* powerpc.cc (Powerpc_relobj::set_got2_shndx): Delete.
[platform/upstream/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 #  define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 #  define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 #  define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 #  define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 #  define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 #  define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80   errno = ENOSYS;
81   return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87   errno = ENOSYS;
88   return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94   errno = ENOSYS;
95   return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS  MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate.  If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly.  If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131   if (parameters->options().posix_fallocate())
132     return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135   if (::fallocate(o, 0, offset, len) == 0)
136     return 0;
137 #endif // defined(HAVE_FALLOCATE)
138   if (::ftruncate(o, offset + len) < 0)
139     return errno;
140   return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158   return Output_data::default_alignment_for_size(
159       parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167   if (size == 32)
168     return 4;
169   else if (size == 64)
170     return 8;
171   else
172     gold_unreachable();
173 }
174
175 // Output_section_header methods.  This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179     const Layout* layout,
180     const Layout::Segment_list* segment_list,
181     const Layout::Section_list* section_list,
182     const Layout::Section_list* unattached_section_list,
183     const Stringpool* secnamepool,
184     const Output_section* shstrtab_section)
185   : layout_(layout),
186     segment_list_(segment_list),
187     section_list_(section_list),
188     unattached_section_list_(unattached_section_list),
189     secnamepool_(secnamepool),
190     shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199   // Count all the sections.  Start with 1 for the null section.
200   off_t count = 1;
201   if (!parameters->options().relocatable())
202     {
203       for (Layout::Segment_list::const_iterator p =
204              this->segment_list_->begin();
205            p != this->segment_list_->end();
206            ++p)
207         if ((*p)->type() == elfcpp::PT_LOAD)
208           count += (*p)->output_section_count();
209     }
210   else
211     {
212       for (Layout::Section_list::const_iterator p =
213              this->section_list_->begin();
214            p != this->section_list_->end();
215            ++p)
216         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217           ++count;
218     }
219   count += this->unattached_section_list_->size();
220
221   const int size = parameters->target().get_size();
222   int shdr_size;
223   if (size == 32)
224     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225   else if (size == 64)
226     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227   else
228     gold_unreachable();
229
230   return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238   switch (parameters->size_and_endianness())
239     {
240 #ifdef HAVE_TARGET_32_LITTLE
241     case Parameters::TARGET_32_LITTLE:
242       this->do_sized_write<32, false>(of);
243       break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246     case Parameters::TARGET_32_BIG:
247       this->do_sized_write<32, true>(of);
248       break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251     case Parameters::TARGET_64_LITTLE:
252       this->do_sized_write<64, false>(of);
253       break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256     case Parameters::TARGET_64_BIG:
257       this->do_sized_write<64, true>(of);
258       break;
259 #endif
260     default:
261       gold_unreachable();
262     }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269   off_t all_shdrs_size = this->data_size();
270   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273   unsigned char* v = view;
274
275   {
276     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277     oshdr.put_sh_name(0);
278     oshdr.put_sh_type(elfcpp::SHT_NULL);
279     oshdr.put_sh_flags(0);
280     oshdr.put_sh_addr(0);
281     oshdr.put_sh_offset(0);
282
283     size_t section_count = (this->data_size()
284                             / elfcpp::Elf_sizes<size>::shdr_size);
285     if (section_count < elfcpp::SHN_LORESERVE)
286       oshdr.put_sh_size(0);
287     else
288       oshdr.put_sh_size(section_count);
289
290     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291     if (shstrndx < elfcpp::SHN_LORESERVE)
292       oshdr.put_sh_link(0);
293     else
294       oshdr.put_sh_link(shstrndx);
295
296     size_t segment_count = this->segment_list_->size();
297     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299     oshdr.put_sh_addralign(0);
300     oshdr.put_sh_entsize(0);
301   }
302
303   v += shdr_size;
304
305   unsigned int shndx = 1;
306   if (!parameters->options().relocatable())
307     {
308       for (Layout::Segment_list::const_iterator p =
309              this->segment_list_->begin();
310            p != this->segment_list_->end();
311            ++p)
312         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313                                                           this->secnamepool_,
314                                                           v,
315                                                           &shndx);
316     }
317   else
318     {
319       for (Layout::Section_list::const_iterator p =
320              this->section_list_->begin();
321            p != this->section_list_->end();
322            ++p)
323         {
324           // We do unallocated sections below, except that group
325           // sections have to come first.
326           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327               && (*p)->type() != elfcpp::SHT_GROUP)
328             continue;
329           gold_assert(shndx == (*p)->out_shndx());
330           elfcpp::Shdr_write<size, big_endian> oshdr(v);
331           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332           v += shdr_size;
333           ++shndx;
334         }
335     }
336
337   for (Layout::Section_list::const_iterator p =
338          this->unattached_section_list_->begin();
339        p != this->unattached_section_list_->end();
340        ++p)
341     {
342       // For a relocatable link, we did unallocated group sections
343       // above, since they have to come first.
344       if ((*p)->type() == elfcpp::SHT_GROUP
345           && parameters->options().relocatable())
346         continue;
347       gold_assert(shndx == (*p)->out_shndx());
348       elfcpp::Shdr_write<size, big_endian> oshdr(v);
349       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350       v += shdr_size;
351       ++shndx;
352     }
353
354   of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360     const Layout::Segment_list& segment_list)
361   : segment_list_(segment_list)
362 {
363   this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369   switch (parameters->size_and_endianness())
370     {
371 #ifdef HAVE_TARGET_32_LITTLE
372     case Parameters::TARGET_32_LITTLE:
373       this->do_sized_write<32, false>(of);
374       break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377     case Parameters::TARGET_32_BIG:
378       this->do_sized_write<32, true>(of);
379       break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382     case Parameters::TARGET_64_LITTLE:
383       this->do_sized_write<64, false>(of);
384       break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387     case Parameters::TARGET_64_BIG:
388       this->do_sized_write<64, true>(of);
389       break;
390 #endif
391     default:
392       gold_unreachable();
393     }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402   gold_assert(all_phdrs_size == this->data_size());
403   unsigned char* view = of->get_output_view(this->offset(),
404                                             all_phdrs_size);
405   unsigned char* v = view;
406   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407        p != this->segment_list_.end();
408        ++p)
409     {
410       elfcpp::Phdr_write<size, big_endian> ophdr(v);
411       (*p)->write_header(&ophdr);
412       v += phdr_size;
413     }
414
415   gold_assert(v - view == all_phdrs_size);
416
417   of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423   const int size = parameters->target().get_size();
424   int phdr_size;
425   if (size == 32)
426     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427   else if (size == 64)
428     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429   else
430     gold_unreachable();
431
432   return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(const Target* target,
438                                        const Symbol_table* symtab,
439                                        const Output_segment_headers* osh)
440   : target_(target),
441     symtab_(symtab),
442     segment_header_(osh),
443     section_header_(NULL),
444     shstrtab_(NULL)
445 {
446   this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453                                      const Output_section* shstrtab)
454 {
455   this->section_header_ = shdrs;
456   this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464   gold_assert(this->offset() == 0);
465
466   switch (parameters->size_and_endianness())
467     {
468 #ifdef HAVE_TARGET_32_LITTLE
469     case Parameters::TARGET_32_LITTLE:
470       this->do_sized_write<32, false>(of);
471       break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474     case Parameters::TARGET_32_BIG:
475       this->do_sized_write<32, true>(of);
476       break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479     case Parameters::TARGET_64_LITTLE:
480       this->do_sized_write<64, false>(of);
481       break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484     case Parameters::TARGET_64_BIG:
485       this->do_sized_write<64, true>(of);
486       break;
487 #endif
488     default:
489       gold_unreachable();
490     }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499   gold_assert(this->offset() == 0);
500
501   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502   unsigned char* view = of->get_output_view(0, ehdr_size);
503   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505   unsigned char e_ident[elfcpp::EI_NIDENT];
506   memset(e_ident, 0, elfcpp::EI_NIDENT);
507   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511   if (size == 32)
512     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513   else if (size == 64)
514     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515   else
516     gold_unreachable();
517   e_ident[elfcpp::EI_DATA] = (big_endian
518                               ? elfcpp::ELFDATA2MSB
519                               : elfcpp::ELFDATA2LSB);
520   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521   oehdr.put_e_ident(e_ident);
522
523   elfcpp::ET e_type;
524   if (parameters->options().relocatable())
525     e_type = elfcpp::ET_REL;
526   else if (parameters->options().output_is_position_independent())
527     e_type = elfcpp::ET_DYN;
528   else
529     e_type = elfcpp::ET_EXEC;
530   oehdr.put_e_type(e_type);
531
532   oehdr.put_e_machine(this->target_->machine_code());
533   oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535   oehdr.put_e_entry(this->entry<size>());
536
537   if (this->segment_header_ == NULL)
538     oehdr.put_e_phoff(0);
539   else
540     oehdr.put_e_phoff(this->segment_header_->offset());
541
542   oehdr.put_e_shoff(this->section_header_->offset());
543   oehdr.put_e_flags(this->target_->processor_specific_flags());
544   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546   if (this->segment_header_ == NULL)
547     {
548       oehdr.put_e_phentsize(0);
549       oehdr.put_e_phnum(0);
550     }
551   else
552     {
553       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554       size_t phnum = (this->segment_header_->data_size()
555                       / elfcpp::Elf_sizes<size>::phdr_size);
556       if (phnum > elfcpp::PN_XNUM)
557         phnum = elfcpp::PN_XNUM;
558       oehdr.put_e_phnum(phnum);
559     }
560
561   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562   size_t section_count = (this->section_header_->data_size()
563                           / elfcpp::Elf_sizes<size>::shdr_size);
564
565   if (section_count < elfcpp::SHN_LORESERVE)
566     oehdr.put_e_shnum(this->section_header_->data_size()
567                       / elfcpp::Elf_sizes<size>::shdr_size);
568   else
569     oehdr.put_e_shnum(0);
570
571   unsigned int shstrndx = this->shstrtab_->out_shndx();
572   if (shstrndx < elfcpp::SHN_LORESERVE)
573     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574   else
575     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578   // the e_ident field.
579   parameters->target().adjust_elf_header(view, ehdr_size);
580
581   of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590   const bool should_issue_warning = (parameters->options().entry() != NULL
591                                      && !parameters->options().relocatable()
592                                      && !parameters->options().shared());
593   const char* entry = parameters->entry();
594   Symbol* sym = this->symtab_->lookup(entry);
595
596   typename Sized_symbol<size>::Value_type v;
597   if (sym != NULL)
598     {
599       Sized_symbol<size>* ssym;
600       ssym = this->symtab_->get_sized_symbol<size>(sym);
601       if (!ssym->is_defined() && should_issue_warning)
602         gold_warning("entry symbol '%s' exists but is not defined", entry);
603       v = ssym->value();
604     }
605   else
606     {
607       // We couldn't find the entry symbol.  See if we can parse it as
608       // a number.  This supports, e.g., -e 0x1000.
609       char* endptr;
610       v = strtoull(entry, &endptr, 0);
611       if (*endptr != '\0')
612         {
613           if (should_issue_warning)
614             gold_warning("cannot find entry symbol '%s'", entry);
615           v = 0;
616         }
617     }
618
619   return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627   const int size = parameters->target().get_size();
628   if (size == 32)
629     return elfcpp::Elf_sizes<32>::ehdr_size;
630   else if (size == 64)
631     return elfcpp::Elf_sizes<64>::ehdr_size;
632   else
633     gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641   of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649   of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659   gold_assert(this->output_section_ == NULL);
660   this->output_section_ = os;
661   this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669   gold_assert(this->output_section_ != NULL);
670   return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679   this->addralign_ = addralign;
680   if (this->output_section_ != NULL
681       && this->output_section_->addralign() < addralign)
682     this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692   this->strtab_->set_string_offsets();
693   this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701   this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710     Symbol* gsym,
711     unsigned int type,
712     Output_data* od,
713     Address address,
714     bool is_relative,
715     bool is_symbolless,
716     bool use_plt_offset)
717   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718     is_relative_(is_relative), is_symbolless_(is_symbolless),
719     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721   // this->type_ is a bitfield; make sure TYPE fits.
722   gold_assert(this->type_ == type);
723   this->u1_.gsym = gsym;
724   this->u2_.od = od;
725   if (dynamic)
726     this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731     Symbol* gsym,
732     unsigned int type,
733     Sized_relobj<size, big_endian>* relobj,
734     unsigned int shndx,
735     Address address,
736     bool is_relative,
737     bool is_symbolless,
738     bool use_plt_offset)
739   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740     is_relative_(is_relative), is_symbolless_(is_symbolless),
741     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743   gold_assert(shndx != INVALID_CODE);
744   // this->type_ is a bitfield; make sure TYPE fits.
745   gold_assert(this->type_ == type);
746   this->u1_.gsym = gsym;
747   this->u2_.relobj = relobj;
748   if (dynamic)
749     this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756     Sized_relobj<size, big_endian>* relobj,
757     unsigned int local_sym_index,
758     unsigned int type,
759     Output_data* od,
760     Address address,
761     bool is_relative,
762     bool is_symbolless,
763     bool is_section_symbol,
764     bool use_plt_offset)
765   : address_(address), local_sym_index_(local_sym_index), type_(type),
766     is_relative_(is_relative), is_symbolless_(is_symbolless),
767     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768     shndx_(INVALID_CODE)
769 {
770   gold_assert(local_sym_index != GSYM_CODE
771               && local_sym_index != INVALID_CODE);
772   // this->type_ is a bitfield; make sure TYPE fits.
773   gold_assert(this->type_ == type);
774   this->u1_.relobj = relobj;
775   this->u2_.od = od;
776   if (dynamic)
777     this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782     Sized_relobj<size, big_endian>* relobj,
783     unsigned int local_sym_index,
784     unsigned int type,
785     unsigned int shndx,
786     Address address,
787     bool is_relative,
788     bool is_symbolless,
789     bool is_section_symbol,
790     bool use_plt_offset)
791   : address_(address), local_sym_index_(local_sym_index), type_(type),
792     is_relative_(is_relative), is_symbolless_(is_symbolless),
793     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794     shndx_(shndx)
795 {
796   gold_assert(local_sym_index != GSYM_CODE
797               && local_sym_index != INVALID_CODE);
798   gold_assert(shndx != INVALID_CODE);
799   // this->type_ is a bitfield; make sure TYPE fits.
800   gold_assert(this->type_ == type);
801   this->u1_.relobj = relobj;
802   this->u2_.relobj = relobj;
803   if (dynamic)
804     this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811     Output_section* os,
812     unsigned int type,
813     Output_data* od,
814     Address address)
815   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
816     is_relative_(false), is_symbolless_(false),
817     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
818 {
819   // this->type_ is a bitfield; make sure TYPE fits.
820   gold_assert(this->type_ == type);
821   this->u1_.os = os;
822   this->u2_.od = od;
823   if (dynamic)
824     this->set_needs_dynsym_index();
825   else
826     os->set_needs_symtab_index();
827 }
828
829 template<bool dynamic, int size, bool big_endian>
830 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
831     Output_section* os,
832     unsigned int type,
833     Sized_relobj<size, big_endian>* relobj,
834     unsigned int shndx,
835     Address address)
836   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
837     is_relative_(false), is_symbolless_(false),
838     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
839 {
840   gold_assert(shndx != INVALID_CODE);
841   // this->type_ is a bitfield; make sure TYPE fits.
842   gold_assert(this->type_ == type);
843   this->u1_.os = os;
844   this->u2_.relobj = relobj;
845   if (dynamic)
846     this->set_needs_dynsym_index();
847   else
848     os->set_needs_symtab_index();
849 }
850
851 // An absolute relocation.
852
853 template<bool dynamic, int size, bool big_endian>
854 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
855     unsigned int type,
856     Output_data* od,
857     Address address)
858   : address_(address), local_sym_index_(0), type_(type),
859     is_relative_(false), is_symbolless_(false),
860     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
861 {
862   // this->type_ is a bitfield; make sure TYPE fits.
863   gold_assert(this->type_ == type);
864   this->u1_.relobj = NULL;
865   this->u2_.od = od;
866 }
867
868 template<bool dynamic, int size, bool big_endian>
869 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
870     unsigned int type,
871     Sized_relobj<size, big_endian>* relobj,
872     unsigned int shndx,
873     Address address)
874   : address_(address), local_sym_index_(0), type_(type),
875     is_relative_(false), is_symbolless_(false),
876     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
877 {
878   gold_assert(shndx != INVALID_CODE);
879   // this->type_ is a bitfield; make sure TYPE fits.
880   gold_assert(this->type_ == type);
881   this->u1_.relobj = NULL;
882   this->u2_.relobj = relobj;
883 }
884
885 // A target specific relocation.
886
887 template<bool dynamic, int size, bool big_endian>
888 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
889     unsigned int type,
890     void* arg,
891     Output_data* od,
892     Address address)
893   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
894     is_relative_(false), is_symbolless_(false),
895     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
896 {
897   // this->type_ is a bitfield; make sure TYPE fits.
898   gold_assert(this->type_ == type);
899   this->u1_.arg = arg;
900   this->u2_.od = od;
901 }
902
903 template<bool dynamic, int size, bool big_endian>
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
905     unsigned int type,
906     void* arg,
907     Sized_relobj<size, big_endian>* relobj,
908     unsigned int shndx,
909     Address address)
910   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
911     is_relative_(false), is_symbolless_(false),
912     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
913 {
914   gold_assert(shndx != INVALID_CODE);
915   // this->type_ is a bitfield; make sure TYPE fits.
916   gold_assert(this->type_ == type);
917   this->u1_.arg = arg;
918   this->u2_.relobj = relobj;
919 }
920
921 // Record that we need a dynamic symbol index for this relocation.
922
923 template<bool dynamic, int size, bool big_endian>
924 void
925 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
926 set_needs_dynsym_index()
927 {
928   if (this->is_symbolless_)
929     return;
930   switch (this->local_sym_index_)
931     {
932     case INVALID_CODE:
933       gold_unreachable();
934
935     case GSYM_CODE:
936       this->u1_.gsym->set_needs_dynsym_entry();
937       break;
938
939     case SECTION_CODE:
940       this->u1_.os->set_needs_dynsym_index();
941       break;
942
943     case TARGET_CODE:
944       // The target must take care of this if necessary.
945       break;
946
947     case 0:
948       break;
949
950     default:
951       {
952         const unsigned int lsi = this->local_sym_index_;
953         Sized_relobj_file<size, big_endian>* relobj =
954             this->u1_.relobj->sized_relobj();
955         gold_assert(relobj != NULL);
956         if (!this->is_section_symbol_)
957           relobj->set_needs_output_dynsym_entry(lsi);
958         else
959           relobj->output_section(lsi)->set_needs_dynsym_index();
960       }
961       break;
962     }
963 }
964
965 // Get the symbol index of a relocation.
966
967 template<bool dynamic, int size, bool big_endian>
968 unsigned int
969 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
970   const
971 {
972   unsigned int index;
973   if (this->is_symbolless_)
974     return 0;
975   switch (this->local_sym_index_)
976     {
977     case INVALID_CODE:
978       gold_unreachable();
979
980     case GSYM_CODE:
981       if (this->u1_.gsym == NULL)
982         index = 0;
983       else if (dynamic)
984         index = this->u1_.gsym->dynsym_index();
985       else
986         index = this->u1_.gsym->symtab_index();
987       break;
988
989     case SECTION_CODE:
990       if (dynamic)
991         index = this->u1_.os->dynsym_index();
992       else
993         index = this->u1_.os->symtab_index();
994       break;
995
996     case TARGET_CODE:
997       index = parameters->target().reloc_symbol_index(this->u1_.arg,
998                                                       this->type_);
999       break;
1000
1001     case 0:
1002       // Relocations without symbols use a symbol index of 0.
