9aaa7e97410f994b46044fb65804e12fe83640bf
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 #include "libiberty.h"   // for unlink_if_ordinary()
33
34 #include "parameters.h"
35 #include "object.h"
36 #include "symtab.h"
37 #include "reloc.h"
38 #include "merge.h"
39 #include "output.h"
40
41 namespace gold
42 {
43
44 // Output_data variables.
45
46 bool Output_data::sizes_are_fixed;
47
48 // Output_data methods.
49
50 Output_data::~Output_data()
51 {
52 }
53
54 // Set the address and offset.
55
56 void
57 Output_data::set_address(uint64_t addr, off_t off)
58 {
59   this->address_ = addr;
60   this->offset_ = off;
61
62   // Let the child class know.
63   this->do_set_address(addr, off);
64 }
65
66 // Return the default alignment for a size--32 or 64.
67
68 uint64_t
69 Output_data::default_alignment(int size)
70 {
71   if (size == 32)
72     return 4;
73   else if (size == 64)
74     return 8;
75   else
76     gold_unreachable();
77 }
78
79 // Output_section_header methods.  This currently assumes that the
80 // segment and section lists are complete at construction time.
81
82 Output_section_headers::Output_section_headers(
83     const Layout* layout,
84     const Layout::Segment_list* segment_list,
85     const Layout::Section_list* unattached_section_list,
86     const Stringpool* secnamepool)
87   : layout_(layout),
88     segment_list_(segment_list),
89     unattached_section_list_(unattached_section_list),
90     secnamepool_(secnamepool)
91 {
92   // Count all the sections.  Start with 1 for the null section.
93   off_t count = 1;
94   for (Layout::Segment_list::const_iterator p = segment_list->begin();
95        p != segment_list->end();
96        ++p)
97     if ((*p)->type() == elfcpp::PT_LOAD)
98       count += (*p)->output_section_count();
99   count += unattached_section_list->size();
100
101   const int size = parameters->get_size();
102   int shdr_size;
103   if (size == 32)
104     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
105   else if (size == 64)
106     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
107   else
108     gold_unreachable();
109
110   this->set_data_size(count * shdr_size);
111 }
112
113 // Write out the section headers.
114
115 void
116 Output_section_headers::do_write(Output_file* of)
117 {
118   if (parameters->get_size() == 32)
119     {
120       if (parameters->is_big_endian())
121         {
122 #ifdef HAVE_TARGET_32_BIG
123           this->do_sized_write<32, true>(of);
124 #else
125           gold_unreachable();
126 #endif
127         }
128       else
129         {
130 #ifdef HAVE_TARGET_32_LITTLE
131           this->do_sized_write<32, false>(of);
132 #else
133           gold_unreachable();
134 #endif
135         }
136     }
137   else if (parameters->get_size() == 64)
138     {
139       if (parameters->is_big_endian())
140         {
141 #ifdef HAVE_TARGET_64_BIG
142           this->do_sized_write<64, true>(of);
143 #else
144           gold_unreachable();
145 #endif
146         }
147       else
148         {
149 #ifdef HAVE_TARGET_64_LITTLE
150           this->do_sized_write<64, false>(of);
151 #else
152           gold_unreachable();
153 #endif
154         }
155     }
156   else
157     gold_unreachable();
158 }
159
160 template<int size, bool big_endian>
161 void
162 Output_section_headers::do_sized_write(Output_file* of)
163 {
164   off_t all_shdrs_size = this->data_size();
165   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
166
167   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
168   unsigned char* v = view;
169
170   {
171     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
172     oshdr.put_sh_name(0);
173     oshdr.put_sh_type(elfcpp::SHT_NULL);
174     oshdr.put_sh_flags(0);
175     oshdr.put_sh_addr(0);
176     oshdr.put_sh_offset(0);
177     oshdr.put_sh_size(0);
178     oshdr.put_sh_link(0);
179     oshdr.put_sh_info(0);
180     oshdr.put_sh_addralign(0);
181     oshdr.put_sh_entsize(0);
182   }
183
184   v += shdr_size;
185
186   unsigned shndx = 1;
187   for (Layout::Segment_list::const_iterator p = this->segment_list_->begin();
188        p != this->segment_list_->end();
189        ++p)
190     v = (*p)->write_section_headers SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
191             this->layout_, this->secnamepool_, v, &shndx
192             SELECT_SIZE_ENDIAN(size, big_endian));
193   for (Layout::Section_list::const_iterator p =
194          this->unattached_section_list_->begin();
195        p != this->unattached_section_list_->end();
196        ++p)
197     {
198       gold_assert(shndx == (*p)->out_shndx());
199       elfcpp::Shdr_write<size, big_endian> oshdr(v);
200       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
201       v += shdr_size;
202       ++shndx;
203     }
204
205   of->write_output_view(this->offset(), all_shdrs_size, view);
206 }
207
208 // Output_segment_header methods.
209
210 Output_segment_headers::Output_segment_headers(
211     const Layout::Segment_list& segment_list)
212   : segment_list_(segment_list)
213 {
214   const int size = parameters->get_size();
215   int phdr_size;
216   if (size == 32)
217     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
218   else if (size == 64)
219     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
220   else
221     gold_unreachable();
222
223   this->set_data_size(segment_list.size() * phdr_size);
224 }
225
226 void
227 Output_segment_headers::do_write(Output_file* of)
228 {
229   if (parameters->get_size() == 32)
230     {
231       if (parameters->is_big_endian())
232         {
233 #ifdef HAVE_TARGET_32_BIG
234           this->do_sized_write<32, true>(of);
235 #else
236           gold_unreachable();
237 #endif
238         }
239       else
240         {
241 #ifdef HAVE_TARGET_32_LITTLE
242         this->do_sized_write<32, false>(of);
243 #else
244         gold_unreachable();
245 #endif
246         }
247     }
248   else if (parameters->get_size() == 64)
249     {
250       if (parameters->is_big_endian())
251         {
252 #ifdef HAVE_TARGET_64_BIG
253           this->do_sized_write<64, true>(of);
254 #else
255           gold_unreachable();
256 #endif
257         }
258       else
259         {
260 #ifdef HAVE_TARGET_64_LITTLE
261           this->do_sized_write<64, false>(of);
262 #else
263           gold_unreachable();
264 #endif
265         }
266     }
267   else
268     gold_unreachable();
269 }
270
271 template<int size, bool big_endian>
272 void
273 Output_segment_headers::do_sized_write(Output_file* of)
274 {
275   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
276   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
277   unsigned char* view = of->get_output_view(this->offset(),
278                                             all_phdrs_size);
279   unsigned char* v = view;
280   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
281        p != this->segment_list_.end();
282        ++p)
283     {
284       elfcpp::Phdr_write<size, big_endian> ophdr(v);
285       (*p)->write_header(&ophdr);
286       v += phdr_size;
287     }
288
289   of->write_output_view(this->offset(), all_phdrs_size, view);
290 }
291
292 // Output_file_header methods.
