Remove info message for every erratum 843419 found and fixed.
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 #  define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 #  define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 #  define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 #  define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 #  define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 #  define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80   errno = ENOSYS;
81   return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87   errno = ENOSYS;
88   return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94   errno = ENOSYS;
95   return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS  MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate.  If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly.  If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131   if (parameters->options().posix_fallocate())
132     return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135   if (::fallocate(o, 0, offset, len) == 0)
136     return 0;
137 #endif // defined(HAVE_FALLOCATE)
138   if (::ftruncate(o, offset + len) < 0)
139     return errno;
140   return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158   return Output_data::default_alignment_for_size(
159       parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167   if (size == 32)
168     return 4;
169   else if (size == 64)
170     return 8;
171   else
172     gold_unreachable();
173 }
174
175 // Output_section_header methods.  This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179     const Layout* layout,
180     const Layout::Segment_list* segment_list,
181     const Layout::Section_list* section_list,
182     const Layout::Section_list* unattached_section_list,
183     const Stringpool* secnamepool,
184     const Output_section* shstrtab_section)
185   : layout_(layout),
186     segment_list_(segment_list),
187     section_list_(section_list),
188     unattached_section_list_(unattached_section_list),
189     secnamepool_(secnamepool),
190     shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199   // Count all the sections.  Start with 1 for the null section.
200   off_t count = 1;
201   if (!parameters->options().relocatable())
202     {
203       for (Layout::Segment_list::const_iterator p =
204              this->segment_list_->begin();
205            p != this->segment_list_->end();
206            ++p)
207         if ((*p)->type() == elfcpp::PT_LOAD)
208           count += (*p)->output_section_count();
209     }
210   else
211     {
212       for (Layout::Section_list::const_iterator p =
213              this->section_list_->begin();
214            p != this->section_list_->end();
215            ++p)
216         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217           ++count;
218     }
219   count += this->unattached_section_list_->size();
220
221   const int size = parameters->target().get_size();
222   int shdr_size;
223   if (size == 32)
224     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225   else if (size == 64)
226     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227   else
228     gold_unreachable();
229
230   return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238   switch (parameters->size_and_endianness())
239     {
240 #ifdef HAVE_TARGET_32_LITTLE
241     case Parameters::TARGET_32_LITTLE:
242       this->do_sized_write<32, false>(of);
243       break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246     case Parameters::TARGET_32_BIG:
247       this->do_sized_write<32, true>(of);
248       break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251     case Parameters::TARGET_64_LITTLE:
252       this->do_sized_write<64, false>(of);
253       break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256     case Parameters::TARGET_64_BIG:
257       this->do_sized_write<64, true>(of);
258       break;
259 #endif
260     default:
261       gold_unreachable();
262     }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269   off_t all_shdrs_size = this->data_size();
270   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273   unsigned char* v = view;
274
275   {
276     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277     oshdr.put_sh_name(0);
278     oshdr.put_sh_type(elfcpp::SHT_NULL);
279     oshdr.put_sh_flags(0);
280     oshdr.put_sh_addr(0);
281     oshdr.put_sh_offset(0);
282
283     size_t section_count = (this->data_size()
284                             / elfcpp::Elf_sizes<size>::shdr_size);
285     if (section_count < elfcpp::SHN_LORESERVE)
286       oshdr.put_sh_size(0);
287     else
288       oshdr.put_sh_size(section_count);
289
290     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291     if (shstrndx < elfcpp::SHN_LORESERVE)
292       oshdr.put_sh_link(0);
293     else
294       oshdr.put_sh_link(shstrndx);
295
296     size_t segment_count = this->segment_list_->size();
297     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299     oshdr.put_sh_addralign(0);
300     oshdr.put_sh_entsize(0);
301   }
302
303   v += shdr_size;
304
305   unsigned int shndx = 1;
306   if (!parameters->options().relocatable())
307     {
308       for (Layout::Segment_list::const_iterator p =
309              this->segment_list_->begin();
310            p != this->segment_list_->end();
311            ++p)
312         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313                                                           this->secnamepool_,
314                                                           v,
315                                                           &shndx);
316     }
317   else
318     {
319       for (Layout::Section_list::const_iterator p =
320              this->section_list_->begin();
321            p != this->section_list_->end();
322            ++p)
323         {
324           // We do unallocated sections below, except that group
325           // sections have to come first.
326           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327               && (*p)->type() != elfcpp::SHT_GROUP)
328             continue;
329           gold_assert(shndx == (*p)->out_shndx());
330           elfcpp::Shdr_write<size, big_endian> oshdr(v);
331           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332           v += shdr_size;
333           ++shndx;
334         }
335     }
336
337   for (Layout::Section_list::const_iterator p =
338          this->unattached_section_list_->begin();
339        p != this->unattached_section_list_->end();
340        ++p)
341     {
342       // For a relocatable link, we did unallocated group sections
343       // above, since they have to come first.
344       if ((*p)->type() == elfcpp::SHT_GROUP
345           && parameters->options().relocatable())
346         continue;
347       gold_assert(shndx == (*p)->out_shndx());
348       elfcpp::Shdr_write<size, big_endian> oshdr(v);
349       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350       v += shdr_size;
351       ++shndx;
352     }
353
354   of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360     const Layout::Segment_list& segment_list)
361   : segment_list_(segment_list)
362 {
363   this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369   switch (parameters->size_and_endianness())
370     {
371 #ifdef HAVE_TARGET_32_LITTLE
372     case Parameters::TARGET_32_LITTLE:
373       this->do_sized_write<32, false>(of);
374       break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377     case Parameters::TARGET_32_BIG:
378       this->do_sized_write<32, true>(of);
379       break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382     case Parameters::TARGET_64_LITTLE:
383       this->do_sized_write<64, false>(of);
384       break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387     case Parameters::TARGET_64_BIG:
388       this->do_sized_write<64, true>(of);
389       break;
390 #endif
391     default:
392       gold_unreachable();
393     }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402   gold_assert(all_phdrs_size == this->data_size());
403   unsigned char* view = of->get_output_view(this->offset(),
404                                             all_phdrs_size);
405   unsigned char* v = view;
406   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407        p != this->segment_list_.end();
408        ++p)
409     {
410       elfcpp::Phdr_write<size, big_endian> ophdr(v);
411       (*p)->write_header(&ophdr);
412       v += phdr_size;
413     }
414
415   gold_assert(v - view == all_phdrs_size);
416
417   of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423   const int size = parameters->target().get_size();
424   int phdr_size;
425   if (size == 32)
426     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427   else if (size == 64)
428     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429   else
430     gold_unreachable();
431
432   return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(Target* target,
438                                        const Symbol_table* symtab,
439                                        const Output_segment_headers* osh)
440   : target_(target),
441     symtab_(symtab),
442     segment_header_(osh),
443     section_header_(NULL),
444     shstrtab_(NULL)
445 {
446   this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453                                      const Output_section* shstrtab)
454 {
455   this->section_header_ = shdrs;
456   this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464   gold_assert(this->offset() == 0);
465
466   switch (parameters->size_and_endianness())
467     {
468 #ifdef HAVE_TARGET_32_LITTLE
469     case Parameters::TARGET_32_LITTLE:
470       this->do_sized_write<32, false>(of);
471       break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474     case Parameters::TARGET_32_BIG:
475       this->do_sized_write<32, true>(of);
476       break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479     case Parameters::TARGET_64_LITTLE:
480       this->do_sized_write<64, false>(of);
481       break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484     case Parameters::TARGET_64_BIG:
485       this->do_sized_write<64, true>(of);
486       break;
487 #endif
488     default:
489       gold_unreachable();
490     }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499   gold_assert(this->offset() == 0);
500
501   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502   unsigned char* view = of->get_output_view(0, ehdr_size);
503   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505   unsigned char e_ident[elfcpp::EI_NIDENT];
506   memset(e_ident, 0, elfcpp::EI_NIDENT);
507   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511   if (size == 32)
512     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513   else if (size == 64)
514     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515   else
516     gold_unreachable();
517   e_ident[elfcpp::EI_DATA] = (big_endian
518                               ? elfcpp::ELFDATA2MSB
519                               : elfcpp::ELFDATA2LSB);
520   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521   oehdr.put_e_ident(e_ident);
522
523   elfcpp::ET e_type;
524   if (parameters->options().relocatable())
525     e_type = elfcpp::ET_REL;
526   else if (parameters->options().output_is_position_independent())
527     e_type = elfcpp::ET_DYN;
528   else
529     e_type = elfcpp::ET_EXEC;
530   oehdr.put_e_type(e_type);
531
532   oehdr.put_e_machine(this->target_->machine_code());
533   oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535   oehdr.put_e_entry(this->entry<size>());
536
537   if (this->segment_header_ == NULL)
538     oehdr.put_e_phoff(0);
539   else
540     oehdr.put_e_phoff(this->segment_header_->offset());
541
542   oehdr.put_e_shoff(this->section_header_->offset());
543   oehdr.put_e_flags(this->target_->processor_specific_flags());
544   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546   if (this->segment_header_ == NULL)
547     {
548       oehdr.put_e_phentsize(0);
549       oehdr.put_e_phnum(0);
550     }
551   else
552     {
553       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554       size_t phnum = (this->segment_header_->data_size()
555                       / elfcpp::Elf_sizes<size>::phdr_size);
556       if (phnum > elfcpp::PN_XNUM)
557         phnum = elfcpp::PN_XNUM;
558       oehdr.put_e_phnum(phnum);
559     }
560
561   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562   size_t section_count = (this->section_header_->data_size()
563                           / elfcpp::Elf_sizes<size>::shdr_size);
564
565   if (section_count < elfcpp::SHN_LORESERVE)
566     oehdr.put_e_shnum(this->section_header_->data_size()
567                       / elfcpp::Elf_sizes<size>::shdr_size);
568   else
569     oehdr.put_e_shnum(0);
570
571   unsigned int shstrndx = this->shstrtab_->out_shndx();
572   if (shstrndx < elfcpp::SHN_LORESERVE)
573     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574   else
575     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578   // the e_ident field.
579   this->target_->adjust_elf_header(view, ehdr_size);
580
581   of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590   const bool should_issue_warning = (parameters->options().entry() != NULL
591                                      && !parameters->options().relocatable()
592                                      && !parameters->options().shared());
593   const char* entry = parameters->entry();
594   Symbol* sym = this->symtab_->lookup(entry);
595
596   typename Sized_symbol<size>::Value_type v;
597   if (sym != NULL)
598     {
599       Sized_symbol<size>* ssym;
600       ssym = this->symtab_->get_sized_symbol<size>(sym);
601       if (!ssym->is_defined() && should_issue_warning)
602         gold_warning("entry symbol '%s' exists but is not defined", entry);
603       v = ssym->value();
604     }
605   else
606     {
607       // We couldn't find the entry symbol.  See if we can parse it as
608       // a number.  This supports, e.g., -e 0x1000.
609       char* endptr;
610       v = strtoull(entry, &endptr, 0);
611       if (*endptr != '\0')
612         {
613           if (should_issue_warning)
614             gold_warning("cannot find entry symbol '%s'", entry);
615           v = 0;
616         }
617     }
618
619   return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627   const int size = parameters->target().get_size();
628   if (size == 32)
629     return elfcpp::Elf_sizes<32>::ehdr_size;
630   else if (size == 64)
631     return elfcpp::Elf_sizes<64>::ehdr_size;
632   else
633     gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641   of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649   of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659   gold_assert(this->output_section_ == NULL);
660   this->output_section_ = os;
661   this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669   gold_assert(this->output_section_ != NULL);
670   return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679   this->addralign_ = addralign;
680   if (this->output_section_ != NULL
681       && this->output_section_->addralign() < addralign)
682     this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692   this->strtab_->set_string_offsets();
693   this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701   this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710     Symbol* gsym,
711     unsigned int type,
712     Output_data* od,
713     Address address,
714     bool is_relative,
715     bool is_symbolless,
716     bool use_plt_offset)
717   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718     is_relative_(is_relative), is_symbolless_(is_symbolless),
719     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721   // this->type_ is a bitfield; make sure TYPE fits.
722   gold_assert(this->type_ == type);
723   this->u1_.gsym = gsym;
724   this->u2_.od = od;
725   if (dynamic)
726     this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731     Symbol* gsym,
732     unsigned int type,
733     Sized_relobj<size, big_endian>* relobj,
734     unsigned int shndx,
735     Address address,
736     bool is_relative,
737     bool is_symbolless,
738     bool use_plt_offset)
739   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740     is_relative_(is_relative), is_symbolless_(is_symbolless),
741     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743   gold_assert(shndx != INVALID_CODE);
744   // this->type_ is a bitfield; make sure TYPE fits.
745   gold_assert(this->type_ == type);
746   this->u1_.gsym = gsym;
747   this->u2_.relobj = relobj;
748   if (dynamic)
749     this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756     Sized_relobj<size, big_endian>* relobj,
757     unsigned int local_sym_index,
758     unsigned int type,
759     Output_data* od,
760     Address address,
761     bool is_relative,
762     bool is_symbolless,
763     bool is_section_symbol,
764     bool use_plt_offset)
765   : address_(address), local_sym_index_(local_sym_index), type_(type),
766     is_relative_(is_relative), is_symbolless_(is_symbolless),
767     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768     shndx_(INVALID_CODE)
769 {
770   gold_assert(local_sym_index != GSYM_CODE
771               && local_sym_index != INVALID_CODE);
772   // this->type_ is a bitfield; make sure TYPE fits.
773   gold_assert(this->type_ == type);
774   this->u1_.relobj = relobj;
775   this->u2_.od = od;
776   if (dynamic)
777     this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782     Sized_relobj<size, big_endian>* relobj,
783     unsigned int local_sym_index,
784     unsigned int type,
785     unsigned int shndx,
786     Address address,
787     bool is_relative,
788     bool is_symbolless,
789     bool is_section_symbol,
790     bool use_plt_offset)
791   : address_(address), local_sym_index_(local_sym_index), type_(type),
792     is_relative_(is_relative), is_symbolless_(is_symbolless),
793     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794     shndx_(shndx)
795 {
796   gold_assert(local_sym_index != GSYM_CODE
797               && local_sym_index != INVALID_CODE);
798   gold_assert(shndx != INVALID_CODE);
799   // this->type_ is a bitfield; make sure TYPE fits.
800   gold_assert(this->type_ == type);
801   this->u1_.relobj = relobj;
802   this->u2_.relobj = relobj;
803   if (dynamic)
804     this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811     Output_section* os,
812     unsigned int type,
813     Output_data* od,
814     Address address,
815     bool is_relative)
816   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817     is_relative_(is_relative), is_symbolless_(is_relative),
818     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
819 {
820   // this->type_ is a bitfield; make sure TYPE fits.
821   gold_assert(this->type_ == type);
822   this->u1_.os = os;
823   this->u2_.od = od;
824   if (dynamic)
825     this->set_needs_dynsym_index();
826   else
827     os->set_needs_symtab_index();
828 }
829
830 template<bool dynamic, int size, bool big_endian>
831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832     Output_section* os,
833     unsigned int type,
834     Sized_relobj<size, big_endian>* relobj,
835     unsigned int shndx,
836     Address address,
837     bool is_relative)
838   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839     is_relative_(is_relative), is_symbolless_(is_relative),
840     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
841 {
842   gold_assert(shndx != INVALID_CODE);
843   // this->type_ is a bitfield; make sure TYPE fits.
844   gold_assert(this->type_ == type);
845   this->u1_.os = os;
846   this->u2_.relobj = relobj;
847   if (dynamic)
848     this->set_needs_dynsym_index();
849   else
850     os->set_needs_symtab_index();
851 }
852
853 // An absolute or relative relocation.
854
855 template<bool dynamic, int size, bool big_endian>
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857     unsigned int type,
858     Output_data* od,
859     Address address,
860     bool is_relative)
861   : address_(address), local_sym_index_(0), type_(type),
862     is_relative_(is_relative), is_symbolless_(false),
863     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864 {
865   // this->type_ is a bitfield; make sure TYPE fits.
866   gold_assert(this->type_ == type);
867   this->u1_.relobj = NULL;
868   this->u2_.od = od;
869 }
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873     unsigned int type,
874     Sized_relobj<size, big_endian>* relobj,
875     unsigned int shndx,
876     Address address,
877     bool is_relative)
878   : address_(address), local_sym_index_(0), type_(type),
879     is_relative_(is_relative), is_symbolless_(false),
880     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
881 {
882   gold_assert(shndx != INVALID_CODE);
883   // this->type_ is a bitfield; make sure TYPE fits.
884   gold_assert(this->type_ == type);
885   this->u1_.relobj = NULL;
886   this->u2_.relobj = relobj;
887 }
888
889 // A target specific relocation.
890
891 template<bool dynamic, int size, bool big_endian>
892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
893     unsigned int type,
894     void* arg,
895     Output_data* od,
896     Address address)
897   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
898     is_relative_(false), is_symbolless_(false),
899     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
900 {
901   // this->type_ is a bitfield; make sure TYPE fits.
902   gold_assert(this->type_ == type);
903   this->u1_.arg = arg;
904   this->u2_.od = od;
905 }
906
907 template<bool dynamic, int size, bool big_endian>
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
909     unsigned int type,
910     void* arg,
911     Sized_relobj<size, big_endian>* relobj,
912     unsigned int shndx,
913     Address address)
914   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
915     is_relative_(false), is_symbolless_(false),
916     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
917 {
918   gold_assert(shndx != INVALID_CODE);
919   // this->type_ is a bitfield; make sure TYPE fits.
920   gold_assert(this->type_ == type);
921   this->u1_.arg = arg;
922   this->u2_.relobj = relobj;
923 }
924
925 // Record that we need a dynamic symbol index for this relocation.
926
927 template<bool dynamic, int size, bool big_endian>
928 void
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 set_needs_dynsym_index()
931 {
932   if (this->is_symbolless_)
933     return;
934   switch (this->local_sym_index_)
935     {
936     case INVALID_CODE:
937       gold_unreachable();
938
939     case GSYM_CODE:
940       this->u1_.gsym->set_needs_dynsym_entry();
941       break;
942
943     case SECTION_CODE:
944       this->u1_.os->set_needs_dynsym_index();
945       break;
946
947     case TARGET_CODE:
948       // The target must take care of this if necessary.
949       break;
950
951     case 0:
952       break;
953
954     default:
955       {
956         const unsigned int lsi = this->local_sym_index_;
957         Sized_relobj_file<size, big_endian>* relobj =
958             this->u1_.relobj->sized_relobj();
959         gold_assert(relobj != NULL);
960         if (!this->is_section_symbol_)
961           relobj->set_needs_output_dynsym_entry(lsi);
962         else
963           relobj->output_section(lsi)->set_needs_dynsym_index();
964       }
965       break;
966     }
967 }
968
969 // Get the symbol index of a relocation.
970
971 template<bool dynamic, int size, bool big_endian>
972 unsigned int
973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
974   const
975 {
976   unsigned int index;
977   if (this->is_symbolless_)
978     return 0;
979   switch (this->local_sym_index_)
980     {
981     case INVALID_CODE:
982       gold_unreachable();
983
984     case GSYM_CODE:
985       if (this->u1_.gsym == NULL)
986         index = 0;
987       else if (dynamic)
988         index = this->u1_.gsym->dynsym_index();
989       else
990         index = this->u1_.gsym->symtab_index();
991       break;
992
993     case SECTION_CODE:
994       if (dynamic)
995         index = this->u1_.os->dynsym_index();
996       else
997         index = this->u1_.os->symtab_index();
998       break;
999
1000     case TARGET_CODE:
1001       index = parameters->target().reloc_symbol_index(this->u1_.arg,
1002                                                       this->type_);
1003       break;
1004
1005     case 0:
1006       // Relocations without symbols use a symbol index of 0.
