Ensure that dynamically loaded libraries won't use separate copies of GNU_UNIQUE...
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 #  define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 #  define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 #  define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 #  define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 #  define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 #  define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80   errno = ENOSYS;
81   return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87   errno = ENOSYS;
88   return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94   errno = ENOSYS;
95   return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS  MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate.  If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly.  If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131   if (parameters->options().posix_fallocate())
132     return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135   if (::fallocate(o, 0, offset, len) == 0)
136     return 0;
137 #endif // defined(HAVE_FALLOCATE)
138   if (::ftruncate(o, offset + len) < 0)
139     return errno;
140   return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158   return Output_data::default_alignment_for_size(
159       parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167   if (size == 32)
168     return 4;
169   else if (size == 64)
170     return 8;
171   else
172     gold_unreachable();
173 }
174
175 // Output_section_header methods.  This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179     const Layout* layout,
180     const Layout::Segment_list* segment_list,
181     const Layout::Section_list* section_list,
182     const Layout::Section_list* unattached_section_list,
183     const Stringpool* secnamepool,
184     const Output_section* shstrtab_section)
185   : layout_(layout),
186     segment_list_(segment_list),
187     section_list_(section_list),
188     unattached_section_list_(unattached_section_list),
189     secnamepool_(secnamepool),
190     shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199   // Count all the sections.  Start with 1 for the null section.
200   off_t count = 1;
201   if (!parameters->options().relocatable())
202     {
203       for (Layout::Segment_list::const_iterator p =
204              this->segment_list_->begin();
205            p != this->segment_list_->end();
206            ++p)
207         if ((*p)->type() == elfcpp::PT_LOAD)
208           count += (*p)->output_section_count();
209     }
210   else
211     {
212       for (Layout::Section_list::const_iterator p =
213              this->section_list_->begin();
214            p != this->section_list_->end();
215            ++p)
216         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217           ++count;
218     }
219   count += this->unattached_section_list_->size();
220
221   const int size = parameters->target().get_size();
222   int shdr_size;
223   if (size == 32)
224     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225   else if (size == 64)
226     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227   else
228     gold_unreachable();
229
230   return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238   switch (parameters->size_and_endianness())
239     {
240 #ifdef HAVE_TARGET_32_LITTLE
241     case Parameters::TARGET_32_LITTLE:
242       this->do_sized_write<32, false>(of);
243       break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246     case Parameters::TARGET_32_BIG:
247       this->do_sized_write<32, true>(of);
248       break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251     case Parameters::TARGET_64_LITTLE:
252       this->do_sized_write<64, false>(of);
253       break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256     case Parameters::TARGET_64_BIG:
257       this->do_sized_write<64, true>(of);
258       break;
259 #endif
260     default:
261       gold_unreachable();
262     }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269   off_t all_shdrs_size = this->data_size();
270   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273   unsigned char* v = view;
274
275   {
276     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277     oshdr.put_sh_name(0);
278     oshdr.put_sh_type(elfcpp::SHT_NULL);
279     oshdr.put_sh_flags(0);
280     oshdr.put_sh_addr(0);
281     oshdr.put_sh_offset(0);
282
283     size_t section_count = (this->data_size()
284                             / elfcpp::Elf_sizes<size>::shdr_size);
285     if (section_count < elfcpp::SHN_LORESERVE)
286       oshdr.put_sh_size(0);
287     else
288       oshdr.put_sh_size(section_count);
289
290     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291     if (shstrndx < elfcpp::SHN_LORESERVE)
292       oshdr.put_sh_link(0);
293     else
294       oshdr.put_sh_link(shstrndx);
295
296     size_t segment_count = this->segment_list_->size();
297     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299     oshdr.put_sh_addralign(0);
300     oshdr.put_sh_entsize(0);
301   }
302
303   v += shdr_size;
304
305   unsigned int shndx = 1;
306   if (!parameters->options().relocatable())
307     {
308       for (Layout::Segment_list::const_iterator p =
309              this->segment_list_->begin();
310            p != this->segment_list_->end();
311            ++p)
312         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313                                                           this->secnamepool_,
314                                                           v,
315                                                           &shndx);
316     }
317   else
318     {
319       for (Layout::Section_list::const_iterator p =
320              this->section_list_->begin();
321            p != this->section_list_->end();
322            ++p)
323         {
324           // We do unallocated sections below, except that group
325           // sections have to come first.
326           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327               && (*p)->type() != elfcpp::SHT_GROUP)
328             continue;
329           gold_assert(shndx == (*p)->out_shndx());
330           elfcpp::Shdr_write<size, big_endian> oshdr(v);
331           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332           v += shdr_size;
333           ++shndx;
334         }
335     }
336
337   for (Layout::Section_list::const_iterator p =
338          this->unattached_section_list_->begin();
339        p != this->unattached_section_list_->end();
340        ++p)
341     {
342       // For a relocatable link, we did unallocated group sections
343       // above, since they have to come first.
344       if ((*p)->type() == elfcpp::SHT_GROUP
345           && parameters->options().relocatable())
346         continue;
347       gold_assert(shndx == (*p)->out_shndx());
348       elfcpp::Shdr_write<size, big_endian> oshdr(v);
349       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350       v += shdr_size;
351       ++shndx;
352     }
353
354   of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360     const Layout::Segment_list& segment_list)
361   : segment_list_(segment_list)
362 {
363   this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369   switch (parameters->size_and_endianness())
370     {
371 #ifdef HAVE_TARGET_32_LITTLE
372     case Parameters::TARGET_32_LITTLE:
373       this->do_sized_write<32, false>(of);
374       break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377     case Parameters::TARGET_32_BIG:
378       this->do_sized_write<32, true>(of);
379       break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382     case Parameters::TARGET_64_LITTLE:
383       this->do_sized_write<64, false>(of);
384       break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387     case Parameters::TARGET_64_BIG:
388       this->do_sized_write<64, true>(of);
389       break;
390 #endif
391     default:
392       gold_unreachable();
393     }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402   gold_assert(all_phdrs_size == this->data_size());
403   unsigned char* view = of->get_output_view(this->offset(),
404                                             all_phdrs_size);
405   unsigned char* v = view;
406   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407        p != this->segment_list_.end();
408        ++p)
409     {
410       elfcpp::Phdr_write<size, big_endian> ophdr(v);
411       (*p)->write_header(&ophdr);
412       v += phdr_size;
413     }
414
415   gold_assert(v - view == all_phdrs_size);
416
417   of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423   const int size = parameters->target().get_size();
424   int phdr_size;
425   if (size == 32)
426     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427   else if (size == 64)
428     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429   else
430     gold_unreachable();
431
432   return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(Target* target,
438                                        const Symbol_table* symtab,
439                                        const Output_segment_headers* osh)
440   : target_(target),
441     symtab_(symtab),
442     segment_header_(osh),
443     section_header_(NULL),
444     shstrtab_(NULL)
445 {
446   this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453                                      const Output_section* shstrtab)
454 {
455   this->section_header_ = shdrs;
456   this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464   gold_assert(this->offset() == 0);
465
466   switch (parameters->size_and_endianness())
467     {
468 #ifdef HAVE_TARGET_32_LITTLE
469     case Parameters::TARGET_32_LITTLE:
470       this->do_sized_write<32, false>(of);
471       break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474     case Parameters::TARGET_32_BIG:
475       this->do_sized_write<32, true>(of);
476       break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479     case Parameters::TARGET_64_LITTLE:
480       this->do_sized_write<64, false>(of);
481       break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484     case Parameters::TARGET_64_BIG:
485       this->do_sized_write<64, true>(of);
486       break;
487 #endif
488     default:
489       gold_unreachable();
490     }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499   gold_assert(this->offset() == 0);
500
501   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502   unsigned char* view = of->get_output_view(0, ehdr_size);
503   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505   unsigned char e_ident[elfcpp::EI_NIDENT];
506   memset(e_ident, 0, elfcpp::EI_NIDENT);
507   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511   if (size == 32)
512     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513   else if (size == 64)
514     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515   else
516     gold_unreachable();
517   e_ident[elfcpp::EI_DATA] = (big_endian
518                               ? elfcpp::ELFDATA2MSB
519                               : elfcpp::ELFDATA2LSB);
520   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521   oehdr.put_e_ident(e_ident);
522
523   elfcpp::ET e_type;
524   if (parameters->options().relocatable())
525     e_type = elfcpp::ET_REL;
526   else if (parameters->options().output_is_position_independent())
527     e_type = elfcpp::ET_DYN;
528   else
529     e_type = elfcpp::ET_EXEC;
530   oehdr.put_e_type(e_type);
531
532   oehdr.put_e_machine(this->target_->machine_code());
533   oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535   oehdr.put_e_entry(this->entry<size>());
536
537   if (this->segment_header_ == NULL)
538     oehdr.put_e_phoff(0);
539   else
540     oehdr.put_e_phoff(this->segment_header_->offset());
541
542   oehdr.put_e_shoff(this->section_header_->offset());
543   oehdr.put_e_flags(this->target_->processor_specific_flags());
544   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546   if (this->segment_header_ == NULL)
547     {
548       oehdr.put_e_phentsize(0);
549       oehdr.put_e_phnum(0);
550     }
551   else
552     {
553       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554       size_t phnum = (this->segment_header_->data_size()
555                       / elfcpp::Elf_sizes<size>::phdr_size);
556       if (phnum > elfcpp::PN_XNUM)
557         phnum = elfcpp::PN_XNUM;
558       oehdr.put_e_phnum(phnum);
559     }
560
561   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562   size_t section_count = (this->section_header_->data_size()
563                           / elfcpp::Elf_sizes<size>::shdr_size);
564
565   if (section_count < elfcpp::SHN_LORESERVE)
566     oehdr.put_e_shnum(this->section_header_->data_size()
567                       / elfcpp::Elf_sizes<size>::shdr_size);
568   else
569     oehdr.put_e_shnum(0);
570
571   unsigned int shstrndx = this->shstrtab_->out_shndx();
572   if (shstrndx < elfcpp::SHN_LORESERVE)
573     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574   else
575     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578   // the e_ident field.
579   this->target_->adjust_elf_header(view, ehdr_size);
580
581   of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590   const bool should_issue_warning = (parameters->options().entry() != NULL
591                                      && !parameters->options().relocatable()
592                                      && !parameters->options().shared());
593   const char* entry = parameters->entry();
594   Symbol* sym = this->symtab_->lookup(entry);
595
596   typename Sized_symbol<size>::Value_type v;
597   if (sym != NULL)
598     {
599       Sized_symbol<size>* ssym;
600       ssym = this->symtab_->get_sized_symbol<size>(sym);
601       if (!ssym->is_defined() && should_issue_warning)
602         gold_warning("entry symbol '%s' exists but is not defined", entry);
603       v = ssym->value();
604     }
605   else
606     {
607       // We couldn't find the entry symbol.  See if we can parse it as
608       // a number.  This supports, e.g., -e 0x1000.
609       char* endptr;
610       v = strtoull(entry, &endptr, 0);
611       if (*endptr != '\0')
612         {
613           if (should_issue_warning)
614             gold_warning("cannot find entry symbol '%s'", entry);
615           v = 0;
616         }
617     }
618
619   return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627   const int size = parameters->target().get_size();
628   if (size == 32)
629     return elfcpp::Elf_sizes<32>::ehdr_size;
630   else if (size == 64)
631     return elfcpp::Elf_sizes<64>::ehdr_size;
632   else
633     gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641   of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649   of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659   gold_assert(this->output_section_ == NULL);
660   this->output_section_ = os;
661   this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669   gold_assert(this->output_section_ != NULL);
670   return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679   this->addralign_ = addralign;
680   if (this->output_section_ != NULL
681       && this->output_section_->addralign() < addralign)
682     this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692   this->strtab_->set_string_offsets();
693   this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701   this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710     Symbol* gsym,
711     unsigned int type,
712     Output_data* od,
713     Address address,
714     bool is_relative,
715     bool is_symbolless,
716     bool use_plt_offset)
717   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718     is_relative_(is_relative), is_symbolless_(is_symbolless),
719     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721   // this->type_ is a bitfield; make sure TYPE fits.
722   gold_assert(this->type_ == type);
723   this->u1_.gsym = gsym;
724   this->u2_.od = od;
725   if (dynamic)
726     this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731     Symbol* gsym,
732     unsigned int type,
733     Sized_relobj<size, big_endian>* relobj,
734     unsigned int shndx,
735     Address address,
736     bool is_relative,
737     bool is_symbolless,
738     bool use_plt_offset)
739   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740     is_relative_(is_relative), is_symbolless_(is_symbolless),
741     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743   gold_assert(shndx != INVALID_CODE);
744   // this->type_ is a bitfield; make sure TYPE fits.
745   gold_assert(this->type_ == type);
746   this->u1_.gsym = gsym;
747   this->u2_.relobj = relobj;
748   if (dynamic)
749     this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756     Sized_relobj<size, big_endian>* relobj,
757     unsigned int local_sym_index,
758     unsigned int type,
759     Output_data* od,
760     Address address,
761     bool is_relative,
762     bool is_symbolless,
763     bool is_section_symbol,
764     bool use_plt_offset)
765   : address_(address), local_sym_index_(local_sym_index), type_(type),
766     is_relative_(is_relative), is_symbolless_(is_symbolless),
767     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768     shndx_(INVALID_CODE)
769 {
770   gold_assert(local_sym_index != GSYM_CODE
771               && local_sym_index != INVALID_CODE);
772   // this->type_ is a bitfield; make sure TYPE fits.
773   gold_assert(this->type_ == type);
774   this->u1_.relobj = relobj;
775   this->u2_.od = od;
776   if (dynamic)
777     this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782     Sized_relobj<size, big_endian>* relobj,
783     unsigned int local_sym_index,
784     unsigned int type,
785     unsigned int shndx,
786     Address address,
787     bool is_relative,
788     bool is_symbolless,
789     bool is_section_symbol,
790     bool use_plt_offset)
791   : address_(address), local_sym_index_(local_sym_index), type_(type),
792     is_relative_(is_relative), is_symbolless_(is_symbolless),
793     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794     shndx_(shndx)
795 {
796   gold_assert(local_sym_index != GSYM_CODE
797               && local_sym_index != INVALID_CODE);
798   gold_assert(shndx != INVALID_CODE);
799   // this->type_ is a bitfield; make sure TYPE fits.
800   gold_assert(this->type_ == type);
801   this->u1_.relobj = relobj;
802   this->u2_.relobj = relobj;
803   if (dynamic)
804     this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811     Output_section* os,
812     unsigned int type,
813     Output_data* od,
814     Address address,
815     bool is_relative)
816   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817     is_relative_(is_relative), is_symbolless_(is_relative),
818     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
819 {
820   // this->type_ is a bitfield; make sure TYPE fits.
821   gold_assert(this->type_ == type);
822   this->u1_.os = os;
823   this->u2_.od = od;
824   if (dynamic)
825     this->set_needs_dynsym_index();
826   else
827     os->set_needs_symtab_index();
828 }
829
830 template<bool dynamic, int size, bool big_endian>
831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832     Output_section* os,
833     unsigned int type,
834     Sized_relobj<size, big_endian>* relobj,
835     unsigned int shndx,
836     Address address,
837     bool is_relative)
838   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839     is_relative_(is_relative), is_symbolless_(is_relative),
840     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
841 {
842   gold_assert(shndx != INVALID_CODE);
843   // this->type_ is a bitfield; make sure TYPE fits.
844   gold_assert(this->type_ == type);
845   this->u1_.os = os;
846   this->u2_.relobj = relobj;
847   if (dynamic)
848     this->set_needs_dynsym_index();
849   else
850     os->set_needs_symtab_index();
851 }
852
853 // An absolute or relative relocation.
854
855 template<bool dynamic, int size, bool big_endian>
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857     unsigned int type,
858     Output_data* od,
859     Address address,
860     bool is_relative)
861   : address_(address), local_sym_index_(0), type_(type),
862     is_relative_(is_relative), is_symbolless_(false),
863     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864 {
865   // this->type_ is a bitfield; make sure TYPE fits.
866   gold_assert(this->type_ == type);
867   this->u1_.relobj = NULL;
868   this->u2_.od = od;
869 }
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873     unsigned int type,
874     Sized_relobj<size, big_endian>* relobj,
875     unsigned int shndx,
876     Address address,
877     bool is_relative)
878   : address_(address), local_sym_index_(0), type_(type),
879     is_relative_(is_relative), is_symbolless_(false),
880     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
881 {
882   gold_assert(shndx != INVALID_CODE);
883   // this->type_ is a bitfield; make sure TYPE fits.
884   gold_assert(this->type_ == type);
885   this->u1_.relobj = NULL;
886   this->u2_.relobj = relobj;
887 }
888
889 // A target specific relocation.
890
891 template<bool dynamic, int size, bool big_endian>
892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
893     unsigned int type,
894     void* arg,
895     Output_data* od,
896     Address address)
897   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
898     is_relative_(false), is_symbolless_(false),
899     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
900 {
901   // this->type_ is a bitfield; make sure TYPE fits.
902   gold_assert(this->type_ == type);
903   this->u1_.arg = arg;
904   this->u2_.od = od;
905 }
906
907 template<bool dynamic, int size, bool big_endian>
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
909     unsigned int type,
910     void* arg,
911     Sized_relobj<size, big_endian>* relobj,
912     unsigned int shndx,
913     Address address)
914   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
915     is_relative_(false), is_symbolless_(false),
916     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
917 {
918   gold_assert(shndx != INVALID_CODE);
919   // this->type_ is a bitfield; make sure TYPE fits.
920   gold_assert(this->type_ == type);
921   this->u1_.arg = arg;
922   this->u2_.relobj = relobj;
923 }
924
925 // Record that we need a dynamic symbol index for this relocation.
926
927 template<bool dynamic, int size, bool big_endian>
928 void
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 set_needs_dynsym_index()
931 {
932   if (this->is_symbolless_)
933     return;
934   switch (this->local_sym_index_)
935     {
936     case INVALID_CODE:
937       gold_unreachable();
938
939     case GSYM_CODE:
940       this->u1_.gsym->set_needs_dynsym_entry();
941       break;
942
943     case SECTION_CODE:
944       this->u1_.os->set_needs_dynsym_index();
945       break;
946
947     case TARGET_CODE:
948       // The target must take care of this if necessary.
949       break;
950
951     case 0:
952       break;
953
954     default:
955       {
956         const unsigned int lsi = this->local_sym_index_;
957         Sized_relobj_file<size, big_endian>* relobj =
958             this->u1_.relobj->sized_relobj();
959         gold_assert(relobj != NULL);
960         if (!this->is_section_symbol_)
961           relobj->set_needs_output_dynsym_entry(lsi);
962         else
963           relobj->output_section(lsi)->set_needs_dynsym_index();
964       }
965       break;
966     }
967 }
968
969 // Get the symbol index of a relocation.
970
971 template<bool dynamic, int size, bool big_endian>
972 unsigned int
973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
974   const
975 {
976   unsigned int index;
977   if (this->is_symbolless_)
978     return 0;
979   switch (this->local_sym_index_)
980     {
981     case INVALID_CODE:
982       gold_unreachable();
983
984     case GSYM_CODE:
985       if (this->u1_.gsym == NULL)
986         index = 0;
987       else if (dynamic)
988         index = this->u1_.gsym->dynsym_index();
989       else
990         index = this->u1_.gsym->symtab_index();
991       break;
992
993     case SECTION_CODE:
994       if (dynamic)
995         index = this->u1_.os->dynsym_index();
996       else
997         index = this->u1_.os->symtab_index();
998       break;
999
1000     case TARGET_CODE:
1001       index = parameters->target().reloc_symbol_index(this->u1_.arg,
1002                                                       this->type_);
1003       break;
1004
1005     case 0:
1006       // Relocations without symbols use a symbol index of 0.
