* i386.cc (Target_i386::Got_type): New enum declaration.
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 #include "libiberty.h"   // for unlink_if_ordinary()
33
34 #include "parameters.h"
35 #include "object.h"
36 #include "symtab.h"
37 #include "reloc.h"
38 #include "merge.h"
39 #include "output.h"
40
41 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
42 #ifndef MAP_ANONYMOUS
43 # define MAP_ANONYMOUS  MAP_ANON
44 #endif
45
46 namespace gold
47 {
48
49 // Output_data variables.
50
51 bool Output_data::allocated_sizes_are_fixed;
52
53 // Output_data methods.
54
55 Output_data::~Output_data()
56 {
57 }
58
59 // Return the default alignment for the target size.
60
61 uint64_t
62 Output_data::default_alignment()
63 {
64   return Output_data::default_alignment_for_size(
65       parameters->target().get_size());
66 }
67
68 // Return the default alignment for a size--32 or 64.
69
70 uint64_t
71 Output_data::default_alignment_for_size(int size)
72 {
73   if (size == 32)
74     return 4;
75   else if (size == 64)
76     return 8;
77   else
78     gold_unreachable();
79 }
80
81 // Output_section_header methods.  This currently assumes that the
82 // segment and section lists are complete at construction time.
83
84 Output_section_headers::Output_section_headers(
85     const Layout* layout,
86     const Layout::Segment_list* segment_list,
87     const Layout::Section_list* section_list,
88     const Layout::Section_list* unattached_section_list,
89     const Stringpool* secnamepool)
90   : layout_(layout),
91     segment_list_(segment_list),
92     section_list_(section_list),
93     unattached_section_list_(unattached_section_list),
94     secnamepool_(secnamepool)
95 {
96   // Count all the sections.  Start with 1 for the null section.
97   off_t count = 1;
98   if (!parameters->options().relocatable())
99     {
100       for (Layout::Segment_list::const_iterator p = segment_list->begin();
101            p != segment_list->end();
102            ++p)
103         if ((*p)->type() == elfcpp::PT_LOAD)
104           count += (*p)->output_section_count();
105     }
106   else
107     {
108       for (Layout::Section_list::const_iterator p = section_list->begin();
109            p != section_list->end();
110            ++p)
111         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
112           ++count;
113     }
114   count += unattached_section_list->size();
115
116   const int size = parameters->target().get_size();
117   int shdr_size;
118   if (size == 32)
119     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
120   else if (size == 64)
121     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
122   else
123     gold_unreachable();
124
125   this->set_data_size(count * shdr_size);
126 }
127
128 // Write out the section headers.
129
130 void
131 Output_section_headers::do_write(Output_file* of)
132 {
133   switch (parameters->size_and_endianness())
134     {
135 #ifdef HAVE_TARGET_32_LITTLE
136     case Parameters::TARGET_32_LITTLE:
137       this->do_sized_write<32, false>(of);
138       break;
139 #endif
140 #ifdef HAVE_TARGET_32_BIG
141     case Parameters::TARGET_32_BIG:
142       this->do_sized_write<32, true>(of);
143       break;
144 #endif
145 #ifdef HAVE_TARGET_64_LITTLE
146     case Parameters::TARGET_64_LITTLE:
147       this->do_sized_write<64, false>(of);
148       break;
149 #endif
150 #ifdef HAVE_TARGET_64_BIG
151     case Parameters::TARGET_64_BIG:
152       this->do_sized_write<64, true>(of);
153       break;
154 #endif
155     default:
156       gold_unreachable();
157     }
158 }
159
160 template<int size, bool big_endian>
161 void
162 Output_section_headers::do_sized_write(Output_file* of)
163 {
164   off_t all_shdrs_size = this->data_size();
165   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
166
167   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
168   unsigned char* v = view;
169
170   {
171     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
172     oshdr.put_sh_name(0);
173     oshdr.put_sh_type(elfcpp::SHT_NULL);
174     oshdr.put_sh_flags(0);
175     oshdr.put_sh_addr(0);
176     oshdr.put_sh_offset(0);
177     oshdr.put_sh_size(0);
178     oshdr.put_sh_link(0);
179     oshdr.put_sh_info(0);
180     oshdr.put_sh_addralign(0);
181     oshdr.put_sh_entsize(0);
182   }
183
184   v += shdr_size;
185
186   unsigned int shndx = 1;
187   if (!parameters->options().relocatable())
188     {
189       for (Layout::Segment_list::const_iterator p =
190              this->segment_list_->begin();
191            p != this->segment_list_->end();
192            ++p)
193         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
194                                                           this->secnamepool_,
195                                                           v,
196                                                           &shndx);
197     }
198   else
199     {
200       for (Layout::Section_list::const_iterator p =
201              this->section_list_->begin();
202            p != this->section_list_->end();
203            ++p)
204         {
205           // We do unallocated sections below, except that group
206           // sections have to come first.
207           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
208               && (*p)->type() != elfcpp::SHT_GROUP)
209             continue;
210           gold_assert(shndx == (*p)->out_shndx());
211           elfcpp::Shdr_write<size, big_endian> oshdr(v);
212           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
213           v += shdr_size;
214           ++shndx;
215         }
216     }
217
218   for (Layout::Section_list::const_iterator p =
219          this->unattached_section_list_->begin();
220        p != this->unattached_section_list_->end();
221        ++p)
222     {
223       // For a relocatable link, we did unallocated group sections
224       // above, since they have to come first.
225       if ((*p)->type() == elfcpp::SHT_GROUP
226           && parameters->options().relocatable())
227         continue;
228       gold_assert(shndx == (*p)->out_shndx());
229       elfcpp::Shdr_write<size, big_endian> oshdr(v);
230       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
231       v += shdr_size;
232       ++shndx;
233     }
234
235   of->write_output_view(this->offset(), all_shdrs_size, view);
236 }
237
238 // Output_segment_header methods.
239
240 Output_segment_headers::Output_segment_headers(
241     const Layout::Segment_list& segment_list)
242   : segment_list_(segment_list)
243 {
244   const int size = parameters->target().get_size();
245   int phdr_size;
246   if (size == 32)
247     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
248   else if (size == 64)
249     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
250   else
251     gold_unreachable();
252
253   this->set_data_size(segment_list.size() * phdr_size);
254 }
255
256 void
257 Output_segment_headers::do_write(Output_file* of)
258 {
259   switch (parameters->size_and_endianness())
260     {
261 #ifdef HAVE_TARGET_32_LITTLE
262     case Parameters::TARGET_32_LITTLE:
263       this->do_sized_write<32, false>(of);
264       break;
265 #endif
266 #ifdef HAVE_TARGET_32_BIG
267     case Parameters::TARGET_32_BIG:
268       this->do_sized_write<32, true>(of);
269       break;
270 #endif
271 #ifdef HAVE_TARGET_64_LITTLE
272     case Parameters::TARGET_64_LITTLE:
273       this->do_sized_write<64, false>(of);
274       break;
275 #endif
276 #ifdef HAVE_TARGET_64_BIG
277     case Parameters::TARGET_64_BIG:
278       this->do_sized_write<64, true>(of);
279       break;
280 #endif
281     default:
282       gold_unreachable();
283     }
284 }
285
286 template<int size, bool big_endian>
287 void
288 Output_segment_headers::do_sized_write(Output_file* of)
289 {
290   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
291   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
292   gold_assert(all_phdrs_size == this->data_size());
293   unsigned char* view = of->get_output_view(this->offset(),
294                                             all_phdrs_size);
295   unsigned char* v = view;
296   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
297        p != this->segment_list_.end();
298        ++p)
299     {
300       elfcpp::Phdr_write<size, big_endian> ophdr(v);
301       (*p)->write_header(&ophdr);
302       v += phdr_size;
303     }
304
305   gold_assert(v - view == all_phdrs_size);
306
307   of->write_output_view(this->offset(), all_phdrs_size, view);
308 }
309
310 // Output_file_header methods.
311
312 Output_file_header::Output_file_header(const Target* target,
313                                        const Symbol_table* symtab,
314                                        const Output_segment_headers* osh,
315                                        const char* entry)
316   : target_(target),
317     symtab_(symtab),
318     segment_header_(osh),
319     section_header_(NULL),
320     shstrtab_(NULL),
321     entry_(entry)
322 {
323   const int size = parameters->target().get_size();
324   int ehdr_size;
325   if (size == 32)
326     ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
327   else if (size == 64)
328     ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
329   else
330     gold_unreachable();
331
332   this->set_data_size(ehdr_size);
333 }
334
335 // Set the section table information for a file header.
336
337 void
338 Output_file_header::set_section_info(const Output_section_headers* shdrs,
339                                      const Output_section* shstrtab)
340 {
341   this->section_header_ = shdrs;
342   this->shstrtab_ = shstrtab;
343 }
344
345 // Write out the file header.
346
347 void
348 Output_file_header::do_write(Output_file* of)
349 {
350   gold_assert(this->offset() == 0);
351
352   switch (parameters->size_and_endianness())
353     {
354 #ifdef HAVE_TARGET_32_LITTLE
355     case Parameters::TARGET_32_LITTLE:
356       this->do_sized_write<32, false>(of);
357       break;
358 #endif
359 #ifdef HAVE_TARGET_32_BIG
360     case Parameters::TARGET_32_BIG:
361       this->do_sized_write<32, true>(of);
362       break;
363 #endif
364 #ifdef HAVE_TARGET_64_LITTLE
365     case Parameters::TARGET_64_LITTLE:
366       this->do_sized_write<64, false>(of);
367       break;
368 #endif
369 #ifdef HAVE_TARGET_64_BIG
370     case Parameters::TARGET_64_BIG:
371       this->do_sized_write<64, true>(of);
372       break;
373 #endif
374     default:
375       gold_unreachable();
376     }
377 }
378
379 // Write out the file header with appropriate size and endianess.
380
381 template<int size, bool big_endian>
382 void
383 Output_file_header::do_sized_write(Output_file* of)
384 {
385   gold_assert(this->offset() == 0);
386
387   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
388   unsigned char* view = of->get_output_view(0, ehdr_size);
389   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
390
391   unsigned char e_ident[elfcpp::EI_NIDENT];
392   memset(e_ident, 0, elfcpp::EI_NIDENT);
393   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
394   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
395   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
396   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
397   if (size == 32)
398     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
399   else if (size == 64)
400     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
401   else
402     gold_unreachable();
403   e_ident[elfcpp::EI_DATA] = (big_endian
404                               ? elfcpp::ELFDATA2MSB
405                               : elfcpp::ELFDATA2LSB);
406   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
407   // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
408   oehdr.put_e_ident(e_ident);
409
410   elfcpp::ET e_type;
411   if (parameters->options().relocatable())
412     e_type = elfcpp::ET_REL;
413   else if (parameters->options().shared())
414     e_type = elfcpp::ET_DYN;
415   else
416     e_type = elfcpp::ET_EXEC;
417   oehdr.put_e_type(e_type);
418
419   oehdr.put_e_machine(this->target_->machine_code());
420   oehdr.put_e_version(elfcpp::EV_CURRENT);
421
422   oehdr.put_e_entry(this->entry<size>());
423
424   if (this->segment_header_ == NULL)
425     oehdr.put_e_phoff(0);
426   else
427     oehdr.put_e_phoff(this->segment_header_->offset());
428
429   oehdr.put_e_shoff(this->section_header_->offset());
430
431   // FIXME: The target needs to set the flags.