1007       index = 0;
1008       break;
1009
1010     default:
1011       {
1012         const unsigned int lsi = this->local_sym_index_;
1013         Sized_relobj_file<size, big_endian>* relobj =
1014             this->u1_.relobj->sized_relobj();
1015         gold_assert(relobj != NULL);
1016         if (!this->is_section_symbol_)
1017           {
1018             if (dynamic)
1019               index = relobj->dynsym_index(lsi);
1020             else
1021               index = relobj->symtab_index(lsi);
1022           }
1023         else
1024           {
1025             Output_section* os = relobj->output_section(lsi);
1026             gold_assert(os != NULL);
1027             if (dynamic)
1028               index = os->dynsym_index();
1029             else
1030               index = os->symtab_index();
1031           }
1032       }
1033       break;
1034     }
1035   gold_assert(index != -1U);
1036   return index;
1037 }
1038
1039 // For a local section symbol, get the address of the offset ADDEND
1040 // within the input section.
1041
1042 template<bool dynamic, int size, bool big_endian>
1043 typename elfcpp::Elf_types<size>::Elf_Addr
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045   local_section_offset(Addend addend) const
1046 {
1047   gold_assert(this->local_sym_index_ != GSYM_CODE
1048               && this->local_sym_index_ != SECTION_CODE
1049               && this->local_sym_index_ != TARGET_CODE
1050               && this->local_sym_index_ != INVALID_CODE
1051               && this->local_sym_index_ != 0
1052               && this->is_section_symbol_);
1053   const unsigned int lsi = this->local_sym_index_;
1054   Output_section* os = this->u1_.relobj->output_section(lsi);
1055   gold_assert(os != NULL);
1056   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1057   if (offset != invalid_address)
1058     return offset + addend;
1059   // This is a merge section.
1060   Sized_relobj_file<size, big_endian>* relobj =
1061       this->u1_.relobj->sized_relobj();
1062   gold_assert(relobj != NULL);
1063   offset = os->output_address(relobj, lsi, addend);
1064   gold_assert(offset != invalid_address);
1065   return offset;
1066 }
1067
1068 // Get the output address of a relocation.
1069
1070 template<bool dynamic, int size, bool big_endian>
1071 typename elfcpp::Elf_types<size>::Elf_Addr
1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1073 {
1074   Address address = this->address_;
1075   if (this->shndx_ != INVALID_CODE)
1076     {
1077       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1078       gold_assert(os != NULL);
1079       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1080       if (off != invalid_address)
1081         address += os->address() + off;
1082       else
1083         {
1084           Sized_relobj_file<size, big_endian>* relobj =
1085               this->u2_.relobj->sized_relobj();
1086           gold_assert(relobj != NULL);
1087           address = os->output_address(relobj, this->shndx_, address);
1088           gold_assert(address != invalid_address);
1089         }
1090     }
1091   else if (this->u2_.od != NULL)
1092     address += this->u2_.od->address();
1093   return address;
1094 }
1095
1096 // Write out the offset and info fields of a Rel or Rela relocation
1097 // entry.
1098
1099 template<bool dynamic, int size, bool big_endian>
1100 template<typename Write_rel>
1101 void
1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103     Write_rel* wr) const
1104 {
1105   wr->put_r_offset(this->get_address());
1106   unsigned int sym_index = this->get_symbol_index();
1107   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1108 }
1109
1110 // Write out a Rel relocation.
1111
1112 template<bool dynamic, int size, bool big_endian>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115     unsigned char* pov) const
1116 {
1117   elfcpp::Rel_write<size, big_endian> orel(pov);
1118   this->write_rel(&orel);
1119 }
1120
1121 // Get the value of the symbol referred to by a Rel relocation.
1122
1123 template<bool dynamic, int size, bool big_endian>
1124 typename elfcpp::Elf_types<size>::Elf_Addr
1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1126     Addend addend) const
1127 {
1128   if (this->local_sym_index_ == GSYM_CODE)
1129     {
1130       const Sized_symbol<size>* sym;
1131       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1132       if (this->use_plt_offset_ && sym->has_plt_offset())
1133         return parameters->target().plt_address_for_global(sym);
1134       else
1135         return sym->value() + addend;
1136     }
1137   if (this->local_sym_index_ == SECTION_CODE)
1138     {
1139       gold_assert(!this->use_plt_offset_);
1140       return this->u1_.os->address() + addend;
1141     }
1142   gold_assert(this->local_sym_index_ != TARGET_CODE
1143               && this->local_sym_index_ != INVALID_CODE
1144               && this->local_sym_index_ != 0
1145               && !this->is_section_symbol_);
1146   const unsigned int lsi = this->local_sym_index_;
1147   Sized_relobj_file<size, big_endian>* relobj =
1148       this->u1_.relobj->sized_relobj();
1149   gold_assert(relobj != NULL);
1150   if (this->use_plt_offset_)
1151     return parameters->target().plt_address_for_local(relobj, lsi);
1152   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153   return symval->value(relobj, addend);
1154 }
1155
1156 // Reloc comparison.  This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker.  First we sort all relative relocs
1158 // to the front.  Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166     const
1167 {
1168   if (this->is_relative_)
1169     {
1170       if (!r2.is_relative_)
1171         return -1;
1172       // Otherwise sort by reloc address below.
1173     }
1174   else if (r2.is_relative_)
1175     return 1;
1176   else
1177     {
1178       unsigned int sym1 = this->get_symbol_index();
1179       unsigned int sym2 = r2.get_symbol_index();
1180       if (sym1 < sym2)
1181         return -1;
1182       else if (sym1 > sym2)
1183         return 1;
1184       // Otherwise sort by reloc address.
1185     }
1186
1187   section_offset_type addr1 = this->get_address();
1188   section_offset_type addr2 = r2.get_address();
1189   if (addr1 < addr2)
1190     return -1;
1191   else if (addr1 > addr2)
1192     return 1;
1193
1194   // Final tie breaker, in order to generate the same output on any
1195   // host: reloc type.
1196   unsigned int type1 = this->type_;
1197   unsigned int type2 = r2.type_;
1198   if (type1 < type2)
1199     return -1;
1200   else if (type1 > type2)
1201     return 1;
1202
1203   // These relocs appear to be exactly the same.
1204   return 0;
1205 }
1206
1207 // Write out a Rela relocation.
1208
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212     unsigned char* pov) const
1213 {
1214   elfcpp::Rela_write<size, big_endian> orel(pov);
1215   this->rel_.write_rel(&orel);
1216   Addend addend = this->addend_;
1217   if (this->rel_.is_target_specific())
1218     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219                                                this->rel_.type(), addend);
1220   else if (this->rel_.is_symbolless())
1221     addend = this->rel_.symbol_value(addend);
1222   else if (this->rel_.is_local_section_symbol())
1223     addend = this->rel_.local_section_offset(addend);
1224   orel.put_r_addend(addend);
1225 }
1226
1227 // Output_data_reloc_base methods.
1228
1229 // Adjust the output section.
1230
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234     ::do_adjust_output_section(Output_section* os)
1235 {
1236   if (sh_type == elfcpp::SHT_REL)
1237     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238   else if (sh_type == elfcpp::SHT_RELA)
1239     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240   else
1241     gold_unreachable();
1242
1243   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244   // static link.  The backends will generate a dynamic reloc section
1245   // to hold this.  In that case we don't want to link to the dynsym
1246   // section, because there isn't one.
1247   if (!dynamic)
1248     os->set_should_link_to_symtab();
1249   else if (parameters->doing_static_link())
1250     ;
1251   else
1252     os->set_should_link_to_dynsym();
1253 }
1254
1255 // Write out relocation data.
1256
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 void
1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260     Output_file* of)
1261 {
1262   const off_t off = this->offset();
1263   const off_t oview_size = this->data_size();
1264   unsigned char* const oview = of->get_output_view(off, oview_size);
1265
1266   if (this->sort_relocs())
1267     {
1268       gold_assert(dynamic);
1269       std::sort(this->relocs_.begin(), this->relocs_.end(),
1270                 Sort_relocs_comparison());
1271     }
1272
1273   unsigned char* pov = oview;
1274   for (typename Relocs::const_iterator p = this->relocs_.begin();
1275        p != this->relocs_.end();
1276        ++p)
1277     {
1278       p->write(pov);
1279       pov += reloc_size;
1280     }
1281
1282   gold_assert(pov - oview == oview_size);
1283
1284   of->write_output_view(off, oview_size, oview);
1285
1286   // We no longer need the relocation entries.
1287   this->relocs_.clear();
1288 }
1289
1290 // Class Output_relocatable_relocs.
1291
1292 template<int sh_type, int size, bool big_endian>
1293 void
1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295 {
1296   this->set_data_size(this->rr_->output_reloc_count()
1297                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298 }
1299
1300 // class Output_data_group.
1301
1302 template<int size, bool big_endian>
1303 Output_data_group<size, big_endian>::Output_data_group(
1304     Sized_relobj_file<size, big_endian>* relobj,
1305     section_size_type entry_count,
1306     elfcpp::Elf_Word flags,
1307     std::vector<unsigned int>* input_shndxes)
1308   : Output_section_data(entry_count * 4, 4, false),
1309     relobj_(relobj),
1310     flags_(flags)
1311 {
1312   this->input_shndxes_.swap(*input_shndxes);
1313 }
1314
1315 // Write out the section group, which means translating the section
1316 // indexes to apply to the output file.
1317
1318 template<int size, bool big_endian>
1319 void
1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
1321 {
1322   const off_t off = this->offset();
1323   const section_size_type oview_size =
1324     convert_to_section_size_type(this->data_size());
1325   unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329   ++contents;
1330
1331   for (std::vector<unsigned int>::const_iterator p =
1332          this->input_shndxes_.begin();
1333        p != this->input_shndxes_.end();
1334        ++p, ++contents)
1335     {
1336       Output_section* os = this->relobj_->output_section(*p);
1337
1338       unsigned int output_shndx;
1339       if (os != NULL)
1340         output_shndx = os->out_shndx();
1341       else
1342         {
1343           this->relobj_->error(_("section group retained but "
1344                                  "group element discarded"));
1345           output_shndx = 0;
1346         }
1347
1348       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349     }
1350
1351   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352   gold_assert(wrote == oview_size);
1353
1354   of->write_output_view(off, oview_size, oview);
1355
1356   // We no longer need this information.
1357   this->input_shndxes_.clear();
1358 }
1359
1360 // Output_data_got::Got_entry methods.
1361
1362 // Write out the entry.
1363
1364 template<int got_size, bool big_endian>
1365 void
1366 Output_data_got<got_size, big_endian>::Got_entry::write(
1367     unsigned int got_indx,
1368     unsigned char* pov) const
1369 {
1370   Valtype val = 0;
1371
1372   switch (this->local_sym_index_)
1373     {
1374     case GSYM_CODE:
1375       {
1376         // If the symbol is resolved locally, we need to write out the
1377         // link-time value, which will be relocated dynamically by a
1378         // RELATIVE relocation.
1379         Symbol* gsym = this->u_.gsym;
1380         if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1381           val = parameters->target().plt_address_for_global(gsym);
1382         else
1383           {
1384             switch (parameters->size_and_endianness())
1385               {
1386 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1387               case Parameters::TARGET_32_LITTLE:
1388               case Parameters::TARGET_32_BIG:
1389                 {
1390                   // This cast is ugly.  We don't want to put a
1391                   // virtual method in Symbol, because we want Symbol
1392                   // to be as small as possible.
1393                   Sized_symbol<32>::Value_type v;
1394                   v = static_cast<Sized_symbol<32>*>(gsym)->value();
1395                   val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1396                 }
1397                 break;
1398 #endif
1399 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1400               case Parameters::TARGET_64_LITTLE:
1401               case Parameters::TARGET_64_BIG:
1402                 {
1403                   Sized_symbol<64>::Value_type v;
1404                   v = static_cast<Sized_symbol<64>*>(gsym)->value();
1405                   val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1406                 }
1407                 break;
1408 #endif
1409               default:
1410                 gold_unreachable();
1411               }
1412             if (this->use_plt_or_tls_offset_
1413                 && gsym->type() == elfcpp::STT_TLS)
1414               val += parameters->target().tls_offset_for_global(gsym,
1415                                                                 got_indx);
1416           }
1417       }
1418       break;
1419
1420     case CONSTANT_CODE:
1421       val = this->u_.constant;
1422       break;
1423
1424     case RESERVED_CODE:
1425       // If we're doing an incremental update, don't touch this GOT entry.
1426       if (parameters->incremental_update())
1427         return;
1428       val = this->u_.constant;
1429       break;
1430
1431     default:
1432       {
1433         const Relobj* object = this->u_.object;
1434         const unsigned int lsi = this->local_sym_index_;
1435         bool is_tls = object->local_is_tls(lsi);
1436         if (this->use_plt_or_tls_offset_ && !is_tls)
1437           val = parameters->target().plt_address_for_local(object, lsi);
1438         else
1439           {
1440             uint64_t lval = object->local_symbol_value(lsi, this->addend_);
1441             val = convert_types<Valtype, uint64_t>(lval);
1442             if (this->use_plt_or_tls_offset_ && is_tls)
1443               val += parameters->target().tls_offset_for_local(object, lsi,
1444                                                                got_indx);
1445           }
1446       }
1447       break;
1448     }
1449
1450   elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1451 }
1452
1453 // Output_data_got methods.
1454
1455 // Add an entry for a global symbol to the GOT.  This returns true if
1456 // this is a new GOT entry, false if the symbol already had a GOT
1457 // entry.
1458
1459 template<int got_size, bool big_endian>
1460 bool
1461 Output_data_got<got_size, big_endian>::add_global(
1462     Symbol* gsym,
1463     unsigned int got_type)
1464 {
1465   if (gsym->has_got_offset(got_type))
1466     return false;
1467
1468   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1469   gsym->set_got_offset(got_type, got_offset);
1470   return true;
1471 }
1472
1473 // Like add_global, but use the PLT offset.
1474
1475 template<int got_size, bool big_endian>
1476 bool
1477 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1478                                                       unsigned int got_type)
1479 {
1480   if (gsym->has_got_offset(got_type))
1481     return false;
1482
1483   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1484   gsym->set_got_offset(got_type, got_offset);
1485   return true;
1486 }
1487
1488 // Add an entry for a global symbol to the GOT, and add a dynamic
1489 // relocation of type R_TYPE for the GOT entry.
1490
1491 template<int got_size, bool big_endian>
1492 void
1493 Output_data_got<got_size, big_endian>::add_global_with_rel(
1494     Symbol* gsym,
1495     unsigned int got_type,
1496     Output_data_reloc_generic* rel_dyn,
1497     unsigned int r_type)
1498 {
1499   if (gsym->has_got_offset(got_type))
1500     return;
1501
1502   unsigned int got_offset = this->add_got_entry(Got_entry());
1503   gsym->set_got_offset(got_type, got_offset);
1504   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1505 }
1506
1507 // Add a pair of entries for a global symbol to the GOT, and add
1508 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1509 // If R_TYPE_2 == 0, add the second entry with no relocation.
1510 template<int got_size, bool big_endian>
1511 void
1512 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1513     Symbol* gsym,
1514     unsigned int got_type,
1515     Output_data_reloc_generic* rel_dyn,
1516     unsigned int r_type_1,
1517     unsigned int r_type_2)
1518 {
1519   if (gsym->has_got_offset(got_type))
1520     return;
1521
1522   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1523   gsym->set_got_offset(got_type, got_offset);
1524   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1525
1526   if (r_type_2 != 0)
1527     rel_dyn->add_global_generic(gsym, r_type_2, this,
1528                                 got_offset + got_size / 8, 0);
1529 }
1530
1531 // Add an entry for a local symbol to the GOT.  This returns true if
1532 // this is a new GOT entry, false if the symbol already has a GOT
1533 // entry.
1534
1535 template<int got_size, bool big_endian>
1536 bool
1537 Output_data_got<got_size, big_endian>::add_local(
1538     Relobj* object,
1539     unsigned int symndx,
1540     unsigned int got_type)
1541 {
1542   if (object->local_has_got_offset(symndx, got_type))
1543     return false;
1544
1545   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1546                                                           false));
1547   object->set_local_got_offset(symndx, got_type, got_offset);
1548   return true;
1549 }
1550
1551 // Add an entry for a local symbol plus ADDEND to the GOT.  This returns
1552 // true if this is a new GOT entry, false if the symbol already has a GOT
1553 // entry.
1554
1555 template<int got_size, bool big_endian>
1556 bool
1557 Output_data_got<got_size, big_endian>::add_local(
1558     Relobj* object,
1559     unsigned int symndx,
1560     unsigned int got_type,
1561     uint64_t addend)
1562 {
1563   if (object->local_has_got_offset(symndx, got_type, addend))
1564     return false;
1565
1566   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1567                                                           false, addend));
1568   object->set_local_got_offset(symndx, got_type, got_offset, addend);
1569   return true;
1570 }
1571
1572 // Like add_local, but use the PLT offset.
1573
1574 template<int got_size, bool big_endian>
1575 bool
1576 Output_data_got<got_size, big_endian>::add_local_plt(
1577     Relobj* object,
1578     unsigned int symndx,
1579     unsigned int got_type)
1580 {
1581   if (object->local_has_got_offset(symndx, got_type))
1582     return false;
1583
1584   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1585                                                           true));
1586   object->set_local_got_offset(symndx, got_type, got_offset);
1587   return true;
1588 }
1589
1590 // Add an entry for a local symbol to the GOT, and add a dynamic
1591 // relocation of type R_TYPE for the GOT entry.
1592
1593 template<int got_size, bool big_endian>
1594 void
1595 Output_data_got<got_size, big_endian>::add_local_with_rel(
1596     Relobj* object,
1597     unsigned int symndx,
1598     unsigned int got_type,
1599     Output_data_reloc_generic* rel_dyn,
1600     unsigned int r_type)
1601 {
1602   if (object->local_has_got_offset(symndx, got_type))
1603     return;
1604
1605   unsigned int got_offset = this->add_got_entry(Got_entry());
1606   object->set_local_got_offset(symndx, got_type, got_offset);
1607   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1608 }
1609
1610 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1611 // relocation of type R_TYPE for the GOT entry.
1612
1613 template<int got_size, bool big_endian>
1614 void
1615 Output_data_got<got_size, big_endian>::add_local_with_rel(
1616     Relobj* object,
1617     unsigned int symndx,
1618     unsigned int got_type,
1619     Output_data_reloc_generic* rel_dyn,
1620     unsigned int r_type, uint64_t addend)
1621 {
1622   if (object->local_has_got_offset(symndx, got_type, addend))
1623     return;
1624
1625   unsigned int got_offset = this->add_got_entry(Got_entry());
1626   object->set_local_got_offset(symndx, got_type, got_offset, addend);
1627   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
1628                              addend);
1629 }
1630
1631 // Add a pair of entries for a local symbol to the GOT, and add
1632 // a dynamic relocation of type R_TYPE using the section symbol of
1633 // the output section to which input section SHNDX maps, on the first.
1634 // The first got entry will have a value of zero, the second the
1635 // value of the local symbol.
1636 template<int got_size, bool big_endian>
1637 void
1638 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1639     Relobj* object,
1640     unsigned int symndx,
1641     unsigned int shndx,
1642     unsigned int got_type,
1643     Output_data_reloc_generic* rel_dyn,
1644     unsigned int r_type)
1645 {
1646   if (object->local_has_got_offset(symndx, got_type))
1647     return;
1648
1649   unsigned int got_offset =
1650       this->add_got_entry_pair(Got_entry(),
1651                                Got_entry(object, symndx, false));
1652   object->set_local_got_offset(symndx, got_type, got_offset);
1653   Output_section* os = object->output_section(shndx);
1654   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1655 }
1656
1657 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1658 // a dynamic relocation of type R_TYPE using the section symbol of
1659 // the output section to which input section SHNDX maps, on the first.
1660 // The first got entry will have a value of zero, the second the
1661 // value of the local symbol.
1662 template<int got_size, bool big_endian>
1663 void
1664 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1665     Relobj* object,
1666     unsigned int symndx,
1667     unsigned int shndx,
1668     unsigned int got_type,
1669     Output_data_reloc_generic* rel_dyn,
1670     unsigned int r_type, uint64_t addend)
1671 {
1672   if (object->local_has_got_offset(symndx, got_type, addend))
1673     return;
1674
1675   unsigned int got_offset =
1676       this->add_got_entry_pair(Got_entry(),
1677                                Got_entry(object, symndx, false, addend));
1678   object->set_local_got_offset(symndx, got_type, got_offset, addend);
1679   Output_section* os = object->output_section(shndx);
1680   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
1681 }
1682
1683 // Add a pair of entries for a local symbol to the GOT, and add
1684 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1685 // The first got entry will have a value of zero, the second the
1686 // value of the local symbol offset by Target::tls_offset_for_local.
