Supported Tizen version parsing and verification
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 #  define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 #  define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 #  define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 #  define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 #  define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 #  define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80   errno = ENOSYS;
81   return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87   errno = ENOSYS;
88   return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94   errno = ENOSYS;
95   return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS  MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate.  If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly.  If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130   if (len <= 0)
131     return 0;
132
133 #ifdef HAVE_POSIX_FALLOCATE
134   if (parameters->options().posix_fallocate())
135     {
136       int err = ::posix_fallocate(o, offset, len);
137       if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP)
138         return err;
139     }
140 #endif // defined(HAVE_POSIX_FALLOCATE)
141
142 #ifdef HAVE_FALLOCATE
143   {
144     int err = ::fallocate(o, 0, offset, len);
145     if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP)
146       return err;
147   }
148 #endif // defined(HAVE_FALLOCATE)
149
150   if (::ftruncate(o, offset + len) < 0)
151     return errno;
152   return 0;
153 }
154
155 // Output_data variables.
156
157 bool Output_data::allocated_sizes_are_fixed;
158
159 // Output_data methods.
160
161 Output_data::~Output_data()
162 {
163 }
164
165 // Return the default alignment for the target size.
166
167 uint64_t
168 Output_data::default_alignment()
169 {
170   return Output_data::default_alignment_for_size(
171       parameters->target().get_size());
172 }
173
174 // Return the default alignment for a size--32 or 64.
175
176 uint64_t
177 Output_data::default_alignment_for_size(int size)
178 {
179   if (size == 32)
180     return 4;
181   else if (size == 64)
182     return 8;
183   else
184     gold_unreachable();
185 }
186
187 // Output_section_header methods.  This currently assumes that the
188 // segment and section lists are complete at construction time.
189
190 Output_section_headers::Output_section_headers(
191     const Layout* layout,
192     const Layout::Segment_list* segment_list,
193     const Layout::Section_list* section_list,
194     const Layout::Section_list* unattached_section_list,
195     const Stringpool* secnamepool,
196     const Output_section* shstrtab_section)
197   : layout_(layout),
198     segment_list_(segment_list),
199     section_list_(section_list),
200     unattached_section_list_(unattached_section_list),
201     secnamepool_(secnamepool),
202     shstrtab_section_(shstrtab_section)
203 {
204 }
205
206 // Compute the current data size.
207
208 off_t
209 Output_section_headers::do_size() const
210 {
211   // Count all the sections.  Start with 1 for the null section.
212   off_t count = 1;
213   if (!parameters->options().relocatable())
214     {
215       for (Layout::Segment_list::const_iterator p =
216              this->segment_list_->begin();
217            p != this->segment_list_->end();
218            ++p)
219         if ((*p)->type() == elfcpp::PT_LOAD)
220           count += (*p)->output_section_count();
221     }
222   else
223     {
224       for (Layout::Section_list::const_iterator p =
225              this->section_list_->begin();
226            p != this->section_list_->end();
227            ++p)
228         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
229           ++count;
230     }
231   count += this->unattached_section_list_->size();
232
233   const int size = parameters->target().get_size();
234   int shdr_size;
235   if (size == 32)
236     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
237   else if (size == 64)
238     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
239   else
240     gold_unreachable();
241
242   return count * shdr_size;
243 }
244
245 // Write out the section headers.
246
247 void
248 Output_section_headers::do_write(Output_file* of)
249 {
250   switch (parameters->size_and_endianness())
251     {
252 #ifdef HAVE_TARGET_32_LITTLE
253     case Parameters::TARGET_32_LITTLE:
254       this->do_sized_write<32, false>(of);
255       break;
256 #endif
257 #ifdef HAVE_TARGET_32_BIG
258     case Parameters::TARGET_32_BIG:
259       this->do_sized_write<32, true>(of);
260       break;
261 #endif
262 #ifdef HAVE_TARGET_64_LITTLE
263     case Parameters::TARGET_64_LITTLE:
264       this->do_sized_write<64, false>(of);
265       break;
266 #endif
267 #ifdef HAVE_TARGET_64_BIG
268     case Parameters::TARGET_64_BIG:
269       this->do_sized_write<64, true>(of);
270       break;
271 #endif
272     default:
273       gold_unreachable();
274     }
275 }
276
277 template<int size, bool big_endian>
278 void
279 Output_section_headers::do_sized_write(Output_file* of)
280 {
281   off_t all_shdrs_size = this->data_size();
282   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
283
284   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
285   unsigned char* v = view;
286
287   {
288     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
289     oshdr.put_sh_name(0);
290     oshdr.put_sh_type(elfcpp::SHT_NULL);
291     oshdr.put_sh_flags(0);
292     oshdr.put_sh_addr(0);
293     oshdr.put_sh_offset(0);
294
295     size_t section_count = (this->data_size()
296                             / elfcpp::Elf_sizes<size>::shdr_size);
297     if (section_count < elfcpp::SHN_LORESERVE)
298       oshdr.put_sh_size(0);
299     else
300       oshdr.put_sh_size(section_count);
301
302     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
303     if (shstrndx < elfcpp::SHN_LORESERVE)
304       oshdr.put_sh_link(0);
305     else
306       oshdr.put_sh_link(shstrndx);
307
308     size_t segment_count = this->segment_list_->size();
309     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
310
311     oshdr.put_sh_addralign(0);
312     oshdr.put_sh_entsize(0);
313   }
314
315   v += shdr_size;
316
317   unsigned int shndx = 1;
318   if (!parameters->options().relocatable())
319     {
320       for (Layout::Segment_list::const_iterator p =
321              this->segment_list_->begin();
322            p != this->segment_list_->end();
323            ++p)
324         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
325                                                           this->secnamepool_,
326                                                           v,
327                                                           &shndx);
328     }
329   else
330     {
331       for (Layout::Section_list::const_iterator p =
332              this->section_list_->begin();
333            p != this->section_list_->end();
334            ++p)
335         {
336           // We do unallocated sections below, except that group
337           // sections have to come first.
338           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
339               && (*p)->type() != elfcpp::SHT_GROUP)
340             continue;
341           gold_assert(shndx == (*p)->out_shndx());
342           elfcpp::Shdr_write<size, big_endian> oshdr(v);
343           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
344           v += shdr_size;
345           ++shndx;
346         }
347     }
348
349   for (Layout::Section_list::const_iterator p =
350          this->unattached_section_list_->begin();
351        p != this->unattached_section_list_->end();
352        ++p)
353     {
354       // For a relocatable link, we did unallocated group sections
355       // above, since they have to come first.
356       if ((*p)->type() == elfcpp::SHT_GROUP
357           && parameters->options().relocatable())
358         continue;
359       gold_assert(shndx == (*p)->out_shndx());
360       elfcpp::Shdr_write<size, big_endian> oshdr(v);
361       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
362       v += shdr_size;
363       ++shndx;
364     }
365
366   of->write_output_view(this->offset(), all_shdrs_size, view);
367 }
368
369 // Output_segment_header methods.
370
371 Output_segment_headers::Output_segment_headers(
372     const Layout::Segment_list& segment_list)
373   : segment_list_(segment_list)
374 {
375   this->set_current_data_size_for_child(this->do_size());
376 }
377
378 void
379 Output_segment_headers::do_write(Output_file* of)
380 {
381   switch (parameters->size_and_endianness())
382     {
383 #ifdef HAVE_TARGET_32_LITTLE
384     case Parameters::TARGET_32_LITTLE:
385       this->do_sized_write<32, false>(of);
386       break;
387 #endif
388 #ifdef HAVE_TARGET_32_BIG
389     case Parameters::TARGET_32_BIG:
390       this->do_sized_write<32, true>(of);
391       break;
392 #endif
393 #ifdef HAVE_TARGET_64_LITTLE
394     case Parameters::TARGET_64_LITTLE:
395       this->do_sized_write<64, false>(of);
396       break;
397 #endif
398 #ifdef HAVE_TARGET_64_BIG
399     case Parameters::TARGET_64_BIG:
400       this->do_sized_write<64, true>(of);
401       break;
402 #endif
403     default:
404       gold_unreachable();
405     }
406 }
407
408 template<int size, bool big_endian>
409 void
410 Output_segment_headers::do_sized_write(Output_file* of)
411 {
412   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
413   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
414   gold_assert(all_phdrs_size == this->data_size());
415   unsigned char* view = of->get_output_view(this->offset(),
416                                             all_phdrs_size);
417   unsigned char* v = view;
418   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
419        p != this->segment_list_.end();
420        ++p)
421     {
422       elfcpp::Phdr_write<size, big_endian> ophdr(v);
423       (*p)->write_header(&ophdr);
424       v += phdr_size;
425     }
426
427   gold_assert(v - view == all_phdrs_size);
428
429   of->write_output_view(this->offset(), all_phdrs_size, view);
430 }
431
432 off_t
433 Output_segment_headers::do_size() const
434 {
435   const int size = parameters->target().get_size();
436   int phdr_size;
437   if (size == 32)
438     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
439   else if (size == 64)
440     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
441   else
442     gold_unreachable();
443
444   return this->segment_list_.size() * phdr_size;
445 }
446
447 // Output_file_header methods.
448
449 Output_file_header::Output_file_header(Target* target,
450                                        const Symbol_table* symtab,
451                                        const Output_segment_headers* osh)
452   : target_(target),
453     symtab_(symtab),
454     segment_header_(osh),
455     section_header_(NULL),
456     shstrtab_(NULL)
457 {
458   this->set_data_size(this->do_size());
459 }
460
461 // Set the section table information for a file header.
462
463 void
464 Output_file_header::set_section_info(const Output_section_headers* shdrs,
465                                      const Output_section* shstrtab)
466 {
467   this->section_header_ = shdrs;
468   this->shstrtab_ = shstrtab;
469 }
470
471 // Write out the file header.
472
473 void
474 Output_file_header::do_write(Output_file* of)
475 {
476   gold_assert(this->offset() == 0);
477
478   switch (parameters->size_and_endianness())
479     {
480 #ifdef HAVE_TARGET_32_LITTLE
481     case Parameters::TARGET_32_LITTLE:
482       this->do_sized_write<32, false>(of);
483       break;
484 #endif
485 #ifdef HAVE_TARGET_32_BIG
486     case Parameters::TARGET_32_BIG:
487       this->do_sized_write<32, true>(of);
488       break;
489 #endif
490 #ifdef HAVE_TARGET_64_LITTLE
491     case Parameters::TARGET_64_LITTLE:
492       this->do_sized_write<64, false>(of);
493       break;
494 #endif
495 #ifdef HAVE_TARGET_64_BIG
496     case Parameters::TARGET_64_BIG:
497       this->do_sized_write<64, true>(of);
498       break;
499 #endif
500     default:
501       gold_unreachable();
502     }
503 }
504
505 // Write out the file header with appropriate size and endianness.
506
507 template<int size, bool big_endian>
508 void
509 Output_file_header::do_sized_write(Output_file* of)
510 {
511   gold_assert(this->offset() == 0);
512
513   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
514   unsigned char* view = of->get_output_view(0, ehdr_size);
515   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
516
517   unsigned char e_ident[elfcpp::EI_NIDENT];
518   memset(e_ident, 0, elfcpp::EI_NIDENT);
519   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
520   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
521   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
522   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
523   if (size == 32)
524     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
525   else if (size == 64)
526     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
527   else
528     gold_unreachable();
529   e_ident[elfcpp::EI_DATA] = (big_endian
530                               ? elfcpp::ELFDATA2MSB
531                               : elfcpp::ELFDATA2LSB);
532   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
533   oehdr.put_e_ident(e_ident);
534
535   elfcpp::ET e_type;
536   if (parameters->options().relocatable())
537     e_type = elfcpp::ET_REL;
538   else if (parameters->options().output_is_position_independent())
539     e_type = elfcpp::ET_DYN;
540   else
541     e_type = elfcpp::ET_EXEC;
542   oehdr.put_e_type(e_type);
543
544   oehdr.put_e_machine(this->target_->machine_code());
545   oehdr.put_e_version(elfcpp::EV_CURRENT);
546
547   oehdr.put_e_entry(this->entry<size>());
548
549   if (this->segment_header_ == NULL)
550     oehdr.put_e_phoff(0);
551   else
552     oehdr.put_e_phoff(this->segment_header_->offset());
553
554   oehdr.put_e_shoff(this->section_header_->offset());
555   oehdr.put_e_flags(this->target_->processor_specific_flags());
556   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
557
558   if (this->segment_header_ == NULL)
559     {
560       oehdr.put_e_phentsize(0);
561       oehdr.put_e_phnum(0);
562     }
563   else
564     {
565       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
566       size_t phnum = (this->segment_header_->data_size()
567                       / elfcpp::Elf_sizes<size>::phdr_size);
568       if (phnum > elfcpp::PN_XNUM)
569         phnum = elfcpp::PN_XNUM;
570       oehdr.put_e_phnum(phnum);
571     }
572
573   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
574   size_t section_count = (this->section_header_->data_size()
575                           / elfcpp::Elf_sizes<size>::shdr_size);
576
577   if (section_count < elfcpp::SHN_LORESERVE)
578     oehdr.put_e_shnum(this->section_header_->data_size()
579                       / elfcpp::Elf_sizes<size>::shdr_size);
580   else
581     oehdr.put_e_shnum(0);
582
583   unsigned int shstrndx = this->shstrtab_->out_shndx();
584   if (shstrndx < elfcpp::SHN_LORESERVE)
585     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
586   else
587     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
588
589   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
590   // the e_ident field.
591   this->target_->adjust_elf_header(view, ehdr_size);
592
593   of->write_output_view(0, ehdr_size, view);
594 }
595
596 // Return the value to use for the entry address.
597
598 template<int size>
599 typename elfcpp::Elf_types<size>::Elf_Addr
600 Output_file_header::entry()
601 {
602   const bool should_issue_warning = (parameters->options().entry() != NULL
603                                      && !parameters->options().relocatable()
604                                      && !parameters->options().shared());
605   const char* entry = parameters->entry();
606   Symbol* sym = this->symtab_->lookup(entry);
607
608   typename Sized_symbol<size>::Value_type v;
609   if (sym != NULL)
610     {
611       Sized_symbol<size>* ssym;
612       ssym = this->symtab_->get_sized_symbol<size>(sym);
613       if (!ssym->is_defined() && should_issue_warning)
614         gold_warning("entry symbol '%s' exists but is not defined", entry);
615       v = ssym->value();
616     }
617   else
618     {
619       // We couldn't find the entry symbol.  See if we can parse it as
620       // a number.  This supports, e.g., -e 0x1000.
621       char* endptr;
622       v = strtoull(entry, &endptr, 0);
623       if (*endptr != '\0')
624         {
625           if (should_issue_warning)
626             gold_warning("cannot find entry symbol '%s'", entry);
627           v = 0;
628         }
629     }
630
631   return v;
632 }
633
634 // Compute the current data size.
635
636 off_t
637 Output_file_header::do_size() const
638 {
639   const int size = parameters->target().get_size();
640   if (size == 32)
641     return elfcpp::Elf_sizes<32>::ehdr_size;
642   else if (size == 64)
643     return elfcpp::Elf_sizes<64>::ehdr_size;
644   else
645     gold_unreachable();
646 }
647
648 // Output_data_const methods.
649
650 void
651 Output_data_const::do_write(Output_file* of)
652 {
653   of->write(this->offset(), this->data_.data(), this->data_.size());
654 }
655
656 // Output_data_const_buffer methods.
657
658 void
659 Output_data_const_buffer::do_write(Output_file* of)
660 {
661   of->write(this->offset(), this->p_, this->data_size());
662 }
663
664 // Output_section_data methods.
665
666 // Record the output section, and set the entry size and such.
667
668 void
669 Output_section_data::set_output_section(Output_section* os)
670 {
671   gold_assert(this->output_section_ == NULL);
672   this->output_section_ = os;
673   this->do_adjust_output_section(os);
674 }
675
676 // Return the section index of the output section.
677
678 unsigned int
679 Output_section_data::do_out_shndx() const
680 {
681   gold_assert(this->output_section_ != NULL);
682   return this->output_section_->out_shndx();
683 }
684
685 // Set the alignment, which means we may need to update the alignment
686 // of the output section.
687
688 void
689 Output_section_data::set_addralign(uint64_t addralign)
690 {
691   this->addralign_ = addralign;
692   if (this->output_section_ != NULL
693       && this->output_section_->addralign() < addralign)
694     this->output_section_->set_addralign(addralign);
695 }
696
697 // Output_data_strtab methods.
698
699 // Set the final data size.
700
701 void
702 Output_data_strtab::set_final_data_size()
703 {
704   this->strtab_->set_string_offsets();
705   this->set_data_size(this->strtab_->get_strtab_size());
706 }
707
708 // Write out a string table.
709
710 void
711 Output_data_strtab::do_write(Output_file* of)
712 {
713   this->strtab_->write(of, this->offset());
714 }
715
716 // Output_reloc methods.
717
718 // A reloc against a global symbol.
719
720 template<bool dynamic, int size, bool big_endian>
721 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
722     Symbol* gsym,
723     unsigned int type,
724     Output_data* od,
725     Address address,
726     bool is_relative,
727     bool is_symbolless,
728     bool use_plt_offset)
729   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
730     is_relative_(is_relative), is_symbolless_(is_symbolless),
731     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
732 {
733   // this->type_ is a bitfield; make sure TYPE fits.
734   gold_assert(this->type_ == type);
735   this->u1_.gsym = gsym;
736   this->u2_.od = od;
737   if (dynamic)
738     this->set_needs_dynsym_index();
739 }
740
741 template<bool dynamic, int size, bool big_endian>
742 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
743     Symbol* gsym,
744     unsigned int type,
745     Sized_relobj<size, big_endian>* relobj,
746     unsigned int shndx,
747     Address address,
748     bool is_relative,
749     bool is_symbolless,
750     bool use_plt_offset)
751   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
752     is_relative_(is_relative), is_symbolless_(is_symbolless),
753     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
754 {
755   gold_assert(shndx != INVALID_CODE);
756   // this->type_ is a bitfield; make sure TYPE fits.
757   gold_assert(this->type_ == type);
758   this->u1_.gsym = gsym;
759   this->u2_.relobj = relobj;
760   if (dynamic)
761     this->set_needs_dynsym_index();
762 }
763
764 // A reloc against a local symbol.
765
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768     Sized_relobj<size, big_endian>* relobj,
769     unsigned int local_sym_index,
770     unsigned int type,
771     Output_data* od,
772     Address address,
773     bool is_relative,
774     bool is_symbolless,
775     bool is_section_symbol,
776     bool use_plt_offset)
777   : address_(address), local_sym_index_(local_sym_index), type_(type),
778     is_relative_(is_relative), is_symbolless_(is_symbolless),
779     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
780     shndx_(INVALID_CODE)
781 {
782   gold_assert(local_sym_index != GSYM_CODE
783               && local_sym_index != INVALID_CODE);
784   // this->type_ is a bitfield; make sure TYPE fits.
785   gold_assert(this->type_ == type);
786   this->u1_.relobj = relobj;
787   this->u2_.od = od;
788   if (dynamic)
789     this->set_needs_dynsym_index();
790 }
791
792 template<bool dynamic, int size, bool big_endian>
793 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
794     Sized_relobj<size, big_endian>* relobj,
795     unsigned int local_sym_index,
796     unsigned int type,
797     unsigned int shndx,
798     Address address,
799     bool is_relative,
800     bool is_symbolless,
801     bool is_section_symbol,
802     bool use_plt_offset)
803   : address_(address), local_sym_index_(local_sym_index), type_(type),
804     is_relative_(is_relative), is_symbolless_(is_symbolless),
805     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
806     shndx_(shndx)
807 {
808   gold_assert(local_sym_index != GSYM_CODE
809               && local_sym_index != INVALID_CODE);
810   gold_assert(shndx != INVALID_CODE);
811   // this->type_ is a bitfield; make sure TYPE fits.
812   gold_assert(this->type_ == type);
813   this->u1_.relobj = relobj;
814   this->u2_.relobj = relobj;
815   if (dynamic)
816     this->set_needs_dynsym_index();
817 }
818
819 // A reloc against the STT_SECTION symbol of an output section.
820
821 template<bool dynamic, int size, bool big_endian>
822 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
823     Output_section* os,
824     unsigned int type,
825     Output_data* od,
826     Address address,
827     bool is_relative)
828   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
829     is_relative_(is_relative), is_symbolless_(is_relative),
830     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
831 {
832   // this->type_ is a bitfield; make sure TYPE fits.
833   gold_assert(this->type_ == type);
834   this->u1_.os = os;
835   this->u2_.od = od;
836   if (dynamic)
837     this->set_needs_dynsym_index();
838   else
839     os->set_needs_symtab_index();
840 }
841
842 template<bool dynamic, int size, bool big_endian>
843 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
844     Output_section* os,
845     unsigned int type,
846     Sized_relobj<size, big_endian>* relobj,
847     unsigned int shndx,
848     Address address,
849     bool is_relative)
850   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
851     is_relative_(is_relative), is_symbolless_(is_relative),
852     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
853 {
854   gold_assert(shndx != INVALID_CODE);
855   // this->type_ is a bitfield; make sure TYPE fits.
