Patch adds support to allow plugins to map selected subset of sections to unique
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 #  define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 #  define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 #  define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 #  define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 #  define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 #  define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80   errno = ENOSYS;
81   return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87   errno = ENOSYS;
88   return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94   errno = ENOSYS;
95   return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS  MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate.  If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly.  If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131   if (parameters->options().posix_fallocate())
132     return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135   if (::fallocate(o, 0, offset, len) == 0)
136     return 0;
137 #endif // defined(HAVE_FALLOCATE)
138   if (::ftruncate(o, offset + len) < 0)
139     return errno;
140   return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158   return Output_data::default_alignment_for_size(
159       parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167   if (size == 32)
168     return 4;
169   else if (size == 64)
170     return 8;
171   else
172     gold_unreachable();
173 }
174
175 // Output_section_header methods.  This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179     const Layout* layout,
180     const Layout::Segment_list* segment_list,
181     const Layout::Section_list* section_list,
182     const Layout::Section_list* unattached_section_list,
183     const Stringpool* secnamepool,
184     const Output_section* shstrtab_section)
185   : layout_(layout),
186     segment_list_(segment_list),
187     section_list_(section_list),
188     unattached_section_list_(unattached_section_list),
189     secnamepool_(secnamepool),
190     shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199   // Count all the sections.  Start with 1 for the null section.
200   off_t count = 1;
201   if (!parameters->options().relocatable())
202     {
203       for (Layout::Segment_list::const_iterator p =
204              this->segment_list_->begin();
205            p != this->segment_list_->end();
206            ++p)
207         if ((*p)->type() == elfcpp::PT_LOAD)
208           count += (*p)->output_section_count();
209     }
210   else
211     {
212       for (Layout::Section_list::const_iterator p =
213              this->section_list_->begin();
214            p != this->section_list_->end();
215            ++p)
216         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217           ++count;
218     }
219   count += this->unattached_section_list_->size();
220
221   const int size = parameters->target().get_size();
222   int shdr_size;
223   if (size == 32)
224     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225   else if (size == 64)
226     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227   else
228     gold_unreachable();
229
230   return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238   switch (parameters->size_and_endianness())
239     {
240 #ifdef HAVE_TARGET_32_LITTLE
241     case Parameters::TARGET_32_LITTLE:
242       this->do_sized_write<32, false>(of);
243       break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246     case Parameters::TARGET_32_BIG:
247       this->do_sized_write<32, true>(of);
248       break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251     case Parameters::TARGET_64_LITTLE:
252       this->do_sized_write<64, false>(of);
253       break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256     case Parameters::TARGET_64_BIG:
257       this->do_sized_write<64, true>(of);
258       break;
259 #endif
260     default:
261       gold_unreachable();
262     }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269   off_t all_shdrs_size = this->data_size();
270   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273   unsigned char* v = view;
274
275   {
276     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277     oshdr.put_sh_name(0);
278     oshdr.put_sh_type(elfcpp::SHT_NULL);
279     oshdr.put_sh_flags(0);
280     oshdr.put_sh_addr(0);
281     oshdr.put_sh_offset(0);
282
283     size_t section_count = (this->data_size()
284                             / elfcpp::Elf_sizes<size>::shdr_size);
285     if (section_count < elfcpp::SHN_LORESERVE)
286       oshdr.put_sh_size(0);
287     else
288       oshdr.put_sh_size(section_count);
289
290     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291     if (shstrndx < elfcpp::SHN_LORESERVE)
292       oshdr.put_sh_link(0);
293     else
294       oshdr.put_sh_link(shstrndx);
295
296     size_t segment_count = this->segment_list_->size();
297     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299     oshdr.put_sh_addralign(0);
300     oshdr.put_sh_entsize(0);
301   }
302
303   v += shdr_size;
304
305   unsigned int shndx = 1;
306   if (!parameters->options().relocatable())
307     {
308       for (Layout::Segment_list::const_iterator p =
309              this->segment_list_->begin();
310            p != this->segment_list_->end();
311            ++p)
312         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313                                                           this->secnamepool_,
314                                                           v,
315                                                           &shndx);
316     }
317   else
318     {
319       for (Layout::Section_list::const_iterator p =
320              this->section_list_->begin();
321            p != this->section_list_->end();
322            ++p)
323         {
324           // We do unallocated sections below, except that group
325           // sections have to come first.
326           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327               && (*p)->type() != elfcpp::SHT_GROUP)
328             continue;
329           gold_assert(shndx == (*p)->out_shndx());
330           elfcpp::Shdr_write<size, big_endian> oshdr(v);
331           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332           v += shdr_size;
333           ++shndx;
334         }
335     }
336
337   for (Layout::Section_list::const_iterator p =
338          this->unattached_section_list_->begin();
339        p != this->unattached_section_list_->end();
340        ++p)
341     {
342       // For a relocatable link, we did unallocated group sections
343       // above, since they have to come first.
344       if ((*p)->type() == elfcpp::SHT_GROUP
345           && parameters->options().relocatable())
346         continue;
347       gold_assert(shndx == (*p)->out_shndx());
348       elfcpp::Shdr_write<size, big_endian> oshdr(v);
349       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350       v += shdr_size;
351       ++shndx;
352     }
353
354   of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360     const Layout::Segment_list& segment_list)
361   : segment_list_(segment_list)
362 {
363   this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369   switch (parameters->size_and_endianness())
370     {
371 #ifdef HAVE_TARGET_32_LITTLE
372     case Parameters::TARGET_32_LITTLE:
373       this->do_sized_write<32, false>(of);
374       break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377     case Parameters::TARGET_32_BIG:
378       this->do_sized_write<32, true>(of);
379       break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382     case Parameters::TARGET_64_LITTLE:
383       this->do_sized_write<64, false>(of);
384       break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387     case Parameters::TARGET_64_BIG:
388       this->do_sized_write<64, true>(of);
389       break;
390 #endif
391     default:
392       gold_unreachable();
393     }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402   gold_assert(all_phdrs_size == this->data_size());
403   unsigned char* view = of->get_output_view(this->offset(),
404                                             all_phdrs_size);
405   unsigned char* v = view;
406   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407        p != this->segment_list_.end();
408        ++p)
409     {
410       elfcpp::Phdr_write<size, big_endian> ophdr(v);
411       (*p)->write_header(&ophdr);
412       v += phdr_size;
413     }
414
415   gold_assert(v - view == all_phdrs_size);
416
417   of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423   const int size = parameters->target().get_size();
424   int phdr_size;
425   if (size == 32)
426     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427   else if (size == 64)
428     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429   else
430     gold_unreachable();
431
432   return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(const Target* target,
438                                        const Symbol_table* symtab,
439                                        const Output_segment_headers* osh)
440   : target_(target),
441     symtab_(symtab),
442     segment_header_(osh),
443     section_header_(NULL),
444     shstrtab_(NULL)
445 {
446   this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453                                      const Output_section* shstrtab)
454 {
455   this->section_header_ = shdrs;
456   this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464   gold_assert(this->offset() == 0);
465
466   switch (parameters->size_and_endianness())
467     {
468 #ifdef HAVE_TARGET_32_LITTLE
469     case Parameters::TARGET_32_LITTLE:
470       this->do_sized_write<32, false>(of);
471       break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474     case Parameters::TARGET_32_BIG:
475       this->do_sized_write<32, true>(of);
476       break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479     case Parameters::TARGET_64_LITTLE:
480       this->do_sized_write<64, false>(of);
481       break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484     case Parameters::TARGET_64_BIG:
485       this->do_sized_write<64, true>(of);
486       break;
487 #endif
488     default:
489       gold_unreachable();
490     }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499   gold_assert(this->offset() == 0);
500
501   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502   unsigned char* view = of->get_output_view(0, ehdr_size);
503   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505   unsigned char e_ident[elfcpp::EI_NIDENT];
506   memset(e_ident, 0, elfcpp::EI_NIDENT);
507   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511   if (size == 32)
512     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513   else if (size == 64)
514     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515   else
516     gold_unreachable();
517   e_ident[elfcpp::EI_DATA] = (big_endian
518                               ? elfcpp::ELFDATA2MSB
519                               : elfcpp::ELFDATA2LSB);
520   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521   oehdr.put_e_ident(e_ident);
522
523   elfcpp::ET e_type;
524   if (parameters->options().relocatable())
525     e_type = elfcpp::ET_REL;
526   else if (parameters->options().output_is_position_independent())
527     e_type = elfcpp::ET_DYN;
528   else
529     e_type = elfcpp::ET_EXEC;
530   oehdr.put_e_type(e_type);
531
532   oehdr.put_e_machine(this->target_->machine_code());
533   oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535   oehdr.put_e_entry(this->entry<size>());
536
537   if (this->segment_header_ == NULL)
538     oehdr.put_e_phoff(0);
539   else
540     oehdr.put_e_phoff(this->segment_header_->offset());
541
542   oehdr.put_e_shoff(this->section_header_->offset());
543   oehdr.put_e_flags(this->target_->processor_specific_flags());
544   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546   if (this->segment_header_ == NULL)
547     {
548       oehdr.put_e_phentsize(0);
549       oehdr.put_e_phnum(0);
550     }
551   else
552     {
553       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554       size_t phnum = (this->segment_header_->data_size()
555                       / elfcpp::Elf_sizes<size>::phdr_size);
556       if (phnum > elfcpp::PN_XNUM)
557         phnum = elfcpp::PN_XNUM;
558       oehdr.put_e_phnum(phnum);
559     }
560
561   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562   size_t section_count = (this->section_header_->data_size()
563                           / elfcpp::Elf_sizes<size>::shdr_size);
564
565   if (section_count < elfcpp::SHN_LORESERVE)
566     oehdr.put_e_shnum(this->section_header_->data_size()
567                       / elfcpp::Elf_sizes<size>::shdr_size);
568   else
569     oehdr.put_e_shnum(0);
570
571   unsigned int shstrndx = this->shstrtab_->out_shndx();
572   if (shstrndx < elfcpp::SHN_LORESERVE)
573     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574   else
575     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578   // the e_ident field.
579   parameters->target().adjust_elf_header(view, ehdr_size);
580
581   of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590   const bool should_issue_warning = (parameters->options().entry() != NULL
591                                      && !parameters->options().relocatable()
592                                      && !parameters->options().shared());
593   const char* entry = parameters->entry();
594   Symbol* sym = this->symtab_->lookup(entry);
595
596   typename Sized_symbol<size>::Value_type v;
597   if (sym != NULL)
598     {
599       Sized_symbol<size>* ssym;
600       ssym = this->symtab_->get_sized_symbol<size>(sym);
601       if (!ssym->is_defined() && should_issue_warning)
602         gold_warning("entry symbol '%s' exists but is not defined", entry);
603       v = ssym->value();
604     }
605   else
606     {
607       // We couldn't find the entry symbol.  See if we can parse it as
608       // a number.  This supports, e.g., -e 0x1000.
609       char* endptr;
610       v = strtoull(entry, &endptr, 0);
611       if (*endptr != '\0')
612         {
613           if (should_issue_warning)
614             gold_warning("cannot find entry symbol '%s'", entry);
615           v = 0;
616         }
617     }
618
619   return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627   const int size = parameters->target().get_size();
628   if (size == 32)
629     return elfcpp::Elf_sizes<32>::ehdr_size;
630   else if (size == 64)
631     return elfcpp::Elf_sizes<64>::ehdr_size;
632   else
633     gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641   of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649   of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659   gold_assert(this->output_section_ == NULL);
660   this->output_section_ = os;
661   this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669   gold_assert(this->output_section_ != NULL);
670   return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679   this->addralign_ = addralign;
680   if (this->output_section_ != NULL
681       && this->output_section_->addralign() < addralign)
682     this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692   this->strtab_->set_string_offsets();
693   this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701   this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710     Symbol* gsym,
711     unsigned int type,
712     Output_data* od,
713     Address address,
714     bool is_relative,
715     bool is_symbolless,
716     bool use_plt_offset)
717   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718     is_relative_(is_relative), is_symbolless_(is_symbolless),
719     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721   // this->type_ is a bitfield; make sure TYPE fits.
722   gold_assert(this->type_ == type);
723   this->u1_.gsym = gsym;
724   this->u2_.od = od;
725   if (dynamic)
726     this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731     Symbol* gsym,
732     unsigned int type,
733     Sized_relobj<size, big_endian>* relobj,
734     unsigned int shndx,
735     Address address,
736     bool is_relative,
737     bool is_symbolless,
738     bool use_plt_offset)
739   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740     is_relative_(is_relative), is_symbolless_(is_symbolless),
741     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743   gold_assert(shndx != INVALID_CODE);
744   // this->type_ is a bitfield; make sure TYPE fits.
745   gold_assert(this->type_ == type);
746   this->u1_.gsym = gsym;
747   this->u2_.relobj = relobj;
748   if (dynamic)
749     this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756     Sized_relobj<size, big_endian>* relobj,
757     unsigned int local_sym_index,
758     unsigned int type,
759     Output_data* od,
760     Address address,
761     bool is_relative,
762     bool is_symbolless,
763     bool is_section_symbol,
764     bool use_plt_offset)
765   : address_(address), local_sym_index_(local_sym_index), type_(type),
766     is_relative_(is_relative), is_symbolless_(is_symbolless),
767     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768     shndx_(INVALID_CODE)
769 {
770   gold_assert(local_sym_index != GSYM_CODE
771               && local_sym_index != INVALID_CODE);
772   // this->type_ is a bitfield; make sure TYPE fits.
773   gold_assert(this->type_ == type);
774   this->u1_.relobj = relobj;
775   this->u2_.od = od;
776   if (dynamic)
777     this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782     Sized_relobj<size, big_endian>* relobj,
783     unsigned int local_sym_index,
784     unsigned int type,
785     unsigned int shndx,
786     Address address,
787     bool is_relative,
788     bool is_symbolless,
789     bool is_section_symbol,
790     bool use_plt_offset)
791   : address_(address), local_sym_index_(local_sym_index), type_(type),
792     is_relative_(is_relative), is_symbolless_(is_symbolless),
793     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794     shndx_(shndx)
795 {
796   gold_assert(local_sym_index != GSYM_CODE
797               && local_sym_index != INVALID_CODE);
798   gold_assert(shndx != INVALID_CODE);
799   // this->type_ is a bitfield; make sure TYPE fits.
800   gold_assert(this->type_ == type);
801   this->u1_.relobj = relobj;
802   this->u2_.relobj = relobj;
803   if (dynamic)
804     this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811     Output_section* os,
812     unsigned int type,
813     Output_data* od,
814     Address address)
815   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
816     is_relative_(false), is_symbolless_(false),
817     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
818 {
819   // this->type_ is a bitfield; make sure TYPE fits.
820   gold_assert(this->type_ == type);
821   this->u1_.os = os;
822   this->u2_.od = od;
823   if (dynamic)
824     this->set_needs_dynsym_index();
825   else
826     os->set_needs_symtab_index();
827 }
828
829 template<bool dynamic, int size, bool big_endian>
830 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
831     Output_section* os,
832     unsigned int type,
833     Sized_relobj<size, big_endian>* relobj,
834     unsigned int shndx,
835     Address address)
836   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
837     is_relative_(false), is_symbolless_(false),
838     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
839 {
840   gold_assert(shndx != INVALID_CODE);
841   // this->type_ is a bitfield; make sure TYPE fits.
842   gold_assert(this->type_ == type);
843   this->u1_.os = os;
844   this->u2_.relobj = relobj;
845   if (dynamic)
846     this->set_needs_dynsym_index();
847   else
848     os->set_needs_symtab_index();
849 }
850
851 // An absolute relocation.
852
853 template<bool dynamic, int size, bool big_endian>
854 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
855     unsigned int type,
856     Output_data* od,
857     Address address)
858   : address_(address), local_sym_index_(0), type_(type),
859     is_relative_(false), is_symbolless_(false),
860     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
861 {
862   // this->type_ is a bitfield; make sure TYPE fits.
863   gold_assert(this->type_ == type);
864   this->u1_.relobj = NULL;
865   this->u2_.od = od;
866 }
867
868 template<bool dynamic, int size, bool big_endian>
869 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
870     unsigned int type,
871     Sized_relobj<size, big_endian>* relobj,
872     unsigned int shndx,
873     Address address)
874   : address_(address), local_sym_index_(0), type_(type),
875     is_relative_(false), is_symbolless_(false),
876     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
877 {
878   gold_assert(shndx != INVALID_CODE);
879   // this->type_ is a bitfield; make sure TYPE fits.
880   gold_assert(this->type_ == type);
881   this->u1_.relobj = NULL;
882   this->u2_.relobj = relobj;
883 }
884
885 // A target specific relocation.
886
887 template<bool dynamic, int size, bool big_endian>
888 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
889     unsigned int type,
890     void* arg,
891     Output_data* od,
892     Address address)
893   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
894     is_relative_(false), is_symbolless_(false),
895     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
896 {
897   // this->type_ is a bitfield; make sure TYPE fits.
898   gold_assert(this->type_ == type);
899   this->u1_.arg = arg;
900   this->u2_.od = od;
901 }
902
903 template<bool dynamic, int size, bool big_endian>
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
905     unsigned int type,
906     void* arg,
907     Sized_relobj<size, big_endian>* relobj,
908     unsigned int shndx,
909     Address address)
910   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
911     is_relative_(false), is_symbolless_(false),
912     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
913 {
914   gold_assert(shndx != INVALID_CODE);
915   // this->type_ is a bitfield; make sure TYPE fits.
916   gold_assert(this->type_ == type);
917   this->u1_.arg = arg;
918   this->u2_.relobj = relobj;
919 }
920
921 // Record that we need a dynamic symbol index for this relocation.
922
923 template<bool dynamic, int size, bool big_endian>
924 void
925 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
926 set_needs_dynsym_index()
927 {
928   if (this->is_symbolless_)
929     return;
930   switch (this->local_sym_index_)
931     {
932     case INVALID_CODE:
933       gold_unreachable();
934
935     case GSYM_CODE:
936       this->u1_.gsym->set_needs_dynsym_entry();
937       break;
938
939     case SECTION_CODE:
940       this->u1_.os->set_needs_dynsym_index();
941       break;
942
943     case TARGET_CODE:
944       // The target must take care of this if necessary.
945       break;
946
947     case 0:
948       break;
949
950     default:
951       {
952         const unsigned int lsi = this->local_sym_index_;
953         Sized_relobj_file<size, big_endian>* relobj =
954             this->u1_.relobj->sized_relobj();
955         gold_assert(relobj != NULL);
956         if (!this->is_section_symbol_)
957           relobj->set_needs_output_dynsym_entry(lsi);
958         else
959           relobj->output_section(lsi)->set_needs_dynsym_index();
960       }
961       break;
962     }
963 }
964
965 // Get the symbol index of a relocation.
966
967 template<bool dynamic, int size, bool big_endian>
968 unsigned int
969 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
970   const
971 {
972   unsigned int index;
973   if (this->is_symbolless_)
974     return 0;
975   switch (this->local_sym_index_)
976     {
977     case INVALID_CODE:
978       gold_unreachable();
979
980     case GSYM_CODE:
981       if (this->u1_.gsym == NULL)
982         index = 0;
983       else if (dynamic)
984         index = this->u1_.gsym->dynsym_index();
985       else
986         index = this->u1_.gsym->symtab_index();
987       break;
988
989     case SECTION_CODE:
990       if (dynamic)
991         index = this->u1_.os->dynsym_index();
992       else
993         index = this->u1_.os->symtab_index();
994       break;
995
996     case TARGET_CODE:
997       index = parameters->target().reloc_symbol_index(this->u1_.arg,
998                                                       this->type_);
999       break;
1000
1001     case 0:
1002       // Relocations without symbols use a symbol index of 0.
