1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #ifdef HAVE_SYS_MMAN_H
37 #include "libiberty.h"
40 #include "parameters.h"
45 #include "descriptors.h"
49 // For systems without mmap support.
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
64 # define MAP_PRIVATE 0
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
74 # define ENOSYS EINVAL
78 gold_mmap(void *, size_t, int, int, int, off_t)
85 gold_munmap(void *, size_t)
92 gold_mremap(void *, size_t, size_t, int)
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
114 #ifndef HAVE_POSIX_FALLOCATE
115 // A dummy, non general, version of posix_fallocate. Here we just set
116 // the file size and hope that there is enough disk space. FIXME: We
117 // could allocate disk space by walking block by block and writing a
118 // zero byte into each block.
120 posix_fallocate(int o, off_t offset, off_t len)
122 return ftruncate(o, offset + len);
124 #endif // !defined(HAVE_POSIX_FALLOCATE)
126 // Mingw does not have S_ISLNK.
128 # define S_ISLNK(mode) 0
134 // Output_data variables.
136 bool Output_data::allocated_sizes_are_fixed;
138 // Output_data methods.
140 Output_data::~Output_data()
144 // Return the default alignment for the target size.
147 Output_data::default_alignment()
149 return Output_data::default_alignment_for_size(
150 parameters->target().get_size());
153 // Return the default alignment for a size--32 or 64.
156 Output_data::default_alignment_for_size(int size)
166 // Output_section_header methods. This currently assumes that the
167 // segment and section lists are complete at construction time.
169 Output_section_headers::Output_section_headers(
170 const Layout* layout,
171 const Layout::Segment_list* segment_list,
172 const Layout::Section_list* section_list,
173 const Layout::Section_list* unattached_section_list,
174 const Stringpool* secnamepool,
175 const Output_section* shstrtab_section)
177 segment_list_(segment_list),
178 section_list_(section_list),
179 unattached_section_list_(unattached_section_list),
180 secnamepool_(secnamepool),
181 shstrtab_section_(shstrtab_section)
185 // Compute the current data size.
188 Output_section_headers::do_size() const
190 // Count all the sections. Start with 1 for the null section.
192 if (!parameters->options().relocatable())
194 for (Layout::Segment_list::const_iterator p =
195 this->segment_list_->begin();
196 p != this->segment_list_->end();
198 if ((*p)->type() == elfcpp::PT_LOAD)
199 count += (*p)->output_section_count();
203 for (Layout::Section_list::const_iterator p =
204 this->section_list_->begin();
205 p != this->section_list_->end();
207 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
210 count += this->unattached_section_list_->size();
212 const int size = parameters->target().get_size();
215 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
217 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
221 return count * shdr_size;
224 // Write out the section headers.
227 Output_section_headers::do_write(Output_file* of)
229 switch (parameters->size_and_endianness())
231 #ifdef HAVE_TARGET_32_LITTLE
232 case Parameters::TARGET_32_LITTLE:
233 this->do_sized_write<32, false>(of);
236 #ifdef HAVE_TARGET_32_BIG
237 case Parameters::TARGET_32_BIG:
238 this->do_sized_write<32, true>(of);
241 #ifdef HAVE_TARGET_64_LITTLE
242 case Parameters::TARGET_64_LITTLE:
243 this->do_sized_write<64, false>(of);
246 #ifdef HAVE_TARGET_64_BIG
247 case Parameters::TARGET_64_BIG:
248 this->do_sized_write<64, true>(of);
256 template<int size, bool big_endian>
258 Output_section_headers::do_sized_write(Output_file* of)
260 off_t all_shdrs_size = this->data_size();
261 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
263 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
264 unsigned char* v = view;
267 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
268 oshdr.put_sh_name(0);
269 oshdr.put_sh_type(elfcpp::SHT_NULL);
270 oshdr.put_sh_flags(0);
271 oshdr.put_sh_addr(0);
272 oshdr.put_sh_offset(0);
274 size_t section_count = (this->data_size()
275 / elfcpp::Elf_sizes<size>::shdr_size);
276 if (section_count < elfcpp::SHN_LORESERVE)
277 oshdr.put_sh_size(0);
279 oshdr.put_sh_size(section_count);
281 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
282 if (shstrndx < elfcpp::SHN_LORESERVE)
283 oshdr.put_sh_link(0);
285 oshdr.put_sh_link(shstrndx);
287 size_t segment_count = this->segment_list_->size();
288 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
290 oshdr.put_sh_addralign(0);
291 oshdr.put_sh_entsize(0);
296 unsigned int shndx = 1;
297 if (!parameters->options().relocatable())
299 for (Layout::Segment_list::const_iterator p =
300 this->segment_list_->begin();
301 p != this->segment_list_->end();
303 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
310 for (Layout::Section_list::const_iterator p =
311 this->section_list_->begin();
312 p != this->section_list_->end();
315 // We do unallocated sections below, except that group
316 // sections have to come first.
317 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
318 && (*p)->type() != elfcpp::SHT_GROUP)
320 gold_assert(shndx == (*p)->out_shndx());
321 elfcpp::Shdr_write<size, big_endian> oshdr(v);
322 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
328 for (Layout::Section_list::const_iterator p =
329 this->unattached_section_list_->begin();
330 p != this->unattached_section_list_->end();
333 // For a relocatable link, we did unallocated group sections
334 // above, since they have to come first.
335 if ((*p)->type() == elfcpp::SHT_GROUP
336 && parameters->options().relocatable())
338 gold_assert(shndx == (*p)->out_shndx());
339 elfcpp::Shdr_write<size, big_endian> oshdr(v);
340 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
345 of->write_output_view(this->offset(), all_shdrs_size, view);
348 // Output_segment_header methods.
350 Output_segment_headers::Output_segment_headers(
351 const Layout::Segment_list& segment_list)
352 : segment_list_(segment_list)
354 this->set_current_data_size_for_child(this->do_size());
358 Output_segment_headers::do_write(Output_file* of)
360 switch (parameters->size_and_endianness())
362 #ifdef HAVE_TARGET_32_LITTLE
363 case Parameters::TARGET_32_LITTLE:
364 this->do_sized_write<32, false>(of);
367 #ifdef HAVE_TARGET_32_BIG
368 case Parameters::TARGET_32_BIG:
369 this->do_sized_write<32, true>(of);
372 #ifdef HAVE_TARGET_64_LITTLE
373 case Parameters::TARGET_64_LITTLE:
374 this->do_sized_write<64, false>(of);
377 #ifdef HAVE_TARGET_64_BIG
378 case Parameters::TARGET_64_BIG:
379 this->do_sized_write<64, true>(of);
387 template<int size, bool big_endian>
389 Output_segment_headers::do_sized_write(Output_file* of)
391 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
392 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
393 gold_assert(all_phdrs_size == this->data_size());
394 unsigned char* view = of->get_output_view(this->offset(),
396 unsigned char* v = view;
397 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
398 p != this->segment_list_.end();
401 elfcpp::Phdr_write<size, big_endian> ophdr(v);
402 (*p)->write_header(&ophdr);
406 gold_assert(v - view == all_phdrs_size);
408 of->write_output_view(this->offset(), all_phdrs_size, view);
412 Output_segment_headers::do_size() const
414 const int size = parameters->target().get_size();
417 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
419 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
423 return this->segment_list_.size() * phdr_size;
426 // Output_file_header methods.
428 Output_file_header::Output_file_header(const Target* target,
429 const Symbol_table* symtab,
430 const Output_segment_headers* osh)
433 segment_header_(osh),
434 section_header_(NULL),
437 this->set_data_size(this->do_size());
440 // Set the section table information for a file header.
443 Output_file_header::set_section_info(const Output_section_headers* shdrs,
444 const Output_section* shstrtab)
446 this->section_header_ = shdrs;
447 this->shstrtab_ = shstrtab;
450 // Write out the file header.
453 Output_file_header::do_write(Output_file* of)
455 gold_assert(this->offset() == 0);
457 switch (parameters->size_and_endianness())
459 #ifdef HAVE_TARGET_32_LITTLE
460 case Parameters::TARGET_32_LITTLE:
461 this->do_sized_write<32, false>(of);
464 #ifdef HAVE_TARGET_32_BIG
465 case Parameters::TARGET_32_BIG:
466 this->do_sized_write<32, true>(of);
469 #ifdef HAVE_TARGET_64_LITTLE
470 case Parameters::TARGET_64_LITTLE:
471 this->do_sized_write<64, false>(of);
474 #ifdef HAVE_TARGET_64_BIG
475 case Parameters::TARGET_64_BIG:
476 this->do_sized_write<64, true>(of);
484 // Write out the file header with appropriate size and endianness.
486 template<int size, bool big_endian>
488 Output_file_header::do_sized_write(Output_file* of)
490 gold_assert(this->offset() == 0);
492 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
493 unsigned char* view = of->get_output_view(0, ehdr_size);
494 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
496 unsigned char e_ident[elfcpp::EI_NIDENT];
497 memset(e_ident, 0, elfcpp::EI_NIDENT);
498 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
499 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
500 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
501 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
503 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
505 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
508 e_ident[elfcpp::EI_DATA] = (big_endian
509 ? elfcpp::ELFDATA2MSB
510 : elfcpp::ELFDATA2LSB);
511 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
512 oehdr.put_e_ident(e_ident);
515 if (parameters->options().relocatable())
516 e_type = elfcpp::ET_REL;
517 else if (parameters->options().output_is_position_independent())
518 e_type = elfcpp::ET_DYN;
520 e_type = elfcpp::ET_EXEC;
521 oehdr.put_e_type(e_type);
523 oehdr.put_e_machine(this->target_->machine_code());
524 oehdr.put_e_version(elfcpp::EV_CURRENT);
526 oehdr.put_e_entry(this->entry<size>());
528 if (this->segment_header_ == NULL)
529 oehdr.put_e_phoff(0);
531 oehdr.put_e_phoff(this->segment_header_->offset());
533 oehdr.put_e_shoff(this->section_header_->offset());
534 oehdr.put_e_flags(this->target_->processor_specific_flags());
535 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
537 if (this->segment_header_ == NULL)
539 oehdr.put_e_phentsize(0);
540 oehdr.put_e_phnum(0);
544 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
545 size_t phnum = (this->segment_header_->data_size()
546 / elfcpp::Elf_sizes<size>::phdr_size);
547 if (phnum > elfcpp::PN_XNUM)
548 phnum = elfcpp::PN_XNUM;
549 oehdr.put_e_phnum(phnum);
552 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
553 size_t section_count = (this->section_header_->data_size()
554 / elfcpp::Elf_sizes<size>::shdr_size);
556 if (section_count < elfcpp::SHN_LORESERVE)
557 oehdr.put_e_shnum(this->section_header_->data_size()
558 / elfcpp::Elf_sizes<size>::shdr_size);
560 oehdr.put_e_shnum(0);
562 unsigned int shstrndx = this->shstrtab_->out_shndx();
563 if (shstrndx < elfcpp::SHN_LORESERVE)
564 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
566 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
568 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
569 // the e_ident field.
570 parameters->target().adjust_elf_header(view, ehdr_size);
572 of->write_output_view(0, ehdr_size, view);
575 // Return the value to use for the entry address.
578 typename elfcpp::Elf_types<size>::Elf_Addr
579 Output_file_header::entry()
581 const bool should_issue_warning = (parameters->options().entry() != NULL
582 && !parameters->options().relocatable()
583 && !parameters->options().shared());
584 const char* entry = parameters->entry();
585 Symbol* sym = this->symtab_->lookup(entry);
587 typename Sized_symbol<size>::Value_type v;
590 Sized_symbol<size>* ssym;
591 ssym = this->symtab_->get_sized_symbol<size>(sym);
592 if (!ssym->is_defined() && should_issue_warning)
593 gold_warning("entry symbol '%s' exists but is not defined", entry);
598 // We couldn't find the entry symbol. See if we can parse it as
599 // a number. This supports, e.g., -e 0x1000.
601 v = strtoull(entry, &endptr, 0);
604 if (should_issue_warning)
605 gold_warning("cannot find entry symbol '%s'", entry);
613 // Compute the current data size.
616 Output_file_header::do_size() const
618 const int size = parameters->target().get_size();
620 return elfcpp::Elf_sizes<32>::ehdr_size;
622 return elfcpp::Elf_sizes<64>::ehdr_size;
627 // Output_data_const methods.
630 Output_data_const::do_write(Output_file* of)
632 of->write(this->offset(), this->data_.data(), this->data_.size());
635 // Output_data_const_buffer methods.
638 Output_data_const_buffer::do_write(Output_file* of)
640 of->write(this->offset(), this->p_, this->data_size());
643 // Output_section_data methods.
645 // Record the output section, and set the entry size and such.
648 Output_section_data::set_output_section(Output_section* os)
650 gold_assert(this->output_section_ == NULL);
651 this->output_section_ = os;
652 this->do_adjust_output_section(os);
655 // Return the section index of the output section.
658 Output_section_data::do_out_shndx() const
660 gold_assert(this->output_section_ != NULL);
661 return this->output_section_->out_shndx();
664 // Set the alignment, which means we may need to update the alignment
665 // of the output section.
668 Output_section_data::set_addralign(uint64_t addralign)
670 this->addralign_ = addralign;
671 if (this->output_section_ != NULL
672 && this->output_section_->addralign() < addralign)
673 this->output_section_->set_addralign(addralign);
676 // Output_data_strtab methods.
678 // Set the final data size.
681 Output_data_strtab::set_final_data_size()
683 this->strtab_->set_string_offsets();
684 this->set_data_size(this->strtab_->get_strtab_size());
687 // Write out a string table.
690 Output_data_strtab::do_write(Output_file* of)
692 this->strtab_->write(of, this->offset());
695 // Output_reloc methods.
697 // A reloc against a global symbol.
699 template<bool dynamic, int size, bool big_endian>
700 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
707 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
708 is_relative_(is_relative), is_symbolless_(is_symbolless),
709 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
711 // this->type_ is a bitfield; make sure TYPE fits.
712 gold_assert(this->type_ == type);
713 this->u1_.gsym = gsym;
716 this->set_needs_dynsym_index();
719 template<bool dynamic, int size, bool big_endian>
720 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
723 Sized_relobj<size, big_endian>* relobj,
728 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
729 is_relative_(is_relative), is_symbolless_(is_symbolless),
730 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
732 gold_assert(shndx != INVALID_CODE);
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
735 this->u1_.gsym = gsym;
736 this->u2_.relobj = relobj;
738 this->set_needs_dynsym_index();
741 // A reloc against a local symbol.
743 template<bool dynamic, int size, bool big_endian>
744 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745 Sized_relobj<size, big_endian>* relobj,
746 unsigned int local_sym_index,
752 bool is_section_symbol,
754 : address_(address), local_sym_index_(local_sym_index), type_(type),
755 is_relative_(is_relative), is_symbolless_(is_symbolless),
756 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
759 gold_assert(local_sym_index != GSYM_CODE
760 && local_sym_index != INVALID_CODE);
761 // this->type_ is a bitfield; make sure TYPE fits.
762 gold_assert(this->type_ == type);
763 this->u1_.relobj = relobj;
766 this->set_needs_dynsym_index();
769 template<bool dynamic, int size, bool big_endian>
770 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
771 Sized_relobj<size, big_endian>* relobj,
772 unsigned int local_sym_index,
778 bool is_section_symbol,
780 : address_(address), local_sym_index_(local_sym_index), type_(type),
781 is_relative_(is_relative), is_symbolless_(is_symbolless),
782 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
785 gold_assert(local_sym_index != GSYM_CODE
786 && local_sym_index != INVALID_CODE);
787 gold_assert(shndx != INVALID_CODE);
788 // this->type_ is a bitfield; make sure TYPE fits.
789 gold_assert(this->type_ == type);
790 this->u1_.relobj = relobj;
791 this->u2_.relobj = relobj;
793 this->set_needs_dynsym_index();
796 // A reloc against the STT_SECTION symbol of an output section.