1007       index = 0;
1008       break;
1009
1010     default:
1011       {
1012         const unsigned int lsi = this->local_sym_index_;
1013         Sized_relobj_file<size, big_endian>* relobj =
1014             this->u1_.relobj->sized_relobj();
1015         gold_assert(relobj != NULL);
1016         if (!this->is_section_symbol_)
1017           {
1018             if (dynamic)
1019               index = relobj->dynsym_index(lsi);
1020             else
1021               index = relobj->symtab_index(lsi);
1022           }
1023         else
1024           {
1025             Output_section* os = relobj->output_section(lsi);
1026             gold_assert(os != NULL);
1027             if (dynamic)
1028               index = os->dynsym_index();
1029             else
1030               index = os->symtab_index();
1031           }
1032       }
1033       break;
1034     }
1035   gold_assert(index != -1U);
1036   return index;
1037 }
1038
1039 // For a local section symbol, get the address of the offset ADDEND
1040 // within the input section.
1041
1042 template<bool dynamic, int size, bool big_endian>
1043 typename elfcpp::Elf_types<size>::Elf_Addr
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045   local_section_offset(Addend addend) const
1046 {
1047   gold_assert(this->local_sym_index_ != GSYM_CODE
1048               && this->local_sym_index_ != SECTION_CODE
1049               && this->local_sym_index_ != TARGET_CODE
1050               && this->local_sym_index_ != INVALID_CODE
1051               && this->local_sym_index_ != 0
1052               && this->is_section_symbol_);
1053   const unsigned int lsi = this->local_sym_index_;
1054   Output_section* os = this->u1_.relobj->output_section(lsi);
1055   gold_assert(os != NULL);
1056   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1057   if (offset != invalid_address)
1058     return offset + addend;
1059   // This is a merge section.
1060   Sized_relobj_file<size, big_endian>* relobj =
1061       this->u1_.relobj->sized_relobj();
1062   gold_assert(relobj != NULL);
1063   offset = os->output_address(relobj, lsi, addend);
1064   gold_assert(offset != invalid_address);
1065   return offset;
1066 }
1067
1068 // Get the output address of a relocation.
1069
1070 template<bool dynamic, int size, bool big_endian>
1071 typename elfcpp::Elf_types<size>::Elf_Addr
1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1073 {
1074   Address address = this->address_;
1075   if (this->shndx_ != INVALID_CODE)
1076     {
1077       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1078       gold_assert(os != NULL);
1079       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1080       if (off != invalid_address)
1081         address += os->address() + off;
1082       else
1083         {
1084           Sized_relobj_file<size, big_endian>* relobj =
1085               this->u2_.relobj->sized_relobj();
1086           gold_assert(relobj != NULL);
1087           address = os->output_address(relobj, this->shndx_, address);
1088           gold_assert(address != invalid_address);
1089         }
1090     }
1091   else if (this->u2_.od != NULL)
1092     address += this->u2_.od->address();
1093   return address;
1094 }
1095
1096 // Write out the offset and info fields of a Rel or Rela relocation
1097 // entry.
1098
1099 template<bool dynamic, int size, bool big_endian>
1100 template<typename Write_rel>
1101 void
1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103     Write_rel* wr) const
1104 {
1105   wr->put_r_offset(this->get_address());
1106   unsigned int sym_index = this->get_symbol_index();
1107   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1108 }
1109
1110 // Write out a Rel relocation.
1111
1112 template<bool dynamic, int size, bool big_endian>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115     unsigned char* pov) const
1116 {
1117   elfcpp::Rel_write<size, big_endian> orel(pov);
1118   this->write_rel(&orel);
1119 }
1120
1121 // Get the value of the symbol referred to by a Rel relocation.
1122
1123 template<bool dynamic, int size, bool big_endian>
1124 typename elfcpp::Elf_types<size>::Elf_Addr
1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1126     Addend addend) const
1127 {
1128   if (this->local_sym_index_ == GSYM_CODE)
1129     {
1130       const Sized_symbol<size>* sym;
1131       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1132       if (this->use_plt_offset_ && sym->has_plt_offset())
1133         return parameters->target().plt_address_for_global(sym);
1134       else
1135         return sym->value() + addend;
1136     }
1137   if (this->local_sym_index_ == SECTION_CODE)
1138     {
1139       gold_assert(!this->use_plt_offset_);
1140       return this->u1_.os->address() + addend;
1141     }
1142   gold_assert(this->local_sym_index_ != TARGET_CODE
1143               && this->local_sym_index_ != INVALID_CODE
1144               && this->local_sym_index_ != 0
1145               && !this->is_section_symbol_);
1146   const unsigned int lsi = this->local_sym_index_;
1147   Sized_relobj_file<size, big_endian>* relobj =
1148       this->u1_.relobj->sized_relobj();
1149   gold_assert(relobj != NULL);
1150   if (this->use_plt_offset_)
1151     return parameters->target().plt_address_for_local(relobj, lsi);
1152   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153   return symval->value(relobj, addend);
1154 }
1155
1156 // Reloc comparison.  This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker.  First we sort all relative relocs
1158 // to the front.  Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166     const
1167 {
1168   if (this->is_relative_)
1169     {
1170       if (!r2.is_relative_)
1171         return -1;
1172       // Otherwise sort by reloc address below.
1173     }
1174   else if (r2.is_relative_)
1175     return 1;
1176   else
1177     {
1178       unsigned int sym1 = this->get_symbol_index();
1179       unsigned int sym2 = r2.get_symbol_index();
1180       if (sym1 < sym2)
1181         return -1;
1182       else if (sym1 > sym2)
1183         return 1;
1184       // Otherwise sort by reloc address.
1185     }
1186
1187   section_offset_type addr1 = this->get_address();
1188   section_offset_type addr2 = r2.get_address();
1189   if (addr1 < addr2)
1190     return -1;
1191   else if (addr1 > addr2)
1192     return 1;
1193
1194   // Final tie breaker, in order to generate the same output on any
1195   // host: reloc type.
1196   unsigned int type1 = this->type_;
1197   unsigned int type2 = r2.type_;
1198   if (type1 < type2)
1199     return -1;
1200   else if (type1 > type2)
1201     return 1;
1202
1203   // These relocs appear to be exactly the same.
1204   return 0;
1205 }
1206
1207 // Write out a Rela relocation.
1208
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212     unsigned char* pov) const
1213 {
1214   elfcpp::Rela_write<size, big_endian> orel(pov);
1215   this->rel_.write_rel(&orel);
1216   Addend addend = this->addend_;
1217   if (this->rel_.is_target_specific())
1218     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219                                                this->rel_.type(), addend);
1220   else if (this->rel_.is_symbolless())
1221     addend = this->rel_.symbol_value(addend);
1222   else if (this->rel_.is_local_section_symbol())
1223     addend = this->rel_.local_section_offset(addend);
1224   orel.put_r_addend(addend);
1225 }
1226
1227 // Output_data_reloc_base methods.
1228
1229 // Adjust the output section.
1230
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234     ::do_adjust_output_section(Output_section* os)
1235 {
1236   if (sh_type == elfcpp::SHT_REL)
1237     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238   else if (sh_type == elfcpp::SHT_RELA)
1239     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240   else
1241     gold_unreachable();
1242
1243   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244   // static link.  The backends will generate a dynamic reloc section
1245   // to hold this.  In that case we don't want to link to the dynsym
1246   // section, because there isn't one.
1247   if (!dynamic)
1248     os->set_should_link_to_symtab();
1249   else if (parameters->doing_static_link())
1250     ;
1251   else
1252     os->set_should_link_to_dynsym();
1253 }
1254
1255 // Write out relocation data.
1256
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 void
1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260     Output_file* of)
1261 {
1262   const off_t off = this->offset();
1263   const off_t oview_size = this->data_size();
1264   unsigned char* const oview = of->get_output_view(off, oview_size);
1265
1266   if (this->sort_relocs())
1267     {
1268       gold_assert(dynamic);
1269       std::sort(this->relocs_.begin(), this->relocs_.end(),
1270                 Sort_relocs_comparison());
1271     }
1272
1273   unsigned char* pov = oview;
1274   for (typename Relocs::const_iterator p = this->relocs_.begin();
1275        p != this->relocs_.end();
1276        ++p)
1277     {
1278       p->write(pov);
1279       pov += reloc_size;
1280     }
1281
1282   gold_assert(pov - oview == oview_size);
1283
1284   of->write_output_view(off, oview_size, oview);
1285
1286   // We no longer need the relocation entries.
1287   this->relocs_.clear();
1288 }
1289
1290 // Class Output_relocatable_relocs.
1291
1292 template<int sh_type, int size, bool big_endian>
1293 void
1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295 {
1296   this->set_data_size(this->rr_->output_reloc_count()
1297                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298 }
1299
1300 // class Output_data_group.
1301
1302 template<int size, bool big_endian>
1303 Output_data_group<size, big_endian>::Output_data_group(
1304     Sized_relobj_file<size, big_endian>* relobj,
1305     section_size_type entry_count,
1306     elfcpp::Elf_Word flags,
1307     std::vector<unsigned int>* input_shndxes)
1308   : Output_section_data(entry_count * 4, 4, false),
1309     relobj_(relobj),
1310     flags_(flags)
1311 {
1312   this->input_shndxes_.swap(*input_shndxes);
1313 }
1314
1315 // Write out the section group, which means translating the section
1316 // indexes to apply to the output file.
1317
1318 template<int size, bool big_endian>
1319 void
1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
1321 {
1322   const off_t off = this->offset();
1323   const section_size_type oview_size =
1324     convert_to_section_size_type(this->data_size());
1325   unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329   ++contents;
1330
1331   for (std::vector<unsigned int>::const_iterator p =
1332          this->input_shndxes_.begin();
1333        p != this->input_shndxes_.end();
1334        ++p, ++contents)
1335     {
1336       Output_section* os = this->relobj_->output_section(*p);
1337
1338       unsigned int output_shndx;
1339       if (os != NULL)
1340         output_shndx = os->out_shndx();
1341       else
1342         {
1343           this->relobj_->error(_("section group retained but "
1344                                  "group element discarded"));
1345           output_shndx = 0;
1346         }
1347
1348       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349     }
1350
1351   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352   gold_assert(wrote == oview_size);
1353
1354   of->write_output_view(off, oview_size, oview);
1355
1356   // We no longer need this information.
1357   this->input_shndxes_.clear();
1358 }
1359
1360 // Output_data_got::Got_entry methods.
1361
1362 // Write out the entry.
1363
1364 template<int got_size, bool big_endian>
1365 void
1366 Output_data_got<got_size, big_endian>::Got_entry::write(
1367     unsigned int got_indx,
1368     unsigned char* pov) const
1369 {
1370   Valtype val = 0;
1371
1372   switch (this->local_sym_index_)
1373     {
1374     case GSYM_CODE:
1375       {
1376         // If the symbol is resolved locally, we need to write out the
1377         // link-time value, which will be relocated dynamically by a
1378         // RELATIVE relocation.
1379         Symbol* gsym = this->u_.gsym;
1380         if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1381           val = parameters->target().plt_address_for_global(gsym);
1382         else
1383           {
1384             switch (parameters->size_and_endianness())
1385               {
1386 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1387               case Parameters::TARGET_32_LITTLE:
1388               case Parameters::TARGET_32_BIG:
1389                 {
1390                   // This cast is ugly.  We don't want to put a
1391                   // virtual method in Symbol, because we want Symbol
1392                   // to be as small as possible.
1393                   Sized_symbol<32>::Value_type v;
1394                   v = static_cast<Sized_symbol<32>*>(gsym)->value();
1395                   val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1396                 }
1397                 break;
1398 #endif
1399 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1400               case Parameters::TARGET_64_LITTLE:
1401               case Parameters::TARGET_64_BIG:
1402                 {
1403                   Sized_symbol<64>::Value_type v;
1404                   v = static_cast<Sized_symbol<64>*>(gsym)->value();
1405                   val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1406                 }
1407                 break;
1408 #endif
1409               default:
1410                 gold_unreachable();
1411               }
1412             if (this->use_plt_or_tls_offset_
1413                 && gsym->type() == elfcpp::STT_TLS)
1414               val += parameters->target().tls_offset_for_global(gsym,
1415                                                                 got_indx);
1416           }
1417       }
1418       break;
1419
1420     case CONSTANT_CODE:
1421       val = this->u_.constant;
1422       break;
1423
1424     case RESERVED_CODE:
1425       // If we're doing an incremental update, don't touch this GOT entry.
1426       if (parameters->incremental_update())
1427         return;
1428       val = this->u_.constant;
1429       break;
1430
1431     default:
1432       {
1433         const Relobj* object = this->u_.object;
1434         const unsigned int lsi = this->local_sym_index_;
1435         bool is_tls = object->local_is_tls(lsi);
1436         if (this->use_plt_or_tls_offset_ && !is_tls)
1437           val = parameters->target().plt_address_for_local(object, lsi);
1438         else
1439           {
1440             uint64_t lval = object->local_symbol_value(lsi, 0);
1441             val = convert_types<Valtype, uint64_t>(lval);
1442             if (this->use_plt_or_tls_offset_ && is_tls)
1443               val += parameters->target().tls_offset_for_local(object, lsi,
1444                                                                got_indx);
1445           }
1446       }
1447       break;
1448     }
1449
1450   elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1451 }
1452
1453 // Output_data_got methods.
1454
1455 // Add an entry for a global symbol to the GOT.  This returns true if
1456 // this is a new GOT entry, false if the symbol already had a GOT
1457 // entry.
1458
1459 template<int got_size, bool big_endian>
1460 bool
1461 Output_data_got<got_size, big_endian>::add_global(
1462     Symbol* gsym,
1463     unsigned int got_type)
1464 {
1465   if (gsym->has_got_offset(got_type))
1466     return false;
1467
1468   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1469   gsym->set_got_offset(got_type, got_offset);
1470   return true;
1471 }
1472
1473 // Like add_global, but use the PLT offset.
1474
1475 template<int got_size, bool big_endian>
1476 bool
1477 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1478                                                       unsigned int got_type)
1479 {
1480   if (gsym->has_got_offset(got_type))
1481     return false;
1482
1483   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1484   gsym->set_got_offset(got_type, got_offset);
1485   return true;
1486 }
1487
1488 // Add an entry for a global symbol to the GOT, and add a dynamic
1489 // relocation of type R_TYPE for the GOT entry.
1490
1491 template<int got_size, bool big_endian>
1492 void
1493 Output_data_got<got_size, big_endian>::add_global_with_rel(
1494     Symbol* gsym,
1495     unsigned int got_type,
1496     Output_data_reloc_generic* rel_dyn,
1497     unsigned int r_type)
1498 {
1499   if (gsym->has_got_offset(got_type))
1500     return;
1501
1502   unsigned int got_offset = this->add_got_entry(Got_entry());
1503   gsym->set_got_offset(got_type, got_offset);
1504   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1505 }
1506
1507 // Add a pair of entries for a global symbol to the GOT, and add
1508 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1509 // If R_TYPE_2 == 0, add the second entry with no relocation.
1510 template<int got_size, bool big_endian>
1511 void
1512 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1513     Symbol* gsym,
1514     unsigned int got_type,
1515     Output_data_reloc_generic* rel_dyn,
1516     unsigned int r_type_1,
1517     unsigned int r_type_2)
1518 {
1519   if (gsym->has_got_offset(got_type))
1520     return;
1521
1522   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1523   gsym->set_got_offset(got_type, got_offset);
1524   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1525
1526   if (r_type_2 != 0)
1527     rel_dyn->add_global_generic(gsym, r_type_2, this,
1528                                 got_offset + got_size / 8, 0);
1529 }
1530
1531 // Add an entry for a local symbol to the GOT.  This returns true if
1532 // this is a new GOT entry, false if the symbol already has a GOT
1533 // entry.
1534
1535 template<int got_size, bool big_endian>
1536 bool
1537 Output_data_got<got_size, big_endian>::add_local(
1538     Relobj* object,
1539     unsigned int symndx,
1540     unsigned int got_type)
1541 {
1542   if (object->local_has_got_offset(symndx, got_type))
1543     return false;
1544
1545   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1546                                                           false));
1547   object->set_local_got_offset(symndx, got_type, got_offset);
1548   return true;
1549 }
1550
1551 // Like add_local, but use the PLT offset.
1552
1553 template<int got_size, bool big_endian>
1554 bool
1555 Output_data_got<got_size, big_endian>::add_local_plt(
1556     Relobj* object,
1557     unsigned int symndx,
1558     unsigned int got_type)
1559 {
1560   if (object->local_has_got_offset(symndx, got_type))
1561     return false;
1562
1563   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1564                                                           true));
1565   object->set_local_got_offset(symndx, got_type, got_offset);
1566   return true;
1567 }
1568
1569 // Add an entry for a local symbol to the GOT, and add a dynamic
1570 // relocation of type R_TYPE for the GOT entry.
1571
1572 template<int got_size, bool big_endian>
1573 void
1574 Output_data_got<got_size, big_endian>::add_local_with_rel(
1575     Relobj* object,
1576     unsigned int symndx,
1577     unsigned int got_type,
1578     Output_data_reloc_generic* rel_dyn,
1579     unsigned int r_type)
1580 {
1581   if (object->local_has_got_offset(symndx, got_type))
1582     return;
1583
1584   unsigned int got_offset = this->add_got_entry(Got_entry());
1585   object->set_local_got_offset(symndx, got_type, got_offset);
1586   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1587 }
1588
1589 // Add a pair of entries for a local symbol to the GOT, and add
1590 // a dynamic relocation of type R_TYPE using the section symbol of
1591 // the output section to which input section SHNDX maps, on the first.
1592 // The first got entry will have a value of zero, the second the
1593 // value of the local symbol.
1594 template<int got_size, bool big_endian>
1595 void
1596 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1597     Relobj* object,
1598     unsigned int symndx,
1599     unsigned int shndx,
1600     unsigned int got_type,
1601     Output_data_reloc_generic* rel_dyn,
1602     unsigned int r_type)
1603 {
1604   if (object->local_has_got_offset(symndx, got_type))
1605     return;
1606
1607   unsigned int got_offset =
1608       this->add_got_entry_pair(Got_entry(),
1609                                Got_entry(object, symndx, false));
1610   object->set_local_got_offset(symndx, got_type, got_offset);
1611   Output_section* os = object->output_section(shndx);
1612   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1613 }
1614
1615 // Add a pair of entries for a local symbol to the GOT, and add
1616 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1617 // The first got entry will have a value of zero, the second the
1618 // value of the local symbol offset by Target::tls_offset_for_local.
1619 template<int got_size, bool big_endian>
1620 void
1621 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1622     Relobj* object,
1623     unsigned int symndx,
1624     unsigned int got_type,
1625     Output_data_reloc_generic* rel_dyn,
1626     unsigned int r_type)
1627 {
1628   if (object->local_has_got_offset(symndx, got_type))
1629     return;
1630
1631   unsigned int got_offset
1632     = this->add_got_entry_pair(Got_entry(),
1633                                Got_entry(object, symndx, true));
1634   object->set_local_got_offset(symndx, got_type, got_offset);
1635   rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1636 }
1637
1638 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1639
1640 template<int got_size, bool big_endian>
1641 void
1642 Output_data_got<got_size, big_endian>::reserve_local(
1643     unsigned int i,
1644     Relobj* object,
1645     unsigned int sym_index,
1646     unsigned int got_type)
1647 {
1648   this->do_reserve_slot(i);
1649   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1650 }
1651
1652 // Reserve a slot in the GOT for a global symbol.
1653
1654 template<int got_size, bool big_endian>
1655 void
1656 Output_data_got<got_size, big_endian>::reserve_global(
1657     unsigned int i,
1658     Symbol* gsym,
1659     unsigned int got_type)
1660 {
1661   this->do_reserve_slot(i);
1662   gsym->set_got_offset(got_type, this->got_offset(i));
1663 }
1664
1665 // Write out the GOT.
