1 // output.cc -- manage the output file for gold
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #ifdef HAVE_SYS_MMAN_H
37 #include "libiberty.h"
40 #include "parameters.h"
45 #include "descriptors.h"
49 // For systems without mmap support.
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
64 # define MAP_PRIVATE 0
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
74 # define ENOSYS EINVAL
78 gold_mmap(void *, size_t, int, int, int, off_t)
85 gold_munmap(void *, size_t)
92 gold_mremap(void *, size_t, size_t, int)
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
114 // Mingw does not have S_ISLNK.
116 # define S_ISLNK(mode) 0
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
128 gold_fallocate(int o, off_t offset, off_t len)
130 #ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
137 #endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
143 // Output_data variables.
145 bool Output_data::allocated_sizes_are_fixed;
147 // Output_data methods.
149 Output_data::~Output_data()
153 // Return the default alignment for the target size.
156 Output_data::default_alignment()
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
162 // Return the default alignment for a size--32 or 64.
165 Output_data::default_alignment_for_size(int size)
175 // Output_section_header methods. This currently assumes that the
176 // segment and section lists are complete at construction time.
178 Output_section_headers::Output_section_headers(
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
181 const Layout::Section_list* section_list,
182 const Layout::Section_list* unattached_section_list,
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
186 segment_list_(segment_list),
187 section_list_(section_list),
188 unattached_section_list_(unattached_section_list),
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
194 // Compute the current data size.
197 Output_section_headers::do_size() const
199 // Count all the sections. Start with 1 for the null section.
201 if (!parameters->options().relocatable())
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
219 count += this->unattached_section_list_->size();
221 const int size = parameters->target().get_size();
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
230 return count * shdr_size;
233 // Write out the section headers.
236 Output_section_headers::do_write(Output_file* of)
238 switch (parameters->size_and_endianness())
240 #ifdef HAVE_TARGET_32_LITTLE
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
245 #ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
250 #ifdef HAVE_TARGET_64_LITTLE
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
255 #ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
265 template<int size, bool big_endian>
267 Output_section_headers::do_sized_write(Output_file* of)
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
288 oshdr.put_sh_size(section_count);
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
294 oshdr.put_sh_link(shstrndx);
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
305 unsigned int shndx = 1;
306 if (!parameters->options().relocatable())
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
337 for (Layout::Section_list::const_iterator p =
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
345 && parameters->options().relocatable())
347 gold_assert(shndx == (*p)->out_shndx());
348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
354 of->write_output_view(this->offset(), all_shdrs_size, view);
357 // Output_segment_header methods.
359 Output_segment_headers::Output_segment_headers(
360 const Layout::Segment_list& segment_list)
361 : segment_list_(segment_list)
363 this->set_current_data_size_for_child(this->do_size());
367 Output_segment_headers::do_write(Output_file* of)
369 switch (parameters->size_and_endianness())
371 #ifdef HAVE_TARGET_32_LITTLE
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
376 #ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
381 #ifdef HAVE_TARGET_64_LITTLE
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
386 #ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
396 template<int size, bool big_endian>
398 Output_segment_headers::do_sized_write(Output_file* of)
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402 gold_assert(all_phdrs_size == this->data_size());
403 unsigned char* view = of->get_output_view(this->offset(),
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
415 gold_assert(v - view == all_phdrs_size);
417 of->write_output_view(this->offset(), all_phdrs_size, view);
421 Output_segment_headers::do_size() const
423 const int size = parameters->target().get_size();
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
432 return this->segment_list_.size() * phdr_size;
435 // Output_file_header methods.
437 Output_file_header::Output_file_header(Target* target,
438 const Symbol_table* symtab,
439 const Output_segment_headers* osh)
442 segment_header_(osh),
443 section_header_(NULL),
446 this->set_data_size(this->do_size());
449 // Set the section table information for a file header.
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
459 // Write out the file header.
462 Output_file_header::do_write(Output_file* of)
464 gold_assert(this->offset() == 0);
466 switch (parameters->size_and_endianness())
468 #ifdef HAVE_TARGET_32_LITTLE
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
473 #ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
478 #ifdef HAVE_TARGET_64_LITTLE
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
483 #ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
493 // Write out the file header with appropriate size and endianness.
495 template<int size, bool big_endian>
497 Output_file_header::do_sized_write(Output_file* of)
499 gold_assert(this->offset() == 0);
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521 oehdr.put_e_ident(e_ident);
524 if (parameters->options().relocatable())
525 e_type = elfcpp::ET_REL;
526 else if (parameters->options().output_is_position_independent())
527 e_type = elfcpp::ET_DYN;
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
535 oehdr.put_e_entry(this->entry<size>());
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
540 oehdr.put_e_phoff(this->segment_header_->offset());
542 oehdr.put_e_shoff(this->section_header_->offset());
543 oehdr.put_e_flags(this->target_->processor_specific_flags());
544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
546 if (this->segment_header_ == NULL)
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
569 oehdr.put_e_shnum(0);
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 this->target_->adjust_elf_header(view, ehdr_size);
581 of->write_output_view(0, ehdr_size, view);
584 // Return the value to use for the entry address.
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
590 const bool should_issue_warning = (parameters->options().entry() != NULL
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
593 const char* entry = parameters->entry();
594 Symbol* sym = this->symtab_->lookup(entry);
596 typename Sized_symbol<size>::Value_type v;
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
602 gold_warning("entry symbol '%s' exists but is not defined", entry);
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
610 v = strtoull(entry, &endptr, 0);
613 if (should_issue_warning)
614 gold_warning("cannot find entry symbol '%s'", entry);
622 // Compute the current data size.
625 Output_file_header::do_size() const
627 const int size = parameters->target().get_size();
629 return elfcpp::Elf_sizes<32>::ehdr_size;
631 return elfcpp::Elf_sizes<64>::ehdr_size;
636 // Output_data_const methods.
639 Output_data_const::do_write(Output_file* of)
641 of->write(this->offset(), this->data_.data(), this->data_.size());
644 // Output_data_const_buffer methods.
647 Output_data_const_buffer::do_write(Output_file* of)
649 of->write(this->offset(), this->p_, this->data_size());
652 // Output_section_data methods.
654 // Record the output section, and set the entry size and such.
657 Output_section_data::set_output_section(Output_section* os)
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
664 // Return the section index of the output section.
667 Output_section_data::do_out_shndx() const
669 gold_assert(this->output_section_ != NULL);
670 return this->output_section_->out_shndx();
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
677 Output_section_data::set_addralign(uint64_t addralign)
679 this->addralign_ = addralign;
680 if (this->output_section_ != NULL
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
685 // Output_data_strtab methods.
687 // Set the final data size.
690 Output_data_strtab::set_final_data_size()
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
696 // Write out a string table.
699 Output_data_strtab::do_write(Output_file* of)
701 this->strtab_->write(of, this->offset());
704 // Output_reloc methods.
706 // A reloc against a global symbol.
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718 is_relative_(is_relative), is_symbolless_(is_symbolless),
719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
723 this->u1_.gsym = gsym;
726 this->set_needs_dynsym_index();
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
733 Sized_relobj<size, big_endian>* relobj,
739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740 is_relative_(is_relative), is_symbolless_(is_symbolless),
741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
743 gold_assert(shndx != INVALID_CODE);
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
749 this->set_needs_dynsym_index();
752 // A reloc against a local symbol.
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
763 bool is_section_symbol,
765 : address_(address), local_sym_index_(local_sym_index), type_(type),
766 is_relative_(is_relative), is_symbolless_(is_symbolless),
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
774 this->u1_.relobj = relobj;
777 this->set_needs_dynsym_index();
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
789 bool is_section_symbol,
791 : address_(address), local_sym_index_(local_sym_index), type_(type),
792 is_relative_(is_relative), is_symbolless_(is_symbolless),
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
804 this->set_needs_dynsym_index();
807 // A reloc against the STT_SECTION symbol of an output section.
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
816 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817 is_relative_(is_relative), is_symbolless_(is_relative),
818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
820 // this->type_ is a bitfield; make sure TYPE fits.
821 gold_assert(this->type_ == type);
825 this->set_needs_dynsym_index();
827 os->set_needs_symtab_index();
830 template<bool dynamic, int size, bool big_endian>
831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
834 Sized_relobj<size, big_endian>* relobj,
838 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839 is_relative_(is_relative), is_symbolless_(is_relative),
840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
842 gold_assert(shndx != INVALID_CODE);
843 // this->type_ is a bitfield; make sure TYPE fits.
844 gold_assert(this->type_ == type);
846 this->u2_.relobj = relobj;
848 this->set_needs_dynsym_index();
850 os->set_needs_symtab_index();
853 // An absolute or relative relocation.
855 template<bool dynamic, int size, bool big_endian>
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
861 : address_(address), local_sym_index_(0), type_(type),
862 is_relative_(is_relative), is_symbolless_(false),
863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
865 // this->type_ is a bitfield; make sure TYPE fits.
866 gold_assert(this->type_ == type);
867 this->u1_.relobj = NULL;
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
874 Sized_relobj<size, big_endian>* relobj,
878 : address_(address), local_sym_index_(0), type_(type),
879 is_relative_(is_relative), is_symbolless_(false),
880 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
882 gold_assert(shndx != INVALID_CODE);
883 // this->type_ is a bitfield; make sure TYPE fits.
884 gold_assert(this->type_ == type);
885 this->u1_.relobj = NULL;
886 this->u2_.relobj = relobj;
889 // A target specific relocation.
891 template<bool dynamic, int size, bool big_endian>
892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
897 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
898 is_relative_(false), is_symbolless_(false),
899 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
901 // this->type_ is a bitfield; make sure TYPE fits.
902 gold_assert(this->type_ == type);
907 template<bool dynamic, int size, bool big_endian>
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
911 Sized_relobj<size, big_endian>* relobj,
914 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
915 is_relative_(false), is_symbolless_(false),
916 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
918 gold_assert(shndx != INVALID_CODE);
919 // this->type_ is a bitfield; make sure TYPE fits.
920 gold_assert(this->type_ == type);
922 this->u2_.relobj = relobj;
925 // Record that we need a dynamic symbol index for this relocation.
927 template<bool dynamic, int size, bool big_endian>
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 set_needs_dynsym_index()
932 if (this->is_symbolless_)
934 switch (this->local_sym_index_)
940 this->u1_.gsym->set_needs_dynsym_entry();
944 this->u1_.os->set_needs_dynsym_index();
948 // The target must take care of this if necessary.
956 const unsigned int lsi = this->local_sym_index_;
957 Sized_relobj_file<size, big_endian>* relobj =
958 this->u1_.relobj->sized_relobj();
959 gold_assert(relobj != NULL);
960 if (!this->is_section_symbol_)
961 relobj->set_needs_output_dynsym_entry(lsi);
963 relobj->output_section(lsi)->set_needs_dynsym_index();
969 // Get the symbol index of a relocation.
971 template<bool dynamic, int size, bool big_endian>
973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
977 if (this->is_symbolless_)
979 switch (this->local_sym_index_)
985 if (this->u1_.gsym == NULL)
988 index = this->u1_.gsym->dynsym_index();
990 index = this->u1_.gsym->symtab_index();
995 index = this->u1_.os->dynsym_index();
997 index = this->u1_.os->symtab_index();
1001 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1006 // Relocations without symbols use a symbol index of 0.
1012 const unsigned int lsi = this->local_sym_index_;
1013 Sized_relobj_file<size, big_endian>* relobj =
1014 this->u1_.relobj->sized_relobj();
1015 gold_assert(relobj != NULL);
1016 if (!this->is_section_symbol_)
1019 index = relobj->dynsym_index(lsi);
1021 index = relobj->symtab_index(lsi);
1025 Output_section* os = relobj->output_section(lsi);
1026 gold_assert(os != NULL);
1028 index = os->dynsym_index();
1030 index = os->symtab_index();
1035 gold_assert(index != -1U);
1039 // For a local section symbol, get the address of the offset ADDEND
1040 // within the input section.
1042 template<bool dynamic, int size, bool big_endian>
1043 typename elfcpp::Elf_types<size>::Elf_Addr
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 local_section_offset(Addend addend) const
1047 gold_assert(this->local_sym_index_ != GSYM_CODE
1048 && this->local_sym_index_ != SECTION_CODE
1049 && this->local_sym_index_ != TARGET_CODE
1050 && this->local_sym_index_ != INVALID_CODE
1051 && this->local_sym_index_ != 0
1052 && this->is_section_symbol_);
1053 const unsigned int lsi = this->local_sym_index_;
1054 Output_section* os = this->u1_.relobj->output_section(lsi);
1055 gold_assert(os != NULL);
1056 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1057 if (offset != invalid_address)
1058 return offset + addend;
1059 // This is a merge section.
1060 Sized_relobj_file<size, big_endian>* relobj =
1061 this->u1_.relobj->sized_relobj();
1062 gold_assert(relobj != NULL);
1063 offset = os->output_address(relobj, lsi, addend);
1064 gold_assert(offset != invalid_address);
1068 // Get the output address of a relocation.
1070 template<bool dynamic, int size, bool big_endian>
1071 typename elfcpp::Elf_types<size>::Elf_Addr
1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1074 Address address = this->address_;
1075 if (this->shndx_ != INVALID_CODE)
1077 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1078 gold_assert(os != NULL);
1079 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1080 if (off != invalid_address)
1081 address += os->address() + off;
1084 Sized_relobj_file<size, big_endian>* relobj =
1085 this->u2_.relobj->sized_relobj();
1086 gold_assert(relobj != NULL);
1087 address = os->output_address(relobj, this->shndx_, address);
1088 gold_assert(address != invalid_address);
1091 else if (this->u2_.od != NULL)
1092 address += this->u2_.od->address();
1096 // Write out the offset and info fields of a Rel or Rela relocation
1099 template<bool dynamic, int size, bool big_endian>
1100 template<typename Write_rel>
1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103 Write_rel* wr) const
1105 wr->put_r_offset(this->get_address());
1106 unsigned int sym_index = this->get_symbol_index();
1107 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1110 // Write out a Rel relocation.
1112 template<bool dynamic, int size, bool big_endian>
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115 unsigned char* pov) const
1117 elfcpp::Rel_write<size, big_endian> orel(pov);
1118 this->write_rel(&orel);
1121 // Get the value of the symbol referred to by a Rel relocation.
1123 template<bool dynamic, int size, bool big_endian>
1124 typename elfcpp::Elf_types<size>::Elf_Addr
1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1126 Addend addend) const
1128 if (this->local_sym_index_ == GSYM_CODE)
1130 const Sized_symbol<size>* sym;
1131 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1132 if (this->use_plt_offset_ && sym->has_plt_offset())
1133 return parameters->target().plt_address_for_global(sym);
1135 return sym->value() + addend;
1137 if (this->local_sym_index_ == SECTION_CODE)
1139 gold_assert(!this->use_plt_offset_);
1140 return this->u1_.os->address() + addend;
1142 gold_assert(this->local_sym_index_ != TARGET_CODE
1143 && this->local_sym_index_ != INVALID_CODE
1144 && this->local_sym_index_ != 0
1145 && !this->is_section_symbol_);
1146 const unsigned int lsi = this->local_sym_index_;
1147 Sized_relobj_file<size, big_endian>* relobj =
1148 this->u1_.relobj->sized_relobj();
1149 gold_assert(relobj != NULL);
1150 if (this->use_plt_offset_)
1151 return parameters->target().plt_address_for_local(relobj, lsi);
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
1156 // Reloc comparison. This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker. First we sort all relative relocs
1158 // to the front. Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1162 template<bool dynamic, int size, bool big_endian>
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1168 if (this->is_relative_)
1170 if (!r2.is_relative_)
1172 // Otherwise sort by reloc address below.