1003       index = 0;
1004       break;
1005
1006     default:
1007       {
1008         const unsigned int lsi = this->local_sym_index_;
1009         Sized_relobj_file<size, big_endian>* relobj =
1010             this->u1_.relobj->sized_relobj();
1011         gold_assert(relobj != NULL);
1012         if (!this->is_section_symbol_)
1013           {
1014             if (dynamic)
1015               index = relobj->dynsym_index(lsi);
1016             else
1017               index = relobj->symtab_index(lsi);
1018           }
1019         else
1020           {
1021             Output_section* os = relobj->output_section(lsi);
1022             gold_assert(os != NULL);
1023             if (dynamic)
1024               index = os->dynsym_index();
1025             else
1026               index = os->symtab_index();
1027           }
1028       }
1029       break;
1030     }
1031   gold_assert(index != -1U);
1032   return index;
1033 }
1034
1035 // For a local section symbol, get the address of the offset ADDEND
1036 // within the input section.
1037
1038 template<bool dynamic, int size, bool big_endian>
1039 typename elfcpp::Elf_types<size>::Elf_Addr
1040 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1041   local_section_offset(Addend addend) const
1042 {
1043   gold_assert(this->local_sym_index_ != GSYM_CODE
1044               && this->local_sym_index_ != SECTION_CODE
1045               && this->local_sym_index_ != TARGET_CODE
1046               && this->local_sym_index_ != INVALID_CODE
1047               && this->local_sym_index_ != 0
1048               && this->is_section_symbol_);
1049   const unsigned int lsi = this->local_sym_index_;
1050   Output_section* os = this->u1_.relobj->output_section(lsi);
1051   gold_assert(os != NULL);
1052   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1053   if (offset != invalid_address)
1054     return offset + addend;
1055   // This is a merge section.
1056   Sized_relobj_file<size, big_endian>* relobj =
1057       this->u1_.relobj->sized_relobj();
1058   gold_assert(relobj != NULL);
1059   offset = os->output_address(relobj, lsi, addend);
1060   gold_assert(offset != invalid_address);
1061   return offset;
1062 }
1063
1064 // Get the output address of a relocation.
1065
1066 template<bool dynamic, int size, bool big_endian>
1067 typename elfcpp::Elf_types<size>::Elf_Addr
1068 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1069 {
1070   Address address = this->address_;
1071   if (this->shndx_ != INVALID_CODE)
1072     {
1073       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1074       gold_assert(os != NULL);
1075       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1076       if (off != invalid_address)
1077         address += os->address() + off;
1078       else
1079         {
1080           Sized_relobj_file<size, big_endian>* relobj =
1081               this->u2_.relobj->sized_relobj();
1082           gold_assert(relobj != NULL);
1083           address = os->output_address(relobj, this->shndx_, address);
1084           gold_assert(address != invalid_address);
1085         }
1086     }
1087   else if (this->u2_.od != NULL)
1088     address += this->u2_.od->address();
1089   return address;
1090 }
1091
1092 // Write out the offset and info fields of a Rel or Rela relocation
1093 // entry.
1094
1095 template<bool dynamic, int size, bool big_endian>
1096 template<typename Write_rel>
1097 void
1098 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1099     Write_rel* wr) const
1100 {
1101   wr->put_r_offset(this->get_address());
1102   unsigned int sym_index = this->get_symbol_index();
1103   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1104 }
1105
1106 // Write out a Rel relocation.
1107
1108 template<bool dynamic, int size, bool big_endian>
1109 void
1110 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1111     unsigned char* pov) const
1112 {
1113   elfcpp::Rel_write<size, big_endian> orel(pov);
1114   this->write_rel(&orel);
1115 }
1116
1117 // Get the value of the symbol referred to by a Rel relocation.
1118
1119 template<bool dynamic, int size, bool big_endian>
1120 typename elfcpp::Elf_types<size>::Elf_Addr
1121 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1122     Addend addend) const
1123 {
1124   if (this->local_sym_index_ == GSYM_CODE)
1125     {
1126       const Sized_symbol<size>* sym;
1127       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1128       if (this->use_plt_offset_ && sym->has_plt_offset())
1129         {
1130           uint64_t plt_address =
1131             parameters->target().plt_address_for_global(sym);
1132           return plt_address + sym->plt_offset();
1133         }
1134       else
1135         return sym->value() + addend;
1136     }
1137   gold_assert(this->local_sym_index_ != SECTION_CODE
1138               && this->local_sym_index_ != TARGET_CODE
1139               && this->local_sym_index_ != INVALID_CODE
1140               && this->local_sym_index_ != 0
1141               && !this->is_section_symbol_);
1142   const unsigned int lsi = this->local_sym_index_;
1143   Sized_relobj_file<size, big_endian>* relobj =
1144       this->u1_.relobj->sized_relobj();
1145   gold_assert(relobj != NULL);
1146   if (this->use_plt_offset_)
1147     {
1148       uint64_t plt_address =
1149           parameters->target().plt_address_for_local(relobj, lsi);
1150       return plt_address + relobj->local_plt_offset(lsi);
1151     }
1152   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153   return symval->value(relobj, addend);
1154 }
1155
1156 // Reloc comparison.  This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker.  First we sort all relative relocs
1158 // to the front.  Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166     const
1167 {
1168   if (this->is_relative_)
1169     {
1170       if (!r2.is_relative_)
1171         return -1;
1172       // Otherwise sort by reloc address below.
1173     }
1174   else if (r2.is_relative_)
1175     return 1;
1176   else
1177     {
1178       unsigned int sym1 = this->get_symbol_index();
1179       unsigned int sym2 = r2.get_symbol_index();
1180       if (sym1 < sym2)
1181         return -1;
1182       else if (sym1 > sym2)
1183         return 1;
1184       // Otherwise sort by reloc address.
1185     }
1186
1187   section_offset_type addr1 = this->get_address();
1188   section_offset_type addr2 = r2.get_address();
1189   if (addr1 < addr2)
1190     return -1;
1191   else if (addr1 > addr2)
1192     return 1;
1193
1194   // Final tie breaker, in order to generate the same output on any
1195   // host: reloc type.
1196   unsigned int type1 = this->type_;
1197   unsigned int type2 = r2.type_;
1198   if (type1 < type2)
1199     return -1;
1200   else if (type1 > type2)
1201     return 1;
1202
1203   // These relocs appear to be exactly the same.
1204   return 0;
1205 }
1206
1207 // Write out a Rela relocation.
1208
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212     unsigned char* pov) const
1213 {
1214   elfcpp::Rela_write<size, big_endian> orel(pov);
1215   this->rel_.write_rel(&orel);
1216   Addend addend = this->addend_;
1217   if (this->rel_.is_target_specific())
1218     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219                                                this->rel_.type(), addend);
1220   else if (this->rel_.is_symbolless())
1221     addend = this->rel_.symbol_value(addend);
1222   else if (this->rel_.is_local_section_symbol())
1223     addend = this->rel_.local_section_offset(addend);
1224   orel.put_r_addend(addend);
1225 }
1226
1227 // Output_data_reloc_base methods.
1228
1229 // Adjust the output section.
1230
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234     ::do_adjust_output_section(Output_section* os)
1235 {
1236   if (sh_type == elfcpp::SHT_REL)
1237     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238   else if (sh_type == elfcpp::SHT_RELA)
1239     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240   else
1241     gold_unreachable();
1242
1243   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244   // static link.  The backends will generate a dynamic reloc section
1245   // to hold this.  In that case we don't want to link to the dynsym
1246   // section, because there isn't one.
1247   if (!dynamic)
1248     os->set_should_link_to_symtab();
1249   else if (parameters->doing_static_link())
1250     ;
1251   else
1252     os->set_should_link_to_dynsym();
1253 }
1254
1255 // Write out relocation data.
1256
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 void
1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260     Output_file* of)
1261 {
1262   const off_t off = this->offset();
1263   const off_t oview_size = this->data_size();
1264   unsigned char* const oview = of->get_output_view(off, oview_size);
1265
1266   if (this->sort_relocs())
1267     {
1268       gold_assert(dynamic);
1269       std::sort(this->relocs_.begin(), this->relocs_.end(),
1270                 Sort_relocs_comparison());
1271     }
1272
1273   unsigned char* pov = oview;
1274   for (typename Relocs::const_iterator p = this->relocs_.begin();
1275        p != this->relocs_.end();
1276        ++p)
1277     {
1278       p->write(pov);
1279       pov += reloc_size;
1280     }
1281
1282   gold_assert(pov - oview == oview_size);
1283
1284   of->write_output_view(off, oview_size, oview);
1285
1286   // We no longer need the relocation entries.
1287   this->relocs_.clear();
1288 }
1289
1290 // Class Output_relocatable_relocs.
1291
1292 template<int sh_type, int size, bool big_endian>
1293 void
1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295 {
1296   this->set_data_size(this->rr_->output_reloc_count()
1297                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298 }
1299
1300 // class Output_data_group.
1301
1302 template<int size, bool big_endian>
1303 Output_data_group<size, big_endian>::Output_data_group(
1304     Sized_relobj_file<size, big_endian>* relobj,
1305     section_size_type entry_count,
1306     elfcpp::Elf_Word flags,
1307     std::vector<unsigned int>* input_shndxes)
1308   : Output_section_data(entry_count * 4, 4, false),
1309     relobj_(relobj),
1310     flags_(flags)
1311 {
1312   this->input_shndxes_.swap(*input_shndxes);
1313 }
1314
1315 // Write out the section group, which means translating the section
1316 // indexes to apply to the output file.
1317
1318 template<int size, bool big_endian>
1319 void
1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
1321 {
1322   const off_t off = this->offset();
1323   const section_size_type oview_size =
1324     convert_to_section_size_type(this->data_size());
1325   unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329   ++contents;
1330
1331   for (std::vector<unsigned int>::const_iterator p =
1332          this->input_shndxes_.begin();
1333        p != this->input_shndxes_.end();
1334        ++p, ++contents)
1335     {
1336       Output_section* os = this->relobj_->output_section(*p);
1337
1338       unsigned int output_shndx;
1339       if (os != NULL)
1340         output_shndx = os->out_shndx();
1341       else
1342         {
1343           this->relobj_->error(_("section group retained but "
1344                                  "group element discarded"));
1345           output_shndx = 0;
1346         }
1347
1348       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349     }
1350
1351   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352   gold_assert(wrote == oview_size);
1353
1354   of->write_output_view(off, oview_size, oview);
1355
1356   // We no longer need this information.
1357   this->input_shndxes_.clear();
1358 }
1359
1360 // Output_data_got::Got_entry methods.
1361
1362 // Write out the entry.
1363
1364 template<int size, bool big_endian>
1365 void
1366 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1367 {
1368   Valtype val = 0;
1369
1370   switch (this->local_sym_index_)
1371     {
1372     case GSYM_CODE:
1373       {
1374         // If the symbol is resolved locally, we need to write out the
1375         // link-time value, which will be relocated dynamically by a
1376         // RELATIVE relocation.
1377         Symbol* gsym = this->u_.gsym;
1378         if (this->use_plt_offset_ && gsym->has_plt_offset())
1379           val = (parameters->target().plt_address_for_global(gsym)
1380                  + gsym->plt_offset());
1381         else
1382           {
1383             Sized_symbol<size>* sgsym;
1384             // This cast is a bit ugly.  We don't want to put a
1385             // virtual method in Symbol, because we want Symbol to be
1386             // as small as possible.
1387             sgsym = static_cast<Sized_symbol<size>*>(gsym);
1388             val = sgsym->value();
1389           }
1390       }
1391       break;
1392
1393     case CONSTANT_CODE:
1394       val = this->u_.constant;
1395       break;
1396
1397     case RESERVED_CODE:
1398       // If we're doing an incremental update, don't touch this GOT entry.
1399       if (parameters->incremental_update())
1400         return;
1401       val = this->u_.constant;
1402       break;
1403
1404     default:
1405       {
1406         const Relobj* object = this->u_.object;
1407         const unsigned int lsi = this->local_sym_index_;
1408         if (!this->use_plt_offset_)
1409           {
1410             uint64_t lval = object->local_symbol_value(lsi, 0);
1411             val = convert_types<Valtype, uint64_t>(lval);
1412           }
1413         else
1414           {
1415             uint64_t plt_address =
1416               parameters->target().plt_address_for_local(object, lsi);
1417             val = plt_address + object->local_plt_offset(lsi);
1418           }
1419       }
1420       break;
1421     }
1422
1423   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1424 }
1425
1426 // Output_data_got methods.
1427
1428 // Add an entry for a global symbol to the GOT.  This returns true if
1429 // this is a new GOT entry, false if the symbol already had a GOT
1430 // entry.
1431
1432 template<int size, bool big_endian>
1433 bool
1434 Output_data_got<size, big_endian>::add_global(
1435     Symbol* gsym,
1436     unsigned int got_type)
1437 {
1438   if (gsym->has_got_offset(got_type))
1439     return false;
1440
1441   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1442   gsym->set_got_offset(got_type, got_offset);
1443   return true;
1444 }
1445
1446 // Like add_global, but use the PLT offset.
1447
1448 template<int size, bool big_endian>
1449 bool
1450 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1451                                                   unsigned int got_type)
1452 {
1453   if (gsym->has_got_offset(got_type))
1454     return false;
1455
1456   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1457   gsym->set_got_offset(got_type, got_offset);
1458   return true;
1459 }
1460
1461 // Add an entry for a global symbol to the GOT, and add a dynamic
1462 // relocation of type R_TYPE for the GOT entry.
1463
1464 template<int size, bool big_endian>
1465 void
1466 Output_data_got<size, big_endian>::add_global_with_rel(
1467     Symbol* gsym,
1468     unsigned int got_type,
1469     Output_data_reloc_generic* rel_dyn,
1470     unsigned int r_type)
1471 {
1472   if (gsym->has_got_offset(got_type))
1473     return;
1474
1475   unsigned int got_offset = this->add_got_entry(Got_entry());
1476   gsym->set_got_offset(got_type, got_offset);
1477   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1478 }
1479
1480 // Add a pair of entries for a global symbol to the GOT, and add
1481 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1482 // If R_TYPE_2 == 0, add the second entry with no relocation.
1483 template<int size, bool big_endian>
1484 void
1485 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1486     Symbol* gsym,
1487     unsigned int got_type,
1488     Output_data_reloc_generic* rel_dyn,
1489     unsigned int r_type_1,
1490     unsigned int r_type_2)
1491 {
1492   if (gsym->has_got_offset(got_type))
1493     return;
1494
1495   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1496   gsym->set_got_offset(got_type, got_offset);
1497   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1498
1499   if (r_type_2 != 0)
1500     rel_dyn->add_global_generic(gsym, r_type_2, this,
1501                                 got_offset + size / 8, 0);
1502 }
1503
1504 // Add an entry for a local symbol to the GOT.  This returns true if
1505 // this is a new GOT entry, false if the symbol already has a GOT
1506 // entry.
1507
1508 template<int size, bool big_endian>
1509 bool
1510 Output_data_got<size, big_endian>::add_local(
1511     Relobj* object,
1512     unsigned int symndx,
1513     unsigned int got_type)
1514 {
1515   if (object->local_has_got_offset(symndx, got_type))
1516     return false;
1517
1518   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1519                                                           false));
1520   object->set_local_got_offset(symndx, got_type, got_offset);
1521   return true;
1522 }
1523
1524 // Like add_local, but use the PLT offset.
1525
1526 template<int size, bool big_endian>
1527 bool
1528 Output_data_got<size, big_endian>::add_local_plt(
1529     Relobj* object,
1530     unsigned int symndx,
1531     unsigned int got_type)
1532 {
1533   if (object->local_has_got_offset(symndx, got_type))
1534     return false;
1535
1536   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1537                                                           true));
1538   object->set_local_got_offset(symndx, got_type, got_offset);
1539   return true;
1540 }
1541
1542 // Add an entry for a local symbol to the GOT, and add a dynamic
1543 // relocation of type R_TYPE for the GOT entry.
1544
1545 template<int size, bool big_endian>
1546 void
1547 Output_data_got<size, big_endian>::add_local_with_rel(
1548     Relobj* object,
1549     unsigned int symndx,
1550     unsigned int got_type,
1551     Output_data_reloc_generic* rel_dyn,
1552     unsigned int r_type)
1553 {
1554   if (object->local_has_got_offset(symndx, got_type))
1555     return;
1556
1557   unsigned int got_offset = this->add_got_entry(Got_entry());
1558   object->set_local_got_offset(symndx, got_type, got_offset);
1559   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1560 }
1561
1562 // Add a pair of entries for a local symbol to the GOT, and add
1563 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1564 // If R_TYPE_2 == 0, add the second entry with no relocation.
1565 template<int size, bool big_endian>
1566 void
1567 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1568     Relobj* object,
1569     unsigned int symndx,
1570     unsigned int shndx,
1571     unsigned int got_type,
1572     Output_data_reloc_generic* rel_dyn,
1573     unsigned int r_type_1,
1574     unsigned int r_type_2)
1575 {
1576   if (object->local_has_got_offset(symndx, got_type))
1577     return;
1578
1579   unsigned int got_offset =
1580       this->add_got_entry_pair(Got_entry(),
1581                                Got_entry(object, symndx, false));
1582   object->set_local_got_offset(symndx, got_type, got_offset);
1583   Output_section* os = object->output_section(shndx);
1584   rel_dyn->add_output_section_generic(os, r_type_1, this, got_offset, 0);
1585
1586   if (r_type_2 != 0)
1587     rel_dyn->add_output_section_generic(os, r_type_2, this,
1588                                         got_offset + size / 8, 0);
1589 }
1590
1591 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1592
1593 template<int size, bool big_endian>
1594 void
1595 Output_data_got<size, big_endian>::reserve_local(
1596     unsigned int i,
1597     Relobj* object,
1598     unsigned int sym_index,
1599     unsigned int got_type)
1600 {
1601   this->do_reserve_slot(i);
1602   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1603 }
1604
1605 // Reserve a slot in the GOT for a global symbol.
1606
1607 template<int size, bool big_endian>
1608 void
1609 Output_data_got<size, big_endian>::reserve_global(
1610     unsigned int i,
1611     Symbol* gsym,
1612     unsigned int got_type)
1613 {
1614   this->do_reserve_slot(i);
1615   gsym->set_got_offset(got_type, this->got_offset(i));
1616 }
1617
1618 // Write out the GOT.
1619
1620 template<int size, bool big_endian>
1621 void
1622 Output_data_got<size, big_endian>::do_write(Output_file* of)
1623 {
1624   const int add = size / 8;
1625
1626   const off_t off = this->offset();
1627   const off_t oview_size = this->data_size();
1628   unsigned char* const oview = of->get_output_view(off, oview_size);
1629
1630   unsigned char* pov = oview;
1631   for (typename Got_entries::const_iterator p = this->entries_.begin();
1632        p != this->entries_.end();
1633        ++p)
1634     {
1635       p->write(pov);
1636       pov += add;
1637     }
1638
1639   gold_assert(pov - oview == oview_size);
1640
1641   of->write_output_view(off, oview_size, oview);
1642
1643   // We no longer need the GOT entries.
1644   this->entries_.clear();
1645 }
1646
1647 // Create a new GOT entry and return its offset.
