2400       uint64_t addr = this->address();
2401       posd->set_address(addr);
2402       posd->set_file_offset(0);
2403       // FIXME: This should eventually be unreachable.
2404       // gold_unreachable();
2405     }
2406 }
2407
2408 // Add a relaxed input section.
2409
2410 void
2411 Output_section::add_relaxed_input_section(Layout* layout,
2412                                           Output_relaxed_input_section* poris,
2413                                           const std::string& name)
2414 {
2415   Input_section inp(poris);
2416
2417   // If the --section-ordering-file option is used to specify the order of
2418   // sections, we need to keep track of sections.
2419   if (parameters->options().section_ordering_file())
2420     {
2421       unsigned int section_order_index =
2422         layout->find_section_order_index(name);
2423       if (section_order_index != 0)
2424         {
2425           inp.set_section_order_index(section_order_index);
2426           this->set_input_section_order_specified();
2427         }
2428     }
2429
2430   this->add_output_section_data(&inp);
2431   if (this->lookup_maps_->is_valid())
2432     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2433                                                   poris->shndx(), poris);
2434
2435   // For a relaxed section, we use the current data size.  Linker scripts
2436   // get all the input sections, including relaxed one from an output
2437   // section and add them back to them same output section to compute the
2438   // output section size.  If we do not account for sizes of relaxed input
2439   // sections,  an output section would be incorrectly sized.
2440   off_t offset_in_section = this->current_data_size_for_child();
2441   off_t aligned_offset_in_section = align_address(offset_in_section,
2442                                                   poris->addralign());
2443   this->set_current_data_size_for_child(aligned_offset_in_section
2444                                         + poris->current_data_size());
2445 }
2446
2447 // Add arbitrary data to an output section by Input_section.
2448
2449 void
2450 Output_section::add_output_section_data(Input_section* inp)
2451 {
2452   if (this->input_sections_.empty())
2453     this->first_input_offset_ = this->current_data_size_for_child();
2454
2455   this->input_sections_.push_back(*inp);
2456
2457   uint64_t addralign = inp->addralign();
2458   if (addralign > this->addralign_)
2459     this->addralign_ = addralign;
2460
2461   inp->set_output_section(this);
2462 }
2463
2464 // Add a merge section to an output section.
2465
2466 void
2467 Output_section::add_output_merge_section(Output_section_data* posd,
2468                                          bool is_string, uint64_t entsize)
2469 {
2470   Input_section inp(posd, is_string, entsize);
2471   this->add_output_section_data(&inp);
2472 }
2473
2474 // Add an input section to a SHF_MERGE section.
2475
2476 bool
2477 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2478                                         uint64_t flags, uint64_t entsize,
2479                                         uint64_t addralign,
2480                                         bool keeps_input_sections)
2481 {
2482   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2483
2484   // We only merge strings if the alignment is not more than the
2485   // character size.  This could be handled, but it's unusual.
2486   if (is_string && addralign > entsize)
2487     return false;
2488
2489   // We cannot restore merged input section states.
2490   gold_assert(this->checkpoint_ == NULL);
2491
2492   // Look up merge sections by required properties.
2493   // Currently, we only invalidate the lookup maps in script processing
2494   // and relaxation.  We should not have done either when we reach here.
2495   // So we assume that the lookup maps are valid to simply code.
2496   gold_assert(this->lookup_maps_->is_valid());
2497   Merge_section_properties msp(is_string, entsize, addralign);
2498   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2499   bool is_new = false;
2500   if (pomb != NULL)
2501     {
2502       gold_assert(pomb->is_string() == is_string
2503                   && pomb->entsize() == entsize
2504                   && pomb->addralign() == addralign);
2505     }
2506   else
2507     {
2508       // Create a new Output_merge_data or Output_merge_string_data.
2509       if (!is_string)
2510         pomb = new Output_merge_data(entsize, addralign);
2511       else
2512         {
2513           switch (entsize)
2514             {
2515             case 1:
2516               pomb = new Output_merge_string<char>(addralign);
2517               break;
2518             case 2:
2519               pomb = new Output_merge_string<uint16_t>(addralign);
2520               break;
2521             case 4:
2522               pomb = new Output_merge_string<uint32_t>(addralign);
2523               break;
2524             default:
2525               return false;
2526             }
2527         }
2528       // If we need to do script processing or relaxation, we need to keep
2529       // the original input sections to rebuild the fast lookup maps.
2530       if (keeps_input_sections)
2531         pomb->set_keeps_input_sections();
2532       is_new = true;
2533     }
2534
2535   if (pomb->add_input_section(object, shndx))
2536     {
2537       // Add new merge section to this output section and link merge
2538       // section properties to new merge section in map.
2539       if (is_new)
2540         {
2541           this->add_output_merge_section(pomb, is_string, entsize);
2542           this->lookup_maps_->add_merge_section(msp, pomb);
2543         }
2544
2545       // Add input section to new merge section and link input section to new
2546       // merge section in map.
2547       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2548       return true;
2549     }
2550   else
2551     {
2552       // If add_input_section failed, delete new merge section to avoid
2553       // exporting empty merge sections in Output_section::get_input_section.
2554       if (is_new)
2555         delete pomb;
2556       return false;
2557     }
2558 }
2559
2560 // Build a relaxation map to speed up relaxation of existing input sections.
2561 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2562
2563 void
2564 Output_section::build_relaxation_map(
2565   const Input_section_list& input_sections,
2566   size_t limit,
2567   Relaxation_map* relaxation_map) const
2568 {
2569   for (size_t i = 0; i < limit; ++i)
2570     {
2571       const Input_section& is(input_sections[i]);
2572       if (is.is_input_section() || is.is_relaxed_input_section())
2573         {
2574           Section_id sid(is.relobj(), is.shndx());
2575           (*relaxation_map)[sid] = i;
2576         }
2577     }
2578 }
2579
2580 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2581 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2582 // indices of INPUT_SECTIONS.
2583
2584 void
2585 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2586   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2587   const Relaxation_map& map,
2588   Input_section_list* input_sections)
2589 {
2590   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2591     {
2592       Output_relaxed_input_section* poris = relaxed_sections[i];
2593       Section_id sid(poris->relobj(), poris->shndx());
2594       Relaxation_map::const_iterator p = map.find(sid);
2595       gold_assert(p != map.end());
2596       gold_assert((*input_sections)[p->second].is_input_section());
2597
2598       // Remember section order index of original input section
2599       // if it is set.  Copy it to the relaxed input section.
2600       unsigned int soi =
2601         (*input_sections)[p->second].section_order_index();
2602       (*input_sections)[p->second] = Input_section(poris);
2603       (*input_sections)[p->second].set_section_order_index(soi);
2604     }
2605 }
2606   
2607 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2608 // is a vector of pointers to Output_relaxed_input_section or its derived
2609 // classes.  The relaxed sections must correspond to existing input sections.
2610
2611 void
2612 Output_section::convert_input_sections_to_relaxed_sections(
2613   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2614 {
2615   gold_assert(parameters->target().may_relax());
2616
2617   // We want to make sure that restore_states does not undo the effect of
2618   // this.  If there is no checkpoint active, just search the current
2619   // input section list and replace the sections there.  If there is
2620   // a checkpoint, also replace the sections there.
2621   
2622   // By default, we look at the whole list.
2623   size_t limit = this->input_sections_.size();
2624
2625   if (this->checkpoint_ != NULL)
2626     {
2627       // Replace input sections with relaxed input section in the saved
2628       // copy of the input section list.
2629       if (this->checkpoint_->input_sections_saved())
2630         {
2631           Relaxation_map map;
2632           this->build_relaxation_map(
2633                     *(this->checkpoint_->input_sections()),
2634                     this->checkpoint_->input_sections()->size(),
2635                     &map);
2636           this->convert_input_sections_in_list_to_relaxed_sections(
2637                     relaxed_sections,
2638                     map,
2639                     this->checkpoint_->input_sections());
2640         }
2641       else
2642         {
2643           // We have not copied the input section list yet.  Instead, just
2644           // look at the portion that would be saved.
2645           limit = this->checkpoint_->input_sections_size();
2646         }
2647     }
2648
2649   // Convert input sections in input_section_list.
2650   Relaxation_map map;
2651   this->build_relaxation_map(this->input_sections_, limit, &map);
2652   this->convert_input_sections_in_list_to_relaxed_sections(
2653             relaxed_sections,
2654             map,
2655             &this->input_sections_);
2656
2657   // Update fast look-up map.
2658   if (this->lookup_maps_->is_valid())
2659     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2660       {
2661         Output_relaxed_input_section* poris = relaxed_sections[i];
2662         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2663                                                       poris->shndx(), poris);
2664       }
2665 }
2666
2667 // Update the output section flags based on input section flags.
2668
2669 void
2670 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2671 {
2672   // If we created the section with SHF_ALLOC clear, we set the
2673   // address.  If we are now setting the SHF_ALLOC flag, we need to
2674   // undo that.
2675   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2676       && (flags & elfcpp::SHF_ALLOC) != 0)
2677     this->mark_address_invalid();
2678
2679   this->flags_ |= (flags
2680                    & (elfcpp::SHF_WRITE
2681                       | elfcpp::SHF_ALLOC
2682                       | elfcpp::SHF_EXECINSTR));
2683
2684   if ((flags & elfcpp::SHF_MERGE) == 0)
2685     this->flags_ &=~ elfcpp::SHF_MERGE;
2686   else
2687     {
2688       if (this->current_data_size_for_child() == 0)
2689         this->flags_ |= elfcpp::SHF_MERGE;
2690     }
2691
2692   if ((flags & elfcpp::SHF_STRINGS) == 0)
2693     this->flags_ &=~ elfcpp::SHF_STRINGS;
2694   else
2695     {
2696       if (this->current_data_size_for_child() == 0)
2697         this->flags_ |= elfcpp::SHF_STRINGS;
2698     }
2699 }
2700
2701 // Find the merge section into which an input section with index SHNDX in
2702 // OBJECT has been added.  Return NULL if none found.
2703
2704 Output_section_data*
2705 Output_section::find_merge_section(const Relobj* object,
2706                                    unsigned int shndx) const
2707 {
2708   if (!this->lookup_maps_->is_valid())
2709     this->build_lookup_maps();
2710   return this->lookup_maps_->find_merge_section(object, shndx);
2711 }
2712
2713 // Build the lookup maps for merge and relaxed sections.  This is needs
2714 // to be declared as a const methods so that it is callable with a const
2715 // Output_section pointer.  The method only updates states of the maps.
