* object.h (class Object): Remove target_ field, and target,
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS  MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate.  Here we just set
50 // the file size and hope that there is enough disk space.  FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56   return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78   return Output_data::default_alignment_for_size(
79       parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87   if (size == 32)
88     return 4;
89   else if (size == 64)
90     return 8;
91   else
92     gold_unreachable();
93 }
94
95 // Output_section_header methods.  This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99     const Layout* layout,
100     const Layout::Segment_list* segment_list,
101     const Layout::Section_list* section_list,
102     const Layout::Section_list* unattached_section_list,
103     const Stringpool* secnamepool,
104     const Output_section* shstrtab_section)
105   : layout_(layout),
106     segment_list_(segment_list),
107     section_list_(section_list),
108     unattached_section_list_(unattached_section_list),
109     secnamepool_(secnamepool),
110     shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119   // Count all the sections.  Start with 1 for the null section.
120   off_t count = 1;
121   if (!parameters->options().relocatable())
122     {
123       for (Layout::Segment_list::const_iterator p =
124              this->segment_list_->begin();
125            p != this->segment_list_->end();
126            ++p)
127         if ((*p)->type() == elfcpp::PT_LOAD)
128           count += (*p)->output_section_count();
129     }
130   else
131     {
132       for (Layout::Section_list::const_iterator p =
133              this->section_list_->begin();
134            p != this->section_list_->end();
135            ++p)
136         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137           ++count;
138     }
139   count += this->unattached_section_list_->size();
140
141   const int size = parameters->target().get_size();
142   int shdr_size;
143   if (size == 32)
144     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145   else if (size == 64)
146     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147   else
148     gold_unreachable();
149
150   return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158   switch (parameters->size_and_endianness())
159     {
160 #ifdef HAVE_TARGET_32_LITTLE
161     case Parameters::TARGET_32_LITTLE:
162       this->do_sized_write<32, false>(of);
163       break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166     case Parameters::TARGET_32_BIG:
167       this->do_sized_write<32, true>(of);
168       break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171     case Parameters::TARGET_64_LITTLE:
172       this->do_sized_write<64, false>(of);
173       break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176     case Parameters::TARGET_64_BIG:
177       this->do_sized_write<64, true>(of);
178       break;
179 #endif
180     default:
181       gold_unreachable();
182     }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189   off_t all_shdrs_size = this->data_size();
190   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193   unsigned char* v = view;
194
195   {
196     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197     oshdr.put_sh_name(0);
198     oshdr.put_sh_type(elfcpp::SHT_NULL);
199     oshdr.put_sh_flags(0);
200     oshdr.put_sh_addr(0);
201     oshdr.put_sh_offset(0);
202
203     size_t section_count = (this->data_size()
204                             / elfcpp::Elf_sizes<size>::shdr_size);
205     if (section_count < elfcpp::SHN_LORESERVE)
206       oshdr.put_sh_size(0);
207     else
208       oshdr.put_sh_size(section_count);
209
210     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211     if (shstrndx < elfcpp::SHN_LORESERVE)
212       oshdr.put_sh_link(0);
213     else
214       oshdr.put_sh_link(shstrndx);
215
216     oshdr.put_sh_info(0);
217     oshdr.put_sh_addralign(0);
218     oshdr.put_sh_entsize(0);
219   }
220
221   v += shdr_size;
222
223   unsigned int shndx = 1;
224   if (!parameters->options().relocatable())
225     {
226       for (Layout::Segment_list::const_iterator p =
227              this->segment_list_->begin();
228            p != this->segment_list_->end();
229            ++p)
230         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
231                                                           this->secnamepool_,
232                                                           v,
233                                                           &shndx);
234     }
235   else
236     {
237       for (Layout::Section_list::const_iterator p =
238              this->section_list_->begin();
239            p != this->section_list_->end();
240            ++p)
241         {
242           // We do unallocated sections below, except that group
243           // sections have to come first.
244           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
245               && (*p)->type() != elfcpp::SHT_GROUP)
246             continue;
247           gold_assert(shndx == (*p)->out_shndx());
248           elfcpp::Shdr_write<size, big_endian> oshdr(v);
249           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
250           v += shdr_size;
251           ++shndx;
252         }
253     }
254
255   for (Layout::Section_list::const_iterator p =
256          this->unattached_section_list_->begin();
257        p != this->unattached_section_list_->end();
258        ++p)
259     {
260       // For a relocatable link, we did unallocated group sections
261       // above, since they have to come first.
262       if ((*p)->type() == elfcpp::SHT_GROUP
263           && parameters->options().relocatable())
264         continue;
265       gold_assert(shndx == (*p)->out_shndx());
266       elfcpp::Shdr_write<size, big_endian> oshdr(v);
267       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
268       v += shdr_size;
269       ++shndx;
270     }
271
272   of->write_output_view(this->offset(), all_shdrs_size, view);
273 }
274
275 // Output_segment_header methods.
276
277 Output_segment_headers::Output_segment_headers(
278     const Layout::Segment_list& segment_list)
279   : segment_list_(segment_list)
280 {
281 }
282
283 void
284 Output_segment_headers::do_write(Output_file* of)
285 {
286   switch (parameters->size_and_endianness())
287     {
288 #ifdef HAVE_TARGET_32_LITTLE
289     case Parameters::TARGET_32_LITTLE:
290       this->do_sized_write<32, false>(of);
291       break;
292 #endif
293 #ifdef HAVE_TARGET_32_BIG
294     case Parameters::TARGET_32_BIG:
295       this->do_sized_write<32, true>(of);
296       break;
297 #endif
298 #ifdef HAVE_TARGET_64_LITTLE
299     case Parameters::TARGET_64_LITTLE:
300       this->do_sized_write<64, false>(of);
301       break;
302 #endif
303 #ifdef HAVE_TARGET_64_BIG
304     case Parameters::TARGET_64_BIG:
305       this->do_sized_write<64, true>(of);
306       break;
307 #endif
308     default:
309       gold_unreachable();
310     }
311 }
312
313 template<int size, bool big_endian>
314 void
315 Output_segment_headers::do_sized_write(Output_file* of)
316 {
317   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
318   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
319   gold_assert(all_phdrs_size == this->data_size());
320   unsigned char* view = of->get_output_view(this->offset(),
321                                             all_phdrs_size);
322   unsigned char* v = view;
323   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
324        p != this->segment_list_.end();
325        ++p)
326     {
327       elfcpp::Phdr_write<size, big_endian> ophdr(v);
328       (*p)->write_header(&ophdr);
329       v += phdr_size;
330     }
331
332   gold_assert(v - view == all_phdrs_size);
333
334   of->write_output_view(this->offset(), all_phdrs_size, view);
335 }
336
337 off_t
338 Output_segment_headers::do_size() const
339 {
340   const int size = parameters->target().get_size();
341   int phdr_size;
342   if (size == 32)
343     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
344   else if (size == 64)
345     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
346   else
347     gold_unreachable();
348
349   return this->segment_list_.size() * phdr_size;
350 }
351
352 // Output_file_header methods.
353
354 Output_file_header::Output_file_header(const Target* target,
355                                        const Symbol_table* symtab,
356                                        const Output_segment_headers* osh,
357                                        const char* entry)
358   : target_(target),
359     symtab_(symtab),
360     segment_header_(osh),
361     section_header_(NULL),
362     shstrtab_(NULL),
363     entry_(entry)
364 {
365   this->set_data_size(this->do_size());
366 }
367
368 // Set the section table information for a file header.
369
370 void
371 Output_file_header::set_section_info(const Output_section_headers* shdrs,
372                                      const Output_section* shstrtab)
373 {
374   this->section_header_ = shdrs;
375   this->shstrtab_ = shstrtab;
376 }
377
378 // Write out the file header.
379
380 void
381 Output_file_header::do_write(Output_file* of)
382 {
383   gold_assert(this->offset() == 0);
384
385   switch (parameters->size_and_endianness())
386     {
387 #ifdef HAVE_TARGET_32_LITTLE
388     case Parameters::TARGET_32_LITTLE:
389       this->do_sized_write<32, false>(of);
390       break;
391 #endif
392 #ifdef HAVE_TARGET_32_BIG
393     case Parameters::TARGET_32_BIG:
394       this->do_sized_write<32, true>(of);
395       break;
396 #endif
397 #ifdef HAVE_TARGET_64_LITTLE
398     case Parameters::TARGET_64_LITTLE:
399       this->do_sized_write<64, false>(of);
400       break;
401 #endif
402 #ifdef HAVE_TARGET_64_BIG
403     case Parameters::TARGET_64_BIG:
404       this->do_sized_write<64, true>(of);
405       break;
406 #endif
407     default:
408       gold_unreachable();
409     }
410 }
411
412 // Write out the file header with appropriate size and endianess.
413
414 template<int size, bool big_endian>
415 void
416 Output_file_header::do_sized_write(Output_file* of)
417 {
418   gold_assert(this->offset() == 0);
419
420   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
421   unsigned char* view = of->get_output_view(0, ehdr_size);
422   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
423
424   unsigned char e_ident[elfcpp::EI_NIDENT];
425   memset(e_ident, 0, elfcpp::EI_NIDENT);
426   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
427   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
428   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
429   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
430   if (size == 32)
431     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
432   else if (size == 64)
433     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
434   else
435     gold_unreachable();
436   e_ident[elfcpp::EI_DATA] = (big_endian
437                               ? elfcpp::ELFDATA2MSB
438                               : elfcpp::ELFDATA2LSB);
439   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
440   oehdr.put_e_ident(e_ident);
441
442   elfcpp::ET e_type;
443   if (parameters->options().relocatable())
444     e_type = elfcpp::ET_REL;
445   else if (parameters->options().shared())
446     e_type = elfcpp::ET_DYN;
447   else
448     e_type = elfcpp::ET_EXEC;
449   oehdr.put_e_type(e_type);
450
451   oehdr.put_e_machine(this->target_->machine_code());
452   oehdr.put_e_version(elfcpp::EV_CURRENT);
453
454   oehdr.put_e_entry(this->entry<size>());
455
456   if (this->segment_header_ == NULL)
457     oehdr.put_e_phoff(0);
458   else
459     oehdr.put_e_phoff(this->segment_header_->offset());
460
461   oehdr.put_e_shoff(this->section_header_->offset());
462
463   // FIXME: The target needs to set the flags.
464   oehdr.put_e_flags(0);
465
466   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
467
468   if (this->segment_header_ == NULL)
469     {
470       oehdr.put_e_phentsize(0);
471       oehdr.put_e_phnum(0);
472     }
473   else
474     {
475       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
476       oehdr.put_e_phnum(this->segment_header_->data_size()
477                         / elfcpp::Elf_sizes<size>::phdr_size);
478     }
479
480   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
481   size_t section_count = (this->section_header_->data_size()
482                           / elfcpp::Elf_sizes<size>::shdr_size);
483
484   if (section_count < elfcpp::SHN_LORESERVE)
485     oehdr.put_e_shnum(this->section_header_->data_size()
486                       / elfcpp::Elf_sizes<size>::shdr_size);
487   else
488     oehdr.put_e_shnum(0);
489
490   unsigned int shstrndx = this->shstrtab_->out_shndx();
491   if (shstrndx < elfcpp::SHN_LORESERVE)
492     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
493   else
494     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
495
496   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
497   // the e_ident field.
498   parameters->target().adjust_elf_header(view, ehdr_size);
499
500   of->write_output_view(0, ehdr_size, view);
501 }
502
503 // Return the value to use for the entry address.  THIS->ENTRY_ is the
504 // symbol specified on the command line, if any.
505
506 template<int size>
507 typename elfcpp::Elf_types<size>::Elf_Addr
508 Output_file_header::entry()
509 {
510   const bool should_issue_warning = (this->entry_ != NULL
511                                      && !parameters->options().relocatable()
512                                      && !parameters->options().shared());
513
514   // FIXME: Need to support target specific entry symbol.
515   const char* entry = this->entry_;
516   if (entry == NULL)
517     entry = "_start";
518
519   Symbol* sym = this->symtab_->lookup(entry);
520
521   typename Sized_symbol<size>::Value_type v;
522   if (sym != NULL)
523     {
524       Sized_symbol<size>* ssym;
525       ssym = this->symtab_->get_sized_symbol<size>(sym);
526       if (!ssym->is_defined() && should_issue_warning)
527         gold_warning("entry symbol '%s' exists but is not defined", entry);
528       v = ssym->value();
529     }
530   else
531     {
532       // We couldn't find the entry symbol.  See if we can parse it as
533       // a number.  This supports, e.g., -e 0x1000.
534       char* endptr;
535       v = strtoull(entry, &endptr, 0);
536       if (*endptr != '\0')
537         {
538           if (should_issue_warning)
539             gold_warning("cannot find entry symbol '%s'", entry);
540           v = 0;
541         }
542     }
543
544   return v;
545 }
546
547 // Compute the current data size.
548
549 off_t
550 Output_file_header::do_size() const
551 {
552   const int size = parameters->target().get_size();
553   if (size == 32)
554     return elfcpp::Elf_sizes<32>::ehdr_size;
555   else if (size == 64)
556     return elfcpp::Elf_sizes<64>::ehdr_size;
557   else
558     gold_unreachable();
559 }
560
561 // Output_data_const methods.
562
563 void
564 Output_data_const::do_write(Output_file* of)
565 {
566   of->write(this->offset(), this->data_.data(), this->data_.size());
567 }
568
569 // Output_data_const_buffer methods.
570
571 void
572 Output_data_const_buffer::do_write(Output_file* of)
573 {
574   of->write(this->offset(), this->p_, this->data_size());
575 }
576
577 // Output_section_data methods.
578
579 // Record the output section, and set the entry size and such.
580
581 void
582 Output_section_data::set_output_section(Output_section* os)
583 {
584   gold_assert(this->output_section_ == NULL);
585   this->output_section_ = os;
586   this->do_adjust_output_section(os);
587 }
588
589 // Return the section index of the output section.
590
591 unsigned int
592 Output_section_data::do_out_shndx() const
593 {
594   gold_assert(this->output_section_ != NULL);
595   return this->output_section_->out_shndx();
596 }
597
598 // Set the alignment, which means we may need to update the alignment
599 // of the output section.
600
601 void
602 Output_section_data::set_addralign(uint64_t addralign)
603 {
604   this->addralign_ = addralign;
605   if (this->output_section_ != NULL
606       && this->output_section_->addralign() < addralign)
607     this->output_section_->set_addralign(addralign);
608 }
609
610 // Output_data_strtab methods.
611
612 // Set the final data size.
613
614 void
615 Output_data_strtab::set_final_data_size()
616 {
617   this->strtab_->set_string_offsets();
618   this->set_data_size(this->strtab_->get_strtab_size());
619 }
620
621 // Write out a string table.
622
623 void
624 Output_data_strtab::do_write(Output_file* of)
625 {
626   this->strtab_->write(of, this->offset());
627 }
628
629 // Output_reloc methods.