1648
1649 template<int size, bool big_endian>
1650 unsigned int
1651 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1652 {
1653   if (!this->is_data_size_valid())
1654     {
1655       this->entries_.push_back(got_entry);
1656       this->set_got_size();
1657       return this->last_got_offset();
1658     }
1659   else
1660     {
1661       // For an incremental update, find an available slot.
1662       off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1663       if (got_offset == -1)
1664         gold_fallback(_("out of patch space (GOT);"
1665                         " relink with --incremental-full"));
1666       unsigned int got_index = got_offset / (size / 8);
1667       gold_assert(got_index < this->entries_.size());
1668       this->entries_[got_index] = got_entry;
1669       return static_cast<unsigned int>(got_offset);
1670     }
1671 }
1672
1673 // Create a pair of new GOT entries and return the offset of the first.
1674
1675 template<int size, bool big_endian>
1676 unsigned int
1677 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1678                                                       Got_entry got_entry_2)
1679 {
1680   if (!this->is_data_size_valid())
1681     {
1682       unsigned int got_offset;
1683       this->entries_.push_back(got_entry_1);
1684       got_offset = this->last_got_offset();
1685       this->entries_.push_back(got_entry_2);
1686       this->set_got_size();
1687       return got_offset;
1688     }
1689   else
1690     {
1691       // For an incremental update, find an available pair of slots.
1692       off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1693       if (got_offset == -1)
1694         gold_fallback(_("out of patch space (GOT);"
1695                         " relink with --incremental-full"));
1696       unsigned int got_index = got_offset / (size / 8);
1697       gold_assert(got_index < this->entries_.size());
1698       this->entries_[got_index] = got_entry_1;
1699       this->entries_[got_index + 1] = got_entry_2;
1700       return static_cast<unsigned int>(got_offset);
1701     }
1702 }
1703
1704 // Replace GOT entry I with a new value.
1705
1706 template<int size, bool big_endian>
1707 void
1708 Output_data_got<size, big_endian>::replace_got_entry(
1709     unsigned int i,
1710     Got_entry got_entry)
1711 {
1712   gold_assert(i < this->entries_.size());
1713   this->entries_[i] = got_entry;
1714 }
1715
1716 // Output_data_dynamic::Dynamic_entry methods.
1717
1718 // Write out the entry.
1719
1720 template<int size, bool big_endian>
1721 void
1722 Output_data_dynamic::Dynamic_entry::write(
1723     unsigned char* pov,
1724     const Stringpool* pool) const
1725 {
1726   typename elfcpp::Elf_types<size>::Elf_WXword val;
1727   switch (this->offset_)
1728     {
1729     case DYNAMIC_NUMBER:
1730       val = this->u_.val;
1731       break;
1732
1733     case DYNAMIC_SECTION_SIZE:
1734       val = this->u_.od->data_size();
1735       if (this->od2 != NULL)
1736         val += this->od2->data_size();
1737       break;
1738
1739     case DYNAMIC_SYMBOL:
1740       {
1741         const Sized_symbol<size>* s =
1742           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1743         val = s->value();
1744       }
1745       break;
1746
1747     case DYNAMIC_STRING:
1748       val = pool->get_offset(this->u_.str);
1749       break;
1750
1751     default:
1752       val = this->u_.od->address() + this->offset_;
1753       break;
1754     }
1755
1756   elfcpp::Dyn_write<size, big_endian> dw(pov);
1757   dw.put_d_tag(this->tag_);
1758   dw.put_d_val(val);
1759 }
1760
1761 // Output_data_dynamic methods.
1762
1763 // Adjust the output section to set the entry size.
1764
1765 void
1766 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1767 {
1768   if (parameters->target().get_size() == 32)
1769     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1770   else if (parameters->target().get_size() == 64)
1771     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1772   else
1773     gold_unreachable();
1774 }
1775
1776 // Set the final data size.
1777
1778 void
1779 Output_data_dynamic::set_final_data_size()
1780 {
1781   // Add the terminating entry if it hasn't been added.
1782   // Because of relaxation, we can run this multiple times.
1783   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1784     {
1785       int extra = parameters->options().spare_dynamic_tags();
1786       for (int i = 0; i < extra; ++i)
1787         this->add_constant(elfcpp::DT_NULL, 0);
1788       this->add_constant(elfcpp::DT_NULL, 0);
1789     }
1790
1791   int dyn_size;
1792   if (parameters->target().get_size() == 32)
1793     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1794   else if (parameters->target().get_size() == 64)
1795     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1796   else
1797     gold_unreachable();
1798   this->set_data_size(this->entries_.size() * dyn_size);
1799 }
1800
1801 // Write out the dynamic entries.
1802
1803 void
1804 Output_data_dynamic::do_write(Output_file* of)
1805 {
1806   switch (parameters->size_and_endianness())
1807     {
1808 #ifdef HAVE_TARGET_32_LITTLE
1809     case Parameters::TARGET_32_LITTLE:
1810       this->sized_write<32, false>(of);
1811       break;
1812 #endif
1813 #ifdef HAVE_TARGET_32_BIG
1814     case Parameters::TARGET_32_BIG:
1815       this->sized_write<32, true>(of);
1816       break;
1817 #endif
1818 #ifdef HAVE_TARGET_64_LITTLE
1819     case Parameters::TARGET_64_LITTLE:
1820       this->sized_write<64, false>(of);
1821       break;
1822 #endif
1823 #ifdef HAVE_TARGET_64_BIG
1824     case Parameters::TARGET_64_BIG:
1825       this->sized_write<64, true>(of);
1826       break;
1827 #endif
1828     default:
1829       gold_unreachable();
1830     }
1831 }
1832
1833 template<int size, bool big_endian>
1834 void
1835 Output_data_dynamic::sized_write(Output_file* of)
1836 {
1837   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1838
1839   const off_t offset = this->offset();
1840   const off_t oview_size = this->data_size();
1841   unsigned char* const oview = of->get_output_view(offset, oview_size);
1842
1843   unsigned char* pov = oview;
1844   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1845        p != this->entries_.end();
1846        ++p)
1847     {
1848       p->write<size, big_endian>(pov, this->pool_);
1849       pov += dyn_size;
1850     }
1851
1852   gold_assert(pov - oview == oview_size);
1853
1854   of->write_output_view(offset, oview_size, oview);
1855
1856   // We no longer need the dynamic entries.
1857   this->entries_.clear();
1858 }
1859
1860 // Class Output_symtab_xindex.
1861
1862 void
1863 Output_symtab_xindex::do_write(Output_file* of)
1864 {
1865   const off_t offset = this->offset();
1866   const off_t oview_size = this->data_size();
1867   unsigned char* const oview = of->get_output_view(offset, oview_size);
1868
1869   memset(oview, 0, oview_size);
1870
1871   if (parameters->target().is_big_endian())
1872     this->endian_do_write<true>(oview);
1873   else
1874     this->endian_do_write<false>(oview);
1875
1876   of->write_output_view(offset, oview_size, oview);
1877
1878   // We no longer need the data.
1879   this->entries_.clear();
1880 }
1881
1882 template<bool big_endian>
1883 void
1884 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1885 {
1886   for (Xindex_entries::const_iterator p = this->entries_.begin();
1887        p != this->entries_.end();
1888        ++p)
1889     {
1890       unsigned int symndx = p->first;
1891       gold_assert(symndx * 4 < this->data_size());
1892       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1893     }
1894 }
1895
1896 // Output_fill_debug_info methods.
1897
1898 // Return the minimum size needed for a dummy compilation unit header.
1899
1900 size_t
1901 Output_fill_debug_info::do_minimum_hole_size() const
1902 {
1903   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1904   // address_size.
1905   const size_t len = 4 + 2 + 4 + 1;
1906   // For type units, add type_signature, type_offset.
1907   if (this->is_debug_types_)
1908     return len + 8 + 4;
1909   return len;
1910 }
1911
1912 // Write a dummy compilation unit header to fill a hole in the
1913 // .debug_info or .debug_types section.
1914
1915 void
1916 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1917 {
1918   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1919              static_cast<long>(off), static_cast<long>(len));
1920
1921   gold_assert(len >= this->do_minimum_hole_size());
1922
1923   unsigned char* const oview = of->get_output_view(off, len);
1924   unsigned char* pov = oview;
1925
1926   // Write header fields: unit_length, version, debug_abbrev_offset,
1927   // address_size.
1928   if (this->is_big_endian())
1929     {
1930       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1931       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1932       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1933     }
1934   else
1935     {
1936       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1937       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1938       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1939     }
1940   pov += 4 + 2 + 4;
1941   *pov++ = 4;
1942
1943   // For type units, the additional header fields -- type_signature,
1944   // type_offset -- can be filled with zeroes.
1945
1946   // Fill the remainder of the free space with zeroes.  The first
1947   // zero should tell the consumer there are no DIEs to read in this
1948   // compilation unit.
1949   if (pov < oview + len)
1950     memset(pov, 0, oview + len - pov);
1951
1952   of->write_output_view(off, len, oview);
1953 }
1954
1955 // Output_fill_debug_line methods.
1956
1957 // Return the minimum size needed for a dummy line number program header.
1958
1959 size_t
1960 Output_fill_debug_line::do_minimum_hole_size() const
1961 {
1962   // Line number program header fields: unit_length, version, header_length,
1963   // minimum_instruction_length, default_is_stmt, line_base, line_range,
1964   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1965   const size_t len = 4 + 2 + 4 + this->header_length;
1966   return len;
1967 }
1968
1969 // Write a dummy line number program header to fill a hole in the
1970 // .debug_line section.
1971
1972 void
1973 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
1974 {
1975   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
1976              static_cast<long>(off), static_cast<long>(len));
1977
1978   gold_assert(len >= this->do_minimum_hole_size());
1979
1980   unsigned char* const oview = of->get_output_view(off, len);
1981   unsigned char* pov = oview;
1982
1983   // Write header fields: unit_length, version, header_length,
1984   // minimum_instruction_length, default_is_stmt, line_base, line_range,
1985   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1986   // We set the header_length field to cover the entire hole, so the
1987   // line number program is empty.
1988   if (this->is_big_endian())
1989     {
1990       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1991       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1992       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
1993     }
1994   else
1995     {
1996       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1997       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1998       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
1999     }
2000   pov += 4 + 2 + 4;
2001   *pov++ = 1;   // minimum_instruction_length
2002   *pov++ = 0;   // default_is_stmt
2003   *pov++ = 0;   // line_base
2004   *pov++ = 5;   // line_range
2005   *pov++ = 13;  // opcode_base
2006   *pov++ = 0;   // standard_opcode_lengths[1]
2007   *pov++ = 1;   // standard_opcode_lengths[2]
2008   *pov++ = 1;   // standard_opcode_lengths[3]
2009   *pov++ = 1;   // standard_opcode_lengths[4]
2010   *pov++ = 1;   // standard_opcode_lengths[5]
2011   *pov++ = 0;   // standard_opcode_lengths[6]
2012   *pov++ = 0;   // standard_opcode_lengths[7]
2013   *pov++ = 0;   // standard_opcode_lengths[8]
2014   *pov++ = 1;   // standard_opcode_lengths[9]
2015   *pov++ = 0;   // standard_opcode_lengths[10]
2016   *pov++ = 0;   // standard_opcode_lengths[11]
2017   *pov++ = 1;   // standard_opcode_lengths[12]
2018   *pov++ = 0;   // include_directories (empty)
2019   *pov++ = 0;   // filenames (empty)
2020
2021   // Some consumers don't check the header_length field, and simply
2022   // start reading the line number program immediately following the
2023   // header.  For those consumers, we fill the remainder of the free
2024   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2025   // no-ops: the resulting line table program will not create any rows.
2026   if (pov < oview + len)
2027     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2028
2029   of->write_output_view(off, len, oview);
2030 }
2031
2032 // Output_section::Input_section methods.
2033
2034 // Return the current data size.  For an input section we store the size here.
2035 // For an Output_section_data, we have to ask it for the size.
2036
2037 off_t
2038 Output_section::Input_section::current_data_size() const
2039 {
2040   if (this->is_input_section())
2041     return this->u1_.data_size;
2042   else
2043     {
2044       this->u2_.posd->pre_finalize_data_size();
2045       return this->u2_.posd->current_data_size();
2046     }
2047 }
2048
2049 // Return the data size.  For an input section we store the size here.
2050 // For an Output_section_data, we have to ask it for the size.
2051
2052 off_t
2053 Output_section::Input_section::data_size() const
2054 {
2055   if (this->is_input_section())
2056     return this->u1_.data_size;
2057   else
2058     return this->u2_.posd->data_size();
2059 }
2060
2061 // Return the object for an input section.
2062
2063 Relobj*
2064 Output_section::Input_section::relobj() const
2065 {
2066   if (this->is_input_section())
2067     return this->u2_.object;
2068   else if (this->is_merge_section())
2069     {
2070       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2071       return this->u2_.pomb->first_relobj();
2072     }
2073   else if (this->is_relaxed_input_section())
2074     return this->u2_.poris->relobj();
2075   else
2076     gold_unreachable();
2077 }
2078
2079 // Return the input section index for an input section.
2080
2081 unsigned int
2082 Output_section::Input_section::shndx() const
2083 {
2084   if (this->is_input_section())
2085     return this->shndx_;
2086   else if (this->is_merge_section())
2087     {
2088       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2089       return this->u2_.pomb->first_shndx();
2090     }
2091   else if (this->is_relaxed_input_section())
2092     return this->u2_.poris->shndx();
2093   else
2094     gold_unreachable();
2095 }
2096
2097 // Set the address and file offset.
2098
2099 void
2100 Output_section::Input_section::set_address_and_file_offset(
2101     uint64_t address,
2102     off_t file_offset,
2103     off_t section_file_offset)
2104 {
2105   if (this->is_input_section())
2106     this->u2_.object->set_section_offset(this->shndx_,
2107                                          file_offset - section_file_offset);
2108   else
2109     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2110 }
2111
2112 // Reset the address and file offset.
2113
2114 void
2115 Output_section::Input_section::reset_address_and_file_offset()
2116 {
2117   if (!this->is_input_section())
2118     this->u2_.posd->reset_address_and_file_offset();
2119 }
2120
2121 // Finalize the data size.
2122
2123 void
2124 Output_section::Input_section::finalize_data_size()
2125 {
2126   if (!this->is_input_section())
2127     this->u2_.posd->finalize_data_size();
2128 }
2129
2130 // Try to turn an input offset into an output offset.  We want to
2131 // return the output offset relative to the start of this
2132 // Input_section in the output section.
2133
2134 inline bool
2135 Output_section::Input_section::output_offset(
2136     const Relobj* object,
2137     unsigned int shndx,
2138     section_offset_type offset,
2139     section_offset_type* poutput) const
2140 {
2141   if (!this->is_input_section())
2142     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2143   else
2144     {
2145       if (this->shndx_ != shndx || this->u2_.object != object)
2146         return false;
2147       *poutput = offset;
2148       return true;
2149     }
2150 }
2151
2152 // Return whether this is the merge section for the input section
2153 // SHNDX in OBJECT.
2154
2155 inline bool
2156 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2157                                                     unsigned int shndx) const
2158 {
2159   if (this->is_input_section())
2160     return false;
2161   return this->u2_.posd->is_merge_section_for(object, shndx);
2162 }
2163
2164 // Write out the data.  We don't have to do anything for an input
2165 // section--they are handled via Object::relocate--but this is where
2166 // we write out the data for an Output_section_data.
2167
2168 void
2169 Output_section::Input_section::write(Output_file* of)
2170 {
2171   if (!this->is_input_section())
2172     this->u2_.posd->write(of);
2173 }
2174
2175 // Write the data to a buffer.  As for write(), we don't have to do
2176 // anything for an input section.
2177
2178 void
2179 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2180 {
2181   if (!this->is_input_section())
2182     this->u2_.posd->write_to_buffer(buffer);
2183 }
2184
2185 // Print to a map file.
2186
2187 void
2188 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2189 {
2190   switch (this->shndx_)
2191     {
2192     case OUTPUT_SECTION_CODE:
2193     case MERGE_DATA_SECTION_CODE:
2194     case MERGE_STRING_SECTION_CODE:
2195       this->u2_.posd->print_to_mapfile(mapfile);
2196       break;
2197
2198     case RELAXED_INPUT_SECTION_CODE:
2199       {
2200         Output_relaxed_input_section* relaxed_section =
2201           this->relaxed_input_section();
2202         mapfile->print_input_section(relaxed_section->relobj(),
2203                                      relaxed_section->shndx());
2204       }
2205       break;
2206     default:
2207       mapfile->print_input_section(this->u2_.object, this->shndx_);
2208       break;
2209     }
2210 }
2211
2212 // Output_section methods.
2213
2214 // Construct an Output_section.  NAME will point into a Stringpool.
2215
2216 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2217                                elfcpp::Elf_Xword flags)
2218   : name_(name),
2219     addralign_(0),
2220     entsize_(0),
2221     load_address_(0),
2222     link_section_(NULL),
2223     link_(0),
2224     info_section_(NULL),
2225     info_symndx_(NULL),
2226     info_(0),
2227     type_(type),
2228     flags_(flags),
2229     order_(ORDER_INVALID),
2230     out_shndx_(-1U),
2231     symtab_index_(0),
2232     dynsym_index_(0),
2233     input_sections_(),
2234     first_input_offset_(0),
2235     fills_(),
2236     postprocessing_buffer_(NULL),
2237     needs_symtab_index_(false),
2238     needs_dynsym_index_(false),
2239     should_link_to_symtab_(false),
2240     should_link_to_dynsym_(false),
2241     after_input_sections_(false),
2242     requires_postprocessing_(false),
2243     found_in_sections_clause_(false),
2244     has_load_address_(false),
2245     info_uses_section_index_(false),
2246     input_section_order_specified_(false),
2247     may_sort_attached_input_sections_(false),
2248     must_sort_attached_input_sections_(false),
2249     attached_input_sections_are_sorted_(false),
2250     is_relro_(false),
2251     is_small_section_(false),
2252     is_large_section_(false),
2253     generate_code_fills_at_write_(false),
2254     is_entsize_zero_(false),
2255     section_offsets_need_adjustment_(false),
2256     is_noload_(false),
2257     always_keeps_input_sections_(false),
2258     has_fixed_layout_(false),
2259     is_patch_space_allowed_(false),
2260     tls_offset_(0),
2261     checkpoint_(NULL),
2262     lookup_maps_(new Output_section_lookup_maps),
2263     free_list_(),
2264     free_space_fill_(NULL),
2265     patch_space_(0)
2266 {
2267   // An unallocated section has no address.  Forcing this means that
2268   // we don't need special treatment for symbols defined in debug
2269   // sections.
2270   if ((flags & elfcpp::SHF_ALLOC) == 0)
2271     this->set_address(0);
2272 }
2273
2274 Output_section::~Output_section()
2275 {
2276   delete this->checkpoint_;
2277 }
2278
2279 // Set the entry size.
2280
2281 void
2282 Output_section::set_entsize(uint64_t v)
2283 {
2284   if (this->is_entsize_zero_)
2285     ;
2286   else if (this->entsize_ == 0)
2287     this->entsize_ = v;
2288   else if (this->entsize_ != v)
2289     {
2290       this->entsize_ = 0;
2291       this->is_entsize_zero_ = 1;
2292     }
2293 }
2294
2295 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2296 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2297 // relocation section which applies to this section, or 0 if none, or
2298 // -1U if more than one.  Return the offset of the input section
2299 // within the output section.  Return -1 if the input section will
2300 // receive special handling.  In the normal case we don't always keep
2301 // track of input sections for an Output_section.  Instead, each
2302 // Object keeps track of the Output_section for each of its input
2303 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2304 // track of input sections here; this is used when SECTIONS appears in
2305 // a linker script.