1174 else if (r2.is_relative_)
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1182 else if (sym1 > sym2)
1184 // Otherwise sort by reloc address.
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1191 else if (addr1 > addr2)
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1200 else if (type1 > type2)
1203 // These relocs appear to be exactly the same.
1207 // Write out a Rela relocation.
1209 template<bool dynamic, int size, bool big_endian>
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
1216 Addend addend = this->addend_;
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
1220 else if (this->rel_.is_symbolless())
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
1223 addend = this->rel_.local_section_offset(addend);
1224 orel.put_r_addend(addend);
1227 // Output_data_reloc_base methods.
1229 // Adjust the output section.
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1248 os->set_should_link_to_symtab();
1249 else if (parameters->doing_static_link())
1252 os->set_should_link_to_dynsym();
1255 // Write out relocation data.
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1262 const off_t off = this->offset();
1263 const off_t oview_size = this->data_size();
1264 unsigned char* const oview = of->get_output_view(off, oview_size);
1266 if (this->sort_relocs())
1268 gold_assert(dynamic);
1269 std::sort(this->relocs_.begin(), this->relocs_.end(),
1270 Sort_relocs_comparison());
1273 unsigned char* pov = oview;
1274 for (typename Relocs::const_iterator p = this->relocs_.begin();
1275 p != this->relocs_.end();
1282 gold_assert(pov - oview == oview_size);
1284 of->write_output_view(off, oview_size, oview);
1286 // We no longer need the relocation entries.
1287 this->relocs_.clear();
1290 // Class Output_relocatable_relocs.
1292 template<int sh_type, int size, bool big_endian>
1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1296 this->set_data_size(this->rr_->output_reloc_count()
1297 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1300 // class Output_data_group.
1302 template<int size, bool big_endian>
1303 Output_data_group<size, big_endian>::Output_data_group(
1304 Sized_relobj_file<size, big_endian>* relobj,
1305 section_size_type entry_count,
1306 elfcpp::Elf_Word flags,
1307 std::vector<unsigned int>* input_shndxes)
1308 : Output_section_data(entry_count * 4, 4, false),
1312 this->input_shndxes_.swap(*input_shndxes);
1315 // Write out the section group, which means translating the section
1316 // indexes to apply to the output file.
1318 template<int size, bool big_endian>
1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
1322 const off_t off = this->offset();
1323 const section_size_type oview_size =
1324 convert_to_section_size_type(this->data_size());
1325 unsigned char* const oview = of->get_output_view(off, oview_size);
1327 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1331 for (std::vector<unsigned int>::const_iterator p =
1332 this->input_shndxes_.begin();
1333 p != this->input_shndxes_.end();
1336 Output_section* os = this->relobj_->output_section(*p);
1338 unsigned int output_shndx;
1340 output_shndx = os->out_shndx();
1343 this->relobj_->error(_("section group retained but "
1344 "group element discarded"));
1348 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1351 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352 gold_assert(wrote == oview_size);
1354 of->write_output_view(off, oview_size, oview);
1356 // We no longer need this information.
1357 this->input_shndxes_.clear();
1360 // Output_data_got::Got_entry methods.
1362 // Write out the entry.
1364 template<int got_size, bool big_endian>
1366 Output_data_got<got_size, big_endian>::Got_entry::write(
1367 unsigned int got_indx,
1368 unsigned char* pov) const
1372 switch (this->local_sym_index_)
1376 // If the symbol is resolved locally, we need to write out the
1377 // link-time value, which will be relocated dynamically by a
1378 // RELATIVE relocation.
1379 Symbol* gsym = this->u_.gsym;
1380 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1381 val = parameters->target().plt_address_for_global(gsym);
1384 switch (parameters->size_and_endianness())
1386 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1387 case Parameters::TARGET_32_LITTLE:
1388 case Parameters::TARGET_32_BIG:
1390 // This cast is ugly. We don't want to put a
1391 // virtual method in Symbol, because we want Symbol
1392 // to be as small as possible.
1393 Sized_symbol<32>::Value_type v;
1394 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1395 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1399 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1400 case Parameters::TARGET_64_LITTLE:
1401 case Parameters::TARGET_64_BIG:
1403 Sized_symbol<64>::Value_type v;
1404 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1405 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1412 if (this->use_plt_or_tls_offset_
1413 && gsym->type() == elfcpp::STT_TLS)
1414 val += parameters->target().tls_offset_for_global(gsym,
1421 val = this->u_.constant;
1425 // If we're doing an incremental update, don't touch this GOT entry.
1426 if (parameters->incremental_update())
1428 val = this->u_.constant;
1433 const Relobj* object = this->u_.object;
1434 const unsigned int lsi = this->local_sym_index_;
1435 bool is_tls = object->local_is_tls(lsi);
1436 if (this->use_plt_or_tls_offset_ && !is_tls)
1437 val = parameters->target().plt_address_for_local(object, lsi);
1440 uint64_t lval = object->local_symbol_value(lsi, 0);
1441 val = convert_types<Valtype, uint64_t>(lval);
1442 if (this->use_plt_or_tls_offset_ && is_tls)
1443 val += parameters->target().tls_offset_for_local(object, lsi,
1450 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1453 // Output_data_got methods.
1455 // Add an entry for a global symbol to the GOT. This returns true if
1456 // this is a new GOT entry, false if the symbol already had a GOT
1459 template<int got_size, bool big_endian>
1461 Output_data_got<got_size, big_endian>::add_global(
1463 unsigned int got_type)
1465 if (gsym->has_got_offset(got_type))
1468 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1469 gsym->set_got_offset(got_type, got_offset);
1473 // Like add_global, but use the PLT offset.
1475 template<int got_size, bool big_endian>
1477 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1478 unsigned int got_type)
1480 if (gsym->has_got_offset(got_type))
1483 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1484 gsym->set_got_offset(got_type, got_offset);
1488 // Add an entry for a global symbol to the GOT, and add a dynamic
1489 // relocation of type R_TYPE for the GOT entry.
1491 template<int got_size, bool big_endian>
1493 Output_data_got<got_size, big_endian>::add_global_with_rel(
1495 unsigned int got_type,
1496 Output_data_reloc_generic* rel_dyn,
1497 unsigned int r_type)
1499 if (gsym->has_got_offset(got_type))
1502 unsigned int got_offset = this->add_got_entry(Got_entry());
1503 gsym->set_got_offset(got_type, got_offset);
1504 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1507 // Add a pair of entries for a global symbol to the GOT, and add
1508 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1509 // If R_TYPE_2 == 0, add the second entry with no relocation.
1510 template<int got_size, bool big_endian>
1512 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1514 unsigned int got_type,
1515 Output_data_reloc_generic* rel_dyn,
1516 unsigned int r_type_1,
1517 unsigned int r_type_2)
1519 if (gsym->has_got_offset(got_type))
1522 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1523 gsym->set_got_offset(got_type, got_offset);
1524 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1527 rel_dyn->add_global_generic(gsym, r_type_2, this,
1528 got_offset + got_size / 8, 0);
1531 // Add an entry for a local symbol to the GOT. This returns true if
1532 // this is a new GOT entry, false if the symbol already has a GOT
1535 template<int got_size, bool big_endian>
1537 Output_data_got<got_size, big_endian>::add_local(
1539 unsigned int symndx,
1540 unsigned int got_type)
1542 if (object->local_has_got_offset(symndx, got_type))
1545 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1547 object->set_local_got_offset(symndx, got_type, got_offset);
1551 // Like add_local, but use the PLT offset.
1553 template<int got_size, bool big_endian>
1555 Output_data_got<got_size, big_endian>::add_local_plt(
1557 unsigned int symndx,
1558 unsigned int got_type)
1560 if (object->local_has_got_offset(symndx, got_type))
1563 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1565 object->set_local_got_offset(symndx, got_type, got_offset);
1569 // Add an entry for a local symbol to the GOT, and add a dynamic
1570 // relocation of type R_TYPE for the GOT entry.
1572 template<int got_size, bool big_endian>
1574 Output_data_got<got_size, big_endian>::add_local_with_rel(
1576 unsigned int symndx,
1577 unsigned int got_type,
1578 Output_data_reloc_generic* rel_dyn,
1579 unsigned int r_type)
1581 if (object->local_has_got_offset(symndx, got_type))
1584 unsigned int got_offset = this->add_got_entry(Got_entry());
1585 object->set_local_got_offset(symndx, got_type, got_offset);
1586 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1589 // Add a pair of entries for a local symbol to the GOT, and add
1590 // a dynamic relocation of type R_TYPE using the section symbol of
1591 // the output section to which input section SHNDX maps, on the first.
1592 // The first got entry will have a value of zero, the second the
1593 // value of the local symbol.
1594 template<int got_size, bool big_endian>
1596 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1598 unsigned int symndx,
1600 unsigned int got_type,
1601 Output_data_reloc_generic* rel_dyn,
1602 unsigned int r_type)
1604 if (object->local_has_got_offset(symndx, got_type))
1607 unsigned int got_offset =
1608 this->add_got_entry_pair(Got_entry(),
1609 Got_entry(object, symndx, false));
1610 object->set_local_got_offset(symndx, got_type, got_offset);
1611 Output_section* os = object->output_section(shndx);
1612 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1615 // Add a pair of entries for a local symbol to the GOT, and add
1616 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1617 // The first got entry will have a value of zero, the second the
1618 // value of the local symbol offset by Target::tls_offset_for_local.
1619 template<int got_size, bool big_endian>
1621 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1623 unsigned int symndx,
1624 unsigned int got_type,
1625 Output_data_reloc_generic* rel_dyn,
1626 unsigned int r_type)
1628 if (object->local_has_got_offset(symndx, got_type))
1631 unsigned int got_offset
1632 = this->add_got_entry_pair(Got_entry(),
1633 Got_entry(object, symndx, true));
1634 object->set_local_got_offset(symndx, got_type, got_offset);
1635 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1638 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1640 template<int got_size, bool big_endian>
1642 Output_data_got<got_size, big_endian>::reserve_local(
1645 unsigned int sym_index,
1646 unsigned int got_type)
1648 this->do_reserve_slot(i);
1649 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1652 // Reserve a slot in the GOT for a global symbol.
1654 template<int got_size, bool big_endian>
1656 Output_data_got<got_size, big_endian>::reserve_global(
1659 unsigned int got_type)
1661 this->do_reserve_slot(i);
1662 gsym->set_got_offset(got_type, this->got_offset(i));
1665 // Write out the GOT.
1667 template<int got_size, bool big_endian>
1669 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1671 const int add = got_size / 8;
1673 const off_t off = this->offset();
1674 const off_t oview_size = this->data_size();
1675 unsigned char* const oview = of->get_output_view(off, oview_size);
1677 unsigned char* pov = oview;
1678 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1680 this->entries_[i].write(i, pov);
1684 gold_assert(pov - oview == oview_size);
1686 of->write_output_view(off, oview_size, oview);
1688 // We no longer need the GOT entries.
1689 this->entries_.clear();
1692 // Create a new GOT entry and return its offset.
1694 template<int got_size, bool big_endian>
1696 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1698 if (!this->is_data_size_valid())
1700 this->entries_.push_back(got_entry);
1701 this->set_got_size();
1702 return this->last_got_offset();
1706 // For an incremental update, find an available slot.
1707 off_t got_offset = this->free_list_.allocate(got_size / 8,
1709 if (got_offset == -1)
1710 gold_fallback(_("out of patch space (GOT);"
1711 " relink with --incremental-full"));
1712 unsigned int got_index = got_offset / (got_size / 8);
1713 gold_assert(got_index < this->entries_.size());
1714 this->entries_[got_index] = got_entry;
1715 return static_cast<unsigned int>(got_offset);
1719 // Create a pair of new GOT entries and return the offset of the first.
1721 template<int got_size, bool big_endian>
1723 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1724 Got_entry got_entry_1,
1725 Got_entry got_entry_2)
1727 if (!this->is_data_size_valid())
1729 unsigned int got_offset;
1730 this->entries_.push_back(got_entry_1);
1731 got_offset = this->last_got_offset();
1732 this->entries_.push_back(got_entry_2);
1733 this->set_got_size();
1738 // For an incremental update, find an available pair of slots.
1739 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1741 if (got_offset == -1)
1742 gold_fallback(_("out of patch space (GOT);"
1743 " relink with --incremental-full"));
1744 unsigned int got_index = got_offset / (got_size / 8);
1745 gold_assert(got_index < this->entries_.size());
1746 this->entries_[got_index] = got_entry_1;
1747 this->entries_[got_index + 1] = got_entry_2;
1748 return static_cast<unsigned int>(got_offset);
1752 // Replace GOT entry I with a new value.
1754 template<int got_size, bool big_endian>
1756 Output_data_got<got_size, big_endian>::replace_got_entry(
1758 Got_entry got_entry)
1760 gold_assert(i < this->entries_.size());
1761 this->entries_[i] = got_entry;
1764 // Output_data_dynamic::Dynamic_entry methods.
1766 // Write out the entry.
1768 template<int size, bool big_endian>
1770 Output_data_dynamic::Dynamic_entry::write(
1772 const Stringpool* pool) const
1774 typename elfcpp::Elf_types<size>::Elf_WXword val;
1775 switch (this->offset_)
1777 case DYNAMIC_NUMBER:
1781 case DYNAMIC_SECTION_SIZE:
1782 val = this->u_.od->data_size();
1783 if (this->od2 != NULL)
1784 val += this->od2->data_size();
1787 case DYNAMIC_SYMBOL:
1789 const Sized_symbol<size>* s =
1790 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1795 case DYNAMIC_STRING:
1796 val = pool->get_offset(this->u_.str);
1799 case DYNAMIC_CUSTOM:
1800 val = parameters->target().dynamic_tag_custom_value(this->tag_);
1804 val = this->u_.od->address() + this->offset_;
1808 elfcpp::Dyn_write<size, big_endian> dw(pov);
1809 dw.put_d_tag(this->tag_);
1813 // Output_data_dynamic methods.
1815 // Adjust the output section to set the entry size.
1818 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1820 if (parameters->target().get_size() == 32)
1821 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1822 else if (parameters->target().get_size() == 64)
1823 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1828 // Set the final data size.
1831 Output_data_dynamic::set_final_data_size()
1833 // Add the terminating entry if it hasn't been added.
1834 // Because of relaxation, we can run this multiple times.