293
294 Output_file_header::Output_file_header(const Target* target,
295                                        const Symbol_table* symtab,
296                                        const Output_segment_headers* osh)
297   : target_(target),
298     symtab_(symtab),
299     segment_header_(osh),
300     section_header_(NULL),
301     shstrtab_(NULL)
302 {
303   const int size = parameters->get_size();
304   int ehdr_size;
305   if (size == 32)
306     ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
307   else if (size == 64)
308     ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
309   else
310     gold_unreachable();
311
312   this->set_data_size(ehdr_size);
313 }
314
315 // Set the section table information for a file header.
316
317 void
318 Output_file_header::set_section_info(const Output_section_headers* shdrs,
319                                      const Output_section* shstrtab)
320 {
321   this->section_header_ = shdrs;
322   this->shstrtab_ = shstrtab;
323 }
324
325 // Write out the file header.
326
327 void
328 Output_file_header::do_write(Output_file* of)
329 {
330   if (parameters->get_size() == 32)
331     {
332       if (parameters->is_big_endian())
333         {
334 #ifdef HAVE_TARGET_32_BIG
335           this->do_sized_write<32, true>(of);
336 #else
337           gold_unreachable();
338 #endif
339         }
340       else
341         {
342 #ifdef HAVE_TARGET_32_LITTLE
343           this->do_sized_write<32, false>(of);
344 #else
345           gold_unreachable();
346 #endif
347         }
348     }
349   else if (parameters->get_size() == 64)
350     {
351       if (parameters->is_big_endian())
352         {
353 #ifdef HAVE_TARGET_64_BIG
354           this->do_sized_write<64, true>(of);
355 #else
356           gold_unreachable();
357 #endif
358         }
359       else
360         {
361 #ifdef HAVE_TARGET_64_LITTLE
362           this->do_sized_write<64, false>(of);
363 #else
364           gold_unreachable();
365 #endif
366         }
367     }
368   else
369     gold_unreachable();
370 }
371
372 // Write out the file header with appropriate size and endianess.
373
374 template<int size, bool big_endian>
375 void
376 Output_file_header::do_sized_write(Output_file* of)
377 {
378   gold_assert(this->offset() == 0);
379
380   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
381   unsigned char* view = of->get_output_view(0, ehdr_size);
382   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
383
384   unsigned char e_ident[elfcpp::EI_NIDENT];
385   memset(e_ident, 0, elfcpp::EI_NIDENT);
386   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
387   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
388   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
389   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
390   if (size == 32)
391     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
392   else if (size == 64)
393     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
394   else
395     gold_unreachable();
396   e_ident[elfcpp::EI_DATA] = (big_endian
397                               ? elfcpp::ELFDATA2MSB
398                               : elfcpp::ELFDATA2LSB);
399   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
400   // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
401   oehdr.put_e_ident(e_ident);
402
403   elfcpp::ET e_type;
404   if (parameters->output_is_object())
405     e_type = elfcpp::ET_REL;
406   else if (parameters->output_is_shared())
407     e_type = elfcpp::ET_DYN;
408   else
409     e_type = elfcpp::ET_EXEC;
410   oehdr.put_e_type(e_type);
411
412   oehdr.put_e_machine(this->target_->machine_code());
413   oehdr.put_e_version(elfcpp::EV_CURRENT);
414
415   // FIXME: Need to support -e, and target specific entry symbol.
416   Symbol* sym = this->symtab_->lookup("_start");
417   typename Sized_symbol<size>::Value_type v;
418   if (sym == NULL)
419     v = 0;
420   else
421     {
422       Sized_symbol<size>* ssym;
423       ssym = this->symtab_->get_sized_symbol SELECT_SIZE_NAME(size) (
424         sym SELECT_SIZE(size));
425       v = ssym->value();
426     }
427   oehdr.put_e_entry(v);
428
429   oehdr.put_e_phoff(this->segment_header_->offset());
430   oehdr.put_e_shoff(this->section_header_->offset());
431
432   // FIXME: The target needs to set the flags.
433   oehdr.put_e_flags(0);
434
435   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
436   oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
437   oehdr.put_e_phnum(this->segment_header_->data_size()
438                      / elfcpp::Elf_sizes<size>::phdr_size);
439   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
440   oehdr.put_e_shnum(this->section_header_->data_size()
441                      / elfcpp::Elf_sizes<size>::shdr_size);
442   oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
443
444   of->write_output_view(0, ehdr_size, view);
445 }
446
447 // Output_data_const methods.
448
449 void
450 Output_data_const::do_write(Output_file* of)
451 {
452   of->write(this->offset(), this->data_.data(), this->data_.size());
453 }
454
455 // Output_data_const_buffer methods.
456
457 void
458 Output_data_const_buffer::do_write(Output_file* of)
459 {
460   of->write(this->offset(), this->p_, this->data_size());
461 }
462
463 // Output_section_data methods.
464
465 // Record the output section, and set the entry size and such.
466
467 void
468 Output_section_data::set_output_section(Output_section* os)
469 {
470   gold_assert(this->output_section_ == NULL);
471   this->output_section_ = os;
472   this->do_adjust_output_section(os);
473 }
474
475 // Return the section index of the output section.
476
477 unsigned int
478 Output_section_data::do_out_shndx() const
479 {
480   gold_assert(this->output_section_ != NULL);
481   return this->output_section_->out_shndx();
482 }
483
484 // Output_data_strtab methods.
485
486 // Set the address.  We don't actually care about the address, but we
487 // do set our final size.
488
489 void
490 Output_data_strtab::do_set_address(uint64_t, off_t)
491 {
492   this->strtab_->set_string_offsets();
493   this->set_data_size(this->strtab_->get_strtab_size());
494 }
495
496 // Write out a string table.
497
498 void
499 Output_data_strtab::do_write(Output_file* of)
500 {
501   this->strtab_->write(of, this->offset());
502 }
503
504 // Output_reloc methods.
505
506 // Get the symbol index of a relocation.
507
508 template<bool dynamic, int size, bool big_endian>
509 unsigned int
510 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
511   const
512 {
513   unsigned int index;
514   switch (this->local_sym_index_)
515     {
516     case INVALID_CODE:
517       gold_unreachable();
518
519     case GSYM_CODE:
520       if (this->u1_.gsym == NULL)
521         index = 0;
522       else if (dynamic)
523         index = this->u1_.gsym->dynsym_index();
524       else
525         index = this->u1_.gsym->symtab_index();
526       break;
527
528     case SECTION_CODE:
529       if (dynamic)
530         index = this->u1_.os->dynsym_index();
531       else
532         index = this->u1_.os->symtab_index();
533       break;
534
535     case 0:
536       // Relocations without symbols use a symbol index of 0.
