PR gold/14570
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cstdlib>
27 #include <cstring>
28 #include <cerrno>
29 #include <fcntl.h>
30 #include <unistd.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33
34 #ifdef HAVE_SYS_MMAN_H
35 #include <sys/mman.h>
36 #endif
37
38 #include "libiberty.h"
39
40 #include "dwarf.h"
41 #include "parameters.h"
42 #include "object.h"
43 #include "symtab.h"
44 #include "reloc.h"
45 #include "merge.h"
46 #include "descriptors.h"
47 #include "layout.h"
48 #include "output.h"
49
50 // For systems without mmap support.
51 #ifndef HAVE_MMAP
52 # define mmap gold_mmap
53 # define munmap gold_munmap
54 # define mremap gold_mremap
55 # ifndef MAP_FAILED
56 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
57 # endif
58 # ifndef PROT_READ
59 #  define PROT_READ 0
60 # endif
61 # ifndef PROT_WRITE
62 #  define PROT_WRITE 0
63 # endif
64 # ifndef MAP_PRIVATE
65 #  define MAP_PRIVATE 0
66 # endif
67 # ifndef MAP_ANONYMOUS
68 #  define MAP_ANONYMOUS 0
69 # endif
70 # ifndef MAP_SHARED
71 #  define MAP_SHARED 0
72 # endif
73
74 # ifndef ENOSYS
75 #  define ENOSYS EINVAL
76 # endif
77
78 static void *
79 gold_mmap(void *, size_t, int, int, int, off_t)
80 {
81   errno = ENOSYS;
82   return MAP_FAILED;
83 }
84
85 static int
86 gold_munmap(void *, size_t)
87 {
88   errno = ENOSYS;
89   return -1;
90 }
91
92 static void *
93 gold_mremap(void *, size_t, size_t, int)
94 {
95   errno = ENOSYS;
96   return MAP_FAILED;
97 }
98
99 #endif
100
101 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
102 # define mremap gold_mremap
103 extern "C" void *gold_mremap(void *, size_t, size_t, int);
104 #endif
105
106 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
107 #ifndef MAP_ANONYMOUS
108 # define MAP_ANONYMOUS  MAP_ANON
109 #endif
110
111 #ifndef MREMAP_MAYMOVE
112 # define MREMAP_MAYMOVE 1
113 #endif
114
115 // Mingw does not have S_ISLNK.
116 #ifndef S_ISLNK
117 # define S_ISLNK(mode) 0
118 #endif
119
120 namespace gold
121 {
122
123 // A wrapper around posix_fallocate.  If we don't have posix_fallocate,
124 // or the --no-posix-fallocate option is set, we try the fallocate
125 // system call directly.  If that fails, we use ftruncate to set
126 // the file size and hope that there is enough disk space.
127
128 static int
129 gold_fallocate(int o, off_t offset, off_t len)
130 {
131 #ifdef HAVE_POSIX_FALLOCATE
132   if (parameters->options().posix_fallocate())
133     return ::posix_fallocate(o, offset, len);
134 #endif // defined(HAVE_POSIX_FALLOCATE)
135 #ifdef HAVE_FALLOCATE
136   if (::fallocate(o, 0, offset, len) == 0)
137     return 0;
138 #endif // defined(HAVE_FALLOCATE)
139   if (::ftruncate(o, offset + len) < 0)
140     return errno;
141   return 0;
142 }
143
144 // Output_data variables.
145
146 bool Output_data::allocated_sizes_are_fixed;
147
148 // Output_data methods.
149
150 Output_data::~Output_data()
151 {
152 }
153
154 // Return the default alignment for the target size.
155
156 uint64_t
157 Output_data::default_alignment()
158 {
159   return Output_data::default_alignment_for_size(
160       parameters->target().get_size());
161 }
162
163 // Return the default alignment for a size--32 or 64.
164
165 uint64_t
166 Output_data::default_alignment_for_size(int size)
167 {
168   if (size == 32)
169     return 4;
170   else if (size == 64)
171     return 8;
172   else
173     gold_unreachable();
174 }
175
176 // Output_section_header methods.  This currently assumes that the
177 // segment and section lists are complete at construction time.
178
179 Output_section_headers::Output_section_headers(
180     const Layout* layout,
181     const Layout::Segment_list* segment_list,
182     const Layout::Section_list* section_list,
183     const Layout::Section_list* unattached_section_list,
184     const Stringpool* secnamepool,
185     const Output_section* shstrtab_section)
186   : layout_(layout),
187     segment_list_(segment_list),
188     section_list_(section_list),
189     unattached_section_list_(unattached_section_list),
190     secnamepool_(secnamepool),
191     shstrtab_section_(shstrtab_section)
192 {
193 }
194
195 // Compute the current data size.
196
197 off_t
198 Output_section_headers::do_size() const
199 {
200   // Count all the sections.  Start with 1 for the null section.
201   off_t count = 1;
202   if (!parameters->options().relocatable())
203     {
204       for (Layout::Segment_list::const_iterator p =
205              this->segment_list_->begin();
206            p != this->segment_list_->end();
207            ++p)
208         if ((*p)->type() == elfcpp::PT_LOAD)
209           count += (*p)->output_section_count();
210     }
211   else
212     {
213       for (Layout::Section_list::const_iterator p =
214              this->section_list_->begin();
215            p != this->section_list_->end();
216            ++p)
217         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
218           ++count;
219     }
220   count += this->unattached_section_list_->size();
221
222   const int size = parameters->target().get_size();
223   int shdr_size;
224   if (size == 32)
225     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
226   else if (size == 64)
227     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
228   else
229     gold_unreachable();
230
231   return count * shdr_size;
232 }
233
234 // Write out the section headers.
235
236 void
237 Output_section_headers::do_write(Output_file* of)
238 {
239   switch (parameters->size_and_endianness())
240     {
241 #ifdef HAVE_TARGET_32_LITTLE
242     case Parameters::TARGET_32_LITTLE:
243       this->do_sized_write<32, false>(of);
244       break;
245 #endif
246 #ifdef HAVE_TARGET_32_BIG
247     case Parameters::TARGET_32_BIG:
248       this->do_sized_write<32, true>(of);
249       break;
250 #endif
251 #ifdef HAVE_TARGET_64_LITTLE
252     case Parameters::TARGET_64_LITTLE:
253       this->do_sized_write<64, false>(of);
254       break;
255 #endif
256 #ifdef HAVE_TARGET_64_BIG
257     case Parameters::TARGET_64_BIG:
258       this->do_sized_write<64, true>(of);
259       break;
260 #endif
261     default:
262       gold_unreachable();
263     }
264 }
265
266 template<int size, bool big_endian>
267 void
268 Output_section_headers::do_sized_write(Output_file* of)
269 {
270   off_t all_shdrs_size = this->data_size();
271   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
272
273   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
274   unsigned char* v = view;
275
276   {
277     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
278     oshdr.put_sh_name(0);
279     oshdr.put_sh_type(elfcpp::SHT_NULL);
280     oshdr.put_sh_flags(0);
281     oshdr.put_sh_addr(0);
282     oshdr.put_sh_offset(0);
283
284     size_t section_count = (this->data_size()
285                             / elfcpp::Elf_sizes<size>::shdr_size);
286     if (section_count < elfcpp::SHN_LORESERVE)
287       oshdr.put_sh_size(0);
288     else
289       oshdr.put_sh_size(section_count);
290
291     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
292     if (shstrndx < elfcpp::SHN_LORESERVE)
293       oshdr.put_sh_link(0);
294     else
295       oshdr.put_sh_link(shstrndx);
296
297     size_t segment_count = this->segment_list_->size();
298     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
299
300     oshdr.put_sh_addralign(0);
301     oshdr.put_sh_entsize(0);
302   }
303
304   v += shdr_size;
305
306   unsigned int shndx = 1;
307   if (!parameters->options().relocatable())
308     {
309       for (Layout::Segment_list::const_iterator p =
310              this->segment_list_->begin();
311            p != this->segment_list_->end();
312            ++p)
313         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
314                                                           this->secnamepool_,
315                                                           v,
316                                                           &shndx);
317     }
318   else
319     {
320       for (Layout::Section_list::const_iterator p =
321              this->section_list_->begin();
322            p != this->section_list_->end();
323            ++p)
324         {
325           // We do unallocated sections below, except that group
326           // sections have to come first.
327           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
328               && (*p)->type() != elfcpp::SHT_GROUP)
329             continue;
330           gold_assert(shndx == (*p)->out_shndx());
331           elfcpp::Shdr_write<size, big_endian> oshdr(v);
332           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
333           v += shdr_size;
334           ++shndx;
335         }
336     }
337
338   for (Layout::Section_list::const_iterator p =
339          this->unattached_section_list_->begin();
340        p != this->unattached_section_list_->end();
341        ++p)
342     {
343       // For a relocatable link, we did unallocated group sections
344       // above, since they have to come first.
345       if ((*p)->type() == elfcpp::SHT_GROUP
346           && parameters->options().relocatable())
347         continue;
348       gold_assert(shndx == (*p)->out_shndx());
349       elfcpp::Shdr_write<size, big_endian> oshdr(v);
350       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
351       v += shdr_size;
352       ++shndx;
353     }
354
355   of->write_output_view(this->offset(), all_shdrs_size, view);
356 }
357
358 // Output_segment_header methods.
359
360 Output_segment_headers::Output_segment_headers(
361     const Layout::Segment_list& segment_list)
362   : segment_list_(segment_list)
363 {
364   this->set_current_data_size_for_child(this->do_size());
365 }
366
367 void
368 Output_segment_headers::do_write(Output_file* of)
369 {
370   switch (parameters->size_and_endianness())
371     {
372 #ifdef HAVE_TARGET_32_LITTLE
373     case Parameters::TARGET_32_LITTLE:
374       this->do_sized_write<32, false>(of);
375       break;
376 #endif
377 #ifdef HAVE_TARGET_32_BIG
378     case Parameters::TARGET_32_BIG:
379       this->do_sized_write<32, true>(of);
380       break;
381 #endif
382 #ifdef HAVE_TARGET_64_LITTLE
383     case Parameters::TARGET_64_LITTLE:
384       this->do_sized_write<64, false>(of);
385       break;
386 #endif
387 #ifdef HAVE_TARGET_64_BIG
388     case Parameters::TARGET_64_BIG:
389       this->do_sized_write<64, true>(of);
390       break;
391 #endif
392     default:
393       gold_unreachable();
394     }
395 }
396
397 template<int size, bool big_endian>
398 void
399 Output_segment_headers::do_sized_write(Output_file* of)
400 {
401   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
402   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
403   gold_assert(all_phdrs_size == this->data_size());
404   unsigned char* view = of->get_output_view(this->offset(),
405                                             all_phdrs_size);
406   unsigned char* v = view;
407   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
408        p != this->segment_list_.end();
409        ++p)
410     {
411       elfcpp::Phdr_write<size, big_endian> ophdr(v);
412       (*p)->write_header(&ophdr);
413       v += phdr_size;
414     }
415
416   gold_assert(v - view == all_phdrs_size);
417
418   of->write_output_view(this->offset(), all_phdrs_size, view);
419 }
420
421 off_t
422 Output_segment_headers::do_size() const
423 {
424   const int size = parameters->target().get_size();
425   int phdr_size;
426   if (size == 32)
427     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
428   else if (size == 64)
429     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
430   else
431     gold_unreachable();
432
433   return this->segment_list_.size() * phdr_size;
434 }
435
436 // Output_file_header methods.
437
438 Output_file_header::Output_file_header(const Target* target,
439                                        const Symbol_table* symtab,
440                                        const Output_segment_headers* osh)
441   : target_(target),
442     symtab_(symtab),
443     segment_header_(osh),
444     section_header_(NULL),
445     shstrtab_(NULL)
446 {
447   this->set_data_size(this->do_size());
448 }
449
450 // Set the section table information for a file header.
451
452 void
453 Output_file_header::set_section_info(const Output_section_headers* shdrs,
454                                      const Output_section* shstrtab)
455 {
456   this->section_header_ = shdrs;
457   this->shstrtab_ = shstrtab;
458 }
459
460 // Write out the file header.
461
462 void
463 Output_file_header::do_write(Output_file* of)
464 {
465   gold_assert(this->offset() == 0);
466
467   switch (parameters->size_and_endianness())
468     {
469 #ifdef HAVE_TARGET_32_LITTLE
470     case Parameters::TARGET_32_LITTLE:
471       this->do_sized_write<32, false>(of);
472       break;
473 #endif
474 #ifdef HAVE_TARGET_32_BIG
475     case Parameters::TARGET_32_BIG:
476       this->do_sized_write<32, true>(of);
477       break;
478 #endif
479 #ifdef HAVE_TARGET_64_LITTLE
480     case Parameters::TARGET_64_LITTLE:
481       this->do_sized_write<64, false>(of);
482       break;
483 #endif
484 #ifdef HAVE_TARGET_64_BIG
485     case Parameters::TARGET_64_BIG:
486       this->do_sized_write<64, true>(of);
487       break;
488 #endif
489     default:
490       gold_unreachable();
491     }
492 }
493
494 // Write out the file header with appropriate size and endianness.
495
496 template<int size, bool big_endian>
497 void
498 Output_file_header::do_sized_write(Output_file* of)
499 {
500   gold_assert(this->offset() == 0);
501
502   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
503   unsigned char* view = of->get_output_view(0, ehdr_size);
504   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
505
506   unsigned char e_ident[elfcpp::EI_NIDENT];
507   memset(e_ident, 0, elfcpp::EI_NIDENT);
508   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
509   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
510   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
511   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
512   if (size == 32)
513     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
514   else if (size == 64)
515     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
516   else
517     gold_unreachable();
518   e_ident[elfcpp::EI_DATA] = (big_endian
519                               ? elfcpp::ELFDATA2MSB
520                               : elfcpp::ELFDATA2LSB);
521   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
522   oehdr.put_e_ident(e_ident);
523
524   elfcpp::ET e_type;
525   if (parameters->options().relocatable())
526     e_type = elfcpp::ET_REL;
527   else if (parameters->options().output_is_position_independent())
528     e_type = elfcpp::ET_DYN;
529   else
530     e_type = elfcpp::ET_EXEC;
531   oehdr.put_e_type(e_type);
532
533   oehdr.put_e_machine(this->target_->machine_code());
534   oehdr.put_e_version(elfcpp::EV_CURRENT);
535
536   oehdr.put_e_entry(this->entry<size>());
537
538   if (this->segment_header_ == NULL)
539     oehdr.put_e_phoff(0);
540   else
541     oehdr.put_e_phoff(this->segment_header_->offset());
542
543   oehdr.put_e_shoff(this->section_header_->offset());
544   oehdr.put_e_flags(this->target_->processor_specific_flags());
545   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
546
547   if (this->segment_header_ == NULL)
548     {
549       oehdr.put_e_phentsize(0);
550       oehdr.put_e_phnum(0);
551     }
552   else
553     {
554       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
555       size_t phnum = (this->segment_header_->data_size()
556                       / elfcpp::Elf_sizes<size>::phdr_size);
557       if (phnum > elfcpp::PN_XNUM)
558         phnum = elfcpp::PN_XNUM;
559       oehdr.put_e_phnum(phnum);
560     }
561
562   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
563   size_t section_count = (this->section_header_->data_size()
564                           / elfcpp::Elf_sizes<size>::shdr_size);
565
566   if (section_count < elfcpp::SHN_LORESERVE)
567     oehdr.put_e_shnum(this->section_header_->data_size()
568                       / elfcpp::Elf_sizes<size>::shdr_size);
569   else
570     oehdr.put_e_shnum(0);
571
572   unsigned int shstrndx = this->shstrtab_->out_shndx();
573   if (shstrndx < elfcpp::SHN_LORESERVE)
574     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
575   else
576     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
577
578   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
579   // the e_ident field.
580   parameters->target().adjust_elf_header(view, ehdr_size);
581
582   of->write_output_view(0, ehdr_size, view);
583 }
584
585 // Return the value to use for the entry address.
586
587 template<int size>
588 typename elfcpp::Elf_types<size>::Elf_Addr
589 Output_file_header::entry()
590 {
591   const bool should_issue_warning = (parameters->options().entry() != NULL
592                                      && !parameters->options().relocatable()
593                                      && !parameters->options().shared());
594   const char* entry = parameters->entry();
595   Symbol* sym = this->symtab_->lookup(entry);
596
597   typename Sized_symbol<size>::Value_type v;
598   if (sym != NULL)
599     {
600       Sized_symbol<size>* ssym;
601       ssym = this->symtab_->get_sized_symbol<size>(sym);
602       if (!ssym->is_defined() && should_issue_warning)
603         gold_warning("entry symbol '%s' exists but is not defined", entry);
604       v = ssym->value();
605     }
606   else
607     {
608       // We couldn't find the entry symbol.  See if we can parse it as
609       // a number.  This supports, e.g., -e 0x1000.
610       char* endptr;
611       v = strtoull(entry, &endptr, 0);
612       if (*endptr != '\0')
613         {
614           if (should_issue_warning)
615             gold_warning("cannot find entry symbol '%s'", entry);
616           v = 0;
617         }
618     }
619
620   return v;
621 }
622
623 // Compute the current data size.
624
625 off_t
626 Output_file_header::do_size() const
627 {
628   const int size = parameters->target().get_size();
629   if (size == 32)
630     return elfcpp::Elf_sizes<32>::ehdr_size;
631   else if (size == 64)
632     return elfcpp::Elf_sizes<64>::ehdr_size;
633   else
634     gold_unreachable();
635 }
636
637 // Output_data_const methods.
638
639 void
640 Output_data_const::do_write(Output_file* of)
641 {
642   of->write(this->offset(), this->data_.data(), this->data_.size());
643 }
644
645 // Output_data_const_buffer methods.
646
647 void
648 Output_data_const_buffer::do_write(Output_file* of)
649 {
650   of->write(this->offset(), this->p_, this->data_size());
651 }
652
653 // Output_section_data methods.
654
655 // Record the output section, and set the entry size and such.
656
657 void
658 Output_section_data::set_output_section(Output_section* os)
659 {
660   gold_assert(this->output_section_ == NULL);
661   this->output_section_ = os;
662   this->do_adjust_output_section(os);
663 }
664
665 // Return the section index of the output section.
666
667 unsigned int
668 Output_section_data::do_out_shndx() const
669 {
670   gold_assert(this->output_section_ != NULL);
671   return this->output_section_->out_shndx();
672 }
673
674 // Set the alignment, which means we may need to update the alignment
675 // of the output section.
676
677 void
678 Output_section_data::set_addralign(uint64_t addralign)
679 {
680   this->addralign_ = addralign;
681   if (this->output_section_ != NULL
682       && this->output_section_->addralign() < addralign)
683     this->output_section_->set_addralign(addralign);
684 }
685
686 // Output_data_strtab methods.
687
688 // Set the final data size.
689
690 void
691 Output_data_strtab::set_final_data_size()
692 {
693   this->strtab_->set_string_offsets();
694   this->set_data_size(this->strtab_->get_strtab_size());
695 }
696
697 // Write out a string table.
698
699 void
700 Output_data_strtab::do_write(Output_file* of)
701 {
702   this->strtab_->write(of, this->offset());
703 }
704
705 // Output_reloc methods.
706
707 // A reloc against a global symbol.
708
709 template<bool dynamic, int size, bool big_endian>
710 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
711     Symbol* gsym,
712     unsigned int type,
713     Output_data* od,
714     Address address,
715     bool is_relative,
716     bool is_symbolless,
717     bool use_plt_offset)
718   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
719     is_relative_(is_relative), is_symbolless_(is_symbolless),
720     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
721 {
722   // this->type_ is a bitfield; make sure TYPE fits.
723   gold_assert(this->type_ == type);
724   this->u1_.gsym = gsym;
725   this->u2_.od = od;
726   if (dynamic)
727     this->set_needs_dynsym_index();
728 }
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732     Symbol* gsym,
733     unsigned int type,
734     Sized_relobj<size, big_endian>* relobj,
735     unsigned int shndx,
736     Address address,
737     bool is_relative,
738     bool is_symbolless,
739     bool use_plt_offset)
740   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
741     is_relative_(is_relative), is_symbolless_(is_symbolless),
742     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
743 {
744   gold_assert(shndx != INVALID_CODE);
745   // this->type_ is a bitfield; make sure TYPE fits.
746   gold_assert(this->type_ == type);
747   this->u1_.gsym = gsym;
748   this->u2_.relobj = relobj;
749   if (dynamic)
750     this->set_needs_dynsym_index();
751 }
752
753 // A reloc against a local symbol.