1003       index = 0;
1004       break;
1005
1006     default:
1007       {
1008         const unsigned int lsi = this->local_sym_index_;
1009         Sized_relobj_file<size, big_endian>* relobj =
1010             this->u1_.relobj->sized_relobj();
1011         gold_assert(relobj != NULL);
1012         if (!this->is_section_symbol_)
1013           {
1014             if (dynamic)
1015               index = relobj->dynsym_index(lsi);
1016             else
1017               index = relobj->symtab_index(lsi);
1018           }
1019         else
1020           {
1021             Output_section* os = relobj->output_section(lsi);
1022             gold_assert(os != NULL);
1023             if (dynamic)
1024               index = os->dynsym_index();
1025             else
1026               index = os->symtab_index();
1027           }
1028       }
1029       break;
1030     }
1031   gold_assert(index != -1U);
1032   return index;
1033 }
1034
1035 // For a local section symbol, get the address of the offset ADDEND
1036 // within the input section.
1037
1038 template<bool dynamic, int size, bool big_endian>
1039 typename elfcpp::Elf_types<size>::Elf_Addr
1040 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1041   local_section_offset(Addend addend) const
1042 {
1043   gold_assert(this->local_sym_index_ != GSYM_CODE
1044               && this->local_sym_index_ != SECTION_CODE
1045               && this->local_sym_index_ != TARGET_CODE
1046               && this->local_sym_index_ != INVALID_CODE
1047               && this->local_sym_index_ != 0
1048               && this->is_section_symbol_);
1049   const unsigned int lsi = this->local_sym_index_;
1050   Output_section* os = this->u1_.relobj->output_section(lsi);
1051   gold_assert(os != NULL);
1052   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1053   if (offset != invalid_address)
1054     return offset + addend;
1055   // This is a merge section.
1056   Sized_relobj_file<size, big_endian>* relobj =
1057       this->u1_.relobj->sized_relobj();
1058   gold_assert(relobj != NULL);
1059   offset = os->output_address(relobj, lsi, addend);
1060   gold_assert(offset != invalid_address);
1061   return offset;
1062 }
1063
1064 // Get the output address of a relocation.
1065
1066 template<bool dynamic, int size, bool big_endian>
1067 typename elfcpp::Elf_types<size>::Elf_Addr
1068 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1069 {
1070   Address address = this->address_;
1071   if (this->shndx_ != INVALID_CODE)
1072     {
1073       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1074       gold_assert(os != NULL);
1075       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1076       if (off != invalid_address)
1077         address += os->address() + off;
1078       else
1079         {
1080           Sized_relobj_file<size, big_endian>* relobj =
1081               this->u2_.relobj->sized_relobj();
1082           gold_assert(relobj != NULL);
1083           address = os->output_address(relobj, this->shndx_, address);
1084           gold_assert(address != invalid_address);
1085         }
1086     }
1087   else if (this->u2_.od != NULL)
1088     address += this->u2_.od->address();
1089   return address;
1090 }
1091
1092 // Write out the offset and info fields of a Rel or Rela relocation
1093 // entry.
1094
1095 template<bool dynamic, int size, bool big_endian>
1096 template<typename Write_rel>
1097 void
1098 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1099     Write_rel* wr) const
1100 {
1101   wr->put_r_offset(this->get_address());
1102   unsigned int sym_index = this->get_symbol_index();
1103   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1104 }
1105
1106 // Write out a Rel relocation.
1107
1108 template<bool dynamic, int size, bool big_endian>
1109 void
1110 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1111     unsigned char* pov) const
1112 {
1113   elfcpp::Rel_write<size, big_endian> orel(pov);
1114   this->write_rel(&orel);
1115 }
1116
1117 // Get the value of the symbol referred to by a Rel relocation.
1118
1119 template<bool dynamic, int size, bool big_endian>
1120 typename elfcpp::Elf_types<size>::Elf_Addr
1121 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1122     Addend addend) const
1123 {
1124   if (this->local_sym_index_ == GSYM_CODE)
1125     {
1126       const Sized_symbol<size>* sym;
1127       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1128       if (this->use_plt_offset_ && sym->has_plt_offset())
1129         {
1130           uint64_t plt_address =
1131             parameters->target().plt_address_for_global(sym);
1132           return plt_address + sym->plt_offset();
1133         }
1134       else
1135         return sym->value() + addend;
1136     }
1137   gold_assert(this->local_sym_index_ != SECTION_CODE
1138               && this->local_sym_index_ != TARGET_CODE
1139               && this->local_sym_index_ != INVALID_CODE
1140               && this->local_sym_index_ != 0
1141               && !this->is_section_symbol_);
1142   const unsigned int lsi = this->local_sym_index_;
1143   Sized_relobj_file<size, big_endian>* relobj =
1144       this->u1_.relobj->sized_relobj();
1145   gold_assert(relobj != NULL);
1146   if (this->use_plt_offset_)
1147     {
1148       uint64_t plt_address =
1149           parameters->target().plt_address_for_local(relobj, lsi);
1150       return plt_address + relobj->local_plt_offset(lsi);
1151     }
1152   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153   return symval->value(relobj, addend);
1154 }
1155
1156 // Reloc comparison.  This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker.  First we sort all relative relocs
1158 // to the front.  Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166     const
1167 {
1168   if (this->is_relative_)
1169     {
1170       if (!r2.is_relative_)
1171         return -1;
1172       // Otherwise sort by reloc address below.
1173     }
1174   else if (r2.is_relative_)
1175     return 1;
1176   else
1177     {
1178       unsigned int sym1 = this->get_symbol_index();
1179       unsigned int sym2 = r2.get_symbol_index();
1180       if (sym1 < sym2)
1181         return -1;
1182       else if (sym1 > sym2)
1183         return 1;
1184       // Otherwise sort by reloc address.
1185     }
1186
1187   section_offset_type addr1 = this->get_address();
1188   section_offset_type addr2 = r2.get_address();
1189   if (addr1 < addr2)
1190     return -1;
1191   else if (addr1 > addr2)
1192     return 1;
1193
1194   // Final tie breaker, in order to generate the same output on any
1195   // host: reloc type.
1196   unsigned int type1 = this->type_;
1197   unsigned int type2 = r2.type_;
1198   if (type1 < type2)
1199     return -1;
1200   else if (type1 > type2)
1201     return 1;
1202
1203   // These relocs appear to be exactly the same.
1204   return 0;
1205 }
1206
1207 // Write out a Rela relocation.
1208
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212     unsigned char* pov) const
1213 {
1214   elfcpp::Rela_write<size, big_endian> orel(pov);
1215   this->rel_.write_rel(&orel);
1216   Addend addend = this->addend_;
1217   if (this->rel_.is_target_specific())
1218     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219                                                this->rel_.type(), addend);
1220   else if (this->rel_.is_symbolless())
1221     addend = this->rel_.symbol_value(addend);
1222   else if (this->rel_.is_local_section_symbol())
1223     addend = this->rel_.local_section_offset(addend);
1224   orel.put_r_addend(addend);
1225 }
1226
1227 // Output_data_reloc_base methods.
1228
1229 // Adjust the output section.
1230
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234     ::do_adjust_output_section(Output_section* os)
1235 {
1236   if (sh_type == elfcpp::SHT_REL)
1237     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238   else if (sh_type == elfcpp::SHT_RELA)
1239     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240   else
1241     gold_unreachable();
1242
1243   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244   // static link.  The backends will generate a dynamic reloc section
1245   // to hold this.  In that case we don't want to link to the dynsym
1246   // section, because there isn't one.
1247   if (!dynamic)
1248     os->set_should_link_to_symtab();
1249   else if (parameters->doing_static_link())
1250     ;
1251   else
1252     os->set_should_link_to_dynsym();
1253 }
1254
1255 // Write out relocation data.
1256
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 void
1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260     Output_file* of)
1261 {
1262   const off_t off = this->offset();
1263   const off_t oview_size = this->data_size();
1264   unsigned char* const oview = of->get_output_view(off, oview_size);
1265
1266   if (this->sort_relocs())
1267     {
1268       gold_assert(dynamic);
1269       std::sort(this->relocs_.begin(), this->relocs_.end(),
1270                 Sort_relocs_comparison());
1271     }
1272
1273   unsigned char* pov = oview;
1274   for (typename Relocs::const_iterator p = this->relocs_.begin();
1275        p != this->relocs_.end();
1276        ++p)
1277     {
1278       p->write(pov);
1279       pov += reloc_size;
1280     }
1281
1282   gold_assert(pov - oview == oview_size);
1283
1284   of->write_output_view(off, oview_size, oview);
1285
1286   // We no longer need the relocation entries.
1287   this->relocs_.clear();
1288 }
1289
1290 // Class Output_relocatable_relocs.
1291
1292 template<int sh_type, int size, bool big_endian>
1293 void
1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295 {
1296   this->set_data_size(this->rr_->output_reloc_count()
1297                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298 }
1299
1300 // class Output_data_group.
1301
1302 template<int size, bool big_endian>
1303 Output_data_group<size, big_endian>::Output_data_group(
1304     Sized_relobj_file<size, big_endian>* relobj,
1305     section_size_type entry_count,
1306     elfcpp::Elf_Word flags,
1307     std::vector<unsigned int>* input_shndxes)
1308   : Output_section_data(entry_count * 4, 4, false),
1309     relobj_(relobj),
1310     flags_(flags)
1311 {
1312   this->input_shndxes_.swap(*input_shndxes);
1313 }
1314
1315 // Write out the section group, which means translating the section
1316 // indexes to apply to the output file.
1317
1318 template<int size, bool big_endian>
1319 void
1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
1321 {
1322   const off_t off = this->offset();
1323   const section_size_type oview_size =
1324     convert_to_section_size_type(this->data_size());
1325   unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329   ++contents;
1330
1331   for (std::vector<unsigned int>::const_iterator p =
1332          this->input_shndxes_.begin();
1333        p != this->input_shndxes_.end();
1334        ++p, ++contents)
1335     {
1336       Output_section* os = this->relobj_->output_section(*p);
1337
1338       unsigned int output_shndx;
1339       if (os != NULL)
1340         output_shndx = os->out_shndx();
1341       else
1342         {
1343           this->relobj_->error(_("section group retained but "
1344                                  "group element discarded"));
1345           output_shndx = 0;
1346         }
1347
1348       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349     }
1350
1351   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352   gold_assert(wrote == oview_size);
1353
1354   of->write_output_view(off, oview_size, oview);
1355
1356   // We no longer need this information.
1357   this->input_shndxes_.clear();
1358 }
1359
1360 // Output_data_got::Got_entry methods.
1361
1362 // Write out the entry.
1363
1364 template<int size, bool big_endian>
1365 void
1366 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1367 {
1368   Valtype val = 0;
1369
1370   switch (this->local_sym_index_)
1371     {
1372     case GSYM_CODE:
1373       {
1374         // If the symbol is resolved locally, we need to write out the
1375         // link-time value, which will be relocated dynamically by a
1376         // RELATIVE relocation.
1377         Symbol* gsym = this->u_.gsym;
1378         if (this->use_plt_offset_ && gsym->has_plt_offset())
1379           val = (parameters->target().plt_address_for_global(gsym)
1380                  + gsym->plt_offset());
1381         else
1382           {
1383             Sized_symbol<size>* sgsym;
1384             // This cast is a bit ugly.  We don't want to put a
1385             // virtual method in Symbol, because we want Symbol to be
1386             // as small as possible.
1387             sgsym = static_cast<Sized_symbol<size>*>(gsym);
1388             val = sgsym->value();
1389           }
1390       }
1391       break;
1392
1393     case CONSTANT_CODE:
1394       val = this->u_.constant;
1395       break;
1396
1397     case RESERVED_CODE:
1398       // If we're doing an incremental update, don't touch this GOT entry.
1399       if (parameters->incremental_update())
1400         return;
1401       val = this->u_.constant;
1402       break;
1403
1404     default:
1405       {
1406         const Relobj* object = this->u_.object;
1407         const unsigned int lsi = this->local_sym_index_;
1408         if (!this->use_plt_offset_)
1409           {
1410             uint64_t lval = object->local_symbol_value(lsi, 0);
1411             val = convert_types<Valtype, uint64_t>(lval);
1412           }
1413         else
1414           {
1415             uint64_t plt_address =
1416               parameters->target().plt_address_for_local(object, lsi);
1417             val = plt_address + object->local_plt_offset(lsi);
1418           }
1419       }
1420       break;
1421     }
1422
1423   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1424 }
1425
1426 // Output_data_got methods.
1427
1428 // Add an entry for a global symbol to the GOT.  This returns true if
1429 // this is a new GOT entry, false if the symbol already had a GOT
1430 // entry.
1431
1432 template<int size, bool big_endian>
1433 bool
1434 Output_data_got<size, big_endian>::add_global(
1435     Symbol* gsym,
1436     unsigned int got_type)
1437 {
1438   if (gsym->has_got_offset(got_type))
1439     return false;
1440
1441   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1442   gsym->set_got_offset(got_type, got_offset);
1443   return true;
1444 }
1445
1446 // Like add_global, but use the PLT offset.
1447
1448 template<int size, bool big_endian>
1449 bool
1450 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1451                                                   unsigned int got_type)
1452 {
1453   if (gsym->has_got_offset(got_type))
1454     return false;
1455
1456   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1457   gsym->set_got_offset(got_type, got_offset);
1458   return true;
1459 }
1460
1461 // Add an entry for a global symbol to the GOT, and add a dynamic
1462 // relocation of type R_TYPE for the GOT entry.
1463
1464 template<int size, bool big_endian>
1465 void
1466 Output_data_got<size, big_endian>::add_global_with_rel(
1467     Symbol* gsym,
1468     unsigned int got_type,
1469     Output_data_reloc_generic* rel_dyn,
1470     unsigned int r_type)
1471 {
1472   if (gsym->has_got_offset(got_type))
1473     return;
1474
1475   unsigned int got_offset = this->add_got_entry(Got_entry());
1476   gsym->set_got_offset(got_type, got_offset);
1477   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1478 }
1479
1480 // Add a pair of entries for a global symbol to the GOT, and add
1481 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1482 // If R_TYPE_2 == 0, add the second entry with no relocation.
1483 template<int size, bool big_endian>
1484 void
1485 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1486     Symbol* gsym,
1487     unsigned int got_type,
1488     Output_data_reloc_generic* rel_dyn,
1489     unsigned int r_type_1,
1490     unsigned int r_type_2)
1491 {
1492   if (gsym->has_got_offset(got_type))
1493     return;
1494
1495   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1496   gsym->set_got_offset(got_type, got_offset);
1497   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1498
1499   if (r_type_2 != 0)
1500     rel_dyn->add_global_generic(gsym, r_type_2, this,
1501                                 got_offset + size / 8, 0);
1502 }
1503
1504 // Add an entry for a local symbol to the GOT.  This returns true if
1505 // this is a new GOT entry, false if the symbol already has a GOT
1506 // entry.
1507
1508 template<int size, bool big_endian>
1509 bool
1510 Output_data_got<size, big_endian>::add_local(
1511     Relobj* object,
1512     unsigned int symndx,
1513     unsigned int got_type)
1514 {
1515   if (object->local_has_got_offset(symndx, got_type))
1516     return false;
1517
1518   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1519                                                           false));
1520   object->set_local_got_offset(symndx, got_type, got_offset);
1521   return true;
1522 }
1523
1524 // Like add_local, but use the PLT offset.
1525
1526 template<int size, bool big_endian>
1527 bool
1528 Output_data_got<size, big_endian>::add_local_plt(
1529     Relobj* object,
1530     unsigned int symndx,
1531     unsigned int got_type)
1532 {
1533   if (object->local_has_got_offset(symndx, got_type))
1534     return false;
1535
1536   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1537                                                           true));
1538   object->set_local_got_offset(symndx, got_type, got_offset);
1539   return true;
1540 }
1541
1542 // Add an entry for a local symbol to the GOT, and add a dynamic
1543 // relocation of type R_TYPE for the GOT entry.
1544
1545 template<int size, bool big_endian>
1546 void
1547 Output_data_got<size, big_endian>::add_local_with_rel(
1548     Relobj* object,
1549     unsigned int symndx,
1550     unsigned int got_type,
1551     Output_data_reloc_generic* rel_dyn,
1552     unsigned int r_type)
1553 {
1554   if (object->local_has_got_offset(symndx, got_type))
1555     return;
1556
1557   unsigned int got_offset = this->add_got_entry(Got_entry());
1558   object->set_local_got_offset(symndx, got_type, got_offset);
1559   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1560 }
1561
1562 // Add a pair of entries for a local symbol to the GOT, and add
1563 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1564 // If R_TYPE_2 == 0, add the second entry with no relocation.
1565 template<int size, bool big_endian>
1566 void
1567 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1568     Relobj* object,
1569     unsigned int symndx,
1570     unsigned int shndx,
1571     unsigned int got_type,
1572     Output_data_reloc_generic* rel_dyn,
1573     unsigned int r_type_1,
1574     unsigned int r_type_2)
1575 {
1576   if (object->local_has_got_offset(symndx, got_type))
1577     return;
1578
1579   unsigned int got_offset =
1580       this->add_got_entry_pair(Got_entry(),
1581                                Got_entry(object, symndx, false));
1582   object->set_local_got_offset(symndx, got_type, got_offset);
1583   Output_section* os = object->output_section(shndx);
1584   rel_dyn->add_output_section_generic(os, r_type_1, this, got_offset, 0);
1585
1586   if (r_type_2 != 0)
1587     rel_dyn->add_output_section_generic(os, r_type_2, this,
1588                                         got_offset + size / 8, 0);
1589 }
1590
1591 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1592
1593 template<int size, bool big_endian>
1594 void
1595 Output_data_got<size, big_endian>::reserve_local(
1596     unsigned int i,
1597     Relobj* object,
1598     unsigned int sym_index,
1599     unsigned int got_type)
1600 {
1601   this->do_reserve_slot(i);
1602   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1603 }
1604
1605 // Reserve a slot in the GOT for a global symbol.
1606
1607 template<int size, bool big_endian>
1608 void
1609 Output_data_got<size, big_endian>::reserve_global(
1610     unsigned int i,
1611     Symbol* gsym,
1612     unsigned int got_type)
1613 {
1614   this->do_reserve_slot(i);
1615   gsym->set_got_offset(got_type, this->got_offset(i));
1616 }
1617
1618 // Write out the GOT.
1619
1620 template<int size, bool big_endian>
1621 void
1622 Output_data_got<size, big_endian>::do_write(Output_file* of)
1623 {
1624   const int add = size / 8;
1625
1626   const off_t off = this->offset();
1627   const off_t oview_size = this->data_size();
1628   unsigned char* const oview = of->get_output_view(off, oview_size);
1629
1630   unsigned char* pov = oview;
1631   for (typename Got_entries::const_iterator p = this->entries_.begin();
1632        p != this->entries_.end();
1633        ++p)
1634     {
1635       p->write(pov);
1636       pov += add;
1637     }
1638
1639   gold_assert(pov - oview == oview_size);
1640
1641   of->write_output_view(off, oview_size, oview);
1642
1643   // We no longer need the GOT entries.
1644   this->entries_.clear();
1645 }
1646
1647 // Create a new GOT entry and return its offset.