1666
1667 template<int got_size, bool big_endian>
1668 void
1669 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1670 {
1671   const int add = got_size / 8;
1672
1673   const off_t off = this->offset();
1674   const off_t oview_size = this->data_size();
1675   unsigned char* const oview = of->get_output_view(off, oview_size);
1676
1677   unsigned char* pov = oview;
1678   for (unsigned int i = 0; i < this->entries_.size(); ++i)
1679     {
1680       this->entries_[i].write(i, pov);
1681       pov += add;
1682     }
1683
1684   gold_assert(pov - oview == oview_size);
1685
1686   of->write_output_view(off, oview_size, oview);
1687
1688   // We no longer need the GOT entries.
1689   this->entries_.clear();
1690 }
1691
1692 // Create a new GOT entry and return its offset.
1693
1694 template<int got_size, bool big_endian>
1695 unsigned int
1696 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1697 {
1698   if (!this->is_data_size_valid())
1699     {
1700       this->entries_.push_back(got_entry);
1701       this->set_got_size();
1702       return this->last_got_offset();
1703     }
1704   else
1705     {
1706       // For an incremental update, find an available slot.
1707       off_t got_offset = this->free_list_.allocate(got_size / 8,
1708                                                    got_size / 8, 0);
1709       if (got_offset == -1)
1710         gold_fallback(_("out of patch space (GOT);"
1711                         " relink with --incremental-full"));
1712       unsigned int got_index = got_offset / (got_size / 8);
1713       gold_assert(got_index < this->entries_.size());
1714       this->entries_[got_index] = got_entry;
1715       return static_cast<unsigned int>(got_offset);
1716     }
1717 }
1718
1719 // Create a pair of new GOT entries and return the offset of the first.
1720
1721 template<int got_size, bool big_endian>
1722 unsigned int
1723 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1724     Got_entry got_entry_1,
1725     Got_entry got_entry_2)
1726 {
1727   if (!this->is_data_size_valid())
1728     {
1729       unsigned int got_offset;
1730       this->entries_.push_back(got_entry_1);
1731       got_offset = this->last_got_offset();
1732       this->entries_.push_back(got_entry_2);
1733       this->set_got_size();
1734       return got_offset;
1735     }
1736   else
1737     {
1738       // For an incremental update, find an available pair of slots.
1739       off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1740                                                    got_size / 8, 0);
1741       if (got_offset == -1)
1742         gold_fallback(_("out of patch space (GOT);"
1743                         " relink with --incremental-full"));
1744       unsigned int got_index = got_offset / (got_size / 8);
1745       gold_assert(got_index < this->entries_.size());
1746       this->entries_[got_index] = got_entry_1;
1747       this->entries_[got_index + 1] = got_entry_2;
1748       return static_cast<unsigned int>(got_offset);
1749     }
1750 }
1751
1752 // Replace GOT entry I with a new value.
1753
1754 template<int got_size, bool big_endian>
1755 void
1756 Output_data_got<got_size, big_endian>::replace_got_entry(
1757     unsigned int i,
1758     Got_entry got_entry)
1759 {
1760   gold_assert(i < this->entries_.size());
1761   this->entries_[i] = got_entry;
1762 }
1763
1764 // Output_data_dynamic::Dynamic_entry methods.
1765
1766 // Write out the entry.
1767
1768 template<int size, bool big_endian>
1769 void
1770 Output_data_dynamic::Dynamic_entry::write(
1771     unsigned char* pov,
1772     const Stringpool* pool) const
1773 {
1774   typename elfcpp::Elf_types<size>::Elf_WXword val;
1775   switch (this->offset_)
1776     {
1777     case DYNAMIC_NUMBER:
1778       val = this->u_.val;
1779       break;
1780
1781     case DYNAMIC_SECTION_SIZE:
1782       val = this->u_.od->data_size();
1783       if (this->od2 != NULL)
1784         val += this->od2->data_size();
1785       break;
1786
1787     case DYNAMIC_SYMBOL:
1788       {
1789         const Sized_symbol<size>* s =
1790           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1791         val = s->value();
1792       }
1793       break;
1794
1795     case DYNAMIC_STRING:
1796       val = pool->get_offset(this->u_.str);
1797       break;
1798
1799     case DYNAMIC_CUSTOM:
1800       val = parameters->target().dynamic_tag_custom_value(this->tag_);
1801       break;
1802
1803     default:
1804       val = this->u_.od->address() + this->offset_;
1805       break;
1806     }
1807
1808   elfcpp::Dyn_write<size, big_endian> dw(pov);
1809   dw.put_d_tag(this->tag_);
1810   dw.put_d_val(val);
1811 }
1812
1813 // Output_data_dynamic methods.
1814
1815 // Adjust the output section to set the entry size.
1816
1817 void
1818 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1819 {
1820   if (parameters->target().get_size() == 32)
1821     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1822   else if (parameters->target().get_size() == 64)
1823     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1824   else
1825     gold_unreachable();
1826 }
1827
1828 // Set the final data size.
1829
1830 void
1831 Output_data_dynamic::set_final_data_size()
1832 {
1833   // Add the terminating entry if it hasn't been added.
1834   // Because of relaxation, we can run this multiple times.
1835   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1836     {
1837       int extra = parameters->options().spare_dynamic_tags();
1838       for (int i = 0; i < extra; ++i)
1839         this->add_constant(elfcpp::DT_NULL, 0);
1840       this->add_constant(elfcpp::DT_NULL, 0);
1841     }
1842
1843   int dyn_size;
1844   if (parameters->target().get_size() == 32)
1845     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1846   else if (parameters->target().get_size() == 64)
1847     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1848   else
1849     gold_unreachable();
1850   this->set_data_size(this->entries_.size() * dyn_size);
1851 }
1852
1853 // Write out the dynamic entries.
1854
1855 void
1856 Output_data_dynamic::do_write(Output_file* of)
1857 {
1858   switch (parameters->size_and_endianness())
1859     {
1860 #ifdef HAVE_TARGET_32_LITTLE
1861     case Parameters::TARGET_32_LITTLE:
1862       this->sized_write<32, false>(of);
1863       break;
1864 #endif
1865 #ifdef HAVE_TARGET_32_BIG
1866     case Parameters::TARGET_32_BIG:
1867       this->sized_write<32, true>(of);
1868       break;
1869 #endif
1870 #ifdef HAVE_TARGET_64_LITTLE
1871     case Parameters::TARGET_64_LITTLE:
1872       this->sized_write<64, false>(of);
1873       break;
1874 #endif
1875 #ifdef HAVE_TARGET_64_BIG
1876     case Parameters::TARGET_64_BIG:
1877       this->sized_write<64, true>(of);
1878       break;
1879 #endif
1880     default:
1881       gold_unreachable();
1882     }
1883 }
1884
1885 template<int size, bool big_endian>
1886 void
1887 Output_data_dynamic::sized_write(Output_file* of)
1888 {
1889   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1890
1891   const off_t offset = this->offset();
1892   const off_t oview_size = this->data_size();
1893   unsigned char* const oview = of->get_output_view(offset, oview_size);
1894
1895   unsigned char* pov = oview;
1896   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1897        p != this->entries_.end();
1898        ++p)
1899     {
1900       p->write<size, big_endian>(pov, this->pool_);
1901       pov += dyn_size;
1902     }
1903
1904   gold_assert(pov - oview == oview_size);
1905
1906   of->write_output_view(offset, oview_size, oview);
1907
1908   // We no longer need the dynamic entries.
1909   this->entries_.clear();
1910 }
1911
1912 // Class Output_symtab_xindex.
1913
1914 void
1915 Output_symtab_xindex::do_write(Output_file* of)
1916 {
1917   const off_t offset = this->offset();
1918   const off_t oview_size = this->data_size();
1919   unsigned char* const oview = of->get_output_view(offset, oview_size);
1920
1921   memset(oview, 0, oview_size);
1922
1923   if (parameters->target().is_big_endian())
1924     this->endian_do_write<true>(oview);
1925   else
1926     this->endian_do_write<false>(oview);
1927
1928   of->write_output_view(offset, oview_size, oview);
1929
1930   // We no longer need the data.
1931   this->entries_.clear();
1932 }
1933
1934 template<bool big_endian>
1935 void
1936 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1937 {
1938   for (Xindex_entries::const_iterator p = this->entries_.begin();
1939        p != this->entries_.end();
1940        ++p)
1941     {
1942       unsigned int symndx = p->first;
1943       gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
1944       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1945     }
1946 }
1947
1948 // Output_fill_debug_info methods.
1949
1950 // Return the minimum size needed for a dummy compilation unit header.
1951
1952 size_t
1953 Output_fill_debug_info::do_minimum_hole_size() const
1954 {
1955   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1956   // address_size.
1957   const size_t len = 4 + 2 + 4 + 1;
1958   // For type units, add type_signature, type_offset.
1959   if (this->is_debug_types_)
1960     return len + 8 + 4;
1961   return len;
1962 }
1963
1964 // Write a dummy compilation unit header to fill a hole in the
1965 // .debug_info or .debug_types section.
1966
1967 void
1968 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1969 {
1970   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1971              static_cast<long>(off), static_cast<long>(len));
1972
1973   gold_assert(len >= this->do_minimum_hole_size());
1974
1975   unsigned char* const oview = of->get_output_view(off, len);
1976   unsigned char* pov = oview;
1977
1978   // Write header fields: unit_length, version, debug_abbrev_offset,
1979   // address_size.
1980   if (this->is_big_endian())
1981     {
1982       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1983       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1984       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1985     }
1986   else
1987     {
1988       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1989       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1990       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1991     }
1992   pov += 4 + 2 + 4;
1993   *pov++ = 4;
1994
1995   // For type units, the additional header fields -- type_signature,
1996   // type_offset -- can be filled with zeroes.
1997
1998   // Fill the remainder of the free space with zeroes.  The first
1999   // zero should tell the consumer there are no DIEs to read in this
2000   // compilation unit.
2001   if (pov < oview + len)
2002     memset(pov, 0, oview + len - pov);
2003
2004   of->write_output_view(off, len, oview);
2005 }
2006
2007 // Output_fill_debug_line methods.
2008
2009 // Return the minimum size needed for a dummy line number program header.
2010
2011 size_t
2012 Output_fill_debug_line::do_minimum_hole_size() const
2013 {
2014   // Line number program header fields: unit_length, version, header_length,
2015   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2016   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2017   const size_t len = 4 + 2 + 4 + this->header_length;
2018   return len;
2019 }
2020
2021 // Write a dummy line number program header to fill a hole in the
2022 // .debug_line section.
2023
2024 void
2025 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2026 {
2027   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2028              static_cast<long>(off), static_cast<long>(len));
2029
2030   gold_assert(len >= this->do_minimum_hole_size());
2031
2032   unsigned char* const oview = of->get_output_view(off, len);
2033   unsigned char* pov = oview;
2034
2035   // Write header fields: unit_length, version, header_length,
2036   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2037   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2038   // We set the header_length field to cover the entire hole, so the
2039   // line number program is empty.
2040   if (this->is_big_endian())
2041     {
2042       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2043       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2044       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2045     }
2046   else
2047     {
2048       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2049       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2050       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2051     }
2052   pov += 4 + 2 + 4;
2053   *pov++ = 1;   // minimum_instruction_length
2054   *pov++ = 0;   // default_is_stmt
2055   *pov++ = 0;   // line_base
2056   *pov++ = 5;   // line_range
2057   *pov++ = 13;  // opcode_base
2058   *pov++ = 0;   // standard_opcode_lengths[1]
2059   *pov++ = 1;   // standard_opcode_lengths[2]
2060   *pov++ = 1;   // standard_opcode_lengths[3]
2061   *pov++ = 1;   // standard_opcode_lengths[4]
2062   *pov++ = 1;   // standard_opcode_lengths[5]
2063   *pov++ = 0;   // standard_opcode_lengths[6]
2064   *pov++ = 0;   // standard_opcode_lengths[7]
2065   *pov++ = 0;   // standard_opcode_lengths[8]
2066   *pov++ = 1;   // standard_opcode_lengths[9]
2067   *pov++ = 0;   // standard_opcode_lengths[10]
2068   *pov++ = 0;   // standard_opcode_lengths[11]
2069   *pov++ = 1;   // standard_opcode_lengths[12]
2070   *pov++ = 0;   // include_directories (empty)
2071   *pov++ = 0;   // filenames (empty)
2072
2073   // Some consumers don't check the header_length field, and simply
2074   // start reading the line number program immediately following the
2075   // header.  For those consumers, we fill the remainder of the free
2076   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2077   // no-ops: the resulting line table program will not create any rows.
2078   if (pov < oview + len)
2079     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2080
2081   of->write_output_view(off, len, oview);
2082 }
2083
2084 // Output_section::Input_section methods.
2085
2086 // Return the current data size.  For an input section we store the size here.
2087 // For an Output_section_data, we have to ask it for the size.
2088
2089 off_t
2090 Output_section::Input_section::current_data_size() const
2091 {
2092   if (this->is_input_section())
2093     return this->u1_.data_size;
2094   else
2095     {
2096       this->u2_.posd->pre_finalize_data_size();
2097       return this->u2_.posd->current_data_size();
2098     }
2099 }
2100
2101 // Return the data size.  For an input section we store the size here.
2102 // For an Output_section_data, we have to ask it for the size.
2103
2104 off_t
2105 Output_section::Input_section::data_size() const
2106 {
2107   if (this->is_input_section())
2108     return this->u1_.data_size;
2109   else
2110     return this->u2_.posd->data_size();
2111 }
2112
2113 // Return the object for an input section.
2114
2115 Relobj*
2116 Output_section::Input_section::relobj() const
2117 {
2118   if (this->is_input_section())
2119     return this->u2_.object;
2120   else if (this->is_merge_section())
2121     {
2122       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2123       return this->u2_.pomb->first_relobj();
2124     }
2125   else if (this->is_relaxed_input_section())
2126     return this->u2_.poris->relobj();
2127   else
2128     gold_unreachable();
2129 }
2130
2131 // Return the input section index for an input section.
2132
2133 unsigned int
2134 Output_section::Input_section::shndx() const
2135 {
2136   if (this->is_input_section())
2137     return this->shndx_;
2138   else if (this->is_merge_section())
2139     {
2140       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2141       return this->u2_.pomb->first_shndx();
2142     }
2143   else if (this->is_relaxed_input_section())
2144     return this->u2_.poris->shndx();
2145   else
2146     gold_unreachable();
2147 }
2148
2149 // Set the address and file offset.
2150
2151 void
2152 Output_section::Input_section::set_address_and_file_offset(
2153     uint64_t address,
2154     off_t file_offset,
2155     off_t section_file_offset)
2156 {
2157   if (this->is_input_section())
2158     this->u2_.object->set_section_offset(this->shndx_,
2159                                          file_offset - section_file_offset);
2160   else
2161     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2162 }
2163
2164 // Reset the address and file offset.
2165
2166 void
2167 Output_section::Input_section::reset_address_and_file_offset()
2168 {
2169   if (!this->is_input_section())
2170     this->u2_.posd->reset_address_and_file_offset();
2171 }
2172
2173 // Finalize the data size.
2174
2175 void
2176 Output_section::Input_section::finalize_data_size()
2177 {
2178   if (!this->is_input_section())
2179     this->u2_.posd->finalize_data_size();
2180 }
2181
2182 // Try to turn an input offset into an output offset.  We want to
2183 // return the output offset relative to the start of this
2184 // Input_section in the output section.
2185
2186 inline bool
2187 Output_section::Input_section::output_offset(
2188     const Relobj* object,
2189     unsigned int shndx,
2190     section_offset_type offset,
2191     section_offset_type* poutput) const
2192 {
2193   if (!this->is_input_section())
2194     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2195   else
2196     {
2197       if (this->shndx_ != shndx || this->u2_.object != object)
2198         return false;
2199       *poutput = offset;
2200       return true;
2201     }
2202 }
2203
2204 // Write out the data.  We don't have to do anything for an input
2205 // section--they are handled via Object::relocate--but this is where
2206 // we write out the data for an Output_section_data.
2207
2208 void
2209 Output_section::Input_section::write(Output_file* of)
2210 {
2211   if (!this->is_input_section())
2212     this->u2_.posd->write(of);
2213 }
2214
2215 // Write the data to a buffer.  As for write(), we don't have to do
2216 // anything for an input section.
2217
2218 void
2219 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2220 {
2221   if (!this->is_input_section())
2222     this->u2_.posd->write_to_buffer(buffer);
2223 }
2224
2225 // Print to a map file.
2226
2227 void
2228 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2229 {
2230   switch (this->shndx_)
2231     {
2232     case OUTPUT_SECTION_CODE:
2233     case MERGE_DATA_SECTION_CODE:
2234     case MERGE_STRING_SECTION_CODE:
2235       this->u2_.posd->print_to_mapfile(mapfile);
2236       break;
2237
2238     case RELAXED_INPUT_SECTION_CODE:
2239       {
2240         Output_relaxed_input_section* relaxed_section =
2241           this->relaxed_input_section();
2242         mapfile->print_input_section(relaxed_section->relobj(),
2243                                      relaxed_section->shndx());
2244       }
2245       break;
2246     default:
2247       mapfile->print_input_section(this->u2_.object, this->shndx_);
2248       break;
2249     }
2250 }
2251
2252 // Output_section methods.
2253
2254 // Construct an Output_section.  NAME will point into a Stringpool.
2255
2256 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2257                                elfcpp::Elf_Xword flags)
2258   : name_(name),
2259     addralign_(0),
2260     entsize_(0),
2261     load_address_(0),
2262     link_section_(NULL),
2263     link_(0),
2264     info_section_(NULL),
2265     info_symndx_(NULL),
2266     info_(0),
2267     type_(type),
2268     flags_(flags),
2269     order_(ORDER_INVALID),
2270     out_shndx_(-1U),
2271     symtab_index_(0),
2272     dynsym_index_(0),
2273     input_sections_(),
2274     first_input_offset_(0),
2275     fills_(),
2276     postprocessing_buffer_(NULL),
2277     needs_symtab_index_(false),
2278     needs_dynsym_index_(false),
2279     should_link_to_symtab_(false),
2280     should_link_to_dynsym_(false),
2281     after_input_sections_(false),
2282     requires_postprocessing_(false),
2283     found_in_sections_clause_(false),
2284     has_load_address_(false),
2285     info_uses_section_index_(false),
2286     input_section_order_specified_(false),
2287     may_sort_attached_input_sections_(false),
2288     must_sort_attached_input_sections_(false),
2289     attached_input_sections_are_sorted_(false),
2290     is_relro_(false),
2291     is_small_section_(false),
2292     is_large_section_(false),
2293     generate_code_fills_at_write_(false),
2294     is_entsize_zero_(false),
2295     section_offsets_need_adjustment_(false),
2296     is_noload_(false),
2297     always_keeps_input_sections_(false),
2298     has_fixed_layout_(false),
2299     is_patch_space_allowed_(false),
2300     is_unique_segment_(false),
2301     tls_offset_(0),
2302     extra_segment_flags_(0),
2303     segment_alignment_(0),
2304     checkpoint_(NULL),
2305     lookup_maps_(new Output_section_lookup_maps),
2306     free_list_(),
2307     free_space_fill_(NULL),
2308     patch_space_(0)
2309 {
2310   // An unallocated section has no address.  Forcing this means that
2311   // we don't need special treatment for symbols defined in debug
2312   // sections.
2313   if ((flags & elfcpp::SHF_ALLOC) == 0)
2314     this->set_address(0);
2315 }
2316
2317 Output_section::~Output_section()
2318 {
2319   delete this->checkpoint_;
2320 }
2321
2322 // Set the entry size.
