Group text sections with prefixes .text.unlikely,.text.hot and .text.startup
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cstdlib>
27 #include <cstring>
28 #include <cerrno>
29 #include <fcntl.h>
30 #include <unistd.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33
34 #ifdef HAVE_SYS_MMAN_H
35 #include <sys/mman.h>
36 #endif
37
38 #include "libiberty.h"
39
40 #include "dwarf.h"
41 #include "parameters.h"
42 #include "object.h"
43 #include "symtab.h"
44 #include "reloc.h"
45 #include "merge.h"
46 #include "descriptors.h"
47 #include "layout.h"
48 #include "output.h"
49
50 // For systems without mmap support.
51 #ifndef HAVE_MMAP
52 # define mmap gold_mmap
53 # define munmap gold_munmap
54 # define mremap gold_mremap
55 # ifndef MAP_FAILED
56 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
57 # endif
58 # ifndef PROT_READ
59 #  define PROT_READ 0
60 # endif
61 # ifndef PROT_WRITE
62 #  define PROT_WRITE 0
63 # endif
64 # ifndef MAP_PRIVATE
65 #  define MAP_PRIVATE 0
66 # endif
67 # ifndef MAP_ANONYMOUS
68 #  define MAP_ANONYMOUS 0
69 # endif
70 # ifndef MAP_SHARED
71 #  define MAP_SHARED 0
72 # endif
73
74 # ifndef ENOSYS
75 #  define ENOSYS EINVAL
76 # endif
77
78 static void *
79 gold_mmap(void *, size_t, int, int, int, off_t)
80 {
81   errno = ENOSYS;
82   return MAP_FAILED;
83 }
84
85 static int
86 gold_munmap(void *, size_t)
87 {
88   errno = ENOSYS;
89   return -1;
90 }
91
92 static void *
93 gold_mremap(void *, size_t, size_t, int)
94 {
95   errno = ENOSYS;
96   return MAP_FAILED;
97 }
98
99 #endif
100
101 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
102 # define mremap gold_mremap
103 extern "C" void *gold_mremap(void *, size_t, size_t, int);
104 #endif
105
106 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
107 #ifndef MAP_ANONYMOUS
108 # define MAP_ANONYMOUS  MAP_ANON
109 #endif
110
111 #ifndef MREMAP_MAYMOVE
112 # define MREMAP_MAYMOVE 1
113 #endif
114
115 // Mingw does not have S_ISLNK.
116 #ifndef S_ISLNK
117 # define S_ISLNK(mode) 0
118 #endif
119
120 namespace gold
121 {
122
123 // A wrapper around posix_fallocate.  If we don't have posix_fallocate,
124 // or the --no-posix-fallocate option is set, we try the fallocate
125 // system call directly.  If that fails, we use ftruncate to set
126 // the file size and hope that there is enough disk space.
127
128 static int
129 gold_fallocate(int o, off_t offset, off_t len)
130 {
131 #ifdef HAVE_POSIX_FALLOCATE
132   if (parameters->options().posix_fallocate())
133     return ::posix_fallocate(o, offset, len);
134 #endif // defined(HAVE_POSIX_FALLOCATE)
135 #ifdef HAVE_FALLOCATE
136   if (::fallocate(o, 0, offset, len) == 0)
137     return 0;
138 #endif // defined(HAVE_FALLOCATE)
139   if (::ftruncate(o, offset + len) < 0)
140     return errno;
141   return 0;
142 }
143
144 // Output_data variables.
145
146 bool Output_data::allocated_sizes_are_fixed;
147
148 // Output_data methods.
149
150 Output_data::~Output_data()
151 {
152 }
153
154 // Return the default alignment for the target size.
155
156 uint64_t
157 Output_data::default_alignment()
158 {
159   return Output_data::default_alignment_for_size(
160       parameters->target().get_size());
161 }
162
163 // Return the default alignment for a size--32 or 64.
164
165 uint64_t
166 Output_data::default_alignment_for_size(int size)
167 {
168   if (size == 32)
169     return 4;
170   else if (size == 64)
171     return 8;
172   else
173     gold_unreachable();
174 }
175
176 // Output_section_header methods.  This currently assumes that the
177 // segment and section lists are complete at construction time.
178
179 Output_section_headers::Output_section_headers(
180     const Layout* layout,
181     const Layout::Segment_list* segment_list,
182     const Layout::Section_list* section_list,
183     const Layout::Section_list* unattached_section_list,
184     const Stringpool* secnamepool,
185     const Output_section* shstrtab_section)
186   : layout_(layout),
187     segment_list_(segment_list),
188     section_list_(section_list),
189     unattached_section_list_(unattached_section_list),
190     secnamepool_(secnamepool),
191     shstrtab_section_(shstrtab_section)
192 {
193 }
194
195 // Compute the current data size.
196
197 off_t
198 Output_section_headers::do_size() const
199 {
200   // Count all the sections.  Start with 1 for the null section.
201   off_t count = 1;
202   if (!parameters->options().relocatable())
203     {
204       for (Layout::Segment_list::const_iterator p =
205              this->segment_list_->begin();
206            p != this->segment_list_->end();
207            ++p)
208         if ((*p)->type() == elfcpp::PT_LOAD)
209           count += (*p)->output_section_count();
210     }
211   else
212     {
213       for (Layout::Section_list::const_iterator p =
214              this->section_list_->begin();
215            p != this->section_list_->end();
216            ++p)
217         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
218           ++count;
219     }
220   count += this->unattached_section_list_->size();
221
222   const int size = parameters->target().get_size();
223   int shdr_size;
224   if (size == 32)
225     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
226   else if (size == 64)
227     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
228   else
229     gold_unreachable();
230
231   return count * shdr_size;
232 }
233
234 // Write out the section headers.
235
236 void
237 Output_section_headers::do_write(Output_file* of)
238 {
239   switch (parameters->size_and_endianness())
240     {
241 #ifdef HAVE_TARGET_32_LITTLE
242     case Parameters::TARGET_32_LITTLE:
243       this->do_sized_write<32, false>(of);
244       break;
245 #endif
246 #ifdef HAVE_TARGET_32_BIG
247     case Parameters::TARGET_32_BIG:
248       this->do_sized_write<32, true>(of);
249       break;
250 #endif
251 #ifdef HAVE_TARGET_64_LITTLE
252     case Parameters::TARGET_64_LITTLE:
253       this->do_sized_write<64, false>(of);
254       break;
255 #endif
256 #ifdef HAVE_TARGET_64_BIG
257     case Parameters::TARGET_64_BIG:
258       this->do_sized_write<64, true>(of);
259       break;
260 #endif
261     default:
262       gold_unreachable();
263     }
264 }
265
266 template<int size, bool big_endian>
267 void
268 Output_section_headers::do_sized_write(Output_file* of)
269 {
270   off_t all_shdrs_size = this->data_size();
271   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
272
273   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
274   unsigned char* v = view;
275
276   {
277     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
278     oshdr.put_sh_name(0);
279     oshdr.put_sh_type(elfcpp::SHT_NULL);
280     oshdr.put_sh_flags(0);
281     oshdr.put_sh_addr(0);
282     oshdr.put_sh_offset(0);
283
284     size_t section_count = (this->data_size()
285                             / elfcpp::Elf_sizes<size>::shdr_size);
286     if (section_count < elfcpp::SHN_LORESERVE)
287       oshdr.put_sh_size(0);
288     else
289       oshdr.put_sh_size(section_count);
290
291     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
292     if (shstrndx < elfcpp::SHN_LORESERVE)
293       oshdr.put_sh_link(0);
294     else
295       oshdr.put_sh_link(shstrndx);
296
297     size_t segment_count = this->segment_list_->size();
298     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
299
300     oshdr.put_sh_addralign(0);
301     oshdr.put_sh_entsize(0);
302   }
303
304   v += shdr_size;
305
306   unsigned int shndx = 1;
307   if (!parameters->options().relocatable())
308     {
309       for (Layout::Segment_list::const_iterator p =
310              this->segment_list_->begin();
311            p != this->segment_list_->end();
312            ++p)
313         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
314                                                           this->secnamepool_,
315                                                           v,
316                                                           &shndx);
317     }
318   else
319     {
320       for (Layout::Section_list::const_iterator p =
321              this->section_list_->begin();
322            p != this->section_list_->end();
323            ++p)
324         {
325           // We do unallocated sections below, except that group
326           // sections have to come first.
327           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
328               && (*p)->type() != elfcpp::SHT_GROUP)
329             continue;
330           gold_assert(shndx == (*p)->out_shndx());
331           elfcpp::Shdr_write<size, big_endian> oshdr(v);
332           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
333           v += shdr_size;
334           ++shndx;
335         }
336     }
337
338   for (Layout::Section_list::const_iterator p =
339          this->unattached_section_list_->begin();
340        p != this->unattached_section_list_->end();
341        ++p)
342     {
343       // For a relocatable link, we did unallocated group sections
344       // above, since they have to come first.
345       if ((*p)->type() == elfcpp::SHT_GROUP
346           && parameters->options().relocatable())
347         continue;
348       gold_assert(shndx == (*p)->out_shndx());
349       elfcpp::Shdr_write<size, big_endian> oshdr(v);
350       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
351       v += shdr_size;
352       ++shndx;
353     }
354
355   of->write_output_view(this->offset(), all_shdrs_size, view);
356 }
357
358 // Output_segment_header methods.
359
360 Output_segment_headers::Output_segment_headers(
361     const Layout::Segment_list& segment_list)
362   : segment_list_(segment_list)
363 {
364   this->set_current_data_size_for_child(this->do_size());
365 }
366
367 void
368 Output_segment_headers::do_write(Output_file* of)
369 {
370   switch (parameters->size_and_endianness())
371     {
372 #ifdef HAVE_TARGET_32_LITTLE
373     case Parameters::TARGET_32_LITTLE:
374       this->do_sized_write<32, false>(of);
375       break;
376 #endif
377 #ifdef HAVE_TARGET_32_BIG
378     case Parameters::TARGET_32_BIG:
379       this->do_sized_write<32, true>(of);
380       break;
381 #endif
382 #ifdef HAVE_TARGET_64_LITTLE
383     case Parameters::TARGET_64_LITTLE:
384       this->do_sized_write<64, false>(of);
385       break;
386 #endif
387 #ifdef HAVE_TARGET_64_BIG
388     case Parameters::TARGET_64_BIG:
389       this->do_sized_write<64, true>(of);
390       break;
391 #endif
392     default:
393       gold_unreachable();
394     }
395 }
396
397 template<int size, bool big_endian>
398 void
399 Output_segment_headers::do_sized_write(Output_file* of)
400 {
401   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
402   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
403   gold_assert(all_phdrs_size == this->data_size());
404   unsigned char* view = of->get_output_view(this->offset(),
405                                             all_phdrs_size);
406   unsigned char* v = view;
407   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
408        p != this->segment_list_.end();
409        ++p)
410     {
411       elfcpp::Phdr_write<size, big_endian> ophdr(v);
412       (*p)->write_header(&ophdr);
413       v += phdr_size;
414     }
415
416   gold_assert(v - view == all_phdrs_size);
417
418   of->write_output_view(this->offset(), all_phdrs_size, view);
419 }
420
421 off_t
422 Output_segment_headers::do_size() const
423 {
424   const int size = parameters->target().get_size();
425   int phdr_size;
426   if (size == 32)
427     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
428   else if (size == 64)
429     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
430   else
431     gold_unreachable();
432
433   return this->segment_list_.size() * phdr_size;
434 }
435
436 // Output_file_header methods.
437
438 Output_file_header::Output_file_header(const Target* target,
439                                        const Symbol_table* symtab,
440                                        const Output_segment_headers* osh)
441   : target_(target),
442     symtab_(symtab),
443     segment_header_(osh),
444     section_header_(NULL),
445     shstrtab_(NULL)
446 {
447   this->set_data_size(this->do_size());
448 }
449
450 // Set the section table information for a file header.
451
452 void
453 Output_file_header::set_section_info(const Output_section_headers* shdrs,
454                                      const Output_section* shstrtab)
455 {
456   this->section_header_ = shdrs;
457   this->shstrtab_ = shstrtab;
458 }
459
460 // Write out the file header.
461
462 void
463 Output_file_header::do_write(Output_file* of)
464 {
465   gold_assert(this->offset() == 0);
466
467   switch (parameters->size_and_endianness())
468     {
469 #ifdef HAVE_TARGET_32_LITTLE
470     case Parameters::TARGET_32_LITTLE:
471       this->do_sized_write<32, false>(of);
472       break;
473 #endif
474 #ifdef HAVE_TARGET_32_BIG
475     case Parameters::TARGET_32_BIG:
476       this->do_sized_write<32, true>(of);
477       break;
478 #endif
479 #ifdef HAVE_TARGET_64_LITTLE
480     case Parameters::TARGET_64_LITTLE:
481       this->do_sized_write<64, false>(of);
482       break;
483 #endif
484 #ifdef HAVE_TARGET_64_BIG
485     case Parameters::TARGET_64_BIG:
486       this->do_sized_write<64, true>(of);
487       break;
488 #endif
489     default:
490       gold_unreachable();
491     }
492 }
493
494 // Write out the file header with appropriate size and endianness.
495
496 template<int size, bool big_endian>
497 void
498 Output_file_header::do_sized_write(Output_file* of)
499 {
500   gold_assert(this->offset() == 0);
501
502   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
503   unsigned char* view = of->get_output_view(0, ehdr_size);
504   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
505
506   unsigned char e_ident[elfcpp::EI_NIDENT];
507   memset(e_ident, 0, elfcpp::EI_NIDENT);
508   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
509   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
510   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
511   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
512   if (size == 32)
513     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
514   else if (size == 64)
515     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
516   else
517     gold_unreachable();
518   e_ident[elfcpp::EI_DATA] = (big_endian
519                               ? elfcpp::ELFDATA2MSB
520                               : elfcpp::ELFDATA2LSB);
521   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
522   oehdr.put_e_ident(e_ident);
523
524   elfcpp::ET e_type;
525   if (parameters->options().relocatable())
526     e_type = elfcpp::ET_REL;
527   else if (parameters->options().output_is_position_independent())
528     e_type = elfcpp::ET_DYN;
529   else
530     e_type = elfcpp::ET_EXEC;
531   oehdr.put_e_type(e_type);
532
533   oehdr.put_e_machine(this->target_->machine_code());
534   oehdr.put_e_version(elfcpp::EV_CURRENT);
535
536   oehdr.put_e_entry(this->entry<size>());
537
538   if (this->segment_header_ == NULL)
539     oehdr.put_e_phoff(0);
540   else
541     oehdr.put_e_phoff(this->segment_header_->offset());
542
543   oehdr.put_e_shoff(this->section_header_->offset());
544   oehdr.put_e_flags(this->target_->processor_specific_flags());
545   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
546
547   if (this->segment_header_ == NULL)
548     {
549       oehdr.put_e_phentsize(0);
550       oehdr.put_e_phnum(0);
551     }
552   else
553     {
554       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
555       size_t phnum = (this->segment_header_->data_size()
556                       / elfcpp::Elf_sizes<size>::phdr_size);
557       if (phnum > elfcpp::PN_XNUM)
558         phnum = elfcpp::PN_XNUM;
559       oehdr.put_e_phnum(phnum);
560     }
561
562   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
563   size_t section_count = (this->section_header_->data_size()
564                           / elfcpp::Elf_sizes<size>::shdr_size);
565
566   if (section_count < elfcpp::SHN_LORESERVE)
567     oehdr.put_e_shnum(this->section_header_->data_size()
568                       / elfcpp::Elf_sizes<size>::shdr_size);
569   else
570     oehdr.put_e_shnum(0);
571
572   unsigned int shstrndx = this->shstrtab_->out_shndx();
573   if (shstrndx < elfcpp::SHN_LORESERVE)
574     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
575   else
576     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
577
578   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
579   // the e_ident field.
580   parameters->target().adjust_elf_header(view, ehdr_size);
581
582   of->write_output_view(0, ehdr_size, view);
583 }
584
585 // Return the value to use for the entry address.
586
587 template<int size>
588 typename elfcpp::Elf_types<size>::Elf_Addr
589 Output_file_header::entry()
590 {
591   const bool should_issue_warning = (parameters->options().entry() != NULL
592                                      && !parameters->options().relocatable()
593                                      && !parameters->options().shared());
594   const char* entry = parameters->entry();
595   Symbol* sym = this->symtab_->lookup(entry);
596
597   typename Sized_symbol<size>::Value_type v;
598   if (sym != NULL)
599     {
600       Sized_symbol<size>* ssym;
601       ssym = this->symtab_->get_sized_symbol<size>(sym);
602       if (!ssym->is_defined() && should_issue_warning)
603         gold_warning("entry symbol '%s' exists but is not defined", entry);
604       v = ssym->value();
605     }
606   else
607     {
608       // We couldn't find the entry symbol.  See if we can parse it as
609       // a number.  This supports, e.g., -e 0x1000.
610       char* endptr;
611       v = strtoull(entry, &endptr, 0);
612       if (*endptr != '\0')
613         {
614           if (should_issue_warning)
615             gold_warning("cannot find entry symbol '%s'", entry);
616           v = 0;
617         }
618     }
619
620   return v;
621 }
622
623 // Compute the current data size.
624
625 off_t
626 Output_file_header::do_size() const
627 {
628   const int size = parameters->target().get_size();
629   if (size == 32)
630     return elfcpp::Elf_sizes<32>::ehdr_size;
631   else if (size == 64)
632     return elfcpp::Elf_sizes<64>::ehdr_size;
633   else
634     gold_unreachable();
635 }
636
637 // Output_data_const methods.
638
639 void
640 Output_data_const::do_write(Output_file* of)
641 {
642   of->write(this->offset(), this->data_.data(), this->data_.size());
643 }
644
645 // Output_data_const_buffer methods.
646
647 void
648 Output_data_const_buffer::do_write(Output_file* of)
649 {
650   of->write(this->offset(), this->p_, this->data_size());
651 }
652
653 // Output_section_data methods.
654
655 // Record the output section, and set the entry size and such.
656
657 void
658 Output_section_data::set_output_section(Output_section* os)
659 {
660   gold_assert(this->output_section_ == NULL);
661   this->output_section_ = os;
662   this->do_adjust_output_section(os);
663 }
664
665 // Return the section index of the output section.
666
667 unsigned int
668 Output_section_data::do_out_shndx() const
669 {
670   gold_assert(this->output_section_ != NULL);
671   return this->output_section_->out_shndx();
672 }
673
674 // Set the alignment, which means we may need to update the alignment
675 // of the output section.
676
677 void
678 Output_section_data::set_addralign(uint64_t addralign)
679 {
680   this->addralign_ = addralign;
681   if (this->output_section_ != NULL
682       && this->output_section_->addralign() < addralign)
683     this->output_section_->set_addralign(addralign);
684 }
685
686 // Output_data_strtab methods.
687
688 // Set the final data size.
689
690 void
691 Output_data_strtab::set_final_data_size()
692 {
693   this->strtab_->set_string_offsets();
694   this->set_data_size(this->strtab_->get_strtab_size());
695 }
696
697 // Write out a string table.
698
699 void
700 Output_data_strtab::do_write(Output_file* of)
701 {
702   this->strtab_->write(of, this->offset());
703 }
704
705 // Output_reloc methods.
706
707 // A reloc against a global symbol.
708
709 template<bool dynamic, int size, bool big_endian>
710 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
711     Symbol* gsym,
712     unsigned int type,
713     Output_data* od,
714     Address address,
715     bool is_relative,
716     bool is_symbolless,
717     bool use_plt_offset)
718   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
719     is_relative_(is_relative), is_symbolless_(is_symbolless),
720     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
721 {
722   // this->type_ is a bitfield; make sure TYPE fits.
723   gold_assert(this->type_ == type);
724   this->u1_.gsym = gsym;
725   this->u2_.od = od;
726   if (dynamic)
727     this->set_needs_dynsym_index();
728 }
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732     Symbol* gsym,
733     unsigned int type,
734     Sized_relobj<size, big_endian>* relobj,
735     unsigned int shndx,
736     Address address,
737     bool is_relative,
738     bool is_symbolless,
739     bool use_plt_offset)
740   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
741     is_relative_(is_relative), is_symbolless_(is_symbolless),
742     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
743 {
744   gold_assert(shndx != INVALID_CODE);
745   // this->type_ is a bitfield; make sure TYPE fits.
746   gold_assert(this->type_ == type);
747   this->u1_.gsym = gsym;
748   this->u2_.relobj = relobj;
749   if (dynamic)
750     this->set_needs_dynsym_index();
751 }
752
753 // A reloc against a local symbol.
754
755 template<bool dynamic, int size, bool big_endian>
756 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
757     Sized_relobj<size, big_endian>* relobj,
758     unsigned int local_sym_index,
759     unsigned int type,
760     Output_data* od,
761     Address address,
762     bool is_relative,
763     bool is_symbolless,
764     bool is_section_symbol,
765     bool use_plt_offset)
766   : address_(address), local_sym_index_(local_sym_index), type_(type),
767     is_relative_(is_relative), is_symbolless_(is_symbolless),
768     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
769     shndx_(INVALID_CODE)
770 {
771   gold_assert(local_sym_index != GSYM_CODE
772               && local_sym_index != INVALID_CODE);
773   // this->type_ is a bitfield; make sure TYPE fits.
