* layout.cc (Layout::attach_allocated_section_to_segment): Don't
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"   // for unlink_if_ordinary()
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS  MAP_ANON
46 #endif
47
48 namespace gold
49 {
50
51 // Output_data variables.
52
53 bool Output_data::allocated_sizes_are_fixed;
54
55 // Output_data methods.
56
57 Output_data::~Output_data()
58 {
59 }
60
61 // Return the default alignment for the target size.
62
63 uint64_t
64 Output_data::default_alignment()
65 {
66   return Output_data::default_alignment_for_size(
67       parameters->target().get_size());
68 }
69
70 // Return the default alignment for a size--32 or 64.
71
72 uint64_t
73 Output_data::default_alignment_for_size(int size)
74 {
75   if (size == 32)
76     return 4;
77   else if (size == 64)
78     return 8;
79   else
80     gold_unreachable();
81 }
82
83 // Output_section_header methods.  This currently assumes that the
84 // segment and section lists are complete at construction time.
85
86 Output_section_headers::Output_section_headers(
87     const Layout* layout,
88     const Layout::Segment_list* segment_list,
89     const Layout::Section_list* section_list,
90     const Layout::Section_list* unattached_section_list,
91     const Stringpool* secnamepool,
92     const Output_section* shstrtab_section)
93   : layout_(layout),
94     segment_list_(segment_list),
95     section_list_(section_list),
96     unattached_section_list_(unattached_section_list),
97     secnamepool_(secnamepool),
98     shstrtab_section_(shstrtab_section)
99 {
100   // Count all the sections.  Start with 1 for the null section.
101   off_t count = 1;
102   if (!parameters->options().relocatable())
103     {
104       for (Layout::Segment_list::const_iterator p = segment_list->begin();
105            p != segment_list->end();
106            ++p)
107         if ((*p)->type() == elfcpp::PT_LOAD)
108           count += (*p)->output_section_count();
109     }
110   else
111     {
112       for (Layout::Section_list::const_iterator p = section_list->begin();
113            p != section_list->end();
114            ++p)
115         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
116           ++count;
117     }
118   count += unattached_section_list->size();
119
120   const int size = parameters->target().get_size();
121   int shdr_size;
122   if (size == 32)
123     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
124   else if (size == 64)
125     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
126   else
127     gold_unreachable();
128
129   this->set_data_size(count * shdr_size);
130 }
131
132 // Write out the section headers.
133
134 void
135 Output_section_headers::do_write(Output_file* of)
136 {
137   switch (parameters->size_and_endianness())
138     {
139 #ifdef HAVE_TARGET_32_LITTLE
140     case Parameters::TARGET_32_LITTLE:
141       this->do_sized_write<32, false>(of);
142       break;
143 #endif
144 #ifdef HAVE_TARGET_32_BIG
145     case Parameters::TARGET_32_BIG:
146       this->do_sized_write<32, true>(of);
147       break;
148 #endif
149 #ifdef HAVE_TARGET_64_LITTLE
150     case Parameters::TARGET_64_LITTLE:
151       this->do_sized_write<64, false>(of);
152       break;
153 #endif
154 #ifdef HAVE_TARGET_64_BIG
155     case Parameters::TARGET_64_BIG:
156       this->do_sized_write<64, true>(of);
157       break;
158 #endif
159     default:
160       gold_unreachable();
161     }
162 }
163
164 template<int size, bool big_endian>
165 void
166 Output_section_headers::do_sized_write(Output_file* of)
167 {
168   off_t all_shdrs_size = this->data_size();
169   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
170
171   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
172   unsigned char* v = view;
173
174   {
175     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
176     oshdr.put_sh_name(0);
177     oshdr.put_sh_type(elfcpp::SHT_NULL);
178     oshdr.put_sh_flags(0);
179     oshdr.put_sh_addr(0);
180     oshdr.put_sh_offset(0);
181
182     size_t section_count = (this->data_size()
183                             / elfcpp::Elf_sizes<size>::shdr_size);
184     if (section_count < elfcpp::SHN_LORESERVE)
185       oshdr.put_sh_size(0);
186     else
187       oshdr.put_sh_size(section_count);
188
189     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
190     if (shstrndx < elfcpp::SHN_LORESERVE)
191       oshdr.put_sh_link(0);
192     else
193       oshdr.put_sh_link(shstrndx);
194
195     oshdr.put_sh_info(0);
196     oshdr.put_sh_addralign(0);
197     oshdr.put_sh_entsize(0);
198   }
199
200   v += shdr_size;
201
202   unsigned int shndx = 1;
203   if (!parameters->options().relocatable())
204     {
205       for (Layout::Segment_list::const_iterator p =
206              this->segment_list_->begin();
207            p != this->segment_list_->end();
208            ++p)
209         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
210                                                           this->secnamepool_,
211                                                           v,
212                                                           &shndx);
213     }
214   else
215     {
216       for (Layout::Section_list::const_iterator p =
217              this->section_list_->begin();
218            p != this->section_list_->end();
219            ++p)
220         {
221           // We do unallocated sections below, except that group
222           // sections have to come first.
223           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
224               && (*p)->type() != elfcpp::SHT_GROUP)
225             continue;
226           gold_assert(shndx == (*p)->out_shndx());
227           elfcpp::Shdr_write<size, big_endian> oshdr(v);
228           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
229           v += shdr_size;
230           ++shndx;
231         }
232     }
233
234   for (Layout::Section_list::const_iterator p =
235          this->unattached_section_list_->begin();
236        p != this->unattached_section_list_->end();
237        ++p)
238     {
239       // For a relocatable link, we did unallocated group sections
240       // above, since they have to come first.
241       if ((*p)->type() == elfcpp::SHT_GROUP
242           && parameters->options().relocatable())
243         continue;
244       gold_assert(shndx == (*p)->out_shndx());
245       elfcpp::Shdr_write<size, big_endian> oshdr(v);
246       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
247       v += shdr_size;
248       ++shndx;
249     }
250
251   of->write_output_view(this->offset(), all_shdrs_size, view);
252 }
253
254 // Output_segment_header methods.
255
256 Output_segment_headers::Output_segment_headers(
257     const Layout::Segment_list& segment_list)
258   : segment_list_(segment_list)
259 {
260   const int size = parameters->target().get_size();
261   int phdr_size;
262   if (size == 32)
263     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
264   else if (size == 64)
265     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
266   else
267     gold_unreachable();
268
269   this->set_data_size(segment_list.size() * phdr_size);
270 }
271
272 void
273 Output_segment_headers::do_write(Output_file* of)
274 {
275   switch (parameters->size_and_endianness())
276     {
277 #ifdef HAVE_TARGET_32_LITTLE
278     case Parameters::TARGET_32_LITTLE:
279       this->do_sized_write<32, false>(of);
280       break;
281 #endif
282 #ifdef HAVE_TARGET_32_BIG
283     case Parameters::TARGET_32_BIG:
284       this->do_sized_write<32, true>(of);
285       break;
286 #endif
287 #ifdef HAVE_TARGET_64_LITTLE
288     case Parameters::TARGET_64_LITTLE:
289       this->do_sized_write<64, false>(of);
290       break;
291 #endif
292 #ifdef HAVE_TARGET_64_BIG
293     case Parameters::TARGET_64_BIG:
294       this->do_sized_write<64, true>(of);
295       break;
296 #endif
297     default:
298       gold_unreachable();
299     }
300 }
301
302 template<int size, bool big_endian>
303 void
304 Output_segment_headers::do_sized_write(Output_file* of)
305 {
306   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
307   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
308   gold_assert(all_phdrs_size == this->data_size());
309   unsigned char* view = of->get_output_view(this->offset(),
310                                             all_phdrs_size);
311   unsigned char* v = view;
312   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
313        p != this->segment_list_.end();
314        ++p)
315     {
316       elfcpp::Phdr_write<size, big_endian> ophdr(v);
317       (*p)->write_header(&ophdr);
318       v += phdr_size;
319     }
320
321   gold_assert(v - view == all_phdrs_size);
322
323   of->write_output_view(this->offset(), all_phdrs_size, view);
324 }
325
326 // Output_file_header methods.
327
328 Output_file_header::Output_file_header(const Target* target,
329                                        const Symbol_table* symtab,
330                                        const Output_segment_headers* osh,
331                                        const char* entry)
332   : target_(target),
333     symtab_(symtab),
334     segment_header_(osh),
335     section_header_(NULL),
336     shstrtab_(NULL),
337     entry_(entry)
338 {
339   const int size = parameters->target().get_size();
340   int ehdr_size;
341   if (size == 32)
342     ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
343   else if (size == 64)
344     ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
345   else
346     gold_unreachable();
347
348   this->set_data_size(ehdr_size);
349 }
350
351 // Set the section table information for a file header.
352
353 void
354 Output_file_header::set_section_info(const Output_section_headers* shdrs,
355                                      const Output_section* shstrtab)
356 {
357   this->section_header_ = shdrs;
358   this->shstrtab_ = shstrtab;
359 }
360
361 // Write out the file header.
362
363 void
364 Output_file_header::do_write(Output_file* of)
365 {
366   gold_assert(this->offset() == 0);
367
368   switch (parameters->size_and_endianness())
369     {
370 #ifdef HAVE_TARGET_32_LITTLE
371     case Parameters::TARGET_32_LITTLE:
372       this->do_sized_write<32, false>(of);
373       break;
374 #endif
375 #ifdef HAVE_TARGET_32_BIG
376     case Parameters::TARGET_32_BIG:
377       this->do_sized_write<32, true>(of);
378       break;
379 #endif
380 #ifdef HAVE_TARGET_64_LITTLE
381     case Parameters::TARGET_64_LITTLE:
382       this->do_sized_write<64, false>(of);
383       break;
384 #endif
385 #ifdef HAVE_TARGET_64_BIG
386     case Parameters::TARGET_64_BIG:
387       this->do_sized_write<64, true>(of);
388       break;
389 #endif
390     default:
391       gold_unreachable();
392     }
393 }
394
395 // Write out the file header with appropriate size and endianess.
396
397 template<int size, bool big_endian>
398 void
399 Output_file_header::do_sized_write(Output_file* of)
400 {
401   gold_assert(this->offset() == 0);
402
403   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
404   unsigned char* view = of->get_output_view(0, ehdr_size);
405   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
406
407   unsigned char e_ident[elfcpp::EI_NIDENT];
408   memset(e_ident, 0, elfcpp::EI_NIDENT);
409   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
410   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
411   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
412   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
413   if (size == 32)
414     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
415   else if (size == 64)
416     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
417   else
418     gold_unreachable();
419   e_ident[elfcpp::EI_DATA] = (big_endian
420                               ? elfcpp::ELFDATA2MSB
421                               : elfcpp::ELFDATA2LSB);
422   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
423   // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
424   oehdr.put_e_ident(e_ident);
425
426   elfcpp::ET e_type;
427   if (parameters->options().relocatable())
428     e_type = elfcpp::ET_REL;
429   else if (parameters->options().shared())
430     e_type = elfcpp::ET_DYN;
431   else
432     e_type = elfcpp::ET_EXEC;
433   oehdr.put_e_type(e_type);
434
435   oehdr.put_e_machine(this->target_->machine_code());
436   oehdr.put_e_version(elfcpp::EV_CURRENT);
437
438   oehdr.put_e_entry(this->entry<size>());
439
440   if (this->segment_header_ == NULL)
441     oehdr.put_e_phoff(0);
442   else
443     oehdr.put_e_phoff(this->segment_header_->offset());
444
445   oehdr.put_e_shoff(this->section_header_->offset());
446
447   // FIXME: The target needs to set the flags.
448   oehdr.put_e_flags(0);
449
450   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
451
452   if (this->segment_header_ == NULL)
453     {
454       oehdr.put_e_phentsize(0);
455       oehdr.put_e_phnum(0);
456     }
457   else
458     {
459       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
460       oehdr.put_e_phnum(this->segment_header_->data_size()
461                         / elfcpp::Elf_sizes<size>::phdr_size);
462     }
463
464   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
465   size_t section_count = (this->section_header_->data_size()
466                           / elfcpp::Elf_sizes<size>::shdr_size);
467
468   if (section_count < elfcpp::SHN_LORESERVE)
469     oehdr.put_e_shnum(this->section_header_->data_size()
470                       / elfcpp::Elf_sizes<size>::shdr_size);
471   else
472     oehdr.put_e_shnum(0);
473
474   unsigned int shstrndx = this->shstrtab_->out_shndx();
475   if (shstrndx < elfcpp::SHN_LORESERVE)
476     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
477   else
478     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
479
480   of->write_output_view(0, ehdr_size, view);
481 }
482
483 // Return the value to use for the entry address.  THIS->ENTRY_ is the
484 // symbol specified on the command line, if any.
485
486 template<int size>
487 typename elfcpp::Elf_types<size>::Elf_Addr
488 Output_file_header::entry()
489 {
490   const bool should_issue_warning = (this->entry_ != NULL
491                                      && !parameters->options().relocatable()
492                                      && !parameters->options().shared());
493
494   // FIXME: Need to support target specific entry symbol.
495   const char* entry = this->entry_;
496   if (entry == NULL)
497     entry = "_start";
498
499   Symbol* sym = this->symtab_->lookup(entry);
500
501   typename Sized_symbol<size>::Value_type v;
502   if (sym != NULL)
503     {
504       Sized_symbol<size>* ssym;
505       ssym = this->symtab_->get_sized_symbol<size>(sym);
506       if (!ssym->is_defined() && should_issue_warning)
507         gold_warning("entry symbol '%s' exists but is not defined", entry);
508       v = ssym->value();
509     }
510   else
511     {
512       // We couldn't find the entry symbol.  See if we can parse it as
513       // a number.  This supports, e.g., -e 0x1000.