630
631 // A reloc against a global symbol.
632
633 template<bool dynamic, int size, bool big_endian>
634 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
635     Symbol* gsym,
636     unsigned int type,
637     Output_data* od,
638     Address address,
639     bool is_relative)
640   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
641     is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
642 {
643   // this->type_ is a bitfield; make sure TYPE fits.
644   gold_assert(this->type_ == type);
645   this->u1_.gsym = gsym;
646   this->u2_.od = od;
647   if (dynamic)
648     this->set_needs_dynsym_index();
649 }
650
651 template<bool dynamic, int size, bool big_endian>
652 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
653     Symbol* gsym,
654     unsigned int type,
655     Sized_relobj<size, big_endian>* relobj,
656     unsigned int shndx,
657     Address address,
658     bool is_relative)
659   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
660     is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
661 {
662   gold_assert(shndx != INVALID_CODE);
663   // this->type_ is a bitfield; make sure TYPE fits.
664   gold_assert(this->type_ == type);
665   this->u1_.gsym = gsym;
666   this->u2_.relobj = relobj;
667   if (dynamic)
668     this->set_needs_dynsym_index();
669 }
670
671 // A reloc against a local symbol.
672
673 template<bool dynamic, int size, bool big_endian>
674 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
675     Sized_relobj<size, big_endian>* relobj,
676     unsigned int local_sym_index,
677     unsigned int type,
678     Output_data* od,
679     Address address,
680     bool is_relative,
681     bool is_section_symbol)
682   : address_(address), local_sym_index_(local_sym_index), type_(type),
683     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
684     shndx_(INVALID_CODE)
685 {
686   gold_assert(local_sym_index != GSYM_CODE
687               && local_sym_index != INVALID_CODE);
688   // this->type_ is a bitfield; make sure TYPE fits.
689   gold_assert(this->type_ == type);
690   this->u1_.relobj = relobj;
691   this->u2_.od = od;
692   if (dynamic)
693     this->set_needs_dynsym_index();
694 }
695
696 template<bool dynamic, int size, bool big_endian>
697 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
698     Sized_relobj<size, big_endian>* relobj,
699     unsigned int local_sym_index,
700     unsigned int type,
701     unsigned int shndx,
702     Address address,
703     bool is_relative,
704     bool is_section_symbol)
705   : address_(address), local_sym_index_(local_sym_index), type_(type),
706     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
707     shndx_(shndx)
708 {
709   gold_assert(local_sym_index != GSYM_CODE
710               && local_sym_index != INVALID_CODE);
711   gold_assert(shndx != INVALID_CODE);
712   // this->type_ is a bitfield; make sure TYPE fits.
713   gold_assert(this->type_ == type);
714   this->u1_.relobj = relobj;
715   this->u2_.relobj = relobj;
716   if (dynamic)
717     this->set_needs_dynsym_index();
718 }
719
720 // A reloc against the STT_SECTION symbol of an output section.
721
722 template<bool dynamic, int size, bool big_endian>
723 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
724     Output_section* os,
725     unsigned int type,
726     Output_data* od,
727     Address address)
728   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
729     is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
730 {
731   // this->type_ is a bitfield; make sure TYPE fits.
732   gold_assert(this->type_ == type);
733   this->u1_.os = os;
734   this->u2_.od = od;
735   if (dynamic)
736     this->set_needs_dynsym_index();
737   else
738     os->set_needs_symtab_index();
739 }
740
741 template<bool dynamic, int size, bool big_endian>
742 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
743     Output_section* os,
744     unsigned int type,
745     Sized_relobj<size, big_endian>* relobj,
746     unsigned int shndx,
747     Address address)
748   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
749     is_relative_(false), is_section_symbol_(true), shndx_(shndx)
750 {
751   gold_assert(shndx != INVALID_CODE);
752   // this->type_ is a bitfield; make sure TYPE fits.
753   gold_assert(this->type_ == type);
754   this->u1_.os = os;
755   this->u2_.relobj = relobj;
756   if (dynamic)
757     this->set_needs_dynsym_index();
758   else
759     os->set_needs_symtab_index();
760 }
761
762 // Record that we need a dynamic symbol index for this relocation.
763
764 template<bool dynamic, int size, bool big_endian>
765 void
766 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
767 set_needs_dynsym_index()
768 {
769   if (this->is_relative_)
770     return;
771   switch (this->local_sym_index_)
772     {
773     case INVALID_CODE:
774       gold_unreachable();
775
776     case GSYM_CODE:
777       this->u1_.gsym->set_needs_dynsym_entry();
778       break;
779
780     case SECTION_CODE:
781       this->u1_.os->set_needs_dynsym_index();
782       break;
783
784     case 0:
785       break;
786
787     default:
788       {
789         const unsigned int lsi = this->local_sym_index_;
790         if (!this->is_section_symbol_)
791           this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
792         else
793           this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
794       }
795       break;
796     }
797 }
798
799 // Get the symbol index of a relocation.
800
801 template<bool dynamic, int size, bool big_endian>
802 unsigned int
803 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
804   const
805 {
806   unsigned int index;
807   switch (this->local_sym_index_)
808     {
809     case INVALID_CODE:
810       gold_unreachable();
811
812     case GSYM_CODE:
813       if (this->u1_.gsym == NULL)
814         index = 0;
815       else if (dynamic)
816         index = this->u1_.gsym->dynsym_index();
817       else
818         index = this->u1_.gsym->symtab_index();
819       break;
820
821     case SECTION_CODE:
822       if (dynamic)
823         index = this->u1_.os->dynsym_index();
824       else
825         index = this->u1_.os->symtab_index();
826       break;
827
828     case 0:
829       // Relocations without symbols use a symbol index of 0.
830       index = 0;
831       break;
832
833     default:
834       {
835         const unsigned int lsi = this->local_sym_index_;
836         if (!this->is_section_symbol_)
837           {
838             if (dynamic)
839               index = this->u1_.relobj->dynsym_index(lsi);
840             else
841               index = this->u1_.relobj->symtab_index(lsi);
842           }
843         else
844           {
845             Output_section* os = this->u1_.relobj->output_section(lsi);
846             gold_assert(os != NULL);
847             if (dynamic)
848               index = os->dynsym_index();
849             else
850               index = os->symtab_index();
851           }
852       }
853       break;
854     }
855   gold_assert(index != -1U);
856   return index;
857 }
858
859 // For a local section symbol, get the address of the offset ADDEND
860 // within the input section.
861
862 template<bool dynamic, int size, bool big_endian>
863 typename elfcpp::Elf_types<size>::Elf_Addr
864 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
865   local_section_offset(Addend addend) const
866 {
867   gold_assert(this->local_sym_index_ != GSYM_CODE
868               && this->local_sym_index_ != SECTION_CODE
869               && this->local_sym_index_ != INVALID_CODE
870               && this->is_section_symbol_);
871   const unsigned int lsi = this->local_sym_index_;
872   Output_section* os = this->u1_.relobj->output_section(lsi);
873   gold_assert(os != NULL);
874   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
875   if (offset != invalid_address)
876     return offset + addend;
877   // This is a merge section.
878   offset = os->output_address(this->u1_.relobj, lsi, addend);
879   gold_assert(offset != invalid_address);
880   return offset;
881 }
882
883 // Get the output address of a relocation.
884
885 template<bool dynamic, int size, bool big_endian>
886 typename elfcpp::Elf_types<size>::Elf_Addr
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
888 {
889   Address address = this->address_;
890   if (this->shndx_ != INVALID_CODE)
891     {
892       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
893       gold_assert(os != NULL);
894       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
895       if (off != invalid_address)
896         address += os->address() + off;
897       else
898         {
899           address = os->output_address(this->u2_.relobj, this->shndx_,
900                                        address);
901           gold_assert(address != invalid_address);
902         }
903     }
904   else if (this->u2_.od != NULL)
905     address += this->u2_.od->address();
906   return address;
907 }
908
909 // Write out the offset and info fields of a Rel or Rela relocation
910 // entry.
911
912 template<bool dynamic, int size, bool big_endian>
913 template<typename Write_rel>
914 void
915 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
916     Write_rel* wr) const
917 {
918   wr->put_r_offset(this->get_address());
919   unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
920   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
921 }
922
923 // Write out a Rel relocation.
924
925 template<bool dynamic, int size, bool big_endian>
926 void
927 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
928     unsigned char* pov) const
929 {
930   elfcpp::Rel_write<size, big_endian> orel(pov);
931   this->write_rel(&orel);
932 }
933
934 // Get the value of the symbol referred to by a Rel relocation.
935
936 template<bool dynamic, int size, bool big_endian>
937 typename elfcpp::Elf_types<size>::Elf_Addr
938 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
939     Addend addend) const
940 {
941   if (this->local_sym_index_ == GSYM_CODE)
942     {
943       const Sized_symbol<size>* sym;
944       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
945       return sym->value() + addend;
946     }
947   gold_assert(this->local_sym_index_ != SECTION_CODE
948               && this->local_sym_index_ != INVALID_CODE
949               && !this->is_section_symbol_);
950   const unsigned int lsi = this->local_sym_index_;
951   const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
952   return symval->value(this->u1_.relobj, addend);
953 }
954
955 // Reloc comparison.  This function sorts the dynamic relocs for the
956 // benefit of the dynamic linker.  First we sort all relative relocs
957 // to the front.  Among relative relocs, we sort by output address.
958 // Among non-relative relocs, we sort by symbol index, then by output
959 // address.
960
961 template<bool dynamic, int size, bool big_endian>
962 int
963 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
964   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
965     const
966 {
967   if (this->is_relative_)
968     {
969       if (!r2.is_relative_)
970         return -1;
971       // Otherwise sort by reloc address below.
972     }
973   else if (r2.is_relative_)
974     return 1;
975   else
976     {
977       unsigned int sym1 = this->get_symbol_index();
978       unsigned int sym2 = r2.get_symbol_index();
979       if (sym1 < sym2)
980         return -1;
981       else if (sym1 > sym2)
982         return 1;
983       // Otherwise sort by reloc address.
984     }
985
986   section_offset_type addr1 = this->get_address();
987   section_offset_type addr2 = r2.get_address();
988   if (addr1 < addr2)
989     return -1;
990   else if (addr1 > addr2)
991     return 1;
992
993   // Final tie breaker, in order to generate the same output on any
994   // host: reloc type.
995   unsigned int type1 = this->type_;
996   unsigned int type2 = r2.type_;
997   if (type1 < type2)
998     return -1;
999   else if (type1 > type2)
1000     return 1;
1001
1002   // These relocs appear to be exactly the same.
1003   return 0;
1004 }
1005
1006 // Write out a Rela relocation.
1007
1008 template<bool dynamic, int size, bool big_endian>
1009 void
1010 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1011     unsigned char* pov) const
1012 {
1013   elfcpp::Rela_write<size, big_endian> orel(pov);
1014   this->rel_.write_rel(&orel);
1015   Addend addend = this->addend_;
1016   if (this->rel_.is_relative())
1017     addend = this->rel_.symbol_value(addend);
1018   else if (this->rel_.is_local_section_symbol())
1019     addend = this->rel_.local_section_offset(addend);
1020   orel.put_r_addend(addend);
1021 }
1022
1023 // Output_data_reloc_base methods.
1024
1025 // Adjust the output section.
1026
1027 template<int sh_type, bool dynamic, int size, bool big_endian>
1028 void
1029 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1030     ::do_adjust_output_section(Output_section* os)
1031 {
1032   if (sh_type == elfcpp::SHT_REL)
1033     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1034   else if (sh_type == elfcpp::SHT_RELA)
1035     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1036   else
1037     gold_unreachable();
1038   if (dynamic)
1039     os->set_should_link_to_dynsym();
1040   else
1041     os->set_should_link_to_symtab();
1042 }
1043
1044 // Write out relocation data.
1045
1046 template<int sh_type, bool dynamic, int size, bool big_endian>
1047 void
1048 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1049     Output_file* of)
1050 {
1051   const off_t off = this->offset();
1052   const off_t oview_size = this->data_size();
1053   unsigned char* const oview = of->get_output_view(off, oview_size);
1054
1055   if (this->sort_relocs_)
1056     {
1057       gold_assert(dynamic);
1058       std::sort(this->relocs_.begin(), this->relocs_.end(),
1059                 Sort_relocs_comparison());
1060     }
1061
1062   unsigned char* pov = oview;
1063   for (typename Relocs::const_iterator p = this->relocs_.begin();
1064        p != this->relocs_.end();
1065        ++p)
1066     {
1067       p->write(pov);
1068       pov += reloc_size;
1069     }
1070
1071   gold_assert(pov - oview == oview_size);
1072
1073   of->write_output_view(off, oview_size, oview);
1074
1075   // We no longer need the relocation entries.
1076   this->relocs_.clear();
1077 }
1078
1079 // Class Output_relocatable_relocs.
1080
1081 template<int sh_type, int size, bool big_endian>
1082 void
1083 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1084 {
1085   this->set_data_size(this->rr_->output_reloc_count()
1086                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1087 }
1088
1089 // class Output_data_group.
1090
1091 template<int size, bool big_endian>
1092 Output_data_group<size, big_endian>::Output_data_group(
1093     Sized_relobj<size, big_endian>* relobj,
1094     section_size_type entry_count,
1095     elfcpp::Elf_Word flags,
1096     std::vector<unsigned int>* input_shndxes)
1097   : Output_section_data(entry_count * 4, 4, false),
1098     relobj_(relobj),
1099     flags_(flags)
1100 {
1101   this->input_shndxes_.swap(*input_shndxes);
1102 }
1103
1104 // Write out the section group, which means translating the section
1105 // indexes to apply to the output file.
1106
1107 template<int size, bool big_endian>
1108 void
1109 Output_data_group<size, big_endian>::do_write(Output_file* of)
1110 {
1111   const off_t off = this->offset();
1112   const section_size_type oview_size =
1113     convert_to_section_size_type(this->data_size());
1114   unsigned char* const oview = of->get_output_view(off, oview_size);
1115
1116   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1117   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1118   ++contents;
1119
1120   for (std::vector<unsigned int>::const_iterator p =
1121          this->input_shndxes_.begin();
1122        p != this->input_shndxes_.end();
1123        ++p, ++contents)
1124     {
1125       Output_section* os = this->relobj_->output_section(*p);
1126
1127       unsigned int output_shndx;
1128       if (os != NULL)
1129         output_shndx = os->out_shndx();
1130       else
1131         {
1132           this->relobj_->error(_("section group retained but "
1133                                  "group element discarded"));
1134           output_shndx = 0;
1135         }
1136
1137       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1138     }
1139
1140   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1141   gold_assert(wrote == oview_size);
1142
1143   of->write_output_view(off, oview_size, oview);
1144
1145   // We no longer need this information.
1146   this->input_shndxes_.clear();
1147 }
1148
1149 // Output_data_got::Got_entry methods.
