d75b45bfd22cd167ce677f589e7a4c208710beb2
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS  MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate.  Here we just set
50 // the file size and hope that there is enough disk space.  FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56   return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78   return Output_data::default_alignment_for_size(
79       parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87   if (size == 32)
88     return 4;
89   else if (size == 64)
90     return 8;
91   else
92     gold_unreachable();
93 }
94
95 // Output_section_header methods.  This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99     const Layout* layout,
100     const Layout::Segment_list* segment_list,
101     const Layout::Section_list* section_list,
102     const Layout::Section_list* unattached_section_list,
103     const Stringpool* secnamepool,
104     const Output_section* shstrtab_section)
105   : layout_(layout),
106     segment_list_(segment_list),
107     section_list_(section_list),
108     unattached_section_list_(unattached_section_list),
109     secnamepool_(secnamepool),
110     shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119   // Count all the sections.  Start with 1 for the null section.
120   off_t count = 1;
121   if (!parameters->options().relocatable())
122     {
123       for (Layout::Segment_list::const_iterator p =
124              this->segment_list_->begin();
125            p != this->segment_list_->end();
126            ++p)
127         if ((*p)->type() == elfcpp::PT_LOAD)
128           count += (*p)->output_section_count();
129     }
130   else
131     {
132       for (Layout::Section_list::const_iterator p =
133              this->section_list_->begin();
134            p != this->section_list_->end();
135            ++p)
136         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137           ++count;
138     }
139   count += this->unattached_section_list_->size();
140
141   const int size = parameters->target().get_size();
142   int shdr_size;
143   if (size == 32)
144     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145   else if (size == 64)
146     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147   else
148     gold_unreachable();
149
150   return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158   switch (parameters->size_and_endianness())
159     {
160 #ifdef HAVE_TARGET_32_LITTLE
161     case Parameters::TARGET_32_LITTLE:
162       this->do_sized_write<32, false>(of);
163       break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166     case Parameters::TARGET_32_BIG:
167       this->do_sized_write<32, true>(of);
168       break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171     case Parameters::TARGET_64_LITTLE:
172       this->do_sized_write<64, false>(of);
173       break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176     case Parameters::TARGET_64_BIG:
177       this->do_sized_write<64, true>(of);
178       break;
179 #endif
180     default:
181       gold_unreachable();
182     }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189   off_t all_shdrs_size = this->data_size();
190   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193   unsigned char* v = view;
194
195   {
196     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197     oshdr.put_sh_name(0);
198     oshdr.put_sh_type(elfcpp::SHT_NULL);
199     oshdr.put_sh_flags(0);
200     oshdr.put_sh_addr(0);
201     oshdr.put_sh_offset(0);
202
203     size_t section_count = (this->data_size()
204                             / elfcpp::Elf_sizes<size>::shdr_size);
205     if (section_count < elfcpp::SHN_LORESERVE)
206       oshdr.put_sh_size(0);
207     else
208       oshdr.put_sh_size(section_count);
209
210     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211     if (shstrndx < elfcpp::SHN_LORESERVE)
212       oshdr.put_sh_link(0);
213     else
214       oshdr.put_sh_link(shstrndx);
215
216     oshdr.put_sh_info(0);
217     oshdr.put_sh_addralign(0);
218     oshdr.put_sh_entsize(0);
219   }
220
221   v += shdr_size;
222
223   unsigned int shndx = 1;
224   if (!parameters->options().relocatable())
225     {
226       for (Layout::Segment_list::const_iterator p =
227              this->segment_list_->begin();
228            p != this->segment_list_->end();
229            ++p)
230         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
231                                                           this->secnamepool_,
232                                                           v,
233                                                           &shndx);
234     }
235   else
236     {
237       for (Layout::Section_list::const_iterator p =
238              this->section_list_->begin();
239            p != this->section_list_->end();
240            ++p)
241         {
242           // We do unallocated sections below, except that group
243           // sections have to come first.
244           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
245               && (*p)->type() != elfcpp::SHT_GROUP)
246             continue;
247           gold_assert(shndx == (*p)->out_shndx());
248           elfcpp::Shdr_write<size, big_endian> oshdr(v);
249           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
250           v += shdr_size;
251           ++shndx;
252         }
253     }
254
255   for (Layout::Section_list::const_iterator p =
256          this->unattached_section_list_->begin();
257        p != this->unattached_section_list_->end();
258        ++p)
259     {
260       // For a relocatable link, we did unallocated group sections
261       // above, since they have to come first.
262       if ((*p)->type() == elfcpp::SHT_GROUP
263           && parameters->options().relocatable())
264         continue;
265       gold_assert(shndx == (*p)->out_shndx());
266       elfcpp::Shdr_write<size, big_endian> oshdr(v);
267       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
268       v += shdr_size;
269       ++shndx;
270     }
271
272   of->write_output_view(this->offset(), all_shdrs_size, view);
273 }
274
275 // Output_segment_header methods.
276
277 Output_segment_headers::Output_segment_headers(
278     const Layout::Segment_list& segment_list)
279   : segment_list_(segment_list)
280 {
281 }
282
283 void
284 Output_segment_headers::do_write(Output_file* of)
285 {
286   switch (parameters->size_and_endianness())
287     {
288 #ifdef HAVE_TARGET_32_LITTLE
289     case Parameters::TARGET_32_LITTLE:
290       this->do_sized_write<32, false>(of);
291       break;
292 #endif
293 #ifdef HAVE_TARGET_32_BIG
294     case Parameters::TARGET_32_BIG:
295       this->do_sized_write<32, true>(of);
296       break;
297 #endif
298 #ifdef HAVE_TARGET_64_LITTLE
299     case Parameters::TARGET_64_LITTLE:
300       this->do_sized_write<64, false>(of);
301       break;
302 #endif
303 #ifdef HAVE_TARGET_64_BIG
304     case Parameters::TARGET_64_BIG:
305       this->do_sized_write<64, true>(of);
306       break;
307 #endif
308     default:
309       gold_unreachable();
310     }
311 }
312
313 template<int size, bool big_endian>
314 void
315 Output_segment_headers::do_sized_write(Output_file* of)
316 {
317   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
318   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
319   gold_assert(all_phdrs_size == this->data_size());
320   unsigned char* view = of->get_output_view(this->offset(),
321                                             all_phdrs_size);
322   unsigned char* v = view;
323   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
324        p != this->segment_list_.end();
325        ++p)
326     {
327       elfcpp::Phdr_write<size, big_endian> ophdr(v);
328       (*p)->write_header(&ophdr);
329       v += phdr_size;
330     }
331
332   gold_assert(v - view == all_phdrs_size);
333
334   of->write_output_view(this->offset(), all_phdrs_size, view);
335 }
336
337 off_t
338 Output_segment_headers::do_size() const
339 {
340   const int size = parameters->target().get_size();
341   int phdr_size;
342   if (size == 32)
343     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
344   else if (size == 64)
345     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
346   else
347     gold_unreachable();
348
349   return this->segment_list_.size() * phdr_size;
350 }
351
352 // Output_file_header methods.
353
354 Output_file_header::Output_file_header(const Target* target,
355                                        const Symbol_table* symtab,
356                                        const Output_segment_headers* osh,
357                                        const char* entry)
358   : target_(target),
359     symtab_(symtab),
360     segment_header_(osh),
361     section_header_(NULL),
362     shstrtab_(NULL),
363     entry_(entry)
364 {
365   this->set_data_size(this->do_size());
366 }
367
368 // Set the section table information for a file header.
369
370 void
371 Output_file_header::set_section_info(const Output_section_headers* shdrs,
372                                      const Output_section* shstrtab)
373 {
374   this->section_header_ = shdrs;
375   this->shstrtab_ = shstrtab;
376 }
377
378 // Write out the file header.
379
380 void
381 Output_file_header::do_write(Output_file* of)
382 {
383   gold_assert(this->offset() == 0);
384
385   switch (parameters->size_and_endianness())
386     {
387 #ifdef HAVE_TARGET_32_LITTLE
388     case Parameters::TARGET_32_LITTLE:
389       this->do_sized_write<32, false>(of);
390       break;
391 #endif
392 #ifdef HAVE_TARGET_32_BIG
393     case Parameters::TARGET_32_BIG:
394       this->do_sized_write<32, true>(of);
395       break;
396 #endif
397 #ifdef HAVE_TARGET_64_LITTLE
398     case Parameters::TARGET_64_LITTLE:
399       this->do_sized_write<64, false>(of);
400       break;
401 #endif
402 #ifdef HAVE_TARGET_64_BIG
403     case Parameters::TARGET_64_BIG:
404       this->do_sized_write<64, true>(of);
405       break;
406 #endif
407     default:
408       gold_unreachable();
409     }
410 }
411
412 // Write out the file header with appropriate size and endianess.
413
414 template<int size, bool big_endian>
415 void
416 Output_file_header::do_sized_write(Output_file* of)
417 {
418   gold_assert(this->offset() == 0);
419
420   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
421   unsigned char* view = of->get_output_view(0, ehdr_size);
422   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
423
424   unsigned char e_ident[elfcpp::EI_NIDENT];
425   memset(e_ident, 0, elfcpp::EI_NIDENT);
426   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
427   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
428   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
429   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
430   if (size == 32)
431     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
432   else if (size == 64)
433     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
434   else
435     gold_unreachable();
436   e_ident[elfcpp::EI_DATA] = (big_endian
437                               ? elfcpp::ELFDATA2MSB
438                               : elfcpp::ELFDATA2LSB);
439   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
440   oehdr.put_e_ident(e_ident);
441
442   elfcpp::ET e_type;
443   if (parameters->options().relocatable())
444     e_type = elfcpp::ET_REL;
445   else if (parameters->options().output_is_position_independent())
446     e_type = elfcpp::ET_DYN;
447   else
448     e_type = elfcpp::ET_EXEC;
449   oehdr.put_e_type(e_type);
450
451   oehdr.put_e_machine(this->target_->machine_code());
452   oehdr.put_e_version(elfcpp::EV_CURRENT);
453
454   oehdr.put_e_entry(this->entry<size>());
455
456   if (this->segment_header_ == NULL)
457     oehdr.put_e_phoff(0);
458   else
459     oehdr.put_e_phoff(this->segment_header_->offset());
460
461   oehdr.put_e_shoff(this->section_header_->offset());
462   oehdr.put_e_flags(this->target_->processor_specific_flags());
463   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
464
465   if (this->segment_header_ == NULL)
466     {
467       oehdr.put_e_phentsize(0);
468       oehdr.put_e_phnum(0);
469     }
470   else
471     {
472       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
473       oehdr.put_e_phnum(this->segment_header_->data_size()
474                         / elfcpp::Elf_sizes<size>::phdr_size);
475     }
476
477   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
478   size_t section_count = (this->section_header_->data_size()
479                           / elfcpp::Elf_sizes<size>::shdr_size);
480
481   if (section_count < elfcpp::SHN_LORESERVE)
482     oehdr.put_e_shnum(this->section_header_->data_size()
483                       / elfcpp::Elf_sizes<size>::shdr_size);
484   else
485     oehdr.put_e_shnum(0);
486
487   unsigned int shstrndx = this->shstrtab_->out_shndx();
488   if (shstrndx < elfcpp::SHN_LORESERVE)
489     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
490   else
491     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
492
493   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
494   // the e_ident field.
495   parameters->target().adjust_elf_header(view, ehdr_size);
496
497   of->write_output_view(0, ehdr_size, view);
498 }
499
500 // Return the value to use for the entry address.  THIS->ENTRY_ is the
501 // symbol specified on the command line, if any.
502
503 template<int size>
504 typename elfcpp::Elf_types<size>::Elf_Addr
505 Output_file_header::entry()
506 {
507   const bool should_issue_warning = (this->entry_ != NULL
508                                      && !parameters->options().relocatable()
509                                      && !parameters->options().shared());
510
511   // FIXME: Need to support target specific entry symbol.
512   const char* entry = this->entry_;
513   if (entry == NULL)
514     entry = "_start";
515
516   Symbol* sym = this->symtab_->lookup(entry);
517
518   typename Sized_symbol<size>::Value_type v;
519   if (sym != NULL)
520     {
521       Sized_symbol<size>* ssym;
522       ssym = this->symtab_->get_sized_symbol<size>(sym);
523       if (!ssym->is_defined() && should_issue_warning)
524         gold_warning("entry symbol '%s' exists but is not defined", entry);
525       v = ssym->value();
526     }
527   else
528     {
529       // We couldn't find the entry symbol.  See if we can parse it as
530       // a number.  This supports, e.g., -e 0x1000.
531       char* endptr;
532       v = strtoull(entry, &endptr, 0);
533       if (*endptr != '\0')
534         {
535           if (should_issue_warning)
536             gold_warning("cannot find entry symbol '%s'", entry);
537           v = 0;
538         }
539     }
540
541   return v;
542 }
543
544 // Compute the current data size.
545
546 off_t
547 Output_file_header::do_size() const
548 {
549   const int size = parameters->target().get_size();
550   if (size == 32)
551     return elfcpp::Elf_sizes<32>::ehdr_size;
552   else if (size == 64)
553     return elfcpp::Elf_sizes<64>::ehdr_size;
554   else
555     gold_unreachable();
556 }
557
558 // Output_data_const methods.
559
560 void
561 Output_data_const::do_write(Output_file* of)
562 {
563   of->write(this->offset(), this->data_.data(), this->data_.size());
564 }
565
566 // Output_data_const_buffer methods.
567
568 void
569 Output_data_const_buffer::do_write(Output_file* of)
570 {
571   of->write(this->offset(), this->p_, this->data_size());
572 }
573
574 // Output_section_data methods.
575
576 // Record the output section, and set the entry size and such.
577
578 void
579 Output_section_data::set_output_section(Output_section* os)
580 {
581   gold_assert(this->output_section_ == NULL);
582   this->output_section_ = os;
583   this->do_adjust_output_section(os);
584 }
585
586 // Return the section index of the output section.
587
588 unsigned int
589 Output_section_data::do_out_shndx() const
590 {
591   gold_assert(this->output_section_ != NULL);
592   return this->output_section_->out_shndx();
593 }
594
595 // Set the alignment, which means we may need to update the alignment
596 // of the output section.
597
598 void
599 Output_section_data::set_addralign(uint64_t addralign)
600 {
601   this->addralign_ = addralign;
602   if (this->output_section_ != NULL
603       && this->output_section_->addralign() < addralign)
604     this->output_section_->set_addralign(addralign);
605 }
606
607 // Output_data_strtab methods.
608
609 // Set the final data size.
610
611 void
612 Output_data_strtab::set_final_data_size()
613 {
614   this->strtab_->set_string_offsets();
615   this->set_data_size(this->strtab_->get_strtab_size());
616 }
617
618 // Write out a string table.
619
620 void
621 Output_data_strtab::do_write(Output_file* of)
622 {
623   this->strtab_->write(of, this->offset());
624 }
625
626 // Output_reloc methods.
627
628 // A reloc against a global symbol.
629
630 template<bool dynamic, int size, bool big_endian>
631 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
632     Symbol* gsym,
633     unsigned int type,
634     Output_data* od,
635     Address address,
636     bool is_relative)
637   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
638     is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
639 {
640   // this->type_ is a bitfield; make sure TYPE fits.
641   gold_assert(this->type_ == type);
642   this->u1_.gsym = gsym;
643   this->u2_.od = od;
644   if (dynamic)
645     this->set_needs_dynsym_index();
646 }
647
648 template<bool dynamic, int size, bool big_endian>
649 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
650     Symbol* gsym,
651     unsigned int type,
652     Sized_relobj<size, big_endian>* relobj,
653     unsigned int shndx,
654     Address address,
655     bool is_relative)
656   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
657     is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
658 {
659   gold_assert(shndx != INVALID_CODE);
660   // this->type_ is a bitfield; make sure TYPE fits.
661   gold_assert(this->type_ == type);
662   this->u1_.gsym = gsym;
663   this->u2_.relobj = relobj;
664   if (dynamic)
665     this->set_needs_dynsym_index();
666 }
667
668 // A reloc against a local symbol.
669
670 template<bool dynamic, int size, bool big_endian>
671 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
672     Sized_relobj<size, big_endian>* relobj,
673     unsigned int local_sym_index,
674     unsigned int type,
675     Output_data* od,
676     Address address,
677     bool is_relative,
678     bool is_section_symbol)
679   : address_(address), local_sym_index_(local_sym_index), type_(type),
680     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
681     shndx_(INVALID_CODE)
682 {
683   gold_assert(local_sym_index != GSYM_CODE
684               && local_sym_index != INVALID_CODE);
685   // this->type_ is a bitfield; make sure TYPE fits.