2716
2717 void
2718 Output_section::build_lookup_maps() const
2719 {
2720   this->lookup_maps_->clear();
2721   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2722        p != this->input_sections_.end();
2723        ++p)
2724     {
2725       if (p->is_merge_section())
2726         {
2727           Output_merge_base* pomb = p->output_merge_base();
2728           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2729                                        pomb->addralign());
2730           this->lookup_maps_->add_merge_section(msp, pomb);
2731           for (Output_merge_base::Input_sections::const_iterator is =
2732                  pomb->input_sections_begin();
2733                is != pomb->input_sections_end();
2734                ++is) 
2735             {
2736               const Const_section_id& csid = *is;
2737             this->lookup_maps_->add_merge_input_section(csid.first,
2738                                                         csid.second, pomb);
2739             }
2740             
2741         }
2742       else if (p->is_relaxed_input_section())
2743         {
2744           Output_relaxed_input_section* poris = p->relaxed_input_section();
2745           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2746                                                         poris->shndx(), poris);
2747         }
2748     }
2749 }
2750
2751 // Find an relaxed input section corresponding to an input section
2752 // in OBJECT with index SHNDX.
2753
2754 const Output_relaxed_input_section*
2755 Output_section::find_relaxed_input_section(const Relobj* object,
2756                                            unsigned int shndx) const
2757 {
2758   if (!this->lookup_maps_->is_valid())
2759     this->build_lookup_maps();
2760   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2761 }
2762
2763 // Given an address OFFSET relative to the start of input section
2764 // SHNDX in OBJECT, return whether this address is being included in
2765 // the final link.  This should only be called if SHNDX in OBJECT has
2766 // a special mapping.
2767
2768 bool
2769 Output_section::is_input_address_mapped(const Relobj* object,
2770                                         unsigned int shndx,
2771                                         off_t offset) const
2772 {
2773   // Look at the Output_section_data_maps first.
2774   const Output_section_data* posd = this->find_merge_section(object, shndx);
2775   if (posd == NULL)
2776     posd = this->find_relaxed_input_section(object, shndx);
2777
2778   if (posd != NULL)
2779     {
2780       section_offset_type output_offset;
2781       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2782       gold_assert(found);   
2783       return output_offset != -1;
2784     }
2785
2786   // Fall back to the slow look-up.
2787   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2788        p != this->input_sections_.end();
2789        ++p)
2790     {
2791       section_offset_type output_offset;
2792       if (p->output_offset(object, shndx, offset, &output_offset))
2793         return output_offset != -1;
2794     }
2795
2796   // By default we assume that the address is mapped.  This should
2797   // only be called after we have passed all sections to Layout.  At
2798   // that point we should know what we are discarding.
2799   return true;
2800 }
2801
2802 // Given an address OFFSET relative to the start of input section
2803 // SHNDX in object OBJECT, return the output offset relative to the
2804 // start of the input section in the output section.  This should only
2805 // be called if SHNDX in OBJECT has a special mapping.
2806
2807 section_offset_type
2808 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2809                               section_offset_type offset) const
2810 {
2811   // This can only be called meaningfully when we know the data size
2812   // of this.
2813   gold_assert(this->is_data_size_valid());
2814
2815   // Look at the Output_section_data_maps first.
2816   const Output_section_data* posd = this->find_merge_section(object, shndx);
2817   if (posd == NULL) 
2818     posd = this->find_relaxed_input_section(object, shndx);
2819   if (posd != NULL)
2820     {
2821       section_offset_type output_offset;
2822       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2823       gold_assert(found);   
2824       return output_offset;
2825     }
2826
2827   // Fall back to the slow look-up.
2828   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2829        p != this->input_sections_.end();
2830        ++p)
2831     {
2832       section_offset_type output_offset;
2833       if (p->output_offset(object, shndx, offset, &output_offset))
2834         return output_offset;
2835     }
2836   gold_unreachable();
2837 }
2838
2839 // Return the output virtual address of OFFSET relative to the start
2840 // of input section SHNDX in object OBJECT.
2841
2842 uint64_t
2843 Output_section::output_address(const Relobj* object, unsigned int shndx,
2844                                off_t offset) const
2845 {
2846   uint64_t addr = this->address() + this->first_input_offset_;
2847
2848   // Look at the Output_section_data_maps first.
2849   const Output_section_data* posd = this->find_merge_section(object, shndx);
2850   if (posd == NULL) 
2851     posd = this->find_relaxed_input_section(object, shndx);
2852   if (posd != NULL && posd->is_address_valid())
2853     {
2854       section_offset_type output_offset;
2855       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2856       gold_assert(found);
2857       return posd->address() + output_offset;
2858     }
2859
2860   // Fall back to the slow look-up.
2861   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2862        p != this->input_sections_.end();
2863        ++p)
2864     {
2865       addr = align_address(addr, p->addralign());
2866       section_offset_type output_offset;
2867       if (p->output_offset(object, shndx, offset, &output_offset))
2868         {
2869           if (output_offset == -1)
2870             return -1ULL;
2871           return addr + output_offset;
2872         }
2873       addr += p->data_size();
2874     }
2875
2876   // If we get here, it means that we don't know the mapping for this
2877   // input section.  This might happen in principle if
2878   // add_input_section were called before add_output_section_data.
2879   // But it should never actually happen.
2880
2881   gold_unreachable();
2882 }
2883
2884 // Find the output address of the start of the merged section for
2885 // input section SHNDX in object OBJECT.
2886
2887 bool
2888 Output_section::find_starting_output_address(const Relobj* object,
2889                                              unsigned int shndx,
2890                                              uint64_t* paddr) const
2891 {
2892   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2893   // Looking up the merge section map does not always work as we sometimes
2894   // find a merge section without its address set.
2895   uint64_t addr = this->address() + this->first_input_offset_;
2896   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2897        p != this->input_sections_.end();
2898        ++p)
2899     {
2900       addr = align_address(addr, p->addralign());
2901
2902       // It would be nice if we could use the existing output_offset
2903       // method to get the output offset of input offset 0.
2904       // Unfortunately we don't know for sure that input offset 0 is
2905       // mapped at all.
2906       if (p->is_merge_section_for(object, shndx))
2907         {
2908           *paddr = addr;
2909           return true;
2910         }
2911
2912       addr += p->data_size();
2913     }
2914
2915   // We couldn't find a merge output section for this input section.
2916   return false;
2917 }
2918
2919 // Update the data size of an Output_section.
2920
2921 void
2922 Output_section::update_data_size()
2923 {
2924   if (this->input_sections_.empty())
2925       return;
2926
2927   if (this->must_sort_attached_input_sections()
2928       || this->input_section_order_specified())
2929     this->sort_attached_input_sections();
2930
2931   off_t off = this->first_input_offset_;
2932   for (Input_section_list::iterator p = this->input_sections_.begin();
2933        p != this->input_sections_.end();
2934        ++p)
2935     {
2936       off = align_address(off, p->addralign());
2937       off += p->current_data_size();
2938     }
2939
2940   this->set_current_data_size_for_child(off);
2941 }
2942
2943 // Set the data size of an Output_section.  This is where we handle
2944 // setting the addresses of any Output_section_data objects.
2945
2946 void
2947 Output_section::set_final_data_size()
2948 {
2949   if (this->input_sections_.empty())
2950     {
2951       this->set_data_size(this->current_data_size_for_child());
2952       return;
2953     }
2954
2955   if (this->must_sort_attached_input_sections()
2956       || this->input_section_order_specified())
2957     this->sort_attached_input_sections();
2958
2959   uint64_t address = this->address();
2960   off_t startoff = this->offset();
2961   off_t off = startoff + this->first_input_offset_;
2962   for (Input_section_list::iterator p = this->input_sections_.begin();
2963        p != this->input_sections_.end();
2964        ++p)
2965     {
2966       off = align_address(off, p->addralign());
2967       p->set_address_and_file_offset(address + (off - startoff), off,
2968                                      startoff);
2969       off += p->data_size();
2970     }
2971
2972   this->set_data_size(off - startoff);
2973 }
2974
2975 // Reset the address and file offset.
2976
2977 void
2978 Output_section::do_reset_address_and_file_offset()
2979 {
2980   // An unallocated section has no address.  Forcing this means that
2981   // we don't need special treatment for symbols defined in debug
2982   // sections.  We do the same in the constructor.  This does not
2983   // apply to NOLOAD sections though.
2984   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
2985      this->set_address(0);
2986
2987   for (Input_section_list::iterator p = this->input_sections_.begin();
2988        p != this->input_sections_.end();
2989        ++p)
2990     p->reset_address_and_file_offset();
2991 }
2992   
2993 // Return true if address and file offset have the values after reset.
2994
2995 bool
2996 Output_section::do_address_and_file_offset_have_reset_values() const
2997 {
2998   if (this->is_offset_valid())
2999     return false;
3000
3001   // An unallocated section has address 0 after its construction or a reset.
3002   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3003     return this->is_address_valid() && this->address() == 0;
3004   else
3005     return !this->is_address_valid();
3006 }
3007
3008 // Set the TLS offset.  Called only for SHT_TLS sections.
3009
3010 void
3011 Output_section::do_set_tls_offset(uint64_t tls_base)
3012 {
3013   this->tls_offset_ = this->address() - tls_base;
3014 }
3015
3016 // In a few cases we need to sort the input sections attached to an
3017 // output section.  This is used to implement the type of constructor
3018 // priority ordering implemented by the GNU linker, in which the
3019 // priority becomes part of the section name and the sections are
3020 // sorted by name.  We only do this for an output section if we see an
3021 // attached input section matching ".ctors.*", ".dtors.*",
3022 // ".init_array.*" or ".fini_array.*".
3023
3024 class Output_section::Input_section_sort_entry
3025 {
3026  public:
3027   Input_section_sort_entry()
3028     : input_section_(), index_(-1U), section_has_name_(false),
3029       section_name_()
3030   { }
3031
3032   Input_section_sort_entry(const Input_section& input_section,
3033                            unsigned int index,
3034                            bool must_sort_attached_input_sections)
3035     : input_section_(input_section), index_(index),
3036       section_has_name_(input_section.is_input_section()
3037                         || input_section.is_relaxed_input_section())
3038   {
3039     if (this->section_has_name_
3040         && must_sort_attached_input_sections)
3041       {
3042         // This is only called single-threaded from Layout::finalize,
3043         // so it is OK to lock.  Unfortunately we have no way to pass
3044         // in a Task token.
3045         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3046         Object* obj = (input_section.is_input_section()
3047                        ? input_section.relobj()
3048                        : input_section.relaxed_input_section()->relobj());
3049         Task_lock_obj<Object> tl(dummy_task, obj);
3050
3051         // This is a slow operation, which should be cached in
3052         // Layout::layout if this becomes a speed problem.
3053         this->section_name_ = obj->section_name(input_section.shndx());
3054       }
3055   }
3056
3057   // Return the Input_section.
3058   const Input_section&
3059   input_section() const
3060   {
3061     gold_assert(this->index_ != -1U);
3062     return this->input_section_;
3063   }
3064
3065   // The index of this entry in the original list.  This is used to
3066   // make the sort stable.
3067   unsigned int
3068   index() const
3069   {
3070     gold_assert(this->index_ != -1U);
3071     return this->index_;
3072   }
3073
3074   // Whether there is a section name.