1648
1649 template<int size, bool big_endian>
1650 unsigned int
1651 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1652 {
1653   if (!this->is_data_size_valid())
1654     {
1655       this->entries_.push_back(got_entry);
1656       this->set_got_size();
1657       return this->last_got_offset();
1658     }
1659   else
1660     {
1661       // For an incremental update, find an available slot.
1662       off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1663       if (got_offset == -1)
1664         gold_fallback(_("out of patch space (GOT);"
1665                         " relink with --incremental-full"));
1666       unsigned int got_index = got_offset / (size / 8);
1667       gold_assert(got_index < this->entries_.size());
1668       this->entries_[got_index] = got_entry;
1669       return static_cast<unsigned int>(got_offset);
1670     }
1671 }
1672
1673 // Create a pair of new GOT entries and return the offset of the first.
1674
1675 template<int size, bool big_endian>
1676 unsigned int
1677 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1678                                                       Got_entry got_entry_2)
1679 {
1680   if (!this->is_data_size_valid())
1681     {
1682       unsigned int got_offset;
1683       this->entries_.push_back(got_entry_1);
1684       got_offset = this->last_got_offset();
1685       this->entries_.push_back(got_entry_2);
1686       this->set_got_size();
1687       return got_offset;
1688     }
1689   else
1690     {
1691       // For an incremental update, find an available pair of slots.
1692       off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1693       if (got_offset == -1)
1694         gold_fallback(_("out of patch space (GOT);"
1695                         " relink with --incremental-full"));
1696       unsigned int got_index = got_offset / (size / 8);
1697       gold_assert(got_index < this->entries_.size());
1698       this->entries_[got_index] = got_entry_1;
1699       this->entries_[got_index + 1] = got_entry_2;
1700       return static_cast<unsigned int>(got_offset);
1701     }
1702 }
1703
1704 // Replace GOT entry I with a new value.
1705
1706 template<int size, bool big_endian>
1707 void
1708 Output_data_got<size, big_endian>::replace_got_entry(
1709     unsigned int i,
1710     Got_entry got_entry)
1711 {
1712   gold_assert(i < this->entries_.size());
1713   this->entries_[i] = got_entry;
1714 }
1715
1716 // Output_data_dynamic::Dynamic_entry methods.
1717
1718 // Write out the entry.
1719
1720 template<int size, bool big_endian>
1721 void
1722 Output_data_dynamic::Dynamic_entry::write(
1723     unsigned char* pov,
1724     const Stringpool* pool) const
1725 {
1726   typename elfcpp::Elf_types<size>::Elf_WXword val;
1727   switch (this->offset_)
1728     {
1729     case DYNAMIC_NUMBER:
1730       val = this->u_.val;
1731       break;
1732
1733     case DYNAMIC_SECTION_SIZE:
1734       val = this->u_.od->data_size();
1735       if (this->od2 != NULL)
1736         val += this->od2->data_size();
1737       break;
1738
1739     case DYNAMIC_SYMBOL:
1740       {
1741         const Sized_symbol<size>* s =
1742           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1743         val = s->value();
1744       }
1745       break;
1746
1747     case DYNAMIC_STRING:
1748       val = pool->get_offset(this->u_.str);
1749       break;
1750
1751     default:
1752       val = this->u_.od->address() + this->offset_;
1753       break;
1754     }
1755
1756   elfcpp::Dyn_write<size, big_endian> dw(pov);
1757   dw.put_d_tag(this->tag_);
1758   dw.put_d_val(val);
1759 }
1760
1761 // Output_data_dynamic methods.
1762
1763 // Adjust the output section to set the entry size.
1764
1765 void
1766 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1767 {
1768   if (parameters->target().get_size() == 32)
1769     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1770   else if (parameters->target().get_size() == 64)
1771     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1772   else
1773     gold_unreachable();
1774 }
1775
1776 // Set the final data size.
1777
1778 void
1779 Output_data_dynamic::set_final_data_size()
1780 {
1781   // Add the terminating entry if it hasn't been added.
1782   // Because of relaxation, we can run this multiple times.
1783   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1784     {
1785       int extra = parameters->options().spare_dynamic_tags();
1786       for (int i = 0; i < extra; ++i)
1787         this->add_constant(elfcpp::DT_NULL, 0);
1788       this->add_constant(elfcpp::DT_NULL, 0);
1789     }
1790
1791   int dyn_size;
1792   if (parameters->target().get_size() == 32)
1793     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1794   else if (parameters->target().get_size() == 64)
1795     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1796   else
1797     gold_unreachable();
1798   this->set_data_size(this->entries_.size() * dyn_size);
1799 }
1800
1801 // Write out the dynamic entries.
1802
1803 void
1804 Output_data_dynamic::do_write(Output_file* of)
1805 {
1806   switch (parameters->size_and_endianness())
1807     {
1808 #ifdef HAVE_TARGET_32_LITTLE
1809     case Parameters::TARGET_32_LITTLE:
1810       this->sized_write<32, false>(of);
1811       break;
1812 #endif
1813 #ifdef HAVE_TARGET_32_BIG
1814     case Parameters::TARGET_32_BIG:
1815       this->sized_write<32, true>(of);
1816       break;
1817 #endif
1818 #ifdef HAVE_TARGET_64_LITTLE
1819     case Parameters::TARGET_64_LITTLE:
1820       this->sized_write<64, false>(of);
1821       break;
1822 #endif
1823 #ifdef HAVE_TARGET_64_BIG
1824     case Parameters::TARGET_64_BIG:
1825       this->sized_write<64, true>(of);
1826       break;
1827 #endif
1828     default:
1829       gold_unreachable();
1830     }
1831 }
1832
1833 template<int size, bool big_endian>
1834 void
1835 Output_data_dynamic::sized_write(Output_file* of)
1836 {
1837   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1838
1839   const off_t offset = this->offset();
1840   const off_t oview_size = this->data_size();
1841   unsigned char* const oview = of->get_output_view(offset, oview_size);
1842
1843   unsigned char* pov = oview;
1844   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1845        p != this->entries_.end();
1846        ++p)
1847     {
1848       p->write<size, big_endian>(pov, this->pool_);
1849       pov += dyn_size;
1850     }
1851
1852   gold_assert(pov - oview == oview_size);
1853
1854   of->write_output_view(offset, oview_size, oview);
1855
1856   // We no longer need the dynamic entries.
1857   this->entries_.clear();
1858 }
1859
1860 // Class Output_symtab_xindex.
1861
1862 void
1863 Output_symtab_xindex::do_write(Output_file* of)
1864 {
1865   const off_t offset = this->offset();
1866   const off_t oview_size = this->data_size();
1867   unsigned char* const oview = of->get_output_view(offset, oview_size);
1868
1869   memset(oview, 0, oview_size);
1870
1871   if (parameters->target().is_big_endian())
1872     this->endian_do_write<true>(oview);
1873   else
1874     this->endian_do_write<false>(oview);
1875
1876   of->write_output_view(offset, oview_size, oview);
1877
1878   // We no longer need the data.
1879   this->entries_.clear();
1880 }
1881
1882 template<bool big_endian>
1883 void
1884 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1885 {
1886   for (Xindex_entries::const_iterator p = this->entries_.begin();
1887        p != this->entries_.end();
1888        ++p)
1889     {
1890       unsigned int symndx = p->first;
1891       gold_assert(symndx * 4 < this->data_size());
1892       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1893     }
1894 }
1895
1896 // Output_fill_debug_info methods.
1897
1898 // Return the minimum size needed for a dummy compilation unit header.
1899
1900 size_t
1901 Output_fill_debug_info::do_minimum_hole_size() const
1902 {
1903   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1904   // address_size.
1905   const size_t len = 4 + 2 + 4 + 1;
1906   // For type units, add type_signature, type_offset.
1907   if (this->is_debug_types_)
1908     return len + 8 + 4;
1909   return len;
1910 }
1911
1912 // Write a dummy compilation unit header to fill a hole in the
1913 // .debug_info or .debug_types section.
1914
1915 void
1916 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1917 {
1918   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1919              static_cast<long>(off), static_cast<long>(len));
1920
1921   gold_assert(len >= this->do_minimum_hole_size());
1922
1923   unsigned char* const oview = of->get_output_view(off, len);
1924   unsigned char* pov = oview;
1925
1926   // Write header fields: unit_length, version, debug_abbrev_offset,
1927   // address_size.
1928   if (this->is_big_endian())
1929     {
1930       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1931       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1932       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1933     }
1934   else
1935     {
1936       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1937       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1938       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1939     }
1940   pov += 4 + 2 + 4;
1941   *pov++ = 4;
1942
1943   // For type units, the additional header fields -- type_signature,
1944   // type_offset -- can be filled with zeroes.
1945
1946   // Fill the remainder of the free space with zeroes.  The first
1947   // zero should tell the consumer there are no DIEs to read in this
1948   // compilation unit.
1949   if (pov < oview + len)
1950     memset(pov, 0, oview + len - pov);
1951
1952   of->write_output_view(off, len, oview);
1953 }
1954
1955 // Output_fill_debug_line methods.
1956
1957 // Return the minimum size needed for a dummy line number program header.
1958
1959 size_t
1960 Output_fill_debug_line::do_minimum_hole_size() const
1961 {
1962   // Line number program header fields: unit_length, version, header_length,
1963   // minimum_instruction_length, default_is_stmt, line_base, line_range,
1964   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1965   const size_t len = 4 + 2 + 4 + this->header_length;
1966   return len;
1967 }
1968
1969 // Write a dummy line number program header to fill a hole in the
1970 // .debug_line section.
1971
1972 void
1973 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
1974 {
1975   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
1976              static_cast<long>(off), static_cast<long>(len));
1977
1978   gold_assert(len >= this->do_minimum_hole_size());
1979
1980   unsigned char* const oview = of->get_output_view(off, len);
1981   unsigned char* pov = oview;
1982
1983   // Write header fields: unit_length, version, header_length,
1984   // minimum_instruction_length, default_is_stmt, line_base, line_range,
1985   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1986   // We set the header_length field to cover the entire hole, so the
1987   // line number program is empty.
1988   if (this->is_big_endian())
1989     {
1990       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1991       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1992       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
1993     }
1994   else
1995     {
1996       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1997       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1998       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
1999     }
2000   pov += 4 + 2 + 4;
2001   *pov++ = 1;   // minimum_instruction_length
2002   *pov++ = 0;   // default_is_stmt
2003   *pov++ = 0;   // line_base
2004   *pov++ = 5;   // line_range
2005   *pov++ = 13;  // opcode_base
2006   *pov++ = 0;   // standard_opcode_lengths[1]
2007   *pov++ = 1;   // standard_opcode_lengths[2]
2008   *pov++ = 1;   // standard_opcode_lengths[3]
2009   *pov++ = 1;   // standard_opcode_lengths[4]
2010   *pov++ = 1;   // standard_opcode_lengths[5]
2011   *pov++ = 0;   // standard_opcode_lengths[6]
2012   *pov++ = 0;   // standard_opcode_lengths[7]
2013   *pov++ = 0;   // standard_opcode_lengths[8]
2014   *pov++ = 1;   // standard_opcode_lengths[9]
2015   *pov++ = 0;   // standard_opcode_lengths[10]
2016   *pov++ = 0;   // standard_opcode_lengths[11]
2017   *pov++ = 1;   // standard_opcode_lengths[12]
2018   *pov++ = 0;   // include_directories (empty)
2019   *pov++ = 0;   // filenames (empty)
2020
2021   // Some consumers don't check the header_length field, and simply
2022   // start reading the line number program immediately following the
2023   // header.  For those consumers, we fill the remainder of the free
2024   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2025   // no-ops: the resulting line table program will not create any rows.
2026   if (pov < oview + len)
2027     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2028
2029   of->write_output_view(off, len, oview);
2030 }
2031
2032 // Output_section::Input_section methods.
2033
2034 // Return the current data size.  For an input section we store the size here.
2035 // For an Output_section_data, we have to ask it for the size.
2036
2037 off_t
2038 Output_section::Input_section::current_data_size() const
2039 {
2040   if (this->is_input_section())
2041     return this->u1_.data_size;
2042   else
2043     {
2044       this->u2_.posd->pre_finalize_data_size();
2045       return this->u2_.posd->current_data_size();
2046     }
2047 }
2048
2049 // Return the data size.  For an input section we store the size here.
2050 // For an Output_section_data, we have to ask it for the size.
2051
2052 off_t
2053 Output_section::Input_section::data_size() const
2054 {
2055   if (this->is_input_section())
2056     return this->u1_.data_size;
2057   else
2058     return this->u2_.posd->data_size();
2059 }
2060
2061 // Return the object for an input section.
2062
2063 Relobj*
2064 Output_section::Input_section::relobj() const
2065 {
2066   if (this->is_input_section())
2067     return this->u2_.object;
2068   else if (this->is_merge_section())
2069     {
2070       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2071       return this->u2_.pomb->first_relobj();
2072     }
2073   else if (this->is_relaxed_input_section())
2074     return this->u2_.poris->relobj();
2075   else
2076     gold_unreachable();
2077 }
2078
2079 // Return the input section index for an input section.
2080
2081 unsigned int
2082 Output_section::Input_section::shndx() const
2083 {
2084   if (this->is_input_section())
2085     return this->shndx_;
2086   else if (this->is_merge_section())
2087     {
2088       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2089       return this->u2_.pomb->first_shndx();
2090     }
2091   else if (this->is_relaxed_input_section())
2092     return this->u2_.poris->shndx();
2093   else
2094     gold_unreachable();
2095 }
2096
2097 // Set the address and file offset.
2098
2099 void
2100 Output_section::Input_section::set_address_and_file_offset(
2101     uint64_t address,
2102     off_t file_offset,
2103     off_t section_file_offset)
2104 {
2105   if (this->is_input_section())
2106     this->u2_.object->set_section_offset(this->shndx_,
2107                                          file_offset - section_file_offset);
2108   else
2109     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2110 }
2111
2112 // Reset the address and file offset.
2113
2114 void
2115 Output_section::Input_section::reset_address_and_file_offset()
2116 {
2117   if (!this->is_input_section())
2118     this->u2_.posd->reset_address_and_file_offset();
2119 }
2120
2121 // Finalize the data size.
2122
2123 void
2124 Output_section::Input_section::finalize_data_size()
2125 {
2126   if (!this->is_input_section())
2127     this->u2_.posd->finalize_data_size();
2128 }
2129
2130 // Try to turn an input offset into an output offset.  We want to
2131 // return the output offset relative to the start of this
2132 // Input_section in the output section.
2133
2134 inline bool
2135 Output_section::Input_section::output_offset(
2136     const Relobj* object,
2137     unsigned int shndx,
2138     section_offset_type offset,
2139     section_offset_type* poutput) const
2140 {
2141   if (!this->is_input_section())
2142     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2143   else
2144     {
2145       if (this->shndx_ != shndx || this->u2_.object != object)
2146         return false;
2147       *poutput = offset;
2148       return true;
2149     }
2150 }
2151
2152 // Return whether this is the merge section for the input section
2153 // SHNDX in OBJECT.
2154
2155 inline bool
2156 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2157                                                     unsigned int shndx) const
2158 {
2159   if (this->is_input_section())
2160     return false;
2161   return this->u2_.posd->is_merge_section_for(object, shndx);
2162 }
2163
2164 // Write out the data.  We don't have to do anything for an input
2165 // section--they are handled via Object::relocate--but this is where
2166 // we write out the data for an Output_section_data.
2167
2168 void
2169 Output_section::Input_section::write(Output_file* of)
2170 {
2171   if (!this->is_input_section())
2172     this->u2_.posd->write(of);
2173 }
2174
2175 // Write the data to a buffer.  As for write(), we don't have to do
2176 // anything for an input section.
2177
2178 void
2179 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2180 {
2181   if (!this->is_input_section())
2182     this->u2_.posd->write_to_buffer(buffer);
2183 }
2184
2185 // Print to a map file.
2186
2187 void
2188 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2189 {
2190   switch (this->shndx_)
2191     {
2192     case OUTPUT_SECTION_CODE:
2193     case MERGE_DATA_SECTION_CODE:
2194     case MERGE_STRING_SECTION_CODE:
2195       this->u2_.posd->print_to_mapfile(mapfile);
2196       break;
2197
2198     case RELAXED_INPUT_SECTION_CODE:
2199       {
2200         Output_relaxed_input_section* relaxed_section =
2201           this->relaxed_input_section();
2202         mapfile->print_input_section(relaxed_section->relobj(),
2203                                      relaxed_section->shndx());
2204       }
2205       break;
2206     default:
2207       mapfile->print_input_section(this->u2_.object, this->shndx_);
2208       break;
2209     }
2210 }
2211
2212 // Output_section methods.
2213
2214 // Construct an Output_section.  NAME will point into a Stringpool.
2215
2216 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2217                                elfcpp::Elf_Xword flags)
2218   : name_(name),
2219     addralign_(0),
2220     entsize_(0),
2221     load_address_(0),
2222     link_section_(NULL),
2223     link_(0),
2224     info_section_(NULL),
2225     info_symndx_(NULL),
2226     info_(0),
2227     type_(type),
2228     flags_(flags),
2229     order_(ORDER_INVALID),
2230     out_shndx_(-1U),
2231     symtab_index_(0),
2232     dynsym_index_(0),
2233     input_sections_(),
2234     first_input_offset_(0),
2235     fills_(),
2236     postprocessing_buffer_(NULL),
2237     needs_symtab_index_(false),
2238     needs_dynsym_index_(false),
2239     should_link_to_symtab_(false),
2240     should_link_to_dynsym_(false),
2241     after_input_sections_(false),
2242     requires_postprocessing_(false),
2243     found_in_sections_clause_(false),
2244     has_load_address_(false),
2245     info_uses_section_index_(false),
2246     input_section_order_specified_(false),
2247     may_sort_attached_input_sections_(false),
2248     must_sort_attached_input_sections_(false),
2249     attached_input_sections_are_sorted_(false),
2250     is_relro_(false),
2251     is_small_section_(false),
2252     is_large_section_(false),
2253     generate_code_fills_at_write_(false),
2254     is_entsize_zero_(false),
2255     section_offsets_need_adjustment_(false),
2256     is_noload_(false),
2257     always_keeps_input_sections_(false),
2258     has_fixed_layout_(false),
2259     is_patch_space_allowed_(false),
2260     is_unique_segment_(false),
2261     tls_offset_(0),
2262     extra_segment_flags_(0),
2263     segment_alignment_(0),
2264     checkpoint_(NULL),
2265     lookup_maps_(new Output_section_lookup_maps),
2266     free_list_(),
2267     free_space_fill_(NULL),
2268     patch_space_(0)
2269 {
2270   // An unallocated section has no address.  Forcing this means that
2271   // we don't need special treatment for symbols defined in debug
2272   // sections.
2273   if ((flags & elfcpp::SHF_ALLOC) == 0)
2274     this->set_address(0);
2275 }
2276
2277 Output_section::~Output_section()
2278 {
2279   delete this->checkpoint_;
2280 }
2281
2282 // Set the entry size.
2283
2284 void
2285 Output_section::set_entsize(uint64_t v)
2286 {
2287   if (this->is_entsize_zero_)
2288     ;
2289   else if (this->entsize_ == 0)
2290     this->entsize_ = v;
2291   else if (this->entsize_ != v)
2292     {
2293       this->entsize_ = 0;
2294       this->is_entsize_zero_ = 1;
2295     }
2296 }
2297
2298 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2299 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2300 // relocation section which applies to this section, or 0 if none, or
2301 // -1U if more than one.  Return the offset of the input section
2302 // within the output section.  Return -1 if the input section will
2303 // receive special handling.  In the normal case we don't always keep
2304 // track of input sections for an Output_section.  Instead, each
2305 // Object keeps track of the Output_section for each of its input
2306 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2307 // track of input sections here; this is used when SECTIONS appears in
2308 // a linker script.