686   gold_assert(this->type_ == type);
687   this->u1_.relobj = relobj;
688   this->u2_.od = od;
689   if (dynamic)
690     this->set_needs_dynsym_index();
691 }
692
693 template<bool dynamic, int size, bool big_endian>
694 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
695     Sized_relobj<size, big_endian>* relobj,
696     unsigned int local_sym_index,
697     unsigned int type,
698     unsigned int shndx,
699     Address address,
700     bool is_relative,
701     bool is_section_symbol)
702   : address_(address), local_sym_index_(local_sym_index), type_(type),
703     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
704     shndx_(shndx)
705 {
706   gold_assert(local_sym_index != GSYM_CODE
707               && local_sym_index != INVALID_CODE);
708   gold_assert(shndx != INVALID_CODE);
709   // this->type_ is a bitfield; make sure TYPE fits.
710   gold_assert(this->type_ == type);
711   this->u1_.relobj = relobj;
712   this->u2_.relobj = relobj;
713   if (dynamic)
714     this->set_needs_dynsym_index();
715 }
716
717 // A reloc against the STT_SECTION symbol of an output section.
718
719 template<bool dynamic, int size, bool big_endian>
720 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
721     Output_section* os,
722     unsigned int type,
723     Output_data* od,
724     Address address)
725   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
726     is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
727 {
728   // this->type_ is a bitfield; make sure TYPE fits.
729   gold_assert(this->type_ == type);
730   this->u1_.os = os;
731   this->u2_.od = od;
732   if (dynamic)
733     this->set_needs_dynsym_index();
734   else
735     os->set_needs_symtab_index();
736 }
737
738 template<bool dynamic, int size, bool big_endian>
739 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
740     Output_section* os,
741     unsigned int type,
742     Sized_relobj<size, big_endian>* relobj,
743     unsigned int shndx,
744     Address address)
745   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
746     is_relative_(false), is_section_symbol_(true), shndx_(shndx)
747 {
748   gold_assert(shndx != INVALID_CODE);
749   // this->type_ is a bitfield; make sure TYPE fits.
750   gold_assert(this->type_ == type);
751   this->u1_.os = os;
752   this->u2_.relobj = relobj;
753   if (dynamic)
754     this->set_needs_dynsym_index();
755   else
756     os->set_needs_symtab_index();
757 }
758
759 // Record that we need a dynamic symbol index for this relocation.
760
761 template<bool dynamic, int size, bool big_endian>
762 void
763 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
764 set_needs_dynsym_index()
765 {
766   if (this->is_relative_)
767     return;
768   switch (this->local_sym_index_)
769     {
770     case INVALID_CODE:
771       gold_unreachable();
772
773     case GSYM_CODE:
774       this->u1_.gsym->set_needs_dynsym_entry();
775       break;
776
777     case SECTION_CODE:
778       this->u1_.os->set_needs_dynsym_index();
779       break;
780
781     case 0:
782       break;
783
784     default:
785       {
786         const unsigned int lsi = this->local_sym_index_;
787         if (!this->is_section_symbol_)
788           this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
789         else
790           this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
791       }
792       break;
793     }
794 }
795
796 // Get the symbol index of a relocation.
797
798 template<bool dynamic, int size, bool big_endian>
799 unsigned int
800 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
801   const
802 {
803   unsigned int index;
804   switch (this->local_sym_index_)
805     {
806     case INVALID_CODE:
807       gold_unreachable();
808
809     case GSYM_CODE:
810       if (this->u1_.gsym == NULL)
811         index = 0;
812       else if (dynamic)
813         index = this->u1_.gsym->dynsym_index();
814       else
815         index = this->u1_.gsym->symtab_index();
816       break;
817
818     case SECTION_CODE:
819       if (dynamic)
820         index = this->u1_.os->dynsym_index();
821       else
822         index = this->u1_.os->symtab_index();
823       break;
824
825     case 0:
826       // Relocations without symbols use a symbol index of 0.
827       index = 0;
828       break;
829
830     default:
831       {
832         const unsigned int lsi = this->local_sym_index_;
833         if (!this->is_section_symbol_)
834           {
835             if (dynamic)
836               index = this->u1_.relobj->dynsym_index(lsi);
837             else
838               index = this->u1_.relobj->symtab_index(lsi);
839           }
840         else
841           {
842             Output_section* os = this->u1_.relobj->output_section(lsi);
843             gold_assert(os != NULL);
844             if (dynamic)
845               index = os->dynsym_index();
846             else
847               index = os->symtab_index();
848           }
849       }
850       break;
851     }
852   gold_assert(index != -1U);
853   return index;
854 }
855
856 // For a local section symbol, get the address of the offset ADDEND
857 // within the input section.
858
859 template<bool dynamic, int size, bool big_endian>
860 typename elfcpp::Elf_types<size>::Elf_Addr
861 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
862   local_section_offset(Addend addend) const
863 {
864   gold_assert(this->local_sym_index_ != GSYM_CODE
865               && this->local_sym_index_ != SECTION_CODE
866               && this->local_sym_index_ != INVALID_CODE
867               && this->is_section_symbol_);
868   const unsigned int lsi = this->local_sym_index_;
869   Output_section* os = this->u1_.relobj->output_section(lsi);
870   gold_assert(os != NULL);
871   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
872   if (offset != invalid_address)
873     return offset + addend;
874   // This is a merge section.
875   offset = os->output_address(this->u1_.relobj, lsi, addend);
876   gold_assert(offset != invalid_address);
877   return offset;
878 }
879
880 // Get the output address of a relocation.
881
882 template<bool dynamic, int size, bool big_endian>
883 typename elfcpp::Elf_types<size>::Elf_Addr
884 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
885 {
886   Address address = this->address_;
887   if (this->shndx_ != INVALID_CODE)
888     {
889       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
890       gold_assert(os != NULL);
891       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
892       if (off != invalid_address)
893         address += os->address() + off;
894       else
895         {
896           address = os->output_address(this->u2_.relobj, this->shndx_,
897                                        address);
898           gold_assert(address != invalid_address);
899         }
900     }
901   else if (this->u2_.od != NULL)
902     address += this->u2_.od->address();
903   return address;
904 }
905
906 // Write out the offset and info fields of a Rel or Rela relocation
907 // entry.
908
909 template<bool dynamic, int size, bool big_endian>
910 template<typename Write_rel>
911 void
912 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
913     Write_rel* wr) const
914 {
915   wr->put_r_offset(this->get_address());
916   unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
917   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
918 }
919
920 // Write out a Rel relocation.
921
922 template<bool dynamic, int size, bool big_endian>
923 void
924 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
925     unsigned char* pov) const
926 {
927   elfcpp::Rel_write<size, big_endian> orel(pov);
928   this->write_rel(&orel);
929 }
930
931 // Get the value of the symbol referred to by a Rel relocation.
932
933 template<bool dynamic, int size, bool big_endian>
934 typename elfcpp::Elf_types<size>::Elf_Addr
935 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
936     Addend addend) const
937 {
938   if (this->local_sym_index_ == GSYM_CODE)
939     {
940       const Sized_symbol<size>* sym;
941       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
942       return sym->value() + addend;
943     }
944   gold_assert(this->local_sym_index_ != SECTION_CODE
945               && this->local_sym_index_ != INVALID_CODE
946               && !this->is_section_symbol_);
947   const unsigned int lsi = this->local_sym_index_;
948   const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
949   return symval->value(this->u1_.relobj, addend);
950 }
951
952 // Reloc comparison.  This function sorts the dynamic relocs for the
953 // benefit of the dynamic linker.  First we sort all relative relocs
954 // to the front.  Among relative relocs, we sort by output address.
955 // Among non-relative relocs, we sort by symbol index, then by output
956 // address.
957
958 template<bool dynamic, int size, bool big_endian>
959 int
960 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
961   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
962     const
963 {
964   if (this->is_relative_)
965     {
966       if (!r2.is_relative_)
967         return -1;
968       // Otherwise sort by reloc address below.
969     }
970   else if (r2.is_relative_)
971     return 1;
972   else
973     {
974       unsigned int sym1 = this->get_symbol_index();
975       unsigned int sym2 = r2.get_symbol_index();
976       if (sym1 < sym2)
977         return -1;
978       else if (sym1 > sym2)
979         return 1;
980       // Otherwise sort by reloc address.
981     }
982
983   section_offset_type addr1 = this->get_address();
984   section_offset_type addr2 = r2.get_address();
985   if (addr1 < addr2)
986     return -1;
987   else if (addr1 > addr2)
988     return 1;
989
990   // Final tie breaker, in order to generate the same output on any
991   // host: reloc type.
992   unsigned int type1 = this->type_;
993   unsigned int type2 = r2.type_;
994   if (type1 < type2)
995     return -1;
996   else if (type1 > type2)
997     return 1;
998
999   // These relocs appear to be exactly the same.
1000   return 0;
1001 }
1002
1003 // Write out a Rela relocation.
1004
1005 template<bool dynamic, int size, bool big_endian>
1006 void
1007 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1008     unsigned char* pov) const
1009 {
1010   elfcpp::Rela_write<size, big_endian> orel(pov);
1011   this->rel_.write_rel(&orel);
1012   Addend addend = this->addend_;
1013   if (this->rel_.is_relative())
1014     addend = this->rel_.symbol_value(addend);
1015   else if (this->rel_.is_local_section_symbol())
1016     addend = this->rel_.local_section_offset(addend);
1017   orel.put_r_addend(addend);
1018 }
1019
1020 // Output_data_reloc_base methods.
1021
1022 // Adjust the output section.
1023
1024 template<int sh_type, bool dynamic, int size, bool big_endian>
1025 void
1026 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1027     ::do_adjust_output_section(Output_section* os)
1028 {
1029   if (sh_type == elfcpp::SHT_REL)
1030     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1031   else if (sh_type == elfcpp::SHT_RELA)
1032     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1033   else
1034     gold_unreachable();
1035   if (dynamic)
1036     os->set_should_link_to_dynsym();
1037   else
1038     os->set_should_link_to_symtab();
1039 }
1040
1041 // Write out relocation data.
1042
1043 template<int sh_type, bool dynamic, int size, bool big_endian>
1044 void
1045 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1046     Output_file* of)
1047 {
1048   const off_t off = this->offset();
1049   const off_t oview_size = this->data_size();
1050   unsigned char* const oview = of->get_output_view(off, oview_size);
1051
1052   if (this->sort_relocs_)
1053     {
1054       gold_assert(dynamic);
1055       std::sort(this->relocs_.begin(), this->relocs_.end(),
1056                 Sort_relocs_comparison());
1057     }
1058
1059   unsigned char* pov = oview;
1060   for (typename Relocs::const_iterator p = this->relocs_.begin();
1061        p != this->relocs_.end();
1062        ++p)
1063     {
1064       p->write(pov);
1065       pov += reloc_size;
1066     }
1067
1068   gold_assert(pov - oview == oview_size);
1069
1070   of->write_output_view(off, oview_size, oview);
1071
1072   // We no longer need the relocation entries.
1073   this->relocs_.clear();
1074 }
1075
1076 // Class Output_relocatable_relocs.
1077
1078 template<int sh_type, int size, bool big_endian>
1079 void
1080 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1081 {
1082   this->set_data_size(this->rr_->output_reloc_count()
1083                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1084 }
1085
1086 // class Output_data_group.
1087
1088 template<int size, bool big_endian>
1089 Output_data_group<size, big_endian>::Output_data_group(
1090     Sized_relobj<size, big_endian>* relobj,
1091     section_size_type entry_count,
1092     elfcpp::Elf_Word flags,
1093     std::vector<unsigned int>* input_shndxes)
1094   : Output_section_data(entry_count * 4, 4, false),
1095     relobj_(relobj),
1096     flags_(flags)
1097 {
1098   this->input_shndxes_.swap(*input_shndxes);
1099 }
1100
1101 // Write out the section group, which means translating the section
1102 // indexes to apply to the output file.
1103
1104 template<int size, bool big_endian>
1105 void
1106 Output_data_group<size, big_endian>::do_write(Output_file* of)
1107 {
1108   const off_t off = this->offset();
1109   const section_size_type oview_size =
1110     convert_to_section_size_type(this->data_size());
1111   unsigned char* const oview = of->get_output_view(off, oview_size);
1112
1113   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1114   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1115   ++contents;
1116
1117   for (std::vector<unsigned int>::const_iterator p =
1118          this->input_shndxes_.begin();
1119        p != this->input_shndxes_.end();
1120        ++p, ++contents)
1121     {
1122       Output_section* os = this->relobj_->output_section(*p);
1123
1124       unsigned int output_shndx;
1125       if (os != NULL)
1126         output_shndx = os->out_shndx();
1127       else
1128         {
1129           this->relobj_->error(_("section group retained but "
1130                                  "group element discarded"));
1131           output_shndx = 0;
1132         }
1133
1134       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1135     }
1136
1137   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1138   gold_assert(wrote == oview_size);
1139
1140   of->write_output_view(off, oview_size, oview);
1141
1142   // We no longer need this information.
1143   this->input_shndxes_.clear();
1144 }
1145
1146 // Output_data_got::Got_entry methods.
1147
1148 // Write out the entry.
1149
1150 template<int size, bool big_endian>
1151 void
1152 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1153 {
1154   Valtype val = 0;
1155
1156   switch (this->local_sym_index_)
1157     {
1158     case GSYM_CODE:
1159       {
1160         // If the symbol is resolved locally, we need to write out the
1161         // link-time value, which will be relocated dynamically by a
1162         // RELATIVE relocation.
1163         Symbol* gsym = this->u_.gsym;
1164         Sized_symbol<size>* sgsym;
1165         // This cast is a bit ugly.  We don't want to put a
1166         // virtual method in Symbol, because we want Symbol to be
1167         // as small as possible.
1168         sgsym = static_cast<Sized_symbol<size>*>(gsym);
1169         val = sgsym->value();
1170       }
1171       break;
1172
1173     case CONSTANT_CODE:
1174       val = this->u_.constant;
1175       break;
1176
1177     default:
1178       {
1179         const unsigned int lsi = this->local_sym_index_;
1180         const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1181         val = symval->value(this->u_.object, 0);
1182       }
1183       break;
1184     }
1185
1186   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1187 }
1188
1189 // Output_data_got methods.
1190
1191 // Add an entry for a global symbol to the GOT.  This returns true if
1192 // this is a new GOT entry, false if the symbol already had a GOT
1193 // entry.
1194
1195 template<int size, bool big_endian>
1196 bool
1197 Output_data_got<size, big_endian>::add_global(
1198     Symbol* gsym,
1199     unsigned int got_type)
1200 {
1201   if (gsym->has_got_offset(got_type))
1202     return false;
1203
1204   this->entries_.push_back(Got_entry(gsym));
1205   this->set_got_size();
1206   gsym->set_got_offset(got_type, this->last_got_offset());
1207   return true;
1208 }
1209
1210 // Add an entry for a global symbol to the GOT, and add a dynamic
1211 // relocation of type R_TYPE for the GOT entry.
1212 template<int size, bool big_endian>
1213 void
1214 Output_data_got<size, big_endian>::add_global_with_rel(
1215     Symbol* gsym,
1216     unsigned int got_type,
1217     Rel_dyn* rel_dyn,
1218     unsigned int r_type)
1219 {
1220   if (gsym->has_got_offset(got_type))
1221     return;
1222
1223   this->entries_.push_back(Got_entry());
1224   this->set_got_size();
1225   unsigned int got_offset = this->last_got_offset();
1226   gsym->set_got_offset(got_type, got_offset);
1227   rel_dyn->add_global(gsym, r_type, this, got_offset);
1228 }
1229
1230 template<int size, bool big_endian>
1231 void
1232 Output_data_got<size, big_endian>::add_global_with_rela(
1233     Symbol* gsym,
1234     unsigned int got_type,
1235     Rela_dyn* rela_dyn,
1236     unsigned int r_type)
1237 {
1238   if (gsym->has_got_offset(got_type))
1239     return;
1240
1241   this->entries_.push_back(Got_entry());
1242   this->set_got_size();
1243   unsigned int got_offset = this->last_got_offset();
1244   gsym->set_got_offset(got_type, got_offset);
1245   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1246 }
1247
1248 // Add a pair of entries for a global symbol to the GOT, and add
1249 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1250 // If R_TYPE_2 == 0, add the second entry with no relocation.