537       index = 0;
538       break;
539
540     default:
541       if (dynamic)
542         {
543           // FIXME: It seems that some targets may need to generate
544           // dynamic relocations against local symbols for some
545           // reasons.  This will have to be addressed at some point.
546           gold_unreachable();
547         }
548       else
549         index = this->u1_.relobj->symtab_index(this->local_sym_index_);
550       break;
551     }
552   gold_assert(index != -1U);
553   return index;
554 }
555
556 // Write out the offset and info fields of a Rel or Rela relocation
557 // entry.
558
559 template<bool dynamic, int size, bool big_endian>
560 template<typename Write_rel>
561 void
562 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
563     Write_rel* wr) const
564 {
565   Address address = this->address_;
566   if (this->shndx_ != INVALID_CODE)
567     {
568       off_t off;
569       Output_section* os = this->u2_.relobj->output_section(this->shndx_,
570                                                             &off);
571       gold_assert(os != NULL);
572       address += os->address() + off;
573     }
574   else if (this->u2_.od != NULL)
575     address += this->u2_.od->address();
576   wr->put_r_offset(address);
577   wr->put_r_info(elfcpp::elf_r_info<size>(this->get_symbol_index(),
578                                           this->type_));
579 }
580
581 // Write out a Rel relocation.
582
583 template<bool dynamic, int size, bool big_endian>
584 void
585 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
586     unsigned char* pov) const
587 {
588   elfcpp::Rel_write<size, big_endian> orel(pov);
589   this->write_rel(&orel);
590 }
591
592 // Write out a Rela relocation.
593
594 template<bool dynamic, int size, bool big_endian>
595 void
596 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
597     unsigned char* pov) const
598 {
599   elfcpp::Rela_write<size, big_endian> orel(pov);
600   this->rel_.write_rel(&orel);
601   orel.put_r_addend(this->addend_);
602 }
603
604 // Output_data_reloc_base methods.
605
606 // Adjust the output section.
607
608 template<int sh_type, bool dynamic, int size, bool big_endian>
609 void
610 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
611     ::do_adjust_output_section(Output_section* os)
612 {
613   if (sh_type == elfcpp::SHT_REL)
614     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
615   else if (sh_type == elfcpp::SHT_RELA)
616     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
617   else
618     gold_unreachable();
619   if (dynamic)
620     os->set_should_link_to_dynsym();
621   else
622     os->set_should_link_to_symtab();
623 }
624
625 // Write out relocation data.
626
627 template<int sh_type, bool dynamic, int size, bool big_endian>
628 void
629 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
630     Output_file* of)
631 {
632   const off_t off = this->offset();
633   const off_t oview_size = this->data_size();
634   unsigned char* const oview = of->get_output_view(off, oview_size);
635
636   unsigned char* pov = oview;
637   for (typename Relocs::const_iterator p = this->relocs_.begin();
638        p != this->relocs_.end();
639        ++p)
640     {
641       p->write(pov);
642       pov += reloc_size;
643     }
644
645   gold_assert(pov - oview == oview_size);
646
647   of->write_output_view(off, oview_size, oview);
648
649   // We no longer need the relocation entries.
650   this->relocs_.clear();
651 }
652
653 // Output_data_got::Got_entry methods.
654
655 // Write out the entry.
656
657 template<int size, bool big_endian>
658 void
659 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
660 {
661   Valtype val = 0;
662
663   switch (this->local_sym_index_)
664     {
665     case GSYM_CODE:
666       {
667         Symbol* gsym = this->u_.gsym;
668
669         // If the symbol is resolved locally, we need to write out its
670         // value.  Otherwise we just write zero.  The target code is
671         // responsible for creating a relocation entry to fill in the
672         // value at runtime.
673         if (gsym->final_value_is_known())
674           {
675             Sized_symbol<size>* sgsym;
676             // This cast is a bit ugly.  We don't want to put a
677             // virtual method in Symbol, because we want Symbol to be
678             // as small as possible.
679             sgsym = static_cast<Sized_symbol<size>*>(gsym);
680             val = sgsym->value();
681           }
682       }
683       break;
684
685     case CONSTANT_CODE:
686       val = this->u_.constant;
687       break;
688
689     default:
690       val = this->u_.object->local_symbol_value(this->local_sym_index_);
691       break;
692     }
693
694   elfcpp::Swap<size, big_endian>::writeval(pov, val);
695 }
696
697 // Output_data_got methods.
698
699 // Add an entry for a global symbol to the GOT.  This returns true if
700 // this is a new GOT entry, false if the symbol already had a GOT
701 // entry.
702
703 template<int size, bool big_endian>
704 bool
705 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
706 {
707   if (gsym->has_got_offset())
708     return false;
709
710   this->entries_.push_back(Got_entry(gsym));
711   this->set_got_size();
712   gsym->set_got_offset(this->last_got_offset());
713   return true;
714 }
715
716 // Add an entry for a local symbol to the GOT.  This returns true if
717 // this is a new GOT entry, false if the symbol already has a GOT
718 // entry.
719
720 template<int size, bool big_endian>
721 bool
722 Output_data_got<size, big_endian>::add_local(
723     Sized_relobj<size, big_endian>* object,
724     unsigned int symndx)
725 {
726   if (object->local_has_got_offset(symndx))
727     return false;
728   this->entries_.push_back(Got_entry(object, symndx));
729   this->set_got_size();
730   object->set_local_got_offset(symndx, this->last_got_offset());
731   return true;
732 }
733
734 // Write out the GOT.
735
736 template<int size, bool big_endian>
737 void
738 Output_data_got<size, big_endian>::do_write(Output_file* of)
739 {
740   const int add = size / 8;
741
742   const off_t off = this->offset();
743   const off_t oview_size = this->data_size();
744   unsigned char* const oview = of->get_output_view(off, oview_size);
745
746   unsigned char* pov = oview;
747   for (typename Got_entries::const_iterator p = this->entries_.begin();
748        p != this->entries_.end();
749        ++p)
750     {
751       p->write(pov);
752       pov += add;
753     }
754
755   gold_assert(pov - oview == oview_size);
756
757   of->write_output_view(off, oview_size, oview);
758
759   // We no longer need the GOT entries.
760   this->entries_.clear();
761 }
762
763 // Output_data_dynamic::Dynamic_entry methods.
764
765 // Write out the entry.