798 template<bool dynamic, int size, bool big_endian>
799 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
804 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
805 is_relative_(false), is_symbolless_(false),
806 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
808 // this->type_ is a bitfield; make sure TYPE fits.
809 gold_assert(this->type_ == type);
813 this->set_needs_dynsym_index();
815 os->set_needs_symtab_index();
818 template<bool dynamic, int size, bool big_endian>
819 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
822 Sized_relobj<size, big_endian>* relobj,
825 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
826 is_relative_(false), is_symbolless_(false),
827 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
829 gold_assert(shndx != INVALID_CODE);
830 // this->type_ is a bitfield; make sure TYPE fits.
831 gold_assert(this->type_ == type);
833 this->u2_.relobj = relobj;
835 this->set_needs_dynsym_index();
837 os->set_needs_symtab_index();
840 // An absolute relocation.
842 template<bool dynamic, int size, bool big_endian>
843 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
847 : address_(address), local_sym_index_(0), type_(type),
848 is_relative_(false), is_symbolless_(false),
849 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
851 // this->type_ is a bitfield; make sure TYPE fits.
852 gold_assert(this->type_ == type);
853 this->u1_.relobj = NULL;
857 template<bool dynamic, int size, bool big_endian>
858 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
860 Sized_relobj<size, big_endian>* relobj,
863 : address_(address), local_sym_index_(0), type_(type),
864 is_relative_(false), is_symbolless_(false),
865 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
867 gold_assert(shndx != INVALID_CODE);
868 // this->type_ is a bitfield; make sure TYPE fits.
869 gold_assert(this->type_ == type);
870 this->u1_.relobj = NULL;
871 this->u2_.relobj = relobj;
874 // A target specific relocation.
876 template<bool dynamic, int size, bool big_endian>
877 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
882 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
883 is_relative_(false), is_symbolless_(false),
884 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
886 // this->type_ is a bitfield; make sure TYPE fits.
887 gold_assert(this->type_ == type);
892 template<bool dynamic, int size, bool big_endian>
893 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
896 Sized_relobj<size, big_endian>* relobj,
899 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
900 is_relative_(false), is_symbolless_(false),
901 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
903 gold_assert(shndx != INVALID_CODE);
904 // this->type_ is a bitfield; make sure TYPE fits.
905 gold_assert(this->type_ == type);
907 this->u2_.relobj = relobj;
910 // Record that we need a dynamic symbol index for this relocation.
912 template<bool dynamic, int size, bool big_endian>
914 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
915 set_needs_dynsym_index()
917 if (this->is_symbolless_)
919 switch (this->local_sym_index_)
925 this->u1_.gsym->set_needs_dynsym_entry();
929 this->u1_.os->set_needs_dynsym_index();
933 // The target must take care of this if necessary.
941 const unsigned int lsi = this->local_sym_index_;
942 Sized_relobj_file<size, big_endian>* relobj =
943 this->u1_.relobj->sized_relobj();
944 gold_assert(relobj != NULL);
945 if (!this->is_section_symbol_)
946 relobj->set_needs_output_dynsym_entry(lsi);
948 relobj->output_section(lsi)->set_needs_dynsym_index();
954 // Get the symbol index of a relocation.
956 template<bool dynamic, int size, bool big_endian>
958 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
962 if (this->is_symbolless_)
964 switch (this->local_sym_index_)
970 if (this->u1_.gsym == NULL)
973 index = this->u1_.gsym->dynsym_index();
975 index = this->u1_.gsym->symtab_index();
980 index = this->u1_.os->dynsym_index();
982 index = this->u1_.os->symtab_index();
986 index = parameters->target().reloc_symbol_index(this->u1_.arg,
991 // Relocations without symbols use a symbol index of 0.
997 const unsigned int lsi = this->local_sym_index_;
998 Sized_relobj_file<size, big_endian>* relobj =
999 this->u1_.relobj->sized_relobj();
1000 gold_assert(relobj != NULL);
1001 if (!this->is_section_symbol_)
1004 index = relobj->dynsym_index(lsi);
1006 index = relobj->symtab_index(lsi);
1010 Output_section* os = relobj->output_section(lsi);
1011 gold_assert(os != NULL);
1013 index = os->dynsym_index();
1015 index = os->symtab_index();
1020 gold_assert(index != -1U);
1024 // For a local section symbol, get the address of the offset ADDEND
1025 // within the input section.
1027 template<bool dynamic, int size, bool big_endian>
1028 typename elfcpp::Elf_types<size>::Elf_Addr
1029 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1030 local_section_offset(Addend addend) const
1032 gold_assert(this->local_sym_index_ != GSYM_CODE
1033 && this->local_sym_index_ != SECTION_CODE
1034 && this->local_sym_index_ != TARGET_CODE
1035 && this->local_sym_index_ != INVALID_CODE
1036 && this->local_sym_index_ != 0
1037 && this->is_section_symbol_);
1038 const unsigned int lsi = this->local_sym_index_;
1039 Output_section* os = this->u1_.relobj->output_section(lsi);
1040 gold_assert(os != NULL);
1041 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1042 if (offset != invalid_address)
1043 return offset + addend;
1044 // This is a merge section.
1045 Sized_relobj_file<size, big_endian>* relobj =
1046 this->u1_.relobj->sized_relobj();
1047 gold_assert(relobj != NULL);
1048 offset = os->output_address(relobj, lsi, addend);
1049 gold_assert(offset != invalid_address);
1053 // Get the output address of a relocation.
1055 template<bool dynamic, int size, bool big_endian>
1056 typename elfcpp::Elf_types<size>::Elf_Addr
1057 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1059 Address address = this->address_;
1060 if (this->shndx_ != INVALID_CODE)
1062 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1063 gold_assert(os != NULL);
1064 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1065 if (off != invalid_address)
1066 address += os->address() + off;
1069 Sized_relobj_file<size, big_endian>* relobj =
1070 this->u2_.relobj->sized_relobj();
1071 gold_assert(relobj != NULL);
1072 address = os->output_address(relobj, this->shndx_, address);
1073 gold_assert(address != invalid_address);
1076 else if (this->u2_.od != NULL)
1077 address += this->u2_.od->address();
1081 // Write out the offset and info fields of a Rel or Rela relocation
1084 template<bool dynamic, int size, bool big_endian>
1085 template<typename Write_rel>
1087 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1088 Write_rel* wr) const
1090 wr->put_r_offset(this->get_address());
1091 unsigned int sym_index = this->get_symbol_index();
1092 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1095 // Write out a Rel relocation.
1097 template<bool dynamic, int size, bool big_endian>
1099 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1100 unsigned char* pov) const
1102 elfcpp::Rel_write<size, big_endian> orel(pov);
1103 this->write_rel(&orel);
1106 // Get the value of the symbol referred to by a Rel relocation.
1108 template<bool dynamic, int size, bool big_endian>
1109 typename elfcpp::Elf_types<size>::Elf_Addr
1110 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1111 Addend addend) const
1113 if (this->local_sym_index_ == GSYM_CODE)
1115 const Sized_symbol<size>* sym;
1116 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1117 return sym->value() + addend;
1119 gold_assert(this->local_sym_index_ != SECTION_CODE
1120 && this->local_sym_index_ != TARGET_CODE
1121 && this->local_sym_index_ != INVALID_CODE
1122 && this->local_sym_index_ != 0
1123 && !this->is_section_symbol_);
1124 const unsigned int lsi = this->local_sym_index_;
1125 Sized_relobj_file<size, big_endian>* relobj =
1126 this->u1_.relobj->sized_relobj();
1127 gold_assert(relobj != NULL);
1128 if (this->use_plt_offset_)
1130 uint64_t plt_address =
1131 parameters->target().plt_address_for_local(relobj, lsi);
1132 return plt_address + relobj->local_plt_offset(lsi);
1134 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1135 return symval->value(relobj, addend);
1138 // Reloc comparison. This function sorts the dynamic relocs for the
1139 // benefit of the dynamic linker. First we sort all relative relocs
1140 // to the front. Among relative relocs, we sort by output address.
1141 // Among non-relative relocs, we sort by symbol index, then by output
1144 template<bool dynamic, int size, bool big_endian>
1146 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1147 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1150 if (this->is_relative_)
1152 if (!r2.is_relative_)
1154 // Otherwise sort by reloc address below.
1156 else if (r2.is_relative_)
1160 unsigned int sym1 = this->get_symbol_index();
1161 unsigned int sym2 = r2.get_symbol_index();
1164 else if (sym1 > sym2)
1166 // Otherwise sort by reloc address.
1169 section_offset_type addr1 = this->get_address();
1170 section_offset_type addr2 = r2.get_address();
1173 else if (addr1 > addr2)
1176 // Final tie breaker, in order to generate the same output on any
1177 // host: reloc type.
1178 unsigned int type1 = this->type_;
1179 unsigned int type2 = r2.type_;
1182 else if (type1 > type2)
1185 // These relocs appear to be exactly the same.
1189 // Write out a Rela relocation.
1191 template<bool dynamic, int size, bool big_endian>
1193 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1194 unsigned char* pov) const
1196 elfcpp::Rela_write<size, big_endian> orel(pov);
1197 this->rel_.write_rel(&orel);
1198 Addend addend = this->addend_;
1199 if (this->rel_.is_target_specific())
1200 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1201 this->rel_.type(), addend);
1202 else if (this->rel_.is_symbolless())
1203 addend = this->rel_.symbol_value(addend);
1204 else if (this->rel_.is_local_section_symbol())
1205 addend = this->rel_.local_section_offset(addend);
1206 orel.put_r_addend(addend);
1209 // Output_data_reloc_base methods.
1211 // Adjust the output section.
1213 template<int sh_type, bool dynamic, int size, bool big_endian>
1215 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1216 ::do_adjust_output_section(Output_section* os)
1218 if (sh_type == elfcpp::SHT_REL)
1219 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1220 else if (sh_type == elfcpp::SHT_RELA)
1221 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1225 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1226 // static link. The backends will generate a dynamic reloc section
1227 // to hold this. In that case we don't want to link to the dynsym
1228 // section, because there isn't one.
1230 os->set_should_link_to_symtab();
1231 else if (parameters->doing_static_link())
1234 os->set_should_link_to_dynsym();
1237 // Write out relocation data.
1239 template<int sh_type, bool dynamic, int size, bool big_endian>
1241 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1244 const off_t off = this->offset();
1245 const off_t oview_size = this->data_size();
1246 unsigned char* const oview = of->get_output_view(off, oview_size);
1248 if (this->sort_relocs())
1250 gold_assert(dynamic);
1251 std::sort(this->relocs_.begin(), this->relocs_.end(),
1252 Sort_relocs_comparison());
1255 unsigned char* pov = oview;
1256 for (typename Relocs::const_iterator p = this->relocs_.begin();
1257 p != this->relocs_.end();
1264 gold_assert(pov - oview == oview_size);
1266 of->write_output_view(off, oview_size, oview);
1268 // We no longer need the relocation entries.
1269 this->relocs_.clear();
1272 // Class Output_relocatable_relocs.
1274 template<int sh_type, int size, bool big_endian>
1276 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1278 this->set_data_size(this->rr_->output_reloc_count()
1279 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1282 // class Output_data_group.
1284 template<int size, bool big_endian>
1285 Output_data_group<size, big_endian>::Output_data_group(
1286 Sized_relobj_file<size, big_endian>* relobj,
1287 section_size_type entry_count,
1288 elfcpp::Elf_Word flags,
1289 std::vector<unsigned int>* input_shndxes)
1290 : Output_section_data(entry_count * 4, 4, false),
1294 this->input_shndxes_.swap(*input_shndxes);
1297 // Write out the section group, which means translating the section
1298 // indexes to apply to the output file.
1300 template<int size, bool big_endian>
1302 Output_data_group<size, big_endian>::do_write(Output_file* of)
1304 const off_t off = this->offset();
1305 const section_size_type oview_size =
1306 convert_to_section_size_type(this->data_size());
1307 unsigned char* const oview = of->get_output_view(off, oview_size);
1309 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1310 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1313 for (std::vector<unsigned int>::const_iterator p =
1314 this->input_shndxes_.begin();
1315 p != this->input_shndxes_.end();
1318 Output_section* os = this->relobj_->output_section(*p);
1320 unsigned int output_shndx;
1322 output_shndx = os->out_shndx();
1325 this->relobj_->error(_("section group retained but "
1326 "group element discarded"));
1330 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1333 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1334 gold_assert(wrote == oview_size);
1336 of->write_output_view(off, oview_size, oview);
1338 // We no longer need this information.
1339 this->input_shndxes_.clear();
1342 // Output_data_got::Got_entry methods.
1344 // Write out the entry.
1346 template<int size, bool big_endian>
1348 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1352 switch (this->local_sym_index_)
1356 // If the symbol is resolved locally, we need to write out the
1357 // link-time value, which will be relocated dynamically by a
1358 // RELATIVE relocation.
1359 Symbol* gsym = this->u_.gsym;
1360 if (this->use_plt_offset_ && gsym->has_plt_offset())
1361 val = (parameters->target().plt_address_for_global(gsym)
1362 + gsym->plt_offset());
1365 Sized_symbol<size>* sgsym;
1366 // This cast is a bit ugly. We don't want to put a
1367 // virtual method in Symbol, because we want Symbol to be
1368 // as small as possible.
1369 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1370 val = sgsym->value();
1376 val = this->u_.constant;
1380 // If we're doing an incremental update, don't touch this GOT entry.
1381 if (parameters->incremental_update())
1383 val = this->u_.constant;
1388 const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1389 const unsigned int lsi = this->local_sym_index_;
1390 const Symbol_value<size>* symval = object->local_symbol(lsi);
1391 if (!this->use_plt_offset_)
1392 val = symval->value(this->u_.object, 0);
1395 uint64_t plt_address =
1396 parameters->target().plt_address_for_local(object, lsi);
1397 val = plt_address + object->local_plt_offset(lsi);
1403 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1406 // Output_data_got methods.
1408 // Add an entry for a global symbol to the GOT. This returns true if
1409 // this is a new GOT entry, false if the symbol already had a GOT
1412 template<int size, bool big_endian>
1414 Output_data_got<size, big_endian>::add_global(
1416 unsigned int got_type)
1418 if (gsym->has_got_offset(got_type))
1421 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1422 gsym->set_got_offset(got_type, got_offset);
1426 // Like add_global, but use the PLT offset.
1428 template<int size, bool big_endian>
1430 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1431 unsigned int got_type)
1433 if (gsym->has_got_offset(got_type))
1436 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1437 gsym->set_got_offset(got_type, got_offset);
1441 // Add an entry for a global symbol to the GOT, and add a dynamic
1442 // relocation of type R_TYPE for the GOT entry.
1444 template<int size, bool big_endian>
1446 Output_data_got<size, big_endian>::add_global_with_rel(
1448 unsigned int got_type,
1450 unsigned int r_type)
1452 if (gsym->has_got_offset(got_type))
1455 unsigned int got_offset = this->add_got_entry(Got_entry());
1456 gsym->set_got_offset(got_type, got_offset);
1457 rel_dyn->add_global(gsym, r_type, this, got_offset);
1460 template<int size, bool big_endian>
1462 Output_data_got<size, big_endian>::add_global_with_rela(
1464 unsigned int got_type,
1466 unsigned int r_type)
1468 if (gsym->has_got_offset(got_type))
1471 unsigned int got_offset = this->add_got_entry(Got_entry());
1472 gsym->set_got_offset(got_type, got_offset);
1473 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1476 // Add a pair of entries for a global symbol to the GOT, and add
1477 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1478 // If R_TYPE_2 == 0, add the second entry with no relocation.