1251 template<int size, bool big_endian>
1252 void
1253 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1254     Symbol* gsym,
1255     unsigned int got_type,
1256     Rel_dyn* rel_dyn,
1257     unsigned int r_type_1,
1258     unsigned int r_type_2)
1259 {
1260   if (gsym->has_got_offset(got_type))
1261     return;
1262
1263   this->entries_.push_back(Got_entry());
1264   unsigned int got_offset = this->last_got_offset();
1265   gsym->set_got_offset(got_type, got_offset);
1266   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1267
1268   this->entries_.push_back(Got_entry());
1269   if (r_type_2 != 0)
1270     {
1271       got_offset = this->last_got_offset();
1272       rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1273     }
1274
1275   this->set_got_size();
1276 }
1277
1278 template<int size, bool big_endian>
1279 void
1280 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1281     Symbol* gsym,
1282     unsigned int got_type,
1283     Rela_dyn* rela_dyn,
1284     unsigned int r_type_1,
1285     unsigned int r_type_2)
1286 {
1287   if (gsym->has_got_offset(got_type))
1288     return;
1289
1290   this->entries_.push_back(Got_entry());
1291   unsigned int got_offset = this->last_got_offset();
1292   gsym->set_got_offset(got_type, got_offset);
1293   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1294
1295   this->entries_.push_back(Got_entry());
1296   if (r_type_2 != 0)
1297     {
1298       got_offset = this->last_got_offset();
1299       rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1300     }
1301
1302   this->set_got_size();
1303 }
1304
1305 // Add an entry for a local symbol to the GOT.  This returns true if
1306 // this is a new GOT entry, false if the symbol already has a GOT
1307 // entry.
1308
1309 template<int size, bool big_endian>
1310 bool
1311 Output_data_got<size, big_endian>::add_local(
1312     Sized_relobj<size, big_endian>* object,
1313     unsigned int symndx,
1314     unsigned int got_type)
1315 {
1316   if (object->local_has_got_offset(symndx, got_type))
1317     return false;
1318
1319   this->entries_.push_back(Got_entry(object, symndx));
1320   this->set_got_size();
1321   object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1322   return true;
1323 }
1324
1325 // Add an entry for a local symbol to the GOT, and add a dynamic
1326 // relocation of type R_TYPE for the GOT entry.
1327 template<int size, bool big_endian>
1328 void
1329 Output_data_got<size, big_endian>::add_local_with_rel(
1330     Sized_relobj<size, big_endian>* object,
1331     unsigned int symndx,
1332     unsigned int got_type,
1333     Rel_dyn* rel_dyn,
1334     unsigned int r_type)
1335 {
1336   if (object->local_has_got_offset(symndx, got_type))
1337     return;
1338
1339   this->entries_.push_back(Got_entry());
1340   this->set_got_size();
1341   unsigned int got_offset = this->last_got_offset();
1342   object->set_local_got_offset(symndx, got_type, got_offset);
1343   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1344 }
1345
1346 template<int size, bool big_endian>
1347 void
1348 Output_data_got<size, big_endian>::add_local_with_rela(
1349     Sized_relobj<size, big_endian>* object,
1350     unsigned int symndx,
1351     unsigned int got_type,
1352     Rela_dyn* rela_dyn,
1353     unsigned int r_type)
1354 {
1355   if (object->local_has_got_offset(symndx, got_type))
1356     return;
1357
1358   this->entries_.push_back(Got_entry());
1359   this->set_got_size();
1360   unsigned int got_offset = this->last_got_offset();
1361   object->set_local_got_offset(symndx, got_type, got_offset);
1362   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1363 }
1364
1365 // Add a pair of entries for a local symbol to the GOT, and add
1366 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1367 // If R_TYPE_2 == 0, add the second entry with no relocation.
1368 template<int size, bool big_endian>
1369 void
1370 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1371     Sized_relobj<size, big_endian>* object,
1372     unsigned int symndx,
1373     unsigned int shndx,
1374     unsigned int got_type,
1375     Rel_dyn* rel_dyn,
1376     unsigned int r_type_1,
1377     unsigned int r_type_2)
1378 {
1379   if (object->local_has_got_offset(symndx, got_type))
1380     return;
1381
1382   this->entries_.push_back(Got_entry());
1383   unsigned int got_offset = this->last_got_offset();
1384   object->set_local_got_offset(symndx, got_type, got_offset);
1385   Output_section* os = object->output_section(shndx);
1386   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1387
1388   this->entries_.push_back(Got_entry(object, symndx));
1389   if (r_type_2 != 0)
1390     {
1391       got_offset = this->last_got_offset();
1392       rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1393     }
1394
1395   this->set_got_size();
1396 }
1397
1398 template<int size, bool big_endian>
1399 void
1400 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1401     Sized_relobj<size, big_endian>* object,
1402     unsigned int symndx,
1403     unsigned int shndx,
1404     unsigned int got_type,
1405     Rela_dyn* rela_dyn,
1406     unsigned int r_type_1,
1407     unsigned int r_type_2)
1408 {
1409   if (object->local_has_got_offset(symndx, got_type))
1410     return;
1411
1412   this->entries_.push_back(Got_entry());
1413   unsigned int got_offset = this->last_got_offset();
1414   object->set_local_got_offset(symndx, got_type, got_offset);
1415   Output_section* os = object->output_section(shndx);
1416   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1417
1418   this->entries_.push_back(Got_entry(object, symndx));
1419   if (r_type_2 != 0)
1420     {
1421       got_offset = this->last_got_offset();
1422       rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1423     }
1424
1425   this->set_got_size();
1426 }
1427
1428 // Write out the GOT.
1429
1430 template<int size, bool big_endian>
1431 void
1432 Output_data_got<size, big_endian>::do_write(Output_file* of)
1433 {
1434   const int add = size / 8;
1435
1436   const off_t off = this->offset();
1437   const off_t oview_size = this->data_size();
1438   unsigned char* const oview = of->get_output_view(off, oview_size);
1439
1440   unsigned char* pov = oview;
1441   for (typename Got_entries::const_iterator p = this->entries_.begin();
1442        p != this->entries_.end();
1443        ++p)
1444     {
1445       p->write(pov);
1446       pov += add;
1447     }
1448
1449   gold_assert(pov - oview == oview_size);
1450
1451   of->write_output_view(off, oview_size, oview);
1452
1453   // We no longer need the GOT entries.
1454   this->entries_.clear();
1455 }
1456
1457 // Output_data_dynamic::Dynamic_entry methods.
1458
1459 // Write out the entry.
1460
1461 template<int size, bool big_endian>
1462 void
1463 Output_data_dynamic::Dynamic_entry::write(
1464     unsigned char* pov,
1465     const Stringpool* pool) const
1466 {
1467   typename elfcpp::Elf_types<size>::Elf_WXword val;
1468   switch (this->offset_)
1469     {
1470     case DYNAMIC_NUMBER:
1471       val = this->u_.val;
1472       break;
1473
1474     case DYNAMIC_SECTION_SIZE:
1475       val = this->u_.od->data_size();
1476       break;
1477
1478     case DYNAMIC_SYMBOL:
1479       {
1480         const Sized_symbol<size>* s =
1481           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1482         val = s->value();
1483       }
1484       break;
1485
1486     case DYNAMIC_STRING:
1487       val = pool->get_offset(this->u_.str);
1488       break;
1489
1490     default:
1491       val = this->u_.od->address() + this->offset_;
1492       break;
1493     }
1494
1495   elfcpp::Dyn_write<size, big_endian> dw(pov);
1496   dw.put_d_tag(this->tag_);
1497   dw.put_d_val(val);
1498 }
1499
1500 // Output_data_dynamic methods.
1501
1502 // Adjust the output section to set the entry size.
1503
1504 void
1505 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1506 {
1507   if (parameters->target().get_size() == 32)
1508     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1509   else if (parameters->target().get_size() == 64)
1510     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1511   else
1512     gold_unreachable();
1513 }
1514
1515 // Set the final data size.
1516
1517 void
1518 Output_data_dynamic::set_final_data_size()
1519 {
1520   // Add the terminating entry if it hasn't been added.
1521   // Because of relaxation, we can run this multiple times.
1522   if (this->entries_.empty()
1523       || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1524     this->add_constant(elfcpp::DT_NULL, 0);
1525
1526   int dyn_size;
1527   if (parameters->target().get_size() == 32)
1528     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1529   else if (parameters->target().get_size() == 64)
1530     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1531   else
1532     gold_unreachable();
1533   this->set_data_size(this->entries_.size() * dyn_size);
1534 }
1535
1536 // Write out the dynamic entries.
1537
1538 void
1539 Output_data_dynamic::do_write(Output_file* of)
1540 {
1541   switch (parameters->size_and_endianness())
1542     {
1543 #ifdef HAVE_TARGET_32_LITTLE
1544     case Parameters::TARGET_32_LITTLE:
1545       this->sized_write<32, false>(of);
1546       break;
1547 #endif
1548 #ifdef HAVE_TARGET_32_BIG
1549     case Parameters::TARGET_32_BIG:
1550       this->sized_write<32, true>(of);
1551       break;
1552 #endif
1553 #ifdef HAVE_TARGET_64_LITTLE
1554     case Parameters::TARGET_64_LITTLE:
1555       this->sized_write<64, false>(of);
1556       break;
1557 #endif
1558 #ifdef HAVE_TARGET_64_BIG
1559     case Parameters::TARGET_64_BIG:
1560       this->sized_write<64, true>(of);
1561       break;
1562 #endif
1563     default:
1564       gold_unreachable();
1565     }
1566 }
1567
1568 template<int size, bool big_endian>
1569 void
1570 Output_data_dynamic::sized_write(Output_file* of)
1571 {
1572   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1573
1574   const off_t offset = this->offset();
1575   const off_t oview_size = this->data_size();
1576   unsigned char* const oview = of->get_output_view(offset, oview_size);
1577
1578   unsigned char* pov = oview;
1579   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1580        p != this->entries_.end();
1581        ++p)
1582     {
1583       p->write<size, big_endian>(pov, this->pool_);
1584       pov += dyn_size;
1585     }
1586
1587   gold_assert(pov - oview == oview_size);
1588
1589   of->write_output_view(offset, oview_size, oview);
1590
1591   // We no longer need the dynamic entries.
1592   this->entries_.clear();
1593 }
1594
1595 // Class Output_symtab_xindex.
1596
1597 void
1598 Output_symtab_xindex::do_write(Output_file* of)
1599 {
1600   const off_t offset = this->offset();
1601   const off_t oview_size = this->data_size();
1602   unsigned char* const oview = of->get_output_view(offset, oview_size);
1603
1604   memset(oview, 0, oview_size);
1605
1606   if (parameters->target().is_big_endian())
1607     this->endian_do_write<true>(oview);
1608   else
1609     this->endian_do_write<false>(oview);
1610
1611   of->write_output_view(offset, oview_size, oview);
1612
1613   // We no longer need the data.
1614   this->entries_.clear();
1615 }
1616
1617 template<bool big_endian>
1618 void
1619 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1620 {
1621   for (Xindex_entries::const_iterator p = this->entries_.begin();
1622        p != this->entries_.end();
1623        ++p)
1624     {
1625       unsigned int symndx = p->first;
1626       gold_assert(symndx * 4 < this->data_size());
1627       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1628     }
1629 }
1630
1631 // Output_section::Input_section methods.
1632
1633 // Return the data size.  For an input section we store the size here.
1634 // For an Output_section_data, we have to ask it for the size.
1635
1636 off_t
1637 Output_section::Input_section::data_size() const
1638 {
1639   if (this->is_input_section())
1640     return this->u1_.data_size;
1641   else
1642     return this->u2_.posd->data_size();
1643 }
1644
1645 // Set the address and file offset.
1646
1647 void
1648 Output_section::Input_section::set_address_and_file_offset(
1649     uint64_t address,
1650     off_t file_offset,
1651     off_t section_file_offset)
1652 {
1653   if (this->is_input_section())
1654     this->u2_.object->set_section_offset(this->shndx_,
1655                                          file_offset - section_file_offset);
1656   else
1657     this->u2_.posd->set_address_and_file_offset(address, file_offset);
1658 }
1659
1660 // Reset the address and file offset.
1661
1662 void
1663 Output_section::Input_section::reset_address_and_file_offset()
1664 {
1665   if (!this->is_input_section())
1666     this->u2_.posd->reset_address_and_file_offset();
1667 }
1668
1669 // Finalize the data size.
1670
1671 void
1672 Output_section::Input_section::finalize_data_size()
1673 {
1674   if (!this->is_input_section())
1675     this->u2_.posd->finalize_data_size();
1676 }
1677
1678 // Try to turn an input offset into an output offset.  We want to
1679 // return the output offset relative to the start of this
1680 // Input_section in the output section.
1681
1682 inline bool
1683 Output_section::Input_section::output_offset(
1684     const Relobj* object,
1685     unsigned int shndx,
1686     section_offset_type offset,
1687     section_offset_type *poutput) const
1688 {
1689   if (!this->is_input_section())
1690     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1691   else
1692     {
1693       if (this->shndx_ != shndx || this->u2_.object != object)
1694         return false;
1695       *poutput = offset;
1696       return true;
1697     }
1698 }
1699
1700 // Return whether this is the merge section for the input section
1701 // SHNDX in OBJECT.
1702
1703 inline bool
1704 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1705                                                     unsigned int shndx) const
1706 {
1707   if (this->is_input_section())
1708     return false;
1709   return this->u2_.posd->is_merge_section_for(object, shndx);
1710 }
1711
1712 // Write out the data.  We don't have to do anything for an input
1713 // section--they are handled via Object::relocate--but this is where
1714 // we write out the data for an Output_section_data.
1715
1716 void
1717 Output_section::Input_section::write(Output_file* of)
1718 {
1719   if (!this->is_input_section())
1720     this->u2_.posd->write(of);
1721 }
1722
1723 // Write the data to a buffer.  As for write(), we don't have to do
1724 // anything for an input section.
1725
1726 void
1727 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1728 {
1729   if (!this->is_input_section())
1730     this->u2_.posd->write_to_buffer(buffer);
1731 }
1732
1733 // Print to a map file.
1734
1735 void
1736 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1737 {
1738   switch (this->shndx_)
1739     {
1740     case OUTPUT_SECTION_CODE:
1741     case MERGE_DATA_SECTION_CODE:
1742     case MERGE_STRING_SECTION_CODE:
1743       this->u2_.posd->print_to_mapfile(mapfile);
1744       break;
1745
1746     case RELAXED_INPUT_SECTION_CODE:
1747       {
1748         Output_relaxed_input_section* relaxed_section =
1749           this->relaxed_input_section();
1750         mapfile->print_input_section(relaxed_section->relobj(),
1751                                      relaxed_section->shndx());
1752       }
1753       break;
1754     default:
1755       mapfile->print_input_section(this->u2_.object, this->shndx_);
1756       break;
1757     }
1758 }
1759
1760 // Output_section methods.
1761
1762 // Construct an Output_section.  NAME will point into a Stringpool.
1763
1764 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1765                                elfcpp::Elf_Xword flags)
1766   : name_(name),
1767     addralign_(0),
1768     entsize_(0),
1769     load_address_(0),
1770     link_section_(NULL),
1771     link_(0),
1772     info_section_(NULL),
1773     info_symndx_(NULL),
1774     info_(0),
1775     type_(type),
1776     flags_(flags),
1777     out_shndx_(-1U),
1778     symtab_index_(0),
1779     dynsym_index_(0),
1780     input_sections_(),
1781     first_input_offset_(0),
1782     fills_(),
1783     postprocessing_buffer_(NULL),
1784     needs_symtab_index_(false),
1785     needs_dynsym_index_(false),
1786     should_link_to_symtab_(false),
1787     should_link_to_dynsym_(false),
1788     after_input_sections_(false),
1789     requires_postprocessing_(false),
1790     found_in_sections_clause_(false),
1791     has_load_address_(false),
1792     info_uses_section_index_(false),
1793     may_sort_attached_input_sections_(false),
1794     must_sort_attached_input_sections_(false),
1795     attached_input_sections_are_sorted_(false),
1796     is_relro_(false),
1797     is_relro_local_(false),
1798     is_small_section_(false),
1799     is_large_section_(false),
1800     is_interp_(false),
1801     is_dynamic_linker_section_(false),
1802     generate_code_fills_at_write_(false),
1803     is_entsize_zero_(false),
1804     tls_offset_(0),
1805     checkpoint_(NULL),
1806     merge_section_map_(),
1807     merge_section_by_properties_map_(),
1808     relaxed_input_section_map_(),
1809     is_relaxed_input_section_map_valid_(true)
1810 {
1811   // An unallocated section has no address.  Forcing this means that
1812   // we don't need special treatment for symbols defined in debug
1813   // sections.