1835 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1837 int extra = parameters->options().spare_dynamic_tags();
1838 for (int i = 0; i < extra; ++i)
1839 this->add_constant(elfcpp::DT_NULL, 0);
1840 this->add_constant(elfcpp::DT_NULL, 0);
1844 if (parameters->target().get_size() == 32)
1845 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1846 else if (parameters->target().get_size() == 64)
1847 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1850 this->set_data_size(this->entries_.size() * dyn_size);
1853 // Write out the dynamic entries.
1856 Output_data_dynamic::do_write(Output_file* of)
1858 switch (parameters->size_and_endianness())
1860 #ifdef HAVE_TARGET_32_LITTLE
1861 case Parameters::TARGET_32_LITTLE:
1862 this->sized_write<32, false>(of);
1865 #ifdef HAVE_TARGET_32_BIG
1866 case Parameters::TARGET_32_BIG:
1867 this->sized_write<32, true>(of);
1870 #ifdef HAVE_TARGET_64_LITTLE
1871 case Parameters::TARGET_64_LITTLE:
1872 this->sized_write<64, false>(of);
1875 #ifdef HAVE_TARGET_64_BIG
1876 case Parameters::TARGET_64_BIG:
1877 this->sized_write<64, true>(of);
1885 template<int size, bool big_endian>
1887 Output_data_dynamic::sized_write(Output_file* of)
1889 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1891 const off_t offset = this->offset();
1892 const off_t oview_size = this->data_size();
1893 unsigned char* const oview = of->get_output_view(offset, oview_size);
1895 unsigned char* pov = oview;
1896 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1897 p != this->entries_.end();
1900 p->write<size, big_endian>(pov, this->pool_);
1904 gold_assert(pov - oview == oview_size);
1906 of->write_output_view(offset, oview_size, oview);
1908 // We no longer need the dynamic entries.
1909 this->entries_.clear();
1912 // Class Output_symtab_xindex.
1915 Output_symtab_xindex::do_write(Output_file* of)
1917 const off_t offset = this->offset();
1918 const off_t oview_size = this->data_size();
1919 unsigned char* const oview = of->get_output_view(offset, oview_size);
1921 memset(oview, 0, oview_size);
1923 if (parameters->target().is_big_endian())
1924 this->endian_do_write<true>(oview);
1926 this->endian_do_write<false>(oview);
1928 of->write_output_view(offset, oview_size, oview);
1930 // We no longer need the data.
1931 this->entries_.clear();
1934 template<bool big_endian>
1936 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1938 for (Xindex_entries::const_iterator p = this->entries_.begin();
1939 p != this->entries_.end();
1942 unsigned int symndx = p->first;
1943 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
1944 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1948 // Output_fill_debug_info methods.
1950 // Return the minimum size needed for a dummy compilation unit header.
1953 Output_fill_debug_info::do_minimum_hole_size() const
1955 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1957 const size_t len = 4 + 2 + 4 + 1;
1958 // For type units, add type_signature, type_offset.
1959 if (this->is_debug_types_)
1964 // Write a dummy compilation unit header to fill a hole in the
1965 // .debug_info or .debug_types section.
1968 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1970 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1971 static_cast<long>(off), static_cast<long>(len));
1973 gold_assert(len >= this->do_minimum_hole_size());
1975 unsigned char* const oview = of->get_output_view(off, len);
1976 unsigned char* pov = oview;
1978 // Write header fields: unit_length, version, debug_abbrev_offset,
1980 if (this->is_big_endian())
1982 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1983 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1984 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1988 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1989 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1990 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1995 // For type units, the additional header fields -- type_signature,
1996 // type_offset -- can be filled with zeroes.
1998 // Fill the remainder of the free space with zeroes. The first
1999 // zero should tell the consumer there are no DIEs to read in this
2000 // compilation unit.
2001 if (pov < oview + len)
2002 memset(pov, 0, oview + len - pov);
2004 of->write_output_view(off, len, oview);
2007 // Output_fill_debug_line methods.
2009 // Return the minimum size needed for a dummy line number program header.
2012 Output_fill_debug_line::do_minimum_hole_size() const
2014 // Line number program header fields: unit_length, version, header_length,
2015 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2016 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2017 const size_t len = 4 + 2 + 4 + this->header_length;
2021 // Write a dummy line number program header to fill a hole in the
2022 // .debug_line section.
2025 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2027 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2028 static_cast<long>(off), static_cast<long>(len));
2030 gold_assert(len >= this->do_minimum_hole_size());
2032 unsigned char* const oview = of->get_output_view(off, len);
2033 unsigned char* pov = oview;
2035 // Write header fields: unit_length, version, header_length,
2036 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2037 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2038 // We set the header_length field to cover the entire hole, so the
2039 // line number program is empty.
2040 if (this->is_big_endian())
2042 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2043 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2044 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2048 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2049 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2050 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2053 *pov++ = 1; // minimum_instruction_length
2054 *pov++ = 0; // default_is_stmt
2055 *pov++ = 0; // line_base
2056 *pov++ = 5; // line_range
2057 *pov++ = 13; // opcode_base
2058 *pov++ = 0; // standard_opcode_lengths[1]
2059 *pov++ = 1; // standard_opcode_lengths[2]
2060 *pov++ = 1; // standard_opcode_lengths[3]
2061 *pov++ = 1; // standard_opcode_lengths[4]
2062 *pov++ = 1; // standard_opcode_lengths[5]
2063 *pov++ = 0; // standard_opcode_lengths[6]
2064 *pov++ = 0; // standard_opcode_lengths[7]
2065 *pov++ = 0; // standard_opcode_lengths[8]
2066 *pov++ = 1; // standard_opcode_lengths[9]
2067 *pov++ = 0; // standard_opcode_lengths[10]
2068 *pov++ = 0; // standard_opcode_lengths[11]
2069 *pov++ = 1; // standard_opcode_lengths[12]
2070 *pov++ = 0; // include_directories (empty)
2071 *pov++ = 0; // filenames (empty)
2073 // Some consumers don't check the header_length field, and simply
2074 // start reading the line number program immediately following the
2075 // header. For those consumers, we fill the remainder of the free
2076 // space with DW_LNS_set_basic_block opcodes. These are effectively
2077 // no-ops: the resulting line table program will not create any rows.
2078 if (pov < oview + len)
2079 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2081 of->write_output_view(off, len, oview);
2084 // Output_section::Input_section methods.
2086 // Return the current data size. For an input section we store the size here.
2087 // For an Output_section_data, we have to ask it for the size.
2090 Output_section::Input_section::current_data_size() const
2092 if (this->is_input_section())
2093 return this->u1_.data_size;
2096 this->u2_.posd->pre_finalize_data_size();
2097 return this->u2_.posd->current_data_size();
2101 // Return the data size. For an input section we store the size here.
2102 // For an Output_section_data, we have to ask it for the size.
2105 Output_section::Input_section::data_size() const
2107 if (this->is_input_section())
2108 return this->u1_.data_size;
2110 return this->u2_.posd->data_size();
2113 // Return the object for an input section.
2116 Output_section::Input_section::relobj() const
2118 if (this->is_input_section())
2119 return this->u2_.object;
2120 else if (this->is_merge_section())
2122 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2123 return this->u2_.pomb->first_relobj();
2125 else if (this->is_relaxed_input_section())
2126 return this->u2_.poris->relobj();
2131 // Return the input section index for an input section.
2134 Output_section::Input_section::shndx() const
2136 if (this->is_input_section())
2137 return this->shndx_;
2138 else if (this->is_merge_section())
2140 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2141 return this->u2_.pomb->first_shndx();
2143 else if (this->is_relaxed_input_section())
2144 return this->u2_.poris->shndx();
2149 // Set the address and file offset.
2152 Output_section::Input_section::set_address_and_file_offset(
2155 off_t section_file_offset)
2157 if (this->is_input_section())
2158 this->u2_.object->set_section_offset(this->shndx_,
2159 file_offset - section_file_offset);
2161 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2164 // Reset the address and file offset.
2167 Output_section::Input_section::reset_address_and_file_offset()
2169 if (!this->is_input_section())
2170 this->u2_.posd->reset_address_and_file_offset();
2173 // Finalize the data size.
2176 Output_section::Input_section::finalize_data_size()
2178 if (!this->is_input_section())
2179 this->u2_.posd->finalize_data_size();
2182 // Try to turn an input offset into an output offset. We want to
2183 // return the output offset relative to the start of this
2184 // Input_section in the output section.
2187 Output_section::Input_section::output_offset(
2188 const Relobj* object,
2190 section_offset_type offset,
2191 section_offset_type* poutput) const
2193 if (!this->is_input_section())
2194 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2197 if (this->shndx_ != shndx || this->u2_.object != object)
2204 // Return whether this is the merge section for the input section
2208 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2209 unsigned int shndx) const
2211 if (this->is_input_section())
2213 return this->u2_.posd->is_merge_section_for(object, shndx);
2216 // Write out the data. We don't have to do anything for an input
2217 // section--they are handled via Object::relocate--but this is where
2218 // we write out the data for an Output_section_data.
2221 Output_section::Input_section::write(Output_file* of)
2223 if (!this->is_input_section())
2224 this->u2_.posd->write(of);
2227 // Write the data to a buffer. As for write(), we don't have to do
2228 // anything for an input section.
2231 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2233 if (!this->is_input_section())
2234 this->u2_.posd->write_to_buffer(buffer);
2237 // Print to a map file.
2240 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2242 switch (this->shndx_)
2244 case OUTPUT_SECTION_CODE:
2245 case MERGE_DATA_SECTION_CODE:
2246 case MERGE_STRING_SECTION_CODE:
2247 this->u2_.posd->print_to_mapfile(mapfile);
2250 case RELAXED_INPUT_SECTION_CODE:
2252 Output_relaxed_input_section* relaxed_section =
2253 this->relaxed_input_section();
2254 mapfile->print_input_section(relaxed_section->relobj(),
2255 relaxed_section->shndx());
2259 mapfile->print_input_section(this->u2_.object, this->shndx_);
2264 // Output_section methods.
2266 // Construct an Output_section. NAME will point into a Stringpool.
2268 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2269 elfcpp::Elf_Xword flags)
2274 link_section_(NULL),
2276 info_section_(NULL),
2281 order_(ORDER_INVALID),
2286 first_input_offset_(0),
2288 postprocessing_buffer_(NULL),
2289 needs_symtab_index_(false),
2290 needs_dynsym_index_(false),
2291 should_link_to_symtab_(false),
2292 should_link_to_dynsym_(false),
2293 after_input_sections_(false),
2294 requires_postprocessing_(false),
2295 found_in_sections_clause_(false),
2296 has_load_address_(false),
2297 info_uses_section_index_(false),
2298 input_section_order_specified_(false),
2299 may_sort_attached_input_sections_(false),
2300 must_sort_attached_input_sections_(false),
2301 attached_input_sections_are_sorted_(false),
2303 is_small_section_(false),
2304 is_large_section_(false),
2305 generate_code_fills_at_write_(false),
2306 is_entsize_zero_(false),
2307 section_offsets_need_adjustment_(false),
2309 always_keeps_input_sections_(false),
2310 has_fixed_layout_(false),
2311 is_patch_space_allowed_(false),
2312 is_unique_segment_(false),
2314 extra_segment_flags_(0),
2315 segment_alignment_(0),
2317 lookup_maps_(new Output_section_lookup_maps),
2319 free_space_fill_(NULL),
2322 // An unallocated section has no address. Forcing this means that
2323 // we don't need special treatment for symbols defined in debug
2325 if ((flags & elfcpp::SHF_ALLOC) == 0)
2326 this->set_address(0);
2329 Output_section::~Output_section()
2331 delete this->checkpoint_;
2334 // Set the entry size.
2337 Output_section::set_entsize(uint64_t v)
2339 if (this->is_entsize_zero_)
2341 else if (this->entsize_ == 0)
2343 else if (this->entsize_ != v)
2346 this->is_entsize_zero_ = 1;
2350 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2351 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2352 // relocation section which applies to this section, or 0 if none, or
2353 // -1U if more than one. Return the offset of the input section
2354 // within the output section. Return -1 if the input section will
2355 // receive special handling. In the normal case we don't always keep
2356 // track of input sections for an Output_section. Instead, each
2357 // Object keeps track of the Output_section for each of its input
2358 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2359 // track of input sections here; this is used when SECTIONS appears in
2362 template<int size, bool big_endian>
2364 Output_section::add_input_section(Layout* layout,
2365 Sized_relobj_file<size, big_endian>* object,
2367 const char* secname,
2368 const elfcpp::Shdr<size, big_endian>& shdr,
2369 unsigned int reloc_shndx,
2370 bool have_sections_script)
2372 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2373 if ((addralign & (addralign - 1)) != 0)
2375 object->error(_("invalid alignment %lu for section \"%s\""),
2376 static_cast<unsigned long>(addralign), secname);
2380 if (addralign > this->addralign_)
2381 this->addralign_ = addralign;
2383 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2384 uint64_t entsize = shdr.get_sh_entsize();
2386 // .debug_str is a mergeable string section, but is not always so
2387 // marked by compilers. Mark manually here so we can optimize.
2388 if (strcmp(secname, ".debug_str") == 0)
2390 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2394 this->update_flags_for_input_section(sh_flags);
2395 this->set_entsize(entsize);
2397 // If this is a SHF_MERGE section, we pass all the input sections to
2398 // a Output_data_merge. We don't try to handle relocations for such
2399 // a section. We don't try to handle empty merge sections--they
2400 // mess up the mappings, and are useless anyhow.
2401 // FIXME: Need to handle merge sections during incremental update.
2402 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2404 && shdr.get_sh_size() > 0
2405 && !parameters->incremental())
2407 // Keep information about merged input sections for rebuilding fast
2408 // lookup maps if we have sections-script or we do relaxation.
2409 bool keeps_input_sections = (this->always_keeps_input_sections_
2410 || have_sections_script
2411 || parameters->target().may_relax());
2413 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2414 addralign, keeps_input_sections))
2416 // Tell the relocation routines that they need to call the
2417 // output_offset method to determine the final address.
2422 section_size_type input_section_size = shdr.get_sh_size();
2423 section_size_type uncompressed_size;
2424 if (object->section_is_compressed(shndx, &uncompressed_size))
2425 input_section_size = uncompressed_size;
2427 off_t offset_in_section;
2429 if (this->has_fixed_layout())
2431 // For incremental updates, find a chunk of unused space in the section.
2432 offset_in_section = this->free_list_.allocate(input_section_size,
2434 if (offset_in_section == -1)
2435 gold_fallback(_("out of patch space in section %s; "
2436 "relink with --incremental-full"),
2438 return offset_in_section;
2441 offset_in_section = this->current_data_size_for_child();
2442 off_t aligned_offset_in_section = align_address(offset_in_section,
2444 this->set_current_data_size_for_child(aligned_offset_in_section
2445 + input_section_size);
2447 // Determine if we want to delay code-fill generation until the output
2448 // section is written. When the target is relaxing, we want to delay fill
2449 // generating to avoid adjusting them during relaxation. Also, if we are
2450 // sorting input sections we must delay fill generation.