856   gold_assert(this->type_ == type);
857   this->u1_.os = os;
858   this->u2_.relobj = relobj;
859   if (dynamic)
860     this->set_needs_dynsym_index();
861   else
862     os->set_needs_symtab_index();
863 }
864
865 // An absolute or relative relocation.
866
867 template<bool dynamic, int size, bool big_endian>
868 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
869     unsigned int type,
870     Output_data* od,
871     Address address,
872     bool is_relative)
873   : address_(address), local_sym_index_(0), type_(type),
874     is_relative_(is_relative), is_symbolless_(false),
875     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
876 {
877   // this->type_ is a bitfield; make sure TYPE fits.
878   gold_assert(this->type_ == type);
879   this->u1_.relobj = NULL;
880   this->u2_.od = od;
881 }
882
883 template<bool dynamic, int size, bool big_endian>
884 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
885     unsigned int type,
886     Sized_relobj<size, big_endian>* relobj,
887     unsigned int shndx,
888     Address address,
889     bool is_relative)
890   : address_(address), local_sym_index_(0), type_(type),
891     is_relative_(is_relative), is_symbolless_(false),
892     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
893 {
894   gold_assert(shndx != INVALID_CODE);
895   // this->type_ is a bitfield; make sure TYPE fits.
896   gold_assert(this->type_ == type);
897   this->u1_.relobj = NULL;
898   this->u2_.relobj = relobj;
899 }
900
901 // A target specific relocation.
902
903 template<bool dynamic, int size, bool big_endian>
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
905     unsigned int type,
906     void* arg,
907     Output_data* od,
908     Address address)
909   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
910     is_relative_(false), is_symbolless_(false),
911     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
912 {
913   // this->type_ is a bitfield; make sure TYPE fits.
914   gold_assert(this->type_ == type);
915   this->u1_.arg = arg;
916   this->u2_.od = od;
917 }
918
919 template<bool dynamic, int size, bool big_endian>
920 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
921     unsigned int type,
922     void* arg,
923     Sized_relobj<size, big_endian>* relobj,
924     unsigned int shndx,
925     Address address)
926   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
927     is_relative_(false), is_symbolless_(false),
928     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
929 {
930   gold_assert(shndx != INVALID_CODE);
931   // this->type_ is a bitfield; make sure TYPE fits.
932   gold_assert(this->type_ == type);
933   this->u1_.arg = arg;
934   this->u2_.relobj = relobj;
935 }
936
937 // Record that we need a dynamic symbol index for this relocation.
938
939 template<bool dynamic, int size, bool big_endian>
940 void
941 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
942 set_needs_dynsym_index()
943 {
944   if (this->is_symbolless_)
945     return;
946   switch (this->local_sym_index_)
947     {
948     case INVALID_CODE:
949       gold_unreachable();
950
951     case GSYM_CODE:
952       this->u1_.gsym->set_needs_dynsym_entry();
953       break;
954
955     case SECTION_CODE:
956       this->u1_.os->set_needs_dynsym_index();
957       break;
958
959     case TARGET_CODE:
960       // The target must take care of this if necessary.
961       break;
962
963     case 0:
964       break;
965
966     default:
967       {
968         const unsigned int lsi = this->local_sym_index_;
969         Sized_relobj_file<size, big_endian>* relobj =
970             this->u1_.relobj->sized_relobj();
971         gold_assert(relobj != NULL);
972         if (!this->is_section_symbol_)
973           relobj->set_needs_output_dynsym_entry(lsi);
974         else
975           relobj->output_section(lsi)->set_needs_dynsym_index();
976       }
977       break;
978     }
979 }
980
981 // Get the symbol index of a relocation.
982
983 template<bool dynamic, int size, bool big_endian>
984 unsigned int
985 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
986   const
987 {
988   unsigned int index;
989   if (this->is_symbolless_)
990     return 0;
991   switch (this->local_sym_index_)
992     {
993     case INVALID_CODE:
994       gold_unreachable();
995
996     case GSYM_CODE:
997       if (this->u1_.gsym == NULL)
998         index = 0;
999       else if (dynamic)
1000         index = this->u1_.gsym->dynsym_index();
1001       else
1002         index = this->u1_.gsym->symtab_index();
1003       break;
1004
1005     case SECTION_CODE:
1006       if (dynamic)
1007         index = this->u1_.os->dynsym_index();
1008       else
1009         index = this->u1_.os->symtab_index();
1010       break;
1011
1012     case TARGET_CODE:
1013       index = parameters->target().reloc_symbol_index(this->u1_.arg,
1014                                                       this->type_);
1015       break;
1016
1017     case 0:
1018       // Relocations without symbols use a symbol index of 0.
1019       index = 0;
1020       break;
1021
1022     default:
1023       {
1024         const unsigned int lsi = this->local_sym_index_;
1025         Sized_relobj_file<size, big_endian>* relobj =
1026             this->u1_.relobj->sized_relobj();
1027         gold_assert(relobj != NULL);
1028         if (!this->is_section_symbol_)
1029           {
1030             if (dynamic)
1031               index = relobj->dynsym_index(lsi);
1032             else
1033               index = relobj->symtab_index(lsi);
1034           }
1035         else
1036           {
1037             Output_section* os = relobj->output_section(lsi);
1038             gold_assert(os != NULL);
1039             if (dynamic)
1040               index = os->dynsym_index();
1041             else
1042               index = os->symtab_index();
1043           }
1044       }
1045       break;
1046     }
1047   gold_assert(index != -1U);
1048   return index;
1049 }
1050
1051 // For a local section symbol, get the address of the offset ADDEND
1052 // within the input section.
1053
1054 template<bool dynamic, int size, bool big_endian>
1055 typename elfcpp::Elf_types<size>::Elf_Addr
1056 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1057   local_section_offset(Addend addend) const
1058 {
1059   gold_assert(this->local_sym_index_ != GSYM_CODE
1060               && this->local_sym_index_ != SECTION_CODE
1061               && this->local_sym_index_ != TARGET_CODE
1062               && this->local_sym_index_ != INVALID_CODE
1063               && this->local_sym_index_ != 0
1064               && this->is_section_symbol_);
1065   const unsigned int lsi = this->local_sym_index_;
1066   Output_section* os = this->u1_.relobj->output_section(lsi);
1067   gold_assert(os != NULL);
1068   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1069   if (offset != invalid_address)
1070     return offset + addend;
1071   // This is a merge section.
1072   Sized_relobj_file<size, big_endian>* relobj =
1073       this->u1_.relobj->sized_relobj();
1074   gold_assert(relobj != NULL);
1075   offset = os->output_address(relobj, lsi, addend);
1076   gold_assert(offset != invalid_address);
1077   return offset;
1078 }
1079
1080 // Get the output address of a relocation.
1081
1082 template<bool dynamic, int size, bool big_endian>
1083 typename elfcpp::Elf_types<size>::Elf_Addr
1084 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1085 {
1086   Address address = this->address_;
1087   if (this->shndx_ != INVALID_CODE)
1088     {
1089       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1090       gold_assert(os != NULL);
1091       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1092       if (off != invalid_address)
1093         address += os->address() + off;
1094       else
1095         {
1096           Sized_relobj_file<size, big_endian>* relobj =
1097               this->u2_.relobj->sized_relobj();
1098           gold_assert(relobj != NULL);
1099           address = os->output_address(relobj, this->shndx_, address);
1100           gold_assert(address != invalid_address);
1101         }
1102     }
1103   else if (this->u2_.od != NULL)
1104     address += this->u2_.od->address();
1105   return address;
1106 }
1107
1108 // Write out the offset and info fields of a Rel or Rela relocation
1109 // entry.
1110
1111 template<bool dynamic, int size, bool big_endian>
1112 template<typename Write_rel>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1115     Write_rel* wr) const
1116 {
1117   wr->put_r_offset(this->get_address());
1118   unsigned int sym_index = this->get_symbol_index();
1119   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1120 }
1121
1122 // Write out a Rel relocation.
1123
1124 template<bool dynamic, int size, bool big_endian>
1125 void
1126 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1127     unsigned char* pov) const
1128 {
1129   elfcpp::Rel_write<size, big_endian> orel(pov);
1130   this->write_rel(&orel);
1131 }
1132
1133 // Get the value of the symbol referred to by a Rel relocation.
1134
1135 template<bool dynamic, int size, bool big_endian>
1136 typename elfcpp::Elf_types<size>::Elf_Addr
1137 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1138     Addend addend) const
1139 {
1140   if (this->local_sym_index_ == GSYM_CODE)
1141     {
1142       const Sized_symbol<size>* sym;
1143       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1144       if (this->use_plt_offset_ && sym->has_plt_offset())
1145         return parameters->target().plt_address_for_global(sym);
1146       else
1147         return sym->value() + addend;
1148     }
1149   if (this->local_sym_index_ == SECTION_CODE)
1150     {
1151       gold_assert(!this->use_plt_offset_);
1152       return this->u1_.os->address() + addend;
1153     }
1154   gold_assert(this->local_sym_index_ != TARGET_CODE
1155               && this->local_sym_index_ != INVALID_CODE
1156               && this->local_sym_index_ != 0
1157               && !this->is_section_symbol_);
1158   const unsigned int lsi = this->local_sym_index_;
1159   Sized_relobj_file<size, big_endian>* relobj =
1160       this->u1_.relobj->sized_relobj();
1161   gold_assert(relobj != NULL);
1162   if (this->use_plt_offset_)
1163     return parameters->target().plt_address_for_local(relobj, lsi);
1164   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1165   return symval->value(relobj, addend);
1166 }
1167
1168 // Reloc comparison.  This function sorts the dynamic relocs for the
1169 // benefit of the dynamic linker.  First we sort all relative relocs
1170 // to the front.  Among relative relocs, we sort by output address.
1171 // Among non-relative relocs, we sort by symbol index, then by output
1172 // address.
1173
1174 template<bool dynamic, int size, bool big_endian>
1175 int
1176 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1177   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1178     const
1179 {
1180   if (this->is_relative_)
1181     {
1182       if (!r2.is_relative_)
1183         return -1;
1184       // Otherwise sort by reloc address below.
1185     }
1186   else if (r2.is_relative_)
1187     return 1;
1188   else
1189     {
1190       unsigned int sym1 = this->get_symbol_index();
1191       unsigned int sym2 = r2.get_symbol_index();
1192       if (sym1 < sym2)
1193         return -1;
1194       else if (sym1 > sym2)
1195         return 1;
1196       // Otherwise sort by reloc address.
1197     }
1198
1199   section_offset_type addr1 = this->get_address();
1200   section_offset_type addr2 = r2.get_address();
1201   if (addr1 < addr2)
1202     return -1;
1203   else if (addr1 > addr2)
1204     return 1;
1205
1206   // Final tie breaker, in order to generate the same output on any
1207   // host: reloc type.
1208   unsigned int type1 = this->type_;
1209   unsigned int type2 = r2.type_;
1210   if (type1 < type2)
1211     return -1;
1212   else if (type1 > type2)
1213     return 1;
1214
1215   // These relocs appear to be exactly the same.
1216   return 0;
1217 }
1218
1219 // Write out a Rela relocation.
1220
1221 template<bool dynamic, int size, bool big_endian>
1222 void
1223 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1224     unsigned char* pov) const
1225 {
1226   elfcpp::Rela_write<size, big_endian> orel(pov);
1227   this->rel_.write_rel(&orel);
1228   Addend addend = this->addend_;
1229   if (this->rel_.is_target_specific())
1230     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1231                                                this->rel_.type(), addend);
1232   else if (this->rel_.is_symbolless())
1233     addend = this->rel_.symbol_value(addend);
1234   else if (this->rel_.is_local_section_symbol())
1235     addend = this->rel_.local_section_offset(addend);
1236   orel.put_r_addend(addend);
1237 }
1238
1239 // Output_data_reloc_base methods.
1240
1241 // Adjust the output section.
1242
1243 template<int sh_type, bool dynamic, int size, bool big_endian>
1244 void
1245 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1246     ::do_adjust_output_section(Output_section* os)
1247 {
1248   if (sh_type == elfcpp::SHT_REL)
1249     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1250   else if (sh_type == elfcpp::SHT_RELA)
1251     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1252   else
1253     gold_unreachable();
1254
1255   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1256   // static link.  The backends will generate a dynamic reloc section
1257   // to hold this.  In that case we don't want to link to the dynsym
1258   // section, because there isn't one.
1259   if (!dynamic)
1260     os->set_should_link_to_symtab();
1261   else if (parameters->doing_static_link())
1262     ;
1263   else
1264     os->set_should_link_to_dynsym();
1265 }
1266
1267 // Standard relocation writer, which just calls Output_reloc::write().
1268
1269 template<int sh_type, bool dynamic, int size, bool big_endian>
1270 struct Output_reloc_writer
1271 {
1272   typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1273   typedef std::vector<Output_reloc_type> Relocs;
1274
1275   static void
1276   write(typename Relocs::const_iterator p, unsigned char* pov)
1277   { p->write(pov); }
1278 };
1279
1280 // Write out relocation data.
1281
1282 template<int sh_type, bool dynamic, int size, bool big_endian>
1283 void
1284 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1285     Output_file* of)
1286 {
1287   typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer;
1288   this->do_write_generic<Writer>(of);
1289 }
1290
1291 // Class Output_relocatable_relocs.
1292
1293 template<int sh_type, int size, bool big_endian>
1294 void
1295 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1296 {
1297   this->set_data_size(this->rr_->output_reloc_count()
1298                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1299 }
1300
1301 // class Output_data_group.
1302
1303 template<int size, bool big_endian>
1304 Output_data_group<size, big_endian>::Output_data_group(
1305     Sized_relobj_file<size, big_endian>* relobj,
1306     section_size_type entry_count,
1307     elfcpp::Elf_Word flags,
1308     std::vector<unsigned int>* input_shndxes)
1309   : Output_section_data(entry_count * 4, 4, false),
1310     relobj_(relobj),
1311     flags_(flags)
1312 {
1313   this->input_shndxes_.swap(*input_shndxes);
1314 }
1315
1316 // Write out the section group, which means translating the section
1317 // indexes to apply to the output file.
1318
1319 template<int size, bool big_endian>
1320 void
1321 Output_data_group<size, big_endian>::do_write(Output_file* of)
1322 {
1323   const off_t off = this->offset();
1324   const section_size_type oview_size =
1325     convert_to_section_size_type(this->data_size());
1326   unsigned char* const oview = of->get_output_view(off, oview_size);
1327
1328   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1329   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1330   ++contents;
1331
1332   for (std::vector<unsigned int>::const_iterator p =
1333          this->input_shndxes_.begin();
1334        p != this->input_shndxes_.end();
1335        ++p, ++contents)
1336     {
1337       Output_section* os = this->relobj_->output_section(*p);
1338
1339       unsigned int output_shndx;
1340       if (os != NULL)
1341         output_shndx = os->out_shndx();
1342       else
1343         {
1344           this->relobj_->error(_("section group retained but "
1345                                  "group element discarded"));
1346           output_shndx = 0;
1347         }
1348
1349       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1350     }
1351
1352   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1353   gold_assert(wrote == oview_size);
1354
1355   of->write_output_view(off, oview_size, oview);
1356
1357   // We no longer need this information.
1358   this->input_shndxes_.clear();
1359 }
1360
1361 // Output_data_got::Got_entry methods.
1362
1363 // Write out the entry.
1364
1365 template<int got_size, bool big_endian>
1366 void
1367 Output_data_got<got_size, big_endian>::Got_entry::write(
1368     unsigned int got_indx,
1369     unsigned char* pov) const
1370 {
1371   Valtype val = 0;
1372
1373   switch (this->local_sym_index_)
1374     {
1375     case GSYM_CODE:
1376       {
1377         // If the symbol is resolved locally, we need to write out the
1378         // link-time value, which will be relocated dynamically by a
1379         // RELATIVE relocation.
1380         Symbol* gsym = this->u_.gsym;
1381         if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1382           val = parameters->target().plt_address_for_global(gsym);
1383         else
1384           {
1385             switch (parameters->size_and_endianness())
1386               {
1387 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1388               case Parameters::TARGET_32_LITTLE:
1389               case Parameters::TARGET_32_BIG:
1390                 {
1391                   // This cast is ugly.  We don't want to put a
1392                   // virtual method in Symbol, because we want Symbol
1393                   // to be as small as possible.
1394                   Sized_symbol<32>::Value_type v;
1395                   v = static_cast<Sized_symbol<32>*>(gsym)->value();
1396                   val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1397                 }
1398                 break;
1399 #endif
1400 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1401               case Parameters::TARGET_64_LITTLE:
1402               case Parameters::TARGET_64_BIG:
1403                 {
1404                   Sized_symbol<64>::Value_type v;
1405                   v = static_cast<Sized_symbol<64>*>(gsym)->value();
1406                   val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1407                 }
1408                 break;
1409 #endif
1410               default:
1411                 gold_unreachable();
1412               }
1413             if (this->use_plt_or_tls_offset_
1414                 && gsym->type() == elfcpp::STT_TLS)
1415               val += parameters->target().tls_offset_for_global(gsym,
1416                                                                 got_indx);
1417           }
1418       }
1419       break;
1420
1421     case CONSTANT_CODE:
1422       val = this->u_.constant;
1423       break;
1424
1425     case RESERVED_CODE:
1426       // If we're doing an incremental update, don't touch this GOT entry.
1427       if (parameters->incremental_update())
1428         return;
1429       val = this->u_.constant;
1430       break;
1431
1432     default:
1433       {
1434         const Relobj* object = this->u_.object;
1435         const unsigned int lsi = this->local_sym_index_;
1436         bool is_tls = object->local_is_tls(lsi);
1437         if (this->use_plt_or_tls_offset_ && !is_tls)
1438           val = parameters->target().plt_address_for_local(object, lsi);
1439         else
1440           {
1441             uint64_t lval = object->local_symbol_value(lsi, this->addend_);
1442             val = convert_types<Valtype, uint64_t>(lval);
1443             if (this->use_plt_or_tls_offset_ && is_tls)
1444               val += parameters->target().tls_offset_for_local(object, lsi,
1445                                                                got_indx);
1446           }
1447       }
1448       break;
1449     }
1450
1451   elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1452 }
1453
1454 // Output_data_got methods.
1455
1456 // Add an entry for a global symbol to the GOT.  This returns true if
1457 // this is a new GOT entry, false if the symbol already had a GOT
1458 // entry.
1459
1460 template<int got_size, bool big_endian>
1461 bool
1462 Output_data_got<got_size, big_endian>::add_global(
1463     Symbol* gsym,
1464     unsigned int got_type)
1465 {
1466   if (gsym->has_got_offset(got_type))
1467     return false;
1468
1469   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1470   gsym->set_got_offset(got_type, got_offset);
1471   return true;
1472 }
1473
1474 // Like add_global, but use the PLT offset.
1475
1476 template<int got_size, bool big_endian>
1477 bool
1478 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1479                                                       unsigned int got_type)
1480 {
1481   if (gsym->has_got_offset(got_type))
1482     return false;
1483
1484   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1485   gsym->set_got_offset(got_type, got_offset);
1486   return true;
1487 }
1488
1489 // Add an entry for a global symbol to the GOT, and add a dynamic
1490 // relocation of type R_TYPE for the GOT entry.
1491
1492 template<int got_size, bool big_endian>
1493 void
1494 Output_data_got<got_size, big_endian>::add_global_with_rel(
1495     Symbol* gsym,
1496     unsigned int got_type,
1497     Output_data_reloc_generic* rel_dyn,
1498     unsigned int r_type)
1499 {
1500   if (gsym->has_got_offset(got_type))
1501     return;
1502
1503   unsigned int got_offset = this->add_got_entry(Got_entry());
1504   gsym->set_got_offset(got_type, got_offset);
1505   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1506 }
1507
1508 // Add a pair of entries for a global symbol to the GOT, and add
1509 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1510 // If R_TYPE_2 == 0, add the second entry with no relocation.
1511 template<int got_size, bool big_endian>
1512 void
1513 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1514     Symbol* gsym,
1515     unsigned int got_type,
1516     Output_data_reloc_generic* rel_dyn,
1517     unsigned int r_type_1,
1518     unsigned int r_type_2)
1519 {
1520   if (gsym->has_got_offset(got_type))
1521     return;
1522
1523   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1524   gsym->set_got_offset(got_type, got_offset);
1525   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1526
1527   if (r_type_2 != 0)
1528     rel_dyn->add_global_generic(gsym, r_type_2, this,
1529                                 got_offset + got_size / 8, 0);
1530 }
1531
1532 // Add an entry for a local symbol to the GOT.  This returns true if
1533 // this is a new GOT entry, false if the symbol already has a GOT
1534 // entry.
1535
1536 template<int got_size, bool big_endian>
1537 bool
1538 Output_data_got<got_size, big_endian>::add_local(
1539     Relobj* object,
1540     unsigned int symndx,
1541     unsigned int got_type)
1542 {
1543   if (object->local_has_got_offset(symndx, got_type))
1544     return false;
1545
1546   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1547                                                           false));
1548   object->set_local_got_offset(symndx, got_type, got_offset);
1549   return true;
1550 }
1551
1552 // Add an entry for a local symbol plus ADDEND to the GOT.  This returns
1553 // true if this is a new GOT entry, false if the symbol already has a GOT
1554 // entry.