1687 template<int got_size, bool big_endian>
1688 void
1689 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1690     Relobj* object,
1691     unsigned int symndx,
1692     unsigned int got_type,
1693     Output_data_reloc_generic* rel_dyn,
1694     unsigned int r_type)
1695 {
1696   if (object->local_has_got_offset(symndx, got_type))
1697     return;
1698
1699   unsigned int got_offset
1700     = this->add_got_entry_pair(Got_entry(),
1701                                Got_entry(object, symndx, true));
1702   object->set_local_got_offset(symndx, got_type, got_offset);
1703   rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1704 }
1705
1706 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1707
1708 template<int got_size, bool big_endian>
1709 void
1710 Output_data_got<got_size, big_endian>::reserve_local(
1711     unsigned int i,
1712     Relobj* object,
1713     unsigned int sym_index,
1714     unsigned int got_type)
1715 {
1716   this->do_reserve_slot(i);
1717   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1718 }
1719
1720 // Reserve a slot in the GOT for a global symbol.
1721
1722 template<int got_size, bool big_endian>
1723 void
1724 Output_data_got<got_size, big_endian>::reserve_global(
1725     unsigned int i,
1726     Symbol* gsym,
1727     unsigned int got_type)
1728 {
1729   this->do_reserve_slot(i);
1730   gsym->set_got_offset(got_type, this->got_offset(i));
1731 }
1732
1733 // Write out the GOT.
1734
1735 template<int got_size, bool big_endian>
1736 void
1737 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1738 {
1739   const int add = got_size / 8;
1740
1741   const off_t off = this->offset();
1742   const off_t oview_size = this->data_size();
1743   unsigned char* const oview = of->get_output_view(off, oview_size);
1744
1745   unsigned char* pov = oview;
1746   for (unsigned int i = 0; i < this->entries_.size(); ++i)
1747     {
1748       this->entries_[i].write(i, pov);
1749       pov += add;
1750     }
1751
1752   gold_assert(pov - oview == oview_size);
1753
1754   of->write_output_view(off, oview_size, oview);
1755
1756   // We no longer need the GOT entries.
1757   this->entries_.clear();
1758 }
1759
1760 // Create a new GOT entry and return its offset.
1761
1762 template<int got_size, bool big_endian>
1763 unsigned int
1764 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1765 {
1766   if (!this->is_data_size_valid())
1767     {
1768       this->entries_.push_back(got_entry);
1769       this->set_got_size();
1770       return this->last_got_offset();
1771     }
1772   else
1773     {
1774       // For an incremental update, find an available slot.
1775       off_t got_offset = this->free_list_.allocate(got_size / 8,
1776                                                    got_size / 8, 0);
1777       if (got_offset == -1)
1778         gold_fallback(_("out of patch space (GOT);"
1779                         " relink with --incremental-full"));
1780       unsigned int got_index = got_offset / (got_size / 8);
1781       gold_assert(got_index < this->entries_.size());
1782       this->entries_[got_index] = got_entry;
1783       return static_cast<unsigned int>(got_offset);
1784     }
1785 }
1786
1787 // Create a pair of new GOT entries and return the offset of the first.
1788
1789 template<int got_size, bool big_endian>
1790 unsigned int
1791 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1792     Got_entry got_entry_1,
1793     Got_entry got_entry_2)
1794 {
1795   if (!this->is_data_size_valid())
1796     {
1797       unsigned int got_offset;
1798       this->entries_.push_back(got_entry_1);
1799       got_offset = this->last_got_offset();
1800       this->entries_.push_back(got_entry_2);
1801       this->set_got_size();
1802       return got_offset;
1803     }
1804   else
1805     {
1806       // For an incremental update, find an available pair of slots.
1807       off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1808                                                    got_size / 8, 0);
1809       if (got_offset == -1)
1810         gold_fallback(_("out of patch space (GOT);"
1811                         " relink with --incremental-full"));
1812       unsigned int got_index = got_offset / (got_size / 8);
1813       gold_assert(got_index < this->entries_.size());
1814       this->entries_[got_index] = got_entry_1;
1815       this->entries_[got_index + 1] = got_entry_2;
1816       return static_cast<unsigned int>(got_offset);
1817     }
1818 }
1819
1820 // Replace GOT entry I with a new value.
1821
1822 template<int got_size, bool big_endian>
1823 void
1824 Output_data_got<got_size, big_endian>::replace_got_entry(
1825     unsigned int i,
1826     Got_entry got_entry)
1827 {
1828   gold_assert(i < this->entries_.size());
1829   this->entries_[i] = got_entry;
1830 }
1831
1832 // Output_data_dynamic::Dynamic_entry methods.
1833
1834 // Write out the entry.
1835
1836 template<int size, bool big_endian>
1837 void
1838 Output_data_dynamic::Dynamic_entry::write(
1839     unsigned char* pov,
1840     const Stringpool* pool) const
1841 {
1842   typename elfcpp::Elf_types<size>::Elf_WXword val;
1843   switch (this->offset_)
1844     {
1845     case DYNAMIC_NUMBER:
1846       val = this->u_.val;
1847       break;
1848
1849     case DYNAMIC_SECTION_SIZE:
1850       val = this->u_.od->data_size();
1851       if (this->od2 != NULL)
1852         val += this->od2->data_size();
1853       break;
1854
1855     case DYNAMIC_SYMBOL:
1856       {
1857         const Sized_symbol<size>* s =
1858           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1859         val = s->value();
1860       }
1861       break;
1862
1863     case DYNAMIC_STRING:
1864       val = pool->get_offset(this->u_.str);
1865       break;
1866
1867     case DYNAMIC_CUSTOM:
1868       val = parameters->target().dynamic_tag_custom_value(this->tag_);
1869       break;
1870
1871     default:
1872       val = this->u_.od->address() + this->offset_;
1873       break;
1874     }
1875
1876   elfcpp::Dyn_write<size, big_endian> dw(pov);
1877   dw.put_d_tag(this->tag_);
1878   dw.put_d_val(val);
1879 }
1880
1881 // Output_data_dynamic methods.
1882
1883 // Adjust the output section to set the entry size.
1884
1885 void
1886 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1887 {
1888   if (parameters->target().get_size() == 32)
1889     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1890   else if (parameters->target().get_size() == 64)
1891     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1892   else
1893     gold_unreachable();
1894 }
1895
1896 // Set the final data size.
1897
1898 void
1899 Output_data_dynamic::set_final_data_size()
1900 {
1901   // Add the terminating entry if it hasn't been added.
1902   // Because of relaxation, we can run this multiple times.
1903   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1904     {
1905       int extra = parameters->options().spare_dynamic_tags();
1906       for (int i = 0; i < extra; ++i)
1907         this->add_constant(elfcpp::DT_NULL, 0);
1908       this->add_constant(elfcpp::DT_NULL, 0);
1909     }
1910
1911   int dyn_size;
1912   if (parameters->target().get_size() == 32)
1913     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1914   else if (parameters->target().get_size() == 64)
1915     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1916   else
1917     gold_unreachable();
1918   this->set_data_size(this->entries_.size() * dyn_size);
1919 }
1920
1921 // Write out the dynamic entries.
1922
1923 void
1924 Output_data_dynamic::do_write(Output_file* of)
1925 {
1926   switch (parameters->size_and_endianness())
1927     {
1928 #ifdef HAVE_TARGET_32_LITTLE
1929     case Parameters::TARGET_32_LITTLE:
1930       this->sized_write<32, false>(of);
1931       break;
1932 #endif
1933 #ifdef HAVE_TARGET_32_BIG
1934     case Parameters::TARGET_32_BIG:
1935       this->sized_write<32, true>(of);
1936       break;
1937 #endif
1938 #ifdef HAVE_TARGET_64_LITTLE
1939     case Parameters::TARGET_64_LITTLE:
1940       this->sized_write<64, false>(of);
1941       break;
1942 #endif
1943 #ifdef HAVE_TARGET_64_BIG
1944     case Parameters::TARGET_64_BIG:
1945       this->sized_write<64, true>(of);
1946       break;
1947 #endif
1948     default:
1949       gold_unreachable();
1950     }
1951 }
1952
1953 template<int size, bool big_endian>
1954 void
1955 Output_data_dynamic::sized_write(Output_file* of)
1956 {
1957   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1958
1959   const off_t offset = this->offset();
1960   const off_t oview_size = this->data_size();
1961   unsigned char* const oview = of->get_output_view(offset, oview_size);
1962
1963   unsigned char* pov = oview;
1964   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1965        p != this->entries_.end();
1966        ++p)
1967     {
1968       p->write<size, big_endian>(pov, this->pool_);
1969       pov += dyn_size;
1970     }
1971
1972   gold_assert(pov - oview == oview_size);
1973
1974   of->write_output_view(offset, oview_size, oview);
1975
1976   // We no longer need the dynamic entries.
1977   this->entries_.clear();
1978 }
1979
1980 // Class Output_symtab_xindex.
1981
1982 void
1983 Output_symtab_xindex::do_write(Output_file* of)
1984 {
1985   const off_t offset = this->offset();
1986   const off_t oview_size = this->data_size();
1987   unsigned char* const oview = of->get_output_view(offset, oview_size);
1988
1989   memset(oview, 0, oview_size);
1990
1991   if (parameters->target().is_big_endian())
1992     this->endian_do_write<true>(oview);
1993   else
1994     this->endian_do_write<false>(oview);
1995
1996   of->write_output_view(offset, oview_size, oview);
1997
1998   // We no longer need the data.
1999   this->entries_.clear();
2000 }
2001
2002 template<bool big_endian>
2003 void
2004 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
2005 {
2006   for (Xindex_entries::const_iterator p = this->entries_.begin();
2007        p != this->entries_.end();
2008        ++p)
2009     {
2010       unsigned int symndx = p->first;
2011       gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
2012       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
2013     }
2014 }
2015
2016 // Output_fill_debug_info methods.
2017
2018 // Return the minimum size needed for a dummy compilation unit header.
2019
2020 size_t
2021 Output_fill_debug_info::do_minimum_hole_size() const
2022 {
2023   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2024   // address_size.
2025   const size_t len = 4 + 2 + 4 + 1;
2026   // For type units, add type_signature, type_offset.
2027   if (this->is_debug_types_)
2028     return len + 8 + 4;
2029   return len;
2030 }
2031
2032 // Write a dummy compilation unit header to fill a hole in the
2033 // .debug_info or .debug_types section.
2034
2035 void
2036 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
2037 {
2038   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
2039              static_cast<long>(off), static_cast<long>(len));
2040
2041   gold_assert(len >= this->do_minimum_hole_size());
2042
2043   unsigned char* const oview = of->get_output_view(off, len);
2044   unsigned char* pov = oview;
2045
2046   // Write header fields: unit_length, version, debug_abbrev_offset,
2047   // address_size.
2048   if (this->is_big_endian())
2049     {
2050       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2051       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2052       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
2053     }
2054   else
2055     {
2056       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2057       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2058       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
2059     }
2060   pov += 4 + 2 + 4;
2061   *pov++ = 4;
2062
2063   // For type units, the additional header fields -- type_signature,
2064   // type_offset -- can be filled with zeroes.
2065
2066   // Fill the remainder of the free space with zeroes.  The first
2067   // zero should tell the consumer there are no DIEs to read in this
2068   // compilation unit.
2069   if (pov < oview + len)
2070     memset(pov, 0, oview + len - pov);
2071
2072   of->write_output_view(off, len, oview);
2073 }
2074
2075 // Output_fill_debug_line methods.
2076
2077 // Return the minimum size needed for a dummy line number program header.
2078
2079 size_t
2080 Output_fill_debug_line::do_minimum_hole_size() const
2081 {
2082   // Line number program header fields: unit_length, version, header_length,
2083   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2084   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2085   const size_t len = 4 + 2 + 4 + this->header_length;
2086   return len;
2087 }
2088
2089 // Write a dummy line number program header to fill a hole in the
2090 // .debug_line section.
2091
2092 void
2093 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2094 {
2095   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2096              static_cast<long>(off), static_cast<long>(len));
2097
2098   gold_assert(len >= this->do_minimum_hole_size());
2099
2100   unsigned char* const oview = of->get_output_view(off, len);
2101   unsigned char* pov = oview;
2102
2103   // Write header fields: unit_length, version, header_length,
2104   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2105   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2106   // We set the header_length field to cover the entire hole, so the
2107   // line number program is empty.
2108   if (this->is_big_endian())
2109     {
2110       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2111       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2112       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2113     }
2114   else
2115     {
2116       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2117       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2118       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2119     }
2120   pov += 4 + 2 + 4;
2121   *pov++ = 1;   // minimum_instruction_length
2122   *pov++ = 0;   // default_is_stmt
2123   *pov++ = 0;   // line_base
2124   *pov++ = 5;   // line_range
2125   *pov++ = 13;  // opcode_base
2126   *pov++ = 0;   // standard_opcode_lengths[1]
2127   *pov++ = 1;   // standard_opcode_lengths[2]
2128   *pov++ = 1;   // standard_opcode_lengths[3]
2129   *pov++ = 1;   // standard_opcode_lengths[4]
2130   *pov++ = 1;   // standard_opcode_lengths[5]
2131   *pov++ = 0;   // standard_opcode_lengths[6]
2132   *pov++ = 0;   // standard_opcode_lengths[7]
2133   *pov++ = 0;   // standard_opcode_lengths[8]
2134   *pov++ = 1;   // standard_opcode_lengths[9]
2135   *pov++ = 0;   // standard_opcode_lengths[10]
2136   *pov++ = 0;   // standard_opcode_lengths[11]
2137   *pov++ = 1;   // standard_opcode_lengths[12]
2138   *pov++ = 0;   // include_directories (empty)
2139   *pov++ = 0;   // filenames (empty)
2140
2141   // Some consumers don't check the header_length field, and simply
2142   // start reading the line number program immediately following the
2143   // header.  For those consumers, we fill the remainder of the free
2144   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2145   // no-ops: the resulting line table program will not create any rows.
2146   if (pov < oview + len)
2147     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2148
2149   of->write_output_view(off, len, oview);
2150 }
2151
2152 // Output_section::Input_section methods.
2153
2154 // Return the current data size.  For an input section we store the size here.
2155 // For an Output_section_data, we have to ask it for the size.
2156
2157 off_t
2158 Output_section::Input_section::current_data_size() const
2159 {
2160   if (this->is_input_section())
2161     return this->u1_.data_size;
2162   else
2163     {
2164       this->u2_.posd->pre_finalize_data_size();
2165       return this->u2_.posd->current_data_size();
2166     }
2167 }
2168
2169 // Return the data size.  For an input section we store the size here.
2170 // For an Output_section_data, we have to ask it for the size.
2171
2172 off_t
2173 Output_section::Input_section::data_size() const
2174 {
2175   if (this->is_input_section())
2176     return this->u1_.data_size;
2177   else
2178     return this->u2_.posd->data_size();
2179 }
2180
2181 // Return the object for an input section.
2182
2183 Relobj*
2184 Output_section::Input_section::relobj() const
2185 {
2186   if (this->is_input_section())
2187     return this->u2_.object;
2188   else if (this->is_merge_section())
2189     {
2190       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2191       return this->u2_.pomb->first_relobj();
2192     }
2193   else if (this->is_relaxed_input_section())
2194     return this->u2_.poris->relobj();
2195   else
2196     gold_unreachable();
2197 }
2198
2199 // Return the input section index for an input section.
2200
2201 unsigned int
2202 Output_section::Input_section::shndx() const
2203 {
2204   if (this->is_input_section())
2205     return this->shndx_;
2206   else if (this->is_merge_section())
2207     {
2208       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2209       return this->u2_.pomb->first_shndx();
2210     }
2211   else if (this->is_relaxed_input_section())
2212     return this->u2_.poris->shndx();
2213   else
2214     gold_unreachable();
2215 }
2216
2217 // Set the address and file offset.
2218
2219 void
2220 Output_section::Input_section::set_address_and_file_offset(
2221     uint64_t address,
2222     off_t file_offset,
2223     off_t section_file_offset)
2224 {
2225   if (this->is_input_section())
2226     this->u2_.object->set_section_offset(this->shndx_,
2227                                          file_offset - section_file_offset);
2228   else
2229     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2230 }
2231
2232 // Reset the address and file offset.
2233
2234 void
2235 Output_section::Input_section::reset_address_and_file_offset()
2236 {
2237   if (!this->is_input_section())
2238     this->u2_.posd->reset_address_and_file_offset();
2239 }
2240
2241 // Finalize the data size.
2242
2243 void
2244 Output_section::Input_section::finalize_data_size()
2245 {
2246   if (!this->is_input_section())
2247     this->u2_.posd->finalize_data_size();
2248 }
2249
2250 // Try to turn an input offset into an output offset.  We want to
2251 // return the output offset relative to the start of this
2252 // Input_section in the output section.
2253
2254 inline bool
2255 Output_section::Input_section::output_offset(
2256     const Relobj* object,
2257     unsigned int shndx,
2258     section_offset_type offset,
2259     section_offset_type* poutput) const
2260 {
2261   if (!this->is_input_section())
2262     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2263   else
2264     {
2265       if (this->shndx_ != shndx || this->u2_.object != object)
2266         return false;
2267       *poutput = offset;
2268       return true;
2269     }
2270 }
2271
2272 // Write out the data.  We don't have to do anything for an input
2273 // section--they are handled via Object::relocate--but this is where
2274 // we write out the data for an Output_section_data.
2275
2276 void
2277 Output_section::Input_section::write(Output_file* of)
2278 {
2279   if (!this->is_input_section())
2280     this->u2_.posd->write(of);
2281 }
2282
2283 // Write the data to a buffer.  As for write(), we don't have to do
2284 // anything for an input section.
2285
2286 void
2287 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2288 {
2289   if (!this->is_input_section())
2290     this->u2_.posd->write_to_buffer(buffer);
2291 }
2292
2293 // Print to a map file.
2294
2295 void
2296 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2297 {
2298   switch (this->shndx_)
2299     {
2300     case OUTPUT_SECTION_CODE:
2301     case MERGE_DATA_SECTION_CODE:
2302     case MERGE_STRING_SECTION_CODE:
2303       this->u2_.posd->print_to_mapfile(mapfile);
2304       break;
2305
2306     case RELAXED_INPUT_SECTION_CODE:
2307       {
2308         Output_relaxed_input_section* relaxed_section =
2309           this->relaxed_input_section();
2310         mapfile->print_input_section(relaxed_section->relobj(),
2311                                      relaxed_section->shndx());
2312       }
2313       break;
2314     default:
2315       mapfile->print_input_section(this->u2_.object, this->shndx_);
2316       break;
2317     }
2318 }
2319
2320 // Output_section methods.
2321
2322 // Construct an Output_section.  NAME will point into a Stringpool.