514       char* endptr;
515       v = strtoull(entry, &endptr, 0);
516       if (*endptr != '\0')
517         {
518           if (should_issue_warning)
519             gold_warning("cannot find entry symbol '%s'", entry);
520           v = 0;
521         }
522     }
523
524   return v;
525 }
526
527 // Output_data_const methods.
528
529 void
530 Output_data_const::do_write(Output_file* of)
531 {
532   of->write(this->offset(), this->data_.data(), this->data_.size());
533 }
534
535 // Output_data_const_buffer methods.
536
537 void
538 Output_data_const_buffer::do_write(Output_file* of)
539 {
540   of->write(this->offset(), this->p_, this->data_size());
541 }
542
543 // Output_section_data methods.
544
545 // Record the output section, and set the entry size and such.
546
547 void
548 Output_section_data::set_output_section(Output_section* os)
549 {
550   gold_assert(this->output_section_ == NULL);
551   this->output_section_ = os;
552   this->do_adjust_output_section(os);
553 }
554
555 // Return the section index of the output section.
556
557 unsigned int
558 Output_section_data::do_out_shndx() const
559 {
560   gold_assert(this->output_section_ != NULL);
561   return this->output_section_->out_shndx();
562 }
563
564 // Set the alignment, which means we may need to update the alignment
565 // of the output section.
566
567 void
568 Output_section_data::set_addralign(uint64_t addralign)
569 {
570   this->addralign_ = addralign;
571   if (this->output_section_ != NULL
572       && this->output_section_->addralign() < addralign)
573     this->output_section_->set_addralign(addralign);
574 }
575
576 // Output_data_strtab methods.
577
578 // Set the final data size.
579
580 void
581 Output_data_strtab::set_final_data_size()
582 {
583   this->strtab_->set_string_offsets();
584   this->set_data_size(this->strtab_->get_strtab_size());
585 }
586
587 // Write out a string table.
588
589 void
590 Output_data_strtab::do_write(Output_file* of)
591 {
592   this->strtab_->write(of, this->offset());
593 }
594
595 // Output_reloc methods.
596
597 // A reloc against a global symbol.
598
599 template<bool dynamic, int size, bool big_endian>
600 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
601     Symbol* gsym,
602     unsigned int type,
603     Output_data* od,
604     Address address,
605     bool is_relative)
606   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
607     is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
608 {
609   // this->type_ is a bitfield; make sure TYPE fits.
610   gold_assert(this->type_ == type);
611   this->u1_.gsym = gsym;
612   this->u2_.od = od;
613   if (dynamic)
614     this->set_needs_dynsym_index();
615 }
616
617 template<bool dynamic, int size, bool big_endian>
618 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
619     Symbol* gsym,
620     unsigned int type,
621     Sized_relobj<size, big_endian>* relobj,
622     unsigned int shndx,
623     Address address,
624     bool is_relative)
625   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
626     is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
627 {
628   gold_assert(shndx != INVALID_CODE);
629   // this->type_ is a bitfield; make sure TYPE fits.
630   gold_assert(this->type_ == type);
631   this->u1_.gsym = gsym;
632   this->u2_.relobj = relobj;
633   if (dynamic)
634     this->set_needs_dynsym_index();
635 }
636
637 // A reloc against a local symbol.
638
639 template<bool dynamic, int size, bool big_endian>
640 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
641     Sized_relobj<size, big_endian>* relobj,
642     unsigned int local_sym_index,
643     unsigned int type,
644     Output_data* od,
645     Address address,
646     bool is_relative,
647     bool is_section_symbol)
648   : address_(address), local_sym_index_(local_sym_index), type_(type),
649     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
650     shndx_(INVALID_CODE)
651 {
652   gold_assert(local_sym_index != GSYM_CODE
653               && local_sym_index != INVALID_CODE);
654   // this->type_ is a bitfield; make sure TYPE fits.
655   gold_assert(this->type_ == type);
656   this->u1_.relobj = relobj;
657   this->u2_.od = od;
658   if (dynamic)
659     this->set_needs_dynsym_index();
660 }
661
662 template<bool dynamic, int size, bool big_endian>
663 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
664     Sized_relobj<size, big_endian>* relobj,
665     unsigned int local_sym_index,
666     unsigned int type,
667     unsigned int shndx,
668     Address address,
669     bool is_relative,
670     bool is_section_symbol)
671   : address_(address), local_sym_index_(local_sym_index), type_(type),
672     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
673     shndx_(shndx)
674 {
675   gold_assert(local_sym_index != GSYM_CODE
676               && local_sym_index != INVALID_CODE);
677   gold_assert(shndx != INVALID_CODE);
678   // this->type_ is a bitfield; make sure TYPE fits.
679   gold_assert(this->type_ == type);
680   this->u1_.relobj = relobj;
681   this->u2_.relobj = relobj;
682   if (dynamic)
683     this->set_needs_dynsym_index();
684 }
685
686 // A reloc against the STT_SECTION symbol of an output section.
687
688 template<bool dynamic, int size, bool big_endian>
689 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
690     Output_section* os,
691     unsigned int type,
692     Output_data* od,
693     Address address)
694   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
695     is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
696 {
697   // this->type_ is a bitfield; make sure TYPE fits.
698   gold_assert(this->type_ == type);
699   this->u1_.os = os;
700   this->u2_.od = od;
701   if (dynamic)
702     this->set_needs_dynsym_index();
703   else
704     os->set_needs_symtab_index();
705 }
706
707 template<bool dynamic, int size, bool big_endian>
708 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
709     Output_section* os,
710     unsigned int type,
711     Sized_relobj<size, big_endian>* relobj,
712     unsigned int shndx,
713     Address address)
714   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
715     is_relative_(false), is_section_symbol_(true), shndx_(shndx)
716 {
717   gold_assert(shndx != INVALID_CODE);
718   // this->type_ is a bitfield; make sure TYPE fits.
719   gold_assert(this->type_ == type);
720   this->u1_.os = os;
721   this->u2_.relobj = relobj;
722   if (dynamic)
723     this->set_needs_dynsym_index();
724   else
725     os->set_needs_symtab_index();
726 }
727
728 // Record that we need a dynamic symbol index for this relocation.
729
730 template<bool dynamic, int size, bool big_endian>
731 void
732 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
733 set_needs_dynsym_index()
734 {
735   if (this->is_relative_)
736     return;
737   switch (this->local_sym_index_)
738     {
739     case INVALID_CODE:
740       gold_unreachable();
741
742     case GSYM_CODE:
743       this->u1_.gsym->set_needs_dynsym_entry();
744       break;
745
746     case SECTION_CODE:
747       this->u1_.os->set_needs_dynsym_index();
748       break;
749
750     case 0:
751       break;
752
753     default:
754       {
755         const unsigned int lsi = this->local_sym_index_;
756         if (!this->is_section_symbol_)
757           this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
758         else
759           this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
760       }
761       break;
762     }
763 }
764
765 // Get the symbol index of a relocation.
766
767 template<bool dynamic, int size, bool big_endian>
768 unsigned int
769 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
770   const
771 {
772   unsigned int index;
773   switch (this->local_sym_index_)
774     {
775     case INVALID_CODE:
776       gold_unreachable();
777
778     case GSYM_CODE:
779       if (this->u1_.gsym == NULL)
780         index = 0;
781       else if (dynamic)
782         index = this->u1_.gsym->dynsym_index();
783       else
784         index = this->u1_.gsym->symtab_index();
785       break;
786
787     case SECTION_CODE:
788       if (dynamic)
789         index = this->u1_.os->dynsym_index();
790       else
791         index = this->u1_.os->symtab_index();
792       break;
793
794     case 0:
795       // Relocations without symbols use a symbol index of 0.
796       index = 0;
797       break;
798
799     default:
800       {
801         const unsigned int lsi = this->local_sym_index_;
802         if (!this->is_section_symbol_)
803           {
804             if (dynamic)
805               index = this->u1_.relobj->dynsym_index(lsi);
806             else
807               index = this->u1_.relobj->symtab_index(lsi);
808           }
809         else
810           {
811             Output_section* os = this->u1_.relobj->output_section(lsi);
812             gold_assert(os != NULL);
813             if (dynamic)
814               index = os->dynsym_index();
815             else
816               index = os->symtab_index();
817           }
818       }
819       break;
820     }
821   gold_assert(index != -1U);
822   return index;
823 }
824
825 // For a local section symbol, get the address of the offset ADDEND
826 // within the input section.
827
828 template<bool dynamic, int size, bool big_endian>
829 typename elfcpp::Elf_types<size>::Elf_Addr
830 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
831   local_section_offset(Addend addend) const
832 {
833   gold_assert(this->local_sym_index_ != GSYM_CODE
834               && this->local_sym_index_ != SECTION_CODE
835               && this->local_sym_index_ != INVALID_CODE
836               && this->is_section_symbol_);
837   const unsigned int lsi = this->local_sym_index_;
838   Output_section* os = this->u1_.relobj->output_section(lsi);
839   gold_assert(os != NULL);
840   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
841   if (offset != -1U)
842     return offset + addend;
843   // This is a merge section.
844   offset = os->output_address(this->u1_.relobj, lsi, addend);
845   gold_assert(offset != -1U);
846   return offset;
847 }
848
849 // Get the output address of a relocation.
850
851 template<bool dynamic, int size, bool big_endian>
852 typename elfcpp::Elf_types<size>::Elf_Addr
853 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
854 {
855   Address address = this->address_;
856   if (this->shndx_ != INVALID_CODE)
857     {
858       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
859       gold_assert(os != NULL);
860       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
861       if (off != -1U)
862         address += os->address() + off;
863       else
864         {
865           address = os->output_address(this->u2_.relobj, this->shndx_,
866                                        address);
867           gold_assert(address != -1U);
868         }
869     }
870   else if (this->u2_.od != NULL)
871     address += this->u2_.od->address();
872   return address;
873 }
874
875 // Write out the offset and info fields of a Rel or Rela relocation
876 // entry.
877
878 template<bool dynamic, int size, bool big_endian>
879 template<typename Write_rel>
880 void
881 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
882     Write_rel* wr) const
883 {
884   wr->put_r_offset(this->get_address());
885   unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
886   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
887 }
888
889 // Write out a Rel relocation.
890
891 template<bool dynamic, int size, bool big_endian>
892 void
893 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
894     unsigned char* pov) const
895 {
896   elfcpp::Rel_write<size, big_endian> orel(pov);
897   this->write_rel(&orel);
898 }
899
900 // Get the value of the symbol referred to by a Rel relocation.
901
902 template<bool dynamic, int size, bool big_endian>
903 typename elfcpp::Elf_types<size>::Elf_Addr
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
905     Addend addend) const
906 {
907   if (this->local_sym_index_ == GSYM_CODE)
908     {
909       const Sized_symbol<size>* sym;
910       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
911       return sym->value() + addend;
912     }
913   gold_assert(this->local_sym_index_ != SECTION_CODE
914               && this->local_sym_index_ != INVALID_CODE
915               && !this->is_section_symbol_);
916   const unsigned int lsi = this->local_sym_index_;
917   const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
918   return symval->value(this->u1_.relobj, addend);
919 }
920
921 // Reloc comparison.  This function sorts the dynamic relocs for the
922 // benefit of the dynamic linker.  First we sort all relative relocs
923 // to the front.  Among relative relocs, we sort by output address.
924 // Among non-relative relocs, we sort by symbol index, then by output
925 // address.
926
927 template<bool dynamic, int size, bool big_endian>
928 int
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
931     const
932 {
933   if (this->is_relative_)
934     {
935       if (!r2.is_relative_)
936         return -1;
937       // Otherwise sort by reloc address below.
938     }
939   else if (r2.is_relative_)
940     return 1;
941   else
942     {
943       unsigned int sym1 = this->get_symbol_index();
944       unsigned int sym2 = r2.get_symbol_index();
945       if (sym1 < sym2)
946         return -1;
947       else if (sym1 > sym2)
948         return 1;
949       // Otherwise sort by reloc address.
950     }
951
952   section_offset_type addr1 = this->get_address();
953   section_offset_type addr2 = r2.get_address();
954   if (addr1 < addr2)
955     return -1;
956   else if (addr1 > addr2)
957     return 1;
958
959   // Final tie breaker, in order to generate the same output on any
960   // host: reloc type.
961   unsigned int type1 = this->type_;
962   unsigned int type2 = r2.type_;
963   if (type1 < type2)
964     return -1;
965   else if (type1 > type2)
966     return 1;
967
968   // These relocs appear to be exactly the same.
969   return 0;
970 }
971
972 // Write out a Rela relocation.
973
974 template<bool dynamic, int size, bool big_endian>
975 void
976 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
977     unsigned char* pov) const
978 {
979   elfcpp::Rela_write<size, big_endian> orel(pov);
980   this->rel_.write_rel(&orel);
981   Addend addend = this->addend_;
982   if (this->rel_.is_relative())
983     addend = this->rel_.symbol_value(addend);
984   else if (this->rel_.is_local_section_symbol())
985     addend = this->rel_.local_section_offset(addend);
986   orel.put_r_addend(addend);
987 }
988
989 // Output_data_reloc_base methods.