774   gold_assert(this->type_ == type);
775   this->u1_.relobj = relobj;
776   this->u2_.od = od;
777   if (dynamic)
778     this->set_needs_dynsym_index();
779 }
780
781 template<bool dynamic, int size, bool big_endian>
782 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
783     Sized_relobj<size, big_endian>* relobj,
784     unsigned int local_sym_index,
785     unsigned int type,
786     unsigned int shndx,
787     Address address,
788     bool is_relative,
789     bool is_symbolless,
790     bool is_section_symbol,
791     bool use_plt_offset)
792   : address_(address), local_sym_index_(local_sym_index), type_(type),
793     is_relative_(is_relative), is_symbolless_(is_symbolless),
794     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
795     shndx_(shndx)
796 {
797   gold_assert(local_sym_index != GSYM_CODE
798               && local_sym_index != INVALID_CODE);
799   gold_assert(shndx != INVALID_CODE);
800   // this->type_ is a bitfield; make sure TYPE fits.
801   gold_assert(this->type_ == type);
802   this->u1_.relobj = relobj;
803   this->u2_.relobj = relobj;
804   if (dynamic)
805     this->set_needs_dynsym_index();
806 }
807
808 // A reloc against the STT_SECTION symbol of an output section.
809
810 template<bool dynamic, int size, bool big_endian>
811 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
812     Output_section* os,
813     unsigned int type,
814     Output_data* od,
815     Address address,
816     bool is_relative)
817   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
818     is_relative_(is_relative), is_symbolless_(is_relative),
819     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
820 {
821   // this->type_ is a bitfield; make sure TYPE fits.
822   gold_assert(this->type_ == type);
823   this->u1_.os = os;
824   this->u2_.od = od;
825   if (dynamic)
826     this->set_needs_dynsym_index();
827   else
828     os->set_needs_symtab_index();
829 }
830
831 template<bool dynamic, int size, bool big_endian>
832 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
833     Output_section* os,
834     unsigned int type,
835     Sized_relobj<size, big_endian>* relobj,
836     unsigned int shndx,
837     Address address,
838     bool is_relative)
839   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
840     is_relative_(is_relative), is_symbolless_(is_relative),
841     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
842 {
843   gold_assert(shndx != INVALID_CODE);
844   // this->type_ is a bitfield; make sure TYPE fits.
845   gold_assert(this->type_ == type);
846   this->u1_.os = os;
847   this->u2_.relobj = relobj;
848   if (dynamic)
849     this->set_needs_dynsym_index();
850   else
851     os->set_needs_symtab_index();
852 }
853
854 // An absolute or relative relocation.
855
856 template<bool dynamic, int size, bool big_endian>
857 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
858     unsigned int type,
859     Output_data* od,
860     Address address,
861     bool is_relative)
862   : address_(address), local_sym_index_(0), type_(type),
863     is_relative_(is_relative), is_symbolless_(false),
864     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
865 {
866   // this->type_ is a bitfield; make sure TYPE fits.
867   gold_assert(this->type_ == type);
868   this->u1_.relobj = NULL;
869   this->u2_.od = od;
870 }
871
872 template<bool dynamic, int size, bool big_endian>
873 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
874     unsigned int type,
875     Sized_relobj<size, big_endian>* relobj,
876     unsigned int shndx,
877     Address address,
878     bool is_relative)
879   : address_(address), local_sym_index_(0), type_(type),
880     is_relative_(is_relative), is_symbolless_(false),
881     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
882 {
883   gold_assert(shndx != INVALID_CODE);
884   // this->type_ is a bitfield; make sure TYPE fits.
885   gold_assert(this->type_ == type);
886   this->u1_.relobj = NULL;
887   this->u2_.relobj = relobj;
888 }
889
890 // A target specific relocation.
891
892 template<bool dynamic, int size, bool big_endian>
893 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
894     unsigned int type,
895     void* arg,
896     Output_data* od,
897     Address address)
898   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
899     is_relative_(false), is_symbolless_(false),
900     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
901 {
902   // this->type_ is a bitfield; make sure TYPE fits.
903   gold_assert(this->type_ == type);
904   this->u1_.arg = arg;
905   this->u2_.od = od;
906 }
907
908 template<bool dynamic, int size, bool big_endian>
909 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
910     unsigned int type,
911     void* arg,
912     Sized_relobj<size, big_endian>* relobj,
913     unsigned int shndx,
914     Address address)
915   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
916     is_relative_(false), is_symbolless_(false),
917     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
918 {
919   gold_assert(shndx != INVALID_CODE);
920   // this->type_ is a bitfield; make sure TYPE fits.
921   gold_assert(this->type_ == type);
922   this->u1_.arg = arg;
923   this->u2_.relobj = relobj;
924 }
925
926 // Record that we need a dynamic symbol index for this relocation.
927
928 template<bool dynamic, int size, bool big_endian>
929 void
930 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
931 set_needs_dynsym_index()
932 {
933   if (this->is_symbolless_)
934     return;
935   switch (this->local_sym_index_)
936     {
937     case INVALID_CODE:
938       gold_unreachable();
939
940     case GSYM_CODE:
941       this->u1_.gsym->set_needs_dynsym_entry();
942       break;
943
944     case SECTION_CODE:
945       this->u1_.os->set_needs_dynsym_index();
946       break;
947
948     case TARGET_CODE:
949       // The target must take care of this if necessary.
950       break;
951
952     case 0:
953       break;
954
955     default:
956       {
957         const unsigned int lsi = this->local_sym_index_;
958         Sized_relobj_file<size, big_endian>* relobj =
959             this->u1_.relobj->sized_relobj();
960         gold_assert(relobj != NULL);
961         if (!this->is_section_symbol_)
962           relobj->set_needs_output_dynsym_entry(lsi);
963         else
964           relobj->output_section(lsi)->set_needs_dynsym_index();
965       }
966       break;
967     }
968 }
969
970 // Get the symbol index of a relocation.
971
972 template<bool dynamic, int size, bool big_endian>
973 unsigned int
974 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
975   const
976 {
977   unsigned int index;
978   if (this->is_symbolless_)
979     return 0;
980   switch (this->local_sym_index_)
981     {
982     case INVALID_CODE:
983       gold_unreachable();
984
985     case GSYM_CODE:
986       if (this->u1_.gsym == NULL)
987         index = 0;
988       else if (dynamic)
989         index = this->u1_.gsym->dynsym_index();
990       else
991         index = this->u1_.gsym->symtab_index();
992       break;
993
994     case SECTION_CODE:
995       if (dynamic)
996         index = this->u1_.os->dynsym_index();
997       else
998         index = this->u1_.os->symtab_index();
999       break;
1000
1001     case TARGET_CODE:
1002       index = parameters->target().reloc_symbol_index(this->u1_.arg,
1003                                                       this->type_);
1004       break;
1005
1006     case 0:
1007       // Relocations without symbols use a symbol index of 0.
1008       index = 0;
1009       break;
1010
1011     default:
1012       {
1013         const unsigned int lsi = this->local_sym_index_;
1014         Sized_relobj_file<size, big_endian>* relobj =
1015             this->u1_.relobj->sized_relobj();
1016         gold_assert(relobj != NULL);
1017         if (!this->is_section_symbol_)
1018           {
1019             if (dynamic)
1020               index = relobj->dynsym_index(lsi);
1021             else
1022               index = relobj->symtab_index(lsi);
1023           }
1024         else
1025           {
1026             Output_section* os = relobj->output_section(lsi);
1027             gold_assert(os != NULL);
1028             if (dynamic)
1029               index = os->dynsym_index();
1030             else
1031               index = os->symtab_index();
1032           }
1033       }
1034       break;
1035     }
1036   gold_assert(index != -1U);
1037   return index;
1038 }
1039
1040 // For a local section symbol, get the address of the offset ADDEND
1041 // within the input section.
1042
1043 template<bool dynamic, int size, bool big_endian>
1044 typename elfcpp::Elf_types<size>::Elf_Addr
1045 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1046   local_section_offset(Addend addend) const
1047 {
1048   gold_assert(this->local_sym_index_ != GSYM_CODE
1049               && this->local_sym_index_ != SECTION_CODE
1050               && this->local_sym_index_ != TARGET_CODE
1051               && this->local_sym_index_ != INVALID_CODE
1052               && this->local_sym_index_ != 0
1053               && this->is_section_symbol_);
1054   const unsigned int lsi = this->local_sym_index_;
1055   Output_section* os = this->u1_.relobj->output_section(lsi);
1056   gold_assert(os != NULL);
1057   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1058   if (offset != invalid_address)
1059     return offset + addend;
1060   // This is a merge section.
1061   Sized_relobj_file<size, big_endian>* relobj =
1062       this->u1_.relobj->sized_relobj();
1063   gold_assert(relobj != NULL);
1064   offset = os->output_address(relobj, lsi, addend);
1065   gold_assert(offset != invalid_address);
1066   return offset;
1067 }
1068
1069 // Get the output address of a relocation.
1070
1071 template<bool dynamic, int size, bool big_endian>
1072 typename elfcpp::Elf_types<size>::Elf_Addr
1073 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1074 {
1075   Address address = this->address_;
1076   if (this->shndx_ != INVALID_CODE)
1077     {
1078       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1079       gold_assert(os != NULL);
1080       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1081       if (off != invalid_address)
1082         address += os->address() + off;
1083       else
1084         {
1085           Sized_relobj_file<size, big_endian>* relobj =
1086               this->u2_.relobj->sized_relobj();
1087           gold_assert(relobj != NULL);
1088           address = os->output_address(relobj, this->shndx_, address);
1089           gold_assert(address != invalid_address);
1090         }
1091     }
1092   else if (this->u2_.od != NULL)
1093     address += this->u2_.od->address();
1094   return address;
1095 }
1096
1097 // Write out the offset and info fields of a Rel or Rela relocation
1098 // entry.
1099
1100 template<bool dynamic, int size, bool big_endian>
1101 template<typename Write_rel>
1102 void
1103 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1104     Write_rel* wr) const
1105 {
1106   wr->put_r_offset(this->get_address());
1107   unsigned int sym_index = this->get_symbol_index();
1108   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1109 }
1110
1111 // Write out a Rel relocation.
1112
1113 template<bool dynamic, int size, bool big_endian>
1114 void
1115 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1116     unsigned char* pov) const
1117 {
1118   elfcpp::Rel_write<size, big_endian> orel(pov);
1119   this->write_rel(&orel);
1120 }
1121
1122 // Get the value of the symbol referred to by a Rel relocation.
1123
1124 template<bool dynamic, int size, bool big_endian>
1125 typename elfcpp::Elf_types<size>::Elf_Addr
1126 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1127     Addend addend) const
1128 {
1129   if (this->local_sym_index_ == GSYM_CODE)
1130     {
1131       const Sized_symbol<size>* sym;
1132       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1133       if (this->use_plt_offset_ && sym->has_plt_offset())
1134         return parameters->target().plt_address_for_global(sym);
1135       else
1136         return sym->value() + addend;
1137     }
1138   if (this->local_sym_index_ == SECTION_CODE)
1139     {
1140       gold_assert(!this->use_plt_offset_);
1141       return this->u1_.os->address() + addend;
1142     }
1143   gold_assert(this->local_sym_index_ != TARGET_CODE
1144               && this->local_sym_index_ != INVALID_CODE
1145               && this->local_sym_index_ != 0
1146               && !this->is_section_symbol_);
1147   const unsigned int lsi = this->local_sym_index_;
1148   Sized_relobj_file<size, big_endian>* relobj =
1149       this->u1_.relobj->sized_relobj();
1150   gold_assert(relobj != NULL);
1151   if (this->use_plt_offset_)
1152     return parameters->target().plt_address_for_local(relobj, lsi);
1153   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1154   return symval->value(relobj, addend);
1155 }
1156
1157 // Reloc comparison.  This function sorts the dynamic relocs for the
1158 // benefit of the dynamic linker.  First we sort all relative relocs
1159 // to the front.  Among relative relocs, we sort by output address.
1160 // Among non-relative relocs, we sort by symbol index, then by output
1161 // address.
1162
1163 template<bool dynamic, int size, bool big_endian>
1164 int
1165 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1166   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1167     const
1168 {
1169   if (this->is_relative_)
1170     {
1171       if (!r2.is_relative_)
1172         return -1;
1173       // Otherwise sort by reloc address below.
1174     }
1175   else if (r2.is_relative_)
1176     return 1;
1177   else
1178     {
1179       unsigned int sym1 = this->get_symbol_index();
1180       unsigned int sym2 = r2.get_symbol_index();
1181       if (sym1 < sym2)
1182         return -1;
1183       else if (sym1 > sym2)
1184         return 1;
1185       // Otherwise sort by reloc address.
1186     }
1187
1188   section_offset_type addr1 = this->get_address();
1189   section_offset_type addr2 = r2.get_address();
1190   if (addr1 < addr2)
1191     return -1;
1192   else if (addr1 > addr2)
1193     return 1;
1194
1195   // Final tie breaker, in order to generate the same output on any
1196   // host: reloc type.
1197   unsigned int type1 = this->type_;
1198   unsigned int type2 = r2.type_;
1199   if (type1 < type2)
1200     return -1;
1201   else if (type1 > type2)
1202     return 1;
1203
1204   // These relocs appear to be exactly the same.
1205   return 0;
1206 }
1207
1208 // Write out a Rela relocation.
1209
1210 template<bool dynamic, int size, bool big_endian>
1211 void
1212 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1213     unsigned char* pov) const
1214 {
1215   elfcpp::Rela_write<size, big_endian> orel(pov);
1216   this->rel_.write_rel(&orel);
1217   Addend addend = this->addend_;
1218   if (this->rel_.is_target_specific())
1219     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1220                                                this->rel_.type(), addend);
1221   else if (this->rel_.is_symbolless())
1222     addend = this->rel_.symbol_value(addend);
1223   else if (this->rel_.is_local_section_symbol())
1224     addend = this->rel_.local_section_offset(addend);
1225   orel.put_r_addend(addend);
1226 }
1227
1228 // Output_data_reloc_base methods.
1229
1230 // Adjust the output section.
1231
1232 template<int sh_type, bool dynamic, int size, bool big_endian>
1233 void
1234 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1235     ::do_adjust_output_section(Output_section* os)
1236 {
1237   if (sh_type == elfcpp::SHT_REL)
1238     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1239   else if (sh_type == elfcpp::SHT_RELA)
1240     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1241   else
1242     gold_unreachable();
1243
1244   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1245   // static link.  The backends will generate a dynamic reloc section
1246   // to hold this.  In that case we don't want to link to the dynsym
1247   // section, because there isn't one.
1248   if (!dynamic)
1249     os->set_should_link_to_symtab();
1250   else if (parameters->doing_static_link())
1251     ;
1252   else
1253     os->set_should_link_to_dynsym();
1254 }
1255
1256 // Write out relocation data.
1257
1258 template<int sh_type, bool dynamic, int size, bool big_endian>
1259 void
1260 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1261     Output_file* of)
1262 {
1263   const off_t off = this->offset();
1264   const off_t oview_size = this->data_size();
1265   unsigned char* const oview = of->get_output_view(off, oview_size);
1266
1267   if (this->sort_relocs())
1268     {
1269       gold_assert(dynamic);
1270       std::sort(this->relocs_.begin(), this->relocs_.end(),
1271                 Sort_relocs_comparison());
1272     }
1273
1274   unsigned char* pov = oview;
1275   for (typename Relocs::const_iterator p = this->relocs_.begin();
1276        p != this->relocs_.end();
1277        ++p)
1278     {
1279       p->write(pov);
1280       pov += reloc_size;
1281     }
1282
1283   gold_assert(pov - oview == oview_size);
1284
1285   of->write_output_view(off, oview_size, oview);
1286
1287   // We no longer need the relocation entries.
1288   this->relocs_.clear();
1289 }
1290
1291 // Class Output_relocatable_relocs.
1292
1293 template<int sh_type, int size, bool big_endian>
1294 void
1295 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1296 {
1297   this->set_data_size(this->rr_->output_reloc_count()
1298                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1299 }
1300
1301 // class Output_data_group.
1302
1303 template<int size, bool big_endian>
1304 Output_data_group<size, big_endian>::Output_data_group(
1305     Sized_relobj_file<size, big_endian>* relobj,
1306     section_size_type entry_count,
1307     elfcpp::Elf_Word flags,
1308     std::vector<unsigned int>* input_shndxes)
1309   : Output_section_data(entry_count * 4, 4, false),
1310     relobj_(relobj),
1311     flags_(flags)
1312 {
1313   this->input_shndxes_.swap(*input_shndxes);
1314 }
1315
1316 // Write out the section group, which means translating the section
1317 // indexes to apply to the output file.
1318
1319 template<int size, bool big_endian>
1320 void
1321 Output_data_group<size, big_endian>::do_write(Output_file* of)
1322 {
1323   const off_t off = this->offset();
1324   const section_size_type oview_size =
1325     convert_to_section_size_type(this->data_size());
1326   unsigned char* const oview = of->get_output_view(off, oview_size);
1327
1328   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1329   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1330   ++contents;
1331
1332   for (std::vector<unsigned int>::const_iterator p =
1333          this->input_shndxes_.begin();
1334        p != this->input_shndxes_.end();
1335        ++p, ++contents)
1336     {
1337       Output_section* os = this->relobj_->output_section(*p);
1338
1339       unsigned int output_shndx;
1340       if (os != NULL)
1341         output_shndx = os->out_shndx();
1342       else
1343         {
1344           this->relobj_->error(_("section group retained but "
1345                                  "group element discarded"));
1346           output_shndx = 0;
1347         }
1348
1349       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1350     }
1351
1352   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1353   gold_assert(wrote == oview_size);
1354
1355   of->write_output_view(off, oview_size, oview);
1356
1357   // We no longer need this information.
1358   this->input_shndxes_.clear();
1359 }
1360
1361 // Output_data_got::Got_entry methods.
1362
1363 // Write out the entry.
1364
1365 template<int got_size, bool big_endian>
1366 void
1367 Output_data_got<got_size, big_endian>::Got_entry::write(
1368     unsigned int got_indx,
1369     unsigned char* pov) const
1370 {
1371   Valtype val = 0;
1372
1373   switch (this->local_sym_index_)
1374     {
1375     case GSYM_CODE:
1376       {
1377         // If the symbol is resolved locally, we need to write out the
1378         // link-time value, which will be relocated dynamically by a
1379         // RELATIVE relocation.
1380         Symbol* gsym = this->u_.gsym;
1381         if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1382           val = parameters->target().plt_address_for_global(gsym);
1383         else
1384           {
1385             switch (parameters->size_and_endianness())
1386               {
1387 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1388               case Parameters::TARGET_32_LITTLE:
1389               case Parameters::TARGET_32_BIG:
1390                 {
1391                   // This cast is ugly.  We don't want to put a
1392                   // virtual method in Symbol, because we want Symbol
1393                   // to be as small as possible.
1394                   Sized_symbol<32>::Value_type v;
1395                   v = static_cast<Sized_symbol<32>*>(gsym)->value();
1396                   val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1397                 }
1398                 break;
1399 #endif
1400 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1401               case Parameters::TARGET_64_LITTLE:
1402               case Parameters::TARGET_64_BIG:
1403                 {
1404                   Sized_symbol<64>::Value_type v;
1405                   v = static_cast<Sized_symbol<64>*>(gsym)->value();
1406                   val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1407                 }
1408                 break;
1409 #endif
1410               default:
1411                 gold_unreachable();
1412               }
1413             if (this->use_plt_or_tls_offset_
1414                 && gsym->type() == elfcpp::STT_TLS)
1415               val += parameters->target().tls_offset_for_global(gsym,
1416                                                                 got_indx);
1417           }
1418       }
1419       break;
1420
1421     case CONSTANT_CODE:
1422       val = this->u_.constant;
1423       break;
1424
1425     case RESERVED_CODE:
1426       // If we're doing an incremental update, don't touch this GOT entry.
1427       if (parameters->incremental_update())
1428         return;
1429       val = this->u_.constant;
1430       break;
1431
1432     default:
1433       {
1434         const Relobj* object = this->u_.object;
1435         const unsigned int lsi = this->local_sym_index_;
1436         bool is_tls = object->local_is_tls(lsi);
1437         if (this->use_plt_or_tls_offset_ && !is_tls)
1438           val = parameters->target().plt_address_for_local(object, lsi);
1439         else
1440           {
1441             uint64_t lval = object->local_symbol_value(lsi, 0);
1442             val = convert_types<Valtype, uint64_t>(lval);
1443             if (this->use_plt_or_tls_offset_ && is_tls)
1444               val += parameters->target().tls_offset_for_local(object, lsi,
1445                                                                got_indx);
1446           }
1447       }
1448       break;
1449     }
1450
1451   elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1452 }
1453
1454 // Output_data_got methods.
1455
1456 // Add an entry for a global symbol to the GOT.  This returns true if
1457 // this is a new GOT entry, false if the symbol already had a GOT
1458 // entry.