3075   bool
3076   section_has_name() const
3077   { return this->section_has_name_; }
3078
3079   // The section name.
3080   const std::string&
3081   section_name() const
3082   {
3083     gold_assert(this->section_has_name_);
3084     return this->section_name_;
3085   }
3086
3087   // Return true if the section name has a priority.  This is assumed
3088   // to be true if it has a dot after the initial dot.
3089   bool
3090   has_priority() const
3091   {
3092     gold_assert(this->section_has_name_);
3093     return this->section_name_.find('.', 1) != std::string::npos;
3094   }
3095
3096   // Return the priority.  Believe it or not, gcc encodes the priority
3097   // differently for .ctors/.dtors and .init_array/.fini_array
3098   // sections.
3099   unsigned int
3100   get_priority() const
3101   {
3102     gold_assert(this->section_has_name_);
3103     bool is_ctors;
3104     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3105         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3106       is_ctors = true;
3107     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3108              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3109       is_ctors = false;
3110     else
3111       return 0;
3112     char* end;
3113     unsigned long prio = strtoul((this->section_name_.c_str()
3114                                   + (is_ctors ? 7 : 12)),
3115                                  &end, 10);
3116     if (*end != '\0')
3117       return 0;
3118     else if (is_ctors)
3119       return 65535 - prio;
3120     else
3121       return prio;
3122   }
3123
3124   // Return true if this an input file whose base name matches
3125   // FILE_NAME.  The base name must have an extension of ".o", and
3126   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3127   // This is to match crtbegin.o as well as crtbeginS.o without
3128   // getting confused by other possibilities.  Overall matching the
3129   // file name this way is a dreadful hack, but the GNU linker does it
3130   // in order to better support gcc, and we need to be compatible.
3131   bool
3132   match_file_name(const char* file_name) const
3133   { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3134
3135   // Returns 1 if THIS should appear before S in section order, -1 if S
3136   // appears before THIS and 0 if they are not comparable.
3137   int
3138   compare_section_ordering(const Input_section_sort_entry& s) const
3139   {
3140     unsigned int this_secn_index = this->input_section_.section_order_index();
3141     unsigned int s_secn_index = s.input_section().section_order_index();
3142     if (this_secn_index > 0 && s_secn_index > 0)
3143       {
3144         if (this_secn_index < s_secn_index)
3145           return 1;
3146         else if (this_secn_index > s_secn_index)
3147           return -1;
3148       }
3149     return 0;
3150   }
3151
3152  private:
3153   // The Input_section we are sorting.
3154   Input_section input_section_;
3155   // The index of this Input_section in the original list.
3156   unsigned int index_;
3157   // Whether this Input_section has a section name--it won't if this
3158   // is some random Output_section_data.
3159   bool section_has_name_;
3160   // The section name if there is one.
3161   std::string section_name_;
3162 };
3163
3164 // Return true if S1 should come before S2 in the output section.
3165
3166 bool
3167 Output_section::Input_section_sort_compare::operator()(
3168     const Output_section::Input_section_sort_entry& s1,
3169     const Output_section::Input_section_sort_entry& s2) const
3170 {
3171   // crtbegin.o must come first.
3172   bool s1_begin = s1.match_file_name("crtbegin");
3173   bool s2_begin = s2.match_file_name("crtbegin");
3174   if (s1_begin || s2_begin)
3175     {
3176       if (!s1_begin)
3177         return false;
3178       if (!s2_begin)
3179         return true;
3180       return s1.index() < s2.index();
3181     }
3182
3183   // crtend.o must come last.
3184   bool s1_end = s1.match_file_name("crtend");
3185   bool s2_end = s2.match_file_name("crtend");
3186   if (s1_end || s2_end)
3187     {
3188       if (!s1_end)
3189         return true;
3190       if (!s2_end)
3191         return false;
3192       return s1.index() < s2.index();
3193     }
3194
3195   // We sort all the sections with no names to the end.
3196   if (!s1.section_has_name() || !s2.section_has_name())
3197     {
3198       if (s1.section_has_name())
3199         return true;
3200       if (s2.section_has_name())
3201         return false;
3202       return s1.index() < s2.index();
3203     }
3204
3205   // A section with a priority follows a section without a priority.
3206   bool s1_has_priority = s1.has_priority();
3207   bool s2_has_priority = s2.has_priority();
3208   if (s1_has_priority && !s2_has_priority)
3209     return false;
3210   if (!s1_has_priority && s2_has_priority)
3211     return true;
3212
3213   // Check if a section order exists for these sections through a section
3214   // ordering file.  If sequence_num is 0, an order does not exist.
3215   int sequence_num = s1.compare_section_ordering(s2);
3216   if (sequence_num != 0)
3217     return sequence_num == 1;
3218
3219   // Otherwise we sort by name.
3220   int compare = s1.section_name().compare(s2.section_name());
3221   if (compare != 0)
3222     return compare < 0;
3223
3224   // Otherwise we keep the input order.
3225   return s1.index() < s2.index();
3226 }
3227
3228 // Return true if S1 should come before S2 in an .init_array or .fini_array
3229 // output section.
3230
3231 bool
3232 Output_section::Input_section_sort_init_fini_compare::operator()(
3233     const Output_section::Input_section_sort_entry& s1,
3234     const Output_section::Input_section_sort_entry& s2) const
3235 {
3236   // We sort all the sections with no names to the end.
3237   if (!s1.section_has_name() || !s2.section_has_name())
3238     {
3239       if (s1.section_has_name())
3240         return true;
3241       if (s2.section_has_name())
3242         return false;
3243       return s1.index() < s2.index();
3244     }
3245
3246   // A section without a priority follows a section with a priority.
3247   // This is the reverse of .ctors and .dtors sections.
3248   bool s1_has_priority = s1.has_priority();
3249   bool s2_has_priority = s2.has_priority();
3250   if (s1_has_priority && !s2_has_priority)
3251     return true;
3252   if (!s1_has_priority && s2_has_priority)
3253     return false;
3254
3255   // .ctors and .dtors sections without priority come after
3256   // .init_array and .fini_array sections without priority.
3257   if (!s1_has_priority
3258       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3259       && s1.section_name() != s2.section_name())
3260     return false;
3261   if (!s2_has_priority
3262       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3263       && s2.section_name() != s1.section_name())
3264     return true;
3265
3266   // Sort by priority if we can.
3267   if (s1_has_priority)
3268     {
3269       unsigned int s1_prio = s1.get_priority();
3270       unsigned int s2_prio = s2.get_priority();
3271       if (s1_prio < s2_prio)
3272         return true;
3273       else if (s1_prio > s2_prio)
3274         return false;
3275     }
3276
3277   // Check if a section order exists for these sections through a section
3278   // ordering file.  If sequence_num is 0, an order does not exist.
3279   int sequence_num = s1.compare_section_ordering(s2);
3280   if (sequence_num != 0)
3281     return sequence_num == 1;
3282
3283   // Otherwise we sort by name.
3284   int compare = s1.section_name().compare(s2.section_name());
3285   if (compare != 0)
3286     return compare < 0;
3287
3288   // Otherwise we keep the input order.
3289   return s1.index() < s2.index();
3290 }
3291
3292 // Return true if S1 should come before S2.  Sections that do not match
3293 // any pattern in the section ordering file are placed ahead of the sections
3294 // that match some pattern.
3295
3296 bool
3297 Output_section::Input_section_sort_section_order_index_compare::operator()(
3298     const Output_section::Input_section_sort_entry& s1,
3299     const Output_section::Input_section_sort_entry& s2) const
3300 {
3301   unsigned int s1_secn_index = s1.input_section().section_order_index();
3302   unsigned int s2_secn_index = s2.input_section().section_order_index();
3303
3304   // Keep input order if section ordering cannot determine order.
3305   if (s1_secn_index == s2_secn_index)
3306     return s1.index() < s2.index();
3307   
3308   return s1_secn_index < s2_secn_index;
3309 }
3310
3311 // Sort the input sections attached to an output section.
3312
3313 void
3314 Output_section::sort_attached_input_sections()
3315 {
3316   if (this->attached_input_sections_are_sorted_)
3317     return;
3318
3319   if (this->checkpoint_ != NULL
3320       && !this->checkpoint_->input_sections_saved())
3321     this->checkpoint_->save_input_sections();
3322
3323   // The only thing we know about an input section is the object and
3324   // the section index.  We need the section name.  Recomputing this
3325   // is slow but this is an unusual case.  If this becomes a speed
3326   // problem we can cache the names as required in Layout::layout.
3327
3328   // We start by building a larger vector holding a copy of each
3329   // Input_section, plus its current index in the list and its name.
3330   std::vector<Input_section_sort_entry> sort_list;
3331
3332   unsigned int i = 0;
3333   for (Input_section_list::iterator p = this->input_sections_.begin();
3334        p != this->input_sections_.end();
3335        ++p, ++i)
3336       sort_list.push_back(Input_section_sort_entry(*p, i,
3337                             this->must_sort_attached_input_sections()));
3338
3339   // Sort the input sections.
3340   if (this->must_sort_attached_input_sections())
3341     {
3342       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3343           || this->type() == elfcpp::SHT_INIT_ARRAY
3344           || this->type() == elfcpp::SHT_FINI_ARRAY)
3345         std::sort(sort_list.begin(), sort_list.end(),
3346                   Input_section_sort_init_fini_compare());
3347       else
3348         std::sort(sort_list.begin(), sort_list.end(),
3349                   Input_section_sort_compare());
3350     }
3351   else
3352     {
3353       gold_assert(parameters->options().section_ordering_file());
3354       std::sort(sort_list.begin(), sort_list.end(),
3355                 Input_section_sort_section_order_index_compare());
3356     }
3357
3358   // Copy the sorted input sections back to our list.
3359   this->input_sections_.clear();
3360   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3361        p != sort_list.end();
3362        ++p)
3363     this->input_sections_.push_back(p->input_section());
3364   sort_list.clear();
3365
3366   // Remember that we sorted the input sections, since we might get
3367   // called again.
3368   this->attached_input_sections_are_sorted_ = true;
3369 }
3370
3371 // Write the section header to *OSHDR.
3372
3373 template<int size, bool big_endian>
3374 void
3375 Output_section::write_header(const Layout* layout,
3376                              const Stringpool* secnamepool,
3377                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3378 {
3379   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3380   oshdr->put_sh_type(this->type_);
3381
3382   elfcpp::Elf_Xword flags = this->flags_;
3383   if (this->info_section_ != NULL && this->info_uses_section_index_)
3384     flags |= elfcpp::SHF_INFO_LINK;
3385   oshdr->put_sh_flags(flags);
3386
3387   oshdr->put_sh_addr(this->address());
3388   oshdr->put_sh_offset(this->offset());
3389   oshdr->put_sh_size(this->data_size());
3390   if (this->link_section_ != NULL)
3391     oshdr->put_sh_link(this->link_section_->out_shndx());
3392   else if (this->should_link_to_symtab_)
3393     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3394   else if (this->should_link_to_dynsym_)
3395     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3396   else
3397     oshdr->put_sh_link(this->link_);
3398
3399   elfcpp::Elf_Word info;
3400   if (this->info_section_ != NULL)
3401     {
3402       if (this->info_uses_section_index_)
3403         info = this->info_section_->out_shndx();
3404       else
3405         info = this->info_section_->symtab_index();
3406     }
3407   else if (this->info_symndx_ != NULL)
3408     info = this->info_symndx_->symtab_index();
3409   else
3410     info = this->info_;
3411   oshdr->put_sh_info(info);
3412
3413   oshdr->put_sh_addralign(this->addralign_);
3414   oshdr->put_sh_entsize(this->entsize_);
3415 }
3416
3417 // Write out the data.  For input sections the data is written out by
3418 // Object::relocate, but we have to handle Output_section_data objects
3419 // here.