2323
2324 void
2325 Output_section::set_entsize(uint64_t v)
2326 {
2327   if (this->is_entsize_zero_)
2328     ;
2329   else if (this->entsize_ == 0)
2330     this->entsize_ = v;
2331   else if (this->entsize_ != v)
2332     {
2333       this->entsize_ = 0;
2334       this->is_entsize_zero_ = 1;
2335     }
2336 }
2337
2338 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2339 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2340 // relocation section which applies to this section, or 0 if none, or
2341 // -1U if more than one.  Return the offset of the input section
2342 // within the output section.  Return -1 if the input section will
2343 // receive special handling.  In the normal case we don't always keep
2344 // track of input sections for an Output_section.  Instead, each
2345 // Object keeps track of the Output_section for each of its input
2346 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2347 // track of input sections here; this is used when SECTIONS appears in
2348 // a linker script.
2349
2350 template<int size, bool big_endian>
2351 off_t
2352 Output_section::add_input_section(Layout* layout,
2353                                   Sized_relobj_file<size, big_endian>* object,
2354                                   unsigned int shndx,
2355                                   const char* secname,
2356                                   const elfcpp::Shdr<size, big_endian>& shdr,
2357                                   unsigned int reloc_shndx,
2358                                   bool have_sections_script)
2359 {
2360   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2361   if ((addralign & (addralign - 1)) != 0)
2362     {
2363       object->error(_("invalid alignment %lu for section \"%s\""),
2364                     static_cast<unsigned long>(addralign), secname);
2365       addralign = 1;
2366     }
2367
2368   if (addralign > this->addralign_)
2369     this->addralign_ = addralign;
2370
2371   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2372   uint64_t entsize = shdr.get_sh_entsize();
2373
2374   // .debug_str is a mergeable string section, but is not always so
2375   // marked by compilers.  Mark manually here so we can optimize.
2376   if (strcmp(secname, ".debug_str") == 0)
2377     {
2378       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2379       entsize = 1;
2380     }
2381
2382   this->update_flags_for_input_section(sh_flags);
2383   this->set_entsize(entsize);
2384
2385   // If this is a SHF_MERGE section, we pass all the input sections to
2386   // a Output_data_merge.  We don't try to handle relocations for such
2387   // a section.  We don't try to handle empty merge sections--they
2388   // mess up the mappings, and are useless anyhow.
2389   // FIXME: Need to handle merge sections during incremental update.
2390   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2391       && reloc_shndx == 0
2392       && shdr.get_sh_size() > 0
2393       && !parameters->incremental())
2394     {
2395       // Keep information about merged input sections for rebuilding fast
2396       // lookup maps if we have sections-script or we do relaxation.
2397       bool keeps_input_sections = (this->always_keeps_input_sections_
2398                                    || have_sections_script
2399                                    || parameters->target().may_relax());
2400
2401       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2402                                         addralign, keeps_input_sections))
2403         {
2404           // Tell the relocation routines that they need to call the
2405           // output_offset method to determine the final address.
2406           return -1;
2407         }
2408     }
2409
2410   section_size_type input_section_size = shdr.get_sh_size();
2411   section_size_type uncompressed_size;
2412   if (object->section_is_compressed(shndx, &uncompressed_size))
2413     input_section_size = uncompressed_size;
2414
2415   off_t offset_in_section;
2416
2417   if (this->has_fixed_layout())
2418     {
2419       // For incremental updates, find a chunk of unused space in the section.
2420       offset_in_section = this->free_list_.allocate(input_section_size,
2421                                                     addralign, 0);
2422       if (offset_in_section == -1)
2423         gold_fallback(_("out of patch space in section %s; "
2424                         "relink with --incremental-full"),
2425                       this->name());
2426       return offset_in_section;
2427     }
2428
2429   offset_in_section = this->current_data_size_for_child();
2430   off_t aligned_offset_in_section = align_address(offset_in_section,
2431                                                   addralign);
2432   this->set_current_data_size_for_child(aligned_offset_in_section
2433                                         + input_section_size);
2434
2435   // Determine if we want to delay code-fill generation until the output
2436   // section is written.  When the target is relaxing, we want to delay fill
2437   // generating to avoid adjusting them during relaxation.  Also, if we are
2438   // sorting input sections we must delay fill generation.
2439   if (!this->generate_code_fills_at_write_
2440       && !have_sections_script
2441       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2442       && parameters->target().has_code_fill()
2443       && (parameters->target().may_relax()
2444           || layout->is_section_ordering_specified()))
2445     {
2446       gold_assert(this->fills_.empty());
2447       this->generate_code_fills_at_write_ = true;
2448     }
2449
2450   if (aligned_offset_in_section > offset_in_section
2451       && !this->generate_code_fills_at_write_
2452       && !have_sections_script
2453       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2454       && parameters->target().has_code_fill())
2455     {
2456       // We need to add some fill data.  Using fill_list_ when
2457       // possible is an optimization, since we will often have fill
2458       // sections without input sections.
2459       off_t fill_len = aligned_offset_in_section - offset_in_section;
2460       if (this->input_sections_.empty())
2461         this->fills_.push_back(Fill(offset_in_section, fill_len));
2462       else
2463         {
2464           std::string fill_data(parameters->target().code_fill(fill_len));
2465           Output_data_const* odc = new Output_data_const(fill_data, 1);
2466           this->input_sections_.push_back(Input_section(odc));
2467         }
2468     }
2469
2470   // We need to keep track of this section if we are already keeping
2471   // track of sections, or if we are relaxing.  Also, if this is a
2472   // section which requires sorting, or which may require sorting in
2473   // the future, we keep track of the sections.  If the
2474   // --section-ordering-file option is used to specify the order of
2475   // sections, we need to keep track of sections.
2476   if (this->always_keeps_input_sections_
2477       || have_sections_script
2478       || !this->input_sections_.empty()
2479       || this->may_sort_attached_input_sections()
2480       || this->must_sort_attached_input_sections()
2481       || parameters->options().user_set_Map()
2482       || parameters->target().may_relax()
2483       || layout->is_section_ordering_specified())
2484     {
2485       Input_section isecn(object, shndx, input_section_size, addralign);
2486       /* If section ordering is requested by specifying a ordering file,
2487          using --section-ordering-file, match the section name with
2488          a pattern.  */
2489       if (parameters->options().section_ordering_file())
2490         {
2491           unsigned int section_order_index =
2492             layout->find_section_order_index(std::string(secname));
2493           if (section_order_index != 0)
2494             {
2495               isecn.set_section_order_index(section_order_index);
2496               this->set_input_section_order_specified();
2497             }
2498         }
2499       this->input_sections_.push_back(isecn);
2500     }
2501
2502   return aligned_offset_in_section;
2503 }
2504
2505 // Add arbitrary data to an output section.
2506
2507 void
2508 Output_section::add_output_section_data(Output_section_data* posd)
2509 {
2510   Input_section inp(posd);
2511   this->add_output_section_data(&inp);
2512
2513   if (posd->is_data_size_valid())
2514     {
2515       off_t offset_in_section;
2516       if (this->has_fixed_layout())
2517         {
2518           // For incremental updates, find a chunk of unused space.
2519           offset_in_section = this->free_list_.allocate(posd->data_size(),
2520                                                         posd->addralign(), 0);
2521           if (offset_in_section == -1)
2522             gold_fallback(_("out of patch space in section %s; "
2523                             "relink with --incremental-full"),
2524                           this->name());
2525           // Finalize the address and offset now.
2526           uint64_t addr = this->address();
2527           off_t offset = this->offset();
2528           posd->set_address_and_file_offset(addr + offset_in_section,
2529                                             offset + offset_in_section);
2530         }
2531       else
2532         {
2533           offset_in_section = this->current_data_size_for_child();
2534           off_t aligned_offset_in_section = align_address(offset_in_section,
2535                                                           posd->addralign());
2536           this->set_current_data_size_for_child(aligned_offset_in_section
2537                                                 + posd->data_size());
2538         }
2539     }
2540   else if (this->has_fixed_layout())
2541     {
2542       // For incremental updates, arrange for the data to have a fixed layout.
2543       // This will mean that additions to the data must be allocated from
2544       // free space within the containing output section.
2545       uint64_t addr = this->address();
2546       posd->set_address(addr);
2547       posd->set_file_offset(0);
2548       // FIXME: This should eventually be unreachable.
2549       // gold_unreachable();
2550     }
2551 }
2552
2553 // Add a relaxed input section.
2554
2555 void
2556 Output_section::add_relaxed_input_section(Layout* layout,
2557                                           Output_relaxed_input_section* poris,
2558                                           const std::string& name)
2559 {
2560   Input_section inp(poris);
2561
2562   // If the --section-ordering-file option is used to specify the order of
2563   // sections, we need to keep track of sections.
2564   if (layout->is_section_ordering_specified())
2565     {
2566       unsigned int section_order_index =
2567         layout->find_section_order_index(name);
2568       if (section_order_index != 0)
2569         {
2570           inp.set_section_order_index(section_order_index);
2571           this->set_input_section_order_specified();
2572         }
2573     }
2574
2575   this->add_output_section_data(&inp);
2576   if (this->lookup_maps_->is_valid())
2577     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2578                                                   poris->shndx(), poris);
2579
2580   // For a relaxed section, we use the current data size.  Linker scripts
2581   // get all the input sections, including relaxed one from an output
2582   // section and add them back to the same output section to compute the
2583   // output section size.  If we do not account for sizes of relaxed input
2584   // sections, an output section would be incorrectly sized.
2585   off_t offset_in_section = this->current_data_size_for_child();
2586   off_t aligned_offset_in_section = align_address(offset_in_section,
2587                                                   poris->addralign());
2588   this->set_current_data_size_for_child(aligned_offset_in_section
2589                                         + poris->current_data_size());
2590 }
2591
2592 // Add arbitrary data to an output section by Input_section.
2593
2594 void
2595 Output_section::add_output_section_data(Input_section* inp)
2596 {
2597   if (this->input_sections_.empty())
2598     this->first_input_offset_ = this->current_data_size_for_child();
2599
2600   this->input_sections_.push_back(*inp);
2601
2602   uint64_t addralign = inp->addralign();
2603   if (addralign > this->addralign_)
2604     this->addralign_ = addralign;
2605
2606   inp->set_output_section(this);
2607 }
2608
2609 // Add a merge section to an output section.
2610
2611 void
2612 Output_section::add_output_merge_section(Output_section_data* posd,
2613                                          bool is_string, uint64_t entsize)
2614 {
2615   Input_section inp(posd, is_string, entsize);
2616   this->add_output_section_data(&inp);
2617 }
2618
2619 // Add an input section to a SHF_MERGE section.
2620
2621 bool
2622 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2623                                         uint64_t flags, uint64_t entsize,
2624                                         uint64_t addralign,
2625                                         bool keeps_input_sections)
2626 {
2627   // We cannot merge sections with entsize == 0.
2628   if (entsize == 0)
2629     return false;
2630
2631   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2632
2633   // We cannot restore merged input section states.
2634   gold_assert(this->checkpoint_ == NULL);
2635
2636   // Look up merge sections by required properties.
2637   // Currently, we only invalidate the lookup maps in script processing
2638   // and relaxation.  We should not have done either when we reach here.
2639   // So we assume that the lookup maps are valid to simply code.
2640   gold_assert(this->lookup_maps_->is_valid());
2641   Merge_section_properties msp(is_string, entsize, addralign);
2642   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2643   bool is_new = false;
2644   if (pomb != NULL)
2645     {
2646       gold_assert(pomb->is_string() == is_string
2647                   && pomb->entsize() == entsize
2648                   && pomb->addralign() == addralign);
2649     }
2650   else
2651     {
2652       // Create a new Output_merge_data or Output_merge_string_data.
2653       if (!is_string)
2654         pomb = new Output_merge_data(entsize, addralign);
2655       else
2656         {
2657           switch (entsize)
2658             {
2659             case 1:
2660               pomb = new Output_merge_string<char>(addralign);
2661               break;
2662             case 2:
2663               pomb = new Output_merge_string<uint16_t>(addralign);
2664               break;
2665             case 4:
2666               pomb = new Output_merge_string<uint32_t>(addralign);
2667               break;
2668             default:
2669               return false;
2670             }
2671         }
2672       // If we need to do script processing or relaxation, we need to keep
2673       // the original input sections to rebuild the fast lookup maps.
2674       if (keeps_input_sections)
2675         pomb->set_keeps_input_sections();
2676       is_new = true;
2677     }
2678
2679   if (pomb->add_input_section(object, shndx))
2680     {
2681       // Add new merge section to this output section and link merge
2682       // section properties to new merge section in map.
2683       if (is_new)
2684         {
2685           this->add_output_merge_section(pomb, is_string, entsize);
2686           this->lookup_maps_->add_merge_section(msp, pomb);
2687         }
2688
2689       return true;
2690     }
2691   else
2692     {
2693       // If add_input_section failed, delete new merge section to avoid
2694       // exporting empty merge sections in Output_section::get_input_section.
2695       if (is_new)
2696         delete pomb;
2697       return false;
2698     }
2699 }
2700
2701 // Build a relaxation map to speed up relaxation of existing input sections.
2702 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2703
2704 void
2705 Output_section::build_relaxation_map(
2706   const Input_section_list& input_sections,
2707   size_t limit,
2708   Relaxation_map* relaxation_map) const
2709 {
2710   for (size_t i = 0; i < limit; ++i)
2711     {
2712       const Input_section& is(input_sections[i]);
2713       if (is.is_input_section() || is.is_relaxed_input_section())
2714         {
2715           Section_id sid(is.relobj(), is.shndx());
2716           (*relaxation_map)[sid] = i;
2717         }
2718     }
2719 }
2720
2721 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2722 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2723 // indices of INPUT_SECTIONS.
2724
2725 void
2726 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2727   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2728   const Relaxation_map& map,
2729   Input_section_list* input_sections)
2730 {
2731   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2732     {
2733       Output_relaxed_input_section* poris = relaxed_sections[i];
2734       Section_id sid(poris->relobj(), poris->shndx());
2735       Relaxation_map::const_iterator p = map.find(sid);
2736       gold_assert(p != map.end());
2737       gold_assert((*input_sections)[p->second].is_input_section());
2738
2739       // Remember section order index of original input section
2740       // if it is set.  Copy it to the relaxed input section.
2741       unsigned int soi =
2742         (*input_sections)[p->second].section_order_index();
2743       (*input_sections)[p->second] = Input_section(poris);
2744       (*input_sections)[p->second].set_section_order_index(soi);
2745     }
2746 }
2747
2748 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2749 // is a vector of pointers to Output_relaxed_input_section or its derived
2750 // classes.  The relaxed sections must correspond to existing input sections.
2751
2752 void
2753 Output_section::convert_input_sections_to_relaxed_sections(
2754   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2755 {
2756   gold_assert(parameters->target().may_relax());
2757
2758   // We want to make sure that restore_states does not undo the effect of
2759   // this.  If there is no checkpoint active, just search the current
2760   // input section list and replace the sections there.  If there is
2761   // a checkpoint, also replace the sections there.
2762
2763   // By default, we look at the whole list.
2764   size_t limit = this->input_sections_.size();
2765
2766   if (this->checkpoint_ != NULL)
2767     {
2768       // Replace input sections with relaxed input section in the saved
2769       // copy of the input section list.
2770       if (this->checkpoint_->input_sections_saved())
2771         {
2772           Relaxation_map map;
2773           this->build_relaxation_map(
2774                     *(this->checkpoint_->input_sections()),
2775                     this->checkpoint_->input_sections()->size(),
2776                     &map);
2777           this->convert_input_sections_in_list_to_relaxed_sections(
2778                     relaxed_sections,
2779                     map,
2780                     this->checkpoint_->input_sections());
2781         }
2782       else
2783         {
2784           // We have not copied the input section list yet.  Instead, just
2785           // look at the portion that would be saved.
2786           limit = this->checkpoint_->input_sections_size();
2787         }
2788     }
2789
2790   // Convert input sections in input_section_list.
2791   Relaxation_map map;
2792   this->build_relaxation_map(this->input_sections_, limit, &map);
2793   this->convert_input_sections_in_list_to_relaxed_sections(
2794             relaxed_sections,
2795             map,
2796             &this->input_sections_);
2797
2798   // Update fast look-up map.
2799   if (this->lookup_maps_->is_valid())
2800     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2801       {
2802         Output_relaxed_input_section* poris = relaxed_sections[i];
2803         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2804                                                       poris->shndx(), poris);
2805       }
2806 }
2807
2808 // Update the output section flags based on input section flags.
2809
2810 void
2811 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2812 {
2813   // If we created the section with SHF_ALLOC clear, we set the
2814   // address.  If we are now setting the SHF_ALLOC flag, we need to
2815   // undo that.
2816   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2817       && (flags & elfcpp::SHF_ALLOC) != 0)
2818     this->mark_address_invalid();
2819
2820   this->flags_ |= (flags
2821                    & (elfcpp::SHF_WRITE
2822                       | elfcpp::SHF_ALLOC
2823                       | elfcpp::SHF_EXECINSTR));
2824
2825   if ((flags & elfcpp::SHF_MERGE) == 0)
2826     this->flags_ &=~ elfcpp::SHF_MERGE;
2827   else
2828     {
2829       if (this->current_data_size_for_child() == 0)
2830         this->flags_ |= elfcpp::SHF_MERGE;
2831     }
2832
2833   if ((flags & elfcpp::SHF_STRINGS) == 0)
2834     this->flags_ &=~ elfcpp::SHF_STRINGS;
2835   else
2836     {
2837       if (this->current_data_size_for_child() == 0)
2838         this->flags_ |= elfcpp::SHF_STRINGS;
2839     }
2840 }
2841
2842 // Find the merge section into which an input section with index SHNDX in
2843 // OBJECT has been added.  Return NULL if none found.
2844
2845 const Output_section_data*
2846 Output_section::find_merge_section(const Relobj* object,
2847                                    unsigned int shndx) const
2848 {
2849   return object->find_merge_section(shndx);
2850 }
2851
2852 // Build the lookup maps for relaxed sections.  This needs
2853 // to be declared as a const method so that it is callable with a const
2854 // Output_section pointer.  The method only updates states of the maps.
2855
2856 void
2857 Output_section::build_lookup_maps() const
2858 {
2859   this->lookup_maps_->clear();
2860   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2861        p != this->input_sections_.end();
2862        ++p)
2863     {
2864       if (p->is_relaxed_input_section())
2865         {
2866           Output_relaxed_input_section* poris = p->relaxed_input_section();
2867           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2868                                                         poris->shndx(), poris);
2869         }
2870     }
2871 }
2872
2873 // Find an relaxed input section corresponding to an input section
2874 // in OBJECT with index SHNDX.
2875
2876 const Output_relaxed_input_section*
2877 Output_section::find_relaxed_input_section(const Relobj* object,
2878                                            unsigned int shndx) const
2879 {
2880   if (!this->lookup_maps_->is_valid())
2881     this->build_lookup_maps();
2882   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2883 }
2884
2885 // Given an address OFFSET relative to the start of input section
2886 // SHNDX in OBJECT, return whether this address is being included in
2887 // the final link.  This should only be called if SHNDX in OBJECT has
2888 // a special mapping.
2889
2890 bool
2891 Output_section::is_input_address_mapped(const Relobj* object,
2892                                         unsigned int shndx,
2893                                         off_t offset) const
2894 {
2895   // Look at the Output_section_data_maps first.
2896   const Output_section_data* posd = this->find_merge_section(object, shndx);
2897   if (posd == NULL)
2898     posd = this->find_relaxed_input_section(object, shndx);
2899
2900   if (posd != NULL)
2901     {
2902       section_offset_type output_offset;
2903       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2904       if (!found)
2905         return false;
2906       return output_offset != -1;
2907     }
2908
2909   // Fall back to the slow look-up.