754
755 template<bool dynamic, int size, bool big_endian>
756 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
757     Sized_relobj<size, big_endian>* relobj,
758     unsigned int local_sym_index,
759     unsigned int type,
760     Output_data* od,
761     Address address,
762     bool is_relative,
763     bool is_symbolless,
764     bool is_section_symbol,
765     bool use_plt_offset)
766   : address_(address), local_sym_index_(local_sym_index), type_(type),
767     is_relative_(is_relative), is_symbolless_(is_symbolless),
768     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
769     shndx_(INVALID_CODE)
770 {
771   gold_assert(local_sym_index != GSYM_CODE
772               && local_sym_index != INVALID_CODE);
773   // this->type_ is a bitfield; make sure TYPE fits.
774   gold_assert(this->type_ == type);
775   this->u1_.relobj = relobj;
776   this->u2_.od = od;
777   if (dynamic)
778     this->set_needs_dynsym_index();
779 }
780
781 template<bool dynamic, int size, bool big_endian>
782 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
783     Sized_relobj<size, big_endian>* relobj,
784     unsigned int local_sym_index,
785     unsigned int type,
786     unsigned int shndx,
787     Address address,
788     bool is_relative,
789     bool is_symbolless,
790     bool is_section_symbol,
791     bool use_plt_offset)
792   : address_(address), local_sym_index_(local_sym_index), type_(type),
793     is_relative_(is_relative), is_symbolless_(is_symbolless),
794     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
795     shndx_(shndx)
796 {
797   gold_assert(local_sym_index != GSYM_CODE
798               && local_sym_index != INVALID_CODE);
799   gold_assert(shndx != INVALID_CODE);
800   // this->type_ is a bitfield; make sure TYPE fits.
801   gold_assert(this->type_ == type);
802   this->u1_.relobj = relobj;
803   this->u2_.relobj = relobj;
804   if (dynamic)
805     this->set_needs_dynsym_index();
806 }
807
808 // A reloc against the STT_SECTION symbol of an output section.
809
810 template<bool dynamic, int size, bool big_endian>
811 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
812     Output_section* os,
813     unsigned int type,
814     Output_data* od,
815     Address address,
816     bool is_relative)
817   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
818     is_relative_(is_relative), is_symbolless_(is_relative),
819     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
820 {
821   // this->type_ is a bitfield; make sure TYPE fits.
822   gold_assert(this->type_ == type);
823   this->u1_.os = os;
824   this->u2_.od = od;
825   if (dynamic)
826     this->set_needs_dynsym_index();
827   else
828     os->set_needs_symtab_index();
829 }
830
831 template<bool dynamic, int size, bool big_endian>
832 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
833     Output_section* os,
834     unsigned int type,
835     Sized_relobj<size, big_endian>* relobj,
836     unsigned int shndx,
837     Address address,
838     bool is_relative)
839   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
840     is_relative_(is_relative), is_symbolless_(is_relative),
841     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
842 {
843   gold_assert(shndx != INVALID_CODE);
844   // this->type_ is a bitfield; make sure TYPE fits.
845   gold_assert(this->type_ == type);
846   this->u1_.os = os;
847   this->u2_.relobj = relobj;
848   if (dynamic)
849     this->set_needs_dynsym_index();
850   else
851     os->set_needs_symtab_index();
852 }
853
854 // An absolute relocation.
855
856 template<bool dynamic, int size, bool big_endian>
857 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
858     unsigned int type,
859     Output_data* od,
860     Address address)
861   : address_(address), local_sym_index_(0), type_(type),
862     is_relative_(false), is_symbolless_(false),
863     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864 {
865   // this->type_ is a bitfield; make sure TYPE fits.
866   gold_assert(this->type_ == type);
867   this->u1_.relobj = NULL;
868   this->u2_.od = od;
869 }
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873     unsigned int type,
874     Sized_relobj<size, big_endian>* relobj,
875     unsigned int shndx,
876     Address address)
877   : address_(address), local_sym_index_(0), type_(type),
878     is_relative_(false), is_symbolless_(false),
879     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
880 {
881   gold_assert(shndx != INVALID_CODE);
882   // this->type_ is a bitfield; make sure TYPE fits.
883   gold_assert(this->type_ == type);
884   this->u1_.relobj = NULL;
885   this->u2_.relobj = relobj;
886 }
887
888 // A target specific relocation.
889
890 template<bool dynamic, int size, bool big_endian>
891 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
892     unsigned int type,
893     void* arg,
894     Output_data* od,
895     Address address)
896   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
897     is_relative_(false), is_symbolless_(false),
898     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
899 {
900   // this->type_ is a bitfield; make sure TYPE fits.
901   gold_assert(this->type_ == type);
902   this->u1_.arg = arg;
903   this->u2_.od = od;
904 }
905
906 template<bool dynamic, int size, bool big_endian>
907 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
908     unsigned int type,
909     void* arg,
910     Sized_relobj<size, big_endian>* relobj,
911     unsigned int shndx,
912     Address address)
913   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
914     is_relative_(false), is_symbolless_(false),
915     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
916 {
917   gold_assert(shndx != INVALID_CODE);
918   // this->type_ is a bitfield; make sure TYPE fits.
919   gold_assert(this->type_ == type);
920   this->u1_.arg = arg;
921   this->u2_.relobj = relobj;
922 }
923
924 // Record that we need a dynamic symbol index for this relocation.
925
926 template<bool dynamic, int size, bool big_endian>
927 void
928 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
929 set_needs_dynsym_index()
930 {
931   if (this->is_symbolless_)
932     return;
933   switch (this->local_sym_index_)
934     {
935     case INVALID_CODE:
936       gold_unreachable();
937
938     case GSYM_CODE:
939       this->u1_.gsym->set_needs_dynsym_entry();
940       break;
941
942     case SECTION_CODE:
943       this->u1_.os->set_needs_dynsym_index();
944       break;
945
946     case TARGET_CODE:
947       // The target must take care of this if necessary.
948       break;
949
950     case 0:
951       break;
952
953     default:
954       {
955         const unsigned int lsi = this->local_sym_index_;
956         Sized_relobj_file<size, big_endian>* relobj =
957             this->u1_.relobj->sized_relobj();
958         gold_assert(relobj != NULL);
959         if (!this->is_section_symbol_)
960           relobj->set_needs_output_dynsym_entry(lsi);
961         else
962           relobj->output_section(lsi)->set_needs_dynsym_index();
963       }
964       break;
965     }
966 }
967
968 // Get the symbol index of a relocation.
969
970 template<bool dynamic, int size, bool big_endian>
971 unsigned int
972 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
973   const
974 {
975   unsigned int index;
976   if (this->is_symbolless_)
977     return 0;
978   switch (this->local_sym_index_)
979     {
980     case INVALID_CODE:
981       gold_unreachable();
982
983     case GSYM_CODE:
984       if (this->u1_.gsym == NULL)
985         index = 0;
986       else if (dynamic)
987         index = this->u1_.gsym->dynsym_index();
988       else
989         index = this->u1_.gsym->symtab_index();
990       break;
991
992     case SECTION_CODE:
993       if (dynamic)
994         index = this->u1_.os->dynsym_index();
995       else
996         index = this->u1_.os->symtab_index();
997       break;
998
999     case TARGET_CODE:
1000       index = parameters->target().reloc_symbol_index(this->u1_.arg,
1001                                                       this->type_);
1002       break;
1003
1004     case 0:
1005       // Relocations without symbols use a symbol index of 0.
1006       index = 0;
1007       break;
1008
1009     default:
1010       {
1011         const unsigned int lsi = this->local_sym_index_;
1012         Sized_relobj_file<size, big_endian>* relobj =
1013             this->u1_.relobj->sized_relobj();
1014         gold_assert(relobj != NULL);
1015         if (!this->is_section_symbol_)
1016           {
1017             if (dynamic)
1018               index = relobj->dynsym_index(lsi);
1019             else
1020               index = relobj->symtab_index(lsi);
1021           }
1022         else
1023           {
1024             Output_section* os = relobj->output_section(lsi);
1025             gold_assert(os != NULL);
1026             if (dynamic)
1027               index = os->dynsym_index();
1028             else
1029               index = os->symtab_index();
1030           }
1031       }
1032       break;
1033     }
1034   gold_assert(index != -1U);
1035   return index;
1036 }
1037
1038 // For a local section symbol, get the address of the offset ADDEND
1039 // within the input section.
1040
1041 template<bool dynamic, int size, bool big_endian>
1042 typename elfcpp::Elf_types<size>::Elf_Addr
1043 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1044   local_section_offset(Addend addend) const
1045 {
1046   gold_assert(this->local_sym_index_ != GSYM_CODE
1047               && this->local_sym_index_ != SECTION_CODE
1048               && this->local_sym_index_ != TARGET_CODE
1049               && this->local_sym_index_ != INVALID_CODE
1050               && this->local_sym_index_ != 0
1051               && this->is_section_symbol_);
1052   const unsigned int lsi = this->local_sym_index_;
1053   Output_section* os = this->u1_.relobj->output_section(lsi);
1054   gold_assert(os != NULL);
1055   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1056   if (offset != invalid_address)
1057     return offset + addend;
1058   // This is a merge section.
1059   Sized_relobj_file<size, big_endian>* relobj =
1060       this->u1_.relobj->sized_relobj();
1061   gold_assert(relobj != NULL);
1062   offset = os->output_address(relobj, lsi, addend);
1063   gold_assert(offset != invalid_address);
1064   return offset;
1065 }
1066
1067 // Get the output address of a relocation.
1068
1069 template<bool dynamic, int size, bool big_endian>
1070 typename elfcpp::Elf_types<size>::Elf_Addr
1071 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1072 {
1073   Address address = this->address_;
1074   if (this->shndx_ != INVALID_CODE)
1075     {
1076       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1077       gold_assert(os != NULL);
1078       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1079       if (off != invalid_address)
1080         address += os->address() + off;
1081       else
1082         {
1083           Sized_relobj_file<size, big_endian>* relobj =
1084               this->u2_.relobj->sized_relobj();
1085           gold_assert(relobj != NULL);
1086           address = os->output_address(relobj, this->shndx_, address);
1087           gold_assert(address != invalid_address);
1088         }
1089     }
1090   else if (this->u2_.od != NULL)
1091     address += this->u2_.od->address();
1092   return address;
1093 }
1094
1095 // Write out the offset and info fields of a Rel or Rela relocation
1096 // entry.
1097
1098 template<bool dynamic, int size, bool big_endian>
1099 template<typename Write_rel>
1100 void
1101 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1102     Write_rel* wr) const
1103 {
1104   wr->put_r_offset(this->get_address());
1105   unsigned int sym_index = this->get_symbol_index();
1106   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1107 }
1108
1109 // Write out a Rel relocation.
1110
1111 template<bool dynamic, int size, bool big_endian>
1112 void
1113 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1114     unsigned char* pov) const
1115 {
1116   elfcpp::Rel_write<size, big_endian> orel(pov);
1117   this->write_rel(&orel);
1118 }
1119
1120 // Get the value of the symbol referred to by a Rel relocation.
1121
1122 template<bool dynamic, int size, bool big_endian>
1123 typename elfcpp::Elf_types<size>::Elf_Addr
1124 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1125     Addend addend) const
1126 {
1127   if (this->local_sym_index_ == GSYM_CODE)
1128     {
1129       const Sized_symbol<size>* sym;
1130       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1131       if (this->use_plt_offset_ && sym->has_plt_offset())
1132         {
1133           uint64_t plt_address =
1134             parameters->target().plt_address_for_global(sym);
1135           return plt_address + sym->plt_offset();
1136         }
1137       else
1138         return sym->value() + addend;
1139     }
1140   if (this->local_sym_index_ == SECTION_CODE)
1141     {
1142       gold_assert(!this->use_plt_offset_);
1143       return this->u1_.os->address() + addend;
1144     }
1145   gold_assert(this->local_sym_index_ != TARGET_CODE
1146               && this->local_sym_index_ != INVALID_CODE
1147               && this->local_sym_index_ != 0
1148               && !this->is_section_symbol_);
1149   const unsigned int lsi = this->local_sym_index_;
1150   Sized_relobj_file<size, big_endian>* relobj =
1151       this->u1_.relobj->sized_relobj();
1152   gold_assert(relobj != NULL);
1153   if (this->use_plt_offset_)
1154     {
1155       uint64_t plt_address =
1156           parameters->target().plt_address_for_local(relobj, lsi);
1157       return plt_address + relobj->local_plt_offset(lsi);
1158     }
1159   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1160   return symval->value(relobj, addend);
1161 }
1162
1163 // Reloc comparison.  This function sorts the dynamic relocs for the
1164 // benefit of the dynamic linker.  First we sort all relative relocs
1165 // to the front.  Among relative relocs, we sort by output address.
1166 // Among non-relative relocs, we sort by symbol index, then by output
1167 // address.
1168
1169 template<bool dynamic, int size, bool big_endian>
1170 int
1171 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1172   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1173     const
1174 {
1175   if (this->is_relative_)
1176     {
1177       if (!r2.is_relative_)
1178         return -1;
1179       // Otherwise sort by reloc address below.
1180     }
1181   else if (r2.is_relative_)
1182     return 1;
1183   else
1184     {
1185       unsigned int sym1 = this->get_symbol_index();
1186       unsigned int sym2 = r2.get_symbol_index();
1187       if (sym1 < sym2)
1188         return -1;
1189       else if (sym1 > sym2)
1190         return 1;
1191       // Otherwise sort by reloc address.
1192     }
1193
1194   section_offset_type addr1 = this->get_address();
1195   section_offset_type addr2 = r2.get_address();
1196   if (addr1 < addr2)
1197     return -1;
1198   else if (addr1 > addr2)
1199     return 1;
1200
1201   // Final tie breaker, in order to generate the same output on any
1202   // host: reloc type.
1203   unsigned int type1 = this->type_;
1204   unsigned int type2 = r2.type_;
1205   if (type1 < type2)
1206     return -1;
1207   else if (type1 > type2)
1208     return 1;
1209
1210   // These relocs appear to be exactly the same.
1211   return 0;
1212 }
1213
1214 // Write out a Rela relocation.
1215
1216 template<bool dynamic, int size, bool big_endian>
1217 void
1218 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1219     unsigned char* pov) const
1220 {
1221   elfcpp::Rela_write<size, big_endian> orel(pov);
1222   this->rel_.write_rel(&orel);
1223   Addend addend = this->addend_;
1224   if (this->rel_.is_target_specific())
1225     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1226                                                this->rel_.type(), addend);
1227   else if (this->rel_.is_symbolless())
1228     addend = this->rel_.symbol_value(addend);
1229   else if (this->rel_.is_local_section_symbol())
1230     addend = this->rel_.local_section_offset(addend);
1231   orel.put_r_addend(addend);
1232 }
1233
1234 // Output_data_reloc_base methods.
1235
1236 // Adjust the output section.
1237
1238 template<int sh_type, bool dynamic, int size, bool big_endian>
1239 void
1240 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1241     ::do_adjust_output_section(Output_section* os)
1242 {
1243   if (sh_type == elfcpp::SHT_REL)
1244     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1245   else if (sh_type == elfcpp::SHT_RELA)
1246     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1247   else
1248     gold_unreachable();
1249
1250   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1251   // static link.  The backends will generate a dynamic reloc section
1252   // to hold this.  In that case we don't want to link to the dynsym
1253   // section, because there isn't one.
1254   if (!dynamic)
1255     os->set_should_link_to_symtab();
1256   else if (parameters->doing_static_link())
1257     ;
1258   else
1259     os->set_should_link_to_dynsym();
1260 }
1261
1262 // Write out relocation data.
1263
1264 template<int sh_type, bool dynamic, int size, bool big_endian>
1265 void
1266 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1267     Output_file* of)
1268 {
1269   const off_t off = this->offset();
1270   const off_t oview_size = this->data_size();
1271   unsigned char* const oview = of->get_output_view(off, oview_size);
1272
1273   if (this->sort_relocs())
1274     {
1275       gold_assert(dynamic);
1276       std::sort(this->relocs_.begin(), this->relocs_.end(),
1277                 Sort_relocs_comparison());
1278     }
1279
1280   unsigned char* pov = oview;
1281   for (typename Relocs::const_iterator p = this->relocs_.begin();
1282        p != this->relocs_.end();
1283        ++p)
1284     {
1285       p->write(pov);
1286       pov += reloc_size;
1287     }
1288
1289   gold_assert(pov - oview == oview_size);
1290
1291   of->write_output_view(off, oview_size, oview);
1292
1293   // We no longer need the relocation entries.
1294   this->relocs_.clear();
1295 }
1296
1297 // Class Output_relocatable_relocs.
1298
1299 template<int sh_type, int size, bool big_endian>
1300 void
1301 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1302 {
1303   this->set_data_size(this->rr_->output_reloc_count()
1304                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1305 }
1306
1307 // class Output_data_group.
1308
1309 template<int size, bool big_endian>
1310 Output_data_group<size, big_endian>::Output_data_group(
1311     Sized_relobj_file<size, big_endian>* relobj,
1312     section_size_type entry_count,
1313     elfcpp::Elf_Word flags,
1314     std::vector<unsigned int>* input_shndxes)
1315   : Output_section_data(entry_count * 4, 4, false),
1316     relobj_(relobj),
1317     flags_(flags)
1318 {
1319   this->input_shndxes_.swap(*input_shndxes);
1320 }
1321
1322 // Write out the section group, which means translating the section
1323 // indexes to apply to the output file.
1324
1325 template<int size, bool big_endian>
1326 void
1327 Output_data_group<size, big_endian>::do_write(Output_file* of)
1328 {
1329   const off_t off = this->offset();
1330   const section_size_type oview_size =
1331     convert_to_section_size_type(this->data_size());
1332   unsigned char* const oview = of->get_output_view(off, oview_size);
1333
1334   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1335   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1336   ++contents;
1337
1338   for (std::vector<unsigned int>::const_iterator p =
1339          this->input_shndxes_.begin();
1340        p != this->input_shndxes_.end();
1341        ++p, ++contents)
1342     {
1343       Output_section* os = this->relobj_->output_section(*p);
1344
1345       unsigned int output_shndx;
1346       if (os != NULL)
1347         output_shndx = os->out_shndx();
1348       else
1349         {
1350           this->relobj_->error(_("section group retained but "
1351                                  "group element discarded"));
1352           output_shndx = 0;
1353         }
1354
1355       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1356     }
1357
1358   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1359   gold_assert(wrote == oview_size);
1360
1361   of->write_output_view(off, oview_size, oview);
1362
1363   // We no longer need this information.
1364   this->input_shndxes_.clear();
1365 }
1366
1367 // Output_data_got::Got_entry methods.
1368
1369 // Write out the entry.
1370
1371 template<int got_size, bool big_endian>
1372 void
1373 Output_data_got<got_size, big_endian>::Got_entry::write(
1374     unsigned int got_indx,
1375     unsigned char* pov) const
1376 {
1377   Valtype val = 0;
1378
1379   switch (this->local_sym_index_)
1380     {
1381     case GSYM_CODE:
1382       {
1383         // If the symbol is resolved locally, we need to write out the
1384         // link-time value, which will be relocated dynamically by a
1385         // RELATIVE relocation.
1386         Symbol* gsym = this->u_.gsym;
1387         if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1388           val = (parameters->target().plt_address_for_global(gsym)
1389                  + gsym->plt_offset());
1390         else
1391           {
1392             switch (parameters->size_and_endianness())
1393               {
1394 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1395               case Parameters::TARGET_32_LITTLE:
1396               case Parameters::TARGET_32_BIG:
1397                 {
1398                   // This cast is ugly.  We don't want to put a
1399                   // virtual method in Symbol, because we want Symbol
1400                   // to be as small as possible.
1401                   Sized_symbol<32>::Value_type v;
1402                   v = static_cast<Sized_symbol<32>*>(gsym)->value();
1403                   val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1404                 }
1405                 break;
1406 #endif
1407 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1408               case Parameters::TARGET_64_LITTLE:
1409               case Parameters::TARGET_64_BIG:
1410                 {
1411                   Sized_symbol<64>::Value_type v;
1412                   v = static_cast<Sized_symbol<64>*>(gsym)->value();
1413                   val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1414                 }
1415                 break;
1416 #endif
1417               default:
1418                 gold_unreachable();
1419               }
1420             if (this->use_plt_or_tls_offset_
1421                 && gsym->type() == elfcpp::STT_TLS)
1422               val += parameters->target().tls_offset_for_global(gsym,
1423                                                                 got_indx);
1424           }
1425       }
1426       break;
1427
1428     case CONSTANT_CODE:
1429       val = this->u_.constant;
1430       break;
1431
1432     case RESERVED_CODE:
1433       // If we're doing an incremental update, don't touch this GOT entry.