3420
3421 void
3422 Output_section::do_write(Output_file* of)
3423 {
3424   gold_assert(!this->requires_postprocessing());
3425
3426   // If the target performs relaxation, we delay filler generation until now.
3427   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3428
3429   off_t output_section_file_offset = this->offset();
3430   for (Fill_list::iterator p = this->fills_.begin();
3431        p != this->fills_.end();
3432        ++p)
3433     {
3434       std::string fill_data(parameters->target().code_fill(p->length()));
3435       of->write(output_section_file_offset + p->section_offset(),
3436                 fill_data.data(), fill_data.size());
3437     }
3438
3439   off_t off = this->offset() + this->first_input_offset_;
3440   for (Input_section_list::iterator p = this->input_sections_.begin();
3441        p != this->input_sections_.end();
3442        ++p)
3443     {
3444       off_t aligned_off = align_address(off, p->addralign());
3445       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3446         {
3447           size_t fill_len = aligned_off - off;
3448           std::string fill_data(parameters->target().code_fill(fill_len));
3449           of->write(off, fill_data.data(), fill_data.size());
3450         }
3451
3452       p->write(of);
3453       off = aligned_off + p->data_size();
3454     }
3455 }
3456
3457 // If a section requires postprocessing, create the buffer to use.
3458
3459 void
3460 Output_section::create_postprocessing_buffer()
3461 {
3462   gold_assert(this->requires_postprocessing());
3463
3464   if (this->postprocessing_buffer_ != NULL)
3465     return;
3466
3467   if (!this->input_sections_.empty())
3468     {
3469       off_t off = this->first_input_offset_;
3470       for (Input_section_list::iterator p = this->input_sections_.begin();
3471            p != this->input_sections_.end();
3472            ++p)
3473         {
3474           off = align_address(off, p->addralign());
3475           p->finalize_data_size();
3476           off += p->data_size();
3477         }
3478       this->set_current_data_size_for_child(off);
3479     }
3480
3481   off_t buffer_size = this->current_data_size_for_child();
3482   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3483 }
3484
3485 // Write all the data of an Output_section into the postprocessing
3486 // buffer.  This is used for sections which require postprocessing,
3487 // such as compression.  Input sections are handled by
3488 // Object::Relocate.
3489
3490 void
3491 Output_section::write_to_postprocessing_buffer()
3492 {
3493   gold_assert(this->requires_postprocessing());
3494
3495   // If the target performs relaxation, we delay filler generation until now.
3496   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3497
3498   unsigned char* buffer = this->postprocessing_buffer();
3499   for (Fill_list::iterator p = this->fills_.begin();
3500        p != this->fills_.end();
3501        ++p)
3502     {
3503       std::string fill_data(parameters->target().code_fill(p->length()));
3504       memcpy(buffer + p->section_offset(), fill_data.data(),
3505              fill_data.size());
3506     }
3507
3508   off_t off = this->first_input_offset_;
3509   for (Input_section_list::iterator p = this->input_sections_.begin();
3510        p != this->input_sections_.end();
3511        ++p)
3512     {
3513       off_t aligned_off = align_address(off, p->addralign());
3514       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3515         {
3516           size_t fill_len = aligned_off - off;
3517           std::string fill_data(parameters->target().code_fill(fill_len));
3518           memcpy(buffer + off, fill_data.data(), fill_data.size());
3519         }
3520
3521       p->write_to_buffer(buffer + aligned_off);
3522       off = aligned_off + p->data_size();
3523     }
3524 }
3525
3526 // Get the input sections for linker script processing.  We leave
3527 // behind the Output_section_data entries.  Note that this may be
3528 // slightly incorrect for merge sections.  We will leave them behind,
3529 // but it is possible that the script says that they should follow
3530 // some other input sections, as in:
3531 //    .rodata { *(.rodata) *(.rodata.cst*) }
3532 // For that matter, we don't handle this correctly:
3533 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3534 // With luck this will never matter.
3535
3536 uint64_t
3537 Output_section::get_input_sections(
3538     uint64_t address,
3539     const std::string& fill,
3540     std::list<Input_section>* input_sections)
3541 {
3542   if (this->checkpoint_ != NULL
3543       && !this->checkpoint_->input_sections_saved())
3544     this->checkpoint_->save_input_sections();
3545
3546   // Invalidate fast look-up maps.
3547   this->lookup_maps_->invalidate();
3548
3549   uint64_t orig_address = address;
3550
3551   address = align_address(address, this->addralign());
3552
3553   Input_section_list remaining;
3554   for (Input_section_list::iterator p = this->input_sections_.begin();
3555        p != this->input_sections_.end();
3556        ++p)
3557     {
3558       if (p->is_input_section()
3559           || p->is_relaxed_input_section()
3560           || p->is_merge_section())
3561         input_sections->push_back(*p);
3562       else
3563         {
3564           uint64_t aligned_address = align_address(address, p->addralign());
3565           if (aligned_address != address && !fill.empty())
3566             {
3567               section_size_type length =
3568                 convert_to_section_size_type(aligned_address - address);
3569               std::string this_fill;
3570               this_fill.reserve(length);
3571               while (this_fill.length() + fill.length() <= length)
3572                 this_fill += fill;
3573               if (this_fill.length() < length)
3574                 this_fill.append(fill, 0, length - this_fill.length());
3575
3576               Output_section_data* posd = new Output_data_const(this_fill, 0);
3577               remaining.push_back(Input_section(posd));
3578             }
3579           address = aligned_address;
3580
3581           remaining.push_back(*p);
3582
3583           p->finalize_data_size();
3584           address += p->data_size();
3585         }
3586     }
3587
3588   this->input_sections_.swap(remaining);
3589   this->first_input_offset_ = 0;
3590
3591   uint64_t data_size = address - orig_address;
3592   this->set_current_data_size_for_child(data_size);
3593   return data_size;
3594 }
3595
3596 // Add a script input section.  SIS is an Output_section::Input_section,
3597 // which can be either a plain input section or a special input section like
3598 // a relaxed input section.  For a special input section, its size must be
3599 // finalized.
3600
3601 void
3602 Output_section::add_script_input_section(const Input_section& sis)
3603 {
3604   uint64_t data_size = sis.data_size();
3605   uint64_t addralign = sis.addralign();
3606   if (addralign > this->addralign_)
3607     this->addralign_ = addralign;
3608
3609   off_t offset_in_section = this->current_data_size_for_child();
3610   off_t aligned_offset_in_section = align_address(offset_in_section,
3611                                                   addralign);
3612
3613   this->set_current_data_size_for_child(aligned_offset_in_section
3614                                         + data_size);
3615
3616   this->input_sections_.push_back(sis);
3617
3618   // Update fast lookup maps if necessary. 
3619   if (this->lookup_maps_->is_valid())
3620     {
3621       if (sis.is_merge_section())
3622         {
3623           Output_merge_base* pomb = sis.output_merge_base();
3624           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3625                                        pomb->addralign());
3626           this->lookup_maps_->add_merge_section(msp, pomb);
3627           for (Output_merge_base::Input_sections::const_iterator p =
3628                  pomb->input_sections_begin();
3629                p != pomb->input_sections_end();
3630                ++p)
3631             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3632                                                         pomb);
3633         }
3634       else if (sis.is_relaxed_input_section())
3635         {
3636           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3637           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3638                                                         poris->shndx(), poris);
3639         }
3640     }
3641 }
3642
3643 // Save states for relaxation.
3644
3645 void
3646 Output_section::save_states()
3647 {
3648   gold_assert(this->checkpoint_ == NULL);
3649   Checkpoint_output_section* checkpoint =
3650     new Checkpoint_output_section(this->addralign_, this->flags_,
3651                                   this->input_sections_,
3652                                   this->first_input_offset_,
3653                                   this->attached_input_sections_are_sorted_);
3654   this->checkpoint_ = checkpoint;
3655   gold_assert(this->fills_.empty());
3656 }
3657
3658 void
3659 Output_section::discard_states()
3660 {
3661   gold_assert(this->checkpoint_ != NULL);
3662   delete this->checkpoint_;
3663   this->checkpoint_ = NULL;
3664   gold_assert(this->fills_.empty());
3665
3666   // Simply invalidate the fast lookup maps since we do not keep
3667   // track of them.
3668   this->lookup_maps_->invalidate();
3669 }
3670
3671 void
3672 Output_section::restore_states()
3673 {
3674   gold_assert(this->checkpoint_ != NULL);
3675   Checkpoint_output_section* checkpoint = this->checkpoint_;
3676
3677   this->addralign_ = checkpoint->addralign();
3678   this->flags_ = checkpoint->flags();
3679   this->first_input_offset_ = checkpoint->first_input_offset();
3680
3681   if (!checkpoint->input_sections_saved())
3682     {
3683       // If we have not copied the input sections, just resize it.
3684       size_t old_size = checkpoint->input_sections_size();
3685       gold_assert(this->input_sections_.size() >= old_size);
3686       this->input_sections_.resize(old_size);
3687     }
3688   else
3689     {
3690       // We need to copy the whole list.  This is not efficient for
3691       // extremely large output with hundreads of thousands of input
3692       // objects.  We may need to re-think how we should pass sections
3693       // to scripts.
3694       this->input_sections_ = *checkpoint->input_sections();
3695     }
3696
3697   this->attached_input_sections_are_sorted_ =
3698     checkpoint->attached_input_sections_are_sorted();
3699
3700   // Simply invalidate the fast lookup maps since we do not keep
3701   // track of them.
3702   this->lookup_maps_->invalidate();
3703 }
3704
3705 // Update the section offsets of input sections in this.  This is required if
3706 // relaxation causes some input sections to change sizes.
3707
3708 void
3709 Output_section::adjust_section_offsets()
3710 {
3711   if (!this->section_offsets_need_adjustment_)
3712     return;
3713
3714   off_t off = 0;
3715   for (Input_section_list::iterator p = this->input_sections_.begin();
3716        p != this->input_sections_.end();
3717        ++p)
3718     {
3719       off = align_address(off, p->addralign());
3720       if (p->is_input_section())
3721         p->relobj()->set_section_offset(p->shndx(), off);
3722       off += p->data_size();
3723     }
3724
3725   this->section_offsets_need_adjustment_ = false;
3726 }
3727
3728 // Print to the map file.