766
767 template<int size, bool big_endian>
768 void
769 Output_data_dynamic::Dynamic_entry::write(
770     unsigned char* pov,
771     const Stringpool* pool
772     ACCEPT_SIZE_ENDIAN) const
773 {
774   typename elfcpp::Elf_types<size>::Elf_WXword val;
775   switch (this->classification_)
776     {
777     case DYNAMIC_NUMBER:
778       val = this->u_.val;
779       break;
780
781     case DYNAMIC_SECTION_ADDRESS:
782       val = this->u_.od->address();
783       break;
784
785     case DYNAMIC_SECTION_SIZE:
786       val = this->u_.od->data_size();
787       break;
788
789     case DYNAMIC_SYMBOL:
790       {
791         const Sized_symbol<size>* s =
792           static_cast<const Sized_symbol<size>*>(this->u_.sym);
793         val = s->value();
794       }
795       break;
796
797     case DYNAMIC_STRING:
798       val = pool->get_offset(this->u_.str);
799       break;
800
801     default:
802       gold_unreachable();
803     }
804
805   elfcpp::Dyn_write<size, big_endian> dw(pov);
806   dw.put_d_tag(this->tag_);
807   dw.put_d_val(val);
808 }
809
810 // Output_data_dynamic methods.
811
812 // Adjust the output section to set the entry size.
813
814 void
815 Output_data_dynamic::do_adjust_output_section(Output_section* os)
816 {
817   if (parameters->get_size() == 32)
818     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
819   else if (parameters->get_size() == 64)
820     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
821   else
822     gold_unreachable();
823 }
824
825 // Set the final data size.
826
827 void
828 Output_data_dynamic::do_set_address(uint64_t, off_t)
829 {
830   // Add the terminating entry.
831   this->add_constant(elfcpp::DT_NULL, 0);
832
833   int dyn_size;
834   if (parameters->get_size() == 32)
835     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
836   else if (parameters->get_size() == 64)
837     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
838   else
839     gold_unreachable();
840   this->set_data_size(this->entries_.size() * dyn_size);
841 }
842
843 // Write out the dynamic entries.
844
845 void
846 Output_data_dynamic::do_write(Output_file* of)
847 {
848   if (parameters->get_size() == 32)
849     {
850       if (parameters->is_big_endian())
851         {
852 #ifdef HAVE_TARGET_32_BIG
853           this->sized_write<32, true>(of);
854 #else
855           gold_unreachable();
856 #endif
857         }
858       else
859         {
860 #ifdef HAVE_TARGET_32_LITTLE
861           this->sized_write<32, false>(of);
862 #else
863           gold_unreachable();
864 #endif
865         }
866     }
867   else if (parameters->get_size() == 64)
868     {
869       if (parameters->is_big_endian())
870         {
871 #ifdef HAVE_TARGET_64_BIG
872           this->sized_write<64, true>(of);
873 #else
874           gold_unreachable();
875 #endif
876         }
877       else
878         {
879 #ifdef HAVE_TARGET_64_LITTLE
880           this->sized_write<64, false>(of);
881 #else
882           gold_unreachable();
883 #endif
884         }
885     }
886   else
887     gold_unreachable();
888 }
889
890 template<int size, bool big_endian>
891 void
892 Output_data_dynamic::sized_write(Output_file* of)
893 {
894   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
895
896   const off_t offset = this->offset();
897   const off_t oview_size = this->data_size();
898   unsigned char* const oview = of->get_output_view(offset, oview_size);
899
900   unsigned char* pov = oview;
901   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
902        p != this->entries_.end();
903        ++p)
904     {
905       p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
906           pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
907       pov += dyn_size;
908     }
909
910   gold_assert(pov - oview == oview_size);
911
912   of->write_output_view(offset, oview_size, oview);
913
914   // We no longer need the dynamic entries.
915   this->entries_.clear();
916 }
917
918 // Output_section::Input_section methods.
919
920 // Return the data size.  For an input section we store the size here.
921 // For an Output_section_data, we have to ask it for the size.
922
923 off_t
924 Output_section::Input_section::data_size() const
925 {
926   if (this->is_input_section())
927     return this->u1_.data_size;
928   else
929     return this->u2_.posd->data_size();
930 }
931
932 // Set the address and file offset.
933
934 void
935 Output_section::Input_section::set_address(uint64_t addr, off_t off,
936                                            off_t secoff)
937 {
938   if (this->is_input_section())
939     this->u2_.object->set_section_offset(this->shndx_, off - secoff);
940   else
941     this->u2_.posd->set_address(addr, off);
942 }
943
944 // Try to turn an input address into an output address.
945
946 bool
947 Output_section::Input_section::output_address(const Relobj* object,
948                                               unsigned int shndx,
949                                               off_t offset,
950                                               uint64_t output_section_address,
951                                               uint64_t *poutput) const
952 {
953   if (!this->is_input_section())
954     return this->u2_.posd->output_address(object, shndx, offset,
955                                           output_section_address, poutput);
956   else
957     {
958       if (this->shndx_ != shndx
959           || this->u2_.object != object)
960         return false;
961       off_t output_offset;
962       Output_section* os = object->output_section(shndx, &output_offset);
963       gold_assert(os != NULL);
964       *poutput = output_section_address + output_offset + offset;
965       return true;
966     }
967 }
968
969 // Write out the data.  We don't have to do anything for an input
970 // section--they are handled via Object::relocate--but this is where
971 // we write out the data for an Output_section_data.
972
973 void
974 Output_section::Input_section::write(Output_file* of)
975 {
976   if (!this->is_input_section())
977     this->u2_.posd->write(of);
978 }
979
980 // Output_section methods.
981
982 // Construct an Output_section.  NAME will point into a Stringpool.
983
984 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
985                                elfcpp::Elf_Xword flags)
986   : name_(name),
987     addralign_(0),
988     entsize_(0),
989     link_section_(NULL),
990     link_(0),
991     info_section_(NULL),
992     info_(0),
993     type_(type),
994     flags_(flags),
995     out_shndx_(0),
996     symtab_index_(0),
997     dynsym_index_(0),
998     input_sections_(),
999     first_input_offset_(0),
1000     fills_(),
1001     needs_symtab_index_(false),
1002     needs_dynsym_index_(false),
1003     should_link_to_symtab_(false),
1004     should_link_to_dynsym_(false)
1005 {
1006 }
1007
1008 Output_section::~Output_section()
1009 {
1010 }
1011
1012 // Set the entry size.
1013
1014 void
1015 Output_section::set_entsize(uint64_t v)
1016 {
1017   if (this->entsize_ == 0)
1018     this->entsize_ = v;
1019   else
1020     gold_assert(this->entsize_ == v);
1021 }
1022
1023 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1024 // OBJECT, to the Output_section.  Return the offset of the input
1025 // section within the output section.  We don't always keep track of
1026 // input sections for an Output_section.  Instead, each Object keeps
1027 // track of the Output_section for each of its input sections.