1434       if (parameters->incremental_update())
1435         return;
1436       val = this->u_.constant;
1437       break;
1438
1439     default:
1440       {
1441         const Relobj* object = this->u_.object;
1442         const unsigned int lsi = this->local_sym_index_;
1443         bool is_tls = object->local_is_tls(lsi);
1444         if (this->use_plt_or_tls_offset_ && !is_tls)
1445           {
1446             uint64_t plt_address =
1447               parameters->target().plt_address_for_local(object, lsi);
1448             val = plt_address + object->local_plt_offset(lsi);
1449           }
1450         else
1451           {
1452             uint64_t lval = object->local_symbol_value(lsi, 0);
1453             val = convert_types<Valtype, uint64_t>(lval);
1454             if (this->use_plt_or_tls_offset_ && is_tls)
1455               val += parameters->target().tls_offset_for_local(object, lsi,
1456                                                                got_indx);
1457           }
1458       }
1459       break;
1460     }
1461
1462   elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1463 }
1464
1465 // Output_data_got methods.
1466
1467 // Add an entry for a global symbol to the GOT.  This returns true if
1468 // this is a new GOT entry, false if the symbol already had a GOT
1469 // entry.
1470
1471 template<int got_size, bool big_endian>
1472 bool
1473 Output_data_got<got_size, big_endian>::add_global(
1474     Symbol* gsym,
1475     unsigned int got_type)
1476 {
1477   if (gsym->has_got_offset(got_type))
1478     return false;
1479
1480   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1481   gsym->set_got_offset(got_type, got_offset);
1482   return true;
1483 }
1484
1485 // Like add_global, but use the PLT offset.
1486
1487 template<int got_size, bool big_endian>
1488 bool
1489 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1490                                                       unsigned int got_type)
1491 {
1492   if (gsym->has_got_offset(got_type))
1493     return false;
1494
1495   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1496   gsym->set_got_offset(got_type, got_offset);
1497   return true;
1498 }
1499
1500 // Add an entry for a global symbol to the GOT, and add a dynamic
1501 // relocation of type R_TYPE for the GOT entry.
1502
1503 template<int got_size, bool big_endian>
1504 void
1505 Output_data_got<got_size, big_endian>::add_global_with_rel(
1506     Symbol* gsym,
1507     unsigned int got_type,
1508     Output_data_reloc_generic* rel_dyn,
1509     unsigned int r_type)
1510 {
1511   if (gsym->has_got_offset(got_type))
1512     return;
1513
1514   unsigned int got_offset = this->add_got_entry(Got_entry());
1515   gsym->set_got_offset(got_type, got_offset);
1516   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1517 }
1518
1519 // Add a pair of entries for a global symbol to the GOT, and add
1520 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1521 // If R_TYPE_2 == 0, add the second entry with no relocation.
1522 template<int got_size, bool big_endian>
1523 void
1524 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1525     Symbol* gsym,
1526     unsigned int got_type,
1527     Output_data_reloc_generic* rel_dyn,
1528     unsigned int r_type_1,
1529     unsigned int r_type_2)
1530 {
1531   if (gsym->has_got_offset(got_type))
1532     return;
1533
1534   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1535   gsym->set_got_offset(got_type, got_offset);
1536   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1537
1538   if (r_type_2 != 0)
1539     rel_dyn->add_global_generic(gsym, r_type_2, this,
1540                                 got_offset + got_size / 8, 0);
1541 }
1542
1543 // Add an entry for a local symbol to the GOT.  This returns true if
1544 // this is a new GOT entry, false if the symbol already has a GOT
1545 // entry.
1546
1547 template<int got_size, bool big_endian>
1548 bool
1549 Output_data_got<got_size, big_endian>::add_local(
1550     Relobj* object,
1551     unsigned int symndx,
1552     unsigned int got_type)
1553 {
1554   if (object->local_has_got_offset(symndx, got_type))
1555     return false;
1556
1557   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1558                                                           false));
1559   object->set_local_got_offset(symndx, got_type, got_offset);
1560   return true;
1561 }
1562
1563 // Like add_local, but use the PLT offset.
1564
1565 template<int got_size, bool big_endian>
1566 bool
1567 Output_data_got<got_size, big_endian>::add_local_plt(
1568     Relobj* object,
1569     unsigned int symndx,
1570     unsigned int got_type)
1571 {
1572   if (object->local_has_got_offset(symndx, got_type))
1573     return false;
1574
1575   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1576                                                           true));
1577   object->set_local_got_offset(symndx, got_type, got_offset);
1578   return true;
1579 }
1580
1581 // Add an entry for a local symbol to the GOT, and add a dynamic
1582 // relocation of type R_TYPE for the GOT entry.
1583
1584 template<int got_size, bool big_endian>
1585 void
1586 Output_data_got<got_size, big_endian>::add_local_with_rel(
1587     Relobj* object,
1588     unsigned int symndx,
1589     unsigned int got_type,
1590     Output_data_reloc_generic* rel_dyn,
1591     unsigned int r_type)
1592 {
1593   if (object->local_has_got_offset(symndx, got_type))
1594     return;
1595
1596   unsigned int got_offset = this->add_got_entry(Got_entry());
1597   object->set_local_got_offset(symndx, got_type, got_offset);
1598   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1599 }
1600
1601 // Add a pair of entries for a local symbol to the GOT, and add
1602 // a dynamic relocation of type R_TYPE using the section symbol of
1603 // the output section to which input section SHNDX maps, on the first.
1604 // The first got entry will have a value of zero, the second the
1605 // value of the local symbol.
1606 template<int got_size, bool big_endian>
1607 void
1608 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1609     Relobj* object,
1610     unsigned int symndx,
1611     unsigned int shndx,
1612     unsigned int got_type,
1613     Output_data_reloc_generic* rel_dyn,
1614     unsigned int r_type)
1615 {
1616   if (object->local_has_got_offset(symndx, got_type))
1617     return;
1618
1619   unsigned int got_offset =
1620       this->add_got_entry_pair(Got_entry(),
1621                                Got_entry(object, symndx, false));
1622   object->set_local_got_offset(symndx, got_type, got_offset);
1623   Output_section* os = object->output_section(shndx);
1624   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1625 }
1626
1627 // Add a pair of entries for a local symbol to the GOT, and add
1628 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1629 // The first got entry will have a value of zero, the second the
1630 // value of the local symbol offset by Target::tls_offset_for_local.
1631 template<int got_size, bool big_endian>
1632 void
1633 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1634     Relobj* object,
1635     unsigned int symndx,
1636     unsigned int got_type,
1637     Output_data_reloc_generic* rel_dyn,
1638     unsigned int r_type)
1639 {
1640   if (object->local_has_got_offset(symndx, got_type))
1641     return;
1642
1643   unsigned int got_offset
1644     = this->add_got_entry_pair(Got_entry(),
1645                                Got_entry(object, symndx, true));
1646   object->set_local_got_offset(symndx, got_type, got_offset);
1647   rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1648 }
1649
1650 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1651
1652 template<int got_size, bool big_endian>
1653 void
1654 Output_data_got<got_size, big_endian>::reserve_local(
1655     unsigned int i,
1656     Relobj* object,
1657     unsigned int sym_index,
1658     unsigned int got_type)
1659 {
1660   this->do_reserve_slot(i);
1661   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1662 }
1663
1664 // Reserve a slot in the GOT for a global symbol.
1665
1666 template<int got_size, bool big_endian>
1667 void
1668 Output_data_got<got_size, big_endian>::reserve_global(
1669     unsigned int i,
1670     Symbol* gsym,
1671     unsigned int got_type)
1672 {
1673   this->do_reserve_slot(i);
1674   gsym->set_got_offset(got_type, this->got_offset(i));
1675 }
1676
1677 // Write out the GOT.
1678
1679 template<int got_size, bool big_endian>
1680 void
1681 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1682 {
1683   const int add = got_size / 8;
1684
1685   const off_t off = this->offset();
1686   const off_t oview_size = this->data_size();
1687   unsigned char* const oview = of->get_output_view(off, oview_size);
1688
1689   unsigned char* pov = oview;
1690   for (unsigned int i = 0; i < this->entries_.size(); ++i)
1691     {
1692       this->entries_[i].write(i, pov);
1693       pov += add;
1694     }
1695
1696   gold_assert(pov - oview == oview_size);
1697
1698   of->write_output_view(off, oview_size, oview);
1699
1700   // We no longer need the GOT entries.
1701   this->entries_.clear();
1702 }
1703
1704 // Create a new GOT entry and return its offset.
1705
1706 template<int got_size, bool big_endian>
1707 unsigned int
1708 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1709 {
1710   if (!this->is_data_size_valid())
1711     {
1712       this->entries_.push_back(got_entry);
1713       this->set_got_size();
1714       return this->last_got_offset();
1715     }
1716   else
1717     {
1718       // For an incremental update, find an available slot.
1719       off_t got_offset = this->free_list_.allocate(got_size / 8,
1720                                                    got_size / 8, 0);
1721       if (got_offset == -1)
1722         gold_fallback(_("out of patch space (GOT);"
1723                         " relink with --incremental-full"));
1724       unsigned int got_index = got_offset / (got_size / 8);
1725       gold_assert(got_index < this->entries_.size());
1726       this->entries_[got_index] = got_entry;
1727       return static_cast<unsigned int>(got_offset);
1728     }
1729 }
1730
1731 // Create a pair of new GOT entries and return the offset of the first.
1732
1733 template<int got_size, bool big_endian>
1734 unsigned int
1735 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1736     Got_entry got_entry_1,
1737     Got_entry got_entry_2)
1738 {
1739   if (!this->is_data_size_valid())
1740     {
1741       unsigned int got_offset;
1742       this->entries_.push_back(got_entry_1);
1743       got_offset = this->last_got_offset();
1744       this->entries_.push_back(got_entry_2);
1745       this->set_got_size();
1746       return got_offset;
1747     }
1748   else
1749     {
1750       // For an incremental update, find an available pair of slots.
1751       off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1752                                                    got_size / 8, 0);
1753       if (got_offset == -1)
1754         gold_fallback(_("out of patch space (GOT);"
1755                         " relink with --incremental-full"));
1756       unsigned int got_index = got_offset / (got_size / 8);
1757       gold_assert(got_index < this->entries_.size());
1758       this->entries_[got_index] = got_entry_1;
1759       this->entries_[got_index + 1] = got_entry_2;
1760       return static_cast<unsigned int>(got_offset);
1761     }
1762 }
1763
1764 // Replace GOT entry I with a new value.
1765
1766 template<int got_size, bool big_endian>
1767 void
1768 Output_data_got<got_size, big_endian>::replace_got_entry(
1769     unsigned int i,
1770     Got_entry got_entry)
1771 {
1772   gold_assert(i < this->entries_.size());
1773   this->entries_[i] = got_entry;
1774 }
1775
1776 // Output_data_dynamic::Dynamic_entry methods.
1777
1778 // Write out the entry.
1779
1780 template<int size, bool big_endian>
1781 void
1782 Output_data_dynamic::Dynamic_entry::write(
1783     unsigned char* pov,
1784     const Stringpool* pool) const
1785 {
1786   typename elfcpp::Elf_types<size>::Elf_WXword val;
1787   switch (this->offset_)
1788     {
1789     case DYNAMIC_NUMBER:
1790       val = this->u_.val;
1791       break;
1792
1793     case DYNAMIC_SECTION_SIZE:
1794       val = this->u_.od->data_size();
1795       if (this->od2 != NULL)
1796         val += this->od2->data_size();
1797       break;
1798
1799     case DYNAMIC_SYMBOL:
1800       {
1801         const Sized_symbol<size>* s =
1802           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1803         val = s->value();
1804       }
1805       break;
1806
1807     case DYNAMIC_STRING:
1808       val = pool->get_offset(this->u_.str);
1809       break;
1810
1811     default:
1812       val = this->u_.od->address() + this->offset_;
1813       break;
1814     }
1815
1816   elfcpp::Dyn_write<size, big_endian> dw(pov);
1817   dw.put_d_tag(this->tag_);
1818   dw.put_d_val(val);
1819 }
1820
1821 // Output_data_dynamic methods.
1822
1823 // Adjust the output section to set the entry size.
1824
1825 void
1826 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1827 {
1828   if (parameters->target().get_size() == 32)
1829     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1830   else if (parameters->target().get_size() == 64)
1831     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1832   else
1833     gold_unreachable();
1834 }
1835
1836 // Set the final data size.
1837
1838 void
1839 Output_data_dynamic::set_final_data_size()
1840 {
1841   // Add the terminating entry if it hasn't been added.
1842   // Because of relaxation, we can run this multiple times.
1843   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1844     {
1845       int extra = parameters->options().spare_dynamic_tags();
1846       for (int i = 0; i < extra; ++i)
1847         this->add_constant(elfcpp::DT_NULL, 0);
1848       this->add_constant(elfcpp::DT_NULL, 0);
1849     }
1850
1851   int dyn_size;
1852   if (parameters->target().get_size() == 32)
1853     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1854   else if (parameters->target().get_size() == 64)
1855     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1856   else
1857     gold_unreachable();
1858   this->set_data_size(this->entries_.size() * dyn_size);
1859 }
1860
1861 // Write out the dynamic entries.
1862
1863 void
1864 Output_data_dynamic::do_write(Output_file* of)
1865 {
1866   switch (parameters->size_and_endianness())
1867     {
1868 #ifdef HAVE_TARGET_32_LITTLE
1869     case Parameters::TARGET_32_LITTLE:
1870       this->sized_write<32, false>(of);
1871       break;
1872 #endif
1873 #ifdef HAVE_TARGET_32_BIG
1874     case Parameters::TARGET_32_BIG:
1875       this->sized_write<32, true>(of);
1876       break;
1877 #endif
1878 #ifdef HAVE_TARGET_64_LITTLE
1879     case Parameters::TARGET_64_LITTLE:
1880       this->sized_write<64, false>(of);
1881       break;
1882 #endif
1883 #ifdef HAVE_TARGET_64_BIG
1884     case Parameters::TARGET_64_BIG:
1885       this->sized_write<64, true>(of);
1886       break;
1887 #endif
1888     default:
1889       gold_unreachable();
1890     }
1891 }
1892
1893 template<int size, bool big_endian>
1894 void
1895 Output_data_dynamic::sized_write(Output_file* of)
1896 {
1897   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1898
1899   const off_t offset = this->offset();
1900   const off_t oview_size = this->data_size();
1901   unsigned char* const oview = of->get_output_view(offset, oview_size);
1902
1903   unsigned char* pov = oview;
1904   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1905        p != this->entries_.end();
1906        ++p)
1907     {
1908       p->write<size, big_endian>(pov, this->pool_);
1909       pov += dyn_size;
1910     }
1911
1912   gold_assert(pov - oview == oview_size);
1913
1914   of->write_output_view(offset, oview_size, oview);
1915
1916   // We no longer need the dynamic entries.
1917   this->entries_.clear();
1918 }
1919
1920 // Class Output_symtab_xindex.
1921
1922 void
1923 Output_symtab_xindex::do_write(Output_file* of)
1924 {
1925   const off_t offset = this->offset();
1926   const off_t oview_size = this->data_size();
1927   unsigned char* const oview = of->get_output_view(offset, oview_size);
1928
1929   memset(oview, 0, oview_size);
1930
1931   if (parameters->target().is_big_endian())
1932     this->endian_do_write<true>(oview);
1933   else
1934     this->endian_do_write<false>(oview);
1935
1936   of->write_output_view(offset, oview_size, oview);
1937
1938   // We no longer need the data.
1939   this->entries_.clear();
1940 }
1941
1942 template<bool big_endian>
1943 void
1944 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1945 {
1946   for (Xindex_entries::const_iterator p = this->entries_.begin();
1947        p != this->entries_.end();
1948        ++p)
1949     {
1950       unsigned int symndx = p->first;
1951       gold_assert(symndx * 4 < this->data_size());
1952       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1953     }
1954 }
1955
1956 // Output_fill_debug_info methods.
1957
1958 // Return the minimum size needed for a dummy compilation unit header.
1959
1960 size_t
1961 Output_fill_debug_info::do_minimum_hole_size() const
1962 {
1963   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1964   // address_size.
1965   const size_t len = 4 + 2 + 4 + 1;
1966   // For type units, add type_signature, type_offset.
1967   if (this->is_debug_types_)
1968     return len + 8 + 4;
1969   return len;
1970 }
1971
1972 // Write a dummy compilation unit header to fill a hole in the
1973 // .debug_info or .debug_types section.
1974
1975 void
1976 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1977 {
1978   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1979              static_cast<long>(off), static_cast<long>(len));
1980
1981   gold_assert(len >= this->do_minimum_hole_size());
1982
1983   unsigned char* const oview = of->get_output_view(off, len);
1984   unsigned char* pov = oview;
1985
1986   // Write header fields: unit_length, version, debug_abbrev_offset,
1987   // address_size.
1988   if (this->is_big_endian())
1989     {
1990       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1991       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1992       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1993     }
1994   else
1995     {
1996       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1997       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1998       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1999     }
2000   pov += 4 + 2 + 4;
2001   *pov++ = 4;
2002
2003   // For type units, the additional header fields -- type_signature,
2004   // type_offset -- can be filled with zeroes.
2005
2006   // Fill the remainder of the free space with zeroes.  The first
2007   // zero should tell the consumer there are no DIEs to read in this
2008   // compilation unit.
2009   if (pov < oview + len)
2010     memset(pov, 0, oview + len - pov);
2011
2012   of->write_output_view(off, len, oview);
2013 }
2014
2015 // Output_fill_debug_line methods.
2016
2017 // Return the minimum size needed for a dummy line number program header.
2018
2019 size_t
2020 Output_fill_debug_line::do_minimum_hole_size() const
2021 {
2022   // Line number program header fields: unit_length, version, header_length,
2023   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2024   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2025   const size_t len = 4 + 2 + 4 + this->header_length;
2026   return len;
2027 }
2028
2029 // Write a dummy line number program header to fill a hole in the
2030 // .debug_line section.
2031
2032 void
2033 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2034 {
2035   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2036              static_cast<long>(off), static_cast<long>(len));
2037
2038   gold_assert(len >= this->do_minimum_hole_size());
2039
2040   unsigned char* const oview = of->get_output_view(off, len);
2041   unsigned char* pov = oview;
2042
2043   // Write header fields: unit_length, version, header_length,
2044   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2045   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2046   // We set the header_length field to cover the entire hole, so the
2047   // line number program is empty.
2048   if (this->is_big_endian())
2049     {
2050       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2051       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2052       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2053     }
2054   else
2055     {
2056       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2057       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2058       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2059     }
2060   pov += 4 + 2 + 4;
2061   *pov++ = 1;   // minimum_instruction_length
2062   *pov++ = 0;   // default_is_stmt
2063   *pov++ = 0;   // line_base
2064   *pov++ = 5;   // line_range
2065   *pov++ = 13;  // opcode_base
2066   *pov++ = 0;   // standard_opcode_lengths[1]
2067   *pov++ = 1;   // standard_opcode_lengths[2]
2068   *pov++ = 1;   // standard_opcode_lengths[3]
2069   *pov++ = 1;   // standard_opcode_lengths[4]
2070   *pov++ = 1;   // standard_opcode_lengths[5]
2071   *pov++ = 0;   // standard_opcode_lengths[6]
2072   *pov++ = 0;   // standard_opcode_lengths[7]
2073   *pov++ = 0;   // standard_opcode_lengths[8]
2074   *pov++ = 1;   // standard_opcode_lengths[9]
2075   *pov++ = 0;   // standard_opcode_lengths[10]
2076   *pov++ = 0;   // standard_opcode_lengths[11]
2077   *pov++ = 1;   // standard_opcode_lengths[12]
2078   *pov++ = 0;   // include_directories (empty)
2079   *pov++ = 0;   // filenames (empty)
2080
2081   // Some consumers don't check the header_length field, and simply
2082   // start reading the line number program immediately following the
2083   // header.  For those consumers, we fill the remainder of the free
2084   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2085   // no-ops: the resulting line table program will not create any rows.
2086   if (pov < oview + len)
2087     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2088
2089   of->write_output_view(off, len, oview);
2090 }
2091
2092 // Output_section::Input_section methods.
2093
2094 // Return the current data size.  For an input section we store the size here.
2095 // For an Output_section_data, we have to ask it for the size.
2096
2097 off_t
2098 Output_section::Input_section::current_data_size() const
2099 {
2100   if (this->is_input_section())
2101     return this->u1_.data_size;
2102   else
2103     {
2104       this->u2_.posd->pre_finalize_data_size();
2105       return this->u2_.posd->current_data_size();
2106     }
2107 }
2108
2109 // Return the data size.  For an input section we store the size here.
2110 // For an Output_section_data, we have to ask it for the size.
2111
2112 off_t
2113 Output_section::Input_section::data_size() const
2114 {
2115   if (this->is_input_section())
2116     return this->u1_.data_size;
2117   else
2118     return this->u2_.posd->data_size();
2119 }
2120
2121 // Return the object for an input section.