1555
1556 template<int got_size, bool big_endian>
1557 bool
1558 Output_data_got<got_size, big_endian>::add_local(
1559     Relobj* object,
1560     unsigned int symndx,
1561     unsigned int got_type,
1562     uint64_t addend)
1563 {
1564   if (object->local_has_got_offset(symndx, got_type, addend))
1565     return false;
1566
1567   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1568                                                           false, addend));
1569   object->set_local_got_offset(symndx, got_type, got_offset, addend);
1570   return true;
1571 }
1572
1573 // Like add_local, but use the PLT offset.
1574
1575 template<int got_size, bool big_endian>
1576 bool
1577 Output_data_got<got_size, big_endian>::add_local_plt(
1578     Relobj* object,
1579     unsigned int symndx,
1580     unsigned int got_type)
1581 {
1582   if (object->local_has_got_offset(symndx, got_type))
1583     return false;
1584
1585   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1586                                                           true));
1587   object->set_local_got_offset(symndx, got_type, got_offset);
1588   return true;
1589 }
1590
1591 // Add an entry for a local symbol to the GOT, and add a dynamic
1592 // relocation of type R_TYPE for the GOT entry.
1593
1594 template<int got_size, bool big_endian>
1595 void
1596 Output_data_got<got_size, big_endian>::add_local_with_rel(
1597     Relobj* object,
1598     unsigned int symndx,
1599     unsigned int got_type,
1600     Output_data_reloc_generic* rel_dyn,
1601     unsigned int r_type)
1602 {
1603   if (object->local_has_got_offset(symndx, got_type))
1604     return;
1605
1606   unsigned int got_offset = this->add_got_entry(Got_entry());
1607   object->set_local_got_offset(symndx, got_type, got_offset);
1608   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1609 }
1610
1611 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1612 // relocation of type R_TYPE for the GOT entry.
1613
1614 template<int got_size, bool big_endian>
1615 void
1616 Output_data_got<got_size, big_endian>::add_local_with_rel(
1617     Relobj* object,
1618     unsigned int symndx,
1619     unsigned int got_type,
1620     Output_data_reloc_generic* rel_dyn,
1621     unsigned int r_type, uint64_t addend)
1622 {
1623   if (object->local_has_got_offset(symndx, got_type, addend))
1624     return;
1625
1626   unsigned int got_offset = this->add_got_entry(Got_entry());
1627   object->set_local_got_offset(symndx, got_type, got_offset, addend);
1628   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
1629                              addend);
1630 }
1631
1632 // Add a pair of entries for a local symbol to the GOT, and add
1633 // a dynamic relocation of type R_TYPE using the section symbol of
1634 // the output section to which input section SHNDX maps, on the first.
1635 // The first got entry will have a value of zero, the second the
1636 // value of the local symbol.
1637 template<int got_size, bool big_endian>
1638 void
1639 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1640     Relobj* object,
1641     unsigned int symndx,
1642     unsigned int shndx,
1643     unsigned int got_type,
1644     Output_data_reloc_generic* rel_dyn,
1645     unsigned int r_type)
1646 {
1647   if (object->local_has_got_offset(symndx, got_type))
1648     return;
1649
1650   unsigned int got_offset =
1651       this->add_got_entry_pair(Got_entry(),
1652                                Got_entry(object, symndx, false));
1653   object->set_local_got_offset(symndx, got_type, got_offset);
1654   Output_section* os = object->output_section(shndx);
1655   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1656 }
1657
1658 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1659 // a dynamic relocation of type R_TYPE using the section symbol of
1660 // the output section to which input section SHNDX maps, on the first.
1661 // The first got entry will have a value of zero, the second the
1662 // value of the local symbol.
1663 template<int got_size, bool big_endian>
1664 void
1665 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1666     Relobj* object,
1667     unsigned int symndx,
1668     unsigned int shndx,
1669     unsigned int got_type,
1670     Output_data_reloc_generic* rel_dyn,
1671     unsigned int r_type, uint64_t addend)
1672 {
1673   if (object->local_has_got_offset(symndx, got_type, addend))
1674     return;
1675
1676   unsigned int got_offset =
1677       this->add_got_entry_pair(Got_entry(),
1678                                Got_entry(object, symndx, false, addend));
1679   object->set_local_got_offset(symndx, got_type, got_offset, addend);
1680   Output_section* os = object->output_section(shndx);
1681   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
1682 }
1683
1684 // Add a pair of entries for a local symbol to the GOT, and add
1685 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1686 // The first got entry will have a value of zero, the second the
1687 // value of the local symbol offset by Target::tls_offset_for_local.
1688 template<int got_size, bool big_endian>
1689 void
1690 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1691     Relobj* object,
1692     unsigned int symndx,
1693     unsigned int got_type,
1694     Output_data_reloc_generic* rel_dyn,
1695     unsigned int r_type)
1696 {
1697   if (object->local_has_got_offset(symndx, got_type))
1698     return;
1699
1700   unsigned int got_offset
1701     = this->add_got_entry_pair(Got_entry(),
1702                                Got_entry(object, symndx, true));
1703   object->set_local_got_offset(symndx, got_type, got_offset);
1704   rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1705 }
1706
1707 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1708
1709 template<int got_size, bool big_endian>
1710 void
1711 Output_data_got<got_size, big_endian>::reserve_local(
1712     unsigned int i,
1713     Relobj* object,
1714     unsigned int sym_index,
1715     unsigned int got_type)
1716 {
1717   this->do_reserve_slot(i);
1718   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1719 }
1720
1721 // Reserve a slot in the GOT for a global symbol.
1722
1723 template<int got_size, bool big_endian>
1724 void
1725 Output_data_got<got_size, big_endian>::reserve_global(
1726     unsigned int i,
1727     Symbol* gsym,
1728     unsigned int got_type)
1729 {
1730   this->do_reserve_slot(i);
1731   gsym->set_got_offset(got_type, this->got_offset(i));
1732 }
1733
1734 // Write out the GOT.
1735
1736 template<int got_size, bool big_endian>
1737 void
1738 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1739 {
1740   const int add = got_size / 8;
1741
1742   const off_t off = this->offset();
1743   const off_t oview_size = this->data_size();
1744   unsigned char* const oview = of->get_output_view(off, oview_size);
1745
1746   unsigned char* pov = oview;
1747   for (unsigned int i = 0; i < this->entries_.size(); ++i)
1748     {
1749       this->entries_[i].write(i, pov);
1750       pov += add;
1751     }
1752
1753   gold_assert(pov - oview == oview_size);
1754
1755   of->write_output_view(off, oview_size, oview);
1756
1757   // We no longer need the GOT entries.
1758   this->entries_.clear();
1759 }
1760
1761 // Create a new GOT entry and return its offset.
1762
1763 template<int got_size, bool big_endian>
1764 unsigned int
1765 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1766 {
1767   if (!this->is_data_size_valid())
1768     {
1769       this->entries_.push_back(got_entry);
1770       this->set_got_size();
1771       return this->last_got_offset();
1772     }
1773   else
1774     {
1775       // For an incremental update, find an available slot.
1776       off_t got_offset = this->free_list_.allocate(got_size / 8,
1777                                                    got_size / 8, 0);
1778       if (got_offset == -1)
1779         gold_fallback(_("out of patch space (GOT);"
1780                         " relink with --incremental-full"));
1781       unsigned int got_index = got_offset / (got_size / 8);
1782       gold_assert(got_index < this->entries_.size());
1783       this->entries_[got_index] = got_entry;
1784       return static_cast<unsigned int>(got_offset);
1785     }
1786 }
1787
1788 // Create a pair of new GOT entries and return the offset of the first.
1789
1790 template<int got_size, bool big_endian>
1791 unsigned int
1792 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1793     Got_entry got_entry_1,
1794     Got_entry got_entry_2)
1795 {
1796   if (!this->is_data_size_valid())
1797     {
1798       unsigned int got_offset;
1799       this->entries_.push_back(got_entry_1);
1800       got_offset = this->last_got_offset();
1801       this->entries_.push_back(got_entry_2);
1802       this->set_got_size();
1803       return got_offset;
1804     }
1805   else
1806     {
1807       // For an incremental update, find an available pair of slots.
1808       off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1809                                                    got_size / 8, 0);
1810       if (got_offset == -1)
1811         gold_fallback(_("out of patch space (GOT);"
1812                         " relink with --incremental-full"));
1813       unsigned int got_index = got_offset / (got_size / 8);
1814       gold_assert(got_index < this->entries_.size());
1815       this->entries_[got_index] = got_entry_1;
1816       this->entries_[got_index + 1] = got_entry_2;
1817       return static_cast<unsigned int>(got_offset);
1818     }
1819 }
1820
1821 // Replace GOT entry I with a new value.
1822
1823 template<int got_size, bool big_endian>
1824 void
1825 Output_data_got<got_size, big_endian>::replace_got_entry(
1826     unsigned int i,
1827     Got_entry got_entry)
1828 {
1829   gold_assert(i < this->entries_.size());
1830   this->entries_[i] = got_entry;
1831 }
1832
1833 // Output_data_dynamic::Dynamic_entry methods.
1834
1835 // Write out the entry.
1836
1837 template<int size, bool big_endian>
1838 void
1839 Output_data_dynamic::Dynamic_entry::write(
1840     unsigned char* pov,
1841     const Stringpool* pool) const
1842 {
1843   typename elfcpp::Elf_types<size>::Elf_WXword val;
1844   switch (this->offset_)
1845     {
1846     case DYNAMIC_NUMBER:
1847       val = this->u_.val;
1848       break;
1849
1850     case DYNAMIC_SECTION_SIZE:
1851       val = this->u_.od->data_size();
1852       if (this->od2 != NULL)
1853         val += this->od2->data_size();
1854       break;
1855
1856     case DYNAMIC_SYMBOL:
1857       {
1858         const Sized_symbol<size>* s =
1859           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1860         val = s->value();
1861       }
1862       break;
1863
1864     case DYNAMIC_STRING:
1865       val = pool->get_offset(this->u_.str);
1866       break;
1867
1868     case DYNAMIC_CUSTOM:
1869       val = parameters->target().dynamic_tag_custom_value(this->tag_);
1870       break;
1871
1872     default:
1873       val = this->u_.od->address() + this->offset_;
1874       break;
1875     }
1876
1877   elfcpp::Dyn_write<size, big_endian> dw(pov);
1878   dw.put_d_tag(this->tag_);
1879   dw.put_d_val(val);
1880 }
1881
1882 // Output_data_dynamic methods.
1883
1884 // Adjust the output section to set the entry size.
1885
1886 void
1887 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1888 {
1889   if (parameters->target().get_size() == 32)
1890     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1891   else if (parameters->target().get_size() == 64)
1892     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1893   else
1894     gold_unreachable();
1895 }
1896
1897 // Get a dynamic entry offset.
1898
1899 unsigned int
1900 Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const
1901 {
1902   int dyn_size;
1903
1904   if (parameters->target().get_size() == 32)
1905     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1906   else if (parameters->target().get_size() == 64)
1907     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1908   else
1909     gold_unreachable();
1910
1911   for (size_t i = 0; i < entries_.size(); ++i)
1912     if (entries_[i].tag() == tag)
1913       return i * dyn_size;
1914
1915   return -1U;
1916 }
1917
1918 // Set the final data size.
1919
1920 void
1921 Output_data_dynamic::set_final_data_size()
1922 {
1923   // Add the terminating entry if it hasn't been added.
1924   // Because of relaxation, we can run this multiple times.
1925   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1926     {
1927       int extra = parameters->options().spare_dynamic_tags();
1928       for (int i = 0; i < extra; ++i)
1929         this->add_constant(elfcpp::DT_NULL, 0);
1930       this->add_constant(elfcpp::DT_NULL, 0);
1931     }
1932
1933   int dyn_size;
1934   if (parameters->target().get_size() == 32)
1935     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1936   else if (parameters->target().get_size() == 64)
1937     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1938   else
1939     gold_unreachable();
1940   this->set_data_size(this->entries_.size() * dyn_size);
1941 }
1942
1943 // Write out the dynamic entries.
1944
1945 void
1946 Output_data_dynamic::do_write(Output_file* of)
1947 {
1948   switch (parameters->size_and_endianness())
1949     {
1950 #ifdef HAVE_TARGET_32_LITTLE
1951     case Parameters::TARGET_32_LITTLE:
1952       this->sized_write<32, false>(of);
1953       break;
1954 #endif
1955 #ifdef HAVE_TARGET_32_BIG
1956     case Parameters::TARGET_32_BIG:
1957       this->sized_write<32, true>(of);
1958       break;
1959 #endif
1960 #ifdef HAVE_TARGET_64_LITTLE
1961     case Parameters::TARGET_64_LITTLE:
1962       this->sized_write<64, false>(of);
1963       break;
1964 #endif
1965 #ifdef HAVE_TARGET_64_BIG
1966     case Parameters::TARGET_64_BIG:
1967       this->sized_write<64, true>(of);
1968       break;
1969 #endif
1970     default:
1971       gold_unreachable();
1972     }
1973 }
1974
1975 template<int size, bool big_endian>
1976 void
1977 Output_data_dynamic::sized_write(Output_file* of)
1978 {
1979   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1980
1981   const off_t offset = this->offset();
1982   const off_t oview_size = this->data_size();
1983   unsigned char* const oview = of->get_output_view(offset, oview_size);
1984
1985   unsigned char* pov = oview;
1986   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1987        p != this->entries_.end();
1988        ++p)
1989     {
1990       p->write<size, big_endian>(pov, this->pool_);
1991       pov += dyn_size;
1992     }
1993
1994   gold_assert(pov - oview == oview_size);
1995
1996   of->write_output_view(offset, oview_size, oview);
1997
1998   // We no longer need the dynamic entries.
1999   this->entries_.clear();
2000 }
2001
2002 // Class Output_symtab_xindex.
2003
2004 void
2005 Output_symtab_xindex::do_write(Output_file* of)
2006 {
2007   const off_t offset = this->offset();
2008   const off_t oview_size = this->data_size();
2009   unsigned char* const oview = of->get_output_view(offset, oview_size);
2010
2011   memset(oview, 0, oview_size);
2012
2013   if (parameters->target().is_big_endian())
2014     this->endian_do_write<true>(oview);
2015   else
2016     this->endian_do_write<false>(oview);
2017
2018   of->write_output_view(offset, oview_size, oview);
2019
2020   // We no longer need the data.
2021   this->entries_.clear();
2022 }
2023
2024 template<bool big_endian>
2025 void
2026 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
2027 {
2028   for (Xindex_entries::const_iterator p = this->entries_.begin();
2029        p != this->entries_.end();
2030        ++p)
2031     {
2032       unsigned int symndx = p->first;
2033       gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
2034       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
2035     }
2036 }
2037
2038 // Output_fill_debug_info methods.
2039
2040 // Return the minimum size needed for a dummy compilation unit header.
2041
2042 size_t
2043 Output_fill_debug_info::do_minimum_hole_size() const
2044 {
2045   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2046   // address_size.
2047   const size_t len = 4 + 2 + 4 + 1;
2048   // For type units, add type_signature, type_offset.
2049   if (this->is_debug_types_)
2050     return len + 8 + 4;
2051   return len;
2052 }
2053
2054 // Write a dummy compilation unit header to fill a hole in the
2055 // .debug_info or .debug_types section.
2056
2057 void
2058 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
2059 {
2060   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
2061              static_cast<long>(off), static_cast<long>(len));
2062
2063   gold_assert(len >= this->do_minimum_hole_size());
2064
2065   unsigned char* const oview = of->get_output_view(off, len);
2066   unsigned char* pov = oview;
2067
2068   // Write header fields: unit_length, version, debug_abbrev_offset,
2069   // address_size.
2070   if (this->is_big_endian())
2071     {
2072       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2073       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2074       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
2075     }
2076   else
2077     {
2078       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2079       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2080       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
2081     }
2082   pov += 4 + 2 + 4;
2083   *pov++ = 4;
2084
2085   // For type units, the additional header fields -- type_signature,
2086   // type_offset -- can be filled with zeroes.
2087
2088   // Fill the remainder of the free space with zeroes.  The first
2089   // zero should tell the consumer there are no DIEs to read in this
2090   // compilation unit.
2091   if (pov < oview + len)
2092     memset(pov, 0, oview + len - pov);
2093
2094   of->write_output_view(off, len, oview);
2095 }
2096
2097 // Output_fill_debug_line methods.
2098
2099 // Return the minimum size needed for a dummy line number program header.
2100
2101 size_t
2102 Output_fill_debug_line::do_minimum_hole_size() const
2103 {
2104   // Line number program header fields: unit_length, version, header_length,
2105   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2106   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2107   const size_t len = 4 + 2 + 4 + this->header_length;
2108   return len;
2109 }
2110
2111 // Write a dummy line number program header to fill a hole in the
2112 // .debug_line section.
2113
2114 void
2115 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2116 {
2117   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2118              static_cast<long>(off), static_cast<long>(len));
2119
2120   gold_assert(len >= this->do_minimum_hole_size());
2121
2122   unsigned char* const oview = of->get_output_view(off, len);
2123   unsigned char* pov = oview;
2124
2125   // Write header fields: unit_length, version, header_length,
2126   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2127   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2128   // We set the header_length field to cover the entire hole, so the
2129   // line number program is empty.
2130   if (this->is_big_endian())
2131     {
2132       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2133       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2134       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2135     }
2136   else
2137     {
2138       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2139       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2140       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2141     }
2142   pov += 4 + 2 + 4;
2143   *pov++ = 1;   // minimum_instruction_length
2144   *pov++ = 0;   // default_is_stmt
2145   *pov++ = 0;   // line_base
2146   *pov++ = 5;   // line_range
2147   *pov++ = 13;  // opcode_base
2148   *pov++ = 0;   // standard_opcode_lengths[1]
2149   *pov++ = 1;   // standard_opcode_lengths[2]
2150   *pov++ = 1;   // standard_opcode_lengths[3]
2151   *pov++ = 1;   // standard_opcode_lengths[4]
2152   *pov++ = 1;   // standard_opcode_lengths[5]
2153   *pov++ = 0;   // standard_opcode_lengths[6]
2154   *pov++ = 0;   // standard_opcode_lengths[7]
2155   *pov++ = 0;   // standard_opcode_lengths[8]
2156   *pov++ = 1;   // standard_opcode_lengths[9]
2157   *pov++ = 0;   // standard_opcode_lengths[10]
2158   *pov++ = 0;   // standard_opcode_lengths[11]
2159   *pov++ = 1;   // standard_opcode_lengths[12]
2160   *pov++ = 0;   // include_directories (empty)
2161   *pov++ = 0;   // filenames (empty)
2162
2163   // Some consumers don't check the header_length field, and simply
2164   // start reading the line number program immediately following the
2165   // header.  For those consumers, we fill the remainder of the free
2166   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2167   // no-ops: the resulting line table program will not create any rows.
2168   if (pov < oview + len)
2169     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2170
2171   of->write_output_view(off, len, oview);
2172 }
2173
2174 // Output_section::Input_section methods.
2175
2176 // Return the current data size.  For an input section we store the size here.
2177 // For an Output_section_data, we have to ask it for the size.
2178
2179 off_t
2180 Output_section::Input_section::current_data_size() const
2181 {
2182   if (this->is_input_section())
2183     return this->u1_.data_size;
2184   else
2185     {
2186       this->u2_.posd->pre_finalize_data_size();
2187       return this->u2_.posd->current_data_size();
2188     }
2189 }
2190
2191 // Return the data size.  For an input section we store the size here.
2192 // For an Output_section_data, we have to ask it for the size.
2193
2194 off_t
2195 Output_section::Input_section::data_size() const
2196 {
2197   if (this->is_input_section())
2198     return this->u1_.data_size;
2199   else
2200     return this->u2_.posd->data_size();
2201 }
2202
2203 // Return the object for an input section.
2204
2205 Relobj*
2206 Output_section::Input_section::relobj() const
2207 {
2208   if (this->is_input_section())
2209     return this->u2_.object;
2210   else if (this->is_merge_section())
2211     {
2212       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2213       return this->u2_.pomb->first_relobj();
2214     }
2215   else if (this->is_relaxed_input_section())
2216     return this->u2_.poris->relobj();
2217   else
2218     gold_unreachable();
2219 }
2220
2221 // Return the input section index for an input section.
2222
2223 unsigned int
2224 Output_section::Input_section::shndx() const
2225 {
2226   if (this->is_input_section())
2227     return this->shndx_;
2228   else if (this->is_merge_section())
2229     {
2230       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2231       return this->u2_.pomb->first_shndx();
2232     }
2233   else if (this->is_relaxed_input_section())
2234     return this->u2_.poris->shndx();
2235   else
2236     gold_unreachable();
2237 }
2238
2239 // Set the address and file offset.