1814   if ((flags & elfcpp::SHF_ALLOC) == 0)
1815     this->set_address(0);
1816 }
1817
1818 Output_section::~Output_section()
1819 {
1820   delete this->checkpoint_;
1821 }
1822
1823 // Set the entry size.
1824
1825 void
1826 Output_section::set_entsize(uint64_t v)
1827 {
1828   if (this->is_entsize_zero_)
1829     ;
1830   else if (this->entsize_ == 0)
1831     this->entsize_ = v;
1832   else if (this->entsize_ != v)
1833     {
1834       this->entsize_ = 0;
1835       this->is_entsize_zero_ = 1;
1836     }
1837 }
1838
1839 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1840 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
1841 // relocation section which applies to this section, or 0 if none, or
1842 // -1U if more than one.  Return the offset of the input section
1843 // within the output section.  Return -1 if the input section will
1844 // receive special handling.  In the normal case we don't always keep
1845 // track of input sections for an Output_section.  Instead, each
1846 // Object keeps track of the Output_section for each of its input
1847 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1848 // track of input sections here; this is used when SECTIONS appears in
1849 // a linker script.
1850
1851 template<int size, bool big_endian>
1852 off_t
1853 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1854                                   unsigned int shndx,
1855                                   const char* secname,
1856                                   const elfcpp::Shdr<size, big_endian>& shdr,
1857                                   unsigned int reloc_shndx,
1858                                   bool have_sections_script)
1859 {
1860   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1861   if ((addralign & (addralign - 1)) != 0)
1862     {
1863       object->error(_("invalid alignment %lu for section \"%s\""),
1864                     static_cast<unsigned long>(addralign), secname);
1865       addralign = 1;
1866     }
1867
1868   if (addralign > this->addralign_)
1869     this->addralign_ = addralign;
1870
1871   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1872   uint64_t entsize = shdr.get_sh_entsize();
1873
1874   // .debug_str is a mergeable string section, but is not always so
1875   // marked by compilers.  Mark manually here so we can optimize.
1876   if (strcmp(secname, ".debug_str") == 0)
1877     {
1878       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1879       entsize = 1;
1880     }
1881
1882   this->update_flags_for_input_section(sh_flags);
1883   this->set_entsize(entsize);
1884
1885   // If this is a SHF_MERGE section, we pass all the input sections to
1886   // a Output_data_merge.  We don't try to handle relocations for such
1887   // a section.  We don't try to handle empty merge sections--they
1888   // mess up the mappings, and are useless anyhow.
1889   if ((sh_flags & elfcpp::SHF_MERGE) != 0
1890       && reloc_shndx == 0
1891       && shdr.get_sh_size() > 0)
1892     {
1893       if (this->add_merge_input_section(object, shndx, sh_flags,
1894                                         entsize, addralign))
1895         {
1896           // Tell the relocation routines that they need to call the
1897           // output_offset method to determine the final address.
1898           return -1;
1899         }
1900     }
1901
1902   off_t offset_in_section = this->current_data_size_for_child();
1903   off_t aligned_offset_in_section = align_address(offset_in_section,
1904                                                   addralign);
1905
1906   // Determine if we want to delay code-fill generation until the output
1907   // section is written.  When the target is relaxing, we want to delay fill
1908   // generating to avoid adjusting them during relaxation.
1909   if (!this->generate_code_fills_at_write_
1910       && !have_sections_script
1911       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1912       && parameters->target().has_code_fill()
1913       && parameters->target().may_relax())
1914     {
1915       gold_assert(this->fills_.empty());
1916       this->generate_code_fills_at_write_ = true;
1917     }
1918
1919   if (aligned_offset_in_section > offset_in_section
1920       && !this->generate_code_fills_at_write_
1921       && !have_sections_script
1922       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1923       && parameters->target().has_code_fill())
1924     {
1925       // We need to add some fill data.  Using fill_list_ when
1926       // possible is an optimization, since we will often have fill
1927       // sections without input sections.
1928       off_t fill_len = aligned_offset_in_section - offset_in_section;
1929       if (this->input_sections_.empty())
1930         this->fills_.push_back(Fill(offset_in_section, fill_len));
1931       else
1932         {
1933           std::string fill_data(parameters->target().code_fill(fill_len));
1934           Output_data_const* odc = new Output_data_const(fill_data, 1);
1935           this->input_sections_.push_back(Input_section(odc));
1936         }
1937     }
1938
1939   this->set_current_data_size_for_child(aligned_offset_in_section
1940                                         + shdr.get_sh_size());
1941
1942   // We need to keep track of this section if we are already keeping
1943   // track of sections, or if we are relaxing.  Also, if this is a
1944   // section which requires sorting, or which may require sorting in
1945   // the future, we keep track of the sections.
1946   if (have_sections_script
1947       || !this->input_sections_.empty()
1948       || this->may_sort_attached_input_sections()
1949       || this->must_sort_attached_input_sections()
1950       || parameters->options().user_set_Map()
1951       || parameters->target().may_relax())
1952     this->input_sections_.push_back(Input_section(object, shndx,
1953                                                   shdr.get_sh_size(),
1954                                                   addralign));
1955
1956   return aligned_offset_in_section;
1957 }
1958
1959 // Add arbitrary data to an output section.
1960
1961 void
1962 Output_section::add_output_section_data(Output_section_data* posd)
1963 {
1964   Input_section inp(posd);
1965   this->add_output_section_data(&inp);
1966
1967   if (posd->is_data_size_valid())
1968     {
1969       off_t offset_in_section = this->current_data_size_for_child();
1970       off_t aligned_offset_in_section = align_address(offset_in_section,
1971                                                       posd->addralign());
1972       this->set_current_data_size_for_child(aligned_offset_in_section
1973                                             + posd->data_size());
1974     }
1975 }
1976
1977 // Add a relaxed input section.
1978
1979 void
1980 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
1981 {
1982   Input_section inp(poris);
1983   this->add_output_section_data(&inp);
1984   if (this->is_relaxed_input_section_map_valid_)
1985     {
1986       Input_section_specifier iss(poris->relobj(), poris->shndx());
1987       this->relaxed_input_section_map_[iss] = poris;
1988     }
1989
1990   // For a relaxed section, we use the current data size.  Linker scripts
1991   // get all the input sections, including relaxed one from an output
1992   // section and add them back to them same output section to compute the
1993   // output section size.  If we do not account for sizes of relaxed input
1994   // sections,  an output section would be incorrectly sized.
1995   off_t offset_in_section = this->current_data_size_for_child();
1996   off_t aligned_offset_in_section = align_address(offset_in_section,
1997                                                   poris->addralign());
1998   this->set_current_data_size_for_child(aligned_offset_in_section
1999                                         + poris->current_data_size());
2000 }
2001
2002 // Add arbitrary data to an output section by Input_section.
2003
2004 void
2005 Output_section::add_output_section_data(Input_section* inp)
2006 {
2007   if (this->input_sections_.empty())
2008     this->first_input_offset_ = this->current_data_size_for_child();
2009
2010   this->input_sections_.push_back(*inp);
2011
2012   uint64_t addralign = inp->addralign();
2013   if (addralign > this->addralign_)
2014     this->addralign_ = addralign;
2015
2016   inp->set_output_section(this);
2017 }
2018
2019 // Add a merge section to an output section.
2020
2021 void
2022 Output_section::add_output_merge_section(Output_section_data* posd,
2023                                          bool is_string, uint64_t entsize)
2024 {
2025   Input_section inp(posd, is_string, entsize);
2026   this->add_output_section_data(&inp);
2027 }
2028
2029 // Add an input section to a SHF_MERGE section.
2030
2031 bool
2032 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2033                                         uint64_t flags, uint64_t entsize,
2034                                         uint64_t addralign)
2035 {
2036   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2037
2038   // We only merge strings if the alignment is not more than the
2039   // character size.  This could be handled, but it's unusual.
2040   if (is_string && addralign > entsize)
2041     return false;
2042
2043   // We cannot restore merged input section states.
2044   gold_assert(this->checkpoint_ == NULL);
2045
2046   // Look up merge sections by required properties.
2047   Merge_section_properties msp(is_string, entsize, addralign);
2048   Merge_section_by_properties_map::const_iterator p =
2049     this->merge_section_by_properties_map_.find(msp);
2050   if (p != this->merge_section_by_properties_map_.end())
2051     {
2052       Output_merge_base* merge_section = p->second;
2053       merge_section->add_input_section(object, shndx);
2054       gold_assert(merge_section->is_string() == is_string
2055                   && merge_section->entsize() == entsize
2056                   && merge_section->addralign() == addralign);
2057
2058       // Link input section to found merge section.
2059       Input_section_specifier iss(object, shndx);
2060       this->merge_section_map_[iss] = merge_section;
2061       return true;
2062     }
2063
2064   // We handle the actual constant merging in Output_merge_data or
2065   // Output_merge_string_data.
2066   Output_merge_base* pomb;
2067   if (!is_string)
2068     pomb = new Output_merge_data(entsize, addralign);
2069   else
2070     {
2071       switch (entsize)
2072         {
2073         case 1:
2074           pomb = new Output_merge_string<char>(addralign);
2075           break;
2076         case 2:
2077           pomb = new Output_merge_string<uint16_t>(addralign);
2078           break;
2079         case 4:
2080           pomb = new Output_merge_string<uint32_t>(addralign);
2081           break;
2082         default:
2083           return false;
2084         }
2085     }
2086
2087   // Add new merge section to this output section and link merge section
2088   // properties to new merge section in map.
2089   this->add_output_merge_section(pomb, is_string, entsize);
2090   this->merge_section_by_properties_map_[msp] = pomb;
2091
2092   // Add input section to new merge section and link input section to new
2093   // merge section in map.
2094   pomb->add_input_section(object, shndx);
2095   Input_section_specifier iss(object, shndx);
2096   this->merge_section_map_[iss] = pomb;
2097
2098   return true;
2099 }
2100
2101 // Build a relaxation map to speed up relaxation of existing input sections.
2102 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2103
2104 void
2105 Output_section::build_relaxation_map(
2106   const Input_section_list& input_sections,
2107   size_t limit,
2108   Relaxation_map* relaxation_map) const
2109 {
2110   for (size_t i = 0; i < limit; ++i)
2111     {
2112       const Input_section& is(input_sections[i]);
2113       if (is.is_input_section() || is.is_relaxed_input_section())
2114         {
2115           Input_section_specifier iss(is.relobj(), is.shndx());
2116           (*relaxation_map)[iss] = i;
2117         }
2118     }
2119 }
2120
2121 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2122 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from input section
2123 // specifier to indices of INPUT_SECTIONS.
2124
2125 void
2126 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2127   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2128   const Relaxation_map& map,
2129   Input_section_list* input_sections)
2130 {
2131   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2132     {
2133       Output_relaxed_input_section* poris = relaxed_sections[i];
2134       Input_section_specifier iss(poris->relobj(), poris->shndx());
2135       Relaxation_map::const_iterator p = map.find(iss);
2136       gold_assert(p != map.end());
2137       gold_assert((*input_sections)[p->second].is_input_section());
2138       (*input_sections)[p->second] = Input_section(poris);
2139     }
2140 }
2141   
2142 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2143 // is a vector of pointers to Output_relaxed_input_section or its derived
2144 // classes.  The relaxed sections must correspond to existing input sections.
2145
2146 void
2147 Output_section::convert_input_sections_to_relaxed_sections(
2148   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2149 {
2150   gold_assert(parameters->target().may_relax());
2151
2152   // We want to make sure that restore_states does not undo the effect of
2153   // this.  If there is no checkpoint active, just search the current
2154   // input section list and replace the sections there.  If there is
2155   // a checkpoint, also replace the sections there.
2156   
2157   // By default, we look at the whole list.
2158   size_t limit = this->input_sections_.size();
2159
2160   if (this->checkpoint_ != NULL)
2161     {
2162       // Replace input sections with relaxed input section in the saved
2163       // copy of the input section list.
2164       if (this->checkpoint_->input_sections_saved())
2165         {
2166           Relaxation_map map;
2167           this->build_relaxation_map(
2168                     *(this->checkpoint_->input_sections()),
2169                     this->checkpoint_->input_sections()->size(),
2170                     &map);
2171           this->convert_input_sections_in_list_to_relaxed_sections(
2172                     relaxed_sections,
2173                     map,
2174                     this->checkpoint_->input_sections());
2175         }
2176       else
2177         {
2178           // We have not copied the input section list yet.  Instead, just
2179           // look at the portion that would be saved.
2180           limit = this->checkpoint_->input_sections_size();
2181         }
2182     }
2183
2184   // Convert input sections in input_section_list.
2185   Relaxation_map map;
2186   this->build_relaxation_map(this->input_sections_, limit, &map);
2187   this->convert_input_sections_in_list_to_relaxed_sections(
2188             relaxed_sections,
2189             map,
2190             &this->input_sections_);
2191 }
2192
2193 // Update the output section flags based on input section flags.
2194
2195 void
2196 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2197 {
2198   // If we created the section with SHF_ALLOC clear, we set the
2199   // address.  If we are now setting the SHF_ALLOC flag, we need to
2200   // undo that.
2201   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2202       && (flags & elfcpp::SHF_ALLOC) != 0)
2203     this->mark_address_invalid();
2204
2205   this->flags_ |= (flags
2206                    & (elfcpp::SHF_WRITE
2207                       | elfcpp::SHF_ALLOC
2208                       | elfcpp::SHF_EXECINSTR));
2209
2210   if ((flags & elfcpp::SHF_MERGE) == 0)
2211     this->flags_ &=~ elfcpp::SHF_MERGE;
2212   else
2213     {
2214       if (this->current_data_size_for_child() == 0)
2215         this->flags_ |= elfcpp::SHF_MERGE;
2216     }
2217
2218   if ((flags & elfcpp::SHF_STRINGS) == 0)
2219     this->flags_ &=~ elfcpp::SHF_STRINGS;
2220   else
2221     {
2222       if (this->current_data_size_for_child() == 0)
2223         this->flags_ |= elfcpp::SHF_STRINGS;
2224     }
2225 }
2226
2227 // Find the merge section into which an input section with index SHNDX in
2228 // OBJECT has been added.  Return NULL if none found.
2229
2230 Output_section_data*
2231 Output_section::find_merge_section(const Relobj* object,
2232                                    unsigned int shndx) const
2233 {
2234   Input_section_specifier iss(object, shndx);
2235   Output_section_data_by_input_section_map::const_iterator p =
2236     this->merge_section_map_.find(iss);
2237   if (p != this->merge_section_map_.end())
2238     {
2239       Output_section_data* posd = p->second;
2240       gold_assert(posd->is_merge_section_for(object, shndx));
2241       return posd;
2242     }
2243   else
2244     return NULL;
2245 }
2246
2247 // Find an relaxed input section corresponding to an input section
2248 // in OBJECT with index SHNDX.
2249
2250 const Output_relaxed_input_section*
2251 Output_section::find_relaxed_input_section(const Relobj* object,
2252                                            unsigned int shndx) const
2253 {
2254   // Be careful that the map may not be valid due to input section export
2255   // to scripts or a check-point restore.
2256   if (!this->is_relaxed_input_section_map_valid_)
2257     {
2258       // Rebuild the map as needed.
2259       this->relaxed_input_section_map_.clear();
2260       for (Input_section_list::const_iterator p = this->input_sections_.begin();
2261            p != this->input_sections_.end();
2262            ++p)
2263         if (p->is_relaxed_input_section())
2264           {
2265             Input_section_specifier iss(p->relobj(), p->shndx());
2266             this->relaxed_input_section_map_[iss] =
2267               p->relaxed_input_section();
2268           }
2269       this->is_relaxed_input_section_map_valid_ = true;
2270     }
2271
2272   Input_section_specifier iss(object, shndx);
2273   Output_relaxed_input_section_by_input_section_map::const_iterator p =
2274     this->relaxed_input_section_map_.find(iss);
2275   if (p != this->relaxed_input_section_map_.end())
2276     return p->second;
2277   else
2278     return NULL;
2279 }
2280
2281 // Given an address OFFSET relative to the start of input section
2282 // SHNDX in OBJECT, return whether this address is being included in
2283 // the final link.  This should only be called if SHNDX in OBJECT has
2284 // a special mapping.