1459
1460 template<int got_size, bool big_endian>
1461 bool
1462 Output_data_got<got_size, big_endian>::add_global(
1463     Symbol* gsym,
1464     unsigned int got_type)
1465 {
1466   if (gsym->has_got_offset(got_type))
1467     return false;
1468
1469   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1470   gsym->set_got_offset(got_type, got_offset);
1471   return true;
1472 }
1473
1474 // Like add_global, but use the PLT offset.
1475
1476 template<int got_size, bool big_endian>
1477 bool
1478 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1479                                                       unsigned int got_type)
1480 {
1481   if (gsym->has_got_offset(got_type))
1482     return false;
1483
1484   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1485   gsym->set_got_offset(got_type, got_offset);
1486   return true;
1487 }
1488
1489 // Add an entry for a global symbol to the GOT, and add a dynamic
1490 // relocation of type R_TYPE for the GOT entry.
1491
1492 template<int got_size, bool big_endian>
1493 void
1494 Output_data_got<got_size, big_endian>::add_global_with_rel(
1495     Symbol* gsym,
1496     unsigned int got_type,
1497     Output_data_reloc_generic* rel_dyn,
1498     unsigned int r_type)
1499 {
1500   if (gsym->has_got_offset(got_type))
1501     return;
1502
1503   unsigned int got_offset = this->add_got_entry(Got_entry());
1504   gsym->set_got_offset(got_type, got_offset);
1505   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1506 }
1507
1508 // Add a pair of entries for a global symbol to the GOT, and add
1509 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1510 // If R_TYPE_2 == 0, add the second entry with no relocation.
1511 template<int got_size, bool big_endian>
1512 void
1513 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1514     Symbol* gsym,
1515     unsigned int got_type,
1516     Output_data_reloc_generic* rel_dyn,
1517     unsigned int r_type_1,
1518     unsigned int r_type_2)
1519 {
1520   if (gsym->has_got_offset(got_type))
1521     return;
1522
1523   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1524   gsym->set_got_offset(got_type, got_offset);
1525   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1526
1527   if (r_type_2 != 0)
1528     rel_dyn->add_global_generic(gsym, r_type_2, this,
1529                                 got_offset + got_size / 8, 0);
1530 }
1531
1532 // Add an entry for a local symbol to the GOT.  This returns true if
1533 // this is a new GOT entry, false if the symbol already has a GOT
1534 // entry.
1535
1536 template<int got_size, bool big_endian>
1537 bool
1538 Output_data_got<got_size, big_endian>::add_local(
1539     Relobj* object,
1540     unsigned int symndx,
1541     unsigned int got_type)
1542 {
1543   if (object->local_has_got_offset(symndx, got_type))
1544     return false;
1545
1546   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1547                                                           false));
1548   object->set_local_got_offset(symndx, got_type, got_offset);
1549   return true;
1550 }
1551
1552 // Like add_local, but use the PLT offset.
1553
1554 template<int got_size, bool big_endian>
1555 bool
1556 Output_data_got<got_size, big_endian>::add_local_plt(
1557     Relobj* object,
1558     unsigned int symndx,
1559     unsigned int got_type)
1560 {
1561   if (object->local_has_got_offset(symndx, got_type))
1562     return false;
1563
1564   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1565                                                           true));
1566   object->set_local_got_offset(symndx, got_type, got_offset);
1567   return true;
1568 }
1569
1570 // Add an entry for a local symbol to the GOT, and add a dynamic
1571 // relocation of type R_TYPE for the GOT entry.
1572
1573 template<int got_size, bool big_endian>
1574 void
1575 Output_data_got<got_size, big_endian>::add_local_with_rel(
1576     Relobj* object,
1577     unsigned int symndx,
1578     unsigned int got_type,
1579     Output_data_reloc_generic* rel_dyn,
1580     unsigned int r_type)
1581 {
1582   if (object->local_has_got_offset(symndx, got_type))
1583     return;
1584
1585   unsigned int got_offset = this->add_got_entry(Got_entry());
1586   object->set_local_got_offset(symndx, got_type, got_offset);
1587   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1588 }
1589
1590 // Add a pair of entries for a local symbol to the GOT, and add
1591 // a dynamic relocation of type R_TYPE using the section symbol of
1592 // the output section to which input section SHNDX maps, on the first.
1593 // The first got entry will have a value of zero, the second the
1594 // value of the local symbol.
1595 template<int got_size, bool big_endian>
1596 void
1597 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1598     Relobj* object,
1599     unsigned int symndx,
1600     unsigned int shndx,
1601     unsigned int got_type,
1602     Output_data_reloc_generic* rel_dyn,
1603     unsigned int r_type)
1604 {
1605   if (object->local_has_got_offset(symndx, got_type))
1606     return;
1607
1608   unsigned int got_offset =
1609       this->add_got_entry_pair(Got_entry(),
1610                                Got_entry(object, symndx, false));
1611   object->set_local_got_offset(symndx, got_type, got_offset);
1612   Output_section* os = object->output_section(shndx);
1613   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1614 }
1615
1616 // Add a pair of entries for a local symbol to the GOT, and add
1617 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1618 // The first got entry will have a value of zero, the second the
1619 // value of the local symbol offset by Target::tls_offset_for_local.
1620 template<int got_size, bool big_endian>
1621 void
1622 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1623     Relobj* object,
1624     unsigned int symndx,
1625     unsigned int got_type,
1626     Output_data_reloc_generic* rel_dyn,
1627     unsigned int r_type)
1628 {
1629   if (object->local_has_got_offset(symndx, got_type))
1630     return;
1631
1632   unsigned int got_offset
1633     = this->add_got_entry_pair(Got_entry(),
1634                                Got_entry(object, symndx, true));
1635   object->set_local_got_offset(symndx, got_type, got_offset);
1636   rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1637 }
1638
1639 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1640
1641 template<int got_size, bool big_endian>
1642 void
1643 Output_data_got<got_size, big_endian>::reserve_local(
1644     unsigned int i,
1645     Relobj* object,
1646     unsigned int sym_index,
1647     unsigned int got_type)
1648 {
1649   this->do_reserve_slot(i);
1650   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1651 }
1652
1653 // Reserve a slot in the GOT for a global symbol.
1654
1655 template<int got_size, bool big_endian>
1656 void
1657 Output_data_got<got_size, big_endian>::reserve_global(
1658     unsigned int i,
1659     Symbol* gsym,
1660     unsigned int got_type)
1661 {
1662   this->do_reserve_slot(i);
1663   gsym->set_got_offset(got_type, this->got_offset(i));
1664 }
1665
1666 // Write out the GOT.
1667
1668 template<int got_size, bool big_endian>
1669 void
1670 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1671 {
1672   const int add = got_size / 8;
1673
1674   const off_t off = this->offset();
1675   const off_t oview_size = this->data_size();
1676   unsigned char* const oview = of->get_output_view(off, oview_size);
1677
1678   unsigned char* pov = oview;
1679   for (unsigned int i = 0; i < this->entries_.size(); ++i)
1680     {
1681       this->entries_[i].write(i, pov);
1682       pov += add;
1683     }
1684
1685   gold_assert(pov - oview == oview_size);
1686
1687   of->write_output_view(off, oview_size, oview);
1688
1689   // We no longer need the GOT entries.
1690   this->entries_.clear();
1691 }
1692
1693 // Create a new GOT entry and return its offset.
1694
1695 template<int got_size, bool big_endian>
1696 unsigned int
1697 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1698 {
1699   if (!this->is_data_size_valid())
1700     {
1701       this->entries_.push_back(got_entry);
1702       this->set_got_size();
1703       return this->last_got_offset();
1704     }
1705   else
1706     {
1707       // For an incremental update, find an available slot.
1708       off_t got_offset = this->free_list_.allocate(got_size / 8,
1709                                                    got_size / 8, 0);
1710       if (got_offset == -1)
1711         gold_fallback(_("out of patch space (GOT);"
1712                         " relink with --incremental-full"));
1713       unsigned int got_index = got_offset / (got_size / 8);
1714       gold_assert(got_index < this->entries_.size());
1715       this->entries_[got_index] = got_entry;
1716       return static_cast<unsigned int>(got_offset);
1717     }
1718 }
1719
1720 // Create a pair of new GOT entries and return the offset of the first.
1721
1722 template<int got_size, bool big_endian>
1723 unsigned int
1724 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1725     Got_entry got_entry_1,
1726     Got_entry got_entry_2)
1727 {
1728   if (!this->is_data_size_valid())
1729     {
1730       unsigned int got_offset;
1731       this->entries_.push_back(got_entry_1);
1732       got_offset = this->last_got_offset();
1733       this->entries_.push_back(got_entry_2);
1734       this->set_got_size();
1735       return got_offset;
1736     }
1737   else
1738     {
1739       // For an incremental update, find an available pair of slots.
1740       off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1741                                                    got_size / 8, 0);
1742       if (got_offset == -1)
1743         gold_fallback(_("out of patch space (GOT);"
1744                         " relink with --incremental-full"));
1745       unsigned int got_index = got_offset / (got_size / 8);
1746       gold_assert(got_index < this->entries_.size());
1747       this->entries_[got_index] = got_entry_1;
1748       this->entries_[got_index + 1] = got_entry_2;
1749       return static_cast<unsigned int>(got_offset);
1750     }
1751 }
1752
1753 // Replace GOT entry I with a new value.
1754
1755 template<int got_size, bool big_endian>
1756 void
1757 Output_data_got<got_size, big_endian>::replace_got_entry(
1758     unsigned int i,
1759     Got_entry got_entry)
1760 {
1761   gold_assert(i < this->entries_.size());
1762   this->entries_[i] = got_entry;
1763 }
1764
1765 // Output_data_dynamic::Dynamic_entry methods.
1766
1767 // Write out the entry.
1768
1769 template<int size, bool big_endian>
1770 void
1771 Output_data_dynamic::Dynamic_entry::write(
1772     unsigned char* pov,
1773     const Stringpool* pool) const
1774 {
1775   typename elfcpp::Elf_types<size>::Elf_WXword val;
1776   switch (this->offset_)
1777     {
1778     case DYNAMIC_NUMBER:
1779       val = this->u_.val;
1780       break;
1781
1782     case DYNAMIC_SECTION_SIZE:
1783       val = this->u_.od->data_size();
1784       if (this->od2 != NULL)
1785         val += this->od2->data_size();
1786       break;
1787
1788     case DYNAMIC_SYMBOL:
1789       {
1790         const Sized_symbol<size>* s =
1791           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1792         val = s->value();
1793       }
1794       break;
1795
1796     case DYNAMIC_STRING:
1797       val = pool->get_offset(this->u_.str);
1798       break;
1799
1800     default:
1801       val = this->u_.od->address() + this->offset_;
1802       break;
1803     }
1804
1805   elfcpp::Dyn_write<size, big_endian> dw(pov);
1806   dw.put_d_tag(this->tag_);
1807   dw.put_d_val(val);
1808 }
1809
1810 // Output_data_dynamic methods.
1811
1812 // Adjust the output section to set the entry size.
1813
1814 void
1815 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1816 {
1817   if (parameters->target().get_size() == 32)
1818     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1819   else if (parameters->target().get_size() == 64)
1820     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1821   else
1822     gold_unreachable();
1823 }
1824
1825 // Set the final data size.
1826
1827 void
1828 Output_data_dynamic::set_final_data_size()
1829 {
1830   // Add the terminating entry if it hasn't been added.
1831   // Because of relaxation, we can run this multiple times.
1832   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1833     {
1834       int extra = parameters->options().spare_dynamic_tags();
1835       for (int i = 0; i < extra; ++i)
1836         this->add_constant(elfcpp::DT_NULL, 0);
1837       this->add_constant(elfcpp::DT_NULL, 0);
1838     }
1839
1840   int dyn_size;
1841   if (parameters->target().get_size() == 32)
1842     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1843   else if (parameters->target().get_size() == 64)
1844     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1845   else
1846     gold_unreachable();
1847   this->set_data_size(this->entries_.size() * dyn_size);
1848 }
1849
1850 // Write out the dynamic entries.
1851
1852 void
1853 Output_data_dynamic::do_write(Output_file* of)
1854 {
1855   switch (parameters->size_and_endianness())
1856     {
1857 #ifdef HAVE_TARGET_32_LITTLE
1858     case Parameters::TARGET_32_LITTLE:
1859       this->sized_write<32, false>(of);
1860       break;
1861 #endif
1862 #ifdef HAVE_TARGET_32_BIG
1863     case Parameters::TARGET_32_BIG:
1864       this->sized_write<32, true>(of);
1865       break;
1866 #endif
1867 #ifdef HAVE_TARGET_64_LITTLE
1868     case Parameters::TARGET_64_LITTLE:
1869       this->sized_write<64, false>(of);
1870       break;
1871 #endif
1872 #ifdef HAVE_TARGET_64_BIG
1873     case Parameters::TARGET_64_BIG:
1874       this->sized_write<64, true>(of);
1875       break;
1876 #endif
1877     default:
1878       gold_unreachable();
1879     }
1880 }
1881
1882 template<int size, bool big_endian>
1883 void
1884 Output_data_dynamic::sized_write(Output_file* of)
1885 {
1886   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1887
1888   const off_t offset = this->offset();
1889   const off_t oview_size = this->data_size();
1890   unsigned char* const oview = of->get_output_view(offset, oview_size);
1891
1892   unsigned char* pov = oview;
1893   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1894        p != this->entries_.end();
1895        ++p)
1896     {
1897       p->write<size, big_endian>(pov, this->pool_);
1898       pov += dyn_size;
1899     }
1900
1901   gold_assert(pov - oview == oview_size);
1902
1903   of->write_output_view(offset, oview_size, oview);
1904
1905   // We no longer need the dynamic entries.
1906   this->entries_.clear();
1907 }
1908
1909 // Class Output_symtab_xindex.
1910
1911 void
1912 Output_symtab_xindex::do_write(Output_file* of)
1913 {
1914   const off_t offset = this->offset();
1915   const off_t oview_size = this->data_size();
1916   unsigned char* const oview = of->get_output_view(offset, oview_size);
1917
1918   memset(oview, 0, oview_size);
1919
1920   if (parameters->target().is_big_endian())
1921     this->endian_do_write<true>(oview);
1922   else
1923     this->endian_do_write<false>(oview);
1924
1925   of->write_output_view(offset, oview_size, oview);
1926
1927   // We no longer need the data.
1928   this->entries_.clear();
1929 }
1930
1931 template<bool big_endian>
1932 void
1933 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1934 {
1935   for (Xindex_entries::const_iterator p = this->entries_.begin();
1936        p != this->entries_.end();
1937        ++p)
1938     {
1939       unsigned int symndx = p->first;
1940       gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
1941       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1942     }
1943 }
1944
1945 // Output_fill_debug_info methods.
1946
1947 // Return the minimum size needed for a dummy compilation unit header.
1948
1949 size_t
1950 Output_fill_debug_info::do_minimum_hole_size() const
1951 {
1952   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1953   // address_size.
1954   const size_t len = 4 + 2 + 4 + 1;
1955   // For type units, add type_signature, type_offset.
1956   if (this->is_debug_types_)
1957     return len + 8 + 4;
1958   return len;
1959 }
1960
1961 // Write a dummy compilation unit header to fill a hole in the
1962 // .debug_info or .debug_types section.
1963
1964 void
1965 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1966 {
1967   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1968              static_cast<long>(off), static_cast<long>(len));
1969
1970   gold_assert(len >= this->do_minimum_hole_size());
1971
1972   unsigned char* const oview = of->get_output_view(off, len);
1973   unsigned char* pov = oview;
1974
1975   // Write header fields: unit_length, version, debug_abbrev_offset,
1976   // address_size.
1977   if (this->is_big_endian())
1978     {
1979       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1980       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1981       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1982     }
1983   else
1984     {
1985       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1986       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1987       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1988     }
1989   pov += 4 + 2 + 4;
1990   *pov++ = 4;
1991
1992   // For type units, the additional header fields -- type_signature,
1993   // type_offset -- can be filled with zeroes.
1994
1995   // Fill the remainder of the free space with zeroes.  The first
1996   // zero should tell the consumer there are no DIEs to read in this
1997   // compilation unit.
1998   if (pov < oview + len)
1999     memset(pov, 0, oview + len - pov);
2000
2001   of->write_output_view(off, len, oview);
2002 }
2003
2004 // Output_fill_debug_line methods.
2005
2006 // Return the minimum size needed for a dummy line number program header.
2007
2008 size_t
2009 Output_fill_debug_line::do_minimum_hole_size() const
2010 {
2011   // Line number program header fields: unit_length, version, header_length,
2012   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2013   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2014   const size_t len = 4 + 2 + 4 + this->header_length;
2015   return len;
2016 }
2017
2018 // Write a dummy line number program header to fill a hole in the
2019 // .debug_line section.
2020
2021 void
2022 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2023 {
2024   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2025              static_cast<long>(off), static_cast<long>(len));
2026
2027   gold_assert(len >= this->do_minimum_hole_size());
2028
2029   unsigned char* const oview = of->get_output_view(off, len);
2030   unsigned char* pov = oview;
2031
2032   // Write header fields: unit_length, version, header_length,
2033   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2034   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2035   // We set the header_length field to cover the entire hole, so the
2036   // line number program is empty.
2037   if (this->is_big_endian())
2038     {
2039       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2040       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2041       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2042     }
2043   else
2044     {
2045       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2046       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2047       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2048     }
2049   pov += 4 + 2 + 4;
2050   *pov++ = 1;   // minimum_instruction_length
2051   *pov++ = 0;   // default_is_stmt
2052   *pov++ = 0;   // line_base
2053   *pov++ = 5;   // line_range
2054   *pov++ = 13;  // opcode_base
2055   *pov++ = 0;   // standard_opcode_lengths[1]
2056   *pov++ = 1;   // standard_opcode_lengths[2]
2057   *pov++ = 1;   // standard_opcode_lengths[3]
2058   *pov++ = 1;   // standard_opcode_lengths[4]
2059   *pov++ = 1;   // standard_opcode_lengths[5]
2060   *pov++ = 0;   // standard_opcode_lengths[6]
2061   *pov++ = 0;   // standard_opcode_lengths[7]
2062   *pov++ = 0;   // standard_opcode_lengths[8]
2063   *pov++ = 1;   // standard_opcode_lengths[9]
2064   *pov++ = 0;   // standard_opcode_lengths[10]
2065   *pov++ = 0;   // standard_opcode_lengths[11]
2066   *pov++ = 1;   // standard_opcode_lengths[12]
2067   *pov++ = 0;   // include_directories (empty)
2068   *pov++ = 0;   // filenames (empty)
2069
2070   // Some consumers don't check the header_length field, and simply
2071   // start reading the line number program immediately following the
2072   // header.  For those consumers, we fill the remainder of the free
2073   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2074   // no-ops: the resulting line table program will not create any rows.
2075   if (pov < oview + len)
2076     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2077
2078   of->write_output_view(off, len, oview);
2079 }
2080
2081 // Output_section::Input_section methods.
2082
2083 // Return the current data size.  For an input section we store the size here.
2084 // For an Output_section_data, we have to ask it for the size.
2085
2086 off_t
2087 Output_section::Input_section::current_data_size() const
2088 {
2089   if (this->is_input_section())
2090     return this->u1_.data_size;
2091   else
2092     {
2093       this->u2_.posd->pre_finalize_data_size();
2094       return this->u2_.posd->current_data_size();
2095     }
2096 }
2097
2098 // Return the data size.  For an input section we store the size here.
2099 // For an Output_section_data, we have to ask it for the size.
2100
2101 off_t
2102 Output_section::Input_section::data_size() const
2103 {
2104   if (this->is_input_section())
2105     return this->u1_.data_size;
2106   else
2107     return this->u2_.posd->data_size();
2108 }
2109
2110 // Return the object for an input section.
2111
2112 Relobj*
2113 Output_section::Input_section::relobj() const
2114 {
2115   if (this->is_input_section())
2116     return this->u2_.object;
2117   else if (this->is_merge_section())
2118     {
2119       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2120       return this->u2_.pomb->first_relobj();
2121     }
2122   else if (this->is_relaxed_input_section())
2123     return this->u2_.poris->relobj();
2124   else
2125     gold_unreachable();
2126 }
2127
2128 // Return the input section index for an input section.
2129
2130 unsigned int
2131 Output_section::Input_section::shndx() const
2132 {
2133   if (this->is_input_section())
2134     return this->shndx_;
2135   else if (this->is_merge_section())
2136     {
2137       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2138       return this->u2_.pomb->first_shndx();
2139     }
2140   else if (this->is_relaxed_input_section())
2141     return this->u2_.poris->shndx();
2142   else
2143     gold_unreachable();
2144 }
2145
2146 // Set the address and file offset.
2147
2148 void
2149 Output_section::Input_section::set_address_and_file_offset(
2150     uint64_t address,
2151     off_t file_offset,
2152     off_t section_file_offset)
2153 {
2154   if (this->is_input_section())
2155     this->u2_.object->set_section_offset(this->shndx_,
2156                                          file_offset - section_file_offset);
2157   else
2158     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2159 }
2160
2161 // Reset the address and file offset.