990
991 // Adjust the output section.
992
993 template<int sh_type, bool dynamic, int size, bool big_endian>
994 void
995 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
996     ::do_adjust_output_section(Output_section* os)
997 {
998   if (sh_type == elfcpp::SHT_REL)
999     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1000   else if (sh_type == elfcpp::SHT_RELA)
1001     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1002   else
1003     gold_unreachable();
1004   if (dynamic)
1005     os->set_should_link_to_dynsym();
1006   else
1007     os->set_should_link_to_symtab();
1008 }
1009
1010 // Write out relocation data.
1011
1012 template<int sh_type, bool dynamic, int size, bool big_endian>
1013 void
1014 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1015     Output_file* of)
1016 {
1017   const off_t off = this->offset();
1018   const off_t oview_size = this->data_size();
1019   unsigned char* const oview = of->get_output_view(off, oview_size);
1020
1021   if (this->sort_relocs_)
1022     {
1023       gold_assert(dynamic);
1024       std::sort(this->relocs_.begin(), this->relocs_.end(),
1025                 Sort_relocs_comparison());
1026     }
1027
1028   unsigned char* pov = oview;
1029   for (typename Relocs::const_iterator p = this->relocs_.begin();
1030        p != this->relocs_.end();
1031        ++p)
1032     {
1033       p->write(pov);
1034       pov += reloc_size;
1035     }
1036
1037   gold_assert(pov - oview == oview_size);
1038
1039   of->write_output_view(off, oview_size, oview);
1040
1041   // We no longer need the relocation entries.
1042   this->relocs_.clear();
1043 }
1044
1045 // Class Output_relocatable_relocs.
1046
1047 template<int sh_type, int size, bool big_endian>
1048 void
1049 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1050 {
1051   this->set_data_size(this->rr_->output_reloc_count()
1052                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1053 }
1054
1055 // class Output_data_group.
1056
1057 template<int size, bool big_endian>
1058 Output_data_group<size, big_endian>::Output_data_group(
1059     Sized_relobj<size, big_endian>* relobj,
1060     section_size_type entry_count,
1061     elfcpp::Elf_Word flags,
1062     std::vector<unsigned int>* input_shndxes)
1063   : Output_section_data(entry_count * 4, 4),
1064     relobj_(relobj),
1065     flags_(flags)
1066 {
1067   this->input_shndxes_.swap(*input_shndxes);
1068 }
1069
1070 // Write out the section group, which means translating the section
1071 // indexes to apply to the output file.
1072
1073 template<int size, bool big_endian>
1074 void
1075 Output_data_group<size, big_endian>::do_write(Output_file* of)
1076 {
1077   const off_t off = this->offset();
1078   const section_size_type oview_size =
1079     convert_to_section_size_type(this->data_size());
1080   unsigned char* const oview = of->get_output_view(off, oview_size);
1081
1082   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1083   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1084   ++contents;
1085
1086   for (std::vector<unsigned int>::const_iterator p =
1087          this->input_shndxes_.begin();
1088        p != this->input_shndxes_.end();
1089        ++p, ++contents)
1090     {
1091       Output_section* os = this->relobj_->output_section(*p);
1092
1093       unsigned int output_shndx;
1094       if (os != NULL)
1095         output_shndx = os->out_shndx();
1096       else
1097         {
1098           this->relobj_->error(_("section group retained but "
1099                                  "group element discarded"));
1100           output_shndx = 0;
1101         }
1102
1103       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1104     }
1105
1106   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1107   gold_assert(wrote == oview_size);
1108
1109   of->write_output_view(off, oview_size, oview);
1110
1111   // We no longer need this information.
1112   this->input_shndxes_.clear();
1113 }
1114
1115 // Output_data_got::Got_entry methods.
1116
1117 // Write out the entry.
1118
1119 template<int size, bool big_endian>
1120 void
1121 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1122 {
1123   Valtype val = 0;
1124
1125   switch (this->local_sym_index_)
1126     {
1127     case GSYM_CODE:
1128       {
1129         // If the symbol is resolved locally, we need to write out the
1130         // link-time value, which will be relocated dynamically by a
1131         // RELATIVE relocation.
1132         Symbol* gsym = this->u_.gsym;
1133         Sized_symbol<size>* sgsym;
1134         // This cast is a bit ugly.  We don't want to put a
1135         // virtual method in Symbol, because we want Symbol to be
1136         // as small as possible.
1137         sgsym = static_cast<Sized_symbol<size>*>(gsym);
1138         val = sgsym->value();
1139       }
1140       break;
1141
1142     case CONSTANT_CODE:
1143       val = this->u_.constant;
1144       break;
1145
1146     default:
1147       {
1148         const unsigned int lsi = this->local_sym_index_;
1149         const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1150         val = symval->value(this->u_.object, 0);
1151       }
1152       break;
1153     }
1154
1155   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1156 }
1157
1158 // Output_data_got methods.
1159
1160 // Add an entry for a global symbol to the GOT.  This returns true if
1161 // this is a new GOT entry, false if the symbol already had a GOT
1162 // entry.
1163
1164 template<int size, bool big_endian>
1165 bool
1166 Output_data_got<size, big_endian>::add_global(
1167     Symbol* gsym,
1168     unsigned int got_type)
1169 {
1170   if (gsym->has_got_offset(got_type))
1171     return false;
1172
1173   this->entries_.push_back(Got_entry(gsym));
1174   this->set_got_size();
1175   gsym->set_got_offset(got_type, this->last_got_offset());
1176   return true;
1177 }
1178
1179 // Add an entry for a global symbol to the GOT, and add a dynamic
1180 // relocation of type R_TYPE for the GOT entry.
1181 template<int size, bool big_endian>
1182 void
1183 Output_data_got<size, big_endian>::add_global_with_rel(
1184     Symbol* gsym,
1185     unsigned int got_type,
1186     Rel_dyn* rel_dyn,
1187     unsigned int r_type)
1188 {
1189   if (gsym->has_got_offset(got_type))
1190     return;
1191
1192   this->entries_.push_back(Got_entry());
1193   this->set_got_size();
1194   unsigned int got_offset = this->last_got_offset();
1195   gsym->set_got_offset(got_type, got_offset);
1196   rel_dyn->add_global(gsym, r_type, this, got_offset);
1197 }
1198
1199 template<int size, bool big_endian>
1200 void
1201 Output_data_got<size, big_endian>::add_global_with_rela(
1202     Symbol* gsym,
1203     unsigned int got_type,
1204     Rela_dyn* rela_dyn,
1205     unsigned int r_type)
1206 {
1207   if (gsym->has_got_offset(got_type))
1208     return;
1209
1210   this->entries_.push_back(Got_entry());
1211   this->set_got_size();
1212   unsigned int got_offset = this->last_got_offset();
1213   gsym->set_got_offset(got_type, got_offset);
1214   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1215 }
1216
1217 // Add a pair of entries for a global symbol to the GOT, and add
1218 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1219 // If R_TYPE_2 == 0, add the second entry with no relocation.
1220 template<int size, bool big_endian>
1221 void
1222 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1223     Symbol* gsym,
1224     unsigned int got_type,
1225     Rel_dyn* rel_dyn,
1226     unsigned int r_type_1,
1227     unsigned int r_type_2)
1228 {
1229   if (gsym->has_got_offset(got_type))
1230     return;
1231
1232   this->entries_.push_back(Got_entry());
1233   unsigned int got_offset = this->last_got_offset();
1234   gsym->set_got_offset(got_type, got_offset);
1235   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1236
1237   this->entries_.push_back(Got_entry());
1238   if (r_type_2 != 0)
1239     {
1240       got_offset = this->last_got_offset();
1241       rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1242     }
1243
1244   this->set_got_size();
1245 }
1246
1247 template<int size, bool big_endian>
1248 void
1249 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1250     Symbol* gsym,
1251     unsigned int got_type,
1252     Rela_dyn* rela_dyn,
1253     unsigned int r_type_1,
1254     unsigned int r_type_2)
1255 {
1256   if (gsym->has_got_offset(got_type))
1257     return;
1258
1259   this->entries_.push_back(Got_entry());
1260   unsigned int got_offset = this->last_got_offset();
1261   gsym->set_got_offset(got_type, got_offset);
1262   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1263
1264   this->entries_.push_back(Got_entry());
1265   if (r_type_2 != 0)
1266     {
1267       got_offset = this->last_got_offset();
1268       rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1269     }
1270
1271   this->set_got_size();
1272 }
1273
1274 // Add an entry for a local symbol to the GOT.  This returns true if
1275 // this is a new GOT entry, false if the symbol already has a GOT
1276 // entry.
1277
1278 template<int size, bool big_endian>
1279 bool
1280 Output_data_got<size, big_endian>::add_local(
1281     Sized_relobj<size, big_endian>* object,
1282     unsigned int symndx,
1283     unsigned int got_type)
1284 {
1285   if (object->local_has_got_offset(symndx, got_type))
1286     return false;
1287
1288   this->entries_.push_back(Got_entry(object, symndx));
1289   this->set_got_size();
1290   object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1291   return true;
1292 }
1293
1294 // Add an entry for a local symbol to the GOT, and add a dynamic
1295 // relocation of type R_TYPE for the GOT entry.
1296 template<int size, bool big_endian>
1297 void
1298 Output_data_got<size, big_endian>::add_local_with_rel(
1299     Sized_relobj<size, big_endian>* object,
1300     unsigned int symndx,
1301     unsigned int got_type,
1302     Rel_dyn* rel_dyn,
1303     unsigned int r_type)
1304 {
1305   if (object->local_has_got_offset(symndx, got_type))
1306     return;
1307
1308   this->entries_.push_back(Got_entry());
1309   this->set_got_size();
1310   unsigned int got_offset = this->last_got_offset();
1311   object->set_local_got_offset(symndx, got_type, got_offset);
1312   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1313 }
1314
1315 template<int size, bool big_endian>
1316 void
1317 Output_data_got<size, big_endian>::add_local_with_rela(
1318     Sized_relobj<size, big_endian>* object,
1319     unsigned int symndx,
1320     unsigned int got_type,
1321     Rela_dyn* rela_dyn,
1322     unsigned int r_type)
1323 {
1324   if (object->local_has_got_offset(symndx, got_type))
1325     return;
1326
1327   this->entries_.push_back(Got_entry());
1328   this->set_got_size();
1329   unsigned int got_offset = this->last_got_offset();
1330   object->set_local_got_offset(symndx, got_type, got_offset);
1331   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1332 }
1333
1334 // Add a pair of entries for a local symbol to the GOT, and add
1335 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1336 // If R_TYPE_2 == 0, add the second entry with no relocation.
1337 template<int size, bool big_endian>
1338 void
1339 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1340     Sized_relobj<size, big_endian>* object,
1341     unsigned int symndx,
1342     unsigned int shndx,
1343     unsigned int got_type,
1344     Rel_dyn* rel_dyn,
1345     unsigned int r_type_1,
1346     unsigned int r_type_2)
1347 {
1348   if (object->local_has_got_offset(symndx, got_type))
1349     return;
1350
1351   this->entries_.push_back(Got_entry());
1352   unsigned int got_offset = this->last_got_offset();
1353   object->set_local_got_offset(symndx, got_type, got_offset);
1354   Output_section* os = object->output_section(shndx);
1355   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1356
1357   this->entries_.push_back(Got_entry(object, symndx));
1358   if (r_type_2 != 0)
1359     {
1360       got_offset = this->last_got_offset();
1361       rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1362     }
1363
1364   this->set_got_size();
1365 }
1366
1367 template<int size, bool big_endian>
1368 void
1369 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1370     Sized_relobj<size, big_endian>* object,
1371     unsigned int symndx,
1372     unsigned int shndx,
1373     unsigned int got_type,
1374     Rela_dyn* rela_dyn,
1375     unsigned int r_type_1,
1376     unsigned int r_type_2)
1377 {
1378   if (object->local_has_got_offset(symndx, got_type))
1379     return;
1380
1381   this->entries_.push_back(Got_entry());
1382   unsigned int got_offset = this->last_got_offset();
1383   object->set_local_got_offset(symndx, got_type, got_offset);
1384   Output_section* os = object->output_section(shndx);
1385   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1386
1387   this->entries_.push_back(Got_entry(object, symndx));
1388   if (r_type_2 != 0)
1389     {
1390       got_offset = this->last_got_offset();
1391       rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1392     }
1393
1394   this->set_got_size();
1395 }
1396
1397 // Write out the GOT.
1398
1399 template<int size, bool big_endian>
1400 void
1401 Output_data_got<size, big_endian>::do_write(Output_file* of)
1402 {
1403   const int add = size / 8;
1404
1405   const off_t off = this->offset();
1406   const off_t oview_size = this->data_size();
1407   unsigned char* const oview = of->get_output_view(off, oview_size);
1408
1409   unsigned char* pov = oview;
1410   for (typename Got_entries::const_iterator p = this->entries_.begin();
1411        p != this->entries_.end();
1412        ++p)
1413     {
1414       p->write(pov);
1415       pov += add;
1416     }
1417
1418   gold_assert(pov - oview == oview_size);
1419
1420   of->write_output_view(off, oview_size, oview);
1421
1422   // We no longer need the GOT entries.
1423   this->entries_.clear();
1424 }
1425
1426 // Output_data_dynamic::Dynamic_entry methods.
1427
1428 // Write out the entry.