2285
2286 bool
2287 Output_section::is_input_address_mapped(const Relobj* object,
2288                                         unsigned int shndx,
2289                                         off_t offset) const
2290 {
2291   // Look at the Output_section_data_maps first.
2292   const Output_section_data* posd = this->find_merge_section(object, shndx);
2293   if (posd == NULL)
2294     posd = this->find_relaxed_input_section(object, shndx);
2295
2296   if (posd != NULL)
2297     {
2298       section_offset_type output_offset;
2299       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2300       gold_assert(found);   
2301       return output_offset != -1;
2302     }
2303
2304   // Fall back to the slow look-up.
2305   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2306        p != this->input_sections_.end();
2307        ++p)
2308     {
2309       section_offset_type output_offset;
2310       if (p->output_offset(object, shndx, offset, &output_offset))
2311         return output_offset != -1;
2312     }
2313
2314   // By default we assume that the address is mapped.  This should
2315   // only be called after we have passed all sections to Layout.  At
2316   // that point we should know what we are discarding.
2317   return true;
2318 }
2319
2320 // Given an address OFFSET relative to the start of input section
2321 // SHNDX in object OBJECT, return the output offset relative to the
2322 // start of the input section in the output section.  This should only
2323 // be called if SHNDX in OBJECT has a special mapping.
2324
2325 section_offset_type
2326 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2327                               section_offset_type offset) const
2328 {
2329   // This can only be called meaningfully when we know the data size
2330   // of this.
2331   gold_assert(this->is_data_size_valid());
2332
2333   // Look at the Output_section_data_maps first.
2334   const Output_section_data* posd = this->find_merge_section(object, shndx);
2335   if (posd == NULL) 
2336     posd = this->find_relaxed_input_section(object, shndx);
2337   if (posd != NULL)
2338     {
2339       section_offset_type output_offset;
2340       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2341       gold_assert(found);   
2342       return output_offset;
2343     }
2344
2345   // Fall back to the slow look-up.
2346   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2347        p != this->input_sections_.end();
2348        ++p)
2349     {
2350       section_offset_type output_offset;
2351       if (p->output_offset(object, shndx, offset, &output_offset))
2352         return output_offset;
2353     }
2354   gold_unreachable();
2355 }
2356
2357 // Return the output virtual address of OFFSET relative to the start
2358 // of input section SHNDX in object OBJECT.
2359
2360 uint64_t
2361 Output_section::output_address(const Relobj* object, unsigned int shndx,
2362                                off_t offset) const
2363 {
2364   uint64_t addr = this->address() + this->first_input_offset_;
2365
2366   // Look at the Output_section_data_maps first.
2367   const Output_section_data* posd = this->find_merge_section(object, shndx);
2368   if (posd == NULL) 
2369     posd = this->find_relaxed_input_section(object, shndx);
2370   if (posd != NULL && posd->is_address_valid())
2371     {
2372       section_offset_type output_offset;
2373       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2374       gold_assert(found);
2375       return posd->address() + output_offset;
2376     }
2377
2378   // Fall back to the slow look-up.
2379   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2380        p != this->input_sections_.end();
2381        ++p)
2382     {
2383       addr = align_address(addr, p->addralign());
2384       section_offset_type output_offset;
2385       if (p->output_offset(object, shndx, offset, &output_offset))
2386         {
2387           if (output_offset == -1)
2388             return -1ULL;
2389           return addr + output_offset;
2390         }
2391       addr += p->data_size();
2392     }
2393
2394   // If we get here, it means that we don't know the mapping for this
2395   // input section.  This might happen in principle if
2396   // add_input_section were called before add_output_section_data.
2397   // But it should never actually happen.
2398
2399   gold_unreachable();
2400 }
2401
2402 // Find the output address of the start of the merged section for
2403 // input section SHNDX in object OBJECT.
2404
2405 bool
2406 Output_section::find_starting_output_address(const Relobj* object,
2407                                              unsigned int shndx,
2408                                              uint64_t* paddr) const
2409 {
2410   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2411   // Looking up the merge section map does not always work as we sometimes
2412   // find a merge section without its address set.
2413   uint64_t addr = this->address() + this->first_input_offset_;
2414   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2415        p != this->input_sections_.end();
2416        ++p)
2417     {
2418       addr = align_address(addr, p->addralign());
2419
2420       // It would be nice if we could use the existing output_offset
2421       // method to get the output offset of input offset 0.
2422       // Unfortunately we don't know for sure that input offset 0 is
2423       // mapped at all.
2424       if (p->is_merge_section_for(object, shndx))
2425         {
2426           *paddr = addr;
2427           return true;
2428         }
2429
2430       addr += p->data_size();
2431     }
2432
2433   // We couldn't find a merge output section for this input section.
2434   return false;
2435 }
2436
2437 // Set the data size of an Output_section.  This is where we handle
2438 // setting the addresses of any Output_section_data objects.
2439
2440 void
2441 Output_section::set_final_data_size()
2442 {
2443   if (this->input_sections_.empty())
2444     {
2445       this->set_data_size(this->current_data_size_for_child());
2446       return;
2447     }
2448
2449   if (this->must_sort_attached_input_sections())
2450     this->sort_attached_input_sections();
2451
2452   uint64_t address = this->address();
2453   off_t startoff = this->offset();
2454   off_t off = startoff + this->first_input_offset_;
2455   for (Input_section_list::iterator p = this->input_sections_.begin();
2456        p != this->input_sections_.end();
2457        ++p)
2458     {
2459       off = align_address(off, p->addralign());
2460       p->set_address_and_file_offset(address + (off - startoff), off,
2461                                      startoff);
2462       off += p->data_size();
2463     }
2464
2465   this->set_data_size(off - startoff);
2466 }
2467
2468 // Reset the address and file offset.
2469
2470 void
2471 Output_section::do_reset_address_and_file_offset()
2472 {
2473   // An unallocated section has no address.  Forcing this means that
2474   // we don't need special treatment for symbols defined in debug
2475   // sections.  We do the same in the constructor.
2476   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2477      this->set_address(0);
2478
2479   for (Input_section_list::iterator p = this->input_sections_.begin();
2480        p != this->input_sections_.end();
2481        ++p)
2482     p->reset_address_and_file_offset();
2483 }
2484   
2485 // Return true if address and file offset have the values after reset.
2486
2487 bool
2488 Output_section::do_address_and_file_offset_have_reset_values() const
2489 {
2490   if (this->is_offset_valid())
2491     return false;
2492
2493   // An unallocated section has address 0 after its construction or a reset.
2494   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2495     return this->is_address_valid() && this->address() == 0;
2496   else
2497     return !this->is_address_valid();
2498 }
2499
2500 // Set the TLS offset.  Called only for SHT_TLS sections.
2501
2502 void
2503 Output_section::do_set_tls_offset(uint64_t tls_base)
2504 {
2505   this->tls_offset_ = this->address() - tls_base;
2506 }
2507
2508 // In a few cases we need to sort the input sections attached to an
2509 // output section.  This is used to implement the type of constructor
2510 // priority ordering implemented by the GNU linker, in which the
2511 // priority becomes part of the section name and the sections are
2512 // sorted by name.  We only do this for an output section if we see an
2513 // attached input section matching ".ctor.*", ".dtor.*",
2514 // ".init_array.*" or ".fini_array.*".
2515
2516 class Output_section::Input_section_sort_entry
2517 {
2518  public:
2519   Input_section_sort_entry()
2520     : input_section_(), index_(-1U), section_has_name_(false),
2521       section_name_()
2522   { }
2523
2524   Input_section_sort_entry(const Input_section& input_section,
2525                            unsigned int index)
2526     : input_section_(input_section), index_(index),
2527       section_has_name_(input_section.is_input_section()
2528                         || input_section.is_relaxed_input_section())
2529   {
2530     if (this->section_has_name_)
2531       {
2532         // This is only called single-threaded from Layout::finalize,
2533         // so it is OK to lock.  Unfortunately we have no way to pass
2534         // in a Task token.
2535         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2536         Object* obj = (input_section.is_input_section()
2537                        ? input_section.relobj()
2538                        : input_section.relaxed_input_section()->relobj());
2539         Task_lock_obj<Object> tl(dummy_task, obj);
2540
2541         // This is a slow operation, which should be cached in
2542         // Layout::layout if this becomes a speed problem.
2543         this->section_name_ = obj->section_name(input_section.shndx());
2544       }
2545   }
2546
2547   // Return the Input_section.
2548   const Input_section&
2549   input_section() const
2550   {
2551     gold_assert(this->index_ != -1U);
2552     return this->input_section_;
2553   }
2554
2555   // The index of this entry in the original list.  This is used to
2556   // make the sort stable.
2557   unsigned int
2558   index() const
2559   {
2560     gold_assert(this->index_ != -1U);
2561     return this->index_;
2562   }
2563
2564   // Whether there is a section name.
2565   bool
2566   section_has_name() const
2567   { return this->section_has_name_; }
2568
2569   // The section name.
2570   const std::string&
2571   section_name() const
2572   {
2573     gold_assert(this->section_has_name_);
2574     return this->section_name_;
2575   }
2576
2577   // Return true if the section name has a priority.  This is assumed
2578   // to be true if it has a dot after the initial dot.
2579   bool
2580   has_priority() const
2581   {
2582     gold_assert(this->section_has_name_);
2583     return this->section_name_.find('.', 1);
2584   }
2585
2586   // Return true if this an input file whose base name matches
2587   // FILE_NAME.  The base name must have an extension of ".o", and
2588   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2589   // This is to match crtbegin.o as well as crtbeginS.o without
2590   // getting confused by other possibilities.  Overall matching the
2591   // file name this way is a dreadful hack, but the GNU linker does it
2592   // in order to better support gcc, and we need to be compatible.
2593   bool
2594   match_file_name(const char* match_file_name) const
2595   {
2596     const std::string& file_name(this->input_section_.relobj()->name());
2597     const char* base_name = lbasename(file_name.c_str());
2598     size_t match_len = strlen(match_file_name);
2599     if (strncmp(base_name, match_file_name, match_len) != 0)
2600       return false;
2601     size_t base_len = strlen(base_name);
2602     if (base_len != match_len + 2 && base_len != match_len + 3)
2603       return false;
2604     return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2605   }
2606
2607  private:
2608   // The Input_section we are sorting.
2609   Input_section input_section_;
2610   // The index of this Input_section in the original list.
2611   unsigned int index_;
2612   // Whether this Input_section has a section name--it won't if this
2613   // is some random Output_section_data.
2614   bool section_has_name_;
2615   // The section name if there is one.
2616   std::string section_name_;
2617 };
2618
2619 // Return true if S1 should come before S2 in the output section.
2620
2621 bool
2622 Output_section::Input_section_sort_compare::operator()(
2623     const Output_section::Input_section_sort_entry& s1,
2624     const Output_section::Input_section_sort_entry& s2) const
2625 {
2626   // crtbegin.o must come first.
2627   bool s1_begin = s1.match_file_name("crtbegin");
2628   bool s2_begin = s2.match_file_name("crtbegin");
2629   if (s1_begin || s2_begin)
2630     {
2631       if (!s1_begin)
2632         return false;
2633       if (!s2_begin)
2634         return true;
2635       return s1.index() < s2.index();
2636     }
2637
2638   // crtend.o must come last.
2639   bool s1_end = s1.match_file_name("crtend");
2640   bool s2_end = s2.match_file_name("crtend");
2641   if (s1_end || s2_end)
2642     {
2643       if (!s1_end)
2644         return true;
2645       if (!s2_end)
2646         return false;
2647       return s1.index() < s2.index();
2648     }
2649
2650   // We sort all the sections with no names to the end.
2651   if (!s1.section_has_name() || !s2.section_has_name())
2652     {
2653       if (s1.section_has_name())
2654         return true;
2655       if (s2.section_has_name())
2656         return false;
2657       return s1.index() < s2.index();
2658     }
2659
2660   // A section with a priority follows a section without a priority.
2661   // The GNU linker does this for all but .init_array sections; until
2662   // further notice we'll assume that that is an mistake.
2663   bool s1_has_priority = s1.has_priority();
2664   bool s2_has_priority = s2.has_priority();
2665   if (s1_has_priority && !s2_has_priority)
2666     return false;
2667   if (!s1_has_priority && s2_has_priority)
2668     return true;
2669
2670   // Otherwise we sort by name.
2671   int compare = s1.section_name().compare(s2.section_name());
2672   if (compare != 0)
2673     return compare < 0;
2674
2675   // Otherwise we keep the input order.
2676   return s1.index() < s2.index();
2677 }
2678
2679 // Sort the input sections attached to an output section.
2680
2681 void
2682 Output_section::sort_attached_input_sections()
2683 {
2684   if (this->attached_input_sections_are_sorted_)
2685     return;
2686
2687   if (this->checkpoint_ != NULL
2688       && !this->checkpoint_->input_sections_saved())
2689     this->checkpoint_->save_input_sections();
2690
2691   // The only thing we know about an input section is the object and
2692   // the section index.  We need the section name.  Recomputing this
2693   // is slow but this is an unusual case.  If this becomes a speed
2694   // problem we can cache the names as required in Layout::layout.
2695
2696   // We start by building a larger vector holding a copy of each
2697   // Input_section, plus its current index in the list and its name.
2698   std::vector<Input_section_sort_entry> sort_list;
2699
2700   unsigned int i = 0;
2701   for (Input_section_list::iterator p = this->input_sections_.begin();
2702        p != this->input_sections_.end();
2703        ++p, ++i)
2704     sort_list.push_back(Input_section_sort_entry(*p, i));
2705
2706   // Sort the input sections.
2707   std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2708
2709   // Copy the sorted input sections back to our list.
2710   this->input_sections_.clear();
2711   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2712        p != sort_list.end();
2713        ++p)
2714     this->input_sections_.push_back(p->input_section());
2715
2716   // Remember that we sorted the input sections, since we might get
2717   // called again.
2718   this->attached_input_sections_are_sorted_ = true;
2719 }
2720
2721 // Write the section header to *OSHDR.
2722
2723 template<int size, bool big_endian>
2724 void
2725 Output_section::write_header(const Layout* layout,
2726                              const Stringpool* secnamepool,
2727                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
2728 {
2729   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2730   oshdr->put_sh_type(this->type_);
2731
2732   elfcpp::Elf_Xword flags = this->flags_;
2733   if (this->info_section_ != NULL && this->info_uses_section_index_)
2734     flags |= elfcpp::SHF_INFO_LINK;
2735   oshdr->put_sh_flags(flags);
2736
2737   oshdr->put_sh_addr(this->address());
2738   oshdr->put_sh_offset(this->offset());
2739   oshdr->put_sh_size(this->data_size());
2740   if (this->link_section_ != NULL)
2741     oshdr->put_sh_link(this->link_section_->out_shndx());
2742   else if (this->should_link_to_symtab_)
2743     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2744   else if (this->should_link_to_dynsym_)
2745     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2746   else
2747     oshdr->put_sh_link(this->link_);
2748
2749   elfcpp::Elf_Word info;
2750   if (this->info_section_ != NULL)
2751     {
2752       if (this->info_uses_section_index_)
2753         info = this->info_section_->out_shndx();
2754       else
2755         info = this->info_section_->symtab_index();
2756     }
2757   else if (this->info_symndx_ != NULL)
2758     info = this->info_symndx_->symtab_index();
2759   else
2760     info = this->info_;
2761   oshdr->put_sh_info(info);
2762
2763   oshdr->put_sh_addralign(this->addralign_);
2764   oshdr->put_sh_entsize(this->entsize_);
2765 }
2766
2767 // Write out the data.  For input sections the data is written out by
2768 // Object::relocate, but we have to handle Output_section_data objects
2769 // here.
2770
2771 void
2772 Output_section::do_write(Output_file* of)
2773 {
2774   gold_assert(!this->requires_postprocessing());
2775
2776   // If the target performs relaxation, we delay filler generation until now.