432   oehdr.put_e_flags(0);
433
434   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
435
436   if (this->segment_header_ == NULL)
437     {
438       oehdr.put_e_phentsize(0);
439       oehdr.put_e_phnum(0);
440     }
441   else
442     {
443       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
444       oehdr.put_e_phnum(this->segment_header_->data_size()
445                         / elfcpp::Elf_sizes<size>::phdr_size);
446     }
447
448   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
449   oehdr.put_e_shnum(this->section_header_->data_size()
450                      / elfcpp::Elf_sizes<size>::shdr_size);
451   oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
452
453   of->write_output_view(0, ehdr_size, view);
454 }
455
456 // Return the value to use for the entry address.  THIS->ENTRY_ is the
457 // symbol specified on the command line, if any.
458
459 template<int size>
460 typename elfcpp::Elf_types<size>::Elf_Addr
461 Output_file_header::entry()
462 {
463   const bool should_issue_warning = (this->entry_ != NULL
464                                      && !parameters->options().relocatable()
465                                      && !parameters->options().shared());
466
467   // FIXME: Need to support target specific entry symbol.
468   const char* entry = this->entry_;
469   if (entry == NULL)
470     entry = "_start";
471
472   Symbol* sym = this->symtab_->lookup(entry);
473
474   typename Sized_symbol<size>::Value_type v;
475   if (sym != NULL)
476     {
477       Sized_symbol<size>* ssym;
478       ssym = this->symtab_->get_sized_symbol<size>(sym);
479       if (!ssym->is_defined() && should_issue_warning)
480         gold_warning("entry symbol '%s' exists but is not defined", entry);
481       v = ssym->value();
482     }
483   else
484     {
485       // We couldn't find the entry symbol.  See if we can parse it as
486       // a number.  This supports, e.g., -e 0x1000.
487       char* endptr;
488       v = strtoull(entry, &endptr, 0);
489       if (*endptr != '\0')
490         {
491           if (should_issue_warning)
492             gold_warning("cannot find entry symbol '%s'", entry);
493           v = 0;
494         }
495     }
496
497   return v;
498 }
499
500 // Output_data_const methods.
501
502 void
503 Output_data_const::do_write(Output_file* of)
504 {
505   of->write(this->offset(), this->data_.data(), this->data_.size());
506 }
507
508 // Output_data_const_buffer methods.
509
510 void
511 Output_data_const_buffer::do_write(Output_file* of)
512 {
513   of->write(this->offset(), this->p_, this->data_size());
514 }
515
516 // Output_section_data methods.
517
518 // Record the output section, and set the entry size and such.
519
520 void
521 Output_section_data::set_output_section(Output_section* os)
522 {
523   gold_assert(this->output_section_ == NULL);
524   this->output_section_ = os;
525   this->do_adjust_output_section(os);
526 }
527
528 // Return the section index of the output section.
529
530 unsigned int
531 Output_section_data::do_out_shndx() const
532 {
533   gold_assert(this->output_section_ != NULL);
534   return this->output_section_->out_shndx();
535 }
536
537 // Output_data_strtab methods.
538
539 // Set the final data size.
540
541 void
542 Output_data_strtab::set_final_data_size()
543 {
544   this->strtab_->set_string_offsets();
545   this->set_data_size(this->strtab_->get_strtab_size());
546 }
547
548 // Write out a string table.
549
550 void
551 Output_data_strtab::do_write(Output_file* of)
552 {
553   this->strtab_->write(of, this->offset());
554 }
555
556 // Output_reloc methods.
557
558 // A reloc against a global symbol.
559
560 template<bool dynamic, int size, bool big_endian>
561 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
562     Symbol* gsym,
563     unsigned int type,
564     Output_data* od,
565     Address address,
566     bool is_relative)
567   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
568     is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
569 {
570   // this->type_ is a bitfield; make sure TYPE fits.
571   gold_assert(this->type_ == type);
572   this->u1_.gsym = gsym;
573   this->u2_.od = od;
574   if (dynamic)
575     this->set_needs_dynsym_index();
576 }
577
578 template<bool dynamic, int size, bool big_endian>
579 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
580     Symbol* gsym,
581     unsigned int type,
582     Relobj* relobj,
583     unsigned int shndx,
584     Address address,
585     bool is_relative)
586   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
587     is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
588 {
589   gold_assert(shndx != INVALID_CODE);
590   // this->type_ is a bitfield; make sure TYPE fits.
591   gold_assert(this->type_ == type);
592   this->u1_.gsym = gsym;
593   this->u2_.relobj = relobj;
594   if (dynamic)
595     this->set_needs_dynsym_index();
596 }
597
598 // A reloc against a local symbol.
599
600 template<bool dynamic, int size, bool big_endian>
601 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
602     Sized_relobj<size, big_endian>* relobj,
603     unsigned int local_sym_index,
604     unsigned int type,
605     Output_data* od,
606     Address address,
607     bool is_relative,
608     bool is_section_symbol)
609   : address_(address), local_sym_index_(local_sym_index), type_(type),
610     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
611     shndx_(INVALID_CODE)
612 {
613   gold_assert(local_sym_index != GSYM_CODE
614               && local_sym_index != INVALID_CODE);
615   // this->type_ is a bitfield; make sure TYPE fits.
616   gold_assert(this->type_ == type);
617   this->u1_.relobj = relobj;
618   this->u2_.od = od;
619   if (dynamic)
620     this->set_needs_dynsym_index();
621 }
622
623 template<bool dynamic, int size, bool big_endian>
624 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
625     Sized_relobj<size, big_endian>* relobj,
626     unsigned int local_sym_index,
627     unsigned int type,
628     unsigned int shndx,
629     Address address,
630     bool is_relative,
631     bool is_section_symbol)
632   : address_(address), local_sym_index_(local_sym_index), type_(type),
633     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
634     shndx_(shndx)
635 {
636   gold_assert(local_sym_index != GSYM_CODE
637               && local_sym_index != INVALID_CODE);
638   gold_assert(shndx != INVALID_CODE);
639   // this->type_ is a bitfield; make sure TYPE fits.
640   gold_assert(this->type_ == type);
641   this->u1_.relobj = relobj;
642   this->u2_.relobj = relobj;
643   if (dynamic)
644     this->set_needs_dynsym_index();
645 }
646
647 // A reloc against the STT_SECTION symbol of an output section.
648
649 template<bool dynamic, int size, bool big_endian>
650 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
651     Output_section* os,
652     unsigned int type,
653     Output_data* od,
654     Address address)
655   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
656     is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
657 {
658   // this->type_ is a bitfield; make sure TYPE fits.
659   gold_assert(this->type_ == type);
660   this->u1_.os = os;
661   this->u2_.od = od;
662   if (dynamic)
663     this->set_needs_dynsym_index();
664   else
665     os->set_needs_symtab_index();
666 }
667
668 template<bool dynamic, int size, bool big_endian>
669 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
670     Output_section* os,
671     unsigned int type,
672     Relobj* relobj,
673     unsigned int shndx,
674     Address address)
675   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
676     is_relative_(false), is_section_symbol_(true), shndx_(shndx)
677 {
678   gold_assert(shndx != INVALID_CODE);
679   // this->type_ is a bitfield; make sure TYPE fits.
680   gold_assert(this->type_ == type);
681   this->u1_.os = os;
682   this->u2_.relobj = relobj;
683   if (dynamic)
684     this->set_needs_dynsym_index();
685   else
686     os->set_needs_symtab_index();
687 }
688
689 // Record that we need a dynamic symbol index for this relocation.
690
691 template<bool dynamic, int size, bool big_endian>
692 void
693 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
694 set_needs_dynsym_index()
695 {
696   if (this->is_relative_)
697     return;
698   switch (this->local_sym_index_)
699     {
700     case INVALID_CODE:
701       gold_unreachable();
702
703     case GSYM_CODE:
704       this->u1_.gsym->set_needs_dynsym_entry();
705       break;
706
707     case SECTION_CODE:
708       this->u1_.os->set_needs_dynsym_index();
709       break;
710
711     case 0:
712       break;
713
714     default:
715       {
716         const unsigned int lsi = this->local_sym_index_;
717         if (!this->is_section_symbol_)
718           this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
719         else
720           {
721             section_offset_type dummy;
722             Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
723             gold_assert(os != NULL);
724             os->set_needs_dynsym_index();
725           }
726       }
727       break;
728     }
729 }
730
731 // Get the symbol index of a relocation.
732
733 template<bool dynamic, int size, bool big_endian>
734 unsigned int
735 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
736   const
737 {
738   unsigned int index;
739   switch (this->local_sym_index_)
740     {
741     case INVALID_CODE:
742       gold_unreachable();
743
744     case GSYM_CODE:
745       if (this->u1_.gsym == NULL)
746         index = 0;
747       else if (dynamic)
748         index = this->u1_.gsym->dynsym_index();
749       else
750         index = this->u1_.gsym->symtab_index();
751       break;
752
753     case SECTION_CODE:
754       if (dynamic)
755         index = this->u1_.os->dynsym_index();
756       else
757         index = this->u1_.os->symtab_index();
758       break;
759
760     case 0:
761       // Relocations without symbols use a symbol index of 0.
762       index = 0;
763       break;
764
765     default:
766       {
767         const unsigned int lsi = this->local_sym_index_;
768         if (!this->is_section_symbol_)
769           {
770             if (dynamic)
771               index = this->u1_.relobj->dynsym_index(lsi);
772             else
773               index = this->u1_.relobj->symtab_index(lsi);
774           }
775         else
776           {
777             section_offset_type dummy;
778             Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
779             gold_assert(os != NULL);
780             if (dynamic)
781               index = os->dynsym_index();
782             else
783               index = os->symtab_index();
784           }
785       }
786       break;
787     }
788   gold_assert(index != -1U);
789   return index;
790 }
791
792 // For a local section symbol, get the section offset of the input
793 // section within the output section.
794
795 template<bool dynamic, int size, bool big_endian>
796 section_offset_type
797 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
798   local_section_offset() const
799 {
800   const unsigned int lsi = this->local_sym_index_;
801   section_offset_type offset;
802   Output_section* os = this->u1_.relobj->output_section(lsi, &offset);
803   gold_assert(os != NULL && offset != -1);
804   return offset;
805 }
806
807 // Write out the offset and info fields of a Rel or Rela relocation
808 // entry.
809
810 template<bool dynamic, int size, bool big_endian>
811 template<typename Write_rel>
812 void
813 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
814     Write_rel* wr) const
815 {
816   Address address = this->address_;
817   if (this->shndx_ != INVALID_CODE)
818     {
819       section_offset_type off;
820       Output_section* os = this->u2_.relobj->output_section(this->shndx_,
821                                                             &off);
822       gold_assert(os != NULL);
823       if (off != -1)
824         address += os->address() + off;
825       else
826         {
827           address = os->output_address(this->u2_.relobj, this->shndx_,
828                                        address);
829           gold_assert(address != -1U);
830         }
831     }
832   else if (this->u2_.od != NULL)
833     address += this->u2_.od->address();
834   wr->put_r_offset(address);
835   unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
836   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
837 }
838
839 // Write out a Rel relocation.
840
841 template<bool dynamic, int size, bool big_endian>
842 void
843 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
844     unsigned char* pov) const
845 {
846   elfcpp::Rel_write<size, big_endian> orel(pov);
847   this->write_rel(&orel);
848 }
849
850 // Get the value of the symbol referred to by a Rel relocation.
851
852 template<bool dynamic, int size, bool big_endian>
853 typename elfcpp::Elf_types<size>::Elf_Addr
854 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
855     Address addend) const
856 {
857   if (this->local_sym_index_ == GSYM_CODE)
858     {
859       const Sized_symbol<size>* sym;
860       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
861       return sym->value() + addend;
862     }
863   gold_assert(this->local_sym_index_ != SECTION_CODE
864               && this->local_sym_index_ != INVALID_CODE
865               && !this->is_section_symbol_);
866   const unsigned int lsi = this->local_sym_index_;
867   const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
868   return symval->value(this->u1_.relobj, addend);
869 }
870
871 // Write out a Rela relocation.