2306
2307 template<int size, bool big_endian>
2308 off_t
2309 Output_section::add_input_section(Layout* layout,
2310                                   Sized_relobj_file<size, big_endian>* object,
2311                                   unsigned int shndx,
2312                                   const char* secname,
2313                                   const elfcpp::Shdr<size, big_endian>& shdr,
2314                                   unsigned int reloc_shndx,
2315                                   bool have_sections_script)
2316 {
2317   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2318   if ((addralign & (addralign - 1)) != 0)
2319     {
2320       object->error(_("invalid alignment %lu for section \"%s\""),
2321                     static_cast<unsigned long>(addralign), secname);
2322       addralign = 1;
2323     }
2324
2325   if (addralign > this->addralign_)
2326     this->addralign_ = addralign;
2327
2328   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2329   uint64_t entsize = shdr.get_sh_entsize();
2330
2331   // .debug_str is a mergeable string section, but is not always so
2332   // marked by compilers.  Mark manually here so we can optimize.
2333   if (strcmp(secname, ".debug_str") == 0)
2334     {
2335       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2336       entsize = 1;
2337     }
2338
2339   this->update_flags_for_input_section(sh_flags);
2340   this->set_entsize(entsize);
2341
2342   // If this is a SHF_MERGE section, we pass all the input sections to
2343   // a Output_data_merge.  We don't try to handle relocations for such
2344   // a section.  We don't try to handle empty merge sections--they
2345   // mess up the mappings, and are useless anyhow.
2346   // FIXME: Need to handle merge sections during incremental update.
2347   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2348       && reloc_shndx == 0
2349       && shdr.get_sh_size() > 0
2350       && !parameters->incremental())
2351     {
2352       // Keep information about merged input sections for rebuilding fast
2353       // lookup maps if we have sections-script or we do relaxation.
2354       bool keeps_input_sections = (this->always_keeps_input_sections_
2355                                    || have_sections_script
2356                                    || parameters->target().may_relax());
2357
2358       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2359                                         addralign, keeps_input_sections))
2360         {
2361           // Tell the relocation routines that they need to call the
2362           // output_offset method to determine the final address.
2363           return -1;
2364         }
2365     }
2366
2367   section_size_type input_section_size = shdr.get_sh_size();
2368   section_size_type uncompressed_size;
2369   if (object->section_is_compressed(shndx, &uncompressed_size))
2370     input_section_size = uncompressed_size;
2371
2372   off_t offset_in_section;
2373   off_t aligned_offset_in_section;
2374   if (this->has_fixed_layout())
2375     {
2376       // For incremental updates, find a chunk of unused space in the section.
2377       offset_in_section = this->free_list_.allocate(input_section_size,
2378                                                     addralign, 0);
2379       if (offset_in_section == -1)
2380         gold_fallback(_("out of patch space in section %s; "
2381                         "relink with --incremental-full"),
2382                       this->name());
2383       aligned_offset_in_section = offset_in_section;
2384     }
2385   else
2386     {
2387       offset_in_section = this->current_data_size_for_child();
2388       aligned_offset_in_section = align_address(offset_in_section,
2389                                                 addralign);
2390       this->set_current_data_size_for_child(aligned_offset_in_section
2391                                             + input_section_size);
2392     }
2393
2394   // Determine if we want to delay code-fill generation until the output
2395   // section is written.  When the target is relaxing, we want to delay fill
2396   // generating to avoid adjusting them during relaxation.  Also, if we are
2397   // sorting input sections we must delay fill generation.
2398   if (!this->generate_code_fills_at_write_
2399       && !have_sections_script
2400       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2401       && parameters->target().has_code_fill()
2402       && (parameters->target().may_relax()
2403           || layout->is_section_ordering_specified()))
2404     {
2405       gold_assert(this->fills_.empty());
2406       this->generate_code_fills_at_write_ = true;
2407     }
2408
2409   if (aligned_offset_in_section > offset_in_section
2410       && !this->generate_code_fills_at_write_
2411       && !have_sections_script
2412       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2413       && parameters->target().has_code_fill())
2414     {
2415       // We need to add some fill data.  Using fill_list_ when
2416       // possible is an optimization, since we will often have fill
2417       // sections without input sections.
2418       off_t fill_len = aligned_offset_in_section - offset_in_section;
2419       if (this->input_sections_.empty())
2420         this->fills_.push_back(Fill(offset_in_section, fill_len));
2421       else
2422         {
2423           std::string fill_data(parameters->target().code_fill(fill_len));
2424           Output_data_const* odc = new Output_data_const(fill_data, 1);
2425           this->input_sections_.push_back(Input_section(odc));
2426         }
2427     }
2428
2429   // We need to keep track of this section if we are already keeping
2430   // track of sections, or if we are relaxing.  Also, if this is a
2431   // section which requires sorting, or which may require sorting in
2432   // the future, we keep track of the sections.  If the
2433   // --section-ordering-file option is used to specify the order of
2434   // sections, we need to keep track of sections.
2435   if (this->always_keeps_input_sections_
2436       || have_sections_script
2437       || !this->input_sections_.empty()
2438       || this->may_sort_attached_input_sections()
2439       || this->must_sort_attached_input_sections()
2440       || parameters->options().user_set_Map()
2441       || parameters->target().may_relax()
2442       || layout->is_section_ordering_specified())
2443     {
2444       Input_section isecn(object, shndx, input_section_size, addralign);
2445       /* If section ordering is requested by specifying a ordering file,
2446          using --section-ordering-file, match the section name with
2447          a pattern.  */
2448       if (parameters->options().section_ordering_file())
2449         {
2450           unsigned int section_order_index =
2451             layout->find_section_order_index(std::string(secname));
2452           if (section_order_index != 0)
2453             {
2454               isecn.set_section_order_index(section_order_index);
2455               this->set_input_section_order_specified();
2456             }
2457         }
2458       if (this->has_fixed_layout())
2459         {
2460           // For incremental updates, finalize the address and offset now.
2461           uint64_t addr = this->address();
2462           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2463                                             aligned_offset_in_section,
2464                                             this->offset());
2465         }
2466       this->input_sections_.push_back(isecn);
2467     }
2468
2469   return aligned_offset_in_section;
2470 }
2471
2472 // Add arbitrary data to an output section.
2473
2474 void
2475 Output_section::add_output_section_data(Output_section_data* posd)
2476 {
2477   Input_section inp(posd);
2478   this->add_output_section_data(&inp);
2479
2480   if (posd->is_data_size_valid())
2481     {
2482       off_t offset_in_section;
2483       if (this->has_fixed_layout())
2484         {
2485           // For incremental updates, find a chunk of unused space.
2486           offset_in_section = this->free_list_.allocate(posd->data_size(),
2487                                                         posd->addralign(), 0);
2488           if (offset_in_section == -1)
2489             gold_fallback(_("out of patch space in section %s; "
2490                             "relink with --incremental-full"),
2491                           this->name());
2492           // Finalize the address and offset now.
2493           uint64_t addr = this->address();
2494           off_t offset = this->offset();
2495           posd->set_address_and_file_offset(addr + offset_in_section,
2496                                             offset + offset_in_section);
2497         }
2498       else
2499         {
2500           offset_in_section = this->current_data_size_for_child();
2501           off_t aligned_offset_in_section = align_address(offset_in_section,
2502                                                           posd->addralign());
2503           this->set_current_data_size_for_child(aligned_offset_in_section
2504                                                 + posd->data_size());
2505         }
2506     }
2507   else if (this->has_fixed_layout())
2508     {
2509       // For incremental updates, arrange for the data to have a fixed layout.
2510       // This will mean that additions to the data must be allocated from
2511       // free space within the containing output section.
2512       uint64_t addr = this->address();
2513       posd->set_address(addr);
2514       posd->set_file_offset(0);
2515       // FIXME: This should eventually be unreachable.
2516       // gold_unreachable();
2517     }
2518 }
2519
2520 // Add a relaxed input section.
2521
2522 void
2523 Output_section::add_relaxed_input_section(Layout* layout,
2524                                           Output_relaxed_input_section* poris,
2525                                           const std::string& name)
2526 {
2527   Input_section inp(poris);
2528
2529   // If the --section-ordering-file option is used to specify the order of
2530   // sections, we need to keep track of sections.
2531   if (layout->is_section_ordering_specified())
2532     {
2533       unsigned int section_order_index =
2534         layout->find_section_order_index(name);
2535       if (section_order_index != 0)
2536         {
2537           inp.set_section_order_index(section_order_index);
2538           this->set_input_section_order_specified();
2539         }
2540     }
2541
2542   this->add_output_section_data(&inp);
2543   if (this->lookup_maps_->is_valid())
2544     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2545                                                   poris->shndx(), poris);
2546
2547   // For a relaxed section, we use the current data size.  Linker scripts
2548   // get all the input sections, including relaxed one from an output
2549   // section and add them back to them same output section to compute the
2550   // output section size.  If we do not account for sizes of relaxed input
2551   // sections,  an output section would be incorrectly sized.
2552   off_t offset_in_section = this->current_data_size_for_child();
2553   off_t aligned_offset_in_section = align_address(offset_in_section,
2554                                                   poris->addralign());
2555   this->set_current_data_size_for_child(aligned_offset_in_section
2556                                         + poris->current_data_size());
2557 }
2558
2559 // Add arbitrary data to an output section by Input_section.
2560
2561 void
2562 Output_section::add_output_section_data(Input_section* inp)
2563 {
2564   if (this->input_sections_.empty())
2565     this->first_input_offset_ = this->current_data_size_for_child();
2566
2567   this->input_sections_.push_back(*inp);
2568
2569   uint64_t addralign = inp->addralign();
2570   if (addralign > this->addralign_)
2571     this->addralign_ = addralign;
2572
2573   inp->set_output_section(this);
2574 }
2575
2576 // Add a merge section to an output section.
2577
2578 void
2579 Output_section::add_output_merge_section(Output_section_data* posd,
2580                                          bool is_string, uint64_t entsize)
2581 {
2582   Input_section inp(posd, is_string, entsize);
2583   this->add_output_section_data(&inp);
2584 }
2585
2586 // Add an input section to a SHF_MERGE section.
2587
2588 bool
2589 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2590                                         uint64_t flags, uint64_t entsize,
2591                                         uint64_t addralign,
2592                                         bool keeps_input_sections)
2593 {
2594   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2595
2596   // We only merge strings if the alignment is not more than the
2597   // character size.  This could be handled, but it's unusual.
2598   if (is_string && addralign > entsize)
2599     return false;
2600
2601   // We cannot restore merged input section states.
2602   gold_assert(this->checkpoint_ == NULL);
2603
2604   // Look up merge sections by required properties.
2605   // Currently, we only invalidate the lookup maps in script processing
2606   // and relaxation.  We should not have done either when we reach here.
2607   // So we assume that the lookup maps are valid to simply code.
2608   gold_assert(this->lookup_maps_->is_valid());
2609   Merge_section_properties msp(is_string, entsize, addralign);
2610   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2611   bool is_new = false;
2612   if (pomb != NULL)
2613     {
2614       gold_assert(pomb->is_string() == is_string
2615                   && pomb->entsize() == entsize
2616                   && pomb->addralign() == addralign);
2617     }
2618   else
2619     {
2620       // Create a new Output_merge_data or Output_merge_string_data.
2621       if (!is_string)
2622         pomb = new Output_merge_data(entsize, addralign);
2623       else
2624         {
2625           switch (entsize)
2626             {
2627             case 1:
2628               pomb = new Output_merge_string<char>(addralign);
2629               break;
2630             case 2:
2631               pomb = new Output_merge_string<uint16_t>(addralign);
2632               break;
2633             case 4:
2634               pomb = new Output_merge_string<uint32_t>(addralign);
2635               break;
2636             default:
2637               return false;
2638             }
2639         }
2640       // If we need to do script processing or relaxation, we need to keep
2641       // the original input sections to rebuild the fast lookup maps.
2642       if (keeps_input_sections)
2643         pomb->set_keeps_input_sections();
2644       is_new = true;
2645     }
2646
2647   if (pomb->add_input_section(object, shndx))
2648     {
2649       // Add new merge section to this output section and link merge
2650       // section properties to new merge section in map.
2651       if (is_new)
2652         {
2653           this->add_output_merge_section(pomb, is_string, entsize);
2654           this->lookup_maps_->add_merge_section(msp, pomb);
2655         }
2656
2657       // Add input section to new merge section and link input section to new
2658       // merge section in map.
2659       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2660       return true;
2661     }
2662   else
2663     {
2664       // If add_input_section failed, delete new merge section to avoid
2665       // exporting empty merge sections in Output_section::get_input_section.
2666       if (is_new)
2667         delete pomb;
2668       return false;
2669     }
2670 }
2671
2672 // Build a relaxation map to speed up relaxation of existing input sections.
2673 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2674
2675 void
2676 Output_section::build_relaxation_map(
2677   const Input_section_list& input_sections,
2678   size_t limit,
2679   Relaxation_map* relaxation_map) const
2680 {
2681   for (size_t i = 0; i < limit; ++i)
2682     {
2683       const Input_section& is(input_sections[i]);
2684       if (is.is_input_section() || is.is_relaxed_input_section())
2685         {
2686           Section_id sid(is.relobj(), is.shndx());
2687           (*relaxation_map)[sid] = i;
2688         }
2689     }
2690 }
2691
2692 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2693 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2694 // indices of INPUT_SECTIONS.
2695
2696 void
2697 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2698   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2699   const Relaxation_map& map,
2700   Input_section_list* input_sections)
2701 {
2702   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2703     {
2704       Output_relaxed_input_section* poris = relaxed_sections[i];
2705       Section_id sid(poris->relobj(), poris->shndx());
2706       Relaxation_map::const_iterator p = map.find(sid);
2707       gold_assert(p != map.end());
2708       gold_assert((*input_sections)[p->second].is_input_section());
2709
2710       // Remember section order index of original input section
2711       // if it is set.  Copy it to the relaxed input section.
2712       unsigned int soi =
2713         (*input_sections)[p->second].section_order_index();
2714       (*input_sections)[p->second] = Input_section(poris);
2715       (*input_sections)[p->second].set_section_order_index(soi);
2716     }
2717 }
2718   
2719 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2720 // is a vector of pointers to Output_relaxed_input_section or its derived
2721 // classes.  The relaxed sections must correspond to existing input sections.
2722
2723 void
2724 Output_section::convert_input_sections_to_relaxed_sections(
2725   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2726 {
2727   gold_assert(parameters->target().may_relax());
2728
2729   // We want to make sure that restore_states does not undo the effect of
2730   // this.  If there is no checkpoint active, just search the current
2731   // input section list and replace the sections there.  If there is
2732   // a checkpoint, also replace the sections there.
2733   
2734   // By default, we look at the whole list.
2735   size_t limit = this->input_sections_.size();
2736
2737   if (this->checkpoint_ != NULL)
2738     {
2739       // Replace input sections with relaxed input section in the saved
2740       // copy of the input section list.
2741       if (this->checkpoint_->input_sections_saved())
2742         {
2743           Relaxation_map map;
2744           this->build_relaxation_map(
2745                     *(this->checkpoint_->input_sections()),
2746                     this->checkpoint_->input_sections()->size(),
2747                     &map);
2748           this->convert_input_sections_in_list_to_relaxed_sections(
2749                     relaxed_sections,
2750                     map,
2751                     this->checkpoint_->input_sections());
2752         }
2753       else
2754         {
2755           // We have not copied the input section list yet.  Instead, just
2756           // look at the portion that would be saved.
2757           limit = this->checkpoint_->input_sections_size();
2758         }
2759     }
2760
2761   // Convert input sections in input_section_list.
2762   Relaxation_map map;
2763   this->build_relaxation_map(this->input_sections_, limit, &map);
2764   this->convert_input_sections_in_list_to_relaxed_sections(
2765             relaxed_sections,
2766             map,
2767             &this->input_sections_);
2768
2769   // Update fast look-up map.
2770   if (this->lookup_maps_->is_valid())
2771     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2772       {
2773         Output_relaxed_input_section* poris = relaxed_sections[i];
2774         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2775                                                       poris->shndx(), poris);
2776       }
2777 }
2778
2779 // Update the output section flags based on input section flags.
2780
2781 void
2782 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2783 {
2784   // If we created the section with SHF_ALLOC clear, we set the
2785   // address.  If we are now setting the SHF_ALLOC flag, we need to
2786   // undo that.
2787   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2788       && (flags & elfcpp::SHF_ALLOC) != 0)
2789     this->mark_address_invalid();
2790
2791   this->flags_ |= (flags
2792                    & (elfcpp::SHF_WRITE
2793                       | elfcpp::SHF_ALLOC
2794                       | elfcpp::SHF_EXECINSTR));
2795
2796   if ((flags & elfcpp::SHF_MERGE) == 0)
2797     this->flags_ &=~ elfcpp::SHF_MERGE;
2798   else
2799     {
2800       if (this->current_data_size_for_child() == 0)
2801         this->flags_ |= elfcpp::SHF_MERGE;
2802     }
2803
2804   if ((flags & elfcpp::SHF_STRINGS) == 0)
2805     this->flags_ &=~ elfcpp::SHF_STRINGS;
2806   else
2807     {
2808       if (this->current_data_size_for_child() == 0)
2809         this->flags_ |= elfcpp::SHF_STRINGS;
2810     }
2811 }
2812
2813 // Find the merge section into which an input section with index SHNDX in
2814 // OBJECT has been added.  Return NULL if none found.
2815
2816 Output_section_data*
2817 Output_section::find_merge_section(const Relobj* object,
2818                                    unsigned int shndx) const
2819 {
2820   if (!this->lookup_maps_->is_valid())
2821     this->build_lookup_maps();
2822   return this->lookup_maps_->find_merge_section(object, shndx);
2823 }
2824
2825 // Build the lookup maps for merge and relaxed sections.  This is needs
2826 // to be declared as a const methods so that it is callable with a const
2827 // Output_section pointer.  The method only updates states of the maps.
2828
2829 void
2830 Output_section::build_lookup_maps() const
2831 {
2832   this->lookup_maps_->clear();
2833   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2834        p != this->input_sections_.end();
2835        ++p)
2836     {
2837       if (p->is_merge_section())
2838         {
2839           Output_merge_base* pomb = p->output_merge_base();
2840           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2841                                        pomb->addralign());
2842           this->lookup_maps_->add_merge_section(msp, pomb);
2843           for (Output_merge_base::Input_sections::const_iterator is =
2844                  pomb->input_sections_begin();
2845                is != pomb->input_sections_end();
2846                ++is) 
2847             {
2848               const Const_section_id& csid = *is;
2849             this->lookup_maps_->add_merge_input_section(csid.first,
2850                                                         csid.second, pomb);
2851             }
2852             
2853         }
2854       else if (p->is_relaxed_input_section())
2855         {
2856           Output_relaxed_input_section* poris = p->relaxed_input_section();
2857           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2858                                                         poris->shndx(), poris);
2859         }
2860     }
2861 }
2862
2863 // Find an relaxed input section corresponding to an input section
2864 // in OBJECT with index SHNDX.
2865
2866 const Output_relaxed_input_section*
2867 Output_section::find_relaxed_input_section(const Relobj* object,
2868                                            unsigned int shndx) const
2869 {
2870   if (!this->lookup_maps_->is_valid())
2871     this->build_lookup_maps();
2872   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2873 }
2874
2875 // Given an address OFFSET relative to the start of input section
2876 // SHNDX in OBJECT, return whether this address is being included in
2877 // the final link.  This should only be called if SHNDX in OBJECT has
2878 // a special mapping.