1150
1151 // Write out the entry.
1152
1153 template<int size, bool big_endian>
1154 void
1155 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1156 {
1157   Valtype val = 0;
1158
1159   switch (this->local_sym_index_)
1160     {
1161     case GSYM_CODE:
1162       {
1163         // If the symbol is resolved locally, we need to write out the
1164         // link-time value, which will be relocated dynamically by a
1165         // RELATIVE relocation.
1166         Symbol* gsym = this->u_.gsym;
1167         Sized_symbol<size>* sgsym;
1168         // This cast is a bit ugly.  We don't want to put a
1169         // virtual method in Symbol, because we want Symbol to be
1170         // as small as possible.
1171         sgsym = static_cast<Sized_symbol<size>*>(gsym);
1172         val = sgsym->value();
1173       }
1174       break;
1175
1176     case CONSTANT_CODE:
1177       val = this->u_.constant;
1178       break;
1179
1180     default:
1181       {
1182         const unsigned int lsi = this->local_sym_index_;
1183         const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1184         val = symval->value(this->u_.object, 0);
1185       }
1186       break;
1187     }
1188
1189   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1190 }
1191
1192 // Output_data_got methods.
1193
1194 // Add an entry for a global symbol to the GOT.  This returns true if
1195 // this is a new GOT entry, false if the symbol already had a GOT
1196 // entry.
1197
1198 template<int size, bool big_endian>
1199 bool
1200 Output_data_got<size, big_endian>::add_global(
1201     Symbol* gsym,
1202     unsigned int got_type)
1203 {
1204   if (gsym->has_got_offset(got_type))
1205     return false;
1206
1207   this->entries_.push_back(Got_entry(gsym));
1208   this->set_got_size();
1209   gsym->set_got_offset(got_type, this->last_got_offset());
1210   return true;
1211 }
1212
1213 // Add an entry for a global symbol to the GOT, and add a dynamic
1214 // relocation of type R_TYPE for the GOT entry.
1215 template<int size, bool big_endian>
1216 void
1217 Output_data_got<size, big_endian>::add_global_with_rel(
1218     Symbol* gsym,
1219     unsigned int got_type,
1220     Rel_dyn* rel_dyn,
1221     unsigned int r_type)
1222 {
1223   if (gsym->has_got_offset(got_type))
1224     return;
1225
1226   this->entries_.push_back(Got_entry());
1227   this->set_got_size();
1228   unsigned int got_offset = this->last_got_offset();
1229   gsym->set_got_offset(got_type, got_offset);
1230   rel_dyn->add_global(gsym, r_type, this, got_offset);
1231 }
1232
1233 template<int size, bool big_endian>
1234 void
1235 Output_data_got<size, big_endian>::add_global_with_rela(
1236     Symbol* gsym,
1237     unsigned int got_type,
1238     Rela_dyn* rela_dyn,
1239     unsigned int r_type)
1240 {
1241   if (gsym->has_got_offset(got_type))
1242     return;
1243
1244   this->entries_.push_back(Got_entry());
1245   this->set_got_size();
1246   unsigned int got_offset = this->last_got_offset();
1247   gsym->set_got_offset(got_type, got_offset);
1248   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1249 }
1250
1251 // Add a pair of entries for a global symbol to the GOT, and add
1252 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1253 // If R_TYPE_2 == 0, add the second entry with no relocation.
1254 template<int size, bool big_endian>
1255 void
1256 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1257     Symbol* gsym,
1258     unsigned int got_type,
1259     Rel_dyn* rel_dyn,
1260     unsigned int r_type_1,
1261     unsigned int r_type_2)
1262 {
1263   if (gsym->has_got_offset(got_type))
1264     return;
1265
1266   this->entries_.push_back(Got_entry());
1267   unsigned int got_offset = this->last_got_offset();
1268   gsym->set_got_offset(got_type, got_offset);
1269   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1270
1271   this->entries_.push_back(Got_entry());
1272   if (r_type_2 != 0)
1273     {
1274       got_offset = this->last_got_offset();
1275       rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1276     }
1277
1278   this->set_got_size();
1279 }
1280
1281 template<int size, bool big_endian>
1282 void
1283 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1284     Symbol* gsym,
1285     unsigned int got_type,
1286     Rela_dyn* rela_dyn,
1287     unsigned int r_type_1,
1288     unsigned int r_type_2)
1289 {
1290   if (gsym->has_got_offset(got_type))
1291     return;
1292
1293   this->entries_.push_back(Got_entry());
1294   unsigned int got_offset = this->last_got_offset();
1295   gsym->set_got_offset(got_type, got_offset);
1296   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1297
1298   this->entries_.push_back(Got_entry());
1299   if (r_type_2 != 0)
1300     {
1301       got_offset = this->last_got_offset();
1302       rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1303     }
1304
1305   this->set_got_size();
1306 }
1307
1308 // Add an entry for a local symbol to the GOT.  This returns true if
1309 // this is a new GOT entry, false if the symbol already has a GOT
1310 // entry.
1311
1312 template<int size, bool big_endian>
1313 bool
1314 Output_data_got<size, big_endian>::add_local(
1315     Sized_relobj<size, big_endian>* object,
1316     unsigned int symndx,
1317     unsigned int got_type)
1318 {
1319   if (object->local_has_got_offset(symndx, got_type))
1320     return false;
1321
1322   this->entries_.push_back(Got_entry(object, symndx));
1323   this->set_got_size();
1324   object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1325   return true;
1326 }
1327
1328 // Add an entry for a local symbol to the GOT, and add a dynamic
1329 // relocation of type R_TYPE for the GOT entry.
1330 template<int size, bool big_endian>
1331 void
1332 Output_data_got<size, big_endian>::add_local_with_rel(
1333     Sized_relobj<size, big_endian>* object,
1334     unsigned int symndx,
1335     unsigned int got_type,
1336     Rel_dyn* rel_dyn,
1337     unsigned int r_type)
1338 {
1339   if (object->local_has_got_offset(symndx, got_type))
1340     return;
1341
1342   this->entries_.push_back(Got_entry());
1343   this->set_got_size();
1344   unsigned int got_offset = this->last_got_offset();
1345   object->set_local_got_offset(symndx, got_type, got_offset);
1346   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1347 }
1348
1349 template<int size, bool big_endian>
1350 void
1351 Output_data_got<size, big_endian>::add_local_with_rela(
1352     Sized_relobj<size, big_endian>* object,
1353     unsigned int symndx,
1354     unsigned int got_type,
1355     Rela_dyn* rela_dyn,
1356     unsigned int r_type)
1357 {
1358   if (object->local_has_got_offset(symndx, got_type))
1359     return;
1360
1361   this->entries_.push_back(Got_entry());
1362   this->set_got_size();
1363   unsigned int got_offset = this->last_got_offset();
1364   object->set_local_got_offset(symndx, got_type, got_offset);
1365   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1366 }
1367
1368 // Add a pair of entries for a local symbol to the GOT, and add
1369 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1370 // If R_TYPE_2 == 0, add the second entry with no relocation.
1371 template<int size, bool big_endian>
1372 void
1373 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1374     Sized_relobj<size, big_endian>* object,
1375     unsigned int symndx,
1376     unsigned int shndx,
1377     unsigned int got_type,
1378     Rel_dyn* rel_dyn,
1379     unsigned int r_type_1,
1380     unsigned int r_type_2)
1381 {
1382   if (object->local_has_got_offset(symndx, got_type))
1383     return;
1384
1385   this->entries_.push_back(Got_entry());
1386   unsigned int got_offset = this->last_got_offset();
1387   object->set_local_got_offset(symndx, got_type, got_offset);
1388   Output_section* os = object->output_section(shndx);
1389   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1390
1391   this->entries_.push_back(Got_entry(object, symndx));
1392   if (r_type_2 != 0)
1393     {
1394       got_offset = this->last_got_offset();
1395       rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1396     }
1397
1398   this->set_got_size();
1399 }
1400
1401 template<int size, bool big_endian>
1402 void
1403 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1404     Sized_relobj<size, big_endian>* object,
1405     unsigned int symndx,
1406     unsigned int shndx,
1407     unsigned int got_type,
1408     Rela_dyn* rela_dyn,
1409     unsigned int r_type_1,
1410     unsigned int r_type_2)
1411 {
1412   if (object->local_has_got_offset(symndx, got_type))
1413     return;
1414
1415   this->entries_.push_back(Got_entry());
1416   unsigned int got_offset = this->last_got_offset();
1417   object->set_local_got_offset(symndx, got_type, got_offset);
1418   Output_section* os = object->output_section(shndx);
1419   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1420
1421   this->entries_.push_back(Got_entry(object, symndx));
1422   if (r_type_2 != 0)
1423     {
1424       got_offset = this->last_got_offset();
1425       rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1426     }
1427
1428   this->set_got_size();
1429 }
1430
1431 // Write out the GOT.
1432
1433 template<int size, bool big_endian>
1434 void
1435 Output_data_got<size, big_endian>::do_write(Output_file* of)
1436 {
1437   const int add = size / 8;
1438
1439   const off_t off = this->offset();
1440   const off_t oview_size = this->data_size();
1441   unsigned char* const oview = of->get_output_view(off, oview_size);
1442
1443   unsigned char* pov = oview;
1444   for (typename Got_entries::const_iterator p = this->entries_.begin();
1445        p != this->entries_.end();
1446        ++p)
1447     {
1448       p->write(pov);
1449       pov += add;
1450     }
1451
1452   gold_assert(pov - oview == oview_size);
1453
1454   of->write_output_view(off, oview_size, oview);
1455
1456   // We no longer need the GOT entries.
1457   this->entries_.clear();
1458 }
1459
1460 // Output_data_dynamic::Dynamic_entry methods.
1461
1462 // Write out the entry.
1463
1464 template<int size, bool big_endian>
1465 void
1466 Output_data_dynamic::Dynamic_entry::write(
1467     unsigned char* pov,
1468     const Stringpool* pool) const
1469 {
1470   typename elfcpp::Elf_types<size>::Elf_WXword val;
1471   switch (this->offset_)
1472     {
1473     case DYNAMIC_NUMBER:
1474       val = this->u_.val;
1475       break;
1476
1477     case DYNAMIC_SECTION_SIZE:
1478       val = this->u_.od->data_size();
1479       break;
1480
1481     case DYNAMIC_SYMBOL:
1482       {
1483         const Sized_symbol<size>* s =
1484           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1485         val = s->value();
1486       }
1487       break;
1488
1489     case DYNAMIC_STRING:
1490       val = pool->get_offset(this->u_.str);
1491       break;
1492
1493     default:
1494       val = this->u_.od->address() + this->offset_;
1495       break;
1496     }
1497
1498   elfcpp::Dyn_write<size, big_endian> dw(pov);
1499   dw.put_d_tag(this->tag_);
1500   dw.put_d_val(val);
1501 }
1502
1503 // Output_data_dynamic methods.
1504
1505 // Adjust the output section to set the entry size.
1506
1507 void
1508 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1509 {
1510   if (parameters->target().get_size() == 32)
1511     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1512   else if (parameters->target().get_size() == 64)
1513     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1514   else
1515     gold_unreachable();
1516 }
1517
1518 // Set the final data size.
1519
1520 void
1521 Output_data_dynamic::set_final_data_size()
1522 {
1523   // Add the terminating entry if it hasn't been added.
1524   // Because of relaxation, we can run this multiple times.
1525   if (this->entries_.empty()
1526       || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1527     this->add_constant(elfcpp::DT_NULL, 0);
1528
1529   int dyn_size;
1530   if (parameters->target().get_size() == 32)
1531     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1532   else if (parameters->target().get_size() == 64)
1533     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1534   else
1535     gold_unreachable();
1536   this->set_data_size(this->entries_.size() * dyn_size);
1537 }
1538
1539 // Write out the dynamic entries.
1540
1541 void
1542 Output_data_dynamic::do_write(Output_file* of)
1543 {
1544   switch (parameters->size_and_endianness())
1545     {
1546 #ifdef HAVE_TARGET_32_LITTLE
1547     case Parameters::TARGET_32_LITTLE:
1548       this->sized_write<32, false>(of);
1549       break;
1550 #endif
1551 #ifdef HAVE_TARGET_32_BIG
1552     case Parameters::TARGET_32_BIG:
1553       this->sized_write<32, true>(of);
1554       break;
1555 #endif
1556 #ifdef HAVE_TARGET_64_LITTLE
1557     case Parameters::TARGET_64_LITTLE:
1558       this->sized_write<64, false>(of);
1559       break;
1560 #endif
1561 #ifdef HAVE_TARGET_64_BIG
1562     case Parameters::TARGET_64_BIG:
1563       this->sized_write<64, true>(of);
1564       break;
1565 #endif
1566     default:
1567       gold_unreachable();
1568     }
1569 }
1570
1571 template<int size, bool big_endian>
1572 void
1573 Output_data_dynamic::sized_write(Output_file* of)
1574 {
1575   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1576
1577   const off_t offset = this->offset();
1578   const off_t oview_size = this->data_size();
1579   unsigned char* const oview = of->get_output_view(offset, oview_size);
1580
1581   unsigned char* pov = oview;
1582   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1583        p != this->entries_.end();
1584        ++p)
1585     {
1586       p->write<size, big_endian>(pov, this->pool_);
1587       pov += dyn_size;
1588     }
1589
1590   gold_assert(pov - oview == oview_size);
1591
1592   of->write_output_view(offset, oview_size, oview);
1593
1594   // We no longer need the dynamic entries.
1595   this->entries_.clear();
1596 }
1597
1598 // Class Output_symtab_xindex.
1599
1600 void
1601 Output_symtab_xindex::do_write(Output_file* of)
1602 {
1603   const off_t offset = this->offset();
1604   const off_t oview_size = this->data_size();
1605   unsigned char* const oview = of->get_output_view(offset, oview_size);
1606
1607   memset(oview, 0, oview_size);
1608
1609   if (parameters->target().is_big_endian())
1610     this->endian_do_write<true>(oview);
1611   else
1612     this->endian_do_write<false>(oview);
1613
1614   of->write_output_view(offset, oview_size, oview);
1615
1616   // We no longer need the data.
1617   this->entries_.clear();
1618 }
1619
1620 template<bool big_endian>
1621 void
1622 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1623 {
1624   for (Xindex_entries::const_iterator p = this->entries_.begin();
1625        p != this->entries_.end();
1626        ++p)
1627     {
1628       unsigned int symndx = p->first;
1629       gold_assert(symndx * 4 < this->data_size());
1630       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1631     }
1632 }
1633
1634 // Output_section::Input_section methods.
1635
1636 // Return the data size.  For an input section we store the size here.
1637 // For an Output_section_data, we have to ask it for the size.
1638
1639 off_t
1640 Output_section::Input_section::data_size() const
1641 {
1642   if (this->is_input_section())
1643     return this->u1_.data_size;
1644   else
1645     return this->u2_.posd->data_size();
1646 }
1647
1648 // Set the address and file offset.