2910   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2911        p != this->input_sections_.end();
2912        ++p)
2913     {
2914       section_offset_type output_offset;
2915       if (p->output_offset(object, shndx, offset, &output_offset))
2916         return output_offset != -1;
2917     }
2918
2919   // By default we assume that the address is mapped.  This should
2920   // only be called after we have passed all sections to Layout.  At
2921   // that point we should know what we are discarding.
2922   return true;
2923 }
2924
2925 // Given an address OFFSET relative to the start of input section
2926 // SHNDX in object OBJECT, return the output offset relative to the
2927 // start of the input section in the output section.  This should only
2928 // be called if SHNDX in OBJECT has a special mapping.
2929
2930 section_offset_type
2931 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2932                               section_offset_type offset) const
2933 {
2934   // This can only be called meaningfully when we know the data size
2935   // of this.
2936   gold_assert(this->is_data_size_valid());
2937
2938   // Look at the Output_section_data_maps first.
2939   const Output_section_data* posd = this->find_merge_section(object, shndx);
2940   if (posd == NULL)
2941     posd = this->find_relaxed_input_section(object, shndx);
2942   if (posd != NULL)
2943     {
2944       section_offset_type output_offset;
2945       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2946       gold_assert(found);
2947       return output_offset;
2948     }
2949
2950   // Fall back to the slow look-up.
2951   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2952        p != this->input_sections_.end();
2953        ++p)
2954     {
2955       section_offset_type output_offset;
2956       if (p->output_offset(object, shndx, offset, &output_offset))
2957         return output_offset;
2958     }
2959   gold_unreachable();
2960 }
2961
2962 // Return the output virtual address of OFFSET relative to the start
2963 // of input section SHNDX in object OBJECT.
2964
2965 uint64_t
2966 Output_section::output_address(const Relobj* object, unsigned int shndx,
2967                                off_t offset) const
2968 {
2969   uint64_t addr = this->address() + this->first_input_offset_;
2970
2971   // Look at the Output_section_data_maps first.
2972   const Output_section_data* posd = this->find_merge_section(object, shndx);
2973   if (posd == NULL)
2974     posd = this->find_relaxed_input_section(object, shndx);
2975   if (posd != NULL && posd->is_address_valid())
2976     {
2977       section_offset_type output_offset;
2978       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2979       gold_assert(found);
2980       return posd->address() + output_offset;
2981     }
2982
2983   // Fall back to the slow look-up.
2984   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2985        p != this->input_sections_.end();
2986        ++p)
2987     {
2988       addr = align_address(addr, p->addralign());
2989       section_offset_type output_offset;
2990       if (p->output_offset(object, shndx, offset, &output_offset))
2991         {
2992           if (output_offset == -1)
2993             return -1ULL;
2994           return addr + output_offset;
2995         }
2996       addr += p->data_size();
2997     }
2998
2999   // If we get here, it means that we don't know the mapping for this
3000   // input section.  This might happen in principle if
3001   // add_input_section were called before add_output_section_data.
3002   // But it should never actually happen.
3003
3004   gold_unreachable();
3005 }
3006
3007 // Find the output address of the start of the merged section for
3008 // input section SHNDX in object OBJECT.
3009
3010 bool
3011 Output_section::find_starting_output_address(const Relobj* object,
3012                                              unsigned int shndx,
3013                                              uint64_t* paddr) const
3014 {
3015   const Output_section_data* data = this->find_merge_section(object, shndx);
3016   if (data == NULL)
3017     return false;
3018
3019   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3020   // Looking up the merge section map does not always work as we sometimes
3021   // find a merge section without its address set.
3022   uint64_t addr = this->address() + this->first_input_offset_;
3023   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3024        p != this->input_sections_.end();
3025        ++p)
3026     {
3027       addr = align_address(addr, p->addralign());
3028
3029       // It would be nice if we could use the existing output_offset
3030       // method to get the output offset of input offset 0.
3031       // Unfortunately we don't know for sure that input offset 0 is
3032       // mapped at all.
3033       if (!p->is_input_section() && p->output_section_data() == data)
3034         {
3035           *paddr = addr;
3036           return true;
3037         }
3038
3039       addr += p->data_size();
3040     }
3041
3042   // We couldn't find a merge output section for this input section.
3043   return false;
3044 }
3045
3046 // Update the data size of an Output_section.
3047
3048 void
3049 Output_section::update_data_size()
3050 {
3051   if (this->input_sections_.empty())
3052       return;
3053
3054   if (this->must_sort_attached_input_sections()
3055       || this->input_section_order_specified())
3056     this->sort_attached_input_sections();
3057
3058   off_t off = this->first_input_offset_;
3059   for (Input_section_list::iterator p = this->input_sections_.begin();
3060        p != this->input_sections_.end();
3061        ++p)
3062     {
3063       off = align_address(off, p->addralign());
3064       off += p->current_data_size();
3065     }
3066
3067   this->set_current_data_size_for_child(off);
3068 }
3069
3070 // Set the data size of an Output_section.  This is where we handle
3071 // setting the addresses of any Output_section_data objects.
3072
3073 void
3074 Output_section::set_final_data_size()
3075 {
3076   off_t data_size;
3077
3078   if (this->input_sections_.empty())
3079     data_size = this->current_data_size_for_child();
3080   else
3081     {
3082       if (this->must_sort_attached_input_sections()
3083           || this->input_section_order_specified())
3084         this->sort_attached_input_sections();
3085
3086       uint64_t address = this->address();
3087       off_t startoff = this->offset();
3088       off_t off = startoff + this->first_input_offset_;
3089       for (Input_section_list::iterator p = this->input_sections_.begin();
3090            p != this->input_sections_.end();
3091            ++p)
3092         {
3093           off = align_address(off, p->addralign());
3094           p->set_address_and_file_offset(address + (off - startoff), off,
3095                                          startoff);
3096           off += p->data_size();
3097         }
3098       data_size = off - startoff;
3099     }
3100
3101   // For full incremental links, we want to allocate some patch space
3102   // in most sections for subsequent incremental updates.
3103   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3104     {
3105       double pct = parameters->options().incremental_patch();
3106       size_t extra = static_cast<size_t>(data_size * pct);
3107       if (this->free_space_fill_ != NULL
3108           && this->free_space_fill_->minimum_hole_size() > extra)
3109         extra = this->free_space_fill_->minimum_hole_size();
3110       off_t new_size = align_address(data_size + extra, this->addralign());
3111       this->patch_space_ = new_size - data_size;
3112       gold_debug(DEBUG_INCREMENTAL,
3113                  "set_final_data_size: %08lx + %08lx: section %s",
3114                  static_cast<long>(data_size),
3115                  static_cast<long>(this->patch_space_),
3116                  this->name());
3117       data_size = new_size;
3118     }
3119
3120   this->set_data_size(data_size);
3121 }
3122
3123 // Reset the address and file offset.
3124
3125 void
3126 Output_section::do_reset_address_and_file_offset()
3127 {
3128   // An unallocated section has no address.  Forcing this means that
3129   // we don't need special treatment for symbols defined in debug
3130   // sections.  We do the same in the constructor.  This does not
3131   // apply to NOLOAD sections though.
3132   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3133      this->set_address(0);
3134
3135   for (Input_section_list::iterator p = this->input_sections_.begin();
3136        p != this->input_sections_.end();
3137        ++p)
3138     p->reset_address_and_file_offset();
3139
3140   // Remove any patch space that was added in set_final_data_size.
3141   if (this->patch_space_ > 0)
3142     {
3143       this->set_current_data_size_for_child(this->current_data_size_for_child()
3144                                             - this->patch_space_);
3145       this->patch_space_ = 0;
3146     }
3147 }
3148
3149 // Return true if address and file offset have the values after reset.
3150
3151 bool
3152 Output_section::do_address_and_file_offset_have_reset_values() const
3153 {
3154   if (this->is_offset_valid())
3155     return false;
3156
3157   // An unallocated section has address 0 after its construction or a reset.
3158   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3159     return this->is_address_valid() && this->address() == 0;
3160   else
3161     return !this->is_address_valid();
3162 }
3163
3164 // Set the TLS offset.  Called only for SHT_TLS sections.
3165
3166 void
3167 Output_section::do_set_tls_offset(uint64_t tls_base)
3168 {
3169   this->tls_offset_ = this->address() - tls_base;
3170 }
3171
3172 // In a few cases we need to sort the input sections attached to an
3173 // output section.  This is used to implement the type of constructor
3174 // priority ordering implemented by the GNU linker, in which the
3175 // priority becomes part of the section name and the sections are
3176 // sorted by name.  We only do this for an output section if we see an
3177 // attached input section matching ".ctors.*", ".dtors.*",
3178 // ".init_array.*" or ".fini_array.*".
3179
3180 class Output_section::Input_section_sort_entry
3181 {
3182  public:
3183   Input_section_sort_entry()
3184     : input_section_(), index_(-1U), section_name_()
3185   { }
3186
3187   Input_section_sort_entry(const Input_section& input_section,
3188                            unsigned int index,
3189                            bool must_sort_attached_input_sections,
3190                            const char* output_section_name)
3191     : input_section_(input_section), index_(index), section_name_()
3192   {
3193     if ((input_section.is_input_section()
3194          || input_section.is_relaxed_input_section())
3195         && must_sort_attached_input_sections)
3196       {
3197         // This is only called single-threaded from Layout::finalize,
3198         // so it is OK to lock.  Unfortunately we have no way to pass
3199         // in a Task token.
3200         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3201         Object* obj = (input_section.is_input_section()
3202                        ? input_section.relobj()
3203                        : input_section.relaxed_input_section()->relobj());
3204         Task_lock_obj<Object> tl(dummy_task, obj);
3205
3206         // This is a slow operation, which should be cached in
3207         // Layout::layout if this becomes a speed problem.
3208         this->section_name_ = obj->section_name(input_section.shndx());
3209       }
3210     else if (input_section.is_output_section_data()
3211              && must_sort_attached_input_sections)
3212       {
3213         // For linker-generated sections, use the output section name.
3214         this->section_name_.assign(output_section_name);
3215       }
3216   }
3217
3218   // Return the Input_section.
3219   const Input_section&
3220   input_section() const
3221   {
3222     gold_assert(this->index_ != -1U);
3223     return this->input_section_;
3224   }
3225
3226   // The index of this entry in the original list.  This is used to
3227   // make the sort stable.
3228   unsigned int
3229   index() const
3230   {
3231     gold_assert(this->index_ != -1U);
3232     return this->index_;
3233   }
3234
3235   // The section name.
3236   const std::string&
3237   section_name() const
3238   {
3239     return this->section_name_;
3240   }
3241
3242   // Return true if the section name has a priority.  This is assumed
3243   // to be true if it has a dot after the initial dot.
3244   bool
3245   has_priority() const
3246   {
3247     return this->section_name_.find('.', 1) != std::string::npos;
3248   }
3249
3250   // Return the priority.  Believe it or not, gcc encodes the priority
3251   // differently for .ctors/.dtors and .init_array/.fini_array
3252   // sections.
3253   unsigned int
3254   get_priority() const
3255   {
3256     bool is_ctors;
3257     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3258         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3259       is_ctors = true;
3260     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3261              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3262       is_ctors = false;
3263     else
3264       return 0;
3265     char* end;
3266     unsigned long prio = strtoul((this->section_name_.c_str()
3267                                   + (is_ctors ? 7 : 12)),
3268                                  &end, 10);
3269     if (*end != '\0')
3270       return 0;
3271     else if (is_ctors)
3272       return 65535 - prio;
3273     else
3274       return prio;
3275   }
3276
3277   // Return true if this an input file whose base name matches
3278   // FILE_NAME.  The base name must have an extension of ".o", and
3279   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3280   // This is to match crtbegin.o as well as crtbeginS.o without
3281   // getting confused by other possibilities.  Overall matching the
3282   // file name this way is a dreadful hack, but the GNU linker does it
3283   // in order to better support gcc, and we need to be compatible.
3284   bool
3285   match_file_name(const char* file_name) const
3286   {
3287     if (this->input_section_.is_output_section_data())
3288       return false;
3289     return Layout::match_file_name(this->input_section_.relobj(), file_name);
3290   }
3291
3292   // Returns 1 if THIS should appear before S in section order, -1 if S
3293   // appears before THIS and 0 if they are not comparable.
3294   int
3295   compare_section_ordering(const Input_section_sort_entry& s) const
3296   {
3297     unsigned int this_secn_index = this->input_section_.section_order_index();
3298     unsigned int s_secn_index = s.input_section().section_order_index();
3299     if (this_secn_index > 0 && s_secn_index > 0)
3300       {
3301         if (this_secn_index < s_secn_index)
3302           return 1;
3303         else if (this_secn_index > s_secn_index)
3304           return -1;
3305       }
3306     return 0;
3307   }
3308
3309  private:
3310   // The Input_section we are sorting.
3311   Input_section input_section_;
3312   // The index of this Input_section in the original list.
3313   unsigned int index_;
3314   // The section name if there is one.
3315   std::string section_name_;
3316 };
3317
3318 // Return true if S1 should come before S2 in the output section.
3319
3320 bool
3321 Output_section::Input_section_sort_compare::operator()(
3322     const Output_section::Input_section_sort_entry& s1,
3323     const Output_section::Input_section_sort_entry& s2) const
3324 {
3325   // crtbegin.o must come first.
3326   bool s1_begin = s1.match_file_name("crtbegin");
3327   bool s2_begin = s2.match_file_name("crtbegin");
3328   if (s1_begin || s2_begin)
3329     {
3330       if (!s1_begin)
3331         return false;
3332       if (!s2_begin)
3333         return true;
3334       return s1.index() < s2.index();
3335     }
3336
3337   // crtend.o must come last.
3338   bool s1_end = s1.match_file_name("crtend");
3339   bool s2_end = s2.match_file_name("crtend");
3340   if (s1_end || s2_end)
3341     {
3342       if (!s1_end)
3343         return true;
3344       if (!s2_end)
3345         return false;
3346       return s1.index() < s2.index();
3347     }
3348
3349   // A section with a priority follows a section without a priority.
3350   bool s1_has_priority = s1.has_priority();
3351   bool s2_has_priority = s2.has_priority();
3352   if (s1_has_priority && !s2_has_priority)
3353     return false;
3354   if (!s1_has_priority && s2_has_priority)
3355     return true;
3356
3357   // Check if a section order exists for these sections through a section
3358   // ordering file.  If sequence_num is 0, an order does not exist.
3359   int sequence_num = s1.compare_section_ordering(s2);
3360   if (sequence_num != 0)
3361     return sequence_num == 1;
3362
3363   // Otherwise we sort by name.
3364   int compare = s1.section_name().compare(s2.section_name());
3365   if (compare != 0)
3366     return compare < 0;
3367
3368   // Otherwise we keep the input order.
3369   return s1.index() < s2.index();
3370 }
3371
3372 // Return true if S1 should come before S2 in an .init_array or .fini_array
3373 // output section.
3374
3375 bool
3376 Output_section::Input_section_sort_init_fini_compare::operator()(
3377     const Output_section::Input_section_sort_entry& s1,
3378     const Output_section::Input_section_sort_entry& s2) const
3379 {
3380   // A section without a priority follows a section with a priority.
3381   // This is the reverse of .ctors and .dtors sections.
3382   bool s1_has_priority = s1.has_priority();
3383   bool s2_has_priority = s2.has_priority();
3384   if (s1_has_priority && !s2_has_priority)
3385     return true;
3386   if (!s1_has_priority && s2_has_priority)
3387     return false;
3388
3389   // .ctors and .dtors sections without priority come after
3390   // .init_array and .fini_array sections without priority.
3391   if (!s1_has_priority
3392       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3393       && s1.section_name() != s2.section_name())
3394     return false;
3395   if (!s2_has_priority
3396       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3397       && s2.section_name() != s1.section_name())
3398     return true;
3399
3400   // Sort by priority if we can.
3401   if (s1_has_priority)
3402     {
3403       unsigned int s1_prio = s1.get_priority();
3404       unsigned int s2_prio = s2.get_priority();
3405       if (s1_prio < s2_prio)
3406         return true;
3407       else if (s1_prio > s2_prio)
3408         return false;
3409     }
3410
3411   // Check if a section order exists for these sections through a section
3412   // ordering file.  If sequence_num is 0, an order does not exist.
3413   int sequence_num = s1.compare_section_ordering(s2);
3414   if (sequence_num != 0)
3415     return sequence_num == 1;
3416
3417   // Otherwise we sort by name.
3418   int compare = s1.section_name().compare(s2.section_name());
3419   if (compare != 0)
3420     return compare < 0;
3421
3422   // Otherwise we keep the input order.
3423   return s1.index() < s2.index();
3424 }
3425
3426 // Return true if S1 should come before S2.  Sections that do not match
3427 // any pattern in the section ordering file are placed ahead of the sections
3428 // that match some pattern.
3429
3430 bool
3431 Output_section::Input_section_sort_section_order_index_compare::operator()(
3432     const Output_section::Input_section_sort_entry& s1,
3433     const Output_section::Input_section_sort_entry& s2) const
3434 {
3435   unsigned int s1_secn_index = s1.input_section().section_order_index();
3436   unsigned int s2_secn_index = s2.input_section().section_order_index();
3437
3438   // Keep input order if section ordering cannot determine order.
3439   if (s1_secn_index == s2_secn_index)
3440     return s1.index() < s2.index();
3441
3442   return s1_secn_index < s2_secn_index;
3443 }
3444
3445 // Return true if S1 should come before S2.  This is the sort comparison
3446 // function for .text to sort sections with prefixes
3447 // .text.{unlikely,exit,startup,hot} before other sections.
3448
3449 bool
3450 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3451   ::operator()(
3452     const Output_section::Input_section_sort_entry& s1,
3453     const Output_section::Input_section_sort_entry& s2) const
3454 {
3455   // Some input section names have special ordering requirements.
3456   int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3457   int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3458   if (o1 != o2)
3459     {
3460       if (o1 < 0)
3461         return false;
3462       else if (o2 < 0)
3463         return true;
3464       else
3465         return o1 < o2;
3466     }
3467
3468   // Keep input order otherwise.
3469   return s1.index() < s2.index();
3470 }
3471
3472 // Return true if S1 should come before S2.  This is the sort comparison
3473 // function for sections to sort them by name.
3474
3475 bool
3476 Output_section::Input_section_sort_section_name_compare
3477   ::operator()(
3478     const Output_section::Input_section_sort_entry& s1,
3479     const Output_section::Input_section_sort_entry& s2) const
3480 {
3481   // We sort by name.
3482   int compare = s1.section_name().compare(s2.section_name());
3483   if (compare != 0)
3484     return compare < 0;
3485
3486   // Keep input order otherwise.
3487   return s1.index() < s2.index();
3488 }
3489
3490 // This updates the section order index of input sections according to the
3491 // the order specified in the mapping from Section id to order index.
3492
3493 void
3494 Output_section::update_section_layout(
3495   const Section_layout_order* order_map)
3496 {
3497   for (Input_section_list::iterator p = this->input_sections_.begin();
3498        p != this->input_sections_.end();
3499        ++p)
3500     {
3501       if (p->is_input_section()
3502           || p->is_relaxed_input_section())
3503         {
3504           Object* obj = (p->is_input_section()
3505                          ? p->relobj()
3506                          : p->relaxed_input_section()->relobj());
3507           unsigned int shndx = p->shndx();
3508           Section_layout_order::const_iterator it
3509             = order_map->find(Section_id(obj, shndx));
3510           if (it == order_map->end())
3511             continue;
3512           unsigned int section_order_index = it->second;
3513           if (section_order_index != 0)
3514             {
3515               p->set_section_order_index(section_order_index);
3516               this->set_input_section_order_specified();
3517             }
3518         }
3519     }
3520 }
3521
3522 // Sort the input sections attached to an output section.