2451 if (!this->generate_code_fills_at_write_
2452 && !have_sections_script
2453 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2454 && parameters->target().has_code_fill()
2455 && (parameters->target().may_relax()
2456 || layout->is_section_ordering_specified()))
2458 gold_assert(this->fills_.empty());
2459 this->generate_code_fills_at_write_ = true;
2462 if (aligned_offset_in_section > offset_in_section
2463 && !this->generate_code_fills_at_write_
2464 && !have_sections_script
2465 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2466 && parameters->target().has_code_fill())
2468 // We need to add some fill data. Using fill_list_ when
2469 // possible is an optimization, since we will often have fill
2470 // sections without input sections.
2471 off_t fill_len = aligned_offset_in_section - offset_in_section;
2472 if (this->input_sections_.empty())
2473 this->fills_.push_back(Fill(offset_in_section, fill_len));
2476 std::string fill_data(parameters->target().code_fill(fill_len));
2477 Output_data_const* odc = new Output_data_const(fill_data, 1);
2478 this->input_sections_.push_back(Input_section(odc));
2482 // We need to keep track of this section if we are already keeping
2483 // track of sections, or if we are relaxing. Also, if this is a
2484 // section which requires sorting, or which may require sorting in
2485 // the future, we keep track of the sections. If the
2486 // --section-ordering-file option is used to specify the order of
2487 // sections, we need to keep track of sections.
2488 if (this->always_keeps_input_sections_
2489 || have_sections_script
2490 || !this->input_sections_.empty()
2491 || this->may_sort_attached_input_sections()
2492 || this->must_sort_attached_input_sections()
2493 || parameters->options().user_set_Map()
2494 || parameters->target().may_relax()
2495 || layout->is_section_ordering_specified())
2497 Input_section isecn(object, shndx, input_section_size, addralign);
2498 /* If section ordering is requested by specifying a ordering file,
2499 using --section-ordering-file, match the section name with
2501 if (parameters->options().section_ordering_file())
2503 unsigned int section_order_index =
2504 layout->find_section_order_index(std::string(secname));
2505 if (section_order_index != 0)
2507 isecn.set_section_order_index(section_order_index);
2508 this->set_input_section_order_specified();
2511 this->input_sections_.push_back(isecn);
2514 return aligned_offset_in_section;
2517 // Add arbitrary data to an output section.
2520 Output_section::add_output_section_data(Output_section_data* posd)
2522 Input_section inp(posd);
2523 this->add_output_section_data(&inp);
2525 if (posd->is_data_size_valid())
2527 off_t offset_in_section;
2528 if (this->has_fixed_layout())
2530 // For incremental updates, find a chunk of unused space.
2531 offset_in_section = this->free_list_.allocate(posd->data_size(),
2532 posd->addralign(), 0);
2533 if (offset_in_section == -1)
2534 gold_fallback(_("out of patch space in section %s; "
2535 "relink with --incremental-full"),
2537 // Finalize the address and offset now.
2538 uint64_t addr = this->address();
2539 off_t offset = this->offset();
2540 posd->set_address_and_file_offset(addr + offset_in_section,
2541 offset + offset_in_section);
2545 offset_in_section = this->current_data_size_for_child();
2546 off_t aligned_offset_in_section = align_address(offset_in_section,
2548 this->set_current_data_size_for_child(aligned_offset_in_section
2549 + posd->data_size());
2552 else if (this->has_fixed_layout())
2554 // For incremental updates, arrange for the data to have a fixed layout.
2555 // This will mean that additions to the data must be allocated from
2556 // free space within the containing output section.
2557 uint64_t addr = this->address();
2558 posd->set_address(addr);
2559 posd->set_file_offset(0);
2560 // FIXME: This should eventually be unreachable.
2561 // gold_unreachable();
2565 // Add a relaxed input section.
2568 Output_section::add_relaxed_input_section(Layout* layout,
2569 Output_relaxed_input_section* poris,
2570 const std::string& name)
2572 Input_section inp(poris);
2574 // If the --section-ordering-file option is used to specify the order of
2575 // sections, we need to keep track of sections.
2576 if (layout->is_section_ordering_specified())
2578 unsigned int section_order_index =
2579 layout->find_section_order_index(name);
2580 if (section_order_index != 0)
2582 inp.set_section_order_index(section_order_index);
2583 this->set_input_section_order_specified();
2587 this->add_output_section_data(&inp);
2588 if (this->lookup_maps_->is_valid())
2589 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2590 poris->shndx(), poris);
2592 // For a relaxed section, we use the current data size. Linker scripts
2593 // get all the input sections, including relaxed one from an output
2594 // section and add them back to the same output section to compute the
2595 // output section size. If we do not account for sizes of relaxed input
2596 // sections, an output section would be incorrectly sized.
2597 off_t offset_in_section = this->current_data_size_for_child();
2598 off_t aligned_offset_in_section = align_address(offset_in_section,
2599 poris->addralign());
2600 this->set_current_data_size_for_child(aligned_offset_in_section
2601 + poris->current_data_size());
2604 // Add arbitrary data to an output section by Input_section.
2607 Output_section::add_output_section_data(Input_section* inp)
2609 if (this->input_sections_.empty())
2610 this->first_input_offset_ = this->current_data_size_for_child();
2612 this->input_sections_.push_back(*inp);
2614 uint64_t addralign = inp->addralign();
2615 if (addralign > this->addralign_)
2616 this->addralign_ = addralign;
2618 inp->set_output_section(this);
2621 // Add a merge section to an output section.
2624 Output_section::add_output_merge_section(Output_section_data* posd,
2625 bool is_string, uint64_t entsize)
2627 Input_section inp(posd, is_string, entsize);
2628 this->add_output_section_data(&inp);
2631 // Add an input section to a SHF_MERGE section.
2634 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2635 uint64_t flags, uint64_t entsize,
2637 bool keeps_input_sections)
2639 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2641 // We cannot restore merged input section states.
2642 gold_assert(this->checkpoint_ == NULL);
2644 // Look up merge sections by required properties.
2645 // Currently, we only invalidate the lookup maps in script processing
2646 // and relaxation. We should not have done either when we reach here.
2647 // So we assume that the lookup maps are valid to simply code.
2648 gold_assert(this->lookup_maps_->is_valid());
2649 Merge_section_properties msp(is_string, entsize, addralign);
2650 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2651 bool is_new = false;
2654 gold_assert(pomb->is_string() == is_string
2655 && pomb->entsize() == entsize
2656 && pomb->addralign() == addralign);
2660 // Create a new Output_merge_data or Output_merge_string_data.
2662 pomb = new Output_merge_data(entsize, addralign);
2668 pomb = new Output_merge_string<char>(addralign);
2671 pomb = new Output_merge_string<uint16_t>(addralign);
2674 pomb = new Output_merge_string<uint32_t>(addralign);
2680 // If we need to do script processing or relaxation, we need to keep
2681 // the original input sections to rebuild the fast lookup maps.
2682 if (keeps_input_sections)
2683 pomb->set_keeps_input_sections();
2687 if (pomb->add_input_section(object, shndx))
2689 // Add new merge section to this output section and link merge
2690 // section properties to new merge section in map.
2693 this->add_output_merge_section(pomb, is_string, entsize);
2694 this->lookup_maps_->add_merge_section(msp, pomb);
2697 // Add input section to new merge section and link input section to new
2698 // merge section in map.
2699 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2704 // If add_input_section failed, delete new merge section to avoid
2705 // exporting empty merge sections in Output_section::get_input_section.
2712 // Build a relaxation map to speed up relaxation of existing input sections.
2713 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2716 Output_section::build_relaxation_map(
2717 const Input_section_list& input_sections,
2719 Relaxation_map* relaxation_map) const
2721 for (size_t i = 0; i < limit; ++i)
2723 const Input_section& is(input_sections[i]);
2724 if (is.is_input_section() || is.is_relaxed_input_section())
2726 Section_id sid(is.relobj(), is.shndx());
2727 (*relaxation_map)[sid] = i;
2732 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2733 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2734 // indices of INPUT_SECTIONS.
2737 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2738 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2739 const Relaxation_map& map,
2740 Input_section_list* input_sections)
2742 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2744 Output_relaxed_input_section* poris = relaxed_sections[i];
2745 Section_id sid(poris->relobj(), poris->shndx());
2746 Relaxation_map::const_iterator p = map.find(sid);
2747 gold_assert(p != map.end());
2748 gold_assert((*input_sections)[p->second].is_input_section());
2750 // Remember section order index of original input section
2751 // if it is set. Copy it to the relaxed input section.
2753 (*input_sections)[p->second].section_order_index();
2754 (*input_sections)[p->second] = Input_section(poris);
2755 (*input_sections)[p->second].set_section_order_index(soi);
2759 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2760 // is a vector of pointers to Output_relaxed_input_section or its derived
2761 // classes. The relaxed sections must correspond to existing input sections.
2764 Output_section::convert_input_sections_to_relaxed_sections(
2765 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2767 gold_assert(parameters->target().may_relax());
2769 // We want to make sure that restore_states does not undo the effect of
2770 // this. If there is no checkpoint active, just search the current
2771 // input section list and replace the sections there. If there is
2772 // a checkpoint, also replace the sections there.
2774 // By default, we look at the whole list.
2775 size_t limit = this->input_sections_.size();
2777 if (this->checkpoint_ != NULL)
2779 // Replace input sections with relaxed input section in the saved
2780 // copy of the input section list.
2781 if (this->checkpoint_->input_sections_saved())
2784 this->build_relaxation_map(
2785 *(this->checkpoint_->input_sections()),
2786 this->checkpoint_->input_sections()->size(),
2788 this->convert_input_sections_in_list_to_relaxed_sections(
2791 this->checkpoint_->input_sections());
2795 // We have not copied the input section list yet. Instead, just
2796 // look at the portion that would be saved.
2797 limit = this->checkpoint_->input_sections_size();
2801 // Convert input sections in input_section_list.
2803 this->build_relaxation_map(this->input_sections_, limit, &map);
2804 this->convert_input_sections_in_list_to_relaxed_sections(
2807 &this->input_sections_);
2809 // Update fast look-up map.
2810 if (this->lookup_maps_->is_valid())
2811 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2813 Output_relaxed_input_section* poris = relaxed_sections[i];
2814 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2815 poris->shndx(), poris);
2819 // Update the output section flags based on input section flags.
2822 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2824 // If we created the section with SHF_ALLOC clear, we set the
2825 // address. If we are now setting the SHF_ALLOC flag, we need to
2827 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2828 && (flags & elfcpp::SHF_ALLOC) != 0)
2829 this->mark_address_invalid();
2831 this->flags_ |= (flags
2832 & (elfcpp::SHF_WRITE
2834 | elfcpp::SHF_EXECINSTR));
2836 if ((flags & elfcpp::SHF_MERGE) == 0)
2837 this->flags_ &=~ elfcpp::SHF_MERGE;
2840 if (this->current_data_size_for_child() == 0)
2841 this->flags_ |= elfcpp::SHF_MERGE;
2844 if ((flags & elfcpp::SHF_STRINGS) == 0)
2845 this->flags_ &=~ elfcpp::SHF_STRINGS;
2848 if (this->current_data_size_for_child() == 0)
2849 this->flags_ |= elfcpp::SHF_STRINGS;
2853 // Find the merge section into which an input section with index SHNDX in
2854 // OBJECT has been added. Return NULL if none found.
2856 Output_section_data*
2857 Output_section::find_merge_section(const Relobj* object,
2858 unsigned int shndx) const
2860 if (!this->lookup_maps_->is_valid())
2861 this->build_lookup_maps();
2862 return this->lookup_maps_->find_merge_section(object, shndx);
2865 // Build the lookup maps for merge and relaxed sections. This is needs
2866 // to be declared as a const methods so that it is callable with a const
2867 // Output_section pointer. The method only updates states of the maps.
2870 Output_section::build_lookup_maps() const
2872 this->lookup_maps_->clear();
2873 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2874 p != this->input_sections_.end();
2877 if (p->is_merge_section())
2879 Output_merge_base* pomb = p->output_merge_base();
2880 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2882 this->lookup_maps_->add_merge_section(msp, pomb);
2883 for (Output_merge_base::Input_sections::const_iterator is =
2884 pomb->input_sections_begin();
2885 is != pomb->input_sections_end();
2888 const Const_section_id& csid = *is;
2889 this->lookup_maps_->add_merge_input_section(csid.first,
2894 else if (p->is_relaxed_input_section())
2896 Output_relaxed_input_section* poris = p->relaxed_input_section();
2897 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2898 poris->shndx(), poris);
2903 // Find an relaxed input section corresponding to an input section
2904 // in OBJECT with index SHNDX.
2906 const Output_relaxed_input_section*
2907 Output_section::find_relaxed_input_section(const Relobj* object,
2908 unsigned int shndx) const
2910 if (!this->lookup_maps_->is_valid())
2911 this->build_lookup_maps();
2912 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2915 // Given an address OFFSET relative to the start of input section
2916 // SHNDX in OBJECT, return whether this address is being included in
2917 // the final link. This should only be called if SHNDX in OBJECT has
2918 // a special mapping.
2921 Output_section::is_input_address_mapped(const Relobj* object,
2925 // Look at the Output_section_data_maps first.
2926 const Output_section_data* posd = this->find_merge_section(object, shndx);
2928 posd = this->find_relaxed_input_section(object, shndx);
2932 section_offset_type output_offset;
2933 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2935 return output_offset != -1;
2938 // Fall back to the slow look-up.
2939 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2940 p != this->input_sections_.end();
2943 section_offset_type output_offset;
2944 if (p->output_offset(object, shndx, offset, &output_offset))
2945 return output_offset != -1;
2948 // By default we assume that the address is mapped. This should
2949 // only be called after we have passed all sections to Layout. At
2950 // that point we should know what we are discarding.
2954 // Given an address OFFSET relative to the start of input section
2955 // SHNDX in object OBJECT, return the output offset relative to the
2956 // start of the input section in the output section. This should only
2957 // be called if SHNDX in OBJECT has a special mapping.
2960 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2961 section_offset_type offset) const
2963 // This can only be called meaningfully when we know the data size
2965 gold_assert(this->is_data_size_valid());
2967 // Look at the Output_section_data_maps first.
2968 const Output_section_data* posd = this->find_merge_section(object, shndx);
2970 posd = this->find_relaxed_input_section(object, shndx);
2973 section_offset_type output_offset;
2974 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2976 return output_offset;
2979 // Fall back to the slow look-up.
2980 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2981 p != this->input_sections_.end();
2984 section_offset_type output_offset;
2985 if (p->output_offset(object, shndx, offset, &output_offset))
2986 return output_offset;
2991 // Return the output virtual address of OFFSET relative to the start
2992 // of input section SHNDX in object OBJECT.
2995 Output_section::output_address(const Relobj* object, unsigned int shndx,
2998 uint64_t addr = this->address() + this->first_input_offset_;
3000 // Look at the Output_section_data_maps first.