1649
1650 void
1651 Output_section::Input_section::set_address_and_file_offset(
1652     uint64_t address,
1653     off_t file_offset,
1654     off_t section_file_offset)
1655 {
1656   if (this->is_input_section())
1657     this->u2_.object->set_section_offset(this->shndx_,
1658                                          file_offset - section_file_offset);
1659   else
1660     this->u2_.posd->set_address_and_file_offset(address, file_offset);
1661 }
1662
1663 // Reset the address and file offset.
1664
1665 void
1666 Output_section::Input_section::reset_address_and_file_offset()
1667 {
1668   if (!this->is_input_section())
1669     this->u2_.posd->reset_address_and_file_offset();
1670 }
1671
1672 // Finalize the data size.
1673
1674 void
1675 Output_section::Input_section::finalize_data_size()
1676 {
1677   if (!this->is_input_section())
1678     this->u2_.posd->finalize_data_size();
1679 }
1680
1681 // Try to turn an input offset into an output offset.  We want to
1682 // return the output offset relative to the start of this
1683 // Input_section in the output section.
1684
1685 inline bool
1686 Output_section::Input_section::output_offset(
1687     const Relobj* object,
1688     unsigned int shndx,
1689     section_offset_type offset,
1690     section_offset_type *poutput) const
1691 {
1692   if (!this->is_input_section())
1693     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1694   else
1695     {
1696       if (this->shndx_ != shndx || this->u2_.object != object)
1697         return false;
1698       *poutput = offset;
1699       return true;
1700     }
1701 }
1702
1703 // Return whether this is the merge section for the input section
1704 // SHNDX in OBJECT.
1705
1706 inline bool
1707 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1708                                                     unsigned int shndx) const
1709 {
1710   if (this->is_input_section())
1711     return false;
1712   return this->u2_.posd->is_merge_section_for(object, shndx);
1713 }
1714
1715 // Write out the data.  We don't have to do anything for an input
1716 // section--they are handled via Object::relocate--but this is where
1717 // we write out the data for an Output_section_data.
1718
1719 void
1720 Output_section::Input_section::write(Output_file* of)
1721 {
1722   if (!this->is_input_section())
1723     this->u2_.posd->write(of);
1724 }
1725
1726 // Write the data to a buffer.  As for write(), we don't have to do
1727 // anything for an input section.
1728
1729 void
1730 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1731 {
1732   if (!this->is_input_section())
1733     this->u2_.posd->write_to_buffer(buffer);
1734 }
1735
1736 // Print to a map file.
1737
1738 void
1739 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1740 {
1741   switch (this->shndx_)
1742     {
1743     case OUTPUT_SECTION_CODE:
1744     case MERGE_DATA_SECTION_CODE:
1745     case MERGE_STRING_SECTION_CODE:
1746       this->u2_.posd->print_to_mapfile(mapfile);
1747       break;
1748
1749     case RELAXED_INPUT_SECTION_CODE:
1750       {
1751         Output_relaxed_input_section* relaxed_section =
1752           this->relaxed_input_section();
1753         mapfile->print_input_section(relaxed_section->relobj(),
1754                                      relaxed_section->shndx());
1755       }
1756       break;
1757     default:
1758       mapfile->print_input_section(this->u2_.object, this->shndx_);
1759       break;
1760     }
1761 }
1762
1763 // Output_section methods.
1764
1765 // Construct an Output_section.  NAME will point into a Stringpool.
1766
1767 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1768                                elfcpp::Elf_Xword flags)
1769   : name_(name),
1770     addralign_(0),
1771     entsize_(0),
1772     load_address_(0),
1773     link_section_(NULL),
1774     link_(0),
1775     info_section_(NULL),
1776     info_symndx_(NULL),
1777     info_(0),
1778     type_(type),
1779     flags_(flags),
1780     out_shndx_(-1U),
1781     symtab_index_(0),
1782     dynsym_index_(0),
1783     input_sections_(),
1784     first_input_offset_(0),
1785     fills_(),
1786     postprocessing_buffer_(NULL),
1787     needs_symtab_index_(false),
1788     needs_dynsym_index_(false),
1789     should_link_to_symtab_(false),
1790     should_link_to_dynsym_(false),
1791     after_input_sections_(false),
1792     requires_postprocessing_(false),
1793     found_in_sections_clause_(false),
1794     has_load_address_(false),
1795     info_uses_section_index_(false),
1796     may_sort_attached_input_sections_(false),
1797     must_sort_attached_input_sections_(false),
1798     attached_input_sections_are_sorted_(false),
1799     is_relro_(false),
1800     is_relro_local_(false),
1801     is_small_section_(false),
1802     is_large_section_(false),
1803     tls_offset_(0),
1804     checkpoint_(NULL)
1805 {
1806   // An unallocated section has no address.  Forcing this means that
1807   // we don't need special treatment for symbols defined in debug
1808   // sections.
1809   if ((flags & elfcpp::SHF_ALLOC) == 0)
1810     this->set_address(0);
1811 }
1812
1813 Output_section::~Output_section()
1814 {
1815   delete this->checkpoint_;
1816 }
1817
1818 // Set the entry size.
1819
1820 void
1821 Output_section::set_entsize(uint64_t v)
1822 {
1823   if (this->entsize_ == 0)
1824     this->entsize_ = v;
1825   else
1826     gold_assert(this->entsize_ == v);
1827 }
1828
1829 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1830 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
1831 // relocation section which applies to this section, or 0 if none, or
1832 // -1U if more than one.  Return the offset of the input section
1833 // within the output section.  Return -1 if the input section will
1834 // receive special handling.  In the normal case we don't always keep
1835 // track of input sections for an Output_section.  Instead, each
1836 // Object keeps track of the Output_section for each of its input
1837 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1838 // track of input sections here; this is used when SECTIONS appears in
1839 // a linker script.
1840
1841 template<int size, bool big_endian>
1842 off_t
1843 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1844                                   unsigned int shndx,
1845                                   const char* secname,
1846                                   const elfcpp::Shdr<size, big_endian>& shdr,
1847                                   unsigned int reloc_shndx,
1848                                   bool have_sections_script)
1849 {
1850   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1851   if ((addralign & (addralign - 1)) != 0)
1852     {
1853       object->error(_("invalid alignment %lu for section \"%s\""),
1854                     static_cast<unsigned long>(addralign), secname);
1855       addralign = 1;
1856     }
1857
1858   if (addralign > this->addralign_)
1859     this->addralign_ = addralign;
1860
1861   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1862   this->update_flags_for_input_section(sh_flags);
1863
1864   uint64_t entsize = shdr.get_sh_entsize();
1865
1866   // .debug_str is a mergeable string section, but is not always so
1867   // marked by compilers.  Mark manually here so we can optimize.
1868   if (strcmp(secname, ".debug_str") == 0)
1869     {
1870       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1871       entsize = 1;
1872     }
1873
1874   // If this is a SHF_MERGE section, we pass all the input sections to
1875   // a Output_data_merge.  We don't try to handle relocations for such
1876   // a section.  We don't try to handle empty merge sections--they
1877   // mess up the mappings, and are useless anyhow.
1878   if ((sh_flags & elfcpp::SHF_MERGE) != 0
1879       && reloc_shndx == 0
1880       && shdr.get_sh_size() > 0)
1881     {
1882       if (this->add_merge_input_section(object, shndx, sh_flags,
1883                                         entsize, addralign))
1884         {
1885           // Tell the relocation routines that they need to call the
1886           // output_offset method to determine the final address.
1887           return -1;
1888         }
1889     }
1890
1891   off_t offset_in_section = this->current_data_size_for_child();
1892   off_t aligned_offset_in_section = align_address(offset_in_section,
1893                                                   addralign);
1894
1895   if (aligned_offset_in_section > offset_in_section
1896       && !have_sections_script
1897       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1898       && parameters->target().has_code_fill())
1899     {
1900       // We need to add some fill data.  Using fill_list_ when
1901       // possible is an optimization, since we will often have fill
1902       // sections without input sections.
1903       off_t fill_len = aligned_offset_in_section - offset_in_section;
1904       if (this->input_sections_.empty())
1905         this->fills_.push_back(Fill(offset_in_section, fill_len));
1906       else
1907         {
1908           // FIXME: When relaxing, the size needs to adjust to
1909           // maintain a constant alignment.
1910           std::string fill_data(parameters->target().code_fill(fill_len));
1911           Output_data_const* odc = new Output_data_const(fill_data, 1);
1912           this->input_sections_.push_back(Input_section(odc));
1913         }
1914     }
1915
1916   this->set_current_data_size_for_child(aligned_offset_in_section
1917                                         + shdr.get_sh_size());
1918
1919   // We need to keep track of this section if we are already keeping
1920   // track of sections, or if we are relaxing.  Also, if this is a
1921   // section which requires sorting, or which may require sorting in
1922   // the future, we keep track of the sections.
1923   if (have_sections_script
1924       || !this->input_sections_.empty()
1925       || this->may_sort_attached_input_sections()
1926       || this->must_sort_attached_input_sections()
1927       || parameters->options().user_set_Map()
1928       || parameters->target().may_relax())
1929     this->input_sections_.push_back(Input_section(object, shndx,
1930                                                   shdr.get_sh_size(),
1931                                                   addralign));
1932
1933   return aligned_offset_in_section;
1934 }
1935
1936 // Add arbitrary data to an output section.
1937
1938 void
1939 Output_section::add_output_section_data(Output_section_data* posd)
1940 {
1941   Input_section inp(posd);
1942   this->add_output_section_data(&inp);
1943
1944   if (posd->is_data_size_valid())
1945     {
1946       off_t offset_in_section = this->current_data_size_for_child();
1947       off_t aligned_offset_in_section = align_address(offset_in_section,
1948                                                       posd->addralign());
1949       this->set_current_data_size_for_child(aligned_offset_in_section
1950                                             + posd->data_size());
1951     }
1952 }
1953
1954 // Add arbitrary data to an output section by Input_section.
1955
1956 void
1957 Output_section::add_output_section_data(Input_section* inp)
1958 {
1959   if (this->input_sections_.empty())
1960     this->first_input_offset_ = this->current_data_size_for_child();
1961
1962   this->input_sections_.push_back(*inp);
1963
1964   uint64_t addralign = inp->addralign();
1965   if (addralign > this->addralign_)
1966     this->addralign_ = addralign;
1967
1968   inp->set_output_section(this);
1969 }
1970
1971 // Add a merge section to an output section.
1972
1973 void
1974 Output_section::add_output_merge_section(Output_section_data* posd,
1975                                          bool is_string, uint64_t entsize)
1976 {
1977   Input_section inp(posd, is_string, entsize);
1978   this->add_output_section_data(&inp);
1979 }
1980
1981 // Add an input section to a SHF_MERGE section.
1982
1983 bool
1984 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1985                                         uint64_t flags, uint64_t entsize,
1986                                         uint64_t addralign)
1987 {
1988   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1989
1990   // We only merge strings if the alignment is not more than the
1991   // character size.  This could be handled, but it's unusual.
1992   if (is_string && addralign > entsize)
1993     return false;
1994
1995   // We cannot restore merged input section states.
1996   gold_assert(this->checkpoint_ == NULL);
1997
1998   Input_section_list::iterator p;
1999   for (p = this->input_sections_.begin();
2000        p != this->input_sections_.end();
2001        ++p)
2002     if (p->is_merge_section(is_string, entsize, addralign))
2003       {
2004         p->add_input_section(object, shndx);
2005         return true;
2006       }
2007
2008   // We handle the actual constant merging in Output_merge_data or
2009   // Output_merge_string_data.
2010   Output_section_data* posd;
2011   if (!is_string)
2012     posd = new Output_merge_data(entsize, addralign);
2013   else
2014     {
2015       switch (entsize)
2016         {
2017         case 1:
2018           posd = new Output_merge_string<char>(addralign);
2019           break;
2020         case 2:
2021           posd = new Output_merge_string<uint16_t>(addralign);
2022           break;
2023         case 4:
2024           posd = new Output_merge_string<uint32_t>(addralign);
2025           break;
2026         default:
2027           return false;
2028         }
2029     }
2030
2031   this->add_output_merge_section(posd, is_string, entsize);
2032   posd->add_input_section(object, shndx);
2033
2034   return true;
2035 }
2036
2037 // Relax an existing input section.
2038 void
2039 Output_section::relax_input_section(Output_relaxed_input_section *psection)
2040 {
2041   Relobj* relobj = psection->relobj();
2042   unsigned int shndx = psection->shndx();
2043
2044   gold_assert(parameters->target().may_relax());
2045
2046   // This is not very efficient if we a going to relax a number of sections
2047   // in an Output_section with lot of Input_sections.
2048   for (Input_section_list::iterator p = this->input_sections_.begin();
2049        p != this->input_sections_.end();
2050        ++p)
2051     {
2052       if (p->is_input_section())
2053         {
2054           if (p->relobj() == relobj && p->shndx() == shndx)
2055             {
2056               gold_assert(p->addralign() == psection->addralign());
2057               *p = Input_section(psection);
2058               return;
2059             }
2060         }
2061       else if (p->is_relaxed_input_section())
2062         gold_assert(p->relobj() != relobj || p->shndx() != shndx);
2063
2064     }
2065 }
2066
2067 // Update the output section flags based on input section flags.
2068
2069 void
2070 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2071 {
2072   // If we created the section with SHF_ALLOC clear, we set the
2073   // address.  If we are now setting the SHF_ALLOC flag, we need to
2074   // undo that.
2075   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2076       && (flags & elfcpp::SHF_ALLOC) != 0)
2077     this->mark_address_invalid();
2078
2079   this->flags_ |= (flags
2080                    & (elfcpp::SHF_WRITE
2081                       | elfcpp::SHF_ALLOC
2082                       | elfcpp::SHF_EXECINSTR));
2083 }
2084
2085 // Given an address OFFSET relative to the start of input section
2086 // SHNDX in OBJECT, return whether this address is being included in
2087 // the final link.  This should only be called if SHNDX in OBJECT has
2088 // a special mapping.
2089
2090 bool
2091 Output_section::is_input_address_mapped(const Relobj* object,
2092                                         unsigned int shndx,
2093                                         off_t offset) const
2094 {
2095   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2096        p != this->input_sections_.end();
2097        ++p)
2098     {
2099       section_offset_type output_offset;
2100       if (p->output_offset(object, shndx, offset, &output_offset))
2101         return output_offset != -1;
2102     }
2103
2104   // By default we assume that the address is mapped.  This should
2105   // only be called after we have passed all sections to Layout.  At
2106   // that point we should know what we are discarding.
2107   return true;
2108 }
2109
2110 // Given an address OFFSET relative to the start of input section
2111 // SHNDX in object OBJECT, return the output offset relative to the
2112 // start of the input section in the output section.  This should only
2113 // be called if SHNDX in OBJECT has a special mapping.