3523
3524 void
3525 Output_section::sort_attached_input_sections()
3526 {
3527   if (this->attached_input_sections_are_sorted_)
3528     return;
3529
3530   if (this->checkpoint_ != NULL
3531       && !this->checkpoint_->input_sections_saved())
3532     this->checkpoint_->save_input_sections();
3533
3534   // The only thing we know about an input section is the object and
3535   // the section index.  We need the section name.  Recomputing this
3536   // is slow but this is an unusual case.  If this becomes a speed
3537   // problem we can cache the names as required in Layout::layout.
3538
3539   // We start by building a larger vector holding a copy of each
3540   // Input_section, plus its current index in the list and its name.
3541   std::vector<Input_section_sort_entry> sort_list;
3542
3543   unsigned int i = 0;
3544   for (Input_section_list::iterator p = this->input_sections_.begin();
3545        p != this->input_sections_.end();
3546        ++p, ++i)
3547       sort_list.push_back(Input_section_sort_entry(*p, i,
3548                             this->must_sort_attached_input_sections(),
3549                             this->name()));
3550
3551   // Sort the input sections.
3552   if (this->must_sort_attached_input_sections())
3553     {
3554       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3555           || this->type() == elfcpp::SHT_INIT_ARRAY
3556           || this->type() == elfcpp::SHT_FINI_ARRAY)
3557         std::sort(sort_list.begin(), sort_list.end(),
3558                   Input_section_sort_init_fini_compare());
3559       else if (strcmp(parameters->options().sort_section(), "name") == 0)
3560         std::sort(sort_list.begin(), sort_list.end(),
3561                   Input_section_sort_section_name_compare());
3562       else if (strcmp(this->name(), ".text") == 0)
3563         std::sort(sort_list.begin(), sort_list.end(),
3564                   Input_section_sort_section_prefix_special_ordering_compare());
3565       else
3566         std::sort(sort_list.begin(), sort_list.end(),
3567                   Input_section_sort_compare());
3568     }
3569   else
3570     {
3571       gold_assert(this->input_section_order_specified());
3572       std::sort(sort_list.begin(), sort_list.end(),
3573                 Input_section_sort_section_order_index_compare());
3574     }
3575
3576   // Copy the sorted input sections back to our list.
3577   this->input_sections_.clear();
3578   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3579        p != sort_list.end();
3580        ++p)
3581     this->input_sections_.push_back(p->input_section());
3582   sort_list.clear();
3583
3584   // Remember that we sorted the input sections, since we might get
3585   // called again.
3586   this->attached_input_sections_are_sorted_ = true;
3587 }
3588
3589 // Write the section header to *OSHDR.
3590
3591 template<int size, bool big_endian>
3592 void
3593 Output_section::write_header(const Layout* layout,
3594                              const Stringpool* secnamepool,
3595                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3596 {
3597   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3598   oshdr->put_sh_type(this->type_);
3599
3600   elfcpp::Elf_Xword flags = this->flags_;
3601   if (this->info_section_ != NULL && this->info_uses_section_index_)
3602     flags |= elfcpp::SHF_INFO_LINK;
3603   oshdr->put_sh_flags(flags);
3604
3605   oshdr->put_sh_addr(this->address());
3606   oshdr->put_sh_offset(this->offset());
3607   oshdr->put_sh_size(this->data_size());
3608   if (this->link_section_ != NULL)
3609     oshdr->put_sh_link(this->link_section_->out_shndx());
3610   else if (this->should_link_to_symtab_)
3611     oshdr->put_sh_link(layout->symtab_section_shndx());
3612   else if (this->should_link_to_dynsym_)
3613     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3614   else
3615     oshdr->put_sh_link(this->link_);
3616
3617   elfcpp::Elf_Word info;
3618   if (this->info_section_ != NULL)
3619     {
3620       if (this->info_uses_section_index_)
3621         info = this->info_section_->out_shndx();
3622       else
3623         info = this->info_section_->symtab_index();
3624     }
3625   else if (this->info_symndx_ != NULL)
3626     info = this->info_symndx_->symtab_index();
3627   else
3628     info = this->info_;
3629   oshdr->put_sh_info(info);
3630
3631   oshdr->put_sh_addralign(this->addralign_);
3632   oshdr->put_sh_entsize(this->entsize_);
3633 }
3634
3635 // Write out the data.  For input sections the data is written out by
3636 // Object::relocate, but we have to handle Output_section_data objects
3637 // here.
3638
3639 void
3640 Output_section::do_write(Output_file* of)
3641 {
3642   gold_assert(!this->requires_postprocessing());
3643
3644   // If the target performs relaxation, we delay filler generation until now.
3645   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3646
3647   off_t output_section_file_offset = this->offset();
3648   for (Fill_list::iterator p = this->fills_.begin();
3649        p != this->fills_.end();
3650        ++p)
3651     {
3652       std::string fill_data(parameters->target().code_fill(p->length()));
3653       of->write(output_section_file_offset + p->section_offset(),
3654                 fill_data.data(), fill_data.size());
3655     }
3656
3657   off_t off = this->offset() + this->first_input_offset_;
3658   for (Input_section_list::iterator p = this->input_sections_.begin();
3659        p != this->input_sections_.end();
3660        ++p)
3661     {
3662       off_t aligned_off = align_address(off, p->addralign());
3663       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3664         {
3665           size_t fill_len = aligned_off - off;
3666           std::string fill_data(parameters->target().code_fill(fill_len));
3667           of->write(off, fill_data.data(), fill_data.size());
3668         }
3669
3670       p->write(of);
3671       off = aligned_off + p->data_size();
3672     }
3673
3674   // For incremental links, fill in unused chunks in debug sections
3675   // with dummy compilation unit headers.
3676   if (this->free_space_fill_ != NULL)
3677     {
3678       for (Free_list::Const_iterator p = this->free_list_.begin();
3679            p != this->free_list_.end();
3680            ++p)
3681         {
3682           off_t off = p->start_;
3683           size_t len = p->end_ - off;
3684           this->free_space_fill_->write(of, this->offset() + off, len);
3685         }
3686       if (this->patch_space_ > 0)
3687         {
3688           off_t off = this->current_data_size_for_child() - this->patch_space_;
3689           this->free_space_fill_->write(of, this->offset() + off,
3690                                         this->patch_space_);
3691         }
3692     }
3693 }
3694
3695 // If a section requires postprocessing, create the buffer to use.
3696
3697 void
3698 Output_section::create_postprocessing_buffer()
3699 {
3700   gold_assert(this->requires_postprocessing());
3701
3702   if (this->postprocessing_buffer_ != NULL)
3703     return;
3704
3705   if (!this->input_sections_.empty())
3706     {
3707       off_t off = this->first_input_offset_;
3708       for (Input_section_list::iterator p = this->input_sections_.begin();
3709            p != this->input_sections_.end();
3710            ++p)
3711         {
3712           off = align_address(off, p->addralign());
3713           p->finalize_data_size();
3714           off += p->data_size();
3715         }
3716       this->set_current_data_size_for_child(off);
3717     }
3718
3719   off_t buffer_size = this->current_data_size_for_child();
3720   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3721 }
3722
3723 // Write all the data of an Output_section into the postprocessing
3724 // buffer.  This is used for sections which require postprocessing,
3725 // such as compression.  Input sections are handled by
3726 // Object::Relocate.
3727
3728 void
3729 Output_section::write_to_postprocessing_buffer()
3730 {
3731   gold_assert(this->requires_postprocessing());
3732
3733   // If the target performs relaxation, we delay filler generation until now.
3734   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3735
3736   unsigned char* buffer = this->postprocessing_buffer();
3737   for (Fill_list::iterator p = this->fills_.begin();
3738        p != this->fills_.end();
3739        ++p)
3740     {
3741       std::string fill_data(parameters->target().code_fill(p->length()));
3742       memcpy(buffer + p->section_offset(), fill_data.data(),
3743              fill_data.size());
3744     }
3745
3746   off_t off = this->first_input_offset_;
3747   for (Input_section_list::iterator p = this->input_sections_.begin();
3748        p != this->input_sections_.end();
3749        ++p)
3750     {
3751       off_t aligned_off = align_address(off, p->addralign());
3752       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3753         {
3754           size_t fill_len = aligned_off - off;
3755           std::string fill_data(parameters->target().code_fill(fill_len));
3756           memcpy(buffer + off, fill_data.data(), fill_data.size());
3757         }
3758
3759       p->write_to_buffer(buffer + aligned_off);
3760       off = aligned_off + p->data_size();
3761     }
3762 }
3763
3764 // Get the input sections for linker script processing.  We leave
3765 // behind the Output_section_data entries.  Note that this may be
3766 // slightly incorrect for merge sections.  We will leave them behind,
3767 // but it is possible that the script says that they should follow
3768 // some other input sections, as in:
3769 //    .rodata { *(.rodata) *(.rodata.cst*) }
3770 // For that matter, we don't handle this correctly:
3771 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3772 // With luck this will never matter.
3773
3774 uint64_t
3775 Output_section::get_input_sections(
3776     uint64_t address,
3777     const std::string& fill,
3778     std::list<Input_section>* input_sections)
3779 {
3780   if (this->checkpoint_ != NULL
3781       && !this->checkpoint_->input_sections_saved())
3782     this->checkpoint_->save_input_sections();
3783
3784   // Invalidate fast look-up maps.
3785   this->lookup_maps_->invalidate();
3786
3787   uint64_t orig_address = address;
3788
3789   address = align_address(address, this->addralign());
3790
3791   Input_section_list remaining;
3792   for (Input_section_list::iterator p = this->input_sections_.begin();
3793        p != this->input_sections_.end();
3794        ++p)
3795     {
3796       if (p->is_input_section()
3797           || p->is_relaxed_input_section()
3798           || p->is_merge_section())
3799         input_sections->push_back(*p);
3800       else
3801         {
3802           uint64_t aligned_address = align_address(address, p->addralign());
3803           if (aligned_address != address && !fill.empty())
3804             {
3805               section_size_type length =
3806                 convert_to_section_size_type(aligned_address - address);
3807               std::string this_fill;
3808               this_fill.reserve(length);
3809               while (this_fill.length() + fill.length() <= length)
3810                 this_fill += fill;
3811               if (this_fill.length() < length)
3812                 this_fill.append(fill, 0, length - this_fill.length());
3813
3814               Output_section_data* posd = new Output_data_const(this_fill, 0);
3815               remaining.push_back(Input_section(posd));
3816             }
3817           address = aligned_address;
3818
3819           remaining.push_back(*p);
3820
3821           p->finalize_data_size();
3822           address += p->data_size();
3823         }
3824     }
3825
3826   this->input_sections_.swap(remaining);
3827   this->first_input_offset_ = 0;
3828
3829   uint64_t data_size = address - orig_address;
3830   this->set_current_data_size_for_child(data_size);
3831   return data_size;
3832 }
3833
3834 // Add a script input section.  SIS is an Output_section::Input_section,
3835 // which can be either a plain input section or a special input section like
3836 // a relaxed input section.  For a special input section, its size must be
3837 // finalized.
3838
3839 void
3840 Output_section::add_script_input_section(const Input_section& sis)
3841 {
3842   uint64_t data_size = sis.data_size();
3843   uint64_t addralign = sis.addralign();
3844   if (addralign > this->addralign_)
3845     this->addralign_ = addralign;
3846
3847   off_t offset_in_section = this->current_data_size_for_child();
3848   off_t aligned_offset_in_section = align_address(offset_in_section,
3849                                                   addralign);
3850
3851   this->set_current_data_size_for_child(aligned_offset_in_section
3852                                         + data_size);
3853
3854   this->input_sections_.push_back(sis);
3855
3856   // Update fast lookup maps if necessary.
3857   if (this->lookup_maps_->is_valid())
3858     {
3859       if (sis.is_relaxed_input_section())
3860         {
3861           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3862           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3863                                                         poris->shndx(), poris);
3864         }
3865     }
3866 }
3867
3868 // Save states for relaxation.
3869
3870 void
3871 Output_section::save_states()
3872 {
3873   gold_assert(this->checkpoint_ == NULL);
3874   Checkpoint_output_section* checkpoint =
3875     new Checkpoint_output_section(this->addralign_, this->flags_,
3876                                   this->input_sections_,
3877                                   this->first_input_offset_,
3878                                   this->attached_input_sections_are_sorted_);
3879   this->checkpoint_ = checkpoint;
3880   gold_assert(this->fills_.empty());
3881 }
3882
3883 void
3884 Output_section::discard_states()
3885 {
3886   gold_assert(this->checkpoint_ != NULL);
3887   delete this->checkpoint_;
3888   this->checkpoint_ = NULL;
3889   gold_assert(this->fills_.empty());
3890
3891   // Simply invalidate the fast lookup maps since we do not keep
3892   // track of them.
3893   this->lookup_maps_->invalidate();
3894 }
3895
3896 void
3897 Output_section::restore_states()
3898 {
3899   gold_assert(this->checkpoint_ != NULL);
3900   Checkpoint_output_section* checkpoint = this->checkpoint_;
3901
3902   this->addralign_ = checkpoint->addralign();
3903   this->flags_ = checkpoint->flags();
3904   this->first_input_offset_ = checkpoint->first_input_offset();
3905
3906   if (!checkpoint->input_sections_saved())
3907     {
3908       // If we have not copied the input sections, just resize it.
3909       size_t old_size = checkpoint->input_sections_size();
3910       gold_assert(this->input_sections_.size() >= old_size);
3911       this->input_sections_.resize(old_size);
3912     }
3913   else
3914     {
3915       // We need to copy the whole list.  This is not efficient for
3916       // extremely large output with hundreads of thousands of input
3917       // objects.  We may need to re-think how we should pass sections
3918       // to scripts.
3919       this->input_sections_ = *checkpoint->input_sections();
3920     }
3921
3922   this->attached_input_sections_are_sorted_ =
3923     checkpoint->attached_input_sections_are_sorted();
3924
3925   // Simply invalidate the fast lookup maps since we do not keep
3926   // track of them.
3927   this->lookup_maps_->invalidate();
3928 }
3929
3930 // Update the section offsets of input sections in this.  This is required if
3931 // relaxation causes some input sections to change sizes.
3932
3933 void
3934 Output_section::adjust_section_offsets()
3935 {
3936   if (!this->section_offsets_need_adjustment_)
3937     return;
3938
3939   off_t off = 0;
3940   for (Input_section_list::iterator p = this->input_sections_.begin();
3941        p != this->input_sections_.end();
3942        ++p)
3943     {
3944       off = align_address(off, p->addralign());
3945       if (p->is_input_section())
3946         p->relobj()->set_section_offset(p->shndx(), off);
3947       off += p->data_size();
3948     }
3949
3950   this->section_offsets_need_adjustment_ = false;
3951 }
3952
3953 // Print to the map file.
3954
3955 void
3956 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3957 {
3958   mapfile->print_output_section(this);
3959
3960   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3961        p != this->input_sections_.end();
3962        ++p)
3963     p->print_to_mapfile(mapfile);
3964 }
3965
3966 // Print stats for merge sections to stderr.
3967
3968 void
3969 Output_section::print_merge_stats()
3970 {
3971   Input_section_list::iterator p;
3972   for (p = this->input_sections_.begin();
3973        p != this->input_sections_.end();
3974        ++p)
3975     p->print_merge_stats(this->name_);
3976 }
3977
3978 // Set a fixed layout for the section.  Used for incremental update links.
3979
3980 void
3981 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3982                                  off_t sh_size, uint64_t sh_addralign)
3983 {
3984   this->addralign_ = sh_addralign;
3985   this->set_current_data_size(sh_size);
3986   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3987     this->set_address(sh_addr);
3988   this->set_file_offset(sh_offset);
3989   this->finalize_data_size();
3990   this->free_list_.init(sh_size, false);
3991   this->has_fixed_layout_ = true;
3992 }
3993
3994 // Reserve space within the fixed layout for the section.  Used for
3995 // incremental update links.
3996
3997 void
3998 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3999 {
4000   this->free_list_.remove(sh_offset, sh_offset + sh_size);
4001 }
4002
4003 // Allocate space from the free list for the section.  Used for
4004 // incremental update links.
4005
4006 off_t
4007 Output_section::allocate(off_t len, uint64_t addralign)
4008 {
4009   return this->free_list_.allocate(len, addralign, 0);
4010 }
4011
4012 // Output segment methods.
4013
4014 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4015   : vaddr_(0),
4016     paddr_(0),
4017     memsz_(0),
4018     max_align_(0),
4019     min_p_align_(0),
4020     offset_(0),
4021     filesz_(0),
4022     type_(type),
4023     flags_(flags),
4024     is_max_align_known_(false),
4025     are_addresses_set_(false),
4026     is_large_data_segment_(false),
4027     is_unique_segment_(false)
4028 {
4029   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4030   // the flags.
4031   if (type == elfcpp::PT_TLS)
4032     this->flags_ = elfcpp::PF_R;
4033 }
4034
4035 // Add an Output_section to a PT_LOAD Output_segment.
4036
4037 void
4038 Output_segment::add_output_section_to_load(Layout* layout,
4039                                            Output_section* os,
4040                                            elfcpp::Elf_Word seg_flags)
4041 {
4042   gold_assert(this->type() == elfcpp::PT_LOAD);
4043   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4044   gold_assert(!this->is_max_align_known_);
4045   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4046
4047   this->update_flags_for_output_section(seg_flags);
4048
4049   // We don't want to change the ordering if we have a linker script
4050   // with a SECTIONS clause.
4051   Output_section_order order = os->order();
4052   if (layout->script_options()->saw_sections_clause())
4053     order = static_cast<Output_section_order>(0);
4054   else
4055     gold_assert(order != ORDER_INVALID);
4056
4057   this->output_lists_[order].push_back(os);
4058 }
4059
4060 // Add an Output_section to a non-PT_LOAD Output_segment.
4061
4062 void
4063 Output_segment::add_output_section_to_nonload(Output_section* os,
4064                                               elfcpp::Elf_Word seg_flags)
4065 {
4066   gold_assert(this->type() != elfcpp::PT_LOAD);
4067   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4068   gold_assert(!this->is_max_align_known_);
4069
4070   this->update_flags_for_output_section(seg_flags);
4071
4072   this->output_lists_[0].push_back(os);
4073 }
4074
4075 // Remove an Output_section from this segment.  It is an error if it
4076 // is not present.
4077
4078 void
4079 Output_segment::remove_output_section(Output_section* os)
4080 {
4081   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4082     {
4083       Output_data_list* pdl = &this->output_lists_[i];
4084       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4085         {
4086           if (*p == os)
4087             {
4088               pdl->erase(p);
4089               return;
4090             }
4091         }
4092     }
4093   gold_unreachable();
4094 }
4095
4096 // Add an Output_data (which need not be an Output_section) to the
4097 // start of a segment.
4098
4099 void
4100 Output_segment::add_initial_output_data(Output_data* od)
4101 {
4102   gold_assert(!this->is_max_align_known_);
4103   Output_data_list::iterator p = this->output_lists_[0].begin();
4104   this->output_lists_[0].insert(p, od);
4105 }
4106
4107 // Return true if this segment has any sections which hold actual
4108 // data, rather than being a BSS section.
4109
4110 bool
4111 Output_segment::has_any_data_sections() const
4112 {
4113   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4114     {
4115       const Output_data_list* pdl = &this->output_lists_[i];
4116       for (Output_data_list::const_iterator p = pdl->begin();
4117            p != pdl->end();
4118            ++p)
4119         {
4120           if (!(*p)->is_section())
4121             return true;
4122           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4123             return true;
4124         }
4125     }
4126   return false;
4127 }
4128
4129 // Return whether the first data section (not counting TLS sections)
4130 // is a relro section.