3001 const Output_section_data* posd = this->find_merge_section(object, shndx);
3003 posd = this->find_relaxed_input_section(object, shndx);
3004 if (posd != NULL && posd->is_address_valid())
3006 section_offset_type output_offset;
3007 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3009 return posd->address() + output_offset;
3012 // Fall back to the slow look-up.
3013 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3014 p != this->input_sections_.end();
3017 addr = align_address(addr, p->addralign());
3018 section_offset_type output_offset;
3019 if (p->output_offset(object, shndx, offset, &output_offset))
3021 if (output_offset == -1)
3023 return addr + output_offset;
3025 addr += p->data_size();
3028 // If we get here, it means that we don't know the mapping for this
3029 // input section. This might happen in principle if
3030 // add_input_section were called before add_output_section_data.
3031 // But it should never actually happen.
3036 // Find the output address of the start of the merged section for
3037 // input section SHNDX in object OBJECT.
3040 Output_section::find_starting_output_address(const Relobj* object,
3042 uint64_t* paddr) const
3044 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3045 // Looking up the merge section map does not always work as we sometimes
3046 // find a merge section without its address set.
3047 uint64_t addr = this->address() + this->first_input_offset_;
3048 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3049 p != this->input_sections_.end();
3052 addr = align_address(addr, p->addralign());
3054 // It would be nice if we could use the existing output_offset
3055 // method to get the output offset of input offset 0.
3056 // Unfortunately we don't know for sure that input offset 0 is
3058 if (p->is_merge_section_for(object, shndx))
3064 addr += p->data_size();
3067 // We couldn't find a merge output section for this input section.
3071 // Update the data size of an Output_section.
3074 Output_section::update_data_size()
3076 if (this->input_sections_.empty())
3079 if (this->must_sort_attached_input_sections()
3080 || this->input_section_order_specified())
3081 this->sort_attached_input_sections();
3083 off_t off = this->first_input_offset_;
3084 for (Input_section_list::iterator p = this->input_sections_.begin();
3085 p != this->input_sections_.end();
3088 off = align_address(off, p->addralign());
3089 off += p->current_data_size();
3092 this->set_current_data_size_for_child(off);
3095 // Set the data size of an Output_section. This is where we handle
3096 // setting the addresses of any Output_section_data objects.
3099 Output_section::set_final_data_size()
3103 if (this->input_sections_.empty())
3104 data_size = this->current_data_size_for_child();
3107 if (this->must_sort_attached_input_sections()
3108 || this->input_section_order_specified())
3109 this->sort_attached_input_sections();
3111 uint64_t address = this->address();
3112 off_t startoff = this->offset();
3113 off_t off = startoff + this->first_input_offset_;
3114 for (Input_section_list::iterator p = this->input_sections_.begin();
3115 p != this->input_sections_.end();
3118 off = align_address(off, p->addralign());
3119 p->set_address_and_file_offset(address + (off - startoff), off,
3121 off += p->data_size();
3123 data_size = off - startoff;
3126 // For full incremental links, we want to allocate some patch space
3127 // in most sections for subsequent incremental updates.
3128 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3130 double pct = parameters->options().incremental_patch();
3131 size_t extra = static_cast<size_t>(data_size * pct);
3132 if (this->free_space_fill_ != NULL
3133 && this->free_space_fill_->minimum_hole_size() > extra)
3134 extra = this->free_space_fill_->minimum_hole_size();
3135 off_t new_size = align_address(data_size + extra, this->addralign());
3136 this->patch_space_ = new_size - data_size;
3137 gold_debug(DEBUG_INCREMENTAL,
3138 "set_final_data_size: %08lx + %08lx: section %s",
3139 static_cast<long>(data_size),
3140 static_cast<long>(this->patch_space_),
3142 data_size = new_size;
3145 this->set_data_size(data_size);
3148 // Reset the address and file offset.
3151 Output_section::do_reset_address_and_file_offset()
3153 // An unallocated section has no address. Forcing this means that
3154 // we don't need special treatment for symbols defined in debug
3155 // sections. We do the same in the constructor. This does not
3156 // apply to NOLOAD sections though.
3157 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3158 this->set_address(0);
3160 for (Input_section_list::iterator p = this->input_sections_.begin();
3161 p != this->input_sections_.end();
3163 p->reset_address_and_file_offset();
3165 // Remove any patch space that was added in set_final_data_size.
3166 if (this->patch_space_ > 0)
3168 this->set_current_data_size_for_child(this->current_data_size_for_child()
3169 - this->patch_space_);
3170 this->patch_space_ = 0;
3174 // Return true if address and file offset have the values after reset.
3177 Output_section::do_address_and_file_offset_have_reset_values() const
3179 if (this->is_offset_valid())
3182 // An unallocated section has address 0 after its construction or a reset.
3183 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3184 return this->is_address_valid() && this->address() == 0;
3186 return !this->is_address_valid();
3189 // Set the TLS offset. Called only for SHT_TLS sections.
3192 Output_section::do_set_tls_offset(uint64_t tls_base)
3194 this->tls_offset_ = this->address() - tls_base;
3197 // In a few cases we need to sort the input sections attached to an
3198 // output section. This is used to implement the type of constructor
3199 // priority ordering implemented by the GNU linker, in which the
3200 // priority becomes part of the section name and the sections are
3201 // sorted by name. We only do this for an output section if we see an
3202 // attached input section matching ".ctors.*", ".dtors.*",
3203 // ".init_array.*" or ".fini_array.*".
3205 class Output_section::Input_section_sort_entry
3208 Input_section_sort_entry()
3209 : input_section_(), index_(-1U), section_has_name_(false),
3213 Input_section_sort_entry(const Input_section& input_section,
3215 bool must_sort_attached_input_sections)
3216 : input_section_(input_section), index_(index),
3217 section_has_name_(input_section.is_input_section()
3218 || input_section.is_relaxed_input_section())
3220 if (this->section_has_name_
3221 && must_sort_attached_input_sections)
3223 // This is only called single-threaded from Layout::finalize,
3224 // so it is OK to lock. Unfortunately we have no way to pass
3226 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3227 Object* obj = (input_section.is_input_section()
3228 ? input_section.relobj()
3229 : input_section.relaxed_input_section()->relobj());
3230 Task_lock_obj<Object> tl(dummy_task, obj);
3232 // This is a slow operation, which should be cached in
3233 // Layout::layout if this becomes a speed problem.
3234 this->section_name_ = obj->section_name(input_section.shndx());
3238 // Return the Input_section.
3239 const Input_section&
3240 input_section() const
3242 gold_assert(this->index_ != -1U);
3243 return this->input_section_;
3246 // The index of this entry in the original list. This is used to
3247 // make the sort stable.
3251 gold_assert(this->index_ != -1U);
3252 return this->index_;
3255 // Whether there is a section name.
3257 section_has_name() const
3258 { return this->section_has_name_; }
3260 // The section name.
3262 section_name() const
3264 gold_assert(this->section_has_name_);
3265 return this->section_name_;
3268 // Return true if the section name has a priority. This is assumed
3269 // to be true if it has a dot after the initial dot.
3271 has_priority() const
3273 gold_assert(this->section_has_name_);
3274 return this->section_name_.find('.', 1) != std::string::npos;
3277 // Return the priority. Believe it or not, gcc encodes the priority
3278 // differently for .ctors/.dtors and .init_array/.fini_array
3281 get_priority() const
3283 gold_assert(this->section_has_name_);
3285 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3286 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3288 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3289 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3294 unsigned long prio = strtoul((this->section_name_.c_str()
3295 + (is_ctors ? 7 : 12)),
3300 return 65535 - prio;
3305 // Return true if this an input file whose base name matches
3306 // FILE_NAME. The base name must have an extension of ".o", and
3307 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3308 // This is to match crtbegin.o as well as crtbeginS.o without
3309 // getting confused by other possibilities. Overall matching the
3310 // file name this way is a dreadful hack, but the GNU linker does it
3311 // in order to better support gcc, and we need to be compatible.
3313 match_file_name(const char* file_name) const
3315 if (this->input_section_.is_output_section_data())
3317 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3320 // Returns 1 if THIS should appear before S in section order, -1 if S
3321 // appears before THIS and 0 if they are not comparable.
3323 compare_section_ordering(const Input_section_sort_entry& s) const
3325 unsigned int this_secn_index = this->input_section_.section_order_index();
3326 unsigned int s_secn_index = s.input_section().section_order_index();
3327 if (this_secn_index > 0 && s_secn_index > 0)
3329 if (this_secn_index < s_secn_index)
3331 else if (this_secn_index > s_secn_index)
3338 // The Input_section we are sorting.
3339 Input_section input_section_;
3340 // The index of this Input_section in the original list.
3341 unsigned int index_;
3342 // Whether this Input_section has a section name--it won't if this
3343 // is some random Output_section_data.
3344 bool section_has_name_;
3345 // The section name if there is one.
3346 std::string section_name_;
3349 // Return true if S1 should come before S2 in the output section.
3352 Output_section::Input_section_sort_compare::operator()(
3353 const Output_section::Input_section_sort_entry& s1,
3354 const Output_section::Input_section_sort_entry& s2) const
3356 // crtbegin.o must come first.
3357 bool s1_begin = s1.match_file_name("crtbegin");
3358 bool s2_begin = s2.match_file_name("crtbegin");
3359 if (s1_begin || s2_begin)
3365 return s1.index() < s2.index();
3368 // crtend.o must come last.
3369 bool s1_end = s1.match_file_name("crtend");
3370 bool s2_end = s2.match_file_name("crtend");
3371 if (s1_end || s2_end)
3377 return s1.index() < s2.index();
3380 // We sort all the sections with no names to the end.
3381 if (!s1.section_has_name() || !s2.section_has_name())
3383 if (s1.section_has_name())
3385 if (s2.section_has_name())
3387 return s1.index() < s2.index();
3390 // A section with a priority follows a section without a priority.
3391 bool s1_has_priority = s1.has_priority();
3392 bool s2_has_priority = s2.has_priority();
3393 if (s1_has_priority && !s2_has_priority)
3395 if (!s1_has_priority && s2_has_priority)
3398 // Check if a section order exists for these sections through a section
3399 // ordering file. If sequence_num is 0, an order does not exist.
3400 int sequence_num = s1.compare_section_ordering(s2);
3401 if (sequence_num != 0)
3402 return sequence_num == 1;
3404 // Otherwise we sort by name.
3405 int compare = s1.section_name().compare(s2.section_name());
3409 // Otherwise we keep the input order.
3410 return s1.index() < s2.index();
3413 // Return true if S1 should come before S2 in an .init_array or .fini_array
3417 Output_section::Input_section_sort_init_fini_compare::operator()(
3418 const Output_section::Input_section_sort_entry& s1,
3419 const Output_section::Input_section_sort_entry& s2) const
3421 // We sort all the sections with no names to the end.
3422 if (!s1.section_has_name() || !s2.section_has_name())
3424 if (s1.section_has_name())
3426 if (s2.section_has_name())
3428 return s1.index() < s2.index();
3431 // A section without a priority follows a section with a priority.
3432 // This is the reverse of .ctors and .dtors sections.
3433 bool s1_has_priority = s1.has_priority();
3434 bool s2_has_priority = s2.has_priority();
3435 if (s1_has_priority && !s2_has_priority)
3437 if (!s1_has_priority && s2_has_priority)
3440 // .ctors and .dtors sections without priority come after
3441 // .init_array and .fini_array sections without priority.
3442 if (!s1_has_priority
3443 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3444 && s1.section_name() != s2.section_name())
3446 if (!s2_has_priority
3447 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3448 && s2.section_name() != s1.section_name())
3451 // Sort by priority if we can.
3452 if (s1_has_priority)
3454 unsigned int s1_prio = s1.get_priority();
3455 unsigned int s2_prio = s2.get_priority();
3456 if (s1_prio < s2_prio)
3458 else if (s1_prio > s2_prio)
3462 // Check if a section order exists for these sections through a section
3463 // ordering file. If sequence_num is 0, an order does not exist.
3464 int sequence_num = s1.compare_section_ordering(s2);
3465 if (sequence_num != 0)
3466 return sequence_num == 1;
3468 // Otherwise we sort by name.
3469 int compare = s1.section_name().compare(s2.section_name());
3473 // Otherwise we keep the input order.
3474 return s1.index() < s2.index();
3477 // Return true if S1 should come before S2. Sections that do not match
3478 // any pattern in the section ordering file are placed ahead of the sections
3479 // that match some pattern.
3482 Output_section::Input_section_sort_section_order_index_compare::operator()(
3483 const Output_section::Input_section_sort_entry& s1,
3484 const Output_section::Input_section_sort_entry& s2) const
3486 unsigned int s1_secn_index = s1.input_section().section_order_index();
3487 unsigned int s2_secn_index = s2.input_section().section_order_index();
3489 // Keep input order if section ordering cannot determine order.
3490 if (s1_secn_index == s2_secn_index)
3491 return s1.index() < s2.index();
3493 return s1_secn_index < s2_secn_index;
3496 // Return true if S1 should come before S2. This is the sort comparison
3497 // function for .text to sort sections with prefixes
3498 // .text.{unlikely,exit,startup,hot} before other sections.
3501 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3503 const Output_section::Input_section_sort_entry& s1,
3504 const Output_section::Input_section_sort_entry& s2) const
3506 // We sort all the sections with no names to the end.
3507 if (!s1.section_has_name() || !s2.section_has_name())
3509 if (s1.section_has_name())
3511 if (s2.section_has_name())
3513 return s1.index() < s2.index();
3516 // Some input section names have special ordering requirements.
3517 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3518 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3529 // Keep input order otherwise.
3530 return s1.index() < s2.index();
3533 // Return true if S1 should come before S2. This is the sort comparison
3534 // function for sections to sort them by name.
3537 Output_section::Input_section_sort_section_name_compare
3539 const Output_section::Input_section_sort_entry& s1,
3540 const Output_section::Input_section_sort_entry& s2) const
3542 // We sort all the sections with no names to the end.
3543 if (!s1.section_has_name() || !s2.section_has_name())
3545 if (s1.section_has_name())
3547 if (s2.section_has_name())
3549 return s1.index() < s2.index();
3553 int compare = s1.section_name().compare(s2.section_name());
3557 // Keep input order otherwise.
3558 return s1.index() < s2.index();
3561 // This updates the section order index of input sections according to the
3562 // the order specified in the mapping from Section id to order index.
3565 Output_section::update_section_layout(
3566 const Section_layout_order* order_map)
3568 for (Input_section_list::iterator p = this->input_sections_.begin();
3569 p != this->input_sections_.end();
3572 if (p->is_input_section()
3573 || p->is_relaxed_input_section())
3575 Object* obj = (p->is_input_section()
3577 : p->relaxed_input_section()->relobj());
3578 unsigned int shndx = p->shndx();
3579 Section_layout_order::const_iterator it
3580 = order_map->find(Section_id(obj, shndx));
3581 if (it == order_map->end())
3583 unsigned int section_order_index = it->second;
3584 if (section_order_index != 0)
3586 p->set_section_order_index(section_order_index);
3587 this->set_input_section_order_specified();
3593 // Sort the input sections attached to an output section.