1479 template<int size, bool big_endian>
1481 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1483 unsigned int got_type,
1485 unsigned int r_type_1,
1486 unsigned int r_type_2)
1488 if (gsym->has_got_offset(got_type))
1491 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1492 gsym->set_got_offset(got_type, got_offset);
1493 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1496 rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1499 template<int size, bool big_endian>
1501 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1503 unsigned int got_type,
1505 unsigned int r_type_1,
1506 unsigned int r_type_2)
1508 if (gsym->has_got_offset(got_type))
1511 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1512 gsym->set_got_offset(got_type, got_offset);
1513 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1516 rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1519 // Add an entry for a local symbol to the GOT. This returns true if
1520 // this is a new GOT entry, false if the symbol already has a GOT
1523 template<int size, bool big_endian>
1525 Output_data_got<size, big_endian>::add_local(
1526 Sized_relobj_file<size, big_endian>* object,
1527 unsigned int symndx,
1528 unsigned int got_type)
1530 if (object->local_has_got_offset(symndx, got_type))
1533 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1535 object->set_local_got_offset(symndx, got_type, got_offset);
1539 // Like add_local, but use the PLT offset.
1541 template<int size, bool big_endian>
1543 Output_data_got<size, big_endian>::add_local_plt(
1544 Sized_relobj_file<size, big_endian>* object,
1545 unsigned int symndx,
1546 unsigned int got_type)
1548 if (object->local_has_got_offset(symndx, got_type))
1551 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1553 object->set_local_got_offset(symndx, got_type, got_offset);
1557 // Add an entry for a local symbol to the GOT, and add a dynamic
1558 // relocation of type R_TYPE for the GOT entry.
1560 template<int size, bool big_endian>
1562 Output_data_got<size, big_endian>::add_local_with_rel(
1563 Sized_relobj_file<size, big_endian>* object,
1564 unsigned int symndx,
1565 unsigned int got_type,
1567 unsigned int r_type)
1569 if (object->local_has_got_offset(symndx, got_type))
1572 unsigned int got_offset = this->add_got_entry(Got_entry());
1573 object->set_local_got_offset(symndx, got_type, got_offset);
1574 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1577 template<int size, bool big_endian>
1579 Output_data_got<size, big_endian>::add_local_with_rela(
1580 Sized_relobj_file<size, big_endian>* object,
1581 unsigned int symndx,
1582 unsigned int got_type,
1584 unsigned int r_type)
1586 if (object->local_has_got_offset(symndx, got_type))
1589 unsigned int got_offset = this->add_got_entry(Got_entry());
1590 object->set_local_got_offset(symndx, got_type, got_offset);
1591 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1594 // Add a pair of entries for a local symbol to the GOT, and add
1595 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1596 // If R_TYPE_2 == 0, add the second entry with no relocation.
1597 template<int size, bool big_endian>
1599 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1600 Sized_relobj_file<size, big_endian>* object,
1601 unsigned int symndx,
1603 unsigned int got_type,
1605 unsigned int r_type_1,
1606 unsigned int r_type_2)
1608 if (object->local_has_got_offset(symndx, got_type))
1611 unsigned int got_offset =
1612 this->add_got_entry_pair(Got_entry(),
1613 Got_entry(object, symndx, false));
1614 object->set_local_got_offset(symndx, got_type, got_offset);
1615 Output_section* os = object->output_section(shndx);
1616 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1619 rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1622 template<int size, bool big_endian>
1624 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1625 Sized_relobj_file<size, big_endian>* object,
1626 unsigned int symndx,
1628 unsigned int got_type,
1630 unsigned int r_type_1,
1631 unsigned int r_type_2)
1633 if (object->local_has_got_offset(symndx, got_type))
1636 unsigned int got_offset =
1637 this->add_got_entry_pair(Got_entry(),
1638 Got_entry(object, symndx, false));
1639 object->set_local_got_offset(symndx, got_type, got_offset);
1640 Output_section* os = object->output_section(shndx);
1641 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1644 rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1647 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1649 template<int size, bool big_endian>
1651 Output_data_got<size, big_endian>::reserve_local(
1653 Sized_relobj<size, big_endian>* object,
1654 unsigned int sym_index,
1655 unsigned int got_type)
1657 this->reserve_slot(i);
1658 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1661 // Reserve a slot in the GOT for a global symbol.
1663 template<int size, bool big_endian>
1665 Output_data_got<size, big_endian>::reserve_global(
1668 unsigned int got_type)
1670 this->reserve_slot(i);
1671 gsym->set_got_offset(got_type, this->got_offset(i));
1674 // Write out the GOT.
1676 template<int size, bool big_endian>
1678 Output_data_got<size, big_endian>::do_write(Output_file* of)
1680 const int add = size / 8;
1682 const off_t off = this->offset();
1683 const off_t oview_size = this->data_size();
1684 unsigned char* const oview = of->get_output_view(off, oview_size);
1686 unsigned char* pov = oview;
1687 for (typename Got_entries::const_iterator p = this->entries_.begin();
1688 p != this->entries_.end();
1695 gold_assert(pov - oview == oview_size);
1697 of->write_output_view(off, oview_size, oview);
1699 // We no longer need the GOT entries.
1700 this->entries_.clear();
1703 // Create a new GOT entry and return its offset.
1705 template<int size, bool big_endian>
1707 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1709 if (!this->is_data_size_valid())
1711 this->entries_.push_back(got_entry);
1712 this->set_got_size();
1713 return this->last_got_offset();
1717 // For an incremental update, find an available slot.
1718 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1719 if (got_offset == -1)
1720 gold_fallback(_("out of patch space (GOT);"
1721 " relink with --incremental-full"));
1722 unsigned int got_index = got_offset / (size / 8);
1723 gold_assert(got_index < this->entries_.size());
1724 this->entries_[got_index] = got_entry;
1725 return static_cast<unsigned int>(got_offset);
1729 // Create a pair of new GOT entries and return the offset of the first.
1731 template<int size, bool big_endian>
1733 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1734 Got_entry got_entry_2)
1736 if (!this->is_data_size_valid())
1738 unsigned int got_offset;
1739 this->entries_.push_back(got_entry_1);
1740 got_offset = this->last_got_offset();
1741 this->entries_.push_back(got_entry_2);
1742 this->set_got_size();
1747 // For an incremental update, find an available pair of slots.
1748 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1749 if (got_offset == -1)
1750 gold_fallback(_("out of patch space (GOT);"
1751 " relink with --incremental-full"));
1752 unsigned int got_index = got_offset / (size / 8);
1753 gold_assert(got_index < this->entries_.size());
1754 this->entries_[got_index] = got_entry_1;
1755 this->entries_[got_index + 1] = got_entry_2;
1756 return static_cast<unsigned int>(got_offset);
1760 // Output_data_dynamic::Dynamic_entry methods.
1762 // Write out the entry.
1764 template<int size, bool big_endian>
1766 Output_data_dynamic::Dynamic_entry::write(
1768 const Stringpool* pool) const
1770 typename elfcpp::Elf_types<size>::Elf_WXword val;
1771 switch (this->offset_)
1773 case DYNAMIC_NUMBER:
1777 case DYNAMIC_SECTION_SIZE:
1778 val = this->u_.od->data_size();
1779 if (this->od2 != NULL)
1780 val += this->od2->data_size();
1783 case DYNAMIC_SYMBOL:
1785 const Sized_symbol<size>* s =
1786 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1791 case DYNAMIC_STRING:
1792 val = pool->get_offset(this->u_.str);
1796 val = this->u_.od->address() + this->offset_;
1800 elfcpp::Dyn_write<size, big_endian> dw(pov);
1801 dw.put_d_tag(this->tag_);
1805 // Output_data_dynamic methods.
1807 // Adjust the output section to set the entry size.
1810 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1812 if (parameters->target().get_size() == 32)
1813 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1814 else if (parameters->target().get_size() == 64)
1815 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1820 // Set the final data size.
1823 Output_data_dynamic::set_final_data_size()
1825 // Add the terminating entry if it hasn't been added.
1826 // Because of relaxation, we can run this multiple times.
1827 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1829 int extra = parameters->options().spare_dynamic_tags();
1830 for (int i = 0; i < extra; ++i)
1831 this->add_constant(elfcpp::DT_NULL, 0);
1832 this->add_constant(elfcpp::DT_NULL, 0);
1836 if (parameters->target().get_size() == 32)
1837 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1838 else if (parameters->target().get_size() == 64)
1839 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1842 this->set_data_size(this->entries_.size() * dyn_size);
1845 // Write out the dynamic entries.
1848 Output_data_dynamic::do_write(Output_file* of)
1850 switch (parameters->size_and_endianness())
1852 #ifdef HAVE_TARGET_32_LITTLE
1853 case Parameters::TARGET_32_LITTLE:
1854 this->sized_write<32, false>(of);
1857 #ifdef HAVE_TARGET_32_BIG
1858 case Parameters::TARGET_32_BIG:
1859 this->sized_write<32, true>(of);
1862 #ifdef HAVE_TARGET_64_LITTLE
1863 case Parameters::TARGET_64_LITTLE:
1864 this->sized_write<64, false>(of);
1867 #ifdef HAVE_TARGET_64_BIG
1868 case Parameters::TARGET_64_BIG:
1869 this->sized_write<64, true>(of);
1877 template<int size, bool big_endian>
1879 Output_data_dynamic::sized_write(Output_file* of)
1881 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1883 const off_t offset = this->offset();
1884 const off_t oview_size = this->data_size();
1885 unsigned char* const oview = of->get_output_view(offset, oview_size);
1887 unsigned char* pov = oview;
1888 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1889 p != this->entries_.end();
1892 p->write<size, big_endian>(pov, this->pool_);
1896 gold_assert(pov - oview == oview_size);
1898 of->write_output_view(offset, oview_size, oview);
1900 // We no longer need the dynamic entries.
1901 this->entries_.clear();
1904 // Class Output_symtab_xindex.
1907 Output_symtab_xindex::do_write(Output_file* of)
1909 const off_t offset = this->offset();
1910 const off_t oview_size = this->data_size();
1911 unsigned char* const oview = of->get_output_view(offset, oview_size);
1913 memset(oview, 0, oview_size);
1915 if (parameters->target().is_big_endian())
1916 this->endian_do_write<true>(oview);
1918 this->endian_do_write<false>(oview);
1920 of->write_output_view(offset, oview_size, oview);
1922 // We no longer need the data.
1923 this->entries_.clear();
1926 template<bool big_endian>
1928 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1930 for (Xindex_entries::const_iterator p = this->entries_.begin();
1931 p != this->entries_.end();
1934 unsigned int symndx = p->first;
1935 gold_assert(symndx * 4 < this->data_size());
1936 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1940 // Output_fill_debug_info methods.
1942 // Return the minimum size needed for a dummy compilation unit header.
1945 Output_fill_debug_info::do_minimum_hole_size() const
1947 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1949 const size_t len = 4 + 2 + 4 + 1;
1950 // For type units, add type_signature, type_offset.
1951 if (this->is_debug_types_)
1956 // Write a dummy compilation unit header to fill a hole in the
1957 // .debug_info or .debug_types section.
1960 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1962 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1963 static_cast<long>(off), static_cast<long>(len));
1965 gold_assert(len >= this->do_minimum_hole_size());
1967 unsigned char* const oview = of->get_output_view(off, len);
1968 unsigned char* pov = oview;
1970 // Write header fields: unit_length, version, debug_abbrev_offset,
1972 if (this->is_big_endian())
1974 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1975 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1976 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1980 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1981 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1982 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1987 // For type units, the additional header fields -- type_signature,
1988 // type_offset -- can be filled with zeroes.
1990 // Fill the remainder of the free space with zeroes. The first
1991 // zero should tell the consumer there are no DIEs to read in this
1992 // compilation unit.
1993 if (pov < oview + len)
1994 memset(pov, 0, oview + len - pov);
1996 of->write_output_view(off, len, oview);
1999 // Output_fill_debug_line methods.
2001 // Return the minimum size needed for a dummy line number program header.
2004 Output_fill_debug_line::do_minimum_hole_size() const
2006 // Line number program header fields: unit_length, version, header_length,
2007 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2008 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2009 const size_t len = 4 + 2 + 4 + this->header_length;
2013 // Write a dummy line number program header to fill a hole in the
2014 // .debug_line section.
2017 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2019 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2020 static_cast<long>(off), static_cast<long>(len));
2022 gold_assert(len >= this->do_minimum_hole_size());
2024 unsigned char* const oview = of->get_output_view(off, len);
2025 unsigned char* pov = oview;
2027 // Write header fields: unit_length, version, header_length,
2028 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2029 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2030 // We set the header_length field to cover the entire hole, so the
2031 // line number program is empty.
2032 if (this->is_big_endian())
2034 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2035 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2036 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2040 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2041 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2042 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2045 *pov++ = 1; // minimum_instruction_length
2046 *pov++ = 0; // default_is_stmt
2047 *pov++ = 0; // line_base
2048 *pov++ = 5; // line_range
2049 *pov++ = 13; // opcode_base
2050 *pov++ = 0; // standard_opcode_lengths[1]
2051 *pov++ = 1; // standard_opcode_lengths[2]
2052 *pov++ = 1; // standard_opcode_lengths[3]
2053 *pov++ = 1; // standard_opcode_lengths[4]
2054 *pov++ = 1; // standard_opcode_lengths[5]
2055 *pov++ = 0; // standard_opcode_lengths[6]
2056 *pov++ = 0; // standard_opcode_lengths[7]
2057 *pov++ = 0; // standard_opcode_lengths[8]
2058 *pov++ = 1; // standard_opcode_lengths[9]
2059 *pov++ = 0; // standard_opcode_lengths[10]
2060 *pov++ = 0; // standard_opcode_lengths[11]
2061 *pov++ = 1; // standard_opcode_lengths[12]
2062 *pov++ = 0; // include_directories (empty)
2063 *pov++ = 0; // filenames (empty)
2065 // Some consumers don't check the header_length field, and simply
2066 // start reading the line number program immediately following the
2067 // header. For those consumers, we fill the remainder of the free
2068 // space with DW_LNS_set_basic_block opcodes. These are effectively
2069 // no-ops: the resulting line table program will not create any rows.
2070 if (pov < oview + len)
2071 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2073 of->write_output_view(off, len, oview);
2076 // Output_section::Input_section methods.
2078 // Return the current data size. For an input section we store the size here.
2079 // For an Output_section_data, we have to ask it for the size.
2082 Output_section::Input_section::current_data_size() const
2084 if (this->is_input_section())
2085 return this->u1_.data_size;
2088 this->u2_.posd->pre_finalize_data_size();
2089 return this->u2_.posd->current_data_size();
2093 // Return the data size. For an input section we store the size here.
2094 // For an Output_section_data, we have to ask it for the size.
2097 Output_section::Input_section::data_size() const
2099 if (this->is_input_section())
2100 return this->u1_.data_size;
2102 return this->u2_.posd->data_size();
2105 // Return the object for an input section.
2108 Output_section::Input_section::relobj() const
2110 if (this->is_input_section())
2111 return this->u2_.object;
2112 else if (this->is_merge_section())
2114 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2115 return this->u2_.pomb->first_relobj();
2117 else if (this->is_relaxed_input_section())
2118 return this->u2_.poris->relobj();
2123 // Return the input section index for an input section.
2126 Output_section::Input_section::shndx() const
2128 if (this->is_input_section())
2129 return this->shndx_;
2130 else if (this->is_merge_section())
2132 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2133 return this->u2_.pomb->first_shndx();
2135 else if (this->is_relaxed_input_section())
2136 return this->u2_.poris->shndx();
2141 // Set the address and file offset.
2144 Output_section::Input_section::set_address_and_file_offset(
2147 off_t section_file_offset)
2149 if (this->is_input_section())
2150 this->u2_.object->set_section_offset(this->shndx_,
2151 file_offset - section_file_offset);
2153 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2156 // Reset the address and file offset.
2159 Output_section::Input_section::reset_address_and_file_offset()
2161 if (!this->is_input_section())
2162 this->u2_.posd->reset_address_and_file_offset();
2165 // Finalize the data size.