3729
3730 void
3731 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3732 {
3733   mapfile->print_output_section(this);
3734
3735   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3736        p != this->input_sections_.end();
3737        ++p)
3738     p->print_to_mapfile(mapfile);
3739 }
3740
3741 // Print stats for merge sections to stderr.
3742
3743 void
3744 Output_section::print_merge_stats()
3745 {
3746   Input_section_list::iterator p;
3747   for (p = this->input_sections_.begin();
3748        p != this->input_sections_.end();
3749        ++p)
3750     p->print_merge_stats(this->name_);
3751 }
3752
3753 // Set a fixed layout for the section.  Used for incremental update links.
3754
3755 void
3756 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3757                                  off_t sh_size, uint64_t sh_addralign)
3758 {
3759   this->addralign_ = sh_addralign;
3760   this->set_current_data_size(sh_size);
3761   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3762     this->set_address(sh_addr);
3763   this->set_file_offset(sh_offset);
3764   this->finalize_data_size();
3765   this->free_list_.init(sh_size, false);
3766   this->has_fixed_layout_ = true;
3767 }
3768
3769 // Reserve space within the fixed layout for the section.  Used for
3770 // incremental update links.
3771
3772 void
3773 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3774 {
3775   this->free_list_.remove(sh_offset, sh_offset + sh_size);
3776 }
3777
3778 // Allocate space from the free list for the section.  Used for
3779 // incremental update links.
3780
3781 off_t
3782 Output_section::allocate(off_t len, uint64_t addralign)
3783 {
3784   return this->free_list_.allocate(len, addralign, 0);
3785 }
3786
3787 // Output segment methods.
3788
3789 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3790   : vaddr_(0),
3791     paddr_(0),
3792     memsz_(0),
3793     max_align_(0),
3794     min_p_align_(0),
3795     offset_(0),
3796     filesz_(0),
3797     type_(type),
3798     flags_(flags),
3799     is_max_align_known_(false),
3800     are_addresses_set_(false),
3801     is_large_data_segment_(false)
3802 {
3803   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3804   // the flags.
3805   if (type == elfcpp::PT_TLS)
3806     this->flags_ = elfcpp::PF_R;
3807 }
3808
3809 // Add an Output_section to a PT_LOAD Output_segment.
3810
3811 void
3812 Output_segment::add_output_section_to_load(Layout* layout,
3813                                            Output_section* os,
3814                                            elfcpp::Elf_Word seg_flags)
3815 {
3816   gold_assert(this->type() == elfcpp::PT_LOAD);
3817   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3818   gold_assert(!this->is_max_align_known_);
3819   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3820
3821   this->update_flags_for_output_section(seg_flags);
3822
3823   // We don't want to change the ordering if we have a linker script
3824   // with a SECTIONS clause.
3825   Output_section_order order = os->order();
3826   if (layout->script_options()->saw_sections_clause())
3827     order = static_cast<Output_section_order>(0);
3828   else
3829     gold_assert(order != ORDER_INVALID);
3830
3831   this->output_lists_[order].push_back(os);
3832 }
3833
3834 // Add an Output_section to a non-PT_LOAD Output_segment.
3835
3836 void
3837 Output_segment::add_output_section_to_nonload(Output_section* os,
3838                                               elfcpp::Elf_Word seg_flags)
3839 {
3840   gold_assert(this->type() != elfcpp::PT_LOAD);
3841   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3842   gold_assert(!this->is_max_align_known_);
3843
3844   this->update_flags_for_output_section(seg_flags);
3845
3846   this->output_lists_[0].push_back(os);
3847 }
3848
3849 // Remove an Output_section from this segment.  It is an error if it
3850 // is not present.
3851
3852 void
3853 Output_segment::remove_output_section(Output_section* os)
3854 {
3855   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3856     {
3857       Output_data_list* pdl = &this->output_lists_[i];
3858       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
3859         {
3860           if (*p == os)
3861             {
3862               pdl->erase(p);
3863               return;
3864             }
3865         }
3866     }
3867   gold_unreachable();
3868 }
3869
3870 // Add an Output_data (which need not be an Output_section) to the
3871 // start of a segment.
3872
3873 void
3874 Output_segment::add_initial_output_data(Output_data* od)
3875 {
3876   gold_assert(!this->is_max_align_known_);
3877   Output_data_list::iterator p = this->output_lists_[0].begin();
3878   this->output_lists_[0].insert(p, od);
3879 }
3880
3881 // Return true if this segment has any sections which hold actual
3882 // data, rather than being a BSS section.
3883
3884 bool
3885 Output_segment::has_any_data_sections() const
3886 {
3887   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3888     {
3889       const Output_data_list* pdl = &this->output_lists_[i];
3890       for (Output_data_list::const_iterator p = pdl->begin();
3891            p != pdl->end();
3892            ++p)
3893         {
3894           if (!(*p)->is_section())
3895             return true;
3896           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
3897             return true;
3898         }
3899     }
3900   return false;
3901 }
3902
3903 // Return whether the first data section (not counting TLS sections)
3904 // is a relro section.
3905
3906 bool
3907 Output_segment::is_first_section_relro() const
3908 {
3909   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3910     {
3911       if (i == static_cast<int>(ORDER_TLS_DATA)
3912           || i == static_cast<int>(ORDER_TLS_BSS))
3913         continue;
3914       const Output_data_list* pdl = &this->output_lists_[i];
3915       if (!pdl->empty())
3916         {
3917           Output_data* p = pdl->front();
3918           return p->is_section() && p->output_section()->is_relro();
3919         }
3920     }
3921   return false;
3922 }
3923
3924 // Return the maximum alignment of the Output_data in Output_segment.
3925
3926 uint64_t
3927 Output_segment::maximum_alignment()
3928 {
3929   if (!this->is_max_align_known_)
3930     {
3931       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3932         {       
3933           const Output_data_list* pdl = &this->output_lists_[i];
3934           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
3935           if (addralign > this->max_align_)
3936             this->max_align_ = addralign;
3937         }
3938       this->is_max_align_known_ = true;
3939     }
3940
3941   return this->max_align_;
3942 }
3943
3944 // Return the maximum alignment of a list of Output_data.
3945
3946 uint64_t
3947 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3948 {
3949   uint64_t ret = 0;
3950   for (Output_data_list::const_iterator p = pdl->begin();
3951        p != pdl->end();
3952        ++p)
3953     {
3954       uint64_t addralign = (*p)->addralign();
3955       if (addralign > ret)
3956         ret = addralign;
3957     }
3958   return ret;
3959 }
3960
3961 // Return whether this segment has any dynamic relocs.
3962
3963 bool
3964 Output_segment::has_dynamic_reloc() const
3965 {
3966   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3967     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
3968       return true;
3969   return false;
3970 }
3971
3972 // Return whether this Output_data_list has any dynamic relocs.
3973
3974 bool
3975 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
3976 {
3977   for (Output_data_list::const_iterator p = pdl->begin();
3978        p != pdl->end();
3979        ++p)
3980     if ((*p)->has_dynamic_reloc())
3981       return true;
3982   return false;
3983 }
3984
3985 // Set the section addresses for an Output_segment.  If RESET is true,
3986 // reset the addresses first.  ADDR is the address and *POFF is the
3987 // file offset.  Set the section indexes starting with *PSHNDX.
3988 // INCREASE_RELRO is the size of the portion of the first non-relro
3989 // section that should be included in the PT_GNU_RELRO segment.
3990 // If this segment has relro sections, and has been aligned for
3991 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
3992 // the immediately following segment.  Update *HAS_RELRO, *POFF,
3993 // and *PSHNDX.
3994
3995 uint64_t
3996 Output_segment::set_section_addresses(Layout* layout, bool reset,
3997                                       uint64_t addr,
3998                                       unsigned int* increase_relro,
3999                                       bool* has_relro,
4000                                       off_t* poff,
4001                                       unsigned int* pshndx)
4002 {
4003   gold_assert(this->type_ == elfcpp::PT_LOAD);
4004
4005   uint64_t last_relro_pad = 0;
4006   off_t orig_off = *poff;
4007
4008   bool in_tls = false;
4009
4010   // If we have relro sections, we need to pad forward now so that the
4011   // relro sections plus INCREASE_RELRO end on a common page boundary.
4012   if (parameters->options().relro()
4013       && this->is_first_section_relro()
4014       && (!this->are_addresses_set_ || reset))
4015     {
4016       uint64_t relro_size = 0;
4017       off_t off = *poff;
4018       uint64_t max_align = 0;
4019       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4020         {
4021           Output_data_list* pdl = &this->output_lists_[i];
4022           Output_data_list::iterator p;
4023           for (p = pdl->begin(); p != pdl->end(); ++p)
4024             {
4025               if (!(*p)->is_section())
4026                 break;
4027               uint64_t align = (*p)->addralign();
4028               if (align > max_align)
4029                 max_align = align;
4030               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4031                 in_tls = true;
4032               else if (in_tls)
4033                 {
4034                   // Align the first non-TLS section to the alignment
4035                   // of the TLS segment.
4036                   align = max_align;
4037                   in_tls = false;
4038                 }
4039               relro_size = align_address(relro_size, align);
4040               // Ignore the size of the .tbss section.
4041               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4042                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4043                 continue;
4044               if ((*p)->is_address_valid())
4045                 relro_size += (*p)->data_size();
4046               else
4047                 {
4048                   // FIXME: This could be faster.
4049                   (*p)->set_address_and_file_offset(addr + relro_size,
4050                                                     off + relro_size);
4051                   relro_size += (*p)->data_size();
4052                   (*p)->reset_address_and_file_offset();
4053                 }
4054             }
4055           if (p != pdl->end())
4056             break;
4057         }
4058       relro_size += *increase_relro;
4059       // Pad the total relro size to a multiple of the maximum
4060       // section alignment seen.
4061       uint64_t aligned_size = align_address(relro_size, max_align);
4062       // Note the amount of padding added after the last relro section.
4063       last_relro_pad = aligned_size - relro_size;
4064       *has_relro = true;
4065
4066       uint64_t page_align = parameters->target().common_pagesize();
4067
4068       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4069       uint64_t desired_align = page_align - (aligned_size % page_align);
4070       if (desired_align < *poff % page_align)
4071         *poff += page_align - *poff % page_align;
4072       *poff += desired_align - *poff % page_align;
4073       addr += *poff - orig_off;
4074       orig_off = *poff;
4075     }
4076
4077   if (!reset && this->are_addresses_set_)
4078     {
4079       gold_assert(this->paddr_ == addr);
4080       addr = this->vaddr_;
4081     }
4082   else
4083     {
4084       this->vaddr_ = addr;
4085       this->paddr_ = addr;
4086       this->are_addresses_set_ = true;
4087     }
4088
4089   in_tls = false;
4090
4091   this->offset_ = orig_off;
4092
4093   off_t off = 0;
4094   uint64_t ret;
4095   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4096     {
4097       if (i == static_cast<int>(ORDER_RELRO_LAST))
4098         {
4099           *poff += last_relro_pad;
4100           addr += last_relro_pad;
4101           if (this->output_lists_[i].empty())
4102             {
4103               // If there is nothing in the ORDER_RELRO_LAST list,
4104               // the padding will occur at the end of the relro
4105               // segment, and we need to add it to *INCREASE_RELRO.