4131
4132 bool
4133 Output_segment::is_first_section_relro() const
4134 {
4135   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4136     {
4137       if (i == static_cast<int>(ORDER_TLS_BSS))
4138         continue;
4139       const Output_data_list* pdl = &this->output_lists_[i];
4140       if (!pdl->empty())
4141         {
4142           Output_data* p = pdl->front();
4143           return p->is_section() && p->output_section()->is_relro();
4144         }
4145     }
4146   return false;
4147 }
4148
4149 // Return the maximum alignment of the Output_data in Output_segment.
4150
4151 uint64_t
4152 Output_segment::maximum_alignment()
4153 {
4154   if (!this->is_max_align_known_)
4155     {
4156       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4157         {
4158           const Output_data_list* pdl = &this->output_lists_[i];
4159           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4160           if (addralign > this->max_align_)
4161             this->max_align_ = addralign;
4162         }
4163       this->is_max_align_known_ = true;
4164     }
4165
4166   return this->max_align_;
4167 }
4168
4169 // Return the maximum alignment of a list of Output_data.
4170
4171 uint64_t
4172 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4173 {
4174   uint64_t ret = 0;
4175   for (Output_data_list::const_iterator p = pdl->begin();
4176        p != pdl->end();
4177        ++p)
4178     {
4179       uint64_t addralign = (*p)->addralign();
4180       if (addralign > ret)
4181         ret = addralign;
4182     }
4183   return ret;
4184 }
4185
4186 // Return whether this segment has any dynamic relocs.
4187
4188 bool
4189 Output_segment::has_dynamic_reloc() const
4190 {
4191   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4192     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4193       return true;
4194   return false;
4195 }
4196
4197 // Return whether this Output_data_list has any dynamic relocs.
4198
4199 bool
4200 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4201 {
4202   for (Output_data_list::const_iterator p = pdl->begin();
4203        p != pdl->end();
4204        ++p)
4205     if ((*p)->has_dynamic_reloc())
4206       return true;
4207   return false;
4208 }
4209
4210 // Set the section addresses for an Output_segment.  If RESET is true,
4211 // reset the addresses first.  ADDR is the address and *POFF is the
4212 // file offset.  Set the section indexes starting with *PSHNDX.
4213 // INCREASE_RELRO is the size of the portion of the first non-relro
4214 // section that should be included in the PT_GNU_RELRO segment.
4215 // If this segment has relro sections, and has been aligned for
4216 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4217 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4218 // and *PSHNDX.
4219
4220 uint64_t
4221 Output_segment::set_section_addresses(const Target* target,
4222                                       Layout* layout, bool reset,
4223                                       uint64_t addr,
4224                                       unsigned int* increase_relro,
4225                                       bool* has_relro,
4226                                       off_t* poff,
4227                                       unsigned int* pshndx)
4228 {
4229   gold_assert(this->type_ == elfcpp::PT_LOAD);
4230
4231   uint64_t last_relro_pad = 0;
4232   off_t orig_off = *poff;
4233
4234   bool in_tls = false;
4235
4236   // If we have relro sections, we need to pad forward now so that the
4237   // relro sections plus INCREASE_RELRO end on an abi page boundary.
4238   if (parameters->options().relro()
4239       && this->is_first_section_relro()
4240       && (!this->are_addresses_set_ || reset))
4241     {
4242       uint64_t relro_size = 0;
4243       off_t off = *poff;
4244       uint64_t max_align = 0;
4245       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4246         {
4247           Output_data_list* pdl = &this->output_lists_[i];
4248           Output_data_list::iterator p;
4249           for (p = pdl->begin(); p != pdl->end(); ++p)
4250             {
4251               if (!(*p)->is_section())
4252                 break;
4253               uint64_t align = (*p)->addralign();
4254               if (align > max_align)
4255                 max_align = align;
4256               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4257                 in_tls = true;
4258               else if (in_tls)
4259                 {
4260                   // Align the first non-TLS section to the alignment
4261                   // of the TLS segment.
4262                   align = max_align;
4263                   in_tls = false;
4264                 }
4265               // Ignore the size of the .tbss section.
4266               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4267                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4268                 continue;
4269               relro_size = align_address(relro_size, align);
4270               if ((*p)->is_address_valid())
4271                 relro_size += (*p)->data_size();
4272               else
4273                 {
4274                   // FIXME: This could be faster.
4275                   (*p)->set_address_and_file_offset(relro_size,
4276                                                     relro_size);
4277                   relro_size += (*p)->data_size();
4278                   (*p)->reset_address_and_file_offset();
4279                 }
4280             }
4281           if (p != pdl->end())
4282             break;
4283         }
4284       relro_size += *increase_relro;
4285       // Pad the total relro size to a multiple of the maximum
4286       // section alignment seen.
4287       uint64_t aligned_size = align_address(relro_size, max_align);
4288       // Note the amount of padding added after the last relro section.
4289       last_relro_pad = aligned_size - relro_size;
4290       *has_relro = true;
4291
4292       uint64_t page_align = parameters->target().abi_pagesize();
4293
4294       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4295       uint64_t desired_align = page_align - (aligned_size % page_align);
4296       if (desired_align < off % page_align)
4297         off += page_align;
4298       off += desired_align - off % page_align;
4299       addr += off - orig_off;
4300       orig_off = off;
4301       *poff = off;
4302     }
4303
4304   if (!reset && this->are_addresses_set_)
4305     {
4306       gold_assert(this->paddr_ == addr);
4307       addr = this->vaddr_;
4308     }
4309   else
4310     {
4311       this->vaddr_ = addr;
4312       this->paddr_ = addr;
4313       this->are_addresses_set_ = true;
4314     }
4315
4316   in_tls = false;
4317
4318   this->offset_ = orig_off;
4319
4320   off_t off = 0;
4321   uint64_t ret;
4322   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4323     {
4324       if (i == static_cast<int>(ORDER_RELRO_LAST))
4325         {
4326           *poff += last_relro_pad;
4327           addr += last_relro_pad;
4328           if (this->output_lists_[i].empty())
4329             {
4330               // If there is nothing in the ORDER_RELRO_LAST list,
4331               // the padding will occur at the end of the relro
4332               // segment, and we need to add it to *INCREASE_RELRO.
4333               *increase_relro += last_relro_pad;
4334             }
4335         }
4336       addr = this->set_section_list_addresses(layout, reset,
4337                                               &this->output_lists_[i],
4338                                               addr, poff, pshndx, &in_tls);
4339       if (i < static_cast<int>(ORDER_SMALL_BSS))
4340         {
4341           this->filesz_ = *poff - orig_off;
4342           off = *poff;
4343         }
4344
4345       ret = addr;
4346     }
4347
4348   // If the last section was a TLS section, align upward to the
4349   // alignment of the TLS segment, so that the overall size of the TLS
4350   // segment is aligned.
4351   if (in_tls)
4352     {
4353       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4354       *poff = align_address(*poff, segment_align);
4355     }
4356
4357   this->memsz_ = *poff - orig_off;
4358
4359   // Ignore the file offset adjustments made by the BSS Output_data
4360   // objects.
4361   *poff = off;
4362
4363   // If code segments must contain only code, and this code segment is
4364   // page-aligned in the file, then fill it out to a whole page with
4365   // code fill (the tail of the segment will not be within any section).
4366   // Thus the entire code segment can be mapped from the file as whole
4367   // pages and that mapping will contain only valid instructions.
4368   if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4369     {
4370       uint64_t abi_pagesize = target->abi_pagesize();
4371       if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4372         {
4373           size_t fill_size = abi_pagesize - (off % abi_pagesize);
4374
4375           std::string fill_data;
4376           if (target->has_code_fill())
4377             fill_data = target->code_fill(fill_size);
4378           else
4379             fill_data.resize(fill_size); // Zero fill.
4380
4381           Output_data_const* fill = new Output_data_const(fill_data, 0);
4382           fill->set_address(this->vaddr_ + this->memsz_);
4383           fill->set_file_offset(off);
4384           layout->add_relax_output(fill);
4385
4386           off += fill_size;
4387           gold_assert(off % abi_pagesize == 0);
4388           ret += fill_size;
4389           gold_assert(ret % abi_pagesize == 0);
4390
4391           gold_assert((uint64_t) this->filesz_ == this->memsz_);
4392           this->memsz_ = this->filesz_ += fill_size;
4393
4394           *poff = off;
4395         }
4396     }
4397
4398   return ret;
4399 }
4400
4401 // Set the addresses and file offsets in a list of Output_data
4402 // structures.
4403
4404 uint64_t
4405 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4406                                            Output_data_list* pdl,
4407                                            uint64_t addr, off_t* poff,
4408                                            unsigned int* pshndx,
4409                                            bool* in_tls)
4410 {
4411   off_t startoff = *poff;
4412   // For incremental updates, we may allocate non-fixed sections from
4413   // free space in the file.  This keeps track of the high-water mark.
4414   off_t maxoff = startoff;
4415
4416   off_t off = startoff;
4417   for (Output_data_list::iterator p = pdl->begin();
4418        p != pdl->end();
4419        ++p)
4420     {
4421       if (reset)
4422         (*p)->reset_address_and_file_offset();
4423
4424       // When doing an incremental update or when using a linker script,
4425       // the section will most likely already have an address.
4426       if (!(*p)->is_address_valid())
4427         {
4428           uint64_t align = (*p)->addralign();
4429
4430           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4431             {
4432               // Give the first TLS section the alignment of the
4433               // entire TLS segment.  Otherwise the TLS segment as a
4434               // whole may be misaligned.
4435               if (!*in_tls)
4436                 {
4437                   Output_segment* tls_segment = layout->tls_segment();
4438                   gold_assert(tls_segment != NULL);
4439                   uint64_t segment_align = tls_segment->maximum_alignment();
4440                   gold_assert(segment_align >= align);
4441                   align = segment_align;
4442
4443                   *in_tls = true;
4444                 }
4445             }
4446           else
4447             {
4448               // If this is the first section after the TLS segment,
4449               // align it to at least the alignment of the TLS
4450               // segment, so that the size of the overall TLS segment
4451               // is aligned.
4452               if (*in_tls)
4453                 {
4454                   uint64_t segment_align =
4455                       layout->tls_segment()->maximum_alignment();
4456                   if (segment_align > align)
4457                     align = segment_align;
4458
4459                   *in_tls = false;
4460                 }
4461             }
4462
4463           if (!parameters->incremental_update())
4464             {
4465               off = align_address(off, align);
4466               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4467             }
4468           else
4469             {
4470               // Incremental update: allocate file space from free list.
4471               (*p)->pre_finalize_data_size();
4472               off_t current_size = (*p)->current_data_size();
4473               off = layout->allocate(current_size, align, startoff);
4474               if (off == -1)
4475                 {
4476                   gold_assert((*p)->output_section() != NULL);
4477                   gold_fallback(_("out of patch space for section %s; "
4478                                   "relink with --incremental-full"),
4479                                 (*p)->output_section()->name());
4480                 }
4481               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4482               if ((*p)->data_size() > current_size)
4483                 {
4484                   gold_assert((*p)->output_section() != NULL);
4485                   gold_fallback(_("%s: section changed size; "
4486                                   "relink with --incremental-full"),
4487                                 (*p)->output_section()->name());
4488                 }
4489             }
4490         }
4491       else if (parameters->incremental_update())
4492         {
4493           // For incremental updates, use the fixed offset for the
4494           // high-water mark computation.
4495           off = (*p)->offset();
4496         }
4497       else
4498         {
4499           // The script may have inserted a skip forward, but it
4500           // better not have moved backward.
4501           if ((*p)->address() >= addr + (off - startoff))
4502             off += (*p)->address() - (addr + (off - startoff));
4503           else
4504             {
4505               if (!layout->script_options()->saw_sections_clause())
4506                 gold_unreachable();
4507               else
4508                 {
4509                   Output_section* os = (*p)->output_section();
4510
4511                   // Cast to unsigned long long to avoid format warnings.
4512                   unsigned long long previous_dot =
4513                     static_cast<unsigned long long>(addr + (off - startoff));
4514                   unsigned long long dot =
4515                     static_cast<unsigned long long>((*p)->address());
4516
4517                   if (os == NULL)
4518                     gold_error(_("dot moves backward in linker script "
4519                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4520                   else
4521                     gold_error(_("address of section '%s' moves backward "
4522                                  "from 0x%llx to 0x%llx"),
4523                                os->name(), previous_dot, dot);
4524                 }
4525             }
4526           (*p)->set_file_offset(off);
4527           (*p)->finalize_data_size();
4528         }
4529
4530       if (parameters->incremental_update())
4531         gold_debug(DEBUG_INCREMENTAL,
4532                    "set_section_list_addresses: %08lx %08lx %s",
4533                    static_cast<long>(off),
4534                    static_cast<long>((*p)->data_size()),
4535                    ((*p)->output_section() != NULL
4536                     ? (*p)->output_section()->name() : "(special)"));
4537
4538       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4539       // section.  Such a section does not affect the size of a
4540       // PT_LOAD segment.
4541       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4542           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4543         off += (*p)->data_size();
4544
4545       if (off > maxoff)
4546         maxoff = off;
4547
4548       if ((*p)->is_section())
4549         {
4550           (*p)->set_out_shndx(*pshndx);
4551           ++*pshndx;
4552         }
4553     }
4554
4555   *poff = maxoff;
4556   return addr + (maxoff - startoff);
4557 }
4558
4559 // For a non-PT_LOAD segment, set the offset from the sections, if
4560 // any.  Add INCREASE to the file size and the memory size.
4561
4562 void
4563 Output_segment::set_offset(unsigned int increase)
4564 {
4565   gold_assert(this->type_ != elfcpp::PT_LOAD);
4566
4567   gold_assert(!this->are_addresses_set_);
4568
4569   // A non-load section only uses output_lists_[0].
4570
4571   Output_data_list* pdl = &this->output_lists_[0];
4572
4573   if (pdl->empty())
4574     {
4575       gold_assert(increase == 0);
4576       this->vaddr_ = 0;
4577       this->paddr_ = 0;
4578       this->are_addresses_set_ = true;
4579       this->memsz_ = 0;
4580       this->min_p_align_ = 0;
4581       this->offset_ = 0;
4582       this->filesz_ = 0;
4583       return;
4584     }
4585
4586   // Find the first and last section by address.
4587   const Output_data* first = NULL;
4588   const Output_data* last_data = NULL;
4589   const Output_data* last_bss = NULL;
4590   for (Output_data_list::const_iterator p = pdl->begin();
4591        p != pdl->end();
4592        ++p)
4593     {
4594       if (first == NULL
4595           || (*p)->address() < first->address()
4596           || ((*p)->address() == first->address()
4597               && (*p)->data_size() < first->data_size()))
4598         first = *p;
4599       const Output_data** plast;
4600       if ((*p)->is_section()
4601           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4602         plast = &last_bss;
4603       else
4604         plast = &last_data;
4605       if (*plast == NULL
4606           || (*p)->address() > (*plast)->address()
4607           || ((*p)->address() == (*plast)->address()
4608               && (*p)->data_size() > (*plast)->data_size()))
4609         *plast = *p;
4610     }
4611
4612   this->vaddr_ = first->address();
4613   this->paddr_ = (first->has_load_address()
4614                   ? first->load_address()
4615                   : this->vaddr_);
4616   this->are_addresses_set_ = true;
4617   this->offset_ = first->offset();
4618
4619   if (last_data == NULL)
4620     this->filesz_ = 0;
4621   else
4622     this->filesz_ = (last_data->address()
4623                      + last_data->data_size()
4624                      - this->vaddr_);
4625
4626   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4627   this->memsz_ = (last->address()
4628                   + last->data_size()
4629                   - this->vaddr_);
4630
4631   this->filesz_ += increase;
4632   this->memsz_ += increase;
4633
4634   // If this is a RELRO segment, verify that the segment ends at a
4635   // page boundary.
4636   if (this->type_ == elfcpp::PT_GNU_RELRO)
4637     {
4638       uint64_t page_align = parameters->target().abi_pagesize();
4639       uint64_t segment_end = this->vaddr_ + this->memsz_;
4640       if (parameters->incremental_update())
4641         {
4642           // The INCREASE_RELRO calculation is bypassed for an incremental
4643           // update, so we need to adjust the segment size manually here.
4644           segment_end = align_address(segment_end, page_align);
4645           this->memsz_ = segment_end - this->vaddr_;
4646         }
4647       else
4648         gold_assert(segment_end == align_address(segment_end, page_align));
4649     }
4650
4651   // If this is a TLS segment, align the memory size.  The code in
4652   // set_section_list ensures that the section after the TLS segment
4653   // is aligned to give us room.
4654   if (this->type_ == elfcpp::PT_TLS)
4655     {
4656       uint64_t segment_align = this->maximum_alignment();
4657       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4658       this->memsz_ = align_address(this->memsz_, segment_align);
4659     }
4660 }
4661
4662 // Set the TLS offsets of the sections in the PT_TLS segment.
4663
4664 void
4665 Output_segment::set_tls_offsets()
4666 {
4667   gold_assert(this->type_ == elfcpp::PT_TLS);
4668
4669   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4670        p != this->output_lists_[0].end();
4671        ++p)
4672     (*p)->set_tls_offset(this->vaddr_);
4673 }
4674
4675 // Return the first section.
4676
4677 Output_section*
4678 Output_segment::first_section() const
4679 {
4680   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4681     {
4682       const Output_data_list* pdl = &this->output_lists_[i];
4683       for (Output_data_list::const_iterator p = pdl->begin();
4684            p != pdl->end();
4685            ++p)
4686         {
4687           if ((*p)->is_section())
4688             return (*p)->output_section();
4689         }
4690     }
4691   gold_unreachable();
4692 }
4693
4694 // Return the number of Output_sections in an Output_segment.
4695
4696 unsigned int
4697 Output_segment::output_section_count() const
4698 {
4699   unsigned int ret = 0;
4700   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4701     ret += this->output_section_count_list(&this->output_lists_[i]);
4702   return ret;
4703 }
4704
4705 // Return the number of Output_sections in an Output_data_list.
4706
4707 unsigned int
4708 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4709 {
4710   unsigned int count = 0;
4711   for (Output_data_list::const_iterator p = pdl->begin();
4712        p != pdl->end();
4713        ++p)
4714     {
4715       if ((*p)->is_section())
4716         ++count;
4717     }
4718   return count;
4719 }
4720
4721 // Return the section attached to the list segment with the lowest
4722 // load address.  This is used when handling a PHDRS clause in a
4723 // linker script.
4724
4725 Output_section*
4726 Output_segment::section_with_lowest_load_address() const
4727 {
4728   Output_section* found = NULL;
4729   uint64_t found_lma = 0;
4730   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4731     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4732                                       &found_lma);
4733   return found;
4734 }
4735
4736 // Look through a list for a section with a lower load address.
4737
4738 void
4739 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4740                                             Output_section** found,
4741                                             uint64_t* found_lma) const
4742 {
4743   for (Output_data_list::const_iterator p = pdl->begin();
4744        p != pdl->end();
4745        ++p)
4746     {
4747       if (!(*p)->is_section())
4748         continue;
4749       Output_section* os = static_cast<Output_section*>(*p);
4750       uint64_t lma = (os->has_load_address()
4751                       ? os->load_address()
4752                       : os->address());
4753       if (*found == NULL || lma < *found_lma)
4754         {
4755           *found = os;
4756           *found_lma = lma;
4757         }
4758     }
4759 }
4760
4761 // Write the segment data into *OPHDR.