2122
2123 Relobj*
2124 Output_section::Input_section::relobj() const
2125 {
2126   if (this->is_input_section())
2127     return this->u2_.object;
2128   else if (this->is_merge_section())
2129     {
2130       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2131       return this->u2_.pomb->first_relobj();
2132     }
2133   else if (this->is_relaxed_input_section())
2134     return this->u2_.poris->relobj();
2135   else
2136     gold_unreachable();
2137 }
2138
2139 // Return the input section index for an input section.
2140
2141 unsigned int
2142 Output_section::Input_section::shndx() const
2143 {
2144   if (this->is_input_section())
2145     return this->shndx_;
2146   else if (this->is_merge_section())
2147     {
2148       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2149       return this->u2_.pomb->first_shndx();
2150     }
2151   else if (this->is_relaxed_input_section())
2152     return this->u2_.poris->shndx();
2153   else
2154     gold_unreachable();
2155 }
2156
2157 // Set the address and file offset.
2158
2159 void
2160 Output_section::Input_section::set_address_and_file_offset(
2161     uint64_t address,
2162     off_t file_offset,
2163     off_t section_file_offset)
2164 {
2165   if (this->is_input_section())
2166     this->u2_.object->set_section_offset(this->shndx_,
2167                                          file_offset - section_file_offset);
2168   else
2169     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2170 }
2171
2172 // Reset the address and file offset.
2173
2174 void
2175 Output_section::Input_section::reset_address_and_file_offset()
2176 {
2177   if (!this->is_input_section())
2178     this->u2_.posd->reset_address_and_file_offset();
2179 }
2180
2181 // Finalize the data size.
2182
2183 void
2184 Output_section::Input_section::finalize_data_size()
2185 {
2186   if (!this->is_input_section())
2187     this->u2_.posd->finalize_data_size();
2188 }
2189
2190 // Try to turn an input offset into an output offset.  We want to
2191 // return the output offset relative to the start of this
2192 // Input_section in the output section.
2193
2194 inline bool
2195 Output_section::Input_section::output_offset(
2196     const Relobj* object,
2197     unsigned int shndx,
2198     section_offset_type offset,
2199     section_offset_type* poutput) const
2200 {
2201   if (!this->is_input_section())
2202     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2203   else
2204     {
2205       if (this->shndx_ != shndx || this->u2_.object != object)
2206         return false;
2207       *poutput = offset;
2208       return true;
2209     }
2210 }
2211
2212 // Return whether this is the merge section for the input section
2213 // SHNDX in OBJECT.
2214
2215 inline bool
2216 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2217                                                     unsigned int shndx) const
2218 {
2219   if (this->is_input_section())
2220     return false;
2221   return this->u2_.posd->is_merge_section_for(object, shndx);
2222 }
2223
2224 // Write out the data.  We don't have to do anything for an input
2225 // section--they are handled via Object::relocate--but this is where
2226 // we write out the data for an Output_section_data.
2227
2228 void
2229 Output_section::Input_section::write(Output_file* of)
2230 {
2231   if (!this->is_input_section())
2232     this->u2_.posd->write(of);
2233 }
2234
2235 // Write the data to a buffer.  As for write(), we don't have to do
2236 // anything for an input section.
2237
2238 void
2239 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2240 {
2241   if (!this->is_input_section())
2242     this->u2_.posd->write_to_buffer(buffer);
2243 }
2244
2245 // Print to a map file.
2246
2247 void
2248 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2249 {
2250   switch (this->shndx_)
2251     {
2252     case OUTPUT_SECTION_CODE:
2253     case MERGE_DATA_SECTION_CODE:
2254     case MERGE_STRING_SECTION_CODE:
2255       this->u2_.posd->print_to_mapfile(mapfile);
2256       break;
2257
2258     case RELAXED_INPUT_SECTION_CODE:
2259       {
2260         Output_relaxed_input_section* relaxed_section =
2261           this->relaxed_input_section();
2262         mapfile->print_input_section(relaxed_section->relobj(),
2263                                      relaxed_section->shndx());
2264       }
2265       break;
2266     default:
2267       mapfile->print_input_section(this->u2_.object, this->shndx_);
2268       break;
2269     }
2270 }
2271
2272 // Output_section methods.
2273
2274 // Construct an Output_section.  NAME will point into a Stringpool.
2275
2276 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2277                                elfcpp::Elf_Xword flags)
2278   : name_(name),
2279     addralign_(0),
2280     entsize_(0),
2281     load_address_(0),
2282     link_section_(NULL),
2283     link_(0),
2284     info_section_(NULL),
2285     info_symndx_(NULL),
2286     info_(0),
2287     type_(type),
2288     flags_(flags),
2289     order_(ORDER_INVALID),
2290     out_shndx_(-1U),
2291     symtab_index_(0),
2292     dynsym_index_(0),
2293     input_sections_(),
2294     first_input_offset_(0),
2295     fills_(),
2296     postprocessing_buffer_(NULL),
2297     needs_symtab_index_(false),
2298     needs_dynsym_index_(false),
2299     should_link_to_symtab_(false),
2300     should_link_to_dynsym_(false),
2301     after_input_sections_(false),
2302     requires_postprocessing_(false),
2303     found_in_sections_clause_(false),
2304     has_load_address_(false),
2305     info_uses_section_index_(false),
2306     input_section_order_specified_(false),
2307     may_sort_attached_input_sections_(false),
2308     must_sort_attached_input_sections_(false),
2309     attached_input_sections_are_sorted_(false),
2310     is_relro_(false),
2311     is_small_section_(false),
2312     is_large_section_(false),
2313     generate_code_fills_at_write_(false),
2314     is_entsize_zero_(false),
2315     section_offsets_need_adjustment_(false),
2316     is_noload_(false),
2317     always_keeps_input_sections_(false),
2318     has_fixed_layout_(false),
2319     is_patch_space_allowed_(false),
2320     is_unique_segment_(false),
2321     tls_offset_(0),
2322     extra_segment_flags_(0),
2323     segment_alignment_(0),
2324     checkpoint_(NULL),
2325     lookup_maps_(new Output_section_lookup_maps),
2326     free_list_(),
2327     free_space_fill_(NULL),
2328     patch_space_(0)
2329 {
2330   // An unallocated section has no address.  Forcing this means that
2331   // we don't need special treatment for symbols defined in debug
2332   // sections.
2333   if ((flags & elfcpp::SHF_ALLOC) == 0)
2334     this->set_address(0);
2335 }
2336
2337 Output_section::~Output_section()
2338 {
2339   delete this->checkpoint_;
2340 }
2341
2342 // Set the entry size.
2343
2344 void
2345 Output_section::set_entsize(uint64_t v)
2346 {
2347   if (this->is_entsize_zero_)
2348     ;
2349   else if (this->entsize_ == 0)
2350     this->entsize_ = v;
2351   else if (this->entsize_ != v)
2352     {
2353       this->entsize_ = 0;
2354       this->is_entsize_zero_ = 1;
2355     }
2356 }
2357
2358 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2359 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2360 // relocation section which applies to this section, or 0 if none, or
2361 // -1U if more than one.  Return the offset of the input section
2362 // within the output section.  Return -1 if the input section will
2363 // receive special handling.  In the normal case we don't always keep
2364 // track of input sections for an Output_section.  Instead, each
2365 // Object keeps track of the Output_section for each of its input
2366 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2367 // track of input sections here; this is used when SECTIONS appears in
2368 // a linker script.
2369
2370 template<int size, bool big_endian>
2371 off_t
2372 Output_section::add_input_section(Layout* layout,
2373                                   Sized_relobj_file<size, big_endian>* object,
2374                                   unsigned int shndx,
2375                                   const char* secname,
2376                                   const elfcpp::Shdr<size, big_endian>& shdr,
2377                                   unsigned int reloc_shndx,
2378                                   bool have_sections_script)
2379 {
2380   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2381   if ((addralign & (addralign - 1)) != 0)
2382     {
2383       object->error(_("invalid alignment %lu for section \"%s\""),
2384                     static_cast<unsigned long>(addralign), secname);
2385       addralign = 1;
2386     }
2387
2388   if (addralign > this->addralign_)
2389     this->addralign_ = addralign;
2390
2391   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2392   uint64_t entsize = shdr.get_sh_entsize();
2393
2394   // .debug_str is a mergeable string section, but is not always so
2395   // marked by compilers.  Mark manually here so we can optimize.
2396   if (strcmp(secname, ".debug_str") == 0)
2397     {
2398       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2399       entsize = 1;
2400     }
2401
2402   this->update_flags_for_input_section(sh_flags);
2403   this->set_entsize(entsize);
2404
2405   // If this is a SHF_MERGE section, we pass all the input sections to
2406   // a Output_data_merge.  We don't try to handle relocations for such
2407   // a section.  We don't try to handle empty merge sections--they
2408   // mess up the mappings, and are useless anyhow.
2409   // FIXME: Need to handle merge sections during incremental update.
2410   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2411       && reloc_shndx == 0
2412       && shdr.get_sh_size() > 0
2413       && !parameters->incremental())
2414     {
2415       // Keep information about merged input sections for rebuilding fast
2416       // lookup maps if we have sections-script or we do relaxation.
2417       bool keeps_input_sections = (this->always_keeps_input_sections_
2418                                    || have_sections_script
2419                                    || parameters->target().may_relax());
2420
2421       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2422                                         addralign, keeps_input_sections))
2423         {
2424           // Tell the relocation routines that they need to call the
2425           // output_offset method to determine the final address.
2426           return -1;
2427         }
2428     }
2429
2430   section_size_type input_section_size = shdr.get_sh_size();
2431   section_size_type uncompressed_size;
2432   if (object->section_is_compressed(shndx, &uncompressed_size))
2433     input_section_size = uncompressed_size;
2434
2435   off_t offset_in_section;
2436   off_t aligned_offset_in_section;
2437   if (this->has_fixed_layout())
2438     {
2439       // For incremental updates, find a chunk of unused space in the section.
2440       offset_in_section = this->free_list_.allocate(input_section_size,
2441                                                     addralign, 0);
2442       if (offset_in_section == -1)
2443         gold_fallback(_("out of patch space in section %s; "
2444                         "relink with --incremental-full"),
2445                       this->name());
2446       aligned_offset_in_section = offset_in_section;
2447     }
2448   else
2449     {
2450       offset_in_section = this->current_data_size_for_child();
2451       aligned_offset_in_section = align_address(offset_in_section,
2452                                                 addralign);
2453       this->set_current_data_size_for_child(aligned_offset_in_section
2454                                             + input_section_size);
2455     }
2456
2457   // Determine if we want to delay code-fill generation until the output
2458   // section is written.  When the target is relaxing, we want to delay fill
2459   // generating to avoid adjusting them during relaxation.  Also, if we are
2460   // sorting input sections we must delay fill generation.
2461   if (!this->generate_code_fills_at_write_
2462       && !have_sections_script
2463       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2464       && parameters->target().has_code_fill()
2465       && (parameters->target().may_relax()
2466           || layout->is_section_ordering_specified()))
2467     {
2468       gold_assert(this->fills_.empty());
2469       this->generate_code_fills_at_write_ = true;
2470     }
2471
2472   if (aligned_offset_in_section > offset_in_section
2473       && !this->generate_code_fills_at_write_
2474       && !have_sections_script
2475       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2476       && parameters->target().has_code_fill())
2477     {
2478       // We need to add some fill data.  Using fill_list_ when
2479       // possible is an optimization, since we will often have fill
2480       // sections without input sections.
2481       off_t fill_len = aligned_offset_in_section - offset_in_section;
2482       if (this->input_sections_.empty())
2483         this->fills_.push_back(Fill(offset_in_section, fill_len));
2484       else
2485         {
2486           std::string fill_data(parameters->target().code_fill(fill_len));
2487           Output_data_const* odc = new Output_data_const(fill_data, 1);
2488           this->input_sections_.push_back(Input_section(odc));
2489         }
2490     }
2491
2492   // We need to keep track of this section if we are already keeping
2493   // track of sections, or if we are relaxing.  Also, if this is a
2494   // section which requires sorting, or which may require sorting in
2495   // the future, we keep track of the sections.  If the
2496   // --section-ordering-file option is used to specify the order of
2497   // sections, we need to keep track of sections.
2498   if (this->always_keeps_input_sections_
2499       || have_sections_script
2500       || !this->input_sections_.empty()
2501       || this->may_sort_attached_input_sections()
2502       || this->must_sort_attached_input_sections()
2503       || parameters->options().user_set_Map()
2504       || parameters->target().may_relax()
2505       || layout->is_section_ordering_specified())
2506     {
2507       Input_section isecn(object, shndx, input_section_size, addralign);
2508       /* If section ordering is requested by specifying a ordering file,
2509          using --section-ordering-file, match the section name with
2510          a pattern.  */
2511       if (parameters->options().section_ordering_file())
2512         {
2513           unsigned int section_order_index =
2514             layout->find_section_order_index(std::string(secname));
2515           if (section_order_index != 0)
2516             {
2517               isecn.set_section_order_index(section_order_index);
2518               this->set_input_section_order_specified();
2519             }
2520         }
2521       if (this->has_fixed_layout())
2522         {
2523           // For incremental updates, finalize the address and offset now.
2524           uint64_t addr = this->address();
2525           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2526                                             aligned_offset_in_section,
2527                                             this->offset());
2528         }
2529       this->input_sections_.push_back(isecn);
2530     }
2531
2532   return aligned_offset_in_section;
2533 }
2534
2535 // Add arbitrary data to an output section.
2536
2537 void
2538 Output_section::add_output_section_data(Output_section_data* posd)
2539 {
2540   Input_section inp(posd);
2541   this->add_output_section_data(&inp);
2542
2543   if (posd->is_data_size_valid())
2544     {
2545       off_t offset_in_section;
2546       if (this->has_fixed_layout())
2547         {
2548           // For incremental updates, find a chunk of unused space.
2549           offset_in_section = this->free_list_.allocate(posd->data_size(),
2550                                                         posd->addralign(), 0);
2551           if (offset_in_section == -1)
2552             gold_fallback(_("out of patch space in section %s; "
2553                             "relink with --incremental-full"),
2554                           this->name());
2555           // Finalize the address and offset now.
2556           uint64_t addr = this->address();
2557           off_t offset = this->offset();
2558           posd->set_address_and_file_offset(addr + offset_in_section,
2559                                             offset + offset_in_section);
2560         }
2561       else
2562         {
2563           offset_in_section = this->current_data_size_for_child();
2564           off_t aligned_offset_in_section = align_address(offset_in_section,
2565                                                           posd->addralign());
2566           this->set_current_data_size_for_child(aligned_offset_in_section
2567                                                 + posd->data_size());
2568         }
2569     }
2570   else if (this->has_fixed_layout())
2571     {
2572       // For incremental updates, arrange for the data to have a fixed layout.
2573       // This will mean that additions to the data must be allocated from
2574       // free space within the containing output section.
2575       uint64_t addr = this->address();
2576       posd->set_address(addr);
2577       posd->set_file_offset(0);
2578       // FIXME: This should eventually be unreachable.
2579       // gold_unreachable();
2580     }
2581 }
2582
2583 // Add a relaxed input section.
2584
2585 void
2586 Output_section::add_relaxed_input_section(Layout* layout,
2587                                           Output_relaxed_input_section* poris,
2588                                           const std::string& name)
2589 {
2590   Input_section inp(poris);
2591
2592   // If the --section-ordering-file option is used to specify the order of
2593   // sections, we need to keep track of sections.
2594   if (layout->is_section_ordering_specified())
2595     {
2596       unsigned int section_order_index =
2597         layout->find_section_order_index(name);
2598       if (section_order_index != 0)
2599         {
2600           inp.set_section_order_index(section_order_index);
2601           this->set_input_section_order_specified();
2602         }
2603     }
2604
2605   this->add_output_section_data(&inp);
2606   if (this->lookup_maps_->is_valid())
2607     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2608                                                   poris->shndx(), poris);
2609
2610   // For a relaxed section, we use the current data size.  Linker scripts
2611   // get all the input sections, including relaxed one from an output
2612   // section and add them back to them same output section to compute the
2613   // output section size.  If we do not account for sizes of relaxed input
2614   // sections,  an output section would be incorrectly sized.
2615   off_t offset_in_section = this->current_data_size_for_child();
2616   off_t aligned_offset_in_section = align_address(offset_in_section,
2617                                                   poris->addralign());
2618   this->set_current_data_size_for_child(aligned_offset_in_section
2619                                         + poris->current_data_size());
2620 }
2621
2622 // Add arbitrary data to an output section by Input_section.
2623
2624 void
2625 Output_section::add_output_section_data(Input_section* inp)
2626 {
2627   if (this->input_sections_.empty())
2628     this->first_input_offset_ = this->current_data_size_for_child();
2629
2630   this->input_sections_.push_back(*inp);
2631
2632   uint64_t addralign = inp->addralign();
2633   if (addralign > this->addralign_)
2634     this->addralign_ = addralign;
2635
2636   inp->set_output_section(this);
2637 }
2638
2639 // Add a merge section to an output section.
2640
2641 void
2642 Output_section::add_output_merge_section(Output_section_data* posd,
2643                                          bool is_string, uint64_t entsize)
2644 {
2645   Input_section inp(posd, is_string, entsize);
2646   this->add_output_section_data(&inp);
2647 }
2648
2649 // Add an input section to a SHF_MERGE section.
2650
2651 bool
2652 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2653                                         uint64_t flags, uint64_t entsize,
2654                                         uint64_t addralign,
2655                                         bool keeps_input_sections)
2656 {
2657   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2658
2659   // We only merge strings if the alignment is not more than the
2660   // character size.  This could be handled, but it's unusual.
2661   if (is_string && addralign > entsize)
2662     return false;
2663
2664   // We cannot restore merged input section states.
2665   gold_assert(this->checkpoint_ == NULL);
2666
2667   // Look up merge sections by required properties.
2668   // Currently, we only invalidate the lookup maps in script processing
2669   // and relaxation.  We should not have done either when we reach here.
2670   // So we assume that the lookup maps are valid to simply code.
2671   gold_assert(this->lookup_maps_->is_valid());
2672   Merge_section_properties msp(is_string, entsize, addralign);
2673   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2674   bool is_new = false;
2675   if (pomb != NULL)
2676     {
2677       gold_assert(pomb->is_string() == is_string
2678                   && pomb->entsize() == entsize
2679                   && pomb->addralign() == addralign);
2680     }
2681   else
2682     {
2683       // Create a new Output_merge_data or Output_merge_string_data.
2684       if (!is_string)
2685         pomb = new Output_merge_data(entsize, addralign);
2686       else
2687         {
2688           switch (entsize)
2689             {
2690             case 1:
2691               pomb = new Output_merge_string<char>(addralign);
2692               break;
2693             case 2:
2694               pomb = new Output_merge_string<uint16_t>(addralign);
2695               break;
2696             case 4:
2697               pomb = new Output_merge_string<uint32_t>(addralign);
2698               break;
2699             default:
2700               return false;
2701             }
2702         }
2703       // If we need to do script processing or relaxation, we need to keep
2704       // the original input sections to rebuild the fast lookup maps.
2705       if (keeps_input_sections)
2706         pomb->set_keeps_input_sections();
2707       is_new = true;
2708     }
2709
2710   if (pomb->add_input_section(object, shndx))
2711     {
2712       // Add new merge section to this output section and link merge
2713       // section properties to new merge section in map.
2714       if (is_new)
2715         {
2716           this->add_output_merge_section(pomb, is_string, entsize);
2717           this->lookup_maps_->add_merge_section(msp, pomb);
2718         }
2719
2720       // Add input section to new merge section and link input section to new
2721       // merge section in map.
2722       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2723       return true;
2724     }
2725   else
2726     {
2727       // If add_input_section failed, delete new merge section to avoid
2728       // exporting empty merge sections in Output_section::get_input_section.
2729       if (is_new)
2730         delete pomb;
2731       return false;
2732     }
2733 }
2734
2735 // Build a relaxation map to speed up relaxation of existing input sections.
2736 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2737
2738 void
2739 Output_section::build_relaxation_map(
2740   const Input_section_list& input_sections,
2741   size_t limit,
2742   Relaxation_map* relaxation_map) const
2743 {
2744   for (size_t i = 0; i < limit; ++i)
2745     {
2746       const Input_section& is(input_sections[i]);
2747       if (is.is_input_section() || is.is_relaxed_input_section())
2748         {
2749           Section_id sid(is.relobj(), is.shndx());
2750           (*relaxation_map)[sid] = i;
2751         }
2752     }
2753 }
2754
2755 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2756 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2757 // indices of INPUT_SECTIONS.
2758
2759 void
2760 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2761   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2762   const Relaxation_map& map,
2763   Input_section_list* input_sections)
2764 {
2765   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2766     {
2767       Output_relaxed_input_section* poris = relaxed_sections[i];
2768       Section_id sid(poris->relobj(), poris->shndx());
2769       Relaxation_map::const_iterator p = map.find(sid);
2770       gold_assert(p != map.end());
2771       gold_assert((*input_sections)[p->second].is_input_section());
2772
2773       // Remember section order index of original input section
2774       // if it is set.  Copy it to the relaxed input section.