2879
2880 bool
2881 Output_section::is_input_address_mapped(const Relobj* object,
2882                                         unsigned int shndx,
2883                                         off_t offset) const
2884 {
2885   // Look at the Output_section_data_maps first.
2886   const Output_section_data* posd = this->find_merge_section(object, shndx);
2887   if (posd == NULL)
2888     posd = this->find_relaxed_input_section(object, shndx);
2889
2890   if (posd != NULL)
2891     {
2892       section_offset_type output_offset;
2893       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2894       gold_assert(found);   
2895       return output_offset != -1;
2896     }
2897
2898   // Fall back to the slow look-up.
2899   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2900        p != this->input_sections_.end();
2901        ++p)
2902     {
2903       section_offset_type output_offset;
2904       if (p->output_offset(object, shndx, offset, &output_offset))
2905         return output_offset != -1;
2906     }
2907
2908   // By default we assume that the address is mapped.  This should
2909   // only be called after we have passed all sections to Layout.  At
2910   // that point we should know what we are discarding.
2911   return true;
2912 }
2913
2914 // Given an address OFFSET relative to the start of input section
2915 // SHNDX in object OBJECT, return the output offset relative to the
2916 // start of the input section in the output section.  This should only
2917 // be called if SHNDX in OBJECT has a special mapping.
2918
2919 section_offset_type
2920 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2921                               section_offset_type offset) const
2922 {
2923   // This can only be called meaningfully when we know the data size
2924   // of this.
2925   gold_assert(this->is_data_size_valid());
2926
2927   // Look at the Output_section_data_maps first.
2928   const Output_section_data* posd = this->find_merge_section(object, shndx);
2929   if (posd == NULL) 
2930     posd = this->find_relaxed_input_section(object, shndx);
2931   if (posd != NULL)
2932     {
2933       section_offset_type output_offset;
2934       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2935       gold_assert(found);   
2936       return output_offset;
2937     }
2938
2939   // Fall back to the slow look-up.
2940   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2941        p != this->input_sections_.end();
2942        ++p)
2943     {
2944       section_offset_type output_offset;
2945       if (p->output_offset(object, shndx, offset, &output_offset))
2946         return output_offset;
2947     }
2948   gold_unreachable();
2949 }
2950
2951 // Return the output virtual address of OFFSET relative to the start
2952 // of input section SHNDX in object OBJECT.
2953
2954 uint64_t
2955 Output_section::output_address(const Relobj* object, unsigned int shndx,
2956                                off_t offset) const
2957 {
2958   uint64_t addr = this->address() + this->first_input_offset_;
2959
2960   // Look at the Output_section_data_maps first.
2961   const Output_section_data* posd = this->find_merge_section(object, shndx);
2962   if (posd == NULL) 
2963     posd = this->find_relaxed_input_section(object, shndx);
2964   if (posd != NULL && posd->is_address_valid())
2965     {
2966       section_offset_type output_offset;
2967       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2968       gold_assert(found);
2969       return posd->address() + output_offset;
2970     }
2971
2972   // Fall back to the slow look-up.
2973   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2974        p != this->input_sections_.end();
2975        ++p)
2976     {
2977       addr = align_address(addr, p->addralign());
2978       section_offset_type output_offset;
2979       if (p->output_offset(object, shndx, offset, &output_offset))
2980         {
2981           if (output_offset == -1)
2982             return -1ULL;
2983           return addr + output_offset;
2984         }
2985       addr += p->data_size();
2986     }
2987
2988   // If we get here, it means that we don't know the mapping for this
2989   // input section.  This might happen in principle if
2990   // add_input_section were called before add_output_section_data.
2991   // But it should never actually happen.
2992
2993   gold_unreachable();
2994 }
2995
2996 // Find the output address of the start of the merged section for
2997 // input section SHNDX in object OBJECT.
2998
2999 bool
3000 Output_section::find_starting_output_address(const Relobj* object,
3001                                              unsigned int shndx,
3002                                              uint64_t* paddr) const
3003 {
3004   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3005   // Looking up the merge section map does not always work as we sometimes
3006   // find a merge section without its address set.
3007   uint64_t addr = this->address() + this->first_input_offset_;
3008   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3009        p != this->input_sections_.end();
3010        ++p)
3011     {
3012       addr = align_address(addr, p->addralign());
3013
3014       // It would be nice if we could use the existing output_offset
3015       // method to get the output offset of input offset 0.
3016       // Unfortunately we don't know for sure that input offset 0 is
3017       // mapped at all.
3018       if (p->is_merge_section_for(object, shndx))
3019         {
3020           *paddr = addr;
3021           return true;
3022         }
3023
3024       addr += p->data_size();
3025     }
3026
3027   // We couldn't find a merge output section for this input section.
3028   return false;
3029 }
3030
3031 // Update the data size of an Output_section.
3032
3033 void
3034 Output_section::update_data_size()
3035 {
3036   if (this->input_sections_.empty())
3037       return;
3038
3039   if (this->must_sort_attached_input_sections()
3040       || this->input_section_order_specified())
3041     this->sort_attached_input_sections();
3042
3043   off_t off = this->first_input_offset_;
3044   for (Input_section_list::iterator p = this->input_sections_.begin();
3045        p != this->input_sections_.end();
3046        ++p)
3047     {
3048       off = align_address(off, p->addralign());
3049       off += p->current_data_size();
3050     }
3051
3052   this->set_current_data_size_for_child(off);
3053 }
3054
3055 // Set the data size of an Output_section.  This is where we handle
3056 // setting the addresses of any Output_section_data objects.
3057
3058 void
3059 Output_section::set_final_data_size()
3060 {
3061   off_t data_size;
3062
3063   if (this->input_sections_.empty())
3064     data_size = this->current_data_size_for_child();
3065   else
3066     {
3067       if (this->must_sort_attached_input_sections()
3068           || this->input_section_order_specified())
3069         this->sort_attached_input_sections();
3070
3071       uint64_t address = this->address();
3072       off_t startoff = this->offset();
3073       off_t off = startoff + this->first_input_offset_;
3074       for (Input_section_list::iterator p = this->input_sections_.begin();
3075            p != this->input_sections_.end();
3076            ++p)
3077         {
3078           off = align_address(off, p->addralign());
3079           p->set_address_and_file_offset(address + (off - startoff), off,
3080                                          startoff);
3081           off += p->data_size();
3082         }
3083       data_size = off - startoff;
3084     }
3085
3086   // For full incremental links, we want to allocate some patch space
3087   // in most sections for subsequent incremental updates.
3088   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3089     {
3090       double pct = parameters->options().incremental_patch();
3091       size_t extra = static_cast<size_t>(data_size * pct);
3092       if (this->free_space_fill_ != NULL
3093           && this->free_space_fill_->minimum_hole_size() > extra)
3094         extra = this->free_space_fill_->minimum_hole_size();
3095       off_t new_size = align_address(data_size + extra, this->addralign());
3096       this->patch_space_ = new_size - data_size;
3097       gold_debug(DEBUG_INCREMENTAL,
3098                  "set_final_data_size: %08lx + %08lx: section %s",
3099                  static_cast<long>(data_size),
3100                  static_cast<long>(this->patch_space_),
3101                  this->name());
3102       data_size = new_size;
3103     }
3104
3105   this->set_data_size(data_size);
3106 }
3107
3108 // Reset the address and file offset.
3109
3110 void
3111 Output_section::do_reset_address_and_file_offset()
3112 {
3113   // An unallocated section has no address.  Forcing this means that
3114   // we don't need special treatment for symbols defined in debug
3115   // sections.  We do the same in the constructor.  This does not
3116   // apply to NOLOAD sections though.
3117   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3118      this->set_address(0);
3119
3120   for (Input_section_list::iterator p = this->input_sections_.begin();
3121        p != this->input_sections_.end();
3122        ++p)
3123     p->reset_address_and_file_offset();
3124
3125   // Remove any patch space that was added in set_final_data_size.
3126   if (this->patch_space_ > 0)
3127     {
3128       this->set_current_data_size_for_child(this->current_data_size_for_child()
3129                                             - this->patch_space_);
3130       this->patch_space_ = 0;
3131     }
3132 }
3133
3134 // Return true if address and file offset have the values after reset.
3135
3136 bool
3137 Output_section::do_address_and_file_offset_have_reset_values() const
3138 {
3139   if (this->is_offset_valid())
3140     return false;
3141
3142   // An unallocated section has address 0 after its construction or a reset.
3143   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3144     return this->is_address_valid() && this->address() == 0;
3145   else
3146     return !this->is_address_valid();
3147 }
3148
3149 // Set the TLS offset.  Called only for SHT_TLS sections.
3150
3151 void
3152 Output_section::do_set_tls_offset(uint64_t tls_base)
3153 {
3154   this->tls_offset_ = this->address() - tls_base;
3155 }
3156
3157 // In a few cases we need to sort the input sections attached to an
3158 // output section.  This is used to implement the type of constructor
3159 // priority ordering implemented by the GNU linker, in which the
3160 // priority becomes part of the section name and the sections are
3161 // sorted by name.  We only do this for an output section if we see an
3162 // attached input section matching ".ctors.*", ".dtors.*",
3163 // ".init_array.*" or ".fini_array.*".
3164
3165 class Output_section::Input_section_sort_entry
3166 {
3167  public:
3168   Input_section_sort_entry()
3169     : input_section_(), index_(-1U), section_has_name_(false),
3170       section_name_()
3171   { }
3172
3173   Input_section_sort_entry(const Input_section& input_section,
3174                            unsigned int index,
3175                            bool must_sort_attached_input_sections)
3176     : input_section_(input_section), index_(index),
3177       section_has_name_(input_section.is_input_section()
3178                         || input_section.is_relaxed_input_section())
3179   {
3180     if (this->section_has_name_
3181         && must_sort_attached_input_sections)
3182       {
3183         // This is only called single-threaded from Layout::finalize,
3184         // so it is OK to lock.  Unfortunately we have no way to pass
3185         // in a Task token.
3186         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3187         Object* obj = (input_section.is_input_section()
3188                        ? input_section.relobj()
3189                        : input_section.relaxed_input_section()->relobj());
3190         Task_lock_obj<Object> tl(dummy_task, obj);
3191
3192         // This is a slow operation, which should be cached in
3193         // Layout::layout if this becomes a speed problem.
3194         this->section_name_ = obj->section_name(input_section.shndx());
3195       }
3196   }
3197
3198   // Return the Input_section.
3199   const Input_section&
3200   input_section() const
3201   {
3202     gold_assert(this->index_ != -1U);
3203     return this->input_section_;
3204   }
3205
3206   // The index of this entry in the original list.  This is used to
3207   // make the sort stable.
3208   unsigned int
3209   index() const
3210   {
3211     gold_assert(this->index_ != -1U);
3212     return this->index_;
3213   }
3214
3215   // Whether there is a section name.
3216   bool
3217   section_has_name() const
3218   { return this->section_has_name_; }
3219
3220   // The section name.
3221   const std::string&
3222   section_name() const
3223   {
3224     gold_assert(this->section_has_name_);
3225     return this->section_name_;
3226   }
3227
3228   // Return true if the section name has a priority.  This is assumed
3229   // to be true if it has a dot after the initial dot.
3230   bool
3231   has_priority() const
3232   {
3233     gold_assert(this->section_has_name_);
3234     return this->section_name_.find('.', 1) != std::string::npos;
3235   }
3236
3237   // Return the priority.  Believe it or not, gcc encodes the priority
3238   // differently for .ctors/.dtors and .init_array/.fini_array
3239   // sections.
3240   unsigned int
3241   get_priority() const
3242   {
3243     gold_assert(this->section_has_name_);
3244     bool is_ctors;
3245     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3246         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3247       is_ctors = true;
3248     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3249              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3250       is_ctors = false;
3251     else
3252       return 0;
3253     char* end;
3254     unsigned long prio = strtoul((this->section_name_.c_str()
3255                                   + (is_ctors ? 7 : 12)),
3256                                  &end, 10);
3257     if (*end != '\0')
3258       return 0;
3259     else if (is_ctors)
3260       return 65535 - prio;
3261     else
3262       return prio;
3263   }
3264
3265   // Return true if this an input file whose base name matches
3266   // FILE_NAME.  The base name must have an extension of ".o", and
3267   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3268   // This is to match crtbegin.o as well as crtbeginS.o without
3269   // getting confused by other possibilities.  Overall matching the
3270   // file name this way is a dreadful hack, but the GNU linker does it
3271   // in order to better support gcc, and we need to be compatible.
3272   bool
3273   match_file_name(const char* file_name) const
3274   { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3275
3276   // Returns 1 if THIS should appear before S in section order, -1 if S
3277   // appears before THIS and 0 if they are not comparable.
3278   int
3279   compare_section_ordering(const Input_section_sort_entry& s) const
3280   {
3281     unsigned int this_secn_index = this->input_section_.section_order_index();
3282     unsigned int s_secn_index = s.input_section().section_order_index();
3283     if (this_secn_index > 0 && s_secn_index > 0)
3284       {
3285         if (this_secn_index < s_secn_index)
3286           return 1;
3287         else if (this_secn_index > s_secn_index)
3288           return -1;
3289       }
3290     return 0;
3291   }
3292
3293  private:
3294   // The Input_section we are sorting.
3295   Input_section input_section_;
3296   // The index of this Input_section in the original list.
3297   unsigned int index_;
3298   // Whether this Input_section has a section name--it won't if this
3299   // is some random Output_section_data.
3300   bool section_has_name_;
3301   // The section name if there is one.
3302   std::string section_name_;
3303 };
3304
3305 // Return true if S1 should come before S2 in the output section.
3306
3307 bool
3308 Output_section::Input_section_sort_compare::operator()(
3309     const Output_section::Input_section_sort_entry& s1,
3310     const Output_section::Input_section_sort_entry& s2) const
3311 {
3312   // crtbegin.o must come first.
3313   bool s1_begin = s1.match_file_name("crtbegin");
3314   bool s2_begin = s2.match_file_name("crtbegin");
3315   if (s1_begin || s2_begin)
3316     {
3317       if (!s1_begin)
3318         return false;
3319       if (!s2_begin)
3320         return true;
3321       return s1.index() < s2.index();
3322     }
3323
3324   // crtend.o must come last.
3325   bool s1_end = s1.match_file_name("crtend");
3326   bool s2_end = s2.match_file_name("crtend");
3327   if (s1_end || s2_end)
3328     {
3329       if (!s1_end)
3330         return true;
3331       if (!s2_end)
3332         return false;
3333       return s1.index() < s2.index();
3334     }
3335
3336   // We sort all the sections with no names to the end.
3337   if (!s1.section_has_name() || !s2.section_has_name())
3338     {
3339       if (s1.section_has_name())
3340         return true;
3341       if (s2.section_has_name())
3342         return false;
3343       return s1.index() < s2.index();
3344     }
3345
3346   // A section with a priority follows a section without a priority.
3347   bool s1_has_priority = s1.has_priority();
3348   bool s2_has_priority = s2.has_priority();
3349   if (s1_has_priority && !s2_has_priority)
3350     return false;
3351   if (!s1_has_priority && s2_has_priority)
3352     return true;
3353
3354   // Check if a section order exists for these sections through a section
3355   // ordering file.  If sequence_num is 0, an order does not exist.
3356   int sequence_num = s1.compare_section_ordering(s2);
3357   if (sequence_num != 0)
3358     return sequence_num == 1;
3359
3360   // Otherwise we sort by name.
3361   int compare = s1.section_name().compare(s2.section_name());
3362   if (compare != 0)
3363     return compare < 0;
3364
3365   // Otherwise we keep the input order.
3366   return s1.index() < s2.index();
3367 }
3368
3369 // Return true if S1 should come before S2 in an .init_array or .fini_array
3370 // output section.
3371
3372 bool
3373 Output_section::Input_section_sort_init_fini_compare::operator()(
3374     const Output_section::Input_section_sort_entry& s1,
3375     const Output_section::Input_section_sort_entry& s2) const
3376 {
3377   // We sort all the sections with no names to the end.
3378   if (!s1.section_has_name() || !s2.section_has_name())
3379     {
3380       if (s1.section_has_name())
3381         return true;
3382       if (s2.section_has_name())
3383         return false;
3384       return s1.index() < s2.index();
3385     }
3386
3387   // A section without a priority follows a section with a priority.
3388   // This is the reverse of .ctors and .dtors sections.
3389   bool s1_has_priority = s1.has_priority();
3390   bool s2_has_priority = s2.has_priority();
3391   if (s1_has_priority && !s2_has_priority)
3392     return true;
3393   if (!s1_has_priority && s2_has_priority)
3394     return false;
3395
3396   // .ctors and .dtors sections without priority come after
3397   // .init_array and .fini_array sections without priority.
3398   if (!s1_has_priority
3399       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3400       && s1.section_name() != s2.section_name())
3401     return false;
3402   if (!s2_has_priority
3403       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3404       && s2.section_name() != s1.section_name())
3405     return true;
3406
3407   // Sort by priority if we can.
3408   if (s1_has_priority)
3409     {
3410       unsigned int s1_prio = s1.get_priority();
3411       unsigned int s2_prio = s2.get_priority();
3412       if (s1_prio < s2_prio)
3413         return true;
3414       else if (s1_prio > s2_prio)
3415         return false;
3416     }
3417
3418   // Check if a section order exists for these sections through a section
3419   // ordering file.  If sequence_num is 0, an order does not exist.
3420   int sequence_num = s1.compare_section_ordering(s2);
3421   if (sequence_num != 0)
3422     return sequence_num == 1;
3423
3424   // Otherwise we sort by name.
3425   int compare = s1.section_name().compare(s2.section_name());
3426   if (compare != 0)
3427     return compare < 0;
3428
3429   // Otherwise we keep the input order.
3430   return s1.index() < s2.index();
3431 }
3432
3433 // Return true if S1 should come before S2.  Sections that do not match
3434 // any pattern in the section ordering file are placed ahead of the sections
3435 // that match some pattern.
3436
3437 bool
3438 Output_section::Input_section_sort_section_order_index_compare::operator()(
3439     const Output_section::Input_section_sort_entry& s1,
3440     const Output_section::Input_section_sort_entry& s2) const
3441 {
3442   unsigned int s1_secn_index = s1.input_section().section_order_index();
3443   unsigned int s2_secn_index = s2.input_section().section_order_index();
3444
3445   // Keep input order if section ordering cannot determine order.
3446   if (s1_secn_index == s2_secn_index)
3447     return s1.index() < s2.index();
3448   
3449   return s1_secn_index < s2_secn_index;
3450 }
3451
3452 // This updates the section order index of input sections according to the
3453 // the order specified in the mapping from Section id to order index.
3454
3455 void
3456 Output_section::update_section_layout(
3457   const Section_layout_order* order_map)
3458 {
3459   for (Input_section_list::iterator p = this->input_sections_.begin();
3460        p != this->input_sections_.end();
3461        ++p)
3462     {
3463       if (p->is_input_section()
3464           || p->is_relaxed_input_section())
3465         {
3466           Object* obj = (p->is_input_section()
3467                          ? p->relobj()
3468                          : p->relaxed_input_section()->relobj());
3469           unsigned int shndx = p->shndx();
3470           Section_layout_order::const_iterator it
3471             = order_map->find(Section_id(obj, shndx));
3472           if (it == order_map->end())
3473             continue;
3474           unsigned int section_order_index = it->second;
3475           if (section_order_index != 0)
3476             {
3477               p->set_section_order_index(section_order_index);
3478               this->set_input_section_order_specified();
3479             }
3480         }
3481     }
3482 }
3483
3484 // Sort the input sections attached to an output section.