2309
2310 template<int size, bool big_endian>
2311 off_t
2312 Output_section::add_input_section(Layout* layout,
2313                                   Sized_relobj_file<size, big_endian>* object,
2314                                   unsigned int shndx,
2315                                   const char* secname,
2316                                   const elfcpp::Shdr<size, big_endian>& shdr,
2317                                   unsigned int reloc_shndx,
2318                                   bool have_sections_script)
2319 {
2320   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2321   if ((addralign & (addralign - 1)) != 0)
2322     {
2323       object->error(_("invalid alignment %lu for section \"%s\""),
2324                     static_cast<unsigned long>(addralign), secname);
2325       addralign = 1;
2326     }
2327
2328   if (addralign > this->addralign_)
2329     this->addralign_ = addralign;
2330
2331   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2332   uint64_t entsize = shdr.get_sh_entsize();
2333
2334   // .debug_str is a mergeable string section, but is not always so
2335   // marked by compilers.  Mark manually here so we can optimize.
2336   if (strcmp(secname, ".debug_str") == 0)
2337     {
2338       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2339       entsize = 1;
2340     }
2341
2342   this->update_flags_for_input_section(sh_flags);
2343   this->set_entsize(entsize);
2344
2345   // If this is a SHF_MERGE section, we pass all the input sections to
2346   // a Output_data_merge.  We don't try to handle relocations for such
2347   // a section.  We don't try to handle empty merge sections--they
2348   // mess up the mappings, and are useless anyhow.
2349   // FIXME: Need to handle merge sections during incremental update.
2350   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2351       && reloc_shndx == 0
2352       && shdr.get_sh_size() > 0
2353       && !parameters->incremental())
2354     {
2355       // Keep information about merged input sections for rebuilding fast
2356       // lookup maps if we have sections-script or we do relaxation.
2357       bool keeps_input_sections = (this->always_keeps_input_sections_
2358                                    || have_sections_script
2359                                    || parameters->target().may_relax());
2360
2361       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2362                                         addralign, keeps_input_sections))
2363         {
2364           // Tell the relocation routines that they need to call the
2365           // output_offset method to determine the final address.
2366           return -1;
2367         }
2368     }
2369
2370   section_size_type input_section_size = shdr.get_sh_size();
2371   section_size_type uncompressed_size;
2372   if (object->section_is_compressed(shndx, &uncompressed_size))
2373     input_section_size = uncompressed_size;
2374
2375   off_t offset_in_section;
2376   off_t aligned_offset_in_section;
2377   if (this->has_fixed_layout())
2378     {
2379       // For incremental updates, find a chunk of unused space in the section.
2380       offset_in_section = this->free_list_.allocate(input_section_size,
2381                                                     addralign, 0);
2382       if (offset_in_section == -1)
2383         gold_fallback(_("out of patch space in section %s; "
2384                         "relink with --incremental-full"),
2385                       this->name());
2386       aligned_offset_in_section = offset_in_section;
2387     }
2388   else
2389     {
2390       offset_in_section = this->current_data_size_for_child();
2391       aligned_offset_in_section = align_address(offset_in_section,
2392                                                 addralign);
2393       this->set_current_data_size_for_child(aligned_offset_in_section
2394                                             + input_section_size);
2395     }
2396
2397   // Determine if we want to delay code-fill generation until the output
2398   // section is written.  When the target is relaxing, we want to delay fill
2399   // generating to avoid adjusting them during relaxation.  Also, if we are
2400   // sorting input sections we must delay fill generation.
2401   if (!this->generate_code_fills_at_write_
2402       && !have_sections_script
2403       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2404       && parameters->target().has_code_fill()
2405       && (parameters->target().may_relax()
2406           || layout->is_section_ordering_specified()))
2407     {
2408       gold_assert(this->fills_.empty());
2409       this->generate_code_fills_at_write_ = true;
2410     }
2411
2412   if (aligned_offset_in_section > offset_in_section
2413       && !this->generate_code_fills_at_write_
2414       && !have_sections_script
2415       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2416       && parameters->target().has_code_fill())
2417     {
2418       // We need to add some fill data.  Using fill_list_ when
2419       // possible is an optimization, since we will often have fill
2420       // sections without input sections.
2421       off_t fill_len = aligned_offset_in_section - offset_in_section;
2422       if (this->input_sections_.empty())
2423         this->fills_.push_back(Fill(offset_in_section, fill_len));
2424       else
2425         {
2426           std::string fill_data(parameters->target().code_fill(fill_len));
2427           Output_data_const* odc = new Output_data_const(fill_data, 1);
2428           this->input_sections_.push_back(Input_section(odc));
2429         }
2430     }
2431
2432   // We need to keep track of this section if we are already keeping
2433   // track of sections, or if we are relaxing.  Also, if this is a
2434   // section which requires sorting, or which may require sorting in
2435   // the future, we keep track of the sections.  If the
2436   // --section-ordering-file option is used to specify the order of
2437   // sections, we need to keep track of sections.
2438   if (this->always_keeps_input_sections_
2439       || have_sections_script
2440       || !this->input_sections_.empty()
2441       || this->may_sort_attached_input_sections()
2442       || this->must_sort_attached_input_sections()
2443       || parameters->options().user_set_Map()
2444       || parameters->target().may_relax()
2445       || layout->is_section_ordering_specified())
2446     {
2447       Input_section isecn(object, shndx, input_section_size, addralign);
2448       /* If section ordering is requested by specifying a ordering file,
2449          using --section-ordering-file, match the section name with
2450          a pattern.  */
2451       if (parameters->options().section_ordering_file())
2452         {
2453           unsigned int section_order_index =
2454             layout->find_section_order_index(std::string(secname));
2455           if (section_order_index != 0)
2456             {
2457               isecn.set_section_order_index(section_order_index);
2458               this->set_input_section_order_specified();
2459             }
2460         }
2461       if (this->has_fixed_layout())
2462         {
2463           // For incremental updates, finalize the address and offset now.
2464           uint64_t addr = this->address();
2465           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2466                                             aligned_offset_in_section,
2467                                             this->offset());
2468         }
2469       this->input_sections_.push_back(isecn);
2470     }
2471
2472   return aligned_offset_in_section;
2473 }
2474
2475 // Add arbitrary data to an output section.
2476
2477 void
2478 Output_section::add_output_section_data(Output_section_data* posd)
2479 {
2480   Input_section inp(posd);
2481   this->add_output_section_data(&inp);
2482
2483   if (posd->is_data_size_valid())
2484     {
2485       off_t offset_in_section;
2486       if (this->has_fixed_layout())
2487         {
2488           // For incremental updates, find a chunk of unused space.
2489           offset_in_section = this->free_list_.allocate(posd->data_size(),
2490                                                         posd->addralign(), 0);
2491           if (offset_in_section == -1)
2492             gold_fallback(_("out of patch space in section %s; "
2493                             "relink with --incremental-full"),
2494                           this->name());
2495           // Finalize the address and offset now.
2496           uint64_t addr = this->address();
2497           off_t offset = this->offset();
2498           posd->set_address_and_file_offset(addr + offset_in_section,
2499                                             offset + offset_in_section);
2500         }
2501       else
2502         {
2503           offset_in_section = this->current_data_size_for_child();
2504           off_t aligned_offset_in_section = align_address(offset_in_section,
2505                                                           posd->addralign());
2506           this->set_current_data_size_for_child(aligned_offset_in_section
2507                                                 + posd->data_size());
2508         }
2509     }
2510   else if (this->has_fixed_layout())
2511     {
2512       // For incremental updates, arrange for the data to have a fixed layout.
2513       // This will mean that additions to the data must be allocated from
2514       // free space within the containing output section.
2515       uint64_t addr = this->address();
2516       posd->set_address(addr);
2517       posd->set_file_offset(0);
2518       // FIXME: This should eventually be unreachable.
2519       // gold_unreachable();
2520     }
2521 }
2522
2523 // Add a relaxed input section.
2524
2525 void
2526 Output_section::add_relaxed_input_section(Layout* layout,
2527                                           Output_relaxed_input_section* poris,
2528                                           const std::string& name)
2529 {
2530   Input_section inp(poris);
2531
2532   // If the --section-ordering-file option is used to specify the order of
2533   // sections, we need to keep track of sections.
2534   if (layout->is_section_ordering_specified())
2535     {
2536       unsigned int section_order_index =
2537         layout->find_section_order_index(name);
2538       if (section_order_index != 0)
2539         {
2540           inp.set_section_order_index(section_order_index);
2541           this->set_input_section_order_specified();
2542         }
2543     }
2544
2545   this->add_output_section_data(&inp);
2546   if (this->lookup_maps_->is_valid())
2547     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2548                                                   poris->shndx(), poris);
2549
2550   // For a relaxed section, we use the current data size.  Linker scripts
2551   // get all the input sections, including relaxed one from an output
2552   // section and add them back to them same output section to compute the
2553   // output section size.  If we do not account for sizes of relaxed input
2554   // sections,  an output section would be incorrectly sized.
2555   off_t offset_in_section = this->current_data_size_for_child();
2556   off_t aligned_offset_in_section = align_address(offset_in_section,
2557                                                   poris->addralign());
2558   this->set_current_data_size_for_child(aligned_offset_in_section
2559                                         + poris->current_data_size());
2560 }
2561
2562 // Add arbitrary data to an output section by Input_section.
2563
2564 void
2565 Output_section::add_output_section_data(Input_section* inp)
2566 {
2567   if (this->input_sections_.empty())
2568     this->first_input_offset_ = this->current_data_size_for_child();
2569
2570   this->input_sections_.push_back(*inp);
2571
2572   uint64_t addralign = inp->addralign();
2573   if (addralign > this->addralign_)
2574     this->addralign_ = addralign;
2575
2576   inp->set_output_section(this);
2577 }
2578
2579 // Add a merge section to an output section.
2580
2581 void
2582 Output_section::add_output_merge_section(Output_section_data* posd,
2583                                          bool is_string, uint64_t entsize)
2584 {
2585   Input_section inp(posd, is_string, entsize);
2586   this->add_output_section_data(&inp);
2587 }
2588
2589 // Add an input section to a SHF_MERGE section.
2590
2591 bool
2592 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2593                                         uint64_t flags, uint64_t entsize,
2594                                         uint64_t addralign,
2595                                         bool keeps_input_sections)
2596 {
2597   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2598
2599   // We only merge strings if the alignment is not more than the
2600   // character size.  This could be handled, but it's unusual.
2601   if (is_string && addralign > entsize)
2602     return false;
2603
2604   // We cannot restore merged input section states.
2605   gold_assert(this->checkpoint_ == NULL);
2606
2607   // Look up merge sections by required properties.
2608   // Currently, we only invalidate the lookup maps in script processing
2609   // and relaxation.  We should not have done either when we reach here.
2610   // So we assume that the lookup maps are valid to simply code.
2611   gold_assert(this->lookup_maps_->is_valid());
2612   Merge_section_properties msp(is_string, entsize, addralign);
2613   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2614   bool is_new = false;
2615   if (pomb != NULL)
2616     {
2617       gold_assert(pomb->is_string() == is_string
2618                   && pomb->entsize() == entsize
2619                   && pomb->addralign() == addralign);
2620     }
2621   else
2622     {
2623       // Create a new Output_merge_data or Output_merge_string_data.
2624       if (!is_string)
2625         pomb = new Output_merge_data(entsize, addralign);
2626       else
2627         {
2628           switch (entsize)
2629             {
2630             case 1:
2631               pomb = new Output_merge_string<char>(addralign);
2632               break;
2633             case 2:
2634               pomb = new Output_merge_string<uint16_t>(addralign);
2635               break;
2636             case 4:
2637               pomb = new Output_merge_string<uint32_t>(addralign);
2638               break;
2639             default:
2640               return false;
2641             }
2642         }
2643       // If we need to do script processing or relaxation, we need to keep
2644       // the original input sections to rebuild the fast lookup maps.
2645       if (keeps_input_sections)
2646         pomb->set_keeps_input_sections();
2647       is_new = true;
2648     }
2649
2650   if (pomb->add_input_section(object, shndx))
2651     {
2652       // Add new merge section to this output section and link merge
2653       // section properties to new merge section in map.
2654       if (is_new)
2655         {
2656           this->add_output_merge_section(pomb, is_string, entsize);
2657           this->lookup_maps_->add_merge_section(msp, pomb);
2658         }
2659
2660       // Add input section to new merge section and link input section to new
2661       // merge section in map.
2662       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2663       return true;
2664     }
2665   else
2666     {
2667       // If add_input_section failed, delete new merge section to avoid
2668       // exporting empty merge sections in Output_section::get_input_section.
2669       if (is_new)
2670         delete pomb;
2671       return false;
2672     }
2673 }
2674
2675 // Build a relaxation map to speed up relaxation of existing input sections.
2676 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2677
2678 void
2679 Output_section::build_relaxation_map(
2680   const Input_section_list& input_sections,
2681   size_t limit,
2682   Relaxation_map* relaxation_map) const
2683 {
2684   for (size_t i = 0; i < limit; ++i)
2685     {
2686       const Input_section& is(input_sections[i]);
2687       if (is.is_input_section() || is.is_relaxed_input_section())
2688         {
2689           Section_id sid(is.relobj(), is.shndx());
2690           (*relaxation_map)[sid] = i;
2691         }
2692     }
2693 }
2694
2695 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2696 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2697 // indices of INPUT_SECTIONS.
2698
2699 void
2700 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2701   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2702   const Relaxation_map& map,
2703   Input_section_list* input_sections)
2704 {
2705   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2706     {
2707       Output_relaxed_input_section* poris = relaxed_sections[i];
2708       Section_id sid(poris->relobj(), poris->shndx());
2709       Relaxation_map::const_iterator p = map.find(sid);
2710       gold_assert(p != map.end());
2711       gold_assert((*input_sections)[p->second].is_input_section());
2712
2713       // Remember section order index of original input section
2714       // if it is set.  Copy it to the relaxed input section.
2715       unsigned int soi =
2716         (*input_sections)[p->second].section_order_index();
2717       (*input_sections)[p->second] = Input_section(poris);
2718       (*input_sections)[p->second].set_section_order_index(soi);
2719     }
2720 }
2721   
2722 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2723 // is a vector of pointers to Output_relaxed_input_section or its derived
2724 // classes.  The relaxed sections must correspond to existing input sections.
2725
2726 void
2727 Output_section::convert_input_sections_to_relaxed_sections(
2728   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2729 {
2730   gold_assert(parameters->target().may_relax());
2731
2732   // We want to make sure that restore_states does not undo the effect of
2733   // this.  If there is no checkpoint active, just search the current
2734   // input section list and replace the sections there.  If there is
2735   // a checkpoint, also replace the sections there.
2736   
2737   // By default, we look at the whole list.
2738   size_t limit = this->input_sections_.size();
2739
2740   if (this->checkpoint_ != NULL)
2741     {
2742       // Replace input sections with relaxed input section in the saved
2743       // copy of the input section list.
2744       if (this->checkpoint_->input_sections_saved())
2745         {
2746           Relaxation_map map;
2747           this->build_relaxation_map(
2748                     *(this->checkpoint_->input_sections()),
2749                     this->checkpoint_->input_sections()->size(),
2750                     &map);
2751           this->convert_input_sections_in_list_to_relaxed_sections(
2752                     relaxed_sections,
2753                     map,
2754                     this->checkpoint_->input_sections());
2755         }
2756       else
2757         {
2758           // We have not copied the input section list yet.  Instead, just
2759           // look at the portion that would be saved.
2760           limit = this->checkpoint_->input_sections_size();
2761         }
2762     }
2763
2764   // Convert input sections in input_section_list.
2765   Relaxation_map map;
2766   this->build_relaxation_map(this->input_sections_, limit, &map);
2767   this->convert_input_sections_in_list_to_relaxed_sections(
2768             relaxed_sections,
2769             map,
2770             &this->input_sections_);
2771
2772   // Update fast look-up map.
2773   if (this->lookup_maps_->is_valid())
2774     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2775       {
2776         Output_relaxed_input_section* poris = relaxed_sections[i];
2777         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2778                                                       poris->shndx(), poris);
2779       }
2780 }
2781
2782 // Update the output section flags based on input section flags.
2783
2784 void
2785 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2786 {
2787   // If we created the section with SHF_ALLOC clear, we set the
2788   // address.  If we are now setting the SHF_ALLOC flag, we need to
2789   // undo that.
2790   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2791       && (flags & elfcpp::SHF_ALLOC) != 0)
2792     this->mark_address_invalid();
2793
2794   this->flags_ |= (flags
2795                    & (elfcpp::SHF_WRITE
2796                       | elfcpp::SHF_ALLOC
2797                       | elfcpp::SHF_EXECINSTR));
2798
2799   if ((flags & elfcpp::SHF_MERGE) == 0)
2800     this->flags_ &=~ elfcpp::SHF_MERGE;
2801   else
2802     {
2803       if (this->current_data_size_for_child() == 0)
2804         this->flags_ |= elfcpp::SHF_MERGE;
2805     }
2806
2807   if ((flags & elfcpp::SHF_STRINGS) == 0)
2808     this->flags_ &=~ elfcpp::SHF_STRINGS;
2809   else
2810     {
2811       if (this->current_data_size_for_child() == 0)
2812         this->flags_ |= elfcpp::SHF_STRINGS;
2813     }
2814 }
2815
2816 // Find the merge section into which an input section with index SHNDX in
2817 // OBJECT has been added.  Return NULL if none found.
2818
2819 Output_section_data*
2820 Output_section::find_merge_section(const Relobj* object,
2821                                    unsigned int shndx) const
2822 {
2823   if (!this->lookup_maps_->is_valid())
2824     this->build_lookup_maps();
2825   return this->lookup_maps_->find_merge_section(object, shndx);
2826 }
2827
2828 // Build the lookup maps for merge and relaxed sections.  This is needs
2829 // to be declared as a const methods so that it is callable with a const
2830 // Output_section pointer.  The method only updates states of the maps.
2831
2832 void
2833 Output_section::build_lookup_maps() const
2834 {
2835   this->lookup_maps_->clear();
2836   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2837        p != this->input_sections_.end();
2838        ++p)
2839     {
2840       if (p->is_merge_section())
2841         {
2842           Output_merge_base* pomb = p->output_merge_base();
2843           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2844                                        pomb->addralign());
2845           this->lookup_maps_->add_merge_section(msp, pomb);
2846           for (Output_merge_base::Input_sections::const_iterator is =
2847                  pomb->input_sections_begin();
2848                is != pomb->input_sections_end();
2849                ++is) 
2850             {
2851               const Const_section_id& csid = *is;
2852             this->lookup_maps_->add_merge_input_section(csid.first,
2853                                                         csid.second, pomb);
2854             }
2855             
2856         }
2857       else if (p->is_relaxed_input_section())
2858         {
2859           Output_relaxed_input_section* poris = p->relaxed_input_section();
2860           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2861                                                         poris->shndx(), poris);
2862         }
2863     }
2864 }
2865
2866 // Find an relaxed input section corresponding to an input section
2867 // in OBJECT with index SHNDX.
2868
2869 const Output_relaxed_input_section*
2870 Output_section::find_relaxed_input_section(const Relobj* object,
2871                                            unsigned int shndx) const
2872 {
2873   if (!this->lookup_maps_->is_valid())
2874     this->build_lookup_maps();
2875   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2876 }
2877
2878 // Given an address OFFSET relative to the start of input section
2879 // SHNDX in OBJECT, return whether this address is being included in
2880 // the final link.  This should only be called if SHNDX in OBJECT has
2881 // a special mapping.