2775       unsigned int soi =
2776         (*input_sections)[p->second].section_order_index();
2777       (*input_sections)[p->second] = Input_section(poris);
2778       (*input_sections)[p->second].set_section_order_index(soi);
2779     }
2780 }
2781   
2782 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2783 // is a vector of pointers to Output_relaxed_input_section or its derived
2784 // classes.  The relaxed sections must correspond to existing input sections.
2785
2786 void
2787 Output_section::convert_input_sections_to_relaxed_sections(
2788   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2789 {
2790   gold_assert(parameters->target().may_relax());
2791
2792   // We want to make sure that restore_states does not undo the effect of
2793   // this.  If there is no checkpoint active, just search the current
2794   // input section list and replace the sections there.  If there is
2795   // a checkpoint, also replace the sections there.
2796   
2797   // By default, we look at the whole list.
2798   size_t limit = this->input_sections_.size();
2799
2800   if (this->checkpoint_ != NULL)
2801     {
2802       // Replace input sections with relaxed input section in the saved
2803       // copy of the input section list.
2804       if (this->checkpoint_->input_sections_saved())
2805         {
2806           Relaxation_map map;
2807           this->build_relaxation_map(
2808                     *(this->checkpoint_->input_sections()),
2809                     this->checkpoint_->input_sections()->size(),
2810                     &map);
2811           this->convert_input_sections_in_list_to_relaxed_sections(
2812                     relaxed_sections,
2813                     map,
2814                     this->checkpoint_->input_sections());
2815         }
2816       else
2817         {
2818           // We have not copied the input section list yet.  Instead, just
2819           // look at the portion that would be saved.
2820           limit = this->checkpoint_->input_sections_size();
2821         }
2822     }
2823
2824   // Convert input sections in input_section_list.
2825   Relaxation_map map;
2826   this->build_relaxation_map(this->input_sections_, limit, &map);
2827   this->convert_input_sections_in_list_to_relaxed_sections(
2828             relaxed_sections,
2829             map,
2830             &this->input_sections_);
2831
2832   // Update fast look-up map.
2833   if (this->lookup_maps_->is_valid())
2834     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2835       {
2836         Output_relaxed_input_section* poris = relaxed_sections[i];
2837         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2838                                                       poris->shndx(), poris);
2839       }
2840 }
2841
2842 // Update the output section flags based on input section flags.
2843
2844 void
2845 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2846 {
2847   // If we created the section with SHF_ALLOC clear, we set the
2848   // address.  If we are now setting the SHF_ALLOC flag, we need to
2849   // undo that.
2850   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2851       && (flags & elfcpp::SHF_ALLOC) != 0)
2852     this->mark_address_invalid();
2853
2854   this->flags_ |= (flags
2855                    & (elfcpp::SHF_WRITE
2856                       | elfcpp::SHF_ALLOC
2857                       | elfcpp::SHF_EXECINSTR));
2858
2859   if ((flags & elfcpp::SHF_MERGE) == 0)
2860     this->flags_ &=~ elfcpp::SHF_MERGE;
2861   else
2862     {
2863       if (this->current_data_size_for_child() == 0)
2864         this->flags_ |= elfcpp::SHF_MERGE;
2865     }
2866
2867   if ((flags & elfcpp::SHF_STRINGS) == 0)
2868     this->flags_ &=~ elfcpp::SHF_STRINGS;
2869   else
2870     {
2871       if (this->current_data_size_for_child() == 0)
2872         this->flags_ |= elfcpp::SHF_STRINGS;
2873     }
2874 }
2875
2876 // Find the merge section into which an input section with index SHNDX in
2877 // OBJECT has been added.  Return NULL if none found.
2878
2879 Output_section_data*
2880 Output_section::find_merge_section(const Relobj* object,
2881                                    unsigned int shndx) const
2882 {
2883   if (!this->lookup_maps_->is_valid())
2884     this->build_lookup_maps();
2885   return this->lookup_maps_->find_merge_section(object, shndx);
2886 }
2887
2888 // Build the lookup maps for merge and relaxed sections.  This is needs
2889 // to be declared as a const methods so that it is callable with a const
2890 // Output_section pointer.  The method only updates states of the maps.
2891
2892 void
2893 Output_section::build_lookup_maps() const
2894 {
2895   this->lookup_maps_->clear();
2896   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2897        p != this->input_sections_.end();
2898        ++p)
2899     {
2900       if (p->is_merge_section())
2901         {
2902           Output_merge_base* pomb = p->output_merge_base();
2903           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2904                                        pomb->addralign());
2905           this->lookup_maps_->add_merge_section(msp, pomb);
2906           for (Output_merge_base::Input_sections::const_iterator is =
2907                  pomb->input_sections_begin();
2908                is != pomb->input_sections_end();
2909                ++is) 
2910             {
2911               const Const_section_id& csid = *is;
2912             this->lookup_maps_->add_merge_input_section(csid.first,
2913                                                         csid.second, pomb);
2914             }
2915             
2916         }
2917       else if (p->is_relaxed_input_section())
2918         {
2919           Output_relaxed_input_section* poris = p->relaxed_input_section();
2920           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2921                                                         poris->shndx(), poris);
2922         }
2923     }
2924 }
2925
2926 // Find an relaxed input section corresponding to an input section
2927 // in OBJECT with index SHNDX.
2928
2929 const Output_relaxed_input_section*
2930 Output_section::find_relaxed_input_section(const Relobj* object,
2931                                            unsigned int shndx) const
2932 {
2933   if (!this->lookup_maps_->is_valid())
2934     this->build_lookup_maps();
2935   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2936 }
2937
2938 // Given an address OFFSET relative to the start of input section
2939 // SHNDX in OBJECT, return whether this address is being included in
2940 // the final link.  This should only be called if SHNDX in OBJECT has
2941 // a special mapping.
2942
2943 bool
2944 Output_section::is_input_address_mapped(const Relobj* object,
2945                                         unsigned int shndx,
2946                                         off_t offset) const
2947 {
2948   // Look at the Output_section_data_maps first.
2949   const Output_section_data* posd = this->find_merge_section(object, shndx);
2950   if (posd == NULL)
2951     posd = this->find_relaxed_input_section(object, shndx);
2952
2953   if (posd != NULL)
2954     {
2955       section_offset_type output_offset;
2956       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2957       gold_assert(found);   
2958       return output_offset != -1;
2959     }
2960
2961   // Fall back to the slow look-up.
2962   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2963        p != this->input_sections_.end();
2964        ++p)
2965     {
2966       section_offset_type output_offset;
2967       if (p->output_offset(object, shndx, offset, &output_offset))
2968         return output_offset != -1;
2969     }
2970
2971   // By default we assume that the address is mapped.  This should
2972   // only be called after we have passed all sections to Layout.  At
2973   // that point we should know what we are discarding.
2974   return true;
2975 }
2976
2977 // Given an address OFFSET relative to the start of input section
2978 // SHNDX in object OBJECT, return the output offset relative to the
2979 // start of the input section in the output section.  This should only
2980 // be called if SHNDX in OBJECT has a special mapping.
2981
2982 section_offset_type
2983 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2984                               section_offset_type offset) const
2985 {
2986   // This can only be called meaningfully when we know the data size
2987   // of this.
2988   gold_assert(this->is_data_size_valid());
2989
2990   // Look at the Output_section_data_maps first.
2991   const Output_section_data* posd = this->find_merge_section(object, shndx);
2992   if (posd == NULL) 
2993     posd = this->find_relaxed_input_section(object, shndx);
2994   if (posd != NULL)
2995     {
2996       section_offset_type output_offset;
2997       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2998       gold_assert(found);   
2999       return output_offset;
3000     }
3001
3002   // Fall back to the slow look-up.
3003   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3004        p != this->input_sections_.end();
3005        ++p)
3006     {
3007       section_offset_type output_offset;
3008       if (p->output_offset(object, shndx, offset, &output_offset))
3009         return output_offset;
3010     }
3011   gold_unreachable();
3012 }
3013
3014 // Return the output virtual address of OFFSET relative to the start
3015 // of input section SHNDX in object OBJECT.
3016
3017 uint64_t
3018 Output_section::output_address(const Relobj* object, unsigned int shndx,
3019                                off_t offset) const
3020 {
3021   uint64_t addr = this->address() + this->first_input_offset_;
3022
3023   // Look at the Output_section_data_maps first.
3024   const Output_section_data* posd = this->find_merge_section(object, shndx);
3025   if (posd == NULL) 
3026     posd = this->find_relaxed_input_section(object, shndx);
3027   if (posd != NULL && posd->is_address_valid())
3028     {
3029       section_offset_type output_offset;
3030       bool found = posd->output_offset(object, shndx, offset, &output_offset);
3031       gold_assert(found);
3032       return posd->address() + output_offset;
3033     }
3034
3035   // Fall back to the slow look-up.
3036   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3037        p != this->input_sections_.end();
3038        ++p)
3039     {
3040       addr = align_address(addr, p->addralign());
3041       section_offset_type output_offset;
3042       if (p->output_offset(object, shndx, offset, &output_offset))
3043         {
3044           if (output_offset == -1)
3045             return -1ULL;
3046           return addr + output_offset;
3047         }
3048       addr += p->data_size();
3049     }
3050
3051   // If we get here, it means that we don't know the mapping for this
3052   // input section.  This might happen in principle if
3053   // add_input_section were called before add_output_section_data.
3054   // But it should never actually happen.
3055
3056   gold_unreachable();
3057 }
3058
3059 // Find the output address of the start of the merged section for
3060 // input section SHNDX in object OBJECT.
3061
3062 bool
3063 Output_section::find_starting_output_address(const Relobj* object,
3064                                              unsigned int shndx,
3065                                              uint64_t* paddr) const
3066 {
3067   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3068   // Looking up the merge section map does not always work as we sometimes
3069   // find a merge section without its address set.
3070   uint64_t addr = this->address() + this->first_input_offset_;
3071   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3072        p != this->input_sections_.end();
3073        ++p)
3074     {
3075       addr = align_address(addr, p->addralign());
3076
3077       // It would be nice if we could use the existing output_offset
3078       // method to get the output offset of input offset 0.
3079       // Unfortunately we don't know for sure that input offset 0 is
3080       // mapped at all.
3081       if (p->is_merge_section_for(object, shndx))
3082         {
3083           *paddr = addr;
3084           return true;
3085         }
3086
3087       addr += p->data_size();
3088     }
3089
3090   // We couldn't find a merge output section for this input section.
3091   return false;
3092 }
3093
3094 // Update the data size of an Output_section.
3095
3096 void
3097 Output_section::update_data_size()
3098 {
3099   if (this->input_sections_.empty())
3100       return;
3101
3102   if (this->must_sort_attached_input_sections()
3103       || this->input_section_order_specified())
3104     this->sort_attached_input_sections();
3105
3106   off_t off = this->first_input_offset_;
3107   for (Input_section_list::iterator p = this->input_sections_.begin();
3108        p != this->input_sections_.end();
3109        ++p)
3110     {
3111       off = align_address(off, p->addralign());
3112       off += p->current_data_size();
3113     }
3114
3115   this->set_current_data_size_for_child(off);
3116 }
3117
3118 // Set the data size of an Output_section.  This is where we handle
3119 // setting the addresses of any Output_section_data objects.
3120
3121 void
3122 Output_section::set_final_data_size()
3123 {
3124   off_t data_size;
3125
3126   if (this->input_sections_.empty())
3127     data_size = this->current_data_size_for_child();
3128   else
3129     {
3130       if (this->must_sort_attached_input_sections()
3131           || this->input_section_order_specified())
3132         this->sort_attached_input_sections();
3133
3134       uint64_t address = this->address();
3135       off_t startoff = this->offset();
3136       off_t off = startoff + this->first_input_offset_;
3137       for (Input_section_list::iterator p = this->input_sections_.begin();
3138            p != this->input_sections_.end();
3139            ++p)
3140         {
3141           off = align_address(off, p->addralign());
3142           p->set_address_and_file_offset(address + (off - startoff), off,
3143                                          startoff);
3144           off += p->data_size();
3145         }
3146       data_size = off - startoff;
3147     }
3148
3149   // For full incremental links, we want to allocate some patch space
3150   // in most sections for subsequent incremental updates.
3151   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3152     {
3153       double pct = parameters->options().incremental_patch();
3154       size_t extra = static_cast<size_t>(data_size * pct);
3155       if (this->free_space_fill_ != NULL
3156           && this->free_space_fill_->minimum_hole_size() > extra)
3157         extra = this->free_space_fill_->minimum_hole_size();
3158       off_t new_size = align_address(data_size + extra, this->addralign());
3159       this->patch_space_ = new_size - data_size;
3160       gold_debug(DEBUG_INCREMENTAL,
3161                  "set_final_data_size: %08lx + %08lx: section %s",
3162                  static_cast<long>(data_size),
3163                  static_cast<long>(this->patch_space_),
3164                  this->name());
3165       data_size = new_size;
3166     }
3167
3168   this->set_data_size(data_size);
3169 }
3170
3171 // Reset the address and file offset.
3172
3173 void
3174 Output_section::do_reset_address_and_file_offset()
3175 {
3176   // An unallocated section has no address.  Forcing this means that
3177   // we don't need special treatment for symbols defined in debug
3178   // sections.  We do the same in the constructor.  This does not
3179   // apply to NOLOAD sections though.
3180   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3181      this->set_address(0);
3182
3183   for (Input_section_list::iterator p = this->input_sections_.begin();
3184        p != this->input_sections_.end();
3185        ++p)
3186     p->reset_address_and_file_offset();
3187
3188   // Remove any patch space that was added in set_final_data_size.
3189   if (this->patch_space_ > 0)
3190     {
3191       this->set_current_data_size_for_child(this->current_data_size_for_child()
3192                                             - this->patch_space_);
3193       this->patch_space_ = 0;
3194     }
3195 }
3196
3197 // Return true if address and file offset have the values after reset.
3198
3199 bool
3200 Output_section::do_address_and_file_offset_have_reset_values() const
3201 {
3202   if (this->is_offset_valid())
3203     return false;
3204
3205   // An unallocated section has address 0 after its construction or a reset.
3206   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3207     return this->is_address_valid() && this->address() == 0;
3208   else
3209     return !this->is_address_valid();
3210 }
3211
3212 // Set the TLS offset.  Called only for SHT_TLS sections.
3213
3214 void
3215 Output_section::do_set_tls_offset(uint64_t tls_base)
3216 {
3217   this->tls_offset_ = this->address() - tls_base;
3218 }
3219
3220 // In a few cases we need to sort the input sections attached to an
3221 // output section.  This is used to implement the type of constructor
3222 // priority ordering implemented by the GNU linker, in which the
3223 // priority becomes part of the section name and the sections are
3224 // sorted by name.  We only do this for an output section if we see an
3225 // attached input section matching ".ctors.*", ".dtors.*",
3226 // ".init_array.*" or ".fini_array.*".
3227
3228 class Output_section::Input_section_sort_entry
3229 {
3230  public:
3231   Input_section_sort_entry()
3232     : input_section_(), index_(-1U), section_has_name_(false),
3233       section_name_()
3234   { }
3235
3236   Input_section_sort_entry(const Input_section& input_section,
3237                            unsigned int index,
3238                            bool must_sort_attached_input_sections)
3239     : input_section_(input_section), index_(index),
3240       section_has_name_(input_section.is_input_section()
3241                         || input_section.is_relaxed_input_section())
3242   {
3243     if (this->section_has_name_
3244         && must_sort_attached_input_sections)
3245       {
3246         // This is only called single-threaded from Layout::finalize,
3247         // so it is OK to lock.  Unfortunately we have no way to pass
3248         // in a Task token.
3249         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3250         Object* obj = (input_section.is_input_section()
3251                        ? input_section.relobj()
3252                        : input_section.relaxed_input_section()->relobj());
3253         Task_lock_obj<Object> tl(dummy_task, obj);
3254
3255         // This is a slow operation, which should be cached in
3256         // Layout::layout if this becomes a speed problem.
3257         this->section_name_ = obj->section_name(input_section.shndx());
3258       }
3259   }
3260
3261   // Return the Input_section.
3262   const Input_section&
3263   input_section() const
3264   {
3265     gold_assert(this->index_ != -1U);
3266     return this->input_section_;
3267   }
3268
3269   // The index of this entry in the original list.  This is used to
3270   // make the sort stable.
3271   unsigned int
3272   index() const
3273   {
3274     gold_assert(this->index_ != -1U);
3275     return this->index_;
3276   }
3277
3278   // Whether there is a section name.
3279   bool
3280   section_has_name() const
3281   { return this->section_has_name_; }
3282
3283   // The section name.
3284   const std::string&
3285   section_name() const
3286   {
3287     gold_assert(this->section_has_name_);
3288     return this->section_name_;
3289   }
3290
3291   // Return true if the section name has a priority.  This is assumed
3292   // to be true if it has a dot after the initial dot.
3293   bool
3294   has_priority() const
3295   {
3296     gold_assert(this->section_has_name_);
3297     return this->section_name_.find('.', 1) != std::string::npos;
3298   }
3299
3300   // Return the priority.  Believe it or not, gcc encodes the priority
3301   // differently for .ctors/.dtors and .init_array/.fini_array
3302   // sections.
3303   unsigned int
3304   get_priority() const
3305   {
3306     gold_assert(this->section_has_name_);
3307     bool is_ctors;
3308     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3309         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3310       is_ctors = true;
3311     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3312              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3313       is_ctors = false;
3314     else
3315       return 0;
3316     char* end;
3317     unsigned long prio = strtoul((this->section_name_.c_str()
3318                                   + (is_ctors ? 7 : 12)),
3319                                  &end, 10);
3320     if (*end != '\0')
3321       return 0;
3322     else if (is_ctors)
3323       return 65535 - prio;
3324     else
3325       return prio;
3326   }
3327
3328   // Return true if this an input file whose base name matches
3329   // FILE_NAME.  The base name must have an extension of ".o", and
3330   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3331   // This is to match crtbegin.o as well as crtbeginS.o without
3332   // getting confused by other possibilities.  Overall matching the
3333   // file name this way is a dreadful hack, but the GNU linker does it
3334   // in order to better support gcc, and we need to be compatible.
3335   bool
3336   match_file_name(const char* file_name) const
3337   { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3338
3339   // Returns 1 if THIS should appear before S in section order, -1 if S
3340   // appears before THIS and 0 if they are not comparable.
3341   int
3342   compare_section_ordering(const Input_section_sort_entry& s) const
3343   {
3344     unsigned int this_secn_index = this->input_section_.section_order_index();
3345     unsigned int s_secn_index = s.input_section().section_order_index();
3346     if (this_secn_index > 0 && s_secn_index > 0)
3347       {
3348         if (this_secn_index < s_secn_index)
3349           return 1;
3350         else if (this_secn_index > s_secn_index)
3351           return -1;
3352       }
3353     return 0;
3354   }
3355
3356  private:
3357   // The Input_section we are sorting.
3358   Input_section input_section_;
3359   // The index of this Input_section in the original list.
3360   unsigned int index_;
3361   // Whether this Input_section has a section name--it won't if this
3362   // is some random Output_section_data.
3363   bool section_has_name_;
3364   // The section name if there is one.
3365   std::string section_name_;
3366 };
3367
3368 // Return true if S1 should come before S2 in the output section.
3369
3370 bool
3371 Output_section::Input_section_sort_compare::operator()(
3372     const Output_section::Input_section_sort_entry& s1,
3373     const Output_section::Input_section_sort_entry& s2) const
3374 {
3375   // crtbegin.o must come first.
3376   bool s1_begin = s1.match_file_name("crtbegin");
3377   bool s2_begin = s2.match_file_name("crtbegin");
3378   if (s1_begin || s2_begin)
3379     {
3380       if (!s1_begin)
3381         return false;
3382       if (!s2_begin)
3383         return true;
3384       return s1.index() < s2.index();
3385     }
3386
3387   // crtend.o must come last.
3388   bool s1_end = s1.match_file_name("crtend");
3389   bool s2_end = s2.match_file_name("crtend");
3390   if (s1_end || s2_end)
3391     {
3392       if (!s1_end)
3393         return true;
3394       if (!s2_end)
3395         return false;
3396       return s1.index() < s2.index();
3397     }
3398
3399   // We sort all the sections with no names to the end.
3400   if (!s1.section_has_name() || !s2.section_has_name())
3401     {
3402       if (s1.section_has_name())
3403         return true;
3404       if (s2.section_has_name())
3405         return false;
3406       return s1.index() < s2.index();
3407     }
3408
3409   // A section with a priority follows a section without a priority.