2114
2115 section_offset_type
2116 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2117                               section_offset_type offset) const
2118 {
2119   // This can only be called meaningfully when layout is complete.
2120   gold_assert(Output_data::is_layout_complete());
2121
2122   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2123        p != this->input_sections_.end();
2124        ++p)
2125     {
2126       section_offset_type output_offset;
2127       if (p->output_offset(object, shndx, offset, &output_offset))
2128         return output_offset;
2129     }
2130   gold_unreachable();
2131 }
2132
2133 // Return the output virtual address of OFFSET relative to the start
2134 // of input section SHNDX in object OBJECT.
2135
2136 uint64_t
2137 Output_section::output_address(const Relobj* object, unsigned int shndx,
2138                                off_t offset) const
2139 {
2140   uint64_t addr = this->address() + this->first_input_offset_;
2141   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2142        p != this->input_sections_.end();
2143        ++p)
2144     {
2145       addr = align_address(addr, p->addralign());
2146       section_offset_type output_offset;
2147       if (p->output_offset(object, shndx, offset, &output_offset))
2148         {
2149           if (output_offset == -1)
2150             return -1ULL;
2151           return addr + output_offset;
2152         }
2153       addr += p->data_size();
2154     }
2155
2156   // If we get here, it means that we don't know the mapping for this
2157   // input section.  This might happen in principle if
2158   // add_input_section were called before add_output_section_data.
2159   // But it should never actually happen.
2160
2161   gold_unreachable();
2162 }
2163
2164 // Find the output address of the start of the merged section for
2165 // input section SHNDX in object OBJECT.
2166
2167 bool
2168 Output_section::find_starting_output_address(const Relobj* object,
2169                                              unsigned int shndx,
2170                                              uint64_t* paddr) const
2171 {
2172   uint64_t addr = this->address() + this->first_input_offset_;
2173   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2174        p != this->input_sections_.end();
2175        ++p)
2176     {
2177       addr = align_address(addr, p->addralign());
2178
2179       // It would be nice if we could use the existing output_offset
2180       // method to get the output offset of input offset 0.
2181       // Unfortunately we don't know for sure that input offset 0 is
2182       // mapped at all.
2183       if (p->is_merge_section_for(object, shndx))
2184         {
2185           *paddr = addr;
2186           return true;
2187         }
2188
2189       addr += p->data_size();
2190     }
2191
2192   // We couldn't find a merge output section for this input section.
2193   return false;
2194 }
2195
2196 // Set the data size of an Output_section.  This is where we handle
2197 // setting the addresses of any Output_section_data objects.
2198
2199 void
2200 Output_section::set_final_data_size()
2201 {
2202   if (this->input_sections_.empty())
2203     {
2204       this->set_data_size(this->current_data_size_for_child());
2205       return;
2206     }
2207
2208   if (this->must_sort_attached_input_sections())
2209     this->sort_attached_input_sections();
2210
2211   uint64_t address = this->address();
2212   off_t startoff = this->offset();
2213   off_t off = startoff + this->first_input_offset_;
2214   for (Input_section_list::iterator p = this->input_sections_.begin();
2215        p != this->input_sections_.end();
2216        ++p)
2217     {
2218       off = align_address(off, p->addralign());
2219       p->set_address_and_file_offset(address + (off - startoff), off,
2220                                      startoff);
2221       off += p->data_size();
2222     }
2223
2224   this->set_data_size(off - startoff);
2225 }
2226
2227 // Reset the address and file offset.
2228
2229 void
2230 Output_section::do_reset_address_and_file_offset()
2231 {
2232   // An unallocated section has no address.  Forcing this means that
2233   // we don't need special treatment for symbols defined in debug
2234   // sections.  We do the same in the constructor.
2235   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2236      this->set_address(0);
2237
2238   for (Input_section_list::iterator p = this->input_sections_.begin();
2239        p != this->input_sections_.end();
2240        ++p)
2241     p->reset_address_and_file_offset();
2242 }
2243   
2244 // Return true if address and file offset have the values after reset.
2245
2246 bool
2247 Output_section::do_address_and_file_offset_have_reset_values() const
2248 {
2249   if (this->is_offset_valid())
2250     return false;
2251
2252   // An unallocated section has address 0 after its construction or a reset.
2253   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2254     return this->is_address_valid() && this->address() == 0;
2255   else
2256     return !this->is_address_valid();
2257 }
2258
2259 // Set the TLS offset.  Called only for SHT_TLS sections.
2260
2261 void
2262 Output_section::do_set_tls_offset(uint64_t tls_base)
2263 {
2264   this->tls_offset_ = this->address() - tls_base;
2265 }
2266
2267 // In a few cases we need to sort the input sections attached to an
2268 // output section.  This is used to implement the type of constructor
2269 // priority ordering implemented by the GNU linker, in which the
2270 // priority becomes part of the section name and the sections are
2271 // sorted by name.  We only do this for an output section if we see an
2272 // attached input section matching ".ctor.*", ".dtor.*",
2273 // ".init_array.*" or ".fini_array.*".
2274
2275 class Output_section::Input_section_sort_entry
2276 {
2277  public:
2278   Input_section_sort_entry()
2279     : input_section_(), index_(-1U), section_has_name_(false),
2280       section_name_()
2281   { }
2282
2283   Input_section_sort_entry(const Input_section& input_section,
2284                            unsigned int index)
2285     : input_section_(input_section), index_(index),
2286       section_has_name_(input_section.is_input_section()
2287                         || input_section.is_relaxed_input_section())
2288   {
2289     if (this->section_has_name_)
2290       {
2291         // This is only called single-threaded from Layout::finalize,
2292         // so it is OK to lock.  Unfortunately we have no way to pass
2293         // in a Task token.
2294         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2295         Object* obj = (input_section.is_input_section()
2296                        ? input_section.relobj()
2297                        : input_section.relaxed_input_section()->relobj());
2298         Task_lock_obj<Object> tl(dummy_task, obj);
2299
2300         // This is a slow operation, which should be cached in
2301         // Layout::layout if this becomes a speed problem.
2302         this->section_name_ = obj->section_name(input_section.shndx());
2303       }
2304   }
2305
2306   // Return the Input_section.
2307   const Input_section&
2308   input_section() const
2309   {
2310     gold_assert(this->index_ != -1U);
2311     return this->input_section_;
2312   }
2313
2314   // The index of this entry in the original list.  This is used to
2315   // make the sort stable.
2316   unsigned int
2317   index() const
2318   {
2319     gold_assert(this->index_ != -1U);
2320     return this->index_;
2321   }
2322
2323   // Whether there is a section name.
2324   bool
2325   section_has_name() const
2326   { return this->section_has_name_; }
2327
2328   // The section name.
2329   const std::string&
2330   section_name() const
2331   {
2332     gold_assert(this->section_has_name_);
2333     return this->section_name_;
2334   }
2335
2336   // Return true if the section name has a priority.  This is assumed
2337   // to be true if it has a dot after the initial dot.
2338   bool
2339   has_priority() const
2340   {
2341     gold_assert(this->section_has_name_);
2342     return this->section_name_.find('.', 1);
2343   }
2344
2345   // Return true if this an input file whose base name matches
2346   // FILE_NAME.  The base name must have an extension of ".o", and
2347   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2348   // This is to match crtbegin.o as well as crtbeginS.o without
2349   // getting confused by other possibilities.  Overall matching the
2350   // file name this way is a dreadful hack, but the GNU linker does it
2351   // in order to better support gcc, and we need to be compatible.
2352   bool
2353   match_file_name(const char* match_file_name) const
2354   {
2355     const std::string& file_name(this->input_section_.relobj()->name());
2356     const char* base_name = lbasename(file_name.c_str());
2357     size_t match_len = strlen(match_file_name);
2358     if (strncmp(base_name, match_file_name, match_len) != 0)
2359       return false;
2360     size_t base_len = strlen(base_name);
2361     if (base_len != match_len + 2 && base_len != match_len + 3)
2362       return false;
2363     return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2364   }
2365
2366  private:
2367   // The Input_section we are sorting.
2368   Input_section input_section_;
2369   // The index of this Input_section in the original list.
2370   unsigned int index_;
2371   // Whether this Input_section has a section name--it won't if this
2372   // is some random Output_section_data.
2373   bool section_has_name_;
2374   // The section name if there is one.
2375   std::string section_name_;
2376 };
2377
2378 // Return true if S1 should come before S2 in the output section.
2379
2380 bool
2381 Output_section::Input_section_sort_compare::operator()(
2382     const Output_section::Input_section_sort_entry& s1,
2383     const Output_section::Input_section_sort_entry& s2) const
2384 {
2385   // crtbegin.o must come first.
2386   bool s1_begin = s1.match_file_name("crtbegin");
2387   bool s2_begin = s2.match_file_name("crtbegin");
2388   if (s1_begin || s2_begin)
2389     {
2390       if (!s1_begin)
2391         return false;
2392       if (!s2_begin)
2393         return true;
2394       return s1.index() < s2.index();
2395     }
2396
2397   // crtend.o must come last.
2398   bool s1_end = s1.match_file_name("crtend");
2399   bool s2_end = s2.match_file_name("crtend");
2400   if (s1_end || s2_end)
2401     {
2402       if (!s1_end)
2403         return true;
2404       if (!s2_end)
2405         return false;
2406       return s1.index() < s2.index();
2407     }
2408
2409   // We sort all the sections with no names to the end.
2410   if (!s1.section_has_name() || !s2.section_has_name())
2411     {
2412       if (s1.section_has_name())
2413         return true;
2414       if (s2.section_has_name())
2415         return false;
2416       return s1.index() < s2.index();
2417     }
2418
2419   // A section with a priority follows a section without a priority.
2420   // The GNU linker does this for all but .init_array sections; until
2421   // further notice we'll assume that that is an mistake.
2422   bool s1_has_priority = s1.has_priority();
2423   bool s2_has_priority = s2.has_priority();
2424   if (s1_has_priority && !s2_has_priority)
2425     return false;
2426   if (!s1_has_priority && s2_has_priority)
2427     return true;
2428
2429   // Otherwise we sort by name.
2430   int compare = s1.section_name().compare(s2.section_name());
2431   if (compare != 0)
2432     return compare < 0;
2433
2434   // Otherwise we keep the input order.
2435   return s1.index() < s2.index();
2436 }
2437
2438 // Sort the input sections attached to an output section.
2439
2440 void
2441 Output_section::sort_attached_input_sections()
2442 {
2443   if (this->attached_input_sections_are_sorted_)
2444     return;
2445
2446   if (this->checkpoint_ != NULL
2447       && !this->checkpoint_->input_sections_saved())
2448     this->checkpoint_->save_input_sections();
2449
2450   // The only thing we know about an input section is the object and
2451   // the section index.  We need the section name.  Recomputing this
2452   // is slow but this is an unusual case.  If this becomes a speed
2453   // problem we can cache the names as required in Layout::layout.
2454
2455   // We start by building a larger vector holding a copy of each
2456   // Input_section, plus its current index in the list and its name.
2457   std::vector<Input_section_sort_entry> sort_list;
2458
2459   unsigned int i = 0;
2460   for (Input_section_list::iterator p = this->input_sections_.begin();
2461        p != this->input_sections_.end();
2462        ++p, ++i)
2463     sort_list.push_back(Input_section_sort_entry(*p, i));
2464
2465   // Sort the input sections.
2466   std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2467
2468   // Copy the sorted input sections back to our list.
2469   this->input_sections_.clear();
2470   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2471        p != sort_list.end();
2472        ++p)
2473     this->input_sections_.push_back(p->input_section());
2474
2475   // Remember that we sorted the input sections, since we might get
2476   // called again.
2477   this->attached_input_sections_are_sorted_ = true;
2478 }
2479
2480 // Write the section header to *OSHDR.
2481
2482 template<int size, bool big_endian>
2483 void
2484 Output_section::write_header(const Layout* layout,
2485                              const Stringpool* secnamepool,
2486                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
2487 {
2488   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2489   oshdr->put_sh_type(this->type_);
2490
2491   elfcpp::Elf_Xword flags = this->flags_;
2492   if (this->info_section_ != NULL && this->info_uses_section_index_)
2493     flags |= elfcpp::SHF_INFO_LINK;
2494   oshdr->put_sh_flags(flags);
2495
2496   oshdr->put_sh_addr(this->address());
2497   oshdr->put_sh_offset(this->offset());
2498   oshdr->put_sh_size(this->data_size());
2499   if (this->link_section_ != NULL)
2500     oshdr->put_sh_link(this->link_section_->out_shndx());
2501   else if (this->should_link_to_symtab_)
2502     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2503   else if (this->should_link_to_dynsym_)
2504     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2505   else
2506     oshdr->put_sh_link(this->link_);
2507
2508   elfcpp::Elf_Word info;
2509   if (this->info_section_ != NULL)
2510     {
2511       if (this->info_uses_section_index_)
2512         info = this->info_section_->out_shndx();
2513       else
2514         info = this->info_section_->symtab_index();
2515     }
2516   else if (this->info_symndx_ != NULL)
2517     info = this->info_symndx_->symtab_index();
2518   else
2519     info = this->info_;
2520   oshdr->put_sh_info(info);
2521
2522   oshdr->put_sh_addralign(this->addralign_);
2523   oshdr->put_sh_entsize(this->entsize_);
2524 }
2525
2526 // Write out the data.  For input sections the data is written out by
2527 // Object::relocate, but we have to handle Output_section_data objects
2528 // here.
2529
2530 void
2531 Output_section::do_write(Output_file* of)
2532 {
2533   gold_assert(!this->requires_postprocessing());
2534
2535   off_t output_section_file_offset = this->offset();
2536   for (Fill_list::iterator p = this->fills_.begin();
2537        p != this->fills_.end();
2538        ++p)
2539     {
2540       std::string fill_data(parameters->target().code_fill(p->length()));
2541       of->write(output_section_file_offset + p->section_offset(),
2542                 fill_data.data(), fill_data.size());
2543     }
2544
2545   for (Input_section_list::iterator p = this->input_sections_.begin();
2546        p != this->input_sections_.end();
2547        ++p)
2548     p->write(of);
2549 }
2550
2551 // If a section requires postprocessing, create the buffer to use.
2552
2553 void
2554 Output_section::create_postprocessing_buffer()
2555 {
2556   gold_assert(this->requires_postprocessing());
2557
2558   if (this->postprocessing_buffer_ != NULL)
2559     return;
2560
2561   if (!this->input_sections_.empty())
2562     {
2563       off_t off = this->first_input_offset_;
2564       for (Input_section_list::iterator p = this->input_sections_.begin();
2565            p != this->input_sections_.end();
2566            ++p)
2567         {
2568           off = align_address(off, p->addralign());
2569           p->finalize_data_size();
2570           off += p->data_size();
2571         }
2572       this->set_current_data_size_for_child(off);
2573     }
2574
2575   off_t buffer_size = this->current_data_size_for_child();
2576   this->postprocessing_buffer_ = new unsigned char[buffer_size];
2577 }
2578
2579 // Write all the data of an Output_section into the postprocessing
2580 // buffer.  This is used for sections which require postprocessing,
2581 // such as compression.  Input sections are handled by
2582 // Object::Relocate.