2882
2883 bool
2884 Output_section::is_input_address_mapped(const Relobj* object,
2885                                         unsigned int shndx,
2886                                         off_t offset) const
2887 {
2888   // Look at the Output_section_data_maps first.
2889   const Output_section_data* posd = this->find_merge_section(object, shndx);
2890   if (posd == NULL)
2891     posd = this->find_relaxed_input_section(object, shndx);
2892
2893   if (posd != NULL)
2894     {
2895       section_offset_type output_offset;
2896       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2897       gold_assert(found);   
2898       return output_offset != -1;
2899     }
2900
2901   // Fall back to the slow look-up.
2902   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2903        p != this->input_sections_.end();
2904        ++p)
2905     {
2906       section_offset_type output_offset;
2907       if (p->output_offset(object, shndx, offset, &output_offset))
2908         return output_offset != -1;
2909     }
2910
2911   // By default we assume that the address is mapped.  This should
2912   // only be called after we have passed all sections to Layout.  At
2913   // that point we should know what we are discarding.
2914   return true;
2915 }
2916
2917 // Given an address OFFSET relative to the start of input section
2918 // SHNDX in object OBJECT, return the output offset relative to the
2919 // start of the input section in the output section.  This should only
2920 // be called if SHNDX in OBJECT has a special mapping.
2921
2922 section_offset_type
2923 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2924                               section_offset_type offset) const
2925 {
2926   // This can only be called meaningfully when we know the data size
2927   // of this.
2928   gold_assert(this->is_data_size_valid());
2929
2930   // Look at the Output_section_data_maps first.
2931   const Output_section_data* posd = this->find_merge_section(object, shndx);
2932   if (posd == NULL) 
2933     posd = this->find_relaxed_input_section(object, shndx);
2934   if (posd != NULL)
2935     {
2936       section_offset_type output_offset;
2937       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2938       gold_assert(found);   
2939       return output_offset;
2940     }
2941
2942   // Fall back to the slow look-up.
2943   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2944        p != this->input_sections_.end();
2945        ++p)
2946     {
2947       section_offset_type output_offset;
2948       if (p->output_offset(object, shndx, offset, &output_offset))
2949         return output_offset;
2950     }
2951   gold_unreachable();
2952 }
2953
2954 // Return the output virtual address of OFFSET relative to the start
2955 // of input section SHNDX in object OBJECT.
2956
2957 uint64_t
2958 Output_section::output_address(const Relobj* object, unsigned int shndx,
2959                                off_t offset) const
2960 {
2961   uint64_t addr = this->address() + this->first_input_offset_;
2962
2963   // Look at the Output_section_data_maps first.
2964   const Output_section_data* posd = this->find_merge_section(object, shndx);
2965   if (posd == NULL) 
2966     posd = this->find_relaxed_input_section(object, shndx);
2967   if (posd != NULL && posd->is_address_valid())
2968     {
2969       section_offset_type output_offset;
2970       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2971       gold_assert(found);
2972       return posd->address() + output_offset;
2973     }
2974
2975   // Fall back to the slow look-up.
2976   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2977        p != this->input_sections_.end();
2978        ++p)
2979     {
2980       addr = align_address(addr, p->addralign());
2981       section_offset_type output_offset;
2982       if (p->output_offset(object, shndx, offset, &output_offset))
2983         {
2984           if (output_offset == -1)
2985             return -1ULL;
2986           return addr + output_offset;
2987         }
2988       addr += p->data_size();
2989     }
2990
2991   // If we get here, it means that we don't know the mapping for this
2992   // input section.  This might happen in principle if
2993   // add_input_section were called before add_output_section_data.
2994   // But it should never actually happen.
2995
2996   gold_unreachable();
2997 }
2998
2999 // Find the output address of the start of the merged section for
3000 // input section SHNDX in object OBJECT.
3001
3002 bool
3003 Output_section::find_starting_output_address(const Relobj* object,
3004                                              unsigned int shndx,
3005                                              uint64_t* paddr) const
3006 {
3007   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3008   // Looking up the merge section map does not always work as we sometimes
3009   // find a merge section without its address set.
3010   uint64_t addr = this->address() + this->first_input_offset_;
3011   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3012        p != this->input_sections_.end();
3013        ++p)
3014     {
3015       addr = align_address(addr, p->addralign());
3016
3017       // It would be nice if we could use the existing output_offset
3018       // method to get the output offset of input offset 0.
3019       // Unfortunately we don't know for sure that input offset 0 is
3020       // mapped at all.
3021       if (p->is_merge_section_for(object, shndx))
3022         {
3023           *paddr = addr;
3024           return true;
3025         }
3026
3027       addr += p->data_size();
3028     }
3029
3030   // We couldn't find a merge output section for this input section.
3031   return false;
3032 }
3033
3034 // Update the data size of an Output_section.
3035
3036 void
3037 Output_section::update_data_size()
3038 {
3039   if (this->input_sections_.empty())
3040       return;
3041
3042   if (this->must_sort_attached_input_sections()
3043       || this->input_section_order_specified())
3044     this->sort_attached_input_sections();
3045
3046   off_t off = this->first_input_offset_;
3047   for (Input_section_list::iterator p = this->input_sections_.begin();
3048        p != this->input_sections_.end();
3049        ++p)
3050     {
3051       off = align_address(off, p->addralign());
3052       off += p->current_data_size();
3053     }
3054
3055   this->set_current_data_size_for_child(off);
3056 }
3057
3058 // Set the data size of an Output_section.  This is where we handle
3059 // setting the addresses of any Output_section_data objects.
3060
3061 void
3062 Output_section::set_final_data_size()
3063 {
3064   off_t data_size;
3065
3066   if (this->input_sections_.empty())
3067     data_size = this->current_data_size_for_child();
3068   else
3069     {
3070       if (this->must_sort_attached_input_sections()
3071           || this->input_section_order_specified())
3072         this->sort_attached_input_sections();
3073
3074       uint64_t address = this->address();
3075       off_t startoff = this->offset();
3076       off_t off = startoff + this->first_input_offset_;
3077       for (Input_section_list::iterator p = this->input_sections_.begin();
3078            p != this->input_sections_.end();
3079            ++p)
3080         {
3081           off = align_address(off, p->addralign());
3082           p->set_address_and_file_offset(address + (off - startoff), off,
3083                                          startoff);
3084           off += p->data_size();
3085         }
3086       data_size = off - startoff;
3087     }
3088
3089   // For full incremental links, we want to allocate some patch space
3090   // in most sections for subsequent incremental updates.
3091   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3092     {
3093       double pct = parameters->options().incremental_patch();
3094       size_t extra = static_cast<size_t>(data_size * pct);
3095       if (this->free_space_fill_ != NULL
3096           && this->free_space_fill_->minimum_hole_size() > extra)
3097         extra = this->free_space_fill_->minimum_hole_size();
3098       off_t new_size = align_address(data_size + extra, this->addralign());
3099       this->patch_space_ = new_size - data_size;
3100       gold_debug(DEBUG_INCREMENTAL,
3101                  "set_final_data_size: %08lx + %08lx: section %s",
3102                  static_cast<long>(data_size),
3103                  static_cast<long>(this->patch_space_),
3104                  this->name());
3105       data_size = new_size;
3106     }
3107
3108   this->set_data_size(data_size);
3109 }
3110
3111 // Reset the address and file offset.
3112
3113 void
3114 Output_section::do_reset_address_and_file_offset()
3115 {
3116   // An unallocated section has no address.  Forcing this means that
3117   // we don't need special treatment for symbols defined in debug
3118   // sections.  We do the same in the constructor.  This does not
3119   // apply to NOLOAD sections though.
3120   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3121      this->set_address(0);
3122
3123   for (Input_section_list::iterator p = this->input_sections_.begin();
3124        p != this->input_sections_.end();
3125        ++p)
3126     p->reset_address_and_file_offset();
3127
3128   // Remove any patch space that was added in set_final_data_size.
3129   if (this->patch_space_ > 0)
3130     {
3131       this->set_current_data_size_for_child(this->current_data_size_for_child()
3132                                             - this->patch_space_);
3133       this->patch_space_ = 0;
3134     }
3135 }
3136
3137 // Return true if address and file offset have the values after reset.
3138
3139 bool
3140 Output_section::do_address_and_file_offset_have_reset_values() const
3141 {
3142   if (this->is_offset_valid())
3143     return false;
3144
3145   // An unallocated section has address 0 after its construction or a reset.
3146   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3147     return this->is_address_valid() && this->address() == 0;
3148   else
3149     return !this->is_address_valid();
3150 }
3151
3152 // Set the TLS offset.  Called only for SHT_TLS sections.
3153
3154 void
3155 Output_section::do_set_tls_offset(uint64_t tls_base)
3156 {
3157   this->tls_offset_ = this->address() - tls_base;
3158 }
3159
3160 // In a few cases we need to sort the input sections attached to an
3161 // output section.  This is used to implement the type of constructor
3162 // priority ordering implemented by the GNU linker, in which the
3163 // priority becomes part of the section name and the sections are
3164 // sorted by name.  We only do this for an output section if we see an
3165 // attached input section matching ".ctors.*", ".dtors.*",
3166 // ".init_array.*" or ".fini_array.*".
3167
3168 class Output_section::Input_section_sort_entry
3169 {
3170  public:
3171   Input_section_sort_entry()
3172     : input_section_(), index_(-1U), section_has_name_(false),
3173       section_name_()
3174   { }
3175
3176   Input_section_sort_entry(const Input_section& input_section,
3177                            unsigned int index,
3178                            bool must_sort_attached_input_sections)
3179     : input_section_(input_section), index_(index),
3180       section_has_name_(input_section.is_input_section()
3181                         || input_section.is_relaxed_input_section())
3182   {
3183     if (this->section_has_name_
3184         && must_sort_attached_input_sections)
3185       {
3186         // This is only called single-threaded from Layout::finalize,
3187         // so it is OK to lock.  Unfortunately we have no way to pass
3188         // in a Task token.
3189         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3190         Object* obj = (input_section.is_input_section()
3191                        ? input_section.relobj()
3192                        : input_section.relaxed_input_section()->relobj());
3193         Task_lock_obj<Object> tl(dummy_task, obj);
3194
3195         // This is a slow operation, which should be cached in
3196         // Layout::layout if this becomes a speed problem.
3197         this->section_name_ = obj->section_name(input_section.shndx());
3198       }
3199   }
3200
3201   // Return the Input_section.
3202   const Input_section&
3203   input_section() const
3204   {
3205     gold_assert(this->index_ != -1U);
3206     return this->input_section_;
3207   }
3208
3209   // The index of this entry in the original list.  This is used to
3210   // make the sort stable.
3211   unsigned int
3212   index() const
3213   {
3214     gold_assert(this->index_ != -1U);
3215     return this->index_;
3216   }
3217
3218   // Whether there is a section name.
3219   bool
3220   section_has_name() const
3221   { return this->section_has_name_; }
3222
3223   // The section name.
3224   const std::string&
3225   section_name() const
3226   {
3227     gold_assert(this->section_has_name_);
3228     return this->section_name_;
3229   }
3230
3231   // Return true if the section name has a priority.  This is assumed
3232   // to be true if it has a dot after the initial dot.
3233   bool
3234   has_priority() const
3235   {
3236     gold_assert(this->section_has_name_);
3237     return this->section_name_.find('.', 1) != std::string::npos;
3238   }
3239
3240   // Return the priority.  Believe it or not, gcc encodes the priority
3241   // differently for .ctors/.dtors and .init_array/.fini_array
3242   // sections.
3243   unsigned int
3244   get_priority() const
3245   {
3246     gold_assert(this->section_has_name_);
3247     bool is_ctors;
3248     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3249         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3250       is_ctors = true;
3251     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3252              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3253       is_ctors = false;
3254     else
3255       return 0;
3256     char* end;
3257     unsigned long prio = strtoul((this->section_name_.c_str()
3258                                   + (is_ctors ? 7 : 12)),
3259                                  &end, 10);
3260     if (*end != '\0')
3261       return 0;
3262     else if (is_ctors)
3263       return 65535 - prio;
3264     else
3265       return prio;
3266   }
3267
3268   // Return true if this an input file whose base name matches
3269   // FILE_NAME.  The base name must have an extension of ".o", and
3270   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3271   // This is to match crtbegin.o as well as crtbeginS.o without
3272   // getting confused by other possibilities.  Overall matching the
3273   // file name this way is a dreadful hack, but the GNU linker does it
3274   // in order to better support gcc, and we need to be compatible.
3275   bool
3276   match_file_name(const char* file_name) const
3277   { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3278
3279   // Returns 1 if THIS should appear before S in section order, -1 if S
3280   // appears before THIS and 0 if they are not comparable.
3281   int
3282   compare_section_ordering(const Input_section_sort_entry& s) const
3283   {
3284     unsigned int this_secn_index = this->input_section_.section_order_index();
3285     unsigned int s_secn_index = s.input_section().section_order_index();
3286     if (this_secn_index > 0 && s_secn_index > 0)
3287       {
3288         if (this_secn_index < s_secn_index)
3289           return 1;
3290         else if (this_secn_index > s_secn_index)
3291           return -1;
3292       }
3293     return 0;
3294   }
3295
3296  private:
3297   // The Input_section we are sorting.
3298   Input_section input_section_;
3299   // The index of this Input_section in the original list.
3300   unsigned int index_;
3301   // Whether this Input_section has a section name--it won't if this
3302   // is some random Output_section_data.
3303   bool section_has_name_;
3304   // The section name if there is one.
3305   std::string section_name_;
3306 };
3307
3308 // Return true if S1 should come before S2 in the output section.
3309
3310 bool
3311 Output_section::Input_section_sort_compare::operator()(
3312     const Output_section::Input_section_sort_entry& s1,
3313     const Output_section::Input_section_sort_entry& s2) const
3314 {
3315   // crtbegin.o must come first.
3316   bool s1_begin = s1.match_file_name("crtbegin");
3317   bool s2_begin = s2.match_file_name("crtbegin");
3318   if (s1_begin || s2_begin)
3319     {
3320       if (!s1_begin)
3321         return false;
3322       if (!s2_begin)
3323         return true;
3324       return s1.index() < s2.index();
3325     }
3326
3327   // crtend.o must come last.
3328   bool s1_end = s1.match_file_name("crtend");
3329   bool s2_end = s2.match_file_name("crtend");
3330   if (s1_end || s2_end)
3331     {
3332       if (!s1_end)
3333         return true;
3334       if (!s2_end)
3335         return false;
3336       return s1.index() < s2.index();
3337     }
3338
3339   // We sort all the sections with no names to the end.
3340   if (!s1.section_has_name() || !s2.section_has_name())
3341     {
3342       if (s1.section_has_name())
3343         return true;
3344       if (s2.section_has_name())
3345         return false;
3346       return s1.index() < s2.index();
3347     }
3348
3349   // A section with a priority follows a section without a priority.
3350   bool s1_has_priority = s1.has_priority();
3351   bool s2_has_priority = s2.has_priority();
3352   if (s1_has_priority && !s2_has_priority)
3353     return false;
3354   if (!s1_has_priority && s2_has_priority)
3355     return true;
3356
3357   // Check if a section order exists for these sections through a section
3358   // ordering file.  If sequence_num is 0, an order does not exist.
3359   int sequence_num = s1.compare_section_ordering(s2);
3360   if (sequence_num != 0)
3361     return sequence_num == 1;
3362
3363   // Otherwise we sort by name.
3364   int compare = s1.section_name().compare(s2.section_name());
3365   if (compare != 0)
3366     return compare < 0;
3367
3368   // Otherwise we keep the input order.
3369   return s1.index() < s2.index();
3370 }
3371
3372 // Return true if S1 should come before S2 in an .init_array or .fini_array
3373 // output section.
3374
3375 bool
3376 Output_section::Input_section_sort_init_fini_compare::operator()(
3377     const Output_section::Input_section_sort_entry& s1,
3378     const Output_section::Input_section_sort_entry& s2) const
3379 {
3380   // We sort all the sections with no names to the end.
3381   if (!s1.section_has_name() || !s2.section_has_name())
3382     {
3383       if (s1.section_has_name())
3384         return true;
3385       if (s2.section_has_name())
3386         return false;
3387       return s1.index() < s2.index();
3388     }
3389
3390   // A section without a priority follows a section with a priority.
3391   // This is the reverse of .ctors and .dtors sections.
3392   bool s1_has_priority = s1.has_priority();
3393   bool s2_has_priority = s2.has_priority();
3394   if (s1_has_priority && !s2_has_priority)
3395     return true;
3396   if (!s1_has_priority && s2_has_priority)
3397     return false;
3398
3399   // .ctors and .dtors sections without priority come after
3400   // .init_array and .fini_array sections without priority.
3401   if (!s1_has_priority
3402       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3403       && s1.section_name() != s2.section_name())
3404     return false;
3405   if (!s2_has_priority
3406       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3407       && s2.section_name() != s1.section_name())
3408     return true;
3409
3410   // Sort by priority if we can.
3411   if (s1_has_priority)
3412     {
3413       unsigned int s1_prio = s1.get_priority();
3414       unsigned int s2_prio = s2.get_priority();
3415       if (s1_prio < s2_prio)
3416         return true;
3417       else if (s1_prio > s2_prio)
3418         return false;
3419     }
3420
3421   // Check if a section order exists for these sections through a section
3422   // ordering file.  If sequence_num is 0, an order does not exist.
3423   int sequence_num = s1.compare_section_ordering(s2);
3424   if (sequence_num != 0)
3425     return sequence_num == 1;
3426
3427   // Otherwise we sort by name.
3428   int compare = s1.section_name().compare(s2.section_name());
3429   if (compare != 0)
3430     return compare < 0;
3431
3432   // Otherwise we keep the input order.
3433   return s1.index() < s2.index();
3434 }
3435
3436 // Return true if S1 should come before S2.  Sections that do not match
3437 // any pattern in the section ordering file are placed ahead of the sections
3438 // that match some pattern.
3439
3440 bool
3441 Output_section::Input_section_sort_section_order_index_compare::operator()(
3442     const Output_section::Input_section_sort_entry& s1,
3443     const Output_section::Input_section_sort_entry& s2) const
3444 {
3445   unsigned int s1_secn_index = s1.input_section().section_order_index();
3446   unsigned int s2_secn_index = s2.input_section().section_order_index();
3447
3448   // Keep input order if section ordering cannot determine order.
3449   if (s1_secn_index == s2_secn_index)
3450     return s1.index() < s2.index();
3451   
3452   return s1_secn_index < s2_secn_index;
3453 }
3454
3455 // This updates the section order index of input sections according to the
3456 // the order specified in the mapping from Section id to order index.
3457
3458 void
3459 Output_section::update_section_layout(
3460   const Section_layout_order* order_map)
3461 {
3462   for (Input_section_list::iterator p = this->input_sections_.begin();
3463        p != this->input_sections_.end();
3464        ++p)
3465     {
3466       if (p->is_input_section()
3467           || p->is_relaxed_input_section())
3468         {
3469           Object* obj = (p->is_input_section()
3470                          ? p->relobj()
3471                          : p->relaxed_input_section()->relobj());
3472           unsigned int shndx = p->shndx();
3473           Section_layout_order::const_iterator it
3474             = order_map->find(Section_id(obj, shndx));
3475           if (it == order_map->end())
3476             continue;
3477           unsigned int section_order_index = it->second;
3478           if (section_order_index != 0)
3479             {
3480               p->set_section_order_index(section_order_index);
3481               this->set_input_section_order_specified();
3482             }
3483         }
3484     }
3485 }
3486
3487 // Sort the input sections attached to an output section.