2777   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2778
2779   off_t output_section_file_offset = this->offset();
2780   for (Fill_list::iterator p = this->fills_.begin();
2781        p != this->fills_.end();
2782        ++p)
2783     {
2784       std::string fill_data(parameters->target().code_fill(p->length()));
2785       of->write(output_section_file_offset + p->section_offset(),
2786                 fill_data.data(), fill_data.size());
2787     }
2788
2789   off_t off = this->offset() + this->first_input_offset_;
2790   for (Input_section_list::iterator p = this->input_sections_.begin();
2791        p != this->input_sections_.end();
2792        ++p)
2793     {
2794       off_t aligned_off = align_address(off, p->addralign());
2795       if (this->generate_code_fills_at_write_ && (off != aligned_off))
2796         {
2797           size_t fill_len = aligned_off - off;
2798           std::string fill_data(parameters->target().code_fill(fill_len));
2799           of->write(off, fill_data.data(), fill_data.size());
2800         }
2801
2802       p->write(of);
2803       off = aligned_off + p->data_size();
2804     }
2805 }
2806
2807 // If a section requires postprocessing, create the buffer to use.
2808
2809 void
2810 Output_section::create_postprocessing_buffer()
2811 {
2812   gold_assert(this->requires_postprocessing());
2813
2814   if (this->postprocessing_buffer_ != NULL)
2815     return;
2816
2817   if (!this->input_sections_.empty())
2818     {
2819       off_t off = this->first_input_offset_;
2820       for (Input_section_list::iterator p = this->input_sections_.begin();
2821            p != this->input_sections_.end();
2822            ++p)
2823         {
2824           off = align_address(off, p->addralign());
2825           p->finalize_data_size();
2826           off += p->data_size();
2827         }
2828       this->set_current_data_size_for_child(off);
2829     }
2830
2831   off_t buffer_size = this->current_data_size_for_child();
2832   this->postprocessing_buffer_ = new unsigned char[buffer_size];
2833 }
2834
2835 // Write all the data of an Output_section into the postprocessing
2836 // buffer.  This is used for sections which require postprocessing,
2837 // such as compression.  Input sections are handled by
2838 // Object::Relocate.
2839
2840 void
2841 Output_section::write_to_postprocessing_buffer()
2842 {
2843   gold_assert(this->requires_postprocessing());
2844
2845   // If the target performs relaxation, we delay filler generation until now.
2846   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2847
2848   unsigned char* buffer = this->postprocessing_buffer();
2849   for (Fill_list::iterator p = this->fills_.begin();
2850        p != this->fills_.end();
2851        ++p)
2852     {
2853       std::string fill_data(parameters->target().code_fill(p->length()));
2854       memcpy(buffer + p->section_offset(), fill_data.data(),
2855              fill_data.size());
2856     }
2857
2858   off_t off = this->first_input_offset_;
2859   for (Input_section_list::iterator p = this->input_sections_.begin();
2860        p != this->input_sections_.end();
2861        ++p)
2862     {
2863       off_t aligned_off = align_address(off, p->addralign());
2864       if (this->generate_code_fills_at_write_ && (off != aligned_off))
2865         {
2866           size_t fill_len = aligned_off - off;
2867           std::string fill_data(parameters->target().code_fill(fill_len));
2868           memcpy(buffer + off, fill_data.data(), fill_data.size());
2869         }
2870
2871       p->write_to_buffer(buffer + aligned_off);
2872       off = aligned_off + p->data_size();
2873     }
2874 }
2875
2876 // Get the input sections for linker script processing.  We leave
2877 // behind the Output_section_data entries.  Note that this may be
2878 // slightly incorrect for merge sections.  We will leave them behind,
2879 // but it is possible that the script says that they should follow
2880 // some other input sections, as in:
2881 //    .rodata { *(.rodata) *(.rodata.cst*) }
2882 // For that matter, we don't handle this correctly:
2883 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2884 // With luck this will never matter.
2885
2886 uint64_t
2887 Output_section::get_input_sections(
2888     uint64_t address,
2889     const std::string& fill,
2890     std::list<Simple_input_section>* input_sections)
2891 {
2892   if (this->checkpoint_ != NULL
2893       && !this->checkpoint_->input_sections_saved())
2894     this->checkpoint_->save_input_sections();
2895
2896   // Invalidate the relaxed input section map.
2897   this->is_relaxed_input_section_map_valid_ = false;
2898
2899   uint64_t orig_address = address;
2900
2901   address = align_address(address, this->addralign());
2902
2903   Input_section_list remaining;
2904   for (Input_section_list::iterator p = this->input_sections_.begin();
2905        p != this->input_sections_.end();
2906        ++p)
2907     {
2908       if (p->is_input_section())
2909         input_sections->push_back(Simple_input_section(p->relobj(),
2910                                                        p->shndx()));
2911       else if (p->is_relaxed_input_section())
2912         input_sections->push_back(
2913             Simple_input_section(p->relaxed_input_section()));
2914       else
2915         {
2916           uint64_t aligned_address = align_address(address, p->addralign());
2917           if (aligned_address != address && !fill.empty())
2918             {
2919               section_size_type length =
2920                 convert_to_section_size_type(aligned_address - address);
2921               std::string this_fill;
2922               this_fill.reserve(length);
2923               while (this_fill.length() + fill.length() <= length)
2924                 this_fill += fill;
2925               if (this_fill.length() < length)
2926                 this_fill.append(fill, 0, length - this_fill.length());
2927
2928               Output_section_data* posd = new Output_data_const(this_fill, 0);
2929               remaining.push_back(Input_section(posd));
2930             }
2931           address = aligned_address;
2932
2933           remaining.push_back(*p);
2934
2935           p->finalize_data_size();
2936           address += p->data_size();
2937         }
2938     }
2939
2940   this->input_sections_.swap(remaining);
2941   this->first_input_offset_ = 0;
2942
2943   uint64_t data_size = address - orig_address;
2944   this->set_current_data_size_for_child(data_size);
2945   return data_size;
2946 }
2947
2948 // Add an input section from a script.
2949
2950 void
2951 Output_section::add_input_section_for_script(const Simple_input_section& sis,
2952                                              off_t data_size,
2953                                              uint64_t addralign)
2954 {
2955   if (addralign > this->addralign_)
2956     this->addralign_ = addralign;
2957
2958   off_t offset_in_section = this->current_data_size_for_child();
2959   off_t aligned_offset_in_section = align_address(offset_in_section,
2960                                                   addralign);
2961
2962   this->set_current_data_size_for_child(aligned_offset_in_section
2963                                         + data_size);
2964
2965   Input_section is =
2966     (sis.is_relaxed_input_section()
2967      ? Input_section(sis.relaxed_input_section())
2968      : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
2969   this->input_sections_.push_back(is);
2970 }
2971
2972 //
2973
2974 void
2975 Output_section::save_states()
2976 {
2977   gold_assert(this->checkpoint_ == NULL);
2978   Checkpoint_output_section* checkpoint =
2979     new Checkpoint_output_section(this->addralign_, this->flags_,
2980                                   this->input_sections_,
2981                                   this->first_input_offset_,
2982                                   this->attached_input_sections_are_sorted_);
2983   this->checkpoint_ = checkpoint;
2984   gold_assert(this->fills_.empty());
2985 }
2986
2987 void
2988 Output_section::restore_states()
2989 {
2990   gold_assert(this->checkpoint_ != NULL);
2991   Checkpoint_output_section* checkpoint = this->checkpoint_;
2992
2993   this->addralign_ = checkpoint->addralign();
2994   this->flags_ = checkpoint->flags();
2995   this->first_input_offset_ = checkpoint->first_input_offset();
2996
2997   if (!checkpoint->input_sections_saved())
2998     {
2999       // If we have not copied the input sections, just resize it.
3000       size_t old_size = checkpoint->input_sections_size();
3001       gold_assert(this->input_sections_.size() >= old_size);
3002       this->input_sections_.resize(old_size);
3003     }
3004   else
3005     {
3006       // We need to copy the whole list.  This is not efficient for
3007       // extremely large output with hundreads of thousands of input
3008       // objects.  We may need to re-think how we should pass sections
3009       // to scripts.
3010       this->input_sections_ = *checkpoint->input_sections();
3011     }
3012
3013   this->attached_input_sections_are_sorted_ =
3014     checkpoint->attached_input_sections_are_sorted();
3015
3016   // Simply invalidate the relaxed input section map since we do not keep
3017   // track of it.
3018   this->is_relaxed_input_section_map_valid_ = false;
3019 }
3020
3021 // Print to the map file.
3022
3023 void
3024 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3025 {
3026   mapfile->print_output_section(this);
3027
3028   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3029        p != this->input_sections_.end();
3030        ++p)
3031     p->print_to_mapfile(mapfile);
3032 }
3033
3034 // Print stats for merge sections to stderr.
3035
3036 void
3037 Output_section::print_merge_stats()
3038 {
3039   Input_section_list::iterator p;
3040   for (p = this->input_sections_.begin();
3041        p != this->input_sections_.end();
3042        ++p)
3043     p->print_merge_stats(this->name_);
3044 }
3045
3046 // Output segment methods.
3047
3048 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3049   : output_data_(),
3050     output_bss_(),
3051     vaddr_(0),
3052     paddr_(0),
3053     memsz_(0),
3054     max_align_(0),
3055     min_p_align_(0),
3056     offset_(0),
3057     filesz_(0),
3058     type_(type),
3059     flags_(flags),
3060     is_max_align_known_(false),
3061     are_addresses_set_(false),
3062     is_large_data_segment_(false)
3063 {
3064 }
3065
3066 // Add an Output_section to an Output_segment.
3067
3068 void
3069 Output_segment::add_output_section(Output_section* os,
3070                                    elfcpp::Elf_Word seg_flags,
3071                                    bool do_sort)
3072 {
3073   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3074   gold_assert(!this->is_max_align_known_);
3075   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3076   gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3077
3078   // Update the segment flags.
3079   this->flags_ |= seg_flags;
3080
3081   Output_segment::Output_data_list* pdl;
3082   if (os->type() == elfcpp::SHT_NOBITS)
3083     pdl = &this->output_bss_;
3084   else
3085     pdl = &this->output_data_;
3086
3087   // Note that while there may be many input sections in an output
3088   // section, there are normally only a few output sections in an
3089   // output segment.  The loops below are expected to be fast.
3090
3091   // So that PT_NOTE segments will work correctly, we need to ensure
3092   // that all SHT_NOTE sections are adjacent.
3093   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3094     {
3095       Output_segment::Output_data_list::iterator p = pdl->end();
3096       do
3097         {
3098           --p;
3099           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3100             {
3101               ++p;
3102               pdl->insert(p, os);
3103               return;
3104             }
3105         }
3106       while (p != pdl->begin());
3107     }
3108
3109   // Similarly, so that PT_TLS segments will work, we need to group
3110   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
3111   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3112   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
3113   // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
3114   // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3115   // segment.
3116   if (this->type_ != elfcpp::PT_TLS
3117       && (os->flags() & elfcpp::SHF_TLS) != 0)
3118     {
3119       pdl = &this->output_data_;
3120       if (!pdl->empty())
3121         {
3122           bool nobits = os->type() == elfcpp::SHT_NOBITS;
3123           bool sawtls = false;
3124           Output_segment::Output_data_list::iterator p = pdl->end();
3125           gold_assert(p != pdl->begin());
3126           do
3127             {
3128               --p;
3129               bool insert;
3130               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3131                 {
3132                   sawtls = true;
3133                   // Put a NOBITS section after the first TLS section.
3134                   // Put a PROGBITS section after the first
3135                   // TLS/PROGBITS section.
3136                   insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3137                 }
3138               else
3139                 {
3140                   // If we've gone past the TLS sections, but we've
3141                   // seen a TLS section, then we need to insert this
3142                   // section now.
3143                   insert = sawtls;
3144                 }
3145
3146               if (insert)
3147                 {
3148                   ++p;
3149                   pdl->insert(p, os);
3150                   return;
3151                 }
3152             }
3153           while (p != pdl->begin());
3154         }
3155
3156       // There are no TLS sections yet; put this one at the requested
3157       // location in the section list.
3158     }
3159
3160   // For the PT_GNU_RELRO segment, we need to group relro sections,
3161   // and we need to put them before any non-relro sections.  Also,
3162   // relro local sections go before relro non-local sections.
3163   if (parameters->options().relro() && os->is_relro())
3164     {
3165       gold_assert(pdl == &this->output_data_);
3166       Output_segment::Output_data_list::iterator p;
3167       for (p = pdl->begin(); p != pdl->end(); ++p)
3168         {
3169           if (!(*p)->is_section())
3170             break;
3171
3172           Output_section* pos = (*p)->output_section();
3173           if (!pos->is_relro()
3174               || (os->is_relro_local() && !pos->is_relro_local()))
3175             break;
3176         }
3177
3178       pdl->insert(p, os);
3179       return;
3180     }
3181
3182   // Small data sections go at the end of the list of data sections.
3183   // If OS is not small, and there are small sections, we have to
3184   // insert it before the first small section.
3185   if (os->type() != elfcpp::SHT_NOBITS
3186       && !os->is_small_section()
3187       && !pdl->empty()
3188       && pdl->back()->is_section()
3189       && pdl->back()->output_section()->is_small_section())
3190     {
3191       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3192            p != pdl->end();
3193            ++p)
3194         {
3195           if ((*p)->is_section()
3196               && (*p)->output_section()->is_small_section())
3197             {
3198               pdl->insert(p, os);
3199               return;
3200             }
3201         }
3202       gold_unreachable();
3203     }
3204
3205   // A small BSS section goes at the start of the BSS sections, after
3206   // other small BSS sections.
3207   if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3208     {
3209       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3210            p != pdl->end();
3211            ++p)
3212         {
3213           if (!(*p)->is_section()
3214               || !(*p)->output_section()->is_small_section())
3215             {
3216               pdl->insert(p, os);
3217               return;
3218             }
3219         }
3220     }
3221
3222   // A large BSS section goes at the end of the BSS sections, which
3223   // means that one that is not large must come before the first large
3224   // one.
3225   if (os->type() == elfcpp::SHT_NOBITS
3226       && !os->is_large_section()
3227       && !pdl->empty()
3228       && pdl->back()->is_section()
3229       && pdl->back()->output_section()->is_large_section())
3230     {
3231       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3232            p != pdl->end();
3233            ++p)
3234         {
3235           if ((*p)->is_section()
3236               && (*p)->output_section()->is_large_section())
3237             {
3238               pdl->insert(p, os);
3239               return;
3240             }
3241         }
3242       gold_unreachable();
3243     }
3244
3245   // We do some further output section sorting in order to make the
3246   // generated program run more efficiently.  We should only do this
3247   // when not using a linker script, so it is controled by the DO_SORT
3248   // parameter.
3249   if (do_sort)
3250     {
3251       // FreeBSD requires the .interp section to be in the first page
3252       // of the executable.  That is a more efficient location anyhow
3253       // for any OS, since it means that the kernel will have the data
3254       // handy after it reads the program headers.
3255       if (os->is_interp() && !pdl->empty())
3256         {
3257           pdl->insert(pdl->begin(), os);
3258           return;
3259         }
3260
3261       // Put loadable non-writable notes immediately after the .interp
3262       // sections, so that the PT_NOTE segment is on the first page of
3263       // the executable.
3264       if (os->type() == elfcpp::SHT_NOTE
3265           && (os->flags() & elfcpp::SHF_WRITE) == 0
3266           && !pdl->empty())
3267         {
3268           Output_segment::Output_data_list::iterator p = pdl->begin();
3269           if ((*p)->is_section() && (*p)->output_section()->is_interp())
3270             ++p;
3271           pdl->insert(p, os);
3272           return;
3273         }
3274
3275       // If this section is used by the dynamic linker, and it is not
3276       // writable, then put it first, after the .interp section and
3277       // any loadable notes.  This makes it more likely that the
3278       // dynamic linker will have to read less data from the disk.
3279       if (os->is_dynamic_linker_section()
3280           && !pdl->empty()
3281           && (os->flags() & elfcpp::SHF_WRITE) == 0)
3282         {
3283           bool is_reloc = (os->type() == elfcpp::SHT_REL
3284                            || os->type() == elfcpp::SHT_RELA);
3285           Output_segment::Output_data_list::iterator p = pdl->begin();
3286           while (p != pdl->end()
3287                  && (*p)->is_section()
3288                  && ((*p)->output_section()->is_dynamic_linker_section()
3289                      || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3290             {
3291               // Put reloc sections after the other ones.  Putting the
3292               // dynamic reloc sections first confuses BFD, notably
3293               // objcopy and strip.
3294               if (!is_reloc
3295                   && ((*p)->output_section()->type() == elfcpp::SHT_REL
3296                       || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3297                 break;
3298               ++p;
3299             }
3300           pdl->insert(p, os);
3301           return;
3302         }
3303     }
3304
3305   // If there were no constraints on the output section, just add it
3306   // to the end of the list.