2162
2163 void
2164 Output_section::Input_section::reset_address_and_file_offset()
2165 {
2166   if (!this->is_input_section())
2167     this->u2_.posd->reset_address_and_file_offset();
2168 }
2169
2170 // Finalize the data size.
2171
2172 void
2173 Output_section::Input_section::finalize_data_size()
2174 {
2175   if (!this->is_input_section())
2176     this->u2_.posd->finalize_data_size();
2177 }
2178
2179 // Try to turn an input offset into an output offset.  We want to
2180 // return the output offset relative to the start of this
2181 // Input_section in the output section.
2182
2183 inline bool
2184 Output_section::Input_section::output_offset(
2185     const Relobj* object,
2186     unsigned int shndx,
2187     section_offset_type offset,
2188     section_offset_type* poutput) const
2189 {
2190   if (!this->is_input_section())
2191     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2192   else
2193     {
2194       if (this->shndx_ != shndx || this->u2_.object != object)
2195         return false;
2196       *poutput = offset;
2197       return true;
2198     }
2199 }
2200
2201 // Return whether this is the merge section for the input section
2202 // SHNDX in OBJECT.
2203
2204 inline bool
2205 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2206                                                     unsigned int shndx) const
2207 {
2208   if (this->is_input_section())
2209     return false;
2210   return this->u2_.posd->is_merge_section_for(object, shndx);
2211 }
2212
2213 // Write out the data.  We don't have to do anything for an input
2214 // section--they are handled via Object::relocate--but this is where
2215 // we write out the data for an Output_section_data.
2216
2217 void
2218 Output_section::Input_section::write(Output_file* of)
2219 {
2220   if (!this->is_input_section())
2221     this->u2_.posd->write(of);
2222 }
2223
2224 // Write the data to a buffer.  As for write(), we don't have to do
2225 // anything for an input section.
2226
2227 void
2228 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2229 {
2230   if (!this->is_input_section())
2231     this->u2_.posd->write_to_buffer(buffer);
2232 }
2233
2234 // Print to a map file.
2235
2236 void
2237 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2238 {
2239   switch (this->shndx_)
2240     {
2241     case OUTPUT_SECTION_CODE:
2242     case MERGE_DATA_SECTION_CODE:
2243     case MERGE_STRING_SECTION_CODE:
2244       this->u2_.posd->print_to_mapfile(mapfile);
2245       break;
2246
2247     case RELAXED_INPUT_SECTION_CODE:
2248       {
2249         Output_relaxed_input_section* relaxed_section =
2250           this->relaxed_input_section();
2251         mapfile->print_input_section(relaxed_section->relobj(),
2252                                      relaxed_section->shndx());
2253       }
2254       break;
2255     default:
2256       mapfile->print_input_section(this->u2_.object, this->shndx_);
2257       break;
2258     }
2259 }
2260
2261 // Output_section methods.
2262
2263 // Construct an Output_section.  NAME will point into a Stringpool.
2264
2265 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2266                                elfcpp::Elf_Xword flags)
2267   : name_(name),
2268     addralign_(0),
2269     entsize_(0),
2270     load_address_(0),
2271     link_section_(NULL),
2272     link_(0),
2273     info_section_(NULL),
2274     info_symndx_(NULL),
2275     info_(0),
2276     type_(type),
2277     flags_(flags),
2278     order_(ORDER_INVALID),
2279     out_shndx_(-1U),
2280     symtab_index_(0),
2281     dynsym_index_(0),
2282     input_sections_(),
2283     first_input_offset_(0),
2284     fills_(),
2285     postprocessing_buffer_(NULL),
2286     needs_symtab_index_(false),
2287     needs_dynsym_index_(false),
2288     should_link_to_symtab_(false),
2289     should_link_to_dynsym_(false),
2290     after_input_sections_(false),
2291     requires_postprocessing_(false),
2292     found_in_sections_clause_(false),
2293     has_load_address_(false),
2294     info_uses_section_index_(false),
2295     input_section_order_specified_(false),
2296     may_sort_attached_input_sections_(false),
2297     must_sort_attached_input_sections_(false),
2298     attached_input_sections_are_sorted_(false),
2299     is_relro_(false),
2300     is_small_section_(false),
2301     is_large_section_(false),
2302     generate_code_fills_at_write_(false),
2303     is_entsize_zero_(false),
2304     section_offsets_need_adjustment_(false),
2305     is_noload_(false),
2306     always_keeps_input_sections_(false),
2307     has_fixed_layout_(false),
2308     is_patch_space_allowed_(false),
2309     is_unique_segment_(false),
2310     tls_offset_(0),
2311     extra_segment_flags_(0),
2312     segment_alignment_(0),
2313     checkpoint_(NULL),
2314     lookup_maps_(new Output_section_lookup_maps),
2315     free_list_(),
2316     free_space_fill_(NULL),
2317     patch_space_(0)
2318 {
2319   // An unallocated section has no address.  Forcing this means that
2320   // we don't need special treatment for symbols defined in debug
2321   // sections.
2322   if ((flags & elfcpp::SHF_ALLOC) == 0)
2323     this->set_address(0);
2324 }
2325
2326 Output_section::~Output_section()
2327 {
2328   delete this->checkpoint_;
2329 }
2330
2331 // Set the entry size.
2332
2333 void
2334 Output_section::set_entsize(uint64_t v)
2335 {
2336   if (this->is_entsize_zero_)
2337     ;
2338   else if (this->entsize_ == 0)
2339     this->entsize_ = v;
2340   else if (this->entsize_ != v)
2341     {
2342       this->entsize_ = 0;
2343       this->is_entsize_zero_ = 1;
2344     }
2345 }
2346
2347 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2348 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2349 // relocation section which applies to this section, or 0 if none, or
2350 // -1U if more than one.  Return the offset of the input section
2351 // within the output section.  Return -1 if the input section will
2352 // receive special handling.  In the normal case we don't always keep
2353 // track of input sections for an Output_section.  Instead, each
2354 // Object keeps track of the Output_section for each of its input
2355 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2356 // track of input sections here; this is used when SECTIONS appears in
2357 // a linker script.
2358
2359 template<int size, bool big_endian>
2360 off_t
2361 Output_section::add_input_section(Layout* layout,
2362                                   Sized_relobj_file<size, big_endian>* object,
2363                                   unsigned int shndx,
2364                                   const char* secname,
2365                                   const elfcpp::Shdr<size, big_endian>& shdr,
2366                                   unsigned int reloc_shndx,
2367                                   bool have_sections_script)
2368 {
2369   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2370   if ((addralign & (addralign - 1)) != 0)
2371     {
2372       object->error(_("invalid alignment %lu for section \"%s\""),
2373                     static_cast<unsigned long>(addralign), secname);
2374       addralign = 1;
2375     }
2376
2377   if (addralign > this->addralign_)
2378     this->addralign_ = addralign;
2379
2380   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2381   uint64_t entsize = shdr.get_sh_entsize();
2382
2383   // .debug_str is a mergeable string section, but is not always so
2384   // marked by compilers.  Mark manually here so we can optimize.
2385   if (strcmp(secname, ".debug_str") == 0)
2386     {
2387       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2388       entsize = 1;
2389     }
2390
2391   this->update_flags_for_input_section(sh_flags);
2392   this->set_entsize(entsize);
2393
2394   // If this is a SHF_MERGE section, we pass all the input sections to
2395   // a Output_data_merge.  We don't try to handle relocations for such
2396   // a section.  We don't try to handle empty merge sections--they
2397   // mess up the mappings, and are useless anyhow.
2398   // FIXME: Need to handle merge sections during incremental update.
2399   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2400       && reloc_shndx == 0
2401       && shdr.get_sh_size() > 0
2402       && !parameters->incremental())
2403     {
2404       // Keep information about merged input sections for rebuilding fast
2405       // lookup maps if we have sections-script or we do relaxation.
2406       bool keeps_input_sections = (this->always_keeps_input_sections_
2407                                    || have_sections_script
2408                                    || parameters->target().may_relax());
2409
2410       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2411                                         addralign, keeps_input_sections))
2412         {
2413           // Tell the relocation routines that they need to call the
2414           // output_offset method to determine the final address.
2415           return -1;
2416         }
2417     }
2418
2419   section_size_type input_section_size = shdr.get_sh_size();
2420   section_size_type uncompressed_size;
2421   if (object->section_is_compressed(shndx, &uncompressed_size))
2422     input_section_size = uncompressed_size;
2423
2424   off_t offset_in_section;
2425   off_t aligned_offset_in_section;
2426   if (this->has_fixed_layout())
2427     {
2428       // For incremental updates, find a chunk of unused space in the section.
2429       offset_in_section = this->free_list_.allocate(input_section_size,
2430                                                     addralign, 0);
2431       if (offset_in_section == -1)
2432         gold_fallback(_("out of patch space in section %s; "
2433                         "relink with --incremental-full"),
2434                       this->name());
2435       aligned_offset_in_section = offset_in_section;
2436     }
2437   else
2438     {
2439       offset_in_section = this->current_data_size_for_child();
2440       aligned_offset_in_section = align_address(offset_in_section,
2441                                                 addralign);
2442       this->set_current_data_size_for_child(aligned_offset_in_section
2443                                             + input_section_size);
2444     }
2445
2446   // Determine if we want to delay code-fill generation until the output
2447   // section is written.  When the target is relaxing, we want to delay fill
2448   // generating to avoid adjusting them during relaxation.  Also, if we are
2449   // sorting input sections we must delay fill generation.
2450   if (!this->generate_code_fills_at_write_
2451       && !have_sections_script
2452       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2453       && parameters->target().has_code_fill()
2454       && (parameters->target().may_relax()
2455           || layout->is_section_ordering_specified()))
2456     {
2457       gold_assert(this->fills_.empty());
2458       this->generate_code_fills_at_write_ = true;
2459     }
2460
2461   if (aligned_offset_in_section > offset_in_section
2462       && !this->generate_code_fills_at_write_
2463       && !have_sections_script
2464       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2465       && parameters->target().has_code_fill())
2466     {
2467       // We need to add some fill data.  Using fill_list_ when
2468       // possible is an optimization, since we will often have fill
2469       // sections without input sections.
2470       off_t fill_len = aligned_offset_in_section - offset_in_section;
2471       if (this->input_sections_.empty())
2472         this->fills_.push_back(Fill(offset_in_section, fill_len));
2473       else
2474         {
2475           std::string fill_data(parameters->target().code_fill(fill_len));
2476           Output_data_const* odc = new Output_data_const(fill_data, 1);
2477           this->input_sections_.push_back(Input_section(odc));
2478         }
2479     }
2480
2481   // The GNU linker groups input sections whose names match .text.unlikely.*.
2482   // This is used to get better code layout.  We are compatible.
2483   // Additionally, it could also be beneficial to group .text.hot.*,
2484   // .text.startup.* prefixed input sections.  Function
2485   // "is_section_name_prefix_grouped" in layout.cc determines the input
2486   // section prefixes that must be grouped.
2487   if (!have_sections_script
2488       && !parameters->options().relocatable()
2489       && !this->input_section_order_specified()
2490       && !this->must_sort_attached_input_sections()
2491       && layout->is_section_name_prefix_grouped(secname))
2492     this->set_input_section_order_specified();
2493
2494   // We need to keep track of this section if we are already keeping
2495   // track of sections, or if we are relaxing.  Also, if this is a
2496   // section which requires sorting, or which may require sorting in
2497   // the future, we keep track of the sections.  If the
2498   // --section-ordering-file option is used to specify the order of
2499   // sections, we need to keep track of sections.
2500   if (this->always_keeps_input_sections_
2501       || have_sections_script
2502       || !this->input_sections_.empty()
2503       || this->may_sort_attached_input_sections()
2504       || this->must_sort_attached_input_sections()
2505       || parameters->options().user_set_Map()
2506       || parameters->target().may_relax()
2507       || layout->is_section_ordering_specified()
2508       || this->input_section_order_specified())
2509     {
2510       Input_section isecn(object, shndx, input_section_size, addralign);
2511       /* If section ordering is requested by specifying a ordering file,
2512          using --section-ordering-file, match the section name with
2513          a pattern.  */
2514       if (parameters->options().section_ordering_file())
2515         {
2516           unsigned int section_order_index =
2517             layout->find_section_order_index(std::string(secname));
2518           if (section_order_index != 0)
2519             {
2520               isecn.set_section_order_index(section_order_index);
2521               this->set_input_section_order_specified();
2522             }
2523         }
2524       if (this->has_fixed_layout())
2525         {
2526           // For incremental updates, finalize the address and offset now.
2527           uint64_t addr = this->address();
2528           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2529                                             aligned_offset_in_section,
2530                                             this->offset());
2531         }
2532       this->input_sections_.push_back(isecn);
2533     }
2534
2535   return aligned_offset_in_section;
2536 }
2537
2538 // Add arbitrary data to an output section.
2539
2540 void
2541 Output_section::add_output_section_data(Output_section_data* posd)
2542 {
2543   Input_section inp(posd);
2544   this->add_output_section_data(&inp);
2545
2546   if (posd->is_data_size_valid())
2547     {
2548       off_t offset_in_section;
2549       if (this->has_fixed_layout())
2550         {
2551           // For incremental updates, find a chunk of unused space.
2552           offset_in_section = this->free_list_.allocate(posd->data_size(),
2553                                                         posd->addralign(), 0);
2554           if (offset_in_section == -1)
2555             gold_fallback(_("out of patch space in section %s; "
2556                             "relink with --incremental-full"),
2557                           this->name());
2558           // Finalize the address and offset now.
2559           uint64_t addr = this->address();
2560           off_t offset = this->offset();
2561           posd->set_address_and_file_offset(addr + offset_in_section,
2562                                             offset + offset_in_section);
2563         }
2564       else
2565         {
2566           offset_in_section = this->current_data_size_for_child();
2567           off_t aligned_offset_in_section = align_address(offset_in_section,
2568                                                           posd->addralign());
2569           this->set_current_data_size_for_child(aligned_offset_in_section
2570                                                 + posd->data_size());
2571         }
2572     }
2573   else if (this->has_fixed_layout())
2574     {
2575       // For incremental updates, arrange for the data to have a fixed layout.
2576       // This will mean that additions to the data must be allocated from
2577       // free space within the containing output section.
2578       uint64_t addr = this->address();
2579       posd->set_address(addr);
2580       posd->set_file_offset(0);
2581       // FIXME: This should eventually be unreachable.
2582       // gold_unreachable();
2583     }
2584 }
2585
2586 // Add a relaxed input section.
2587
2588 void
2589 Output_section::add_relaxed_input_section(Layout* layout,
2590                                           Output_relaxed_input_section* poris,
2591                                           const std::string& name)
2592 {
2593   Input_section inp(poris);
2594
2595   // If the --section-ordering-file option is used to specify the order of
2596   // sections, we need to keep track of sections.
2597   if (layout->is_section_ordering_specified())
2598     {
2599       unsigned int section_order_index =
2600         layout->find_section_order_index(name);
2601       if (section_order_index != 0)
2602         {
2603           inp.set_section_order_index(section_order_index);
2604           this->set_input_section_order_specified();
2605         }
2606     }
2607
2608   this->add_output_section_data(&inp);
2609   if (this->lookup_maps_->is_valid())
2610     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2611                                                   poris->shndx(), poris);
2612
2613   // For a relaxed section, we use the current data size.  Linker scripts
2614   // get all the input sections, including relaxed one from an output
2615   // section and add them back to the same output section to compute the
2616   // output section size.  If we do not account for sizes of relaxed input
2617   // sections, an output section would be incorrectly sized.
2618   off_t offset_in_section = this->current_data_size_for_child();
2619   off_t aligned_offset_in_section = align_address(offset_in_section,
2620                                                   poris->addralign());
2621   this->set_current_data_size_for_child(aligned_offset_in_section
2622                                         + poris->current_data_size());
2623 }
2624
2625 // Add arbitrary data to an output section by Input_section.
2626
2627 void
2628 Output_section::add_output_section_data(Input_section* inp)
2629 {
2630   if (this->input_sections_.empty())
2631     this->first_input_offset_ = this->current_data_size_for_child();
2632
2633   this->input_sections_.push_back(*inp);
2634
2635   uint64_t addralign = inp->addralign();
2636   if (addralign > this->addralign_)
2637     this->addralign_ = addralign;
2638
2639   inp->set_output_section(this);
2640 }
2641
2642 // Add a merge section to an output section.
2643
2644 void
2645 Output_section::add_output_merge_section(Output_section_data* posd,
2646                                          bool is_string, uint64_t entsize)
2647 {
2648   Input_section inp(posd, is_string, entsize);
2649   this->add_output_section_data(&inp);
2650 }
2651
2652 // Add an input section to a SHF_MERGE section.
2653
2654 bool
2655 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2656                                         uint64_t flags, uint64_t entsize,
2657                                         uint64_t addralign,
2658                                         bool keeps_input_sections)
2659 {
2660   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2661
2662   // We only merge strings if the alignment is not more than the
2663   // character size.  This could be handled, but it's unusual.
2664   if (is_string && addralign > entsize)
2665     return false;
2666
2667   // We cannot restore merged input section states.
2668   gold_assert(this->checkpoint_ == NULL);
2669
2670   // Look up merge sections by required properties.
2671   // Currently, we only invalidate the lookup maps in script processing
2672   // and relaxation.  We should not have done either when we reach here.
2673   // So we assume that the lookup maps are valid to simply code.
2674   gold_assert(this->lookup_maps_->is_valid());
2675   Merge_section_properties msp(is_string, entsize, addralign);
2676   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2677   bool is_new = false;
2678   if (pomb != NULL)
2679     {
2680       gold_assert(pomb->is_string() == is_string
2681                   && pomb->entsize() == entsize
2682                   && pomb->addralign() == addralign);
2683     }
2684   else
2685     {
2686       // Create a new Output_merge_data or Output_merge_string_data.
2687       if (!is_string)
2688         pomb = new Output_merge_data(entsize, addralign);
2689       else
2690         {
2691           switch (entsize)
2692             {
2693             case 1:
2694               pomb = new Output_merge_string<char>(addralign);
2695               break;
2696             case 2:
2697               pomb = new Output_merge_string<uint16_t>(addralign);
2698               break;
2699             case 4:
2700               pomb = new Output_merge_string<uint32_t>(addralign);
2701               break;
2702             default:
2703               return false;
2704             }
2705         }
2706       // If we need to do script processing or relaxation, we need to keep
2707       // the original input sections to rebuild the fast lookup maps.
2708       if (keeps_input_sections)
2709         pomb->set_keeps_input_sections();
2710       is_new = true;
2711     }
2712
2713   if (pomb->add_input_section(object, shndx))
2714     {
2715       // Add new merge section to this output section and link merge
2716       // section properties to new merge section in map.
2717       if (is_new)
2718         {
2719           this->add_output_merge_section(pomb, is_string, entsize);
2720           this->lookup_maps_->add_merge_section(msp, pomb);
2721         }
2722
2723       // Add input section to new merge section and link input section to new
2724       // merge section in map.
2725       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2726       return true;
2727     }
2728   else
2729     {
2730       // If add_input_section failed, delete new merge section to avoid
2731       // exporting empty merge sections in Output_section::get_input_section.
2732       if (is_new)
2733         delete pomb;
2734       return false;
2735     }
2736 }
2737
2738 // Build a relaxation map to speed up relaxation of existing input sections.
2739 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2740
2741 void
2742 Output_section::build_relaxation_map(
2743   const Input_section_list& input_sections,
2744   size_t limit,
2745   Relaxation_map* relaxation_map) const
2746 {
2747   for (size_t i = 0; i < limit; ++i)
2748     {
2749       const Input_section& is(input_sections[i]);
2750       if (is.is_input_section() || is.is_relaxed_input_section())
2751         {
2752           Section_id sid(is.relobj(), is.shndx());
2753           (*relaxation_map)[sid] = i;
2754         }
2755     }
2756 }
2757
2758 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2759 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2760 // indices of INPUT_SECTIONS.
2761
2762 void
2763 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2764   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2765   const Relaxation_map& map,
2766   Input_section_list* input_sections)
2767 {
2768   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2769     {
2770       Output_relaxed_input_section* poris = relaxed_sections[i];
2771       Section_id sid(poris->relobj(), poris->shndx());
2772       Relaxation_map::const_iterator p = map.find(sid);
2773       gold_assert(p != map.end());
2774       gold_assert((*input_sections)[p->second].is_input_section());
2775
2776       // Remember section order index of original input section
2777       // if it is set.  Copy it to the relaxed input section.
2778       unsigned int soi =
2779         (*input_sections)[p->second].section_order_index();
2780       (*input_sections)[p->second] = Input_section(poris);
2781       (*input_sections)[p->second].set_section_order_index(soi);
2782     }
2783 }
2784
2785 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2786 // is a vector of pointers to Output_relaxed_input_section or its derived
2787 // classes.  The relaxed sections must correspond to existing input sections.
2788
2789 void
2790 Output_section::convert_input_sections_to_relaxed_sections(
2791   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2792 {
2793   gold_assert(parameters->target().may_relax());
2794
2795   // We want to make sure that restore_states does not undo the effect of
2796   // this.  If there is no checkpoint active, just search the current
2797   // input section list and replace the sections there.  If there is
2798   // a checkpoint, also replace the sections there.