1028
1029 template<int size, bool big_endian>
1030 off_t
1031 Output_section::add_input_section(Relobj* object, unsigned int shndx,
1032                                   const char* secname,
1033                                   const elfcpp::Shdr<size, big_endian>& shdr)
1034 {
1035   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1036   if ((addralign & (addralign - 1)) != 0)
1037     {
1038       object->error(_("invalid alignment %lu for section \"%s\""),
1039                     static_cast<unsigned long>(addralign), secname);
1040       addralign = 1;
1041     }
1042
1043   if (addralign > this->addralign_)
1044     this->addralign_ = addralign;
1045
1046   // If this is a SHF_MERGE section, we pass all the input sections to
1047   // a Output_data_merge.
1048   if ((shdr.get_sh_flags() & elfcpp::SHF_MERGE) != 0)
1049     {
1050       if (this->add_merge_input_section(object, shndx, shdr.get_sh_flags(),
1051                                         shdr.get_sh_entsize(),
1052                                         addralign))
1053         {
1054           // Tell the relocation routines that they need to call the
1055           // output_address method to determine the final address.
1056           return -1;
1057         }
1058     }
1059
1060   off_t offset_in_section = this->data_size();
1061   off_t aligned_offset_in_section = align_address(offset_in_section,
1062                                                   addralign);
1063
1064   if (aligned_offset_in_section > offset_in_section
1065       && (shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0
1066       && object->target()->has_code_fill())
1067     {
1068       // We need to add some fill data.  Using fill_list_ when
1069       // possible is an optimization, since we will often have fill
1070       // sections without input sections.
1071       off_t fill_len = aligned_offset_in_section - offset_in_section;
1072       if (this->input_sections_.empty())
1073         this->fills_.push_back(Fill(offset_in_section, fill_len));
1074       else
1075         {
1076           // FIXME: When relaxing, the size needs to adjust to
1077           // maintain a constant alignment.
1078           std::string fill_data(object->target()->code_fill(fill_len));
1079           Output_data_const* odc = new Output_data_const(fill_data, 1);
1080           this->input_sections_.push_back(Input_section(odc));
1081         }
1082     }
1083
1084   this->set_data_size(aligned_offset_in_section + shdr.get_sh_size());
1085
1086   // We need to keep track of this section if we are already keeping
1087   // track of sections, or if we are relaxing.  FIXME: Add test for
1088   // relaxing.
1089   if (!this->input_sections_.empty())
1090     this->input_sections_.push_back(Input_section(object, shndx,
1091                                                   shdr.get_sh_size(),
1092                                                   addralign));
1093
1094   return aligned_offset_in_section;
1095 }
1096
1097 // Add arbitrary data to an output section.
1098
1099 void
1100 Output_section::add_output_section_data(Output_section_data* posd)
1101 {
1102   Input_section inp(posd);
1103   this->add_output_section_data(&inp);
1104 }
1105
1106 // Add arbitrary data to an output section by Input_section.
1107
1108 void
1109 Output_section::add_output_section_data(Input_section* inp)
1110 {
1111   if (this->input_sections_.empty())
1112     this->first_input_offset_ = this->data_size();
1113
1114   this->input_sections_.push_back(*inp);
1115
1116   uint64_t addralign = inp->addralign();
1117   if (addralign > this->addralign_)
1118     this->addralign_ = addralign;
1119
1120   inp->set_output_section(this);
1121 }
1122
1123 // Add a merge section to an output section.
1124
1125 void
1126 Output_section::add_output_merge_section(Output_section_data* posd,
1127                                          bool is_string, uint64_t entsize)
1128 {
1129   Input_section inp(posd, is_string, entsize);
1130   this->add_output_section_data(&inp);
1131 }
1132
1133 // Add an input section to a SHF_MERGE section.
1134
1135 bool
1136 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1137                                         uint64_t flags, uint64_t entsize,
1138                                         uint64_t addralign)
1139 {
1140   // We only merge constants if the alignment is not more than the
1141   // entry size.  This could be handled, but it's unusual.
1142   if (addralign > entsize)
1143     return false;
1144
1145   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1146   Input_section_list::iterator p;
1147   for (p = this->input_sections_.begin();
1148        p != this->input_sections_.end();
1149        ++p)
1150     if (p->is_merge_section(is_string, entsize))
1151       break;
1152
1153   // We handle the actual constant merging in Output_merge_data or
1154   // Output_merge_string_data.
1155   if (p != this->input_sections_.end())
1156     p->add_input_section(object, shndx);
1157   else
1158     {
1159       Output_section_data* posd;
1160       if (!is_string)
1161         posd = new Output_merge_data(entsize);
1162       else if (entsize == 1)
1163         posd = new Output_merge_string<char>();
1164       else if (entsize == 2)
1165         posd = new Output_merge_string<uint16_t>();
1166       else if (entsize == 4)
1167         posd = new Output_merge_string<uint32_t>();
1168       else
1169         return false;
1170
1171       this->add_output_merge_section(posd, is_string, entsize);
1172       posd->add_input_section(object, shndx);
1173     }
1174
1175   return true;
1176 }
1177
1178 // Return the output virtual address of OFFSET relative to the start
1179 // of input section SHNDX in object OBJECT.
1180
1181 uint64_t
1182 Output_section::output_address(const Relobj* object, unsigned int shndx,
1183                                off_t offset) const
1184 {
1185   uint64_t addr = this->address() + this->first_input_offset_;
1186   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1187        p != this->input_sections_.end();
1188        ++p)
1189     {
1190       addr = align_address(addr, p->addralign());
1191       uint64_t output;
1192       if (p->output_address(object, shndx, offset, addr, &output))
1193         return output;
1194       addr += p->data_size();
1195     }
1196
1197   // If we get here, it means that we don't know the mapping for this
1198   // input section.  This might happen in principle if
1199   // add_input_section were called before add_output_section_data.
1200   // But it should never actually happen.
1201
1202   gold_unreachable();
1203 }
1204
1205 // Set the address of an Output_section.  This is where we handle
1206 // setting the addresses of any Output_section_data objects.
1207
1208 void
1209 Output_section::do_set_address(uint64_t address, off_t startoff)
1210 {
1211   if (this->input_sections_.empty())
1212     return;
1213
1214   off_t off = startoff + this->first_input_offset_;
1215   for (Input_section_list::iterator p = this->input_sections_.begin();
1216        p != this->input_sections_.end();
1217        ++p)
1218     {
1219       off = align_address(off, p->addralign());
1220       p->set_address(address + (off - startoff), off, startoff);
1221       off += p->data_size();
1222     }
1223
1224   this->set_data_size(off - startoff);
1225 }
1226
1227 // Write the section header to *OSHDR.