3488
3489 void
3490 Output_section::sort_attached_input_sections()
3491 {
3492   if (this->attached_input_sections_are_sorted_)
3493     return;
3494
3495   if (this->checkpoint_ != NULL
3496       && !this->checkpoint_->input_sections_saved())
3497     this->checkpoint_->save_input_sections();
3498
3499   // The only thing we know about an input section is the object and
3500   // the section index.  We need the section name.  Recomputing this
3501   // is slow but this is an unusual case.  If this becomes a speed
3502   // problem we can cache the names as required in Layout::layout.
3503
3504   // We start by building a larger vector holding a copy of each
3505   // Input_section, plus its current index in the list and its name.
3506   std::vector<Input_section_sort_entry> sort_list;
3507
3508   unsigned int i = 0;
3509   for (Input_section_list::iterator p = this->input_sections_.begin();
3510        p != this->input_sections_.end();
3511        ++p, ++i)
3512       sort_list.push_back(Input_section_sort_entry(*p, i,
3513                             this->must_sort_attached_input_sections()));
3514
3515   // Sort the input sections.
3516   if (this->must_sort_attached_input_sections())
3517     {
3518       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3519           || this->type() == elfcpp::SHT_INIT_ARRAY
3520           || this->type() == elfcpp::SHT_FINI_ARRAY)
3521         std::sort(sort_list.begin(), sort_list.end(),
3522                   Input_section_sort_init_fini_compare());
3523       else
3524         std::sort(sort_list.begin(), sort_list.end(),
3525                   Input_section_sort_compare());
3526     }
3527   else
3528     {
3529       gold_assert(this->input_section_order_specified());
3530       std::sort(sort_list.begin(), sort_list.end(),
3531                 Input_section_sort_section_order_index_compare());
3532     }
3533
3534   // Copy the sorted input sections back to our list.
3535   this->input_sections_.clear();
3536   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3537        p != sort_list.end();
3538        ++p)
3539     this->input_sections_.push_back(p->input_section());
3540   sort_list.clear();
3541
3542   // Remember that we sorted the input sections, since we might get
3543   // called again.
3544   this->attached_input_sections_are_sorted_ = true;
3545 }
3546
3547 // Write the section header to *OSHDR.
3548
3549 template<int size, bool big_endian>
3550 void
3551 Output_section::write_header(const Layout* layout,
3552                              const Stringpool* secnamepool,
3553                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3554 {
3555   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3556   oshdr->put_sh_type(this->type_);
3557
3558   elfcpp::Elf_Xword flags = this->flags_;
3559   if (this->info_section_ != NULL && this->info_uses_section_index_)
3560     flags |= elfcpp::SHF_INFO_LINK;
3561   oshdr->put_sh_flags(flags);
3562
3563   oshdr->put_sh_addr(this->address());
3564   oshdr->put_sh_offset(this->offset());
3565   oshdr->put_sh_size(this->data_size());
3566   if (this->link_section_ != NULL)
3567     oshdr->put_sh_link(this->link_section_->out_shndx());
3568   else if (this->should_link_to_symtab_)
3569     oshdr->put_sh_link(layout->symtab_section_shndx());
3570   else if (this->should_link_to_dynsym_)
3571     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3572   else
3573     oshdr->put_sh_link(this->link_);
3574
3575   elfcpp::Elf_Word info;
3576   if (this->info_section_ != NULL)
3577     {
3578       if (this->info_uses_section_index_)
3579         info = this->info_section_->out_shndx();
3580       else
3581         info = this->info_section_->symtab_index();
3582     }
3583   else if (this->info_symndx_ != NULL)
3584     info = this->info_symndx_->symtab_index();
3585   else
3586     info = this->info_;
3587   oshdr->put_sh_info(info);
3588
3589   oshdr->put_sh_addralign(this->addralign_);
3590   oshdr->put_sh_entsize(this->entsize_);
3591 }
3592
3593 // Write out the data.  For input sections the data is written out by
3594 // Object::relocate, but we have to handle Output_section_data objects
3595 // here.
3596
3597 void
3598 Output_section::do_write(Output_file* of)
3599 {
3600   gold_assert(!this->requires_postprocessing());
3601
3602   // If the target performs relaxation, we delay filler generation until now.
3603   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3604
3605   off_t output_section_file_offset = this->offset();
3606   for (Fill_list::iterator p = this->fills_.begin();
3607        p != this->fills_.end();
3608        ++p)
3609     {
3610       std::string fill_data(parameters->target().code_fill(p->length()));
3611       of->write(output_section_file_offset + p->section_offset(),
3612                 fill_data.data(), fill_data.size());
3613     }
3614
3615   off_t off = this->offset() + this->first_input_offset_;
3616   for (Input_section_list::iterator p = this->input_sections_.begin();
3617        p != this->input_sections_.end();
3618        ++p)
3619     {
3620       off_t aligned_off = align_address(off, p->addralign());
3621       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3622         {
3623           size_t fill_len = aligned_off - off;
3624           std::string fill_data(parameters->target().code_fill(fill_len));
3625           of->write(off, fill_data.data(), fill_data.size());
3626         }
3627
3628       p->write(of);
3629       off = aligned_off + p->data_size();
3630     }
3631
3632   // For incremental links, fill in unused chunks in debug sections
3633   // with dummy compilation unit headers.
3634   if (this->free_space_fill_ != NULL)
3635     {
3636       for (Free_list::Const_iterator p = this->free_list_.begin();
3637            p != this->free_list_.end();
3638            ++p)
3639         {
3640           off_t off = p->start_;
3641           size_t len = p->end_ - off;
3642           this->free_space_fill_->write(of, this->offset() + off, len);
3643         }
3644       if (this->patch_space_ > 0)
3645         {
3646           off_t off = this->current_data_size_for_child() - this->patch_space_;
3647           this->free_space_fill_->write(of, this->offset() + off,
3648                                         this->patch_space_);
3649         }
3650     }
3651 }
3652
3653 // If a section requires postprocessing, create the buffer to use.
3654
3655 void
3656 Output_section::create_postprocessing_buffer()
3657 {
3658   gold_assert(this->requires_postprocessing());
3659
3660   if (this->postprocessing_buffer_ != NULL)
3661     return;
3662
3663   if (!this->input_sections_.empty())
3664     {
3665       off_t off = this->first_input_offset_;
3666       for (Input_section_list::iterator p = this->input_sections_.begin();
3667            p != this->input_sections_.end();
3668            ++p)
3669         {
3670           off = align_address(off, p->addralign());
3671           p->finalize_data_size();
3672           off += p->data_size();
3673         }
3674       this->set_current_data_size_for_child(off);
3675     }
3676
3677   off_t buffer_size = this->current_data_size_for_child();
3678   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3679 }
3680
3681 // Write all the data of an Output_section into the postprocessing
3682 // buffer.  This is used for sections which require postprocessing,
3683 // such as compression.  Input sections are handled by
3684 // Object::Relocate.
3685
3686 void
3687 Output_section::write_to_postprocessing_buffer()
3688 {
3689   gold_assert(this->requires_postprocessing());
3690
3691   // If the target performs relaxation, we delay filler generation until now.
3692   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3693
3694   unsigned char* buffer = this->postprocessing_buffer();
3695   for (Fill_list::iterator p = this->fills_.begin();
3696        p != this->fills_.end();
3697        ++p)
3698     {
3699       std::string fill_data(parameters->target().code_fill(p->length()));
3700       memcpy(buffer + p->section_offset(), fill_data.data(),
3701              fill_data.size());
3702     }
3703
3704   off_t off = this->first_input_offset_;
3705   for (Input_section_list::iterator p = this->input_sections_.begin();
3706        p != this->input_sections_.end();
3707        ++p)
3708     {
3709       off_t aligned_off = align_address(off, p->addralign());
3710       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3711         {
3712           size_t fill_len = aligned_off - off;
3713           std::string fill_data(parameters->target().code_fill(fill_len));
3714           memcpy(buffer + off, fill_data.data(), fill_data.size());
3715         }
3716
3717       p->write_to_buffer(buffer + aligned_off);
3718       off = aligned_off + p->data_size();
3719     }
3720 }
3721
3722 // Get the input sections for linker script processing.  We leave
3723 // behind the Output_section_data entries.  Note that this may be
3724 // slightly incorrect for merge sections.  We will leave them behind,
3725 // but it is possible that the script says that they should follow
3726 // some other input sections, as in:
3727 //    .rodata { *(.rodata) *(.rodata.cst*) }
3728 // For that matter, we don't handle this correctly:
3729 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3730 // With luck this will never matter.
3731
3732 uint64_t
3733 Output_section::get_input_sections(
3734     uint64_t address,
3735     const std::string& fill,
3736     std::list<Input_section>* input_sections)
3737 {
3738   if (this->checkpoint_ != NULL
3739       && !this->checkpoint_->input_sections_saved())
3740     this->checkpoint_->save_input_sections();
3741
3742   // Invalidate fast look-up maps.
3743   this->lookup_maps_->invalidate();
3744
3745   uint64_t orig_address = address;
3746
3747   address = align_address(address, this->addralign());
3748
3749   Input_section_list remaining;
3750   for (Input_section_list::iterator p = this->input_sections_.begin();
3751        p != this->input_sections_.end();
3752        ++p)
3753     {
3754       if (p->is_input_section()
3755           || p->is_relaxed_input_section()
3756           || p->is_merge_section())
3757         input_sections->push_back(*p);
3758       else
3759         {
3760           uint64_t aligned_address = align_address(address, p->addralign());
3761           if (aligned_address != address && !fill.empty())
3762             {
3763               section_size_type length =
3764                 convert_to_section_size_type(aligned_address - address);
3765               std::string this_fill;
3766               this_fill.reserve(length);
3767               while (this_fill.length() + fill.length() <= length)
3768                 this_fill += fill;
3769               if (this_fill.length() < length)
3770                 this_fill.append(fill, 0, length - this_fill.length());
3771
3772               Output_section_data* posd = new Output_data_const(this_fill, 0);
3773               remaining.push_back(Input_section(posd));
3774             }
3775           address = aligned_address;
3776
3777           remaining.push_back(*p);
3778
3779           p->finalize_data_size();
3780           address += p->data_size();
3781         }
3782     }
3783
3784   this->input_sections_.swap(remaining);
3785   this->first_input_offset_ = 0;
3786
3787   uint64_t data_size = address - orig_address;
3788   this->set_current_data_size_for_child(data_size);
3789   return data_size;
3790 }
3791
3792 // Add a script input section.  SIS is an Output_section::Input_section,
3793 // which can be either a plain input section or a special input section like
3794 // a relaxed input section.  For a special input section, its size must be
3795 // finalized.
3796
3797 void
3798 Output_section::add_script_input_section(const Input_section& sis)
3799 {
3800   uint64_t data_size = sis.data_size();
3801   uint64_t addralign = sis.addralign();
3802   if (addralign > this->addralign_)
3803     this->addralign_ = addralign;
3804
3805   off_t offset_in_section = this->current_data_size_for_child();
3806   off_t aligned_offset_in_section = align_address(offset_in_section,
3807                                                   addralign);
3808
3809   this->set_current_data_size_for_child(aligned_offset_in_section
3810                                         + data_size);
3811
3812   this->input_sections_.push_back(sis);
3813
3814   // Update fast lookup maps if necessary. 
3815   if (this->lookup_maps_->is_valid())
3816     {
3817       if (sis.is_merge_section())
3818         {
3819           Output_merge_base* pomb = sis.output_merge_base();
3820           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3821                                        pomb->addralign());
3822           this->lookup_maps_->add_merge_section(msp, pomb);
3823           for (Output_merge_base::Input_sections::const_iterator p =
3824                  pomb->input_sections_begin();
3825                p != pomb->input_sections_end();
3826                ++p)
3827             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3828                                                         pomb);
3829         }
3830       else if (sis.is_relaxed_input_section())
3831         {
3832           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3833           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3834                                                         poris->shndx(), poris);
3835         }
3836     }
3837 }
3838
3839 // Save states for relaxation.
3840
3841 void
3842 Output_section::save_states()
3843 {
3844   gold_assert(this->checkpoint_ == NULL);
3845   Checkpoint_output_section* checkpoint =
3846     new Checkpoint_output_section(this->addralign_, this->flags_,
3847                                   this->input_sections_,
3848                                   this->first_input_offset_,
3849                                   this->attached_input_sections_are_sorted_);
3850   this->checkpoint_ = checkpoint;
3851   gold_assert(this->fills_.empty());
3852 }
3853
3854 void
3855 Output_section::discard_states()
3856 {
3857   gold_assert(this->checkpoint_ != NULL);
3858   delete this->checkpoint_;
3859   this->checkpoint_ = NULL;
3860   gold_assert(this->fills_.empty());
3861
3862   // Simply invalidate the fast lookup maps since we do not keep
3863   // track of them.
3864   this->lookup_maps_->invalidate();
3865 }
3866
3867 void
3868 Output_section::restore_states()
3869 {
3870   gold_assert(this->checkpoint_ != NULL);
3871   Checkpoint_output_section* checkpoint = this->checkpoint_;
3872
3873   this->addralign_ = checkpoint->addralign();
3874   this->flags_ = checkpoint->flags();
3875   this->first_input_offset_ = checkpoint->first_input_offset();
3876
3877   if (!checkpoint->input_sections_saved())
3878     {
3879       // If we have not copied the input sections, just resize it.
3880       size_t old_size = checkpoint->input_sections_size();
3881       gold_assert(this->input_sections_.size() >= old_size);
3882       this->input_sections_.resize(old_size);
3883     }
3884   else
3885     {
3886       // We need to copy the whole list.  This is not efficient for
3887       // extremely large output with hundreads of thousands of input
3888       // objects.  We may need to re-think how we should pass sections
3889       // to scripts.
3890       this->input_sections_ = *checkpoint->input_sections();
3891     }
3892
3893   this->attached_input_sections_are_sorted_ =
3894     checkpoint->attached_input_sections_are_sorted();
3895
3896   // Simply invalidate the fast lookup maps since we do not keep
3897   // track of them.
3898   this->lookup_maps_->invalidate();
3899 }
3900
3901 // Update the section offsets of input sections in this.  This is required if
3902 // relaxation causes some input sections to change sizes.
3903
3904 void
3905 Output_section::adjust_section_offsets()
3906 {
3907   if (!this->section_offsets_need_adjustment_)
3908     return;
3909
3910   off_t off = 0;
3911   for (Input_section_list::iterator p = this->input_sections_.begin();
3912        p != this->input_sections_.end();
3913        ++p)
3914     {
3915       off = align_address(off, p->addralign());
3916       if (p->is_input_section())
3917         p->relobj()->set_section_offset(p->shndx(), off);
3918       off += p->data_size();
3919     }
3920
3921   this->section_offsets_need_adjustment_ = false;
3922 }
3923
3924 // Print to the map file.
3925
3926 void
3927 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3928 {
3929   mapfile->print_output_section(this);
3930
3931   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3932        p != this->input_sections_.end();
3933        ++p)
3934     p->print_to_mapfile(mapfile);
3935 }
3936
3937 // Print stats for merge sections to stderr.
3938
3939 void
3940 Output_section::print_merge_stats()
3941 {
3942   Input_section_list::iterator p;
3943   for (p = this->input_sections_.begin();
3944        p != this->input_sections_.end();
3945        ++p)
3946     p->print_merge_stats(this->name_);
3947 }
3948
3949 // Set a fixed layout for the section.  Used for incremental update links.
3950
3951 void
3952 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3953                                  off_t sh_size, uint64_t sh_addralign)
3954 {
3955   this->addralign_ = sh_addralign;
3956   this->set_current_data_size(sh_size);
3957   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3958     this->set_address(sh_addr);
3959   this->set_file_offset(sh_offset);
3960   this->finalize_data_size();
3961   this->free_list_.init(sh_size, false);
3962   this->has_fixed_layout_ = true;
3963 }
3964
3965 // Reserve space within the fixed layout for the section.  Used for
3966 // incremental update links.
3967
3968 void
3969 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3970 {
3971   this->free_list_.remove(sh_offset, sh_offset + sh_size);
3972 }
3973
3974 // Allocate space from the free list for the section.  Used for
3975 // incremental update links.
3976
3977 off_t
3978 Output_section::allocate(off_t len, uint64_t addralign)
3979 {
3980   return this->free_list_.allocate(len, addralign, 0);
3981 }
3982
3983 // Output segment methods.
3984
3985 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3986   : vaddr_(0),
3987     paddr_(0),
3988     memsz_(0),
3989     max_align_(0),
3990     min_p_align_(0),
3991     offset_(0),
3992     filesz_(0),
3993     type_(type),
3994     flags_(flags),
3995     is_max_align_known_(false),
3996     are_addresses_set_(false),
3997     is_large_data_segment_(false),
3998     is_unique_segment_(false)
3999 {
4000   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4001   // the flags.
4002   if (type == elfcpp::PT_TLS)
4003     this->flags_ = elfcpp::PF_R;
4004 }
4005
4006 // Add an Output_section to a PT_LOAD Output_segment.
4007
4008 void
4009 Output_segment::add_output_section_to_load(Layout* layout,
4010                                            Output_section* os,
4011                                            elfcpp::Elf_Word seg_flags)
4012 {
4013   gold_assert(this->type() == elfcpp::PT_LOAD);
4014   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4015   gold_assert(!this->is_max_align_known_);
4016   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4017
4018   this->update_flags_for_output_section(seg_flags);
4019
4020   // We don't want to change the ordering if we have a linker script
4021   // with a SECTIONS clause.
4022   Output_section_order order = os->order();
4023   if (layout->script_options()->saw_sections_clause())
4024     order = static_cast<Output_section_order>(0);
4025   else
4026     gold_assert(order != ORDER_INVALID);
4027
4028   this->output_lists_[order].push_back(os);
4029 }
4030
4031 // Add an Output_section to a non-PT_LOAD Output_segment.
4032
4033 void
4034 Output_segment::add_output_section_to_nonload(Output_section* os,
4035                                               elfcpp::Elf_Word seg_flags)
4036 {
4037   gold_assert(this->type() != elfcpp::PT_LOAD);
4038   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4039   gold_assert(!this->is_max_align_known_);
4040
4041   this->update_flags_for_output_section(seg_flags);
4042
4043   this->output_lists_[0].push_back(os);
4044 }
4045
4046 // Remove an Output_section from this segment.  It is an error if it
4047 // is not present.
4048
4049 void
4050 Output_segment::remove_output_section(Output_section* os)
4051 {
4052   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4053     {
4054       Output_data_list* pdl = &this->output_lists_[i];
4055       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4056         {
4057           if (*p == os)
4058             {
4059               pdl->erase(p);
4060               return;
4061             }
4062         }
4063     }
4064   gold_unreachable();
4065 }
4066
4067 // Add an Output_data (which need not be an Output_section) to the
4068 // start of a segment.
4069
4070 void
4071 Output_segment::add_initial_output_data(Output_data* od)
4072 {
4073   gold_assert(!this->is_max_align_known_);
4074   Output_data_list::iterator p = this->output_lists_[0].begin();
4075   this->output_lists_[0].insert(p, od);
4076 }
4077
4078 // Return true if this segment has any sections which hold actual
4079 // data, rather than being a BSS section.