2323
2324 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2325                                elfcpp::Elf_Xword flags)
2326   : name_(name),
2327     addralign_(0),
2328     entsize_(0),
2329     load_address_(0),
2330     link_section_(NULL),
2331     link_(0),
2332     info_section_(NULL),
2333     info_symndx_(NULL),
2334     info_(0),
2335     type_(type),
2336     flags_(flags),
2337     order_(ORDER_INVALID),
2338     out_shndx_(-1U),
2339     symtab_index_(0),
2340     dynsym_index_(0),
2341     input_sections_(),
2342     first_input_offset_(0),
2343     fills_(),
2344     postprocessing_buffer_(NULL),
2345     needs_symtab_index_(false),
2346     needs_dynsym_index_(false),
2347     should_link_to_symtab_(false),
2348     should_link_to_dynsym_(false),
2349     after_input_sections_(false),
2350     requires_postprocessing_(false),
2351     found_in_sections_clause_(false),
2352     has_load_address_(false),
2353     info_uses_section_index_(false),
2354     input_section_order_specified_(false),
2355     may_sort_attached_input_sections_(false),
2356     must_sort_attached_input_sections_(false),
2357     attached_input_sections_are_sorted_(false),
2358     is_relro_(false),
2359     is_small_section_(false),
2360     is_large_section_(false),
2361     generate_code_fills_at_write_(false),
2362     is_entsize_zero_(false),
2363     section_offsets_need_adjustment_(false),
2364     is_noload_(false),
2365     always_keeps_input_sections_(false),
2366     has_fixed_layout_(false),
2367     is_patch_space_allowed_(false),
2368     is_unique_segment_(false),
2369     tls_offset_(0),
2370     extra_segment_flags_(0),
2371     segment_alignment_(0),
2372     checkpoint_(NULL),
2373     lookup_maps_(new Output_section_lookup_maps),
2374     free_list_(),
2375     free_space_fill_(NULL),
2376     patch_space_(0)
2377 {
2378   // An unallocated section has no address.  Forcing this means that
2379   // we don't need special treatment for symbols defined in debug
2380   // sections.
2381   if ((flags & elfcpp::SHF_ALLOC) == 0)
2382     this->set_address(0);
2383 }
2384
2385 Output_section::~Output_section()
2386 {
2387   delete this->checkpoint_;
2388 }
2389
2390 // Set the entry size.
2391
2392 void
2393 Output_section::set_entsize(uint64_t v)
2394 {
2395   if (this->is_entsize_zero_)
2396     ;
2397   else if (this->entsize_ == 0)
2398     this->entsize_ = v;
2399   else if (this->entsize_ != v)
2400     {
2401       this->entsize_ = 0;
2402       this->is_entsize_zero_ = 1;
2403     }
2404 }
2405
2406 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2407 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2408 // relocation section which applies to this section, or 0 if none, or
2409 // -1U if more than one.  Return the offset of the input section
2410 // within the output section.  Return -1 if the input section will
2411 // receive special handling.  In the normal case we don't always keep
2412 // track of input sections for an Output_section.  Instead, each
2413 // Object keeps track of the Output_section for each of its input
2414 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2415 // track of input sections here; this is used when SECTIONS appears in
2416 // a linker script.
2417
2418 template<int size, bool big_endian>
2419 off_t
2420 Output_section::add_input_section(Layout* layout,
2421                                   Sized_relobj_file<size, big_endian>* object,
2422                                   unsigned int shndx,
2423                                   const char* secname,
2424                                   const elfcpp::Shdr<size, big_endian>& shdr,
2425                                   unsigned int reloc_shndx,
2426                                   bool have_sections_script)
2427 {
2428   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2429   if ((addralign & (addralign - 1)) != 0)
2430     {
2431       object->error(_("invalid alignment %lu for section \"%s\""),
2432                     static_cast<unsigned long>(addralign), secname);
2433       addralign = 1;
2434     }
2435
2436   if (addralign > this->addralign_)
2437     this->addralign_ = addralign;
2438
2439   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2440   uint64_t entsize = shdr.get_sh_entsize();
2441
2442   // .debug_str is a mergeable string section, but is not always so
2443   // marked by compilers.  Mark manually here so we can optimize.
2444   if (strcmp(secname, ".debug_str") == 0)
2445     {
2446       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2447       entsize = 1;
2448     }
2449
2450   this->update_flags_for_input_section(sh_flags);
2451   this->set_entsize(entsize);
2452
2453   // If this is a SHF_MERGE section, we pass all the input sections to
2454   // a Output_data_merge.  We don't try to handle relocations for such
2455   // a section.  We don't try to handle empty merge sections--they
2456   // mess up the mappings, and are useless anyhow.
2457   // FIXME: Need to handle merge sections during incremental update.
2458   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2459       && reloc_shndx == 0
2460       && shdr.get_sh_size() > 0
2461       && !parameters->incremental())
2462     {
2463       // Keep information about merged input sections for rebuilding fast
2464       // lookup maps if we have sections-script or we do relaxation.
2465       bool keeps_input_sections = (this->always_keeps_input_sections_
2466                                    || have_sections_script
2467                                    || parameters->target().may_relax());
2468
2469       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2470                                         addralign, keeps_input_sections))
2471         {
2472           // Tell the relocation routines that they need to call the
2473           // output_offset method to determine the final address.
2474           return -1;
2475         }
2476     }
2477
2478   section_size_type input_section_size = shdr.get_sh_size();
2479   section_size_type uncompressed_size;
2480   if (object->section_is_compressed(shndx, &uncompressed_size))
2481     input_section_size = uncompressed_size;
2482
2483   off_t offset_in_section;
2484
2485   if (this->has_fixed_layout())
2486     {
2487       // For incremental updates, find a chunk of unused space in the section.
2488       offset_in_section = this->free_list_.allocate(input_section_size,
2489                                                     addralign, 0);
2490       if (offset_in_section == -1)
2491         gold_fallback(_("out of patch space in section %s; "
2492                         "relink with --incremental-full"),
2493                       this->name());
2494       return offset_in_section;
2495     }
2496
2497   offset_in_section = this->current_data_size_for_child();
2498   off_t aligned_offset_in_section = align_address(offset_in_section,
2499                                                   addralign);
2500   this->set_current_data_size_for_child(aligned_offset_in_section
2501                                         + input_section_size);
2502
2503   // Determine if we want to delay code-fill generation until the output
2504   // section is written.  When the target is relaxing, we want to delay fill
2505   // generating to avoid adjusting them during relaxation.  Also, if we are
2506   // sorting input sections we must delay fill generation.
2507   if (!this->generate_code_fills_at_write_
2508       && !have_sections_script
2509       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2510       && parameters->target().has_code_fill()
2511       && (parameters->target().may_relax()
2512           || layout->is_section_ordering_specified()))
2513     {
2514       gold_assert(this->fills_.empty());
2515       this->generate_code_fills_at_write_ = true;
2516     }
2517
2518   if (aligned_offset_in_section > offset_in_section
2519       && !this->generate_code_fills_at_write_
2520       && !have_sections_script
2521       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2522       && parameters->target().has_code_fill())
2523     {
2524       // We need to add some fill data.  Using fill_list_ when
2525       // possible is an optimization, since we will often have fill
2526       // sections without input sections.
2527       off_t fill_len = aligned_offset_in_section - offset_in_section;
2528       if (this->input_sections_.empty())
2529         this->fills_.push_back(Fill(offset_in_section, fill_len));
2530       else
2531         {
2532           std::string fill_data(parameters->target().code_fill(fill_len));
2533           Output_data_const* odc = new Output_data_const(fill_data, 1);
2534           this->input_sections_.push_back(Input_section(odc));
2535         }
2536     }
2537
2538   // We need to keep track of this section if we are already keeping
2539   // track of sections, or if we are relaxing.  Also, if this is a
2540   // section which requires sorting, or which may require sorting in
2541   // the future, we keep track of the sections.  If the
2542   // --section-ordering-file option is used to specify the order of
2543   // sections, we need to keep track of sections.
2544   if (this->always_keeps_input_sections_
2545       || have_sections_script
2546       || !this->input_sections_.empty()
2547       || this->may_sort_attached_input_sections()
2548       || this->must_sort_attached_input_sections()
2549       || parameters->options().user_set_Map()
2550       || parameters->target().may_relax()
2551       || layout->is_section_ordering_specified())
2552     {
2553       Input_section isecn(object, shndx, input_section_size, addralign);
2554       /* If section ordering is requested by specifying a ordering file,
2555          using --section-ordering-file, match the section name with
2556          a pattern.  */
2557       if (parameters->options().section_ordering_file())
2558         {
2559           unsigned int section_order_index =
2560             layout->find_section_order_index(std::string(secname));
2561           if (section_order_index != 0)
2562             {
2563               isecn.set_section_order_index(section_order_index);
2564               this->set_input_section_order_specified();
2565             }
2566         }
2567       this->input_sections_.push_back(isecn);
2568     }
2569
2570   return aligned_offset_in_section;
2571 }
2572
2573 // Add arbitrary data to an output section.
2574
2575 void
2576 Output_section::add_output_section_data(Output_section_data* posd)
2577 {
2578   Input_section inp(posd);
2579   this->add_output_section_data(&inp);
2580
2581   if (posd->is_data_size_valid())
2582     {
2583       off_t offset_in_section;
2584       if (this->has_fixed_layout())
2585         {
2586           // For incremental updates, find a chunk of unused space.
2587           offset_in_section = this->free_list_.allocate(posd->data_size(),
2588                                                         posd->addralign(), 0);
2589           if (offset_in_section == -1)
2590             gold_fallback(_("out of patch space in section %s; "
2591                             "relink with --incremental-full"),
2592                           this->name());
2593           // Finalize the address and offset now.
2594           uint64_t addr = this->address();
2595           off_t offset = this->offset();
2596           posd->set_address_and_file_offset(addr + offset_in_section,
2597                                             offset + offset_in_section);
2598         }
2599       else
2600         {
2601           offset_in_section = this->current_data_size_for_child();
2602           off_t aligned_offset_in_section = align_address(offset_in_section,
2603                                                           posd->addralign());
2604           this->set_current_data_size_for_child(aligned_offset_in_section
2605                                                 + posd->data_size());
2606         }
2607     }
2608   else if (this->has_fixed_layout())
2609     {
2610       // For incremental updates, arrange for the data to have a fixed layout.
2611       // This will mean that additions to the data must be allocated from
2612       // free space within the containing output section.
2613       uint64_t addr = this->address();
2614       posd->set_address(addr);
2615       posd->set_file_offset(0);
2616       // FIXME: This should eventually be unreachable.
2617       // gold_unreachable();
2618     }
2619 }
2620
2621 // Add a relaxed input section.
2622
2623 void
2624 Output_section::add_relaxed_input_section(Layout* layout,
2625                                           Output_relaxed_input_section* poris,
2626                                           const std::string& name)
2627 {
2628   Input_section inp(poris);
2629
2630   // If the --section-ordering-file option is used to specify the order of
2631   // sections, we need to keep track of sections.
2632   if (layout->is_section_ordering_specified())
2633     {
2634       unsigned int section_order_index =
2635         layout->find_section_order_index(name);
2636       if (section_order_index != 0)
2637         {
2638           inp.set_section_order_index(section_order_index);
2639           this->set_input_section_order_specified();
2640         }
2641     }
2642
2643   this->add_output_section_data(&inp);
2644   if (this->lookup_maps_->is_valid())
2645     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2646                                                   poris->shndx(), poris);
2647
2648   // For a relaxed section, we use the current data size.  Linker scripts
2649   // get all the input sections, including relaxed one from an output
2650   // section and add them back to the same output section to compute the
2651   // output section size.  If we do not account for sizes of relaxed input
2652   // sections, an output section would be incorrectly sized.
2653   off_t offset_in_section = this->current_data_size_for_child();
2654   off_t aligned_offset_in_section = align_address(offset_in_section,
2655                                                   poris->addralign());
2656   this->set_current_data_size_for_child(aligned_offset_in_section
2657                                         + poris->current_data_size());
2658 }
2659
2660 // Add arbitrary data to an output section by Input_section.
2661
2662 void
2663 Output_section::add_output_section_data(Input_section* inp)
2664 {
2665   if (this->input_sections_.empty())
2666     this->first_input_offset_ = this->current_data_size_for_child();
2667
2668   this->input_sections_.push_back(*inp);
2669
2670   uint64_t addralign = inp->addralign();
2671   if (addralign > this->addralign_)
2672     this->addralign_ = addralign;
2673
2674   inp->set_output_section(this);
2675 }
2676
2677 // Add a merge section to an output section.
2678
2679 void
2680 Output_section::add_output_merge_section(Output_section_data* posd,
2681                                          bool is_string, uint64_t entsize)
2682 {
2683   Input_section inp(posd, is_string, entsize);
2684   this->add_output_section_data(&inp);
2685 }
2686
2687 // Add an input section to a SHF_MERGE section.
2688
2689 bool
2690 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2691                                         uint64_t flags, uint64_t entsize,
2692                                         uint64_t addralign,
2693                                         bool keeps_input_sections)
2694 {
2695   // We cannot merge sections with entsize == 0.
2696   if (entsize == 0)
2697     return false;
2698
2699   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2700
2701   // We cannot restore merged input section states.
2702   gold_assert(this->checkpoint_ == NULL);
2703
2704   // Look up merge sections by required properties.
2705   // Currently, we only invalidate the lookup maps in script processing
2706   // and relaxation.  We should not have done either when we reach here.
2707   // So we assume that the lookup maps are valid to simply code.
2708   gold_assert(this->lookup_maps_->is_valid());
2709   Merge_section_properties msp(is_string, entsize, addralign);
2710   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2711   bool is_new = false;
2712   if (pomb != NULL)
2713     {
2714       gold_assert(pomb->is_string() == is_string
2715                   && pomb->entsize() == entsize
2716                   && pomb->addralign() == addralign);
2717     }
2718   else
2719     {
2720       // Create a new Output_merge_data or Output_merge_string_data.
2721       if (!is_string)
2722         pomb = new Output_merge_data(entsize, addralign);
2723       else
2724         {
2725           switch (entsize)
2726             {
2727             case 1:
2728               pomb = new Output_merge_string<char>(addralign);
2729               break;
2730             case 2:
2731               pomb = new Output_merge_string<uint16_t>(addralign);
2732               break;
2733             case 4:
2734               pomb = new Output_merge_string<uint32_t>(addralign);
2735               break;
2736             default:
2737               return false;
2738             }
2739         }
2740       // If we need to do script processing or relaxation, we need to keep
2741       // the original input sections to rebuild the fast lookup maps.
2742       if (keeps_input_sections)
2743         pomb->set_keeps_input_sections();
2744       is_new = true;
2745     }
2746
2747   if (pomb->add_input_section(object, shndx))
2748     {
2749       // Add new merge section to this output section and link merge
2750       // section properties to new merge section in map.
2751       if (is_new)
2752         {
2753           this->add_output_merge_section(pomb, is_string, entsize);
2754           this->lookup_maps_->add_merge_section(msp, pomb);
2755         }
2756
2757       return true;
2758     }
2759   else
2760     {
2761       // If add_input_section failed, delete new merge section to avoid
2762       // exporting empty merge sections in Output_section::get_input_section.
2763       if (is_new)
2764         delete pomb;
2765       return false;
2766     }
2767 }
2768
2769 // Build a relaxation map to speed up relaxation of existing input sections.
2770 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2771
2772 void
2773 Output_section::build_relaxation_map(
2774   const Input_section_list& input_sections,
2775   size_t limit,
2776   Relaxation_map* relaxation_map) const
2777 {
2778   for (size_t i = 0; i < limit; ++i)
2779     {
2780       const Input_section& is(input_sections[i]);
2781       if (is.is_input_section() || is.is_relaxed_input_section())
2782         {
2783           Section_id sid(is.relobj(), is.shndx());
2784           (*relaxation_map)[sid] = i;
2785         }
2786     }
2787 }
2788
2789 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2790 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2791 // indices of INPUT_SECTIONS.
2792
2793 void
2794 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2795   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2796   const Relaxation_map& map,
2797   Input_section_list* input_sections)
2798 {
2799   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2800     {
2801       Output_relaxed_input_section* poris = relaxed_sections[i];
2802       Section_id sid(poris->relobj(), poris->shndx());
2803       Relaxation_map::const_iterator p = map.find(sid);
2804       gold_assert(p != map.end());
2805       gold_assert((*input_sections)[p->second].is_input_section());
2806
2807       // Remember section order index of original input section
2808       // if it is set.  Copy it to the relaxed input section.
2809       unsigned int soi =
2810         (*input_sections)[p->second].section_order_index();
2811       (*input_sections)[p->second] = Input_section(poris);
2812       (*input_sections)[p->second].set_section_order_index(soi);
2813     }
2814 }
2815
2816 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2817 // is a vector of pointers to Output_relaxed_input_section or its derived
2818 // classes.  The relaxed sections must correspond to existing input sections.
2819
2820 void
2821 Output_section::convert_input_sections_to_relaxed_sections(
2822   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2823 {
2824   gold_assert(parameters->target().may_relax());
2825
2826   // We want to make sure that restore_states does not undo the effect of
2827   // this.  If there is no checkpoint active, just search the current
2828   // input section list and replace the sections there.  If there is
2829   // a checkpoint, also replace the sections there.
2830
2831   // By default, we look at the whole list.
2832   size_t limit = this->input_sections_.size();
2833
2834   if (this->checkpoint_ != NULL)
2835     {
2836       // Replace input sections with relaxed input section in the saved
2837       // copy of the input section list.
2838       if (this->checkpoint_->input_sections_saved())
2839         {
2840           Relaxation_map map;
2841           this->build_relaxation_map(
2842                     *(this->checkpoint_->input_sections()),
2843                     this->checkpoint_->input_sections()->size(),
2844                     &map);
2845           this->convert_input_sections_in_list_to_relaxed_sections(
2846                     relaxed_sections,
2847                     map,
2848                     this->checkpoint_->input_sections());
2849         }
2850       else
2851         {
2852           // We have not copied the input section list yet.  Instead, just
2853           // look at the portion that would be saved.
2854           limit = this->checkpoint_->input_sections_size();
2855         }
2856     }
2857
2858   // Convert input sections in input_section_list.
2859   Relaxation_map map;
2860   this->build_relaxation_map(this->input_sections_, limit, &map);
2861   this->convert_input_sections_in_list_to_relaxed_sections(
2862             relaxed_sections,
2863             map,
2864             &this->input_sections_);
2865
2866   // Update fast look-up map.
2867   if (this->lookup_maps_->is_valid())
2868     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2869       {
2870         Output_relaxed_input_section* poris = relaxed_sections[i];
2871         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2872                                                       poris->shndx(), poris);
2873       }
2874 }
2875
2876 // Update the output section flags based on input section flags.
2877
2878 void
2879 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2880 {
2881   // If we created the section with SHF_ALLOC clear, we set the
2882   // address.  If we are now setting the SHF_ALLOC flag, we need to
2883   // undo that.
2884   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2885       && (flags & elfcpp::SHF_ALLOC) != 0)
2886     this->mark_address_invalid();
2887
2888   this->flags_ |= (flags
2889                    & (elfcpp::SHF_WRITE
2890                       | elfcpp::SHF_ALLOC
2891                       | elfcpp::SHF_EXECINSTR));
2892
2893   if ((flags & elfcpp::SHF_MERGE) == 0)
2894     this->flags_ &=~ elfcpp::SHF_MERGE;
2895   else
2896     {
2897       if (this->current_data_size_for_child() == 0)
2898         this->flags_ |= elfcpp::SHF_MERGE;
2899     }
2900
2901   if ((flags & elfcpp::SHF_STRINGS) == 0)
2902     this->flags_ &=~ elfcpp::SHF_STRINGS;
2903   else
2904     {
2905       if (this->current_data_size_for_child() == 0)
2906         this->flags_ |= elfcpp::SHF_STRINGS;
2907     }
2908 }
2909
2910 // Find the merge section into which an input section with index SHNDX in
2911 // OBJECT has been added.  Return NULL if none found.
2912
2913 const Output_section_data*
2914 Output_section::find_merge_section(const Relobj* object,
2915                                    unsigned int shndx) const
2916 {
2917   return object->find_merge_section(shndx);
2918 }
2919
2920 // Build the lookup maps for relaxed sections.  This needs
2921 // to be declared as a const method so that it is callable with a const
2922 // Output_section pointer.  The method only updates states of the maps.
2923
2924 void
2925 Output_section::build_lookup_maps() const
2926 {
2927   this->lookup_maps_->clear();
2928   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2929        p != this->input_sections_.end();
2930        ++p)
2931     {
2932       if (p->is_relaxed_input_section())
2933         {
2934           Output_relaxed_input_section* poris = p->relaxed_input_section();
2935           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2936                                                         poris->shndx(), poris);
2937         }
2938     }
2939 }
2940
2941 // Find an relaxed input section corresponding to an input section
2942 // in OBJECT with index SHNDX.