3485
3486 void
3487 Output_section::sort_attached_input_sections()
3488 {
3489   if (this->attached_input_sections_are_sorted_)
3490     return;
3491
3492   if (this->checkpoint_ != NULL
3493       && !this->checkpoint_->input_sections_saved())
3494     this->checkpoint_->save_input_sections();
3495
3496   // The only thing we know about an input section is the object and
3497   // the section index.  We need the section name.  Recomputing this
3498   // is slow but this is an unusual case.  If this becomes a speed
3499   // problem we can cache the names as required in Layout::layout.
3500
3501   // We start by building a larger vector holding a copy of each
3502   // Input_section, plus its current index in the list and its name.
3503   std::vector<Input_section_sort_entry> sort_list;
3504
3505   unsigned int i = 0;
3506   for (Input_section_list::iterator p = this->input_sections_.begin();
3507        p != this->input_sections_.end();
3508        ++p, ++i)
3509       sort_list.push_back(Input_section_sort_entry(*p, i,
3510                             this->must_sort_attached_input_sections()));
3511
3512   // Sort the input sections.
3513   if (this->must_sort_attached_input_sections())
3514     {
3515       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3516           || this->type() == elfcpp::SHT_INIT_ARRAY
3517           || this->type() == elfcpp::SHT_FINI_ARRAY)
3518         std::sort(sort_list.begin(), sort_list.end(),
3519                   Input_section_sort_init_fini_compare());
3520       else
3521         std::sort(sort_list.begin(), sort_list.end(),
3522                   Input_section_sort_compare());
3523     }
3524   else
3525     {
3526       gold_assert(this->input_section_order_specified());
3527       std::sort(sort_list.begin(), sort_list.end(),
3528                 Input_section_sort_section_order_index_compare());
3529     }
3530
3531   // Copy the sorted input sections back to our list.
3532   this->input_sections_.clear();
3533   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3534        p != sort_list.end();
3535        ++p)
3536     this->input_sections_.push_back(p->input_section());
3537   sort_list.clear();
3538
3539   // Remember that we sorted the input sections, since we might get
3540   // called again.
3541   this->attached_input_sections_are_sorted_ = true;
3542 }
3543
3544 // Write the section header to *OSHDR.
3545
3546 template<int size, bool big_endian>
3547 void
3548 Output_section::write_header(const Layout* layout,
3549                              const Stringpool* secnamepool,
3550                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3551 {
3552   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3553   oshdr->put_sh_type(this->type_);
3554
3555   elfcpp::Elf_Xword flags = this->flags_;
3556   if (this->info_section_ != NULL && this->info_uses_section_index_)
3557     flags |= elfcpp::SHF_INFO_LINK;
3558   oshdr->put_sh_flags(flags);
3559
3560   oshdr->put_sh_addr(this->address());
3561   oshdr->put_sh_offset(this->offset());
3562   oshdr->put_sh_size(this->data_size());
3563   if (this->link_section_ != NULL)
3564     oshdr->put_sh_link(this->link_section_->out_shndx());
3565   else if (this->should_link_to_symtab_)
3566     oshdr->put_sh_link(layout->symtab_section_shndx());
3567   else if (this->should_link_to_dynsym_)
3568     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3569   else
3570     oshdr->put_sh_link(this->link_);
3571
3572   elfcpp::Elf_Word info;
3573   if (this->info_section_ != NULL)
3574     {
3575       if (this->info_uses_section_index_)
3576         info = this->info_section_->out_shndx();
3577       else
3578         info = this->info_section_->symtab_index();
3579     }
3580   else if (this->info_symndx_ != NULL)
3581     info = this->info_symndx_->symtab_index();
3582   else
3583     info = this->info_;
3584   oshdr->put_sh_info(info);
3585
3586   oshdr->put_sh_addralign(this->addralign_);
3587   oshdr->put_sh_entsize(this->entsize_);
3588 }
3589
3590 // Write out the data.  For input sections the data is written out by
3591 // Object::relocate, but we have to handle Output_section_data objects
3592 // here.
3593
3594 void
3595 Output_section::do_write(Output_file* of)
3596 {
3597   gold_assert(!this->requires_postprocessing());
3598
3599   // If the target performs relaxation, we delay filler generation until now.
3600   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3601
3602   off_t output_section_file_offset = this->offset();
3603   for (Fill_list::iterator p = this->fills_.begin();
3604        p != this->fills_.end();
3605        ++p)
3606     {
3607       std::string fill_data(parameters->target().code_fill(p->length()));
3608       of->write(output_section_file_offset + p->section_offset(),
3609                 fill_data.data(), fill_data.size());
3610     }
3611
3612   off_t off = this->offset() + this->first_input_offset_;
3613   for (Input_section_list::iterator p = this->input_sections_.begin();
3614        p != this->input_sections_.end();
3615        ++p)
3616     {
3617       off_t aligned_off = align_address(off, p->addralign());
3618       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3619         {
3620           size_t fill_len = aligned_off - off;
3621           std::string fill_data(parameters->target().code_fill(fill_len));
3622           of->write(off, fill_data.data(), fill_data.size());
3623         }
3624
3625       p->write(of);
3626       off = aligned_off + p->data_size();
3627     }
3628
3629   // For incremental links, fill in unused chunks in debug sections
3630   // with dummy compilation unit headers.
3631   if (this->free_space_fill_ != NULL)
3632     {
3633       for (Free_list::Const_iterator p = this->free_list_.begin();
3634            p != this->free_list_.end();
3635            ++p)
3636         {
3637           off_t off = p->start_;
3638           size_t len = p->end_ - off;
3639           this->free_space_fill_->write(of, this->offset() + off, len);
3640         }
3641       if (this->patch_space_ > 0)
3642         {
3643           off_t off = this->current_data_size_for_child() - this->patch_space_;
3644           this->free_space_fill_->write(of, this->offset() + off,
3645                                         this->patch_space_);
3646         }
3647     }
3648 }
3649
3650 // If a section requires postprocessing, create the buffer to use.
3651
3652 void
3653 Output_section::create_postprocessing_buffer()
3654 {
3655   gold_assert(this->requires_postprocessing());
3656
3657   if (this->postprocessing_buffer_ != NULL)
3658     return;
3659
3660   if (!this->input_sections_.empty())
3661     {
3662       off_t off = this->first_input_offset_;
3663       for (Input_section_list::iterator p = this->input_sections_.begin();
3664            p != this->input_sections_.end();
3665            ++p)
3666         {
3667           off = align_address(off, p->addralign());
3668           p->finalize_data_size();
3669           off += p->data_size();
3670         }
3671       this->set_current_data_size_for_child(off);
3672     }
3673
3674   off_t buffer_size = this->current_data_size_for_child();
3675   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3676 }
3677
3678 // Write all the data of an Output_section into the postprocessing
3679 // buffer.  This is used for sections which require postprocessing,
3680 // such as compression.  Input sections are handled by
3681 // Object::Relocate.
3682
3683 void
3684 Output_section::write_to_postprocessing_buffer()
3685 {
3686   gold_assert(this->requires_postprocessing());
3687
3688   // If the target performs relaxation, we delay filler generation until now.
3689   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3690
3691   unsigned char* buffer = this->postprocessing_buffer();
3692   for (Fill_list::iterator p = this->fills_.begin();
3693        p != this->fills_.end();
3694        ++p)
3695     {
3696       std::string fill_data(parameters->target().code_fill(p->length()));
3697       memcpy(buffer + p->section_offset(), fill_data.data(),
3698              fill_data.size());
3699     }
3700
3701   off_t off = this->first_input_offset_;
3702   for (Input_section_list::iterator p = this->input_sections_.begin();
3703        p != this->input_sections_.end();
3704        ++p)
3705     {
3706       off_t aligned_off = align_address(off, p->addralign());
3707       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3708         {
3709           size_t fill_len = aligned_off - off;
3710           std::string fill_data(parameters->target().code_fill(fill_len));
3711           memcpy(buffer + off, fill_data.data(), fill_data.size());
3712         }
3713
3714       p->write_to_buffer(buffer + aligned_off);
3715       off = aligned_off + p->data_size();
3716     }
3717 }
3718
3719 // Get the input sections for linker script processing.  We leave
3720 // behind the Output_section_data entries.  Note that this may be
3721 // slightly incorrect for merge sections.  We will leave them behind,
3722 // but it is possible that the script says that they should follow
3723 // some other input sections, as in:
3724 //    .rodata { *(.rodata) *(.rodata.cst*) }
3725 // For that matter, we don't handle this correctly:
3726 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3727 // With luck this will never matter.
3728
3729 uint64_t
3730 Output_section::get_input_sections(
3731     uint64_t address,
3732     const std::string& fill,
3733     std::list<Input_section>* input_sections)
3734 {
3735   if (this->checkpoint_ != NULL
3736       && !this->checkpoint_->input_sections_saved())
3737     this->checkpoint_->save_input_sections();
3738
3739   // Invalidate fast look-up maps.
3740   this->lookup_maps_->invalidate();
3741
3742   uint64_t orig_address = address;
3743
3744   address = align_address(address, this->addralign());
3745
3746   Input_section_list remaining;
3747   for (Input_section_list::iterator p = this->input_sections_.begin();
3748        p != this->input_sections_.end();
3749        ++p)
3750     {
3751       if (p->is_input_section()
3752           || p->is_relaxed_input_section()
3753           || p->is_merge_section())
3754         input_sections->push_back(*p);
3755       else
3756         {
3757           uint64_t aligned_address = align_address(address, p->addralign());
3758           if (aligned_address != address && !fill.empty())
3759             {
3760               section_size_type length =
3761                 convert_to_section_size_type(aligned_address - address);
3762               std::string this_fill;
3763               this_fill.reserve(length);
3764               while (this_fill.length() + fill.length() <= length)
3765                 this_fill += fill;
3766               if (this_fill.length() < length)
3767                 this_fill.append(fill, 0, length - this_fill.length());
3768
3769               Output_section_data* posd = new Output_data_const(this_fill, 0);
3770               remaining.push_back(Input_section(posd));
3771             }
3772           address = aligned_address;
3773
3774           remaining.push_back(*p);
3775
3776           p->finalize_data_size();
3777           address += p->data_size();
3778         }
3779     }
3780
3781   this->input_sections_.swap(remaining);
3782   this->first_input_offset_ = 0;
3783
3784   uint64_t data_size = address - orig_address;
3785   this->set_current_data_size_for_child(data_size);
3786   return data_size;
3787 }
3788
3789 // Add a script input section.  SIS is an Output_section::Input_section,
3790 // which can be either a plain input section or a special input section like
3791 // a relaxed input section.  For a special input section, its size must be
3792 // finalized.
3793
3794 void
3795 Output_section::add_script_input_section(const Input_section& sis)
3796 {
3797   uint64_t data_size = sis.data_size();
3798   uint64_t addralign = sis.addralign();
3799   if (addralign > this->addralign_)
3800     this->addralign_ = addralign;
3801
3802   off_t offset_in_section = this->current_data_size_for_child();
3803   off_t aligned_offset_in_section = align_address(offset_in_section,
3804                                                   addralign);
3805
3806   this->set_current_data_size_for_child(aligned_offset_in_section
3807                                         + data_size);
3808
3809   this->input_sections_.push_back(sis);
3810
3811   // Update fast lookup maps if necessary. 
3812   if (this->lookup_maps_->is_valid())
3813     {
3814       if (sis.is_merge_section())
3815         {
3816           Output_merge_base* pomb = sis.output_merge_base();
3817           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3818                                        pomb->addralign());
3819           this->lookup_maps_->add_merge_section(msp, pomb);
3820           for (Output_merge_base::Input_sections::const_iterator p =
3821                  pomb->input_sections_begin();
3822                p != pomb->input_sections_end();
3823                ++p)
3824             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3825                                                         pomb);
3826         }
3827       else if (sis.is_relaxed_input_section())
3828         {
3829           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3830           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3831                                                         poris->shndx(), poris);
3832         }
3833     }
3834 }
3835
3836 // Save states for relaxation.
3837
3838 void
3839 Output_section::save_states()
3840 {
3841   gold_assert(this->checkpoint_ == NULL);
3842   Checkpoint_output_section* checkpoint =
3843     new Checkpoint_output_section(this->addralign_, this->flags_,
3844                                   this->input_sections_,
3845                                   this->first_input_offset_,
3846                                   this->attached_input_sections_are_sorted_);
3847   this->checkpoint_ = checkpoint;
3848   gold_assert(this->fills_.empty());
3849 }
3850
3851 void
3852 Output_section::discard_states()
3853 {
3854   gold_assert(this->checkpoint_ != NULL);
3855   delete this->checkpoint_;
3856   this->checkpoint_ = NULL;
3857   gold_assert(this->fills_.empty());
3858
3859   // Simply invalidate the fast lookup maps since we do not keep
3860   // track of them.
3861   this->lookup_maps_->invalidate();
3862 }
3863
3864 void
3865 Output_section::restore_states()
3866 {
3867   gold_assert(this->checkpoint_ != NULL);
3868   Checkpoint_output_section* checkpoint = this->checkpoint_;
3869
3870   this->addralign_ = checkpoint->addralign();
3871   this->flags_ = checkpoint->flags();
3872   this->first_input_offset_ = checkpoint->first_input_offset();
3873
3874   if (!checkpoint->input_sections_saved())
3875     {
3876       // If we have not copied the input sections, just resize it.
3877       size_t old_size = checkpoint->input_sections_size();
3878       gold_assert(this->input_sections_.size() >= old_size);
3879       this->input_sections_.resize(old_size);
3880     }
3881   else
3882     {
3883       // We need to copy the whole list.  This is not efficient for
3884       // extremely large output with hundreads of thousands of input
3885       // objects.  We may need to re-think how we should pass sections
3886       // to scripts.
3887       this->input_sections_ = *checkpoint->input_sections();
3888     }
3889
3890   this->attached_input_sections_are_sorted_ =
3891     checkpoint->attached_input_sections_are_sorted();
3892
3893   // Simply invalidate the fast lookup maps since we do not keep
3894   // track of them.
3895   this->lookup_maps_->invalidate();
3896 }
3897
3898 // Update the section offsets of input sections in this.  This is required if
3899 // relaxation causes some input sections to change sizes.
3900
3901 void
3902 Output_section::adjust_section_offsets()
3903 {
3904   if (!this->section_offsets_need_adjustment_)
3905     return;
3906
3907   off_t off = 0;
3908   for (Input_section_list::iterator p = this->input_sections_.begin();
3909        p != this->input_sections_.end();
3910        ++p)
3911     {
3912       off = align_address(off, p->addralign());
3913       if (p->is_input_section())
3914         p->relobj()->set_section_offset(p->shndx(), off);
3915       off += p->data_size();
3916     }
3917
3918   this->section_offsets_need_adjustment_ = false;
3919 }
3920
3921 // Print to the map file.
3922
3923 void
3924 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3925 {
3926   mapfile->print_output_section(this);
3927
3928   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3929        p != this->input_sections_.end();
3930        ++p)
3931     p->print_to_mapfile(mapfile);
3932 }
3933
3934 // Print stats for merge sections to stderr.
3935
3936 void
3937 Output_section::print_merge_stats()
3938 {
3939   Input_section_list::iterator p;
3940   for (p = this->input_sections_.begin();
3941        p != this->input_sections_.end();
3942        ++p)
3943     p->print_merge_stats(this->name_);
3944 }
3945
3946 // Set a fixed layout for the section.  Used for incremental update links.
3947
3948 void
3949 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3950                                  off_t sh_size, uint64_t sh_addralign)
3951 {
3952   this->addralign_ = sh_addralign;
3953   this->set_current_data_size(sh_size);
3954   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3955     this->set_address(sh_addr);
3956   this->set_file_offset(sh_offset);
3957   this->finalize_data_size();
3958   this->free_list_.init(sh_size, false);
3959   this->has_fixed_layout_ = true;
3960 }
3961
3962 // Reserve space within the fixed layout for the section.  Used for
3963 // incremental update links.
3964
3965 void
3966 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3967 {
3968   this->free_list_.remove(sh_offset, sh_offset + sh_size);
3969 }
3970
3971 // Allocate space from the free list for the section.  Used for
3972 // incremental update links.
3973
3974 off_t
3975 Output_section::allocate(off_t len, uint64_t addralign)
3976 {
3977   return this->free_list_.allocate(len, addralign, 0);
3978 }
3979
3980 // Output segment methods.
3981
3982 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3983   : vaddr_(0),
3984     paddr_(0),
3985     memsz_(0),
3986     max_align_(0),
3987     min_p_align_(0),
3988     offset_(0),
3989     filesz_(0),
3990     type_(type),
3991     flags_(flags),
3992     is_max_align_known_(false),
3993     are_addresses_set_(false),
3994     is_large_data_segment_(false)
3995 {
3996   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3997   // the flags.
3998   if (type == elfcpp::PT_TLS)
3999     this->flags_ = elfcpp::PF_R;
4000 }
4001
4002 // Add an Output_section to a PT_LOAD Output_segment.
4003
4004 void
4005 Output_segment::add_output_section_to_load(Layout* layout,
4006                                            Output_section* os,
4007                                            elfcpp::Elf_Word seg_flags)
4008 {
4009   gold_assert(this->type() == elfcpp::PT_LOAD);
4010   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4011   gold_assert(!this->is_max_align_known_);
4012   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4013
4014   this->update_flags_for_output_section(seg_flags);
4015
4016   // We don't want to change the ordering if we have a linker script
4017   // with a SECTIONS clause.
4018   Output_section_order order = os->order();
4019   if (layout->script_options()->saw_sections_clause())
4020     order = static_cast<Output_section_order>(0);
4021   else
4022     gold_assert(order != ORDER_INVALID);
4023
4024   this->output_lists_[order].push_back(os);
4025 }
4026
4027 // Add an Output_section to a non-PT_LOAD Output_segment.
4028
4029 void
4030 Output_segment::add_output_section_to_nonload(Output_section* os,
4031                                               elfcpp::Elf_Word seg_flags)
4032 {
4033   gold_assert(this->type() != elfcpp::PT_LOAD);
4034   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4035   gold_assert(!this->is_max_align_known_);
4036
4037   this->update_flags_for_output_section(seg_flags);
4038
4039   this->output_lists_[0].push_back(os);
4040 }
4041
4042 // Remove an Output_section from this segment.  It is an error if it
4043 // is not present.
4044
4045 void
4046 Output_segment::remove_output_section(Output_section* os)
4047 {
4048   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4049     {
4050       Output_data_list* pdl = &this->output_lists_[i];
4051       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4052         {
4053           if (*p == os)
4054             {
4055               pdl->erase(p);
4056               return;
4057             }
4058         }
4059     }
4060   gold_unreachable();
4061 }
4062
4063 // Add an Output_data (which need not be an Output_section) to the
4064 // start of a segment.
4065
4066 void
4067 Output_segment::add_initial_output_data(Output_data* od)
4068 {
4069   gold_assert(!this->is_max_align_known_);
4070   Output_data_list::iterator p = this->output_lists_[0].begin();
4071   this->output_lists_[0].insert(p, od);
4072 }
4073
4074 // Return true if this segment has any sections which hold actual
4075 // data, rather than being a BSS section.