3410   bool s1_has_priority = s1.has_priority();
3411   bool s2_has_priority = s2.has_priority();
3412   if (s1_has_priority && !s2_has_priority)
3413     return false;
3414   if (!s1_has_priority && s2_has_priority)
3415     return true;
3416
3417   // Check if a section order exists for these sections through a section
3418   // ordering file.  If sequence_num is 0, an order does not exist.
3419   int sequence_num = s1.compare_section_ordering(s2);
3420   if (sequence_num != 0)
3421     return sequence_num == 1;
3422
3423   // Otherwise we sort by name.
3424   int compare = s1.section_name().compare(s2.section_name());
3425   if (compare != 0)
3426     return compare < 0;
3427
3428   // Otherwise we keep the input order.
3429   return s1.index() < s2.index();
3430 }
3431
3432 // Return true if S1 should come before S2 in an .init_array or .fini_array
3433 // output section.
3434
3435 bool
3436 Output_section::Input_section_sort_init_fini_compare::operator()(
3437     const Output_section::Input_section_sort_entry& s1,
3438     const Output_section::Input_section_sort_entry& s2) const
3439 {
3440   // We sort all the sections with no names to the end.
3441   if (!s1.section_has_name() || !s2.section_has_name())
3442     {
3443       if (s1.section_has_name())
3444         return true;
3445       if (s2.section_has_name())
3446         return false;
3447       return s1.index() < s2.index();
3448     }
3449
3450   // A section without a priority follows a section with a priority.
3451   // This is the reverse of .ctors and .dtors sections.
3452   bool s1_has_priority = s1.has_priority();
3453   bool s2_has_priority = s2.has_priority();
3454   if (s1_has_priority && !s2_has_priority)
3455     return true;
3456   if (!s1_has_priority && s2_has_priority)
3457     return false;
3458
3459   // .ctors and .dtors sections without priority come after
3460   // .init_array and .fini_array sections without priority.
3461   if (!s1_has_priority
3462       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3463       && s1.section_name() != s2.section_name())
3464     return false;
3465   if (!s2_has_priority
3466       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3467       && s2.section_name() != s1.section_name())
3468     return true;
3469
3470   // Sort by priority if we can.
3471   if (s1_has_priority)
3472     {
3473       unsigned int s1_prio = s1.get_priority();
3474       unsigned int s2_prio = s2.get_priority();
3475       if (s1_prio < s2_prio)
3476         return true;
3477       else if (s1_prio > s2_prio)
3478         return false;
3479     }
3480
3481   // Check if a section order exists for these sections through a section
3482   // ordering file.  If sequence_num is 0, an order does not exist.
3483   int sequence_num = s1.compare_section_ordering(s2);
3484   if (sequence_num != 0)
3485     return sequence_num == 1;
3486
3487   // Otherwise we sort by name.
3488   int compare = s1.section_name().compare(s2.section_name());
3489   if (compare != 0)
3490     return compare < 0;
3491
3492   // Otherwise we keep the input order.
3493   return s1.index() < s2.index();
3494 }
3495
3496 // Return true if S1 should come before S2.  Sections that do not match
3497 // any pattern in the section ordering file are placed ahead of the sections
3498 // that match some pattern.
3499
3500 bool
3501 Output_section::Input_section_sort_section_order_index_compare::operator()(
3502     const Output_section::Input_section_sort_entry& s1,
3503     const Output_section::Input_section_sort_entry& s2) const
3504 {
3505   unsigned int s1_secn_index = s1.input_section().section_order_index();
3506   unsigned int s2_secn_index = s2.input_section().section_order_index();
3507
3508   // Keep input order if section ordering cannot determine order.
3509   if (s1_secn_index == s2_secn_index)
3510     return s1.index() < s2.index();
3511   
3512   return s1_secn_index < s2_secn_index;
3513 }
3514
3515 // This updates the section order index of input sections according to the
3516 // the order specified in the mapping from Section id to order index.
3517
3518 void
3519 Output_section::update_section_layout(
3520   const Section_layout_order* order_map)
3521 {
3522   for (Input_section_list::iterator p = this->input_sections_.begin();
3523        p != this->input_sections_.end();
3524        ++p)
3525     {
3526       if (p->is_input_section()
3527           || p->is_relaxed_input_section())
3528         {
3529           Object* obj = (p->is_input_section()
3530                          ? p->relobj()
3531                          : p->relaxed_input_section()->relobj());
3532           unsigned int shndx = p->shndx();
3533           Section_layout_order::const_iterator it
3534             = order_map->find(Section_id(obj, shndx));
3535           if (it == order_map->end())
3536             continue;
3537           unsigned int section_order_index = it->second;
3538           if (section_order_index != 0)
3539             {
3540               p->set_section_order_index(section_order_index);
3541               this->set_input_section_order_specified();
3542             }
3543         }
3544     }
3545 }
3546
3547 // Sort the input sections attached to an output section.
3548
3549 void
3550 Output_section::sort_attached_input_sections()
3551 {
3552   if (this->attached_input_sections_are_sorted_)
3553     return;
3554
3555   if (this->checkpoint_ != NULL
3556       && !this->checkpoint_->input_sections_saved())
3557     this->checkpoint_->save_input_sections();
3558
3559   // The only thing we know about an input section is the object and
3560   // the section index.  We need the section name.  Recomputing this
3561   // is slow but this is an unusual case.  If this becomes a speed
3562   // problem we can cache the names as required in Layout::layout.
3563
3564   // We start by building a larger vector holding a copy of each
3565   // Input_section, plus its current index in the list and its name.
3566   std::vector<Input_section_sort_entry> sort_list;
3567
3568   unsigned int i = 0;
3569   for (Input_section_list::iterator p = this->input_sections_.begin();
3570        p != this->input_sections_.end();
3571        ++p, ++i)
3572       sort_list.push_back(Input_section_sort_entry(*p, i,
3573                             this->must_sort_attached_input_sections()));
3574
3575   // Sort the input sections.
3576   if (this->must_sort_attached_input_sections())
3577     {
3578       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3579           || this->type() == elfcpp::SHT_INIT_ARRAY
3580           || this->type() == elfcpp::SHT_FINI_ARRAY)
3581         std::sort(sort_list.begin(), sort_list.end(),
3582                   Input_section_sort_init_fini_compare());
3583       else
3584         std::sort(sort_list.begin(), sort_list.end(),
3585                   Input_section_sort_compare());
3586     }
3587   else
3588     {
3589       gold_assert(this->input_section_order_specified());
3590       std::sort(sort_list.begin(), sort_list.end(),
3591                 Input_section_sort_section_order_index_compare());
3592     }
3593
3594   // Copy the sorted input sections back to our list.
3595   this->input_sections_.clear();
3596   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3597        p != sort_list.end();
3598        ++p)
3599     this->input_sections_.push_back(p->input_section());
3600   sort_list.clear();
3601
3602   // Remember that we sorted the input sections, since we might get
3603   // called again.
3604   this->attached_input_sections_are_sorted_ = true;
3605 }
3606
3607 // Write the section header to *OSHDR.
3608
3609 template<int size, bool big_endian>
3610 void
3611 Output_section::write_header(const Layout* layout,
3612                              const Stringpool* secnamepool,
3613                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3614 {
3615   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3616   oshdr->put_sh_type(this->type_);
3617
3618   elfcpp::Elf_Xword flags = this->flags_;
3619   if (this->info_section_ != NULL && this->info_uses_section_index_)
3620     flags |= elfcpp::SHF_INFO_LINK;
3621   oshdr->put_sh_flags(flags);
3622
3623   oshdr->put_sh_addr(this->address());
3624   oshdr->put_sh_offset(this->offset());
3625   oshdr->put_sh_size(this->data_size());
3626   if (this->link_section_ != NULL)
3627     oshdr->put_sh_link(this->link_section_->out_shndx());
3628   else if (this->should_link_to_symtab_)
3629     oshdr->put_sh_link(layout->symtab_section_shndx());
3630   else if (this->should_link_to_dynsym_)
3631     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3632   else
3633     oshdr->put_sh_link(this->link_);
3634
3635   elfcpp::Elf_Word info;
3636   if (this->info_section_ != NULL)
3637     {
3638       if (this->info_uses_section_index_)
3639         info = this->info_section_->out_shndx();
3640       else
3641         info = this->info_section_->symtab_index();
3642     }
3643   else if (this->info_symndx_ != NULL)
3644     info = this->info_symndx_->symtab_index();
3645   else
3646     info = this->info_;
3647   oshdr->put_sh_info(info);
3648
3649   oshdr->put_sh_addralign(this->addralign_);
3650   oshdr->put_sh_entsize(this->entsize_);
3651 }
3652
3653 // Write out the data.  For input sections the data is written out by
3654 // Object::relocate, but we have to handle Output_section_data objects
3655 // here.
3656
3657 void
3658 Output_section::do_write(Output_file* of)
3659 {
3660   gold_assert(!this->requires_postprocessing());
3661
3662   // If the target performs relaxation, we delay filler generation until now.
3663   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3664
3665   off_t output_section_file_offset = this->offset();
3666   for (Fill_list::iterator p = this->fills_.begin();
3667        p != this->fills_.end();
3668        ++p)
3669     {
3670       std::string fill_data(parameters->target().code_fill(p->length()));
3671       of->write(output_section_file_offset + p->section_offset(),
3672                 fill_data.data(), fill_data.size());
3673     }
3674
3675   off_t off = this->offset() + this->first_input_offset_;
3676   for (Input_section_list::iterator p = this->input_sections_.begin();
3677        p != this->input_sections_.end();
3678        ++p)
3679     {
3680       off_t aligned_off = align_address(off, p->addralign());
3681       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3682         {
3683           size_t fill_len = aligned_off - off;
3684           std::string fill_data(parameters->target().code_fill(fill_len));
3685           of->write(off, fill_data.data(), fill_data.size());
3686         }
3687
3688       p->write(of);
3689       off = aligned_off + p->data_size();
3690     }
3691
3692   // For incremental links, fill in unused chunks in debug sections
3693   // with dummy compilation unit headers.
3694   if (this->free_space_fill_ != NULL)
3695     {
3696       for (Free_list::Const_iterator p = this->free_list_.begin();
3697            p != this->free_list_.end();
3698            ++p)
3699         {
3700           off_t off = p->start_;
3701           size_t len = p->end_ - off;
3702           this->free_space_fill_->write(of, this->offset() + off, len);
3703         }
3704       if (this->patch_space_ > 0)
3705         {
3706           off_t off = this->current_data_size_for_child() - this->patch_space_;
3707           this->free_space_fill_->write(of, this->offset() + off,
3708                                         this->patch_space_);
3709         }
3710     }
3711 }
3712
3713 // If a section requires postprocessing, create the buffer to use.
3714
3715 void
3716 Output_section::create_postprocessing_buffer()
3717 {
3718   gold_assert(this->requires_postprocessing());
3719
3720   if (this->postprocessing_buffer_ != NULL)
3721     return;
3722
3723   if (!this->input_sections_.empty())
3724     {
3725       off_t off = this->first_input_offset_;
3726       for (Input_section_list::iterator p = this->input_sections_.begin();
3727            p != this->input_sections_.end();
3728            ++p)
3729         {
3730           off = align_address(off, p->addralign());
3731           p->finalize_data_size();
3732           off += p->data_size();
3733         }
3734       this->set_current_data_size_for_child(off);
3735     }
3736
3737   off_t buffer_size = this->current_data_size_for_child();
3738   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3739 }
3740
3741 // Write all the data of an Output_section into the postprocessing
3742 // buffer.  This is used for sections which require postprocessing,
3743 // such as compression.  Input sections are handled by
3744 // Object::Relocate.
3745
3746 void
3747 Output_section::write_to_postprocessing_buffer()
3748 {
3749   gold_assert(this->requires_postprocessing());
3750
3751   // If the target performs relaxation, we delay filler generation until now.
3752   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3753
3754   unsigned char* buffer = this->postprocessing_buffer();
3755   for (Fill_list::iterator p = this->fills_.begin();
3756        p != this->fills_.end();
3757        ++p)
3758     {
3759       std::string fill_data(parameters->target().code_fill(p->length()));
3760       memcpy(buffer + p->section_offset(), fill_data.data(),
3761              fill_data.size());
3762     }
3763
3764   off_t off = this->first_input_offset_;
3765   for (Input_section_list::iterator p = this->input_sections_.begin();
3766        p != this->input_sections_.end();
3767        ++p)
3768     {
3769       off_t aligned_off = align_address(off, p->addralign());
3770       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3771         {
3772           size_t fill_len = aligned_off - off;
3773           std::string fill_data(parameters->target().code_fill(fill_len));
3774           memcpy(buffer + off, fill_data.data(), fill_data.size());
3775         }
3776
3777       p->write_to_buffer(buffer + aligned_off);
3778       off = aligned_off + p->data_size();
3779     }
3780 }
3781
3782 // Get the input sections for linker script processing.  We leave
3783 // behind the Output_section_data entries.  Note that this may be
3784 // slightly incorrect for merge sections.  We will leave them behind,
3785 // but it is possible that the script says that they should follow
3786 // some other input sections, as in:
3787 //    .rodata { *(.rodata) *(.rodata.cst*) }
3788 // For that matter, we don't handle this correctly:
3789 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3790 // With luck this will never matter.
3791
3792 uint64_t
3793 Output_section::get_input_sections(
3794     uint64_t address,
3795     const std::string& fill,
3796     std::list<Input_section>* input_sections)
3797 {
3798   if (this->checkpoint_ != NULL
3799       && !this->checkpoint_->input_sections_saved())
3800     this->checkpoint_->save_input_sections();
3801
3802   // Invalidate fast look-up maps.
3803   this->lookup_maps_->invalidate();
3804
3805   uint64_t orig_address = address;
3806
3807   address = align_address(address, this->addralign());
3808
3809   Input_section_list remaining;
3810   for (Input_section_list::iterator p = this->input_sections_.begin();
3811        p != this->input_sections_.end();
3812        ++p)
3813     {
3814       if (p->is_input_section()
3815           || p->is_relaxed_input_section()
3816           || p->is_merge_section())
3817         input_sections->push_back(*p);
3818       else
3819         {
3820           uint64_t aligned_address = align_address(address, p->addralign());
3821           if (aligned_address != address && !fill.empty())
3822             {
3823               section_size_type length =
3824                 convert_to_section_size_type(aligned_address - address);
3825               std::string this_fill;
3826               this_fill.reserve(length);
3827               while (this_fill.length() + fill.length() <= length)
3828                 this_fill += fill;
3829               if (this_fill.length() < length)
3830                 this_fill.append(fill, 0, length - this_fill.length());
3831
3832               Output_section_data* posd = new Output_data_const(this_fill, 0);
3833               remaining.push_back(Input_section(posd));
3834             }
3835           address = aligned_address;
3836
3837           remaining.push_back(*p);
3838
3839           p->finalize_data_size();
3840           address += p->data_size();
3841         }
3842     }
3843
3844   this->input_sections_.swap(remaining);
3845   this->first_input_offset_ = 0;
3846
3847   uint64_t data_size = address - orig_address;
3848   this->set_current_data_size_for_child(data_size);
3849   return data_size;
3850 }
3851
3852 // Add a script input section.  SIS is an Output_section::Input_section,
3853 // which can be either a plain input section or a special input section like
3854 // a relaxed input section.  For a special input section, its size must be
3855 // finalized.
3856
3857 void
3858 Output_section::add_script_input_section(const Input_section& sis)
3859 {
3860   uint64_t data_size = sis.data_size();
3861   uint64_t addralign = sis.addralign();
3862   if (addralign > this->addralign_)
3863     this->addralign_ = addralign;
3864
3865   off_t offset_in_section = this->current_data_size_for_child();
3866   off_t aligned_offset_in_section = align_address(offset_in_section,
3867                                                   addralign);
3868
3869   this->set_current_data_size_for_child(aligned_offset_in_section
3870                                         + data_size);
3871
3872   this->input_sections_.push_back(sis);
3873
3874   // Update fast lookup maps if necessary. 
3875   if (this->lookup_maps_->is_valid())
3876     {
3877       if (sis.is_merge_section())
3878         {
3879           Output_merge_base* pomb = sis.output_merge_base();
3880           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3881                                        pomb->addralign());
3882           this->lookup_maps_->add_merge_section(msp, pomb);
3883           for (Output_merge_base::Input_sections::const_iterator p =
3884                  pomb->input_sections_begin();
3885                p != pomb->input_sections_end();
3886                ++p)
3887             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3888                                                         pomb);
3889         }
3890       else if (sis.is_relaxed_input_section())
3891         {
3892           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3893           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3894                                                         poris->shndx(), poris);
3895         }
3896     }
3897 }
3898
3899 // Save states for relaxation.
3900
3901 void
3902 Output_section::save_states()
3903 {
3904   gold_assert(this->checkpoint_ == NULL);
3905   Checkpoint_output_section* checkpoint =
3906     new Checkpoint_output_section(this->addralign_, this->flags_,
3907                                   this->input_sections_,
3908                                   this->first_input_offset_,
3909                                   this->attached_input_sections_are_sorted_);
3910   this->checkpoint_ = checkpoint;
3911   gold_assert(this->fills_.empty());
3912 }
3913
3914 void
3915 Output_section::discard_states()
3916 {
3917   gold_assert(this->checkpoint_ != NULL);
3918   delete this->checkpoint_;
3919   this->checkpoint_ = NULL;
3920   gold_assert(this->fills_.empty());
3921
3922   // Simply invalidate the fast lookup maps since we do not keep
3923   // track of them.
3924   this->lookup_maps_->invalidate();
3925 }
3926
3927 void
3928 Output_section::restore_states()
3929 {
3930   gold_assert(this->checkpoint_ != NULL);
3931   Checkpoint_output_section* checkpoint = this->checkpoint_;
3932
3933   this->addralign_ = checkpoint->addralign();
3934   this->flags_ = checkpoint->flags();
3935   this->first_input_offset_ = checkpoint->first_input_offset();
3936
3937   if (!checkpoint->input_sections_saved())
3938     {
3939       // If we have not copied the input sections, just resize it.
3940       size_t old_size = checkpoint->input_sections_size();
3941       gold_assert(this->input_sections_.size() >= old_size);
3942       this->input_sections_.resize(old_size);
3943     }
3944   else
3945     {
3946       // We need to copy the whole list.  This is not efficient for
3947       // extremely large output with hundreads of thousands of input
3948       // objects.  We may need to re-think how we should pass sections
3949       // to scripts.
3950       this->input_sections_ = *checkpoint->input_sections();
3951     }
3952
3953   this->attached_input_sections_are_sorted_ =
3954     checkpoint->attached_input_sections_are_sorted();
3955
3956   // Simply invalidate the fast lookup maps since we do not keep
3957   // track of them.
3958   this->lookup_maps_->invalidate();
3959 }
3960
3961 // Update the section offsets of input sections in this.  This is required if
3962 // relaxation causes some input sections to change sizes.
3963
3964 void
3965 Output_section::adjust_section_offsets()
3966 {
3967   if (!this->section_offsets_need_adjustment_)
3968     return;
3969
3970   off_t off = 0;
3971   for (Input_section_list::iterator p = this->input_sections_.begin();
3972        p != this->input_sections_.end();
3973        ++p)
3974     {
3975       off = align_address(off, p->addralign());
3976       if (p->is_input_section())
3977         p->relobj()->set_section_offset(p->shndx(), off);
3978       off += p->data_size();
3979     }
3980
3981   this->section_offsets_need_adjustment_ = false;
3982 }
3983
3984 // Print to the map file.
3985
3986 void
3987 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3988 {
3989   mapfile->print_output_section(this);
3990
3991   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3992        p != this->input_sections_.end();
3993        ++p)
3994     p->print_to_mapfile(mapfile);
3995 }
3996
3997 // Print stats for merge sections to stderr.
3998
3999 void
4000 Output_section::print_merge_stats()
4001 {
4002   Input_section_list::iterator p;
4003   for (p = this->input_sections_.begin();
4004        p != this->input_sections_.end();
4005        ++p)
4006     p->print_merge_stats(this->name_);
4007 }
4008
4009 // Set a fixed layout for the section.  Used for incremental update links.
4010
4011 void
4012 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4013                                  off_t sh_size, uint64_t sh_addralign)
4014 {
4015   this->addralign_ = sh_addralign;
4016   this->set_current_data_size(sh_size);
4017   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4018     this->set_address(sh_addr);
4019   this->set_file_offset(sh_offset);
4020   this->finalize_data_size();
4021   this->free_list_.init(sh_size, false);
4022   this->has_fixed_layout_ = true;
4023 }
4024
4025 // Reserve space within the fixed layout for the section.  Used for
4026 // incremental update links.
4027
4028 void
4029 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4030 {
4031   this->free_list_.remove(sh_offset, sh_offset + sh_size);
4032 }
4033
4034 // Allocate space from the free list for the section.  Used for
4035 // incremental update links.
4036
4037 off_t
4038 Output_section::allocate(off_t len, uint64_t addralign)
4039 {
4040   return this->free_list_.allocate(len, addralign, 0);
4041 }
4042
4043 // Output segment methods.