2943
2944 const Output_relaxed_input_section*
2945 Output_section::find_relaxed_input_section(const Relobj* object,
2946                                            unsigned int shndx) const
2947 {
2948   if (!this->lookup_maps_->is_valid())
2949     this->build_lookup_maps();
2950   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2951 }
2952
2953 // Given an address OFFSET relative to the start of input section
2954 // SHNDX in OBJECT, return whether this address is being included in
2955 // the final link.  This should only be called if SHNDX in OBJECT has
2956 // a special mapping.
2957
2958 bool
2959 Output_section::is_input_address_mapped(const Relobj* object,
2960                                         unsigned int shndx,
2961                                         off_t offset) const
2962 {
2963   // Look at the Output_section_data_maps first.
2964   const Output_section_data* posd = this->find_merge_section(object, shndx);
2965   if (posd == NULL)
2966     posd = this->find_relaxed_input_section(object, shndx);
2967
2968   if (posd != NULL)
2969     {
2970       section_offset_type output_offset;
2971       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2972       // By default we assume that the address is mapped. See comment at the
2973       // end.
2974       if (!found)
2975         return true;
2976       return output_offset != -1;
2977     }
2978
2979   // Fall back to the slow look-up.
2980   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2981        p != this->input_sections_.end();
2982        ++p)
2983     {
2984       section_offset_type output_offset;
2985       if (p->output_offset(object, shndx, offset, &output_offset))
2986         return output_offset != -1;
2987     }
2988
2989   // By default we assume that the address is mapped.  This should
2990   // only be called after we have passed all sections to Layout.  At
2991   // that point we should know what we are discarding.
2992   return true;
2993 }
2994
2995 // Given an address OFFSET relative to the start of input section
2996 // SHNDX in object OBJECT, return the output offset relative to the
2997 // start of the input section in the output section.  This should only
2998 // be called if SHNDX in OBJECT has a special mapping.
2999
3000 section_offset_type
3001 Output_section::output_offset(const Relobj* object, unsigned int shndx,
3002                               section_offset_type offset) const
3003 {
3004   // This can only be called meaningfully when we know the data size
3005   // of this.
3006   gold_assert(this->is_data_size_valid());
3007
3008   // Look at the Output_section_data_maps first.
3009   const Output_section_data* posd = this->find_merge_section(object, shndx);
3010   if (posd == NULL)
3011     posd = this->find_relaxed_input_section(object, shndx);
3012   if (posd != NULL)
3013     {
3014       section_offset_type output_offset;
3015       bool found = posd->output_offset(object, shndx, offset, &output_offset);
3016       gold_assert(found);
3017       return output_offset;
3018     }
3019
3020   // Fall back to the slow look-up.
3021   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3022        p != this->input_sections_.end();
3023        ++p)
3024     {
3025       section_offset_type output_offset;
3026       if (p->output_offset(object, shndx, offset, &output_offset))
3027         return output_offset;
3028     }
3029   gold_unreachable();
3030 }
3031
3032 // Return the output virtual address of OFFSET relative to the start
3033 // of input section SHNDX in object OBJECT.
3034
3035 uint64_t
3036 Output_section::output_address(const Relobj* object, unsigned int shndx,
3037                                off_t offset) const
3038 {
3039   uint64_t addr = this->address() + this->first_input_offset_;
3040
3041   // Look at the Output_section_data_maps first.
3042   const Output_section_data* posd = this->find_merge_section(object, shndx);
3043   if (posd == NULL)
3044     posd = this->find_relaxed_input_section(object, shndx);
3045   if (posd != NULL && posd->is_address_valid())
3046     {
3047       section_offset_type output_offset;
3048       bool found = posd->output_offset(object, shndx, offset, &output_offset);
3049       gold_assert(found);
3050       return posd->address() + output_offset;
3051     }
3052
3053   // Fall back to the slow look-up.
3054   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3055        p != this->input_sections_.end();
3056        ++p)
3057     {
3058       addr = align_address(addr, p->addralign());
3059       section_offset_type output_offset;
3060       if (p->output_offset(object, shndx, offset, &output_offset))
3061         {
3062           if (output_offset == -1)
3063             return -1ULL;
3064           return addr + output_offset;
3065         }
3066       addr += p->data_size();
3067     }
3068
3069   // If we get here, it means that we don't know the mapping for this
3070   // input section.  This might happen in principle if
3071   // add_input_section were called before add_output_section_data.
3072   // But it should never actually happen.
3073
3074   gold_unreachable();
3075 }
3076
3077 // Find the output address of the start of the merged section for
3078 // input section SHNDX in object OBJECT.
3079
3080 bool
3081 Output_section::find_starting_output_address(const Relobj* object,
3082                                              unsigned int shndx,
3083                                              uint64_t* paddr) const
3084 {
3085   const Output_section_data* data = this->find_merge_section(object, shndx);
3086   if (data == NULL)
3087     return false;
3088
3089   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3090   // Looking up the merge section map does not always work as we sometimes
3091   // find a merge section without its address set.
3092   uint64_t addr = this->address() + this->first_input_offset_;
3093   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3094        p != this->input_sections_.end();
3095        ++p)
3096     {
3097       addr = align_address(addr, p->addralign());
3098
3099       // It would be nice if we could use the existing output_offset
3100       // method to get the output offset of input offset 0.
3101       // Unfortunately we don't know for sure that input offset 0 is
3102       // mapped at all.
3103       if (!p->is_input_section() && p->output_section_data() == data)
3104         {
3105           *paddr = addr;
3106           return true;
3107         }
3108
3109       addr += p->data_size();
3110     }
3111
3112   // We couldn't find a merge output section for this input section.
3113   return false;
3114 }
3115
3116 // Update the data size of an Output_section.
3117
3118 void
3119 Output_section::update_data_size()
3120 {
3121   if (this->input_sections_.empty())
3122       return;
3123
3124   if (this->must_sort_attached_input_sections()
3125       || this->input_section_order_specified())
3126     this->sort_attached_input_sections();
3127
3128   off_t off = this->first_input_offset_;
3129   for (Input_section_list::iterator p = this->input_sections_.begin();
3130        p != this->input_sections_.end();
3131        ++p)
3132     {
3133       off = align_address(off, p->addralign());
3134       off += p->current_data_size();
3135     }
3136
3137   this->set_current_data_size_for_child(off);
3138 }
3139
3140 // Set the data size of an Output_section.  This is where we handle
3141 // setting the addresses of any Output_section_data objects.
3142
3143 void
3144 Output_section::set_final_data_size()
3145 {
3146   off_t data_size;
3147
3148   if (this->input_sections_.empty())
3149     data_size = this->current_data_size_for_child();
3150   else
3151     {
3152       if (this->must_sort_attached_input_sections()
3153           || this->input_section_order_specified())
3154         this->sort_attached_input_sections();
3155
3156       uint64_t address = this->address();
3157       off_t startoff = this->offset();
3158       off_t off = startoff + this->first_input_offset_;
3159       for (Input_section_list::iterator p = this->input_sections_.begin();
3160            p != this->input_sections_.end();
3161            ++p)
3162         {
3163           off = align_address(off, p->addralign());
3164           p->set_address_and_file_offset(address + (off - startoff), off,
3165                                          startoff);
3166           off += p->data_size();
3167         }
3168       data_size = off - startoff;
3169     }
3170
3171   // For full incremental links, we want to allocate some patch space
3172   // in most sections for subsequent incremental updates.
3173   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3174     {
3175       double pct = parameters->options().incremental_patch();
3176       size_t extra = static_cast<size_t>(data_size * pct);
3177       if (this->free_space_fill_ != NULL
3178           && this->free_space_fill_->minimum_hole_size() > extra)
3179         extra = this->free_space_fill_->minimum_hole_size();
3180       off_t new_size = align_address(data_size + extra, this->addralign());
3181       this->patch_space_ = new_size - data_size;
3182       gold_debug(DEBUG_INCREMENTAL,
3183                  "set_final_data_size: %08lx + %08lx: section %s",
3184                  static_cast<long>(data_size),
3185                  static_cast<long>(this->patch_space_),
3186                  this->name());
3187       data_size = new_size;
3188     }
3189
3190   this->set_data_size(data_size);
3191 }
3192
3193 // Reset the address and file offset.
3194
3195 void
3196 Output_section::do_reset_address_and_file_offset()
3197 {
3198   // An unallocated section has no address.  Forcing this means that
3199   // we don't need special treatment for symbols defined in debug
3200   // sections.  We do the same in the constructor.  This does not
3201   // apply to NOLOAD sections though.
3202   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3203      this->set_address(0);
3204
3205   for (Input_section_list::iterator p = this->input_sections_.begin();
3206        p != this->input_sections_.end();
3207        ++p)
3208     p->reset_address_and_file_offset();
3209
3210   // Remove any patch space that was added in set_final_data_size.
3211   if (this->patch_space_ > 0)
3212     {
3213       this->set_current_data_size_for_child(this->current_data_size_for_child()
3214                                             - this->patch_space_);
3215       this->patch_space_ = 0;
3216     }
3217 }
3218
3219 // Return true if address and file offset have the values after reset.
3220
3221 bool
3222 Output_section::do_address_and_file_offset_have_reset_values() const
3223 {
3224   if (this->is_offset_valid())
3225     return false;
3226
3227   // An unallocated section has address 0 after its construction or a reset.
3228   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3229     return this->is_address_valid() && this->address() == 0;
3230   else
3231     return !this->is_address_valid();
3232 }
3233
3234 // Set the TLS offset.  Called only for SHT_TLS sections.
3235
3236 void
3237 Output_section::do_set_tls_offset(uint64_t tls_base)
3238 {
3239   this->tls_offset_ = this->address() - tls_base;
3240 }
3241
3242 // In a few cases we need to sort the input sections attached to an
3243 // output section.  This is used to implement the type of constructor
3244 // priority ordering implemented by the GNU linker, in which the
3245 // priority becomes part of the section name and the sections are
3246 // sorted by name.  We only do this for an output section if we see an
3247 // attached input section matching ".ctors.*", ".dtors.*",
3248 // ".init_array.*" or ".fini_array.*".
3249
3250 class Output_section::Input_section_sort_entry
3251 {
3252  public:
3253   Input_section_sort_entry()
3254     : input_section_(), index_(-1U), section_name_()
3255   { }
3256
3257   Input_section_sort_entry(const Input_section& input_section,
3258                            unsigned int index,
3259                            bool must_sort_attached_input_sections,
3260                            const char* output_section_name)
3261     : input_section_(input_section), index_(index), section_name_()
3262   {
3263     if ((input_section.is_input_section()
3264          || input_section.is_relaxed_input_section())
3265         && must_sort_attached_input_sections)
3266       {
3267         // This is only called single-threaded from Layout::finalize,
3268         // so it is OK to lock.  Unfortunately we have no way to pass
3269         // in a Task token.
3270         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3271         Object* obj = (input_section.is_input_section()
3272                        ? input_section.relobj()
3273                        : input_section.relaxed_input_section()->relobj());
3274         Task_lock_obj<Object> tl(dummy_task, obj);
3275
3276         // This is a slow operation, which should be cached in
3277         // Layout::layout if this becomes a speed problem.
3278         this->section_name_ = obj->section_name(input_section.shndx());
3279       }
3280     else if (input_section.is_output_section_data()
3281              && must_sort_attached_input_sections)
3282       {
3283         // For linker-generated sections, use the output section name.
3284         this->section_name_.assign(output_section_name);
3285       }
3286   }
3287
3288   // Return the Input_section.
3289   const Input_section&
3290   input_section() const
3291   {
3292     gold_assert(this->index_ != -1U);
3293     return this->input_section_;
3294   }
3295
3296   // The index of this entry in the original list.  This is used to
3297   // make the sort stable.
3298   unsigned int
3299   index() const
3300   {
3301     gold_assert(this->index_ != -1U);
3302     return this->index_;
3303   }
3304
3305   // The section name.
3306   const std::string&
3307   section_name() const
3308   {
3309     return this->section_name_;
3310   }
3311
3312   // Return true if the section name has a priority.  This is assumed
3313   // to be true if it has a dot after the initial dot.
3314   bool
3315   has_priority() const
3316   {
3317     return this->section_name_.find('.', 1) != std::string::npos;
3318   }
3319
3320   // Return the priority.  Believe it or not, gcc encodes the priority
3321   // differently for .ctors/.dtors and .init_array/.fini_array
3322   // sections.
3323   unsigned int
3324   get_priority() const
3325   {
3326     bool is_ctors;
3327     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3328         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3329       is_ctors = true;
3330     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3331              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3332       is_ctors = false;
3333     else
3334       return 0;
3335     char* end;
3336     unsigned long prio = strtoul((this->section_name_.c_str()
3337                                   + (is_ctors ? 7 : 12)),
3338                                  &end, 10);
3339     if (*end != '\0')
3340       return 0;
3341     else if (is_ctors)
3342       return 65535 - prio;
3343     else
3344       return prio;
3345   }
3346
3347   // Return true if this an input file whose base name matches
3348   // FILE_NAME.  The base name must have an extension of ".o", and
3349   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3350   // This is to match crtbegin.o as well as crtbeginS.o without
3351   // getting confused by other possibilities.  Overall matching the
3352   // file name this way is a dreadful hack, but the GNU linker does it
3353   // in order to better support gcc, and we need to be compatible.
3354   bool
3355   match_file_name(const char* file_name) const
3356   {
3357     if (this->input_section_.is_output_section_data())
3358       return false;
3359     return Layout::match_file_name(this->input_section_.relobj(), file_name);
3360   }
3361
3362   // Returns 1 if THIS should appear before S in section order, -1 if S
3363   // appears before THIS and 0 if they are not comparable.
3364   int
3365   compare_section_ordering(const Input_section_sort_entry& s) const
3366   {
3367     unsigned int this_secn_index = this->input_section_.section_order_index();
3368     unsigned int s_secn_index = s.input_section().section_order_index();
3369     if (this_secn_index > 0 && s_secn_index > 0)
3370       {
3371         if (this_secn_index < s_secn_index)
3372           return 1;
3373         else if (this_secn_index > s_secn_index)
3374           return -1;
3375       }
3376     return 0;
3377   }
3378
3379  private:
3380   // The Input_section we are sorting.
3381   Input_section input_section_;
3382   // The index of this Input_section in the original list.
3383   unsigned int index_;
3384   // The section name if there is one.
3385   std::string section_name_;
3386 };
3387
3388 // Return true if S1 should come before S2 in the output section.
3389
3390 bool
3391 Output_section::Input_section_sort_compare::operator()(
3392     const Output_section::Input_section_sort_entry& s1,
3393     const Output_section::Input_section_sort_entry& s2) const
3394 {
3395   // crtbegin.o must come first.
3396   bool s1_begin = s1.match_file_name("crtbegin");
3397   bool s2_begin = s2.match_file_name("crtbegin");
3398   if (s1_begin || s2_begin)
3399     {
3400       if (!s1_begin)
3401         return false;
3402       if (!s2_begin)
3403         return true;
3404       return s1.index() < s2.index();
3405     }
3406
3407   // crtend.o must come last.
3408   bool s1_end = s1.match_file_name("crtend");
3409   bool s2_end = s2.match_file_name("crtend");
3410   if (s1_end || s2_end)
3411     {
3412       if (!s1_end)
3413         return true;
3414       if (!s2_end)
3415         return false;
3416       return s1.index() < s2.index();
3417     }
3418
3419   // A section with a priority follows a section without a priority.
3420   bool s1_has_priority = s1.has_priority();
3421   bool s2_has_priority = s2.has_priority();
3422   if (s1_has_priority && !s2_has_priority)
3423     return false;
3424   if (!s1_has_priority && s2_has_priority)
3425     return true;
3426
3427   // Check if a section order exists for these sections through a section
3428   // ordering file.  If sequence_num is 0, an order does not exist.
3429   int sequence_num = s1.compare_section_ordering(s2);
3430   if (sequence_num != 0)
3431     return sequence_num == 1;
3432
3433   // Otherwise we sort by name.
3434   int compare = s1.section_name().compare(s2.section_name());
3435   if (compare != 0)
3436     return compare < 0;
3437
3438   // Otherwise we keep the input order.
3439   return s1.index() < s2.index();
3440 }
3441
3442 // Return true if S1 should come before S2 in an .init_array or .fini_array
3443 // output section.
3444
3445 bool
3446 Output_section::Input_section_sort_init_fini_compare::operator()(
3447     const Output_section::Input_section_sort_entry& s1,
3448     const Output_section::Input_section_sort_entry& s2) const
3449 {
3450   // A section without a priority follows a section with a priority.
3451   // This is the reverse of .ctors and .dtors sections.
3452   bool s1_has_priority = s1.has_priority();
3453   bool s2_has_priority = s2.has_priority();
3454   if (s1_has_priority && !s2_has_priority)
3455     return true;
3456   if (!s1_has_priority && s2_has_priority)
3457     return false;
3458
3459   // .ctors and .dtors sections without priority come after
3460   // .init_array and .fini_array sections without priority.
3461   if (!s1_has_priority
3462       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3463       && s1.section_name() != s2.section_name())
3464     return false;
3465   if (!s2_has_priority
3466       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3467       && s2.section_name() != s1.section_name())
3468     return true;
3469
3470   // Sort by priority if we can.
3471   if (s1_has_priority)
3472     {
3473       unsigned int s1_prio = s1.get_priority();
3474       unsigned int s2_prio = s2.get_priority();
3475       if (s1_prio < s2_prio)
3476         return true;
3477       else if (s1_prio > s2_prio)
3478         return false;
3479     }
3480
3481   // Check if a section order exists for these sections through a section
3482   // ordering file.  If sequence_num is 0, an order does not exist.
3483   int sequence_num = s1.compare_section_ordering(s2);
3484   if (sequence_num != 0)
3485     return sequence_num == 1;
3486
3487   // Otherwise we sort by name.
3488   int compare = s1.section_name().compare(s2.section_name());
3489   if (compare != 0)
3490     return compare < 0;
3491
3492   // Otherwise we keep the input order.
3493   return s1.index() < s2.index();
3494 }
3495
3496 // Return true if S1 should come before S2.  Sections that do not match
3497 // any pattern in the section ordering file are placed ahead of the sections
3498 // that match some pattern.
3499
3500 bool
3501 Output_section::Input_section_sort_section_order_index_compare::operator()(
3502     const Output_section::Input_section_sort_entry& s1,
3503     const Output_section::Input_section_sort_entry& s2) const
3504 {
3505   unsigned int s1_secn_index = s1.input_section().section_order_index();
3506   unsigned int s2_secn_index = s2.input_section().section_order_index();
3507
3508   // Keep input order if section ordering cannot determine order.
3509   if (s1_secn_index == s2_secn_index)
3510     return s1.index() < s2.index();
3511
3512   return s1_secn_index < s2_secn_index;
3513 }
3514
3515 // Return true if S1 should come before S2.  This is the sort comparison
3516 // function for .text to sort sections with prefixes
3517 // .text.{unlikely,exit,startup,hot} before other sections.
3518
3519 bool
3520 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3521   ::operator()(
3522     const Output_section::Input_section_sort_entry& s1,
3523     const Output_section::Input_section_sort_entry& s2) const
3524 {
3525   // Some input section names have special ordering requirements.
3526   int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3527   int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3528   if (o1 != o2)
3529     {
3530       if (o1 < 0)
3531         return false;
3532       else if (o2 < 0)
3533         return true;
3534       else
3535         return o1 < o2;
3536     }
3537
3538   // Keep input order otherwise.
3539   return s1.index() < s2.index();
3540 }
3541
3542 // Return true if S1 should come before S2.  This is the sort comparison
3543 // function for sections to sort them by name.
3544
3545 bool
3546 Output_section::Input_section_sort_section_name_compare
3547   ::operator()(
3548     const Output_section::Input_section_sort_entry& s1,
3549     const Output_section::Input_section_sort_entry& s2) const
3550 {
3551   // We sort by name.
3552   int compare = s1.section_name().compare(s2.section_name());
3553   if (compare != 0)
3554     return compare < 0;
3555
3556   // Keep input order otherwise.