1429
1430 template<int size, bool big_endian>
1431 void
1432 Output_data_dynamic::Dynamic_entry::write(
1433     unsigned char* pov,
1434     const Stringpool* pool) const
1435 {
1436   typename elfcpp::Elf_types<size>::Elf_WXword val;
1437   switch (this->offset_)
1438     {
1439     case DYNAMIC_NUMBER:
1440       val = this->u_.val;
1441       break;
1442
1443     case DYNAMIC_SECTION_SIZE:
1444       val = this->u_.od->data_size();
1445       break;
1446
1447     case DYNAMIC_SYMBOL:
1448       {
1449         const Sized_symbol<size>* s =
1450           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1451         val = s->value();
1452       }
1453       break;
1454
1455     case DYNAMIC_STRING:
1456       val = pool->get_offset(this->u_.str);
1457       break;
1458
1459     default:
1460       val = this->u_.od->address() + this->offset_;
1461       break;
1462     }
1463
1464   elfcpp::Dyn_write<size, big_endian> dw(pov);
1465   dw.put_d_tag(this->tag_);
1466   dw.put_d_val(val);
1467 }
1468
1469 // Output_data_dynamic methods.
1470
1471 // Adjust the output section to set the entry size.
1472
1473 void
1474 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1475 {
1476   if (parameters->target().get_size() == 32)
1477     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1478   else if (parameters->target().get_size() == 64)
1479     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1480   else
1481     gold_unreachable();
1482 }
1483
1484 // Set the final data size.
1485
1486 void
1487 Output_data_dynamic::set_final_data_size()
1488 {
1489   // Add the terminating entry.
1490   this->add_constant(elfcpp::DT_NULL, 0);
1491
1492   int dyn_size;
1493   if (parameters->target().get_size() == 32)
1494     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1495   else if (parameters->target().get_size() == 64)
1496     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1497   else
1498     gold_unreachable();
1499   this->set_data_size(this->entries_.size() * dyn_size);
1500 }
1501
1502 // Write out the dynamic entries.
1503
1504 void
1505 Output_data_dynamic::do_write(Output_file* of)
1506 {
1507   switch (parameters->size_and_endianness())
1508     {
1509 #ifdef HAVE_TARGET_32_LITTLE
1510     case Parameters::TARGET_32_LITTLE:
1511       this->sized_write<32, false>(of);
1512       break;
1513 #endif
1514 #ifdef HAVE_TARGET_32_BIG
1515     case Parameters::TARGET_32_BIG:
1516       this->sized_write<32, true>(of);
1517       break;
1518 #endif
1519 #ifdef HAVE_TARGET_64_LITTLE
1520     case Parameters::TARGET_64_LITTLE:
1521       this->sized_write<64, false>(of);
1522       break;
1523 #endif
1524 #ifdef HAVE_TARGET_64_BIG
1525     case Parameters::TARGET_64_BIG:
1526       this->sized_write<64, true>(of);
1527       break;
1528 #endif
1529     default:
1530       gold_unreachable();
1531     }
1532 }
1533
1534 template<int size, bool big_endian>
1535 void
1536 Output_data_dynamic::sized_write(Output_file* of)
1537 {
1538   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1539
1540   const off_t offset = this->offset();
1541   const off_t oview_size = this->data_size();
1542   unsigned char* const oview = of->get_output_view(offset, oview_size);
1543
1544   unsigned char* pov = oview;
1545   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1546        p != this->entries_.end();
1547        ++p)
1548     {
1549       p->write<size, big_endian>(pov, this->pool_);
1550       pov += dyn_size;
1551     }
1552
1553   gold_assert(pov - oview == oview_size);
1554
1555   of->write_output_view(offset, oview_size, oview);
1556
1557   // We no longer need the dynamic entries.
1558   this->entries_.clear();
1559 }
1560
1561 // Class Output_symtab_xindex.
1562
1563 void
1564 Output_symtab_xindex::do_write(Output_file* of)
1565 {
1566   const off_t offset = this->offset();
1567   const off_t oview_size = this->data_size();
1568   unsigned char* const oview = of->get_output_view(offset, oview_size);
1569
1570   memset(oview, 0, oview_size);
1571
1572   if (parameters->target().is_big_endian())
1573     this->endian_do_write<true>(oview);
1574   else
1575     this->endian_do_write<false>(oview);
1576
1577   of->write_output_view(offset, oview_size, oview);
1578
1579   // We no longer need the data.
1580   this->entries_.clear();
1581 }
1582
1583 template<bool big_endian>
1584 void
1585 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1586 {
1587   for (Xindex_entries::const_iterator p = this->entries_.begin();
1588        p != this->entries_.end();
1589        ++p)
1590     elfcpp::Swap<32, big_endian>::writeval(oview + p->first * 4, p->second);
1591 }
1592
1593 // Output_section::Input_section methods.
1594
1595 // Return the data size.  For an input section we store the size here.
1596 // For an Output_section_data, we have to ask it for the size.
1597
1598 off_t
1599 Output_section::Input_section::data_size() const
1600 {
1601   if (this->is_input_section())
1602     return this->u1_.data_size;
1603   else
1604     return this->u2_.posd->data_size();
1605 }
1606
1607 // Set the address and file offset.
1608
1609 void
1610 Output_section::Input_section::set_address_and_file_offset(
1611     uint64_t address,
1612     off_t file_offset,
1613     off_t section_file_offset)
1614 {
1615   if (this->is_input_section())
1616     this->u2_.object->set_section_offset(this->shndx_,
1617                                          file_offset - section_file_offset);
1618   else
1619     this->u2_.posd->set_address_and_file_offset(address, file_offset);
1620 }
1621
1622 // Reset the address and file offset.
1623
1624 void
1625 Output_section::Input_section::reset_address_and_file_offset()
1626 {
1627   if (!this->is_input_section())
1628     this->u2_.posd->reset_address_and_file_offset();
1629 }
1630
1631 // Finalize the data size.
1632
1633 void
1634 Output_section::Input_section::finalize_data_size()
1635 {
1636   if (!this->is_input_section())
1637     this->u2_.posd->finalize_data_size();
1638 }
1639
1640 // Try to turn an input offset into an output offset.  We want to
1641 // return the output offset relative to the start of this
1642 // Input_section in the output section.
1643
1644 inline bool
1645 Output_section::Input_section::output_offset(
1646     const Relobj* object,
1647     unsigned int shndx,
1648     section_offset_type offset,
1649     section_offset_type *poutput) const
1650 {
1651   if (!this->is_input_section())
1652     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1653   else
1654     {
1655       if (this->shndx_ != shndx || this->u2_.object != object)
1656         return false;
1657       *poutput = offset;
1658       return true;
1659     }
1660 }
1661
1662 // Return whether this is the merge section for the input section
1663 // SHNDX in OBJECT.
1664
1665 inline bool
1666 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1667                                                     unsigned int shndx) const
1668 {
1669   if (this->is_input_section())
1670     return false;
1671   return this->u2_.posd->is_merge_section_for(object, shndx);
1672 }
1673
1674 // Write out the data.  We don't have to do anything for an input
1675 // section--they are handled via Object::relocate--but this is where
1676 // we write out the data for an Output_section_data.
1677
1678 void
1679 Output_section::Input_section::write(Output_file* of)
1680 {
1681   if (!this->is_input_section())
1682     this->u2_.posd->write(of);
1683 }
1684
1685 // Write the data to a buffer.  As for write(), we don't have to do
1686 // anything for an input section.
1687
1688 void
1689 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1690 {
1691   if (!this->is_input_section())
1692     this->u2_.posd->write_to_buffer(buffer);
1693 }
1694
1695 // Print to a map file.
1696
1697 void
1698 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1699 {
1700   switch (this->shndx_)
1701     {
1702     case OUTPUT_SECTION_CODE:
1703     case MERGE_DATA_SECTION_CODE:
1704     case MERGE_STRING_SECTION_CODE:
1705       this->u2_.posd->print_to_mapfile(mapfile);
1706       break;
1707
1708     default:
1709       mapfile->print_input_section(this->u2_.object, this->shndx_);
1710       break;
1711     }
1712 }
1713
1714 // Output_section methods.
1715
1716 // Construct an Output_section.  NAME will point into a Stringpool.
1717
1718 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1719                                elfcpp::Elf_Xword flags)
1720   : name_(name),
1721     addralign_(0),
1722     entsize_(0),
1723     load_address_(0),
1724     link_section_(NULL),
1725     link_(0),
1726     info_section_(NULL),
1727     info_symndx_(NULL),
1728     info_(0),
1729     type_(type),
1730     flags_(flags),
1731     out_shndx_(-1U),
1732     symtab_index_(0),
1733     dynsym_index_(0),
1734     input_sections_(),
1735     first_input_offset_(0),
1736     fills_(),
1737     postprocessing_buffer_(NULL),
1738     needs_symtab_index_(false),
1739     needs_dynsym_index_(false),
1740     should_link_to_symtab_(false),
1741     should_link_to_dynsym_(false),
1742     after_input_sections_(false),
1743     requires_postprocessing_(false),
1744     found_in_sections_clause_(false),
1745     has_load_address_(false),
1746     info_uses_section_index_(false),
1747     may_sort_attached_input_sections_(false),
1748     must_sort_attached_input_sections_(false),
1749     attached_input_sections_are_sorted_(false),
1750     is_relro_(false),
1751     is_relro_local_(false),
1752     tls_offset_(0)
1753 {
1754   // An unallocated section has no address.  Forcing this means that
1755   // we don't need special treatment for symbols defined in debug
1756   // sections.
1757   if ((flags & elfcpp::SHF_ALLOC) == 0)
1758     this->set_address(0);
1759 }
1760
1761 Output_section::~Output_section()
1762 {
1763 }
1764
1765 // Set the entry size.
1766
1767 void
1768 Output_section::set_entsize(uint64_t v)
1769 {
1770   if (this->entsize_ == 0)
1771     this->entsize_ = v;
1772   else
1773     gold_assert(this->entsize_ == v);
1774 }
1775
1776 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1777 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
1778 // relocation section which applies to this section, or 0 if none, or
1779 // -1U if more than one.  Return the offset of the input section
1780 // within the output section.  Return -1 if the input section will
1781 // receive special handling.  In the normal case we don't always keep
1782 // track of input sections for an Output_section.  Instead, each
1783 // Object keeps track of the Output_section for each of its input
1784 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1785 // track of input sections here; this is used when SECTIONS appears in
1786 // a linker script.
1787
1788 template<int size, bool big_endian>
1789 off_t
1790 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1791                                   unsigned int shndx,
1792                                   const char* secname,
1793                                   const elfcpp::Shdr<size, big_endian>& shdr,
1794                                   unsigned int reloc_shndx,
1795                                   bool have_sections_script)
1796 {
1797   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1798   if ((addralign & (addralign - 1)) != 0)
1799     {
1800       object->error(_("invalid alignment %lu for section \"%s\""),
1801                     static_cast<unsigned long>(addralign), secname);
1802       addralign = 1;
1803     }
1804
1805   if (addralign > this->addralign_)
1806     this->addralign_ = addralign;
1807
1808   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1809   this->update_flags_for_input_section(sh_flags);
1810
1811   uint64_t entsize = shdr.get_sh_entsize();
1812
1813   // .debug_str is a mergeable string section, but is not always so
1814   // marked by compilers.  Mark manually here so we can optimize.
1815   if (strcmp(secname, ".debug_str") == 0)
1816     {
1817       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1818       entsize = 1;
1819     }
1820
1821   // If this is a SHF_MERGE section, we pass all the input sections to
1822   // a Output_data_merge.  We don't try to handle relocations for such
1823   // a section.  We don't try to handle empty merge sections--they
1824   // mess up the mappings, and are useless anyhow.
1825   if ((sh_flags & elfcpp::SHF_MERGE) != 0
1826       && reloc_shndx == 0
1827       && shdr.get_sh_size() > 0)
1828     {
1829       if (this->add_merge_input_section(object, shndx, sh_flags,
1830                                         entsize, addralign))
1831         {
1832           // Tell the relocation routines that they need to call the
1833           // output_offset method to determine the final address.
1834           return -1;
1835         }
1836     }
1837
1838   off_t offset_in_section = this->current_data_size_for_child();
1839   off_t aligned_offset_in_section = align_address(offset_in_section,
1840                                                   addralign);
1841
1842   if (aligned_offset_in_section > offset_in_section
1843       && !have_sections_script
1844       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1845       && object->target()->has_code_fill())
1846     {
1847       // We need to add some fill data.  Using fill_list_ when
1848       // possible is an optimization, since we will often have fill
1849       // sections without input sections.
1850       off_t fill_len = aligned_offset_in_section - offset_in_section;
1851       if (this->input_sections_.empty())
1852         this->fills_.push_back(Fill(offset_in_section, fill_len));
1853       else
1854         {
1855           // FIXME: When relaxing, the size needs to adjust to
1856           // maintain a constant alignment.
1857           std::string fill_data(object->target()->code_fill(fill_len));
1858           Output_data_const* odc = new Output_data_const(fill_data, 1);
1859           this->input_sections_.push_back(Input_section(odc));
1860         }
1861     }
1862
1863   this->set_current_data_size_for_child(aligned_offset_in_section
1864                                         + shdr.get_sh_size());
1865
1866   // We need to keep track of this section if we are already keeping
1867   // track of sections, or if we are relaxing.  Also, if this is a
1868   // section which requires sorting, or which may require sorting in
1869   // the future, we keep track of the sections.  FIXME: Add test for
1870   // relaxing.