3596 Output_section::sort_attached_input_sections()
3598 if (this->attached_input_sections_are_sorted_)
3601 if (this->checkpoint_ != NULL
3602 && !this->checkpoint_->input_sections_saved())
3603 this->checkpoint_->save_input_sections();
3605 // The only thing we know about an input section is the object and
3606 // the section index. We need the section name. Recomputing this
3607 // is slow but this is an unusual case. If this becomes a speed
3608 // problem we can cache the names as required in Layout::layout.
3610 // We start by building a larger vector holding a copy of each
3611 // Input_section, plus its current index in the list and its name.
3612 std::vector<Input_section_sort_entry> sort_list;
3615 for (Input_section_list::iterator p = this->input_sections_.begin();
3616 p != this->input_sections_.end();
3618 sort_list.push_back(Input_section_sort_entry(*p, i,
3619 this->must_sort_attached_input_sections()));
3621 // Sort the input sections.
3622 if (this->must_sort_attached_input_sections())
3624 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3625 || this->type() == elfcpp::SHT_INIT_ARRAY
3626 || this->type() == elfcpp::SHT_FINI_ARRAY)
3627 std::sort(sort_list.begin(), sort_list.end(),
3628 Input_section_sort_init_fini_compare());
3629 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3630 std::sort(sort_list.begin(), sort_list.end(),
3631 Input_section_sort_section_name_compare());
3632 else if (strcmp(this->name(), ".text") == 0)
3633 std::sort(sort_list.begin(), sort_list.end(),
3634 Input_section_sort_section_prefix_special_ordering_compare());
3636 std::sort(sort_list.begin(), sort_list.end(),
3637 Input_section_sort_compare());
3641 gold_assert(this->input_section_order_specified());
3642 std::sort(sort_list.begin(), sort_list.end(),
3643 Input_section_sort_section_order_index_compare());
3646 // Copy the sorted input sections back to our list.
3647 this->input_sections_.clear();
3648 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3649 p != sort_list.end();
3651 this->input_sections_.push_back(p->input_section());
3654 // Remember that we sorted the input sections, since we might get
3656 this->attached_input_sections_are_sorted_ = true;
3659 // Write the section header to *OSHDR.
3661 template<int size, bool big_endian>
3663 Output_section::write_header(const Layout* layout,
3664 const Stringpool* secnamepool,
3665 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3667 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3668 oshdr->put_sh_type(this->type_);
3670 elfcpp::Elf_Xword flags = this->flags_;
3671 if (this->info_section_ != NULL && this->info_uses_section_index_)
3672 flags |= elfcpp::SHF_INFO_LINK;
3673 oshdr->put_sh_flags(flags);
3675 oshdr->put_sh_addr(this->address());
3676 oshdr->put_sh_offset(this->offset());
3677 oshdr->put_sh_size(this->data_size());
3678 if (this->link_section_ != NULL)
3679 oshdr->put_sh_link(this->link_section_->out_shndx());
3680 else if (this->should_link_to_symtab_)
3681 oshdr->put_sh_link(layout->symtab_section_shndx());
3682 else if (this->should_link_to_dynsym_)
3683 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3685 oshdr->put_sh_link(this->link_);
3687 elfcpp::Elf_Word info;
3688 if (this->info_section_ != NULL)
3690 if (this->info_uses_section_index_)
3691 info = this->info_section_->out_shndx();
3693 info = this->info_section_->symtab_index();
3695 else if (this->info_symndx_ != NULL)
3696 info = this->info_symndx_->symtab_index();
3699 oshdr->put_sh_info(info);
3701 oshdr->put_sh_addralign(this->addralign_);
3702 oshdr->put_sh_entsize(this->entsize_);
3705 // Write out the data. For input sections the data is written out by
3706 // Object::relocate, but we have to handle Output_section_data objects
3710 Output_section::do_write(Output_file* of)
3712 gold_assert(!this->requires_postprocessing());
3714 // If the target performs relaxation, we delay filler generation until now.
3715 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3717 off_t output_section_file_offset = this->offset();
3718 for (Fill_list::iterator p = this->fills_.begin();
3719 p != this->fills_.end();
3722 std::string fill_data(parameters->target().code_fill(p->length()));
3723 of->write(output_section_file_offset + p->section_offset(),
3724 fill_data.data(), fill_data.size());
3727 off_t off = this->offset() + this->first_input_offset_;
3728 for (Input_section_list::iterator p = this->input_sections_.begin();
3729 p != this->input_sections_.end();
3732 off_t aligned_off = align_address(off, p->addralign());
3733 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3735 size_t fill_len = aligned_off - off;
3736 std::string fill_data(parameters->target().code_fill(fill_len));
3737 of->write(off, fill_data.data(), fill_data.size());
3741 off = aligned_off + p->data_size();
3744 // For incremental links, fill in unused chunks in debug sections
3745 // with dummy compilation unit headers.
3746 if (this->free_space_fill_ != NULL)
3748 for (Free_list::Const_iterator p = this->free_list_.begin();
3749 p != this->free_list_.end();
3752 off_t off = p->start_;
3753 size_t len = p->end_ - off;
3754 this->free_space_fill_->write(of, this->offset() + off, len);
3756 if (this->patch_space_ > 0)
3758 off_t off = this->current_data_size_for_child() - this->patch_space_;
3759 this->free_space_fill_->write(of, this->offset() + off,
3760 this->patch_space_);
3765 // If a section requires postprocessing, create the buffer to use.
3768 Output_section::create_postprocessing_buffer()
3770 gold_assert(this->requires_postprocessing());
3772 if (this->postprocessing_buffer_ != NULL)
3775 if (!this->input_sections_.empty())
3777 off_t off = this->first_input_offset_;
3778 for (Input_section_list::iterator p = this->input_sections_.begin();
3779 p != this->input_sections_.end();
3782 off = align_address(off, p->addralign());
3783 p->finalize_data_size();
3784 off += p->data_size();
3786 this->set_current_data_size_for_child(off);
3789 off_t buffer_size = this->current_data_size_for_child();
3790 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3793 // Write all the data of an Output_section into the postprocessing
3794 // buffer. This is used for sections which require postprocessing,
3795 // such as compression. Input sections are handled by
3796 // Object::Relocate.
3799 Output_section::write_to_postprocessing_buffer()
3801 gold_assert(this->requires_postprocessing());
3803 // If the target performs relaxation, we delay filler generation until now.
3804 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3806 unsigned char* buffer = this->postprocessing_buffer();
3807 for (Fill_list::iterator p = this->fills_.begin();
3808 p != this->fills_.end();
3811 std::string fill_data(parameters->target().code_fill(p->length()));
3812 memcpy(buffer + p->section_offset(), fill_data.data(),
3816 off_t off = this->first_input_offset_;
3817 for (Input_section_list::iterator p = this->input_sections_.begin();
3818 p != this->input_sections_.end();
3821 off_t aligned_off = align_address(off, p->addralign());
3822 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3824 size_t fill_len = aligned_off - off;
3825 std::string fill_data(parameters->target().code_fill(fill_len));
3826 memcpy(buffer + off, fill_data.data(), fill_data.size());
3829 p->write_to_buffer(buffer + aligned_off);
3830 off = aligned_off + p->data_size();
3834 // Get the input sections for linker script processing. We leave
3835 // behind the Output_section_data entries. Note that this may be
3836 // slightly incorrect for merge sections. We will leave them behind,
3837 // but it is possible that the script says that they should follow
3838 // some other input sections, as in:
3839 // .rodata { *(.rodata) *(.rodata.cst*) }
3840 // For that matter, we don't handle this correctly:
3841 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3842 // With luck this will never matter.
3845 Output_section::get_input_sections(
3847 const std::string& fill,
3848 std::list<Input_section>* input_sections)
3850 if (this->checkpoint_ != NULL
3851 && !this->checkpoint_->input_sections_saved())
3852 this->checkpoint_->save_input_sections();
3854 // Invalidate fast look-up maps.
3855 this->lookup_maps_->invalidate();
3857 uint64_t orig_address = address;
3859 address = align_address(address, this->addralign());
3861 Input_section_list remaining;
3862 for (Input_section_list::iterator p = this->input_sections_.begin();
3863 p != this->input_sections_.end();
3866 if (p->is_input_section()
3867 || p->is_relaxed_input_section()
3868 || p->is_merge_section())
3869 input_sections->push_back(*p);
3872 uint64_t aligned_address = align_address(address, p->addralign());
3873 if (aligned_address != address && !fill.empty())
3875 section_size_type length =
3876 convert_to_section_size_type(aligned_address - address);
3877 std::string this_fill;
3878 this_fill.reserve(length);
3879 while (this_fill.length() + fill.length() <= length)
3881 if (this_fill.length() < length)
3882 this_fill.append(fill, 0, length - this_fill.length());
3884 Output_section_data* posd = new Output_data_const(this_fill, 0);
3885 remaining.push_back(Input_section(posd));
3887 address = aligned_address;
3889 remaining.push_back(*p);
3891 p->finalize_data_size();
3892 address += p->data_size();
3896 this->input_sections_.swap(remaining);
3897 this->first_input_offset_ = 0;
3899 uint64_t data_size = address - orig_address;
3900 this->set_current_data_size_for_child(data_size);
3904 // Add a script input section. SIS is an Output_section::Input_section,
3905 // which can be either a plain input section or a special input section like
3906 // a relaxed input section. For a special input section, its size must be
3910 Output_section::add_script_input_section(const Input_section& sis)
3912 uint64_t data_size = sis.data_size();
3913 uint64_t addralign = sis.addralign();
3914 if (addralign > this->addralign_)
3915 this->addralign_ = addralign;
3917 off_t offset_in_section = this->current_data_size_for_child();
3918 off_t aligned_offset_in_section = align_address(offset_in_section,
3921 this->set_current_data_size_for_child(aligned_offset_in_section
3924 this->input_sections_.push_back(sis);
3926 // Update fast lookup maps if necessary.
3927 if (this->lookup_maps_->is_valid())
3929 if (sis.is_merge_section())
3931 Output_merge_base* pomb = sis.output_merge_base();
3932 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3934 this->lookup_maps_->add_merge_section(msp, pomb);
3935 for (Output_merge_base::Input_sections::const_iterator p =
3936 pomb->input_sections_begin();
3937 p != pomb->input_sections_end();
3939 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3942 else if (sis.is_relaxed_input_section())
3944 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3945 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3946 poris->shndx(), poris);
3951 // Save states for relaxation.
3954 Output_section::save_states()
3956 gold_assert(this->checkpoint_ == NULL);
3957 Checkpoint_output_section* checkpoint =
3958 new Checkpoint_output_section(this->addralign_, this->flags_,
3959 this->input_sections_,
3960 this->first_input_offset_,
3961 this->attached_input_sections_are_sorted_);
3962 this->checkpoint_ = checkpoint;
3963 gold_assert(this->fills_.empty());
3967 Output_section::discard_states()
3969 gold_assert(this->checkpoint_ != NULL);
3970 delete this->checkpoint_;
3971 this->checkpoint_ = NULL;
3972 gold_assert(this->fills_.empty());
3974 // Simply invalidate the fast lookup maps since we do not keep
3976 this->lookup_maps_->invalidate();
3980 Output_section::restore_states()
3982 gold_assert(this->checkpoint_ != NULL);
3983 Checkpoint_output_section* checkpoint = this->checkpoint_;
3985 this->addralign_ = checkpoint->addralign();
3986 this->flags_ = checkpoint->flags();
3987 this->first_input_offset_ = checkpoint->first_input_offset();
3989 if (!checkpoint->input_sections_saved())
3991 // If we have not copied the input sections, just resize it.
3992 size_t old_size = checkpoint->input_sections_size();
3993 gold_assert(this->input_sections_.size() >= old_size);
3994 this->input_sections_.resize(old_size);
3998 // We need to copy the whole list. This is not efficient for
3999 // extremely large output with hundreads of thousands of input
4000 // objects. We may need to re-think how we should pass sections
4002 this->input_sections_ = *checkpoint->input_sections();
4005 this->attached_input_sections_are_sorted_ =
4006 checkpoint->attached_input_sections_are_sorted();
4008 // Simply invalidate the fast lookup maps since we do not keep
4010 this->lookup_maps_->invalidate();
4013 // Update the section offsets of input sections in this. This is required if
4014 // relaxation causes some input sections to change sizes.
4017 Output_section::adjust_section_offsets()
4019 if (!this->section_offsets_need_adjustment_)
4023 for (Input_section_list::iterator p = this->input_sections_.begin();
4024 p != this->input_sections_.end();
4027 off = align_address(off, p->addralign());
4028 if (p->is_input_section())
4029 p->relobj()->set_section_offset(p->shndx(), off);
4030 off += p->data_size();
4033 this->section_offsets_need_adjustment_ = false;
4036 // Print to the map file.
4039 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4041 mapfile->print_output_section(this);
4043 for (Input_section_list::const_iterator p = this->input_sections_.begin();
4044 p != this->input_sections_.end();
4046 p->print_to_mapfile(mapfile);
4049 // Print stats for merge sections to stderr.
4052 Output_section::print_merge_stats()
4054 Input_section_list::iterator p;
4055 for (p = this->input_sections_.begin();
4056 p != this->input_sections_.end();
4058 p->print_merge_stats(this->name_);
4061 // Set a fixed layout for the section. Used for incremental update links.
4064 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4065 off_t sh_size, uint64_t sh_addralign)
4067 this->addralign_ = sh_addralign;
4068 this->set_current_data_size(sh_size);
4069 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4070 this->set_address(sh_addr);
4071 this->set_file_offset(sh_offset);
4072 this->finalize_data_size();
4073 this->free_list_.init(sh_size, false);
4074 this->has_fixed_layout_ = true;
4077 // Reserve space within the fixed layout for the section. Used for
4078 // incremental update links.
4081 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4083 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4086 // Allocate space from the free list for the section. Used for
4087 // incremental update links.
4090 Output_section::allocate(off_t len, uint64_t addralign)
4092 return this->free_list_.allocate(len, addralign, 0);
4095 // Output segment methods.
4097 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4107 is_max_align_known_(false),
4108 are_addresses_set_(false),
4109 is_large_data_segment_(false),
4110 is_unique_segment_(false)
4112 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4114 if (type == elfcpp::PT_TLS)
4115 this->flags_ = elfcpp::PF_R;
4118 // Add an Output_section to a PT_LOAD Output_segment.
4121 Output_segment::add_output_section_to_load(Layout* layout,
4123 elfcpp::Elf_Word seg_flags)
4125 gold_assert(this->type() == elfcpp::PT_LOAD);
4126 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4127 gold_assert(!this->is_max_align_known_);
4128 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4130 this->update_flags_for_output_section(seg_flags);
4132 // We don't want to change the ordering if we have a linker script
4133 // with a SECTIONS clause.
4134 Output_section_order order = os->order();
4135 if (layout->script_options()->saw_sections_clause())
4136 order = static_cast<Output_section_order>(0);
4138 gold_assert(order != ORDER_INVALID);
4140 this->output_lists_[order].push_back(os);
4143 // Add an Output_section to a non-PT_LOAD Output_segment.