3307   pdl->push_back(os);
3308 }
3309
3310 // Remove an Output_section from this segment.  It is an error if it
3311 // is not present.
3312
3313 void
3314 Output_segment::remove_output_section(Output_section* os)
3315 {
3316   // We only need this for SHT_PROGBITS.
3317   gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3318   for (Output_data_list::iterator p = this->output_data_.begin();
3319        p != this->output_data_.end();
3320        ++p)
3321    {
3322      if (*p == os)
3323        {
3324          this->output_data_.erase(p);
3325          return;
3326        }
3327    }
3328   gold_unreachable();
3329 }
3330
3331 // Add an Output_data (which is not an Output_section) to the start of
3332 // a segment.
3333
3334 void
3335 Output_segment::add_initial_output_data(Output_data* od)
3336 {
3337   gold_assert(!this->is_max_align_known_);
3338   this->output_data_.push_front(od);
3339 }
3340
3341 // Return whether the first data section is a relro section.
3342
3343 bool
3344 Output_segment::is_first_section_relro() const
3345 {
3346   return (!this->output_data_.empty()
3347           && this->output_data_.front()->is_section()
3348           && this->output_data_.front()->output_section()->is_relro());
3349 }
3350
3351 // Return the maximum alignment of the Output_data in Output_segment.
3352
3353 uint64_t
3354 Output_segment::maximum_alignment()
3355 {
3356   if (!this->is_max_align_known_)
3357     {
3358       uint64_t addralign;
3359
3360       addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3361       if (addralign > this->max_align_)
3362         this->max_align_ = addralign;
3363
3364       addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3365       if (addralign > this->max_align_)
3366         this->max_align_ = addralign;
3367
3368       // If -z relro is in effect, and the first section in this
3369       // segment is a relro section, then the segment must be aligned
3370       // to at least the common page size.  This ensures that the
3371       // PT_GNU_RELRO segment will start at a page boundary.
3372       if (this->type_ == elfcpp::PT_LOAD
3373           && parameters->options().relro()
3374           && this->is_first_section_relro())
3375         {
3376           addralign = parameters->target().common_pagesize();
3377           if (addralign > this->max_align_)
3378             this->max_align_ = addralign;
3379         }
3380
3381       this->is_max_align_known_ = true;
3382     }
3383
3384   return this->max_align_;
3385 }
3386
3387 // Return the maximum alignment of a list of Output_data.
3388
3389 uint64_t
3390 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3391 {
3392   uint64_t ret = 0;
3393   for (Output_data_list::const_iterator p = pdl->begin();
3394        p != pdl->end();
3395        ++p)
3396     {
3397       uint64_t addralign = (*p)->addralign();
3398       if (addralign > ret)
3399         ret = addralign;
3400     }
3401   return ret;
3402 }
3403
3404 // Return the number of dynamic relocs applied to this segment.
3405
3406 unsigned int
3407 Output_segment::dynamic_reloc_count() const
3408 {
3409   return (this->dynamic_reloc_count_list(&this->output_data_)
3410           + this->dynamic_reloc_count_list(&this->output_bss_));
3411 }
3412
3413 // Return the number of dynamic relocs applied to an Output_data_list.
3414
3415 unsigned int
3416 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3417 {
3418   unsigned int count = 0;
3419   for (Output_data_list::const_iterator p = pdl->begin();
3420        p != pdl->end();
3421        ++p)
3422     count += (*p)->dynamic_reloc_count();
3423   return count;
3424 }
3425
3426 // Set the section addresses for an Output_segment.  If RESET is true,
3427 // reset the addresses first.  ADDR is the address and *POFF is the
3428 // file offset.  Set the section indexes starting with *PSHNDX.
3429 // Return the address of the immediately following segment.  Update
3430 // *POFF and *PSHNDX.
3431
3432 uint64_t
3433 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3434                                       uint64_t addr, off_t* poff,
3435                                       unsigned int* pshndx)
3436 {
3437   gold_assert(this->type_ == elfcpp::PT_LOAD);
3438
3439   if (!reset && this->are_addresses_set_)
3440     {
3441       gold_assert(this->paddr_ == addr);
3442       addr = this->vaddr_;
3443     }
3444   else
3445     {
3446       this->vaddr_ = addr;
3447       this->paddr_ = addr;
3448       this->are_addresses_set_ = true;
3449     }
3450
3451   bool in_tls = false;
3452
3453   bool in_relro = (parameters->options().relro()
3454                    && this->is_first_section_relro());
3455
3456   off_t orig_off = *poff;
3457   this->offset_ = orig_off;
3458
3459   addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3460                                           addr, poff, pshndx, &in_tls,
3461                                           &in_relro);
3462   this->filesz_ = *poff - orig_off;
3463
3464   off_t off = *poff;
3465
3466   uint64_t ret = this->set_section_list_addresses(layout, reset,
3467                                                   &this->output_bss_,
3468                                                   addr, poff, pshndx,
3469                                                   &in_tls, &in_relro);
3470
3471   // If the last section was a TLS section, align upward to the
3472   // alignment of the TLS segment, so that the overall size of the TLS
3473   // segment is aligned.
3474   if (in_tls)
3475     {
3476       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3477       *poff = align_address(*poff, segment_align);
3478     }
3479
3480   // If all the sections were relro sections, align upward to the
3481   // common page size.
3482   if (in_relro)
3483     {
3484       uint64_t page_align = parameters->target().common_pagesize();
3485       *poff = align_address(*poff, page_align);
3486     }
3487
3488   this->memsz_ = *poff - orig_off;
3489
3490   // Ignore the file offset adjustments made by the BSS Output_data
3491   // objects.
3492   *poff = off;
3493
3494   return ret;
3495 }
3496
3497 // Set the addresses and file offsets in a list of Output_data
3498 // structures.
3499
3500 uint64_t
3501 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3502                                            Output_data_list* pdl,
3503                                            uint64_t addr, off_t* poff,
3504                                            unsigned int* pshndx,
3505                                            bool* in_tls, bool* in_relro)
3506 {
3507   off_t startoff = *poff;
3508
3509   off_t off = startoff;
3510   for (Output_data_list::iterator p = pdl->begin();
3511        p != pdl->end();
3512        ++p)
3513     {
3514       if (reset)
3515         (*p)->reset_address_and_file_offset();
3516
3517       // When using a linker script the section will most likely
3518       // already have an address.
3519       if (!(*p)->is_address_valid())
3520         {
3521           uint64_t align = (*p)->addralign();
3522
3523           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3524             {
3525               // Give the first TLS section the alignment of the
3526               // entire TLS segment.  Otherwise the TLS segment as a
3527               // whole may be misaligned.
3528               if (!*in_tls)
3529                 {
3530                   Output_segment* tls_segment = layout->tls_segment();
3531                   gold_assert(tls_segment != NULL);
3532                   uint64_t segment_align = tls_segment->maximum_alignment();
3533                   gold_assert(segment_align >= align);
3534                   align = segment_align;
3535
3536                   *in_tls = true;
3537                 }
3538             }
3539           else
3540             {
3541               // If this is the first section after the TLS segment,
3542               // align it to at least the alignment of the TLS
3543               // segment, so that the size of the overall TLS segment
3544               // is aligned.
3545               if (*in_tls)
3546                 {
3547                   uint64_t segment_align =
3548                       layout->tls_segment()->maximum_alignment();
3549                   if (segment_align > align)
3550                     align = segment_align;
3551
3552                   *in_tls = false;
3553                 }
3554             }
3555
3556           // If this is a non-relro section after a relro section,
3557           // align it to a common page boundary so that the dynamic
3558           // linker has a page to mark as read-only.
3559           if (*in_relro
3560               && (!(*p)->is_section()
3561                   || !(*p)->output_section()->is_relro()))
3562             {
3563               uint64_t page_align = parameters->target().common_pagesize();
3564               if (page_align > align)
3565                 align = page_align;
3566               *in_relro = false;
3567             }
3568
3569           off = align_address(off, align);
3570           (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3571         }
3572       else
3573         {
3574           // The script may have inserted a skip forward, but it
3575           // better not have moved backward.
3576           if ((*p)->address() >= addr + (off - startoff))
3577             off += (*p)->address() - (addr + (off - startoff));
3578           else
3579             {
3580               if (!layout->script_options()->saw_sections_clause())
3581                 gold_unreachable();
3582               else
3583                 {
3584                   Output_section* os = (*p)->output_section();
3585
3586                   // Cast to unsigned long long to avoid format warnings.
3587                   unsigned long long previous_dot =
3588                     static_cast<unsigned long long>(addr + (off - startoff));
3589                   unsigned long long dot =
3590                     static_cast<unsigned long long>((*p)->address());
3591
3592                   if (os == NULL)
3593                     gold_error(_("dot moves backward in linker script "
3594                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
3595                   else
3596                     gold_error(_("address of section '%s' moves backward "
3597                                  "from 0x%llx to 0x%llx"),
3598                                os->name(), previous_dot, dot);
3599                 }
3600             }
3601           (*p)->set_file_offset(off);
3602           (*p)->finalize_data_size();
3603         }
3604
3605       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3606       // section.  Such a section does not affect the size of a
3607       // PT_LOAD segment.
3608       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3609           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3610         off += (*p)->data_size();
3611
3612       if ((*p)->is_section())
3613         {
3614           (*p)->set_out_shndx(*pshndx);
3615           ++*pshndx;
3616         }
3617     }
3618
3619   *poff = off;
3620   return addr + (off - startoff);
3621 }
3622
3623 // For a non-PT_LOAD segment, set the offset from the sections, if
3624 // any.
3625
3626 void
3627 Output_segment::set_offset()
3628 {
3629   gold_assert(this->type_ != elfcpp::PT_LOAD);
3630
3631   gold_assert(!this->are_addresses_set_);
3632
3633   if (this->output_data_.empty() && this->output_bss_.empty())
3634     {
3635       this->vaddr_ = 0;
3636       this->paddr_ = 0;
3637       this->are_addresses_set_ = true;
3638       this->memsz_ = 0;
3639       this->min_p_align_ = 0;
3640       this->offset_ = 0;
3641       this->filesz_ = 0;
3642       return;
3643     }
3644
3645   const Output_data* first;
3646   if (this->output_data_.empty())
3647     first = this->output_bss_.front();
3648   else
3649     first = this->output_data_.front();
3650   this->vaddr_ = first->address();
3651   this->paddr_ = (first->has_load_address()
3652                   ? first->load_address()
3653                   : this->vaddr_);
3654   this->are_addresses_set_ = true;
3655   this->offset_ = first->offset();
3656
3657   if (this->output_data_.empty())
3658     this->filesz_ = 0;
3659   else
3660     {
3661       const Output_data* last_data = this->output_data_.back();
3662       this->filesz_ = (last_data->address()
3663                        + last_data->data_size()
3664                        - this->vaddr_);
3665     }
3666
3667   const Output_data* last;
3668   if (this->output_bss_.empty())
3669     last = this->output_data_.back();
3670   else
3671     last = this->output_bss_.back();
3672   this->memsz_ = (last->address()
3673                   + last->data_size()
3674                   - this->vaddr_);
3675
3676   // If this is a TLS segment, align the memory size.  The code in
3677   // set_section_list ensures that the section after the TLS segment
3678   // is aligned to give us room.
3679   if (this->type_ == elfcpp::PT_TLS)
3680     {
3681       uint64_t segment_align = this->maximum_alignment();
3682       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3683       this->memsz_ = align_address(this->memsz_, segment_align);
3684     }
3685
3686   // If this is a RELRO segment, align the memory size.  The code in
3687   // set_section_list ensures that the section after the RELRO segment
3688   // is aligned to give us room.
3689   if (this->type_ == elfcpp::PT_GNU_RELRO)
3690     {
3691       uint64_t page_align = parameters->target().common_pagesize();
3692       gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3693       this->memsz_ = align_address(this->memsz_, page_align);
3694     }
3695 }
3696
3697 // Set the TLS offsets of the sections in the PT_TLS segment.
3698
3699 void
3700 Output_segment::set_tls_offsets()
3701 {
3702   gold_assert(this->type_ == elfcpp::PT_TLS);
3703
3704   for (Output_data_list::iterator p = this->output_data_.begin();
3705        p != this->output_data_.end();
3706        ++p)
3707     (*p)->set_tls_offset(this->vaddr_);
3708
3709   for (Output_data_list::iterator p = this->output_bss_.begin();
3710        p != this->output_bss_.end();
3711        ++p)
3712     (*p)->set_tls_offset(this->vaddr_);
3713 }
3714
3715 // Return the address of the first section.
3716
3717 uint64_t
3718 Output_segment::first_section_load_address() const
3719 {
3720   for (Output_data_list::const_iterator p = this->output_data_.begin();
3721        p != this->output_data_.end();
3722        ++p)
3723     if ((*p)->is_section())
3724       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3725
3726   for (Output_data_list::const_iterator p = this->output_bss_.begin();
3727        p != this->output_bss_.end();
3728        ++p)
3729     if ((*p)->is_section())
3730       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3731
3732   gold_unreachable();
3733 }
3734
3735 // Return the number of Output_sections in an Output_segment.
3736
3737 unsigned int
3738 Output_segment::output_section_count() const
3739 {
3740   return (this->output_section_count_list(&this->output_data_)
3741           + this->output_section_count_list(&this->output_bss_));
3742 }
3743
3744 // Return the number of Output_sections in an Output_data_list.
3745
3746 unsigned int
3747 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3748 {
3749   unsigned int count = 0;
3750   for (Output_data_list::const_iterator p = pdl->begin();
3751        p != pdl->end();
3752        ++p)
3753     {
3754       if ((*p)->is_section())
3755         ++count;
3756     }
3757   return count;
3758 }
3759
3760 // Return the section attached to the list segment with the lowest
3761 // load address.  This is used when handling a PHDRS clause in a
3762 // linker script.
3763
3764 Output_section*
3765 Output_segment::section_with_lowest_load_address() const
3766 {
3767   Output_section* found = NULL;
3768   uint64_t found_lma = 0;
3769   this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3770
3771   Output_section* found_data = found;
3772   this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3773   if (found != found_data && found_data != NULL)
3774     {
3775       gold_error(_("nobits section %s may not precede progbits section %s "
3776                    "in same segment"),
3777                  found->name(), found_data->name());
3778       return NULL;
3779     }
3780
3781   return found;
3782 }
3783
3784 // Look through a list for a section with a lower load address.
3785
3786 void
3787 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3788                                             Output_section** found,
3789                                             uint64_t* found_lma) const
3790 {
3791   for (Output_data_list::const_iterator p = pdl->begin();
3792        p != pdl->end();
3793        ++p)
3794     {
3795       if (!(*p)->is_section())
3796         continue;
3797       Output_section* os = static_cast<Output_section*>(*p);
3798       uint64_t lma = (os->has_load_address()
3799                       ? os->load_address()
3800                       : os->address());
3801       if (*found == NULL || lma < *found_lma)
3802         {
3803           *found = os;
3804           *found_lma = lma;
3805         }
3806     }
3807 }
3808
3809 // Write the segment data into *OPHDR.
3810
3811 template<int size, bool big_endian>
3812 void
3813 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3814 {
3815   ophdr->put_p_type(this->type_);
3816   ophdr->put_p_offset(this->offset_);
3817   ophdr->put_p_vaddr(this->vaddr_);
3818   ophdr->put_p_paddr(this->paddr_);
3819   ophdr->put_p_filesz(this->filesz_);
3820   ophdr->put_p_memsz(this->memsz_);
3821   ophdr->put_p_flags(this->flags_);
3822   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3823 }
3824
3825 // Write the section headers into V.
3826
3827 template<int size, bool big_endian>
3828 unsigned char*
3829 Output_segment::write_section_headers(const Layout* layout,
3830                                       const Stringpool* secnamepool,
3831                                       unsigned char* v,
3832                                       unsigned int *pshndx) const
3833 {
3834   // Every section that is attached to a segment must be attached to a
3835   // PT_LOAD segment, so we only write out section headers for PT_LOAD
3836   // segments.