4076
4077 bool
4078 Output_segment::has_any_data_sections() const
4079 {
4080   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4081     {
4082       const Output_data_list* pdl = &this->output_lists_[i];
4083       for (Output_data_list::const_iterator p = pdl->begin();
4084            p != pdl->end();
4085            ++p)
4086         {
4087           if (!(*p)->is_section())
4088             return true;
4089           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4090             return true;
4091         }
4092     }
4093   return false;
4094 }
4095
4096 // Return whether the first data section (not counting TLS sections)
4097 // is a relro section.
4098
4099 bool
4100 Output_segment::is_first_section_relro() const
4101 {
4102   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4103     {
4104       if (i == static_cast<int>(ORDER_TLS_DATA)
4105           || i == static_cast<int>(ORDER_TLS_BSS))
4106         continue;
4107       const Output_data_list* pdl = &this->output_lists_[i];
4108       if (!pdl->empty())
4109         {
4110           Output_data* p = pdl->front();
4111           return p->is_section() && p->output_section()->is_relro();
4112         }
4113     }
4114   return false;
4115 }
4116
4117 // Return the maximum alignment of the Output_data in Output_segment.
4118
4119 uint64_t
4120 Output_segment::maximum_alignment()
4121 {
4122   if (!this->is_max_align_known_)
4123     {
4124       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4125         {       
4126           const Output_data_list* pdl = &this->output_lists_[i];
4127           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4128           if (addralign > this->max_align_)
4129             this->max_align_ = addralign;
4130         }
4131       this->is_max_align_known_ = true;
4132     }
4133
4134   return this->max_align_;
4135 }
4136
4137 // Return the maximum alignment of a list of Output_data.
4138
4139 uint64_t
4140 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4141 {
4142   uint64_t ret = 0;
4143   for (Output_data_list::const_iterator p = pdl->begin();
4144        p != pdl->end();
4145        ++p)
4146     {
4147       uint64_t addralign = (*p)->addralign();
4148       if (addralign > ret)
4149         ret = addralign;
4150     }
4151   return ret;
4152 }
4153
4154 // Return whether this segment has any dynamic relocs.
4155
4156 bool
4157 Output_segment::has_dynamic_reloc() const
4158 {
4159   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4160     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4161       return true;
4162   return false;
4163 }
4164
4165 // Return whether this Output_data_list has any dynamic relocs.
4166
4167 bool
4168 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4169 {
4170   for (Output_data_list::const_iterator p = pdl->begin();
4171        p != pdl->end();
4172        ++p)
4173     if ((*p)->has_dynamic_reloc())
4174       return true;
4175   return false;
4176 }
4177
4178 // Set the section addresses for an Output_segment.  If RESET is true,
4179 // reset the addresses first.  ADDR is the address and *POFF is the
4180 // file offset.  Set the section indexes starting with *PSHNDX.
4181 // INCREASE_RELRO is the size of the portion of the first non-relro
4182 // section that should be included in the PT_GNU_RELRO segment.
4183 // If this segment has relro sections, and has been aligned for
4184 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4185 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4186 // and *PSHNDX.
4187
4188 uint64_t
4189 Output_segment::set_section_addresses(Layout* layout, bool reset,
4190                                       uint64_t addr,
4191                                       unsigned int* increase_relro,
4192                                       bool* has_relro,
4193                                       off_t* poff,
4194                                       unsigned int* pshndx)
4195 {
4196   gold_assert(this->type_ == elfcpp::PT_LOAD);
4197
4198   uint64_t last_relro_pad = 0;
4199   off_t orig_off = *poff;
4200
4201   bool in_tls = false;
4202
4203   // If we have relro sections, we need to pad forward now so that the
4204   // relro sections plus INCREASE_RELRO end on a common page boundary.
4205   if (parameters->options().relro()
4206       && this->is_first_section_relro()
4207       && (!this->are_addresses_set_ || reset))
4208     {
4209       uint64_t relro_size = 0;
4210       off_t off = *poff;
4211       uint64_t max_align = 0;
4212       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4213         {
4214           Output_data_list* pdl = &this->output_lists_[i];
4215           Output_data_list::iterator p;
4216           for (p = pdl->begin(); p != pdl->end(); ++p)
4217             {
4218               if (!(*p)->is_section())
4219                 break;
4220               uint64_t align = (*p)->addralign();
4221               if (align > max_align)
4222                 max_align = align;
4223               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4224                 in_tls = true;
4225               else if (in_tls)
4226                 {
4227                   // Align the first non-TLS section to the alignment
4228                   // of the TLS segment.
4229                   align = max_align;
4230                   in_tls = false;
4231                 }
4232               relro_size = align_address(relro_size, align);
4233               // Ignore the size of the .tbss section.
4234               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4235                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4236                 continue;
4237               if ((*p)->is_address_valid())
4238                 relro_size += (*p)->data_size();
4239               else
4240                 {
4241                   // FIXME: This could be faster.
4242                   (*p)->set_address_and_file_offset(addr + relro_size,
4243                                                     off + relro_size);
4244                   relro_size += (*p)->data_size();
4245                   (*p)->reset_address_and_file_offset();
4246                 }
4247             }
4248           if (p != pdl->end())
4249             break;
4250         }
4251       relro_size += *increase_relro;
4252       // Pad the total relro size to a multiple of the maximum
4253       // section alignment seen.
4254       uint64_t aligned_size = align_address(relro_size, max_align);
4255       // Note the amount of padding added after the last relro section.
4256       last_relro_pad = aligned_size - relro_size;
4257       *has_relro = true;
4258
4259       uint64_t page_align = parameters->target().common_pagesize();
4260
4261       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4262       uint64_t desired_align = page_align - (aligned_size % page_align);
4263       if (desired_align < *poff % page_align)
4264         *poff += page_align - *poff % page_align;
4265       *poff += desired_align - *poff % page_align;
4266       addr += *poff - orig_off;
4267       orig_off = *poff;
4268     }
4269
4270   if (!reset && this->are_addresses_set_)
4271     {
4272       gold_assert(this->paddr_ == addr);
4273       addr = this->vaddr_;
4274     }
4275   else
4276     {
4277       this->vaddr_ = addr;
4278       this->paddr_ = addr;
4279       this->are_addresses_set_ = true;
4280     }
4281
4282   in_tls = false;
4283
4284   this->offset_ = orig_off;
4285
4286   off_t off = 0;
4287   uint64_t ret;
4288   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4289     {
4290       if (i == static_cast<int>(ORDER_RELRO_LAST))
4291         {
4292           *poff += last_relro_pad;
4293           addr += last_relro_pad;
4294           if (this->output_lists_[i].empty())
4295             {
4296               // If there is nothing in the ORDER_RELRO_LAST list,
4297               // the padding will occur at the end of the relro
4298               // segment, and we need to add it to *INCREASE_RELRO.
4299               *increase_relro += last_relro_pad;
4300             }
4301         }
4302       addr = this->set_section_list_addresses(layout, reset,
4303                                               &this->output_lists_[i],
4304                                               addr, poff, pshndx, &in_tls);
4305       if (i < static_cast<int>(ORDER_SMALL_BSS))
4306         {
4307           this->filesz_ = *poff - orig_off;
4308           off = *poff;
4309         }
4310
4311       ret = addr;
4312     }
4313
4314   // If the last section was a TLS section, align upward to the
4315   // alignment of the TLS segment, so that the overall size of the TLS
4316   // segment is aligned.
4317   if (in_tls)
4318     {
4319       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4320       *poff = align_address(*poff, segment_align);
4321     }
4322
4323   this->memsz_ = *poff - orig_off;
4324
4325   // Ignore the file offset adjustments made by the BSS Output_data
4326   // objects.
4327   *poff = off;
4328
4329   return ret;
4330 }
4331
4332 // Set the addresses and file offsets in a list of Output_data
4333 // structures.
4334
4335 uint64_t
4336 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4337                                            Output_data_list* pdl,
4338                                            uint64_t addr, off_t* poff,
4339                                            unsigned int* pshndx,
4340                                            bool* in_tls)
4341 {
4342   off_t startoff = *poff;
4343   // For incremental updates, we may allocate non-fixed sections from
4344   // free space in the file.  This keeps track of the high-water mark.
4345   off_t maxoff = startoff;
4346
4347   off_t off = startoff;
4348   for (Output_data_list::iterator p = pdl->begin();
4349        p != pdl->end();
4350        ++p)
4351     {
4352       if (reset)
4353         (*p)->reset_address_and_file_offset();
4354
4355       // When doing an incremental update or when using a linker script,
4356       // the section will most likely already have an address.
4357       if (!(*p)->is_address_valid())
4358         {
4359           uint64_t align = (*p)->addralign();
4360
4361           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4362             {
4363               // Give the first TLS section the alignment of the
4364               // entire TLS segment.  Otherwise the TLS segment as a
4365               // whole may be misaligned.
4366               if (!*in_tls)
4367                 {
4368                   Output_segment* tls_segment = layout->tls_segment();
4369                   gold_assert(tls_segment != NULL);
4370                   uint64_t segment_align = tls_segment->maximum_alignment();
4371                   gold_assert(segment_align >= align);
4372                   align = segment_align;
4373
4374                   *in_tls = true;
4375                 }
4376             }
4377           else
4378             {
4379               // If this is the first section after the TLS segment,
4380               // align it to at least the alignment of the TLS
4381               // segment, so that the size of the overall TLS segment
4382               // is aligned.
4383               if (*in_tls)
4384                 {
4385                   uint64_t segment_align =
4386                       layout->tls_segment()->maximum_alignment();
4387                   if (segment_align > align)
4388                     align = segment_align;
4389
4390                   *in_tls = false;
4391                 }
4392             }
4393
4394           if (!parameters->incremental_update())
4395             {
4396               off = align_address(off, align);
4397               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4398             }
4399           else
4400             {
4401               // Incremental update: allocate file space from free list.
4402               (*p)->pre_finalize_data_size();
4403               off_t current_size = (*p)->current_data_size();
4404               off = layout->allocate(current_size, align, startoff);
4405               if (off == -1)
4406                 {
4407                   gold_assert((*p)->output_section() != NULL);
4408                   gold_fallback(_("out of patch space for section %s; "
4409                                   "relink with --incremental-full"),
4410                                 (*p)->output_section()->name());
4411                 }
4412               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4413               if ((*p)->data_size() > current_size)
4414                 {
4415                   gold_assert((*p)->output_section() != NULL);
4416                   gold_fallback(_("%s: section changed size; "
4417                                   "relink with --incremental-full"),
4418                                 (*p)->output_section()->name());
4419                 }
4420             }
4421         }
4422       else if (parameters->incremental_update())
4423         {
4424           // For incremental updates, use the fixed offset for the
4425           // high-water mark computation.
4426           off = (*p)->offset();
4427         }
4428       else
4429         {
4430           // The script may have inserted a skip forward, but it
4431           // better not have moved backward.
4432           if ((*p)->address() >= addr + (off - startoff))
4433             off += (*p)->address() - (addr + (off - startoff));
4434           else
4435             {
4436               if (!layout->script_options()->saw_sections_clause())
4437                 gold_unreachable();
4438               else
4439                 {
4440                   Output_section* os = (*p)->output_section();
4441
4442                   // Cast to unsigned long long to avoid format warnings.
4443                   unsigned long long previous_dot =
4444                     static_cast<unsigned long long>(addr + (off - startoff));
4445                   unsigned long long dot =
4446                     static_cast<unsigned long long>((*p)->address());
4447
4448                   if (os == NULL)
4449                     gold_error(_("dot moves backward in linker script "
4450                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4451                   else
4452                     gold_error(_("address of section '%s' moves backward "
4453                                  "from 0x%llx to 0x%llx"),
4454                                os->name(), previous_dot, dot);
4455                 }
4456             }
4457           (*p)->set_file_offset(off);
4458           (*p)->finalize_data_size();
4459         }
4460
4461       if (parameters->incremental_update())
4462         gold_debug(DEBUG_INCREMENTAL,
4463                    "set_section_list_addresses: %08lx %08lx %s",
4464                    static_cast<long>(off),
4465                    static_cast<long>((*p)->data_size()),
4466                    ((*p)->output_section() != NULL
4467                     ? (*p)->output_section()->name() : "(special)"));
4468
4469       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4470       // section.  Such a section does not affect the size of a
4471       // PT_LOAD segment.
4472       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4473           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4474         off += (*p)->data_size();
4475
4476       if (off > maxoff)
4477         maxoff = off;
4478
4479       if ((*p)->is_section())
4480         {
4481           (*p)->set_out_shndx(*pshndx);
4482           ++*pshndx;
4483         }
4484     }
4485
4486   *poff = maxoff;
4487   return addr + (maxoff - startoff);
4488 }
4489
4490 // For a non-PT_LOAD segment, set the offset from the sections, if
4491 // any.  Add INCREASE to the file size and the memory size.
4492
4493 void
4494 Output_segment::set_offset(unsigned int increase)
4495 {
4496   gold_assert(this->type_ != elfcpp::PT_LOAD);
4497
4498   gold_assert(!this->are_addresses_set_);
4499
4500   // A non-load section only uses output_lists_[0].
4501
4502   Output_data_list* pdl = &this->output_lists_[0];
4503
4504   if (pdl->empty())
4505     {
4506       gold_assert(increase == 0);
4507       this->vaddr_ = 0;
4508       this->paddr_ = 0;
4509       this->are_addresses_set_ = true;
4510       this->memsz_ = 0;
4511       this->min_p_align_ = 0;
4512       this->offset_ = 0;
4513       this->filesz_ = 0;
4514       return;
4515     }
4516
4517   // Find the first and last section by address.
4518   const Output_data* first = NULL;
4519   const Output_data* last_data = NULL;
4520   const Output_data* last_bss = NULL;
4521   for (Output_data_list::const_iterator p = pdl->begin();
4522        p != pdl->end();
4523        ++p)
4524     {
4525       if (first == NULL
4526           || (*p)->address() < first->address()
4527           || ((*p)->address() == first->address()
4528               && (*p)->data_size() < first->data_size()))
4529         first = *p;
4530       const Output_data** plast;
4531       if ((*p)->is_section()
4532           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4533         plast = &last_bss;
4534       else
4535         plast = &last_data;
4536       if (*plast == NULL
4537           || (*p)->address() > (*plast)->address()
4538           || ((*p)->address() == (*plast)->address()
4539               && (*p)->data_size() > (*plast)->data_size()))
4540         *plast = *p;
4541     }
4542
4543   this->vaddr_ = first->address();
4544   this->paddr_ = (first->has_load_address()
4545                   ? first->load_address()
4546                   : this->vaddr_);
4547   this->are_addresses_set_ = true;
4548   this->offset_ = first->offset();
4549
4550   if (last_data == NULL)
4551     this->filesz_ = 0;
4552   else
4553     this->filesz_ = (last_data->address()
4554                      + last_data->data_size()
4555                      - this->vaddr_);
4556
4557   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4558   this->memsz_ = (last->address()
4559                   + last->data_size()
4560                   - this->vaddr_);
4561
4562   this->filesz_ += increase;
4563   this->memsz_ += increase;
4564
4565   // If this is a RELRO segment, verify that the segment ends at a
4566   // page boundary.
4567   if (this->type_ == elfcpp::PT_GNU_RELRO)
4568     {
4569       uint64_t page_align = parameters->target().common_pagesize();
4570       uint64_t segment_end = this->vaddr_ + this->memsz_;
4571       if (parameters->incremental_update())
4572         {
4573           // The INCREASE_RELRO calculation is bypassed for an incremental
4574           // update, so we need to adjust the segment size manually here.
4575           segment_end = align_address(segment_end, page_align);
4576           this->memsz_ = segment_end - this->vaddr_;
4577         }
4578       else
4579         gold_assert(segment_end == align_address(segment_end, page_align));
4580     }
4581
4582   // If this is a TLS segment, align the memory size.  The code in
4583   // set_section_list ensures that the section after the TLS segment
4584   // is aligned to give us room.
4585   if (this->type_ == elfcpp::PT_TLS)
4586     {
4587       uint64_t segment_align = this->maximum_alignment();
4588       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4589       this->memsz_ = align_address(this->memsz_, segment_align);
4590     }
4591 }
4592
4593 // Set the TLS offsets of the sections in the PT_TLS segment.
4594
4595 void
4596 Output_segment::set_tls_offsets()
4597 {
4598   gold_assert(this->type_ == elfcpp::PT_TLS);
4599
4600   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4601        p != this->output_lists_[0].end();
4602        ++p)
4603     (*p)->set_tls_offset(this->vaddr_);
4604 }
4605
4606 // Return the load address of the first section.
4607
4608 uint64_t
4609 Output_segment::first_section_load_address() const
4610 {
4611   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4612     {
4613       const Output_data_list* pdl = &this->output_lists_[i];
4614       for (Output_data_list::const_iterator p = pdl->begin();
4615            p != pdl->end();
4616            ++p)
4617         {
4618           if ((*p)->is_section())
4619             return ((*p)->has_load_address()
4620                     ? (*p)->load_address()
4621                     : (*p)->address());
4622         }
4623     }
4624   gold_unreachable();
4625 }
4626
4627 // Return the number of Output_sections in an Output_segment.
4628
4629 unsigned int
4630 Output_segment::output_section_count() const
4631 {
4632   unsigned int ret = 0;
4633   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4634     ret += this->output_section_count_list(&this->output_lists_[i]);
4635   return ret;
4636 }
4637
4638 // Return the number of Output_sections in an Output_data_list.
4639
4640 unsigned int
4641 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4642 {
4643   unsigned int count = 0;
4644   for (Output_data_list::const_iterator p = pdl->begin();
4645        p != pdl->end();
4646        ++p)
4647     {
4648       if ((*p)->is_section())
4649         ++count;
4650     }
4651   return count;
4652 }
4653
4654 // Return the section attached to the list segment with the lowest
4655 // load address.  This is used when handling a PHDRS clause in a
4656 // linker script.
4657
4658 Output_section*
4659 Output_segment::section_with_lowest_load_address() const
4660 {
4661   Output_section* found = NULL;
4662   uint64_t found_lma = 0;
4663   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4664     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4665                                       &found_lma);
4666   return found;
4667 }
4668
4669 // Look through a list for a section with a lower load address.
4670
4671 void
4672 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4673                                             Output_section** found,
4674                                             uint64_t* found_lma) const
4675 {
4676   for (Output_data_list::const_iterator p = pdl->begin();
4677        p != pdl->end();
4678        ++p)
4679     {
4680       if (!(*p)->is_section())
4681         continue;
4682       Output_section* os = static_cast<Output_section*>(*p);
4683       uint64_t lma = (os->has_load_address()
4684                       ? os->load_address()
4685                       : os->address());
4686       if (*found == NULL || lma < *found_lma)
4687         {
4688           *found = os;
4689           *found_lma = lma;
4690         }
4691     }
4692 }
4693
4694 // Write the segment data into *OPHDR.
4695
4696 template<int size, bool big_endian>
4697 void
4698 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4699 {
4700   ophdr->put_p_type(this->type_);
4701   ophdr->put_p_offset(this->offset_);
4702   ophdr->put_p_vaddr(this->vaddr_);
4703   ophdr->put_p_paddr(this->paddr_);
4704   ophdr->put_p_filesz(this->filesz_);
4705   ophdr->put_p_memsz(this->memsz_);
4706   ophdr->put_p_flags(this->flags_);
4707   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4708 }
4709
4710 // Write the section headers into V.
4711
4712 template<int size, bool big_endian>
4713 unsigned char*
4714 Output_segment::write_section_headers(const Layout* layout,
4715                                       const Stringpool* secnamepool,
4716                                       unsigned char* v,
4717                                       unsigned int* pshndx) const
4718 {
4719   // Every section that is attached to a segment must be attached to a
4720   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4721   // segments.