2799
2800   // By default, we look at the whole list.
2801   size_t limit = this->input_sections_.size();
2802
2803   if (this->checkpoint_ != NULL)
2804     {
2805       // Replace input sections with relaxed input section in the saved
2806       // copy of the input section list.
2807       if (this->checkpoint_->input_sections_saved())
2808         {
2809           Relaxation_map map;
2810           this->build_relaxation_map(
2811                     *(this->checkpoint_->input_sections()),
2812                     this->checkpoint_->input_sections()->size(),
2813                     &map);
2814           this->convert_input_sections_in_list_to_relaxed_sections(
2815                     relaxed_sections,
2816                     map,
2817                     this->checkpoint_->input_sections());
2818         }
2819       else
2820         {
2821           // We have not copied the input section list yet.  Instead, just
2822           // look at the portion that would be saved.
2823           limit = this->checkpoint_->input_sections_size();
2824         }
2825     }
2826
2827   // Convert input sections in input_section_list.
2828   Relaxation_map map;
2829   this->build_relaxation_map(this->input_sections_, limit, &map);
2830   this->convert_input_sections_in_list_to_relaxed_sections(
2831             relaxed_sections,
2832             map,
2833             &this->input_sections_);
2834
2835   // Update fast look-up map.
2836   if (this->lookup_maps_->is_valid())
2837     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2838       {
2839         Output_relaxed_input_section* poris = relaxed_sections[i];
2840         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2841                                                       poris->shndx(), poris);
2842       }
2843 }
2844
2845 // Update the output section flags based on input section flags.
2846
2847 void
2848 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2849 {
2850   // If we created the section with SHF_ALLOC clear, we set the
2851   // address.  If we are now setting the SHF_ALLOC flag, we need to
2852   // undo that.
2853   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2854       && (flags & elfcpp::SHF_ALLOC) != 0)
2855     this->mark_address_invalid();
2856
2857   this->flags_ |= (flags
2858                    & (elfcpp::SHF_WRITE
2859                       | elfcpp::SHF_ALLOC
2860                       | elfcpp::SHF_EXECINSTR));
2861
2862   if ((flags & elfcpp::SHF_MERGE) == 0)
2863     this->flags_ &=~ elfcpp::SHF_MERGE;
2864   else
2865     {
2866       if (this->current_data_size_for_child() == 0)
2867         this->flags_ |= elfcpp::SHF_MERGE;
2868     }
2869
2870   if ((flags & elfcpp::SHF_STRINGS) == 0)
2871     this->flags_ &=~ elfcpp::SHF_STRINGS;
2872   else
2873     {
2874       if (this->current_data_size_for_child() == 0)
2875         this->flags_ |= elfcpp::SHF_STRINGS;
2876     }
2877 }
2878
2879 // Find the merge section into which an input section with index SHNDX in
2880 // OBJECT has been added.  Return NULL if none found.
2881
2882 Output_section_data*
2883 Output_section::find_merge_section(const Relobj* object,
2884                                    unsigned int shndx) const
2885 {
2886   if (!this->lookup_maps_->is_valid())
2887     this->build_lookup_maps();
2888   return this->lookup_maps_->find_merge_section(object, shndx);
2889 }
2890
2891 // Build the lookup maps for merge and relaxed sections.  This is needs
2892 // to be declared as a const methods so that it is callable with a const
2893 // Output_section pointer.  The method only updates states of the maps.
2894
2895 void
2896 Output_section::build_lookup_maps() const
2897 {
2898   this->lookup_maps_->clear();
2899   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2900        p != this->input_sections_.end();
2901        ++p)
2902     {
2903       if (p->is_merge_section())
2904         {
2905           Output_merge_base* pomb = p->output_merge_base();
2906           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2907                                        pomb->addralign());
2908           this->lookup_maps_->add_merge_section(msp, pomb);
2909           for (Output_merge_base::Input_sections::const_iterator is =
2910                  pomb->input_sections_begin();
2911                is != pomb->input_sections_end();
2912                ++is)
2913             {
2914               const Const_section_id& csid = *is;
2915             this->lookup_maps_->add_merge_input_section(csid.first,
2916                                                         csid.second, pomb);
2917             }
2918
2919         }
2920       else if (p->is_relaxed_input_section())
2921         {
2922           Output_relaxed_input_section* poris = p->relaxed_input_section();
2923           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2924                                                         poris->shndx(), poris);
2925         }
2926     }
2927 }
2928
2929 // Find an relaxed input section corresponding to an input section
2930 // in OBJECT with index SHNDX.
2931
2932 const Output_relaxed_input_section*
2933 Output_section::find_relaxed_input_section(const Relobj* object,
2934                                            unsigned int shndx) const
2935 {
2936   if (!this->lookup_maps_->is_valid())
2937     this->build_lookup_maps();
2938   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2939 }
2940
2941 // Given an address OFFSET relative to the start of input section
2942 // SHNDX in OBJECT, return whether this address is being included in
2943 // the final link.  This should only be called if SHNDX in OBJECT has
2944 // a special mapping.
2945
2946 bool
2947 Output_section::is_input_address_mapped(const Relobj* object,
2948                                         unsigned int shndx,
2949                                         off_t offset) const
2950 {
2951   // Look at the Output_section_data_maps first.
2952   const Output_section_data* posd = this->find_merge_section(object, shndx);
2953   if (posd == NULL)
2954     posd = this->find_relaxed_input_section(object, shndx);
2955
2956   if (posd != NULL)
2957     {
2958       section_offset_type output_offset;
2959       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2960       gold_assert(found);
2961       return output_offset != -1;
2962     }
2963
2964   // Fall back to the slow look-up.
2965   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2966        p != this->input_sections_.end();
2967        ++p)
2968     {
2969       section_offset_type output_offset;
2970       if (p->output_offset(object, shndx, offset, &output_offset))
2971         return output_offset != -1;
2972     }
2973
2974   // By default we assume that the address is mapped.  This should
2975   // only be called after we have passed all sections to Layout.  At
2976   // that point we should know what we are discarding.
2977   return true;
2978 }
2979
2980 // Given an address OFFSET relative to the start of input section
2981 // SHNDX in object OBJECT, return the output offset relative to the
2982 // start of the input section in the output section.  This should only
2983 // be called if SHNDX in OBJECT has a special mapping.
2984
2985 section_offset_type
2986 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2987                               section_offset_type offset) const
2988 {
2989   // This can only be called meaningfully when we know the data size
2990   // of this.
2991   gold_assert(this->is_data_size_valid());
2992
2993   // Look at the Output_section_data_maps first.
2994   const Output_section_data* posd = this->find_merge_section(object, shndx);
2995   if (posd == NULL)
2996     posd = this->find_relaxed_input_section(object, shndx);
2997   if (posd != NULL)
2998     {
2999       section_offset_type output_offset;
3000       bool found = posd->output_offset(object, shndx, offset, &output_offset);
3001       gold_assert(found);
3002       return output_offset;
3003     }
3004
3005   // Fall back to the slow look-up.
3006   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3007        p != this->input_sections_.end();
3008        ++p)
3009     {
3010       section_offset_type output_offset;
3011       if (p->output_offset(object, shndx, offset, &output_offset))
3012         return output_offset;
3013     }
3014   gold_unreachable();
3015 }
3016
3017 // Return the output virtual address of OFFSET relative to the start
3018 // of input section SHNDX in object OBJECT.
3019
3020 uint64_t
3021 Output_section::output_address(const Relobj* object, unsigned int shndx,
3022                                off_t offset) const
3023 {
3024   uint64_t addr = this->address() + this->first_input_offset_;
3025
3026   // Look at the Output_section_data_maps first.
3027   const Output_section_data* posd = this->find_merge_section(object, shndx);
3028   if (posd == NULL)
3029     posd = this->find_relaxed_input_section(object, shndx);
3030   if (posd != NULL && posd->is_address_valid())
3031     {
3032       section_offset_type output_offset;
3033       bool found = posd->output_offset(object, shndx, offset, &output_offset);
3034       gold_assert(found);
3035       return posd->address() + output_offset;
3036     }
3037
3038   // Fall back to the slow look-up.
3039   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3040        p != this->input_sections_.end();
3041        ++p)
3042     {
3043       addr = align_address(addr, p->addralign());
3044       section_offset_type output_offset;
3045       if (p->output_offset(object, shndx, offset, &output_offset))
3046         {
3047           if (output_offset == -1)
3048             return -1ULL;
3049           return addr + output_offset;
3050         }
3051       addr += p->data_size();
3052     }
3053
3054   // If we get here, it means that we don't know the mapping for this
3055   // input section.  This might happen in principle if
3056   // add_input_section were called before add_output_section_data.
3057   // But it should never actually happen.
3058
3059   gold_unreachable();
3060 }
3061
3062 // Find the output address of the start of the merged section for
3063 // input section SHNDX in object OBJECT.
3064
3065 bool
3066 Output_section::find_starting_output_address(const Relobj* object,
3067                                              unsigned int shndx,
3068                                              uint64_t* paddr) const
3069 {
3070   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3071   // Looking up the merge section map does not always work as we sometimes
3072   // find a merge section without its address set.
3073   uint64_t addr = this->address() + this->first_input_offset_;
3074   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3075        p != this->input_sections_.end();
3076        ++p)
3077     {
3078       addr = align_address(addr, p->addralign());
3079
3080       // It would be nice if we could use the existing output_offset
3081       // method to get the output offset of input offset 0.
3082       // Unfortunately we don't know for sure that input offset 0 is
3083       // mapped at all.
3084       if (p->is_merge_section_for(object, shndx))
3085         {
3086           *paddr = addr;
3087           return true;
3088         }
3089
3090       addr += p->data_size();
3091     }
3092
3093   // We couldn't find a merge output section for this input section.
3094   return false;
3095 }
3096
3097 // Update the data size of an Output_section.
3098
3099 void
3100 Output_section::update_data_size()
3101 {
3102   if (this->input_sections_.empty())
3103       return;
3104
3105   if (this->must_sort_attached_input_sections()
3106       || this->input_section_order_specified())
3107     this->sort_attached_input_sections();
3108
3109   off_t off = this->first_input_offset_;
3110   for (Input_section_list::iterator p = this->input_sections_.begin();
3111        p != this->input_sections_.end();
3112        ++p)
3113     {
3114       off = align_address(off, p->addralign());
3115       off += p->current_data_size();
3116     }
3117
3118   this->set_current_data_size_for_child(off);
3119 }
3120
3121 // Set the data size of an Output_section.  This is where we handle
3122 // setting the addresses of any Output_section_data objects.
3123
3124 void
3125 Output_section::set_final_data_size()
3126 {
3127   off_t data_size;
3128
3129   if (this->input_sections_.empty())
3130     data_size = this->current_data_size_for_child();
3131   else
3132     {
3133       if (this->must_sort_attached_input_sections()
3134           || this->input_section_order_specified())
3135         this->sort_attached_input_sections();
3136
3137       uint64_t address = this->address();
3138       off_t startoff = this->offset();
3139       off_t off = startoff + this->first_input_offset_;
3140       for (Input_section_list::iterator p = this->input_sections_.begin();
3141            p != this->input_sections_.end();
3142            ++p)
3143         {
3144           off = align_address(off, p->addralign());
3145           p->set_address_and_file_offset(address + (off - startoff), off,
3146                                          startoff);
3147           off += p->data_size();
3148         }
3149       data_size = off - startoff;
3150     }
3151
3152   // For full incremental links, we want to allocate some patch space
3153   // in most sections for subsequent incremental updates.
3154   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3155     {
3156       double pct = parameters->options().incremental_patch();
3157       size_t extra = static_cast<size_t>(data_size * pct);
3158       if (this->free_space_fill_ != NULL
3159           && this->free_space_fill_->minimum_hole_size() > extra)
3160         extra = this->free_space_fill_->minimum_hole_size();
3161       off_t new_size = align_address(data_size + extra, this->addralign());
3162       this->patch_space_ = new_size - data_size;
3163       gold_debug(DEBUG_INCREMENTAL,
3164                  "set_final_data_size: %08lx + %08lx: section %s",
3165                  static_cast<long>(data_size),
3166                  static_cast<long>(this->patch_space_),
3167                  this->name());
3168       data_size = new_size;
3169     }
3170
3171   this->set_data_size(data_size);
3172 }
3173
3174 // Reset the address and file offset.
3175
3176 void
3177 Output_section::do_reset_address_and_file_offset()
3178 {
3179   // An unallocated section has no address.  Forcing this means that
3180   // we don't need special treatment for symbols defined in debug
3181   // sections.  We do the same in the constructor.  This does not
3182   // apply to NOLOAD sections though.
3183   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3184      this->set_address(0);
3185
3186   for (Input_section_list::iterator p = this->input_sections_.begin();
3187        p != this->input_sections_.end();
3188        ++p)
3189     p->reset_address_and_file_offset();
3190
3191   // Remove any patch space that was added in set_final_data_size.
3192   if (this->patch_space_ > 0)
3193     {
3194       this->set_current_data_size_for_child(this->current_data_size_for_child()
3195                                             - this->patch_space_);
3196       this->patch_space_ = 0;
3197     }
3198 }
3199
3200 // Return true if address and file offset have the values after reset.
3201
3202 bool
3203 Output_section::do_address_and_file_offset_have_reset_values() const
3204 {
3205   if (this->is_offset_valid())
3206     return false;
3207
3208   // An unallocated section has address 0 after its construction or a reset.
3209   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3210     return this->is_address_valid() && this->address() == 0;
3211   else
3212     return !this->is_address_valid();
3213 }
3214
3215 // Set the TLS offset.  Called only for SHT_TLS sections.
3216
3217 void
3218 Output_section::do_set_tls_offset(uint64_t tls_base)
3219 {
3220   this->tls_offset_ = this->address() - tls_base;
3221 }
3222
3223 // In a few cases we need to sort the input sections attached to an
3224 // output section.  This is used to implement the type of constructor
3225 // priority ordering implemented by the GNU linker, in which the
3226 // priority becomes part of the section name and the sections are
3227 // sorted by name.  We only do this for an output section if we see an
3228 // attached input section matching ".ctors.*", ".dtors.*",
3229 // ".init_array.*" or ".fini_array.*".
3230
3231 class Output_section::Input_section_sort_entry
3232 {
3233  public:
3234   Input_section_sort_entry()
3235     : input_section_(), index_(-1U), section_has_name_(false),
3236       section_name_()
3237   { }
3238
3239   Input_section_sort_entry(const Input_section& input_section,
3240                            unsigned int index,
3241                            bool must_sort_attached_input_sections)
3242     : input_section_(input_section), index_(index),
3243       section_has_name_(input_section.is_input_section()
3244                         || input_section.is_relaxed_input_section())
3245   {
3246     if (this->section_has_name_
3247         && must_sort_attached_input_sections)
3248       {
3249         // This is only called single-threaded from Layout::finalize,
3250         // so it is OK to lock.  Unfortunately we have no way to pass
3251         // in a Task token.
3252         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3253         Object* obj = (input_section.is_input_section()
3254                        ? input_section.relobj()
3255                        : input_section.relaxed_input_section()->relobj());
3256         Task_lock_obj<Object> tl(dummy_task, obj);
3257
3258         // This is a slow operation, which should be cached in
3259         // Layout::layout if this becomes a speed problem.
3260         this->section_name_ = obj->section_name(input_section.shndx());
3261       }
3262   }
3263
3264   // Return the Input_section.
3265   const Input_section&
3266   input_section() const
3267   {
3268     gold_assert(this->index_ != -1U);
3269     return this->input_section_;
3270   }
3271
3272   // The index of this entry in the original list.  This is used to
3273   // make the sort stable.
3274   unsigned int
3275   index() const
3276   {
3277     gold_assert(this->index_ != -1U);
3278     return this->index_;
3279   }
3280
3281   // Whether there is a section name.
3282   bool
3283   section_has_name() const
3284   { return this->section_has_name_; }
3285
3286   // The section name.
3287   const std::string&
3288   section_name() const
3289   {
3290     gold_assert(this->section_has_name_);
3291     return this->section_name_;
3292   }
3293
3294   // Return true if the section name has a priority.  This is assumed
3295   // to be true if it has a dot after the initial dot.
3296   bool
3297   has_priority() const
3298   {
3299     gold_assert(this->section_has_name_);
3300     return this->section_name_.find('.', 1) != std::string::npos;
3301   }
3302
3303   // Return the priority.  Believe it or not, gcc encodes the priority
3304   // differently for .ctors/.dtors and .init_array/.fini_array
3305   // sections.
3306   unsigned int
3307   get_priority() const
3308   {
3309     gold_assert(this->section_has_name_);
3310     bool is_ctors;
3311     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3312         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3313       is_ctors = true;
3314     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3315              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3316       is_ctors = false;
3317     else
3318       return 0;
3319     char* end;
3320     unsigned long prio = strtoul((this->section_name_.c_str()
3321                                   + (is_ctors ? 7 : 12)),
3322                                  &end, 10);
3323     if (*end != '\0')
3324       return 0;
3325     else if (is_ctors)
3326       return 65535 - prio;
3327     else
3328       return prio;
3329   }
3330
3331   // Return true if this an input file whose base name matches
3332   // FILE_NAME.  The base name must have an extension of ".o", and
3333   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3334   // This is to match crtbegin.o as well as crtbeginS.o without
3335   // getting confused by other possibilities.  Overall matching the
3336   // file name this way is a dreadful hack, but the GNU linker does it
3337   // in order to better support gcc, and we need to be compatible.
3338   bool
3339   match_file_name(const char* file_name) const
3340   { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3341
3342   // Returns 1 if THIS should appear before S in section order, -1 if S
3343   // appears before THIS and 0 if they are not comparable.
3344   int
3345   compare_section_ordering(const Input_section_sort_entry& s) const
3346   {
3347     unsigned int this_secn_index = this->input_section_.section_order_index();
3348     unsigned int s_secn_index = s.input_section().section_order_index();
3349     if (this_secn_index > 0 && s_secn_index > 0)
3350       {
3351         if (this_secn_index < s_secn_index)
3352           return 1;
3353         else if (this_secn_index > s_secn_index)
3354           return -1;
3355       }
3356     return 0;
3357   }
3358
3359  private:
3360   // The Input_section we are sorting.
3361   Input_section input_section_;
3362   // The index of this Input_section in the original list.
3363   unsigned int index_;
3364   // Whether this Input_section has a section name--it won't if this
3365   // is some random Output_section_data.
3366   bool section_has_name_;
3367   // The section name if there is one.
3368   std::string section_name_;
3369 };
3370
3371 // Return true if S1 should come before S2 in the output section.
3372
3373 bool
3374 Output_section::Input_section_sort_compare::operator()(
3375     const Output_section::Input_section_sort_entry& s1,
3376     const Output_section::Input_section_sort_entry& s2) const
3377 {
3378   // crtbegin.o must come first.
3379   bool s1_begin = s1.match_file_name("crtbegin");
3380   bool s2_begin = s2.match_file_name("crtbegin");
3381   if (s1_begin || s2_begin)
3382     {
3383       if (!s1_begin)
3384         return false;
3385       if (!s2_begin)
3386         return true;
3387       return s1.index() < s2.index();
3388     }
3389
3390   // crtend.o must come last.
3391   bool s1_end = s1.match_file_name("crtend");
3392   bool s2_end = s2.match_file_name("crtend");
3393   if (s1_end || s2_end)
3394     {
3395       if (!s1_end)
3396         return true;
3397       if (!s2_end)
3398         return false;
3399       return s1.index() < s2.index();
3400     }
3401
3402   // We sort all the sections with no names to the end.
3403   if (!s1.section_has_name() || !s2.section_has_name())
3404     {
3405       if (s1.section_has_name())
3406         return true;
3407       if (s2.section_has_name())
3408         return false;
3409       return s1.index() < s2.index();
3410     }
3411
3412   // A section with a priority follows a section without a priority.
3413   bool s1_has_priority = s1.has_priority();
3414   bool s2_has_priority = s2.has_priority();
3415   if (s1_has_priority && !s2_has_priority)
3416     return false;
3417   if (!s1_has_priority && s2_has_priority)
3418     return true;
3419
3420   // Check if a section order exists for these sections through a section
3421   // ordering file.  If sequence_num is 0, an order does not exist.
3422   int sequence_num = s1.compare_section_ordering(s2);
3423   if (sequence_num != 0)
3424     return sequence_num == 1;
3425
3426   // Otherwise we sort by name.
3427   int compare = s1.section_name().compare(s2.section_name());
3428   if (compare != 0)
3429     return compare < 0;
3430
3431   // Otherwise we keep the input order.
3432   return s1.index() < s2.index();
3433 }
3434
3435 // Return true if S1 should come before S2 in an .init_array or .fini_array
3436 // output section.
3437
3438 bool
3439 Output_section::Input_section_sort_init_fini_compare::operator()(
3440     const Output_section::Input_section_sort_entry& s1,
3441     const Output_section::Input_section_sort_entry& s2) const
3442 {
3443   // We sort all the sections with no names to the end.