2168 Output_section::Input_section::finalize_data_size()
2170 if (!this->is_input_section())
2171 this->u2_.posd->finalize_data_size();
2174 // Try to turn an input offset into an output offset. We want to
2175 // return the output offset relative to the start of this
2176 // Input_section in the output section.
2179 Output_section::Input_section::output_offset(
2180 const Relobj* object,
2182 section_offset_type offset,
2183 section_offset_type* poutput) const
2185 if (!this->is_input_section())
2186 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2189 if (this->shndx_ != shndx || this->u2_.object != object)
2196 // Return whether this is the merge section for the input section
2200 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2201 unsigned int shndx) const
2203 if (this->is_input_section())
2205 return this->u2_.posd->is_merge_section_for(object, shndx);
2208 // Write out the data. We don't have to do anything for an input
2209 // section--they are handled via Object::relocate--but this is where
2210 // we write out the data for an Output_section_data.
2213 Output_section::Input_section::write(Output_file* of)
2215 if (!this->is_input_section())
2216 this->u2_.posd->write(of);
2219 // Write the data to a buffer. As for write(), we don't have to do
2220 // anything for an input section.
2223 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2225 if (!this->is_input_section())
2226 this->u2_.posd->write_to_buffer(buffer);
2229 // Print to a map file.
2232 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2234 switch (this->shndx_)
2236 case OUTPUT_SECTION_CODE:
2237 case MERGE_DATA_SECTION_CODE:
2238 case MERGE_STRING_SECTION_CODE:
2239 this->u2_.posd->print_to_mapfile(mapfile);
2242 case RELAXED_INPUT_SECTION_CODE:
2244 Output_relaxed_input_section* relaxed_section =
2245 this->relaxed_input_section();
2246 mapfile->print_input_section(relaxed_section->relobj(),
2247 relaxed_section->shndx());
2251 mapfile->print_input_section(this->u2_.object, this->shndx_);
2256 // Output_section methods.
2258 // Construct an Output_section. NAME will point into a Stringpool.
2260 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2261 elfcpp::Elf_Xword flags)
2266 link_section_(NULL),
2268 info_section_(NULL),
2273 order_(ORDER_INVALID),
2278 first_input_offset_(0),
2280 postprocessing_buffer_(NULL),
2281 needs_symtab_index_(false),
2282 needs_dynsym_index_(false),
2283 should_link_to_symtab_(false),
2284 should_link_to_dynsym_(false),
2285 after_input_sections_(false),
2286 requires_postprocessing_(false),
2287 found_in_sections_clause_(false),
2288 has_load_address_(false),
2289 info_uses_section_index_(false),
2290 input_section_order_specified_(false),
2291 may_sort_attached_input_sections_(false),
2292 must_sort_attached_input_sections_(false),
2293 attached_input_sections_are_sorted_(false),
2295 is_small_section_(false),
2296 is_large_section_(false),
2297 generate_code_fills_at_write_(false),
2298 is_entsize_zero_(false),
2299 section_offsets_need_adjustment_(false),
2301 always_keeps_input_sections_(false),
2302 has_fixed_layout_(false),
2303 is_patch_space_allowed_(false),
2306 lookup_maps_(new Output_section_lookup_maps),
2308 free_space_fill_(NULL),
2311 // An unallocated section has no address. Forcing this means that
2312 // we don't need special treatment for symbols defined in debug
2314 if ((flags & elfcpp::SHF_ALLOC) == 0)
2315 this->set_address(0);
2318 Output_section::~Output_section()
2320 delete this->checkpoint_;
2323 // Set the entry size.
2326 Output_section::set_entsize(uint64_t v)
2328 if (this->is_entsize_zero_)
2330 else if (this->entsize_ == 0)
2332 else if (this->entsize_ != v)
2335 this->is_entsize_zero_ = 1;
2339 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2340 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2341 // relocation section which applies to this section, or 0 if none, or
2342 // -1U if more than one. Return the offset of the input section
2343 // within the output section. Return -1 if the input section will
2344 // receive special handling. In the normal case we don't always keep
2345 // track of input sections for an Output_section. Instead, each
2346 // Object keeps track of the Output_section for each of its input
2347 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2348 // track of input sections here; this is used when SECTIONS appears in
2351 template<int size, bool big_endian>
2353 Output_section::add_input_section(Layout* layout,
2354 Sized_relobj_file<size, big_endian>* object,
2356 const char* secname,
2357 const elfcpp::Shdr<size, big_endian>& shdr,
2358 unsigned int reloc_shndx,
2359 bool have_sections_script)
2361 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2362 if ((addralign & (addralign - 1)) != 0)
2364 object->error(_("invalid alignment %lu for section \"%s\""),
2365 static_cast<unsigned long>(addralign), secname);
2369 if (addralign > this->addralign_)
2370 this->addralign_ = addralign;
2372 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2373 uint64_t entsize = shdr.get_sh_entsize();
2375 // .debug_str is a mergeable string section, but is not always so
2376 // marked by compilers. Mark manually here so we can optimize.
2377 if (strcmp(secname, ".debug_str") == 0)
2379 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2383 this->update_flags_for_input_section(sh_flags);
2384 this->set_entsize(entsize);
2386 // If this is a SHF_MERGE section, we pass all the input sections to
2387 // a Output_data_merge. We don't try to handle relocations for such
2388 // a section. We don't try to handle empty merge sections--they
2389 // mess up the mappings, and are useless anyhow.
2390 // FIXME: Need to handle merge sections during incremental update.
2391 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2393 && shdr.get_sh_size() > 0
2394 && !parameters->incremental())
2396 // Keep information about merged input sections for rebuilding fast
2397 // lookup maps if we have sections-script or we do relaxation.
2398 bool keeps_input_sections = (this->always_keeps_input_sections_
2399 || have_sections_script
2400 || parameters->target().may_relax());
2402 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2403 addralign, keeps_input_sections))
2405 // Tell the relocation routines that they need to call the
2406 // output_offset method to determine the final address.
2411 section_size_type input_section_size = shdr.get_sh_size();
2412 section_size_type uncompressed_size;
2413 if (object->section_is_compressed(shndx, &uncompressed_size))
2414 input_section_size = uncompressed_size;
2416 off_t offset_in_section;
2417 off_t aligned_offset_in_section;
2418 if (this->has_fixed_layout())
2420 // For incremental updates, find a chunk of unused space in the section.
2421 offset_in_section = this->free_list_.allocate(input_section_size,
2423 if (offset_in_section == -1)
2424 gold_fallback(_("out of patch space in section %s; "
2425 "relink with --incremental-full"),
2427 aligned_offset_in_section = offset_in_section;
2431 offset_in_section = this->current_data_size_for_child();
2432 aligned_offset_in_section = align_address(offset_in_section,
2434 this->set_current_data_size_for_child(aligned_offset_in_section
2435 + input_section_size);
2438 // Determine if we want to delay code-fill generation until the output
2439 // section is written. When the target is relaxing, we want to delay fill
2440 // generating to avoid adjusting them during relaxation. Also, if we are
2441 // sorting input sections we must delay fill generation.
2442 if (!this->generate_code_fills_at_write_
2443 && !have_sections_script
2444 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2445 && parameters->target().has_code_fill()
2446 && (parameters->target().may_relax()
2447 || layout->is_section_ordering_specified()))
2449 gold_assert(this->fills_.empty());
2450 this->generate_code_fills_at_write_ = true;
2453 if (aligned_offset_in_section > offset_in_section
2454 && !this->generate_code_fills_at_write_
2455 && !have_sections_script
2456 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2457 && parameters->target().has_code_fill())
2459 // We need to add some fill data. Using fill_list_ when
2460 // possible is an optimization, since we will often have fill
2461 // sections without input sections.
2462 off_t fill_len = aligned_offset_in_section - offset_in_section;
2463 if (this->input_sections_.empty())
2464 this->fills_.push_back(Fill(offset_in_section, fill_len));
2467 std::string fill_data(parameters->target().code_fill(fill_len));
2468 Output_data_const* odc = new Output_data_const(fill_data, 1);
2469 this->input_sections_.push_back(Input_section(odc));
2473 // We need to keep track of this section if we are already keeping
2474 // track of sections, or if we are relaxing. Also, if this is a
2475 // section which requires sorting, or which may require sorting in
2476 // the future, we keep track of the sections. If the
2477 // --section-ordering-file option is used to specify the order of
2478 // sections, we need to keep track of sections.
2479 if (this->always_keeps_input_sections_
2480 || have_sections_script
2481 || !this->input_sections_.empty()
2482 || this->may_sort_attached_input_sections()
2483 || this->must_sort_attached_input_sections()
2484 || parameters->options().user_set_Map()
2485 || parameters->target().may_relax()
2486 || layout->is_section_ordering_specified())
2488 Input_section isecn(object, shndx, input_section_size, addralign);
2489 /* If section ordering is requested by specifying a ordering file,
2490 using --section-ordering-file, match the section name with
2492 if (parameters->options().section_ordering_file())
2494 unsigned int section_order_index =
2495 layout->find_section_order_index(std::string(secname));
2496 if (section_order_index != 0)
2498 isecn.set_section_order_index(section_order_index);
2499 this->set_input_section_order_specified();
2502 if (this->has_fixed_layout())
2504 // For incremental updates, finalize the address and offset now.
2505 uint64_t addr = this->address();
2506 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2507 aligned_offset_in_section,
2510 this->input_sections_.push_back(isecn);
2513 return aligned_offset_in_section;
2516 // Add arbitrary data to an output section.
2519 Output_section::add_output_section_data(Output_section_data* posd)
2521 Input_section inp(posd);
2522 this->add_output_section_data(&inp);
2524 if (posd->is_data_size_valid())
2526 off_t offset_in_section;
2527 if (this->has_fixed_layout())
2529 // For incremental updates, find a chunk of unused space.
2530 offset_in_section = this->free_list_.allocate(posd->data_size(),
2531 posd->addralign(), 0);
2532 if (offset_in_section == -1)
2533 gold_fallback(_("out of patch space in section %s; "
2534 "relink with --incremental-full"),
2536 // Finalize the address and offset now.
2537 uint64_t addr = this->address();
2538 off_t offset = this->offset();
2539 posd->set_address_and_file_offset(addr + offset_in_section,
2540 offset + offset_in_section);
2544 offset_in_section = this->current_data_size_for_child();
2545 off_t aligned_offset_in_section = align_address(offset_in_section,
2547 this->set_current_data_size_for_child(aligned_offset_in_section
2548 + posd->data_size());
2551 else if (this->has_fixed_layout())
2553 // For incremental updates, arrange for the data to have a fixed layout.
2554 // This will mean that additions to the data must be allocated from
2555 // free space within the containing output section.
2556 uint64_t addr = this->address();
2557 posd->set_address(addr);
2558 posd->set_file_offset(0);
2559 // FIXME: This should eventually be unreachable.
2560 // gold_unreachable();
2564 // Add a relaxed input section.
2567 Output_section::add_relaxed_input_section(Layout* layout,
2568 Output_relaxed_input_section* poris,
2569 const std::string& name)
2571 Input_section inp(poris);
2573 // If the --section-ordering-file option is used to specify the order of
2574 // sections, we need to keep track of sections.
2575 if (layout->is_section_ordering_specified())
2577 unsigned int section_order_index =
2578 layout->find_section_order_index(name);
2579 if (section_order_index != 0)
2581 inp.set_section_order_index(section_order_index);
2582 this->set_input_section_order_specified();
2586 this->add_output_section_data(&inp);
2587 if (this->lookup_maps_->is_valid())
2588 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2589 poris->shndx(), poris);
2591 // For a relaxed section, we use the current data size. Linker scripts
2592 // get all the input sections, including relaxed one from an output
2593 // section and add them back to them same output section to compute the
2594 // output section size. If we do not account for sizes of relaxed input
2595 // sections, an output section would be incorrectly sized.
2596 off_t offset_in_section = this->current_data_size_for_child();
2597 off_t aligned_offset_in_section = align_address(offset_in_section,
2598 poris->addralign());
2599 this->set_current_data_size_for_child(aligned_offset_in_section
2600 + poris->current_data_size());
2603 // Add arbitrary data to an output section by Input_section.
2606 Output_section::add_output_section_data(Input_section* inp)
2608 if (this->input_sections_.empty())
2609 this->first_input_offset_ = this->current_data_size_for_child();
2611 this->input_sections_.push_back(*inp);
2613 uint64_t addralign = inp->addralign();
2614 if (addralign > this->addralign_)
2615 this->addralign_ = addralign;
2617 inp->set_output_section(this);
2620 // Add a merge section to an output section.
2623 Output_section::add_output_merge_section(Output_section_data* posd,
2624 bool is_string, uint64_t entsize)
2626 Input_section inp(posd, is_string, entsize);
2627 this->add_output_section_data(&inp);
2630 // Add an input section to a SHF_MERGE section.
2633 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2634 uint64_t flags, uint64_t entsize,
2636 bool keeps_input_sections)
2638 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2640 // We only merge strings if the alignment is not more than the
2641 // character size. This could be handled, but it's unusual.
2642 if (is_string && addralign > entsize)
2645 // We cannot restore merged input section states.
2646 gold_assert(this->checkpoint_ == NULL);
2648 // Look up merge sections by required properties.
2649 // Currently, we only invalidate the lookup maps in script processing
2650 // and relaxation. We should not have done either when we reach here.
2651 // So we assume that the lookup maps are valid to simply code.
2652 gold_assert(this->lookup_maps_->is_valid());
2653 Merge_section_properties msp(is_string, entsize, addralign);
2654 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2655 bool is_new = false;
2658 gold_assert(pomb->is_string() == is_string
2659 && pomb->entsize() == entsize
2660 && pomb->addralign() == addralign);
2664 // Create a new Output_merge_data or Output_merge_string_data.
2666 pomb = new Output_merge_data(entsize, addralign);
2672 pomb = new Output_merge_string<char>(addralign);
2675 pomb = new Output_merge_string<uint16_t>(addralign);
2678 pomb = new Output_merge_string<uint32_t>(addralign);
2684 // If we need to do script processing or relaxation, we need to keep
2685 // the original input sections to rebuild the fast lookup maps.
2686 if (keeps_input_sections)
2687 pomb->set_keeps_input_sections();
2691 if (pomb->add_input_section(object, shndx))
2693 // Add new merge section to this output section and link merge
2694 // section properties to new merge section in map.
2697 this->add_output_merge_section(pomb, is_string, entsize);
2698 this->lookup_maps_->add_merge_section(msp, pomb);
2701 // Add input section to new merge section and link input section to new
2702 // merge section in map.
2703 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2708 // If add_input_section failed, delete new merge section to avoid
2709 // exporting empty merge sections in Output_section::get_input_section.
2716 // Build a relaxation map to speed up relaxation of existing input sections.
2717 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2720 Output_section::build_relaxation_map(
2721 const Input_section_list& input_sections,
2723 Relaxation_map* relaxation_map) const
2725 for (size_t i = 0; i < limit; ++i)
2727 const Input_section& is(input_sections[i]);
2728 if (is.is_input_section() || is.is_relaxed_input_section())
2730 Section_id sid(is.relobj(), is.shndx());
2731 (*relaxation_map)[sid] = i;
2736 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2737 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2738 // indices of INPUT_SECTIONS.
2741 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2742 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2743 const Relaxation_map& map,
2744 Input_section_list* input_sections)
2746 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2748 Output_relaxed_input_section* poris = relaxed_sections[i];
2749 Section_id sid(poris->relobj(), poris->shndx());
2750 Relaxation_map::const_iterator p = map.find(sid);
2751 gold_assert(p != map.end());
2752 gold_assert((*input_sections)[p->second].is_input_section());
2754 // Remember section order index of original input section
2755 // if it is set. Copy it to the relaxed input section.
2757 (*input_sections)[p->second].section_order_index();
2758 (*input_sections)[p->second] = Input_section(poris);
2759 (*input_sections)[p->second].set_section_order_index(soi);
2763 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2764 // is a vector of pointers to Output_relaxed_input_section or its derived
2765 // classes. The relaxed sections must correspond to existing input sections.