2240
2241 void
2242 Output_section::Input_section::set_address_and_file_offset(
2243     uint64_t address,
2244     off_t file_offset,
2245     off_t section_file_offset)
2246 {
2247   if (this->is_input_section())
2248     this->u2_.object->set_section_offset(this->shndx_,
2249                                          file_offset - section_file_offset);
2250   else
2251     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2252 }
2253
2254 // Reset the address and file offset.
2255
2256 void
2257 Output_section::Input_section::reset_address_and_file_offset()
2258 {
2259   if (!this->is_input_section())
2260     this->u2_.posd->reset_address_and_file_offset();
2261 }
2262
2263 // Finalize the data size.
2264
2265 void
2266 Output_section::Input_section::finalize_data_size()
2267 {
2268   if (!this->is_input_section())
2269     this->u2_.posd->finalize_data_size();
2270 }
2271
2272 // Try to turn an input offset into an output offset.  We want to
2273 // return the output offset relative to the start of this
2274 // Input_section in the output section.
2275
2276 inline bool
2277 Output_section::Input_section::output_offset(
2278     const Relobj* object,
2279     unsigned int shndx,
2280     section_offset_type offset,
2281     section_offset_type* poutput) const
2282 {
2283   if (!this->is_input_section())
2284     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2285   else
2286     {
2287       if (this->shndx_ != shndx || this->u2_.object != object)
2288         return false;
2289       *poutput = offset;
2290       return true;
2291     }
2292 }
2293
2294 // Write out the data.  We don't have to do anything for an input
2295 // section--they are handled via Object::relocate--but this is where
2296 // we write out the data for an Output_section_data.
2297
2298 void
2299 Output_section::Input_section::write(Output_file* of)
2300 {
2301   if (!this->is_input_section())
2302     this->u2_.posd->write(of);
2303 }
2304
2305 // Write the data to a buffer.  As for write(), we don't have to do
2306 // anything for an input section.
2307
2308 void
2309 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2310 {
2311   if (!this->is_input_section())
2312     this->u2_.posd->write_to_buffer(buffer);
2313 }
2314
2315 // Print to a map file.
2316
2317 void
2318 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2319 {
2320   switch (this->shndx_)
2321     {
2322     case OUTPUT_SECTION_CODE:
2323     case MERGE_DATA_SECTION_CODE:
2324     case MERGE_STRING_SECTION_CODE:
2325       this->u2_.posd->print_to_mapfile(mapfile);
2326       break;
2327
2328     case RELAXED_INPUT_SECTION_CODE:
2329       {
2330         Output_relaxed_input_section* relaxed_section =
2331           this->relaxed_input_section();
2332         mapfile->print_input_section(relaxed_section->relobj(),
2333                                      relaxed_section->shndx());
2334       }
2335       break;
2336     default:
2337       mapfile->print_input_section(this->u2_.object, this->shndx_);
2338       break;
2339     }
2340 }
2341
2342 // Output_section methods.
2343
2344 // Construct an Output_section.  NAME will point into a Stringpool.
2345
2346 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2347                                elfcpp::Elf_Xword flags)
2348   : name_(name),
2349     addralign_(0),
2350     entsize_(0),
2351     load_address_(0),
2352     link_section_(NULL),
2353     link_(0),
2354     info_section_(NULL),
2355     info_symndx_(NULL),
2356     info_(0),
2357     type_(type),
2358     flags_(flags),
2359     order_(ORDER_INVALID),
2360     out_shndx_(-1U),
2361     symtab_index_(0),
2362     dynsym_index_(0),
2363     input_sections_(),
2364     first_input_offset_(0),
2365     fills_(),
2366     postprocessing_buffer_(NULL),
2367     needs_symtab_index_(false),
2368     needs_dynsym_index_(false),
2369     should_link_to_symtab_(false),
2370     should_link_to_dynsym_(false),
2371     after_input_sections_(false),
2372     requires_postprocessing_(false),
2373     found_in_sections_clause_(false),
2374     has_load_address_(false),
2375     info_uses_section_index_(false),
2376     input_section_order_specified_(false),
2377     may_sort_attached_input_sections_(false),
2378     must_sort_attached_input_sections_(false),
2379     attached_input_sections_are_sorted_(false),
2380     is_relro_(false),
2381     is_small_section_(false),
2382     is_large_section_(false),
2383     generate_code_fills_at_write_(false),
2384     is_entsize_zero_(false),
2385     section_offsets_need_adjustment_(false),
2386     is_noload_(false),
2387     always_keeps_input_sections_(false),
2388     has_fixed_layout_(false),
2389     is_patch_space_allowed_(false),
2390     is_unique_segment_(false),
2391     tls_offset_(0),
2392     extra_segment_flags_(0),
2393     segment_alignment_(0),
2394     checkpoint_(NULL),
2395     lookup_maps_(new Output_section_lookup_maps),
2396     free_list_(),
2397     free_space_fill_(NULL),
2398     patch_space_(0),
2399     reloc_section_(NULL)
2400 {
2401   // An unallocated section has no address.  Forcing this means that
2402   // we don't need special treatment for symbols defined in debug
2403   // sections.
2404   if ((flags & elfcpp::SHF_ALLOC) == 0)
2405     this->set_address(0);
2406 }
2407
2408 Output_section::~Output_section()
2409 {
2410   delete this->checkpoint_;
2411 }
2412
2413 // Set the entry size.
2414
2415 void
2416 Output_section::set_entsize(uint64_t v)
2417 {
2418   if (this->is_entsize_zero_)
2419     ;
2420   else if (this->entsize_ == 0)
2421     this->entsize_ = v;
2422   else if (this->entsize_ != v)
2423     {
2424       this->entsize_ = 0;
2425       this->is_entsize_zero_ = 1;
2426     }
2427 }
2428
2429 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2430 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2431 // relocation section which applies to this section, or 0 if none, or
2432 // -1U if more than one.  Return the offset of the input section
2433 // within the output section.  Return -1 if the input section will
2434 // receive special handling.  In the normal case we don't always keep
2435 // track of input sections for an Output_section.  Instead, each
2436 // Object keeps track of the Output_section for each of its input
2437 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2438 // track of input sections here; this is used when SECTIONS appears in
2439 // a linker script.
2440
2441 template<int size, bool big_endian>
2442 off_t
2443 Output_section::add_input_section(Layout* layout,
2444                                   Sized_relobj_file<size, big_endian>* object,
2445                                   unsigned int shndx,
2446                                   const char* secname,
2447                                   const elfcpp::Shdr<size, big_endian>& shdr,
2448                                   unsigned int reloc_shndx,
2449                                   bool have_sections_script)
2450 {
2451   section_size_type input_section_size = shdr.get_sh_size();
2452   section_size_type uncompressed_size;
2453   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2454   if (object->section_is_compressed(shndx, &uncompressed_size,
2455                                     &addralign))
2456     input_section_size = uncompressed_size;
2457
2458   if ((addralign & (addralign - 1)) != 0)
2459     {
2460       object->error(_("invalid alignment %lu for section \"%s\""),
2461                     static_cast<unsigned long>(addralign), secname);
2462       addralign = 1;
2463     }
2464
2465   if (addralign > this->addralign_)
2466     this->addralign_ = addralign;
2467
2468   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2469   uint64_t entsize = shdr.get_sh_entsize();
2470
2471   // .debug_str is a mergeable string section, but is not always so
2472   // marked by compilers.  Mark manually here so we can optimize.
2473   if (strcmp(secname, ".debug_str") == 0)
2474     {
2475       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2476       entsize = 1;
2477     }
2478
2479   this->update_flags_for_input_section(sh_flags);
2480   this->set_entsize(entsize);
2481
2482   // If this is a SHF_MERGE section, we pass all the input sections to
2483   // a Output_data_merge.  We don't try to handle relocations for such
2484   // a section.  We don't try to handle empty merge sections--they
2485   // mess up the mappings, and are useless anyhow.
2486   // FIXME: Need to handle merge sections during incremental update.
2487   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2488       && reloc_shndx == 0
2489       && shdr.get_sh_size() > 0
2490       && !parameters->incremental())
2491     {
2492       // Keep information about merged input sections for rebuilding fast
2493       // lookup maps if we have sections-script or we do relaxation.
2494       bool keeps_input_sections = (this->always_keeps_input_sections_
2495                                    || have_sections_script
2496                                    || parameters->target().may_relax());
2497
2498       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2499                                         addralign, keeps_input_sections))
2500         {
2501           // Tell the relocation routines that they need to call the
2502           // output_offset method to determine the final address.
2503           return -1;
2504         }
2505     }
2506
2507   off_t offset_in_section;
2508
2509   if (this->has_fixed_layout())
2510     {
2511       // For incremental updates, find a chunk of unused space in the section.
2512       offset_in_section = this->free_list_.allocate(input_section_size,
2513                                                     addralign, 0);
2514       if (offset_in_section == -1)
2515         gold_fallback(_("out of patch space in section %s; "
2516                         "relink with --incremental-full"),
2517                       this->name());
2518       return offset_in_section;
2519     }
2520
2521   offset_in_section = this->current_data_size_for_child();
2522   off_t aligned_offset_in_section = align_address(offset_in_section,
2523                                                   addralign);
2524   this->set_current_data_size_for_child(aligned_offset_in_section
2525                                         + input_section_size);
2526
2527   // Determine if we want to delay code-fill generation until the output
2528   // section is written.  When the target is relaxing, we want to delay fill
2529   // generating to avoid adjusting them during relaxation.  Also, if we are
2530   // sorting input sections we must delay fill generation.
2531   if (!this->generate_code_fills_at_write_
2532       && !have_sections_script
2533       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2534       && parameters->target().has_code_fill()
2535       && (parameters->target().may_relax()
2536           || layout->is_section_ordering_specified()))
2537     {
2538       gold_assert(this->fills_.empty());
2539       this->generate_code_fills_at_write_ = true;
2540     }
2541
2542   if (aligned_offset_in_section > offset_in_section
2543       && !this->generate_code_fills_at_write_
2544       && !have_sections_script
2545       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2546       && parameters->target().has_code_fill())
2547     {
2548       // We need to add some fill data.  Using fill_list_ when
2549       // possible is an optimization, since we will often have fill
2550       // sections without input sections.
2551       off_t fill_len = aligned_offset_in_section - offset_in_section;
2552       if (this->input_sections_.empty())
2553         this->fills_.push_back(Fill(offset_in_section, fill_len));
2554       else
2555         {
2556           std::string fill_data(parameters->target().code_fill(fill_len));
2557           Output_data_const* odc = new Output_data_const(fill_data, 1);
2558           this->input_sections_.push_back(Input_section(odc));
2559         }
2560     }
2561
2562   // We need to keep track of this section if we are already keeping
2563   // track of sections, or if we are relaxing.  Also, if this is a
2564   // section which requires sorting, or which may require sorting in
2565   // the future, we keep track of the sections.  If the
2566   // --section-ordering-file option is used to specify the order of
2567   // sections, we need to keep track of sections.
2568   if (this->always_keeps_input_sections_
2569       || have_sections_script
2570       || !this->input_sections_.empty()
2571       || this->may_sort_attached_input_sections()
2572       || this->must_sort_attached_input_sections()
2573       || parameters->options().user_set_Map()
2574       || parameters->target().may_relax()
2575       || layout->is_section_ordering_specified())
2576     {
2577       Input_section isecn(object, shndx, input_section_size, addralign);
2578       /* If section ordering is requested by specifying a ordering file,
2579          using --section-ordering-file, match the section name with
2580          a pattern.  */
2581       if (parameters->options().section_ordering_file())
2582         {
2583           unsigned int section_order_index =
2584             layout->find_section_order_index(std::string(secname));
2585           if (section_order_index != 0)
2586             {
2587               isecn.set_section_order_index(section_order_index);
2588               this->set_input_section_order_specified();
2589             }
2590         }
2591       this->input_sections_.push_back(isecn);
2592     }
2593
2594   return aligned_offset_in_section;
2595 }
2596
2597 // Add arbitrary data to an output section.
2598
2599 void
2600 Output_section::add_output_section_data(Output_section_data* posd)
2601 {
2602   Input_section inp(posd);
2603   this->add_output_section_data(&inp);
2604
2605   if (posd->is_data_size_valid())
2606     {
2607       off_t offset_in_section;
2608       if (this->has_fixed_layout())
2609         {
2610           // For incremental updates, find a chunk of unused space.
2611           offset_in_section = this->free_list_.allocate(posd->data_size(),
2612                                                         posd->addralign(), 0);
2613           if (offset_in_section == -1)
2614             gold_fallback(_("out of patch space in section %s; "
2615                             "relink with --incremental-full"),
2616                           this->name());
2617           // Finalize the address and offset now.
2618           uint64_t addr = this->address();
2619           off_t offset = this->offset();
2620           posd->set_address_and_file_offset(addr + offset_in_section,
2621                                             offset + offset_in_section);
2622         }
2623       else
2624         {
2625           offset_in_section = this->current_data_size_for_child();
2626           off_t aligned_offset_in_section = align_address(offset_in_section,
2627                                                           posd->addralign());
2628           this->set_current_data_size_for_child(aligned_offset_in_section
2629                                                 + posd->data_size());
2630         }
2631     }
2632   else if (this->has_fixed_layout())
2633     {
2634       // For incremental updates, arrange for the data to have a fixed layout.
2635       // This will mean that additions to the data must be allocated from
2636       // free space within the containing output section.
2637       uint64_t addr = this->address();
2638       posd->set_address(addr);
2639       posd->set_file_offset(0);
2640       // FIXME: This should eventually be unreachable.
2641       // gold_unreachable();
2642     }
2643 }
2644
2645 // Add a relaxed input section.
2646
2647 void
2648 Output_section::add_relaxed_input_section(Layout* layout,
2649                                           Output_relaxed_input_section* poris,
2650                                           const std::string& name)
2651 {
2652   Input_section inp(poris);
2653
2654   // If the --section-ordering-file option is used to specify the order of
2655   // sections, we need to keep track of sections.
2656   if (layout->is_section_ordering_specified())
2657     {
2658       unsigned int section_order_index =
2659         layout->find_section_order_index(name);
2660       if (section_order_index != 0)
2661         {
2662           inp.set_section_order_index(section_order_index);
2663           this->set_input_section_order_specified();
2664         }
2665     }
2666
2667   this->add_output_section_data(&inp);
2668   if (this->lookup_maps_->is_valid())
2669     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2670                                                   poris->shndx(), poris);
2671
2672   // For a relaxed section, we use the current data size.  Linker scripts
2673   // get all the input sections, including relaxed one from an output
2674   // section and add them back to the same output section to compute the
2675   // output section size.  If we do not account for sizes of relaxed input
2676   // sections, an output section would be incorrectly sized.
2677   off_t offset_in_section = this->current_data_size_for_child();
2678   off_t aligned_offset_in_section = align_address(offset_in_section,
2679                                                   poris->addralign());
2680   this->set_current_data_size_for_child(aligned_offset_in_section
2681                                         + poris->current_data_size());
2682 }
2683
2684 // Add arbitrary data to an output section by Input_section.
2685
2686 void
2687 Output_section::add_output_section_data(Input_section* inp)
2688 {
2689   if (this->input_sections_.empty())
2690     this->first_input_offset_ = this->current_data_size_for_child();
2691
2692   this->input_sections_.push_back(*inp);
2693
2694   uint64_t addralign = inp->addralign();
2695   if (addralign > this->addralign_)
2696     this->addralign_ = addralign;
2697
2698   inp->set_output_section(this);
2699 }
2700
2701 // Add a merge section to an output section.
2702
2703 void
2704 Output_section::add_output_merge_section(Output_section_data* posd,
2705                                          bool is_string, uint64_t entsize)
2706 {
2707   Input_section inp(posd, is_string, entsize);
2708   this->add_output_section_data(&inp);
2709 }
2710
2711 // Add an input section to a SHF_MERGE section.
2712
2713 bool
2714 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2715                                         uint64_t flags, uint64_t entsize,
2716                                         uint64_t addralign,
2717                                         bool keeps_input_sections)
2718 {
2719   // We cannot merge sections with entsize == 0.
2720   if (entsize == 0)
2721     return false;
2722
2723   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2724
2725   // We cannot restore merged input section states.
2726   gold_assert(this->checkpoint_ == NULL);
2727
2728   // Look up merge sections by required properties.
2729   // Currently, we only invalidate the lookup maps in script processing
2730   // and relaxation.  We should not have done either when we reach here.
2731   // So we assume that the lookup maps are valid to simply code.
2732   gold_assert(this->lookup_maps_->is_valid());
2733   Merge_section_properties msp(is_string, entsize, addralign);
2734   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2735   bool is_new = false;
2736   if (pomb != NULL)
2737     {
2738       gold_assert(pomb->is_string() == is_string
2739                   && pomb->entsize() == entsize
2740                   && pomb->addralign() == addralign);
2741     }
2742   else
2743     {
2744       // Create a new Output_merge_data or Output_merge_string_data.
2745       if (!is_string)
2746         pomb = new Output_merge_data(entsize, addralign);
2747       else
2748         {
2749           switch (entsize)
2750             {
2751             case 1:
2752               pomb = new Output_merge_string<char>(addralign);
2753               break;
2754             case 2:
2755               pomb = new Output_merge_string<uint16_t>(addralign);
2756               break;
2757             case 4:
2758               pomb = new Output_merge_string<uint32_t>(addralign);
2759               break;
2760             default:
2761               return false;
2762             }
2763         }
2764       // If we need to do script processing or relaxation, we need to keep
2765       // the original input sections to rebuild the fast lookup maps.
2766       if (keeps_input_sections)
2767         pomb->set_keeps_input_sections();
2768       is_new = true;
2769     }
2770
2771   if (pomb->add_input_section(object, shndx))
2772     {
2773       // Add new merge section to this output section and link merge
2774       // section properties to new merge section in map.
2775       if (is_new)
2776         {
2777           this->add_output_merge_section(pomb, is_string, entsize);
2778           this->lookup_maps_->add_merge_section(msp, pomb);
2779         }
2780
2781       return true;
2782     }
2783   else
2784     {
2785       // If add_input_section failed, delete new merge section to avoid
2786       // exporting empty merge sections in Output_section::get_input_section.
2787       if (is_new)
2788         delete pomb;
2789       return false;
2790     }
2791 }
2792
2793 // Build a relaxation map to speed up relaxation of existing input sections.
2794 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2795
2796 void
2797 Output_section::build_relaxation_map(
2798   const Input_section_list& input_sections,
2799   size_t limit,
2800   Relaxation_map* relaxation_map) const
2801 {
2802   for (size_t i = 0; i < limit; ++i)
2803     {
2804       const Input_section& is(input_sections[i]);
2805       if (is.is_input_section() || is.is_relaxed_input_section())
2806         {
2807           Section_id sid(is.relobj(), is.shndx());
2808           (*relaxation_map)[sid] = i;
2809         }
2810     }
2811 }
2812
2813 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2814 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2815 // indices of INPUT_SECTIONS.
2816
2817 void
2818 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2819   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2820   const Relaxation_map& map,
2821   Input_section_list* input_sections)
2822 {
2823   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2824     {
2825       Output_relaxed_input_section* poris = relaxed_sections[i];
2826       Section_id sid(poris->relobj(), poris->shndx());
2827       Relaxation_map::const_iterator p = map.find(sid);
2828       gold_assert(p != map.end());
2829       gold_assert((*input_sections)[p->second].is_input_section());
2830
2831       // Remember section order index of original input section
2832       // if it is set.  Copy it to the relaxed input section.
2833       unsigned int soi =
2834         (*input_sections)[p->second].section_order_index();
2835       (*input_sections)[p->second] = Input_section(poris);
2836       (*input_sections)[p->second].set_section_order_index(soi);
2837     }
2838 }
2839
2840 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2841 // is a vector of pointers to Output_relaxed_input_section or its derived
2842 // classes.  The relaxed sections must correspond to existing input sections.
2843
2844 void
2845 Output_section::convert_input_sections_to_relaxed_sections(
2846   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2847 {
2848   gold_assert(parameters->target().may_relax());
2849
2850   // We want to make sure that restore_states does not undo the effect of
2851   // this.  If there is no checkpoint active, just search the current
2852   // input section list and replace the sections there.  If there is
2853   // a checkpoint, also replace the sections there.
2854
2855   // By default, we look at the whole list.
2856   size_t limit = this->input_sections_.size();
2857
2858   if (this->checkpoint_ != NULL)
2859     {
2860       // Replace input sections with relaxed input section in the saved
2861       // copy of the input section list.
2862       if (this->checkpoint_->input_sections_saved())
2863         {
2864           Relaxation_map map;
2865           this->build_relaxation_map(
2866                     *(this->checkpoint_->input_sections()),
2867                     this->checkpoint_->input_sections()->size(),
2868                     &map);
2869           this->convert_input_sections_in_list_to_relaxed_sections(
2870                     relaxed_sections,
2871                     map,
2872                     this->checkpoint_->input_sections());
2873         }
2874       else
2875         {
2876           // We have not copied the input section list yet.  Instead, just
2877           // look at the portion that would be saved.
2878           limit = this->checkpoint_->input_sections_size();
2879         }
2880     }
2881
2882   // Convert input sections in input_section_list.