872
873 template<bool dynamic, int size, bool big_endian>
874 void
875 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
876     unsigned char* pov) const
877 {
878   elfcpp::Rela_write<size, big_endian> orel(pov);
879   this->rel_.write_rel(&orel);
880   Addend addend = this->addend_;
881   if (this->rel_.is_relative())
882     addend = this->rel_.symbol_value(addend);
883   else if (this->rel_.is_local_section_symbol())
884     addend += this->rel_.local_section_offset();
885   orel.put_r_addend(addend);
886 }
887
888 // Output_data_reloc_base methods.
889
890 // Adjust the output section.
891
892 template<int sh_type, bool dynamic, int size, bool big_endian>
893 void
894 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
895     ::do_adjust_output_section(Output_section* os)
896 {
897   if (sh_type == elfcpp::SHT_REL)
898     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
899   else if (sh_type == elfcpp::SHT_RELA)
900     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
901   else
902     gold_unreachable();
903   if (dynamic)
904     os->set_should_link_to_dynsym();
905   else
906     os->set_should_link_to_symtab();
907 }
908
909 // Write out relocation data.
910
911 template<int sh_type, bool dynamic, int size, bool big_endian>
912 void
913 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
914     Output_file* of)
915 {
916   const off_t off = this->offset();
917   const off_t oview_size = this->data_size();
918   unsigned char* const oview = of->get_output_view(off, oview_size);
919
920   unsigned char* pov = oview;
921   for (typename Relocs::const_iterator p = this->relocs_.begin();
922        p != this->relocs_.end();
923        ++p)
924     {
925       p->write(pov);
926       pov += reloc_size;
927     }
928
929   gold_assert(pov - oview == oview_size);
930
931   of->write_output_view(off, oview_size, oview);
932
933   // We no longer need the relocation entries.
934   this->relocs_.clear();
935 }
936
937 // Class Output_relocatable_relocs.
938
939 template<int sh_type, int size, bool big_endian>
940 void
941 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
942 {
943   this->set_data_size(this->rr_->output_reloc_count()
944                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
945 }
946
947 // class Output_data_group.
948
949 template<int size, bool big_endian>
950 Output_data_group<size, big_endian>::Output_data_group(
951     Sized_relobj<size, big_endian>* relobj,
952     section_size_type entry_count,
953     const elfcpp::Elf_Word* contents)
954   : Output_section_data(entry_count * 4, 4),
955     relobj_(relobj)
956 {
957   this->flags_ = elfcpp::Swap<32, big_endian>::readval(contents);
958   for (section_size_type i = 1; i < entry_count; ++i)
959     {
960       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
961       this->input_sections_.push_back(shndx);
962     }
963 }
964
965 // Write out the section group, which means translating the section
966 // indexes to apply to the output file.
967
968 template<int size, bool big_endian>
969 void
970 Output_data_group<size, big_endian>::do_write(Output_file* of)
971 {
972   const off_t off = this->offset();
973   const section_size_type oview_size =
974     convert_to_section_size_type(this->data_size());
975   unsigned char* const oview = of->get_output_view(off, oview_size);
976
977   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
978   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
979   ++contents;
980
981   for (std::vector<unsigned int>::const_iterator p =
982          this->input_sections_.begin();
983        p != this->input_sections_.end();
984        ++p, ++contents)
985     {
986       section_offset_type dummy;
987       Output_section* os = this->relobj_->output_section(*p, &dummy);
988
989       unsigned int output_shndx;
990       if (os != NULL)
991         output_shndx = os->out_shndx();
992       else
993         {
994           this->relobj_->error(_("section group retained but "
995                                  "group element discarded"));
996           output_shndx = 0;
997         }
998
999       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1000     }
1001
1002   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1003   gold_assert(wrote == oview_size);
1004
1005   of->write_output_view(off, oview_size, oview);
1006
1007   // We no longer need this information.
1008   this->input_sections_.clear();
1009 }
1010
1011 // Output_data_got::Got_entry methods.
1012
1013 // Write out the entry.
1014
1015 template<int size, bool big_endian>
1016 void
1017 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1018 {
1019   Valtype val = 0;
1020
1021   switch (this->local_sym_index_)
1022     {
1023     case GSYM_CODE:
1024       {
1025         // If the symbol is resolved locally, we need to write out the
1026         // link-time value, which will be relocated dynamically by a
1027         // RELATIVE relocation.
1028         Symbol* gsym = this->u_.gsym;
1029         Sized_symbol<size>* sgsym;
1030         // This cast is a bit ugly.  We don't want to put a
1031         // virtual method in Symbol, because we want Symbol to be
1032         // as small as possible.
1033         sgsym = static_cast<Sized_symbol<size>*>(gsym);
1034         val = sgsym->value();
1035       }
1036       break;
1037
1038     case CONSTANT_CODE:
1039       val = this->u_.constant;
1040       break;
1041
1042     default:
1043       {
1044         const unsigned int lsi = this->local_sym_index_;
1045         const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1046         val = symval->value(this->u_.object, 0);
1047       }
1048       break;
1049     }
1050
1051   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1052 }
1053
1054 // Output_data_got methods.
1055
1056 // Add an entry for a global symbol to the GOT.  This returns true if
1057 // this is a new GOT entry, false if the symbol already had a GOT
1058 // entry.
1059
1060 template<int size, bool big_endian>
1061 bool
1062 Output_data_got<size, big_endian>::add_global(
1063     Symbol* gsym,
1064     unsigned int got_type)
1065 {
1066   if (gsym->has_got_offset(got_type))
1067     return false;
1068
1069   this->entries_.push_back(Got_entry(gsym));
1070   this->set_got_size();
1071   gsym->set_got_offset(got_type, this->last_got_offset());
1072   return true;
1073 }
1074
1075 // Add an entry for a global symbol to the GOT, and add a dynamic
1076 // relocation of type R_TYPE for the GOT entry.
1077 template<int size, bool big_endian>
1078 void
1079 Output_data_got<size, big_endian>::add_global_with_rel(
1080     Symbol* gsym,
1081     unsigned int got_type,
1082     Rel_dyn* rel_dyn,
1083     unsigned int r_type)
1084 {
1085   if (gsym->has_got_offset(got_type))
1086     return;
1087
1088   this->entries_.push_back(Got_entry());
1089   this->set_got_size();
1090   unsigned int got_offset = this->last_got_offset();
1091   gsym->set_got_offset(got_type, got_offset);
1092   rel_dyn->add_global(gsym, r_type, this, got_offset);
1093 }
1094
1095 template<int size, bool big_endian>
1096 void
1097 Output_data_got<size, big_endian>::add_global_with_rela(
1098     Symbol* gsym,
1099     unsigned int got_type,
1100     Rela_dyn* rela_dyn,
1101     unsigned int r_type)
1102 {
1103   if (gsym->has_got_offset(got_type))
1104     return;
1105
1106   this->entries_.push_back(Got_entry());
1107   this->set_got_size();
1108   unsigned int got_offset = this->last_got_offset();
1109   gsym->set_got_offset(got_type, got_offset);
1110   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1111 }
1112
1113 // Add a pair of entries for a global symbol to the GOT, and add
1114 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1115 // If R_TYPE_2 == 0, add the second entry with no relocation.
1116 template<int size, bool big_endian>
1117 void
1118 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1119     Symbol* gsym,
1120     unsigned int got_type,
1121     Rel_dyn* rel_dyn,
1122     unsigned int r_type_1,
1123     unsigned int r_type_2)
1124 {
1125   if (gsym->has_got_offset(got_type))
1126     return;
1127
1128   this->entries_.push_back(Got_entry());
1129   unsigned int got_offset = this->last_got_offset();
1130   gsym->set_got_offset(got_type, got_offset);
1131   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1132
1133   this->entries_.push_back(Got_entry());
1134   if (r_type_2 != 0)
1135     {
1136       got_offset = this->last_got_offset();
1137       rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1138     }
1139
1140   this->set_got_size();
1141 }
1142
1143 template<int size, bool big_endian>
1144 void
1145 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1146     Symbol* gsym,
1147     unsigned int got_type,
1148     Rela_dyn* rela_dyn,
1149     unsigned int r_type_1,
1150     unsigned int r_type_2)
1151 {
1152   if (gsym->has_got_offset(got_type))
1153     return;
1154
1155   this->entries_.push_back(Got_entry());
1156   unsigned int got_offset = this->last_got_offset();
1157   gsym->set_got_offset(got_type, got_offset);
1158   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1159
1160   this->entries_.push_back(Got_entry());
1161   if (r_type_2 != 0)
1162     {
1163       got_offset = this->last_got_offset();
1164       rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1165     }
1166
1167   this->set_got_size();
1168 }
1169
1170 // Add an entry for a local symbol to the GOT.  This returns true if
1171 // this is a new GOT entry, false if the symbol already has a GOT
1172 // entry.
1173
1174 template<int size, bool big_endian>
1175 bool
1176 Output_data_got<size, big_endian>::add_local(
1177     Sized_relobj<size, big_endian>* object,
1178     unsigned int symndx,
1179     unsigned int got_type)
1180 {
1181   if (object->local_has_got_offset(symndx, got_type))
1182     return false;
1183
1184   this->entries_.push_back(Got_entry(object, symndx));
1185   this->set_got_size();
1186   object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1187   return true;
1188 }
1189
1190 // Add an entry for a local symbol to the GOT, and add a dynamic
1191 // relocation of type R_TYPE for the GOT entry.
1192 template<int size, bool big_endian>
1193 void
1194 Output_data_got<size, big_endian>::add_local_with_rel(
1195     Sized_relobj<size, big_endian>* object,
1196     unsigned int symndx,
1197     unsigned int got_type,
1198     Rel_dyn* rel_dyn,
1199     unsigned int r_type)
1200 {
1201   if (object->local_has_got_offset(symndx, got_type))
1202     return;
1203
1204   this->entries_.push_back(Got_entry());
1205   this->set_got_size();
1206   unsigned int got_offset = this->last_got_offset();
1207   object->set_local_got_offset(symndx, got_type, got_offset);
1208   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1209 }
1210
1211 template<int size, bool big_endian>
1212 void
1213 Output_data_got<size, big_endian>::add_local_with_rela(
1214     Sized_relobj<size, big_endian>* object,
1215     unsigned int symndx,
1216     unsigned int got_type,
1217     Rela_dyn* rela_dyn,
1218     unsigned int r_type)
1219 {
1220   if (object->local_has_got_offset(symndx, got_type))
1221     return;
1222
1223   this->entries_.push_back(Got_entry());
1224   this->set_got_size();
1225   unsigned int got_offset = this->last_got_offset();
1226   object->set_local_got_offset(symndx, got_type, got_offset);
1227   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1228 }
1229
1230 // Add a pair of entries for a local symbol to the GOT, and add
1231 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1232 // If R_TYPE_2 == 0, add the second entry with no relocation.