1871   if (have_sections_script
1872       || !this->input_sections_.empty()
1873       || this->may_sort_attached_input_sections()
1874       || this->must_sort_attached_input_sections()
1875       || parameters->options().user_set_Map())
1876     this->input_sections_.push_back(Input_section(object, shndx,
1877                                                   shdr.get_sh_size(),
1878                                                   addralign));
1879
1880   return aligned_offset_in_section;
1881 }
1882
1883 // Add arbitrary data to an output section.
1884
1885 void
1886 Output_section::add_output_section_data(Output_section_data* posd)
1887 {
1888   Input_section inp(posd);
1889   this->add_output_section_data(&inp);
1890
1891   if (posd->is_data_size_valid())
1892     {
1893       off_t offset_in_section = this->current_data_size_for_child();
1894       off_t aligned_offset_in_section = align_address(offset_in_section,
1895                                                       posd->addralign());
1896       this->set_current_data_size_for_child(aligned_offset_in_section
1897                                             + posd->data_size());
1898     }
1899 }
1900
1901 // Add arbitrary data to an output section by Input_section.
1902
1903 void
1904 Output_section::add_output_section_data(Input_section* inp)
1905 {
1906   if (this->input_sections_.empty())
1907     this->first_input_offset_ = this->current_data_size_for_child();
1908
1909   this->input_sections_.push_back(*inp);
1910
1911   uint64_t addralign = inp->addralign();
1912   if (addralign > this->addralign_)
1913     this->addralign_ = addralign;
1914
1915   inp->set_output_section(this);
1916 }
1917
1918 // Add a merge section to an output section.
1919
1920 void
1921 Output_section::add_output_merge_section(Output_section_data* posd,
1922                                          bool is_string, uint64_t entsize)
1923 {
1924   Input_section inp(posd, is_string, entsize);
1925   this->add_output_section_data(&inp);
1926 }
1927
1928 // Add an input section to a SHF_MERGE section.
1929
1930 bool
1931 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1932                                         uint64_t flags, uint64_t entsize,
1933                                         uint64_t addralign)
1934 {
1935   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1936
1937   // We only merge strings if the alignment is not more than the
1938   // character size.  This could be handled, but it's unusual.
1939   if (is_string && addralign > entsize)
1940     return false;
1941
1942   Input_section_list::iterator p;
1943   for (p = this->input_sections_.begin();
1944        p != this->input_sections_.end();
1945        ++p)
1946     if (p->is_merge_section(is_string, entsize, addralign))
1947       {
1948         p->add_input_section(object, shndx);
1949         return true;
1950       }
1951
1952   // We handle the actual constant merging in Output_merge_data or
1953   // Output_merge_string_data.
1954   Output_section_data* posd;
1955   if (!is_string)
1956     posd = new Output_merge_data(entsize, addralign);
1957   else
1958     {
1959       switch (entsize)
1960         {
1961         case 1:
1962           posd = new Output_merge_string<char>(addralign);
1963           break;
1964         case 2:
1965           posd = new Output_merge_string<uint16_t>(addralign);
1966           break;
1967         case 4:
1968           posd = new Output_merge_string<uint32_t>(addralign);
1969           break;
1970         default:
1971           return false;
1972         }
1973     }
1974
1975   this->add_output_merge_section(posd, is_string, entsize);
1976   posd->add_input_section(object, shndx);
1977
1978   return true;
1979 }
1980
1981 // Given an address OFFSET relative to the start of input section
1982 // SHNDX in OBJECT, return whether this address is being included in
1983 // the final link.  This should only be called if SHNDX in OBJECT has
1984 // a special mapping.
1985
1986 bool
1987 Output_section::is_input_address_mapped(const Relobj* object,
1988                                         unsigned int shndx,
1989                                         off_t offset) const
1990 {
1991   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1992        p != this->input_sections_.end();
1993        ++p)
1994     {
1995       section_offset_type output_offset;
1996       if (p->output_offset(object, shndx, offset, &output_offset))
1997         return output_offset != -1;
1998     }
1999
2000   // By default we assume that the address is mapped.  This should
2001   // only be called after we have passed all sections to Layout.  At
2002   // that point we should know what we are discarding.
2003   return true;
2004 }
2005
2006 // Given an address OFFSET relative to the start of input section
2007 // SHNDX in object OBJECT, return the output offset relative to the
2008 // start of the input section in the output section.  This should only
2009 // be called if SHNDX in OBJECT has a special mapping.
2010
2011 section_offset_type
2012 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2013                               section_offset_type offset) const
2014 {
2015   // This can only be called meaningfully when layout is complete.
2016   gold_assert(Output_data::is_layout_complete());
2017
2018   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2019        p != this->input_sections_.end();
2020        ++p)
2021     {
2022       section_offset_type output_offset;
2023       if (p->output_offset(object, shndx, offset, &output_offset))
2024         return output_offset;
2025     }
2026   gold_unreachable();
2027 }
2028
2029 // Return the output virtual address of OFFSET relative to the start
2030 // of input section SHNDX in object OBJECT.
2031
2032 uint64_t
2033 Output_section::output_address(const Relobj* object, unsigned int shndx,
2034                                off_t offset) const
2035 {
2036   uint64_t addr = this->address() + this->first_input_offset_;
2037   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2038        p != this->input_sections_.end();
2039        ++p)
2040     {
2041       addr = align_address(addr, p->addralign());
2042       section_offset_type output_offset;
2043       if (p->output_offset(object, shndx, offset, &output_offset))
2044         {
2045           if (output_offset == -1)
2046             return -1U;
2047           return addr + output_offset;
2048         }
2049       addr += p->data_size();
2050     }
2051
2052   // If we get here, it means that we don't know the mapping for this
2053   // input section.  This might happen in principle if
2054   // add_input_section were called before add_output_section_data.
2055   // But it should never actually happen.
2056
2057   gold_unreachable();
2058 }
2059
2060 // Return the output address of the start of the merged section for
2061 // input section SHNDX in object OBJECT.
2062
2063 uint64_t
2064 Output_section::starting_output_address(const Relobj* object,
2065                                         unsigned int shndx) const
2066 {
2067   uint64_t addr = this->address() + this->first_input_offset_;
2068   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2069        p != this->input_sections_.end();
2070        ++p)
2071     {
2072       addr = align_address(addr, p->addralign());
2073
2074       // It would be nice if we could use the existing output_offset
2075       // method to get the output offset of input offset 0.
2076       // Unfortunately we don't know for sure that input offset 0 is
2077       // mapped at all.
2078       if (p->is_merge_section_for(object, shndx))
2079         return addr;
2080
2081       addr += p->data_size();
2082     }
2083   gold_unreachable();
2084 }
2085
2086 // Set the data size of an Output_section.  This is where we handle
2087 // setting the addresses of any Output_section_data objects.
2088
2089 void
2090 Output_section::set_final_data_size()
2091 {
2092   if (this->input_sections_.empty())
2093     {
2094       this->set_data_size(this->current_data_size_for_child());
2095       return;
2096     }
2097
2098   if (this->must_sort_attached_input_sections())
2099     this->sort_attached_input_sections();
2100
2101   uint64_t address = this->address();
2102   off_t startoff = this->offset();
2103   off_t off = startoff + this->first_input_offset_;
2104   for (Input_section_list::iterator p = this->input_sections_.begin();
2105        p != this->input_sections_.end();
2106        ++p)
2107     {
2108       off = align_address(off, p->addralign());
2109       p->set_address_and_file_offset(address + (off - startoff), off,
2110                                      startoff);
2111       off += p->data_size();
2112     }
2113
2114   this->set_data_size(off - startoff);
2115 }
2116
2117 // Reset the address and file offset.
2118
2119 void
2120 Output_section::do_reset_address_and_file_offset()
2121 {
2122   for (Input_section_list::iterator p = this->input_sections_.begin();
2123        p != this->input_sections_.end();
2124        ++p)
2125     p->reset_address_and_file_offset();
2126 }
2127
2128 // Set the TLS offset.  Called only for SHT_TLS sections.
2129
2130 void
2131 Output_section::do_set_tls_offset(uint64_t tls_base)
2132 {
2133   this->tls_offset_ = this->address() - tls_base;
2134 }
2135
2136 // In a few cases we need to sort the input sections attached to an
2137 // output section.  This is used to implement the type of constructor
2138 // priority ordering implemented by the GNU linker, in which the
2139 // priority becomes part of the section name and the sections are
2140 // sorted by name.  We only do this for an output section if we see an
2141 // attached input section matching ".ctor.*", ".dtor.*",
2142 // ".init_array.*" or ".fini_array.*".
2143
2144 class Output_section::Input_section_sort_entry
2145 {
2146  public:
2147   Input_section_sort_entry()
2148     : input_section_(), index_(-1U), section_has_name_(false),
2149       section_name_()
2150   { }
2151
2152   Input_section_sort_entry(const Input_section& input_section,
2153                            unsigned int index)
2154     : input_section_(input_section), index_(index),
2155       section_has_name_(input_section.is_input_section())
2156   {
2157     if (this->section_has_name_)
2158       {
2159         // This is only called single-threaded from Layout::finalize,
2160         // so it is OK to lock.  Unfortunately we have no way to pass
2161         // in a Task token.
2162         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2163         Object* obj = input_section.relobj();
2164         Task_lock_obj<Object> tl(dummy_task, obj);
2165
2166         // This is a slow operation, which should be cached in
2167         // Layout::layout if this becomes a speed problem.
2168         this->section_name_ = obj->section_name(input_section.shndx());
2169       }
2170   }
2171
2172   // Return the Input_section.
2173   const Input_section&
2174   input_section() const
2175   {
2176     gold_assert(this->index_ != -1U);
2177     return this->input_section_;
2178   }
2179
2180   // The index of this entry in the original list.  This is used to
2181   // make the sort stable.
2182   unsigned int
2183   index() const
2184   {
2185     gold_assert(this->index_ != -1U);
2186     return this->index_;
2187   }
2188
2189   // Whether there is a section name.
2190   bool
2191   section_has_name() const
2192   { return this->section_has_name_; }
2193
2194   // The section name.
2195   const std::string&
2196   section_name() const
2197   {
2198     gold_assert(this->section_has_name_);
2199     return this->section_name_;
2200   }
2201
2202   // Return true if the section name has a priority.  This is assumed
2203   // to be true if it has a dot after the initial dot.
2204   bool
2205   has_priority() const
2206   {
2207     gold_assert(this->section_has_name_);
2208     return this->section_name_.find('.', 1);
2209   }
2210
2211   // Return true if this an input file whose base name matches
2212   // FILE_NAME.  The base name must have an extension of ".o", and
2213   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2214   // This is to match crtbegin.o as well as crtbeginS.o without
2215   // getting confused by other possibilities.  Overall matching the
2216   // file name this way is a dreadful hack, but the GNU linker does it
2217   // in order to better support gcc, and we need to be compatible.
2218   bool
2219   match_file_name(const char* match_file_name) const
2220   {
2221     const std::string& file_name(this->input_section_.relobj()->name());
2222     const char* base_name = lbasename(file_name.c_str());
2223     size_t match_len = strlen(match_file_name);
2224     if (strncmp(base_name, match_file_name, match_len) != 0)
2225       return false;
2226     size_t base_len = strlen(base_name);
2227     if (base_len != match_len + 2 && base_len != match_len + 3)
2228       return false;
2229     return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2230   }
2231
2232  private:
2233   // The Input_section we are sorting.
2234   Input_section input_section_;
2235   // The index of this Input_section in the original list.
2236   unsigned int index_;
2237   // Whether this Input_section has a section name--it won't if this
2238   // is some random Output_section_data.
2239   bool section_has_name_;
2240   // The section name if there is one.
2241   std::string section_name_;
2242 };
2243
2244 // Return true if S1 should come before S2 in the output section.
2245
2246 bool
2247 Output_section::Input_section_sort_compare::operator()(
2248     const Output_section::Input_section_sort_entry& s1,
2249     const Output_section::Input_section_sort_entry& s2) const
2250 {
2251   // crtbegin.o must come first.
2252   bool s1_begin = s1.match_file_name("crtbegin");
2253   bool s2_begin = s2.match_file_name("crtbegin");
2254   if (s1_begin || s2_begin)
2255     {
2256       if (!s1_begin)
2257         return false;
2258       if (!s2_begin)
2259         return true;
2260       return s1.index() < s2.index();
2261     }
2262
2263   // crtend.o must come last.
2264   bool s1_end = s1.match_file_name("crtend");
2265   bool s2_end = s2.match_file_name("crtend");
2266   if (s1_end || s2_end)
2267     {
2268       if (!s1_end)
2269         return true;
2270       if (!s2_end)
2271         return false;
2272       return s1.index() < s2.index();
2273     }
2274
2275   // We sort all the sections with no names to the end.
2276   if (!s1.section_has_name() || !s2.section_has_name())
2277     {
2278       if (s1.section_has_name())
2279         return true;
2280       if (s2.section_has_name())
2281         return false;
2282       return s1.index() < s2.index();
2283     }
2284
2285   // A section with a priority follows a section without a priority.
2286   // The GNU linker does this for all but .init_array sections; until
2287   // further notice we'll assume that that is an mistake.
2288   bool s1_has_priority = s1.has_priority();
2289   bool s2_has_priority = s2.has_priority();
2290   if (s1_has_priority && !s2_has_priority)
2291     return false;
2292   if (!s1_has_priority && s2_has_priority)
2293     return true;
2294
2295   // Otherwise we sort by name.