2883   Relaxation_map map;
2884   this->build_relaxation_map(this->input_sections_, limit, &map);
2885   this->convert_input_sections_in_list_to_relaxed_sections(
2886             relaxed_sections,
2887             map,
2888             &this->input_sections_);
2889
2890   // Update fast look-up map.
2891   if (this->lookup_maps_->is_valid())
2892     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2893       {
2894         Output_relaxed_input_section* poris = relaxed_sections[i];
2895         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2896                                                       poris->shndx(), poris);
2897       }
2898 }
2899
2900 // Update the output section flags based on input section flags.
2901
2902 void
2903 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2904 {
2905   // If we created the section with SHF_ALLOC clear, we set the
2906   // address.  If we are now setting the SHF_ALLOC flag, we need to
2907   // undo that.
2908   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2909       && (flags & elfcpp::SHF_ALLOC) != 0)
2910     this->mark_address_invalid();
2911
2912   this->flags_ |= (flags
2913                    & (elfcpp::SHF_WRITE
2914                       | elfcpp::SHF_ALLOC
2915                       | elfcpp::SHF_EXECINSTR));
2916
2917   if ((flags & elfcpp::SHF_MERGE) == 0)
2918     this->flags_ &=~ elfcpp::SHF_MERGE;
2919   else
2920     {
2921       if (this->current_data_size_for_child() == 0)
2922         this->flags_ |= elfcpp::SHF_MERGE;
2923     }
2924
2925   if ((flags & elfcpp::SHF_STRINGS) == 0)
2926     this->flags_ &=~ elfcpp::SHF_STRINGS;
2927   else
2928     {
2929       if (this->current_data_size_for_child() == 0)
2930         this->flags_ |= elfcpp::SHF_STRINGS;
2931     }
2932 }
2933
2934 // Find the merge section into which an input section with index SHNDX in
2935 // OBJECT has been added.  Return NULL if none found.
2936
2937 const Output_section_data*
2938 Output_section::find_merge_section(const Relobj* object,
2939                                    unsigned int shndx) const
2940 {
2941   return object->find_merge_section(shndx);
2942 }
2943
2944 // Build the lookup maps for relaxed sections.  This needs
2945 // to be declared as a const method so that it is callable with a const
2946 // Output_section pointer.  The method only updates states of the maps.
2947
2948 void
2949 Output_section::build_lookup_maps() const
2950 {
2951   this->lookup_maps_->clear();
2952   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2953        p != this->input_sections_.end();
2954        ++p)
2955     {
2956       if (p->is_relaxed_input_section())
2957         {
2958           Output_relaxed_input_section* poris = p->relaxed_input_section();
2959           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2960                                                         poris->shndx(), poris);
2961         }
2962     }
2963 }
2964
2965 // Find an relaxed input section corresponding to an input section
2966 // in OBJECT with index SHNDX.
2967
2968 const Output_relaxed_input_section*
2969 Output_section::find_relaxed_input_section(const Relobj* object,
2970                                            unsigned int shndx) const
2971 {
2972   if (!this->lookup_maps_->is_valid())
2973     this->build_lookup_maps();
2974   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2975 }
2976
2977 // Given an address OFFSET relative to the start of input section
2978 // SHNDX in OBJECT, return whether this address is being included in
2979 // the final link.  This should only be called if SHNDX in OBJECT has
2980 // a special mapping.
2981
2982 bool
2983 Output_section::is_input_address_mapped(const Relobj* object,
2984                                         unsigned int shndx,
2985                                         off_t offset) const
2986 {
2987   // Look at the Output_section_data_maps first.
2988   const Output_section_data* posd = this->find_merge_section(object, shndx);
2989   if (posd == NULL)
2990     posd = this->find_relaxed_input_section(object, shndx);
2991
2992   if (posd != NULL)
2993     {
2994       section_offset_type output_offset;
2995       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2996       // By default we assume that the address is mapped. See comment at the
2997       // end.
2998       if (!found)
2999         return true;
3000       return output_offset != -1;
3001     }
3002
3003   // Fall back to the slow look-up.
3004   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3005        p != this->input_sections_.end();
3006        ++p)
3007     {
3008       section_offset_type output_offset;
3009       if (p->output_offset(object, shndx, offset, &output_offset))
3010         return output_offset != -1;
3011     }
3012
3013   // By default we assume that the address is mapped.  This should
3014   // only be called after we have passed all sections to Layout.  At
3015   // that point we should know what we are discarding.
3016   return true;
3017 }
3018
3019 // Given an address OFFSET relative to the start of input section
3020 // SHNDX in object OBJECT, return the output offset relative to the
3021 // start of the input section in the output section.  This should only
3022 // be called if SHNDX in OBJECT has a special mapping.
3023
3024 section_offset_type
3025 Output_section::output_offset(const Relobj* object, unsigned int shndx,
3026                               section_offset_type offset) const
3027 {
3028   // This can only be called meaningfully when we know the data size
3029   // of this.
3030   gold_assert(this->is_data_size_valid());
3031
3032   // Look at the Output_section_data_maps first.
3033   const Output_section_data* posd = this->find_merge_section(object, shndx);
3034   if (posd == NULL)
3035     posd = this->find_relaxed_input_section(object, shndx);
3036   if (posd != NULL)
3037     {
3038       section_offset_type output_offset;
3039       bool found = posd->output_offset(object, shndx, offset, &output_offset);
3040       gold_assert(found);
3041       return output_offset;
3042     }
3043
3044   // Fall back to the slow look-up.
3045   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3046        p != this->input_sections_.end();
3047        ++p)
3048     {
3049       section_offset_type output_offset;
3050       if (p->output_offset(object, shndx, offset, &output_offset))
3051         return output_offset;
3052     }
3053   gold_unreachable();
3054 }
3055
3056 // Return the output virtual address of OFFSET relative to the start
3057 // of input section SHNDX in object OBJECT.
3058
3059 uint64_t
3060 Output_section::output_address(const Relobj* object, unsigned int shndx,
3061                                off_t offset) const
3062 {
3063   uint64_t addr = this->address() + this->first_input_offset_;
3064
3065   // Look at the Output_section_data_maps first.
3066   const Output_section_data* posd = this->find_merge_section(object, shndx);
3067   if (posd == NULL)
3068     posd = this->find_relaxed_input_section(object, shndx);
3069   if (posd != NULL && posd->is_address_valid())
3070     {
3071       section_offset_type output_offset;
3072       bool found = posd->output_offset(object, shndx, offset, &output_offset);
3073       gold_assert(found);
3074       return posd->address() + output_offset;
3075     }
3076
3077   // Fall back to the slow look-up.
3078   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3079        p != this->input_sections_.end();
3080        ++p)
3081     {
3082       addr = align_address(addr, p->addralign());
3083       section_offset_type output_offset;
3084       if (p->output_offset(object, shndx, offset, &output_offset))
3085         {
3086           if (output_offset == -1)
3087             return -1ULL;
3088           return addr + output_offset;
3089         }
3090       addr += p->data_size();
3091     }
3092
3093   // If we get here, it means that we don't know the mapping for this
3094   // input section.  This might happen in principle if
3095   // add_input_section were called before add_output_section_data.
3096   // But it should never actually happen.
3097
3098   gold_unreachable();
3099 }
3100
3101 // Find the output address of the start of the merged section for
3102 // input section SHNDX in object OBJECT.
3103
3104 bool
3105 Output_section::find_starting_output_address(const Relobj* object,
3106                                              unsigned int shndx,
3107                                              uint64_t* paddr) const
3108 {
3109   const Output_section_data* data = this->find_merge_section(object, shndx);
3110   if (data == NULL)
3111     return false;
3112
3113   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3114   // Looking up the merge section map does not always work as we sometimes
3115   // find a merge section without its address set.
3116   uint64_t addr = this->address() + this->first_input_offset_;
3117   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3118        p != this->input_sections_.end();
3119        ++p)
3120     {
3121       addr = align_address(addr, p->addralign());
3122
3123       // It would be nice if we could use the existing output_offset
3124       // method to get the output offset of input offset 0.
3125       // Unfortunately we don't know for sure that input offset 0 is
3126       // mapped at all.
3127       if (!p->is_input_section() && p->output_section_data() == data)
3128         {
3129           *paddr = addr;
3130           return true;
3131         }
3132
3133       addr += p->data_size();
3134     }
3135
3136   // We couldn't find a merge output section for this input section.
3137   return false;
3138 }
3139
3140 // Update the data size of an Output_section.
3141
3142 void
3143 Output_section::update_data_size()
3144 {
3145   if (this->input_sections_.empty())
3146       return;
3147
3148   if (this->must_sort_attached_input_sections()
3149       || this->input_section_order_specified())
3150     this->sort_attached_input_sections();
3151
3152   off_t off = this->first_input_offset_;
3153   for (Input_section_list::iterator p = this->input_sections_.begin();
3154        p != this->input_sections_.end();
3155        ++p)
3156     {
3157       off = align_address(off, p->addralign());
3158       off += p->current_data_size();
3159     }
3160
3161   this->set_current_data_size_for_child(off);
3162 }
3163
3164 // Set the data size of an Output_section.  This is where we handle
3165 // setting the addresses of any Output_section_data objects.
3166
3167 void
3168 Output_section::set_final_data_size()
3169 {
3170   off_t data_size;
3171
3172   if (this->input_sections_.empty())
3173     data_size = this->current_data_size_for_child();
3174   else
3175     {
3176       if (this->must_sort_attached_input_sections()
3177           || this->input_section_order_specified())
3178         this->sort_attached_input_sections();
3179
3180       uint64_t address = this->address();
3181       off_t startoff = this->offset();
3182       off_t off = this->first_input_offset_;
3183       for (Input_section_list::iterator p = this->input_sections_.begin();
3184            p != this->input_sections_.end();
3185            ++p)
3186         {
3187           off = align_address(off, p->addralign());
3188           p->set_address_and_file_offset(address + off, startoff + off,
3189                                          startoff);
3190           off += p->data_size();
3191         }
3192       data_size = off;
3193     }
3194
3195   // For full incremental links, we want to allocate some patch space
3196   // in most sections for subsequent incremental updates.
3197   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3198     {
3199       double pct = parameters->options().incremental_patch();
3200       size_t extra = static_cast<size_t>(data_size * pct);
3201       if (this->free_space_fill_ != NULL
3202           && this->free_space_fill_->minimum_hole_size() > extra)
3203         extra = this->free_space_fill_->minimum_hole_size();
3204       off_t new_size = align_address(data_size + extra, this->addralign());
3205       this->patch_space_ = new_size - data_size;
3206       gold_debug(DEBUG_INCREMENTAL,
3207                  "set_final_data_size: %08lx + %08lx: section %s",
3208                  static_cast<long>(data_size),
3209                  static_cast<long>(this->patch_space_),
3210                  this->name());
3211       data_size = new_size;
3212     }
3213
3214   this->set_data_size(data_size);
3215 }
3216
3217 // Reset the address and file offset.
3218
3219 void
3220 Output_section::do_reset_address_and_file_offset()
3221 {
3222   // An unallocated section has no address.  Forcing this means that
3223   // we don't need special treatment for symbols defined in debug
3224   // sections.  We do the same in the constructor.  This does not
3225   // apply to NOLOAD sections though.
3226   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3227      this->set_address(0);
3228
3229   for (Input_section_list::iterator p = this->input_sections_.begin();
3230        p != this->input_sections_.end();
3231        ++p)
3232     p->reset_address_and_file_offset();
3233
3234   // Remove any patch space that was added in set_final_data_size.
3235   if (this->patch_space_ > 0)
3236     {
3237       this->set_current_data_size_for_child(this->current_data_size_for_child()
3238                                             - this->patch_space_);
3239       this->patch_space_ = 0;
3240     }
3241 }
3242
3243 // Return true if address and file offset have the values after reset.
3244
3245 bool
3246 Output_section::do_address_and_file_offset_have_reset_values() const
3247 {
3248   if (this->is_offset_valid())
3249     return false;
3250
3251   // An unallocated section has address 0 after its construction or a reset.
3252   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3253     return this->is_address_valid() && this->address() == 0;
3254   else
3255     return !this->is_address_valid();
3256 }
3257
3258 // Set the TLS offset.  Called only for SHT_TLS sections.
3259
3260 void
3261 Output_section::do_set_tls_offset(uint64_t tls_base)
3262 {
3263   this->tls_offset_ = this->address() - tls_base;
3264 }
3265
3266 // In a few cases we need to sort the input sections attached to an
3267 // output section.  This is used to implement the type of constructor
3268 // priority ordering implemented by the GNU linker, in which the
3269 // priority becomes part of the section name and the sections are
3270 // sorted by name.  We only do this for an output section if we see an
3271 // attached input section matching ".ctors.*", ".dtors.*",
3272 // ".init_array.*" or ".fini_array.*".
3273
3274 class Output_section::Input_section_sort_entry
3275 {
3276  public:
3277   Input_section_sort_entry()
3278     : input_section_(), index_(-1U), section_name_()
3279   { }
3280
3281   Input_section_sort_entry(const Input_section& input_section,
3282                            unsigned int index,
3283                            bool must_sort_attached_input_sections,
3284                            const char* output_section_name)
3285     : input_section_(input_section), index_(index), section_name_()
3286   {
3287     if ((input_section.is_input_section()
3288          || input_section.is_relaxed_input_section())
3289         && must_sort_attached_input_sections)
3290       {
3291         // This is only called single-threaded from Layout::finalize,
3292         // so it is OK to lock.  Unfortunately we have no way to pass
3293         // in a Task token.
3294         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3295         Object* obj = (input_section.is_input_section()
3296                        ? input_section.relobj()
3297                        : input_section.relaxed_input_section()->relobj());
3298         Task_lock_obj<Object> tl(dummy_task, obj);
3299
3300         // This is a slow operation, which should be cached in
3301         // Layout::layout if this becomes a speed problem.
3302         this->section_name_ = obj->section_name(input_section.shndx());
3303       }
3304     else if (input_section.is_output_section_data()
3305              && must_sort_attached_input_sections)
3306       {
3307         // For linker-generated sections, use the output section name.
3308         this->section_name_.assign(output_section_name);
3309       }
3310   }
3311
3312   // Return the Input_section.
3313   const Input_section&
3314   input_section() const
3315   {
3316     gold_assert(this->index_ != -1U);
3317     return this->input_section_;
3318   }
3319
3320   // The index of this entry in the original list.  This is used to
3321   // make the sort stable.
3322   unsigned int
3323   index() const
3324   {
3325     gold_assert(this->index_ != -1U);
3326     return this->index_;
3327   }
3328
3329   // The section name.
3330   const std::string&
3331   section_name() const
3332   {
3333     return this->section_name_;
3334   }
3335
3336   // Return true if the section name has a priority.  This is assumed
3337   // to be true if it has a dot after the initial dot.
3338   bool
3339   has_priority() const
3340   {
3341     return this->section_name_.find('.', 1) != std::string::npos;
3342   }
3343
3344   // Return the priority.  Believe it or not, gcc encodes the priority
3345   // differently for .ctors/.dtors and .init_array/.fini_array
3346   // sections.
3347   unsigned int
3348   get_priority() const
3349   {
3350     bool is_ctors;
3351     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3352         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3353       is_ctors = true;
3354     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3355              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3356       is_ctors = false;
3357     else
3358       return 0;
3359     char* end;
3360     unsigned long prio = strtoul((this->section_name_.c_str()
3361                                   + (is_ctors ? 7 : 12)),
3362                                  &end, 10);
3363     if (*end != '\0')
3364       return 0;
3365     else if (is_ctors)
3366       return 65535 - prio;
3367     else
3368       return prio;
3369   }
3370
3371   // Return true if this an input file whose base name matches
3372   // FILE_NAME.  The base name must have an extension of ".o", and
3373   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3374   // This is to match crtbegin.o as well as crtbeginS.o without
3375   // getting confused by other possibilities.  Overall matching the
3376   // file name this way is a dreadful hack, but the GNU linker does it
3377   // in order to better support gcc, and we need to be compatible.
3378   bool
3379   match_file_name(const char* file_name) const
3380   {
3381     if (this->input_section_.is_output_section_data())
3382       return false;
3383     return Layout::match_file_name(this->input_section_.relobj(), file_name);
3384   }
3385
3386   // Returns 1 if THIS should appear before S in section order, -1 if S
3387   // appears before THIS and 0 if they are not comparable.
3388   int
3389   compare_section_ordering(const Input_section_sort_entry& s) const
3390   {
3391     unsigned int this_secn_index = this->input_section_.section_order_index();
3392     unsigned int s_secn_index = s.input_section().section_order_index();
3393     if (this_secn_index > 0 && s_secn_index > 0)
3394       {
3395         if (this_secn_index < s_secn_index)
3396           return 1;
3397         else if (this_secn_index > s_secn_index)
3398           return -1;
3399       }
3400     return 0;
3401   }
3402
3403  private:
3404   // The Input_section we are sorting.
3405   Input_section input_section_;
3406   // The index of this Input_section in the original list.
3407   unsigned int index_;
3408   // The section name if there is one.
3409   std::string section_name_;
3410 };
3411
3412 // Return true if S1 should come before S2 in the output section.
3413
3414 bool
3415 Output_section::Input_section_sort_compare::operator()(
3416     const Output_section::Input_section_sort_entry& s1,
3417     const Output_section::Input_section_sort_entry& s2) const
3418 {
3419   // crtbegin.o must come first.
3420   bool s1_begin = s1.match_file_name("crtbegin");
3421   bool s2_begin = s2.match_file_name("crtbegin");
3422   if (s1_begin || s2_begin)
3423     {
3424       if (!s1_begin)
3425         return false;
3426       if (!s2_begin)
3427         return true;
3428       return s1.index() < s2.index();
3429     }
3430
3431   // crtend.o must come last.
3432   bool s1_end = s1.match_file_name("crtend");
3433   bool s2_end = s2.match_file_name("crtend");
3434   if (s1_end || s2_end)
3435     {
3436       if (!s1_end)
3437         return true;
3438       if (!s2_end)
3439         return false;
3440       return s1.index() < s2.index();
3441     }
3442
3443   // A section with a priority follows a section without a priority.
3444   bool s1_has_priority = s1.has_priority();
3445   bool s2_has_priority = s2.has_priority();
3446   if (s1_has_priority && !s2_has_priority)
3447     return false;
3448   if (!s1_has_priority && s2_has_priority)
3449     return true;
3450
3451   // Check if a section order exists for these sections through a section
3452   // ordering file.  If sequence_num is 0, an order does not exist.
3453   int sequence_num = s1.compare_section_ordering(s2);
3454   if (sequence_num != 0)
3455     return sequence_num == 1;
3456
3457   // Otherwise we sort by name.
3458   int compare = s1.section_name().compare(s2.section_name());
3459   if (compare != 0)
3460     return compare < 0;
3461
3462   // Otherwise we keep the input order.
3463   return s1.index() < s2.index();
3464 }
3465
3466 // Return true if S1 should come before S2 in an .init_array or .fini_array
3467 // output section.
3468
3469 bool
3470 Output_section::Input_section_sort_init_fini_compare::operator()(
3471     const Output_section::Input_section_sort_entry& s1,
3472     const Output_section::Input_section_sort_entry& s2) const
3473 {
3474   // A section without a priority follows a section with a priority.
3475   // This is the reverse of .ctors and .dtors sections.
3476   bool s1_has_priority = s1.has_priority();
3477   bool s2_has_priority = s2.has_priority();
3478   if (s1_has_priority && !s2_has_priority)
3479     return true;
3480   if (!s1_has_priority && s2_has_priority)
3481     return false;
3482
3483   // .ctors and .dtors sections without priority come after
3484   // .init_array and .fini_array sections without priority.
3485   if (!s1_has_priority
3486       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3487       && s1.section_name() != s2.section_name())
3488     return false;
3489   if (!s2_has_priority
3490       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3491       && s2.section_name() != s1.section_name())
3492     return true;
3493
3494   // Sort by priority if we can.
3495   if (s1_has_priority)
3496     {
3497       unsigned int s1_prio = s1.get_priority();
3498       unsigned int s2_prio = s2.get_priority();
3499       if (s1_prio < s2_prio)
3500         return true;
3501       else if (s1_prio > s2_prio)
3502         return false;
3503     }
3504
3505   // Check if a section order exists for these sections through a section
3506   // ordering file.  If sequence_num is 0, an order does not exist.
3507   int sequence_num = s1.compare_section_ordering(s2);
3508   if (sequence_num != 0)
3509     return sequence_num == 1;
3510
3511   // Otherwise we sort by name.
3512   int compare = s1.section_name().compare(s2.section_name());
3513   if (compare != 0)
3514     return compare < 0;
3515
3516   // Otherwise we keep the input order.
3517   return s1.index() < s2.index();
3518 }
3519
3520 // Return true if S1 should come before S2.  Sections that do not match
3521 // any pattern in the section ordering file are placed ahead of the sections
3522 // that match some pattern.
3523
3524 bool
3525 Output_section::Input_section_sort_section_order_index_compare::operator()(
3526     const Output_section::Input_section_sort_entry& s1,
3527     const Output_section::Input_section_sort_entry& s2) const
3528 {
3529   unsigned int s1_secn_index = s1.input_section().section_order_index();
3530   unsigned int s2_secn_index = s2.input_section().section_order_index();
3531
3532   // Keep input order if section ordering cannot determine order.