4106               *increase_relro += last_relro_pad;
4107             }
4108         }
4109       addr = this->set_section_list_addresses(layout, reset,
4110                                               &this->output_lists_[i],
4111                                               addr, poff, pshndx, &in_tls);
4112       if (i < static_cast<int>(ORDER_SMALL_BSS))
4113         {
4114           this->filesz_ = *poff - orig_off;
4115           off = *poff;
4116         }
4117
4118       ret = addr;
4119     }
4120
4121   // If the last section was a TLS section, align upward to the
4122   // alignment of the TLS segment, so that the overall size of the TLS
4123   // segment is aligned.
4124   if (in_tls)
4125     {
4126       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4127       *poff = align_address(*poff, segment_align);
4128     }
4129
4130   this->memsz_ = *poff - orig_off;
4131
4132   // Ignore the file offset adjustments made by the BSS Output_data
4133   // objects.
4134   *poff = off;
4135
4136   return ret;
4137 }
4138
4139 // Set the addresses and file offsets in a list of Output_data
4140 // structures.
4141
4142 uint64_t
4143 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4144                                            Output_data_list* pdl,
4145                                            uint64_t addr, off_t* poff,
4146                                            unsigned int* pshndx,
4147                                            bool* in_tls)
4148 {
4149   off_t startoff = *poff;
4150   // For incremental updates, we may allocate non-fixed sections from
4151   // free space in the file.  This keeps track of the high-water mark.
4152   off_t maxoff = startoff;
4153
4154   off_t off = startoff;
4155   for (Output_data_list::iterator p = pdl->begin();
4156        p != pdl->end();
4157        ++p)
4158     {
4159       if (reset)
4160         (*p)->reset_address_and_file_offset();
4161
4162       // When doing an incremental update or when using a linker script,
4163       // the section will most likely already have an address.
4164       if (!(*p)->is_address_valid())
4165         {
4166           uint64_t align = (*p)->addralign();
4167
4168           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4169             {
4170               // Give the first TLS section the alignment of the
4171               // entire TLS segment.  Otherwise the TLS segment as a
4172               // whole may be misaligned.
4173               if (!*in_tls)
4174                 {
4175                   Output_segment* tls_segment = layout->tls_segment();
4176                   gold_assert(tls_segment != NULL);
4177                   uint64_t segment_align = tls_segment->maximum_alignment();
4178                   gold_assert(segment_align >= align);
4179                   align = segment_align;
4180
4181                   *in_tls = true;
4182                 }
4183             }
4184           else
4185             {
4186               // If this is the first section after the TLS segment,
4187               // align it to at least the alignment of the TLS
4188               // segment, so that the size of the overall TLS segment
4189               // is aligned.
4190               if (*in_tls)
4191                 {
4192                   uint64_t segment_align =
4193                       layout->tls_segment()->maximum_alignment();
4194                   if (segment_align > align)
4195                     align = segment_align;
4196
4197                   *in_tls = false;
4198                 }
4199             }
4200
4201           if (!parameters->incremental_update())
4202             {
4203               off = align_address(off, align);
4204               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4205             }
4206           else
4207             {
4208               // Incremental update: allocate file space from free list.
4209               (*p)->pre_finalize_data_size();
4210               off_t current_size = (*p)->current_data_size();
4211               off = layout->allocate(current_size, align, startoff);
4212               if (off == -1)
4213                 {
4214                   gold_assert((*p)->output_section() != NULL);
4215                   gold_fallback(_("out of patch space for section %s; "
4216                                   "relink with --incremental-full"),
4217                                 (*p)->output_section()->name());
4218                 }
4219               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4220               if ((*p)->data_size() > current_size)
4221                 {
4222                   gold_assert((*p)->output_section() != NULL);
4223                   gold_fallback(_("%s: section changed size; "
4224                                   "relink with --incremental-full"),
4225                                 (*p)->output_section()->name());
4226                 }
4227             }
4228         }
4229       else if (parameters->incremental_update())
4230         {
4231           // For incremental updates, use the fixed offset for the
4232           // high-water mark computation.
4233           off = (*p)->offset();
4234         }
4235       else
4236         {
4237           // The script may have inserted a skip forward, but it
4238           // better not have moved backward.
4239           if ((*p)->address() >= addr + (off - startoff))
4240             off += (*p)->address() - (addr + (off - startoff));
4241           else
4242             {
4243               if (!layout->script_options()->saw_sections_clause())
4244                 gold_unreachable();
4245               else
4246                 {
4247                   Output_section* os = (*p)->output_section();
4248
4249                   // Cast to unsigned long long to avoid format warnings.
4250                   unsigned long long previous_dot =
4251                     static_cast<unsigned long long>(addr + (off - startoff));
4252                   unsigned long long dot =
4253                     static_cast<unsigned long long>((*p)->address());
4254
4255                   if (os == NULL)
4256                     gold_error(_("dot moves backward in linker script "
4257                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4258                   else
4259                     gold_error(_("address of section '%s' moves backward "
4260                                  "from 0x%llx to 0x%llx"),
4261                                os->name(), previous_dot, dot);
4262                 }
4263             }
4264           (*p)->set_file_offset(off);
4265           (*p)->finalize_data_size();
4266         }
4267
4268       gold_debug(DEBUG_INCREMENTAL,
4269                  "set_section_list_addresses: %08lx %08lx %s",
4270                  static_cast<long>(off),
4271                  static_cast<long>((*p)->data_size()),
4272                  ((*p)->output_section() != NULL
4273                   ? (*p)->output_section()->name() : "(special)"));
4274
4275       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
4276       // section.  Such a section does not affect the size of a
4277       // PT_LOAD segment.
4278       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4279           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4280         off += (*p)->data_size();
4281
4282       if (off > maxoff)
4283         maxoff = off;
4284
4285       if ((*p)->is_section())
4286         {
4287           (*p)->set_out_shndx(*pshndx);
4288           ++*pshndx;
4289         }
4290     }
4291
4292   *poff = maxoff;
4293   return addr + (maxoff - startoff);
4294 }
4295
4296 // For a non-PT_LOAD segment, set the offset from the sections, if
4297 // any.  Add INCREASE to the file size and the memory size.
4298
4299 void
4300 Output_segment::set_offset(unsigned int increase)
4301 {
4302   gold_assert(this->type_ != elfcpp::PT_LOAD);
4303
4304   gold_assert(!this->are_addresses_set_);
4305
4306   // A non-load section only uses output_lists_[0].
4307
4308   Output_data_list* pdl = &this->output_lists_[0];
4309
4310   if (pdl->empty())
4311     {
4312       gold_assert(increase == 0);
4313       this->vaddr_ = 0;
4314       this->paddr_ = 0;
4315       this->are_addresses_set_ = true;
4316       this->memsz_ = 0;
4317       this->min_p_align_ = 0;
4318       this->offset_ = 0;
4319       this->filesz_ = 0;
4320       return;
4321     }
4322
4323   // Find the first and last section by address.
4324   const Output_data* first = NULL;
4325   const Output_data* last_data = NULL;
4326   const Output_data* last_bss = NULL;
4327   for (Output_data_list::const_iterator p = pdl->begin();
4328        p != pdl->end();
4329        ++p)
4330     {
4331       if (first == NULL
4332           || (*p)->address() < first->address()
4333           || ((*p)->address() == first->address()
4334               && (*p)->data_size() < first->data_size()))
4335         first = *p;
4336       const Output_data** plast;
4337       if ((*p)->is_section()
4338           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4339         plast = &last_bss;
4340       else
4341         plast = &last_data;
4342       if (*plast == NULL
4343           || (*p)->address() > (*plast)->address()
4344           || ((*p)->address() == (*plast)->address()
4345               && (*p)->data_size() > (*plast)->data_size()))
4346         *plast = *p;
4347     }
4348
4349   this->vaddr_ = first->address();
4350   this->paddr_ = (first->has_load_address()
4351                   ? first->load_address()
4352                   : this->vaddr_);
4353   this->are_addresses_set_ = true;
4354   this->offset_ = first->offset();
4355
4356   if (last_data == NULL)
4357     this->filesz_ = 0;
4358   else
4359     this->filesz_ = (last_data->address()
4360                      + last_data->data_size()
4361                      - this->vaddr_);
4362
4363   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4364   this->memsz_ = (last->address()
4365                   + last->data_size()
4366                   - this->vaddr_);
4367
4368   this->filesz_ += increase;
4369   this->memsz_ += increase;
4370
4371   // If this is a RELRO segment, verify that the segment ends at a
4372   // page boundary.
4373   if (this->type_ == elfcpp::PT_GNU_RELRO)
4374     {
4375       uint64_t page_align = parameters->target().common_pagesize();
4376       uint64_t segment_end = this->vaddr_ + this->memsz_;
4377       if (parameters->incremental_update())
4378         {
4379           // The INCREASE_RELRO calculation is bypassed for an incremental
4380           // update, so we need to adjust the segment size manually here.
4381           segment_end = align_address(segment_end, page_align);
4382           this->memsz_ = segment_end - this->vaddr_;
4383         }
4384       else
4385         gold_assert(segment_end == align_address(segment_end, page_align));
4386     }
4387
4388   // If this is a TLS segment, align the memory size.  The code in
4389   // set_section_list ensures that the section after the TLS segment
4390   // is aligned to give us room.
4391   if (this->type_ == elfcpp::PT_TLS)
4392     {
4393       uint64_t segment_align = this->maximum_alignment();
4394       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4395       this->memsz_ = align_address(this->memsz_, segment_align);
4396     }
4397 }
4398
4399 // Set the TLS offsets of the sections in the PT_TLS segment.
4400
4401 void
4402 Output_segment::set_tls_offsets()
4403 {
4404   gold_assert(this->type_ == elfcpp::PT_TLS);
4405
4406   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4407        p != this->output_lists_[0].end();
4408        ++p)
4409     (*p)->set_tls_offset(this->vaddr_);
4410 }
4411
4412 // Return the load address of the first section.
4413
4414 uint64_t
4415 Output_segment::first_section_load_address() const
4416 {
4417   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4418     {
4419       const Output_data_list* pdl = &this->output_lists_[i];
4420       for (Output_data_list::const_iterator p = pdl->begin();
4421            p != pdl->end();
4422            ++p)
4423         {
4424           if ((*p)->is_section())
4425             return ((*p)->has_load_address()
4426                     ? (*p)->load_address()
4427                     : (*p)->address());
4428         }
4429     }
4430   gold_unreachable();
4431 }
4432
4433 // Return the number of Output_sections in an Output_segment.