1233 template<int size, bool big_endian>
1234 void
1235 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1236     Sized_relobj<size, big_endian>* object,
1237     unsigned int symndx,
1238     unsigned int shndx,
1239     unsigned int got_type,
1240     Rel_dyn* rel_dyn,
1241     unsigned int r_type_1,
1242     unsigned int r_type_2)
1243 {
1244   if (object->local_has_got_offset(symndx, got_type))
1245     return;
1246
1247   this->entries_.push_back(Got_entry());
1248   unsigned int got_offset = this->last_got_offset();
1249   object->set_local_got_offset(symndx, got_type, got_offset);
1250   section_offset_type off;
1251   Output_section* os = object->output_section(shndx, &off);
1252   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1253
1254   this->entries_.push_back(Got_entry(object, symndx));
1255   if (r_type_2 != 0)
1256     {
1257       got_offset = this->last_got_offset();
1258       rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1259     }
1260
1261   this->set_got_size();
1262 }
1263
1264 template<int size, bool big_endian>
1265 void
1266 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1267     Sized_relobj<size, big_endian>* object,
1268     unsigned int symndx,
1269     unsigned int shndx,
1270     unsigned int got_type,
1271     Rela_dyn* rela_dyn,
1272     unsigned int r_type_1,
1273     unsigned int r_type_2)
1274 {
1275   if (object->local_has_got_offset(symndx, got_type))
1276     return;
1277
1278   this->entries_.push_back(Got_entry());
1279   unsigned int got_offset = this->last_got_offset();
1280   object->set_local_got_offset(symndx, got_type, got_offset);
1281   section_offset_type off;
1282   Output_section* os = object->output_section(shndx, &off);
1283   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1284
1285   this->entries_.push_back(Got_entry(object, symndx));
1286   if (r_type_2 != 0)
1287     {
1288       got_offset = this->last_got_offset();
1289       rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1290     }
1291
1292   this->set_got_size();
1293 }
1294
1295 // Write out the GOT.
1296
1297 template<int size, bool big_endian>
1298 void
1299 Output_data_got<size, big_endian>::do_write(Output_file* of)
1300 {
1301   const int add = size / 8;
1302
1303   const off_t off = this->offset();
1304   const off_t oview_size = this->data_size();
1305   unsigned char* const oview = of->get_output_view(off, oview_size);
1306
1307   unsigned char* pov = oview;
1308   for (typename Got_entries::const_iterator p = this->entries_.begin();
1309        p != this->entries_.end();
1310        ++p)
1311     {
1312       p->write(pov);
1313       pov += add;
1314     }
1315
1316   gold_assert(pov - oview == oview_size);
1317
1318   of->write_output_view(off, oview_size, oview);
1319
1320   // We no longer need the GOT entries.
1321   this->entries_.clear();
1322 }
1323
1324 // Output_data_dynamic::Dynamic_entry methods.
1325
1326 // Write out the entry.
1327
1328 template<int size, bool big_endian>
1329 void
1330 Output_data_dynamic::Dynamic_entry::write(
1331     unsigned char* pov,
1332     const Stringpool* pool) const
1333 {
1334   typename elfcpp::Elf_types<size>::Elf_WXword val;
1335   switch (this->classification_)
1336     {
1337     case DYNAMIC_NUMBER:
1338       val = this->u_.val;
1339       break;
1340
1341     case DYNAMIC_SECTION_ADDRESS:
1342       val = this->u_.od->address();
1343       break;
1344
1345     case DYNAMIC_SECTION_SIZE:
1346       val = this->u_.od->data_size();
1347       break;
1348
1349     case DYNAMIC_SYMBOL:
1350       {
1351         const Sized_symbol<size>* s =
1352           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1353         val = s->value();
1354       }
1355       break;
1356
1357     case DYNAMIC_STRING:
1358       val = pool->get_offset(this->u_.str);
1359       break;
1360
1361     default:
1362       gold_unreachable();
1363     }
1364
1365   elfcpp::Dyn_write<size, big_endian> dw(pov);
1366   dw.put_d_tag(this->tag_);
1367   dw.put_d_val(val);
1368 }
1369
1370 // Output_data_dynamic methods.
1371
1372 // Adjust the output section to set the entry size.
1373
1374 void
1375 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1376 {
1377   if (parameters->target().get_size() == 32)
1378     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1379   else if (parameters->target().get_size() == 64)
1380     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1381   else
1382     gold_unreachable();
1383 }
1384
1385 // Set the final data size.
1386
1387 void
1388 Output_data_dynamic::set_final_data_size()
1389 {
1390   // Add the terminating entry.
1391   this->add_constant(elfcpp::DT_NULL, 0);
1392
1393   int dyn_size;
1394   if (parameters->target().get_size() == 32)
1395     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1396   else if (parameters->target().get_size() == 64)
1397     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1398   else
1399     gold_unreachable();
1400   this->set_data_size(this->entries_.size() * dyn_size);
1401 }
1402
1403 // Write out the dynamic entries.
1404
1405 void
1406 Output_data_dynamic::do_write(Output_file* of)
1407 {
1408   switch (parameters->size_and_endianness())
1409     {
1410 #ifdef HAVE_TARGET_32_LITTLE
1411     case Parameters::TARGET_32_LITTLE:
1412       this->sized_write<32, false>(of);
1413       break;
1414 #endif
1415 #ifdef HAVE_TARGET_32_BIG
1416     case Parameters::TARGET_32_BIG:
1417       this->sized_write<32, true>(of);
1418       break;
1419 #endif
1420 #ifdef HAVE_TARGET_64_LITTLE
1421     case Parameters::TARGET_64_LITTLE:
1422       this->sized_write<64, false>(of);
1423       break;
1424 #endif
1425 #ifdef HAVE_TARGET_64_BIG
1426     case Parameters::TARGET_64_BIG:
1427       this->sized_write<64, true>(of);
1428       break;
1429 #endif
1430     default:
1431       gold_unreachable();
1432     }
1433 }
1434
1435 template<int size, bool big_endian>
1436 void
1437 Output_data_dynamic::sized_write(Output_file* of)
1438 {
1439   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1440
1441   const off_t offset = this->offset();
1442   const off_t oview_size = this->data_size();
1443   unsigned char* const oview = of->get_output_view(offset, oview_size);
1444
1445   unsigned char* pov = oview;
1446   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1447        p != this->entries_.end();
1448        ++p)
1449     {
1450       p->write<size, big_endian>(pov, this->pool_);
1451       pov += dyn_size;
1452     }
1453
1454   gold_assert(pov - oview == oview_size);
1455
1456   of->write_output_view(offset, oview_size, oview);
1457
1458   // We no longer need the dynamic entries.
1459   this->entries_.clear();
1460 }
1461
1462 // Output_section::Input_section methods.
1463
1464 // Return the data size.  For an input section we store the size here.
1465 // For an Output_section_data, we have to ask it for the size.
1466
1467 off_t
1468 Output_section::Input_section::data_size() const
1469 {
1470   if (this->is_input_section())
1471     return this->u1_.data_size;
1472   else
1473     return this->u2_.posd->data_size();
1474 }
1475
1476 // Set the address and file offset.
1477
1478 void
1479 Output_section::Input_section::set_address_and_file_offset(
1480     uint64_t address,
1481     off_t file_offset,
1482     off_t section_file_offset)
1483 {
1484   if (this->is_input_section())
1485     this->u2_.object->set_section_offset(this->shndx_,
1486                                          file_offset - section_file_offset);
1487   else
1488     this->u2_.posd->set_address_and_file_offset(address, file_offset);
1489 }
1490
1491 // Reset the address and file offset.
1492
1493 void
1494 Output_section::Input_section::reset_address_and_file_offset()
1495 {
1496   if (!this->is_input_section())
1497     this->u2_.posd->reset_address_and_file_offset();
1498 }
1499
1500 // Finalize the data size.
1501
1502 void
1503 Output_section::Input_section::finalize_data_size()
1504 {
1505   if (!this->is_input_section())
1506     this->u2_.posd->finalize_data_size();
1507 }
1508
1509 // Try to turn an input offset into an output offset.  We want to
1510 // return the output offset relative to the start of this
1511 // Input_section in the output section.
1512
1513 inline bool
1514 Output_section::Input_section::output_offset(
1515     const Relobj* object,
1516     unsigned int shndx,
1517     section_offset_type offset,
1518     section_offset_type *poutput) const
1519 {
1520   if (!this->is_input_section())
1521     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1522   else
1523     {
1524       if (this->shndx_ != shndx || this->u2_.object != object)
1525         return false;
1526       *poutput = offset;
1527       return true;
1528     }
1529 }
1530
1531 // Return whether this is the merge section for the input section
1532 // SHNDX in OBJECT.
1533
1534 inline bool
1535 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1536                                                     unsigned int shndx) const
1537 {
1538   if (this->is_input_section())
1539     return false;
1540   return this->u2_.posd->is_merge_section_for(object, shndx);
1541 }
1542
1543 // Write out the data.  We don't have to do anything for an input
1544 // section--they are handled via Object::relocate--but this is where
1545 // we write out the data for an Output_section_data.
1546
1547 void
1548 Output_section::Input_section::write(Output_file* of)
1549 {
1550   if (!this->is_input_section())
1551     this->u2_.posd->write(of);
1552 }
1553
1554 // Write the data to a buffer.  As for write(), we don't have to do
1555 // anything for an input section.
1556
1557 void
1558 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1559 {
1560   if (!this->is_input_section())
1561     this->u2_.posd->write_to_buffer(buffer);
1562 }
1563
1564 // Output_section methods.
1565
1566 // Construct an Output_section.  NAME will point into a Stringpool.
1567
1568 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1569                                elfcpp::Elf_Xword flags)
1570   : name_(name),
1571     addralign_(0),
1572     entsize_(0),
1573     load_address_(0),
1574     link_section_(NULL),
1575     link_(0),
1576     info_section_(NULL),
1577     info_symndx_(NULL),
1578     info_(0),
1579     type_(type),
1580     flags_(flags),
1581     out_shndx_(-1U),
1582     symtab_index_(0),
1583     dynsym_index_(0),
1584     input_sections_(),
1585     first_input_offset_(0),
1586     fills_(),
1587     postprocessing_buffer_(NULL),
1588     needs_symtab_index_(false),
1589     needs_dynsym_index_(false),
1590     should_link_to_symtab_(false),
1591     should_link_to_dynsym_(false),
1592     after_input_sections_(false),
1593     requires_postprocessing_(false),
1594     found_in_sections_clause_(false),
1595     has_load_address_(false),
1596     info_uses_section_index_(false),
1597     tls_offset_(0)
1598 {
1599   // An unallocated section has no address.  Forcing this means that
1600   // we don't need special treatment for symbols defined in debug
1601   // sections.
1602   if ((flags & elfcpp::SHF_ALLOC) == 0)
1603     this->set_address(0);
1604 }
1605
1606 Output_section::~Output_section()
1607 {
1608 }
1609
1610 // Set the entry size.
1611
1612 void
1613 Output_section::set_entsize(uint64_t v)
1614 {
1615   if (this->entsize_ == 0)
1616     this->entsize_ = v;
1617   else
1618     gold_assert(this->entsize_ == v);
1619 }
1620
1621 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1622 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
1623 // relocation section which applies to this section, or 0 if none, or
1624 // -1U if more than one.  Return the offset of the input section
1625 // within the output section.  Return -1 if the input section will
1626 // receive special handling.  In the normal case we don't always keep
1627 // track of input sections for an Output_section.  Instead, each
1628 // Object keeps track of the Output_section for each of its input
1629 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1630 // track of input sections here; this is used when SECTIONS appears in
1631 // a linker script.