2583
2584 void
2585 Output_section::write_to_postprocessing_buffer()
2586 {
2587   gold_assert(this->requires_postprocessing());
2588
2589   unsigned char* buffer = this->postprocessing_buffer();
2590   for (Fill_list::iterator p = this->fills_.begin();
2591        p != this->fills_.end();
2592        ++p)
2593     {
2594       std::string fill_data(parameters->target().code_fill(p->length()));
2595       memcpy(buffer + p->section_offset(), fill_data.data(),
2596              fill_data.size());
2597     }
2598
2599   off_t off = this->first_input_offset_;
2600   for (Input_section_list::iterator p = this->input_sections_.begin();
2601        p != this->input_sections_.end();
2602        ++p)
2603     {
2604       off = align_address(off, p->addralign());
2605       p->write_to_buffer(buffer + off);
2606       off += p->data_size();
2607     }
2608 }
2609
2610 // Get the input sections for linker script processing.  We leave
2611 // behind the Output_section_data entries.  Note that this may be
2612 // slightly incorrect for merge sections.  We will leave them behind,
2613 // but it is possible that the script says that they should follow
2614 // some other input sections, as in:
2615 //    .rodata { *(.rodata) *(.rodata.cst*) }
2616 // For that matter, we don't handle this correctly:
2617 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2618 // With luck this will never matter.
2619
2620 uint64_t
2621 Output_section::get_input_sections(
2622     uint64_t address,
2623     const std::string& fill,
2624     std::list<Simple_input_section>* input_sections)
2625 {
2626   if (this->checkpoint_ != NULL
2627       && !this->checkpoint_->input_sections_saved())
2628     this->checkpoint_->save_input_sections();
2629
2630   uint64_t orig_address = address;
2631
2632   address = align_address(address, this->addralign());
2633
2634   Input_section_list remaining;
2635   for (Input_section_list::iterator p = this->input_sections_.begin();
2636        p != this->input_sections_.end();
2637        ++p)
2638     {
2639       if (p->is_input_section())
2640         input_sections->push_back(Simple_input_section(p->relobj(),
2641                                                        p->shndx()));
2642       else if (p->is_relaxed_input_section())
2643         input_sections->push_back(
2644             Simple_input_section(p->relaxed_input_section()));
2645       else
2646         {
2647           uint64_t aligned_address = align_address(address, p->addralign());
2648           if (aligned_address != address && !fill.empty())
2649             {
2650               section_size_type length =
2651                 convert_to_section_size_type(aligned_address - address);
2652               std::string this_fill;
2653               this_fill.reserve(length);
2654               while (this_fill.length() + fill.length() <= length)
2655                 this_fill += fill;
2656               if (this_fill.length() < length)
2657                 this_fill.append(fill, 0, length - this_fill.length());
2658
2659               Output_section_data* posd = new Output_data_const(this_fill, 0);
2660               remaining.push_back(Input_section(posd));
2661             }
2662           address = aligned_address;
2663
2664           remaining.push_back(*p);
2665
2666           p->finalize_data_size();
2667           address += p->data_size();
2668         }
2669     }
2670
2671   this->input_sections_.swap(remaining);
2672   this->first_input_offset_ = 0;
2673
2674   uint64_t data_size = address - orig_address;
2675   this->set_current_data_size_for_child(data_size);
2676   return data_size;
2677 }
2678
2679 // Add an input section from a script.
2680
2681 void
2682 Output_section::add_input_section_for_script(const Simple_input_section& sis,
2683                                              off_t data_size,
2684                                              uint64_t addralign)
2685 {
2686   if (addralign > this->addralign_)
2687     this->addralign_ = addralign;
2688
2689   off_t offset_in_section = this->current_data_size_for_child();
2690   off_t aligned_offset_in_section = align_address(offset_in_section,
2691                                                   addralign);
2692
2693   this->set_current_data_size_for_child(aligned_offset_in_section
2694                                         + data_size);
2695
2696   Input_section is =
2697     (sis.is_relaxed_input_section()
2698      ? Input_section(sis.relaxed_input_section())
2699      : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
2700   this->input_sections_.push_back(is);
2701 }
2702
2703 //
2704
2705 void
2706 Output_section::save_states()
2707 {
2708   gold_assert(this->checkpoint_ == NULL);
2709   Checkpoint_output_section* checkpoint =
2710     new Checkpoint_output_section(this->addralign_, this->flags_,
2711                                   this->input_sections_,
2712                                   this->first_input_offset_,
2713                                   this->attached_input_sections_are_sorted_);
2714   this->checkpoint_ = checkpoint;
2715   gold_assert(this->fills_.empty());
2716 }
2717
2718 void
2719 Output_section::restore_states()
2720 {
2721   gold_assert(this->checkpoint_ != NULL);
2722   Checkpoint_output_section* checkpoint = this->checkpoint_;
2723
2724   this->addralign_ = checkpoint->addralign();
2725   this->flags_ = checkpoint->flags();
2726   this->first_input_offset_ = checkpoint->first_input_offset();
2727
2728   if (!checkpoint->input_sections_saved())
2729     {
2730       // If we have not copied the input sections, just resize it.
2731       size_t old_size = checkpoint->input_sections_size();
2732       gold_assert(this->input_sections_.size() >= old_size);
2733       this->input_sections_.resize(old_size);
2734     }
2735   else
2736     {
2737       // We need to copy the whole list.  This is not efficient for
2738       // extremely large output with hundreads of thousands of input
2739       // objects.  We may need to re-think how we should pass sections
2740       // to scripts.
2741       this->input_sections_ = checkpoint->input_sections();
2742     }
2743
2744   this->attached_input_sections_are_sorted_ =
2745     checkpoint->attached_input_sections_are_sorted();
2746 }
2747
2748 // Print to the map file.
2749
2750 void
2751 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
2752 {
2753   mapfile->print_output_section(this);
2754
2755   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2756        p != this->input_sections_.end();
2757        ++p)
2758     p->print_to_mapfile(mapfile);
2759 }
2760
2761 // Print stats for merge sections to stderr.
2762
2763 void
2764 Output_section::print_merge_stats()
2765 {
2766   Input_section_list::iterator p;
2767   for (p = this->input_sections_.begin();
2768        p != this->input_sections_.end();
2769        ++p)
2770     p->print_merge_stats(this->name_);
2771 }
2772
2773 // Output segment methods.
2774
2775 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2776   : output_data_(),
2777     output_bss_(),
2778     vaddr_(0),
2779     paddr_(0),
2780     memsz_(0),
2781     max_align_(0),
2782     min_p_align_(0),
2783     offset_(0),
2784     filesz_(0),
2785     type_(type),
2786     flags_(flags),
2787     is_max_align_known_(false),
2788     are_addresses_set_(false),
2789     is_large_data_segment_(false)
2790 {
2791 }
2792
2793 // Add an Output_section to an Output_segment.
2794
2795 void
2796 Output_segment::add_output_section(Output_section* os,
2797                                    elfcpp::Elf_Word seg_flags)
2798 {
2799   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2800   gold_assert(!this->is_max_align_known_);
2801   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
2802
2803   // Update the segment flags.
2804   this->flags_ |= seg_flags;
2805
2806   Output_segment::Output_data_list* pdl;
2807   if (os->type() == elfcpp::SHT_NOBITS)
2808     pdl = &this->output_bss_;
2809   else
2810     pdl = &this->output_data_;
2811
2812   // So that PT_NOTE segments will work correctly, we need to ensure
2813   // that all SHT_NOTE sections are adjacent.  This will normally
2814   // happen automatically, because all the SHT_NOTE input sections
2815   // will wind up in the same output section.  However, it is possible
2816   // for multiple SHT_NOTE input sections to have different section
2817   // flags, and thus be in different output sections, but for the
2818   // different section flags to map into the same segment flags and
2819   // thus the same output segment.
2820
2821   // Note that while there may be many input sections in an output
2822   // section, there are normally only a few output sections in an
2823   // output segment.  This loop is expected to be fast.
2824
2825   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2826     {
2827       Output_segment::Output_data_list::iterator p = pdl->end();
2828       do
2829         {
2830           --p;
2831           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2832             {
2833               ++p;
2834               pdl->insert(p, os);
2835               return;
2836             }
2837         }
2838       while (p != pdl->begin());
2839     }
2840
2841   // Similarly, so that PT_TLS segments will work, we need to group
2842   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
2843   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2844   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
2845   // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
2846   // and the PT_TLS segment -- we do this grouping only for the
2847   // PT_LOAD segment.
2848   if (this->type_ != elfcpp::PT_TLS
2849       && (os->flags() & elfcpp::SHF_TLS) != 0)
2850     {
2851       pdl = &this->output_data_;
2852       bool nobits = os->type() == elfcpp::SHT_NOBITS;
2853       bool sawtls = false;
2854       Output_segment::Output_data_list::iterator p = pdl->end();
2855       do
2856         {
2857           --p;
2858           bool insert;
2859           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2860             {
2861               sawtls = true;
2862               // Put a NOBITS section after the first TLS section.
2863               // Put a PROGBITS section after the first TLS/PROGBITS
2864               // section.
2865               insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2866             }
2867           else
2868             {
2869               // If we've gone past the TLS sections, but we've seen a
2870               // TLS section, then we need to insert this section now.
2871               insert = sawtls;
2872             }
2873
2874           if (insert)
2875             {
2876               ++p;
2877               pdl->insert(p, os);
2878               return;
2879             }
2880         }
2881       while (p != pdl->begin());
2882
2883       // There are no TLS sections yet; put this one at the requested
2884       // location in the section list.
2885     }
2886
2887   // For the PT_GNU_RELRO segment, we need to group relro sections,
2888   // and we need to put them before any non-relro sections.  Also,
2889   // relro local sections go before relro non-local sections.
2890   if (parameters->options().relro() && os->is_relro())
2891     {
2892       gold_assert(pdl == &this->output_data_);
2893       Output_segment::Output_data_list::iterator p;
2894       for (p = pdl->begin(); p != pdl->end(); ++p)
2895         {
2896           if (!(*p)->is_section())
2897             break;
2898
2899           Output_section* pos = (*p)->output_section();
2900           if (!pos->is_relro()
2901               || (os->is_relro_local() && !pos->is_relro_local()))
2902             break;
2903         }
2904
2905       pdl->insert(p, os);
2906       return;
2907     }
2908
2909   // Small data sections go at the end of the list of data sections.
2910   // If OS is not small, and there are small sections, we have to
2911   // insert it before the first small section.
2912   if (os->type() != elfcpp::SHT_NOBITS
2913       && !os->is_small_section()
2914       && !pdl->empty()
2915       && pdl->back()->is_section()
2916       && pdl->back()->output_section()->is_small_section())
2917     {
2918       for (Output_segment::Output_data_list::iterator p = pdl->begin();
2919            p != pdl->end();
2920            ++p)
2921         {
2922           if ((*p)->is_section()
2923               && (*p)->output_section()->is_small_section())
2924             {
2925               pdl->insert(p, os);
2926               return;
2927             }
2928         }
2929       gold_unreachable();
2930     }
2931
2932   // A small BSS section goes at the start of the BSS sections, after
2933   // other small BSS sections.
2934   if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
2935     {
2936       for (Output_segment::Output_data_list::iterator p = pdl->begin();
2937            p != pdl->end();
2938            ++p)
2939         {
2940           if (!(*p)->is_section()
2941               || !(*p)->output_section()->is_small_section())
2942             {
2943               pdl->insert(p, os);
2944               return;
2945             }
2946         }
2947     }
2948
2949   // A large BSS section goes at the end of the BSS sections, which
2950   // means that one that is not large must come before the first large
2951   // one.
2952   if (os->type() == elfcpp::SHT_NOBITS
2953       && !os->is_large_section()
2954       && !pdl->empty()
2955       && pdl->back()->is_section()
2956       && pdl->back()->output_section()->is_large_section())
2957     {
2958       for (Output_segment::Output_data_list::iterator p = pdl->begin();
2959            p != pdl->end();
2960            ++p)
2961         {
2962           if ((*p)->is_section()
2963               && (*p)->output_section()->is_large_section())
2964             {
2965               pdl->insert(p, os);
2966               return;
2967             }
2968         }
2969       gold_unreachable();
2970     }
2971
2972   pdl->push_back(os);
2973 }
2974
2975 // Remove an Output_section from this segment.  It is an error if it
2976 // is not present.
2977
2978 void
2979 Output_segment::remove_output_section(Output_section* os)
2980 {
2981   // We only need this for SHT_PROGBITS.
2982   gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2983   for (Output_data_list::iterator p = this->output_data_.begin();
2984        p != this->output_data_.end();
2985        ++p)
2986    {
2987      if (*p == os)
2988        {
2989          this->output_data_.erase(p);
2990          return;
2991        }
2992    }
2993   gold_unreachable();
2994 }
2995
2996 // Add an Output_data (which is not an Output_section) to the start of
2997 // a segment.
2998
2999 void
3000 Output_segment::add_initial_output_data(Output_data* od)
3001 {
3002   gold_assert(!this->is_max_align_known_);
3003   this->output_data_.push_front(od);
3004 }
3005
3006 // Return whether the first data section is a relro section.
3007
3008 bool
3009 Output_segment::is_first_section_relro() const
3010 {
3011   return (!this->output_data_.empty()
3012           && this->output_data_.front()->is_section()
3013           && this->output_data_.front()->output_section()->is_relro());
3014 }
3015
3016 // Return the maximum alignment of the Output_data in Output_segment.
3017
3018 uint64_t
3019 Output_segment::maximum_alignment()
3020 {
3021   if (!this->is_max_align_known_)
3022     {
3023       uint64_t addralign;
3024
3025       addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3026       if (addralign > this->max_align_)
3027         this->max_align_ = addralign;
3028
3029       addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3030       if (addralign > this->max_align_)
3031         this->max_align_ = addralign;
3032
3033       // If -z relro is in effect, and the first section in this
3034       // segment is a relro section, then the segment must be aligned
3035       // to at least the common page size.  This ensures that the
3036       // PT_GNU_RELRO segment will start at a page boundary.
3037       if (this->type_ == elfcpp::PT_LOAD
3038           && parameters->options().relro()
3039           && this->is_first_section_relro())
3040         {
3041           addralign = parameters->target().common_pagesize();
3042           if (addralign > this->max_align_)
3043             this->max_align_ = addralign;
3044         }
3045
3046       this->is_max_align_known_ = true;
3047     }
3048
3049   return this->max_align_;
3050 }
3051
3052 // Return the maximum alignment of a list of Output_data.