4434
4435 unsigned int
4436 Output_segment::output_section_count() const
4437 {
4438   unsigned int ret = 0;
4439   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4440     ret += this->output_section_count_list(&this->output_lists_[i]);
4441   return ret;
4442 }
4443
4444 // Return the number of Output_sections in an Output_data_list.
4445
4446 unsigned int
4447 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4448 {
4449   unsigned int count = 0;
4450   for (Output_data_list::const_iterator p = pdl->begin();
4451        p != pdl->end();
4452        ++p)
4453     {
4454       if ((*p)->is_section())
4455         ++count;
4456     }
4457   return count;
4458 }
4459
4460 // Return the section attached to the list segment with the lowest
4461 // load address.  This is used when handling a PHDRS clause in a
4462 // linker script.
4463
4464 Output_section*
4465 Output_segment::section_with_lowest_load_address() const
4466 {
4467   Output_section* found = NULL;
4468   uint64_t found_lma = 0;
4469   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4470     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4471                                       &found_lma);
4472   return found;
4473 }
4474
4475 // Look through a list for a section with a lower load address.
4476
4477 void
4478 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4479                                             Output_section** found,
4480                                             uint64_t* found_lma) const
4481 {
4482   for (Output_data_list::const_iterator p = pdl->begin();
4483        p != pdl->end();
4484        ++p)
4485     {
4486       if (!(*p)->is_section())
4487         continue;
4488       Output_section* os = static_cast<Output_section*>(*p);
4489       uint64_t lma = (os->has_load_address()
4490                       ? os->load_address()
4491                       : os->address());
4492       if (*found == NULL || lma < *found_lma)
4493         {
4494           *found = os;
4495           *found_lma = lma;
4496         }
4497     }
4498 }
4499
4500 // Write the segment data into *OPHDR.
4501
4502 template<int size, bool big_endian>
4503 void
4504 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4505 {
4506   ophdr->put_p_type(this->type_);
4507   ophdr->put_p_offset(this->offset_);
4508   ophdr->put_p_vaddr(this->vaddr_);
4509   ophdr->put_p_paddr(this->paddr_);
4510   ophdr->put_p_filesz(this->filesz_);
4511   ophdr->put_p_memsz(this->memsz_);
4512   ophdr->put_p_flags(this->flags_);
4513   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4514 }
4515
4516 // Write the section headers into V.
4517
4518 template<int size, bool big_endian>
4519 unsigned char*
4520 Output_segment::write_section_headers(const Layout* layout,
4521                                       const Stringpool* secnamepool,
4522                                       unsigned char* v,
4523                                       unsigned int* pshndx) const
4524 {
4525   // Every section that is attached to a segment must be attached to a
4526   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4527   // segments.
4528   if (this->type_ != elfcpp::PT_LOAD)
4529     return v;
4530
4531   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4532     {
4533       const Output_data_list* pdl = &this->output_lists_[i];
4534       v = this->write_section_headers_list<size, big_endian>(layout,
4535                                                              secnamepool,
4536                                                              pdl,
4537                                                              v, pshndx);
4538     }
4539
4540   return v;
4541 }
4542
4543 template<int size, bool big_endian>
4544 unsigned char*
4545 Output_segment::write_section_headers_list(const Layout* layout,
4546                                            const Stringpool* secnamepool,
4547                                            const Output_data_list* pdl,
4548                                            unsigned char* v,
4549                                            unsigned int* pshndx) const
4550 {
4551   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4552   for (Output_data_list::const_iterator p = pdl->begin();
4553        p != pdl->end();
4554        ++p)
4555     {
4556       if ((*p)->is_section())
4557         {
4558           const Output_section* ps = static_cast<const Output_section*>(*p);
4559           gold_assert(*pshndx == ps->out_shndx());
4560           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4561           ps->write_header(layout, secnamepool, &oshdr);
4562           v += shdr_size;
4563           ++*pshndx;
4564         }
4565     }
4566   return v;
4567 }
4568
4569 // Print the output sections to the map file.
4570
4571 void
4572 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4573 {
4574   if (this->type() != elfcpp::PT_LOAD)
4575     return;
4576   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4577     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4578 }
4579
4580 // Print an output section list to the map file.
4581
4582 void
4583 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4584                                               const Output_data_list* pdl) const
4585 {
4586   for (Output_data_list::const_iterator p = pdl->begin();
4587        p != pdl->end();
4588        ++p)
4589     (*p)->print_to_mapfile(mapfile);
4590 }
4591
4592 // Output_file methods.
4593
4594 Output_file::Output_file(const char* name)
4595   : name_(name),
4596     o_(-1),
4597     file_size_(0),
4598     base_(NULL),
4599     map_is_anonymous_(false),
4600     map_is_allocated_(false),
4601     is_temporary_(false)
4602 {
4603 }
4604
4605 // Try to open an existing file.  Returns false if the file doesn't
4606 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4607 // NULL, open that file as the base for incremental linking, and
4608 // copy its contents to the new output file.  This routine can
4609 // be called for incremental updates, in which case WRITABLE should
4610 // be true, or by the incremental-dump utility, in which case
4611 // WRITABLE should be false.
4612
4613 bool
4614 Output_file::open_base_file(const char* base_name, bool writable)
4615 {
4616   // The name "-" means "stdout".
4617   if (strcmp(this->name_, "-") == 0)
4618     return false;
4619
4620   bool use_base_file = base_name != NULL;
4621   if (!use_base_file)
4622     base_name = this->name_;
4623   else if (strcmp(base_name, this->name_) == 0)
4624     gold_fatal(_("%s: incremental base and output file name are the same"),
4625                base_name);
4626
4627   // Don't bother opening files with a size of zero.
4628   struct stat s;
4629   if (::stat(base_name, &s) != 0)
4630     {
4631       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4632       return false;
4633     }
4634   if (s.st_size == 0)
4635     {
4636       gold_info(_("%s: incremental base file is empty"), base_name);
4637       return false;
4638     }
4639
4640   // If we're using a base file, we want to open it read-only.
4641   if (use_base_file)
4642     writable = false;
4643
4644   int oflags = writable ? O_RDWR : O_RDONLY;
4645   int o = open_descriptor(-1, base_name, oflags, 0);
4646   if (o < 0)
4647     {
4648       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4649       return false;
4650     }
4651
4652   // If the base file and the output file are different, open a
4653   // new output file and read the contents from the base file into
4654   // the newly-mapped region.
4655   if (use_base_file)
4656     {
4657       this->open(s.st_size);
4658       ssize_t len = ::read(o, this->base_, s.st_size);
4659       if (len < 0)
4660         {
4661           gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4662           return false;
4663         }
4664       if (len < s.st_size)
4665         {
4666           gold_info(_("%s: file too short"), base_name);
4667           return false;
4668         }
4669       ::close(o);
4670       return true;
4671     }
4672
4673   this->o_ = o;
4674   this->file_size_ = s.st_size;
4675
4676   if (!this->map_no_anonymous(writable))
4677     {
4678       release_descriptor(o, true);
4679       this->o_ = -1;
4680       this->file_size_ = 0;
4681       return false;
4682     }
4683
4684   return true;
4685 }
4686
4687 // Open the output file.
4688
4689 void
4690 Output_file::open(off_t file_size)
4691 {
4692   this->file_size_ = file_size;
4693
4694   // Unlink the file first; otherwise the open() may fail if the file
4695   // is busy (e.g. it's an executable that's currently being executed).
4696   //
4697   // However, the linker may be part of a system where a zero-length
4698   // file is created for it to write to, with tight permissions (gcc
4699   // 2.95 did something like this).  Unlinking the file would work
4700   // around those permission controls, so we only unlink if the file
4701   // has a non-zero size.  We also unlink only regular files to avoid
4702   // trouble with directories/etc.
4703   //
4704   // If we fail, continue; this command is merely a best-effort attempt
4705   // to improve the odds for open().
4706
4707   // We let the name "-" mean "stdout"
4708   if (!this->is_temporary_)
4709     {
4710       if (strcmp(this->name_, "-") == 0)
4711         this->o_ = STDOUT_FILENO;
4712       else
4713         {
4714           struct stat s;
4715           if (::stat(this->name_, &s) == 0
4716               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4717             {
4718               if (s.st_size != 0)
4719                 ::unlink(this->name_);
4720               else if (!parameters->options().relocatable())
4721                 {
4722                   // If we don't unlink the existing file, add execute
4723                   // permission where read permissions already exist
4724                   // and where the umask permits.
4725                   int mask = ::umask(0);
4726                   ::umask(mask);
4727                   s.st_mode |= (s.st_mode & 0444) >> 2;
4728                   ::chmod(this->name_, s.st_mode & ~mask);
4729                 }
4730             }
4731
4732           int mode = parameters->options().relocatable() ? 0666 : 0777;
4733           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4734                                   mode);
4735           if (o < 0)
4736             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4737           this->o_ = o;
4738         }
4739     }
4740
4741   this->map();
4742 }
4743
4744 // Resize the output file.
4745
4746 void
4747 Output_file::resize(off_t file_size)
4748 {
4749   // If the mmap is mapping an anonymous memory buffer, this is easy:
4750   // just mremap to the new size.  If it's mapping to a file, we want
4751   // to unmap to flush to the file, then remap after growing the file.
4752   if (this->map_is_anonymous_)
4753     {
4754       void* base;
4755       if (!this->map_is_allocated_)
4756         {
4757           base = ::mremap(this->base_, this->file_size_, file_size,
4758                           MREMAP_MAYMOVE);
4759           if (base == MAP_FAILED)
4760             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4761         }
4762       else
4763         {
4764           base = realloc(this->base_, file_size);
4765           if (base == NULL)
4766             gold_nomem();
4767           if (file_size > this->file_size_)
4768             memset(static_cast<char*>(base) + this->file_size_, 0,
4769                    file_size - this->file_size_);
4770         }
4771       this->base_ = static_cast<unsigned char*>(base);
4772       this->file_size_ = file_size;
4773     }
4774   else
4775     {
4776       this->unmap();
4777       this->file_size_ = file_size;
4778       if (!this->map_no_anonymous(true))
4779         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4780     }
4781 }
4782
4783 // Map an anonymous block of memory which will later be written to the
4784 // file.  Return whether the map succeeded.
4785
4786 bool
4787 Output_file::map_anonymous()
4788 {
4789   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4790                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4791   if (base == MAP_FAILED)
4792     {
4793       base = malloc(this->file_size_);
4794       if (base == NULL)
4795         return false;
4796       memset(base, 0, this->file_size_);
4797       this->map_is_allocated_ = true;
4798     }
4799   this->base_ = static_cast<unsigned char*>(base);
4800   this->map_is_anonymous_ = true;
4801   return true;
4802 }
4803
4804 // Map the file into memory.  Return whether the mapping succeeded.
4805 // If WRITABLE is true, map with write access.