3533   if (s1_secn_index == s2_secn_index)
3534     return s1.index() < s2.index();
3535
3536   return s1_secn_index < s2_secn_index;
3537 }
3538
3539 // Return true if S1 should come before S2.  This is the sort comparison
3540 // function for .text to sort sections with prefixes
3541 // .text.{unlikely,exit,startup,hot} before other sections.
3542
3543 bool
3544 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3545   ::operator()(
3546     const Output_section::Input_section_sort_entry& s1,
3547     const Output_section::Input_section_sort_entry& s2) const
3548 {
3549   // Some input section names have special ordering requirements.
3550   int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3551   int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3552   if (o1 != o2)
3553     {
3554       if (o1 < 0)
3555         return false;
3556       else if (o2 < 0)
3557         return true;
3558       else
3559         return o1 < o2;
3560     }
3561
3562   // Keep input order otherwise.
3563   return s1.index() < s2.index();
3564 }
3565
3566 // Return true if S1 should come before S2.  This is the sort comparison
3567 // function for sections to sort them by name.
3568
3569 bool
3570 Output_section::Input_section_sort_section_name_compare
3571   ::operator()(
3572     const Output_section::Input_section_sort_entry& s1,
3573     const Output_section::Input_section_sort_entry& s2) const
3574 {
3575   // We sort by name.
3576   int compare = s1.section_name().compare(s2.section_name());
3577   if (compare != 0)
3578     return compare < 0;
3579
3580   // Keep input order otherwise.
3581   return s1.index() < s2.index();
3582 }
3583
3584 // This updates the section order index of input sections according to the
3585 // the order specified in the mapping from Section id to order index.
3586
3587 void
3588 Output_section::update_section_layout(
3589   const Section_layout_order* order_map)
3590 {
3591   for (Input_section_list::iterator p = this->input_sections_.begin();
3592        p != this->input_sections_.end();
3593        ++p)
3594     {
3595       if (p->is_input_section()
3596           || p->is_relaxed_input_section())
3597         {
3598           Relobj* obj = (p->is_input_section()
3599                          ? p->relobj()
3600                          : p->relaxed_input_section()->relobj());
3601           unsigned int shndx = p->shndx();
3602           Section_layout_order::const_iterator it
3603             = order_map->find(Section_id(obj, shndx));
3604           if (it == order_map->end())
3605             continue;
3606           unsigned int section_order_index = it->second;
3607           if (section_order_index != 0)
3608             {
3609               p->set_section_order_index(section_order_index);
3610               this->set_input_section_order_specified();
3611             }
3612         }
3613     }
3614 }
3615
3616 // Sort the input sections attached to an output section.
3617
3618 void
3619 Output_section::sort_attached_input_sections()
3620 {
3621   if (this->attached_input_sections_are_sorted_)
3622     return;
3623
3624   if (this->checkpoint_ != NULL
3625       && !this->checkpoint_->input_sections_saved())
3626     this->checkpoint_->save_input_sections();
3627
3628   // The only thing we know about an input section is the object and
3629   // the section index.  We need the section name.  Recomputing this
3630   // is slow but this is an unusual case.  If this becomes a speed
3631   // problem we can cache the names as required in Layout::layout.
3632
3633   // We start by building a larger vector holding a copy of each
3634   // Input_section, plus its current index in the list and its name.
3635   std::vector<Input_section_sort_entry> sort_list;
3636
3637   unsigned int i = 0;
3638   for (Input_section_list::iterator p = this->input_sections_.begin();
3639        p != this->input_sections_.end();
3640        ++p, ++i)
3641       sort_list.push_back(Input_section_sort_entry(*p, i,
3642                             this->must_sort_attached_input_sections(),
3643                             this->name()));
3644
3645   // Sort the input sections.
3646   if (this->must_sort_attached_input_sections())
3647     {
3648       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3649           || this->type() == elfcpp::SHT_INIT_ARRAY
3650           || this->type() == elfcpp::SHT_FINI_ARRAY)
3651         std::sort(sort_list.begin(), sort_list.end(),
3652                   Input_section_sort_init_fini_compare());
3653       else if (strcmp(parameters->options().sort_section(), "name") == 0)
3654         std::sort(sort_list.begin(), sort_list.end(),
3655                   Input_section_sort_section_name_compare());
3656       else if (strcmp(this->name(), ".text") == 0)
3657         std::sort(sort_list.begin(), sort_list.end(),
3658                   Input_section_sort_section_prefix_special_ordering_compare());
3659       else
3660         std::sort(sort_list.begin(), sort_list.end(),
3661                   Input_section_sort_compare());
3662     }
3663   else
3664     {
3665       gold_assert(this->input_section_order_specified());
3666       std::sort(sort_list.begin(), sort_list.end(),
3667                 Input_section_sort_section_order_index_compare());
3668     }
3669
3670   // Copy the sorted input sections back to our list.
3671   this->input_sections_.clear();
3672   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3673        p != sort_list.end();
3674        ++p)
3675     this->input_sections_.push_back(p->input_section());
3676   sort_list.clear();
3677
3678   // Remember that we sorted the input sections, since we might get
3679   // called again.
3680   this->attached_input_sections_are_sorted_ = true;
3681 }
3682
3683 // Write the section header to *OSHDR.
3684
3685 template<int size, bool big_endian>
3686 void
3687 Output_section::write_header(const Layout* layout,
3688                              const Stringpool* secnamepool,
3689                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3690 {
3691   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3692   oshdr->put_sh_type(this->type_);
3693
3694   elfcpp::Elf_Xword flags = this->flags_;
3695   if (this->info_section_ != NULL && this->info_uses_section_index_)
3696     flags |= elfcpp::SHF_INFO_LINK;
3697   oshdr->put_sh_flags(flags);
3698
3699   oshdr->put_sh_addr(this->address());
3700   oshdr->put_sh_offset(this->offset());
3701   oshdr->put_sh_size(this->data_size());
3702   if (this->link_section_ != NULL)
3703     oshdr->put_sh_link(this->link_section_->out_shndx());
3704   else if (this->should_link_to_symtab_)
3705     oshdr->put_sh_link(layout->symtab_section_shndx());
3706   else if (this->should_link_to_dynsym_)
3707     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3708   else
3709     oshdr->put_sh_link(this->link_);
3710
3711   elfcpp::Elf_Word info;
3712   if (this->info_section_ != NULL)
3713     {
3714       if (this->info_uses_section_index_)
3715         info = this->info_section_->out_shndx();
3716       else
3717         info = this->info_section_->symtab_index();
3718     }
3719   else if (this->info_symndx_ != NULL)
3720     info = this->info_symndx_->symtab_index();
3721   else
3722     info = this->info_;
3723   oshdr->put_sh_info(info);
3724
3725   oshdr->put_sh_addralign(this->addralign_);
3726   oshdr->put_sh_entsize(this->entsize_);
3727 }
3728
3729 // Write out the data.  For input sections the data is written out by
3730 // Object::relocate, but we have to handle Output_section_data objects
3731 // here.
3732
3733 void
3734 Output_section::do_write(Output_file* of)
3735 {
3736   gold_assert(!this->requires_postprocessing());
3737
3738   // If the target performs relaxation, we delay filler generation until now.
3739   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3740
3741   off_t output_section_file_offset = this->offset();
3742   for (Fill_list::iterator p = this->fills_.begin();
3743        p != this->fills_.end();
3744        ++p)
3745     {
3746       std::string fill_data(parameters->target().code_fill(p->length()));
3747       of->write(output_section_file_offset + p->section_offset(),
3748                 fill_data.data(), fill_data.size());
3749     }
3750
3751   off_t off = this->offset() + this->first_input_offset_;
3752   for (Input_section_list::iterator p = this->input_sections_.begin();
3753        p != this->input_sections_.end();
3754        ++p)
3755     {
3756       off_t aligned_off = align_address(off, p->addralign());
3757       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3758         {
3759           size_t fill_len = aligned_off - off;
3760           std::string fill_data(parameters->target().code_fill(fill_len));
3761           of->write(off, fill_data.data(), fill_data.size());
3762         }
3763
3764       p->write(of);
3765       off = aligned_off + p->data_size();
3766     }
3767
3768   // For incremental links, fill in unused chunks in debug sections
3769   // with dummy compilation unit headers.
3770   if (this->free_space_fill_ != NULL)
3771     {
3772       for (Free_list::Const_iterator p = this->free_list_.begin();
3773            p != this->free_list_.end();
3774            ++p)
3775         {
3776           off_t off = p->start_;
3777           size_t len = p->end_ - off;
3778           this->free_space_fill_->write(of, this->offset() + off, len);
3779         }
3780       if (this->patch_space_ > 0)
3781         {
3782           off_t off = this->current_data_size_for_child() - this->patch_space_;
3783           this->free_space_fill_->write(of, this->offset() + off,
3784                                         this->patch_space_);
3785         }
3786     }
3787 }
3788
3789 // If a section requires postprocessing, create the buffer to use.
3790
3791 void
3792 Output_section::create_postprocessing_buffer()
3793 {
3794   gold_assert(this->requires_postprocessing());
3795
3796   if (this->postprocessing_buffer_ != NULL)
3797     return;
3798
3799   if (!this->input_sections_.empty())
3800     {
3801       off_t off = this->first_input_offset_;
3802       for (Input_section_list::iterator p = this->input_sections_.begin();
3803            p != this->input_sections_.end();
3804            ++p)
3805         {
3806           off = align_address(off, p->addralign());
3807           p->finalize_data_size();
3808           off += p->data_size();
3809         }
3810       this->set_current_data_size_for_child(off);
3811     }
3812
3813   off_t buffer_size = this->current_data_size_for_child();
3814   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3815 }
3816
3817 // Write all the data of an Output_section into the postprocessing
3818 // buffer.  This is used for sections which require postprocessing,
3819 // such as compression.  Input sections are handled by
3820 // Object::Relocate.
3821
3822 void
3823 Output_section::write_to_postprocessing_buffer()
3824 {
3825   gold_assert(this->requires_postprocessing());
3826
3827   // If the target performs relaxation, we delay filler generation until now.
3828   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3829
3830   unsigned char* buffer = this->postprocessing_buffer();
3831   for (Fill_list::iterator p = this->fills_.begin();
3832        p != this->fills_.end();
3833        ++p)
3834     {
3835       std::string fill_data(parameters->target().code_fill(p->length()));
3836       memcpy(buffer + p->section_offset(), fill_data.data(),
3837              fill_data.size());
3838     }
3839
3840   off_t off = this->first_input_offset_;
3841   for (Input_section_list::iterator p = this->input_sections_.begin();
3842        p != this->input_sections_.end();
3843        ++p)
3844     {
3845       off_t aligned_off = align_address(off, p->addralign());
3846       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3847         {
3848           size_t fill_len = aligned_off - off;
3849           std::string fill_data(parameters->target().code_fill(fill_len));
3850           memcpy(buffer + off, fill_data.data(), fill_data.size());
3851         }
3852
3853       p->write_to_buffer(buffer + aligned_off);
3854       off = aligned_off + p->data_size();
3855     }
3856 }
3857
3858 // Get the input sections for linker script processing.  We leave
3859 // behind the Output_section_data entries.  Note that this may be
3860 // slightly incorrect for merge sections.  We will leave them behind,
3861 // but it is possible that the script says that they should follow
3862 // some other input sections, as in:
3863 //    .rodata { *(.rodata) *(.rodata.cst*) }
3864 // For that matter, we don't handle this correctly:
3865 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3866 // With luck this will never matter.
3867
3868 uint64_t
3869 Output_section::get_input_sections(
3870     uint64_t address,
3871     const std::string& fill,
3872     std::list<Input_section>* input_sections)
3873 {
3874   if (this->checkpoint_ != NULL
3875       && !this->checkpoint_->input_sections_saved())
3876     this->checkpoint_->save_input_sections();
3877
3878   // Invalidate fast look-up maps.
3879   this->lookup_maps_->invalidate();
3880
3881   uint64_t orig_address = address;
3882
3883   address = align_address(address, this->addralign());
3884
3885   Input_section_list remaining;
3886   for (Input_section_list::iterator p = this->input_sections_.begin();
3887        p != this->input_sections_.end();
3888        ++p)
3889     {
3890       if (p->is_input_section()
3891           || p->is_relaxed_input_section()
3892           || p->is_merge_section())
3893         input_sections->push_back(*p);
3894       else
3895         {
3896           uint64_t aligned_address = align_address(address, p->addralign());
3897           if (aligned_address != address && !fill.empty())
3898             {
3899               section_size_type length =
3900                 convert_to_section_size_type(aligned_address - address);
3901               std::string this_fill;
3902               this_fill.reserve(length);
3903               while (this_fill.length() + fill.length() <= length)
3904                 this_fill += fill;
3905               if (this_fill.length() < length)
3906                 this_fill.append(fill, 0, length - this_fill.length());
3907
3908               Output_section_data* posd = new Output_data_const(this_fill, 0);
3909               remaining.push_back(Input_section(posd));
3910             }
3911           address = aligned_address;
3912
3913           remaining.push_back(*p);
3914
3915           p->finalize_data_size();
3916           address += p->data_size();
3917         }
3918     }
3919
3920   this->input_sections_.swap(remaining);
3921   this->first_input_offset_ = 0;
3922
3923   uint64_t data_size = address - orig_address;
3924   this->set_current_data_size_for_child(data_size);
3925   return data_size;
3926 }
3927
3928 // Add a script input section.  SIS is an Output_section::Input_section,
3929 // which can be either a plain input section or a special input section like
3930 // a relaxed input section.  For a special input section, its size must be
3931 // finalized.
3932
3933 void
3934 Output_section::add_script_input_section(const Input_section& sis)
3935 {
3936   uint64_t data_size = sis.data_size();
3937   uint64_t addralign = sis.addralign();
3938   if (addralign > this->addralign_)
3939     this->addralign_ = addralign;
3940
3941   off_t offset_in_section = this->current_data_size_for_child();
3942   off_t aligned_offset_in_section = align_address(offset_in_section,
3943                                                   addralign);
3944
3945   this->set_current_data_size_for_child(aligned_offset_in_section
3946                                         + data_size);
3947
3948   this->input_sections_.push_back(sis);
3949
3950   // Update fast lookup maps if necessary.
3951   if (this->lookup_maps_->is_valid())
3952     {
3953       if (sis.is_relaxed_input_section())
3954         {
3955           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3956           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3957                                                         poris->shndx(), poris);
3958         }
3959     }
3960 }
3961
3962 // Save states for relaxation.
3963
3964 void
3965 Output_section::save_states()
3966 {
3967   gold_assert(this->checkpoint_ == NULL);
3968   Checkpoint_output_section* checkpoint =
3969     new Checkpoint_output_section(this->addralign_, this->flags_,
3970                                   this->input_sections_,
3971                                   this->first_input_offset_,
3972                                   this->attached_input_sections_are_sorted_);
3973   this->checkpoint_ = checkpoint;
3974   gold_assert(this->fills_.empty());
3975 }
3976
3977 void
3978 Output_section::discard_states()
3979 {
3980   gold_assert(this->checkpoint_ != NULL);
3981   delete this->checkpoint_;
3982   this->checkpoint_ = NULL;
3983   gold_assert(this->fills_.empty());
3984
3985   // Simply invalidate the fast lookup maps since we do not keep
3986   // track of them.
3987   this->lookup_maps_->invalidate();
3988 }
3989
3990 void
3991 Output_section::restore_states()
3992 {
3993   gold_assert(this->checkpoint_ != NULL);
3994   Checkpoint_output_section* checkpoint = this->checkpoint_;
3995
3996   this->addralign_ = checkpoint->addralign();
3997   this->flags_ = checkpoint->flags();
3998   this->first_input_offset_ = checkpoint->first_input_offset();
3999
4000   if (!checkpoint->input_sections_saved())
4001     {
4002       // If we have not copied the input sections, just resize it.
4003       size_t old_size = checkpoint->input_sections_size();
4004       gold_assert(this->input_sections_.size() >= old_size);
4005       this->input_sections_.resize(old_size);
4006     }
4007   else
4008     {
4009       // We need to copy the whole list.  This is not efficient for
4010       // extremely large output with hundreads of thousands of input
4011       // objects.  We may need to re-think how we should pass sections
4012       // to scripts.
4013       this->input_sections_ = *checkpoint->input_sections();
4014     }
4015
4016   this->attached_input_sections_are_sorted_ =
4017     checkpoint->attached_input_sections_are_sorted();
4018
4019   // Simply invalidate the fast lookup maps since we do not keep
4020   // track of them.
4021   this->lookup_maps_->invalidate();
4022 }
4023
4024 // Update the section offsets of input sections in this.  This is required if
4025 // relaxation causes some input sections to change sizes.
4026
4027 void
4028 Output_section::adjust_section_offsets()
4029 {
4030   if (!this->section_offsets_need_adjustment_)
4031     return;
4032
4033   off_t off = 0;
4034   for (Input_section_list::iterator p = this->input_sections_.begin();
4035        p != this->input_sections_.end();
4036        ++p)
4037     {
4038       off = align_address(off, p->addralign());
4039       if (p->is_input_section())
4040         p->relobj()->set_section_offset(p->shndx(), off);
4041       off += p->data_size();
4042     }
4043
4044   this->section_offsets_need_adjustment_ = false;
4045 }
4046
4047 // Print to the map file.
4048
4049 void
4050 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4051 {
4052   mapfile->print_output_section(this);
4053
4054   for (Input_section_list::const_iterator p = this->input_sections_.begin();
4055        p != this->input_sections_.end();
4056        ++p)
4057     p->print_to_mapfile(mapfile);
4058 }
4059
4060 // Print stats for merge sections to stderr.
4061
4062 void
4063 Output_section::print_merge_stats()
4064 {
4065   Input_section_list::iterator p;
4066   for (p = this->input_sections_.begin();
4067        p != this->input_sections_.end();
4068        ++p)
4069     p->print_merge_stats(this->name_);
4070 }
4071
4072 // Set a fixed layout for the section.  Used for incremental update links.
4073
4074 void
4075 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4076                                  off_t sh_size, uint64_t sh_addralign)
4077 {
4078   this->addralign_ = sh_addralign;
4079   this->set_current_data_size(sh_size);
4080   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4081     this->set_address(sh_addr);
4082   this->set_file_offset(sh_offset);
4083   this->finalize_data_size();
4084   this->free_list_.init(sh_size, false);
4085   this->has_fixed_layout_ = true;
4086 }
4087
4088 // Reserve space within the fixed layout for the section.  Used for
4089 // incremental update links.
4090
4091 void
4092 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4093 {
4094   this->free_list_.remove(sh_offset, sh_offset + sh_size);
4095 }
4096
4097 // Allocate space from the free list for the section.  Used for
4098 // incremental update links.
4099
4100 off_t
4101 Output_section::allocate(off_t len, uint64_t addralign)
4102 {
4103   return this->free_list_.allocate(len, addralign, 0);
4104 }
4105
4106 // Output segment methods.
4107
4108 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4109   : vaddr_(0),
4110     paddr_(0),
4111     memsz_(0),
4112     max_align_(0),
4113     min_p_align_(0),
4114     offset_(0),
4115     filesz_(0),
4116     type_(type),
4117     flags_(flags),
4118     is_max_align_known_(false),
4119     are_addresses_set_(false),
4120     is_large_data_segment_(false),
4121     is_unique_segment_(false)
4122 {
4123   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4124   // the flags.
4125   if (type == elfcpp::PT_TLS)
4126     this->flags_ = elfcpp::PF_R;
4127 }
4128
4129 // Add an Output_section to a PT_LOAD Output_segment.
4130
4131 void
4132 Output_segment::add_output_section_to_load(Layout* layout,
4133                                            Output_section* os,
4134                                            elfcpp::Elf_Word seg_flags)
4135 {
4136   gold_assert(this->type() == elfcpp::PT_LOAD);
4137   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4138   gold_assert(!this->is_max_align_known_);
4139   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4140
4141   this->update_flags_for_output_section(seg_flags);
4142
4143   // We don't want to change the ordering if we have a linker script
4144   // with a SECTIONS clause.
4145   Output_section_order order = os->order();
4146   if (layout->script_options()->saw_sections_clause())
4147     order = static_cast<Output_section_order>(0);
4148   else
4149     gold_assert(order != ORDER_INVALID);
4150
4151   this->output_lists_[order].push_back(os);
4152 }
4153
4154 // Add an Output_section to a non-PT_LOAD Output_segment.
4155
4156 void
4157 Output_segment::add_output_section_to_nonload(Output_section* os,
4158                                               elfcpp::Elf_Word seg_flags)
4159 {
4160   gold_assert(this->type() != elfcpp::PT_LOAD);
4161   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4162   gold_assert(!this->is_max_align_known_);
4163
4164   this->update_flags_for_output_section(seg_flags);
4165
4166   this->output_lists_[0].push_back(os);
4167 }
4168
4169 // Remove an Output_section from this segment.  It is an error if it
4170 // is not present.