3557   return s1.index() < s2.index();
3558 }
3559
3560 // This updates the section order index of input sections according to the
3561 // the order specified in the mapping from Section id to order index.
3562
3563 void
3564 Output_section::update_section_layout(
3565   const Section_layout_order* order_map)
3566 {
3567   for (Input_section_list::iterator p = this->input_sections_.begin();
3568        p != this->input_sections_.end();
3569        ++p)
3570     {
3571       if (p->is_input_section()
3572           || p->is_relaxed_input_section())
3573         {
3574           Relobj* obj = (p->is_input_section()
3575                          ? p->relobj()
3576                          : p->relaxed_input_section()->relobj());
3577           unsigned int shndx = p->shndx();
3578           Section_layout_order::const_iterator it
3579             = order_map->find(Section_id(obj, shndx));
3580           if (it == order_map->end())
3581             continue;
3582           unsigned int section_order_index = it->second;
3583           if (section_order_index != 0)
3584             {
3585               p->set_section_order_index(section_order_index);
3586               this->set_input_section_order_specified();
3587             }
3588         }
3589     }
3590 }
3591
3592 // Sort the input sections attached to an output section.
3593
3594 void
3595 Output_section::sort_attached_input_sections()
3596 {
3597   if (this->attached_input_sections_are_sorted_)
3598     return;
3599
3600   if (this->checkpoint_ != NULL
3601       && !this->checkpoint_->input_sections_saved())
3602     this->checkpoint_->save_input_sections();
3603
3604   // The only thing we know about an input section is the object and
3605   // the section index.  We need the section name.  Recomputing this
3606   // is slow but this is an unusual case.  If this becomes a speed
3607   // problem we can cache the names as required in Layout::layout.
3608
3609   // We start by building a larger vector holding a copy of each
3610   // Input_section, plus its current index in the list and its name.
3611   std::vector<Input_section_sort_entry> sort_list;
3612
3613   unsigned int i = 0;
3614   for (Input_section_list::iterator p = this->input_sections_.begin();
3615        p != this->input_sections_.end();
3616        ++p, ++i)
3617       sort_list.push_back(Input_section_sort_entry(*p, i,
3618                             this->must_sort_attached_input_sections(),
3619                             this->name()));
3620
3621   // Sort the input sections.
3622   if (this->must_sort_attached_input_sections())
3623     {
3624       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3625           || this->type() == elfcpp::SHT_INIT_ARRAY
3626           || this->type() == elfcpp::SHT_FINI_ARRAY)
3627         std::sort(sort_list.begin(), sort_list.end(),
3628                   Input_section_sort_init_fini_compare());
3629       else if (strcmp(parameters->options().sort_section(), "name") == 0)
3630         std::sort(sort_list.begin(), sort_list.end(),
3631                   Input_section_sort_section_name_compare());
3632       else if (strcmp(this->name(), ".text") == 0)
3633         std::sort(sort_list.begin(), sort_list.end(),
3634                   Input_section_sort_section_prefix_special_ordering_compare());
3635       else
3636         std::sort(sort_list.begin(), sort_list.end(),
3637                   Input_section_sort_compare());
3638     }
3639   else
3640     {
3641       gold_assert(this->input_section_order_specified());
3642       std::sort(sort_list.begin(), sort_list.end(),
3643                 Input_section_sort_section_order_index_compare());
3644     }
3645
3646   // Copy the sorted input sections back to our list.
3647   this->input_sections_.clear();
3648   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3649        p != sort_list.end();
3650        ++p)
3651     this->input_sections_.push_back(p->input_section());
3652   sort_list.clear();
3653
3654   // Remember that we sorted the input sections, since we might get
3655   // called again.
3656   this->attached_input_sections_are_sorted_ = true;
3657 }
3658
3659 // Write the section header to *OSHDR.
3660
3661 template<int size, bool big_endian>
3662 void
3663 Output_section::write_header(const Layout* layout,
3664                              const Stringpool* secnamepool,
3665                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3666 {
3667   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3668   oshdr->put_sh_type(this->type_);
3669
3670   elfcpp::Elf_Xword flags = this->flags_;
3671   if (this->info_section_ != NULL && this->info_uses_section_index_)
3672     flags |= elfcpp::SHF_INFO_LINK;
3673   oshdr->put_sh_flags(flags);
3674
3675   oshdr->put_sh_addr(this->address());
3676   oshdr->put_sh_offset(this->offset());
3677   oshdr->put_sh_size(this->data_size());
3678   if (this->link_section_ != NULL)
3679     oshdr->put_sh_link(this->link_section_->out_shndx());
3680   else if (this->should_link_to_symtab_)
3681     oshdr->put_sh_link(layout->symtab_section_shndx());
3682   else if (this->should_link_to_dynsym_)
3683     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3684   else
3685     oshdr->put_sh_link(this->link_);
3686
3687   elfcpp::Elf_Word info;
3688   if (this->info_section_ != NULL)
3689     {
3690       if (this->info_uses_section_index_)
3691         info = this->info_section_->out_shndx();
3692       else
3693         info = this->info_section_->symtab_index();
3694     }
3695   else if (this->info_symndx_ != NULL)
3696     info = this->info_symndx_->symtab_index();
3697   else
3698     info = this->info_;
3699   oshdr->put_sh_info(info);
3700
3701   oshdr->put_sh_addralign(this->addralign_);
3702   oshdr->put_sh_entsize(this->entsize_);
3703 }
3704
3705 // Write out the data.  For input sections the data is written out by
3706 // Object::relocate, but we have to handle Output_section_data objects
3707 // here.
3708
3709 void
3710 Output_section::do_write(Output_file* of)
3711 {
3712   gold_assert(!this->requires_postprocessing());
3713
3714   // If the target performs relaxation, we delay filler generation until now.
3715   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3716
3717   off_t output_section_file_offset = this->offset();
3718   for (Fill_list::iterator p = this->fills_.begin();
3719        p != this->fills_.end();
3720        ++p)
3721     {
3722       std::string fill_data(parameters->target().code_fill(p->length()));
3723       of->write(output_section_file_offset + p->section_offset(),
3724                 fill_data.data(), fill_data.size());
3725     }
3726
3727   off_t off = this->offset() + this->first_input_offset_;
3728   for (Input_section_list::iterator p = this->input_sections_.begin();
3729        p != this->input_sections_.end();
3730        ++p)
3731     {
3732       off_t aligned_off = align_address(off, p->addralign());
3733       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3734         {
3735           size_t fill_len = aligned_off - off;
3736           std::string fill_data(parameters->target().code_fill(fill_len));
3737           of->write(off, fill_data.data(), fill_data.size());
3738         }
3739
3740       p->write(of);
3741       off = aligned_off + p->data_size();
3742     }
3743
3744   // For incremental links, fill in unused chunks in debug sections
3745   // with dummy compilation unit headers.
3746   if (this->free_space_fill_ != NULL)
3747     {
3748       for (Free_list::Const_iterator p = this->free_list_.begin();
3749            p != this->free_list_.end();
3750            ++p)
3751         {
3752           off_t off = p->start_;
3753           size_t len = p->end_ - off;
3754           this->free_space_fill_->write(of, this->offset() + off, len);
3755         }
3756       if (this->patch_space_ > 0)
3757         {
3758           off_t off = this->current_data_size_for_child() - this->patch_space_;
3759           this->free_space_fill_->write(of, this->offset() + off,
3760                                         this->patch_space_);
3761         }
3762     }
3763 }
3764
3765 // If a section requires postprocessing, create the buffer to use.
3766
3767 void
3768 Output_section::create_postprocessing_buffer()
3769 {
3770   gold_assert(this->requires_postprocessing());
3771
3772   if (this->postprocessing_buffer_ != NULL)
3773     return;
3774
3775   if (!this->input_sections_.empty())
3776     {
3777       off_t off = this->first_input_offset_;
3778       for (Input_section_list::iterator p = this->input_sections_.begin();
3779            p != this->input_sections_.end();
3780            ++p)
3781         {
3782           off = align_address(off, p->addralign());
3783           p->finalize_data_size();
3784           off += p->data_size();
3785         }
3786       this->set_current_data_size_for_child(off);
3787     }
3788
3789   off_t buffer_size = this->current_data_size_for_child();
3790   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3791 }
3792
3793 // Write all the data of an Output_section into the postprocessing
3794 // buffer.  This is used for sections which require postprocessing,
3795 // such as compression.  Input sections are handled by
3796 // Object::Relocate.
3797
3798 void
3799 Output_section::write_to_postprocessing_buffer()
3800 {
3801   gold_assert(this->requires_postprocessing());
3802
3803   // If the target performs relaxation, we delay filler generation until now.
3804   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3805
3806   unsigned char* buffer = this->postprocessing_buffer();
3807   for (Fill_list::iterator p = this->fills_.begin();
3808        p != this->fills_.end();
3809        ++p)
3810     {
3811       std::string fill_data(parameters->target().code_fill(p->length()));
3812       memcpy(buffer + p->section_offset(), fill_data.data(),
3813              fill_data.size());
3814     }
3815
3816   off_t off = this->first_input_offset_;
3817   for (Input_section_list::iterator p = this->input_sections_.begin();
3818        p != this->input_sections_.end();
3819        ++p)
3820     {
3821       off_t aligned_off = align_address(off, p->addralign());
3822       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3823         {
3824           size_t fill_len = aligned_off - off;
3825           std::string fill_data(parameters->target().code_fill(fill_len));
3826           memcpy(buffer + off, fill_data.data(), fill_data.size());
3827         }
3828
3829       p->write_to_buffer(buffer + aligned_off);
3830       off = aligned_off + p->data_size();
3831     }
3832 }
3833
3834 // Get the input sections for linker script processing.  We leave
3835 // behind the Output_section_data entries.  Note that this may be
3836 // slightly incorrect for merge sections.  We will leave them behind,
3837 // but it is possible that the script says that they should follow
3838 // some other input sections, as in:
3839 //    .rodata { *(.rodata) *(.rodata.cst*) }
3840 // For that matter, we don't handle this correctly:
3841 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3842 // With luck this will never matter.
3843
3844 uint64_t
3845 Output_section::get_input_sections(
3846     uint64_t address,
3847     const std::string& fill,
3848     std::list<Input_section>* input_sections)
3849 {
3850   if (this->checkpoint_ != NULL
3851       && !this->checkpoint_->input_sections_saved())
3852     this->checkpoint_->save_input_sections();
3853
3854   // Invalidate fast look-up maps.
3855   this->lookup_maps_->invalidate();
3856
3857   uint64_t orig_address = address;
3858
3859   address = align_address(address, this->addralign());
3860
3861   Input_section_list remaining;
3862   for (Input_section_list::iterator p = this->input_sections_.begin();
3863        p != this->input_sections_.end();
3864        ++p)
3865     {
3866       if (p->is_input_section()
3867           || p->is_relaxed_input_section()
3868           || p->is_merge_section())
3869         input_sections->push_back(*p);
3870       else
3871         {
3872           uint64_t aligned_address = align_address(address, p->addralign());
3873           if (aligned_address != address && !fill.empty())
3874             {
3875               section_size_type length =
3876                 convert_to_section_size_type(aligned_address - address);
3877               std::string this_fill;
3878               this_fill.reserve(length);
3879               while (this_fill.length() + fill.length() <= length)
3880                 this_fill += fill;
3881               if (this_fill.length() < length)
3882                 this_fill.append(fill, 0, length - this_fill.length());
3883
3884               Output_section_data* posd = new Output_data_const(this_fill, 0);
3885               remaining.push_back(Input_section(posd));
3886             }
3887           address = aligned_address;
3888
3889           remaining.push_back(*p);
3890
3891           p->finalize_data_size();
3892           address += p->data_size();
3893         }
3894     }
3895
3896   this->input_sections_.swap(remaining);
3897   this->first_input_offset_ = 0;
3898
3899   uint64_t data_size = address - orig_address;
3900   this->set_current_data_size_for_child(data_size);
3901   return data_size;
3902 }
3903
3904 // Add a script input section.  SIS is an Output_section::Input_section,
3905 // which can be either a plain input section or a special input section like
3906 // a relaxed input section.  For a special input section, its size must be
3907 // finalized.
3908
3909 void
3910 Output_section::add_script_input_section(const Input_section& sis)
3911 {
3912   uint64_t data_size = sis.data_size();
3913   uint64_t addralign = sis.addralign();
3914   if (addralign > this->addralign_)
3915     this->addralign_ = addralign;
3916
3917   off_t offset_in_section = this->current_data_size_for_child();
3918   off_t aligned_offset_in_section = align_address(offset_in_section,
3919                                                   addralign);
3920
3921   this->set_current_data_size_for_child(aligned_offset_in_section
3922                                         + data_size);
3923
3924   this->input_sections_.push_back(sis);
3925
3926   // Update fast lookup maps if necessary.
3927   if (this->lookup_maps_->is_valid())
3928     {
3929       if (sis.is_relaxed_input_section())
3930         {
3931           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3932           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3933                                                         poris->shndx(), poris);
3934         }
3935     }
3936 }
3937
3938 // Save states for relaxation.
3939
3940 void
3941 Output_section::save_states()
3942 {
3943   gold_assert(this->checkpoint_ == NULL);
3944   Checkpoint_output_section* checkpoint =
3945     new Checkpoint_output_section(this->addralign_, this->flags_,
3946                                   this->input_sections_,
3947                                   this->first_input_offset_,
3948                                   this->attached_input_sections_are_sorted_);
3949   this->checkpoint_ = checkpoint;
3950   gold_assert(this->fills_.empty());
3951 }
3952
3953 void
3954 Output_section::discard_states()
3955 {
3956   gold_assert(this->checkpoint_ != NULL);
3957   delete this->checkpoint_;
3958   this->checkpoint_ = NULL;
3959   gold_assert(this->fills_.empty());
3960
3961   // Simply invalidate the fast lookup maps since we do not keep
3962   // track of them.
3963   this->lookup_maps_->invalidate();
3964 }
3965
3966 void
3967 Output_section::restore_states()
3968 {
3969   gold_assert(this->checkpoint_ != NULL);
3970   Checkpoint_output_section* checkpoint = this->checkpoint_;
3971
3972   this->addralign_ = checkpoint->addralign();
3973   this->flags_ = checkpoint->flags();
3974   this->first_input_offset_ = checkpoint->first_input_offset();
3975
3976   if (!checkpoint->input_sections_saved())
3977     {
3978       // If we have not copied the input sections, just resize it.
3979       size_t old_size = checkpoint->input_sections_size();
3980       gold_assert(this->input_sections_.size() >= old_size);
3981       this->input_sections_.resize(old_size);
3982     }
3983   else
3984     {
3985       // We need to copy the whole list.  This is not efficient for
3986       // extremely large output with hundreads of thousands of input
3987       // objects.  We may need to re-think how we should pass sections
3988       // to scripts.
3989       this->input_sections_ = *checkpoint->input_sections();
3990     }
3991
3992   this->attached_input_sections_are_sorted_ =
3993     checkpoint->attached_input_sections_are_sorted();
3994
3995   // Simply invalidate the fast lookup maps since we do not keep
3996   // track of them.
3997   this->lookup_maps_->invalidate();
3998 }
3999
4000 // Update the section offsets of input sections in this.  This is required if
4001 // relaxation causes some input sections to change sizes.
4002
4003 void
4004 Output_section::adjust_section_offsets()
4005 {
4006   if (!this->section_offsets_need_adjustment_)
4007     return;
4008
4009   off_t off = 0;
4010   for (Input_section_list::iterator p = this->input_sections_.begin();
4011        p != this->input_sections_.end();
4012        ++p)
4013     {
4014       off = align_address(off, p->addralign());
4015       if (p->is_input_section())
4016         p->relobj()->set_section_offset(p->shndx(), off);
4017       off += p->data_size();
4018     }
4019
4020   this->section_offsets_need_adjustment_ = false;
4021 }
4022
4023 // Print to the map file.
4024
4025 void
4026 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4027 {
4028   mapfile->print_output_section(this);
4029
4030   for (Input_section_list::const_iterator p = this->input_sections_.begin();
4031        p != this->input_sections_.end();
4032        ++p)
4033     p->print_to_mapfile(mapfile);
4034 }
4035
4036 // Print stats for merge sections to stderr.
4037
4038 void
4039 Output_section::print_merge_stats()
4040 {
4041   Input_section_list::iterator p;
4042   for (p = this->input_sections_.begin();
4043        p != this->input_sections_.end();
4044        ++p)
4045     p->print_merge_stats(this->name_);
4046 }
4047
4048 // Set a fixed layout for the section.  Used for incremental update links.
4049
4050 void
4051 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4052                                  off_t sh_size, uint64_t sh_addralign)
4053 {
4054   this->addralign_ = sh_addralign;
4055   this->set_current_data_size(sh_size);
4056   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4057     this->set_address(sh_addr);
4058   this->set_file_offset(sh_offset);
4059   this->finalize_data_size();
4060   this->free_list_.init(sh_size, false);
4061   this->has_fixed_layout_ = true;
4062 }
4063
4064 // Reserve space within the fixed layout for the section.  Used for
4065 // incremental update links.
4066
4067 void
4068 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4069 {
4070   this->free_list_.remove(sh_offset, sh_offset + sh_size);
4071 }
4072
4073 // Allocate space from the free list for the section.  Used for
4074 // incremental update links.
4075
4076 off_t
4077 Output_section::allocate(off_t len, uint64_t addralign)
4078 {
4079   return this->free_list_.allocate(len, addralign, 0);
4080 }
4081
4082 // Output segment methods.
4083
4084 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4085   : vaddr_(0),
4086     paddr_(0),
4087     memsz_(0),
4088     max_align_(0),
4089     min_p_align_(0),
4090     offset_(0),
4091     filesz_(0),
4092     type_(type),
4093     flags_(flags),
4094     is_max_align_known_(false),
4095     are_addresses_set_(false),
4096     is_large_data_segment_(false),
4097     is_unique_segment_(false)
4098 {
4099   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4100   // the flags.
4101   if (type == elfcpp::PT_TLS)
4102     this->flags_ = elfcpp::PF_R;
4103 }
4104
4105 // Add an Output_section to a PT_LOAD Output_segment.
4106
4107 void
4108 Output_segment::add_output_section_to_load(Layout* layout,
4109                                            Output_section* os,
4110                                            elfcpp::Elf_Word seg_flags)
4111 {
4112   gold_assert(this->type() == elfcpp::PT_LOAD);
4113   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4114   gold_assert(!this->is_max_align_known_);
4115   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4116
4117   this->update_flags_for_output_section(seg_flags);
4118
4119   // We don't want to change the ordering if we have a linker script
4120   // with a SECTIONS clause.
4121   Output_section_order order = os->order();
4122   if (layout->script_options()->saw_sections_clause())
4123     order = static_cast<Output_section_order>(0);
4124   else
4125     gold_assert(order != ORDER_INVALID);
4126
4127   this->output_lists_[order].push_back(os);
4128 }
4129
4130 // Add an Output_section to a non-PT_LOAD Output_segment.
4131
4132 void
4133 Output_segment::add_output_section_to_nonload(Output_section* os,
4134                                               elfcpp::Elf_Word seg_flags)
4135 {
4136   gold_assert(this->type() != elfcpp::PT_LOAD);
4137   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4138   gold_assert(!this->is_max_align_known_);
4139
4140   this->update_flags_for_output_section(seg_flags);
4141
4142   this->output_lists_[0].push_back(os);
4143 }
4144
4145 // Remove an Output_section from this segment.  It is an error if it
4146 // is not present.
4147
4148 void
4149 Output_segment::remove_output_section(Output_section* os)
4150 {
4151   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4152     {
4153       Output_data_list* pdl = &this->output_lists_[i];
4154       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4155         {
4156           if (*p == os)
4157             {
4158               pdl->erase(p);
4159               return;
4160             }
4161         }
4162     }
4163   gold_unreachable();
4164 }
4165
4166 // Add an Output_data (which need not be an Output_section) to the
4167 // start of a segment.