4806
4807 bool
4808 Output_file::map_no_anonymous(bool writable)
4809 {
4810   const int o = this->o_;
4811
4812   // If the output file is not a regular file, don't try to mmap it;
4813   // instead, we'll mmap a block of memory (an anonymous buffer), and
4814   // then later write the buffer to the file.
4815   void* base;
4816   struct stat statbuf;
4817   if (o == STDOUT_FILENO || o == STDERR_FILENO
4818       || ::fstat(o, &statbuf) != 0
4819       || !S_ISREG(statbuf.st_mode)
4820       || this->is_temporary_)
4821     return false;
4822
4823   // Ensure that we have disk space available for the file.  If we
4824   // don't do this, it is possible that we will call munmap, close,
4825   // and exit with dirty buffers still in the cache with no assigned
4826   // disk blocks.  If the disk is out of space at that point, the
4827   // output file will wind up incomplete, but we will have already
4828   // exited.  The alternative to fallocate would be to use fdatasync,
4829   // but that would be a more significant performance hit.
4830   if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
4831     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4832
4833   // Map the file into memory.
4834   int prot = PROT_READ;
4835   if (writable)
4836     prot |= PROT_WRITE;
4837   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
4838
4839   // The mmap call might fail because of file system issues: the file
4840   // system might not support mmap at all, or it might not support
4841   // mmap with PROT_WRITE.
4842   if (base == MAP_FAILED)
4843     return false;
4844
4845   this->map_is_anonymous_ = false;
4846   this->base_ = static_cast<unsigned char*>(base);
4847   return true;
4848 }
4849
4850 // Map the file into memory.
4851
4852 void
4853 Output_file::map()
4854 {
4855   if (this->map_no_anonymous(true))
4856     return;
4857
4858   // The mmap call might fail because of file system issues: the file
4859   // system might not support mmap at all, or it might not support
4860   // mmap with PROT_WRITE.  I'm not sure which errno values we will
4861   // see in all cases, so if the mmap fails for any reason and we
4862   // don't care about file contents, try for an anonymous map.
4863   if (this->map_anonymous())
4864     return;
4865
4866   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4867              this->name_, static_cast<unsigned long>(this->file_size_),
4868              strerror(errno));
4869 }
4870
4871 // Unmap the file from memory.
4872
4873 void
4874 Output_file::unmap()
4875 {
4876   if (this->map_is_anonymous_)
4877     {
4878       // We've already written out the data, so there is no reason to
4879       // waste time unmapping or freeing the memory.
4880     }
4881   else
4882     {
4883       if (::munmap(this->base_, this->file_size_) < 0)
4884         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4885     }
4886   this->base_ = NULL;
4887 }
4888
4889 // Close the output file.
4890
4891 void
4892 Output_file::close()
4893 {
4894   // If the map isn't file-backed, we need to write it now.
4895   if (this->map_is_anonymous_ && !this->is_temporary_)
4896     {
4897       size_t bytes_to_write = this->file_size_;
4898       size_t offset = 0;
4899       while (bytes_to_write > 0)
4900         {
4901           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4902                                           bytes_to_write);
4903           if (bytes_written == 0)
4904             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4905           else if (bytes_written < 0)
4906             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4907           else
4908             {
4909               bytes_to_write -= bytes_written;
4910               offset += bytes_written;
4911             }
4912         }
4913     }
4914   this->unmap();
4915
4916   // We don't close stdout or stderr
4917   if (this->o_ != STDOUT_FILENO
4918       && this->o_ != STDERR_FILENO
4919       && !this->is_temporary_)
4920     if (::close(this->o_) < 0)
4921       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4922   this->o_ = -1;
4923 }
4924
4925 // Instantiate the templates we need.  We could use the configure
4926 // script to restrict this to only the ones for implemented targets.
4927
4928 #ifdef HAVE_TARGET_32_LITTLE
4929 template
4930 off_t
4931 Output_section::add_input_section<32, false>(
4932     Layout* layout,
4933     Sized_relobj_file<32, false>* object,
4934     unsigned int shndx,
4935     const char* secname,
4936     const elfcpp::Shdr<32, false>& shdr,
4937     unsigned int reloc_shndx,
4938     bool have_sections_script);
4939 #endif
4940
4941 #ifdef HAVE_TARGET_32_BIG
4942 template
4943 off_t
4944 Output_section::add_input_section<32, true>(
4945     Layout* layout,
4946     Sized_relobj_file<32, true>* object,
4947     unsigned int shndx,
4948     const char* secname,
4949     const elfcpp::Shdr<32, true>& shdr,
4950     unsigned int reloc_shndx,
4951     bool have_sections_script);
4952 #endif
4953
4954 #ifdef HAVE_TARGET_64_LITTLE
4955 template
4956 off_t
4957 Output_section::add_input_section<64, false>(
4958     Layout* layout,
4959     Sized_relobj_file<64, false>* object,
4960     unsigned int shndx,
4961     const char* secname,
4962     const elfcpp::Shdr<64, false>& shdr,
4963     unsigned int reloc_shndx,
4964     bool have_sections_script);
4965 #endif
4966
4967 #ifdef HAVE_TARGET_64_BIG
4968 template
4969 off_t
4970 Output_section::add_input_section<64, true>(
4971     Layout* layout,
4972     Sized_relobj_file<64, true>* object,
4973     unsigned int shndx,
4974     const char* secname,
4975     const elfcpp::Shdr<64, true>& shdr,
4976     unsigned int reloc_shndx,
4977     bool have_sections_script);
4978 #endif
4979
4980 #ifdef HAVE_TARGET_32_LITTLE
4981 template
4982 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4983 #endif
4984
4985 #ifdef HAVE_TARGET_32_BIG
4986 template
4987 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4988 #endif
4989
4990 #ifdef HAVE_TARGET_64_LITTLE
4991 template
4992 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4993 #endif
4994
4995 #ifdef HAVE_TARGET_64_BIG
4996 template
4997 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4998 #endif
4999
5000 #ifdef HAVE_TARGET_32_LITTLE
5001 template
5002 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5003 #endif
5004
5005 #ifdef HAVE_TARGET_32_BIG
5006 template
5007 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5008 #endif
5009
5010 #ifdef HAVE_TARGET_64_LITTLE
5011 template
5012 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5013 #endif
5014
5015 #ifdef HAVE_TARGET_64_BIG
5016 template
5017 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5018 #endif
5019
5020 #ifdef HAVE_TARGET_32_LITTLE
5021 template
5022 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5023 #endif
5024
5025 #ifdef HAVE_TARGET_32_BIG
5026 template
5027 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5028 #endif
5029
5030 #ifdef HAVE_TARGET_64_LITTLE
5031 template
5032 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5033 #endif
5034
5035 #ifdef HAVE_TARGET_64_BIG
5036 template
5037 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5038 #endif
5039
5040 #ifdef HAVE_TARGET_32_LITTLE
5041 template
5042 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5043 #endif
5044
5045 #ifdef HAVE_TARGET_32_BIG
5046 template
5047 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5048 #endif
5049
5050 #ifdef HAVE_TARGET_64_LITTLE
5051 template
5052 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5053 #endif
5054
5055 #ifdef HAVE_TARGET_64_BIG
5056 template
5057 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5058 #endif
5059
5060 #ifdef HAVE_TARGET_32_LITTLE
5061 template
5062 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5063 #endif
5064
5065 #ifdef HAVE_TARGET_32_BIG
5066 template
5067 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5068 #endif
5069
5070 #ifdef HAVE_TARGET_64_LITTLE
5071 template
5072 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5073 #endif
5074
5075 #ifdef HAVE_TARGET_64_BIG
5076 template
5077 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5078 #endif
5079
5080 #ifdef HAVE_TARGET_32_LITTLE
5081 template
5082 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5083 #endif
5084
5085 #ifdef HAVE_TARGET_32_BIG
5086 template
5087 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5088 #endif
5089
5090 #ifdef HAVE_TARGET_64_LITTLE
5091 template
5092 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5093 #endif
5094
5095 #ifdef HAVE_TARGET_64_BIG
5096 template
5097 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5098 #endif
5099
5100 #ifdef HAVE_TARGET_32_LITTLE
5101 template
5102 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5103 #endif
5104
5105 #ifdef HAVE_TARGET_32_BIG
5106 template
5107 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5108 #endif
5109
5110 #ifdef HAVE_TARGET_64_LITTLE
5111 template
5112 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5113 #endif
5114
5115 #ifdef HAVE_TARGET_64_BIG
5116 template
5117 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5118 #endif
5119
5120 #ifdef HAVE_TARGET_32_LITTLE
5121 template
5122 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5123 #endif
5124
5125 #ifdef HAVE_TARGET_32_BIG
5126 template
5127 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5128 #endif
5129
5130 #ifdef HAVE_TARGET_64_LITTLE
5131 template
5132 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5133 #endif
5134
5135 #ifdef HAVE_TARGET_64_BIG
5136 template
5137 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5138 #endif
5139
5140 #ifdef HAVE_TARGET_32_LITTLE
5141 template
5142 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5143 #endif
5144
5145 #ifdef HAVE_TARGET_32_BIG
5146 template
5147 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5148 #endif
5149
5150 #ifdef HAVE_TARGET_64_LITTLE
5151 template
5152 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5153 #endif
5154
5155 #ifdef HAVE_TARGET_64_BIG
5156 template
5157 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5158 #endif
5159
5160 #ifdef HAVE_TARGET_32_LITTLE
5161 template
5162 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5163 #endif
5164
5165 #ifdef HAVE_TARGET_32_BIG
5166 template
5167 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5168 #endif
5169
5170 #ifdef HAVE_TARGET_64_LITTLE
5171 template
5172 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5173 #endif
5174
5175 #ifdef HAVE_TARGET_64_BIG
5176 template
5177 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5178 #endif
5179
5180 #ifdef HAVE_TARGET_32_LITTLE
5181 template
5182 class Output_data_group<32, false>;
5183 #endif
5184
5185 #ifdef HAVE_TARGET_32_BIG
5186 template
5187 class Output_data_group<32, true>;
5188 #endif
5189
5190 #ifdef HAVE_TARGET_64_LITTLE
5191 template
5192 class Output_data_group<64, false>;
5193 #endif
5194
5195 #ifdef HAVE_TARGET_64_BIG
5196 template
5197 class Output_data_group<64, true>;
5198 #endif
5199
5200 #ifdef HAVE_TARGET_32_LITTLE
5201 template
5202 class Output_data_got<32, false>;
5203 #endif
5204
5205 #ifdef HAVE_TARGET_32_BIG
5206 template
5207 class Output_data_got<32, true>;
5208 #endif
5209
5210 #ifdef HAVE_TARGET_64_LITTLE
5211 template
5212 class Output_data_got<64, false>;
5213 #endif
5214
5215 #ifdef HAVE_TARGET_64_BIG
5216 template
5217 class Output_data_got<64, true>;
5218 #endif
5219
5220 } // End namespace gold.