2768 Output_section::convert_input_sections_to_relaxed_sections(
2769 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2771 gold_assert(parameters->target().may_relax());
2773 // We want to make sure that restore_states does not undo the effect of
2774 // this. If there is no checkpoint active, just search the current
2775 // input section list and replace the sections there. If there is
2776 // a checkpoint, also replace the sections there.
2778 // By default, we look at the whole list.
2779 size_t limit = this->input_sections_.size();
2781 if (this->checkpoint_ != NULL)
2783 // Replace input sections with relaxed input section in the saved
2784 // copy of the input section list.
2785 if (this->checkpoint_->input_sections_saved())
2788 this->build_relaxation_map(
2789 *(this->checkpoint_->input_sections()),
2790 this->checkpoint_->input_sections()->size(),
2792 this->convert_input_sections_in_list_to_relaxed_sections(
2795 this->checkpoint_->input_sections());
2799 // We have not copied the input section list yet. Instead, just
2800 // look at the portion that would be saved.
2801 limit = this->checkpoint_->input_sections_size();
2805 // Convert input sections in input_section_list.
2807 this->build_relaxation_map(this->input_sections_, limit, &map);
2808 this->convert_input_sections_in_list_to_relaxed_sections(
2811 &this->input_sections_);
2813 // Update fast look-up map.
2814 if (this->lookup_maps_->is_valid())
2815 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2817 Output_relaxed_input_section* poris = relaxed_sections[i];
2818 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2819 poris->shndx(), poris);
2823 // Update the output section flags based on input section flags.
2826 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2828 // If we created the section with SHF_ALLOC clear, we set the
2829 // address. If we are now setting the SHF_ALLOC flag, we need to
2831 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2832 && (flags & elfcpp::SHF_ALLOC) != 0)
2833 this->mark_address_invalid();
2835 this->flags_ |= (flags
2836 & (elfcpp::SHF_WRITE
2838 | elfcpp::SHF_EXECINSTR));
2840 if ((flags & elfcpp::SHF_MERGE) == 0)
2841 this->flags_ &=~ elfcpp::SHF_MERGE;
2844 if (this->current_data_size_for_child() == 0)
2845 this->flags_ |= elfcpp::SHF_MERGE;
2848 if ((flags & elfcpp::SHF_STRINGS) == 0)
2849 this->flags_ &=~ elfcpp::SHF_STRINGS;
2852 if (this->current_data_size_for_child() == 0)
2853 this->flags_ |= elfcpp::SHF_STRINGS;
2857 // Find the merge section into which an input section with index SHNDX in
2858 // OBJECT has been added. Return NULL if none found.
2860 Output_section_data*
2861 Output_section::find_merge_section(const Relobj* object,
2862 unsigned int shndx) const
2864 if (!this->lookup_maps_->is_valid())
2865 this->build_lookup_maps();
2866 return this->lookup_maps_->find_merge_section(object, shndx);
2869 // Build the lookup maps for merge and relaxed sections. This is needs
2870 // to be declared as a const methods so that it is callable with a const
2871 // Output_section pointer. The method only updates states of the maps.
2874 Output_section::build_lookup_maps() const
2876 this->lookup_maps_->clear();
2877 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2878 p != this->input_sections_.end();
2881 if (p->is_merge_section())
2883 Output_merge_base* pomb = p->output_merge_base();
2884 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2886 this->lookup_maps_->add_merge_section(msp, pomb);
2887 for (Output_merge_base::Input_sections::const_iterator is =
2888 pomb->input_sections_begin();
2889 is != pomb->input_sections_end();
2892 const Const_section_id& csid = *is;
2893 this->lookup_maps_->add_merge_input_section(csid.first,
2898 else if (p->is_relaxed_input_section())
2900 Output_relaxed_input_section* poris = p->relaxed_input_section();
2901 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2902 poris->shndx(), poris);
2907 // Find an relaxed input section corresponding to an input section
2908 // in OBJECT with index SHNDX.
2910 const Output_relaxed_input_section*
2911 Output_section::find_relaxed_input_section(const Relobj* object,
2912 unsigned int shndx) const
2914 if (!this->lookup_maps_->is_valid())
2915 this->build_lookup_maps();
2916 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2919 // Given an address OFFSET relative to the start of input section
2920 // SHNDX in OBJECT, return whether this address is being included in
2921 // the final link. This should only be called if SHNDX in OBJECT has
2922 // a special mapping.
2925 Output_section::is_input_address_mapped(const Relobj* object,
2929 // Look at the Output_section_data_maps first.
2930 const Output_section_data* posd = this->find_merge_section(object, shndx);
2932 posd = this->find_relaxed_input_section(object, shndx);
2936 section_offset_type output_offset;
2937 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2939 return output_offset != -1;
2942 // Fall back to the slow look-up.
2943 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2944 p != this->input_sections_.end();
2947 section_offset_type output_offset;
2948 if (p->output_offset(object, shndx, offset, &output_offset))
2949 return output_offset != -1;
2952 // By default we assume that the address is mapped. This should
2953 // only be called after we have passed all sections to Layout. At
2954 // that point we should know what we are discarding.
2958 // Given an address OFFSET relative to the start of input section
2959 // SHNDX in object OBJECT, return the output offset relative to the
2960 // start of the input section in the output section. This should only
2961 // be called if SHNDX in OBJECT has a special mapping.
2964 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2965 section_offset_type offset) const
2967 // This can only be called meaningfully when we know the data size
2969 gold_assert(this->is_data_size_valid());
2971 // Look at the Output_section_data_maps first.
2972 const Output_section_data* posd = this->find_merge_section(object, shndx);
2974 posd = this->find_relaxed_input_section(object, shndx);
2977 section_offset_type output_offset;
2978 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2980 return output_offset;
2983 // Fall back to the slow look-up.
2984 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2985 p != this->input_sections_.end();
2988 section_offset_type output_offset;
2989 if (p->output_offset(object, shndx, offset, &output_offset))
2990 return output_offset;
2995 // Return the output virtual address of OFFSET relative to the start
2996 // of input section SHNDX in object OBJECT.
2999 Output_section::output_address(const Relobj* object, unsigned int shndx,
3002 uint64_t addr = this->address() + this->first_input_offset_;
3004 // Look at the Output_section_data_maps first.
3005 const Output_section_data* posd = this->find_merge_section(object, shndx);
3007 posd = this->find_relaxed_input_section(object, shndx);
3008 if (posd != NULL && posd->is_address_valid())
3010 section_offset_type output_offset;
3011 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3013 return posd->address() + output_offset;
3016 // Fall back to the slow look-up.
3017 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3018 p != this->input_sections_.end();
3021 addr = align_address(addr, p->addralign());
3022 section_offset_type output_offset;
3023 if (p->output_offset(object, shndx, offset, &output_offset))
3025 if (output_offset == -1)
3027 return addr + output_offset;
3029 addr += p->data_size();
3032 // If we get here, it means that we don't know the mapping for this
3033 // input section. This might happen in principle if
3034 // add_input_section were called before add_output_section_data.
3035 // But it should never actually happen.
3040 // Find the output address of the start of the merged section for
3041 // input section SHNDX in object OBJECT.
3044 Output_section::find_starting_output_address(const Relobj* object,
3046 uint64_t* paddr) const
3048 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3049 // Looking up the merge section map does not always work as we sometimes
3050 // find a merge section without its address set.
3051 uint64_t addr = this->address() + this->first_input_offset_;
3052 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3053 p != this->input_sections_.end();
3056 addr = align_address(addr, p->addralign());
3058 // It would be nice if we could use the existing output_offset
3059 // method to get the output offset of input offset 0.
3060 // Unfortunately we don't know for sure that input offset 0 is
3062 if (p->is_merge_section_for(object, shndx))
3068 addr += p->data_size();
3071 // We couldn't find a merge output section for this input section.
3075 // Update the data size of an Output_section.
3078 Output_section::update_data_size()
3080 if (this->input_sections_.empty())
3083 if (this->must_sort_attached_input_sections()
3084 || this->input_section_order_specified())
3085 this->sort_attached_input_sections();
3087 off_t off = this->first_input_offset_;
3088 for (Input_section_list::iterator p = this->input_sections_.begin();
3089 p != this->input_sections_.end();
3092 off = align_address(off, p->addralign());
3093 off += p->current_data_size();
3096 this->set_current_data_size_for_child(off);
3099 // Set the data size of an Output_section. This is where we handle
3100 // setting the addresses of any Output_section_data objects.
3103 Output_section::set_final_data_size()
3107 if (this->input_sections_.empty())
3108 data_size = this->current_data_size_for_child();
3111 if (this->must_sort_attached_input_sections()
3112 || this->input_section_order_specified())
3113 this->sort_attached_input_sections();
3115 uint64_t address = this->address();
3116 off_t startoff = this->offset();
3117 off_t off = startoff + this->first_input_offset_;
3118 for (Input_section_list::iterator p = this->input_sections_.begin();
3119 p != this->input_sections_.end();
3122 off = align_address(off, p->addralign());
3123 p->set_address_and_file_offset(address + (off - startoff), off,
3125 off += p->data_size();
3127 data_size = off - startoff;
3130 // For full incremental links, we want to allocate some patch space
3131 // in most sections for subsequent incremental updates.
3132 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3134 double pct = parameters->options().incremental_patch();
3135 size_t extra = static_cast<size_t>(data_size * pct);
3136 if (this->free_space_fill_ != NULL
3137 && this->free_space_fill_->minimum_hole_size() > extra)
3138 extra = this->free_space_fill_->minimum_hole_size();
3139 off_t new_size = align_address(data_size + extra, this->addralign());
3140 this->patch_space_ = new_size - data_size;
3141 gold_debug(DEBUG_INCREMENTAL,
3142 "set_final_data_size: %08lx + %08lx: section %s",
3143 static_cast<long>(data_size),
3144 static_cast<long>(this->patch_space_),
3146 data_size = new_size;
3149 this->set_data_size(data_size);
3152 // Reset the address and file offset.
3155 Output_section::do_reset_address_and_file_offset()
3157 // An unallocated section has no address. Forcing this means that
3158 // we don't need special treatment for symbols defined in debug
3159 // sections. We do the same in the constructor. This does not
3160 // apply to NOLOAD sections though.
3161 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3162 this->set_address(0);
3164 for (Input_section_list::iterator p = this->input_sections_.begin();
3165 p != this->input_sections_.end();
3167 p->reset_address_and_file_offset();
3169 // Remove any patch space that was added in set_final_data_size.
3170 if (this->patch_space_ > 0)
3172 this->set_current_data_size_for_child(this->current_data_size_for_child()
3173 - this->patch_space_);
3174 this->patch_space_ = 0;
3178 // Return true if address and file offset have the values after reset.
3181 Output_section::do_address_and_file_offset_have_reset_values() const
3183 if (this->is_offset_valid())
3186 // An unallocated section has address 0 after its construction or a reset.
3187 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3188 return this->is_address_valid() && this->address() == 0;
3190 return !this->is_address_valid();
3193 // Set the TLS offset. Called only for SHT_TLS sections.
3196 Output_section::do_set_tls_offset(uint64_t tls_base)
3198 this->tls_offset_ = this->address() - tls_base;
3201 // In a few cases we need to sort the input sections attached to an
3202 // output section. This is used to implement the type of constructor
3203 // priority ordering implemented by the GNU linker, in which the
3204 // priority becomes part of the section name and the sections are
3205 // sorted by name. We only do this for an output section if we see an
3206 // attached input section matching ".ctors.*", ".dtors.*",
3207 // ".init_array.*" or ".fini_array.*".
3209 class Output_section::Input_section_sort_entry
3212 Input_section_sort_entry()
3213 : input_section_(), index_(-1U), section_has_name_(false),
3217 Input_section_sort_entry(const Input_section& input_section,
3219 bool must_sort_attached_input_sections)
3220 : input_section_(input_section), index_(index),
3221 section_has_name_(input_section.is_input_section()
3222 || input_section.is_relaxed_input_section())
3224 if (this->section_has_name_
3225 && must_sort_attached_input_sections)
3227 // This is only called single-threaded from Layout::finalize,
3228 // so it is OK to lock. Unfortunately we have no way to pass
3230 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3231 Object* obj = (input_section.is_input_section()
3232 ? input_section.relobj()
3233 : input_section.relaxed_input_section()->relobj());
3234 Task_lock_obj<Object> tl(dummy_task, obj);
3236 // This is a slow operation, which should be cached in
3237 // Layout::layout if this becomes a speed problem.
3238 this->section_name_ = obj->section_name(input_section.shndx());
3242 // Return the Input_section.
3243 const Input_section&
3244 input_section() const
3246 gold_assert(this->index_ != -1U);
3247 return this->input_section_;
3250 // The index of this entry in the original list. This is used to
3251 // make the sort stable.
3255 gold_assert(this->index_ != -1U);
3256 return this->index_;
3259 // Whether there is a section name.
3261 section_has_name() const
3262 { return this->section_has_name_; }
3264 // The section name.
3266 section_name() const
3268 gold_assert(this->section_has_name_);
3269 return this->section_name_;
3272 // Return true if the section name has a priority. This is assumed
3273 // to be true if it has a dot after the initial dot.
3275 has_priority() const
3277 gold_assert(this->section_has_name_);
3278 return this->section_name_.find('.', 1) != std::string::npos;
3281 // Return the priority. Believe it or not, gcc encodes the priority
3282 // differently for .ctors/.dtors and .init_array/.fini_array
3285 get_priority() const
3287 gold_assert(this->section_has_name_);
3289 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3290 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3292 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3293 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3298 unsigned long prio = strtoul((this->section_name_.c_str()
3299 + (is_ctors ? 7 : 12)),
3304 return 65535 - prio;
3309 // Return true if this an input file whose base name matches
3310 // FILE_NAME. The base name must have an extension of ".o", and
3311 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3312 // This is to match crtbegin.o as well as crtbeginS.o without
3313 // getting confused by other possibilities. Overall matching the
3314 // file name this way is a dreadful hack, but the GNU linker does it
3315 // in order to better support gcc, and we need to be compatible.
3317 match_file_name(const char* file_name) const
3318 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3320 // Returns 1 if THIS should appear before S in section order, -1 if S
3321 // appears before THIS and 0 if they are not comparable.
3323 compare_section_ordering(const Input_section_sort_entry& s) const
3325 unsigned int this_secn_index = this->input_section_.section_order_index();
3326 unsigned int s_secn_index = s.input_section().section_order_index();
3327 if (this_secn_index > 0 && s_secn_index > 0)
3329 if (this_secn_index < s_secn_index)
3331 else if (this_secn_index > s_secn_index)
3338 // The Input_section we are sorting.
3339 Input_section input_section_;
3340 // The index of this Input_section in the original list.
3341 unsigned int index_;
3342 // Whether this Input_section has a section name--it won't if this
3343 // is some random Output_section_data.
3344 bool section_has_name_;
3345 // The section name if there is one.
3346 std::string section_name_;
3349 // Return true if S1 should come before S2 in the output section.
3352 Output_section::Input_section_sort_compare::operator()(
3353 const Output_section::Input_section_sort_entry& s1,
3354 const Output_section::Input_section_sort_entry& s2) const
3356 // crtbegin.o must come first.
3357 bool s1_begin = s1.match_file_name("crtbegin");
3358 bool s2_begin = s2.match_file_name("crtbegin");
3359 if (s1_begin || s2_begin)
3365 return s1.index() < s2.index();
3368 // crtend.o must come last.
3369 bool s1_end = s1.match_file_name("crtend");
3370 bool s2_end = s2.match_file_name("crtend");
3371 if (s1_end || s2_end)
3377 return s1.index() < s2.index();
3380 // We sort all the sections with no names to the end.
3381 if (!s1.section_has_name() || !s2.section_has_name())
3383 if (s1.section_has_name())
3385 if (s2.section_has_name())
3387 return s1.index() < s2.index();
3390 // A section with a priority follows a section without a priority.