3444   if (!s1.section_has_name() || !s2.section_has_name())
3445     {
3446       if (s1.section_has_name())
3447         return true;
3448       if (s2.section_has_name())
3449         return false;
3450       return s1.index() < s2.index();
3451     }
3452
3453   // A section without a priority follows a section with a priority.
3454   // This is the reverse of .ctors and .dtors sections.
3455   bool s1_has_priority = s1.has_priority();
3456   bool s2_has_priority = s2.has_priority();
3457   if (s1_has_priority && !s2_has_priority)
3458     return true;
3459   if (!s1_has_priority && s2_has_priority)
3460     return false;
3461
3462   // .ctors and .dtors sections without priority come after
3463   // .init_array and .fini_array sections without priority.
3464   if (!s1_has_priority
3465       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3466       && s1.section_name() != s2.section_name())
3467     return false;
3468   if (!s2_has_priority
3469       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3470       && s2.section_name() != s1.section_name())
3471     return true;
3472
3473   // Sort by priority if we can.
3474   if (s1_has_priority)
3475     {
3476       unsigned int s1_prio = s1.get_priority();
3477       unsigned int s2_prio = s2.get_priority();
3478       if (s1_prio < s2_prio)
3479         return true;
3480       else if (s1_prio > s2_prio)
3481         return false;
3482     }
3483
3484   // Check if a section order exists for these sections through a section
3485   // ordering file.  If sequence_num is 0, an order does not exist.
3486   int sequence_num = s1.compare_section_ordering(s2);
3487   if (sequence_num != 0)
3488     return sequence_num == 1;
3489
3490   // Otherwise we sort by name.
3491   int compare = s1.section_name().compare(s2.section_name());
3492   if (compare != 0)
3493     return compare < 0;
3494
3495   // Otherwise we keep the input order.
3496   return s1.index() < s2.index();
3497 }
3498
3499 // Return true if S1 should come before S2.  Sections that do not match
3500 // any pattern in the section ordering file are placed ahead of the sections
3501 // that match some pattern.  This function is also used to group text according
3502 // to their prefix.  The following prefixes are recognized: ".text.startup",
3503 // ".text.hot", and ".text.unlikely".
3504
3505 bool
3506 Output_section::Input_section_sort_section_order_index_compare::operator()(
3507     const Output_section::Input_section_sort_entry& s1,
3508     const Output_section::Input_section_sort_entry& s2) const
3509 {
3510   unsigned int s1_secn_index = s1.input_section().section_order_index();
3511   unsigned int s2_secn_index = s2.input_section().section_order_index();
3512
3513   // If section ordering is specified, it takes precedence.
3514   if (s1_secn_index != s2_secn_index)
3515     return s1_secn_index < s2_secn_index;
3516
3517   // Sort all the sections with no names to the end.
3518   if (!s1.section_has_name() || !s2.section_has_name())
3519     {
3520       if (s1.section_has_name())
3521         return true;
3522       if (s2.section_has_name())
3523         return false;
3524       return s1.index() < s2.index();
3525     }
3526
3527   // If it is a text section use the following order:
3528   // .text.unlikely, .text.startup, .text.hot. The prefixes
3529   // must match those in function is_section_name_prefix_grouped
3530   // in layout.cc
3531   const char* section_prefix [] = 
3532   {
3533     ".text.unlikely",
3534     ".text.startup",
3535     ".text.hot"
3536   };
3537
3538   const unsigned int num_prefixes
3539     = sizeof(section_prefix) / sizeof(const char*);
3540
3541   unsigned int s1_group_index = num_prefixes;
3542   unsigned int s2_group_index = num_prefixes;
3543
3544   unsigned int flag_done = 0;
3545   for (unsigned int i = 0; i < num_prefixes && flag_done < 2; i++)
3546     {
3547       if (s1_group_index == num_prefixes
3548           && is_prefix_of(section_prefix[i], s1.section_name().c_str()))
3549         {
3550           s1_group_index = i;
3551           flag_done++;
3552         }
3553
3554       if (s2_group_index == num_prefixes
3555           && is_prefix_of(section_prefix[i], s2.section_name().c_str()))
3556         {
3557           s2_group_index = i;
3558           flag_done++;
3559         }
3560     }
3561
3562   if (s1_group_index == s2_group_index)
3563     return s1.index() < s2.index();
3564   else
3565     return s1_group_index < s2_group_index;
3566 }
3567
3568 // This updates the section order index of input sections according to the
3569 // the order specified in the mapping from Section id to order index.
3570
3571 void
3572 Output_section::update_section_layout(
3573   const Section_layout_order* order_map)
3574 {
3575   for (Input_section_list::iterator p = this->input_sections_.begin();
3576        p != this->input_sections_.end();
3577        ++p)
3578     {
3579       if (p->is_input_section()
3580           || p->is_relaxed_input_section())
3581         {
3582           Object* obj = (p->is_input_section()
3583                          ? p->relobj()
3584                          : p->relaxed_input_section()->relobj());
3585           unsigned int shndx = p->shndx();
3586           Section_layout_order::const_iterator it
3587             = order_map->find(Section_id(obj, shndx));
3588           if (it == order_map->end())
3589             continue;
3590           unsigned int section_order_index = it->second;
3591           if (section_order_index != 0)
3592             {
3593               p->set_section_order_index(section_order_index);
3594               this->set_input_section_order_specified();
3595             }
3596         }
3597     }
3598 }
3599
3600 // Sort the input sections attached to an output section.
3601
3602 void
3603 Output_section::sort_attached_input_sections()
3604 {
3605   if (this->attached_input_sections_are_sorted_)
3606     return;
3607
3608   if (this->checkpoint_ != NULL
3609       && !this->checkpoint_->input_sections_saved())
3610     this->checkpoint_->save_input_sections();
3611
3612   // The only thing we know about an input section is the object and
3613   // the section index.  We need the section name.  Recomputing this
3614   // is slow but this is an unusual case.  If this becomes a speed
3615   // problem we can cache the names as required in Layout::layout.
3616
3617   // We start by building a larger vector holding a copy of each
3618   // Input_section, plus its current index in the list and its name.
3619   std::vector<Input_section_sort_entry> sort_list;
3620
3621   unsigned int i = 0;
3622   for (Input_section_list::iterator p = this->input_sections_.begin();
3623        p != this->input_sections_.end();
3624        ++p, ++i)
3625       sort_list.push_back(Input_section_sort_entry(*p, i,
3626                             (this->must_sort_attached_input_sections()
3627                              || this->input_section_order_specified())));
3628
3629   // Sort the input sections.
3630   if (this->must_sort_attached_input_sections())
3631     {
3632       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3633           || this->type() == elfcpp::SHT_INIT_ARRAY
3634           || this->type() == elfcpp::SHT_FINI_ARRAY)
3635         std::sort(sort_list.begin(), sort_list.end(),
3636                   Input_section_sort_init_fini_compare());
3637       else
3638         std::sort(sort_list.begin(), sort_list.end(),
3639                   Input_section_sort_compare());
3640     }
3641   else
3642     {
3643       gold_assert(this->input_section_order_specified());
3644       std::sort(sort_list.begin(), sort_list.end(),
3645                 Input_section_sort_section_order_index_compare());
3646     }
3647
3648   // Copy the sorted input sections back to our list.
3649   this->input_sections_.clear();
3650   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3651        p != sort_list.end();
3652        ++p)
3653     this->input_sections_.push_back(p->input_section());
3654   sort_list.clear();
3655
3656   // Remember that we sorted the input sections, since we might get
3657   // called again.
3658   this->attached_input_sections_are_sorted_ = true;
3659 }
3660
3661 // Write the section header to *OSHDR.
3662
3663 template<int size, bool big_endian>
3664 void
3665 Output_section::write_header(const Layout* layout,
3666                              const Stringpool* secnamepool,
3667                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3668 {
3669   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3670   oshdr->put_sh_type(this->type_);
3671
3672   elfcpp::Elf_Xword flags = this->flags_;
3673   if (this->info_section_ != NULL && this->info_uses_section_index_)
3674     flags |= elfcpp::SHF_INFO_LINK;
3675   oshdr->put_sh_flags(flags);
3676
3677   oshdr->put_sh_addr(this->address());
3678   oshdr->put_sh_offset(this->offset());
3679   oshdr->put_sh_size(this->data_size());
3680   if (this->link_section_ != NULL)
3681     oshdr->put_sh_link(this->link_section_->out_shndx());
3682   else if (this->should_link_to_symtab_)
3683     oshdr->put_sh_link(layout->symtab_section_shndx());
3684   else if (this->should_link_to_dynsym_)
3685     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3686   else
3687     oshdr->put_sh_link(this->link_);
3688
3689   elfcpp::Elf_Word info;
3690   if (this->info_section_ != NULL)
3691     {
3692       if (this->info_uses_section_index_)
3693         info = this->info_section_->out_shndx();
3694       else
3695         info = this->info_section_->symtab_index();
3696     }
3697   else if (this->info_symndx_ != NULL)
3698     info = this->info_symndx_->symtab_index();
3699   else
3700     info = this->info_;
3701   oshdr->put_sh_info(info);
3702
3703   oshdr->put_sh_addralign(this->addralign_);
3704   oshdr->put_sh_entsize(this->entsize_);
3705 }
3706
3707 // Write out the data.  For input sections the data is written out by
3708 // Object::relocate, but we have to handle Output_section_data objects
3709 // here.
3710
3711 void
3712 Output_section::do_write(Output_file* of)
3713 {
3714   gold_assert(!this->requires_postprocessing());
3715
3716   // If the target performs relaxation, we delay filler generation until now.
3717   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3718
3719   off_t output_section_file_offset = this->offset();
3720   for (Fill_list::iterator p = this->fills_.begin();
3721        p != this->fills_.end();
3722        ++p)
3723     {
3724       std::string fill_data(parameters->target().code_fill(p->length()));
3725       of->write(output_section_file_offset + p->section_offset(),
3726                 fill_data.data(), fill_data.size());
3727     }
3728
3729   off_t off = this->offset() + this->first_input_offset_;
3730   for (Input_section_list::iterator p = this->input_sections_.begin();
3731        p != this->input_sections_.end();
3732        ++p)
3733     {
3734       off_t aligned_off = align_address(off, p->addralign());
3735       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3736         {
3737           size_t fill_len = aligned_off - off;
3738           std::string fill_data(parameters->target().code_fill(fill_len));
3739           of->write(off, fill_data.data(), fill_data.size());
3740         }
3741
3742       p->write(of);
3743       off = aligned_off + p->data_size();
3744     }
3745
3746   // For incremental links, fill in unused chunks in debug sections
3747   // with dummy compilation unit headers.
3748   if (this->free_space_fill_ != NULL)
3749     {
3750       for (Free_list::Const_iterator p = this->free_list_.begin();
3751            p != this->free_list_.end();
3752            ++p)
3753         {
3754           off_t off = p->start_;
3755           size_t len = p->end_ - off;
3756           this->free_space_fill_->write(of, this->offset() + off, len);
3757         }
3758       if (this->patch_space_ > 0)
3759         {
3760           off_t off = this->current_data_size_for_child() - this->patch_space_;
3761           this->free_space_fill_->write(of, this->offset() + off,
3762                                         this->patch_space_);
3763         }
3764     }
3765 }
3766
3767 // If a section requires postprocessing, create the buffer to use.
3768
3769 void
3770 Output_section::create_postprocessing_buffer()
3771 {
3772   gold_assert(this->requires_postprocessing());
3773
3774   if (this->postprocessing_buffer_ != NULL)
3775     return;
3776
3777   if (!this->input_sections_.empty())
3778     {
3779       off_t off = this->first_input_offset_;
3780       for (Input_section_list::iterator p = this->input_sections_.begin();
3781            p != this->input_sections_.end();
3782            ++p)
3783         {
3784           off = align_address(off, p->addralign());
3785           p->finalize_data_size();
3786           off += p->data_size();
3787         }
3788       this->set_current_data_size_for_child(off);
3789     }
3790
3791   off_t buffer_size = this->current_data_size_for_child();
3792   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3793 }
3794
3795 // Write all the data of an Output_section into the postprocessing
3796 // buffer.  This is used for sections which require postprocessing,
3797 // such as compression.  Input sections are handled by
3798 // Object::Relocate.
3799
3800 void
3801 Output_section::write_to_postprocessing_buffer()
3802 {
3803   gold_assert(this->requires_postprocessing());
3804
3805   // If the target performs relaxation, we delay filler generation until now.
3806   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3807
3808   unsigned char* buffer = this->postprocessing_buffer();
3809   for (Fill_list::iterator p = this->fills_.begin();
3810        p != this->fills_.end();
3811        ++p)
3812     {
3813       std::string fill_data(parameters->target().code_fill(p->length()));
3814       memcpy(buffer + p->section_offset(), fill_data.data(),
3815              fill_data.size());
3816     }
3817
3818   off_t off = this->first_input_offset_;
3819   for (Input_section_list::iterator p = this->input_sections_.begin();
3820        p != this->input_sections_.end();
3821        ++p)
3822     {
3823       off_t aligned_off = align_address(off, p->addralign());
3824       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3825         {
3826           size_t fill_len = aligned_off - off;
3827           std::string fill_data(parameters->target().code_fill(fill_len));
3828           memcpy(buffer + off, fill_data.data(), fill_data.size());
3829         }
3830
3831       p->write_to_buffer(buffer + aligned_off);
3832       off = aligned_off + p->data_size();
3833     }
3834 }
3835
3836 // Get the input sections for linker script processing.  We leave
3837 // behind the Output_section_data entries.  Note that this may be
3838 // slightly incorrect for merge sections.  We will leave them behind,
3839 // but it is possible that the script says that they should follow
3840 // some other input sections, as in:
3841 //    .rodata { *(.rodata) *(.rodata.cst*) }
3842 // For that matter, we don't handle this correctly:
3843 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3844 // With luck this will never matter.
3845
3846 uint64_t
3847 Output_section::get_input_sections(
3848     uint64_t address,
3849     const std::string& fill,
3850     std::list<Input_section>* input_sections)
3851 {
3852   if (this->checkpoint_ != NULL
3853       && !this->checkpoint_->input_sections_saved())
3854     this->checkpoint_->save_input_sections();
3855
3856   // Invalidate fast look-up maps.
3857   this->lookup_maps_->invalidate();
3858
3859   uint64_t orig_address = address;
3860
3861   address = align_address(address, this->addralign());
3862
3863   Input_section_list remaining;
3864   for (Input_section_list::iterator p = this->input_sections_.begin();
3865        p != this->input_sections_.end();
3866        ++p)
3867     {
3868       if (p->is_input_section()
3869           || p->is_relaxed_input_section()
3870           || p->is_merge_section())
3871         input_sections->push_back(*p);
3872       else
3873         {
3874           uint64_t aligned_address = align_address(address, p->addralign());
3875           if (aligned_address != address && !fill.empty())
3876             {
3877               section_size_type length =
3878                 convert_to_section_size_type(aligned_address - address);
3879               std::string this_fill;
3880               this_fill.reserve(length);
3881               while (this_fill.length() + fill.length() <= length)
3882                 this_fill += fill;
3883               if (this_fill.length() < length)
3884                 this_fill.append(fill, 0, length - this_fill.length());
3885
3886               Output_section_data* posd = new Output_data_const(this_fill, 0);
3887               remaining.push_back(Input_section(posd));
3888             }
3889           address = aligned_address;
3890
3891           remaining.push_back(*p);
3892
3893           p->finalize_data_size();
3894           address += p->data_size();
3895         }
3896     }
3897
3898   this->input_sections_.swap(remaining);
3899   this->first_input_offset_ = 0;
3900
3901   uint64_t data_size = address - orig_address;
3902   this->set_current_data_size_for_child(data_size);
3903   return data_size;
3904 }
3905
3906 // Add a script input section.  SIS is an Output_section::Input_section,
3907 // which can be either a plain input section or a special input section like
3908 // a relaxed input section.  For a special input section, its size must be
3909 // finalized.
3910
3911 void
3912 Output_section::add_script_input_section(const Input_section& sis)
3913 {
3914   uint64_t data_size = sis.data_size();
3915   uint64_t addralign = sis.addralign();
3916   if (addralign > this->addralign_)
3917     this->addralign_ = addralign;
3918
3919   off_t offset_in_section = this->current_data_size_for_child();
3920   off_t aligned_offset_in_section = align_address(offset_in_section,
3921                                                   addralign);
3922
3923   this->set_current_data_size_for_child(aligned_offset_in_section
3924                                         + data_size);
3925
3926   this->input_sections_.push_back(sis);
3927
3928   // Update fast lookup maps if necessary.
3929   if (this->lookup_maps_->is_valid())
3930     {
3931       if (sis.is_merge_section())
3932         {
3933           Output_merge_base* pomb = sis.output_merge_base();
3934           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3935                                        pomb->addralign());
3936           this->lookup_maps_->add_merge_section(msp, pomb);
3937           for (Output_merge_base::Input_sections::const_iterator p =
3938                  pomb->input_sections_begin();
3939                p != pomb->input_sections_end();
3940                ++p)
3941             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3942                                                         pomb);
3943         }
3944       else if (sis.is_relaxed_input_section())
3945         {
3946           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3947           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3948                                                         poris->shndx(), poris);
3949         }
3950     }
3951 }
3952
3953 // Save states for relaxation.
3954
3955 void
3956 Output_section::save_states()
3957 {
3958   gold_assert(this->checkpoint_ == NULL);
3959   Checkpoint_output_section* checkpoint =
3960     new Checkpoint_output_section(this->addralign_, this->flags_,
3961                                   this->input_sections_,
3962                                   this->first_input_offset_,
3963                                   this->attached_input_sections_are_sorted_);
3964   this->checkpoint_ = checkpoint;
3965   gold_assert(this->fills_.empty());
3966 }
3967
3968 void
3969 Output_section::discard_states()
3970 {
3971   gold_assert(this->checkpoint_ != NULL);
3972   delete this->checkpoint_;
3973   this->checkpoint_ = NULL;
3974   gold_assert(this->fills_.empty());
3975
3976   // Simply invalidate the fast lookup maps since we do not keep
3977   // track of them.
3978   this->lookup_maps_->invalidate();
3979 }
3980
3981 void
3982 Output_section::restore_states()
3983 {
3984   gold_assert(this->checkpoint_ != NULL);
3985   Checkpoint_output_section* checkpoint = this->checkpoint_;
3986
3987   this->addralign_ = checkpoint->addralign();
3988   this->flags_ = checkpoint->flags();
3989   this->first_input_offset_ = checkpoint->first_input_offset();
3990
3991   if (!checkpoint->input_sections_saved())
3992     {
3993       // If we have not copied the input sections, just resize it.
3994       size_t old_size = checkpoint->input_sections_size();
3995       gold_assert(this->input_sections_.size() >= old_size);
3996       this->input_sections_.resize(old_size);
3997     }
3998   else
3999     {
4000       // We need to copy the whole list.  This is not efficient for
4001       // extremely large output with hundreads of thousands of input
4002       // objects.  We may need to re-think how we should pass sections
4003       // to scripts.
4004       this->input_sections_ = *checkpoint->input_sections();
4005     }
4006
4007   this->attached_input_sections_are_sorted_ =
4008     checkpoint->attached_input_sections_are_sorted();
4009
4010   // Simply invalidate the fast lookup maps since we do not keep
4011   // track of them.
4012   this->lookup_maps_->invalidate();
4013 }
4014
4015 // Update the section offsets of input sections in this.  This is required if
4016 // relaxation causes some input sections to change sizes.
4017
4018 void
4019 Output_section::adjust_section_offsets()
4020 {
4021   if (!this->section_offsets_need_adjustment_)
4022     return;
4023
4024   off_t off = 0;
4025   for (Input_section_list::iterator p = this->input_sections_.begin();
4026        p != this->input_sections_.end();
4027        ++p)
4028     {
4029       off = align_address(off, p->addralign());
4030       if (p->is_input_section())
4031         p->relobj()->set_section_offset(p->shndx(), off);
4032       off += p->data_size();
4033     }
4034
4035   this->section_offsets_need_adjustment_ = false;
4036 }
4037
4038 // Print to the map file.
4039
4040 void
4041 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4042 {
4043   mapfile->print_output_section(this);
4044
4045   for (Input_section_list::const_iterator p = this->input_sections_.begin();
4046        p != this->input_sections_.end();
4047        ++p)
4048     p->print_to_mapfile(mapfile);
4049 }
4050
4051 // Print stats for merge sections to stderr.
4052
4053 void
4054 Output_section::print_merge_stats()
4055 {
4056   Input_section_list::iterator p;
4057   for (p = this->input_sections_.begin();
4058        p != this->input_sections_.end();
4059        ++p)
4060     p->print_merge_stats(this->name_);
4061 }
4062
4063 // Set a fixed layout for the section.  Used for incremental update links.
4064
4065 void
4066 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4067                                  off_t sh_size, uint64_t sh_addralign)
4068 {
4069   this->addralign_ = sh_addralign;
4070   this->set_current_data_size(sh_size);
4071   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4072     this->set_address(sh_addr);
4073   this->set_file_offset(sh_offset);
4074   this->finalize_data_size();
4075   this->free_list_.init(sh_size, false);
4076   this->has_fixed_layout_ = true;
4077 }
4078
4079 // Reserve space within the fixed layout for the section.  Used for
4080 // incremental update links.