3053
3054 uint64_t
3055 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3056 {
3057   uint64_t ret = 0;
3058   for (Output_data_list::const_iterator p = pdl->begin();
3059        p != pdl->end();
3060        ++p)
3061     {
3062       uint64_t addralign = (*p)->addralign();
3063       if (addralign > ret)
3064         ret = addralign;
3065     }
3066   return ret;
3067 }
3068
3069 // Return the number of dynamic relocs applied to this segment.
3070
3071 unsigned int
3072 Output_segment::dynamic_reloc_count() const
3073 {
3074   return (this->dynamic_reloc_count_list(&this->output_data_)
3075           + this->dynamic_reloc_count_list(&this->output_bss_));
3076 }
3077
3078 // Return the number of dynamic relocs applied to an Output_data_list.
3079
3080 unsigned int
3081 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3082 {
3083   unsigned int count = 0;
3084   for (Output_data_list::const_iterator p = pdl->begin();
3085        p != pdl->end();
3086        ++p)
3087     count += (*p)->dynamic_reloc_count();
3088   return count;
3089 }
3090
3091 // Set the section addresses for an Output_segment.  If RESET is true,
3092 // reset the addresses first.  ADDR is the address and *POFF is the
3093 // file offset.  Set the section indexes starting with *PSHNDX.
3094 // Return the address of the immediately following segment.  Update
3095 // *POFF and *PSHNDX.
3096
3097 uint64_t
3098 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3099                                       uint64_t addr, off_t* poff,
3100                                       unsigned int* pshndx)
3101 {
3102   gold_assert(this->type_ == elfcpp::PT_LOAD);
3103
3104   if (!reset && this->are_addresses_set_)
3105     {
3106       gold_assert(this->paddr_ == addr);
3107       addr = this->vaddr_;
3108     }
3109   else
3110     {
3111       this->vaddr_ = addr;
3112       this->paddr_ = addr;
3113       this->are_addresses_set_ = true;
3114     }
3115
3116   bool in_tls = false;
3117
3118   bool in_relro = (parameters->options().relro()
3119                    && this->is_first_section_relro());
3120
3121   off_t orig_off = *poff;
3122   this->offset_ = orig_off;
3123
3124   addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3125                                           addr, poff, pshndx, &in_tls,
3126                                           &in_relro);
3127   this->filesz_ = *poff - orig_off;
3128
3129   off_t off = *poff;
3130
3131   uint64_t ret = this->set_section_list_addresses(layout, reset,
3132                                                   &this->output_bss_,
3133                                                   addr, poff, pshndx,
3134                                                   &in_tls, &in_relro);
3135
3136   // If the last section was a TLS section, align upward to the
3137   // alignment of the TLS segment, so that the overall size of the TLS
3138   // segment is aligned.
3139   if (in_tls)
3140     {
3141       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3142       *poff = align_address(*poff, segment_align);
3143     }
3144
3145   // If all the sections were relro sections, align upward to the
3146   // common page size.
3147   if (in_relro)
3148     {
3149       uint64_t page_align = parameters->target().common_pagesize();
3150       *poff = align_address(*poff, page_align);
3151     }
3152
3153   this->memsz_ = *poff - orig_off;
3154
3155   // Ignore the file offset adjustments made by the BSS Output_data
3156   // objects.
3157   *poff = off;
3158
3159   return ret;
3160 }
3161
3162 // Set the addresses and file offsets in a list of Output_data
3163 // structures.
3164
3165 uint64_t
3166 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3167                                            Output_data_list* pdl,
3168                                            uint64_t addr, off_t* poff,
3169                                            unsigned int* pshndx,
3170                                            bool* in_tls, bool* in_relro)
3171 {
3172   off_t startoff = *poff;
3173
3174   off_t off = startoff;
3175   for (Output_data_list::iterator p = pdl->begin();
3176        p != pdl->end();
3177        ++p)
3178     {
3179       if (reset)
3180         (*p)->reset_address_and_file_offset();
3181
3182       // When using a linker script the section will most likely
3183       // already have an address.
3184       if (!(*p)->is_address_valid())
3185         {
3186           uint64_t align = (*p)->addralign();
3187
3188           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3189             {
3190               // Give the first TLS section the alignment of the
3191               // entire TLS segment.  Otherwise the TLS segment as a
3192               // whole may be misaligned.
3193               if (!*in_tls)
3194                 {
3195                   Output_segment* tls_segment = layout->tls_segment();
3196                   gold_assert(tls_segment != NULL);
3197                   uint64_t segment_align = tls_segment->maximum_alignment();
3198                   gold_assert(segment_align >= align);
3199                   align = segment_align;
3200
3201                   *in_tls = true;
3202                 }
3203             }
3204           else
3205             {
3206               // If this is the first section after the TLS segment,
3207               // align it to at least the alignment of the TLS
3208               // segment, so that the size of the overall TLS segment
3209               // is aligned.
3210               if (*in_tls)
3211                 {
3212                   uint64_t segment_align =
3213                       layout->tls_segment()->maximum_alignment();
3214                   if (segment_align > align)
3215                     align = segment_align;
3216
3217                   *in_tls = false;
3218                 }
3219             }
3220
3221           // If this is a non-relro section after a relro section,
3222           // align it to a common page boundary so that the dynamic
3223           // linker has a page to mark as read-only.
3224           if (*in_relro
3225               && (!(*p)->is_section()
3226                   || !(*p)->output_section()->is_relro()))
3227             {
3228               uint64_t page_align = parameters->target().common_pagesize();
3229               if (page_align > align)
3230                 align = page_align;
3231               *in_relro = false;
3232             }
3233
3234           off = align_address(off, align);
3235           (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3236         }
3237       else
3238         {
3239           // The script may have inserted a skip forward, but it
3240           // better not have moved backward.
3241           gold_assert((*p)->address() >= addr + (off - startoff));
3242           off += (*p)->address() - (addr + (off - startoff));
3243           (*p)->set_file_offset(off);
3244           (*p)->finalize_data_size();
3245         }
3246
3247       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3248       // section.  Such a section does not affect the size of a
3249       // PT_LOAD segment.
3250       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3251           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3252         off += (*p)->data_size();
3253
3254       if ((*p)->is_section())
3255         {
3256           (*p)->set_out_shndx(*pshndx);
3257           ++*pshndx;
3258         }
3259     }
3260
3261   *poff = off;
3262   return addr + (off - startoff);
3263 }
3264
3265 // For a non-PT_LOAD segment, set the offset from the sections, if
3266 // any.
3267
3268 void
3269 Output_segment::set_offset()
3270 {
3271   gold_assert(this->type_ != elfcpp::PT_LOAD);
3272
3273   gold_assert(!this->are_addresses_set_);
3274
3275   if (this->output_data_.empty() && this->output_bss_.empty())
3276     {
3277       this->vaddr_ = 0;
3278       this->paddr_ = 0;
3279       this->are_addresses_set_ = true;
3280       this->memsz_ = 0;
3281       this->min_p_align_ = 0;
3282       this->offset_ = 0;
3283       this->filesz_ = 0;
3284       return;
3285     }
3286
3287   const Output_data* first;
3288   if (this->output_data_.empty())
3289     first = this->output_bss_.front();
3290   else
3291     first = this->output_data_.front();
3292   this->vaddr_ = first->address();
3293   this->paddr_ = (first->has_load_address()
3294                   ? first->load_address()
3295                   : this->vaddr_);
3296   this->are_addresses_set_ = true;
3297   this->offset_ = first->offset();
3298
3299   if (this->output_data_.empty())
3300     this->filesz_ = 0;
3301   else
3302     {
3303       const Output_data* last_data = this->output_data_.back();
3304       this->filesz_ = (last_data->address()
3305                        + last_data->data_size()
3306                        - this->vaddr_);
3307     }
3308
3309   const Output_data* last;
3310   if (this->output_bss_.empty())
3311     last = this->output_data_.back();
3312   else
3313     last = this->output_bss_.back();
3314   this->memsz_ = (last->address()
3315                   + last->data_size()
3316                   - this->vaddr_);
3317
3318   // If this is a TLS segment, align the memory size.  The code in
3319   // set_section_list ensures that the section after the TLS segment
3320   // is aligned to give us room.
3321   if (this->type_ == elfcpp::PT_TLS)
3322     {
3323       uint64_t segment_align = this->maximum_alignment();
3324       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3325       this->memsz_ = align_address(this->memsz_, segment_align);
3326     }
3327
3328   // If this is a RELRO segment, align the memory size.  The code in
3329   // set_section_list ensures that the section after the RELRO segment
3330   // is aligned to give us room.
3331   if (this->type_ == elfcpp::PT_GNU_RELRO)
3332     {
3333       uint64_t page_align = parameters->target().common_pagesize();
3334       gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3335       this->memsz_ = align_address(this->memsz_, page_align);
3336     }
3337 }
3338
3339 // Set the TLS offsets of the sections in the PT_TLS segment.
3340
3341 void
3342 Output_segment::set_tls_offsets()
3343 {
3344   gold_assert(this->type_ == elfcpp::PT_TLS);
3345
3346   for (Output_data_list::iterator p = this->output_data_.begin();
3347        p != this->output_data_.end();
3348        ++p)
3349     (*p)->set_tls_offset(this->vaddr_);
3350
3351   for (Output_data_list::iterator p = this->output_bss_.begin();
3352        p != this->output_bss_.end();
3353        ++p)
3354     (*p)->set_tls_offset(this->vaddr_);
3355 }
3356
3357 // Return the address of the first section.
3358
3359 uint64_t
3360 Output_segment::first_section_load_address() const
3361 {
3362   for (Output_data_list::const_iterator p = this->output_data_.begin();
3363        p != this->output_data_.end();
3364        ++p)
3365     if ((*p)->is_section())
3366       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3367
3368   for (Output_data_list::const_iterator p = this->output_bss_.begin();
3369        p != this->output_bss_.end();
3370        ++p)
3371     if ((*p)->is_section())
3372       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3373
3374   gold_unreachable();
3375 }
3376
3377 // Return the number of Output_sections in an Output_segment.
3378
3379 unsigned int
3380 Output_segment::output_section_count() const
3381 {
3382   return (this->output_section_count_list(&this->output_data_)
3383           + this->output_section_count_list(&this->output_bss_));
3384 }
3385
3386 // Return the number of Output_sections in an Output_data_list.
3387
3388 unsigned int
3389 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3390 {
3391   unsigned int count = 0;
3392   for (Output_data_list::const_iterator p = pdl->begin();
3393        p != pdl->end();
3394        ++p)
3395     {
3396       if ((*p)->is_section())
3397         ++count;
3398     }
3399   return count;
3400 }
3401
3402 // Return the section attached to the list segment with the lowest
3403 // load address.  This is used when handling a PHDRS clause in a
3404 // linker script.
3405
3406 Output_section*
3407 Output_segment::section_with_lowest_load_address() const
3408 {
3409   Output_section* found = NULL;
3410   uint64_t found_lma = 0;
3411   this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3412
3413   Output_section* found_data = found;
3414   this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3415   if (found != found_data && found_data != NULL)
3416     {
3417       gold_error(_("nobits section %s may not precede progbits section %s "
3418                    "in same segment"),
3419                  found->name(), found_data->name());
3420       return NULL;
3421     }
3422
3423   return found;
3424 }
3425
3426 // Look through a list for a section with a lower load address.
3427
3428 void
3429 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3430                                             Output_section** found,
3431                                             uint64_t* found_lma) const
3432 {
3433   for (Output_data_list::const_iterator p = pdl->begin();
3434        p != pdl->end();
3435        ++p)
3436     {
3437       if (!(*p)->is_section())
3438         continue;
3439       Output_section* os = static_cast<Output_section*>(*p);
3440       uint64_t lma = (os->has_load_address()
3441                       ? os->load_address()
3442                       : os->address());
3443       if (*found == NULL || lma < *found_lma)
3444         {
3445           *found = os;
3446           *found_lma = lma;
3447         }
3448     }
3449 }
3450
3451 // Write the segment data into *OPHDR.
3452
3453 template<int size, bool big_endian>
3454 void
3455 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3456 {
3457   ophdr->put_p_type(this->type_);
3458   ophdr->put_p_offset(this->offset_);
3459   ophdr->put_p_vaddr(this->vaddr_);
3460   ophdr->put_p_paddr(this->paddr_);
3461   ophdr->put_p_filesz(this->filesz_);
3462   ophdr->put_p_memsz(this->memsz_);
3463   ophdr->put_p_flags(this->flags_);
3464   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3465 }
3466
3467 // Write the section headers into V.
3468
3469 template<int size, bool big_endian>
3470 unsigned char*
3471 Output_segment::write_section_headers(const Layout* layout,
3472                                       const Stringpool* secnamepool,
3473                                       unsigned char* v,
3474                                       unsigned int *pshndx) const
3475 {
3476   // Every section that is attached to a segment must be attached to a
3477   // PT_LOAD segment, so we only write out section headers for PT_LOAD
3478   // segments.
3479   if (this->type_ != elfcpp::PT_LOAD)
3480     return v;
3481
3482   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3483                                                          &this->output_data_,
3484                                                          v, pshndx);
3485   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3486                                                          &this->output_bss_,
3487                                                          v, pshndx);
3488   return v;
3489 }
3490
3491 template<int size, bool big_endian>
3492 unsigned char*
3493 Output_segment::write_section_headers_list(const Layout* layout,
3494                                            const Stringpool* secnamepool,
3495                                            const Output_data_list* pdl,
3496                                            unsigned char* v,
3497                                            unsigned int* pshndx) const
3498 {
3499   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3500   for (Output_data_list::const_iterator p = pdl->begin();
3501        p != pdl->end();
3502        ++p)
3503     {
3504       if ((*p)->is_section())
3505         {
3506           const Output_section* ps = static_cast<const Output_section*>(*p);
3507           gold_assert(*pshndx == ps->out_shndx());
3508           elfcpp::Shdr_write<size, big_endian> oshdr(v);
3509           ps->write_header(layout, secnamepool, &oshdr);
3510           v += shdr_size;
3511           ++*pshndx;
3512         }
3513     }
3514   return v;
3515 }
3516
3517 // Print the output sections to the map file.
3518
3519 void
3520 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3521 {
3522   if (this->type() != elfcpp::PT_LOAD)
3523     return;
3524   this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3525   this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3526 }
3527
3528 // Print an output section list to the map file.
3529
3530 void
3531 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3532                                               const Output_data_list* pdl) const
3533 {
3534   for (Output_data_list::const_iterator p = pdl->begin();
3535        p != pdl->end();
3536        ++p)
3537     (*p)->print_to_mapfile(mapfile);
3538 }
3539
3540 // Output_file methods.
3541
3542 Output_file::Output_file(const char* name)
3543   : name_(name),
3544     o_(-1),
3545     file_size_(0),
3546     base_(NULL),
3547     map_is_anonymous_(false),
3548     is_temporary_(false)
3549 {
3550 }
3551
3552 // Try to open an existing file.  Returns false if the file doesn't
3553 // exist, has a size of 0 or can't be mmapped.