1228
1229 template<int size, bool big_endian>
1230 void
1231 Output_section::write_header(const Layout* layout,
1232                              const Stringpool* secnamepool,
1233                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
1234 {
1235   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1236   oshdr->put_sh_type(this->type_);
1237   oshdr->put_sh_flags(this->flags_);
1238   oshdr->put_sh_addr(this->address());
1239   oshdr->put_sh_offset(this->offset());
1240   oshdr->put_sh_size(this->data_size());
1241   if (this->link_section_ != NULL)
1242     oshdr->put_sh_link(this->link_section_->out_shndx());
1243   else if (this->should_link_to_symtab_)
1244     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
1245   else if (this->should_link_to_dynsym_)
1246     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
1247   else
1248     oshdr->put_sh_link(this->link_);
1249   if (this->info_section_ != NULL)
1250     oshdr->put_sh_info(this->info_section_->out_shndx());
1251   else
1252     oshdr->put_sh_info(this->info_);
1253   oshdr->put_sh_addralign(this->addralign_);
1254   oshdr->put_sh_entsize(this->entsize_);
1255 }
1256
1257 // Write out the data.  For input sections the data is written out by
1258 // Object::relocate, but we have to handle Output_section_data objects
1259 // here.
1260
1261 void
1262 Output_section::do_write(Output_file* of)
1263 {
1264   off_t output_section_file_offset = this->offset();
1265   for (Fill_list::iterator p = this->fills_.begin();
1266        p != this->fills_.end();
1267        ++p)
1268     {
1269       std::string fill_data(of->target()->code_fill(p->length()));
1270       of->write(output_section_file_offset + p->section_offset(),
1271                 fill_data.data(), fill_data.size());
1272     }
1273
1274   for (Input_section_list::iterator p = this->input_sections_.begin();
1275        p != this->input_sections_.end();
1276        ++p)
1277     p->write(of);
1278 }
1279
1280 // Output segment methods.
1281
1282 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
1283   : output_data_(),
1284     output_bss_(),
1285     vaddr_(0),
1286     paddr_(0),
1287     memsz_(0),
1288     align_(0),
1289     offset_(0),
1290     filesz_(0),
1291     type_(type),
1292     flags_(flags),
1293     is_align_known_(false)
1294 {
1295 }
1296
1297 // Add an Output_section to an Output_segment.
1298
1299 void
1300 Output_segment::add_output_section(Output_section* os,
1301                                    elfcpp::Elf_Word seg_flags,
1302                                    bool front)
1303 {
1304   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1305   gold_assert(!this->is_align_known_);
1306
1307   // Update the segment flags.
1308   this->flags_ |= seg_flags;
1309
1310   Output_segment::Output_data_list* pdl;
1311   if (os->type() == elfcpp::SHT_NOBITS)
1312     pdl = &this->output_bss_;
1313   else
1314     pdl = &this->output_data_;
1315
1316   // So that PT_NOTE segments will work correctly, we need to ensure
1317   // that all SHT_NOTE sections are adjacent.  This will normally
1318   // happen automatically, because all the SHT_NOTE input sections
1319   // will wind up in the same output section.  However, it is possible
1320   // for multiple SHT_NOTE input sections to have different section
1321   // flags, and thus be in different output sections, but for the
1322   // different section flags to map into the same segment flags and
1323   // thus the same output segment.
1324
1325   // Note that while there may be many input sections in an output
1326   // section, there are normally only a few output sections in an
1327   // output segment.  This loop is expected to be fast.
1328
1329   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
1330     {
1331       Output_segment::Output_data_list::iterator p = pdl->end();
1332       do
1333         {
1334           --p;
1335           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
1336             {
1337               // We don't worry about the FRONT parameter.
1338               ++p;
1339               pdl->insert(p, os);
1340               return;
1341             }
1342         }
1343       while (p != pdl->begin());
1344     }
1345
1346   // Similarly, so that PT_TLS segments will work, we need to group
1347   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
1348   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
1349   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
1350   // correctly.
1351   if ((os->flags() & elfcpp::SHF_TLS) != 0 && !this->output_data_.empty())
1352     {
1353       pdl = &this->output_data_;
1354       bool nobits = os->type() == elfcpp::SHT_NOBITS;
1355       bool sawtls = false;
1356       Output_segment::Output_data_list::iterator p = pdl->end();
1357       do
1358         {
1359           --p;
1360           bool insert;
1361           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
1362             {
1363               sawtls = true;
1364               // Put a NOBITS section after the first TLS section.
1365               // But a PROGBITS section after the first TLS/PROGBITS
1366               // section.
1367               insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
1368             }
1369           else
1370             {
1371               // If we've gone past the TLS sections, but we've seen a
1372               // TLS section, then we need to insert this section now.
1373               insert = sawtls;
1374             }
1375
1376           if (insert)
1377             {
1378               // We don't worry about the FRONT parameter.
1379               ++p;
1380               pdl->insert(p, os);
1381               return;
1382             }
1383         }
1384       while (p != pdl->begin());
1385
1386       // There are no TLS sections yet; put this one at the requested
1387       // location in the section list.
1388     }
1389
1390   if (front)
1391     pdl->push_front(os);
1392   else
1393     pdl->push_back(os);
1394 }
1395
1396 // Add an Output_data (which is not an Output_section) to the start of
1397 // a segment.
1398
1399 void
1400 Output_segment::add_initial_output_data(Output_data* od)
1401 {
1402   gold_assert(!this->is_align_known_);
1403   this->output_data_.push_front(od);
1404 }
1405
1406 // Return the maximum alignment of the Output_data in Output_segment.
1407 // Once we compute this, we prohibit new sections from being added.
1408
1409 uint64_t
1410 Output_segment::addralign()
1411 {
1412   if (!this->is_align_known_)
1413     {
1414       uint64_t addralign;
1415
1416       addralign = Output_segment::maximum_alignment(&this->output_data_);
1417       if (addralign > this->align_)
1418         this->align_ = addralign;
1419
1420       addralign = Output_segment::maximum_alignment(&this->output_bss_);
1421       if (addralign > this->align_)
1422         this->align_ = addralign;
1423
1424       this->is_align_known_ = true;
1425     }
1426
1427   return this->align_;
1428 }
1429
1430 // Return the maximum alignment of a list of Output_data.
1431
1432 uint64_t
1433 Output_segment::maximum_alignment(const Output_data_list* pdl)
1434 {
1435   uint64_t ret = 0;
1436   for (Output_data_list::const_iterator p = pdl->begin();
1437        p != pdl->end();
1438        ++p)
1439     {
1440       uint64_t addralign = (*p)->addralign();
1441       if (addralign > ret)
1442         ret = addralign;
1443     }
1444   return ret;
1445 }
1446
1447 // Set the section addresses for an Output_segment.  ADDR is the
1448 // address and *POFF is the file offset.  Set the section indexes
1449 // starting with *PSHNDX.  Return the address of the immediately
1450 // following segment.  Update *POFF and *PSHNDX.