4171
4172 void
4173 Output_segment::remove_output_section(Output_section* os)
4174 {
4175   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4176     {
4177       Output_data_list* pdl = &this->output_lists_[i];
4178       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4179         {
4180           if (*p == os)
4181             {
4182               pdl->erase(p);
4183               return;
4184             }
4185         }
4186     }
4187   gold_unreachable();
4188 }
4189
4190 // Add an Output_data (which need not be an Output_section) to the
4191 // start of a segment.
4192
4193 void
4194 Output_segment::add_initial_output_data(Output_data* od)
4195 {
4196   gold_assert(!this->is_max_align_known_);
4197   Output_data_list::iterator p = this->output_lists_[0].begin();
4198   this->output_lists_[0].insert(p, od);
4199 }
4200
4201 // Return true if this segment has any sections which hold actual
4202 // data, rather than being a BSS section.
4203
4204 bool
4205 Output_segment::has_any_data_sections() const
4206 {
4207   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4208     {
4209       const Output_data_list* pdl = &this->output_lists_[i];
4210       for (Output_data_list::const_iterator p = pdl->begin();
4211            p != pdl->end();
4212            ++p)
4213         {
4214           if (!(*p)->is_section())
4215             return true;
4216           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4217             return true;
4218         }
4219     }
4220   return false;
4221 }
4222
4223 // Return whether the first data section (not counting TLS sections)
4224 // is a relro section.
4225
4226 bool
4227 Output_segment::is_first_section_relro() const
4228 {
4229   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4230     {
4231       if (i == static_cast<int>(ORDER_TLS_BSS))
4232         continue;
4233       const Output_data_list* pdl = &this->output_lists_[i];
4234       if (!pdl->empty())
4235         {
4236           Output_data* p = pdl->front();
4237           return p->is_section() && p->output_section()->is_relro();
4238         }
4239     }
4240   return false;
4241 }
4242
4243 // Return the maximum alignment of the Output_data in Output_segment.
4244
4245 uint64_t
4246 Output_segment::maximum_alignment()
4247 {
4248   if (!this->is_max_align_known_)
4249     {
4250       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4251         {
4252           const Output_data_list* pdl = &this->output_lists_[i];
4253           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4254           if (addralign > this->max_align_)
4255             this->max_align_ = addralign;
4256         }
4257       this->is_max_align_known_ = true;
4258     }
4259
4260   return this->max_align_;
4261 }
4262
4263 // Return the maximum alignment of a list of Output_data.
4264
4265 uint64_t
4266 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4267 {
4268   uint64_t ret = 0;
4269   for (Output_data_list::const_iterator p = pdl->begin();
4270        p != pdl->end();
4271        ++p)
4272     {
4273       uint64_t addralign = (*p)->addralign();
4274       if (addralign > ret)
4275         ret = addralign;
4276     }
4277   return ret;
4278 }
4279
4280 // Return whether this segment has any dynamic relocs.
4281
4282 bool
4283 Output_segment::has_dynamic_reloc() const
4284 {
4285   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4286     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4287       return true;
4288   return false;
4289 }
4290
4291 // Return whether this Output_data_list has any dynamic relocs.
4292
4293 bool
4294 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4295 {
4296   for (Output_data_list::const_iterator p = pdl->begin();
4297        p != pdl->end();
4298        ++p)
4299     if ((*p)->has_dynamic_reloc())
4300       return true;
4301   return false;
4302 }
4303
4304 // Set the section addresses for an Output_segment.  If RESET is true,
4305 // reset the addresses first.  ADDR is the address and *POFF is the
4306 // file offset.  Set the section indexes starting with *PSHNDX.
4307 // INCREASE_RELRO is the size of the portion of the first non-relro
4308 // section that should be included in the PT_GNU_RELRO segment.
4309 // If this segment has relro sections, and has been aligned for
4310 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4311 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4312 // and *PSHNDX.
4313
4314 uint64_t
4315 Output_segment::set_section_addresses(const Target* target,
4316                                       Layout* layout, bool reset,
4317                                       uint64_t addr,
4318                                       unsigned int* increase_relro,
4319                                       bool* has_relro,
4320                                       off_t* poff,
4321                                       unsigned int* pshndx)
4322 {
4323   gold_assert(this->type_ == elfcpp::PT_LOAD);
4324
4325   uint64_t last_relro_pad = 0;
4326   off_t orig_off = *poff;
4327
4328   bool in_tls = false;
4329
4330   // If we have relro sections, we need to pad forward now so that the
4331   // relro sections plus INCREASE_RELRO end on an abi page boundary.
4332   if (parameters->options().relro()
4333       && this->is_first_section_relro()
4334       && (!this->are_addresses_set_ || reset))
4335     {
4336       uint64_t relro_size = 0;
4337       off_t off = *poff;
4338       uint64_t max_align = 0;
4339       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4340         {
4341           Output_data_list* pdl = &this->output_lists_[i];
4342           Output_data_list::iterator p;
4343           for (p = pdl->begin(); p != pdl->end(); ++p)
4344             {
4345               if (!(*p)->is_section())
4346                 break;
4347               uint64_t align = (*p)->addralign();
4348               if (align > max_align)
4349                 max_align = align;
4350               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4351                 in_tls = true;
4352               else if (in_tls)
4353                 {
4354                   // Align the first non-TLS section to the alignment
4355                   // of the TLS segment.
4356                   align = max_align;
4357                   in_tls = false;
4358                 }
4359               // Ignore the size of the .tbss section.
4360               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4361                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4362                 continue;
4363               relro_size = align_address(relro_size, align);
4364               if ((*p)->is_address_valid())
4365                 relro_size += (*p)->data_size();
4366               else
4367                 {
4368                   // FIXME: This could be faster.
4369                   (*p)->set_address_and_file_offset(relro_size,
4370                                                     relro_size);
4371                   relro_size += (*p)->data_size();
4372                   (*p)->reset_address_and_file_offset();
4373                 }
4374             }
4375           if (p != pdl->end())
4376             break;
4377         }
4378       relro_size += *increase_relro;
4379       // Pad the total relro size to a multiple of the maximum
4380       // section alignment seen.
4381       uint64_t aligned_size = align_address(relro_size, max_align);
4382       // Note the amount of padding added after the last relro section.
4383       last_relro_pad = aligned_size - relro_size;
4384       *has_relro = true;
4385
4386       uint64_t page_align = parameters->target().abi_pagesize();
4387
4388       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4389       uint64_t desired_align = page_align - (aligned_size % page_align);
4390       if (desired_align < off % page_align)
4391         off += page_align;
4392       off += desired_align - off % page_align;
4393       addr += off - orig_off;
4394       orig_off = off;
4395       *poff = off;
4396     }
4397
4398   if (!reset && this->are_addresses_set_)
4399     {
4400       gold_assert(this->paddr_ == addr);
4401       addr = this->vaddr_;
4402     }
4403   else
4404     {
4405       this->vaddr_ = addr;
4406       this->paddr_ = addr;
4407       this->are_addresses_set_ = true;
4408     }
4409
4410   in_tls = false;
4411
4412   this->offset_ = orig_off;
4413
4414   off_t off = 0;
4415   off_t foff = *poff;
4416   uint64_t ret = 0;
4417   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4418     {
4419       if (i == static_cast<int>(ORDER_RELRO_LAST))
4420         {
4421           *poff += last_relro_pad;
4422           foff += last_relro_pad;
4423           addr += last_relro_pad;
4424           if (this->output_lists_[i].empty())
4425             {
4426               // If there is nothing in the ORDER_RELRO_LAST list,
4427               // the padding will occur at the end of the relro
4428               // segment, and we need to add it to *INCREASE_RELRO.
4429               *increase_relro += last_relro_pad;
4430             }
4431         }
4432       addr = this->set_section_list_addresses(layout, reset,
4433                                               &this->output_lists_[i],
4434                                               addr, poff, &foff, pshndx,
4435                                               &in_tls);
4436
4437       // FOFF tracks the last offset used for the file image,
4438       // and *POFF tracks the last offset used for the memory image.
4439       // When not using a linker script, bss sections should all
4440       // be processed in the ORDER_SMALL_BSS and later buckets.
4441       gold_assert(*poff == foff
4442                   || i == static_cast<int>(ORDER_TLS_BSS)
4443                   || i >= static_cast<int>(ORDER_SMALL_BSS)
4444                   || layout->script_options()->saw_sections_clause());
4445
4446       this->filesz_ = foff - orig_off;
4447       off = foff;
4448
4449       ret = addr;
4450     }
4451
4452   // If the last section was a TLS section, align upward to the
4453   // alignment of the TLS segment, so that the overall size of the TLS
4454   // segment is aligned.
4455   if (in_tls)
4456     {
4457       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4458       *poff = align_address(*poff, segment_align);
4459     }
4460
4461   this->memsz_ = *poff - orig_off;
4462
4463   // Ignore the file offset adjustments made by the BSS Output_data
4464   // objects.
4465   *poff = off;
4466
4467   // If code segments must contain only code, and this code segment is
4468   // page-aligned in the file, then fill it out to a whole page with
4469   // code fill (the tail of the segment will not be within any section).
4470   // Thus the entire code segment can be mapped from the file as whole
4471   // pages and that mapping will contain only valid instructions.
4472   if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4473     {
4474       uint64_t abi_pagesize = target->abi_pagesize();
4475       if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4476         {
4477           size_t fill_size = abi_pagesize - (off % abi_pagesize);
4478
4479           std::string fill_data;
4480           if (target->has_code_fill())
4481             fill_data = target->code_fill(fill_size);
4482           else
4483             fill_data.resize(fill_size); // Zero fill.
4484
4485           Output_data_const* fill = new Output_data_const(fill_data, 0);
4486           fill->set_address(this->vaddr_ + this->memsz_);
4487           fill->set_file_offset(off);
4488           layout->add_relax_output(fill);
4489
4490           off += fill_size;
4491           gold_assert(off % abi_pagesize == 0);
4492           ret += fill_size;
4493           gold_assert(ret % abi_pagesize == 0);
4494
4495           gold_assert((uint64_t) this->filesz_ == this->memsz_);
4496           this->memsz_ = this->filesz_ += fill_size;
4497
4498           *poff = off;
4499         }
4500     }
4501
4502   return ret;
4503 }
4504
4505 // Set the addresses and file offsets in a list of Output_data
4506 // structures.
4507
4508 uint64_t
4509 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4510                                            Output_data_list* pdl,
4511                                            uint64_t addr, off_t* poff,
4512                                            off_t* pfoff,
4513                                            unsigned int* pshndx,
4514                                            bool* in_tls)
4515 {
4516   off_t startoff = *poff;
4517   // For incremental updates, we may allocate non-fixed sections from
4518   // free space in the file.  This keeps track of the high-water mark.
4519   off_t maxoff = startoff;
4520
4521   off_t off = startoff;
4522   off_t foff = *pfoff;
4523   for (Output_data_list::iterator p = pdl->begin();
4524        p != pdl->end();
4525        ++p)
4526     {
4527       bool is_bss = (*p)->is_section_type(elfcpp::SHT_NOBITS);
4528       bool is_tls = (*p)->is_section_flag_set(elfcpp::SHF_TLS);
4529
4530       if (reset)
4531         (*p)->reset_address_and_file_offset();
4532
4533       // When doing an incremental update or when using a linker script,
4534       // the section will most likely already have an address.
4535       if (!(*p)->is_address_valid())
4536         {
4537           uint64_t align = (*p)->addralign();
4538
4539           if (is_tls)
4540             {
4541               // Give the first TLS section the alignment of the
4542               // entire TLS segment.  Otherwise the TLS segment as a
4543               // whole may be misaligned.
4544               if (!*in_tls)
4545                 {
4546                   Output_segment* tls_segment = layout->tls_segment();
4547                   gold_assert(tls_segment != NULL);
4548                   uint64_t segment_align = tls_segment->maximum_alignment();
4549                   gold_assert(segment_align >= align);
4550                   align = segment_align;
4551
4552                   *in_tls = true;
4553                 }
4554             }
4555           else
4556             {
4557               // If this is the first section after the TLS segment,
4558               // align it to at least the alignment of the TLS
4559               // segment, so that the size of the overall TLS segment
4560               // is aligned.
4561               if (*in_tls)
4562                 {
4563                   uint64_t segment_align =
4564                       layout->tls_segment()->maximum_alignment();
4565                   if (segment_align > align)
4566                     align = segment_align;
4567
4568                   *in_tls = false;
4569                 }
4570             }
4571
4572           if (!parameters->incremental_update())
4573             {
4574               gold_assert(off == foff || is_bss);
4575               off = align_address(off, align);
4576               if (is_tls || !is_bss)
4577                 foff = off;
4578               (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4579             }
4580           else
4581             {
4582               // Incremental update: allocate file space from free list.
4583               (*p)->pre_finalize_data_size();
4584               off_t current_size = (*p)->current_data_size();
4585               off = layout->allocate(current_size, align, startoff);
4586               foff = off;
4587               if (off == -1)
4588                 {
4589                   gold_assert((*p)->output_section() != NULL);
4590                   gold_fallback(_("out of patch space for section %s; "
4591                                   "relink with --incremental-full"),
4592                                 (*p)->output_section()->name());
4593                 }
4594               (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4595               if ((*p)->data_size() > current_size)
4596                 {
4597                   gold_assert((*p)->output_section() != NULL);
4598                   gold_fallback(_("%s: section changed size; "
4599                                   "relink with --incremental-full"),
4600                                 (*p)->output_section()->name());
4601                 }
4602             }
4603         }
4604       else if (parameters->incremental_update())
4605         {
4606           // For incremental updates, use the fixed offset for the
4607           // high-water mark computation.
4608           off = (*p)->offset();
4609           foff = off;
4610         }
4611       else
4612         {
4613           // The script may have inserted a skip forward, but it
4614           // better not have moved backward.
4615           if ((*p)->address() >= addr + (off - startoff))
4616             {
4617               if (!is_bss && off > foff)
4618                 gold_warning(_("script places BSS section in the middle "
4619                                "of a LOAD segment; space will be allocated "
4620                                "in the file"));
4621               off += (*p)->address() - (addr + (off - startoff));
4622               if (is_tls || !is_bss)
4623                 foff = off;
4624             }
4625           else
4626             {
4627               if (!layout->script_options()->saw_sections_clause())
4628                 gold_unreachable();
4629               else
4630                 {
4631                   Output_section* os = (*p)->output_section();
4632
4633                   // Cast to unsigned long long to avoid format warnings.
4634                   unsigned long long previous_dot =
4635                     static_cast<unsigned long long>(addr + (off - startoff));
4636                   unsigned long long dot =
4637                     static_cast<unsigned long long>((*p)->address());
4638
4639                   if (os == NULL)
4640                     gold_error(_("dot moves backward in linker script "
4641                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4642                   else
4643                     gold_error(_("address of section '%s' moves backward "
4644                                  "from 0x%llx to 0x%llx"),
4645                                os->name(), previous_dot, dot);
4646                 }
4647             }
4648           (*p)->set_file_offset(foff);
4649           (*p)->finalize_data_size();
4650         }
4651
4652       if (parameters->incremental_update())
4653         gold_debug(DEBUG_INCREMENTAL,
4654                    "set_section_list_addresses: %08lx %08lx %s",
4655                    static_cast<long>(off),
4656                    static_cast<long>((*p)->data_size()),
4657                    ((*p)->output_section() != NULL
4658                     ? (*p)->output_section()->name() : "(special)"));
4659
4660       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4661       // section.  Such a section does not affect the size of a
4662       // PT_LOAD segment.
4663       if (!is_tls || !is_bss)
4664         off += (*p)->data_size();
4665
4666       // We don't allocate space in the file for SHT_NOBITS sections,
4667       // unless a script has force-placed one in the middle of a segment.
4668       if (!is_bss)
4669         foff = off;
4670
4671       if (off > maxoff)
4672         maxoff = off;
4673
4674       if ((*p)->is_section())
4675         {
4676           (*p)->set_out_shndx(*pshndx);
4677           ++*pshndx;
4678         }
4679     }
4680
4681   *poff = maxoff;
4682   *pfoff = foff;
4683   return addr + (maxoff - startoff);
4684 }
4685
4686 // For a non-PT_LOAD segment, set the offset from the sections, if
4687 // any.  Add INCREASE to the file size and the memory size.
4688
4689 void
4690 Output_segment::set_offset(unsigned int increase)
4691 {
4692   gold_assert(this->type_ != elfcpp::PT_LOAD);
4693
4694   gold_assert(!this->are_addresses_set_);
4695
4696   // A non-load section only uses output_lists_[0].
4697
4698   Output_data_list* pdl = &this->output_lists_[0];
4699
4700   if (pdl->empty())
4701     {
4702       gold_assert(increase == 0);
4703       this->vaddr_ = 0;
4704       this->paddr_ = 0;
4705       this->are_addresses_set_ = true;
4706       this->memsz_ = 0;
4707       this->min_p_align_ = 0;
4708       this->offset_ = 0;
4709       this->filesz_ = 0;
4710       return;
4711     }
4712
4713   // Find the first and last section by address.
4714   const Output_data* first = NULL;
4715   const Output_data* last_data = NULL;
4716   const Output_data* last_bss = NULL;
4717   for (Output_data_list::const_iterator p = pdl->begin();
4718        p != pdl->end();
4719        ++p)
4720     {
4721       if (first == NULL
4722           || (*p)->address() < first->address()
4723           || ((*p)->address() == first->address()
4724               && (*p)->data_size() < first->data_size()))
4725         first = *p;
4726       const Output_data** plast;
4727       if ((*p)->is_section()
4728           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4729         plast = &last_bss;
4730       else
4731         plast = &last_data;
4732       if (*plast == NULL
4733           || (*p)->address() > (*plast)->address()
4734           || ((*p)->address() == (*plast)->address()
4735               && (*p)->data_size() > (*plast)->data_size()))
4736         *plast = *p;
4737     }
4738
4739   this->vaddr_ = first->address();
4740   this->paddr_ = (first->has_load_address()
4741                   ? first->load_address()
4742                   : this->vaddr_);
4743   this->are_addresses_set_ = true;
4744   this->offset_ = first->offset();
4745
4746   if (last_data == NULL)
4747     this->filesz_ = 0;
4748   else
4749     this->filesz_ = (last_data->address()
4750                      + last_data->data_size()
4751                      - this->vaddr_);
4752
4753   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4754   this->memsz_ = (last->address()
4755                   + last->data_size()
4756                   - this->vaddr_);
4757
4758   this->filesz_ += increase;
4759   this->memsz_ += increase;
4760
4761   // If this is a RELRO segment, verify that the segment ends at a
4762   // page boundary.
4763   if (this->type_ == elfcpp::PT_GNU_RELRO)
4764     {
4765       uint64_t page_align = parameters->target().abi_pagesize();
4766       uint64_t segment_end = this->vaddr_ + this->memsz_;
4767       if (parameters->incremental_update())
4768         {
4769           // The INCREASE_RELRO calculation is bypassed for an incremental
4770           // update, so we need to adjust the segment size manually here.
4771           segment_end = align_address(segment_end, page_align);
4772           this->memsz_ = segment_end - this->vaddr_;
4773         }
4774       else
4775         gold_assert(segment_end == align_address(segment_end, page_align));
4776     }
4777
4778   // If this is a TLS segment, align the memory size.  The code in
4779   // set_section_list ensures that the section after the TLS segment
4780   // is aligned to give us room.
4781   if (this->type_ == elfcpp::PT_TLS)
4782     {
4783       uint64_t segment_align = this->maximum_alignment();
4784       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4785       this->memsz_ = align_address(this->memsz_, segment_align);
4786     }
4787 }
4788
4789 // Set the TLS offsets of the sections in the PT_TLS segment.
4790
4791 void
4792 Output_segment::set_tls_offsets()
4793 {
4794   gold_assert(this->type_ == elfcpp::PT_TLS);
4795
4796   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4797        p != this->output_lists_[0].end();
4798        ++p)
4799     (*p)->set_tls_offset(this->vaddr_);
4800 }
4801
4802 // Return the first section.
4803
4804 Output_section*
4805 Output_segment::first_section() const
4806 {
4807   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4808     {
4809       const Output_data_list* pdl = &this->output_lists_[i];
4810       for (Output_data_list::const_iterator p = pdl->begin();
4811            p != pdl->end();
4812            ++p)
4813         {
4814           if ((*p)->is_section())
4815             return (*p)->output_section();
4816         }
4817     }
4818   return NULL;
4819 }
4820
4821 // Return the number of Output_sections in an Output_segment.
4822
4823 unsigned int
4824 Output_segment::output_section_count() const
4825 {
4826   unsigned int ret = 0;
4827   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4828     ret += this->output_section_count_list(&this->output_lists_[i]);
4829   return ret;
4830 }
4831
4832 // Return the number of Output_sections in an Output_data_list.
4833
4834 unsigned int
4835 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4836 {
4837   unsigned int count = 0;
4838   for (Output_data_list::const_iterator p = pdl->begin();
4839        p != pdl->end();
4840        ++p)
4841     {
4842       if ((*p)->is_section())
4843         ++count;
4844     }
4845   return count;
4846 }
4847
4848 // Return the section attached to the list segment with the lowest
4849 // load address.  This is used when handling a PHDRS clause in a
4850 // linker script.