1632
1633 template<int size, bool big_endian>
1634 off_t
1635 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1636                                   unsigned int shndx,
1637                                   const char* secname,
1638                                   const elfcpp::Shdr<size, big_endian>& shdr,
1639                                   unsigned int reloc_shndx,
1640                                   bool have_sections_script)
1641 {
1642   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1643   if ((addralign & (addralign - 1)) != 0)
1644     {
1645       object->error(_("invalid alignment %lu for section \"%s\""),
1646                     static_cast<unsigned long>(addralign), secname);
1647       addralign = 1;
1648     }
1649
1650   if (addralign > this->addralign_)
1651     this->addralign_ = addralign;
1652
1653   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1654   this->flags_ |= (sh_flags
1655                    & (elfcpp::SHF_WRITE
1656                       | elfcpp::SHF_ALLOC
1657                       | elfcpp::SHF_EXECINSTR));
1658
1659   uint64_t entsize = shdr.get_sh_entsize();
1660
1661   // .debug_str is a mergeable string section, but is not always so
1662   // marked by compilers.  Mark manually here so we can optimize.
1663   if (strcmp(secname, ".debug_str") == 0)
1664     {
1665       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1666       entsize = 1;
1667     }
1668
1669   // If this is a SHF_MERGE section, we pass all the input sections to
1670   // a Output_data_merge.  We don't try to handle relocations for such
1671   // a section.
1672   if ((sh_flags & elfcpp::SHF_MERGE) != 0
1673       && reloc_shndx == 0)
1674     {
1675       if (this->add_merge_input_section(object, shndx, sh_flags,
1676                                         entsize, addralign))
1677         {
1678           // Tell the relocation routines that they need to call the
1679           // output_offset method to determine the final address.
1680           return -1;
1681         }
1682     }
1683
1684   off_t offset_in_section = this->current_data_size_for_child();
1685   off_t aligned_offset_in_section = align_address(offset_in_section,
1686                                                   addralign);
1687
1688   if (aligned_offset_in_section > offset_in_section
1689       && !have_sections_script
1690       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1691       && object->target()->has_code_fill())
1692     {
1693       // We need to add some fill data.  Using fill_list_ when
1694       // possible is an optimization, since we will often have fill
1695       // sections without input sections.
1696       off_t fill_len = aligned_offset_in_section - offset_in_section;
1697       if (this->input_sections_.empty())
1698         this->fills_.push_back(Fill(offset_in_section, fill_len));
1699       else
1700         {
1701           // FIXME: When relaxing, the size needs to adjust to
1702           // maintain a constant alignment.
1703           std::string fill_data(object->target()->code_fill(fill_len));
1704           Output_data_const* odc = new Output_data_const(fill_data, 1);
1705           this->input_sections_.push_back(Input_section(odc));
1706         }
1707     }
1708
1709   this->set_current_data_size_for_child(aligned_offset_in_section
1710                                         + shdr.get_sh_size());
1711
1712   // We need to keep track of this section if we are already keeping
1713   // track of sections, or if we are relaxing.  FIXME: Add test for
1714   // relaxing.
1715   if (have_sections_script || !this->input_sections_.empty())
1716     this->input_sections_.push_back(Input_section(object, shndx,
1717                                                   shdr.get_sh_size(),
1718                                                   addralign));
1719
1720   return aligned_offset_in_section;
1721 }
1722
1723 // Add arbitrary data to an output section.
1724
1725 void
1726 Output_section::add_output_section_data(Output_section_data* posd)
1727 {
1728   Input_section inp(posd);
1729   this->add_output_section_data(&inp);
1730
1731   if (posd->is_data_size_valid())
1732     {
1733       off_t offset_in_section = this->current_data_size_for_child();
1734       off_t aligned_offset_in_section = align_address(offset_in_section,
1735                                                       posd->addralign());
1736       this->set_current_data_size_for_child(aligned_offset_in_section
1737                                             + posd->data_size());
1738     }
1739 }
1740
1741 // Add arbitrary data to an output section by Input_section.
1742
1743 void
1744 Output_section::add_output_section_data(Input_section* inp)
1745 {
1746   if (this->input_sections_.empty())
1747     this->first_input_offset_ = this->current_data_size_for_child();
1748
1749   this->input_sections_.push_back(*inp);
1750
1751   uint64_t addralign = inp->addralign();
1752   if (addralign > this->addralign_)
1753     this->addralign_ = addralign;
1754
1755   inp->set_output_section(this);
1756 }
1757
1758 // Add a merge section to an output section.
1759
1760 void
1761 Output_section::add_output_merge_section(Output_section_data* posd,
1762                                          bool is_string, uint64_t entsize)
1763 {
1764   Input_section inp(posd, is_string, entsize);
1765   this->add_output_section_data(&inp);
1766 }
1767
1768 // Add an input section to a SHF_MERGE section.
1769
1770 bool
1771 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1772                                         uint64_t flags, uint64_t entsize,
1773                                         uint64_t addralign)
1774 {
1775   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1776
1777   // We only merge strings if the alignment is not more than the
1778   // character size.  This could be handled, but it's unusual.
1779   if (is_string && addralign > entsize)
1780     return false;
1781
1782   Input_section_list::iterator p;
1783   for (p = this->input_sections_.begin();
1784        p != this->input_sections_.end();
1785        ++p)
1786     if (p->is_merge_section(is_string, entsize, addralign))
1787       {
1788         p->add_input_section(object, shndx);
1789         return true;
1790       }
1791
1792   // We handle the actual constant merging in Output_merge_data or
1793   // Output_merge_string_data.
1794   Output_section_data* posd;
1795   if (!is_string)
1796     posd = new Output_merge_data(entsize, addralign);
1797   else
1798     {
1799       switch (entsize)
1800         {
1801         case 1:
1802           posd = new Output_merge_string<char>(addralign);
1803           break;
1804         case 2:
1805           posd = new Output_merge_string<uint16_t>(addralign);
1806           break;
1807         case 4:
1808           posd = new Output_merge_string<uint32_t>(addralign);
1809           break;
1810         default:
1811           return false;
1812         }
1813     }
1814
1815   this->add_output_merge_section(posd, is_string, entsize);
1816   posd->add_input_section(object, shndx);
1817
1818   return true;
1819 }
1820
1821 // Given an address OFFSET relative to the start of input section
1822 // SHNDX in OBJECT, return whether this address is being included in
1823 // the final link.  This should only be called if SHNDX in OBJECT has
1824 // a special mapping.
1825
1826 bool
1827 Output_section::is_input_address_mapped(const Relobj* object,
1828                                         unsigned int shndx,
1829                                         off_t offset) const
1830 {
1831   gold_assert(object->is_section_specially_mapped(shndx));
1832
1833   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1834        p != this->input_sections_.end();
1835        ++p)
1836     {
1837       section_offset_type output_offset;
1838       if (p->output_offset(object, shndx, offset, &output_offset))
1839         return output_offset != -1;
1840     }
1841
1842   // By default we assume that the address is mapped.  This should
1843   // only be called after we have passed all sections to Layout.  At
1844   // that point we should know what we are discarding.
1845   return true;
1846 }
1847
1848 // Given an address OFFSET relative to the start of input section
1849 // SHNDX in object OBJECT, return the output offset relative to the
1850 // start of the input section in the output section.  This should only
1851 // be called if SHNDX in OBJECT has a special mapping.
1852
1853 section_offset_type
1854 Output_section::output_offset(const Relobj* object, unsigned int shndx,
1855                               section_offset_type offset) const
1856 {
1857   gold_assert(object->is_section_specially_mapped(shndx));
1858   // This can only be called meaningfully when layout is complete.
1859   gold_assert(Output_data::is_layout_complete());
1860
1861   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1862        p != this->input_sections_.end();
1863        ++p)
1864     {
1865       section_offset_type output_offset;
1866       if (p->output_offset(object, shndx, offset, &output_offset))
1867         return output_offset;
1868     }
1869   gold_unreachable();
1870 }
1871
1872 // Return the output virtual address of OFFSET relative to the start
1873 // of input section SHNDX in object OBJECT.
1874
1875 uint64_t
1876 Output_section::output_address(const Relobj* object, unsigned int shndx,
1877                                off_t offset) const
1878 {
1879   gold_assert(object->is_section_specially_mapped(shndx));
1880
1881   uint64_t addr = this->address() + this->first_input_offset_;
1882   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1883        p != this->input_sections_.end();
1884        ++p)
1885     {
1886       addr = align_address(addr, p->addralign());
1887       section_offset_type output_offset;
1888       if (p->output_offset(object, shndx, offset, &output_offset))
1889         {
1890           if (output_offset == -1)
1891             return -1U;
1892           return addr + output_offset;
1893         }
1894       addr += p->data_size();
1895     }
1896
1897   // If we get here, it means that we don't know the mapping for this
1898   // input section.  This might happen in principle if
1899   // add_input_section were called before add_output_section_data.
1900   // But it should never actually happen.
1901
1902   gold_unreachable();
1903 }
1904
1905 // Return the output address of the start of the merged section for
1906 // input section SHNDX in object OBJECT.
1907
1908 uint64_t
1909 Output_section::starting_output_address(const Relobj* object,
1910                                         unsigned int shndx) const
1911 {
1912   gold_assert(object->is_section_specially_mapped(shndx));
1913
1914   uint64_t addr = this->address() + this->first_input_offset_;
1915   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1916        p != this->input_sections_.end();
1917        ++p)
1918     {
1919       addr = align_address(addr, p->addralign());
1920
1921       // It would be nice if we could use the existing output_offset
1922       // method to get the output offset of input offset 0.
1923       // Unfortunately we don't know for sure that input offset 0 is
1924       // mapped at all.
1925       if (p->is_merge_section_for(object, shndx))
1926         return addr;
1927
1928       addr += p->data_size();
1929     }
1930   gold_unreachable();
1931 }
1932
1933 // Set the data size of an Output_section.  This is where we handle
1934 // setting the addresses of any Output_section_data objects.
1935
1936 void
1937 Output_section::set_final_data_size()
1938 {
1939   if (this->input_sections_.empty())
1940     {
1941       this->set_data_size(this->current_data_size_for_child());
1942       return;
1943     }
1944
1945   uint64_t address = this->address();
1946   off_t startoff = this->offset();
1947   off_t off = startoff + this->first_input_offset_;
1948   for (Input_section_list::iterator p = this->input_sections_.begin();
1949        p != this->input_sections_.end();
1950        ++p)
1951     {
1952       off = align_address(off, p->addralign());
1953       p->set_address_and_file_offset(address + (off - startoff), off,
1954                                      startoff);
1955       off += p->data_size();
1956     }
1957
1958   this->set_data_size(off - startoff);
1959 }
1960
1961 // Reset the address and file offset.
1962
1963 void
1964 Output_section::do_reset_address_and_file_offset()
1965 {
1966   for (Input_section_list::iterator p = this->input_sections_.begin();
1967        p != this->input_sections_.end();
1968        ++p)
1969     p->reset_address_and_file_offset();
1970 }
1971
1972 // Set the TLS offset.  Called only for SHT_TLS sections.
1973
1974 void
1975 Output_section::do_set_tls_offset(uint64_t tls_base)
1976 {
1977   this->tls_offset_ = this->address() - tls_base;
1978 }
1979
1980 // Write the section header to *OSHDR.