1451
1452 uint64_t
1453 Output_segment::set_section_addresses(uint64_t addr, off_t* poff,
1454                                       unsigned int* pshndx)
1455 {
1456   gold_assert(this->type_ == elfcpp::PT_LOAD);
1457
1458   this->vaddr_ = addr;
1459   this->paddr_ = addr;
1460
1461   off_t orig_off = *poff;
1462   this->offset_ = orig_off;
1463
1464   *poff = align_address(*poff, this->addralign());
1465
1466   addr = this->set_section_list_addresses(&this->output_data_, addr, poff,
1467                                           pshndx);
1468   this->filesz_ = *poff - orig_off;
1469
1470   off_t off = *poff;
1471
1472   uint64_t ret = this->set_section_list_addresses(&this->output_bss_, addr,
1473                                                   poff, pshndx);
1474   this->memsz_ = *poff - orig_off;
1475
1476   // Ignore the file offset adjustments made by the BSS Output_data
1477   // objects.
1478   *poff = off;
1479
1480   return ret;
1481 }
1482
1483 // Set the addresses and file offsets in a list of Output_data
1484 // structures.
1485
1486 uint64_t
1487 Output_segment::set_section_list_addresses(Output_data_list* pdl,
1488                                            uint64_t addr, off_t* poff,
1489                                            unsigned int* pshndx)
1490 {
1491   off_t startoff = *poff;
1492
1493   off_t off = startoff;
1494   for (Output_data_list::iterator p = pdl->begin();
1495        p != pdl->end();
1496        ++p)
1497     {
1498       off = align_address(off, (*p)->addralign());
1499       (*p)->set_address(addr + (off - startoff), off);
1500
1501       // Unless this is a PT_TLS segment, we want to ignore the size
1502       // of a SHF_TLS/SHT_NOBITS section.  Such a section does not
1503       // affect the size of a PT_LOAD segment.
1504       if (this->type_ == elfcpp::PT_TLS
1505           || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
1506           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
1507         off += (*p)->data_size();
1508
1509       if ((*p)->is_section())
1510         {
1511           (*p)->set_out_shndx(*pshndx);
1512           ++*pshndx;
1513         }
1514     }
1515
1516   *poff = off;
1517   return addr + (off - startoff);
1518 }
1519
1520 // For a non-PT_LOAD segment, set the offset from the sections, if
1521 // any.
1522
1523 void
1524 Output_segment::set_offset()
1525 {
1526   gold_assert(this->type_ != elfcpp::PT_LOAD);
1527
1528   if (this->output_data_.empty() && this->output_bss_.empty())
1529     {
1530       this->vaddr_ = 0;
1531       this->paddr_ = 0;
1532       this->memsz_ = 0;
1533       this->align_ = 0;
1534       this->offset_ = 0;
1535       this->filesz_ = 0;
1536       return;
1537     }
1538
1539   const Output_data* first;
1540   if (this->output_data_.empty())
1541     first = this->output_bss_.front();
1542   else
1543     first = this->output_data_.front();
1544   this->vaddr_ = first->address();
1545   this->paddr_ = this->vaddr_;
1546   this->offset_ = first->offset();
1547
1548   if (this->output_data_.empty())
1549     this->filesz_ = 0;
1550   else
1551     {
1552       const Output_data* last_data = this->output_data_.back();
1553       this->filesz_ = (last_data->address()
1554                        + last_data->data_size()
1555                        - this->vaddr_);
1556     }
1557
1558   const Output_data* last;
1559   if (this->output_bss_.empty())
1560     last = this->output_data_.back();
1561   else
1562     last = this->output_bss_.back();
1563   this->memsz_ = (last->address()
1564                   + last->data_size()
1565                   - this->vaddr_);
1566 }
1567
1568 // Return the number of Output_sections in an Output_segment.
1569
1570 unsigned int
1571 Output_segment::output_section_count() const
1572 {
1573   return (this->output_section_count_list(&this->output_data_)
1574           + this->output_section_count_list(&this->output_bss_));
1575 }
1576
1577 // Return the number of Output_sections in an Output_data_list.
1578
1579 unsigned int
1580 Output_segment::output_section_count_list(const Output_data_list* pdl) const
1581 {
1582   unsigned int count = 0;
1583   for (Output_data_list::const_iterator p = pdl->begin();
1584        p != pdl->end();
1585        ++p)
1586     {
1587       if ((*p)->is_section())
1588         ++count;
1589     }
1590   return count;
1591 }
1592
1593 // Write the segment data into *OPHDR.
1594
1595 template<int size, bool big_endian>
1596 void
1597 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
1598 {
1599   ophdr->put_p_type(this->type_);
1600   ophdr->put_p_offset(this->offset_);
1601   ophdr->put_p_vaddr(this->vaddr_);
1602   ophdr->put_p_paddr(this->paddr_);
1603   ophdr->put_p_filesz(this->filesz_);
1604   ophdr->put_p_memsz(this->memsz_);
1605   ophdr->put_p_flags(this->flags_);
1606   ophdr->put_p_align(this->addralign());
1607 }
1608
1609 // Write the section headers into V.
1610
1611 template<int size, bool big_endian>
1612 unsigned char*
1613 Output_segment::write_section_headers(const Layout* layout,
1614                                       const Stringpool* secnamepool,
1615                                       unsigned char* v,
1616                                       unsigned int *pshndx
1617                                       ACCEPT_SIZE_ENDIAN) const
1618 {
1619   // Every section that is attached to a segment must be attached to a
1620   // PT_LOAD segment, so we only write out section headers for PT_LOAD
1621   // segments.
1622   if (this->type_ != elfcpp::PT_LOAD)
1623     return v;
1624
1625   v = this->write_section_headers_list
1626       SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1627           layout, secnamepool, &this->output_data_, v, pshndx
1628           SELECT_SIZE_ENDIAN(size, big_endian));
1629   v = this->write_section_headers_list
1630       SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1631           layout, secnamepool, &this->output_bss_, v, pshndx
1632           SELECT_SIZE_ENDIAN(size, big_endian));
1633   return v;
1634 }
1635
1636 template<int size, bool big_endian>
1637 unsigned char*
1638 Output_segment::write_section_headers_list(const Layout* layout,
1639                                            const Stringpool* secnamepool,
1640                                            const Output_data_list* pdl,
1641                                            unsigned char* v,
1642                                            unsigned int* pshndx
1643                                            ACCEPT_SIZE_ENDIAN) const
1644 {
1645   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1646   for (Output_data_list::const_iterator p = pdl->begin();
1647        p != pdl->end();
1648        ++p)
1649     {
1650       if ((*p)->is_section())
1651         {
1652           const Output_section* ps = static_cast<const Output_section*>(*p);
1653           gold_assert(*pshndx == ps->out_shndx());
1654           elfcpp::Shdr_write<size, big_endian> oshdr(v);
1655           ps->write_header(layout, secnamepool, &oshdr);
1656           v += shdr_size;
1657           ++*pshndx;
1658         }
1659     }
1660   return v;
1661 }
1662
1663 // Output_file methods.