3554
3555 bool
3556 Output_file::open_for_modification()
3557 {
3558   // The name "-" means "stdout".
3559   if (strcmp(this->name_, "-") == 0)
3560     return false;
3561
3562   // Don't bother opening files with a size of zero.
3563   struct stat s;
3564   if (::stat(this->name_, &s) != 0 || s.st_size == 0)
3565     return false;
3566
3567   int o = open_descriptor(-1, this->name_, O_RDWR, 0);
3568   if (o < 0)
3569     gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3570   this->o_ = o;
3571   this->file_size_ = s.st_size;
3572
3573   // If the file can't be mmapped, copying the content to an anonymous
3574   // map will probably negate the performance benefits of incremental
3575   // linking.  This could be helped by using views and loading only
3576   // the necessary parts, but this is not supported as of now.
3577   if (!this->map_no_anonymous())
3578     {
3579       release_descriptor(o, true);
3580       this->o_ = -1;
3581       this->file_size_ = 0;
3582       return false;
3583     }
3584
3585   return true;
3586 }
3587
3588 // Open the output file.
3589
3590 void
3591 Output_file::open(off_t file_size)
3592 {
3593   this->file_size_ = file_size;
3594
3595   // Unlink the file first; otherwise the open() may fail if the file
3596   // is busy (e.g. it's an executable that's currently being executed).
3597   //
3598   // However, the linker may be part of a system where a zero-length
3599   // file is created for it to write to, with tight permissions (gcc
3600   // 2.95 did something like this).  Unlinking the file would work
3601   // around those permission controls, so we only unlink if the file
3602   // has a non-zero size.  We also unlink only regular files to avoid
3603   // trouble with directories/etc.
3604   //
3605   // If we fail, continue; this command is merely a best-effort attempt
3606   // to improve the odds for open().
3607
3608   // We let the name "-" mean "stdout"
3609   if (!this->is_temporary_)
3610     {
3611       if (strcmp(this->name_, "-") == 0)
3612         this->o_ = STDOUT_FILENO;
3613       else
3614         {
3615           struct stat s;
3616           if (::stat(this->name_, &s) == 0
3617               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
3618             {
3619               if (s.st_size != 0)
3620                 ::unlink(this->name_);
3621               else if (!parameters->options().relocatable())
3622                 {
3623                   // If we don't unlink the existing file, add execute
3624                   // permission where read permissions already exist
3625                   // and where the umask permits.
3626                   int mask = ::umask(0);
3627                   ::umask(mask);
3628                   s.st_mode |= (s.st_mode & 0444) >> 2;
3629                   ::chmod(this->name_, s.st_mode & ~mask);
3630                 }
3631             }
3632
3633           int mode = parameters->options().relocatable() ? 0666 : 0777;
3634           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3635                                   mode);
3636           if (o < 0)
3637             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3638           this->o_ = o;
3639         }
3640     }
3641
3642   this->map();
3643 }
3644
3645 // Resize the output file.
3646
3647 void
3648 Output_file::resize(off_t file_size)
3649 {
3650   // If the mmap is mapping an anonymous memory buffer, this is easy:
3651   // just mremap to the new size.  If it's mapping to a file, we want
3652   // to unmap to flush to the file, then remap after growing the file.
3653   if (this->map_is_anonymous_)
3654     {
3655       void* base = ::mremap(this->base_, this->file_size_, file_size,
3656                             MREMAP_MAYMOVE);
3657       if (base == MAP_FAILED)
3658         gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3659       this->base_ = static_cast<unsigned char*>(base);
3660       this->file_size_ = file_size;
3661     }
3662   else
3663     {
3664       this->unmap();
3665       this->file_size_ = file_size;
3666       if (!this->map_no_anonymous())
3667         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
3668     }
3669 }
3670
3671 // Map an anonymous block of memory which will later be written to the
3672 // file.  Return whether the map succeeded.
3673
3674 bool
3675 Output_file::map_anonymous()
3676 {
3677   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3678                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3679   if (base != MAP_FAILED)
3680     {
3681       this->map_is_anonymous_ = true;
3682       this->base_ = static_cast<unsigned char*>(base);
3683       return true;
3684     }
3685   return false;
3686 }
3687
3688 // Map the file into memory.  Return whether the mapping succeeded.
3689
3690 bool
3691 Output_file::map_no_anonymous()
3692 {
3693   const int o = this->o_;
3694
3695   // If the output file is not a regular file, don't try to mmap it;
3696   // instead, we'll mmap a block of memory (an anonymous buffer), and
3697   // then later write the buffer to the file.
3698   void* base;
3699   struct stat statbuf;
3700   if (o == STDOUT_FILENO || o == STDERR_FILENO
3701       || ::fstat(o, &statbuf) != 0
3702       || !S_ISREG(statbuf.st_mode)
3703       || this->is_temporary_)
3704     return false;
3705
3706   // Ensure that we have disk space available for the file.  If we
3707   // don't do this, it is possible that we will call munmap, close,
3708   // and exit with dirty buffers still in the cache with no assigned
3709   // disk blocks.  If the disk is out of space at that point, the
3710   // output file will wind up incomplete, but we will have already
3711   // exited.  The alternative to fallocate would be to use fdatasync,
3712   // but that would be a more significant performance hit.
3713   if (::posix_fallocate(o, 0, this->file_size_) < 0)
3714     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
3715
3716   // Map the file into memory.
3717   base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3718                 MAP_SHARED, o, 0);
3719
3720   // The mmap call might fail because of file system issues: the file
3721   // system might not support mmap at all, or it might not support
3722   // mmap with PROT_WRITE.
3723   if (base == MAP_FAILED)
3724     return false;
3725
3726   this->map_is_anonymous_ = false;
3727   this->base_ = static_cast<unsigned char*>(base);
3728   return true;
3729 }
3730
3731 // Map the file into memory.
3732
3733 void
3734 Output_file::map()
3735 {
3736   if (this->map_no_anonymous())
3737     return;
3738
3739   // The mmap call might fail because of file system issues: the file
3740   // system might not support mmap at all, or it might not support
3741   // mmap with PROT_WRITE.  I'm not sure which errno values we will
3742   // see in all cases, so if the mmap fails for any reason and we
3743   // don't care about file contents, try for an anonymous map.
3744   if (this->map_anonymous())
3745     return;
3746
3747   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
3748              this->name_, static_cast<unsigned long>(this->file_size_),
3749              strerror(errno));
3750 }
3751
3752 // Unmap the file from memory.
3753
3754 void
3755 Output_file::unmap()
3756 {
3757   if (::munmap(this->base_, this->file_size_) < 0)
3758     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
3759   this->base_ = NULL;
3760 }
3761
3762 // Close the output file.
3763
3764 void
3765 Output_file::close()
3766 {
3767   // If the map isn't file-backed, we need to write it now.
3768   if (this->map_is_anonymous_ && !this->is_temporary_)
3769     {
3770       size_t bytes_to_write = this->file_size_;
3771       size_t offset = 0;
3772       while (bytes_to_write > 0)
3773         {
3774           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
3775                                           bytes_to_write);
3776           if (bytes_written == 0)
3777             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3778           else if (bytes_written < 0)
3779             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3780           else
3781             {
3782               bytes_to_write -= bytes_written;
3783               offset += bytes_written;
3784             }
3785         }
3786     }
3787   this->unmap();
3788
3789   // We don't close stdout or stderr
3790   if (this->o_ != STDOUT_FILENO
3791       && this->o_ != STDERR_FILENO
3792       && !this->is_temporary_)
3793     if (::close(this->o_) < 0)
3794       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3795   this->o_ = -1;
3796 }
3797
3798 // Instantiate the templates we need.  We could use the configure
3799 // script to restrict this to only the ones for implemented targets.
3800
3801 #ifdef HAVE_TARGET_32_LITTLE
3802 template
3803 off_t
3804 Output_section::add_input_section<32, false>(
3805     Sized_relobj<32, false>* object,
3806     unsigned int shndx,
3807     const char* secname,
3808     const elfcpp::Shdr<32, false>& shdr,
3809     unsigned int reloc_shndx,
3810     bool have_sections_script);
3811 #endif
3812
3813 #ifdef HAVE_TARGET_32_BIG
3814 template
3815 off_t
3816 Output_section::add_input_section<32, true>(
3817     Sized_relobj<32, true>* object,
3818     unsigned int shndx,
3819     const char* secname,
3820     const elfcpp::Shdr<32, true>& shdr,
3821     unsigned int reloc_shndx,
3822     bool have_sections_script);
3823 #endif
3824
3825 #ifdef HAVE_TARGET_64_LITTLE
3826 template
3827 off_t
3828 Output_section::add_input_section<64, false>(
3829     Sized_relobj<64, false>* object,
3830     unsigned int shndx,
3831     const char* secname,
3832     const elfcpp::Shdr<64, false>& shdr,
3833     unsigned int reloc_shndx,
3834     bool have_sections_script);
3835 #endif
3836
3837 #ifdef HAVE_TARGET_64_BIG
3838 template
3839 off_t
3840 Output_section::add_input_section<64, true>(
3841     Sized_relobj<64, true>* object,
3842     unsigned int shndx,
3843     const char* secname,
3844     const elfcpp::Shdr<64, true>& shdr,
3845     unsigned int reloc_shndx,
3846     bool have_sections_script);
3847 #endif
3848
3849 #ifdef HAVE_TARGET_32_LITTLE
3850 template
3851 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
3852 #endif
3853
3854 #ifdef HAVE_TARGET_32_BIG
3855 template
3856 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
3857 #endif
3858
3859 #ifdef HAVE_TARGET_64_LITTLE
3860 template
3861 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
3862 #endif
3863
3864 #ifdef HAVE_TARGET_64_BIG
3865 template
3866 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
3867 #endif
3868
3869 #ifdef HAVE_TARGET_32_LITTLE
3870 template
3871 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
3872 #endif
3873
3874 #ifdef HAVE_TARGET_32_BIG
3875 template
3876 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
3877 #endif
3878
3879 #ifdef HAVE_TARGET_64_LITTLE
3880 template
3881 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
3882 #endif
3883
3884 #ifdef HAVE_TARGET_64_BIG
3885 template
3886 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
3887 #endif
3888
3889 #ifdef HAVE_TARGET_32_LITTLE
3890 template
3891 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
3892 #endif
3893
3894 #ifdef HAVE_TARGET_32_BIG
3895 template
3896 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
3897 #endif
3898
3899 #ifdef HAVE_TARGET_64_LITTLE
3900 template
3901 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
3902 #endif
3903
3904 #ifdef HAVE_TARGET_64_BIG
3905 template
3906 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
3907 #endif
3908
3909 #ifdef HAVE_TARGET_32_LITTLE
3910 template
3911 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
3912 #endif
3913
3914 #ifdef HAVE_TARGET_32_BIG
3915 template
3916 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
3917 #endif
3918
3919 #ifdef HAVE_TARGET_64_LITTLE
3920 template
3921 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
3922 #endif
3923
3924 #ifdef HAVE_TARGET_64_BIG
3925 template
3926 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
3927 #endif
3928
3929 #ifdef HAVE_TARGET_32_LITTLE
3930 template
3931 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3932 #endif
3933
3934 #ifdef HAVE_TARGET_32_BIG
3935 template
3936 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3937 #endif
3938
3939 #ifdef HAVE_TARGET_64_LITTLE
3940 template
3941 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3942 #endif
3943
3944 #ifdef HAVE_TARGET_64_BIG
3945 template
3946 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3947 #endif
3948
3949 #ifdef HAVE_TARGET_32_LITTLE
3950 template
3951 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3952 #endif
3953
3954 #ifdef HAVE_TARGET_32_BIG
3955 template
3956 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3957 #endif
3958
3959 #ifdef HAVE_TARGET_64_LITTLE
3960 template
3961 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3962 #endif
3963
3964 #ifdef HAVE_TARGET_64_BIG
3965 template
3966 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3967 #endif
3968
3969 #ifdef HAVE_TARGET_32_LITTLE
3970 template
3971 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3972 #endif
3973
3974 #ifdef HAVE_TARGET_32_BIG
3975 template
3976 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3977 #endif
3978
3979 #ifdef HAVE_TARGET_64_LITTLE
3980 template
3981 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3982 #endif
3983
3984 #ifdef HAVE_TARGET_64_BIG
3985 template
3986 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3987 #endif
3988
3989 #ifdef HAVE_TARGET_32_LITTLE
3990 template
3991 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3992 #endif
3993
3994 #ifdef HAVE_TARGET_32_BIG
3995 template
3996 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3997 #endif
3998
3999 #ifdef HAVE_TARGET_64_LITTLE
4000 template
4001 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4002 #endif
4003
4004 #ifdef HAVE_TARGET_64_BIG
4005 template
4006 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4007 #endif
4008
4009 #ifdef HAVE_TARGET_32_LITTLE
4010 template
4011 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4012 #endif
4013
4014 #ifdef HAVE_TARGET_32_BIG
4015 template
4016 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4017 #endif
4018
4019 #ifdef HAVE_TARGET_64_LITTLE
4020 template
4021 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4022 #endif
4023
4024 #ifdef HAVE_TARGET_64_BIG
4025 template
4026 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4027 #endif
4028
4029 #ifdef HAVE_TARGET_32_LITTLE
4030 template
4031 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4032 #endif
4033
4034 #ifdef HAVE_TARGET_32_BIG
4035 template
4036 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4037 #endif
4038
4039 #ifdef HAVE_TARGET_64_LITTLE
4040 template
4041 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4042 #endif
4043
4044 #ifdef HAVE_TARGET_64_BIG
4045 template
4046 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4047 #endif
4048
4049 #ifdef HAVE_TARGET_32_LITTLE
4050 template
4051 class Output_data_group<32, false>;
4052 #endif
4053
4054 #ifdef HAVE_TARGET_32_BIG
4055 template
4056 class Output_data_group<32, true>;
4057 #endif
4058
4059 #ifdef HAVE_TARGET_64_LITTLE
4060 template
4061 class Output_data_group<64, false>;
4062 #endif
4063
4064 #ifdef HAVE_TARGET_64_BIG
4065 template
4066 class Output_data_group<64, true>;
4067 #endif
4068
4069 #ifdef HAVE_TARGET_32_LITTLE
4070 template
4071 class Output_data_got<32, false>;
4072 #endif
4073
4074 #ifdef HAVE_TARGET_32_BIG
4075 template
4076 class Output_data_got<32, true>;
4077 #endif
4078
4079 #ifdef HAVE_TARGET_64_LITTLE
4080 template
4081 class Output_data_got<64, false>;
4082 #endif
4083
4084 #ifdef HAVE_TARGET_64_BIG
4085 template
4086 class Output_data_got<64, true>;
4087 #endif
4088
4089 } // End namespace gold.