4044
4045 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4046   : vaddr_(0),
4047     paddr_(0),
4048     memsz_(0),
4049     max_align_(0),
4050     min_p_align_(0),
4051     offset_(0),
4052     filesz_(0),
4053     type_(type),
4054     flags_(flags),
4055     is_max_align_known_(false),
4056     are_addresses_set_(false),
4057     is_large_data_segment_(false),
4058     is_unique_segment_(false)
4059 {
4060   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4061   // the flags.
4062   if (type == elfcpp::PT_TLS)
4063     this->flags_ = elfcpp::PF_R;
4064 }
4065
4066 // Add an Output_section to a PT_LOAD Output_segment.
4067
4068 void
4069 Output_segment::add_output_section_to_load(Layout* layout,
4070                                            Output_section* os,
4071                                            elfcpp::Elf_Word seg_flags)
4072 {
4073   gold_assert(this->type() == elfcpp::PT_LOAD);
4074   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4075   gold_assert(!this->is_max_align_known_);
4076   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4077
4078   this->update_flags_for_output_section(seg_flags);
4079
4080   // We don't want to change the ordering if we have a linker script
4081   // with a SECTIONS clause.
4082   Output_section_order order = os->order();
4083   if (layout->script_options()->saw_sections_clause())
4084     order = static_cast<Output_section_order>(0);
4085   else
4086     gold_assert(order != ORDER_INVALID);
4087
4088   this->output_lists_[order].push_back(os);
4089 }
4090
4091 // Add an Output_section to a non-PT_LOAD Output_segment.
4092
4093 void
4094 Output_segment::add_output_section_to_nonload(Output_section* os,
4095                                               elfcpp::Elf_Word seg_flags)
4096 {
4097   gold_assert(this->type() != elfcpp::PT_LOAD);
4098   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4099   gold_assert(!this->is_max_align_known_);
4100
4101   this->update_flags_for_output_section(seg_flags);
4102
4103   this->output_lists_[0].push_back(os);
4104 }
4105
4106 // Remove an Output_section from this segment.  It is an error if it
4107 // is not present.
4108
4109 void
4110 Output_segment::remove_output_section(Output_section* os)
4111 {
4112   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4113     {
4114       Output_data_list* pdl = &this->output_lists_[i];
4115       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4116         {
4117           if (*p == os)
4118             {
4119               pdl->erase(p);
4120               return;
4121             }
4122         }
4123     }
4124   gold_unreachable();
4125 }
4126
4127 // Add an Output_data (which need not be an Output_section) to the
4128 // start of a segment.
4129
4130 void
4131 Output_segment::add_initial_output_data(Output_data* od)
4132 {
4133   gold_assert(!this->is_max_align_known_);
4134   Output_data_list::iterator p = this->output_lists_[0].begin();
4135   this->output_lists_[0].insert(p, od);
4136 }
4137
4138 // Return true if this segment has any sections which hold actual
4139 // data, rather than being a BSS section.
4140
4141 bool
4142 Output_segment::has_any_data_sections() const
4143 {
4144   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4145     {
4146       const Output_data_list* pdl = &this->output_lists_[i];
4147       for (Output_data_list::const_iterator p = pdl->begin();
4148            p != pdl->end();
4149            ++p)
4150         {
4151           if (!(*p)->is_section())
4152             return true;
4153           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4154             return true;
4155         }
4156     }
4157   return false;
4158 }
4159
4160 // Return whether the first data section (not counting TLS sections)
4161 // is a relro section.
4162
4163 bool
4164 Output_segment::is_first_section_relro() const
4165 {
4166   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4167     {
4168       if (i == static_cast<int>(ORDER_TLS_DATA)
4169           || i == static_cast<int>(ORDER_TLS_BSS))
4170         continue;
4171       const Output_data_list* pdl = &this->output_lists_[i];
4172       if (!pdl->empty())
4173         {
4174           Output_data* p = pdl->front();
4175           return p->is_section() && p->output_section()->is_relro();
4176         }
4177     }
4178   return false;
4179 }
4180
4181 // Return the maximum alignment of the Output_data in Output_segment.
4182
4183 uint64_t
4184 Output_segment::maximum_alignment()
4185 {
4186   if (!this->is_max_align_known_)
4187     {
4188       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4189         {       
4190           const Output_data_list* pdl = &this->output_lists_[i];
4191           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4192           if (addralign > this->max_align_)
4193             this->max_align_ = addralign;
4194         }
4195       this->is_max_align_known_ = true;
4196     }
4197
4198   return this->max_align_;
4199 }
4200
4201 // Return the maximum alignment of a list of Output_data.
4202
4203 uint64_t
4204 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4205 {
4206   uint64_t ret = 0;
4207   for (Output_data_list::const_iterator p = pdl->begin();
4208        p != pdl->end();
4209        ++p)
4210     {
4211       uint64_t addralign = (*p)->addralign();
4212       if (addralign > ret)
4213         ret = addralign;
4214     }
4215   return ret;
4216 }
4217
4218 // Return whether this segment has any dynamic relocs.
4219
4220 bool
4221 Output_segment::has_dynamic_reloc() const
4222 {
4223   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4224     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4225       return true;
4226   return false;
4227 }
4228
4229 // Return whether this Output_data_list has any dynamic relocs.
4230
4231 bool
4232 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4233 {
4234   for (Output_data_list::const_iterator p = pdl->begin();
4235        p != pdl->end();
4236        ++p)
4237     if ((*p)->has_dynamic_reloc())
4238       return true;
4239   return false;
4240 }
4241
4242 // Set the section addresses for an Output_segment.  If RESET is true,
4243 // reset the addresses first.  ADDR is the address and *POFF is the
4244 // file offset.  Set the section indexes starting with *PSHNDX.
4245 // INCREASE_RELRO is the size of the portion of the first non-relro
4246 // section that should be included in the PT_GNU_RELRO segment.
4247 // If this segment has relro sections, and has been aligned for
4248 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4249 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4250 // and *PSHNDX.
4251
4252 uint64_t
4253 Output_segment::set_section_addresses(Layout* layout, bool reset,
4254                                       uint64_t addr,
4255                                       unsigned int* increase_relro,
4256                                       bool* has_relro,
4257                                       off_t* poff,
4258                                       unsigned int* pshndx)
4259 {
4260   gold_assert(this->type_ == elfcpp::PT_LOAD);
4261
4262   uint64_t last_relro_pad = 0;
4263   off_t orig_off = *poff;
4264
4265   bool in_tls = false;
4266
4267   // If we have relro sections, we need to pad forward now so that the
4268   // relro sections plus INCREASE_RELRO end on an abi page boundary.
4269   if (parameters->options().relro()
4270       && this->is_first_section_relro()
4271       && (!this->are_addresses_set_ || reset))
4272     {
4273       uint64_t relro_size = 0;
4274       off_t off = *poff;
4275       uint64_t max_align = 0;
4276       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4277         {
4278           Output_data_list* pdl = &this->output_lists_[i];
4279           Output_data_list::iterator p;
4280           for (p = pdl->begin(); p != pdl->end(); ++p)
4281             {
4282               if (!(*p)->is_section())
4283                 break;
4284               uint64_t align = (*p)->addralign();
4285               if (align > max_align)
4286                 max_align = align;
4287               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4288                 in_tls = true;
4289               else if (in_tls)
4290                 {
4291                   // Align the first non-TLS section to the alignment
4292                   // of the TLS segment.
4293                   align = max_align;
4294                   in_tls = false;
4295                 }
4296               relro_size = align_address(relro_size, align);
4297               // Ignore the size of the .tbss section.
4298               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4299                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4300                 continue;
4301               if ((*p)->is_address_valid())
4302                 relro_size += (*p)->data_size();
4303               else
4304                 {
4305                   // FIXME: This could be faster.
4306                   (*p)->set_address_and_file_offset(addr + relro_size,
4307                                                     off + relro_size);
4308                   relro_size += (*p)->data_size();
4309                   (*p)->reset_address_and_file_offset();
4310                 }
4311             }
4312           if (p != pdl->end())
4313             break;
4314         }
4315       relro_size += *increase_relro;
4316       // Pad the total relro size to a multiple of the maximum
4317       // section alignment seen.
4318       uint64_t aligned_size = align_address(relro_size, max_align);
4319       // Note the amount of padding added after the last relro section.
4320       last_relro_pad = aligned_size - relro_size;
4321       *has_relro = true;
4322
4323       uint64_t page_align = parameters->target().abi_pagesize();
4324
4325       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4326       uint64_t desired_align = page_align - (aligned_size % page_align);
4327       if (desired_align < *poff % page_align)
4328         *poff += page_align - *poff % page_align;
4329       *poff += desired_align - *poff % page_align;
4330       addr += *poff - orig_off;
4331       orig_off = *poff;
4332     }
4333
4334   if (!reset && this->are_addresses_set_)
4335     {
4336       gold_assert(this->paddr_ == addr);
4337       addr = this->vaddr_;
4338     }
4339   else
4340     {
4341       this->vaddr_ = addr;
4342       this->paddr_ = addr;
4343       this->are_addresses_set_ = true;
4344     }
4345
4346   in_tls = false;
4347
4348   this->offset_ = orig_off;
4349
4350   off_t off = 0;
4351   uint64_t ret;
4352   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4353     {
4354       if (i == static_cast<int>(ORDER_RELRO_LAST))
4355         {
4356           *poff += last_relro_pad;
4357           addr += last_relro_pad;
4358           if (this->output_lists_[i].empty())
4359             {
4360               // If there is nothing in the ORDER_RELRO_LAST list,
4361               // the padding will occur at the end of the relro
4362               // segment, and we need to add it to *INCREASE_RELRO.
4363               *increase_relro += last_relro_pad;
4364             }
4365         }
4366       addr = this->set_section_list_addresses(layout, reset,
4367                                               &this->output_lists_[i],
4368                                               addr, poff, pshndx, &in_tls);
4369       if (i < static_cast<int>(ORDER_SMALL_BSS))
4370         {
4371           this->filesz_ = *poff - orig_off;
4372           off = *poff;
4373         }
4374
4375       ret = addr;
4376     }
4377
4378   // If the last section was a TLS section, align upward to the
4379   // alignment of the TLS segment, so that the overall size of the TLS
4380   // segment is aligned.
4381   if (in_tls)
4382     {
4383       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4384       *poff = align_address(*poff, segment_align);
4385     }
4386
4387   this->memsz_ = *poff - orig_off;
4388
4389   // Ignore the file offset adjustments made by the BSS Output_data
4390   // objects.
4391   *poff = off;
4392
4393   return ret;
4394 }
4395
4396 // Set the addresses and file offsets in a list of Output_data
4397 // structures.
4398
4399 uint64_t
4400 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4401                                            Output_data_list* pdl,
4402                                            uint64_t addr, off_t* poff,
4403                                            unsigned int* pshndx,
4404                                            bool* in_tls)
4405 {
4406   off_t startoff = *poff;
4407   // For incremental updates, we may allocate non-fixed sections from
4408   // free space in the file.  This keeps track of the high-water mark.
4409   off_t maxoff = startoff;
4410
4411   off_t off = startoff;
4412   for (Output_data_list::iterator p = pdl->begin();
4413        p != pdl->end();
4414        ++p)
4415     {
4416       if (reset)
4417         (*p)->reset_address_and_file_offset();
4418
4419       // When doing an incremental update or when using a linker script,
4420       // the section will most likely already have an address.
4421       if (!(*p)->is_address_valid())
4422         {
4423           uint64_t align = (*p)->addralign();
4424
4425           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4426             {
4427               // Give the first TLS section the alignment of the
4428               // entire TLS segment.  Otherwise the TLS segment as a
4429               // whole may be misaligned.
4430               if (!*in_tls)
4431                 {
4432                   Output_segment* tls_segment = layout->tls_segment();
4433                   gold_assert(tls_segment != NULL);
4434                   uint64_t segment_align = tls_segment->maximum_alignment();
4435                   gold_assert(segment_align >= align);
4436                   align = segment_align;
4437
4438                   *in_tls = true;
4439                 }
4440             }
4441           else
4442             {
4443               // If this is the first section after the TLS segment,
4444               // align it to at least the alignment of the TLS
4445               // segment, so that the size of the overall TLS segment
4446               // is aligned.
4447               if (*in_tls)
4448                 {
4449                   uint64_t segment_align =
4450                       layout->tls_segment()->maximum_alignment();
4451                   if (segment_align > align)
4452                     align = segment_align;
4453
4454                   *in_tls = false;
4455                 }
4456             }
4457
4458           if (!parameters->incremental_update())
4459             {
4460               off = align_address(off, align);
4461               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4462             }
4463           else
4464             {
4465               // Incremental update: allocate file space from free list.
4466               (*p)->pre_finalize_data_size();
4467               off_t current_size = (*p)->current_data_size();
4468               off = layout->allocate(current_size, align, startoff);
4469               if (off == -1)
4470                 {
4471                   gold_assert((*p)->output_section() != NULL);
4472                   gold_fallback(_("out of patch space for section %s; "
4473                                   "relink with --incremental-full"),
4474                                 (*p)->output_section()->name());
4475                 }
4476               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4477               if ((*p)->data_size() > current_size)
4478                 {
4479                   gold_assert((*p)->output_section() != NULL);
4480                   gold_fallback(_("%s: section changed size; "
4481                                   "relink with --incremental-full"),
4482                                 (*p)->output_section()->name());
4483                 }
4484             }
4485         }
4486       else if (parameters->incremental_update())
4487         {
4488           // For incremental updates, use the fixed offset for the
4489           // high-water mark computation.
4490           off = (*p)->offset();
4491         }
4492       else
4493         {
4494           // The script may have inserted a skip forward, but it
4495           // better not have moved backward.
4496           if ((*p)->address() >= addr + (off - startoff))
4497             off += (*p)->address() - (addr + (off - startoff));
4498           else
4499             {
4500               if (!layout->script_options()->saw_sections_clause())
4501                 gold_unreachable();
4502               else
4503                 {
4504                   Output_section* os = (*p)->output_section();
4505
4506                   // Cast to unsigned long long to avoid format warnings.
4507                   unsigned long long previous_dot =
4508                     static_cast<unsigned long long>(addr + (off - startoff));
4509                   unsigned long long dot =
4510                     static_cast<unsigned long long>((*p)->address());
4511
4512                   if (os == NULL)
4513                     gold_error(_("dot moves backward in linker script "
4514                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4515                   else
4516                     gold_error(_("address of section '%s' moves backward "
4517                                  "from 0x%llx to 0x%llx"),
4518                                os->name(), previous_dot, dot);
4519                 }
4520             }
4521           (*p)->set_file_offset(off);
4522           (*p)->finalize_data_size();
4523         }
4524
4525       if (parameters->incremental_update())
4526         gold_debug(DEBUG_INCREMENTAL,
4527                    "set_section_list_addresses: %08lx %08lx %s",
4528                    static_cast<long>(off),
4529                    static_cast<long>((*p)->data_size()),
4530                    ((*p)->output_section() != NULL
4531                     ? (*p)->output_section()->name() : "(special)"));
4532
4533       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4534       // section.  Such a section does not affect the size of a
4535       // PT_LOAD segment.
4536       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4537           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4538         off += (*p)->data_size();
4539
4540       if (off > maxoff)
4541         maxoff = off;
4542
4543       if ((*p)->is_section())
4544         {
4545           (*p)->set_out_shndx(*pshndx);
4546           ++*pshndx;
4547         }
4548     }
4549
4550   *poff = maxoff;
4551   return addr + (maxoff - startoff);
4552 }
4553
4554 // For a non-PT_LOAD segment, set the offset from the sections, if
4555 // any.  Add INCREASE to the file size and the memory size.
4556
4557 void
4558 Output_segment::set_offset(unsigned int increase)
4559 {
4560   gold_assert(this->type_ != elfcpp::PT_LOAD);
4561
4562   gold_assert(!this->are_addresses_set_);
4563
4564   // A non-load section only uses output_lists_[0].
4565
4566   Output_data_list* pdl = &this->output_lists_[0];
4567
4568   if (pdl->empty())
4569     {
4570       gold_assert(increase == 0);
4571       this->vaddr_ = 0;
4572       this->paddr_ = 0;
4573       this->are_addresses_set_ = true;
4574       this->memsz_ = 0;
4575       this->min_p_align_ = 0;
4576       this->offset_ = 0;
4577       this->filesz_ = 0;
4578       return;
4579     }
4580
4581   // Find the first and last section by address.
4582   const Output_data* first = NULL;
4583   const Output_data* last_data = NULL;
4584   const Output_data* last_bss = NULL;
4585   for (Output_data_list::const_iterator p = pdl->begin();
4586        p != pdl->end();
4587        ++p)
4588     {
4589       if (first == NULL
4590           || (*p)->address() < first->address()
4591           || ((*p)->address() == first->address()
4592               && (*p)->data_size() < first->data_size()))
4593         first = *p;
4594       const Output_data** plast;
4595       if ((*p)->is_section()
4596           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4597         plast = &last_bss;
4598       else
4599         plast = &last_data;
4600       if (*plast == NULL
4601           || (*p)->address() > (*plast)->address()
4602           || ((*p)->address() == (*plast)->address()
4603               && (*p)->data_size() > (*plast)->data_size()))
4604         *plast = *p;
4605     }
4606
4607   this->vaddr_ = first->address();
4608   this->paddr_ = (first->has_load_address()
4609                   ? first->load_address()
4610                   : this->vaddr_);
4611   this->are_addresses_set_ = true;
4612   this->offset_ = first->offset();
4613
4614   if (last_data == NULL)
4615     this->filesz_ = 0;
4616   else
4617     this->filesz_ = (last_data->address()
4618                      + last_data->data_size()
4619                      - this->vaddr_);
4620
4621   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4622   this->memsz_ = (last->address()
4623                   + last->data_size()
4624                   - this->vaddr_);
4625
4626   this->filesz_ += increase;
4627   this->memsz_ += increase;
4628
4629   // If this is a RELRO segment, verify that the segment ends at a
4630   // page boundary.
4631   if (this->type_ == elfcpp::PT_GNU_RELRO)
4632     {
4633       uint64_t page_align = parameters->target().abi_pagesize();
4634       uint64_t segment_end = this->vaddr_ + this->memsz_;
4635       if (parameters->incremental_update())
4636         {
4637           // The INCREASE_RELRO calculation is bypassed for an incremental
4638           // update, so we need to adjust the segment size manually here.
4639           segment_end = align_address(segment_end, page_align);
4640           this->memsz_ = segment_end - this->vaddr_;
4641         }
4642       else
4643         gold_assert(segment_end == align_address(segment_end, page_align));
4644     }
4645
4646   // If this is a TLS segment, align the memory size.  The code in
4647   // set_section_list ensures that the section after the TLS segment
4648   // is aligned to give us room.
4649   if (this->type_ == elfcpp::PT_TLS)
4650     {
4651       uint64_t segment_align = this->maximum_alignment();
4652       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4653       this->memsz_ = align_address(this->memsz_, segment_align);
4654     }
4655 }
4656
4657 // Set the TLS offsets of the sections in the PT_TLS segment.
4658
4659 void
4660 Output_segment::set_tls_offsets()
4661 {
4662   gold_assert(this->type_ == elfcpp::PT_TLS);
4663
4664   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4665        p != this->output_lists_[0].end();
4666        ++p)
4667     (*p)->set_tls_offset(this->vaddr_);
4668 }
4669
4670 // Return the first section.
4671
4672 Output_section*
4673 Output_segment::first_section() const
4674 {
4675   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4676     {
4677       const Output_data_list* pdl = &this->output_lists_[i];
4678       for (Output_data_list::const_iterator p = pdl->begin();
4679            p != pdl->end();
4680            ++p)
4681         {
4682           if ((*p)->is_section())
4683             return (*p)->output_section();
4684         }
4685     }
4686   gold_unreachable();
4687 }
4688
4689 // Return the number of Output_sections in an Output_segment.
4690
4691 unsigned int
4692 Output_segment::output_section_count() const
4693 {
4694   unsigned int ret = 0;
4695   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4696     ret += this->output_section_count_list(&this->output_lists_[i]);
4697   return ret;
4698 }
4699
4700 // Return the number of Output_sections in an Output_data_list.
4701
4702 unsigned int
4703 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4704 {
4705   unsigned int count = 0;
4706   for (Output_data_list::const_iterator p = pdl->begin();
4707        p != pdl->end();
4708        ++p)
4709     {
4710       if ((*p)->is_section())
4711         ++count;
4712     }
4713   return count;
4714 }
4715
4716 // Return the section attached to the list segment with the lowest
4717 // load address.  This is used when handling a PHDRS clause in a
4718 // linker script.