4851
4852 Output_section*
4853 Output_segment::section_with_lowest_load_address() const
4854 {
4855   Output_section* found = NULL;
4856   uint64_t found_lma = 0;
4857   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4858     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4859                                       &found_lma);
4860   return found;
4861 }
4862
4863 // Look through a list for a section with a lower load address.
4864
4865 void
4866 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4867                                             Output_section** found,
4868                                             uint64_t* found_lma) const
4869 {
4870   for (Output_data_list::const_iterator p = pdl->begin();
4871        p != pdl->end();
4872        ++p)
4873     {
4874       if (!(*p)->is_section())
4875         continue;
4876       Output_section* os = static_cast<Output_section*>(*p);
4877       uint64_t lma = (os->has_load_address()
4878                       ? os->load_address()
4879                       : os->address());
4880       if (*found == NULL || lma < *found_lma)
4881         {
4882           *found = os;
4883           *found_lma = lma;
4884         }
4885     }
4886 }
4887
4888 // Write the segment data into *OPHDR.
4889
4890 template<int size, bool big_endian>
4891 void
4892 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4893 {
4894   ophdr->put_p_type(this->type_);
4895   ophdr->put_p_offset(this->offset_);
4896   ophdr->put_p_vaddr(this->vaddr_);
4897   ophdr->put_p_paddr(this->paddr_);
4898   ophdr->put_p_filesz(this->filesz_);
4899   ophdr->put_p_memsz(this->memsz_);
4900   ophdr->put_p_flags(this->flags_);
4901   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4902 }
4903
4904 // Write the section headers into V.
4905
4906 template<int size, bool big_endian>
4907 unsigned char*
4908 Output_segment::write_section_headers(const Layout* layout,
4909                                       const Stringpool* secnamepool,
4910                                       unsigned char* v,
4911                                       unsigned int* pshndx) const
4912 {
4913   // Every section that is attached to a segment must be attached to a
4914   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4915   // segments.
4916   if (this->type_ != elfcpp::PT_LOAD)
4917     return v;
4918
4919   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4920     {
4921       const Output_data_list* pdl = &this->output_lists_[i];
4922       v = this->write_section_headers_list<size, big_endian>(layout,
4923                                                              secnamepool,
4924                                                              pdl,
4925                                                              v, pshndx);
4926     }
4927
4928   return v;
4929 }
4930
4931 template<int size, bool big_endian>
4932 unsigned char*
4933 Output_segment::write_section_headers_list(const Layout* layout,
4934                                            const Stringpool* secnamepool,
4935                                            const Output_data_list* pdl,
4936                                            unsigned char* v,
4937                                            unsigned int* pshndx) const
4938 {
4939   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4940   for (Output_data_list::const_iterator p = pdl->begin();
4941        p != pdl->end();
4942        ++p)
4943     {
4944       if ((*p)->is_section())
4945         {
4946           const Output_section* ps = static_cast<const Output_section*>(*p);
4947           gold_assert(*pshndx == ps->out_shndx());
4948           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4949           ps->write_header(layout, secnamepool, &oshdr);
4950           v += shdr_size;
4951           ++*pshndx;
4952         }
4953     }
4954   return v;
4955 }
4956
4957 // Print the output sections to the map file.
4958
4959 void
4960 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4961 {
4962   if (this->type() != elfcpp::PT_LOAD)
4963     return;
4964   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4965     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4966 }
4967
4968 // Print an output section list to the map file.
4969
4970 void
4971 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4972                                               const Output_data_list* pdl) const
4973 {
4974   for (Output_data_list::const_iterator p = pdl->begin();
4975        p != pdl->end();
4976        ++p)
4977     (*p)->print_to_mapfile(mapfile);
4978 }
4979
4980 // Output_file methods.
4981
4982 Output_file::Output_file(const char* name)
4983   : name_(name),
4984     o_(-1),
4985     file_size_(0),
4986     base_(NULL),
4987     map_is_anonymous_(false),
4988     map_is_allocated_(false),
4989     is_temporary_(false)
4990 {
4991 }
4992
4993 // Try to open an existing file.  Returns false if the file doesn't
4994 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4995 // NULL, open that file as the base for incremental linking, and
4996 // copy its contents to the new output file.  This routine can
4997 // be called for incremental updates, in which case WRITABLE should
4998 // be true, or by the incremental-dump utility, in which case
4999 // WRITABLE should be false.
5000
5001 bool
5002 Output_file::open_base_file(const char* base_name, bool writable)
5003 {
5004   // The name "-" means "stdout".
5005   if (strcmp(this->name_, "-") == 0)
5006     return false;
5007
5008   bool use_base_file = base_name != NULL;
5009   if (!use_base_file)
5010     base_name = this->name_;
5011   else if (strcmp(base_name, this->name_) == 0)
5012     gold_fatal(_("%s: incremental base and output file name are the same"),
5013                base_name);
5014
5015   // Don't bother opening files with a size of zero.
5016   struct stat s;
5017   if (::stat(base_name, &s) != 0)
5018     {
5019       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
5020       return false;
5021     }
5022   if (s.st_size == 0)
5023     {
5024       gold_info(_("%s: incremental base file is empty"), base_name);
5025       return false;
5026     }
5027
5028   // If we're using a base file, we want to open it read-only.
5029   if (use_base_file)
5030     writable = false;
5031
5032   int oflags = writable ? O_RDWR : O_RDONLY;
5033   int o = open_descriptor(-1, base_name, oflags, 0);
5034   if (o < 0)
5035     {
5036       gold_info(_("%s: open: %s"), base_name, strerror(errno));
5037       return false;
5038     }
5039
5040   // If the base file and the output file are different, open a
5041   // new output file and read the contents from the base file into
5042   // the newly-mapped region.
5043   if (use_base_file)
5044     {
5045       this->open(s.st_size);
5046       ssize_t bytes_to_read = s.st_size;
5047       unsigned char* p = this->base_;
5048       while (bytes_to_read > 0)
5049         {
5050           ssize_t len = ::read(o, p, bytes_to_read);
5051           if (len < 0)
5052             {
5053               gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
5054               return false;
5055             }
5056           if (len == 0)
5057             {
5058               gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5059                         base_name,
5060                         static_cast<long long>(s.st_size - bytes_to_read),
5061                         static_cast<long long>(s.st_size));
5062               return false;
5063             }
5064           p += len;
5065           bytes_to_read -= len;
5066         }
5067       ::close(o);
5068       return true;
5069     }
5070
5071   this->o_ = o;
5072   this->file_size_ = s.st_size;
5073
5074   if (!this->map_no_anonymous(writable))
5075     {
5076       release_descriptor(o, true);
5077       this->o_ = -1;
5078       this->file_size_ = 0;
5079       return false;
5080     }
5081
5082   return true;
5083 }
5084
5085 // Open the output file.
5086
5087 void
5088 Output_file::open(off_t file_size)
5089 {
5090   this->file_size_ = file_size;
5091
5092   // Unlink the file first; otherwise the open() may fail if the file
5093   // is busy (e.g. it's an executable that's currently being executed).
5094   //
5095   // However, the linker may be part of a system where a zero-length
5096   // file is created for it to write to, with tight permissions (gcc
5097   // 2.95 did something like this).  Unlinking the file would work
5098   // around those permission controls, so we only unlink if the file
5099   // has a non-zero size.  We also unlink only regular files to avoid
5100   // trouble with directories/etc.
5101   //
5102   // If we fail, continue; this command is merely a best-effort attempt
5103   // to improve the odds for open().
5104
5105   // We let the name "-" mean "stdout"
5106   if (!this->is_temporary_)
5107     {
5108       if (strcmp(this->name_, "-") == 0)
5109         this->o_ = STDOUT_FILENO;
5110       else
5111         {
5112           struct stat s;
5113           if (::stat(this->name_, &s) == 0
5114               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5115             {
5116               if (s.st_size != 0)
5117                 ::unlink(this->name_);
5118               else if (!parameters->options().relocatable())
5119                 {
5120                   // If we don't unlink the existing file, add execute
5121                   // permission where read permissions already exist
5122                   // and where the umask permits.
5123                   int mask = ::umask(0);
5124                   ::umask(mask);
5125                   s.st_mode |= (s.st_mode & 0444) >> 2;
5126                   ::chmod(this->name_, s.st_mode & ~mask);
5127                 }
5128             }
5129
5130           int mode = parameters->options().relocatable() ? 0666 : 0777;
5131           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5132                                   mode);
5133           if (o < 0)
5134             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5135           this->o_ = o;
5136         }
5137     }
5138
5139   this->map();
5140 }
5141
5142 // Resize the output file.
5143
5144 void
5145 Output_file::resize(off_t file_size)
5146 {
5147   // If the mmap is mapping an anonymous memory buffer, this is easy:
5148   // just mremap to the new size.  If it's mapping to a file, we want
5149   // to unmap to flush to the file, then remap after growing the file.
5150   if (this->map_is_anonymous_)
5151     {
5152       void* base;
5153       if (!this->map_is_allocated_)
5154         {
5155           base = ::mremap(this->base_, this->file_size_, file_size,
5156                           MREMAP_MAYMOVE);
5157           if (base == MAP_FAILED)
5158             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5159         }
5160       else
5161         {
5162           base = realloc(this->base_, file_size);
5163           if (base == NULL)
5164             gold_nomem();
5165           if (file_size > this->file_size_)
5166             memset(static_cast<char*>(base) + this->file_size_, 0,
5167                    file_size - this->file_size_);
5168         }
5169       this->base_ = static_cast<unsigned char*>(base);
5170       this->file_size_ = file_size;
5171     }
5172   else
5173     {
5174       this->unmap();
5175       this->file_size_ = file_size;
5176       if (!this->map_no_anonymous(true))
5177         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5178     }
5179 }
5180
5181 // Map an anonymous block of memory which will later be written to the
5182 // file.  Return whether the map succeeded.
5183
5184 bool
5185 Output_file::map_anonymous()
5186 {
5187   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5188                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5189   if (base == MAP_FAILED)
5190     {
5191       base = malloc(this->file_size_);
5192       if (base == NULL)
5193         return false;
5194       memset(base, 0, this->file_size_);
5195       this->map_is_allocated_ = true;
5196     }
5197   this->base_ = static_cast<unsigned char*>(base);
5198   this->map_is_anonymous_ = true;
5199   return true;
5200 }
5201
5202 // Map the file into memory.  Return whether the mapping succeeded.
5203 // If WRITABLE is true, map with write access.
5204
5205 bool
5206 Output_file::map_no_anonymous(bool writable)
5207 {
5208   const int o = this->o_;
5209
5210   // If the output file is not a regular file, don't try to mmap it;
5211   // instead, we'll mmap a block of memory (an anonymous buffer), and
5212   // then later write the buffer to the file.
5213   void* base;
5214   struct stat statbuf;
5215   if (o == STDOUT_FILENO || o == STDERR_FILENO
5216       || ::fstat(o, &statbuf) != 0
5217       || !S_ISREG(statbuf.st_mode)
5218       || this->is_temporary_)
5219     return false;
5220
5221   // Ensure that we have disk space available for the file.  If we
5222   // don't do this, it is possible that we will call munmap, close,
5223   // and exit with dirty buffers still in the cache with no assigned
5224   // disk blocks.  If the disk is out of space at that point, the
5225   // output file will wind up incomplete, but we will have already
5226   // exited.  The alternative to fallocate would be to use fdatasync,
5227   // but that would be a more significant performance hit.
5228   if (writable)
5229     {
5230       int err = gold_fallocate(o, 0, this->file_size_);
5231       if (err != 0)
5232        gold_fatal(_("%s: %s"), this->name_, strerror(err));
5233     }
5234
5235   // Map the file into memory.
5236   int prot = PROT_READ;
5237   if (writable)
5238     prot |= PROT_WRITE;
5239   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5240
5241   // The mmap call might fail because of file system issues: the file
5242   // system might not support mmap at all, or it might not support
5243   // mmap with PROT_WRITE.
5244   if (base == MAP_FAILED)
5245     return false;
5246
5247   this->map_is_anonymous_ = false;
5248   this->base_ = static_cast<unsigned char*>(base);
5249   return true;
5250 }
5251
5252 // Map the file into memory.
5253
5254 void
5255 Output_file::map()
5256 {
5257   if (parameters->options().mmap_output_file()
5258       && this->map_no_anonymous(true))
5259     return;
5260
5261   // The mmap call might fail because of file system issues: the file
5262   // system might not support mmap at all, or it might not support
5263   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5264   // see in all cases, so if the mmap fails for any reason and we
5265   // don't care about file contents, try for an anonymous map.
5266   if (this->map_anonymous())
5267     return;
5268
5269   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5270              this->name_, static_cast<unsigned long>(this->file_size_),
5271              strerror(errno));
5272 }
5273
5274 // Unmap the file from memory.
5275
5276 void
5277 Output_file::unmap()
5278 {
5279   if (this->map_is_anonymous_)
5280     {
5281       // We've already written out the data, so there is no reason to
5282       // waste time unmapping or freeing the memory.
5283     }
5284   else
5285     {
5286       if (::munmap(this->base_, this->file_size_) < 0)
5287         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5288     }
5289   this->base_ = NULL;
5290 }
5291
5292 // Close the output file.
5293
5294 void
5295 Output_file::close()
5296 {
5297   // If the map isn't file-backed, we need to write it now.
5298   if (this->map_is_anonymous_ && !this->is_temporary_)
5299     {
5300       size_t bytes_to_write = this->file_size_;
5301       size_t offset = 0;
5302       while (bytes_to_write > 0)
5303         {
5304           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5305                                           bytes_to_write);
5306           if (bytes_written == 0)
5307             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5308           else if (bytes_written < 0)
5309             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5310           else
5311             {
5312               bytes_to_write -= bytes_written;
5313               offset += bytes_written;
5314             }
5315         }
5316     }
5317   this->unmap();
5318
5319   // We don't close stdout or stderr
5320   if (this->o_ != STDOUT_FILENO
5321       && this->o_ != STDERR_FILENO
5322       && !this->is_temporary_)
5323     if (::close(this->o_) < 0)
5324       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5325   this->o_ = -1;
5326 }
5327
5328 // Instantiate the templates we need.  We could use the configure
5329 // script to restrict this to only the ones for implemented targets.
5330
5331 #ifdef HAVE_TARGET_32_LITTLE
5332 template
5333 off_t
5334 Output_section::add_input_section<32, false>(
5335     Layout* layout,
5336     Sized_relobj_file<32, false>* object,
5337     unsigned int shndx,
5338     const char* secname,
5339     const elfcpp::Shdr<32, false>& shdr,
5340     unsigned int reloc_shndx,
5341     bool have_sections_script);
5342 #endif
5343
5344 #ifdef HAVE_TARGET_32_BIG
5345 template
5346 off_t
5347 Output_section::add_input_section<32, true>(
5348     Layout* layout,
5349     Sized_relobj_file<32, true>* object,
5350     unsigned int shndx,
5351     const char* secname,
5352     const elfcpp::Shdr<32, true>& shdr,
5353     unsigned int reloc_shndx,
5354     bool have_sections_script);
5355 #endif
5356
5357 #ifdef HAVE_TARGET_64_LITTLE
5358 template
5359 off_t
5360 Output_section::add_input_section<64, false>(
5361     Layout* layout,
5362     Sized_relobj_file<64, false>* object,
5363     unsigned int shndx,
5364     const char* secname,
5365     const elfcpp::Shdr<64, false>& shdr,
5366     unsigned int reloc_shndx,
5367     bool have_sections_script);
5368 #endif
5369
5370 #ifdef HAVE_TARGET_64_BIG
5371 template
5372 off_t
5373 Output_section::add_input_section<64, true>(
5374     Layout* layout,
5375     Sized_relobj_file<64, true>* object,
5376     unsigned int shndx,
5377     const char* secname,
5378     const elfcpp::Shdr<64, true>& shdr,
5379     unsigned int reloc_shndx,
5380     bool have_sections_script);
5381 #endif
5382
5383 #ifdef HAVE_TARGET_32_LITTLE
5384 template
5385 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5386 #endif
5387
5388 #ifdef HAVE_TARGET_32_BIG
5389 template
5390 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5391 #endif
5392
5393 #ifdef HAVE_TARGET_64_LITTLE
5394 template
5395 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5396 #endif
5397
5398 #ifdef HAVE_TARGET_64_BIG
5399 template
5400 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5401 #endif
5402
5403 #ifdef HAVE_TARGET_32_LITTLE
5404 template
5405 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5406 #endif
5407
5408 #ifdef HAVE_TARGET_32_BIG
5409 template
5410 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5411 #endif
5412
5413 #ifdef HAVE_TARGET_64_LITTLE
5414 template
5415 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5416 #endif
5417
5418 #ifdef HAVE_TARGET_64_BIG
5419 template
5420 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5421 #endif
5422
5423 #ifdef HAVE_TARGET_32_LITTLE
5424 template
5425 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5426 #endif
5427
5428 #ifdef HAVE_TARGET_32_BIG
5429 template
5430 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5431 #endif
5432
5433 #ifdef HAVE_TARGET_64_LITTLE
5434 template
5435 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5436 #endif
5437
5438 #ifdef HAVE_TARGET_64_BIG
5439 template
5440 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5441 #endif
5442
5443 #ifdef HAVE_TARGET_32_LITTLE
5444 template
5445 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5446 #endif
5447
5448 #ifdef HAVE_TARGET_32_BIG
5449 template
5450 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5451 #endif
5452
5453 #ifdef HAVE_TARGET_64_LITTLE
5454 template
5455 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5456 #endif
5457
5458 #ifdef HAVE_TARGET_64_BIG
5459 template
5460 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5461 #endif
5462
5463 #ifdef HAVE_TARGET_32_LITTLE
5464 template
5465 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5466 #endif
5467
5468 #ifdef HAVE_TARGET_32_BIG
5469 template
5470 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5471 #endif
5472
5473 #ifdef HAVE_TARGET_64_LITTLE
5474 template
5475 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5476 #endif
5477
5478 #ifdef HAVE_TARGET_64_BIG
5479 template
5480 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5481 #endif
5482
5483 #ifdef HAVE_TARGET_32_LITTLE
5484 template
5485 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5486 #endif
5487
5488 #ifdef HAVE_TARGET_32_BIG
5489 template
5490 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5491 #endif
5492
5493 #ifdef HAVE_TARGET_64_LITTLE
5494 template
5495 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5496 #endif
5497
5498 #ifdef HAVE_TARGET_64_BIG
5499 template
5500 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5501 #endif
5502
5503 #ifdef HAVE_TARGET_32_LITTLE
5504 template
5505 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5506 #endif
5507
5508 #ifdef HAVE_TARGET_32_BIG
5509 template
5510 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5511 #endif
5512
5513 #ifdef HAVE_TARGET_64_LITTLE
5514 template
5515 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5516 #endif
5517
5518 #ifdef HAVE_TARGET_64_BIG
5519 template
5520 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5521 #endif
5522
5523 #ifdef HAVE_TARGET_32_LITTLE
5524 template
5525 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5526 #endif
5527
5528 #ifdef HAVE_TARGET_32_BIG
5529 template
5530 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5531 #endif
5532
5533 #ifdef HAVE_TARGET_64_LITTLE
5534 template
5535 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5536 #endif
5537
5538 #ifdef HAVE_TARGET_64_BIG
5539 template
5540 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5541 #endif
5542
5543 #ifdef HAVE_TARGET_32_LITTLE
5544 template
5545 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5546 #endif
5547
5548 #ifdef HAVE_TARGET_32_BIG
5549 template
5550 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5551 #endif
5552
5553 #ifdef HAVE_TARGET_64_LITTLE
5554 template
5555 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5556 #endif
5557
5558 #ifdef HAVE_TARGET_64_BIG
5559 template
5560 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5561 #endif
5562
5563 #ifdef HAVE_TARGET_32_LITTLE
5564 template
5565 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5566 #endif
5567
5568 #ifdef HAVE_TARGET_32_BIG
5569 template
5570 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5571 #endif
5572
5573 #ifdef HAVE_TARGET_64_LITTLE
5574 template
5575 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5576 #endif
5577
5578 #ifdef HAVE_TARGET_64_BIG
5579 template
5580 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5581 #endif
5582
5583 #ifdef HAVE_TARGET_32_LITTLE
5584 template
5585 class Output_data_group<32, false>;
5586 #endif
5587
5588 #ifdef HAVE_TARGET_32_BIG
5589 template
5590 class Output_data_group<32, true>;
5591 #endif
5592
5593 #ifdef HAVE_TARGET_64_LITTLE
5594 template
5595 class Output_data_group<64, false>;
5596 #endif
5597
5598 #ifdef HAVE_TARGET_64_BIG
5599 template
5600 class Output_data_group<64, true>;
5601 #endif
5602
5603 template
5604 class Output_data_got<32, false>;
5605
5606 template
5607 class Output_data_got<32, true>;
5608
5609 template
5610 class Output_data_got<64, false>;
5611
5612 template
5613 class Output_data_got<64, true>;
5614
5615 } // End namespace gold.