4081
4082 void
4083 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4084 {
4085   this->free_list_.remove(sh_offset, sh_offset + sh_size);
4086 }
4087
4088 // Allocate space from the free list for the section.  Used for
4089 // incremental update links.
4090
4091 off_t
4092 Output_section::allocate(off_t len, uint64_t addralign)
4093 {
4094   return this->free_list_.allocate(len, addralign, 0);
4095 }
4096
4097 // Output segment methods.
4098
4099 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4100   : vaddr_(0),
4101     paddr_(0),
4102     memsz_(0),
4103     max_align_(0),
4104     min_p_align_(0),
4105     offset_(0),
4106     filesz_(0),
4107     type_(type),
4108     flags_(flags),
4109     is_max_align_known_(false),
4110     are_addresses_set_(false),
4111     is_large_data_segment_(false),
4112     is_unique_segment_(false)
4113 {
4114   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4115   // the flags.
4116   if (type == elfcpp::PT_TLS)
4117     this->flags_ = elfcpp::PF_R;
4118 }
4119
4120 // Add an Output_section to a PT_LOAD Output_segment.
4121
4122 void
4123 Output_segment::add_output_section_to_load(Layout* layout,
4124                                            Output_section* os,
4125                                            elfcpp::Elf_Word seg_flags)
4126 {
4127   gold_assert(this->type() == elfcpp::PT_LOAD);
4128   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4129   gold_assert(!this->is_max_align_known_);
4130   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4131
4132   this->update_flags_for_output_section(seg_flags);
4133
4134   // We don't want to change the ordering if we have a linker script
4135   // with a SECTIONS clause.
4136   Output_section_order order = os->order();
4137   if (layout->script_options()->saw_sections_clause())
4138     order = static_cast<Output_section_order>(0);
4139   else
4140     gold_assert(order != ORDER_INVALID);
4141
4142   this->output_lists_[order].push_back(os);
4143 }
4144
4145 // Add an Output_section to a non-PT_LOAD Output_segment.
4146
4147 void
4148 Output_segment::add_output_section_to_nonload(Output_section* os,
4149                                               elfcpp::Elf_Word seg_flags)
4150 {
4151   gold_assert(this->type() != elfcpp::PT_LOAD);
4152   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4153   gold_assert(!this->is_max_align_known_);
4154
4155   this->update_flags_for_output_section(seg_flags);
4156
4157   this->output_lists_[0].push_back(os);
4158 }
4159
4160 // Remove an Output_section from this segment.  It is an error if it
4161 // is not present.
4162
4163 void
4164 Output_segment::remove_output_section(Output_section* os)
4165 {
4166   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4167     {
4168       Output_data_list* pdl = &this->output_lists_[i];
4169       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4170         {
4171           if (*p == os)
4172             {
4173               pdl->erase(p);
4174               return;
4175             }
4176         }
4177     }
4178   gold_unreachable();
4179 }
4180
4181 // Add an Output_data (which need not be an Output_section) to the
4182 // start of a segment.
4183
4184 void
4185 Output_segment::add_initial_output_data(Output_data* od)
4186 {
4187   gold_assert(!this->is_max_align_known_);
4188   Output_data_list::iterator p = this->output_lists_[0].begin();
4189   this->output_lists_[0].insert(p, od);
4190 }
4191
4192 // Return true if this segment has any sections which hold actual
4193 // data, rather than being a BSS section.
4194
4195 bool
4196 Output_segment::has_any_data_sections() const
4197 {
4198   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4199     {
4200       const Output_data_list* pdl = &this->output_lists_[i];
4201       for (Output_data_list::const_iterator p = pdl->begin();
4202            p != pdl->end();
4203            ++p)
4204         {
4205           if (!(*p)->is_section())
4206             return true;
4207           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4208             return true;
4209         }
4210     }
4211   return false;
4212 }
4213
4214 // Return whether the first data section (not counting TLS sections)
4215 // is a relro section.
4216
4217 bool
4218 Output_segment::is_first_section_relro() const
4219 {
4220   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4221     {
4222       if (i == static_cast<int>(ORDER_TLS_DATA)
4223           || i == static_cast<int>(ORDER_TLS_BSS))
4224         continue;
4225       const Output_data_list* pdl = &this->output_lists_[i];
4226       if (!pdl->empty())
4227         {
4228           Output_data* p = pdl->front();
4229           return p->is_section() && p->output_section()->is_relro();
4230         }
4231     }
4232   return false;
4233 }
4234
4235 // Return the maximum alignment of the Output_data in Output_segment.
4236
4237 uint64_t
4238 Output_segment::maximum_alignment()
4239 {
4240   if (!this->is_max_align_known_)
4241     {
4242       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4243         {
4244           const Output_data_list* pdl = &this->output_lists_[i];
4245           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4246           if (addralign > this->max_align_)
4247             this->max_align_ = addralign;
4248         }
4249       this->is_max_align_known_ = true;
4250     }
4251
4252   return this->max_align_;
4253 }
4254
4255 // Return the maximum alignment of a list of Output_data.
4256
4257 uint64_t
4258 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4259 {
4260   uint64_t ret = 0;
4261   for (Output_data_list::const_iterator p = pdl->begin();
4262        p != pdl->end();
4263        ++p)
4264     {
4265       uint64_t addralign = (*p)->addralign();
4266       if (addralign > ret)
4267         ret = addralign;
4268     }
4269   return ret;
4270 }
4271
4272 // Return whether this segment has any dynamic relocs.
4273
4274 bool
4275 Output_segment::has_dynamic_reloc() const
4276 {
4277   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4278     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4279       return true;
4280   return false;
4281 }
4282
4283 // Return whether this Output_data_list has any dynamic relocs.
4284
4285 bool
4286 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4287 {
4288   for (Output_data_list::const_iterator p = pdl->begin();
4289        p != pdl->end();
4290        ++p)
4291     if ((*p)->has_dynamic_reloc())
4292       return true;
4293   return false;
4294 }
4295
4296 // Set the section addresses for an Output_segment.  If RESET is true,
4297 // reset the addresses first.  ADDR is the address and *POFF is the
4298 // file offset.  Set the section indexes starting with *PSHNDX.
4299 // INCREASE_RELRO is the size of the portion of the first non-relro
4300 // section that should be included in the PT_GNU_RELRO segment.
4301 // If this segment has relro sections, and has been aligned for
4302 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4303 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4304 // and *PSHNDX.
4305
4306 uint64_t
4307 Output_segment::set_section_addresses(Layout* layout, bool reset,
4308                                       uint64_t addr,
4309                                       unsigned int* increase_relro,
4310                                       bool* has_relro,
4311                                       off_t* poff,
4312                                       unsigned int* pshndx)
4313 {
4314   gold_assert(this->type_ == elfcpp::PT_LOAD);
4315
4316   uint64_t last_relro_pad = 0;
4317   off_t orig_off = *poff;
4318
4319   bool in_tls = false;
4320
4321   // If we have relro sections, we need to pad forward now so that the
4322   // relro sections plus INCREASE_RELRO end on an abi page boundary.
4323   if (parameters->options().relro()
4324       && this->is_first_section_relro()
4325       && (!this->are_addresses_set_ || reset))
4326     {
4327       uint64_t relro_size = 0;
4328       off_t off = *poff;
4329       uint64_t max_align = 0;
4330       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4331         {
4332           Output_data_list* pdl = &this->output_lists_[i];
4333           Output_data_list::iterator p;
4334           for (p = pdl->begin(); p != pdl->end(); ++p)
4335             {
4336               if (!(*p)->is_section())
4337                 break;
4338               uint64_t align = (*p)->addralign();
4339               if (align > max_align)
4340                 max_align = align;
4341               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4342                 in_tls = true;
4343               else if (in_tls)
4344                 {
4345                   // Align the first non-TLS section to the alignment
4346                   // of the TLS segment.
4347                   align = max_align;
4348                   in_tls = false;
4349                 }
4350               relro_size = align_address(relro_size, align);
4351               // Ignore the size of the .tbss section.
4352               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4353                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4354                 continue;
4355               if ((*p)->is_address_valid())
4356                 relro_size += (*p)->data_size();
4357               else
4358                 {
4359                   // FIXME: This could be faster.
4360                   (*p)->set_address_and_file_offset(addr + relro_size,
4361                                                     off + relro_size);
4362                   relro_size += (*p)->data_size();
4363                   (*p)->reset_address_and_file_offset();
4364                 }
4365             }
4366           if (p != pdl->end())
4367             break;
4368         }
4369       relro_size += *increase_relro;
4370       // Pad the total relro size to a multiple of the maximum
4371       // section alignment seen.
4372       uint64_t aligned_size = align_address(relro_size, max_align);
4373       // Note the amount of padding added after the last relro section.
4374       last_relro_pad = aligned_size - relro_size;
4375       *has_relro = true;
4376
4377       uint64_t page_align = parameters->target().abi_pagesize();
4378
4379       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4380       uint64_t desired_align = page_align - (aligned_size % page_align);
4381       if (desired_align < *poff % page_align)
4382         *poff += page_align - *poff % page_align;
4383       *poff += desired_align - *poff % page_align;
4384       addr += *poff - orig_off;
4385       orig_off = *poff;
4386     }
4387
4388   if (!reset && this->are_addresses_set_)
4389     {
4390       gold_assert(this->paddr_ == addr);
4391       addr = this->vaddr_;
4392     }
4393   else
4394     {
4395       this->vaddr_ = addr;
4396       this->paddr_ = addr;
4397       this->are_addresses_set_ = true;
4398     }
4399
4400   in_tls = false;
4401
4402   this->offset_ = orig_off;
4403
4404   off_t off = 0;
4405   uint64_t ret;
4406   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4407     {
4408       if (i == static_cast<int>(ORDER_RELRO_LAST))
4409         {
4410           *poff += last_relro_pad;
4411           addr += last_relro_pad;
4412           if (this->output_lists_[i].empty())
4413             {
4414               // If there is nothing in the ORDER_RELRO_LAST list,
4415               // the padding will occur at the end of the relro
4416               // segment, and we need to add it to *INCREASE_RELRO.
4417               *increase_relro += last_relro_pad;
4418             }
4419         }
4420       addr = this->set_section_list_addresses(layout, reset,
4421                                               &this->output_lists_[i],
4422                                               addr, poff, pshndx, &in_tls);
4423       if (i < static_cast<int>(ORDER_SMALL_BSS))
4424         {
4425           this->filesz_ = *poff - orig_off;
4426           off = *poff;
4427         }
4428
4429       ret = addr;
4430     }
4431
4432   // If the last section was a TLS section, align upward to the
4433   // alignment of the TLS segment, so that the overall size of the TLS
4434   // segment is aligned.
4435   if (in_tls)
4436     {
4437       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4438       *poff = align_address(*poff, segment_align);
4439     }
4440
4441   this->memsz_ = *poff - orig_off;
4442
4443   // Ignore the file offset adjustments made by the BSS Output_data
4444   // objects.
4445   *poff = off;
4446
4447   return ret;
4448 }
4449
4450 // Set the addresses and file offsets in a list of Output_data
4451 // structures.
4452
4453 uint64_t
4454 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4455                                            Output_data_list* pdl,
4456                                            uint64_t addr, off_t* poff,
4457                                            unsigned int* pshndx,
4458                                            bool* in_tls)
4459 {
4460   off_t startoff = *poff;
4461   // For incremental updates, we may allocate non-fixed sections from
4462   // free space in the file.  This keeps track of the high-water mark.
4463   off_t maxoff = startoff;
4464
4465   off_t off = startoff;
4466   for (Output_data_list::iterator p = pdl->begin();
4467        p != pdl->end();
4468        ++p)
4469     {
4470       if (reset)
4471         (*p)->reset_address_and_file_offset();
4472
4473       // When doing an incremental update or when using a linker script,
4474       // the section will most likely already have an address.
4475       if (!(*p)->is_address_valid())
4476         {
4477           uint64_t align = (*p)->addralign();
4478
4479           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4480             {
4481               // Give the first TLS section the alignment of the
4482               // entire TLS segment.  Otherwise the TLS segment as a
4483               // whole may be misaligned.
4484               if (!*in_tls)
4485                 {
4486                   Output_segment* tls_segment = layout->tls_segment();
4487                   gold_assert(tls_segment != NULL);
4488                   uint64_t segment_align = tls_segment->maximum_alignment();
4489                   gold_assert(segment_align >= align);
4490                   align = segment_align;
4491
4492                   *in_tls = true;
4493                 }
4494             }
4495           else
4496             {
4497               // If this is the first section after the TLS segment,
4498               // align it to at least the alignment of the TLS
4499               // segment, so that the size of the overall TLS segment
4500               // is aligned.
4501               if (*in_tls)
4502                 {
4503                   uint64_t segment_align =
4504                       layout->tls_segment()->maximum_alignment();
4505                   if (segment_align > align)
4506                     align = segment_align;
4507
4508                   *in_tls = false;
4509                 }
4510             }
4511
4512           if (!parameters->incremental_update())
4513             {
4514               off = align_address(off, align);
4515               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4516             }
4517           else
4518             {
4519               // Incremental update: allocate file space from free list.
4520               (*p)->pre_finalize_data_size();
4521               off_t current_size = (*p)->current_data_size();
4522               off = layout->allocate(current_size, align, startoff);
4523               if (off == -1)
4524                 {
4525                   gold_assert((*p)->output_section() != NULL);
4526                   gold_fallback(_("out of patch space for section %s; "
4527                                   "relink with --incremental-full"),
4528                                 (*p)->output_section()->name());
4529                 }
4530               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4531               if ((*p)->data_size() > current_size)
4532                 {
4533                   gold_assert((*p)->output_section() != NULL);
4534                   gold_fallback(_("%s: section changed size; "
4535                                   "relink with --incremental-full"),
4536                                 (*p)->output_section()->name());
4537                 }
4538             }
4539         }
4540       else if (parameters->incremental_update())
4541         {
4542           // For incremental updates, use the fixed offset for the
4543           // high-water mark computation.
4544           off = (*p)->offset();
4545         }
4546       else
4547         {
4548           // The script may have inserted a skip forward, but it
4549           // better not have moved backward.
4550           if ((*p)->address() >= addr + (off - startoff))
4551             off += (*p)->address() - (addr + (off - startoff));
4552           else
4553             {
4554               if (!layout->script_options()->saw_sections_clause())
4555                 gold_unreachable();
4556               else
4557                 {
4558                   Output_section* os = (*p)->output_section();
4559
4560                   // Cast to unsigned long long to avoid format warnings.
4561                   unsigned long long previous_dot =
4562                     static_cast<unsigned long long>(addr + (off - startoff));
4563                   unsigned long long dot =
4564                     static_cast<unsigned long long>((*p)->address());
4565
4566                   if (os == NULL)
4567                     gold_error(_("dot moves backward in linker script "
4568                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4569                   else
4570                     gold_error(_("address of section '%s' moves backward "
4571                                  "from 0x%llx to 0x%llx"),
4572                                os->name(), previous_dot, dot);
4573                 }
4574             }
4575           (*p)->set_file_offset(off);
4576           (*p)->finalize_data_size();
4577         }
4578
4579       if (parameters->incremental_update())
4580         gold_debug(DEBUG_INCREMENTAL,
4581                    "set_section_list_addresses: %08lx %08lx %s",
4582                    static_cast<long>(off),
4583                    static_cast<long>((*p)->data_size()),
4584                    ((*p)->output_section() != NULL
4585                     ? (*p)->output_section()->name() : "(special)"));
4586
4587       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4588       // section.  Such a section does not affect the size of a
4589       // PT_LOAD segment.
4590       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4591           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4592         off += (*p)->data_size();
4593
4594       if (off > maxoff)
4595         maxoff = off;
4596
4597       if ((*p)->is_section())
4598         {
4599           (*p)->set_out_shndx(*pshndx);
4600           ++*pshndx;
4601         }
4602     }
4603
4604   *poff = maxoff;
4605   return addr + (maxoff - startoff);
4606 }
4607
4608 // For a non-PT_LOAD segment, set the offset from the sections, if
4609 // any.  Add INCREASE to the file size and the memory size.
4610
4611 void
4612 Output_segment::set_offset(unsigned int increase)
4613 {
4614   gold_assert(this->type_ != elfcpp::PT_LOAD);
4615
4616   gold_assert(!this->are_addresses_set_);
4617
4618   // A non-load section only uses output_lists_[0].
4619
4620   Output_data_list* pdl = &this->output_lists_[0];
4621
4622   if (pdl->empty())
4623     {
4624       gold_assert(increase == 0);
4625       this->vaddr_ = 0;
4626       this->paddr_ = 0;
4627       this->are_addresses_set_ = true;
4628       this->memsz_ = 0;
4629       this->min_p_align_ = 0;
4630       this->offset_ = 0;
4631       this->filesz_ = 0;
4632       return;
4633     }
4634
4635   // Find the first and last section by address.
4636   const Output_data* first = NULL;
4637   const Output_data* last_data = NULL;
4638   const Output_data* last_bss = NULL;
4639   for (Output_data_list::const_iterator p = pdl->begin();
4640        p != pdl->end();
4641        ++p)
4642     {
4643       if (first == NULL
4644           || (*p)->address() < first->address()
4645           || ((*p)->address() == first->address()
4646               && (*p)->data_size() < first->data_size()))
4647         first = *p;
4648       const Output_data** plast;
4649       if ((*p)->is_section()
4650           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4651         plast = &last_bss;
4652       else
4653         plast = &last_data;
4654       if (*plast == NULL
4655           || (*p)->address() > (*plast)->address()
4656           || ((*p)->address() == (*plast)->address()
4657               && (*p)->data_size() > (*plast)->data_size()))
4658         *plast = *p;
4659     }
4660
4661   this->vaddr_ = first->address();
4662   this->paddr_ = (first->has_load_address()
4663                   ? first->load_address()
4664                   : this->vaddr_);
4665   this->are_addresses_set_ = true;
4666   this->offset_ = first->offset();
4667
4668   if (last_data == NULL)
4669     this->filesz_ = 0;
4670   else
4671     this->filesz_ = (last_data->address()
4672                      + last_data->data_size()
4673                      - this->vaddr_);
4674
4675   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4676   this->memsz_ = (last->address()
4677                   + last->data_size()
4678                   - this->vaddr_);
4679
4680   this->filesz_ += increase;
4681   this->memsz_ += increase;
4682
4683   // If this is a RELRO segment, verify that the segment ends at a
4684   // page boundary.
4685   if (this->type_ == elfcpp::PT_GNU_RELRO)
4686     {
4687       uint64_t page_align = parameters->target().abi_pagesize();
4688       uint64_t segment_end = this->vaddr_ + this->memsz_;
4689       if (parameters->incremental_update())
4690         {
4691           // The INCREASE_RELRO calculation is bypassed for an incremental
4692           // update, so we need to adjust the segment size manually here.
4693           segment_end = align_address(segment_end, page_align);
4694           this->memsz_ = segment_end - this->vaddr_;
4695         }
4696       else
4697         gold_assert(segment_end == align_address(segment_end, page_align));
4698     }
4699
4700   // If this is a TLS segment, align the memory size.  The code in
4701   // set_section_list ensures that the section after the TLS segment
4702   // is aligned to give us room.
4703   if (this->type_ == elfcpp::PT_TLS)
4704     {
4705       uint64_t segment_align = this->maximum_alignment();
4706       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4707       this->memsz_ = align_address(this->memsz_, segment_align);
4708     }
4709 }
4710
4711 // Set the TLS offsets of the sections in the PT_TLS segment.
4712
4713 void
4714 Output_segment::set_tls_offsets()
4715 {
4716   gold_assert(this->type_ == elfcpp::PT_TLS);
4717
4718   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4719        p != this->output_lists_[0].end();
4720        ++p)
4721     (*p)->set_tls_offset(this->vaddr_);
4722 }
4723
4724 // Return the first section.
4725
4726 Output_section*
4727 Output_segment::first_section() const
4728 {
4729   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4730     {
4731       const Output_data_list* pdl = &this->output_lists_[i];
4732       for (Output_data_list::const_iterator p = pdl->begin();
4733            p != pdl->end();
4734            ++p)
4735         {
4736           if ((*p)->is_section())
4737             return (*p)->output_section();
4738         }
4739     }
4740   gold_unreachable();
4741 }
4742
4743 // Return the number of Output_sections in an Output_segment.
4744
4745 unsigned int
4746 Output_segment::output_section_count() const
4747 {
4748   unsigned int ret = 0;
4749   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4750     ret += this->output_section_count_list(&this->output_lists_[i]);
4751   return ret;
4752 }
4753
4754 // Return the number of Output_sections in an Output_data_list.
4755
4756 unsigned int
4757 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4758 {
4759   unsigned int count = 0;
4760   for (Output_data_list::const_iterator p = pdl->begin();
4761        p != pdl->end();
4762        ++p)
4763     {
4764       if ((*p)->is_section())
4765         ++count;
4766     }
4767   return count;
4768 }
4769
4770 // Return the section attached to the list segment with the lowest
4771 // load address.  This is used when handling a PHDRS clause in a
4772 // linker script.