4080
4081 bool
4082 Output_segment::has_any_data_sections() const
4083 {
4084   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4085     {
4086       const Output_data_list* pdl = &this->output_lists_[i];
4087       for (Output_data_list::const_iterator p = pdl->begin();
4088            p != pdl->end();
4089            ++p)
4090         {
4091           if (!(*p)->is_section())
4092             return true;
4093           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4094             return true;
4095         }
4096     }
4097   return false;
4098 }
4099
4100 // Return whether the first data section (not counting TLS sections)
4101 // is a relro section.
4102
4103 bool
4104 Output_segment::is_first_section_relro() const
4105 {
4106   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4107     {
4108       if (i == static_cast<int>(ORDER_TLS_DATA)
4109           || i == static_cast<int>(ORDER_TLS_BSS))
4110         continue;
4111       const Output_data_list* pdl = &this->output_lists_[i];
4112       if (!pdl->empty())
4113         {
4114           Output_data* p = pdl->front();
4115           return p->is_section() && p->output_section()->is_relro();
4116         }
4117     }
4118   return false;
4119 }
4120
4121 // Return the maximum alignment of the Output_data in Output_segment.
4122
4123 uint64_t
4124 Output_segment::maximum_alignment()
4125 {
4126   if (!this->is_max_align_known_)
4127     {
4128       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4129         {       
4130           const Output_data_list* pdl = &this->output_lists_[i];
4131           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4132           if (addralign > this->max_align_)
4133             this->max_align_ = addralign;
4134         }
4135       this->is_max_align_known_ = true;
4136     }
4137
4138   return this->max_align_;
4139 }
4140
4141 // Return the maximum alignment of a list of Output_data.
4142
4143 uint64_t
4144 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4145 {
4146   uint64_t ret = 0;
4147   for (Output_data_list::const_iterator p = pdl->begin();
4148        p != pdl->end();
4149        ++p)
4150     {
4151       uint64_t addralign = (*p)->addralign();
4152       if (addralign > ret)
4153         ret = addralign;
4154     }
4155   return ret;
4156 }
4157
4158 // Return whether this segment has any dynamic relocs.
4159
4160 bool
4161 Output_segment::has_dynamic_reloc() const
4162 {
4163   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4164     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4165       return true;
4166   return false;
4167 }
4168
4169 // Return whether this Output_data_list has any dynamic relocs.
4170
4171 bool
4172 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4173 {
4174   for (Output_data_list::const_iterator p = pdl->begin();
4175        p != pdl->end();
4176        ++p)
4177     if ((*p)->has_dynamic_reloc())
4178       return true;
4179   return false;
4180 }
4181
4182 // Set the section addresses for an Output_segment.  If RESET is true,
4183 // reset the addresses first.  ADDR is the address and *POFF is the
4184 // file offset.  Set the section indexes starting with *PSHNDX.
4185 // INCREASE_RELRO is the size of the portion of the first non-relro
4186 // section that should be included in the PT_GNU_RELRO segment.
4187 // If this segment has relro sections, and has been aligned for
4188 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4189 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4190 // and *PSHNDX.
4191
4192 uint64_t
4193 Output_segment::set_section_addresses(Layout* layout, bool reset,
4194                                       uint64_t addr,
4195                                       unsigned int* increase_relro,
4196                                       bool* has_relro,
4197                                       off_t* poff,
4198                                       unsigned int* pshndx)
4199 {
4200   gold_assert(this->type_ == elfcpp::PT_LOAD);
4201
4202   uint64_t last_relro_pad = 0;
4203   off_t orig_off = *poff;
4204
4205   bool in_tls = false;
4206
4207   // If we have relro sections, we need to pad forward now so that the
4208   // relro sections plus INCREASE_RELRO end on a common page boundary.
4209   if (parameters->options().relro()
4210       && this->is_first_section_relro()
4211       && (!this->are_addresses_set_ || reset))
4212     {
4213       uint64_t relro_size = 0;
4214       off_t off = *poff;
4215       uint64_t max_align = 0;
4216       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4217         {
4218           Output_data_list* pdl = &this->output_lists_[i];
4219           Output_data_list::iterator p;
4220           for (p = pdl->begin(); p != pdl->end(); ++p)
4221             {
4222               if (!(*p)->is_section())
4223                 break;
4224               uint64_t align = (*p)->addralign();
4225               if (align > max_align)
4226                 max_align = align;
4227               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4228                 in_tls = true;
4229               else if (in_tls)
4230                 {
4231                   // Align the first non-TLS section to the alignment
4232                   // of the TLS segment.
4233                   align = max_align;
4234                   in_tls = false;
4235                 }
4236               relro_size = align_address(relro_size, align);
4237               // Ignore the size of the .tbss section.
4238               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4239                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4240                 continue;
4241               if ((*p)->is_address_valid())
4242                 relro_size += (*p)->data_size();
4243               else
4244                 {
4245                   // FIXME: This could be faster.
4246                   (*p)->set_address_and_file_offset(addr + relro_size,
4247                                                     off + relro_size);
4248                   relro_size += (*p)->data_size();
4249                   (*p)->reset_address_and_file_offset();
4250                 }
4251             }
4252           if (p != pdl->end())
4253             break;
4254         }
4255       relro_size += *increase_relro;
4256       // Pad the total relro size to a multiple of the maximum
4257       // section alignment seen.
4258       uint64_t aligned_size = align_address(relro_size, max_align);
4259       // Note the amount of padding added after the last relro section.
4260       last_relro_pad = aligned_size - relro_size;
4261       *has_relro = true;
4262
4263       uint64_t page_align = parameters->target().common_pagesize();
4264
4265       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4266       uint64_t desired_align = page_align - (aligned_size % page_align);
4267       if (desired_align < *poff % page_align)
4268         *poff += page_align - *poff % page_align;
4269       *poff += desired_align - *poff % page_align;
4270       addr += *poff - orig_off;
4271       orig_off = *poff;
4272     }
4273
4274   if (!reset && this->are_addresses_set_)
4275     {
4276       gold_assert(this->paddr_ == addr);
4277       addr = this->vaddr_;
4278     }
4279   else
4280     {
4281       this->vaddr_ = addr;
4282       this->paddr_ = addr;
4283       this->are_addresses_set_ = true;
4284     }
4285
4286   in_tls = false;
4287
4288   this->offset_ = orig_off;
4289
4290   off_t off = 0;
4291   uint64_t ret;
4292   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4293     {
4294       if (i == static_cast<int>(ORDER_RELRO_LAST))
4295         {
4296           *poff += last_relro_pad;
4297           addr += last_relro_pad;
4298           if (this->output_lists_[i].empty())
4299             {
4300               // If there is nothing in the ORDER_RELRO_LAST list,
4301               // the padding will occur at the end of the relro
4302               // segment, and we need to add it to *INCREASE_RELRO.
4303               *increase_relro += last_relro_pad;
4304             }
4305         }
4306       addr = this->set_section_list_addresses(layout, reset,
4307                                               &this->output_lists_[i],
4308                                               addr, poff, pshndx, &in_tls);
4309       if (i < static_cast<int>(ORDER_SMALL_BSS))
4310         {
4311           this->filesz_ = *poff - orig_off;
4312           off = *poff;
4313         }
4314
4315       ret = addr;
4316     }
4317
4318   // If the last section was a TLS section, align upward to the
4319   // alignment of the TLS segment, so that the overall size of the TLS
4320   // segment is aligned.
4321   if (in_tls)
4322     {
4323       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4324       *poff = align_address(*poff, segment_align);
4325     }
4326
4327   this->memsz_ = *poff - orig_off;
4328
4329   // Ignore the file offset adjustments made by the BSS Output_data
4330   // objects.
4331   *poff = off;
4332
4333   return ret;
4334 }
4335
4336 // Set the addresses and file offsets in a list of Output_data
4337 // structures.
4338
4339 uint64_t
4340 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4341                                            Output_data_list* pdl,
4342                                            uint64_t addr, off_t* poff,
4343                                            unsigned int* pshndx,
4344                                            bool* in_tls)
4345 {
4346   off_t startoff = *poff;
4347   // For incremental updates, we may allocate non-fixed sections from
4348   // free space in the file.  This keeps track of the high-water mark.
4349   off_t maxoff = startoff;
4350
4351   off_t off = startoff;
4352   for (Output_data_list::iterator p = pdl->begin();
4353        p != pdl->end();
4354        ++p)
4355     {
4356       if (reset)
4357         (*p)->reset_address_and_file_offset();
4358
4359       // When doing an incremental update or when using a linker script,
4360       // the section will most likely already have an address.
4361       if (!(*p)->is_address_valid())
4362         {
4363           uint64_t align = (*p)->addralign();
4364
4365           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4366             {
4367               // Give the first TLS section the alignment of the
4368               // entire TLS segment.  Otherwise the TLS segment as a
4369               // whole may be misaligned.
4370               if (!*in_tls)
4371                 {
4372                   Output_segment* tls_segment = layout->tls_segment();
4373                   gold_assert(tls_segment != NULL);
4374                   uint64_t segment_align = tls_segment->maximum_alignment();
4375                   gold_assert(segment_align >= align);
4376                   align = segment_align;
4377
4378                   *in_tls = true;
4379                 }
4380             }
4381           else
4382             {
4383               // If this is the first section after the TLS segment,
4384               // align it to at least the alignment of the TLS
4385               // segment, so that the size of the overall TLS segment
4386               // is aligned.
4387               if (*in_tls)
4388                 {
4389                   uint64_t segment_align =
4390                       layout->tls_segment()->maximum_alignment();
4391                   if (segment_align > align)
4392                     align = segment_align;
4393
4394                   *in_tls = false;
4395                 }
4396             }
4397
4398           if (!parameters->incremental_update())
4399             {
4400               off = align_address(off, align);
4401               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4402             }
4403           else
4404             {
4405               // Incremental update: allocate file space from free list.
4406               (*p)->pre_finalize_data_size();
4407               off_t current_size = (*p)->current_data_size();
4408               off = layout->allocate(current_size, align, startoff);
4409               if (off == -1)
4410                 {
4411                   gold_assert((*p)->output_section() != NULL);
4412                   gold_fallback(_("out of patch space for section %s; "
4413                                   "relink with --incremental-full"),
4414                                 (*p)->output_section()->name());
4415                 }
4416               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4417               if ((*p)->data_size() > current_size)
4418                 {
4419                   gold_assert((*p)->output_section() != NULL);
4420                   gold_fallback(_("%s: section changed size; "
4421                                   "relink with --incremental-full"),
4422                                 (*p)->output_section()->name());
4423                 }
4424             }
4425         }
4426       else if (parameters->incremental_update())
4427         {
4428           // For incremental updates, use the fixed offset for the
4429           // high-water mark computation.
4430           off = (*p)->offset();
4431         }
4432       else
4433         {
4434           // The script may have inserted a skip forward, but it
4435           // better not have moved backward.
4436           if ((*p)->address() >= addr + (off - startoff))
4437             off += (*p)->address() - (addr + (off - startoff));
4438           else
4439             {
4440               if (!layout->script_options()->saw_sections_clause())
4441                 gold_unreachable();
4442               else
4443                 {
4444                   Output_section* os = (*p)->output_section();
4445
4446                   // Cast to unsigned long long to avoid format warnings.
4447                   unsigned long long previous_dot =
4448                     static_cast<unsigned long long>(addr + (off - startoff));
4449                   unsigned long long dot =
4450                     static_cast<unsigned long long>((*p)->address());
4451
4452                   if (os == NULL)
4453                     gold_error(_("dot moves backward in linker script "
4454                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4455                   else
4456                     gold_error(_("address of section '%s' moves backward "
4457                                  "from 0x%llx to 0x%llx"),
4458                                os->name(), previous_dot, dot);
4459                 }
4460             }
4461           (*p)->set_file_offset(off);
4462           (*p)->finalize_data_size();
4463         }
4464
4465       if (parameters->incremental_update())
4466         gold_debug(DEBUG_INCREMENTAL,
4467                    "set_section_list_addresses: %08lx %08lx %s",
4468                    static_cast<long>(off),
4469                    static_cast<long>((*p)->data_size()),
4470                    ((*p)->output_section() != NULL
4471                     ? (*p)->output_section()->name() : "(special)"));
4472
4473       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4474       // section.  Such a section does not affect the size of a
4475       // PT_LOAD segment.
4476       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4477           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4478         off += (*p)->data_size();
4479
4480       if (off > maxoff)
4481         maxoff = off;
4482
4483       if ((*p)->is_section())
4484         {
4485           (*p)->set_out_shndx(*pshndx);
4486           ++*pshndx;
4487         }
4488     }
4489
4490   *poff = maxoff;
4491   return addr + (maxoff - startoff);
4492 }
4493
4494 // For a non-PT_LOAD segment, set the offset from the sections, if
4495 // any.  Add INCREASE to the file size and the memory size.
4496
4497 void
4498 Output_segment::set_offset(unsigned int increase)
4499 {
4500   gold_assert(this->type_ != elfcpp::PT_LOAD);
4501
4502   gold_assert(!this->are_addresses_set_);
4503
4504   // A non-load section only uses output_lists_[0].
4505
4506   Output_data_list* pdl = &this->output_lists_[0];
4507
4508   if (pdl->empty())
4509     {
4510       gold_assert(increase == 0);
4511       this->vaddr_ = 0;
4512       this->paddr_ = 0;
4513       this->are_addresses_set_ = true;
4514       this->memsz_ = 0;
4515       this->min_p_align_ = 0;
4516       this->offset_ = 0;
4517       this->filesz_ = 0;
4518       return;
4519     }
4520
4521   // Find the first and last section by address.
4522   const Output_data* first = NULL;
4523   const Output_data* last_data = NULL;
4524   const Output_data* last_bss = NULL;
4525   for (Output_data_list::const_iterator p = pdl->begin();
4526        p != pdl->end();
4527        ++p)
4528     {
4529       if (first == NULL
4530           || (*p)->address() < first->address()
4531           || ((*p)->address() == first->address()
4532               && (*p)->data_size() < first->data_size()))
4533         first = *p;
4534       const Output_data** plast;
4535       if ((*p)->is_section()
4536           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4537         plast = &last_bss;
4538       else
4539         plast = &last_data;
4540       if (*plast == NULL
4541           || (*p)->address() > (*plast)->address()
4542           || ((*p)->address() == (*plast)->address()
4543               && (*p)->data_size() > (*plast)->data_size()))
4544         *plast = *p;
4545     }
4546
4547   this->vaddr_ = first->address();
4548   this->paddr_ = (first->has_load_address()
4549                   ? first->load_address()
4550                   : this->vaddr_);
4551   this->are_addresses_set_ = true;
4552   this->offset_ = first->offset();
4553
4554   if (last_data == NULL)
4555     this->filesz_ = 0;
4556   else
4557     this->filesz_ = (last_data->address()
4558                      + last_data->data_size()
4559                      - this->vaddr_);
4560
4561   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4562   this->memsz_ = (last->address()
4563                   + last->data_size()
4564                   - this->vaddr_);
4565
4566   this->filesz_ += increase;
4567   this->memsz_ += increase;
4568
4569   // If this is a RELRO segment, verify that the segment ends at a
4570   // page boundary.
4571   if (this->type_ == elfcpp::PT_GNU_RELRO)
4572     {
4573       uint64_t page_align = parameters->target().common_pagesize();
4574       uint64_t segment_end = this->vaddr_ + this->memsz_;
4575       if (parameters->incremental_update())
4576         {
4577           // The INCREASE_RELRO calculation is bypassed for an incremental
4578           // update, so we need to adjust the segment size manually here.
4579           segment_end = align_address(segment_end, page_align);
4580           this->memsz_ = segment_end - this->vaddr_;
4581         }
4582       else
4583         gold_assert(segment_end == align_address(segment_end, page_align));
4584     }
4585
4586   // If this is a TLS segment, align the memory size.  The code in
4587   // set_section_list ensures that the section after the TLS segment
4588   // is aligned to give us room.
4589   if (this->type_ == elfcpp::PT_TLS)
4590     {
4591       uint64_t segment_align = this->maximum_alignment();
4592       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4593       this->memsz_ = align_address(this->memsz_, segment_align);
4594     }
4595 }
4596
4597 // Set the TLS offsets of the sections in the PT_TLS segment.
4598
4599 void
4600 Output_segment::set_tls_offsets()
4601 {
4602   gold_assert(this->type_ == elfcpp::PT_TLS);
4603
4604   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4605        p != this->output_lists_[0].end();
4606        ++p)
4607     (*p)->set_tls_offset(this->vaddr_);
4608 }
4609
4610 // Return the load address of the first section.
4611
4612 uint64_t
4613 Output_segment::first_section_load_address() const
4614 {
4615   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4616     {
4617       const Output_data_list* pdl = &this->output_lists_[i];
4618       for (Output_data_list::const_iterator p = pdl->begin();
4619            p != pdl->end();
4620            ++p)
4621         {
4622           if ((*p)->is_section())
4623             return ((*p)->has_load_address()
4624                     ? (*p)->load_address()
4625                     : (*p)->address());
4626         }
4627     }
4628   gold_unreachable();
4629 }
4630
4631 // Return the number of Output_sections in an Output_segment.
4632
4633 unsigned int
4634 Output_segment::output_section_count() const
4635 {
4636   unsigned int ret = 0;
4637   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4638     ret += this->output_section_count_list(&this->output_lists_[i]);
4639   return ret;
4640 }
4641
4642 // Return the number of Output_sections in an Output_data_list.
4643
4644 unsigned int
4645 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4646 {
4647   unsigned int count = 0;
4648   for (Output_data_list::const_iterator p = pdl->begin();
4649        p != pdl->end();
4650        ++p)
4651     {
4652       if ((*p)->is_section())
4653         ++count;
4654     }
4655   return count;
4656 }
4657
4658 // Return the section attached to the list segment with the lowest
4659 // load address.  This is used when handling a PHDRS clause in a
4660 // linker script.
4661
4662 Output_section*
4663 Output_segment::section_with_lowest_load_address() const
4664 {
4665   Output_section* found = NULL;
4666   uint64_t found_lma = 0;
4667   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4668     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4669                                       &found_lma);
4670   return found;
4671 }
4672
4673 // Look through a list for a section with a lower load address.
4674
4675 void
4676 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4677                                             Output_section** found,
4678                                             uint64_t* found_lma) const
4679 {
4680   for (Output_data_list::const_iterator p = pdl->begin();
4681        p != pdl->end();
4682        ++p)
4683     {
4684       if (!(*p)->is_section())
4685         continue;
4686       Output_section* os = static_cast<Output_section*>(*p);
4687       uint64_t lma = (os->has_load_address()
4688                       ? os->load_address()
4689                       : os->address());
4690       if (*found == NULL || lma < *found_lma)
4691         {
4692           *found = os;
4693           *found_lma = lma;
4694         }
4695     }
4696 }
4697
4698 // Write the segment data into *OPHDR.
4699
4700 template<int size, bool big_endian>
4701 void
4702 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4703 {
4704   ophdr->put_p_type(this->type_);
4705   ophdr->put_p_offset(this->offset_);
4706   ophdr->put_p_vaddr(this->vaddr_);
4707   ophdr->put_p_paddr(this->paddr_);
4708   ophdr->put_p_filesz(this->filesz_);
4709   ophdr->put_p_memsz(this->memsz_);
4710   ophdr->put_p_flags(this->flags_);
4711   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4712 }
4713
4714 // Write the section headers into V.
4715
4716 template<int size, bool big_endian>
4717 unsigned char*
4718 Output_segment::write_section_headers(const Layout* layout,
4719                                       const Stringpool* secnamepool,
4720                                       unsigned char* v,
4721                                       unsigned int* pshndx) const
4722 {
4723   // Every section that is attached to a segment must be attached to a
4724   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4725   // segments.