4146 Output_segment::add_output_section_to_nonload(Output_section* os,
4147 elfcpp::Elf_Word seg_flags)
4149 gold_assert(this->type() != elfcpp::PT_LOAD);
4150 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4151 gold_assert(!this->is_max_align_known_);
4153 this->update_flags_for_output_section(seg_flags);
4155 this->output_lists_[0].push_back(os);
4158 // Remove an Output_section from this segment. It is an error if it
4162 Output_segment::remove_output_section(Output_section* os)
4164 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4166 Output_data_list* pdl = &this->output_lists_[i];
4167 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4179 // Add an Output_data (which need not be an Output_section) to the
4180 // start of a segment.
4183 Output_segment::add_initial_output_data(Output_data* od)
4185 gold_assert(!this->is_max_align_known_);
4186 Output_data_list::iterator p = this->output_lists_[0].begin();
4187 this->output_lists_[0].insert(p, od);
4190 // Return true if this segment has any sections which hold actual
4191 // data, rather than being a BSS section.
4194 Output_segment::has_any_data_sections() const
4196 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4198 const Output_data_list* pdl = &this->output_lists_[i];
4199 for (Output_data_list::const_iterator p = pdl->begin();
4203 if (!(*p)->is_section())
4205 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4212 // Return whether the first data section (not counting TLS sections)
4213 // is a relro section.
4216 Output_segment::is_first_section_relro() const
4218 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4220 if (i == static_cast<int>(ORDER_TLS_DATA)
4221 || i == static_cast<int>(ORDER_TLS_BSS))
4223 const Output_data_list* pdl = &this->output_lists_[i];
4226 Output_data* p = pdl->front();
4227 return p->is_section() && p->output_section()->is_relro();
4233 // Return the maximum alignment of the Output_data in Output_segment.
4236 Output_segment::maximum_alignment()
4238 if (!this->is_max_align_known_)
4240 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4242 const Output_data_list* pdl = &this->output_lists_[i];
4243 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4244 if (addralign > this->max_align_)
4245 this->max_align_ = addralign;
4247 this->is_max_align_known_ = true;
4250 return this->max_align_;
4253 // Return the maximum alignment of a list of Output_data.
4256 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4259 for (Output_data_list::const_iterator p = pdl->begin();
4263 uint64_t addralign = (*p)->addralign();
4264 if (addralign > ret)
4270 // Return whether this segment has any dynamic relocs.
4273 Output_segment::has_dynamic_reloc() const
4275 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4276 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4281 // Return whether this Output_data_list has any dynamic relocs.
4284 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4286 for (Output_data_list::const_iterator p = pdl->begin();
4289 if ((*p)->has_dynamic_reloc())
4294 // Set the section addresses for an Output_segment. If RESET is true,
4295 // reset the addresses first. ADDR is the address and *POFF is the
4296 // file offset. Set the section indexes starting with *PSHNDX.
4297 // INCREASE_RELRO is the size of the portion of the first non-relro
4298 // section that should be included in the PT_GNU_RELRO segment.
4299 // If this segment has relro sections, and has been aligned for
4300 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4301 // the immediately following segment. Update *HAS_RELRO, *POFF,
4305 Output_segment::set_section_addresses(const Target* target,
4306 Layout* layout, bool reset,
4308 unsigned int* increase_relro,
4311 unsigned int* pshndx)
4313 gold_assert(this->type_ == elfcpp::PT_LOAD);
4315 uint64_t last_relro_pad = 0;
4316 off_t orig_off = *poff;
4318 bool in_tls = false;
4320 // If we have relro sections, we need to pad forward now so that the
4321 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4322 if (parameters->options().relro()
4323 && this->is_first_section_relro()
4324 && (!this->are_addresses_set_ || reset))
4326 uint64_t relro_size = 0;
4328 uint64_t max_align = 0;
4329 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4331 Output_data_list* pdl = &this->output_lists_[i];
4332 Output_data_list::iterator p;
4333 for (p = pdl->begin(); p != pdl->end(); ++p)
4335 if (!(*p)->is_section())
4337 uint64_t align = (*p)->addralign();
4338 if (align > max_align)
4340 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4344 // Align the first non-TLS section to the alignment
4345 // of the TLS segment.
4349 relro_size = align_address(relro_size, align);
4350 // Ignore the size of the .tbss section.
4351 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4352 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4354 if ((*p)->is_address_valid())
4355 relro_size += (*p)->data_size();
4358 // FIXME: This could be faster.
4359 (*p)->set_address_and_file_offset(addr + relro_size,
4361 relro_size += (*p)->data_size();
4362 (*p)->reset_address_and_file_offset();
4365 if (p != pdl->end())
4368 relro_size += *increase_relro;
4369 // Pad the total relro size to a multiple of the maximum
4370 // section alignment seen.
4371 uint64_t aligned_size = align_address(relro_size, max_align);
4372 // Note the amount of padding added after the last relro section.
4373 last_relro_pad = aligned_size - relro_size;
4376 uint64_t page_align = parameters->target().abi_pagesize();
4378 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4379 uint64_t desired_align = page_align - (aligned_size % page_align);
4380 if (desired_align < *poff % page_align)
4381 *poff += page_align - *poff % page_align;
4382 *poff += desired_align - *poff % page_align;
4383 addr += *poff - orig_off;
4387 if (!reset && this->are_addresses_set_)
4389 gold_assert(this->paddr_ == addr);
4390 addr = this->vaddr_;
4394 this->vaddr_ = addr;
4395 this->paddr_ = addr;
4396 this->are_addresses_set_ = true;
4401 this->offset_ = orig_off;
4405 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4407 if (i == static_cast<int>(ORDER_RELRO_LAST))
4409 *poff += last_relro_pad;
4410 addr += last_relro_pad;
4411 if (this->output_lists_[i].empty())
4413 // If there is nothing in the ORDER_RELRO_LAST list,
4414 // the padding will occur at the end of the relro
4415 // segment, and we need to add it to *INCREASE_RELRO.
4416 *increase_relro += last_relro_pad;
4419 addr = this->set_section_list_addresses(layout, reset,
4420 &this->output_lists_[i],
4421 addr, poff, pshndx, &in_tls);
4422 if (i < static_cast<int>(ORDER_SMALL_BSS))
4424 this->filesz_ = *poff - orig_off;
4431 // If the last section was a TLS section, align upward to the
4432 // alignment of the TLS segment, so that the overall size of the TLS
4433 // segment is aligned.
4436 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4437 *poff = align_address(*poff, segment_align);
4440 this->memsz_ = *poff - orig_off;
4442 // Ignore the file offset adjustments made by the BSS Output_data
4446 // If code segments must contain only code, and this code segment is
4447 // page-aligned in the file, then fill it out to a whole page with
4448 // code fill (the tail of the segment will not be within any section).
4449 // Thus the entire code segment can be mapped from the file as whole
4450 // pages and that mapping will contain only valid instructions.
4451 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4453 uint64_t abi_pagesize = target->abi_pagesize();
4454 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4456 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4458 std::string fill_data;
4459 if (target->has_code_fill())
4460 fill_data = target->code_fill(fill_size);
4462 fill_data.resize(fill_size); // Zero fill.
4464 Output_data_const* fill = new Output_data_const(fill_data, 0);
4465 fill->set_address(this->vaddr_ + this->memsz_);
4466 fill->set_file_offset(off);
4467 layout->add_relax_output(fill);
4470 gold_assert(off % abi_pagesize == 0);
4472 gold_assert(ret % abi_pagesize == 0);
4474 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4475 this->memsz_ = this->filesz_ += fill_size;
4484 // Set the addresses and file offsets in a list of Output_data
4488 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4489 Output_data_list* pdl,
4490 uint64_t addr, off_t* poff,
4491 unsigned int* pshndx,
4494 off_t startoff = *poff;
4495 // For incremental updates, we may allocate non-fixed sections from
4496 // free space in the file. This keeps track of the high-water mark.
4497 off_t maxoff = startoff;
4499 off_t off = startoff;
4500 for (Output_data_list::iterator p = pdl->begin();
4505 (*p)->reset_address_and_file_offset();
4507 // When doing an incremental update or when using a linker script,
4508 // the section will most likely already have an address.
4509 if (!(*p)->is_address_valid())
4511 uint64_t align = (*p)->addralign();
4513 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4515 // Give the first TLS section the alignment of the
4516 // entire TLS segment. Otherwise the TLS segment as a
4517 // whole may be misaligned.
4520 Output_segment* tls_segment = layout->tls_segment();
4521 gold_assert(tls_segment != NULL);
4522 uint64_t segment_align = tls_segment->maximum_alignment();
4523 gold_assert(segment_align >= align);
4524 align = segment_align;
4531 // If this is the first section after the TLS segment,
4532 // align it to at least the alignment of the TLS
4533 // segment, so that the size of the overall TLS segment
4537 uint64_t segment_align =
4538 layout->tls_segment()->maximum_alignment();
4539 if (segment_align > align)
4540 align = segment_align;
4546 if (!parameters->incremental_update())
4548 off = align_address(off, align);
4549 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4553 // Incremental update: allocate file space from free list.
4554 (*p)->pre_finalize_data_size();
4555 off_t current_size = (*p)->current_data_size();
4556 off = layout->allocate(current_size, align, startoff);
4559 gold_assert((*p)->output_section() != NULL);
4560 gold_fallback(_("out of patch space for section %s; "
4561 "relink with --incremental-full"),
4562 (*p)->output_section()->name());
4564 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4565 if ((*p)->data_size() > current_size)
4567 gold_assert((*p)->output_section() != NULL);
4568 gold_fallback(_("%s: section changed size; "
4569 "relink with --incremental-full"),
4570 (*p)->output_section()->name());
4574 else if (parameters->incremental_update())
4576 // For incremental updates, use the fixed offset for the
4577 // high-water mark computation.
4578 off = (*p)->offset();
4582 // The script may have inserted a skip forward, but it
4583 // better not have moved backward.
4584 if ((*p)->address() >= addr + (off - startoff))
4585 off += (*p)->address() - (addr + (off - startoff));
4588 if (!layout->script_options()->saw_sections_clause())
4592 Output_section* os = (*p)->output_section();
4594 // Cast to unsigned long long to avoid format warnings.
4595 unsigned long long previous_dot =
4596 static_cast<unsigned long long>(addr + (off - startoff));
4597 unsigned long long dot =
4598 static_cast<unsigned long long>((*p)->address());
4601 gold_error(_("dot moves backward in linker script "
4602 "from 0x%llx to 0x%llx"), previous_dot, dot);
4604 gold_error(_("address of section '%s' moves backward "
4605 "from 0x%llx to 0x%llx"),
4606 os->name(), previous_dot, dot);
4609 (*p)->set_file_offset(off);
4610 (*p)->finalize_data_size();
4613 if (parameters->incremental_update())
4614 gold_debug(DEBUG_INCREMENTAL,
4615 "set_section_list_addresses: %08lx %08lx %s",
4616 static_cast<long>(off),
4617 static_cast<long>((*p)->data_size()),
4618 ((*p)->output_section() != NULL
4619 ? (*p)->output_section()->name() : "(special)"));
4621 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4622 // section. Such a section does not affect the size of a
4624 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4625 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4626 off += (*p)->data_size();
4631 if ((*p)->is_section())
4633 (*p)->set_out_shndx(*pshndx);
4639 return addr + (maxoff - startoff);
4642 // For a non-PT_LOAD segment, set the offset from the sections, if
4643 // any. Add INCREASE to the file size and the memory size.
4646 Output_segment::set_offset(unsigned int increase)
4648 gold_assert(this->type_ != elfcpp::PT_LOAD);
4650 gold_assert(!this->are_addresses_set_);
4652 // A non-load section only uses output_lists_[0].
4654 Output_data_list* pdl = &this->output_lists_[0];
4658 gold_assert(increase == 0);
4661 this->are_addresses_set_ = true;
4663 this->min_p_align_ = 0;
4669 // Find the first and last section by address.
4670 const Output_data* first = NULL;
4671 const Output_data* last_data = NULL;
4672 const Output_data* last_bss = NULL;
4673 for (Output_data_list::const_iterator p = pdl->begin();
4678 || (*p)->address() < first->address()
4679 || ((*p)->address() == first->address()
4680 && (*p)->data_size() < first->data_size()))
4682 const Output_data** plast;
4683 if ((*p)->is_section()
4684 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4689 || (*p)->address() > (*plast)->address()
4690 || ((*p)->address() == (*plast)->address()
4691 && (*p)->data_size() > (*plast)->data_size()))
4695 this->vaddr_ = first->address();
4696 this->paddr_ = (first->has_load_address()
4697 ? first->load_address()
4699 this->are_addresses_set_ = true;
4700 this->offset_ = first->offset();
4702 if (last_data == NULL)
4705 this->filesz_ = (last_data->address()
4706 + last_data->data_size()
4709 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4710 this->memsz_ = (last->address()
4714 this->filesz_ += increase;
4715 this->memsz_ += increase;
4717 // If this is a RELRO segment, verify that the segment ends at a
4719 if (this->type_ == elfcpp::PT_GNU_RELRO)
4721 uint64_t page_align = parameters->target().abi_pagesize();
4722 uint64_t segment_end = this->vaddr_ + this->memsz_;
4723 if (parameters->incremental_update())
4725 // The INCREASE_RELRO calculation is bypassed for an incremental
4726 // update, so we need to adjust the segment size manually here.
4727 segment_end = align_address(segment_end, page_align);
4728 this->memsz_ = segment_end - this->vaddr_;
4731 gold_assert(segment_end == align_address(segment_end, page_align));
4734 // If this is a TLS segment, align the memory size. The code in
4735 // set_section_list ensures that the section after the TLS segment
4736 // is aligned to give us room.
4737 if (this->type_ == elfcpp::PT_TLS)
4739 uint64_t segment_align = this->maximum_alignment();
4740 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4741 this->memsz_ = align_address(this->memsz_, segment_align);
4745 // Set the TLS offsets of the sections in the PT_TLS segment.
4748 Output_segment::set_tls_offsets()
4750 gold_assert(this->type_ == elfcpp::PT_TLS);
4752 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4753 p != this->output_lists_[0].end();
4755 (*p)->set_tls_offset(this->vaddr_);
4758 // Return the first section.
4761 Output_segment::first_section() const
4763 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4765 const Output_data_list* pdl = &this->output_lists_[i];
4766 for (Output_data_list::const_iterator p = pdl->begin();
4770 if ((*p)->is_section())
4771 return (*p)->output_section();
4777 // Return the number of Output_sections in an Output_segment.
4780 Output_segment::output_section_count() const
4782 unsigned int ret = 0;
4783 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4784 ret += this->output_section_count_list(&this->output_lists_[i]);
4788 // Return the number of Output_sections in an Output_data_list.