4773
4774 Output_section*
4775 Output_segment::section_with_lowest_load_address() const
4776 {
4777   Output_section* found = NULL;
4778   uint64_t found_lma = 0;
4779   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4780     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4781                                       &found_lma);
4782   return found;
4783 }
4784
4785 // Look through a list for a section with a lower load address.
4786
4787 void
4788 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4789                                             Output_section** found,
4790                                             uint64_t* found_lma) const
4791 {
4792   for (Output_data_list::const_iterator p = pdl->begin();
4793        p != pdl->end();
4794        ++p)
4795     {
4796       if (!(*p)->is_section())
4797         continue;
4798       Output_section* os = static_cast<Output_section*>(*p);
4799       uint64_t lma = (os->has_load_address()
4800                       ? os->load_address()
4801                       : os->address());
4802       if (*found == NULL || lma < *found_lma)
4803         {
4804           *found = os;
4805           *found_lma = lma;
4806         }
4807     }
4808 }
4809
4810 // Write the segment data into *OPHDR.
4811
4812 template<int size, bool big_endian>
4813 void
4814 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4815 {
4816   ophdr->put_p_type(this->type_);
4817   ophdr->put_p_offset(this->offset_);
4818   ophdr->put_p_vaddr(this->vaddr_);
4819   ophdr->put_p_paddr(this->paddr_);
4820   ophdr->put_p_filesz(this->filesz_);
4821   ophdr->put_p_memsz(this->memsz_);
4822   ophdr->put_p_flags(this->flags_);
4823   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4824 }
4825
4826 // Write the section headers into V.
4827
4828 template<int size, bool big_endian>
4829 unsigned char*
4830 Output_segment::write_section_headers(const Layout* layout,
4831                                       const Stringpool* secnamepool,
4832                                       unsigned char* v,
4833                                       unsigned int* pshndx) const
4834 {
4835   // Every section that is attached to a segment must be attached to a
4836   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4837   // segments.
4838   if (this->type_ != elfcpp::PT_LOAD)
4839     return v;
4840
4841   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4842     {
4843       const Output_data_list* pdl = &this->output_lists_[i];
4844       v = this->write_section_headers_list<size, big_endian>(layout,
4845                                                              secnamepool,
4846                                                              pdl,
4847                                                              v, pshndx);
4848     }
4849
4850   return v;
4851 }
4852
4853 template<int size, bool big_endian>
4854 unsigned char*
4855 Output_segment::write_section_headers_list(const Layout* layout,
4856                                            const Stringpool* secnamepool,
4857                                            const Output_data_list* pdl,
4858                                            unsigned char* v,
4859                                            unsigned int* pshndx) const
4860 {
4861   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4862   for (Output_data_list::const_iterator p = pdl->begin();
4863        p != pdl->end();
4864        ++p)
4865     {
4866       if ((*p)->is_section())
4867         {
4868           const Output_section* ps = static_cast<const Output_section*>(*p);
4869           gold_assert(*pshndx == ps->out_shndx());
4870           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4871           ps->write_header(layout, secnamepool, &oshdr);
4872           v += shdr_size;
4873           ++*pshndx;
4874         }
4875     }
4876   return v;
4877 }
4878
4879 // Print the output sections to the map file.
4880
4881 void
4882 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4883 {
4884   if (this->type() != elfcpp::PT_LOAD)
4885     return;
4886   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4887     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4888 }
4889
4890 // Print an output section list to the map file.
4891
4892 void
4893 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4894                                               const Output_data_list* pdl) const
4895 {
4896   for (Output_data_list::const_iterator p = pdl->begin();
4897        p != pdl->end();
4898        ++p)
4899     (*p)->print_to_mapfile(mapfile);
4900 }
4901
4902 // Output_file methods.
4903
4904 Output_file::Output_file(const char* name)
4905   : name_(name),
4906     o_(-1),
4907     file_size_(0),
4908     base_(NULL),
4909     map_is_anonymous_(false),
4910     map_is_allocated_(false),
4911     is_temporary_(false)
4912 {
4913 }
4914
4915 // Try to open an existing file.  Returns false if the file doesn't
4916 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4917 // NULL, open that file as the base for incremental linking, and
4918 // copy its contents to the new output file.  This routine can
4919 // be called for incremental updates, in which case WRITABLE should
4920 // be true, or by the incremental-dump utility, in which case
4921 // WRITABLE should be false.
4922
4923 bool
4924 Output_file::open_base_file(const char* base_name, bool writable)
4925 {
4926   // The name "-" means "stdout".
4927   if (strcmp(this->name_, "-") == 0)
4928     return false;
4929
4930   bool use_base_file = base_name != NULL;
4931   if (!use_base_file)
4932     base_name = this->name_;
4933   else if (strcmp(base_name, this->name_) == 0)
4934     gold_fatal(_("%s: incremental base and output file name are the same"),
4935                base_name);
4936
4937   // Don't bother opening files with a size of zero.
4938   struct stat s;
4939   if (::stat(base_name, &s) != 0)
4940     {
4941       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4942       return false;
4943     }
4944   if (s.st_size == 0)
4945     {
4946       gold_info(_("%s: incremental base file is empty"), base_name);
4947       return false;
4948     }
4949
4950   // If we're using a base file, we want to open it read-only.
4951   if (use_base_file)
4952     writable = false;
4953
4954   int oflags = writable ? O_RDWR : O_RDONLY;
4955   int o = open_descriptor(-1, base_name, oflags, 0);
4956   if (o < 0)
4957     {
4958       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4959       return false;
4960     }
4961
4962   // If the base file and the output file are different, open a
4963   // new output file and read the contents from the base file into
4964   // the newly-mapped region.
4965   if (use_base_file)
4966     {
4967       this->open(s.st_size);
4968       ssize_t bytes_to_read = s.st_size;
4969       unsigned char* p = this->base_;
4970       while (bytes_to_read > 0)
4971         {
4972           ssize_t len = ::read(o, p, bytes_to_read);
4973           if (len < 0)
4974             {
4975               gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4976               return false;
4977             }
4978           if (len == 0)
4979             {
4980               gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4981                         base_name,
4982                         static_cast<long long>(s.st_size - bytes_to_read),
4983                         static_cast<long long>(s.st_size));
4984               return false;
4985             }
4986           p += len;
4987           bytes_to_read -= len;
4988         }
4989       ::close(o);
4990       return true;
4991     }
4992
4993   this->o_ = o;
4994   this->file_size_ = s.st_size;
4995
4996   if (!this->map_no_anonymous(writable))
4997     {
4998       release_descriptor(o, true);
4999       this->o_ = -1;
5000       this->file_size_ = 0;
5001       return false;
5002     }
5003
5004   return true;
5005 }
5006
5007 // Open the output file.
5008
5009 void
5010 Output_file::open(off_t file_size)
5011 {
5012   this->file_size_ = file_size;
5013
5014   // Unlink the file first; otherwise the open() may fail if the file
5015   // is busy (e.g. it's an executable that's currently being executed).
5016   //
5017   // However, the linker may be part of a system where a zero-length
5018   // file is created for it to write to, with tight permissions (gcc
5019   // 2.95 did something like this).  Unlinking the file would work
5020   // around those permission controls, so we only unlink if the file
5021   // has a non-zero size.  We also unlink only regular files to avoid
5022   // trouble with directories/etc.
5023   //
5024   // If we fail, continue; this command is merely a best-effort attempt
5025   // to improve the odds for open().
5026
5027   // We let the name "-" mean "stdout"
5028   if (!this->is_temporary_)
5029     {
5030       if (strcmp(this->name_, "-") == 0)
5031         this->o_ = STDOUT_FILENO;
5032       else
5033         {
5034           struct stat s;
5035           if (::stat(this->name_, &s) == 0
5036               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5037             {
5038               if (s.st_size != 0)
5039                 ::unlink(this->name_);
5040               else if (!parameters->options().relocatable())
5041                 {
5042                   // If we don't unlink the existing file, add execute
5043                   // permission where read permissions already exist
5044                   // and where the umask permits.
5045                   int mask = ::umask(0);
5046                   ::umask(mask);
5047                   s.st_mode |= (s.st_mode & 0444) >> 2;
5048                   ::chmod(this->name_, s.st_mode & ~mask);
5049                 }
5050             }
5051
5052           int mode = parameters->options().relocatable() ? 0666 : 0777;
5053           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5054                                   mode);
5055           if (o < 0)
5056             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5057           this->o_ = o;
5058         }
5059     }
5060
5061   this->map();
5062 }
5063
5064 // Resize the output file.
5065
5066 void
5067 Output_file::resize(off_t file_size)
5068 {
5069   // If the mmap is mapping an anonymous memory buffer, this is easy:
5070   // just mremap to the new size.  If it's mapping to a file, we want
5071   // to unmap to flush to the file, then remap after growing the file.
5072   if (this->map_is_anonymous_)
5073     {
5074       void* base;
5075       if (!this->map_is_allocated_)
5076         {
5077           base = ::mremap(this->base_, this->file_size_, file_size,
5078                           MREMAP_MAYMOVE);
5079           if (base == MAP_FAILED)
5080             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5081         }
5082       else
5083         {
5084           base = realloc(this->base_, file_size);
5085           if (base == NULL)
5086             gold_nomem();
5087           if (file_size > this->file_size_)
5088             memset(static_cast<char*>(base) + this->file_size_, 0,
5089                    file_size - this->file_size_);
5090         }
5091       this->base_ = static_cast<unsigned char*>(base);
5092       this->file_size_ = file_size;
5093     }
5094   else
5095     {
5096       this->unmap();
5097       this->file_size_ = file_size;
5098       if (!this->map_no_anonymous(true))
5099         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5100     }
5101 }
5102
5103 // Map an anonymous block of memory which will later be written to the
5104 // file.  Return whether the map succeeded.
5105
5106 bool
5107 Output_file::map_anonymous()
5108 {
5109   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5110                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5111   if (base == MAP_FAILED)
5112     {
5113       base = malloc(this->file_size_);
5114       if (base == NULL)
5115         return false;
5116       memset(base, 0, this->file_size_);
5117       this->map_is_allocated_ = true;
5118     }
5119   this->base_ = static_cast<unsigned char*>(base);
5120   this->map_is_anonymous_ = true;
5121   return true;
5122 }
5123
5124 // Map the file into memory.  Return whether the mapping succeeded.
5125 // If WRITABLE is true, map with write access.
5126
5127 bool
5128 Output_file::map_no_anonymous(bool writable)
5129 {
5130   const int o = this->o_;
5131
5132   // If the output file is not a regular file, don't try to mmap it;
5133   // instead, we'll mmap a block of memory (an anonymous buffer), and
5134   // then later write the buffer to the file.
5135   void* base;
5136   struct stat statbuf;
5137   if (o == STDOUT_FILENO || o == STDERR_FILENO
5138       || ::fstat(o, &statbuf) != 0
5139       || !S_ISREG(statbuf.st_mode)
5140       || this->is_temporary_)
5141     return false;
5142
5143   // Ensure that we have disk space available for the file.  If we
5144   // don't do this, it is possible that we will call munmap, close,
5145   // and exit with dirty buffers still in the cache with no assigned
5146   // disk blocks.  If the disk is out of space at that point, the
5147   // output file will wind up incomplete, but we will have already
5148   // exited.  The alternative to fallocate would be to use fdatasync,
5149   // but that would be a more significant performance hit.
5150   if (writable)
5151     {
5152       int err = gold_fallocate(o, 0, this->file_size_);
5153       if (err != 0)
5154        gold_fatal(_("%s: %s"), this->name_, strerror(err));
5155     }
5156
5157   // Map the file into memory.
5158   int prot = PROT_READ;
5159   if (writable)
5160     prot |= PROT_WRITE;
5161   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5162
5163   // The mmap call might fail because of file system issues: the file
5164   // system might not support mmap at all, or it might not support
5165   // mmap with PROT_WRITE.
5166   if (base == MAP_FAILED)
5167     return false;
5168
5169   this->map_is_anonymous_ = false;
5170   this->base_ = static_cast<unsigned char*>(base);
5171   return true;
5172 }
5173
5174 // Map the file into memory.
5175
5176 void
5177 Output_file::map()
5178 {
5179   if (parameters->options().mmap_output_file()
5180       && this->map_no_anonymous(true))
5181     return;
5182
5183   // The mmap call might fail because of file system issues: the file
5184   // system might not support mmap at all, or it might not support
5185   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5186   // see in all cases, so if the mmap fails for any reason and we
5187   // don't care about file contents, try for an anonymous map.
5188   if (this->map_anonymous())
5189     return;
5190
5191   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5192              this->name_, static_cast<unsigned long>(this->file_size_),
5193              strerror(errno));
5194 }
5195
5196 // Unmap the file from memory.
5197
5198 void
5199 Output_file::unmap()
5200 {
5201   if (this->map_is_anonymous_)
5202     {
5203       // We've already written out the data, so there is no reason to
5204       // waste time unmapping or freeing the memory.
5205     }
5206   else
5207     {
5208       if (::munmap(this->base_, this->file_size_) < 0)
5209         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5210     }
5211   this->base_ = NULL;
5212 }
5213
5214 // Close the output file.
5215
5216 void
5217 Output_file::close()
5218 {
5219   // If the map isn't file-backed, we need to write it now.
5220   if (this->map_is_anonymous_ && !this->is_temporary_)
5221     {
5222       size_t bytes_to_write = this->file_size_;
5223       size_t offset = 0;
5224       while (bytes_to_write > 0)
5225         {
5226           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5227                                           bytes_to_write);
5228           if (bytes_written == 0)
5229             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5230           else if (bytes_written < 0)
5231             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5232           else
5233             {
5234               bytes_to_write -= bytes_written;
5235               offset += bytes_written;
5236             }
5237         }
5238     }
5239   this->unmap();
5240
5241   // We don't close stdout or stderr
5242   if (this->o_ != STDOUT_FILENO
5243       && this->o_ != STDERR_FILENO
5244       && !this->is_temporary_)
5245     if (::close(this->o_) < 0)
5246       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5247   this->o_ = -1;
5248 }
5249
5250 // Instantiate the templates we need.  We could use the configure
5251 // script to restrict this to only the ones for implemented targets.
5252
5253 #ifdef HAVE_TARGET_32_LITTLE
5254 template
5255 off_t
5256 Output_section::add_input_section<32, false>(
5257     Layout* layout,
5258     Sized_relobj_file<32, false>* object,
5259     unsigned int shndx,
5260     const char* secname,
5261     const elfcpp::Shdr<32, false>& shdr,
5262     unsigned int reloc_shndx,
5263     bool have_sections_script);
5264 #endif
5265
5266 #ifdef HAVE_TARGET_32_BIG
5267 template
5268 off_t
5269 Output_section::add_input_section<32, true>(
5270     Layout* layout,
5271     Sized_relobj_file<32, true>* object,
5272     unsigned int shndx,
5273     const char* secname,
5274     const elfcpp::Shdr<32, true>& shdr,
5275     unsigned int reloc_shndx,
5276     bool have_sections_script);
5277 #endif
5278
5279 #ifdef HAVE_TARGET_64_LITTLE
5280 template
5281 off_t
5282 Output_section::add_input_section<64, false>(
5283     Layout* layout,
5284     Sized_relobj_file<64, false>* object,
5285     unsigned int shndx,
5286     const char* secname,
5287     const elfcpp::Shdr<64, false>& shdr,
5288     unsigned int reloc_shndx,
5289     bool have_sections_script);
5290 #endif
5291
5292 #ifdef HAVE_TARGET_64_BIG
5293 template
5294 off_t
5295 Output_section::add_input_section<64, true>(
5296     Layout* layout,
5297     Sized_relobj_file<64, true>* object,
5298     unsigned int shndx,
5299     const char* secname,
5300     const elfcpp::Shdr<64, true>& shdr,
5301     unsigned int reloc_shndx,
5302     bool have_sections_script);
5303 #endif
5304
5305 #ifdef HAVE_TARGET_32_LITTLE
5306 template
5307 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5308 #endif
5309
5310 #ifdef HAVE_TARGET_32_BIG
5311 template
5312 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5313 #endif
5314
5315 #ifdef HAVE_TARGET_64_LITTLE
5316 template
5317 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5318 #endif
5319
5320 #ifdef HAVE_TARGET_64_BIG
5321 template
5322 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5323 #endif
5324
5325 #ifdef HAVE_TARGET_32_LITTLE
5326 template
5327 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5328 #endif
5329
5330 #ifdef HAVE_TARGET_32_BIG
5331 template
5332 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5333 #endif
5334
5335 #ifdef HAVE_TARGET_64_LITTLE
5336 template
5337 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5338 #endif
5339
5340 #ifdef HAVE_TARGET_64_BIG
5341 template
5342 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5343 #endif
5344
5345 #ifdef HAVE_TARGET_32_LITTLE
5346 template
5347 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5348 #endif
5349
5350 #ifdef HAVE_TARGET_32_BIG
5351 template
5352 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5353 #endif
5354
5355 #ifdef HAVE_TARGET_64_LITTLE
5356 template
5357 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5358 #endif
5359
5360 #ifdef HAVE_TARGET_64_BIG
5361 template
5362 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5363 #endif
5364
5365 #ifdef HAVE_TARGET_32_LITTLE
5366 template
5367 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5368 #endif
5369
5370 #ifdef HAVE_TARGET_32_BIG
5371 template
5372 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5373 #endif
5374
5375 #ifdef HAVE_TARGET_64_LITTLE
5376 template
5377 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5378 #endif
5379
5380 #ifdef HAVE_TARGET_64_BIG
5381 template
5382 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5383 #endif
5384
5385 #ifdef HAVE_TARGET_32_LITTLE
5386 template
5387 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5388 #endif
5389
5390 #ifdef HAVE_TARGET_32_BIG
5391 template
5392 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5393 #endif
5394
5395 #ifdef HAVE_TARGET_64_LITTLE
5396 template
5397 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5398 #endif
5399
5400 #ifdef HAVE_TARGET_64_BIG
5401 template
5402 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5403 #endif
5404
5405 #ifdef HAVE_TARGET_32_LITTLE
5406 template
5407 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5408 #endif
5409
5410 #ifdef HAVE_TARGET_32_BIG
5411 template
5412 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5413 #endif
5414
5415 #ifdef HAVE_TARGET_64_LITTLE
5416 template
5417 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5418 #endif
5419
5420 #ifdef HAVE_TARGET_64_BIG
5421 template
5422 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5423 #endif
5424
5425 #ifdef HAVE_TARGET_32_LITTLE
5426 template
5427 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5428 #endif
5429
5430 #ifdef HAVE_TARGET_32_BIG
5431 template
5432 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5433 #endif
5434
5435 #ifdef HAVE_TARGET_64_LITTLE
5436 template
5437 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5438 #endif
5439
5440 #ifdef HAVE_TARGET_64_BIG
5441 template
5442 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5443 #endif
5444
5445 #ifdef HAVE_TARGET_32_LITTLE
5446 template
5447 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5448 #endif
5449
5450 #ifdef HAVE_TARGET_32_BIG
5451 template
5452 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5453 #endif
5454
5455 #ifdef HAVE_TARGET_64_LITTLE
5456 template
5457 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5458 #endif
5459
5460 #ifdef HAVE_TARGET_64_BIG
5461 template
5462 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5463 #endif
5464
5465 #ifdef HAVE_TARGET_32_LITTLE
5466 template
5467 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5468 #endif
5469
5470 #ifdef HAVE_TARGET_32_BIG
5471 template
5472 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5473 #endif
5474
5475 #ifdef HAVE_TARGET_64_LITTLE
5476 template
5477 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5478 #endif
5479
5480 #ifdef HAVE_TARGET_64_BIG
5481 template
5482 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5483 #endif
5484
5485 #ifdef HAVE_TARGET_32_LITTLE
5486 template
5487 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5488 #endif
5489
5490 #ifdef HAVE_TARGET_32_BIG
5491 template
5492 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5493 #endif
5494
5495 #ifdef HAVE_TARGET_64_LITTLE
5496 template
5497 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5498 #endif
5499
5500 #ifdef HAVE_TARGET_64_BIG
5501 template
5502 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5503 #endif
5504
5505 #ifdef HAVE_TARGET_32_LITTLE
5506 template
5507 class Output_data_group<32, false>;
5508 #endif
5509
5510 #ifdef HAVE_TARGET_32_BIG
5511 template
5512 class Output_data_group<32, true>;
5513 #endif
5514
5515 #ifdef HAVE_TARGET_64_LITTLE
5516 template
5517 class Output_data_group<64, false>;
5518 #endif
5519
5520 #ifdef HAVE_TARGET_64_BIG
5521 template
5522 class Output_data_group<64, true>;
5523 #endif
5524
5525 template
5526 class Output_data_got<32, false>;
5527
5528 template
5529 class Output_data_got<32, true>;
5530
5531 template
5532 class Output_data_got<64, false>;
5533
5534 template
5535 class Output_data_got<64, true>;
5536
5537 } // End namespace gold.