3837   if (this->type_ != elfcpp::PT_LOAD)
3838     return v;
3839
3840   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3841                                                          &this->output_data_,
3842                                                          v, pshndx);
3843   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3844                                                          &this->output_bss_,
3845                                                          v, pshndx);
3846   return v;
3847 }
3848
3849 template<int size, bool big_endian>
3850 unsigned char*
3851 Output_segment::write_section_headers_list(const Layout* layout,
3852                                            const Stringpool* secnamepool,
3853                                            const Output_data_list* pdl,
3854                                            unsigned char* v,
3855                                            unsigned int* pshndx) const
3856 {
3857   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3858   for (Output_data_list::const_iterator p = pdl->begin();
3859        p != pdl->end();
3860        ++p)
3861     {
3862       if ((*p)->is_section())
3863         {
3864           const Output_section* ps = static_cast<const Output_section*>(*p);
3865           gold_assert(*pshndx == ps->out_shndx());
3866           elfcpp::Shdr_write<size, big_endian> oshdr(v);
3867           ps->write_header(layout, secnamepool, &oshdr);
3868           v += shdr_size;
3869           ++*pshndx;
3870         }
3871     }
3872   return v;
3873 }
3874
3875 // Print the output sections to the map file.
3876
3877 void
3878 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3879 {
3880   if (this->type() != elfcpp::PT_LOAD)
3881     return;
3882   this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3883   this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3884 }
3885
3886 // Print an output section list to the map file.
3887
3888 void
3889 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3890                                               const Output_data_list* pdl) const
3891 {
3892   for (Output_data_list::const_iterator p = pdl->begin();
3893        p != pdl->end();
3894        ++p)
3895     (*p)->print_to_mapfile(mapfile);
3896 }
3897
3898 // Output_file methods.
3899
3900 Output_file::Output_file(const char* name)
3901   : name_(name),
3902     o_(-1),
3903     file_size_(0),
3904     base_(NULL),
3905     map_is_anonymous_(false),
3906     is_temporary_(false)
3907 {
3908 }
3909
3910 // Try to open an existing file.  Returns false if the file doesn't
3911 // exist, has a size of 0 or can't be mmapped.
3912
3913 bool
3914 Output_file::open_for_modification()
3915 {
3916   // The name "-" means "stdout".
3917   if (strcmp(this->name_, "-") == 0)
3918     return false;
3919
3920   // Don't bother opening files with a size of zero.
3921   struct stat s;
3922   if (::stat(this->name_, &s) != 0 || s.st_size == 0)
3923     return false;
3924
3925   int o = open_descriptor(-1, this->name_, O_RDWR, 0);
3926   if (o < 0)
3927     gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3928   this->o_ = o;
3929   this->file_size_ = s.st_size;
3930
3931   // If the file can't be mmapped, copying the content to an anonymous
3932   // map will probably negate the performance benefits of incremental
3933   // linking.  This could be helped by using views and loading only
3934   // the necessary parts, but this is not supported as of now.
3935   if (!this->map_no_anonymous())
3936     {
3937       release_descriptor(o, true);
3938       this->o_ = -1;
3939       this->file_size_ = 0;
3940       return false;
3941     }
3942
3943   return true;
3944 }
3945
3946 // Open the output file.
3947
3948 void
3949 Output_file::open(off_t file_size)
3950 {
3951   this->file_size_ = file_size;
3952
3953   // Unlink the file first; otherwise the open() may fail if the file
3954   // is busy (e.g. it's an executable that's currently being executed).
3955   //
3956   // However, the linker may be part of a system where a zero-length
3957   // file is created for it to write to, with tight permissions (gcc
3958   // 2.95 did something like this).  Unlinking the file would work
3959   // around those permission controls, so we only unlink if the file
3960   // has a non-zero size.  We also unlink only regular files to avoid
3961   // trouble with directories/etc.
3962   //
3963   // If we fail, continue; this command is merely a best-effort attempt
3964   // to improve the odds for open().
3965
3966   // We let the name "-" mean "stdout"
3967   if (!this->is_temporary_)
3968     {
3969       if (strcmp(this->name_, "-") == 0)
3970         this->o_ = STDOUT_FILENO;
3971       else
3972         {
3973           struct stat s;
3974           if (::stat(this->name_, &s) == 0
3975               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
3976             {
3977               if (s.st_size != 0)
3978                 ::unlink(this->name_);
3979               else if (!parameters->options().relocatable())
3980                 {
3981                   // If we don't unlink the existing file, add execute
3982                   // permission where read permissions already exist
3983                   // and where the umask permits.
3984                   int mask = ::umask(0);
3985                   ::umask(mask);
3986                   s.st_mode |= (s.st_mode & 0444) >> 2;
3987                   ::chmod(this->name_, s.st_mode & ~mask);
3988                 }
3989             }
3990
3991           int mode = parameters->options().relocatable() ? 0666 : 0777;
3992           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3993                                   mode);
3994           if (o < 0)
3995             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3996           this->o_ = o;
3997         }
3998     }
3999
4000   this->map();
4001 }
4002
4003 // Resize the output file.
4004
4005 void
4006 Output_file::resize(off_t file_size)
4007 {
4008   // If the mmap is mapping an anonymous memory buffer, this is easy:
4009   // just mremap to the new size.  If it's mapping to a file, we want
4010   // to unmap to flush to the file, then remap after growing the file.
4011   if (this->map_is_anonymous_)
4012     {
4013       void* base = ::mremap(this->base_, this->file_size_, file_size,
4014                             MREMAP_MAYMOVE);
4015       if (base == MAP_FAILED)
4016         gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4017       this->base_ = static_cast<unsigned char*>(base);
4018       this->file_size_ = file_size;
4019     }
4020   else
4021     {
4022       this->unmap();
4023       this->file_size_ = file_size;
4024       if (!this->map_no_anonymous())
4025         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4026     }
4027 }
4028
4029 // Map an anonymous block of memory which will later be written to the
4030 // file.  Return whether the map succeeded.
4031
4032 bool
4033 Output_file::map_anonymous()
4034 {
4035   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4036                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4037   if (base != MAP_FAILED)
4038     {
4039       this->map_is_anonymous_ = true;
4040       this->base_ = static_cast<unsigned char*>(base);
4041       return true;
4042     }
4043   return false;
4044 }
4045
4046 // Map the file into memory.  Return whether the mapping succeeded.
4047
4048 bool
4049 Output_file::map_no_anonymous()
4050 {
4051   const int o = this->o_;
4052
4053   // If the output file is not a regular file, don't try to mmap it;
4054   // instead, we'll mmap a block of memory (an anonymous buffer), and
4055   // then later write the buffer to the file.
4056   void* base;
4057   struct stat statbuf;
4058   if (o == STDOUT_FILENO || o == STDERR_FILENO
4059       || ::fstat(o, &statbuf) != 0
4060       || !S_ISREG(statbuf.st_mode)
4061       || this->is_temporary_)
4062     return false;
4063
4064   // Ensure that we have disk space available for the file.  If we
4065   // don't do this, it is possible that we will call munmap, close,
4066   // and exit with dirty buffers still in the cache with no assigned
4067   // disk blocks.  If the disk is out of space at that point, the
4068   // output file will wind up incomplete, but we will have already
4069   // exited.  The alternative to fallocate would be to use fdatasync,
4070   // but that would be a more significant performance hit.
4071   if (::posix_fallocate(o, 0, this->file_size_) < 0)
4072     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4073
4074   // Map the file into memory.
4075   base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4076                 MAP_SHARED, o, 0);
4077
4078   // The mmap call might fail because of file system issues: the file
4079   // system might not support mmap at all, or it might not support
4080   // mmap with PROT_WRITE.
4081   if (base == MAP_FAILED)
4082     return false;
4083
4084   this->map_is_anonymous_ = false;
4085   this->base_ = static_cast<unsigned char*>(base);
4086   return true;
4087 }
4088
4089 // Map the file into memory.
4090
4091 void
4092 Output_file::map()
4093 {
4094   if (this->map_no_anonymous())
4095     return;
4096
4097   // The mmap call might fail because of file system issues: the file
4098   // system might not support mmap at all, or it might not support
4099   // mmap with PROT_WRITE.  I'm not sure which errno values we will
4100   // see in all cases, so if the mmap fails for any reason and we
4101   // don't care about file contents, try for an anonymous map.
4102   if (this->map_anonymous())
4103     return;
4104
4105   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4106              this->name_, static_cast<unsigned long>(this->file_size_),
4107              strerror(errno));
4108 }
4109
4110 // Unmap the file from memory.
4111
4112 void
4113 Output_file::unmap()
4114 {
4115   if (::munmap(this->base_, this->file_size_) < 0)
4116     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4117   this->base_ = NULL;
4118 }
4119
4120 // Close the output file.
4121
4122 void
4123 Output_file::close()
4124 {
4125   // If the map isn't file-backed, we need to write it now.
4126   if (this->map_is_anonymous_ && !this->is_temporary_)
4127     {
4128       size_t bytes_to_write = this->file_size_;
4129       size_t offset = 0;
4130       while (bytes_to_write > 0)
4131         {
4132           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4133                                           bytes_to_write);
4134           if (bytes_written == 0)
4135             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4136           else if (bytes_written < 0)
4137             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4138           else
4139             {
4140               bytes_to_write -= bytes_written;
4141               offset += bytes_written;
4142             }
4143         }
4144     }
4145   this->unmap();
4146
4147   // We don't close stdout or stderr
4148   if (this->o_ != STDOUT_FILENO
4149       && this->o_ != STDERR_FILENO
4150       && !this->is_temporary_)
4151     if (::close(this->o_) < 0)
4152       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4153   this->o_ = -1;
4154 }
4155
4156 // Instantiate the templates we need.  We could use the configure
4157 // script to restrict this to only the ones for implemented targets.
4158
4159 #ifdef HAVE_TARGET_32_LITTLE
4160 template
4161 off_t
4162 Output_section::add_input_section<32, false>(
4163     Sized_relobj<32, false>* object,
4164     unsigned int shndx,
4165     const char* secname,
4166     const elfcpp::Shdr<32, false>& shdr,
4167     unsigned int reloc_shndx,
4168     bool have_sections_script);
4169 #endif
4170
4171 #ifdef HAVE_TARGET_32_BIG
4172 template
4173 off_t
4174 Output_section::add_input_section<32, true>(
4175     Sized_relobj<32, true>* object,
4176     unsigned int shndx,
4177     const char* secname,
4178     const elfcpp::Shdr<32, true>& shdr,
4179     unsigned int reloc_shndx,
4180     bool have_sections_script);
4181 #endif
4182
4183 #ifdef HAVE_TARGET_64_LITTLE
4184 template
4185 off_t
4186 Output_section::add_input_section<64, false>(
4187     Sized_relobj<64, false>* object,
4188     unsigned int shndx,
4189     const char* secname,
4190     const elfcpp::Shdr<64, false>& shdr,
4191     unsigned int reloc_shndx,
4192     bool have_sections_script);
4193 #endif
4194
4195 #ifdef HAVE_TARGET_64_BIG
4196 template
4197 off_t
4198 Output_section::add_input_section<64, true>(
4199     Sized_relobj<64, true>* object,
4200     unsigned int shndx,
4201     const char* secname,
4202     const elfcpp::Shdr<64, true>& shdr,
4203     unsigned int reloc_shndx,
4204     bool have_sections_script);
4205 #endif
4206
4207 #ifdef HAVE_TARGET_32_LITTLE
4208 template
4209 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4210 #endif
4211
4212 #ifdef HAVE_TARGET_32_BIG
4213 template
4214 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4215 #endif
4216
4217 #ifdef HAVE_TARGET_64_LITTLE
4218 template
4219 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4220 #endif
4221
4222 #ifdef HAVE_TARGET_64_BIG
4223 template
4224 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4225 #endif
4226
4227 #ifdef HAVE_TARGET_32_LITTLE
4228 template
4229 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4230 #endif
4231
4232 #ifdef HAVE_TARGET_32_BIG
4233 template
4234 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4235 #endif
4236
4237 #ifdef HAVE_TARGET_64_LITTLE
4238 template
4239 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4240 #endif
4241
4242 #ifdef HAVE_TARGET_64_BIG
4243 template
4244 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4245 #endif
4246
4247 #ifdef HAVE_TARGET_32_LITTLE
4248 template
4249 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4250 #endif
4251
4252 #ifdef HAVE_TARGET_32_BIG
4253 template
4254 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4255 #endif
4256
4257 #ifdef HAVE_TARGET_64_LITTLE
4258 template
4259 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4260 #endif
4261
4262 #ifdef HAVE_TARGET_64_BIG
4263 template
4264 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4265 #endif
4266
4267 #ifdef HAVE_TARGET_32_LITTLE
4268 template
4269 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4270 #endif
4271
4272 #ifdef HAVE_TARGET_32_BIG
4273 template
4274 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4275 #endif
4276
4277 #ifdef HAVE_TARGET_64_LITTLE
4278 template
4279 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4280 #endif
4281
4282 #ifdef HAVE_TARGET_64_BIG
4283 template
4284 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4285 #endif
4286
4287 #ifdef HAVE_TARGET_32_LITTLE
4288 template
4289 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4290 #endif
4291
4292 #ifdef HAVE_TARGET_32_BIG
4293 template
4294 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4295 #endif
4296
4297 #ifdef HAVE_TARGET_64_LITTLE
4298 template
4299 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4300 #endif
4301
4302 #ifdef HAVE_TARGET_64_BIG
4303 template
4304 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4305 #endif
4306
4307 #ifdef HAVE_TARGET_32_LITTLE
4308 template
4309 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4310 #endif
4311
4312 #ifdef HAVE_TARGET_32_BIG
4313 template
4314 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4315 #endif
4316
4317 #ifdef HAVE_TARGET_64_LITTLE
4318 template
4319 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4320 #endif
4321
4322 #ifdef HAVE_TARGET_64_BIG
4323 template
4324 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4325 #endif
4326
4327 #ifdef HAVE_TARGET_32_LITTLE
4328 template
4329 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4330 #endif
4331
4332 #ifdef HAVE_TARGET_32_BIG
4333 template
4334 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4335 #endif
4336
4337 #ifdef HAVE_TARGET_64_LITTLE
4338 template
4339 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4340 #endif
4341
4342 #ifdef HAVE_TARGET_64_BIG
4343 template
4344 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4345 #endif
4346
4347 #ifdef HAVE_TARGET_32_LITTLE
4348 template
4349 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4350 #endif
4351
4352 #ifdef HAVE_TARGET_32_BIG
4353 template
4354 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4355 #endif
4356
4357 #ifdef HAVE_TARGET_64_LITTLE
4358 template
4359 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4360 #endif
4361
4362 #ifdef HAVE_TARGET_64_BIG
4363 template
4364 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4365 #endif
4366
4367 #ifdef HAVE_TARGET_32_LITTLE
4368 template
4369 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4370 #endif
4371
4372 #ifdef HAVE_TARGET_32_BIG
4373 template
4374 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4375 #endif
4376
4377 #ifdef HAVE_TARGET_64_LITTLE
4378 template
4379 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4380 #endif
4381
4382 #ifdef HAVE_TARGET_64_BIG
4383 template
4384 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4385 #endif
4386
4387 #ifdef HAVE_TARGET_32_LITTLE
4388 template
4389 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4390 #endif
4391
4392 #ifdef HAVE_TARGET_32_BIG
4393 template
4394 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4395 #endif
4396
4397 #ifdef HAVE_TARGET_64_LITTLE
4398 template
4399 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4400 #endif
4401
4402 #ifdef HAVE_TARGET_64_BIG
4403 template
4404 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4405 #endif
4406
4407 #ifdef HAVE_TARGET_32_LITTLE
4408 template
4409 class Output_data_group<32, false>;
4410 #endif
4411
4412 #ifdef HAVE_TARGET_32_BIG
4413 template
4414 class Output_data_group<32, true>;
4415 #endif
4416
4417 #ifdef HAVE_TARGET_64_LITTLE
4418 template
4419 class Output_data_group<64, false>;
4420 #endif
4421
4422 #ifdef HAVE_TARGET_64_BIG
4423 template
4424 class Output_data_group<64, true>;
4425 #endif
4426
4427 #ifdef HAVE_TARGET_32_LITTLE
4428 template
4429 class Output_data_got<32, false>;
4430 #endif
4431
4432 #ifdef HAVE_TARGET_32_BIG
4433 template
4434 class Output_data_got<32, true>;
4435 #endif
4436
4437 #ifdef HAVE_TARGET_64_LITTLE
4438 template
4439 class Output_data_got<64, false>;
4440 #endif
4441
4442 #ifdef HAVE_TARGET_64_BIG
4443 template
4444 class Output_data_got<64, true>;
4445 #endif
4446
4447 } // End namespace gold.