4722   if (this->type_ != elfcpp::PT_LOAD)
4723     return v;
4724
4725   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4726     {
4727       const Output_data_list* pdl = &this->output_lists_[i];
4728       v = this->write_section_headers_list<size, big_endian>(layout,
4729                                                              secnamepool,
4730                                                              pdl,
4731                                                              v, pshndx);
4732     }
4733
4734   return v;
4735 }
4736
4737 template<int size, bool big_endian>
4738 unsigned char*
4739 Output_segment::write_section_headers_list(const Layout* layout,
4740                                            const Stringpool* secnamepool,
4741                                            const Output_data_list* pdl,
4742                                            unsigned char* v,
4743                                            unsigned int* pshndx) const
4744 {
4745   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4746   for (Output_data_list::const_iterator p = pdl->begin();
4747        p != pdl->end();
4748        ++p)
4749     {
4750       if ((*p)->is_section())
4751         {
4752           const Output_section* ps = static_cast<const Output_section*>(*p);
4753           gold_assert(*pshndx == ps->out_shndx());
4754           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4755           ps->write_header(layout, secnamepool, &oshdr);
4756           v += shdr_size;
4757           ++*pshndx;
4758         }
4759     }
4760   return v;
4761 }
4762
4763 // Print the output sections to the map file.
4764
4765 void
4766 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4767 {
4768   if (this->type() != elfcpp::PT_LOAD)
4769     return;
4770   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4771     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4772 }
4773
4774 // Print an output section list to the map file.
4775
4776 void
4777 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4778                                               const Output_data_list* pdl) const
4779 {
4780   for (Output_data_list::const_iterator p = pdl->begin();
4781        p != pdl->end();
4782        ++p)
4783     (*p)->print_to_mapfile(mapfile);
4784 }
4785
4786 // Output_file methods.
4787
4788 Output_file::Output_file(const char* name)
4789   : name_(name),
4790     o_(-1),
4791     file_size_(0),
4792     base_(NULL),
4793     map_is_anonymous_(false),
4794     map_is_allocated_(false),
4795     is_temporary_(false)
4796 {
4797 }
4798
4799 // Try to open an existing file.  Returns false if the file doesn't
4800 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4801 // NULL, open that file as the base for incremental linking, and
4802 // copy its contents to the new output file.  This routine can
4803 // be called for incremental updates, in which case WRITABLE should
4804 // be true, or by the incremental-dump utility, in which case
4805 // WRITABLE should be false.
4806
4807 bool
4808 Output_file::open_base_file(const char* base_name, bool writable)
4809 {
4810   // The name "-" means "stdout".
4811   if (strcmp(this->name_, "-") == 0)
4812     return false;
4813
4814   bool use_base_file = base_name != NULL;
4815   if (!use_base_file)
4816     base_name = this->name_;
4817   else if (strcmp(base_name, this->name_) == 0)
4818     gold_fatal(_("%s: incremental base and output file name are the same"),
4819                base_name);
4820
4821   // Don't bother opening files with a size of zero.
4822   struct stat s;
4823   if (::stat(base_name, &s) != 0)
4824     {
4825       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4826       return false;
4827     }
4828   if (s.st_size == 0)
4829     {
4830       gold_info(_("%s: incremental base file is empty"), base_name);
4831       return false;
4832     }
4833
4834   // If we're using a base file, we want to open it read-only.
4835   if (use_base_file)
4836     writable = false;
4837
4838   int oflags = writable ? O_RDWR : O_RDONLY;
4839   int o = open_descriptor(-1, base_name, oflags, 0);
4840   if (o < 0)
4841     {
4842       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4843       return false;
4844     }
4845
4846   // If the base file and the output file are different, open a
4847   // new output file and read the contents from the base file into
4848   // the newly-mapped region.
4849   if (use_base_file)
4850     {
4851       this->open(s.st_size);
4852       ssize_t bytes_to_read = s.st_size;
4853       unsigned char* p = this->base_;
4854       while (bytes_to_read > 0)
4855         {
4856           ssize_t len = ::read(o, p, bytes_to_read);
4857           if (len < 0)
4858             {
4859               gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4860               return false;
4861             }
4862           if (len == 0)
4863             {
4864               gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4865                         base_name,
4866                         static_cast<long long>(s.st_size - bytes_to_read),
4867                         static_cast<long long>(s.st_size));
4868               return false;
4869             }
4870           p += len;
4871           bytes_to_read -= len;
4872         }
4873       ::close(o);
4874       return true;
4875     }
4876
4877   this->o_ = o;
4878   this->file_size_ = s.st_size;
4879
4880   if (!this->map_no_anonymous(writable))
4881     {
4882       release_descriptor(o, true);
4883       this->o_ = -1;
4884       this->file_size_ = 0;
4885       return false;
4886     }
4887
4888   return true;
4889 }
4890
4891 // Open the output file.
4892
4893 void
4894 Output_file::open(off_t file_size)
4895 {
4896   this->file_size_ = file_size;
4897
4898   // Unlink the file first; otherwise the open() may fail if the file
4899   // is busy (e.g. it's an executable that's currently being executed).
4900   //
4901   // However, the linker may be part of a system where a zero-length
4902   // file is created for it to write to, with tight permissions (gcc
4903   // 2.95 did something like this).  Unlinking the file would work
4904   // around those permission controls, so we only unlink if the file
4905   // has a non-zero size.  We also unlink only regular files to avoid
4906   // trouble with directories/etc.
4907   //
4908   // If we fail, continue; this command is merely a best-effort attempt
4909   // to improve the odds for open().
4910
4911   // We let the name "-" mean "stdout"
4912   if (!this->is_temporary_)
4913     {
4914       if (strcmp(this->name_, "-") == 0)
4915         this->o_ = STDOUT_FILENO;
4916       else
4917         {
4918           struct stat s;
4919           if (::stat(this->name_, &s) == 0
4920               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4921             {
4922               if (s.st_size != 0)
4923                 ::unlink(this->name_);
4924               else if (!parameters->options().relocatable())
4925                 {
4926                   // If we don't unlink the existing file, add execute
4927                   // permission where read permissions already exist
4928                   // and where the umask permits.
4929                   int mask = ::umask(0);
4930                   ::umask(mask);
4931                   s.st_mode |= (s.st_mode & 0444) >> 2;
4932                   ::chmod(this->name_, s.st_mode & ~mask);
4933                 }
4934             }
4935
4936           int mode = parameters->options().relocatable() ? 0666 : 0777;
4937           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4938                                   mode);
4939           if (o < 0)
4940             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4941           this->o_ = o;
4942         }
4943     }
4944
4945   this->map();
4946 }
4947
4948 // Resize the output file.
4949
4950 void
4951 Output_file::resize(off_t file_size)
4952 {
4953   // If the mmap is mapping an anonymous memory buffer, this is easy:
4954   // just mremap to the new size.  If it's mapping to a file, we want
4955   // to unmap to flush to the file, then remap after growing the file.
4956   if (this->map_is_anonymous_)
4957     {
4958       void* base;
4959       if (!this->map_is_allocated_)
4960         {
4961           base = ::mremap(this->base_, this->file_size_, file_size,
4962                           MREMAP_MAYMOVE);
4963           if (base == MAP_FAILED)
4964             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4965         }
4966       else
4967         {
4968           base = realloc(this->base_, file_size);
4969           if (base == NULL)
4970             gold_nomem();
4971           if (file_size > this->file_size_)
4972             memset(static_cast<char*>(base) + this->file_size_, 0,
4973                    file_size - this->file_size_);
4974         }
4975       this->base_ = static_cast<unsigned char*>(base);
4976       this->file_size_ = file_size;
4977     }
4978   else
4979     {
4980       this->unmap();
4981       this->file_size_ = file_size;
4982       if (!this->map_no_anonymous(true))
4983         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4984     }
4985 }
4986
4987 // Map an anonymous block of memory which will later be written to the
4988 // file.  Return whether the map succeeded.
4989
4990 bool
4991 Output_file::map_anonymous()
4992 {
4993   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4994                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4995   if (base == MAP_FAILED)
4996     {
4997       base = malloc(this->file_size_);
4998       if (base == NULL)
4999         return false;
5000       memset(base, 0, this->file_size_);
5001       this->map_is_allocated_ = true;
5002     }
5003   this->base_ = static_cast<unsigned char*>(base);
5004   this->map_is_anonymous_ = true;
5005   return true;
5006 }
5007
5008 // Map the file into memory.  Return whether the mapping succeeded.
5009 // If WRITABLE is true, map with write access.
5010
5011 bool
5012 Output_file::map_no_anonymous(bool writable)
5013 {
5014   const int o = this->o_;
5015
5016   // If the output file is not a regular file, don't try to mmap it;
5017   // instead, we'll mmap a block of memory (an anonymous buffer), and
5018   // then later write the buffer to the file.
5019   void* base;
5020   struct stat statbuf;
5021   if (o == STDOUT_FILENO || o == STDERR_FILENO
5022       || ::fstat(o, &statbuf) != 0
5023       || !S_ISREG(statbuf.st_mode)
5024       || this->is_temporary_)
5025     return false;
5026
5027   // Ensure that we have disk space available for the file.  If we
5028   // don't do this, it is possible that we will call munmap, close,
5029   // and exit with dirty buffers still in the cache with no assigned
5030   // disk blocks.  If the disk is out of space at that point, the
5031   // output file will wind up incomplete, but we will have already
5032   // exited.  The alternative to fallocate would be to use fdatasync,
5033   // but that would be a more significant performance hit.
5034   if (writable)
5035     {
5036       int err = gold_fallocate(o, 0, this->file_size_);
5037       if (err != 0)
5038        gold_fatal(_("%s: %s"), this->name_, strerror(err));
5039     }
5040
5041   // Map the file into memory.
5042   int prot = PROT_READ;
5043   if (writable)
5044     prot |= PROT_WRITE;
5045   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5046
5047   // The mmap call might fail because of file system issues: the file
5048   // system might not support mmap at all, or it might not support
5049   // mmap with PROT_WRITE.
5050   if (base == MAP_FAILED)
5051     return false;
5052
5053   this->map_is_anonymous_ = false;
5054   this->base_ = static_cast<unsigned char*>(base);
5055   return true;
5056 }
5057
5058 // Map the file into memory.
5059
5060 void
5061 Output_file::map()
5062 {
5063   if (parameters->options().mmap_output_file()
5064       && this->map_no_anonymous(true))
5065     return;
5066
5067   // The mmap call might fail because of file system issues: the file
5068   // system might not support mmap at all, or it might not support
5069   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5070   // see in all cases, so if the mmap fails for any reason and we
5071   // don't care about file contents, try for an anonymous map.
5072   if (this->map_anonymous())
5073     return;
5074
5075   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5076              this->name_, static_cast<unsigned long>(this->file_size_),
5077              strerror(errno));
5078 }
5079
5080 // Unmap the file from memory.
5081
5082 void
5083 Output_file::unmap()
5084 {
5085   if (this->map_is_anonymous_)
5086     {
5087       // We've already written out the data, so there is no reason to
5088       // waste time unmapping or freeing the memory.
5089     }
5090   else
5091     {
5092       if (::munmap(this->base_, this->file_size_) < 0)
5093         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5094     }
5095   this->base_ = NULL;
5096 }
5097
5098 // Close the output file.
5099
5100 void
5101 Output_file::close()
5102 {
5103   // If the map isn't file-backed, we need to write it now.
5104   if (this->map_is_anonymous_ && !this->is_temporary_)
5105     {
5106       size_t bytes_to_write = this->file_size_;
5107       size_t offset = 0;
5108       while (bytes_to_write > 0)
5109         {
5110           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5111                                           bytes_to_write);
5112           if (bytes_written == 0)
5113             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5114           else if (bytes_written < 0)
5115             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5116           else
5117             {
5118               bytes_to_write -= bytes_written;
5119               offset += bytes_written;
5120             }
5121         }
5122     }
5123   this->unmap();
5124
5125   // We don't close stdout or stderr
5126   if (this->o_ != STDOUT_FILENO
5127       && this->o_ != STDERR_FILENO
5128       && !this->is_temporary_)
5129     if (::close(this->o_) < 0)
5130       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5131   this->o_ = -1;
5132 }
5133
5134 // Instantiate the templates we need.  We could use the configure
5135 // script to restrict this to only the ones for implemented targets.
5136
5137 #ifdef HAVE_TARGET_32_LITTLE
5138 template
5139 off_t
5140 Output_section::add_input_section<32, false>(
5141     Layout* layout,
5142     Sized_relobj_file<32, false>* object,
5143     unsigned int shndx,
5144     const char* secname,
5145     const elfcpp::Shdr<32, false>& shdr,
5146     unsigned int reloc_shndx,
5147     bool have_sections_script);
5148 #endif
5149
5150 #ifdef HAVE_TARGET_32_BIG
5151 template
5152 off_t
5153 Output_section::add_input_section<32, true>(
5154     Layout* layout,
5155     Sized_relobj_file<32, true>* object,
5156     unsigned int shndx,
5157     const char* secname,
5158     const elfcpp::Shdr<32, true>& shdr,
5159     unsigned int reloc_shndx,
5160     bool have_sections_script);
5161 #endif
5162
5163 #ifdef HAVE_TARGET_64_LITTLE
5164 template
5165 off_t
5166 Output_section::add_input_section<64, false>(
5167     Layout* layout,
5168     Sized_relobj_file<64, false>* object,
5169     unsigned int shndx,
5170     const char* secname,
5171     const elfcpp::Shdr<64, false>& shdr,
5172     unsigned int reloc_shndx,
5173     bool have_sections_script);
5174 #endif
5175
5176 #ifdef HAVE_TARGET_64_BIG
5177 template
5178 off_t
5179 Output_section::add_input_section<64, true>(
5180     Layout* layout,
5181     Sized_relobj_file<64, true>* object,
5182     unsigned int shndx,
5183     const char* secname,
5184     const elfcpp::Shdr<64, true>& shdr,
5185     unsigned int reloc_shndx,
5186     bool have_sections_script);
5187 #endif
5188
5189 #ifdef HAVE_TARGET_32_LITTLE
5190 template
5191 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5192 #endif
5193
5194 #ifdef HAVE_TARGET_32_BIG
5195 template
5196 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5197 #endif
5198
5199 #ifdef HAVE_TARGET_64_LITTLE
5200 template
5201 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5202 #endif
5203
5204 #ifdef HAVE_TARGET_64_BIG
5205 template
5206 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5207 #endif
5208
5209 #ifdef HAVE_TARGET_32_LITTLE
5210 template
5211 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5212 #endif
5213
5214 #ifdef HAVE_TARGET_32_BIG
5215 template
5216 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5217 #endif
5218
5219 #ifdef HAVE_TARGET_64_LITTLE
5220 template
5221 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5222 #endif
5223
5224 #ifdef HAVE_TARGET_64_BIG
5225 template
5226 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5227 #endif
5228
5229 #ifdef HAVE_TARGET_32_LITTLE
5230 template
5231 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5232 #endif
5233
5234 #ifdef HAVE_TARGET_32_BIG
5235 template
5236 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5237 #endif
5238
5239 #ifdef HAVE_TARGET_64_LITTLE
5240 template
5241 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5242 #endif
5243
5244 #ifdef HAVE_TARGET_64_BIG
5245 template
5246 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5247 #endif
5248
5249 #ifdef HAVE_TARGET_32_LITTLE
5250 template
5251 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5252 #endif
5253
5254 #ifdef HAVE_TARGET_32_BIG
5255 template
5256 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5257 #endif
5258
5259 #ifdef HAVE_TARGET_64_LITTLE
5260 template
5261 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5262 #endif
5263
5264 #ifdef HAVE_TARGET_64_BIG
5265 template
5266 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5267 #endif
5268
5269 #ifdef HAVE_TARGET_32_LITTLE
5270 template
5271 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5272 #endif
5273
5274 #ifdef HAVE_TARGET_32_BIG
5275 template
5276 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5277 #endif
5278
5279 #ifdef HAVE_TARGET_64_LITTLE
5280 template
5281 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5282 #endif
5283
5284 #ifdef HAVE_TARGET_64_BIG
5285 template
5286 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5287 #endif
5288
5289 #ifdef HAVE_TARGET_32_LITTLE
5290 template
5291 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5292 #endif
5293
5294 #ifdef HAVE_TARGET_32_BIG
5295 template
5296 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5297 #endif
5298
5299 #ifdef HAVE_TARGET_64_LITTLE
5300 template
5301 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5302 #endif
5303
5304 #ifdef HAVE_TARGET_64_BIG
5305 template
5306 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5307 #endif
5308
5309 #ifdef HAVE_TARGET_32_LITTLE
5310 template
5311 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5312 #endif
5313
5314 #ifdef HAVE_TARGET_32_BIG
5315 template
5316 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5317 #endif
5318
5319 #ifdef HAVE_TARGET_64_LITTLE
5320 template
5321 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5322 #endif
5323
5324 #ifdef HAVE_TARGET_64_BIG
5325 template
5326 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5327 #endif
5328
5329 #ifdef HAVE_TARGET_32_LITTLE
5330 template
5331 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5332 #endif
5333
5334 #ifdef HAVE_TARGET_32_BIG
5335 template
5336 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5337 #endif
5338
5339 #ifdef HAVE_TARGET_64_LITTLE
5340 template
5341 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5342 #endif
5343
5344 #ifdef HAVE_TARGET_64_BIG
5345 template
5346 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5347 #endif
5348
5349 #ifdef HAVE_TARGET_32_LITTLE
5350 template
5351 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5352 #endif
5353
5354 #ifdef HAVE_TARGET_32_BIG
5355 template
5356 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5357 #endif
5358
5359 #ifdef HAVE_TARGET_64_LITTLE
5360 template
5361 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5362 #endif
5363
5364 #ifdef HAVE_TARGET_64_BIG
5365 template
5366 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5367 #endif
5368
5369 #ifdef HAVE_TARGET_32_LITTLE
5370 template
5371 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5372 #endif
5373
5374 #ifdef HAVE_TARGET_32_BIG
5375 template
5376 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5377 #endif
5378
5379 #ifdef HAVE_TARGET_64_LITTLE
5380 template
5381 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5382 #endif
5383
5384 #ifdef HAVE_TARGET_64_BIG
5385 template
5386 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5387 #endif
5388
5389 #ifdef HAVE_TARGET_32_LITTLE
5390 template
5391 class Output_data_group<32, false>;
5392 #endif
5393
5394 #ifdef HAVE_TARGET_32_BIG
5395 template
5396 class Output_data_group<32, true>;
5397 #endif
5398
5399 #ifdef HAVE_TARGET_64_LITTLE
5400 template
5401 class Output_data_group<64, false>;
5402 #endif
5403
5404 #ifdef HAVE_TARGET_64_BIG
5405 template
5406 class Output_data_group<64, true>;
5407 #endif
5408
5409 #ifdef HAVE_TARGET_32_LITTLE
5410 template
5411 class Output_data_got<32, false>;
5412 #endif
5413
5414 #ifdef HAVE_TARGET_32_BIG
5415 template
5416 class Output_data_got<32, true>;
5417 #endif
5418
5419 #ifdef HAVE_TARGET_64_LITTLE
5420 template
5421 class Output_data_got<64, false>;
5422 #endif
5423
5424 #ifdef HAVE_TARGET_64_BIG
5425 template
5426 class Output_data_got<64, true>;
5427 #endif
5428
5429 } // End namespace gold.