2296   int compare = s1.section_name().compare(s2.section_name());
2297   if (compare != 0)
2298     return compare < 0;
2299
2300   // Otherwise we keep the input order.
2301   return s1.index() < s2.index();
2302 }
2303
2304 // Sort the input sections attached to an output section.
2305
2306 void
2307 Output_section::sort_attached_input_sections()
2308 {
2309   if (this->attached_input_sections_are_sorted_)
2310     return;
2311
2312   // The only thing we know about an input section is the object and
2313   // the section index.  We need the section name.  Recomputing this
2314   // is slow but this is an unusual case.  If this becomes a speed
2315   // problem we can cache the names as required in Layout::layout.
2316
2317   // We start by building a larger vector holding a copy of each
2318   // Input_section, plus its current index in the list and its name.
2319   std::vector<Input_section_sort_entry> sort_list;
2320
2321   unsigned int i = 0;
2322   for (Input_section_list::iterator p = this->input_sections_.begin();
2323        p != this->input_sections_.end();
2324        ++p, ++i)
2325     sort_list.push_back(Input_section_sort_entry(*p, i));
2326
2327   // Sort the input sections.
2328   std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2329
2330   // Copy the sorted input sections back to our list.
2331   this->input_sections_.clear();
2332   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2333        p != sort_list.end();
2334        ++p)
2335     this->input_sections_.push_back(p->input_section());
2336
2337   // Remember that we sorted the input sections, since we might get
2338   // called again.
2339   this->attached_input_sections_are_sorted_ = true;
2340 }
2341
2342 // Write the section header to *OSHDR.
2343
2344 template<int size, bool big_endian>
2345 void
2346 Output_section::write_header(const Layout* layout,
2347                              const Stringpool* secnamepool,
2348                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
2349 {
2350   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2351   oshdr->put_sh_type(this->type_);
2352
2353   elfcpp::Elf_Xword flags = this->flags_;
2354   if (this->info_section_ != NULL && this->info_uses_section_index_)
2355     flags |= elfcpp::SHF_INFO_LINK;
2356   oshdr->put_sh_flags(flags);
2357
2358   oshdr->put_sh_addr(this->address());
2359   oshdr->put_sh_offset(this->offset());
2360   oshdr->put_sh_size(this->data_size());
2361   if (this->link_section_ != NULL)
2362     oshdr->put_sh_link(this->link_section_->out_shndx());
2363   else if (this->should_link_to_symtab_)
2364     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2365   else if (this->should_link_to_dynsym_)
2366     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2367   else
2368     oshdr->put_sh_link(this->link_);
2369
2370   elfcpp::Elf_Word info;
2371   if (this->info_section_ != NULL)
2372     {
2373       if (this->info_uses_section_index_)
2374         info = this->info_section_->out_shndx();
2375       else
2376         info = this->info_section_->symtab_index();
2377     }
2378   else if (this->info_symndx_ != NULL)
2379     info = this->info_symndx_->symtab_index();
2380   else
2381     info = this->info_;
2382   oshdr->put_sh_info(info);
2383
2384   oshdr->put_sh_addralign(this->addralign_);
2385   oshdr->put_sh_entsize(this->entsize_);
2386 }
2387
2388 // Write out the data.  For input sections the data is written out by
2389 // Object::relocate, but we have to handle Output_section_data objects
2390 // here.
2391
2392 void
2393 Output_section::do_write(Output_file* of)
2394 {
2395   gold_assert(!this->requires_postprocessing());
2396
2397   off_t output_section_file_offset = this->offset();
2398   for (Fill_list::iterator p = this->fills_.begin();
2399        p != this->fills_.end();
2400        ++p)
2401     {
2402       std::string fill_data(parameters->target().code_fill(p->length()));
2403       of->write(output_section_file_offset + p->section_offset(),
2404                 fill_data.data(), fill_data.size());
2405     }
2406
2407   for (Input_section_list::iterator p = this->input_sections_.begin();
2408        p != this->input_sections_.end();
2409        ++p)
2410     p->write(of);
2411 }
2412
2413 // If a section requires postprocessing, create the buffer to use.
2414
2415 void
2416 Output_section::create_postprocessing_buffer()
2417 {
2418   gold_assert(this->requires_postprocessing());
2419
2420   if (this->postprocessing_buffer_ != NULL)
2421     return;
2422
2423   if (!this->input_sections_.empty())
2424     {
2425       off_t off = this->first_input_offset_;
2426       for (Input_section_list::iterator p = this->input_sections_.begin();
2427            p != this->input_sections_.end();
2428            ++p)
2429         {
2430           off = align_address(off, p->addralign());
2431           p->finalize_data_size();
2432           off += p->data_size();
2433         }
2434       this->set_current_data_size_for_child(off);
2435     }
2436
2437   off_t buffer_size = this->current_data_size_for_child();
2438   this->postprocessing_buffer_ = new unsigned char[buffer_size];
2439 }
2440
2441 // Write all the data of an Output_section into the postprocessing
2442 // buffer.  This is used for sections which require postprocessing,
2443 // such as compression.  Input sections are handled by
2444 // Object::Relocate.
2445
2446 void
2447 Output_section::write_to_postprocessing_buffer()
2448 {
2449   gold_assert(this->requires_postprocessing());
2450
2451   unsigned char* buffer = this->postprocessing_buffer();
2452   for (Fill_list::iterator p = this->fills_.begin();
2453        p != this->fills_.end();
2454        ++p)
2455     {
2456       std::string fill_data(parameters->target().code_fill(p->length()));
2457       memcpy(buffer + p->section_offset(), fill_data.data(),
2458              fill_data.size());
2459     }
2460
2461   off_t off = this->first_input_offset_;
2462   for (Input_section_list::iterator p = this->input_sections_.begin();
2463        p != this->input_sections_.end();
2464        ++p)
2465     {
2466       off = align_address(off, p->addralign());
2467       p->write_to_buffer(buffer + off);
2468       off += p->data_size();
2469     }
2470 }
2471
2472 // Get the input sections for linker script processing.  We leave
2473 // behind the Output_section_data entries.  Note that this may be
2474 // slightly incorrect for merge sections.  We will leave them behind,
2475 // but it is possible that the script says that they should follow
2476 // some other input sections, as in:
2477 //    .rodata { *(.rodata) *(.rodata.cst*) }
2478 // For that matter, we don't handle this correctly:
2479 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2480 // With luck this will never matter.
2481
2482 uint64_t
2483 Output_section::get_input_sections(
2484     uint64_t address,
2485     const std::string& fill,
2486     std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2487 {
2488   uint64_t orig_address = address;
2489
2490   address = align_address(address, this->addralign());
2491
2492   Input_section_list remaining;
2493   for (Input_section_list::iterator p = this->input_sections_.begin();
2494        p != this->input_sections_.end();
2495        ++p)
2496     {
2497       if (p->is_input_section())
2498         input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2499       else
2500         {
2501           uint64_t aligned_address = align_address(address, p->addralign());
2502           if (aligned_address != address && !fill.empty())
2503             {
2504               section_size_type length =
2505                 convert_to_section_size_type(aligned_address - address);
2506               std::string this_fill;
2507               this_fill.reserve(length);
2508               while (this_fill.length() + fill.length() <= length)
2509                 this_fill += fill;
2510               if (this_fill.length() < length)
2511                 this_fill.append(fill, 0, length - this_fill.length());
2512
2513               Output_section_data* posd = new Output_data_const(this_fill, 0);
2514               remaining.push_back(Input_section(posd));
2515             }
2516           address = aligned_address;
2517
2518           remaining.push_back(*p);
2519
2520           p->finalize_data_size();
2521           address += p->data_size();
2522         }
2523     }
2524
2525   this->input_sections_.swap(remaining);
2526   this->first_input_offset_ = 0;
2527
2528   uint64_t data_size = address - orig_address;
2529   this->set_current_data_size_for_child(data_size);
2530   return data_size;
2531 }
2532
2533 // Add an input section from a script.
2534
2535 void
2536 Output_section::add_input_section_for_script(Relobj* object,
2537                                              unsigned int shndx,
2538                                              off_t data_size,
2539                                              uint64_t addralign)
2540 {
2541   if (addralign > this->addralign_)
2542     this->addralign_ = addralign;
2543
2544   off_t offset_in_section = this->current_data_size_for_child();
2545   off_t aligned_offset_in_section = align_address(offset_in_section,
2546                                                   addralign);
2547
2548   this->set_current_data_size_for_child(aligned_offset_in_section
2549                                         + data_size);
2550
2551   this->input_sections_.push_back(Input_section(object, shndx,
2552                                                 data_size, addralign));
2553 }
2554
2555 // Print to the map file.
2556
2557 void
2558 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
2559 {
2560   mapfile->print_output_section(this);
2561
2562   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2563        p != this->input_sections_.end();
2564        ++p)
2565     p->print_to_mapfile(mapfile);
2566 }
2567
2568 // Print stats for merge sections to stderr.
2569
2570 void
2571 Output_section::print_merge_stats()
2572 {
2573   Input_section_list::iterator p;
2574   for (p = this->input_sections_.begin();
2575        p != this->input_sections_.end();
2576        ++p)
2577     p->print_merge_stats(this->name_);
2578 }
2579
2580 // Output segment methods.
2581
2582 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2583   : output_data_(),
2584     output_bss_(),
2585     vaddr_(0),
2586     paddr_(0),
2587     memsz_(0),
2588     max_align_(0),
2589     min_p_align_(0),
2590     offset_(0),
2591     filesz_(0),
2592     type_(type),
2593     flags_(flags),
2594     is_max_align_known_(false),
2595     are_addresses_set_(false)
2596 {
2597 }
2598
2599 // Add an Output_section to an Output_segment.
2600
2601 void
2602 Output_segment::add_output_section(Output_section* os,
2603                                    elfcpp::Elf_Word seg_flags)
2604 {
2605   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2606   gold_assert(!this->is_max_align_known_);
2607
2608   // Update the segment flags.
2609   this->flags_ |= seg_flags;
2610
2611   Output_segment::Output_data_list* pdl;
2612   if (os->type() == elfcpp::SHT_NOBITS)
2613     pdl = &this->output_bss_;
2614   else
2615     pdl = &this->output_data_;
2616
2617   // So that PT_NOTE segments will work correctly, we need to ensure
2618   // that all SHT_NOTE sections are adjacent.  This will normally
2619   // happen automatically, because all the SHT_NOTE input sections
2620   // will wind up in the same output section.  However, it is possible
2621   // for multiple SHT_NOTE input sections to have different section
2622   // flags, and thus be in different output sections, but for the
2623   // different section flags to map into the same segment flags and
2624   // thus the same output segment.
2625
2626   // Note that while there may be many input sections in an output
2627   // section, there are normally only a few output sections in an
2628   // output segment.  This loop is expected to be fast.
2629
2630   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2631     {
2632       Output_segment::Output_data_list::iterator p = pdl->end();
2633       do
2634         {
2635           --p;
2636           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2637             {
2638               ++p;
2639               pdl->insert(p, os);
2640               return;
2641             }
2642         }
2643       while (p != pdl->begin());
2644     }
2645
2646   // Similarly, so that PT_TLS segments will work, we need to group
2647   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
2648   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2649   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
2650   // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
2651   // and the PT_TLS segment -- we do this grouping only for the
2652   // PT_LOAD segment.
2653   if (this->type_ != elfcpp::PT_TLS
2654       && (os->flags() & elfcpp::SHF_TLS) != 0)
2655     {
2656       pdl = &this->output_data_;
2657       bool nobits = os->type() == elfcpp::SHT_NOBITS;
2658       bool sawtls = false;
2659       Output_segment::Output_data_list::iterator p = pdl->end();
2660       do
2661         {
2662           --p;
2663           bool insert;
2664           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2665             {
2666               sawtls = true;
2667               // Put a NOBITS section after the first TLS section.
2668               // Put a PROGBITS section after the first TLS/PROGBITS
2669               // section.
2670               insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2671             }
2672           else
2673             {
2674               // If we've gone past the TLS sections, but we've seen a
2675               // TLS section, then we need to insert this section now.
2676               insert = sawtls;
2677             }
2678
2679           if (insert)
2680             {
2681               ++p;
2682               pdl->insert(p, os);
2683               return;
2684             }
2685         }
2686       while (p != pdl->begin());
2687
2688       // There are no TLS sections yet; put this one at the requested
2689       // location in the section list.
2690     }
2691
2692   // For the PT_GNU_RELRO segment, we need to group relro sections,
2693   // and we need to put them before any non-relro sections.  Also,
2694   // relro local sections go before relro non-local sections.
2695   if (parameters->options().relro() && os->is_relro())
2696     {
2697       gold_assert(pdl == &this->output_data_);
2698       Output_segment::Output_data_list::iterator p;
2699       for (p = pdl->begin(); p != pdl->end(); ++p)
2700         {
2701           if (!(*p)->is_section())
2702             break;
2703
2704           Output_section* pos = (*p)->output_section();
2705           if (!pos->is_relro()
2706               || (os->is_relro_local() && !pos->is_relro_local()))
2707             break;
2708         }
2709
2710       pdl->insert(p, os);
2711       return;
2712     }
2713
2714   pdl->push_back(os);
2715 }
2716
2717 // Remove an Output_section from this segment.  It is an error if it
2718 // is not present.
2719
2720 void
2721 Output_segment::remove_output_section(Output_section* os)
2722 {
2723   // We only need this for SHT_PROGBITS.