1981
1982 template<int size, bool big_endian>
1983 void
1984 Output_section::write_header(const Layout* layout,
1985                              const Stringpool* secnamepool,
1986                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
1987 {
1988   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1989   oshdr->put_sh_type(this->type_);
1990
1991   elfcpp::Elf_Xword flags = this->flags_;
1992   if (this->info_section_ != NULL && this->info_uses_section_index_)
1993     flags |= elfcpp::SHF_INFO_LINK;
1994   oshdr->put_sh_flags(flags);
1995
1996   oshdr->put_sh_addr(this->address());
1997   oshdr->put_sh_offset(this->offset());
1998   oshdr->put_sh_size(this->data_size());
1999   if (this->link_section_ != NULL)
2000     oshdr->put_sh_link(this->link_section_->out_shndx());
2001   else if (this->should_link_to_symtab_)
2002     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2003   else if (this->should_link_to_dynsym_)
2004     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2005   else
2006     oshdr->put_sh_link(this->link_);
2007
2008   elfcpp::Elf_Word info;
2009   if (this->info_section_ != NULL)
2010     {
2011       if (this->info_uses_section_index_)
2012         info = this->info_section_->out_shndx();
2013       else
2014         info = this->info_section_->symtab_index();
2015     }
2016   else if (this->info_symndx_ != NULL)
2017     info = this->info_symndx_->symtab_index();
2018   else
2019     info = this->info_;
2020   oshdr->put_sh_info(info);
2021
2022   oshdr->put_sh_addralign(this->addralign_);
2023   oshdr->put_sh_entsize(this->entsize_);
2024 }
2025
2026 // Write out the data.  For input sections the data is written out by
2027 // Object::relocate, but we have to handle Output_section_data objects
2028 // here.
2029
2030 void
2031 Output_section::do_write(Output_file* of)
2032 {
2033   gold_assert(!this->requires_postprocessing());
2034
2035   off_t output_section_file_offset = this->offset();
2036   for (Fill_list::iterator p = this->fills_.begin();
2037        p != this->fills_.end();
2038        ++p)
2039     {
2040       std::string fill_data(parameters->target().code_fill(p->length()));
2041       of->write(output_section_file_offset + p->section_offset(),
2042                 fill_data.data(), fill_data.size());
2043     }
2044
2045   for (Input_section_list::iterator p = this->input_sections_.begin();
2046        p != this->input_sections_.end();
2047        ++p)
2048     p->write(of);
2049 }
2050
2051 // If a section requires postprocessing, create the buffer to use.
2052
2053 void
2054 Output_section::create_postprocessing_buffer()
2055 {
2056   gold_assert(this->requires_postprocessing());
2057
2058   if (this->postprocessing_buffer_ != NULL)
2059     return;
2060
2061   if (!this->input_sections_.empty())
2062     {
2063       off_t off = this->first_input_offset_;
2064       for (Input_section_list::iterator p = this->input_sections_.begin();
2065            p != this->input_sections_.end();
2066            ++p)
2067         {
2068           off = align_address(off, p->addralign());
2069           p->finalize_data_size();
2070           off += p->data_size();
2071         }
2072       this->set_current_data_size_for_child(off);
2073     }
2074
2075   off_t buffer_size = this->current_data_size_for_child();
2076   this->postprocessing_buffer_ = new unsigned char[buffer_size];
2077 }
2078
2079 // Write all the data of an Output_section into the postprocessing
2080 // buffer.  This is used for sections which require postprocessing,
2081 // such as compression.  Input sections are handled by
2082 // Object::Relocate.
2083
2084 void
2085 Output_section::write_to_postprocessing_buffer()
2086 {
2087   gold_assert(this->requires_postprocessing());
2088
2089   unsigned char* buffer = this->postprocessing_buffer();
2090   for (Fill_list::iterator p = this->fills_.begin();
2091        p != this->fills_.end();
2092        ++p)
2093     {
2094       std::string fill_data(parameters->target().code_fill(p->length()));
2095       memcpy(buffer + p->section_offset(), fill_data.data(),
2096              fill_data.size());
2097     }
2098
2099   off_t off = this->first_input_offset_;
2100   for (Input_section_list::iterator p = this->input_sections_.begin();
2101        p != this->input_sections_.end();
2102        ++p)
2103     {
2104       off = align_address(off, p->addralign());
2105       p->write_to_buffer(buffer + off);
2106       off += p->data_size();
2107     }
2108 }
2109
2110 // Get the input sections for linker script processing.  We leave
2111 // behind the Output_section_data entries.  Note that this may be
2112 // slightly incorrect for merge sections.  We will leave them behind,
2113 // but it is possible that the script says that they should follow
2114 // some other input sections, as in:
2115 //    .rodata { *(.rodata) *(.rodata.cst*) }
2116 // For that matter, we don't handle this correctly:
2117 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2118 // With luck this will never matter.
2119
2120 uint64_t
2121 Output_section::get_input_sections(
2122     uint64_t address,
2123     const std::string& fill,
2124     std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2125 {
2126   uint64_t orig_address = address;
2127
2128   address = align_address(address, this->addralign());
2129
2130   Input_section_list remaining;
2131   for (Input_section_list::iterator p = this->input_sections_.begin();
2132        p != this->input_sections_.end();
2133        ++p)
2134     {
2135       if (p->is_input_section())
2136         input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2137       else
2138         {
2139           uint64_t aligned_address = align_address(address, p->addralign());
2140           if (aligned_address != address && !fill.empty())
2141             {
2142               section_size_type length =
2143                 convert_to_section_size_type(aligned_address - address);
2144               std::string this_fill;
2145               this_fill.reserve(length);
2146               while (this_fill.length() + fill.length() <= length)
2147                 this_fill += fill;
2148               if (this_fill.length() < length)
2149                 this_fill.append(fill, 0, length - this_fill.length());
2150
2151               Output_section_data* posd = new Output_data_const(this_fill, 0);
2152               remaining.push_back(Input_section(posd));
2153             }
2154           address = aligned_address;
2155
2156           remaining.push_back(*p);
2157
2158           p->finalize_data_size();
2159           address += p->data_size();
2160         }
2161     }
2162
2163   this->input_sections_.swap(remaining);
2164   this->first_input_offset_ = 0;
2165
2166   uint64_t data_size = address - orig_address;
2167   this->set_current_data_size_for_child(data_size);
2168   return data_size;
2169 }
2170
2171 // Add an input section from a script.
2172
2173 void
2174 Output_section::add_input_section_for_script(Relobj* object,
2175                                              unsigned int shndx,
2176                                              off_t data_size,
2177                                              uint64_t addralign)
2178 {
2179   if (addralign > this->addralign_)
2180     this->addralign_ = addralign;
2181
2182   off_t offset_in_section = this->current_data_size_for_child();
2183   off_t aligned_offset_in_section = align_address(offset_in_section,
2184                                                   addralign);
2185
2186   this->set_current_data_size_for_child(aligned_offset_in_section
2187                                         + data_size);
2188
2189   this->input_sections_.push_back(Input_section(object, shndx,
2190                                                 data_size, addralign));
2191 }
2192
2193 // Print stats for merge sections to stderr.
2194
2195 void
2196 Output_section::print_merge_stats()
2197 {
2198   Input_section_list::iterator p;
2199   for (p = this->input_sections_.begin();
2200        p != this->input_sections_.end();
2201        ++p)
2202     p->print_merge_stats(this->name_);
2203 }
2204
2205 // Output segment methods.
2206
2207 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2208   : output_data_(),
2209     output_bss_(),
2210     vaddr_(0),
2211     paddr_(0),
2212     memsz_(0),
2213     max_align_(0),
2214     min_p_align_(0),
2215     offset_(0),
2216     filesz_(0),
2217     type_(type),
2218     flags_(flags),
2219     is_max_align_known_(false),
2220     are_addresses_set_(false)
2221 {
2222 }
2223
2224 // Add an Output_section to an Output_segment.
2225
2226 void
2227 Output_segment::add_output_section(Output_section* os,
2228                                    elfcpp::Elf_Word seg_flags,
2229                                    bool front)
2230 {
2231   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2232   gold_assert(!this->is_max_align_known_);
2233
2234   // Update the segment flags.
2235   this->flags_ |= seg_flags;
2236
2237   Output_segment::Output_data_list* pdl;
2238   if (os->type() == elfcpp::SHT_NOBITS)
2239     pdl = &this->output_bss_;
2240   else
2241     pdl = &this->output_data_;
2242
2243   // So that PT_NOTE segments will work correctly, we need to ensure
2244   // that all SHT_NOTE sections are adjacent.  This will normally
2245   // happen automatically, because all the SHT_NOTE input sections
2246   // will wind up in the same output section.  However, it is possible
2247   // for multiple SHT_NOTE input sections to have different section
2248   // flags, and thus be in different output sections, but for the
2249   // different section flags to map into the same segment flags and
2250   // thus the same output segment.
2251
2252   // Note that while there may be many input sections in an output
2253   // section, there are normally only a few output sections in an
2254   // output segment.  This loop is expected to be fast.
2255
2256   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2257     {
2258       Output_segment::Output_data_list::iterator p = pdl->end();
2259       do
2260         {
2261           --p;
2262           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2263             {
2264               // We don't worry about the FRONT parameter.
2265               ++p;
2266               pdl->insert(p, os);
2267               return;
2268             }
2269         }
2270       while (p != pdl->begin());
2271     }
2272
2273   // Similarly, so that PT_TLS segments will work, we need to group
2274   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
2275   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2276   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
2277   // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
2278   // and the PT_TLS segment -- we do this grouping only for the
2279   // PT_LOAD segment.
2280   if (this->type_ != elfcpp::PT_TLS
2281       && (os->flags() & elfcpp::SHF_TLS) != 0
2282       && !this->output_data_.empty())
2283     {
2284       pdl = &this->output_data_;
2285       bool nobits = os->type() == elfcpp::SHT_NOBITS;
2286       bool sawtls = false;
2287       Output_segment::Output_data_list::iterator p = pdl->end();
2288       do
2289         {
2290           --p;
2291           bool insert;
2292           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2293             {
2294               sawtls = true;
2295               // Put a NOBITS section after the first TLS section.
2296               // But a PROGBITS section after the first TLS/PROGBITS
2297               // section.
2298               insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2299             }
2300           else
2301             {
2302               // If we've gone past the TLS sections, but we've seen a
2303               // TLS section, then we need to insert this section now.
2304               insert = sawtls;
2305             }
2306
2307           if (insert)
2308             {
2309               // We don't worry about the FRONT parameter.
2310               ++p;
2311               pdl->insert(p, os);
2312               return;
2313             }
2314         }
2315       while (p != pdl->begin());
2316
2317       // There are no TLS sections yet; put this one at the requested
2318       // location in the section list.
2319     }
2320
2321   if (front)
2322     pdl->push_front(os);
2323   else
2324     pdl->push_back(os);
2325 }
2326
2327 // Remove an Output_section from this segment.  It is an error if it
2328 // is not present.
2329
2330 void
2331 Output_segment::remove_output_section(Output_section* os)
2332 {
2333   // We only need this for SHT_PROGBITS.
2334   gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2335   for (Output_data_list::iterator p = this->output_data_.begin();
2336        p != this->output_data_.end();
2337        ++p)
2338    {
2339      if (*p == os)
2340        {
2341          this->output_data_.erase(p);
2342          return;
2343        }
2344    }
2345   gold_unreachable();
2346 }
2347
2348 // Add an Output_data (which is not an Output_section) to the start of
2349 // a segment.
2350
2351 void
2352 Output_segment::add_initial_output_data(Output_data* od)
2353 {
2354   gold_assert(!this->is_max_align_known_);
2355   this->output_data_.push_front(od);
2356 }
2357
2358 // Return the maximum alignment of the Output_data in Output_segment.
2359
2360 uint64_t
2361 Output_segment::maximum_alignment()
2362 {
2363   if (!this->is_max_align_known_)
2364     {
2365       uint64_t addralign;
2366
2367       addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2368       if (addralign > this->max_align_)
2369         this->max_align_ = addralign;
2370
2371       addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2372       if (addralign > this->max_align_)
2373         this->max_align_ = addralign;
2374
2375       this->is_max_align_known_ = true;
2376     }
2377
2378   return this->max_align_;
2379 }
2380
2381 // Return the maximum alignment of a list of Output_data.