4168
4169 void
4170 Output_segment::add_initial_output_data(Output_data* od)
4171 {
4172   gold_assert(!this->is_max_align_known_);
4173   Output_data_list::iterator p = this->output_lists_[0].begin();
4174   this->output_lists_[0].insert(p, od);
4175 }
4176
4177 // Return true if this segment has any sections which hold actual
4178 // data, rather than being a BSS section.
4179
4180 bool
4181 Output_segment::has_any_data_sections() const
4182 {
4183   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4184     {
4185       const Output_data_list* pdl = &this->output_lists_[i];
4186       for (Output_data_list::const_iterator p = pdl->begin();
4187            p != pdl->end();
4188            ++p)
4189         {
4190           if (!(*p)->is_section())
4191             return true;
4192           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4193             return true;
4194         }
4195     }
4196   return false;
4197 }
4198
4199 // Return whether the first data section (not counting TLS sections)
4200 // is a relro section.
4201
4202 bool
4203 Output_segment::is_first_section_relro() const
4204 {
4205   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4206     {
4207       if (i == static_cast<int>(ORDER_TLS_BSS))
4208         continue;
4209       const Output_data_list* pdl = &this->output_lists_[i];
4210       if (!pdl->empty())
4211         {
4212           Output_data* p = pdl->front();
4213           return p->is_section() && p->output_section()->is_relro();
4214         }
4215     }
4216   return false;
4217 }
4218
4219 // Return the maximum alignment of the Output_data in Output_segment.
4220
4221 uint64_t
4222 Output_segment::maximum_alignment()
4223 {
4224   if (!this->is_max_align_known_)
4225     {
4226       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4227         {
4228           const Output_data_list* pdl = &this->output_lists_[i];
4229           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4230           if (addralign > this->max_align_)
4231             this->max_align_ = addralign;
4232         }
4233       this->is_max_align_known_ = true;
4234     }
4235
4236   return this->max_align_;
4237 }
4238
4239 // Return the maximum alignment of a list of Output_data.
4240
4241 uint64_t
4242 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4243 {
4244   uint64_t ret = 0;
4245   for (Output_data_list::const_iterator p = pdl->begin();
4246        p != pdl->end();
4247        ++p)
4248     {
4249       uint64_t addralign = (*p)->addralign();
4250       if (addralign > ret)
4251         ret = addralign;
4252     }
4253   return ret;
4254 }
4255
4256 // Return whether this segment has any dynamic relocs.
4257
4258 bool
4259 Output_segment::has_dynamic_reloc() const
4260 {
4261   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4262     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4263       return true;
4264   return false;
4265 }
4266
4267 // Return whether this Output_data_list has any dynamic relocs.
4268
4269 bool
4270 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4271 {
4272   for (Output_data_list::const_iterator p = pdl->begin();
4273        p != pdl->end();
4274        ++p)
4275     if ((*p)->has_dynamic_reloc())
4276       return true;
4277   return false;
4278 }
4279
4280 // Set the section addresses for an Output_segment.  If RESET is true,
4281 // reset the addresses first.  ADDR is the address and *POFF is the
4282 // file offset.  Set the section indexes starting with *PSHNDX.
4283 // INCREASE_RELRO is the size of the portion of the first non-relro
4284 // section that should be included in the PT_GNU_RELRO segment.
4285 // If this segment has relro sections, and has been aligned for
4286 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4287 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4288 // and *PSHNDX.
4289
4290 uint64_t
4291 Output_segment::set_section_addresses(const Target* target,
4292                                       Layout* layout, bool reset,
4293                                       uint64_t addr,
4294                                       unsigned int* increase_relro,
4295                                       bool* has_relro,
4296                                       off_t* poff,
4297                                       unsigned int* pshndx)
4298 {
4299   gold_assert(this->type_ == elfcpp::PT_LOAD);
4300
4301   uint64_t last_relro_pad = 0;
4302   off_t orig_off = *poff;
4303
4304   bool in_tls = false;
4305
4306   // If we have relro sections, we need to pad forward now so that the
4307   // relro sections plus INCREASE_RELRO end on an abi page boundary.
4308   if (parameters->options().relro()
4309       && this->is_first_section_relro()
4310       && (!this->are_addresses_set_ || reset))
4311     {
4312       uint64_t relro_size = 0;
4313       off_t off = *poff;
4314       uint64_t max_align = 0;
4315       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4316         {
4317           Output_data_list* pdl = &this->output_lists_[i];
4318           Output_data_list::iterator p;
4319           for (p = pdl->begin(); p != pdl->end(); ++p)
4320             {
4321               if (!(*p)->is_section())
4322                 break;
4323               uint64_t align = (*p)->addralign();
4324               if (align > max_align)
4325                 max_align = align;
4326               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4327                 in_tls = true;
4328               else if (in_tls)
4329                 {
4330                   // Align the first non-TLS section to the alignment
4331                   // of the TLS segment.
4332                   align = max_align;
4333                   in_tls = false;
4334                 }
4335               // Ignore the size of the .tbss section.
4336               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4337                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4338                 continue;
4339               relro_size = align_address(relro_size, align);
4340               if ((*p)->is_address_valid())
4341                 relro_size += (*p)->data_size();
4342               else
4343                 {
4344                   // FIXME: This could be faster.
4345                   (*p)->set_address_and_file_offset(relro_size,
4346                                                     relro_size);
4347                   relro_size += (*p)->data_size();
4348                   (*p)->reset_address_and_file_offset();
4349                 }
4350             }
4351           if (p != pdl->end())
4352             break;
4353         }
4354       relro_size += *increase_relro;
4355       // Pad the total relro size to a multiple of the maximum
4356       // section alignment seen.
4357       uint64_t aligned_size = align_address(relro_size, max_align);
4358       // Note the amount of padding added after the last relro section.
4359       last_relro_pad = aligned_size - relro_size;
4360       *has_relro = true;
4361
4362       uint64_t page_align = parameters->target().abi_pagesize();
4363
4364       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4365       uint64_t desired_align = page_align - (aligned_size % page_align);
4366       if (desired_align < off % page_align)
4367         off += page_align;
4368       off += desired_align - off % page_align;
4369       addr += off - orig_off;
4370       orig_off = off;
4371       *poff = off;
4372     }
4373
4374   if (!reset && this->are_addresses_set_)
4375     {
4376       gold_assert(this->paddr_ == addr);
4377       addr = this->vaddr_;
4378     }
4379   else
4380     {
4381       this->vaddr_ = addr;
4382       this->paddr_ = addr;
4383       this->are_addresses_set_ = true;
4384     }
4385
4386   in_tls = false;
4387
4388   this->offset_ = orig_off;
4389
4390   off_t off = 0;
4391   uint64_t ret;
4392   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4393     {
4394       if (i == static_cast<int>(ORDER_RELRO_LAST))
4395         {
4396           *poff += last_relro_pad;
4397           addr += last_relro_pad;
4398           if (this->output_lists_[i].empty())
4399             {
4400               // If there is nothing in the ORDER_RELRO_LAST list,
4401               // the padding will occur at the end of the relro
4402               // segment, and we need to add it to *INCREASE_RELRO.
4403               *increase_relro += last_relro_pad;
4404             }
4405         }
4406       addr = this->set_section_list_addresses(layout, reset,
4407                                               &this->output_lists_[i],
4408                                               addr, poff, pshndx, &in_tls);
4409       if (i < static_cast<int>(ORDER_SMALL_BSS))
4410         {
4411           this->filesz_ = *poff - orig_off;
4412           off = *poff;
4413         }
4414
4415       ret = addr;
4416     }
4417
4418   // If the last section was a TLS section, align upward to the
4419   // alignment of the TLS segment, so that the overall size of the TLS
4420   // segment is aligned.
4421   if (in_tls)
4422     {
4423       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4424       *poff = align_address(*poff, segment_align);
4425     }
4426
4427   this->memsz_ = *poff - orig_off;
4428
4429   // Ignore the file offset adjustments made by the BSS Output_data
4430   // objects.
4431   *poff = off;
4432
4433   // If code segments must contain only code, and this code segment is
4434   // page-aligned in the file, then fill it out to a whole page with
4435   // code fill (the tail of the segment will not be within any section).
4436   // Thus the entire code segment can be mapped from the file as whole
4437   // pages and that mapping will contain only valid instructions.
4438   if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4439     {
4440       uint64_t abi_pagesize = target->abi_pagesize();
4441       if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4442         {
4443           size_t fill_size = abi_pagesize - (off % abi_pagesize);
4444
4445           std::string fill_data;
4446           if (target->has_code_fill())
4447             fill_data = target->code_fill(fill_size);
4448           else
4449             fill_data.resize(fill_size); // Zero fill.
4450
4451           Output_data_const* fill = new Output_data_const(fill_data, 0);
4452           fill->set_address(this->vaddr_ + this->memsz_);
4453           fill->set_file_offset(off);
4454           layout->add_relax_output(fill);
4455
4456           off += fill_size;
4457           gold_assert(off % abi_pagesize == 0);
4458           ret += fill_size;
4459           gold_assert(ret % abi_pagesize == 0);
4460
4461           gold_assert((uint64_t) this->filesz_ == this->memsz_);
4462           this->memsz_ = this->filesz_ += fill_size;
4463
4464           *poff = off;
4465         }
4466     }
4467
4468   return ret;
4469 }
4470
4471 // Set the addresses and file offsets in a list of Output_data
4472 // structures.
4473
4474 uint64_t
4475 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4476                                            Output_data_list* pdl,
4477                                            uint64_t addr, off_t* poff,
4478                                            unsigned int* pshndx,
4479                                            bool* in_tls)
4480 {
4481   off_t startoff = *poff;
4482   // For incremental updates, we may allocate non-fixed sections from
4483   // free space in the file.  This keeps track of the high-water mark.
4484   off_t maxoff = startoff;
4485
4486   off_t off = startoff;
4487   for (Output_data_list::iterator p = pdl->begin();
4488        p != pdl->end();
4489        ++p)
4490     {
4491       if (reset)
4492         (*p)->reset_address_and_file_offset();
4493
4494       // When doing an incremental update or when using a linker script,
4495       // the section will most likely already have an address.
4496       if (!(*p)->is_address_valid())
4497         {
4498           uint64_t align = (*p)->addralign();
4499
4500           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4501             {
4502               // Give the first TLS section the alignment of the
4503               // entire TLS segment.  Otherwise the TLS segment as a
4504               // whole may be misaligned.
4505               if (!*in_tls)
4506                 {
4507                   Output_segment* tls_segment = layout->tls_segment();
4508                   gold_assert(tls_segment != NULL);
4509                   uint64_t segment_align = tls_segment->maximum_alignment();
4510                   gold_assert(segment_align >= align);
4511                   align = segment_align;
4512
4513                   *in_tls = true;
4514                 }
4515             }
4516           else
4517             {
4518               // If this is the first section after the TLS segment,
4519               // align it to at least the alignment of the TLS
4520               // segment, so that the size of the overall TLS segment
4521               // is aligned.
4522               if (*in_tls)
4523                 {
4524                   uint64_t segment_align =
4525                       layout->tls_segment()->maximum_alignment();
4526                   if (segment_align > align)
4527                     align = segment_align;
4528
4529                   *in_tls = false;
4530                 }
4531             }
4532
4533           if (!parameters->incremental_update())
4534             {
4535               off = align_address(off, align);
4536               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4537             }
4538           else
4539             {
4540               // Incremental update: allocate file space from free list.
4541               (*p)->pre_finalize_data_size();
4542               off_t current_size = (*p)->current_data_size();
4543               off = layout->allocate(current_size, align, startoff);
4544               if (off == -1)
4545                 {
4546                   gold_assert((*p)->output_section() != NULL);
4547                   gold_fallback(_("out of patch space for section %s; "
4548                                   "relink with --incremental-full"),
4549                                 (*p)->output_section()->name());
4550                 }
4551               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4552               if ((*p)->data_size() > current_size)
4553                 {
4554                   gold_assert((*p)->output_section() != NULL);
4555                   gold_fallback(_("%s: section changed size; "
4556                                   "relink with --incremental-full"),
4557                                 (*p)->output_section()->name());
4558                 }
4559             }
4560         }
4561       else if (parameters->incremental_update())
4562         {
4563           // For incremental updates, use the fixed offset for the
4564           // high-water mark computation.
4565           off = (*p)->offset();
4566         }
4567       else
4568         {
4569           // The script may have inserted a skip forward, but it
4570           // better not have moved backward.
4571           if ((*p)->address() >= addr + (off - startoff))
4572             off += (*p)->address() - (addr + (off - startoff));
4573           else
4574             {
4575               if (!layout->script_options()->saw_sections_clause())
4576                 gold_unreachable();
4577               else
4578                 {
4579                   Output_section* os = (*p)->output_section();
4580
4581                   // Cast to unsigned long long to avoid format warnings.
4582                   unsigned long long previous_dot =
4583                     static_cast<unsigned long long>(addr + (off - startoff));
4584                   unsigned long long dot =
4585                     static_cast<unsigned long long>((*p)->address());
4586
4587                   if (os == NULL)
4588                     gold_error(_("dot moves backward in linker script "
4589                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4590                   else
4591                     gold_error(_("address of section '%s' moves backward "
4592                                  "from 0x%llx to 0x%llx"),
4593                                os->name(), previous_dot, dot);
4594                 }
4595             }
4596           (*p)->set_file_offset(off);
4597           (*p)->finalize_data_size();
4598         }
4599
4600       if (parameters->incremental_update())
4601         gold_debug(DEBUG_INCREMENTAL,
4602                    "set_section_list_addresses: %08lx %08lx %s",
4603                    static_cast<long>(off),
4604                    static_cast<long>((*p)->data_size()),
4605                    ((*p)->output_section() != NULL
4606                     ? (*p)->output_section()->name() : "(special)"));
4607
4608       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4609       // section.  Such a section does not affect the size of a
4610       // PT_LOAD segment.
4611       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4612           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4613         off += (*p)->data_size();
4614
4615       if (off > maxoff)
4616         maxoff = off;
4617
4618       if ((*p)->is_section())
4619         {
4620           (*p)->set_out_shndx(*pshndx);
4621           ++*pshndx;
4622         }
4623     }
4624
4625   *poff = maxoff;
4626   return addr + (maxoff - startoff);
4627 }
4628
4629 // For a non-PT_LOAD segment, set the offset from the sections, if
4630 // any.  Add INCREASE to the file size and the memory size.
4631
4632 void
4633 Output_segment::set_offset(unsigned int increase)
4634 {
4635   gold_assert(this->type_ != elfcpp::PT_LOAD);
4636
4637   gold_assert(!this->are_addresses_set_);
4638
4639   // A non-load section only uses output_lists_[0].
4640
4641   Output_data_list* pdl = &this->output_lists_[0];
4642
4643   if (pdl->empty())
4644     {
4645       gold_assert(increase == 0);
4646       this->vaddr_ = 0;
4647       this->paddr_ = 0;
4648       this->are_addresses_set_ = true;
4649       this->memsz_ = 0;
4650       this->min_p_align_ = 0;
4651       this->offset_ = 0;
4652       this->filesz_ = 0;
4653       return;
4654     }
4655
4656   // Find the first and last section by address.
4657   const Output_data* first = NULL;
4658   const Output_data* last_data = NULL;
4659   const Output_data* last_bss = NULL;
4660   for (Output_data_list::const_iterator p = pdl->begin();
4661        p != pdl->end();
4662        ++p)
4663     {
4664       if (first == NULL
4665           || (*p)->address() < first->address()
4666           || ((*p)->address() == first->address()
4667               && (*p)->data_size() < first->data_size()))
4668         first = *p;
4669       const Output_data** plast;
4670       if ((*p)->is_section()
4671           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4672         plast = &last_bss;
4673       else
4674         plast = &last_data;
4675       if (*plast == NULL
4676           || (*p)->address() > (*plast)->address()
4677           || ((*p)->address() == (*plast)->address()
4678               && (*p)->data_size() > (*plast)->data_size()))
4679         *plast = *p;
4680     }
4681
4682   this->vaddr_ = first->address();
4683   this->paddr_ = (first->has_load_address()
4684                   ? first->load_address()
4685                   : this->vaddr_);
4686   this->are_addresses_set_ = true;
4687   this->offset_ = first->offset();
4688
4689   if (last_data == NULL)
4690     this->filesz_ = 0;
4691   else
4692     this->filesz_ = (last_data->address()
4693                      + last_data->data_size()
4694                      - this->vaddr_);
4695
4696   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4697   this->memsz_ = (last->address()
4698                   + last->data_size()
4699                   - this->vaddr_);
4700
4701   this->filesz_ += increase;
4702   this->memsz_ += increase;
4703
4704   // If this is a RELRO segment, verify that the segment ends at a
4705   // page boundary.
4706   if (this->type_ == elfcpp::PT_GNU_RELRO)
4707     {
4708       uint64_t page_align = parameters->target().abi_pagesize();
4709       uint64_t segment_end = this->vaddr_ + this->memsz_;
4710       if (parameters->incremental_update())
4711         {
4712           // The INCREASE_RELRO calculation is bypassed for an incremental
4713           // update, so we need to adjust the segment size manually here.
4714           segment_end = align_address(segment_end, page_align);
4715           this->memsz_ = segment_end - this->vaddr_;
4716         }
4717       else
4718         gold_assert(segment_end == align_address(segment_end, page_align));
4719     }
4720
4721   // If this is a TLS segment, align the memory size.  The code in
4722   // set_section_list ensures that the section after the TLS segment
4723   // is aligned to give us room.
4724   if (this->type_ == elfcpp::PT_TLS)
4725     {
4726       uint64_t segment_align = this->maximum_alignment();
4727       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4728       this->memsz_ = align_address(this->memsz_, segment_align);
4729     }
4730 }
4731
4732 // Set the TLS offsets of the sections in the PT_TLS segment.
4733
4734 void
4735 Output_segment::set_tls_offsets()
4736 {
4737   gold_assert(this->type_ == elfcpp::PT_TLS);
4738
4739   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4740        p != this->output_lists_[0].end();
4741        ++p)
4742     (*p)->set_tls_offset(this->vaddr_);
4743 }
4744
4745 // Return the first section.
4746
4747 Output_section*
4748 Output_segment::first_section() const
4749 {
4750   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4751     {
4752       const Output_data_list* pdl = &this->output_lists_[i];
4753       for (Output_data_list::const_iterator p = pdl->begin();
4754            p != pdl->end();
4755            ++p)
4756         {
4757           if ((*p)->is_section())
4758             return (*p)->output_section();
4759         }
4760     }
4761   gold_unreachable();
4762 }
4763
4764 // Return the number of Output_sections in an Output_segment.
4765
4766 unsigned int
4767 Output_segment::output_section_count() const
4768 {
4769   unsigned int ret = 0;
4770   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4771     ret += this->output_section_count_list(&this->output_lists_[i]);
4772   return ret;
4773 }
4774
4775 // Return the number of Output_sections in an Output_data_list.
4776
4777 unsigned int
4778 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4779 {
4780   unsigned int count = 0;
4781   for (Output_data_list::const_iterator p = pdl->begin();
4782        p != pdl->end();
4783        ++p)
4784     {
4785       if ((*p)->is_section())
4786         ++count;
4787     }
4788   return count;
4789 }
4790
4791 // Return the section attached to the list segment with the lowest
4792 // load address.  This is used when handling a PHDRS clause in a
4793 // linker script.
4794
4795 Output_section*
4796 Output_segment::section_with_lowest_load_address() const
4797 {
4798   Output_section* found = NULL;
4799   uint64_t found_lma = 0;
4800   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4801     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4802                                       &found_lma);
4803   return found;
4804 }
4805
4806 // Look through a list for a section with a lower load address.
4807
4808 void
4809 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4810                                             Output_section** found,
4811                                             uint64_t* found_lma) const
4812 {
4813   for (Output_data_list::const_iterator p = pdl->begin();
4814        p != pdl->end();
4815        ++p)
4816     {
4817       if (!(*p)->is_section())
4818         continue;
4819       Output_section* os = static_cast<Output_section*>(*p);
4820       uint64_t lma = (os->has_load_address()
4821                       ? os->load_address()
4822                       : os->address());
4823       if (*found == NULL || lma < *found_lma)
4824         {
4825           *found = os;
4826           *found_lma = lma;
4827         }
4828     }
4829 }
4830
4831 // Write the segment data into *OPHDR.