2724   gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2725   for (Output_data_list::iterator p = this->output_data_.begin();
2726        p != this->output_data_.end();
2727        ++p)
2728    {
2729      if (*p == os)
2730        {
2731          this->output_data_.erase(p);
2732          return;
2733        }
2734    }
2735   gold_unreachable();
2736 }
2737
2738 // Add an Output_data (which is not an Output_section) to the start of
2739 // a segment.
2740
2741 void
2742 Output_segment::add_initial_output_data(Output_data* od)
2743 {
2744   gold_assert(!this->is_max_align_known_);
2745   this->output_data_.push_front(od);
2746 }
2747
2748 // Return whether the first data section is a relro section.
2749
2750 bool
2751 Output_segment::is_first_section_relro() const
2752 {
2753   return (!this->output_data_.empty()
2754           && this->output_data_.front()->is_section()
2755           && this->output_data_.front()->output_section()->is_relro());
2756 }
2757
2758 // Return the maximum alignment of the Output_data in Output_segment.
2759
2760 uint64_t
2761 Output_segment::maximum_alignment()
2762 {
2763   if (!this->is_max_align_known_)
2764     {
2765       uint64_t addralign;
2766
2767       addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2768       if (addralign > this->max_align_)
2769         this->max_align_ = addralign;
2770
2771       addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2772       if (addralign > this->max_align_)
2773         this->max_align_ = addralign;
2774
2775       // If -z relro is in effect, and the first section in this
2776       // segment is a relro section, then the segment must be aligned
2777       // to at least the common page size.  This ensures that the
2778       // PT_GNU_RELRO segment will start at a page boundary.
2779       if (this->type_ == elfcpp::PT_LOAD
2780           && parameters->options().relro()
2781           && this->is_first_section_relro())
2782         {
2783           addralign = parameters->target().common_pagesize();
2784           if (addralign > this->max_align_)
2785             this->max_align_ = addralign;
2786         }
2787
2788       this->is_max_align_known_ = true;
2789     }
2790
2791   return this->max_align_;
2792 }
2793
2794 // Return the maximum alignment of a list of Output_data.
2795
2796 uint64_t
2797 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2798 {
2799   uint64_t ret = 0;
2800   for (Output_data_list::const_iterator p = pdl->begin();
2801        p != pdl->end();
2802        ++p)
2803     {
2804       uint64_t addralign = (*p)->addralign();
2805       if (addralign > ret)
2806         ret = addralign;
2807     }
2808   return ret;
2809 }
2810
2811 // Return the number of dynamic relocs applied to this segment.
2812
2813 unsigned int
2814 Output_segment::dynamic_reloc_count() const
2815 {
2816   return (this->dynamic_reloc_count_list(&this->output_data_)
2817           + this->dynamic_reloc_count_list(&this->output_bss_));
2818 }
2819
2820 // Return the number of dynamic relocs applied to an Output_data_list.
2821
2822 unsigned int
2823 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2824 {
2825   unsigned int count = 0;
2826   for (Output_data_list::const_iterator p = pdl->begin();
2827        p != pdl->end();
2828        ++p)
2829     count += (*p)->dynamic_reloc_count();
2830   return count;
2831 }
2832
2833 // Set the section addresses for an Output_segment.  If RESET is true,
2834 // reset the addresses first.  ADDR is the address and *POFF is the
2835 // file offset.  Set the section indexes starting with *PSHNDX.
2836 // Return the address of the immediately following segment.  Update
2837 // *POFF and *PSHNDX.
2838
2839 uint64_t
2840 Output_segment::set_section_addresses(const Layout* layout, bool reset,
2841                                       uint64_t addr, off_t* poff,
2842                                       unsigned int* pshndx)
2843 {
2844   gold_assert(this->type_ == elfcpp::PT_LOAD);
2845
2846   if (!reset && this->are_addresses_set_)
2847     {
2848       gold_assert(this->paddr_ == addr);
2849       addr = this->vaddr_;
2850     }
2851   else
2852     {
2853       this->vaddr_ = addr;
2854       this->paddr_ = addr;
2855       this->are_addresses_set_ = true;
2856     }
2857
2858   bool in_tls = false;
2859
2860   bool in_relro = (parameters->options().relro()
2861                    && this->is_first_section_relro());
2862
2863   off_t orig_off = *poff;
2864   this->offset_ = orig_off;
2865
2866   addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2867                                           addr, poff, pshndx, &in_tls,
2868                                           &in_relro);
2869   this->filesz_ = *poff - orig_off;
2870
2871   off_t off = *poff;
2872
2873   uint64_t ret = this->set_section_list_addresses(layout, reset,
2874                                                   &this->output_bss_,
2875                                                   addr, poff, pshndx,
2876                                                   &in_tls, &in_relro);
2877
2878   // If the last section was a TLS section, align upward to the
2879   // alignment of the TLS segment, so that the overall size of the TLS
2880   // segment is aligned.
2881   if (in_tls)
2882     {
2883       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2884       *poff = align_address(*poff, segment_align);
2885     }
2886
2887   // If all the sections were relro sections, align upward to the
2888   // common page size.
2889   if (in_relro)
2890     {
2891       uint64_t page_align = parameters->target().common_pagesize();
2892       *poff = align_address(*poff, page_align);
2893     }
2894
2895   this->memsz_ = *poff - orig_off;
2896
2897   // Ignore the file offset adjustments made by the BSS Output_data
2898   // objects.
2899   *poff = off;
2900
2901   return ret;
2902 }
2903
2904 // Set the addresses and file offsets in a list of Output_data
2905 // structures.
2906
2907 uint64_t
2908 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2909                                            Output_data_list* pdl,
2910                                            uint64_t addr, off_t* poff,
2911                                            unsigned int* pshndx,
2912                                            bool* in_tls, bool* in_relro)
2913 {
2914   off_t startoff = *poff;
2915
2916   off_t off = startoff;
2917   for (Output_data_list::iterator p = pdl->begin();
2918        p != pdl->end();
2919        ++p)
2920     {
2921       if (reset)
2922         (*p)->reset_address_and_file_offset();
2923
2924       // When using a linker script the section will most likely
2925       // already have an address.
2926       if (!(*p)->is_address_valid())
2927         {
2928           uint64_t align = (*p)->addralign();
2929
2930           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2931             {
2932               // Give the first TLS section the alignment of the
2933               // entire TLS segment.  Otherwise the TLS segment as a
2934               // whole may be misaligned.
2935               if (!*in_tls)
2936                 {
2937                   Output_segment* tls_segment = layout->tls_segment();
2938                   gold_assert(tls_segment != NULL);
2939                   uint64_t segment_align = tls_segment->maximum_alignment();
2940                   gold_assert(segment_align >= align);
2941                   align = segment_align;
2942
2943                   *in_tls = true;
2944                 }
2945             }
2946           else
2947             {
2948               // If this is the first section after the TLS segment,
2949               // align it to at least the alignment of the TLS
2950               // segment, so that the size of the overall TLS segment
2951               // is aligned.
2952               if (*in_tls)
2953                 {
2954                   uint64_t segment_align =
2955                       layout->tls_segment()->maximum_alignment();
2956                   if (segment_align > align)
2957                     align = segment_align;
2958
2959                   *in_tls = false;
2960                 }
2961             }
2962
2963           // If this is a non-relro section after a relro section,
2964           // align it to a common page boundary so that the dynamic
2965           // linker has a page to mark as read-only.
2966           if (*in_relro
2967               && (!(*p)->is_section()
2968                   || !(*p)->output_section()->is_relro()))
2969             {
2970               uint64_t page_align = parameters->target().common_pagesize();
2971               if (page_align > align)
2972                 align = page_align;
2973               *in_relro = false;
2974             }
2975
2976           off = align_address(off, align);
2977           (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2978         }
2979       else
2980         {
2981           // The script may have inserted a skip forward, but it
2982           // better not have moved backward.
2983           gold_assert((*p)->address() >= addr + (off - startoff));
2984           off += (*p)->address() - (addr + (off - startoff));
2985           (*p)->set_file_offset(off);
2986           (*p)->finalize_data_size();
2987         }
2988
2989       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2990       // section.  Such a section does not affect the size of a
2991       // PT_LOAD segment.
2992       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2993           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2994         off += (*p)->data_size();
2995
2996       if ((*p)->is_section())
2997         {
2998           (*p)->set_out_shndx(*pshndx);
2999           ++*pshndx;
3000         }
3001     }
3002
3003   *poff = off;
3004   return addr + (off - startoff);
3005 }
3006
3007 // For a non-PT_LOAD segment, set the offset from the sections, if
3008 // any.
3009
3010 void
3011 Output_segment::set_offset()
3012 {
3013   gold_assert(this->type_ != elfcpp::PT_LOAD);
3014
3015   gold_assert(!this->are_addresses_set_);
3016
3017   if (this->output_data_.empty() && this->output_bss_.empty())
3018     {
3019       this->vaddr_ = 0;
3020       this->paddr_ = 0;
3021       this->are_addresses_set_ = true;
3022       this->memsz_ = 0;
3023       this->min_p_align_ = 0;
3024       this->offset_ = 0;
3025       this->filesz_ = 0;
3026       return;
3027     }
3028
3029   const Output_data* first;
3030   if (this->output_data_.empty())
3031     first = this->output_bss_.front();
3032   else
3033     first = this->output_data_.front();
3034   this->vaddr_ = first->address();
3035   this->paddr_ = (first->has_load_address()
3036                   ? first->load_address()
3037                   : this->vaddr_);
3038   this->are_addresses_set_ = true;
3039   this->offset_ = first->offset();
3040
3041   if (this->output_data_.empty())
3042     this->filesz_ = 0;
3043   else
3044     {
3045       const Output_data* last_data = this->output_data_.back();
3046       this->filesz_ = (last_data->address()
3047                        + last_data->data_size()
3048                        - this->vaddr_);
3049     }
3050
3051   const Output_data* last;
3052   if (this->output_bss_.empty())
3053     last = this->output_data_.back();
3054   else
3055     last = this->output_bss_.back();
3056   this->memsz_ = (last->address()
3057                   + last->data_size()
3058                   - this->vaddr_);
3059
3060   // If this is a TLS segment, align the memory size.  The code in
3061   // set_section_list ensures that the section after the TLS segment
3062   // is aligned to give us room.
3063   if (this->type_ == elfcpp::PT_TLS)
3064     {
3065       uint64_t segment_align = this->maximum_alignment();
3066       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3067       this->memsz_ = align_address(this->memsz_, segment_align);
3068     }
3069
3070   // If this is a RELRO segment, align the memory size.  The code in
3071   // set_section_list ensures that the section after the RELRO segment
3072   // is aligned to give us room.
3073   if (this->type_ == elfcpp::PT_GNU_RELRO)
3074     {
3075       uint64_t page_align = parameters->target().common_pagesize();
3076       gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3077       this->memsz_ = align_address(this->memsz_, page_align);
3078     }
3079 }
3080
3081 // Set the TLS offsets of the sections in the PT_TLS segment.
3082
3083 void
3084 Output_segment::set_tls_offsets()
3085 {
3086   gold_assert(this->type_ == elfcpp::PT_TLS);
3087
3088   for (Output_data_list::iterator p = this->output_data_.begin();
3089        p != this->output_data_.end();
3090        ++p)
3091     (*p)->set_tls_offset(this->vaddr_);
3092
3093   for (Output_data_list::iterator p = this->output_bss_.begin();
3094        p != this->output_bss_.end();
3095        ++p)
3096     (*p)->set_tls_offset(this->vaddr_);
3097 }
3098
3099 // Return the address of the first section.
3100
3101 uint64_t
3102 Output_segment::first_section_load_address() const
3103 {
3104   for (Output_data_list::const_iterator p = this->output_data_.begin();
3105        p != this->output_data_.end();
3106        ++p)
3107     if ((*p)->is_section())
3108       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3109
3110   for (Output_data_list::const_iterator p = this->output_bss_.begin();
3111        p != this->output_bss_.end();
3112        ++p)
3113     if ((*p)->is_section())
3114       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3115
3116   gold_unreachable();
3117 }
3118
3119 // Return the number of Output_sections in an Output_segment.
3120
3121 unsigned int
3122 Output_segment::output_section_count() const
3123 {
3124   return (this->output_section_count_list(&this->output_data_)
3125           + this->output_section_count_list(&this->output_bss_));
3126 }
3127
3128 // Return the number of Output_sections in an Output_data_list.
3129
3130 unsigned int
3131 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3132 {
3133   unsigned int count = 0;
3134   for (Output_data_list::const_iterator p = pdl->begin();
3135        p != pdl->end();
3136        ++p)
3137     {
3138       if ((*p)->is_section())
3139         ++count;
3140     }
3141   return count;
3142 }
3143
3144 // Return the section attached to the list segment with the lowest
3145 // load address.  This is used when handling a PHDRS clause in a
3146 // linker script.
3147
3148 Output_section*
3149 Output_segment::section_with_lowest_load_address() const
3150 {
3151   Output_section* found = NULL;
3152   uint64_t found_lma = 0;
3153   this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3154
3155   Output_section* found_data = found;
3156   this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3157   if (found != found_data && found_data != NULL)
3158     {
3159       gold_error(_("nobits section %s may not precede progbits section %s "
3160                    "in same segment"),
3161                  found->name(), found_data->name());
3162       return NULL;
3163     }
3164
3165   return found;
3166 }
3167
3168 // Look through a list for a section with a lower load address.