2382
2383 uint64_t
2384 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2385 {
2386   uint64_t ret = 0;
2387   for (Output_data_list::const_iterator p = pdl->begin();
2388        p != pdl->end();
2389        ++p)
2390     {
2391       uint64_t addralign = (*p)->addralign();
2392       if (addralign > ret)
2393         ret = addralign;
2394     }
2395   return ret;
2396 }
2397
2398 // Return the number of dynamic relocs applied to this segment.
2399
2400 unsigned int
2401 Output_segment::dynamic_reloc_count() const
2402 {
2403   return (this->dynamic_reloc_count_list(&this->output_data_)
2404           + this->dynamic_reloc_count_list(&this->output_bss_));
2405 }
2406
2407 // Return the number of dynamic relocs applied to an Output_data_list.
2408
2409 unsigned int
2410 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2411 {
2412   unsigned int count = 0;
2413   for (Output_data_list::const_iterator p = pdl->begin();
2414        p != pdl->end();
2415        ++p)
2416     count += (*p)->dynamic_reloc_count();
2417   return count;
2418 }
2419
2420 // Set the section addresses for an Output_segment.  If RESET is true,
2421 // reset the addresses first.  ADDR is the address and *POFF is the
2422 // file offset.  Set the section indexes starting with *PSHNDX.
2423 // Return the address of the immediately following segment.  Update
2424 // *POFF and *PSHNDX.
2425
2426 uint64_t
2427 Output_segment::set_section_addresses(const Layout* layout, bool reset,
2428                                       uint64_t addr, off_t* poff,
2429                                       unsigned int* pshndx)
2430 {
2431   gold_assert(this->type_ == elfcpp::PT_LOAD);
2432
2433   if (!reset && this->are_addresses_set_)
2434     {
2435       gold_assert(this->paddr_ == addr);
2436       addr = this->vaddr_;
2437     }
2438   else
2439     {
2440       this->vaddr_ = addr;
2441       this->paddr_ = addr;
2442       this->are_addresses_set_ = true;
2443     }
2444
2445   bool in_tls = false;
2446
2447   off_t orig_off = *poff;
2448   this->offset_ = orig_off;
2449
2450   addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2451                                           addr, poff, pshndx, &in_tls);
2452   this->filesz_ = *poff - orig_off;
2453
2454   off_t off = *poff;
2455
2456   uint64_t ret = this->set_section_list_addresses(layout, reset,
2457                                                   &this->output_bss_,
2458                                                   addr, poff, pshndx,
2459                                                   &in_tls);
2460
2461   // If the last section was a TLS section, align upward to the
2462   // alignment of the TLS segment, so that the overall size of the TLS
2463   // segment is aligned.
2464   if (in_tls)
2465     {
2466       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2467       *poff = align_address(*poff, segment_align);
2468     }
2469
2470   this->memsz_ = *poff - orig_off;
2471
2472   // Ignore the file offset adjustments made by the BSS Output_data
2473   // objects.
2474   *poff = off;
2475
2476   return ret;
2477 }
2478
2479 // Set the addresses and file offsets in a list of Output_data
2480 // structures.
2481
2482 uint64_t
2483 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2484                                            Output_data_list* pdl,
2485                                            uint64_t addr, off_t* poff,
2486                                            unsigned int* pshndx,
2487                                            bool* in_tls)
2488 {
2489   off_t startoff = *poff;
2490
2491   off_t off = startoff;
2492   for (Output_data_list::iterator p = pdl->begin();
2493        p != pdl->end();
2494        ++p)
2495     {
2496       if (reset)
2497         (*p)->reset_address_and_file_offset();
2498
2499       // When using a linker script the section will most likely
2500       // already have an address.
2501       if (!(*p)->is_address_valid())
2502         {
2503           uint64_t align = (*p)->addralign();
2504
2505           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2506             {
2507               // Give the first TLS section the alignment of the
2508               // entire TLS segment.  Otherwise the TLS segment as a
2509               // whole may be misaligned.
2510               if (!*in_tls)
2511                 {
2512                   Output_segment* tls_segment = layout->tls_segment();
2513                   gold_assert(tls_segment != NULL);
2514                   uint64_t segment_align = tls_segment->maximum_alignment();
2515                   gold_assert(segment_align >= align);
2516                   align = segment_align;
2517
2518                   *in_tls = true;
2519                 }
2520             }
2521           else
2522             {
2523               // If this is the first section after the TLS segment,
2524               // align it to at least the alignment of the TLS
2525               // segment, so that the size of the overall TLS segment
2526               // is aligned.
2527               if (*in_tls)
2528                 {
2529                   uint64_t segment_align =
2530                       layout->tls_segment()->maximum_alignment();
2531                   if (segment_align > align)
2532                     align = segment_align;
2533
2534                   *in_tls = false;
2535                 }
2536             }
2537
2538           off = align_address(off, align);
2539           (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2540         }
2541       else
2542         {
2543           // The script may have inserted a skip forward, but it
2544           // better not have moved backward.
2545           gold_assert((*p)->address() >= addr + (off - startoff));
2546           off += (*p)->address() - (addr + (off - startoff));
2547           (*p)->set_file_offset(off);
2548           (*p)->finalize_data_size();
2549         }
2550
2551       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2552       // section.  Such a section does not affect the size of a
2553       // PT_LOAD segment.
2554       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2555           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2556         off += (*p)->data_size();
2557
2558       if ((*p)->is_section())
2559         {
2560           (*p)->set_out_shndx(*pshndx);
2561           ++*pshndx;
2562         }
2563     }
2564
2565   *poff = off;
2566   return addr + (off - startoff);
2567 }
2568
2569 // For a non-PT_LOAD segment, set the offset from the sections, if
2570 // any.
2571
2572 void
2573 Output_segment::set_offset()
2574 {
2575   gold_assert(this->type_ != elfcpp::PT_LOAD);
2576
2577   gold_assert(!this->are_addresses_set_);
2578
2579   if (this->output_data_.empty() && this->output_bss_.empty())
2580     {
2581       this->vaddr_ = 0;
2582       this->paddr_ = 0;
2583       this->are_addresses_set_ = true;
2584       this->memsz_ = 0;
2585       this->min_p_align_ = 0;
2586       this->offset_ = 0;
2587       this->filesz_ = 0;
2588       return;
2589     }
2590
2591   const Output_data* first;
2592   if (this->output_data_.empty())
2593     first = this->output_bss_.front();
2594   else
2595     first = this->output_data_.front();
2596   this->vaddr_ = first->address();
2597   this->paddr_ = (first->has_load_address()
2598                   ? first->load_address()
2599                   : this->vaddr_);
2600   this->are_addresses_set_ = true;
2601   this->offset_ = first->offset();
2602
2603   if (this->output_data_.empty())
2604     this->filesz_ = 0;
2605   else
2606     {
2607       const Output_data* last_data = this->output_data_.back();
2608       this->filesz_ = (last_data->address()
2609                        + last_data->data_size()
2610                        - this->vaddr_);
2611     }
2612
2613   const Output_data* last;
2614   if (this->output_bss_.empty())
2615     last = this->output_data_.back();
2616   else
2617     last = this->output_bss_.back();
2618   this->memsz_ = (last->address()
2619                   + last->data_size()
2620                   - this->vaddr_);
2621
2622   // If this is a TLS segment, align the memory size.  The code in
2623   // set_section_list ensures that the section after the TLS segment
2624   // is aligned to give us room.
2625   if (this->type_ == elfcpp::PT_TLS)
2626     {
2627       uint64_t segment_align = this->maximum_alignment();
2628       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
2629       this->memsz_ = align_address(this->memsz_, segment_align);
2630     }
2631 }
2632
2633 // Set the TLS offsets of the sections in the PT_TLS segment.
2634
2635 void
2636 Output_segment::set_tls_offsets()
2637 {
2638   gold_assert(this->type_ == elfcpp::PT_TLS);
2639
2640   for (Output_data_list::iterator p = this->output_data_.begin();
2641        p != this->output_data_.end();
2642        ++p)
2643     (*p)->set_tls_offset(this->vaddr_);
2644
2645   for (Output_data_list::iterator p = this->output_bss_.begin();
2646        p != this->output_bss_.end();
2647        ++p)
2648     (*p)->set_tls_offset(this->vaddr_);
2649 }
2650
2651 // Return the address of the first section.
2652
2653 uint64_t
2654 Output_segment::first_section_load_address() const
2655 {
2656   for (Output_data_list::const_iterator p = this->output_data_.begin();
2657        p != this->output_data_.end();
2658        ++p)
2659     if ((*p)->is_section())
2660       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2661
2662   for (Output_data_list::const_iterator p = this->output_bss_.begin();
2663        p != this->output_bss_.end();
2664        ++p)
2665     if ((*p)->is_section())
2666       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2667
2668   gold_unreachable();
2669 }
2670
2671 // Return the number of Output_sections in an Output_segment.
2672
2673 unsigned int
2674 Output_segment::output_section_count() const
2675 {
2676   return (this->output_section_count_list(&this->output_data_)
2677           + this->output_section_count_list(&this->output_bss_));
2678 }
2679
2680 // Return the number of Output_sections in an Output_data_list.
2681
2682 unsigned int
2683 Output_segment::output_section_count_list(const Output_data_list* pdl) const
2684 {
2685   unsigned int count = 0;
2686   for (Output_data_list::const_iterator p = pdl->begin();
2687        p != pdl->end();
2688        ++p)
2689     {
2690       if ((*p)->is_section())
2691         ++count;
2692     }
2693   return count;
2694 }
2695
2696 // Return the section attached to the list segment with the lowest
2697 // load address.  This is used when handling a PHDRS clause in a
2698 // linker script.
2699
2700 Output_section*
2701 Output_segment::section_with_lowest_load_address() const
2702 {
2703   Output_section* found = NULL;
2704   uint64_t found_lma = 0;
2705   this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
2706
2707   Output_section* found_data = found;
2708   this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
2709   if (found != found_data && found_data != NULL)
2710     {
2711       gold_error(_("nobits section %s may not precede progbits section %s "
2712                    "in same segment"),
2713                  found->name(), found_data->name());
2714       return NULL;
2715     }
2716
2717   return found;
2718 }
2719
2720 // Look through a list for a section with a lower load address.
2721
2722 void
2723 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
2724                                             Output_section** found,
2725                                             uint64_t* found_lma) const
2726 {
2727   for (Output_data_list::const_iterator p = pdl->begin();
2728        p != pdl->end();
2729        ++p)
2730     {
2731       if (!(*p)->is_section())
2732         continue;
2733       Output_section* os = static_cast<Output_section*>(*p);
2734       uint64_t lma = (os->has_load_address()
2735                       ? os->load_address()
2736                       : os->address());
2737       if (*found == NULL || lma < *found_lma)
2738         {
2739           *found = os;
2740           *found_lma = lma;
2741         }
2742     }
2743 }
2744
2745 // Write the segment data into *OPHDR.
2746
2747 template<int size, bool big_endian>
2748 void
2749 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
2750 {
2751   ophdr->put_p_type(this->type_);
2752   ophdr->put_p_offset(this->offset_);
2753   ophdr->put_p_vaddr(this->vaddr_);
2754   ophdr->put_p_paddr(this->paddr_);
2755   ophdr->put_p_filesz(this->filesz_);
2756   ophdr->put_p_memsz(this->memsz_);
2757   ophdr->put_p_flags(this->flags_);
2758   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
2759 }
2760
2761 // Write the section headers into V.