4726   if (this->type_ != elfcpp::PT_LOAD)
4727     return v;
4728
4729   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4730     {
4731       const Output_data_list* pdl = &this->output_lists_[i];
4732       v = this->write_section_headers_list<size, big_endian>(layout,
4733                                                              secnamepool,
4734                                                              pdl,
4735                                                              v, pshndx);
4736     }
4737
4738   return v;
4739 }
4740
4741 template<int size, bool big_endian>
4742 unsigned char*
4743 Output_segment::write_section_headers_list(const Layout* layout,
4744                                            const Stringpool* secnamepool,
4745                                            const Output_data_list* pdl,
4746                                            unsigned char* v,
4747                                            unsigned int* pshndx) const
4748 {
4749   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4750   for (Output_data_list::const_iterator p = pdl->begin();
4751        p != pdl->end();
4752        ++p)
4753     {
4754       if ((*p)->is_section())
4755         {
4756           const Output_section* ps = static_cast<const Output_section*>(*p);
4757           gold_assert(*pshndx == ps->out_shndx());
4758           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4759           ps->write_header(layout, secnamepool, &oshdr);
4760           v += shdr_size;
4761           ++*pshndx;
4762         }
4763     }
4764   return v;
4765 }
4766
4767 // Print the output sections to the map file.
4768
4769 void
4770 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4771 {
4772   if (this->type() != elfcpp::PT_LOAD)
4773     return;
4774   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4775     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4776 }
4777
4778 // Print an output section list to the map file.
4779
4780 void
4781 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4782                                               const Output_data_list* pdl) const
4783 {
4784   for (Output_data_list::const_iterator p = pdl->begin();
4785        p != pdl->end();
4786        ++p)
4787     (*p)->print_to_mapfile(mapfile);
4788 }
4789
4790 // Output_file methods.
4791
4792 Output_file::Output_file(const char* name)
4793   : name_(name),
4794     o_(-1),
4795     file_size_(0),
4796     base_(NULL),
4797     map_is_anonymous_(false),
4798     map_is_allocated_(false),
4799     is_temporary_(false)
4800 {
4801 }
4802
4803 // Try to open an existing file.  Returns false if the file doesn't
4804 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4805 // NULL, open that file as the base for incremental linking, and
4806 // copy its contents to the new output file.  This routine can
4807 // be called for incremental updates, in which case WRITABLE should
4808 // be true, or by the incremental-dump utility, in which case
4809 // WRITABLE should be false.
4810
4811 bool
4812 Output_file::open_base_file(const char* base_name, bool writable)
4813 {
4814   // The name "-" means "stdout".
4815   if (strcmp(this->name_, "-") == 0)
4816     return false;
4817
4818   bool use_base_file = base_name != NULL;
4819   if (!use_base_file)
4820     base_name = this->name_;
4821   else if (strcmp(base_name, this->name_) == 0)
4822     gold_fatal(_("%s: incremental base and output file name are the same"),
4823                base_name);
4824
4825   // Don't bother opening files with a size of zero.
4826   struct stat s;
4827   if (::stat(base_name, &s) != 0)
4828     {
4829       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4830       return false;
4831     }
4832   if (s.st_size == 0)
4833     {
4834       gold_info(_("%s: incremental base file is empty"), base_name);
4835       return false;
4836     }
4837
4838   // If we're using a base file, we want to open it read-only.
4839   if (use_base_file)
4840     writable = false;
4841
4842   int oflags = writable ? O_RDWR : O_RDONLY;
4843   int o = open_descriptor(-1, base_name, oflags, 0);
4844   if (o < 0)
4845     {
4846       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4847       return false;
4848     }
4849
4850   // If the base file and the output file are different, open a
4851   // new output file and read the contents from the base file into
4852   // the newly-mapped region.
4853   if (use_base_file)
4854     {
4855       this->open(s.st_size);
4856       ssize_t bytes_to_read = s.st_size;
4857       unsigned char* p = this->base_;
4858       while (bytes_to_read > 0)
4859         {
4860           ssize_t len = ::read(o, p, bytes_to_read);
4861           if (len < 0)
4862             {
4863               gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4864               return false;
4865             }
4866           if (len == 0)
4867             {
4868               gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4869                         base_name,
4870                         static_cast<long long>(s.st_size - bytes_to_read),
4871                         static_cast<long long>(s.st_size));
4872               return false;
4873             }
4874           p += len;
4875           bytes_to_read -= len;
4876         }
4877       ::close(o);
4878       return true;
4879     }
4880
4881   this->o_ = o;
4882   this->file_size_ = s.st_size;
4883
4884   if (!this->map_no_anonymous(writable))
4885     {
4886       release_descriptor(o, true);
4887       this->o_ = -1;
4888       this->file_size_ = 0;
4889       return false;
4890     }
4891
4892   return true;
4893 }
4894
4895 // Open the output file.
4896
4897 void
4898 Output_file::open(off_t file_size)
4899 {
4900   this->file_size_ = file_size;
4901
4902   // Unlink the file first; otherwise the open() may fail if the file
4903   // is busy (e.g. it's an executable that's currently being executed).
4904   //
4905   // However, the linker may be part of a system where a zero-length
4906   // file is created for it to write to, with tight permissions (gcc
4907   // 2.95 did something like this).  Unlinking the file would work
4908   // around those permission controls, so we only unlink if the file
4909   // has a non-zero size.  We also unlink only regular files to avoid
4910   // trouble with directories/etc.
4911   //
4912   // If we fail, continue; this command is merely a best-effort attempt
4913   // to improve the odds for open().
4914
4915   // We let the name "-" mean "stdout"
4916   if (!this->is_temporary_)
4917     {
4918       if (strcmp(this->name_, "-") == 0)
4919         this->o_ = STDOUT_FILENO;
4920       else
4921         {
4922           struct stat s;
4923           if (::stat(this->name_, &s) == 0
4924               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4925             {
4926               if (s.st_size != 0)
4927                 ::unlink(this->name_);
4928               else if (!parameters->options().relocatable())
4929                 {
4930                   // If we don't unlink the existing file, add execute
4931                   // permission where read permissions already exist
4932                   // and where the umask permits.
4933                   int mask = ::umask(0);
4934                   ::umask(mask);
4935                   s.st_mode |= (s.st_mode & 0444) >> 2;
4936                   ::chmod(this->name_, s.st_mode & ~mask);
4937                 }
4938             }
4939
4940           int mode = parameters->options().relocatable() ? 0666 : 0777;
4941           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4942                                   mode);
4943           if (o < 0)
4944             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4945           this->o_ = o;
4946         }
4947     }
4948
4949   this->map();
4950 }
4951
4952 // Resize the output file.
4953
4954 void
4955 Output_file::resize(off_t file_size)
4956 {
4957   // If the mmap is mapping an anonymous memory buffer, this is easy:
4958   // just mremap to the new size.  If it's mapping to a file, we want
4959   // to unmap to flush to the file, then remap after growing the file.
4960   if (this->map_is_anonymous_)
4961     {
4962       void* base;
4963       if (!this->map_is_allocated_)
4964         {
4965           base = ::mremap(this->base_, this->file_size_, file_size,
4966                           MREMAP_MAYMOVE);
4967           if (base == MAP_FAILED)
4968             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4969         }
4970       else
4971         {
4972           base = realloc(this->base_, file_size);
4973           if (base == NULL)
4974             gold_nomem();
4975           if (file_size > this->file_size_)
4976             memset(static_cast<char*>(base) + this->file_size_, 0,
4977                    file_size - this->file_size_);
4978         }
4979       this->base_ = static_cast<unsigned char*>(base);
4980       this->file_size_ = file_size;
4981     }
4982   else
4983     {
4984       this->unmap();
4985       this->file_size_ = file_size;
4986       if (!this->map_no_anonymous(true))
4987         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4988     }
4989 }
4990
4991 // Map an anonymous block of memory which will later be written to the
4992 // file.  Return whether the map succeeded.
4993
4994 bool
4995 Output_file::map_anonymous()
4996 {
4997   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4998                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4999   if (base == MAP_FAILED)
5000     {
5001       base = malloc(this->file_size_);
5002       if (base == NULL)
5003         return false;
5004       memset(base, 0, this->file_size_);
5005       this->map_is_allocated_ = true;
5006     }
5007   this->base_ = static_cast<unsigned char*>(base);
5008   this->map_is_anonymous_ = true;
5009   return true;
5010 }
5011
5012 // Map the file into memory.  Return whether the mapping succeeded.
5013 // If WRITABLE is true, map with write access.
5014
5015 bool
5016 Output_file::map_no_anonymous(bool writable)
5017 {
5018   const int o = this->o_;
5019
5020   // If the output file is not a regular file, don't try to mmap it;
5021   // instead, we'll mmap a block of memory (an anonymous buffer), and
5022   // then later write the buffer to the file.
5023   void* base;
5024   struct stat statbuf;
5025   if (o == STDOUT_FILENO || o == STDERR_FILENO
5026       || ::fstat(o, &statbuf) != 0
5027       || !S_ISREG(statbuf.st_mode)
5028       || this->is_temporary_)
5029     return false;
5030
5031   // Ensure that we have disk space available for the file.  If we
5032   // don't do this, it is possible that we will call munmap, close,
5033   // and exit with dirty buffers still in the cache with no assigned
5034   // disk blocks.  If the disk is out of space at that point, the
5035   // output file will wind up incomplete, but we will have already
5036   // exited.  The alternative to fallocate would be to use fdatasync,
5037   // but that would be a more significant performance hit.
5038   if (writable)
5039     {
5040       int err = gold_fallocate(o, 0, this->file_size_);
5041       if (err != 0)
5042        gold_fatal(_("%s: %s"), this->name_, strerror(err));
5043     }
5044
5045   // Map the file into memory.
5046   int prot = PROT_READ;
5047   if (writable)
5048     prot |= PROT_WRITE;
5049   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5050
5051   // The mmap call might fail because of file system issues: the file
5052   // system might not support mmap at all, or it might not support
5053   // mmap with PROT_WRITE.
5054   if (base == MAP_FAILED)
5055     return false;
5056
5057   this->map_is_anonymous_ = false;
5058   this->base_ = static_cast<unsigned char*>(base);
5059   return true;
5060 }
5061
5062 // Map the file into memory.
5063
5064 void
5065 Output_file::map()
5066 {
5067   if (parameters->options().mmap_output_file()
5068       && this->map_no_anonymous(true))
5069     return;
5070
5071   // The mmap call might fail because of file system issues: the file
5072   // system might not support mmap at all, or it might not support
5073   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5074   // see in all cases, so if the mmap fails for any reason and we
5075   // don't care about file contents, try for an anonymous map.
5076   if (this->map_anonymous())
5077     return;
5078
5079   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5080              this->name_, static_cast<unsigned long>(this->file_size_),
5081              strerror(errno));
5082 }
5083
5084 // Unmap the file from memory.
5085
5086 void
5087 Output_file::unmap()
5088 {
5089   if (this->map_is_anonymous_)
5090     {
5091       // We've already written out the data, so there is no reason to
5092       // waste time unmapping or freeing the memory.
5093     }
5094   else
5095     {
5096       if (::munmap(this->base_, this->file_size_) < 0)
5097         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5098     }
5099   this->base_ = NULL;
5100 }
5101
5102 // Close the output file.
5103
5104 void
5105 Output_file::close()
5106 {
5107   // If the map isn't file-backed, we need to write it now.
5108   if (this->map_is_anonymous_ && !this->is_temporary_)
5109     {
5110       size_t bytes_to_write = this->file_size_;
5111       size_t offset = 0;
5112       while (bytes_to_write > 0)
5113         {
5114           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5115                                           bytes_to_write);
5116           if (bytes_written == 0)
5117             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5118           else if (bytes_written < 0)
5119             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5120           else
5121             {
5122               bytes_to_write -= bytes_written;
5123               offset += bytes_written;
5124             }
5125         }
5126     }
5127   this->unmap();
5128
5129   // We don't close stdout or stderr
5130   if (this->o_ != STDOUT_FILENO
5131       && this->o_ != STDERR_FILENO
5132       && !this->is_temporary_)
5133     if (::close(this->o_) < 0)
5134       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5135   this->o_ = -1;
5136 }
5137
5138 // Instantiate the templates we need.  We could use the configure
5139 // script to restrict this to only the ones for implemented targets.
5140
5141 #ifdef HAVE_TARGET_32_LITTLE
5142 template
5143 off_t
5144 Output_section::add_input_section<32, false>(
5145     Layout* layout,
5146     Sized_relobj_file<32, false>* object,
5147     unsigned int shndx,
5148     const char* secname,
5149     const elfcpp::Shdr<32, false>& shdr,
5150     unsigned int reloc_shndx,
5151     bool have_sections_script);
5152 #endif
5153
5154 #ifdef HAVE_TARGET_32_BIG
5155 template
5156 off_t
5157 Output_section::add_input_section<32, true>(
5158     Layout* layout,
5159     Sized_relobj_file<32, true>* object,
5160     unsigned int shndx,
5161     const char* secname,
5162     const elfcpp::Shdr<32, true>& shdr,
5163     unsigned int reloc_shndx,
5164     bool have_sections_script);
5165 #endif
5166
5167 #ifdef HAVE_TARGET_64_LITTLE
5168 template
5169 off_t
5170 Output_section::add_input_section<64, false>(
5171     Layout* layout,
5172     Sized_relobj_file<64, false>* object,
5173     unsigned int shndx,
5174     const char* secname,
5175     const elfcpp::Shdr<64, false>& shdr,
5176     unsigned int reloc_shndx,
5177     bool have_sections_script);
5178 #endif
5179
5180 #ifdef HAVE_TARGET_64_BIG
5181 template
5182 off_t
5183 Output_section::add_input_section<64, true>(
5184     Layout* layout,
5185     Sized_relobj_file<64, true>* object,
5186     unsigned int shndx,
5187     const char* secname,
5188     const elfcpp::Shdr<64, true>& shdr,
5189     unsigned int reloc_shndx,
5190     bool have_sections_script);
5191 #endif
5192
5193 #ifdef HAVE_TARGET_32_LITTLE
5194 template
5195 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5196 #endif
5197
5198 #ifdef HAVE_TARGET_32_BIG
5199 template
5200 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5201 #endif
5202
5203 #ifdef HAVE_TARGET_64_LITTLE
5204 template
5205 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5206 #endif
5207
5208 #ifdef HAVE_TARGET_64_BIG
5209 template
5210 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5211 #endif
5212
5213 #ifdef HAVE_TARGET_32_LITTLE
5214 template
5215 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5216 #endif
5217
5218 #ifdef HAVE_TARGET_32_BIG
5219 template
5220 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5221 #endif
5222
5223 #ifdef HAVE_TARGET_64_LITTLE
5224 template
5225 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5226 #endif
5227
5228 #ifdef HAVE_TARGET_64_BIG
5229 template
5230 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5231 #endif
5232
5233 #ifdef HAVE_TARGET_32_LITTLE
5234 template
5235 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5236 #endif
5237
5238 #ifdef HAVE_TARGET_32_BIG
5239 template
5240 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5241 #endif
5242
5243 #ifdef HAVE_TARGET_64_LITTLE
5244 template
5245 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5246 #endif
5247
5248 #ifdef HAVE_TARGET_64_BIG
5249 template
5250 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5251 #endif
5252
5253 #ifdef HAVE_TARGET_32_LITTLE
5254 template
5255 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5256 #endif
5257
5258 #ifdef HAVE_TARGET_32_BIG
5259 template
5260 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5261 #endif
5262
5263 #ifdef HAVE_TARGET_64_LITTLE
5264 template
5265 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5266 #endif
5267
5268 #ifdef HAVE_TARGET_64_BIG
5269 template
5270 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5271 #endif
5272
5273 #ifdef HAVE_TARGET_32_LITTLE
5274 template
5275 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5276 #endif
5277
5278 #ifdef HAVE_TARGET_32_BIG
5279 template
5280 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5281 #endif
5282
5283 #ifdef HAVE_TARGET_64_LITTLE
5284 template
5285 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5286 #endif
5287
5288 #ifdef HAVE_TARGET_64_BIG
5289 template
5290 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5291 #endif
5292
5293 #ifdef HAVE_TARGET_32_LITTLE
5294 template
5295 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5296 #endif
5297
5298 #ifdef HAVE_TARGET_32_BIG
5299 template
5300 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5301 #endif
5302
5303 #ifdef HAVE_TARGET_64_LITTLE
5304 template
5305 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5306 #endif
5307
5308 #ifdef HAVE_TARGET_64_BIG
5309 template
5310 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5311 #endif
5312
5313 #ifdef HAVE_TARGET_32_LITTLE
5314 template
5315 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5316 #endif
5317
5318 #ifdef HAVE_TARGET_32_BIG
5319 template
5320 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5321 #endif
5322
5323 #ifdef HAVE_TARGET_64_LITTLE
5324 template
5325 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5326 #endif
5327
5328 #ifdef HAVE_TARGET_64_BIG
5329 template
5330 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5331 #endif
5332
5333 #ifdef HAVE_TARGET_32_LITTLE
5334 template
5335 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5336 #endif
5337
5338 #ifdef HAVE_TARGET_32_BIG
5339 template
5340 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5341 #endif
5342
5343 #ifdef HAVE_TARGET_64_LITTLE
5344 template
5345 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5346 #endif
5347
5348 #ifdef HAVE_TARGET_64_BIG
5349 template
5350 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5351 #endif
5352
5353 #ifdef HAVE_TARGET_32_LITTLE
5354 template
5355 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5356 #endif
5357
5358 #ifdef HAVE_TARGET_32_BIG
5359 template
5360 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5361 #endif
5362
5363 #ifdef HAVE_TARGET_64_LITTLE
5364 template
5365 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5366 #endif
5367
5368 #ifdef HAVE_TARGET_64_BIG
5369 template
5370 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5371 #endif
5372
5373 #ifdef HAVE_TARGET_32_LITTLE
5374 template
5375 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5376 #endif
5377
5378 #ifdef HAVE_TARGET_32_BIG
5379 template
5380 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5381 #endif
5382
5383 #ifdef HAVE_TARGET_64_LITTLE
5384 template
5385 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5386 #endif
5387
5388 #ifdef HAVE_TARGET_64_BIG
5389 template
5390 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5391 #endif
5392
5393 #ifdef HAVE_TARGET_32_LITTLE
5394 template
5395 class Output_data_group<32, false>;
5396 #endif
5397
5398 #ifdef HAVE_TARGET_32_BIG
5399 template
5400 class Output_data_group<32, true>;
5401 #endif
5402
5403 #ifdef HAVE_TARGET_64_LITTLE
5404 template
5405 class Output_data_group<64, false>;
5406 #endif
5407
5408 #ifdef HAVE_TARGET_64_BIG
5409 template
5410 class Output_data_group<64, true>;
5411 #endif
5412
5413 #ifdef HAVE_TARGET_32_LITTLE
5414 template
5415 class Output_data_got<32, false>;
5416 #endif
5417
5418 #ifdef HAVE_TARGET_32_BIG
5419 template
5420 class Output_data_got<32, true>;
5421 #endif
5422
5423 #ifdef HAVE_TARGET_64_LITTLE
5424 template
5425 class Output_data_got<64, false>;
5426 #endif
5427
5428 #ifdef HAVE_TARGET_64_BIG
5429 template
5430 class Output_data_got<64, true>;
5431 #endif
5432
5433 } // End namespace gold.