3169
3170 void
3171 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3172                                             Output_section** found,
3173                                             uint64_t* found_lma) const
3174 {
3175   for (Output_data_list::const_iterator p = pdl->begin();
3176        p != pdl->end();
3177        ++p)
3178     {
3179       if (!(*p)->is_section())
3180         continue;
3181       Output_section* os = static_cast<Output_section*>(*p);
3182       uint64_t lma = (os->has_load_address()
3183                       ? os->load_address()
3184                       : os->address());
3185       if (*found == NULL || lma < *found_lma)
3186         {
3187           *found = os;
3188           *found_lma = lma;
3189         }
3190     }
3191 }
3192
3193 // Write the segment data into *OPHDR.
3194
3195 template<int size, bool big_endian>
3196 void
3197 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3198 {
3199   ophdr->put_p_type(this->type_);
3200   ophdr->put_p_offset(this->offset_);
3201   ophdr->put_p_vaddr(this->vaddr_);
3202   ophdr->put_p_paddr(this->paddr_);
3203   ophdr->put_p_filesz(this->filesz_);
3204   ophdr->put_p_memsz(this->memsz_);
3205   ophdr->put_p_flags(this->flags_);
3206   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3207 }
3208
3209 // Write the section headers into V.
3210
3211 template<int size, bool big_endian>
3212 unsigned char*
3213 Output_segment::write_section_headers(const Layout* layout,
3214                                       const Stringpool* secnamepool,
3215                                       unsigned char* v,
3216                                       unsigned int *pshndx) const
3217 {
3218   // Every section that is attached to a segment must be attached to a
3219   // PT_LOAD segment, so we only write out section headers for PT_LOAD
3220   // segments.
3221   if (this->type_ != elfcpp::PT_LOAD)
3222     return v;
3223
3224   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3225                                                          &this->output_data_,
3226                                                          v, pshndx);
3227   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3228                                                          &this->output_bss_,
3229                                                          v, pshndx);
3230   return v;
3231 }
3232
3233 template<int size, bool big_endian>
3234 unsigned char*
3235 Output_segment::write_section_headers_list(const Layout* layout,
3236                                            const Stringpool* secnamepool,
3237                                            const Output_data_list* pdl,
3238                                            unsigned char* v,
3239                                            unsigned int* pshndx) const
3240 {
3241   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3242   for (Output_data_list::const_iterator p = pdl->begin();
3243        p != pdl->end();
3244        ++p)
3245     {
3246       if ((*p)->is_section())
3247         {
3248           const Output_section* ps = static_cast<const Output_section*>(*p);
3249           gold_assert(*pshndx == ps->out_shndx());
3250           elfcpp::Shdr_write<size, big_endian> oshdr(v);
3251           ps->write_header(layout, secnamepool, &oshdr);
3252           v += shdr_size;
3253           ++*pshndx;
3254         }
3255     }
3256   return v;
3257 }
3258
3259 // Print the output sections to the map file.
3260
3261 void
3262 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3263 {
3264   if (this->type() != elfcpp::PT_LOAD)
3265     return;
3266   this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3267   this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3268 }
3269
3270 // Print an output section list to the map file.
3271
3272 void
3273 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3274                                               const Output_data_list* pdl) const
3275 {
3276   for (Output_data_list::const_iterator p = pdl->begin();
3277        p != pdl->end();
3278        ++p)
3279     (*p)->print_to_mapfile(mapfile);
3280 }
3281
3282 // Output_file methods.
3283
3284 Output_file::Output_file(const char* name)
3285   : name_(name),
3286     o_(-1),
3287     file_size_(0),
3288     base_(NULL),
3289     map_is_anonymous_(false),
3290     is_temporary_(false)
3291 {
3292 }
3293
3294 // Open the output file.
3295
3296 void
3297 Output_file::open(off_t file_size)
3298 {
3299   this->file_size_ = file_size;
3300
3301   // Unlink the file first; otherwise the open() may fail if the file
3302   // is busy (e.g. it's an executable that's currently being executed).
3303   //
3304   // However, the linker may be part of a system where a zero-length
3305   // file is created for it to write to, with tight permissions (gcc
3306   // 2.95 did something like this).  Unlinking the file would work
3307   // around those permission controls, so we only unlink if the file
3308   // has a non-zero size.  We also unlink only regular files to avoid
3309   // trouble with directories/etc.
3310   //
3311   // If we fail, continue; this command is merely a best-effort attempt
3312   // to improve the odds for open().
3313
3314   // We let the name "-" mean "stdout"
3315   if (!this->is_temporary_)
3316     {
3317       if (strcmp(this->name_, "-") == 0)
3318         this->o_ = STDOUT_FILENO;
3319       else
3320         {
3321           struct stat s;
3322           if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3323             unlink_if_ordinary(this->name_);
3324
3325           int mode = parameters->options().relocatable() ? 0666 : 0777;
3326           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3327                                   mode);
3328           if (o < 0)
3329             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3330           this->o_ = o;
3331         }
3332     }
3333
3334   this->map();
3335 }
3336
3337 // Resize the output file.
3338
3339 void
3340 Output_file::resize(off_t file_size)
3341 {
3342   // If the mmap is mapping an anonymous memory buffer, this is easy:
3343   // just mremap to the new size.  If it's mapping to a file, we want
3344   // to unmap to flush to the file, then remap after growing the file.
3345   if (this->map_is_anonymous_)
3346     {
3347       void* base = ::mremap(this->base_, this->file_size_, file_size,
3348                             MREMAP_MAYMOVE);
3349       if (base == MAP_FAILED)
3350         gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3351       this->base_ = static_cast<unsigned char*>(base);
3352       this->file_size_ = file_size;
3353     }
3354   else
3355     {
3356       this->unmap();
3357       this->file_size_ = file_size;
3358       this->map();
3359     }
3360 }
3361
3362 // Map the file into memory.
3363
3364 void
3365 Output_file::map()
3366 {
3367   const int o = this->o_;
3368
3369   // If the output file is not a regular file, don't try to mmap it;
3370   // instead, we'll mmap a block of memory (an anonymous buffer), and
3371   // then later write the buffer to the file.
3372   void* base;
3373   struct stat statbuf;
3374   if (o == STDOUT_FILENO || o == STDERR_FILENO
3375       || ::fstat(o, &statbuf) != 0
3376       || !S_ISREG(statbuf.st_mode)
3377       || this->is_temporary_)
3378     {
3379       this->map_is_anonymous_ = true;
3380       base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3381                     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3382     }
3383   else
3384     {
3385       // Write out one byte to make the file the right size.
3386       if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
3387         gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
3388       char b = 0;
3389       if (::write(o, &b, 1) != 1)
3390         gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
3391
3392       // Map the file into memory.
3393       this->map_is_anonymous_ = false;
3394       base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3395                     MAP_SHARED, o, 0);
3396     }
3397   if (base == MAP_FAILED)
3398     gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
3399   this->base_ = static_cast<unsigned char*>(base);
3400 }
3401
3402 // Unmap the file from memory.
3403
3404 void
3405 Output_file::unmap()
3406 {
3407   if (::munmap(this->base_, this->file_size_) < 0)
3408     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
3409   this->base_ = NULL;
3410 }
3411
3412 // Close the output file.
3413
3414 void
3415 Output_file::close()
3416 {
3417   // If the map isn't file-backed, we need to write it now.
3418   if (this->map_is_anonymous_ && !this->is_temporary_)
3419     {
3420       size_t bytes_to_write = this->file_size_;
3421       while (bytes_to_write > 0)
3422         {
3423           ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
3424           if (bytes_written == 0)
3425             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3426           else if (bytes_written < 0)
3427             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3428           else
3429             bytes_to_write -= bytes_written;
3430         }
3431     }
3432   this->unmap();
3433
3434   // We don't close stdout or stderr
3435   if (this->o_ != STDOUT_FILENO
3436       && this->o_ != STDERR_FILENO
3437       && !this->is_temporary_)
3438     if (::close(this->o_) < 0)
3439       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3440   this->o_ = -1;
3441 }
3442
3443 // Instantiate the templates we need.  We could use the configure
3444 // script to restrict this to only the ones for implemented targets.
3445
3446 #ifdef HAVE_TARGET_32_LITTLE
3447 template
3448 off_t
3449 Output_section::add_input_section<32, false>(
3450     Sized_relobj<32, false>* object,
3451     unsigned int shndx,
3452     const char* secname,
3453     const elfcpp::Shdr<32, false>& shdr,
3454     unsigned int reloc_shndx,
3455     bool have_sections_script);
3456 #endif
3457
3458 #ifdef HAVE_TARGET_32_BIG
3459 template
3460 off_t
3461 Output_section::add_input_section<32, true>(
3462     Sized_relobj<32, true>* object,
3463     unsigned int shndx,
3464     const char* secname,
3465     const elfcpp::Shdr<32, true>& shdr,
3466     unsigned int reloc_shndx,
3467     bool have_sections_script);
3468 #endif
3469
3470 #ifdef HAVE_TARGET_64_LITTLE
3471 template
3472 off_t
3473 Output_section::add_input_section<64, false>(
3474     Sized_relobj<64, false>* object,
3475     unsigned int shndx,
3476     const char* secname,
3477     const elfcpp::Shdr<64, false>& shdr,
3478     unsigned int reloc_shndx,
3479     bool have_sections_script);
3480 #endif
3481
3482 #ifdef HAVE_TARGET_64_BIG
3483 template
3484 off_t
3485 Output_section::add_input_section<64, true>(
3486     Sized_relobj<64, true>* object,
3487     unsigned int shndx,
3488     const char* secname,
3489     const elfcpp::Shdr<64, true>& shdr,
3490     unsigned int reloc_shndx,
3491     bool have_sections_script);
3492 #endif
3493
3494 #ifdef HAVE_TARGET_32_LITTLE
3495 template
3496 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3497 #endif
3498
3499 #ifdef HAVE_TARGET_32_BIG
3500 template
3501 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3502 #endif
3503
3504 #ifdef HAVE_TARGET_64_LITTLE
3505 template
3506 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3507 #endif
3508
3509 #ifdef HAVE_TARGET_64_BIG
3510 template
3511 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3512 #endif
3513
3514 #ifdef HAVE_TARGET_32_LITTLE
3515 template
3516 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3517 #endif
3518
3519 #ifdef HAVE_TARGET_32_BIG
3520 template
3521 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3522 #endif
3523
3524 #ifdef HAVE_TARGET_64_LITTLE
3525 template
3526 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3527 #endif
3528
3529 #ifdef HAVE_TARGET_64_BIG
3530 template
3531 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3532 #endif
3533
3534 #ifdef HAVE_TARGET_32_LITTLE
3535 template
3536 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3537 #endif
3538
3539 #ifdef HAVE_TARGET_32_BIG
3540 template
3541 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3542 #endif
3543
3544 #ifdef HAVE_TARGET_64_LITTLE
3545 template
3546 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3547 #endif
3548
3549 #ifdef HAVE_TARGET_64_BIG
3550 template
3551 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3552 #endif
3553
3554 #ifdef HAVE_TARGET_32_LITTLE
3555 template
3556 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3557 #endif
3558
3559 #ifdef HAVE_TARGET_32_BIG
3560 template
3561 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3562 #endif
3563
3564 #ifdef HAVE_TARGET_64_LITTLE
3565 template
3566 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3567 #endif
3568
3569 #ifdef HAVE_TARGET_64_BIG
3570 template
3571 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3572 #endif
3573
3574 #ifdef HAVE_TARGET_32_LITTLE
3575 template
3576 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3577 #endif
3578
3579 #ifdef HAVE_TARGET_32_BIG
3580 template
3581 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3582 #endif
3583
3584 #ifdef HAVE_TARGET_64_LITTLE
3585 template
3586 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3587 #endif
3588
3589 #ifdef HAVE_TARGET_64_BIG
3590 template
3591 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3592 #endif
3593
3594 #ifdef HAVE_TARGET_32_LITTLE
3595 template
3596 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3597 #endif
3598
3599 #ifdef HAVE_TARGET_32_BIG
3600 template
3601 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3602 #endif
3603
3604 #ifdef HAVE_TARGET_64_LITTLE
3605 template
3606 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3607 #endif
3608
3609 #ifdef HAVE_TARGET_64_BIG
3610 template
3611 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3612 #endif
3613
3614 #ifdef HAVE_TARGET_32_LITTLE
3615 template
3616 class Output_data_group<32, false>;
3617 #endif
3618
3619 #ifdef HAVE_TARGET_32_BIG
3620 template
3621 class Output_data_group<32, true>;
3622 #endif
3623
3624 #ifdef HAVE_TARGET_64_LITTLE
3625 template
3626 class Output_data_group<64, false>;
3627 #endif
3628
3629 #ifdef HAVE_TARGET_64_BIG
3630 template
3631 class Output_data_group<64, true>;
3632 #endif
3633
3634 #ifdef HAVE_TARGET_32_LITTLE
3635 template
3636 class Output_data_got<32, false>;
3637 #endif
3638
3639 #ifdef HAVE_TARGET_32_BIG
3640 template
3641 class Output_data_got<32, true>;
3642 #endif
3643
3644 #ifdef HAVE_TARGET_64_LITTLE
3645 template
3646 class Output_data_got<64, false>;
3647 #endif
3648
3649 #ifdef HAVE_TARGET_64_BIG
3650 template
3651 class Output_data_got<64, true>;
3652 #endif
3653
3654 } // End namespace gold.