3391 bool s1_has_priority = s1.has_priority();
3392 bool s2_has_priority = s2.has_priority();
3393 if (s1_has_priority && !s2_has_priority)
3395 if (!s1_has_priority && s2_has_priority)
3398 // Check if a section order exists for these sections through a section
3399 // ordering file. If sequence_num is 0, an order does not exist.
3400 int sequence_num = s1.compare_section_ordering(s2);
3401 if (sequence_num != 0)
3402 return sequence_num == 1;
3404 // Otherwise we sort by name.
3405 int compare = s1.section_name().compare(s2.section_name());
3409 // Otherwise we keep the input order.
3410 return s1.index() < s2.index();
3413 // Return true if S1 should come before S2 in an .init_array or .fini_array
3417 Output_section::Input_section_sort_init_fini_compare::operator()(
3418 const Output_section::Input_section_sort_entry& s1,
3419 const Output_section::Input_section_sort_entry& s2) const
3421 // We sort all the sections with no names to the end.
3422 if (!s1.section_has_name() || !s2.section_has_name())
3424 if (s1.section_has_name())
3426 if (s2.section_has_name())
3428 return s1.index() < s2.index();
3431 // A section without a priority follows a section with a priority.
3432 // This is the reverse of .ctors and .dtors sections.
3433 bool s1_has_priority = s1.has_priority();
3434 bool s2_has_priority = s2.has_priority();
3435 if (s1_has_priority && !s2_has_priority)
3437 if (!s1_has_priority && s2_has_priority)
3440 // .ctors and .dtors sections without priority come after
3441 // .init_array and .fini_array sections without priority.
3442 if (!s1_has_priority
3443 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3444 && s1.section_name() != s2.section_name())
3446 if (!s2_has_priority
3447 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3448 && s2.section_name() != s1.section_name())
3451 // Sort by priority if we can.
3452 if (s1_has_priority)
3454 unsigned int s1_prio = s1.get_priority();
3455 unsigned int s2_prio = s2.get_priority();
3456 if (s1_prio < s2_prio)
3458 else if (s1_prio > s2_prio)
3462 // Check if a section order exists for these sections through a section
3463 // ordering file. If sequence_num is 0, an order does not exist.
3464 int sequence_num = s1.compare_section_ordering(s2);
3465 if (sequence_num != 0)
3466 return sequence_num == 1;
3468 // Otherwise we sort by name.
3469 int compare = s1.section_name().compare(s2.section_name());
3473 // Otherwise we keep the input order.
3474 return s1.index() < s2.index();
3477 // Return true if S1 should come before S2. Sections that do not match
3478 // any pattern in the section ordering file are placed ahead of the sections
3479 // that match some pattern.
3482 Output_section::Input_section_sort_section_order_index_compare::operator()(
3483 const Output_section::Input_section_sort_entry& s1,
3484 const Output_section::Input_section_sort_entry& s2) const
3486 unsigned int s1_secn_index = s1.input_section().section_order_index();
3487 unsigned int s2_secn_index = s2.input_section().section_order_index();
3489 // Keep input order if section ordering cannot determine order.
3490 if (s1_secn_index == s2_secn_index)
3491 return s1.index() < s2.index();
3493 return s1_secn_index < s2_secn_index;
3496 // This updates the section order index of input sections according to the
3497 // the order specified in the mapping from Section id to order index.
3500 Output_section::update_section_layout(
3501 const Section_layout_order* order_map)
3503 for (Input_section_list::iterator p = this->input_sections_.begin();
3504 p != this->input_sections_.end();
3507 if (p->is_input_section()
3508 || p->is_relaxed_input_section())
3510 Object* obj = (p->is_input_section()
3512 : p->relaxed_input_section()->relobj());
3513 unsigned int shndx = p->shndx();
3514 Section_layout_order::const_iterator it
3515 = order_map->find(Section_id(obj, shndx));
3516 if (it == order_map->end())
3518 unsigned int section_order_index = it->second;
3519 if (section_order_index != 0)
3521 p->set_section_order_index(section_order_index);
3522 this->set_input_section_order_specified();
3528 // Sort the input sections attached to an output section.
3531 Output_section::sort_attached_input_sections()
3533 if (this->attached_input_sections_are_sorted_)
3536 if (this->checkpoint_ != NULL
3537 && !this->checkpoint_->input_sections_saved())
3538 this->checkpoint_->save_input_sections();
3540 // The only thing we know about an input section is the object and
3541 // the section index. We need the section name. Recomputing this
3542 // is slow but this is an unusual case. If this becomes a speed
3543 // problem we can cache the names as required in Layout::layout.
3545 // We start by building a larger vector holding a copy of each
3546 // Input_section, plus its current index in the list and its name.
3547 std::vector<Input_section_sort_entry> sort_list;
3550 for (Input_section_list::iterator p = this->input_sections_.begin();
3551 p != this->input_sections_.end();
3553 sort_list.push_back(Input_section_sort_entry(*p, i,
3554 this->must_sort_attached_input_sections()));
3556 // Sort the input sections.
3557 if (this->must_sort_attached_input_sections())
3559 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3560 || this->type() == elfcpp::SHT_INIT_ARRAY
3561 || this->type() == elfcpp::SHT_FINI_ARRAY)
3562 std::sort(sort_list.begin(), sort_list.end(),
3563 Input_section_sort_init_fini_compare());
3565 std::sort(sort_list.begin(), sort_list.end(),
3566 Input_section_sort_compare());
3570 gold_assert(this->input_section_order_specified());
3571 std::sort(sort_list.begin(), sort_list.end(),
3572 Input_section_sort_section_order_index_compare());
3575 // Copy the sorted input sections back to our list.
3576 this->input_sections_.clear();
3577 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3578 p != sort_list.end();
3580 this->input_sections_.push_back(p->input_section());
3583 // Remember that we sorted the input sections, since we might get
3585 this->attached_input_sections_are_sorted_ = true;
3588 // Write the section header to *OSHDR.
3590 template<int size, bool big_endian>
3592 Output_section::write_header(const Layout* layout,
3593 const Stringpool* secnamepool,
3594 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3596 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3597 oshdr->put_sh_type(this->type_);
3599 elfcpp::Elf_Xword flags = this->flags_;
3600 if (this->info_section_ != NULL && this->info_uses_section_index_)
3601 flags |= elfcpp::SHF_INFO_LINK;
3602 oshdr->put_sh_flags(flags);
3604 oshdr->put_sh_addr(this->address());
3605 oshdr->put_sh_offset(this->offset());
3606 oshdr->put_sh_size(this->data_size());
3607 if (this->link_section_ != NULL)
3608 oshdr->put_sh_link(this->link_section_->out_shndx());
3609 else if (this->should_link_to_symtab_)
3610 oshdr->put_sh_link(layout->symtab_section_shndx());
3611 else if (this->should_link_to_dynsym_)
3612 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3614 oshdr->put_sh_link(this->link_);
3616 elfcpp::Elf_Word info;
3617 if (this->info_section_ != NULL)
3619 if (this->info_uses_section_index_)
3620 info = this->info_section_->out_shndx();
3622 info = this->info_section_->symtab_index();
3624 else if (this->info_symndx_ != NULL)
3625 info = this->info_symndx_->symtab_index();
3628 oshdr->put_sh_info(info);
3630 oshdr->put_sh_addralign(this->addralign_);
3631 oshdr->put_sh_entsize(this->entsize_);
3634 // Write out the data. For input sections the data is written out by
3635 // Object::relocate, but we have to handle Output_section_data objects
3639 Output_section::do_write(Output_file* of)
3641 gold_assert(!this->requires_postprocessing());
3643 // If the target performs relaxation, we delay filler generation until now.
3644 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3646 off_t output_section_file_offset = this->offset();
3647 for (Fill_list::iterator p = this->fills_.begin();
3648 p != this->fills_.end();
3651 std::string fill_data(parameters->target().code_fill(p->length()));
3652 of->write(output_section_file_offset + p->section_offset(),
3653 fill_data.data(), fill_data.size());
3656 off_t off = this->offset() + this->first_input_offset_;
3657 for (Input_section_list::iterator p = this->input_sections_.begin();
3658 p != this->input_sections_.end();
3661 off_t aligned_off = align_address(off, p->addralign());
3662 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3664 size_t fill_len = aligned_off - off;
3665 std::string fill_data(parameters->target().code_fill(fill_len));
3666 of->write(off, fill_data.data(), fill_data.size());
3670 off = aligned_off + p->data_size();
3673 // For incremental links, fill in unused chunks in debug sections
3674 // with dummy compilation unit headers.
3675 if (this->free_space_fill_ != NULL)
3677 for (Free_list::Const_iterator p = this->free_list_.begin();
3678 p != this->free_list_.end();
3681 off_t off = p->start_;
3682 size_t len = p->end_ - off;
3683 this->free_space_fill_->write(of, this->offset() + off, len);
3685 if (this->patch_space_ > 0)
3687 off_t off = this->current_data_size_for_child() - this->patch_space_;
3688 this->free_space_fill_->write(of, this->offset() + off,
3689 this->patch_space_);
3694 // If a section requires postprocessing, create the buffer to use.
3697 Output_section::create_postprocessing_buffer()
3699 gold_assert(this->requires_postprocessing());
3701 if (this->postprocessing_buffer_ != NULL)
3704 if (!this->input_sections_.empty())
3706 off_t off = this->first_input_offset_;
3707 for (Input_section_list::iterator p = this->input_sections_.begin();
3708 p != this->input_sections_.end();
3711 off = align_address(off, p->addralign());
3712 p->finalize_data_size();
3713 off += p->data_size();
3715 this->set_current_data_size_for_child(off);
3718 off_t buffer_size = this->current_data_size_for_child();
3719 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3722 // Write all the data of an Output_section into the postprocessing
3723 // buffer. This is used for sections which require postprocessing,
3724 // such as compression. Input sections are handled by
3725 // Object::Relocate.
3728 Output_section::write_to_postprocessing_buffer()
3730 gold_assert(this->requires_postprocessing());
3732 // If the target performs relaxation, we delay filler generation until now.
3733 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3735 unsigned char* buffer = this->postprocessing_buffer();
3736 for (Fill_list::iterator p = this->fills_.begin();
3737 p != this->fills_.end();
3740 std::string fill_data(parameters->target().code_fill(p->length()));
3741 memcpy(buffer + p->section_offset(), fill_data.data(),
3745 off_t off = this->first_input_offset_;
3746 for (Input_section_list::iterator p = this->input_sections_.begin();
3747 p != this->input_sections_.end();
3750 off_t aligned_off = align_address(off, p->addralign());
3751 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3753 size_t fill_len = aligned_off - off;
3754 std::string fill_data(parameters->target().code_fill(fill_len));
3755 memcpy(buffer + off, fill_data.data(), fill_data.size());
3758 p->write_to_buffer(buffer + aligned_off);
3759 off = aligned_off + p->data_size();
3763 // Get the input sections for linker script processing. We leave
3764 // behind the Output_section_data entries. Note that this may be
3765 // slightly incorrect for merge sections. We will leave them behind,
3766 // but it is possible that the script says that they should follow
3767 // some other input sections, as in:
3768 // .rodata { *(.rodata) *(.rodata.cst*) }
3769 // For that matter, we don't handle this correctly:
3770 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3771 // With luck this will never matter.
3774 Output_section::get_input_sections(
3776 const std::string& fill,
3777 std::list<Input_section>* input_sections)
3779 if (this->checkpoint_ != NULL
3780 && !this->checkpoint_->input_sections_saved())
3781 this->checkpoint_->save_input_sections();
3783 // Invalidate fast look-up maps.
3784 this->lookup_maps_->invalidate();
3786 uint64_t orig_address = address;
3788 address = align_address(address, this->addralign());
3790 Input_section_list remaining;
3791 for (Input_section_list::iterator p = this->input_sections_.begin();
3792 p != this->input_sections_.end();
3795 if (p->is_input_section()
3796 || p->is_relaxed_input_section()
3797 || p->is_merge_section())
3798 input_sections->push_back(*p);
3801 uint64_t aligned_address = align_address(address, p->addralign());
3802 if (aligned_address != address && !fill.empty())
3804 section_size_type length =
3805 convert_to_section_size_type(aligned_address - address);
3806 std::string this_fill;
3807 this_fill.reserve(length);
3808 while (this_fill.length() + fill.length() <= length)
3810 if (this_fill.length() < length)
3811 this_fill.append(fill, 0, length - this_fill.length());
3813 Output_section_data* posd = new Output_data_const(this_fill, 0);
3814 remaining.push_back(Input_section(posd));
3816 address = aligned_address;
3818 remaining.push_back(*p);
3820 p->finalize_data_size();
3821 address += p->data_size();
3825 this->input_sections_.swap(remaining);
3826 this->first_input_offset_ = 0;
3828 uint64_t data_size = address - orig_address;
3829 this->set_current_data_size_for_child(data_size);
3833 // Add a script input section. SIS is an Output_section::Input_section,
3834 // which can be either a plain input section or a special input section like
3835 // a relaxed input section. For a special input section, its size must be
3839 Output_section::add_script_input_section(const Input_section& sis)
3841 uint64_t data_size = sis.data_size();
3842 uint64_t addralign = sis.addralign();
3843 if (addralign > this->addralign_)
3844 this->addralign_ = addralign;
3846 off_t offset_in_section = this->current_data_size_for_child();
3847 off_t aligned_offset_in_section = align_address(offset_in_section,
3850 this->set_current_data_size_for_child(aligned_offset_in_section
3853 this->input_sections_.push_back(sis);
3855 // Update fast lookup maps if necessary.
3856 if (this->lookup_maps_->is_valid())
3858 if (sis.is_merge_section())
3860 Output_merge_base* pomb = sis.output_merge_base();
3861 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3863 this->lookup_maps_->add_merge_section(msp, pomb);
3864 for (Output_merge_base::Input_sections::const_iterator p =
3865 pomb->input_sections_begin();
3866 p != pomb->input_sections_end();
3868 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3871 else if (sis.is_relaxed_input_section())
3873 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3874 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3875 poris->shndx(), poris);
3880 // Save states for relaxation.
3883 Output_section::save_states()
3885 gold_assert(this->checkpoint_ == NULL);
3886 Checkpoint_output_section* checkpoint =
3887 new Checkpoint_output_section(this->addralign_, this->flags_,
3888 this->input_sections_,
3889 this->first_input_offset_,
3890 this->attached_input_sections_are_sorted_);
3891 this->checkpoint_ = checkpoint;
3892 gold_assert(this->fills_.empty());
3896 Output_section::discard_states()
3898 gold_assert(this->checkpoint_ != NULL);
3899 delete this->checkpoint_;
3900 this->checkpoint_ = NULL;
3901 gold_assert(this->fills_.empty());
3903 // Simply invalidate the fast lookup maps since we do not keep
3905 this->lookup_maps_->invalidate();
3909 Output_section::restore_states()
3911 gold_assert(this->checkpoint_ != NULL);
3912 Checkpoint_output_section* checkpoint = this->checkpoint_;
3914 this->addralign_ = checkpoint->addralign();
3915 this->flags_ = checkpoint->flags();
3916 this->first_input_offset_ = checkpoint->first_input_offset();
3918 if (!checkpoint->input_sections_saved())
3920 // If we have not copied the input sections, just resize it.
3921 size_t old_size = checkpoint->input_sections_size();
3922 gold_assert(this->input_sections_.size() >= old_size);
3923 this->input_sections_.resize(old_size);
3927 // We need to copy the whole list. This is not efficient for
3928 // extremely large output with hundreads of thousands of input
3929 // objects. We may need to re-think how we should pass sections
3931 this->input_sections_ = *checkpoint->input_sections();
3934 this->attached_input_sections_are_sorted_ =
3935 checkpoint->attached_input_sections_are_sorted();
3937 // Simply invalidate the fast lookup maps since we do not keep
3939 this->lookup_maps_->invalidate();
3942 // Update the section offsets of input sections in this. This is required if
3943 // relaxation causes some input sections to change sizes.