1664
1665 Output_file::Output_file(const General_options& options, Target* target)
1666   : options_(options),
1667     target_(target),
1668     name_(options.output_file_name()),
1669     o_(-1),
1670     file_size_(0),
1671     base_(NULL)
1672 {
1673 }
1674
1675 // Open the output file.
1676
1677 void
1678 Output_file::open(off_t file_size)
1679 {
1680   this->file_size_ = file_size;
1681
1682   // Unlink the file first; otherwise the open() may fail if the file
1683   // is busy (e.g. it's an executable that's currently being executed).
1684   //
1685   // However, the linker may be part of a system where a zero-length
1686   // file is created for it to write to, with tight permissions (gcc
1687   // 2.95 did something like this).  Unlinking the file would work
1688   // around those permission controls, so we only unlink if the file
1689   // has a non-zero size.  We also unlink only regular files to avoid
1690   // trouble with directories/etc.
1691   //
1692   // If we fail, continue; this command is merely a best-effort attempt
1693   // to improve the odds for open().
1694
1695   struct stat s;
1696   if (::stat(this->name_, &s) == 0 && s.st_size != 0)
1697     unlink_if_ordinary(this->name_);
1698
1699   int mode = parameters->output_is_object() ? 0666 : 0777;
1700   int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
1701   if (o < 0)
1702     gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
1703   this->o_ = o;
1704
1705   // Write out one byte to make the file the right size.
1706   if (::lseek(o, file_size - 1, SEEK_SET) < 0)
1707     gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
1708   char b = 0;
1709   if (::write(o, &b, 1) != 1)
1710     gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
1711
1712   // Map the file into memory.
1713   void* base = ::mmap(NULL, file_size, PROT_READ | PROT_WRITE,
1714                       MAP_SHARED, o, 0);
1715   if (base == MAP_FAILED)
1716     gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
1717   this->base_ = static_cast<unsigned char*>(base);
1718 }
1719
1720 // Close the output file.
1721
1722 void
1723 Output_file::close()
1724 {
1725   if (::munmap(this->base_, this->file_size_) < 0)
1726     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
1727   this->base_ = NULL;
1728
1729   if (::close(this->o_) < 0)
1730     gold_error(_("%s: close: %s"), this->name_, strerror(errno));
1731   this->o_ = -1;
1732 }
1733
1734 // Instantiate the templates we need.  We could use the configure
1735 // script to restrict this to only the ones for implemented targets.
1736
1737 #ifdef HAVE_TARGET_32_LITTLE
1738 template
1739 off_t
1740 Output_section::add_input_section<32, false>(
1741     Relobj* object,
1742     unsigned int shndx,
1743     const char* secname,
1744     const elfcpp::Shdr<32, false>& shdr);
1745 #endif
1746
1747 #ifdef HAVE_TARGET_32_BIG
1748 template
1749 off_t
1750 Output_section::add_input_section<32, true>(
1751     Relobj* object,
1752     unsigned int shndx,
1753     const char* secname,
1754     const elfcpp::Shdr<32, true>& shdr);
1755 #endif
1756
1757 #ifdef HAVE_TARGET_64_LITTLE
1758 template
1759 off_t
1760 Output_section::add_input_section<64, false>(
1761     Relobj* object,
1762     unsigned int shndx,
1763     const char* secname,
1764     const elfcpp::Shdr<64, false>& shdr);
1765 #endif
1766
1767 #ifdef HAVE_TARGET_64_BIG
1768 template
1769 off_t
1770 Output_section::add_input_section<64, true>(
1771     Relobj* object,
1772     unsigned int shndx,
1773     const char* secname,
1774     const elfcpp::Shdr<64, true>& shdr);
1775 #endif
1776
1777 #ifdef HAVE_TARGET_32_LITTLE
1778 template
1779 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
1780 #endif
1781
1782 #ifdef HAVE_TARGET_32_BIG
1783 template
1784 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
1785 #endif
1786
1787 #ifdef HAVE_TARGET_64_LITTLE
1788 template
1789 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
1790 #endif
1791
1792 #ifdef HAVE_TARGET_64_BIG
1793 template
1794 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
1795 #endif
1796
1797 #ifdef HAVE_TARGET_32_LITTLE
1798 template
1799 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
1800 #endif
1801
1802 #ifdef HAVE_TARGET_32_BIG
1803 template
1804 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
1805 #endif
1806
1807 #ifdef HAVE_TARGET_64_LITTLE
1808 template
1809 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
1810 #endif
1811
1812 #ifdef HAVE_TARGET_64_BIG
1813 template
1814 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
1815 #endif
1816
1817 #ifdef HAVE_TARGET_32_LITTLE
1818 template
1819 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
1820 #endif
1821
1822 #ifdef HAVE_TARGET_32_BIG
1823 template
1824 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
1825 #endif
1826
1827 #ifdef HAVE_TARGET_64_LITTLE
1828 template
1829 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
1830 #endif
1831
1832 #ifdef HAVE_TARGET_64_BIG
1833 template
1834 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
1835 #endif
1836
1837 #ifdef HAVE_TARGET_32_LITTLE
1838 template
1839 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
1840 #endif
1841
1842 #ifdef HAVE_TARGET_32_BIG
1843 template
1844 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
1845 #endif
1846
1847 #ifdef HAVE_TARGET_64_LITTLE
1848 template
1849 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
1850 #endif
1851
1852 #ifdef HAVE_TARGET_64_BIG
1853 template
1854 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
1855 #endif
1856
1857 #ifdef HAVE_TARGET_32_LITTLE
1858 template
1859 class Output_data_got<32, false>;
1860 #endif
1861
1862 #ifdef HAVE_TARGET_32_BIG
1863 template
1864 class Output_data_got<32, true>;
1865 #endif
1866
1867 #ifdef HAVE_TARGET_64_LITTLE
1868 template
1869 class Output_data_got<64, false>;
1870 #endif
1871
1872 #ifdef HAVE_TARGET_64_BIG
1873 template
1874 class Output_data_got<64, true>;
1875 #endif
1876
1877 } // End namespace gold.