4832
4833 template<int size, bool big_endian>
4834 void
4835 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4836 {
4837   ophdr->put_p_type(this->type_);
4838   ophdr->put_p_offset(this->offset_);
4839   ophdr->put_p_vaddr(this->vaddr_);
4840   ophdr->put_p_paddr(this->paddr_);
4841   ophdr->put_p_filesz(this->filesz_);
4842   ophdr->put_p_memsz(this->memsz_);
4843   ophdr->put_p_flags(this->flags_);
4844   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4845 }
4846
4847 // Write the section headers into V.
4848
4849 template<int size, bool big_endian>
4850 unsigned char*
4851 Output_segment::write_section_headers(const Layout* layout,
4852                                       const Stringpool* secnamepool,
4853                                       unsigned char* v,
4854                                       unsigned int* pshndx) const
4855 {
4856   // Every section that is attached to a segment must be attached to a
4857   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4858   // segments.
4859   if (this->type_ != elfcpp::PT_LOAD)
4860     return v;
4861
4862   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4863     {
4864       const Output_data_list* pdl = &this->output_lists_[i];
4865       v = this->write_section_headers_list<size, big_endian>(layout,
4866                                                              secnamepool,
4867                                                              pdl,
4868                                                              v, pshndx);
4869     }
4870
4871   return v;
4872 }
4873
4874 template<int size, bool big_endian>
4875 unsigned char*
4876 Output_segment::write_section_headers_list(const Layout* layout,
4877                                            const Stringpool* secnamepool,
4878                                            const Output_data_list* pdl,
4879                                            unsigned char* v,
4880                                            unsigned int* pshndx) const
4881 {
4882   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4883   for (Output_data_list::const_iterator p = pdl->begin();
4884        p != pdl->end();
4885        ++p)
4886     {
4887       if ((*p)->is_section())
4888         {
4889           const Output_section* ps = static_cast<const Output_section*>(*p);
4890           gold_assert(*pshndx == ps->out_shndx());
4891           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4892           ps->write_header(layout, secnamepool, &oshdr);
4893           v += shdr_size;
4894           ++*pshndx;
4895         }
4896     }
4897   return v;
4898 }
4899
4900 // Print the output sections to the map file.
4901
4902 void
4903 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4904 {
4905   if (this->type() != elfcpp::PT_LOAD)
4906     return;
4907   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4908     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4909 }
4910
4911 // Print an output section list to the map file.
4912
4913 void
4914 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4915                                               const Output_data_list* pdl) const
4916 {
4917   for (Output_data_list::const_iterator p = pdl->begin();
4918        p != pdl->end();
4919        ++p)
4920     (*p)->print_to_mapfile(mapfile);
4921 }
4922
4923 // Output_file methods.
4924
4925 Output_file::Output_file(const char* name)
4926   : name_(name),
4927     o_(-1),
4928     file_size_(0),
4929     base_(NULL),
4930     map_is_anonymous_(false),
4931     map_is_allocated_(false),
4932     is_temporary_(false)
4933 {
4934 }
4935
4936 // Try to open an existing file.  Returns false if the file doesn't
4937 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4938 // NULL, open that file as the base for incremental linking, and
4939 // copy its contents to the new output file.  This routine can
4940 // be called for incremental updates, in which case WRITABLE should
4941 // be true, or by the incremental-dump utility, in which case
4942 // WRITABLE should be false.
4943
4944 bool
4945 Output_file::open_base_file(const char* base_name, bool writable)
4946 {
4947   // The name "-" means "stdout".
4948   if (strcmp(this->name_, "-") == 0)
4949     return false;
4950
4951   bool use_base_file = base_name != NULL;
4952   if (!use_base_file)
4953     base_name = this->name_;
4954   else if (strcmp(base_name, this->name_) == 0)
4955     gold_fatal(_("%s: incremental base and output file name are the same"),
4956                base_name);
4957
4958   // Don't bother opening files with a size of zero.
4959   struct stat s;
4960   if (::stat(base_name, &s) != 0)
4961     {
4962       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4963       return false;
4964     }
4965   if (s.st_size == 0)
4966     {
4967       gold_info(_("%s: incremental base file is empty"), base_name);
4968       return false;
4969     }
4970
4971   // If we're using a base file, we want to open it read-only.
4972   if (use_base_file)
4973     writable = false;
4974
4975   int oflags = writable ? O_RDWR : O_RDONLY;
4976   int o = open_descriptor(-1, base_name, oflags, 0);
4977   if (o < 0)
4978     {
4979       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4980       return false;
4981     }
4982
4983   // If the base file and the output file are different, open a
4984   // new output file and read the contents from the base file into
4985   // the newly-mapped region.
4986   if (use_base_file)
4987     {
4988       this->open(s.st_size);
4989       ssize_t bytes_to_read = s.st_size;
4990       unsigned char* p = this->base_;
4991       while (bytes_to_read > 0)
4992         {
4993           ssize_t len = ::read(o, p, bytes_to_read);
4994           if (len < 0)
4995             {
4996               gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4997               return false;
4998             }
4999           if (len == 0)
5000             {
5001               gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5002                         base_name,
5003                         static_cast<long long>(s.st_size - bytes_to_read),
5004                         static_cast<long long>(s.st_size));
5005               return false;
5006             }
5007           p += len;
5008           bytes_to_read -= len;
5009         }
5010       ::close(o);
5011       return true;
5012     }
5013
5014   this->o_ = o;
5015   this->file_size_ = s.st_size;
5016
5017   if (!this->map_no_anonymous(writable))
5018     {
5019       release_descriptor(o, true);
5020       this->o_ = -1;
5021       this->file_size_ = 0;
5022       return false;
5023     }
5024
5025   return true;
5026 }
5027
5028 // Open the output file.
5029
5030 void
5031 Output_file::open(off_t file_size)
5032 {
5033   this->file_size_ = file_size;
5034
5035   // Unlink the file first; otherwise the open() may fail if the file
5036   // is busy (e.g. it's an executable that's currently being executed).
5037   //
5038   // However, the linker may be part of a system where a zero-length
5039   // file is created for it to write to, with tight permissions (gcc
5040   // 2.95 did something like this).  Unlinking the file would work
5041   // around those permission controls, so we only unlink if the file
5042   // has a non-zero size.  We also unlink only regular files to avoid
5043   // trouble with directories/etc.
5044   //
5045   // If we fail, continue; this command is merely a best-effort attempt
5046   // to improve the odds for open().
5047
5048   // We let the name "-" mean "stdout"
5049   if (!this->is_temporary_)
5050     {
5051       if (strcmp(this->name_, "-") == 0)
5052         this->o_ = STDOUT_FILENO;
5053       else
5054         {
5055           struct stat s;
5056           if (::stat(this->name_, &s) == 0
5057               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5058             {
5059               if (s.st_size != 0)
5060                 ::unlink(this->name_);
5061               else if (!parameters->options().relocatable())
5062                 {
5063                   // If we don't unlink the existing file, add execute
5064                   // permission where read permissions already exist
5065                   // and where the umask permits.
5066                   int mask = ::umask(0);
5067                   ::umask(mask);
5068                   s.st_mode |= (s.st_mode & 0444) >> 2;
5069                   ::chmod(this->name_, s.st_mode & ~mask);
5070                 }
5071             }
5072
5073           int mode = parameters->options().relocatable() ? 0666 : 0777;
5074           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5075                                   mode);
5076           if (o < 0)
5077             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5078           this->o_ = o;
5079         }
5080     }
5081
5082   this->map();
5083 }
5084
5085 // Resize the output file.
5086
5087 void
5088 Output_file::resize(off_t file_size)
5089 {
5090   // If the mmap is mapping an anonymous memory buffer, this is easy:
5091   // just mremap to the new size.  If it's mapping to a file, we want
5092   // to unmap to flush to the file, then remap after growing the file.
5093   if (this->map_is_anonymous_)
5094     {
5095       void* base;
5096       if (!this->map_is_allocated_)
5097         {
5098           base = ::mremap(this->base_, this->file_size_, file_size,
5099                           MREMAP_MAYMOVE);
5100           if (base == MAP_FAILED)
5101             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5102         }
5103       else
5104         {
5105           base = realloc(this->base_, file_size);
5106           if (base == NULL)
5107             gold_nomem();
5108           if (file_size > this->file_size_)
5109             memset(static_cast<char*>(base) + this->file_size_, 0,
5110                    file_size - this->file_size_);
5111         }
5112       this->base_ = static_cast<unsigned char*>(base);
5113       this->file_size_ = file_size;
5114     }
5115   else
5116     {
5117       this->unmap();
5118       this->file_size_ = file_size;
5119       if (!this->map_no_anonymous(true))
5120         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5121     }
5122 }
5123
5124 // Map an anonymous block of memory which will later be written to the
5125 // file.  Return whether the map succeeded.
5126
5127 bool
5128 Output_file::map_anonymous()
5129 {
5130   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5131                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5132   if (base == MAP_FAILED)
5133     {
5134       base = malloc(this->file_size_);
5135       if (base == NULL)
5136         return false;
5137       memset(base, 0, this->file_size_);
5138       this->map_is_allocated_ = true;
5139     }
5140   this->base_ = static_cast<unsigned char*>(base);
5141   this->map_is_anonymous_ = true;
5142   return true;
5143 }
5144
5145 // Map the file into memory.  Return whether the mapping succeeded.
5146 // If WRITABLE is true, map with write access.
5147
5148 bool
5149 Output_file::map_no_anonymous(bool writable)
5150 {
5151   const int o = this->o_;
5152
5153   // If the output file is not a regular file, don't try to mmap it;
5154   // instead, we'll mmap a block of memory (an anonymous buffer), and
5155   // then later write the buffer to the file.
5156   void* base;
5157   struct stat statbuf;
5158   if (o == STDOUT_FILENO || o == STDERR_FILENO
5159       || ::fstat(o, &statbuf) != 0
5160       || !S_ISREG(statbuf.st_mode)
5161       || this->is_temporary_)
5162     return false;
5163
5164   // Ensure that we have disk space available for the file.  If we
5165   // don't do this, it is possible that we will call munmap, close,
5166   // and exit with dirty buffers still in the cache with no assigned
5167   // disk blocks.  If the disk is out of space at that point, the
5168   // output file will wind up incomplete, but we will have already
5169   // exited.  The alternative to fallocate would be to use fdatasync,
5170   // but that would be a more significant performance hit.
5171   if (writable)
5172     {
5173       int err = gold_fallocate(o, 0, this->file_size_);
5174       if (err != 0)
5175        gold_fatal(_("%s: %s"), this->name_, strerror(err));
5176     }
5177
5178   // Map the file into memory.
5179   int prot = PROT_READ;
5180   if (writable)
5181     prot |= PROT_WRITE;
5182   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5183
5184   // The mmap call might fail because of file system issues: the file
5185   // system might not support mmap at all, or it might not support
5186   // mmap with PROT_WRITE.
5187   if (base == MAP_FAILED)
5188     return false;
5189
5190   this->map_is_anonymous_ = false;
5191   this->base_ = static_cast<unsigned char*>(base);
5192   return true;
5193 }
5194
5195 // Map the file into memory.
5196
5197 void
5198 Output_file::map()
5199 {
5200   if (parameters->options().mmap_output_file()
5201       && this->map_no_anonymous(true))
5202     return;
5203
5204   // The mmap call might fail because of file system issues: the file
5205   // system might not support mmap at all, or it might not support
5206   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5207   // see in all cases, so if the mmap fails for any reason and we
5208   // don't care about file contents, try for an anonymous map.
5209   if (this->map_anonymous())
5210     return;
5211
5212   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5213              this->name_, static_cast<unsigned long>(this->file_size_),
5214              strerror(errno));
5215 }
5216
5217 // Unmap the file from memory.
5218
5219 void
5220 Output_file::unmap()
5221 {
5222   if (this->map_is_anonymous_)
5223     {
5224       // We've already written out the data, so there is no reason to
5225       // waste time unmapping or freeing the memory.
5226     }
5227   else
5228     {
5229       if (::munmap(this->base_, this->file_size_) < 0)
5230         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5231     }
5232   this->base_ = NULL;
5233 }
5234
5235 // Close the output file.
5236
5237 void
5238 Output_file::close()
5239 {
5240   // If the map isn't file-backed, we need to write it now.
5241   if (this->map_is_anonymous_ && !this->is_temporary_)
5242     {
5243       size_t bytes_to_write = this->file_size_;
5244       size_t offset = 0;
5245       while (bytes_to_write > 0)
5246         {
5247           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5248                                           bytes_to_write);
5249           if (bytes_written == 0)
5250             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5251           else if (bytes_written < 0)
5252             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5253           else
5254             {
5255               bytes_to_write -= bytes_written;
5256               offset += bytes_written;
5257             }
5258         }
5259     }
5260   this->unmap();
5261
5262   // We don't close stdout or stderr
5263   if (this->o_ != STDOUT_FILENO
5264       && this->o_ != STDERR_FILENO
5265       && !this->is_temporary_)
5266     if (::close(this->o_) < 0)
5267       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5268   this->o_ = -1;
5269 }
5270
5271 // Instantiate the templates we need.  We could use the configure
5272 // script to restrict this to only the ones for implemented targets.
5273
5274 #ifdef HAVE_TARGET_32_LITTLE
5275 template
5276 off_t
5277 Output_section::add_input_section<32, false>(
5278     Layout* layout,
5279     Sized_relobj_file<32, false>* object,
5280     unsigned int shndx,
5281     const char* secname,
5282     const elfcpp::Shdr<32, false>& shdr,
5283     unsigned int reloc_shndx,
5284     bool have_sections_script);
5285 #endif
5286
5287 #ifdef HAVE_TARGET_32_BIG
5288 template
5289 off_t
5290 Output_section::add_input_section<32, true>(
5291     Layout* layout,
5292     Sized_relobj_file<32, true>* object,
5293     unsigned int shndx,
5294     const char* secname,
5295     const elfcpp::Shdr<32, true>& shdr,
5296     unsigned int reloc_shndx,
5297     bool have_sections_script);
5298 #endif
5299
5300 #ifdef HAVE_TARGET_64_LITTLE
5301 template
5302 off_t
5303 Output_section::add_input_section<64, false>(
5304     Layout* layout,
5305     Sized_relobj_file<64, false>* object,
5306     unsigned int shndx,
5307     const char* secname,
5308     const elfcpp::Shdr<64, false>& shdr,
5309     unsigned int reloc_shndx,
5310     bool have_sections_script);
5311 #endif
5312
5313 #ifdef HAVE_TARGET_64_BIG
5314 template
5315 off_t
5316 Output_section::add_input_section<64, true>(
5317     Layout* layout,
5318     Sized_relobj_file<64, true>* object,
5319     unsigned int shndx,
5320     const char* secname,
5321     const elfcpp::Shdr<64, true>& shdr,
5322     unsigned int reloc_shndx,
5323     bool have_sections_script);
5324 #endif
5325
5326 #ifdef HAVE_TARGET_32_LITTLE
5327 template
5328 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5329 #endif
5330
5331 #ifdef HAVE_TARGET_32_BIG
5332 template
5333 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5334 #endif
5335
5336 #ifdef HAVE_TARGET_64_LITTLE
5337 template
5338 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5339 #endif
5340
5341 #ifdef HAVE_TARGET_64_BIG
5342 template
5343 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5344 #endif
5345
5346 #ifdef HAVE_TARGET_32_LITTLE
5347 template
5348 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5349 #endif
5350
5351 #ifdef HAVE_TARGET_32_BIG
5352 template
5353 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5354 #endif
5355
5356 #ifdef HAVE_TARGET_64_LITTLE
5357 template
5358 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5359 #endif
5360
5361 #ifdef HAVE_TARGET_64_BIG
5362 template
5363 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5364 #endif
5365
5366 #ifdef HAVE_TARGET_32_LITTLE
5367 template
5368 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5369 #endif
5370
5371 #ifdef HAVE_TARGET_32_BIG
5372 template
5373 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5374 #endif
5375
5376 #ifdef HAVE_TARGET_64_LITTLE
5377 template
5378 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5379 #endif
5380
5381 #ifdef HAVE_TARGET_64_BIG
5382 template
5383 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5384 #endif
5385
5386 #ifdef HAVE_TARGET_32_LITTLE
5387 template
5388 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5389 #endif
5390
5391 #ifdef HAVE_TARGET_32_BIG
5392 template
5393 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5394 #endif
5395
5396 #ifdef HAVE_TARGET_64_LITTLE
5397 template
5398 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5399 #endif
5400
5401 #ifdef HAVE_TARGET_64_BIG
5402 template
5403 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5404 #endif
5405
5406 #ifdef HAVE_TARGET_32_LITTLE
5407 template
5408 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5409 #endif
5410
5411 #ifdef HAVE_TARGET_32_BIG
5412 template
5413 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5414 #endif
5415
5416 #ifdef HAVE_TARGET_64_LITTLE
5417 template
5418 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5419 #endif
5420
5421 #ifdef HAVE_TARGET_64_BIG
5422 template
5423 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5424 #endif
5425
5426 #ifdef HAVE_TARGET_32_LITTLE
5427 template
5428 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5429 #endif
5430
5431 #ifdef HAVE_TARGET_32_BIG
5432 template
5433 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5434 #endif
5435
5436 #ifdef HAVE_TARGET_64_LITTLE
5437 template
5438 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5439 #endif
5440
5441 #ifdef HAVE_TARGET_64_BIG
5442 template
5443 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5444 #endif
5445
5446 #ifdef HAVE_TARGET_32_LITTLE
5447 template
5448 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5449 #endif
5450
5451 #ifdef HAVE_TARGET_32_BIG
5452 template
5453 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5454 #endif
5455
5456 #ifdef HAVE_TARGET_64_LITTLE
5457 template
5458 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5459 #endif
5460
5461 #ifdef HAVE_TARGET_64_BIG
5462 template
5463 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5464 #endif
5465
5466 #ifdef HAVE_TARGET_32_LITTLE
5467 template
5468 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5469 #endif
5470
5471 #ifdef HAVE_TARGET_32_BIG
5472 template
5473 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5474 #endif
5475
5476 #ifdef HAVE_TARGET_64_LITTLE
5477 template
5478 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5479 #endif
5480
5481 #ifdef HAVE_TARGET_64_BIG
5482 template
5483 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5484 #endif
5485
5486 #ifdef HAVE_TARGET_32_LITTLE
5487 template
5488 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5489 #endif
5490
5491 #ifdef HAVE_TARGET_32_BIG
5492 template
5493 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5494 #endif
5495
5496 #ifdef HAVE_TARGET_64_LITTLE
5497 template
5498 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5499 #endif
5500
5501 #ifdef HAVE_TARGET_64_BIG
5502 template
5503 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5504 #endif
5505
5506 #ifdef HAVE_TARGET_32_LITTLE
5507 template
5508 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5509 #endif
5510
5511 #ifdef HAVE_TARGET_32_BIG
5512 template
5513 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5514 #endif
5515
5516 #ifdef HAVE_TARGET_64_LITTLE
5517 template
5518 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5519 #endif
5520
5521 #ifdef HAVE_TARGET_64_BIG
5522 template
5523 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5524 #endif
5525
5526 #ifdef HAVE_TARGET_32_LITTLE
5527 template
5528 class Output_data_group<32, false>;
5529 #endif
5530
5531 #ifdef HAVE_TARGET_32_BIG
5532 template
5533 class Output_data_group<32, true>;
5534 #endif
5535
5536 #ifdef HAVE_TARGET_64_LITTLE
5537 template
5538 class Output_data_group<64, false>;
5539 #endif
5540
5541 #ifdef HAVE_TARGET_64_BIG
5542 template
5543 class Output_data_group<64, true>;
5544 #endif
5545
5546 template
5547 class Output_data_got<32, false>;
5548
5549 template
5550 class Output_data_got<32, true>;
5551
5552 template
5553 class Output_data_got<64, false>;
5554
5555 template
5556 class Output_data_got<64, true>;
5557
5558 } // End namespace gold.