3946 Output_section::adjust_section_offsets()
3948 if (!this->section_offsets_need_adjustment_)
3952 for (Input_section_list::iterator p = this->input_sections_.begin();
3953 p != this->input_sections_.end();
3956 off = align_address(off, p->addralign());
3957 if (p->is_input_section())
3958 p->relobj()->set_section_offset(p->shndx(), off);
3959 off += p->data_size();
3962 this->section_offsets_need_adjustment_ = false;
3965 // Print to the map file.
3968 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3970 mapfile->print_output_section(this);
3972 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3973 p != this->input_sections_.end();
3975 p->print_to_mapfile(mapfile);
3978 // Print stats for merge sections to stderr.
3981 Output_section::print_merge_stats()
3983 Input_section_list::iterator p;
3984 for (p = this->input_sections_.begin();
3985 p != this->input_sections_.end();
3987 p->print_merge_stats(this->name_);
3990 // Set a fixed layout for the section. Used for incremental update links.
3993 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3994 off_t sh_size, uint64_t sh_addralign)
3996 this->addralign_ = sh_addralign;
3997 this->set_current_data_size(sh_size);
3998 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3999 this->set_address(sh_addr);
4000 this->set_file_offset(sh_offset);
4001 this->finalize_data_size();
4002 this->free_list_.init(sh_size, false);
4003 this->has_fixed_layout_ = true;
4006 // Reserve space within the fixed layout for the section. Used for
4007 // incremental update links.
4010 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4012 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4015 // Allocate space from the free list for the section. Used for
4016 // incremental update links.
4019 Output_section::allocate(off_t len, uint64_t addralign)
4021 return this->free_list_.allocate(len, addralign, 0);
4024 // Output segment methods.
4026 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4036 is_max_align_known_(false),
4037 are_addresses_set_(false),
4038 is_large_data_segment_(false)
4040 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4042 if (type == elfcpp::PT_TLS)
4043 this->flags_ = elfcpp::PF_R;
4046 // Add an Output_section to a PT_LOAD Output_segment.
4049 Output_segment::add_output_section_to_load(Layout* layout,
4051 elfcpp::Elf_Word seg_flags)
4053 gold_assert(this->type() == elfcpp::PT_LOAD);
4054 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4055 gold_assert(!this->is_max_align_known_);
4056 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4058 this->update_flags_for_output_section(seg_flags);
4060 // We don't want to change the ordering if we have a linker script
4061 // with a SECTIONS clause.
4062 Output_section_order order = os->order();
4063 if (layout->script_options()->saw_sections_clause())
4064 order = static_cast<Output_section_order>(0);
4066 gold_assert(order != ORDER_INVALID);
4068 this->output_lists_[order].push_back(os);
4071 // Add an Output_section to a non-PT_LOAD Output_segment.
4074 Output_segment::add_output_section_to_nonload(Output_section* os,
4075 elfcpp::Elf_Word seg_flags)
4077 gold_assert(this->type() != elfcpp::PT_LOAD);
4078 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4079 gold_assert(!this->is_max_align_known_);
4081 this->update_flags_for_output_section(seg_flags);
4083 this->output_lists_[0].push_back(os);
4086 // Remove an Output_section from this segment. It is an error if it
4090 Output_segment::remove_output_section(Output_section* os)
4092 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4094 Output_data_list* pdl = &this->output_lists_[i];
4095 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4107 // Add an Output_data (which need not be an Output_section) to the
4108 // start of a segment.
4111 Output_segment::add_initial_output_data(Output_data* od)
4113 gold_assert(!this->is_max_align_known_);
4114 Output_data_list::iterator p = this->output_lists_[0].begin();
4115 this->output_lists_[0].insert(p, od);
4118 // Return true if this segment has any sections which hold actual
4119 // data, rather than being a BSS section.
4122 Output_segment::has_any_data_sections() const
4124 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4126 const Output_data_list* pdl = &this->output_lists_[i];
4127 for (Output_data_list::const_iterator p = pdl->begin();
4131 if (!(*p)->is_section())
4133 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4140 // Return whether the first data section (not counting TLS sections)
4141 // is a relro section.
4144 Output_segment::is_first_section_relro() const
4146 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4148 if (i == static_cast<int>(ORDER_TLS_DATA)
4149 || i == static_cast<int>(ORDER_TLS_BSS))
4151 const Output_data_list* pdl = &this->output_lists_[i];
4154 Output_data* p = pdl->front();
4155 return p->is_section() && p->output_section()->is_relro();
4161 // Return the maximum alignment of the Output_data in Output_segment.
4164 Output_segment::maximum_alignment()
4166 if (!this->is_max_align_known_)
4168 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4170 const Output_data_list* pdl = &this->output_lists_[i];
4171 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4172 if (addralign > this->max_align_)
4173 this->max_align_ = addralign;
4175 this->is_max_align_known_ = true;
4178 return this->max_align_;
4181 // Return the maximum alignment of a list of Output_data.
4184 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4187 for (Output_data_list::const_iterator p = pdl->begin();
4191 uint64_t addralign = (*p)->addralign();
4192 if (addralign > ret)
4198 // Return whether this segment has any dynamic relocs.
4201 Output_segment::has_dynamic_reloc() const
4203 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4204 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4209 // Return whether this Output_data_list has any dynamic relocs.
4212 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4214 for (Output_data_list::const_iterator p = pdl->begin();
4217 if ((*p)->has_dynamic_reloc())
4222 // Set the section addresses for an Output_segment. If RESET is true,
4223 // reset the addresses first. ADDR is the address and *POFF is the
4224 // file offset. Set the section indexes starting with *PSHNDX.
4225 // INCREASE_RELRO is the size of the portion of the first non-relro
4226 // section that should be included in the PT_GNU_RELRO segment.
4227 // If this segment has relro sections, and has been aligned for
4228 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4229 // the immediately following segment. Update *HAS_RELRO, *POFF,
4233 Output_segment::set_section_addresses(Layout* layout, bool reset,
4235 unsigned int* increase_relro,
4238 unsigned int* pshndx)
4240 gold_assert(this->type_ == elfcpp::PT_LOAD);
4242 uint64_t last_relro_pad = 0;
4243 off_t orig_off = *poff;
4245 bool in_tls = false;
4247 // If we have relro sections, we need to pad forward now so that the
4248 // relro sections plus INCREASE_RELRO end on a common page boundary.
4249 if (parameters->options().relro()
4250 && this->is_first_section_relro()
4251 && (!this->are_addresses_set_ || reset))
4253 uint64_t relro_size = 0;
4255 uint64_t max_align = 0;
4256 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4258 Output_data_list* pdl = &this->output_lists_[i];
4259 Output_data_list::iterator p;
4260 for (p = pdl->begin(); p != pdl->end(); ++p)
4262 if (!(*p)->is_section())
4264 uint64_t align = (*p)->addralign();
4265 if (align > max_align)
4267 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4271 // Align the first non-TLS section to the alignment
4272 // of the TLS segment.
4276 relro_size = align_address(relro_size, align);
4277 // Ignore the size of the .tbss section.
4278 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4279 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4281 if ((*p)->is_address_valid())
4282 relro_size += (*p)->data_size();
4285 // FIXME: This could be faster.
4286 (*p)->set_address_and_file_offset(addr + relro_size,
4288 relro_size += (*p)->data_size();
4289 (*p)->reset_address_and_file_offset();
4292 if (p != pdl->end())
4295 relro_size += *increase_relro;
4296 // Pad the total relro size to a multiple of the maximum
4297 // section alignment seen.
4298 uint64_t aligned_size = align_address(relro_size, max_align);
4299 // Note the amount of padding added after the last relro section.
4300 last_relro_pad = aligned_size - relro_size;
4303 uint64_t page_align = parameters->target().common_pagesize();
4305 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4306 uint64_t desired_align = page_align - (aligned_size % page_align);
4307 if (desired_align < *poff % page_align)
4308 *poff += page_align - *poff % page_align;
4309 *poff += desired_align - *poff % page_align;
4310 addr += *poff - orig_off;
4314 if (!reset && this->are_addresses_set_)
4316 gold_assert(this->paddr_ == addr);
4317 addr = this->vaddr_;
4321 this->vaddr_ = addr;
4322 this->paddr_ = addr;
4323 this->are_addresses_set_ = true;
4328 this->offset_ = orig_off;
4332 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4334 if (i == static_cast<int>(ORDER_RELRO_LAST))
4336 *poff += last_relro_pad;
4337 addr += last_relro_pad;
4338 if (this->output_lists_[i].empty())
4340 // If there is nothing in the ORDER_RELRO_LAST list,
4341 // the padding will occur at the end of the relro
4342 // segment, and we need to add it to *INCREASE_RELRO.
4343 *increase_relro += last_relro_pad;
4346 addr = this->set_section_list_addresses(layout, reset,
4347 &this->output_lists_[i],
4348 addr, poff, pshndx, &in_tls);
4349 if (i < static_cast<int>(ORDER_SMALL_BSS))
4351 this->filesz_ = *poff - orig_off;
4358 // If the last section was a TLS section, align upward to the
4359 // alignment of the TLS segment, so that the overall size of the TLS
4360 // segment is aligned.
4363 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4364 *poff = align_address(*poff, segment_align);
4367 this->memsz_ = *poff - orig_off;
4369 // Ignore the file offset adjustments made by the BSS Output_data
4376 // Set the addresses and file offsets in a list of Output_data
4380 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4381 Output_data_list* pdl,
4382 uint64_t addr, off_t* poff,
4383 unsigned int* pshndx,
4386 off_t startoff = *poff;
4387 // For incremental updates, we may allocate non-fixed sections from
4388 // free space in the file. This keeps track of the high-water mark.
4389 off_t maxoff = startoff;
4391 off_t off = startoff;
4392 for (Output_data_list::iterator p = pdl->begin();
4397 (*p)->reset_address_and_file_offset();
4399 // When doing an incremental update or when using a linker script,
4400 // the section will most likely already have an address.
4401 if (!(*p)->is_address_valid())
4403 uint64_t align = (*p)->addralign();
4405 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4407 // Give the first TLS section the alignment of the
4408 // entire TLS segment. Otherwise the TLS segment as a
4409 // whole may be misaligned.
4412 Output_segment* tls_segment = layout->tls_segment();
4413 gold_assert(tls_segment != NULL);
4414 uint64_t segment_align = tls_segment->maximum_alignment();
4415 gold_assert(segment_align >= align);
4416 align = segment_align;
4423 // If this is the first section after the TLS segment,
4424 // align it to at least the alignment of the TLS
4425 // segment, so that the size of the overall TLS segment
4429 uint64_t segment_align =
4430 layout->tls_segment()->maximum_alignment();
4431 if (segment_align > align)
4432 align = segment_align;
4438 if (!parameters->incremental_update())
4440 off = align_address(off, align);
4441 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4445 // Incremental update: allocate file space from free list.
4446 (*p)->pre_finalize_data_size();
4447 off_t current_size = (*p)->current_data_size();
4448 off = layout->allocate(current_size, align, startoff);
4451 gold_assert((*p)->output_section() != NULL);
4452 gold_fallback(_("out of patch space for section %s; "
4453 "relink with --incremental-full"),
4454 (*p)->output_section()->name());
4456 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4457 if ((*p)->data_size() > current_size)
4459 gold_assert((*p)->output_section() != NULL);
4460 gold_fallback(_("%s: section changed size; "
4461 "relink with --incremental-full"),
4462 (*p)->output_section()->name());
4466 else if (parameters->incremental_update())
4468 // For incremental updates, use the fixed offset for the
4469 // high-water mark computation.
4470 off = (*p)->offset();
4474 // The script may have inserted a skip forward, but it
4475 // better not have moved backward.
4476 if ((*p)->address() >= addr + (off - startoff))
4477 off += (*p)->address() - (addr + (off - startoff));
4480 if (!layout->script_options()->saw_sections_clause())
4484 Output_section* os = (*p)->output_section();
4486 // Cast to unsigned long long to avoid format warnings.
4487 unsigned long long previous_dot =
4488 static_cast<unsigned long long>(addr + (off - startoff));
4489 unsigned long long dot =
4490 static_cast<unsigned long long>((*p)->address());
4493 gold_error(_("dot moves backward in linker script "
4494 "from 0x%llx to 0x%llx"), previous_dot, dot);
4496 gold_error(_("address of section '%s' moves backward "
4497 "from 0x%llx to 0x%llx"),
4498 os->name(), previous_dot, dot);
4501 (*p)->set_file_offset(off);
4502 (*p)->finalize_data_size();
4505 if (parameters->incremental_update())
4506 gold_debug(DEBUG_INCREMENTAL,
4507 "set_section_list_addresses: %08lx %08lx %s",
4508 static_cast<long>(off),
4509 static_cast<long>((*p)->data_size()),
4510 ((*p)->output_section() != NULL
4511 ? (*p)->output_section()->name() : "(special)"));
4513 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4514 // section. Such a section does not affect the size of a
4516 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4517 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4518 off += (*p)->data_size();
4523 if ((*p)->is_section())
4525 (*p)->set_out_shndx(*pshndx);
4531 return addr + (maxoff - startoff);
4534 // For a non-PT_LOAD segment, set the offset from the sections, if
4535 // any. Add INCREASE to the file size and the memory size.
4538 Output_segment::set_offset(unsigned int increase)
4540 gold_assert(this->type_ != elfcpp::PT_LOAD);
4542 gold_assert(!this->are_addresses_set_);
4544 // A non-load section only uses output_lists_[0].
4546 Output_data_list* pdl = &this->output_lists_[0];
4550 gold_assert(increase == 0);
4553 this->are_addresses_set_ = true;
4555 this->min_p_align_ = 0;
4561 // Find the first and last section by address.
4562 const Output_data* first = NULL;
4563 const Output_data* last_data = NULL;
4564 const Output_data* last_bss = NULL;
4565 for (Output_data_list::const_iterator p = pdl->begin();
4570 || (*p)->address() < first->address()
4571 || ((*p)->address() == first->address()
4572 && (*p)->data_size() < first->data_size()))
4574 const Output_data** plast;
4575 if ((*p)->is_section()
4576 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4581 || (*p)->address() > (*plast)->address()
4582 || ((*p)->address() == (*plast)->address()
4583 && (*p)->data_size() > (*plast)->data_size()))
4587 this->vaddr_ = first->address();
4588 this->paddr_ = (first->has_load_address()
4589 ? first->load_address()
4591 this->are_addresses_set_ = true;
4592 this->offset_ = first->offset();
4594 if (last_data == NULL)
4597 this->filesz_ = (last_data->address()
4598 + last_data->data_size()
4601 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4602 this->memsz_ = (last->address()
4606 this->filesz_ += increase;
4607 this->memsz_ += increase;
4609 // If this is a RELRO segment, verify that the segment ends at a
4611 if (this->type_ == elfcpp::PT_GNU_RELRO)
4613 uint64_t page_align = parameters->target().common_pagesize();
4614 uint64_t segment_end = this->vaddr_ + this->memsz_;
4615 if (parameters->incremental_update())
4617 // The INCREASE_RELRO calculation is bypassed for an incremental
4618 // update, so we need to adjust the segment size manually here.
4619 segment_end = align_address(segment_end, page_align);
4620 this->memsz_ = segment_end - this->vaddr_;
4623 gold_assert(segment_end == align_address(segment_end, page_align));
4626 // If this is a TLS segment, align the memory size. The code in
4627 // set_section_list ensures that the section after the TLS segment
4628 // is aligned to give us room.
4629 if (this->type_ == elfcpp::PT_TLS)
4631 uint64_t segment_align = this->maximum_alignment();
4632 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4633 this->memsz_ = align_address(this->memsz_, segment_align);
4637 // Set the TLS offsets of the sections in the PT_TLS segment.