2762
2763 template<int size, bool big_endian>
2764 unsigned char*
2765 Output_segment::write_section_headers(const Layout* layout,
2766                                       const Stringpool* secnamepool,
2767                                       unsigned char* v,
2768                                       unsigned int *pshndx) const
2769 {
2770   // Every section that is attached to a segment must be attached to a
2771   // PT_LOAD segment, so we only write out section headers for PT_LOAD
2772   // segments.
2773   if (this->type_ != elfcpp::PT_LOAD)
2774     return v;
2775
2776   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
2777                                                          &this->output_data_,
2778                                                          v, pshndx);
2779   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
2780                                                          &this->output_bss_,
2781                                                          v, pshndx);
2782   return v;
2783 }
2784
2785 template<int size, bool big_endian>
2786 unsigned char*
2787 Output_segment::write_section_headers_list(const Layout* layout,
2788                                            const Stringpool* secnamepool,
2789                                            const Output_data_list* pdl,
2790                                            unsigned char* v,
2791                                            unsigned int* pshndx) const
2792 {
2793   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2794   for (Output_data_list::const_iterator p = pdl->begin();
2795        p != pdl->end();
2796        ++p)
2797     {
2798       if ((*p)->is_section())
2799         {
2800           const Output_section* ps = static_cast<const Output_section*>(*p);
2801           gold_assert(*pshndx == ps->out_shndx());
2802           elfcpp::Shdr_write<size, big_endian> oshdr(v);
2803           ps->write_header(layout, secnamepool, &oshdr);
2804           v += shdr_size;
2805           ++*pshndx;
2806         }
2807     }
2808   return v;
2809 }
2810
2811 // Output_file methods.
2812
2813 Output_file::Output_file(const char* name)
2814   : name_(name),
2815     o_(-1),
2816     file_size_(0),
2817     base_(NULL),
2818     map_is_anonymous_(false),
2819     is_temporary_(false)
2820 {
2821 }
2822
2823 // Open the output file.
2824
2825 void
2826 Output_file::open(off_t file_size)
2827 {
2828   this->file_size_ = file_size;
2829
2830   // Unlink the file first; otherwise the open() may fail if the file
2831   // is busy (e.g. it's an executable that's currently being executed).
2832   //
2833   // However, the linker may be part of a system where a zero-length
2834   // file is created for it to write to, with tight permissions (gcc
2835   // 2.95 did something like this).  Unlinking the file would work
2836   // around those permission controls, so we only unlink if the file
2837   // has a non-zero size.  We also unlink only regular files to avoid
2838   // trouble with directories/etc.
2839   //
2840   // If we fail, continue; this command is merely a best-effort attempt
2841   // to improve the odds for open().
2842
2843   // We let the name "-" mean "stdout"
2844   if (!this->is_temporary_)
2845     {
2846       if (strcmp(this->name_, "-") == 0)
2847         this->o_ = STDOUT_FILENO;
2848       else
2849         {
2850           struct stat s;
2851           if (::stat(this->name_, &s) == 0 && s.st_size != 0)
2852             unlink_if_ordinary(this->name_);
2853
2854           int mode = parameters->options().relocatable() ? 0666 : 0777;
2855           int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
2856           if (o < 0)
2857             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
2858           this->o_ = o;
2859         }
2860     }
2861
2862   this->map();
2863 }
2864
2865 // Resize the output file.
2866
2867 void
2868 Output_file::resize(off_t file_size)
2869 {
2870   // If the mmap is mapping an anonymous memory buffer, this is easy:
2871   // just mremap to the new size.  If it's mapping to a file, we want
2872   // to unmap to flush to the file, then remap after growing the file.
2873   if (this->map_is_anonymous_)
2874     {
2875       void* base = ::mremap(this->base_, this->file_size_, file_size,
2876                             MREMAP_MAYMOVE);
2877       if (base == MAP_FAILED)
2878         gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
2879       this->base_ = static_cast<unsigned char*>(base);
2880       this->file_size_ = file_size;
2881     }
2882   else
2883     {
2884       this->unmap();
2885       this->file_size_ = file_size;
2886       this->map();
2887     }
2888 }
2889
2890 // Map the file into memory.
2891
2892 void
2893 Output_file::map()
2894 {
2895   const int o = this->o_;
2896
2897   // If the output file is not a regular file, don't try to mmap it;
2898   // instead, we'll mmap a block of memory (an anonymous buffer), and
2899   // then later write the buffer to the file.
2900   void* base;
2901   struct stat statbuf;
2902   if (o == STDOUT_FILENO || o == STDERR_FILENO
2903       || ::fstat(o, &statbuf) != 0
2904       || !S_ISREG(statbuf.st_mode)
2905       || this->is_temporary_)
2906     {
2907       this->map_is_anonymous_ = true;
2908       base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2909                     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2910     }
2911   else
2912     {
2913       // Write out one byte to make the file the right size.
2914       if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
2915         gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
2916       char b = 0;
2917       if (::write(o, &b, 1) != 1)
2918         gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
2919
2920       // Map the file into memory.
2921       this->map_is_anonymous_ = false;
2922       base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2923                     MAP_SHARED, o, 0);
2924     }
2925   if (base == MAP_FAILED)
2926     gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
2927   this->base_ = static_cast<unsigned char*>(base);
2928 }
2929
2930 // Unmap the file from memory.
2931
2932 void
2933 Output_file::unmap()
2934 {
2935   if (::munmap(this->base_, this->file_size_) < 0)
2936     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
2937   this->base_ = NULL;
2938 }
2939
2940 // Close the output file.
2941
2942 void
2943 Output_file::close()
2944 {
2945   // If the map isn't file-backed, we need to write it now.
2946   if (this->map_is_anonymous_ && !this->is_temporary_)
2947     {
2948       size_t bytes_to_write = this->file_size_;
2949       while (bytes_to_write > 0)
2950         {
2951           ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
2952           if (bytes_written == 0)
2953             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
2954           else if (bytes_written < 0)
2955             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
2956           else
2957             bytes_to_write -= bytes_written;
2958         }
2959     }
2960   this->unmap();
2961
2962   // We don't close stdout or stderr
2963   if (this->o_ != STDOUT_FILENO
2964       && this->o_ != STDERR_FILENO
2965       && !this->is_temporary_)
2966     if (::close(this->o_) < 0)
2967       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
2968   this->o_ = -1;
2969 }
2970
2971 // Instantiate the templates we need.  We could use the configure
2972 // script to restrict this to only the ones for implemented targets.
2973
2974 #ifdef HAVE_TARGET_32_LITTLE
2975 template
2976 off_t
2977 Output_section::add_input_section<32, false>(
2978     Sized_relobj<32, false>* object,
2979     unsigned int shndx,
2980     const char* secname,
2981     const elfcpp::Shdr<32, false>& shdr,
2982     unsigned int reloc_shndx,
2983     bool have_sections_script);
2984 #endif
2985
2986 #ifdef HAVE_TARGET_32_BIG
2987 template
2988 off_t
2989 Output_section::add_input_section<32, true>(
2990     Sized_relobj<32, true>* object,
2991     unsigned int shndx,
2992     const char* secname,
2993     const elfcpp::Shdr<32, true>& shdr,
2994     unsigned int reloc_shndx,
2995     bool have_sections_script);
2996 #endif
2997
2998 #ifdef HAVE_TARGET_64_LITTLE
2999 template
3000 off_t
3001 Output_section::add_input_section<64, false>(
3002     Sized_relobj<64, false>* object,
3003     unsigned int shndx,
3004     const char* secname,
3005     const elfcpp::Shdr<64, false>& shdr,
3006     unsigned int reloc_shndx,
3007     bool have_sections_script);
3008 #endif
3009
3010 #ifdef HAVE_TARGET_64_BIG
3011 template
3012 off_t
3013 Output_section::add_input_section<64, true>(
3014     Sized_relobj<64, true>* object,
3015     unsigned int shndx,
3016     const char* secname,
3017     const elfcpp::Shdr<64, true>& shdr,
3018     unsigned int reloc_shndx,
3019     bool have_sections_script);
3020 #endif
3021
3022 #ifdef HAVE_TARGET_32_LITTLE
3023 template
3024 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3025 #endif
3026
3027 #ifdef HAVE_TARGET_32_BIG
3028 template
3029 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3030 #endif
3031
3032 #ifdef HAVE_TARGET_64_LITTLE
3033 template
3034 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3035 #endif
3036
3037 #ifdef HAVE_TARGET_64_BIG
3038 template
3039 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3040 #endif
3041
3042 #ifdef HAVE_TARGET_32_LITTLE
3043 template
3044 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3045 #endif
3046
3047 #ifdef HAVE_TARGET_32_BIG
3048 template
3049 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3050 #endif
3051
3052 #ifdef HAVE_TARGET_64_LITTLE
3053 template
3054 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3055 #endif
3056
3057 #ifdef HAVE_TARGET_64_BIG
3058 template
3059 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3060 #endif
3061
3062 #ifdef HAVE_TARGET_32_LITTLE
3063 template
3064 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3065 #endif
3066
3067 #ifdef HAVE_TARGET_32_BIG
3068 template
3069 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3070 #endif
3071
3072 #ifdef HAVE_TARGET_64_LITTLE
3073 template
3074 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3075 #endif
3076
3077 #ifdef HAVE_TARGET_64_BIG
3078 template
3079 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3080 #endif
3081
3082 #ifdef HAVE_TARGET_32_LITTLE
3083 template
3084 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3085 #endif
3086
3087 #ifdef HAVE_TARGET_32_BIG
3088 template
3089 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3090 #endif
3091
3092 #ifdef HAVE_TARGET_64_LITTLE
3093 template
3094 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3095 #endif
3096
3097 #ifdef HAVE_TARGET_64_BIG
3098 template
3099 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3100 #endif
3101
3102 #ifdef HAVE_TARGET_32_LITTLE
3103 template
3104 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3105 #endif
3106
3107 #ifdef HAVE_TARGET_32_BIG
3108 template
3109 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3110 #endif
3111
3112 #ifdef HAVE_TARGET_64_LITTLE
3113 template
3114 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3115 #endif
3116
3117 #ifdef HAVE_TARGET_64_BIG
3118 template
3119 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3120 #endif
3121
3122 #ifdef HAVE_TARGET_32_LITTLE
3123 template
3124 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3125 #endif
3126
3127 #ifdef HAVE_TARGET_32_BIG
3128 template
3129 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3130 #endif
3131
3132 #ifdef HAVE_TARGET_64_LITTLE
3133 template
3134 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3135 #endif
3136
3137 #ifdef HAVE_TARGET_64_BIG
3138 template
3139 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3140 #endif
3141
3142 #ifdef HAVE_TARGET_32_LITTLE
3143 template
3144 class Output_data_group<32, false>;
3145 #endif
3146
3147 #ifdef HAVE_TARGET_32_BIG
3148 template
3149 class Output_data_group<32, true>;
3150 #endif
3151
3152 #ifdef HAVE_TARGET_64_LITTLE
3153 template
3154 class Output_data_group<64, false>;
3155 #endif
3156
3157 #ifdef HAVE_TARGET_64_BIG
3158 template
3159 class Output_data_group<64, true>;
3160 #endif
3161
3162 #ifdef HAVE_TARGET_32_LITTLE
3163 template
3164 class Output_data_got<32, false>;
3165 #endif
3166
3167 #ifdef HAVE_TARGET_32_BIG
3168 template
3169 class Output_data_got<32, true>;
3170 #endif
3171
3172 #ifdef HAVE_TARGET_64_LITTLE
3173 template
3174 class Output_data_got<64, false>;
3175 #endif
3176
3177 #ifdef HAVE_TARGET_64_BIG
3178 template
3179 class Output_data_got<64, true>;
3180 #endif
3181
3182 } // End namespace gold.