4762
4763 template<int size, bool big_endian>
4764 void
4765 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4766 {
4767   ophdr->put_p_type(this->type_);
4768   ophdr->put_p_offset(this->offset_);
4769   ophdr->put_p_vaddr(this->vaddr_);
4770   ophdr->put_p_paddr(this->paddr_);
4771   ophdr->put_p_filesz(this->filesz_);
4772   ophdr->put_p_memsz(this->memsz_);
4773   ophdr->put_p_flags(this->flags_);
4774   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4775 }
4776
4777 // Write the section headers into V.
4778
4779 template<int size, bool big_endian>
4780 unsigned char*
4781 Output_segment::write_section_headers(const Layout* layout,
4782                                       const Stringpool* secnamepool,
4783                                       unsigned char* v,
4784                                       unsigned int* pshndx) const
4785 {
4786   // Every section that is attached to a segment must be attached to a
4787   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4788   // segments.
4789   if (this->type_ != elfcpp::PT_LOAD)
4790     return v;
4791
4792   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4793     {
4794       const Output_data_list* pdl = &this->output_lists_[i];
4795       v = this->write_section_headers_list<size, big_endian>(layout,
4796                                                              secnamepool,
4797                                                              pdl,
4798                                                              v, pshndx);
4799     }
4800
4801   return v;
4802 }
4803
4804 template<int size, bool big_endian>
4805 unsigned char*
4806 Output_segment::write_section_headers_list(const Layout* layout,
4807                                            const Stringpool* secnamepool,
4808                                            const Output_data_list* pdl,
4809                                            unsigned char* v,
4810                                            unsigned int* pshndx) const
4811 {
4812   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4813   for (Output_data_list::const_iterator p = pdl->begin();
4814        p != pdl->end();
4815        ++p)
4816     {
4817       if ((*p)->is_section())
4818         {
4819           const Output_section* ps = static_cast<const Output_section*>(*p);
4820           gold_assert(*pshndx == ps->out_shndx());
4821           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4822           ps->write_header(layout, secnamepool, &oshdr);
4823           v += shdr_size;
4824           ++*pshndx;
4825         }
4826     }
4827   return v;
4828 }
4829
4830 // Print the output sections to the map file.
4831
4832 void
4833 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4834 {
4835   if (this->type() != elfcpp::PT_LOAD)
4836     return;
4837   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4838     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4839 }
4840
4841 // Print an output section list to the map file.
4842
4843 void
4844 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4845                                               const Output_data_list* pdl) const
4846 {
4847   for (Output_data_list::const_iterator p = pdl->begin();
4848        p != pdl->end();
4849        ++p)
4850     (*p)->print_to_mapfile(mapfile);
4851 }
4852
4853 // Output_file methods.
4854
4855 Output_file::Output_file(const char* name)
4856   : name_(name),
4857     o_(-1),
4858     file_size_(0),
4859     base_(NULL),
4860     map_is_anonymous_(false),
4861     map_is_allocated_(false),
4862     is_temporary_(false)
4863 {
4864 }
4865
4866 // Try to open an existing file.  Returns false if the file doesn't
4867 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4868 // NULL, open that file as the base for incremental linking, and
4869 // copy its contents to the new output file.  This routine can
4870 // be called for incremental updates, in which case WRITABLE should
4871 // be true, or by the incremental-dump utility, in which case
4872 // WRITABLE should be false.
4873
4874 bool
4875 Output_file::open_base_file(const char* base_name, bool writable)
4876 {
4877   // The name "-" means "stdout".
4878   if (strcmp(this->name_, "-") == 0)
4879     return false;
4880
4881   bool use_base_file = base_name != NULL;
4882   if (!use_base_file)
4883     base_name = this->name_;
4884   else if (strcmp(base_name, this->name_) == 0)
4885     gold_fatal(_("%s: incremental base and output file name are the same"),
4886                base_name);
4887
4888   // Don't bother opening files with a size of zero.
4889   struct stat s;
4890   if (::stat(base_name, &s) != 0)
4891     {
4892       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4893       return false;
4894     }
4895   if (s.st_size == 0)
4896     {
4897       gold_info(_("%s: incremental base file is empty"), base_name);
4898       return false;
4899     }
4900
4901   // If we're using a base file, we want to open it read-only.
4902   if (use_base_file)
4903     writable = false;
4904
4905   int oflags = writable ? O_RDWR : O_RDONLY;
4906   int o = open_descriptor(-1, base_name, oflags, 0);
4907   if (o < 0)
4908     {
4909       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4910       return false;
4911     }
4912
4913   // If the base file and the output file are different, open a
4914   // new output file and read the contents from the base file into
4915   // the newly-mapped region.
4916   if (use_base_file)
4917     {
4918       this->open(s.st_size);
4919       ssize_t bytes_to_read = s.st_size;
4920       unsigned char* p = this->base_;
4921       while (bytes_to_read > 0)
4922         {
4923           ssize_t len = ::read(o, p, bytes_to_read);
4924           if (len < 0)
4925             {
4926               gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4927               return false;
4928             }
4929           if (len == 0)
4930             {
4931               gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4932                         base_name,
4933                         static_cast<long long>(s.st_size - bytes_to_read),
4934                         static_cast<long long>(s.st_size));
4935               return false;
4936             }
4937           p += len;
4938           bytes_to_read -= len;
4939         }
4940       ::close(o);
4941       return true;
4942     }
4943
4944   this->o_ = o;
4945   this->file_size_ = s.st_size;
4946
4947   if (!this->map_no_anonymous(writable))
4948     {
4949       release_descriptor(o, true);
4950       this->o_ = -1;
4951       this->file_size_ = 0;
4952       return false;
4953     }
4954
4955   return true;
4956 }
4957
4958 // Open the output file.
4959
4960 void
4961 Output_file::open(off_t file_size)
4962 {
4963   this->file_size_ = file_size;
4964
4965   // Unlink the file first; otherwise the open() may fail if the file
4966   // is busy (e.g. it's an executable that's currently being executed).
4967   //
4968   // However, the linker may be part of a system where a zero-length
4969   // file is created for it to write to, with tight permissions (gcc
4970   // 2.95 did something like this).  Unlinking the file would work
4971   // around those permission controls, so we only unlink if the file
4972   // has a non-zero size.  We also unlink only regular files to avoid
4973   // trouble with directories/etc.
4974   //
4975   // If we fail, continue; this command is merely a best-effort attempt
4976   // to improve the odds for open().
4977
4978   // We let the name "-" mean "stdout"
4979   if (!this->is_temporary_)
4980     {
4981       if (strcmp(this->name_, "-") == 0)
4982         this->o_ = STDOUT_FILENO;
4983       else
4984         {
4985           struct stat s;
4986           if (::stat(this->name_, &s) == 0
4987               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4988             {
4989               if (s.st_size != 0)
4990                 ::unlink(this->name_);
4991               else if (!parameters->options().relocatable())
4992                 {
4993                   // If we don't unlink the existing file, add execute
4994                   // permission where read permissions already exist
4995                   // and where the umask permits.
4996                   int mask = ::umask(0);
4997                   ::umask(mask);
4998                   s.st_mode |= (s.st_mode & 0444) >> 2;
4999                   ::chmod(this->name_, s.st_mode & ~mask);
5000                 }
5001             }
5002
5003           int mode = parameters->options().relocatable() ? 0666 : 0777;
5004           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5005                                   mode);
5006           if (o < 0)
5007             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5008           this->o_ = o;
5009         }
5010     }
5011
5012   this->map();
5013 }
5014
5015 // Resize the output file.
5016
5017 void
5018 Output_file::resize(off_t file_size)
5019 {
5020   // If the mmap is mapping an anonymous memory buffer, this is easy:
5021   // just mremap to the new size.  If it's mapping to a file, we want
5022   // to unmap to flush to the file, then remap after growing the file.
5023   if (this->map_is_anonymous_)
5024     {
5025       void* base;
5026       if (!this->map_is_allocated_)
5027         {
5028           base = ::mremap(this->base_, this->file_size_, file_size,
5029                           MREMAP_MAYMOVE);
5030           if (base == MAP_FAILED)
5031             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5032         }
5033       else
5034         {
5035           base = realloc(this->base_, file_size);
5036           if (base == NULL)
5037             gold_nomem();
5038           if (file_size > this->file_size_)
5039             memset(static_cast<char*>(base) + this->file_size_, 0,
5040                    file_size - this->file_size_);
5041         }
5042       this->base_ = static_cast<unsigned char*>(base);
5043       this->file_size_ = file_size;
5044     }
5045   else
5046     {
5047       this->unmap();
5048       this->file_size_ = file_size;
5049       if (!this->map_no_anonymous(true))
5050         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5051     }
5052 }
5053
5054 // Map an anonymous block of memory which will later be written to the
5055 // file.  Return whether the map succeeded.
5056
5057 bool
5058 Output_file::map_anonymous()
5059 {
5060   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5061                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5062   if (base == MAP_FAILED)
5063     {
5064       base = malloc(this->file_size_);
5065       if (base == NULL)
5066         return false;
5067       memset(base, 0, this->file_size_);
5068       this->map_is_allocated_ = true;
5069     }
5070   this->base_ = static_cast<unsigned char*>(base);
5071   this->map_is_anonymous_ = true;
5072   return true;
5073 }
5074
5075 // Map the file into memory.  Return whether the mapping succeeded.
5076 // If WRITABLE is true, map with write access.
5077
5078 bool
5079 Output_file::map_no_anonymous(bool writable)
5080 {
5081   const int o = this->o_;
5082
5083   // If the output file is not a regular file, don't try to mmap it;
5084   // instead, we'll mmap a block of memory (an anonymous buffer), and
5085   // then later write the buffer to the file.
5086   void* base;
5087   struct stat statbuf;
5088   if (o == STDOUT_FILENO || o == STDERR_FILENO
5089       || ::fstat(o, &statbuf) != 0
5090       || !S_ISREG(statbuf.st_mode)
5091       || this->is_temporary_)
5092     return false;
5093
5094   // Ensure that we have disk space available for the file.  If we
5095   // don't do this, it is possible that we will call munmap, close,
5096   // and exit with dirty buffers still in the cache with no assigned
5097   // disk blocks.  If the disk is out of space at that point, the
5098   // output file will wind up incomplete, but we will have already
5099   // exited.  The alternative to fallocate would be to use fdatasync,
5100   // but that would be a more significant performance hit.
5101   if (writable)
5102     {
5103       int err = gold_fallocate(o, 0, this->file_size_);
5104       if (err != 0)
5105        gold_fatal(_("%s: %s"), this->name_, strerror(err));
5106     }
5107
5108   // Map the file into memory.
5109   int prot = PROT_READ;
5110   if (writable)
5111     prot |= PROT_WRITE;
5112   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5113
5114   // The mmap call might fail because of file system issues: the file
5115   // system might not support mmap at all, or it might not support
5116   // mmap with PROT_WRITE.
5117   if (base == MAP_FAILED)
5118     return false;
5119
5120   this->map_is_anonymous_ = false;
5121   this->base_ = static_cast<unsigned char*>(base);
5122   return true;
5123 }
5124
5125 // Map the file into memory.
5126
5127 void
5128 Output_file::map()
5129 {
5130   if (parameters->options().mmap_output_file()
5131       && this->map_no_anonymous(true))
5132     return;
5133
5134   // The mmap call might fail because of file system issues: the file
5135   // system might not support mmap at all, or it might not support
5136   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5137   // see in all cases, so if the mmap fails for any reason and we
5138   // don't care about file contents, try for an anonymous map.
5139   if (this->map_anonymous())
5140     return;
5141
5142   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5143              this->name_, static_cast<unsigned long>(this->file_size_),
5144              strerror(errno));
5145 }
5146
5147 // Unmap the file from memory.
5148
5149 void
5150 Output_file::unmap()
5151 {
5152   if (this->map_is_anonymous_)
5153     {
5154       // We've already written out the data, so there is no reason to
5155       // waste time unmapping or freeing the memory.
5156     }
5157   else
5158     {
5159       if (::munmap(this->base_, this->file_size_) < 0)
5160         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5161     }
5162   this->base_ = NULL;
5163 }
5164
5165 // Close the output file.
5166
5167 void
5168 Output_file::close()
5169 {
5170   // If the map isn't file-backed, we need to write it now.
5171   if (this->map_is_anonymous_ && !this->is_temporary_)
5172     {
5173       size_t bytes_to_write = this->file_size_;
5174       size_t offset = 0;
5175       while (bytes_to_write > 0)
5176         {
5177           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5178                                           bytes_to_write);
5179           if (bytes_written == 0)
5180             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5181           else if (bytes_written < 0)
5182             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5183           else
5184             {
5185               bytes_to_write -= bytes_written;
5186               offset += bytes_written;
5187             }
5188         }
5189     }
5190   this->unmap();
5191
5192   // We don't close stdout or stderr
5193   if (this->o_ != STDOUT_FILENO
5194       && this->o_ != STDERR_FILENO
5195       && !this->is_temporary_)
5196     if (::close(this->o_) < 0)
5197       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5198   this->o_ = -1;
5199 }
5200
5201 // Instantiate the templates we need.  We could use the configure
5202 // script to restrict this to only the ones for implemented targets.
5203
5204 #ifdef HAVE_TARGET_32_LITTLE
5205 template
5206 off_t
5207 Output_section::add_input_section<32, false>(
5208     Layout* layout,
5209     Sized_relobj_file<32, false>* object,
5210     unsigned int shndx,
5211     const char* secname,
5212     const elfcpp::Shdr<32, false>& shdr,
5213     unsigned int reloc_shndx,
5214     bool have_sections_script);
5215 #endif
5216
5217 #ifdef HAVE_TARGET_32_BIG
5218 template
5219 off_t
5220 Output_section::add_input_section<32, true>(
5221     Layout* layout,
5222     Sized_relobj_file<32, true>* object,
5223     unsigned int shndx,
5224     const char* secname,
5225     const elfcpp::Shdr<32, true>& shdr,
5226     unsigned int reloc_shndx,
5227     bool have_sections_script);
5228 #endif
5229
5230 #ifdef HAVE_TARGET_64_LITTLE
5231 template
5232 off_t
5233 Output_section::add_input_section<64, false>(
5234     Layout* layout,
5235     Sized_relobj_file<64, false>* object,
5236     unsigned int shndx,
5237     const char* secname,
5238     const elfcpp::Shdr<64, false>& shdr,
5239     unsigned int reloc_shndx,
5240     bool have_sections_script);
5241 #endif
5242
5243 #ifdef HAVE_TARGET_64_BIG
5244 template
5245 off_t
5246 Output_section::add_input_section<64, true>(
5247     Layout* layout,
5248     Sized_relobj_file<64, true>* object,
5249     unsigned int shndx,
5250     const char* secname,
5251     const elfcpp::Shdr<64, true>& shdr,
5252     unsigned int reloc_shndx,
5253     bool have_sections_script);
5254 #endif
5255
5256 #ifdef HAVE_TARGET_32_LITTLE
5257 template
5258 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5259 #endif
5260
5261 #ifdef HAVE_TARGET_32_BIG
5262 template
5263 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5264 #endif
5265
5266 #ifdef HAVE_TARGET_64_LITTLE
5267 template
5268 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5269 #endif
5270
5271 #ifdef HAVE_TARGET_64_BIG
5272 template
5273 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5274 #endif
5275
5276 #ifdef HAVE_TARGET_32_LITTLE
5277 template
5278 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5279 #endif
5280
5281 #ifdef HAVE_TARGET_32_BIG
5282 template
5283 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5284 #endif
5285
5286 #ifdef HAVE_TARGET_64_LITTLE
5287 template
5288 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5289 #endif
5290
5291 #ifdef HAVE_TARGET_64_BIG
5292 template
5293 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5294 #endif
5295
5296 #ifdef HAVE_TARGET_32_LITTLE
5297 template
5298 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5299 #endif
5300
5301 #ifdef HAVE_TARGET_32_BIG
5302 template
5303 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5304 #endif
5305
5306 #ifdef HAVE_TARGET_64_LITTLE
5307 template
5308 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5309 #endif
5310
5311 #ifdef HAVE_TARGET_64_BIG
5312 template
5313 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5314 #endif
5315
5316 #ifdef HAVE_TARGET_32_LITTLE
5317 template
5318 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5319 #endif
5320
5321 #ifdef HAVE_TARGET_32_BIG
5322 template
5323 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5324 #endif
5325
5326 #ifdef HAVE_TARGET_64_LITTLE
5327 template
5328 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5329 #endif
5330
5331 #ifdef HAVE_TARGET_64_BIG
5332 template
5333 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5334 #endif
5335
5336 #ifdef HAVE_TARGET_32_LITTLE
5337 template
5338 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5339 #endif
5340
5341 #ifdef HAVE_TARGET_32_BIG
5342 template
5343 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5344 #endif
5345
5346 #ifdef HAVE_TARGET_64_LITTLE
5347 template
5348 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5349 #endif
5350
5351 #ifdef HAVE_TARGET_64_BIG
5352 template
5353 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5354 #endif
5355
5356 #ifdef HAVE_TARGET_32_LITTLE
5357 template
5358 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5359 #endif
5360
5361 #ifdef HAVE_TARGET_32_BIG
5362 template
5363 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5364 #endif
5365
5366 #ifdef HAVE_TARGET_64_LITTLE
5367 template
5368 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5369 #endif
5370
5371 #ifdef HAVE_TARGET_64_BIG
5372 template
5373 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5374 #endif
5375
5376 #ifdef HAVE_TARGET_32_LITTLE
5377 template
5378 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5379 #endif
5380
5381 #ifdef HAVE_TARGET_32_BIG
5382 template
5383 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5384 #endif
5385
5386 #ifdef HAVE_TARGET_64_LITTLE
5387 template
5388 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5389 #endif
5390
5391 #ifdef HAVE_TARGET_64_BIG
5392 template
5393 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5394 #endif
5395
5396 #ifdef HAVE_TARGET_32_LITTLE
5397 template
5398 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5399 #endif
5400
5401 #ifdef HAVE_TARGET_32_BIG
5402 template
5403 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5404 #endif
5405
5406 #ifdef HAVE_TARGET_64_LITTLE
5407 template
5408 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5409 #endif
5410
5411 #ifdef HAVE_TARGET_64_BIG
5412 template
5413 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5414 #endif
5415
5416 #ifdef HAVE_TARGET_32_LITTLE
5417 template
5418 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5419 #endif
5420
5421 #ifdef HAVE_TARGET_32_BIG
5422 template
5423 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5424 #endif
5425
5426 #ifdef HAVE_TARGET_64_LITTLE
5427 template
5428 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5429 #endif
5430
5431 #ifdef HAVE_TARGET_64_BIG
5432 template
5433 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5434 #endif
5435
5436 #ifdef HAVE_TARGET_32_LITTLE
5437 template
5438 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5439 #endif
5440
5441 #ifdef HAVE_TARGET_32_BIG
5442 template
5443 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5444 #endif
5445
5446 #ifdef HAVE_TARGET_64_LITTLE
5447 template
5448 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5449 #endif
5450
5451 #ifdef HAVE_TARGET_64_BIG
5452 template
5453 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5454 #endif
5455
5456 #ifdef HAVE_TARGET_32_LITTLE
5457 template
5458 class Output_data_group<32, false>;
5459 #endif
5460
5461 #ifdef HAVE_TARGET_32_BIG
5462 template
5463 class Output_data_group<32, true>;
5464 #endif
5465
5466 #ifdef HAVE_TARGET_64_LITTLE
5467 template
5468 class Output_data_group<64, false>;
5469 #endif
5470
5471 #ifdef HAVE_TARGET_64_BIG
5472 template
5473 class Output_data_group<64, true>;
5474 #endif
5475
5476 template
5477 class Output_data_got<32, false>;
5478
5479 template
5480 class Output_data_got<32, true>;
5481
5482 template
5483 class Output_data_got<64, false>;
5484
5485 template
5486 class Output_data_got<64, true>;
5487
5488 } // End namespace gold.