4640 Output_segment::set_tls_offsets()
4642 gold_assert(this->type_ == elfcpp::PT_TLS);
4644 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4645 p != this->output_lists_[0].end();
4647 (*p)->set_tls_offset(this->vaddr_);
4650 // Return the load address of the first section.
4653 Output_segment::first_section_load_address() const
4655 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4657 const Output_data_list* pdl = &this->output_lists_[i];
4658 for (Output_data_list::const_iterator p = pdl->begin();
4662 if ((*p)->is_section())
4663 return ((*p)->has_load_address()
4664 ? (*p)->load_address()
4671 // Return the number of Output_sections in an Output_segment.
4674 Output_segment::output_section_count() const
4676 unsigned int ret = 0;
4677 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4678 ret += this->output_section_count_list(&this->output_lists_[i]);
4682 // Return the number of Output_sections in an Output_data_list.
4685 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4687 unsigned int count = 0;
4688 for (Output_data_list::const_iterator p = pdl->begin();
4692 if ((*p)->is_section())
4698 // Return the section attached to the list segment with the lowest
4699 // load address. This is used when handling a PHDRS clause in a
4703 Output_segment::section_with_lowest_load_address() const
4705 Output_section* found = NULL;
4706 uint64_t found_lma = 0;
4707 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4708 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4713 // Look through a list for a section with a lower load address.
4716 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4717 Output_section** found,
4718 uint64_t* found_lma) const
4720 for (Output_data_list::const_iterator p = pdl->begin();
4724 if (!(*p)->is_section())
4726 Output_section* os = static_cast<Output_section*>(*p);
4727 uint64_t lma = (os->has_load_address()
4728 ? os->load_address()
4730 if (*found == NULL || lma < *found_lma)
4738 // Write the segment data into *OPHDR.
4740 template<int size, bool big_endian>
4742 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4744 ophdr->put_p_type(this->type_);
4745 ophdr->put_p_offset(this->offset_);
4746 ophdr->put_p_vaddr(this->vaddr_);
4747 ophdr->put_p_paddr(this->paddr_);
4748 ophdr->put_p_filesz(this->filesz_);
4749 ophdr->put_p_memsz(this->memsz_);
4750 ophdr->put_p_flags(this->flags_);
4751 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4754 // Write the section headers into V.
4756 template<int size, bool big_endian>
4758 Output_segment::write_section_headers(const Layout* layout,
4759 const Stringpool* secnamepool,
4761 unsigned int* pshndx) const
4763 // Every section that is attached to a segment must be attached to a
4764 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4766 if (this->type_ != elfcpp::PT_LOAD)
4769 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4771 const Output_data_list* pdl = &this->output_lists_[i];
4772 v = this->write_section_headers_list<size, big_endian>(layout,
4781 template<int size, bool big_endian>
4783 Output_segment::write_section_headers_list(const Layout* layout,
4784 const Stringpool* secnamepool,
4785 const Output_data_list* pdl,
4787 unsigned int* pshndx) const
4789 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4790 for (Output_data_list::const_iterator p = pdl->begin();
4794 if ((*p)->is_section())
4796 const Output_section* ps = static_cast<const Output_section*>(*p);
4797 gold_assert(*pshndx == ps->out_shndx());
4798 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4799 ps->write_header(layout, secnamepool, &oshdr);
4807 // Print the output sections to the map file.
4810 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4812 if (this->type() != elfcpp::PT_LOAD)
4814 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4815 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4818 // Print an output section list to the map file.
4821 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4822 const Output_data_list* pdl) const
4824 for (Output_data_list::const_iterator p = pdl->begin();
4827 (*p)->print_to_mapfile(mapfile);
4830 // Output_file methods.
4832 Output_file::Output_file(const char* name)
4837 map_is_anonymous_(false),
4838 map_is_allocated_(false),
4839 is_temporary_(false)
4843 // Try to open an existing file. Returns false if the file doesn't
4844 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4845 // NULL, open that file as the base for incremental linking, and
4846 // copy its contents to the new output file. This routine can
4847 // be called for incremental updates, in which case WRITABLE should
4848 // be true, or by the incremental-dump utility, in which case
4849 // WRITABLE should be false.
4852 Output_file::open_base_file(const char* base_name, bool writable)
4854 // The name "-" means "stdout".
4855 if (strcmp(this->name_, "-") == 0)
4858 bool use_base_file = base_name != NULL;
4860 base_name = this->name_;
4861 else if (strcmp(base_name, this->name_) == 0)
4862 gold_fatal(_("%s: incremental base and output file name are the same"),
4865 // Don't bother opening files with a size of zero.
4867 if (::stat(base_name, &s) != 0)
4869 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4874 gold_info(_("%s: incremental base file is empty"), base_name);
4878 // If we're using a base file, we want to open it read-only.
4882 int oflags = writable ? O_RDWR : O_RDONLY;
4883 int o = open_descriptor(-1, base_name, oflags, 0);
4886 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4890 // If the base file and the output file are different, open a
4891 // new output file and read the contents from the base file into
4892 // the newly-mapped region.
4895 this->open(s.st_size);
4896 ssize_t len = ::read(o, this->base_, s.st_size);
4899 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4902 if (len < s.st_size)
4904 gold_info(_("%s: file too short"), base_name);
4912 this->file_size_ = s.st_size;
4914 if (!this->map_no_anonymous(writable))
4916 release_descriptor(o, true);
4918 this->file_size_ = 0;
4925 // Open the output file.
4928 Output_file::open(off_t file_size)
4930 this->file_size_ = file_size;
4932 // Unlink the file first; otherwise the open() may fail if the file
4933 // is busy (e.g. it's an executable that's currently being executed).
4935 // However, the linker may be part of a system where a zero-length
4936 // file is created for it to write to, with tight permissions (gcc
4937 // 2.95 did something like this). Unlinking the file would work
4938 // around those permission controls, so we only unlink if the file
4939 // has a non-zero size. We also unlink only regular files to avoid
4940 // trouble with directories/etc.
4942 // If we fail, continue; this command is merely a best-effort attempt
4943 // to improve the odds for open().
4945 // We let the name "-" mean "stdout"
4946 if (!this->is_temporary_)
4948 if (strcmp(this->name_, "-") == 0)
4949 this->o_ = STDOUT_FILENO;
4953 if (::stat(this->name_, &s) == 0
4954 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4957 ::unlink(this->name_);
4958 else if (!parameters->options().relocatable())
4960 // If we don't unlink the existing file, add execute
4961 // permission where read permissions already exist
4962 // and where the umask permits.
4963 int mask = ::umask(0);
4965 s.st_mode |= (s.st_mode & 0444) >> 2;
4966 ::chmod(this->name_, s.st_mode & ~mask);
4970 int mode = parameters->options().relocatable() ? 0666 : 0777;
4971 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4974 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4982 // Resize the output file.
4985 Output_file::resize(off_t file_size)
4987 // If the mmap is mapping an anonymous memory buffer, this is easy:
4988 // just mremap to the new size. If it's mapping to a file, we want
4989 // to unmap to flush to the file, then remap after growing the file.
4990 if (this->map_is_anonymous_)
4993 if (!this->map_is_allocated_)
4995 base = ::mremap(this->base_, this->file_size_, file_size,
4997 if (base == MAP_FAILED)
4998 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5002 base = realloc(this->base_, file_size);
5005 if (file_size > this->file_size_)
5006 memset(static_cast<char*>(base) + this->file_size_, 0,
5007 file_size - this->file_size_);
5009 this->base_ = static_cast<unsigned char*>(base);
5010 this->file_size_ = file_size;
5015 this->file_size_ = file_size;
5016 if (!this->map_no_anonymous(true))
5017 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5021 // Map an anonymous block of memory which will later be written to the
5022 // file. Return whether the map succeeded.
5025 Output_file::map_anonymous()
5027 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5028 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5029 if (base == MAP_FAILED)
5031 base = malloc(this->file_size_);
5034 memset(base, 0, this->file_size_);
5035 this->map_is_allocated_ = true;
5037 this->base_ = static_cast<unsigned char*>(base);
5038 this->map_is_anonymous_ = true;
5042 // Map the file into memory. Return whether the mapping succeeded.
5043 // If WRITABLE is true, map with write access.
5046 Output_file::map_no_anonymous(bool writable)
5048 const int o = this->o_;
5050 // If the output file is not a regular file, don't try to mmap it;
5051 // instead, we'll mmap a block of memory (an anonymous buffer), and
5052 // then later write the buffer to the file.
5054 struct stat statbuf;
5055 if (o == STDOUT_FILENO || o == STDERR_FILENO
5056 || ::fstat(o, &statbuf) != 0
5057 || !S_ISREG(statbuf.st_mode)
5058 || this->is_temporary_)
5061 // Ensure that we have disk space available for the file. If we
5062 // don't do this, it is possible that we will call munmap, close,
5063 // and exit with dirty buffers still in the cache with no assigned
5064 // disk blocks. If the disk is out of space at that point, the
5065 // output file will wind up incomplete, but we will have already
5066 // exited. The alternative to fallocate would be to use fdatasync,
5067 // but that would be a more significant performance hit.
5068 if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
5069 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
5071 // Map the file into memory.
5072 int prot = PROT_READ;
5075 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5077 // The mmap call might fail because of file system issues: the file
5078 // system might not support mmap at all, or it might not support
5079 // mmap with PROT_WRITE.
5080 if (base == MAP_FAILED)
5083 this->map_is_anonymous_ = false;
5084 this->base_ = static_cast<unsigned char*>(base);
5088 // Map the file into memory.
5093 if (this->map_no_anonymous(true))
5096 // The mmap call might fail because of file system issues: the file
5097 // system might not support mmap at all, or it might not support
5098 // mmap with PROT_WRITE. I'm not sure which errno values we will
5099 // see in all cases, so if the mmap fails for any reason and we
5100 // don't care about file contents, try for an anonymous map.
5101 if (this->map_anonymous())
5104 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5105 this->name_, static_cast<unsigned long>(this->file_size_),
5109 // Unmap the file from memory.
5112 Output_file::unmap()
5114 if (this->map_is_anonymous_)
5116 // We've already written out the data, so there is no reason to
5117 // waste time unmapping or freeing the memory.
5121 if (::munmap(this->base_, this->file_size_) < 0)
5122 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5127 // Close the output file.
5130 Output_file::close()
5132 // If the map isn't file-backed, we need to write it now.
5133 if (this->map_is_anonymous_ && !this->is_temporary_)
5135 size_t bytes_to_write = this->file_size_;
5137 while (bytes_to_write > 0)
5139 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5141 if (bytes_written == 0)
5142 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5143 else if (bytes_written < 0)
5144 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5147 bytes_to_write -= bytes_written;
5148 offset += bytes_written;
5154 // We don't close stdout or stderr
5155 if (this->o_ != STDOUT_FILENO
5156 && this->o_ != STDERR_FILENO
5157 && !this->is_temporary_)
5158 if (::close(this->o_) < 0)
5159 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5163 // Instantiate the templates we need. We could use the configure
5164 // script to restrict this to only the ones for implemented targets.
5166 #ifdef HAVE_TARGET_32_LITTLE
5169 Output_section::add_input_section<32, false>(
5171 Sized_relobj_file<32, false>* object,
5173 const char* secname,
5174 const elfcpp::Shdr<32, false>& shdr,
5175 unsigned int reloc_shndx,
5176 bool have_sections_script);
5179 #ifdef HAVE_TARGET_32_BIG
5182 Output_section::add_input_section<32, true>(
5184 Sized_relobj_file<32, true>* object,
5186 const char* secname,
5187 const elfcpp::Shdr<32, true>& shdr,
5188 unsigned int reloc_shndx,
5189 bool have_sections_script);
5192 #ifdef HAVE_TARGET_64_LITTLE
5195 Output_section::add_input_section<64, false>(
5197 Sized_relobj_file<64, false>* object,
5199 const char* secname,
5200 const elfcpp::Shdr<64, false>& shdr,
5201 unsigned int reloc_shndx,
5202 bool have_sections_script);
5205 #ifdef HAVE_TARGET_64_BIG
5208 Output_section::add_input_section<64, true>(
5210 Sized_relobj_file<64, true>* object,
5212 const char* secname,
5213 const elfcpp::Shdr<64, true>& shdr,
5214 unsigned int reloc_shndx,
5215 bool have_sections_script);
5218 #ifdef HAVE_TARGET_32_LITTLE
5220 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5223 #ifdef HAVE_TARGET_32_BIG
5225 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5228 #ifdef HAVE_TARGET_64_LITTLE
5230 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5233 #ifdef HAVE_TARGET_64_BIG
5235 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5238 #ifdef HAVE_TARGET_32_LITTLE
5240 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5243 #ifdef HAVE_TARGET_32_BIG
5245 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5248 #ifdef HAVE_TARGET_64_LITTLE
5250 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5253 #ifdef HAVE_TARGET_64_BIG
5255 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5258 #ifdef HAVE_TARGET_32_LITTLE
5260 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5263 #ifdef HAVE_TARGET_32_BIG
5265 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5268 #ifdef HAVE_TARGET_64_LITTLE
5270 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5273 #ifdef HAVE_TARGET_64_BIG
5275 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5278 #ifdef HAVE_TARGET_32_LITTLE
5280 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5283 #ifdef HAVE_TARGET_32_BIG
5285 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5288 #ifdef HAVE_TARGET_64_LITTLE
5290 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5293 #ifdef HAVE_TARGET_64_BIG
5295 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5298 #ifdef HAVE_TARGET_32_LITTLE
5300 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5303 #ifdef HAVE_TARGET_32_BIG
5305 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5308 #ifdef HAVE_TARGET_64_LITTLE
5310 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5313 #ifdef HAVE_TARGET_64_BIG
5315 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5318 #ifdef HAVE_TARGET_32_LITTLE
5320 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5323 #ifdef HAVE_TARGET_32_BIG
5325 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5328 #ifdef HAVE_TARGET_64_LITTLE
5330 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5333 #ifdef HAVE_TARGET_64_BIG
5335 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5338 #ifdef HAVE_TARGET_32_LITTLE
5340 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5343 #ifdef HAVE_TARGET_32_BIG
5345 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5348 #ifdef HAVE_TARGET_64_LITTLE
5350 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5353 #ifdef HAVE_TARGET_64_BIG
5355 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5358 #ifdef HAVE_TARGET_32_LITTLE
5360 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5363 #ifdef HAVE_TARGET_32_BIG
5365 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5368 #ifdef HAVE_TARGET_64_LITTLE
5370 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5373 #ifdef HAVE_TARGET_64_BIG
5375 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5378 #ifdef HAVE_TARGET_32_LITTLE
5380 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5383 #ifdef HAVE_TARGET_32_BIG
5385 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5388 #ifdef HAVE_TARGET_64_LITTLE
5390 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5393 #ifdef HAVE_TARGET_64_BIG
5395 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5398 #ifdef HAVE_TARGET_32_LITTLE
5400 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5403 #ifdef HAVE_TARGET_32_BIG
5405 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5408 #ifdef HAVE_TARGET_64_LITTLE
5410 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5413 #ifdef HAVE_TARGET_64_BIG
5415 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5418 #ifdef HAVE_TARGET_32_LITTLE
5420 class Output_data_group<32, false>;
5423 #ifdef HAVE_TARGET_32_BIG
5425 class Output_data_group<32, true>;
5428 #ifdef HAVE_TARGET_64_LITTLE
5430 class Output_data_group<64, false>;
5433 #ifdef HAVE_TARGET_64_BIG
5435 class Output_data_group<64, true>;
5438 #ifdef HAVE_TARGET_32_LITTLE
5440 class Output_data_got<32, false>;
5443 #ifdef HAVE_TARGET_32_BIG
5445 class Output_data_got<32, true>;
5448 #ifdef HAVE_TARGET_64_LITTLE
5450 class Output_data_got<64, false>;
5453 #ifdef HAVE_TARGET_64_BIG
5455 class Output_data_got<64, true>;
5458 } // End namespace gold.