4719
4720 Output_section*
4721 Output_segment::section_with_lowest_load_address() const
4722 {
4723   Output_section* found = NULL;
4724   uint64_t found_lma = 0;
4725   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4726     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4727                                       &found_lma);
4728   return found;
4729 }
4730
4731 // Look through a list for a section with a lower load address.
4732
4733 void
4734 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4735                                             Output_section** found,
4736                                             uint64_t* found_lma) const
4737 {
4738   for (Output_data_list::const_iterator p = pdl->begin();
4739        p != pdl->end();
4740        ++p)
4741     {
4742       if (!(*p)->is_section())
4743         continue;
4744       Output_section* os = static_cast<Output_section*>(*p);
4745       uint64_t lma = (os->has_load_address()
4746                       ? os->load_address()
4747                       : os->address());
4748       if (*found == NULL || lma < *found_lma)
4749         {
4750           *found = os;
4751           *found_lma = lma;
4752         }
4753     }
4754 }
4755
4756 // Write the segment data into *OPHDR.
4757
4758 template<int size, bool big_endian>
4759 void
4760 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4761 {
4762   ophdr->put_p_type(this->type_);
4763   ophdr->put_p_offset(this->offset_);
4764   ophdr->put_p_vaddr(this->vaddr_);
4765   ophdr->put_p_paddr(this->paddr_);
4766   ophdr->put_p_filesz(this->filesz_);
4767   ophdr->put_p_memsz(this->memsz_);
4768   ophdr->put_p_flags(this->flags_);
4769   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4770 }
4771
4772 // Write the section headers into V.
4773
4774 template<int size, bool big_endian>
4775 unsigned char*
4776 Output_segment::write_section_headers(const Layout* layout,
4777                                       const Stringpool* secnamepool,
4778                                       unsigned char* v,
4779                                       unsigned int* pshndx) const
4780 {
4781   // Every section that is attached to a segment must be attached to a
4782   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4783   // segments.
4784   if (this->type_ != elfcpp::PT_LOAD)
4785     return v;
4786
4787   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4788     {
4789       const Output_data_list* pdl = &this->output_lists_[i];
4790       v = this->write_section_headers_list<size, big_endian>(layout,
4791                                                              secnamepool,
4792                                                              pdl,
4793                                                              v, pshndx);
4794     }
4795
4796   return v;
4797 }
4798
4799 template<int size, bool big_endian>
4800 unsigned char*
4801 Output_segment::write_section_headers_list(const Layout* layout,
4802                                            const Stringpool* secnamepool,
4803                                            const Output_data_list* pdl,
4804                                            unsigned char* v,
4805                                            unsigned int* pshndx) const
4806 {
4807   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4808   for (Output_data_list::const_iterator p = pdl->begin();
4809        p != pdl->end();
4810        ++p)
4811     {
4812       if ((*p)->is_section())
4813         {
4814           const Output_section* ps = static_cast<const Output_section*>(*p);
4815           gold_assert(*pshndx == ps->out_shndx());
4816           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4817           ps->write_header(layout, secnamepool, &oshdr);
4818           v += shdr_size;
4819           ++*pshndx;
4820         }
4821     }
4822   return v;
4823 }
4824
4825 // Print the output sections to the map file.
4826
4827 void
4828 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4829 {
4830   if (this->type() != elfcpp::PT_LOAD)
4831     return;
4832   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4833     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4834 }
4835
4836 // Print an output section list to the map file.
4837
4838 void
4839 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4840                                               const Output_data_list* pdl) const
4841 {
4842   for (Output_data_list::const_iterator p = pdl->begin();
4843        p != pdl->end();
4844        ++p)
4845     (*p)->print_to_mapfile(mapfile);
4846 }
4847
4848 // Output_file methods.
4849
4850 Output_file::Output_file(const char* name)
4851   : name_(name),
4852     o_(-1),
4853     file_size_(0),
4854     base_(NULL),
4855     map_is_anonymous_(false),
4856     map_is_allocated_(false),
4857     is_temporary_(false)
4858 {
4859 }
4860
4861 // Try to open an existing file.  Returns false if the file doesn't
4862 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4863 // NULL, open that file as the base for incremental linking, and
4864 // copy its contents to the new output file.  This routine can
4865 // be called for incremental updates, in which case WRITABLE should
4866 // be true, or by the incremental-dump utility, in which case
4867 // WRITABLE should be false.
4868
4869 bool
4870 Output_file::open_base_file(const char* base_name, bool writable)
4871 {
4872   // The name "-" means "stdout".
4873   if (strcmp(this->name_, "-") == 0)
4874     return false;
4875
4876   bool use_base_file = base_name != NULL;
4877   if (!use_base_file)
4878     base_name = this->name_;
4879   else if (strcmp(base_name, this->name_) == 0)
4880     gold_fatal(_("%s: incremental base and output file name are the same"),
4881                base_name);
4882
4883   // Don't bother opening files with a size of zero.
4884   struct stat s;
4885   if (::stat(base_name, &s) != 0)
4886     {
4887       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4888       return false;
4889     }
4890   if (s.st_size == 0)
4891     {
4892       gold_info(_("%s: incremental base file is empty"), base_name);
4893       return false;
4894     }
4895
4896   // If we're using a base file, we want to open it read-only.
4897   if (use_base_file)
4898     writable = false;
4899
4900   int oflags = writable ? O_RDWR : O_RDONLY;
4901   int o = open_descriptor(-1, base_name, oflags, 0);
4902   if (o < 0)
4903     {
4904       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4905       return false;
4906     }
4907
4908   // If the base file and the output file are different, open a
4909   // new output file and read the contents from the base file into
4910   // the newly-mapped region.
4911   if (use_base_file)
4912     {
4913       this->open(s.st_size);
4914       ssize_t bytes_to_read = s.st_size;
4915       unsigned char* p = this->base_;
4916       while (bytes_to_read > 0)
4917         {
4918           ssize_t len = ::read(o, p, bytes_to_read);
4919           if (len < 0)
4920             {
4921               gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4922               return false;
4923             }
4924           if (len == 0)
4925             {
4926               gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4927                         base_name,
4928                         static_cast<long long>(s.st_size - bytes_to_read),
4929                         static_cast<long long>(s.st_size));
4930               return false;
4931             }
4932           p += len;
4933           bytes_to_read -= len;
4934         }
4935       ::close(o);
4936       return true;
4937     }
4938
4939   this->o_ = o;
4940   this->file_size_ = s.st_size;
4941
4942   if (!this->map_no_anonymous(writable))
4943     {
4944       release_descriptor(o, true);
4945       this->o_ = -1;
4946       this->file_size_ = 0;
4947       return false;
4948     }
4949
4950   return true;
4951 }
4952
4953 // Open the output file.
4954
4955 void
4956 Output_file::open(off_t file_size)
4957 {
4958   this->file_size_ = file_size;
4959
4960   // Unlink the file first; otherwise the open() may fail if the file
4961   // is busy (e.g. it's an executable that's currently being executed).
4962   //
4963   // However, the linker may be part of a system where a zero-length
4964   // file is created for it to write to, with tight permissions (gcc
4965   // 2.95 did something like this).  Unlinking the file would work
4966   // around those permission controls, so we only unlink if the file
4967   // has a non-zero size.  We also unlink only regular files to avoid
4968   // trouble with directories/etc.
4969   //
4970   // If we fail, continue; this command is merely a best-effort attempt
4971   // to improve the odds for open().
4972
4973   // We let the name "-" mean "stdout"
4974   if (!this->is_temporary_)
4975     {
4976       if (strcmp(this->name_, "-") == 0)
4977         this->o_ = STDOUT_FILENO;
4978       else
4979         {
4980           struct stat s;
4981           if (::stat(this->name_, &s) == 0
4982               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4983             {
4984               if (s.st_size != 0)
4985                 ::unlink(this->name_);
4986               else if (!parameters->options().relocatable())
4987                 {
4988                   // If we don't unlink the existing file, add execute
4989                   // permission where read permissions already exist
4990                   // and where the umask permits.
4991                   int mask = ::umask(0);
4992                   ::umask(mask);
4993                   s.st_mode |= (s.st_mode & 0444) >> 2;
4994                   ::chmod(this->name_, s.st_mode & ~mask);
4995                 }
4996             }
4997
4998           int mode = parameters->options().relocatable() ? 0666 : 0777;
4999           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5000                                   mode);
5001           if (o < 0)
5002             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5003           this->o_ = o;
5004         }
5005     }
5006
5007   this->map();
5008 }
5009
5010 // Resize the output file.
5011
5012 void
5013 Output_file::resize(off_t file_size)
5014 {
5015   // If the mmap is mapping an anonymous memory buffer, this is easy:
5016   // just mremap to the new size.  If it's mapping to a file, we want
5017   // to unmap to flush to the file, then remap after growing the file.
5018   if (this->map_is_anonymous_)
5019     {
5020       void* base;
5021       if (!this->map_is_allocated_)
5022         {
5023           base = ::mremap(this->base_, this->file_size_, file_size,
5024                           MREMAP_MAYMOVE);
5025           if (base == MAP_FAILED)
5026             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5027         }
5028       else
5029         {
5030           base = realloc(this->base_, file_size);
5031           if (base == NULL)
5032             gold_nomem();
5033           if (file_size > this->file_size_)
5034             memset(static_cast<char*>(base) + this->file_size_, 0,
5035                    file_size - this->file_size_);
5036         }
5037       this->base_ = static_cast<unsigned char*>(base);
5038       this->file_size_ = file_size;
5039     }
5040   else
5041     {
5042       this->unmap();
5043       this->file_size_ = file_size;
5044       if (!this->map_no_anonymous(true))
5045         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5046     }
5047 }
5048
5049 // Map an anonymous block of memory which will later be written to the
5050 // file.  Return whether the map succeeded.
5051
5052 bool
5053 Output_file::map_anonymous()
5054 {
5055   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5056                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5057   if (base == MAP_FAILED)
5058     {
5059       base = malloc(this->file_size_);
5060       if (base == NULL)
5061         return false;
5062       memset(base, 0, this->file_size_);
5063       this->map_is_allocated_ = true;
5064     }
5065   this->base_ = static_cast<unsigned char*>(base);
5066   this->map_is_anonymous_ = true;
5067   return true;
5068 }
5069
5070 // Map the file into memory.  Return whether the mapping succeeded.
5071 // If WRITABLE is true, map with write access.
5072
5073 bool
5074 Output_file::map_no_anonymous(bool writable)
5075 {
5076   const int o = this->o_;
5077
5078   // If the output file is not a regular file, don't try to mmap it;
5079   // instead, we'll mmap a block of memory (an anonymous buffer), and
5080   // then later write the buffer to the file.
5081   void* base;
5082   struct stat statbuf;
5083   if (o == STDOUT_FILENO || o == STDERR_FILENO
5084       || ::fstat(o, &statbuf) != 0
5085       || !S_ISREG(statbuf.st_mode)
5086       || this->is_temporary_)
5087     return false;
5088
5089   // Ensure that we have disk space available for the file.  If we
5090   // don't do this, it is possible that we will call munmap, close,
5091   // and exit with dirty buffers still in the cache with no assigned
5092   // disk blocks.  If the disk is out of space at that point, the
5093   // output file will wind up incomplete, but we will have already
5094   // exited.  The alternative to fallocate would be to use fdatasync,
5095   // but that would be a more significant performance hit.
5096   if (writable)
5097     {
5098       int err = gold_fallocate(o, 0, this->file_size_);
5099       if (err != 0)
5100        gold_fatal(_("%s: %s"), this->name_, strerror(err));
5101     }
5102
5103   // Map the file into memory.
5104   int prot = PROT_READ;
5105   if (writable)
5106     prot |= PROT_WRITE;
5107   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5108
5109   // The mmap call might fail because of file system issues: the file
5110   // system might not support mmap at all, or it might not support
5111   // mmap with PROT_WRITE.
5112   if (base == MAP_FAILED)
5113     return false;
5114
5115   this->map_is_anonymous_ = false;
5116   this->base_ = static_cast<unsigned char*>(base);
5117   return true;
5118 }
5119
5120 // Map the file into memory.
5121
5122 void
5123 Output_file::map()
5124 {
5125   if (parameters->options().mmap_output_file()
5126       && this->map_no_anonymous(true))
5127     return;
5128
5129   // The mmap call might fail because of file system issues: the file
5130   // system might not support mmap at all, or it might not support
5131   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5132   // see in all cases, so if the mmap fails for any reason and we
5133   // don't care about file contents, try for an anonymous map.
5134   if (this->map_anonymous())
5135     return;
5136
5137   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5138              this->name_, static_cast<unsigned long>(this->file_size_),
5139              strerror(errno));
5140 }
5141
5142 // Unmap the file from memory.
5143
5144 void
5145 Output_file::unmap()
5146 {
5147   if (this->map_is_anonymous_)
5148     {
5149       // We've already written out the data, so there is no reason to
5150       // waste time unmapping or freeing the memory.
5151     }
5152   else
5153     {
5154       if (::munmap(this->base_, this->file_size_) < 0)
5155         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5156     }
5157   this->base_ = NULL;
5158 }
5159
5160 // Close the output file.
5161
5162 void
5163 Output_file::close()
5164 {
5165   // If the map isn't file-backed, we need to write it now.
5166   if (this->map_is_anonymous_ && !this->is_temporary_)
5167     {
5168       size_t bytes_to_write = this->file_size_;
5169       size_t offset = 0;
5170       while (bytes_to_write > 0)
5171         {
5172           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5173                                           bytes_to_write);
5174           if (bytes_written == 0)
5175             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5176           else if (bytes_written < 0)
5177             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5178           else
5179             {
5180               bytes_to_write -= bytes_written;
5181               offset += bytes_written;
5182             }
5183         }
5184     }
5185   this->unmap();
5186
5187   // We don't close stdout or stderr
5188   if (this->o_ != STDOUT_FILENO
5189       && this->o_ != STDERR_FILENO
5190       && !this->is_temporary_)
5191     if (::close(this->o_) < 0)
5192       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5193   this->o_ = -1;
5194 }
5195
5196 // Instantiate the templates we need.  We could use the configure
5197 // script to restrict this to only the ones for implemented targets.
5198
5199 #ifdef HAVE_TARGET_32_LITTLE
5200 template
5201 off_t
5202 Output_section::add_input_section<32, false>(
5203     Layout* layout,
5204     Sized_relobj_file<32, false>* object,
5205     unsigned int shndx,
5206     const char* secname,
5207     const elfcpp::Shdr<32, false>& shdr,
5208     unsigned int reloc_shndx,
5209     bool have_sections_script);
5210 #endif
5211
5212 #ifdef HAVE_TARGET_32_BIG
5213 template
5214 off_t
5215 Output_section::add_input_section<32, true>(
5216     Layout* layout,
5217     Sized_relobj_file<32, true>* object,
5218     unsigned int shndx,
5219     const char* secname,
5220     const elfcpp::Shdr<32, true>& shdr,
5221     unsigned int reloc_shndx,
5222     bool have_sections_script);
5223 #endif
5224
5225 #ifdef HAVE_TARGET_64_LITTLE
5226 template
5227 off_t
5228 Output_section::add_input_section<64, false>(
5229     Layout* layout,
5230     Sized_relobj_file<64, false>* object,
5231     unsigned int shndx,
5232     const char* secname,
5233     const elfcpp::Shdr<64, false>& shdr,
5234     unsigned int reloc_shndx,
5235     bool have_sections_script);
5236 #endif
5237
5238 #ifdef HAVE_TARGET_64_BIG
5239 template
5240 off_t
5241 Output_section::add_input_section<64, true>(
5242     Layout* layout,
5243     Sized_relobj_file<64, true>* object,
5244     unsigned int shndx,
5245     const char* secname,
5246     const elfcpp::Shdr<64, true>& shdr,
5247     unsigned int reloc_shndx,
5248     bool have_sections_script);
5249 #endif
5250
5251 #ifdef HAVE_TARGET_32_LITTLE
5252 template
5253 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5254 #endif
5255
5256 #ifdef HAVE_TARGET_32_BIG
5257 template
5258 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5259 #endif
5260
5261 #ifdef HAVE_TARGET_64_LITTLE
5262 template
5263 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5264 #endif
5265
5266 #ifdef HAVE_TARGET_64_BIG
5267 template
5268 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5269 #endif
5270
5271 #ifdef HAVE_TARGET_32_LITTLE
5272 template
5273 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5274 #endif
5275
5276 #ifdef HAVE_TARGET_32_BIG
5277 template
5278 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5279 #endif
5280
5281 #ifdef HAVE_TARGET_64_LITTLE
5282 template
5283 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5284 #endif
5285
5286 #ifdef HAVE_TARGET_64_BIG
5287 template
5288 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5289 #endif
5290
5291 #ifdef HAVE_TARGET_32_LITTLE
5292 template
5293 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5294 #endif
5295
5296 #ifdef HAVE_TARGET_32_BIG
5297 template
5298 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5299 #endif
5300
5301 #ifdef HAVE_TARGET_64_LITTLE
5302 template
5303 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5304 #endif
5305
5306 #ifdef HAVE_TARGET_64_BIG
5307 template
5308 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5309 #endif
5310
5311 #ifdef HAVE_TARGET_32_LITTLE
5312 template
5313 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5314 #endif
5315
5316 #ifdef HAVE_TARGET_32_BIG
5317 template
5318 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5319 #endif
5320
5321 #ifdef HAVE_TARGET_64_LITTLE
5322 template
5323 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5324 #endif
5325
5326 #ifdef HAVE_TARGET_64_BIG
5327 template
5328 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5329 #endif
5330
5331 #ifdef HAVE_TARGET_32_LITTLE
5332 template
5333 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5334 #endif
5335
5336 #ifdef HAVE_TARGET_32_BIG
5337 template
5338 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5339 #endif
5340
5341 #ifdef HAVE_TARGET_64_LITTLE
5342 template
5343 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5344 #endif
5345
5346 #ifdef HAVE_TARGET_64_BIG
5347 template
5348 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5349 #endif
5350
5351 #ifdef HAVE_TARGET_32_LITTLE
5352 template
5353 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5354 #endif
5355
5356 #ifdef HAVE_TARGET_32_BIG
5357 template
5358 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5359 #endif
5360
5361 #ifdef HAVE_TARGET_64_LITTLE
5362 template
5363 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5364 #endif
5365
5366 #ifdef HAVE_TARGET_64_BIG
5367 template
5368 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5369 #endif
5370
5371 #ifdef HAVE_TARGET_32_LITTLE
5372 template
5373 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5374 #endif
5375
5376 #ifdef HAVE_TARGET_32_BIG
5377 template
5378 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5379 #endif
5380
5381 #ifdef HAVE_TARGET_64_LITTLE
5382 template
5383 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5384 #endif
5385
5386 #ifdef HAVE_TARGET_64_BIG
5387 template
5388 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5389 #endif
5390
5391 #ifdef HAVE_TARGET_32_LITTLE
5392 template
5393 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5394 #endif
5395
5396 #ifdef HAVE_TARGET_32_BIG
5397 template
5398 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5399 #endif
5400
5401 #ifdef HAVE_TARGET_64_LITTLE
5402 template
5403 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5404 #endif
5405
5406 #ifdef HAVE_TARGET_64_BIG
5407 template
5408 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5409 #endif
5410
5411 #ifdef HAVE_TARGET_32_LITTLE
5412 template
5413 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5414 #endif
5415
5416 #ifdef HAVE_TARGET_32_BIG
5417 template
5418 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5419 #endif
5420
5421 #ifdef HAVE_TARGET_64_LITTLE
5422 template
5423 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5424 #endif
5425
5426 #ifdef HAVE_TARGET_64_BIG
5427 template
5428 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5429 #endif
5430
5431 #ifdef HAVE_TARGET_32_LITTLE
5432 template
5433 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5434 #endif
5435
5436 #ifdef HAVE_TARGET_32_BIG
5437 template
5438 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5439 #endif
5440
5441 #ifdef HAVE_TARGET_64_LITTLE
5442 template
5443 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5444 #endif
5445
5446 #ifdef HAVE_TARGET_64_BIG
5447 template
5448 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5449 #endif
5450
5451 #ifdef HAVE_TARGET_32_LITTLE
5452 template
5453 class Output_data_group<32, false>;
5454 #endif
5455
5456 #ifdef HAVE_TARGET_32_BIG
5457 template
5458 class Output_data_group<32, true>;
5459 #endif
5460
5461 #ifdef HAVE_TARGET_64_LITTLE
5462 template
5463 class Output_data_group<64, false>;
5464 #endif
5465
5466 #ifdef HAVE_TARGET_64_BIG
5467 template
5468 class Output_data_group<64, true>;
5469 #endif
5470
5471 template
5472 class Output_data_got<32, false>;
5473
5474 template
5475 class Output_data_got<32, true>;
5476
5477 template
5478 class Output_data_got<64, false>;
5479
5480 template
5481 class Output_data_got<64, true>;
5482
5483 } // End namespace gold.