4791 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4793 unsigned int count = 0;
4794 for (Output_data_list::const_iterator p = pdl->begin();
4798 if ((*p)->is_section())
4804 // Return the section attached to the list segment with the lowest
4805 // load address. This is used when handling a PHDRS clause in a
4809 Output_segment::section_with_lowest_load_address() const
4811 Output_section* found = NULL;
4812 uint64_t found_lma = 0;
4813 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4814 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4819 // Look through a list for a section with a lower load address.
4822 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4823 Output_section** found,
4824 uint64_t* found_lma) const
4826 for (Output_data_list::const_iterator p = pdl->begin();
4830 if (!(*p)->is_section())
4832 Output_section* os = static_cast<Output_section*>(*p);
4833 uint64_t lma = (os->has_load_address()
4834 ? os->load_address()
4836 if (*found == NULL || lma < *found_lma)
4844 // Write the segment data into *OPHDR.
4846 template<int size, bool big_endian>
4848 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4850 ophdr->put_p_type(this->type_);
4851 ophdr->put_p_offset(this->offset_);
4852 ophdr->put_p_vaddr(this->vaddr_);
4853 ophdr->put_p_paddr(this->paddr_);
4854 ophdr->put_p_filesz(this->filesz_);
4855 ophdr->put_p_memsz(this->memsz_);
4856 ophdr->put_p_flags(this->flags_);
4857 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4860 // Write the section headers into V.
4862 template<int size, bool big_endian>
4864 Output_segment::write_section_headers(const Layout* layout,
4865 const Stringpool* secnamepool,
4867 unsigned int* pshndx) const
4869 // Every section that is attached to a segment must be attached to a
4870 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4872 if (this->type_ != elfcpp::PT_LOAD)
4875 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4877 const Output_data_list* pdl = &this->output_lists_[i];
4878 v = this->write_section_headers_list<size, big_endian>(layout,
4887 template<int size, bool big_endian>
4889 Output_segment::write_section_headers_list(const Layout* layout,
4890 const Stringpool* secnamepool,
4891 const Output_data_list* pdl,
4893 unsigned int* pshndx) const
4895 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4896 for (Output_data_list::const_iterator p = pdl->begin();
4900 if ((*p)->is_section())
4902 const Output_section* ps = static_cast<const Output_section*>(*p);
4903 gold_assert(*pshndx == ps->out_shndx());
4904 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4905 ps->write_header(layout, secnamepool, &oshdr);
4913 // Print the output sections to the map file.
4916 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4918 if (this->type() != elfcpp::PT_LOAD)
4920 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4921 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4924 // Print an output section list to the map file.
4927 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4928 const Output_data_list* pdl) const
4930 for (Output_data_list::const_iterator p = pdl->begin();
4933 (*p)->print_to_mapfile(mapfile);
4936 // Output_file methods.
4938 Output_file::Output_file(const char* name)
4943 map_is_anonymous_(false),
4944 map_is_allocated_(false),
4945 is_temporary_(false)
4949 // Try to open an existing file. Returns false if the file doesn't
4950 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4951 // NULL, open that file as the base for incremental linking, and
4952 // copy its contents to the new output file. This routine can
4953 // be called for incremental updates, in which case WRITABLE should
4954 // be true, or by the incremental-dump utility, in which case
4955 // WRITABLE should be false.
4958 Output_file::open_base_file(const char* base_name, bool writable)
4960 // The name "-" means "stdout".
4961 if (strcmp(this->name_, "-") == 0)
4964 bool use_base_file = base_name != NULL;
4966 base_name = this->name_;
4967 else if (strcmp(base_name, this->name_) == 0)
4968 gold_fatal(_("%s: incremental base and output file name are the same"),
4971 // Don't bother opening files with a size of zero.
4973 if (::stat(base_name, &s) != 0)
4975 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4980 gold_info(_("%s: incremental base file is empty"), base_name);
4984 // If we're using a base file, we want to open it read-only.
4988 int oflags = writable ? O_RDWR : O_RDONLY;
4989 int o = open_descriptor(-1, base_name, oflags, 0);
4992 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4996 // If the base file and the output file are different, open a
4997 // new output file and read the contents from the base file into
4998 // the newly-mapped region.
5001 this->open(s.st_size);
5002 ssize_t bytes_to_read = s.st_size;
5003 unsigned char* p = this->base_;
5004 while (bytes_to_read > 0)
5006 ssize_t len = ::read(o, p, bytes_to_read);
5009 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
5014 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5016 static_cast<long long>(s.st_size - bytes_to_read),
5017 static_cast<long long>(s.st_size));
5021 bytes_to_read -= len;
5028 this->file_size_ = s.st_size;
5030 if (!this->map_no_anonymous(writable))
5032 release_descriptor(o, true);
5034 this->file_size_ = 0;
5041 // Open the output file.
5044 Output_file::open(off_t file_size)
5046 this->file_size_ = file_size;
5048 // Unlink the file first; otherwise the open() may fail if the file
5049 // is busy (e.g. it's an executable that's currently being executed).
5051 // However, the linker may be part of a system where a zero-length
5052 // file is created for it to write to, with tight permissions (gcc
5053 // 2.95 did something like this). Unlinking the file would work
5054 // around those permission controls, so we only unlink if the file
5055 // has a non-zero size. We also unlink only regular files to avoid
5056 // trouble with directories/etc.
5058 // If we fail, continue; this command is merely a best-effort attempt
5059 // to improve the odds for open().
5061 // We let the name "-" mean "stdout"
5062 if (!this->is_temporary_)
5064 if (strcmp(this->name_, "-") == 0)
5065 this->o_ = STDOUT_FILENO;
5069 if (::stat(this->name_, &s) == 0
5070 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5073 ::unlink(this->name_);
5074 else if (!parameters->options().relocatable())
5076 // If we don't unlink the existing file, add execute
5077 // permission where read permissions already exist
5078 // and where the umask permits.
5079 int mask = ::umask(0);
5081 s.st_mode |= (s.st_mode & 0444) >> 2;
5082 ::chmod(this->name_, s.st_mode & ~mask);
5086 int mode = parameters->options().relocatable() ? 0666 : 0777;
5087 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5090 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5098 // Resize the output file.
5101 Output_file::resize(off_t file_size)
5103 // If the mmap is mapping an anonymous memory buffer, this is easy:
5104 // just mremap to the new size. If it's mapping to a file, we want
5105 // to unmap to flush to the file, then remap after growing the file.
5106 if (this->map_is_anonymous_)
5109 if (!this->map_is_allocated_)
5111 base = ::mremap(this->base_, this->file_size_, file_size,
5113 if (base == MAP_FAILED)
5114 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5118 base = realloc(this->base_, file_size);
5121 if (file_size > this->file_size_)
5122 memset(static_cast<char*>(base) + this->file_size_, 0,
5123 file_size - this->file_size_);
5125 this->base_ = static_cast<unsigned char*>(base);
5126 this->file_size_ = file_size;
5131 this->file_size_ = file_size;
5132 if (!this->map_no_anonymous(true))
5133 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5137 // Map an anonymous block of memory which will later be written to the
5138 // file. Return whether the map succeeded.
5141 Output_file::map_anonymous()
5143 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5144 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5145 if (base == MAP_FAILED)
5147 base = malloc(this->file_size_);
5150 memset(base, 0, this->file_size_);
5151 this->map_is_allocated_ = true;
5153 this->base_ = static_cast<unsigned char*>(base);
5154 this->map_is_anonymous_ = true;
5158 // Map the file into memory. Return whether the mapping succeeded.
5159 // If WRITABLE is true, map with write access.
5162 Output_file::map_no_anonymous(bool writable)
5164 const int o = this->o_;
5166 // If the output file is not a regular file, don't try to mmap it;
5167 // instead, we'll mmap a block of memory (an anonymous buffer), and
5168 // then later write the buffer to the file.
5170 struct stat statbuf;
5171 if (o == STDOUT_FILENO || o == STDERR_FILENO
5172 || ::fstat(o, &statbuf) != 0
5173 || !S_ISREG(statbuf.st_mode)
5174 || this->is_temporary_)
5177 // Ensure that we have disk space available for the file. If we
5178 // don't do this, it is possible that we will call munmap, close,
5179 // and exit with dirty buffers still in the cache with no assigned
5180 // disk blocks. If the disk is out of space at that point, the
5181 // output file will wind up incomplete, but we will have already
5182 // exited. The alternative to fallocate would be to use fdatasync,
5183 // but that would be a more significant performance hit.
5186 int err = gold_fallocate(o, 0, this->file_size_);
5188 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5191 // Map the file into memory.
5192 int prot = PROT_READ;
5195 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5197 // The mmap call might fail because of file system issues: the file
5198 // system might not support mmap at all, or it might not support
5199 // mmap with PROT_WRITE.
5200 if (base == MAP_FAILED)
5203 this->map_is_anonymous_ = false;
5204 this->base_ = static_cast<unsigned char*>(base);
5208 // Map the file into memory.
5213 if (parameters->options().mmap_output_file()
5214 && this->map_no_anonymous(true))
5217 // The mmap call might fail because of file system issues: the file
5218 // system might not support mmap at all, or it might not support
5219 // mmap with PROT_WRITE. I'm not sure which errno values we will
5220 // see in all cases, so if the mmap fails for any reason and we
5221 // don't care about file contents, try for an anonymous map.
5222 if (this->map_anonymous())
5225 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5226 this->name_, static_cast<unsigned long>(this->file_size_),
5230 // Unmap the file from memory.
5233 Output_file::unmap()
5235 if (this->map_is_anonymous_)
5237 // We've already written out the data, so there is no reason to
5238 // waste time unmapping or freeing the memory.
5242 if (::munmap(this->base_, this->file_size_) < 0)
5243 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5248 // Close the output file.
5251 Output_file::close()
5253 // If the map isn't file-backed, we need to write it now.
5254 if (this->map_is_anonymous_ && !this->is_temporary_)
5256 size_t bytes_to_write = this->file_size_;
5258 while (bytes_to_write > 0)
5260 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5262 if (bytes_written == 0)
5263 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5264 else if (bytes_written < 0)
5265 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5268 bytes_to_write -= bytes_written;
5269 offset += bytes_written;
5275 // We don't close stdout or stderr
5276 if (this->o_ != STDOUT_FILENO
5277 && this->o_ != STDERR_FILENO
5278 && !this->is_temporary_)
5279 if (::close(this->o_) < 0)
5280 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5284 // Instantiate the templates we need. We could use the configure
5285 // script to restrict this to only the ones for implemented targets.
5287 #ifdef HAVE_TARGET_32_LITTLE
5290 Output_section::add_input_section<32, false>(
5292 Sized_relobj_file<32, false>* object,
5294 const char* secname,
5295 const elfcpp::Shdr<32, false>& shdr,
5296 unsigned int reloc_shndx,
5297 bool have_sections_script);
5300 #ifdef HAVE_TARGET_32_BIG
5303 Output_section::add_input_section<32, true>(
5305 Sized_relobj_file<32, true>* object,
5307 const char* secname,
5308 const elfcpp::Shdr<32, true>& shdr,
5309 unsigned int reloc_shndx,
5310 bool have_sections_script);
5313 #ifdef HAVE_TARGET_64_LITTLE
5316 Output_section::add_input_section<64, false>(
5318 Sized_relobj_file<64, false>* object,
5320 const char* secname,
5321 const elfcpp::Shdr<64, false>& shdr,
5322 unsigned int reloc_shndx,
5323 bool have_sections_script);
5326 #ifdef HAVE_TARGET_64_BIG
5329 Output_section::add_input_section<64, true>(
5331 Sized_relobj_file<64, true>* object,
5333 const char* secname,
5334 const elfcpp::Shdr<64, true>& shdr,
5335 unsigned int reloc_shndx,
5336 bool have_sections_script);
5339 #ifdef HAVE_TARGET_32_LITTLE
5341 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5344 #ifdef HAVE_TARGET_32_BIG
5346 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5349 #ifdef HAVE_TARGET_64_LITTLE
5351 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5354 #ifdef HAVE_TARGET_64_BIG
5356 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5359 #ifdef HAVE_TARGET_32_LITTLE
5361 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5364 #ifdef HAVE_TARGET_32_BIG
5366 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5369 #ifdef HAVE_TARGET_64_LITTLE
5371 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5374 #ifdef HAVE_TARGET_64_BIG
5376 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5379 #ifdef HAVE_TARGET_32_LITTLE
5381 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5384 #ifdef HAVE_TARGET_32_BIG
5386 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5389 #ifdef HAVE_TARGET_64_LITTLE
5391 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5394 #ifdef HAVE_TARGET_64_BIG
5396 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5399 #ifdef HAVE_TARGET_32_LITTLE
5401 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5404 #ifdef HAVE_TARGET_32_BIG
5406 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5409 #ifdef HAVE_TARGET_64_LITTLE
5411 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5414 #ifdef HAVE_TARGET_64_BIG
5416 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5419 #ifdef HAVE_TARGET_32_LITTLE
5421 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5424 #ifdef HAVE_TARGET_32_BIG
5426 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5429 #ifdef HAVE_TARGET_64_LITTLE
5431 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5434 #ifdef HAVE_TARGET_64_BIG
5436 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5439 #ifdef HAVE_TARGET_32_LITTLE
5441 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5444 #ifdef HAVE_TARGET_32_BIG
5446 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5449 #ifdef HAVE_TARGET_64_LITTLE
5451 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5454 #ifdef HAVE_TARGET_64_BIG
5456 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5459 #ifdef HAVE_TARGET_32_LITTLE
5461 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5464 #ifdef HAVE_TARGET_32_BIG
5466 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5469 #ifdef HAVE_TARGET_64_LITTLE
5471 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5474 #ifdef HAVE_TARGET_64_BIG
5476 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5479 #ifdef HAVE_TARGET_32_LITTLE
5481 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5484 #ifdef HAVE_TARGET_32_BIG
5486 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5489 #ifdef HAVE_TARGET_64_LITTLE
5491 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5494 #ifdef HAVE_TARGET_64_BIG
5496 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5499 #ifdef HAVE_TARGET_32_LITTLE
5501 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5504 #ifdef HAVE_TARGET_32_BIG
5506 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5509 #ifdef HAVE_TARGET_64_LITTLE
5511 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5514 #ifdef HAVE_TARGET_64_BIG
5516 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5519 #ifdef HAVE_TARGET_32_LITTLE
5521 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5524 #ifdef HAVE_TARGET_32_BIG
5526 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5529 #ifdef HAVE_TARGET_64_LITTLE
5531 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5534 #ifdef HAVE_TARGET_64_BIG
5536 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5539 #ifdef HAVE_TARGET_32_LITTLE
5541 class Output_data_group<32, false>;
5544 #ifdef HAVE_TARGET_32_BIG
5546 class Output_data_group<32, true>;
5549 #ifdef HAVE_TARGET_64_LITTLE
5551 class Output_data_group<64, false>;
5554 #ifdef HAVE_TARGET_64_BIG
5556 class Output_data_group<64, true>;
5560 class Output_data_got<32, false>;
5563 class Output_data_got<32, true>;
5566 class Output_data_got<64, false>;
5569 class Output_data_got<64, true>;
5571 } // End namespace gold.